Sample records for corner cube prism

  1. Single-Frequency Nd:YAG Ring Lasers with Corner Cube Prism

    NASA Astrophysics Data System (ADS)

    Wu, Ke-Ying; Yang, Su-Hui; Zhao, Chang-Ming; Wei, Guang-Hui

    2000-10-01

    We put forward another form of the non-planar ring lasers, in which the corner cube prism is the key element and the Nd:YAG crystal is used as a Porro prism to enclose the ring resonator. The phase shift due to the total internal reflections of the three differently orientated reflection planes of the corner cube prism, Faraday rotation in the Nd:YAG crystal placed in a magnetic field and the different output coupling in S and P polarization form an optical diode and enforce the single-frequency generating power. A round trip analysis of the polarization properties of the resonator is made by the evaluation of Jones matrix.

  2. The non-planar single-frequency ring laser with variable output coupling

    NASA Astrophysics Data System (ADS)

    Wu, Ke-ying; Yang, Su-hui; Wei, Guang-hui

    2002-03-01

    We put forward a novel non-planar single-frequency ring laser, which consists of a corner cube prism and a specially cut Porro prism made by Nd:YAG crystal. The relative angle between the corner cube and the Porro prism could be adjusted to control the output coupling of the laser resonator and the polarization-state of the output laser. A 1.06 μm single-frequency laser with 1 W output has been obtained.

  3. Single-frequency Nd:YAG ring lasers with corner cube prism

    NASA Astrophysics Data System (ADS)

    Wu, Ke Ying; Yang, Su Hui; Zhao, Chang Ming; Wei, Guang Hui

    2000-04-01

    Kane and Byer reported the first monolithic non-planar miniature ring lasers in 1985. An intrinsic optical diode enforces unidirectional and hence single-frequency oscillation of this device. It has the advantages of compactness, reliability and high efficiency. We put forward another form of the non-planar ring lasers, in which the corner cube prism is the key element and the Nd:YAG crystal is used as a Porro prism to enclose the ring resonator. The phase shift due to the total internal reflections of the three differently orientated reflection planes of the corner cube prism, Faraday rotation in the Nd:YAG crystal placed in a magnetic field and the different output coupling in S and P polarization form an optical diode and enforce the single- frequency generating. A round trip analysis of the polarization properties of the resonator is made by the evaluation of Jones matrix. The results of our initial experiment are given in the paper.

  4. Single-color laser ranging with a cube-corner-retroreflector array

    NASA Technical Reports Server (NTRS)

    Song, G. Hugh

    1987-01-01

    Lidar cross section of some typical types of cube-corner retroreflectors (CCRs) having a three corner mirror system is investigated for the case that the CCR is tilted from the normal illumination axis. Analytic expressions for the effective aperture area for the two typical window types (circular and hexagonal) of CCRs are obtained for the case that the CCR is tilted. The range of incidence angle in which only the total reflection occurs at all three uncoated corner mirrors has been found to vary considerably with the orientation of CCR and the refractive index of the CCR prism. The analytical expression for the far-field diffraction pattern of a tilted CCR is obtained by taking different polarization transformation of the six sectors of the effective reflecting aperture into account. This expression is essential when evaluating the lidar cross section of a moving CCR which is tilted in general. Formulas for the angles defining the six sectors have also been obtained.

  5. Jones's matrix representation of optical instruments. II - Fourier interferometers /spectrometers and spectropolarimeters/.

    NASA Technical Reports Server (NTRS)

    Fymat, A. L.

    1971-01-01

    Our method of matrix synthesis of optical components and instruments is applied to the derivation of Jones's matrices appropriate for Fourier interferometers (spectrometers and spectropolarimeters). These matrices are obtained for both the source beam and the detector beam. In the course of synthesis, Jones's matrices of the various reflectors (plane mirrors; retroreflectors: roofed mirror, trihedral and prism cube corner, cat's eye) used by these interferometers are also obtained.

  6. Corner-Cube Retroreflector Instrument for Advanced Lunar Laser Ranging

    NASA Technical Reports Server (NTRS)

    Turyshev, Slava G.; Folkner, William M.; Gutt, Gary M.; Williams, James G.; Somawardhana, Ruwan P.; Baran, Richard T.

    2012-01-01

    A paper describes how, based on a structural-thermal-optical-performance analysis, it has been determined that a single, large, hollow corner cube (170- mm outer diameter) with custom dihedral angles offers a return signal comparable to the Apollo 11 and 14 solid-corner-cube arrays (each consisting of 100 small, solid corner cubes), with negligible pulse spread and much lower mass. The design of the corner cube, and its surrounding mounting and casing, is driven by the thermal environment on the lunar surface, which is subject to significant temperature variations (in the range between 70 and 390 K). Therefore, the corner cube is enclosed in an insulated container open at one end; a narrow-bandpass solar filter is used to reduce the solar energy that enters the open end during the lunar day, achieving a nearly uniform temperature inside the container. Also, the materials and adhesive techniques that will be used for this corner-cube reflector must have appropriate thermal and mechanical characteristics (e.g., silica or beryllium for the cube and aluminum for the casing) to further reduce the impact of the thermal environment on the instrument's performance. The instrument would consist of a single, open corner cube protected by a separate solar filter, and mounted in a cylindrical or spherical case. A major goal in the design of a new lunar ranging system is a measurement accuracy improvement to better than 1 mm by reducing the pulse spread due to orientation. While achieving this goal, it was desired to keep the intensity of the return beam at least as bright as the Apollo 100-corner-cube arrays. These goals are met in this design by increasing the optical aperture of a single corner cube to approximately 170 mm outer diameter. This use of an "open" corner cube allows the selection of corner cube materials to be based primarily on thermal considerations, with no requirements on optical transparency. Such a corner cube also allows for easier pointing requirements, because there is no dependence on total internal reflection, which can fail off-axis.

  7. Thales SESO's hollow and massive corner cube solutions

    NASA Astrophysics Data System (ADS)

    Fappani, Denis; Dahan, Déborah; Costes, Vincent; Luitot, Clément

    2017-11-01

    For Space Activities, more and more Corner Cubes, used as solution for retro reflection of light (telemetry and positioning), are emerging worldwide in different projects. Depending on the application, they can be massive or hollow Corner Cubes. For corners as well as for any kind of space optics, it usual that use of light/lightened components is always a baseline for purpose of mass reduction payloads. But other parameters, such as the system stability under severe environment, are also major issues, especially for the corner cube systems which require generally very tight angular accuracies. For the particular case of the hollow corner cube, an alternative solution to the usual cementing of the 3 reflective surfaces, has been developed with success in collaboration with CNES to guarantee a better stability and fulfill the weight requirements.. Another important parameter is the dihedral angles that have a great influence on the wavefront error. Two technologies can be considered, either a Corner Cubes array assembled in a very stable housing, or the irreversible adherence technology used for assembling the three parts of a cube. This latter technology enables in particular not having to use cement. The poster will point out the conceptual design, the manufacturing and control key-aspects of such corner cube assemblies as well as the technologies used for their assembling.

  8. Geometrical optics analysis of the structural imperfection of retroreflection corner cubes with a nonlinear conjugate gradient method.

    PubMed

    Kim, Hwi; Min, Sung-Wook; Lee, Byoungho

    2008-12-01

    Geometrical optics analysis of the structural imperfection of retroreflection corner cubes is described. In the analysis, a geometrical optics model of six-beam reflection patterns generated by an imperfect retroreflection corner cube is developed, and its structural error extraction is formulated as a nonlinear optimization problem. The nonlinear conjugate gradient method is employed for solving the nonlinear optimization problem, and its detailed implementation is described. The proposed method of analysis is a mathematical basis for the nondestructive optical inspection of imperfectly fabricated retroreflection corner cubes.

  9. Centroid stabilization for laser alignment to corner cubes: designing a matched filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Awwal, Abdul A. S.; Bliss, Erlan; Brunton, Gordon

    2016-11-08

    Automation of image-based alignment of National Ignition Facility high energy laser beams is providing the capability of executing multiple target shots per day. One important alignment is beam centration through the second and third harmonic generating crystals in the final optics assembly (FOA), which employs two retroreflecting corner cubes as centering references for each beam. Beam-to-beam variations and systematic beam changes over time in the FOA corner cube images can lead to a reduction in accuracy as well as increased convergence durations for the template-based position detector. A systematic approach is described that maintains FOA corner cube templates and guaranteesmore » stable position estimation.« less

  10. Centroid stabilization for laser alignment to corner cubes: designing a matched filter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Awwal, Abdul A. S.; Bliss, Erlan; Brunton, Gordon

    2016-11-08

    Automation of image-based alignment of NIF high energy laser beams is providing the capability of executing multiple target shots per day. One important alignment is beam centration through the second and third harmonic generating crystals in the final optics assembly (FOA), which employs two retro-reflecting corner cubes as centering references for each beam. Beam-to-beam variations and systematic beam changes over time in the FOA corner cube images can lead to a reduction in accuracy as well as increased convergence durations for the template-based position detector. A systematic approach is described that maintains FOA corner cube templates and guarantees stable positionmore » estimation.« less

  11. Picometer Level Modeling of a Shared Vertex Double Corner Cube in the Space Interferometry Mission Kite Testbed

    NASA Technical Reports Server (NTRS)

    Kuan, Gary M.; Dekens, Frank G.

    2006-01-01

    The Space Interferometry Mission (SIM) is a microarcsecond interferometric space telescope that requires picometer level precision measurements of its truss and interferometer baselines. Single-gauge metrology errors due to non-ideal physical characteristics of corner cubes reduce the angular measurement capability of the science instrument. Specifically, the non-common vertex error (NCVE) of a shared vertex, double corner cube introduces micrometer level single-gauge errors in addition to errors due to dihedral angles and reflection phase shifts. A modified SIM Kite Testbed containing an articulating double corner cube is modeled and the results are compared to the experimental testbed data. The results confirm modeling capability and viability of calibration techniques.

  12. Focusing corner cube

    DOEpatents

    Monjes, J.A.

    1985-09-12

    This invention retortreflects and focuses a beam of light. The invention comprises a modified corner cube reflector wherein one reflective surface is planar, a second reflective surface is spherical, and the third reflective surface may be planar or convex cylindrical.

  13. The wavefront compensation of free space optics utilizing micro corner-cube-reflector arrays

    NASA Astrophysics Data System (ADS)

    You, Shengzui; Yang, Guowei; Li, Changying; Bi, Meihua; Fan, Bing

    2018-01-01

    The wavefront compensation effect of micro corner-cube-reflector arrays (MCCRAs) in modulating retroreflector (MRR) free-space optical (FSO) link is investigated theoretically and experimentally. Triangular aperture of MCCRAs has been optically characterized and studied in an indoor atmospheric turbulence channel. The use of the MCCRAs instead of a single corner-cube reflector (CCR) as the reflective device is found to improve dramatically the quality of the reflected beam spot. We draw a conclusion that the MCCRAs can in principle yield a powerful wavefront compensation in MRR FSO communication links.

  14. Fabrication of corner cube array retro-reflective structure with DLP-based 3D printing technology

    NASA Astrophysics Data System (ADS)

    Riahi, Mohammadreza

    2016-06-01

    In this article, the fabrication of a corner cube array retro-reflective structure is presented by using DLP-based 3D printing technology. In this additive manufacturing technology a pattern of a cube corner array is designed in a computer and sliced with specific software. The image of each slice is then projected from the bottom side of a reservoir, containing UV cure resin, utilizing a DLP video projector. The projected area is cured and attached to a base plate. This process is repeated until the entire part is made. The best orientation of the printing process and the effect of layer thicknesses on the surface finish of the cube has been investigated. The thermal reflow surface finishing and replication with soft molding has also been presented in this article.

  15. Electrowetting retroreflectors: Scalable and wide-spectrum modulation between corner cube and scattering reflection

    NASA Astrophysics Data System (ADS)

    Kilaru, M. K.; Cumby, B.; Heikenfeld, J.

    2009-01-01

    Corner cube and spherical retroreflectors are ubiquitous in conspicuity and range-finding applications since they reflect light back to the illumination source with unmatched efficiency. We report here a switchable electrowetting retroreflector platform that provides multiple novel features, including (a) using <0.5 μJ/cm2 electrical energy to switch from a light scattering state, (b) low loss and wide spectrum as limited only by the absorption spectrum of water, (c) use of ultrasimple self-assembly of 103-105 liquid lenslets/in.2 on a polymer/Al corner-cube substrate, and (d) change in retroreflected irradiance of >10:1 over a ±30° field of view.

  16. The statistics of laser returns from cube-corner arrays on satellite

    NASA Technical Reports Server (NTRS)

    Lehr, C. G.

    1973-01-01

    A method first presented by Goodman is used to derive an equation for the statistical effects associated with laser returns from satellites having retroreflecting arrays of cube corners. The effect of the distribution on the returns of a satellite-tracking system is illustrated by a computation based on randomly generated numbers.

  17. The Mount Wilson Optical Shop during the Second World War

    NASA Astrophysics Data System (ADS)

    Abrahams, P.

    2004-12-01

    During the Second World War, the Optical Shop of Mount Wilson Observatory, located in Pasadena, engaged in a variety of exacting and pioneering ventures in optical design and fabrication. Roof prisms for military optics were produced on a large scale, leading to the production of an instruction manual, for guidance in other workshops. Triple mirrors, or autocollimating corner cubes, were another precision part made in large numbers. Aerial photography was extensively developed. Test procedures for measuring resolution of lenses were researched. Various camera shutters and film sweep mechanisms were devised. The most significant work concerned Schmidt cameras, for possible use in night-time aerial photography. Variations included a solid Schmidt, and the Schmidt Cassegrain, which was fabricated for the first time at MWO. Key figures include Don Hendrix, Roger Hayward, Aden Meinel, and Walter Adams.

  18. Centroid stabilization in alignment of FOA corner cube: designing of a matched filter

    NASA Astrophysics Data System (ADS)

    Awwal, Abdul; Wilhelmsen, Karl; Roberts, Randy; Leach, Richard; Miller Kamm, Victoria; Ngo, Tony; Lowe-Webb, Roger

    2015-02-01

    The current automation of image-based alignment of NIF high energy laser beams is providing the capability of executing multiple target shots per day. An important aspect of performing multiple shots in a day is to reduce additional time spent aligning specific beams due to perturbations in those beam images. One such alignment is beam centration through the second and third harmonic generating crystals in the final optics assembly (FOA), which employs two retro-reflecting corner cubes to represent the beam center. The FOA houses the frequency conversion crystals for third harmonic generation as the beams enters the target chamber. Beam-to-beam variations and systematic beam changes over time in the FOA corner-cube images can lead to a reduction in accuracy as well as increased convergence durations for the template based centroid detector. This work presents a systematic approach of maintaining FOA corner cube centroid templates so that stable position estimation is applied thereby leading to fast convergence of alignment control loops. In the matched filtering approach, a template is designed based on most recent images taken in the last 60 days. The results show that new filter reduces the divergence of the position estimation of FOA images.

  19. Demonstration of a Corner-cube-interferometer LWIR Hyperspectral Imager

    NASA Astrophysics Data System (ADS)

    Renhorn, Ingmar G. E.; Svensson, Thomas; Cronström, Staffan; Hallberg, Tomas; Persson, Rolf; Lindell, Roland; Boreman, Glenn D.

    2010-01-01

    An interferometric long-wavelength infrared (LWIR) hyperspectral imager is demonstrated, based on a Michelson corner-cube interferometer. This class of system is inherently mechanically robust, and should have advantages over Sagnac-interferometer systems in terms of relaxed beamsplitter-coating specifications, and wider unvignetted field of view. Preliminary performance data from the laboratory prototype system are provided regarding imaging, spectral resolution, and fidelity of acquired spectra.

  20. Optical fabrication and testing; Proceedings of the Meeting, Singapore, Oct. 22-27, 1990

    NASA Astrophysics Data System (ADS)

    Lorenzen, Manfred; Campbell, Duncan R.; Johnson, Craig W.

    1991-03-01

    Various papers on optical fabrication and testing are presented. Individual topics addressed include: interferometry with laser diodes, new methods for economic production of prisms and lenses, interferometer accuracy and precision, optical testing with wavelength scanning interferometer, digital Talbot interferometer, high-sensitivity interferometric technique for strain measurements, absolute interferometric testing of spherical surfaces, contouring using gratings created on an LCD panel, three-dimensional inspection using laser-based dynamic fringe projection, noncontact optical microtopography, laser scan microscope and infrared laser scan microscope, photon scanning tunneling microscopy. Also discussed are: combination-matching problems in the layout design of minilaser rangefinder, design and testing of a cube-corner array for laser ranging, mode and far-field pattern of diode laser-phased arrays, new glasses for optics and optoelectronics, optical properties of Li-doped ZnO films, application and machining of Zerodur for optical purposes, finish machining of optical components in mass production.

  1. Optical fabrication and testing; Proceedings of the Meeting, Singapore, Oct. 22-27, 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lorenzen, M.; Campbell, D.R.; Johnson, C.W.

    1991-01-01

    Various papers on optical fabrication and testing are presented. Individual topics addressed include: interferometry with laser diodes, new methods for economic production of prisms and lenses, interferometer accuracy and precision, optical testing with wavelength scanning interferometer, digital Talbot interferometer, high-sensitivity interferometric technique for strain measurements, absolute interferometric testing of spherical surfaces, contouring using gratings created on an LCD panel, three-dimensional inspection using laser-based dynamic fringe projection, noncontact optical microtopography, laser scan microscope and infrared laser scan microscope, photon scanning tunneling microscopy. Also discussed are: combination-matching problems in the layout design of minilaser rangefinder, design and testing of a cube-corner arraymore » for laser ranging, mode and far-field pattern of diode laser-phased arrays, new glasses for optics and optoelectronics, optical properties of Li-doped ZnO films, application and machining of Zerodur for optical purposes, finish machining of optical components in mass production.« less

  2. The main beam efficiency of corner cube reflectors

    NASA Astrophysics Data System (ADS)

    Vowinkel, B.

    1986-01-01

    A computer model for the calculation of the beam pattern and the main beam efficiency of corner cube reflectors used in submillimeter heterodyne systems is described. The model includes possible mismatches at the termination of the wire antenna, the attenuation of the wave along the wire due to emission and the contribution of the wire bend to the antenna pattern. Measurements with a scale model at 15 GHz show good agreement between experiment and theory.

  3. Study on potential of carbon dioxide absorption in reinforced concrete beams

    NASA Astrophysics Data System (ADS)

    Bambroo, Vibhas; Gupta, Shipali; Bhoite, Pratik; Sekar, S. K.

    2017-11-01

    The global gas emission is keeping on increasing for which cement industry alone contributes 5%. The enormous water is required for curing of concrete in construction industry which can effectively be used for various purposes. The accelerated carbonation curing shows a way to reduce these emissions in a very effective way by sequestering it in concrete elements. In this research the effect of accelerated carbonation curing was checked on non-reinforced concrete elements (cubes) and reinforced concrete elements (prisms). The 100mm × 100mm × 100 mm cubes and 150mm × 150mm × 1200mm prisms were cast. They were CO2 cured for 4 and 8 hours and were tested for compressive strength and flexural strength test. The CO2 curing results showed 27.7% and 1.8% increase in strength of cubes and prisms, respectively when compared to water cured specimens. This early age strength through waste gas proves beneficial in terms of reducing in atmospheric pollution and saving the water which is a critical resource now-a-days.

  4. Study of wire electrical discharge machined folded-up corner cube retroreflector with a tunable cantilever beam

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Fan; Wang, Yen-Hung; Tsai, Jui-che

    2018-03-01

    This work has developed an approach to construct a corner cube retroreflector (CCR). A two-dimensional cutout pattern is first fabricated with wire electrical discharge machining process. It is then folded up into a three-dimensional CCR suspended on a cantilever beam. The folded-up CCR may be driven through external actuators for optical modulation; it can also mechanically respond to perturbation, acceleration, etc., to function as a sensor. Mechanical (static and dynamic modeling) and optical (ray tracing) analyses are also performed.

  5. Cryogenic Scan Mechanism for Fourier Transform Spectrometer

    NASA Technical Reports Server (NTRS)

    Brasunas, John C.; Francis, John L.

    2011-01-01

    A compact and lightweight mechanism has been developed to accurately move a Fourier transform spectrometer (FTS) scan mirror (a cube corner) in a near-linear fashion with near constant speed at cryogenic temperatures. This innovation includes a slide mechanism to restrict motion to one dimension, an actuator to drive the motion, and a linear velocity transducer (LVT) to measure the speed. The cube corner mirror is double-passed in one arm of the FTS; double-passing is required to compensate for optical beam shear resulting from tilting of the moving cube corner. The slide, actuator, and LVT are off-the-shelf components that are capable of cryogenic vacuum operation. The actuator drives the slide for the required travel of 2.5 cm. The LVT measures translation speed. A proportional feedback loop compares the LVT voltage with the set voltage (speed) to derive an error signal to drive the actuator and achieve near constant speed. When the end of the scan is reached, a personal computer reverses the set voltage. The actuator and LVT have no moving parts in contact, and have magnetic properties consistent with cryogenic operation. The unlubricated slide restricts motion to linear travel, using crossed roller bearings consistent with 100-million- stroke operation. The mechanism tilts several arc seconds during transport of the FTS mirror, which would compromise optical fringe efficiency when using a flat mirror. Consequently, a cube corner mirror is used, which converts a tilt into a shear. The sheared beam strikes (at normal incidence) a flat mirror at the end of the FTS arm with the moving mechanism, thereby returning upon itself and compensating for the shear

  6. a Portable Apparatus for Absolute Measurements of the Earth's Gravity.

    NASA Astrophysics Data System (ADS)

    Zumberge, Mark Andrew

    We have developed a new, portable apparatus for making absolute measurements of the acceleration due to the earth's gravity. We use the method of interferometrically determining the acceleration of a freely falling corner -cube prism. The falling object is surrounded by a chamber which is driven vertically inside a fixed vacuum chamber. This falling chamber is servoed to track the falling corner -cube to shield it from drag due to background gas. In addition, the drag-free falling chamber removes the need for a magnetic release, shields the falling object from electrostatic forces, and provides a means of both gently arresting the falling object and quickly returning it to its start position, to allow rapid acquisition of data. A synthesized long period isolation device reduces the noise due to seismic oscillations. A new type of Zeeman laser is used as the light source in the interferometer, and is compared with the wavelength of an iodine stabilized laser. The times of occurrence of 45 interference fringes are measured to within 0.2 nsec over a 20 cm drop and are fit to a quadratic by an on-line minicomputer. 150 drops can be made in ten minutes resulting in a value of g having a precision of 3 to 6 parts in 10('9). Systematic errors have been determined to be less than 5 parts in 10('9) through extensive tests. Three months of gravity data have been obtained with a reproducibility ranging from 5 to 10 parts in 10('9). The apparatus has been designed to be easily portable. Field measurements are planned for the immediate future. An accuracy of 6 parts in 10('9) corresponds to a height sensitivity of 2 cm. Vertical motions in the earth's crust and tectonic density changes that may precede earthquakes are to be investigated using this apparatus.

  7. A Q-switched Ho:YAG laser with double anti-misalignment corner cubes pumped by a diode-pumped Tm:YLF laser

    NASA Astrophysics Data System (ADS)

    Wang, Y. P.; Dai, T. Y.; Wu, J.; Ju, Y. L.; Yao, B. Q.

    2018-06-01

    We report the acousto-optically Q-switched Ho:YAG laser with double anti-misalignment corner cubes pumped by a diode-pumped Tm:YLF laser. In the continuous-wave operation of Ho:YAG laser, the maximum s-polarized output power of 3.2 W at 2090.3 nm was obtained under the absorbed pump power of 12.9 W by rotating the fast axis of quarter-wave plate to change the output transmission of laser cavity. The corresponding optical-to-optical conversion efficiency was 24.8% and the slope efficiency was 55.7%. When one of the corner cubes was rotated to 11.8° around vertical direction or 6.7° around horizontal direction, the laser could still operate stably. For the Q-switched operation, the pulse energy of Ho:YAG laser was 9.9 mJ with a pulse width of 53 ns at the repetition rate of 100 Hz, resulting in a peak power of 186.8 kW. The beam quality factor M2 of Ho:YAG laser was 1.3.

  8. Automatic Alignment of Displacement-Measuring Interferometer

    NASA Technical Reports Server (NTRS)

    Halverson, Peter; Regehr, Martin; Spero, Robert; Alvarez-Salazar, Oscar; Loya, Frank; Logan, Jennifer

    2006-01-01

    A control system strives to maintain the correct alignment of a laser beam in an interferometer dedicated to measuring the displacement or distance between two fiducial corner-cube reflectors. The correct alignment of the laser beam is parallel to the line between the corner points of the corner-cube reflectors: Any deviation from parallelism changes the length of the optical path between the reflectors, thereby introducing a displacement or distance measurement error. On the basis of the geometrical optics of corner-cube reflectors, the length of the optical path can be shown to be L = L(sub 0)cos theta, where L(sub 0) is the distance between the corner points and theta is the misalignment angle. Therefore, the measurement error is given by DeltaL = L(sub 0)(cos theta - 1). In the usual case in which the misalignment is small, this error can be approximated as DeltaL approximately equal to -L(sub 0)theta sup 2/2. The control system (see figure) is implemented partly in hardware and partly in software. The control system includes three piezoelectric actuators for rapid, fine adjustment of the direction of the laser beam. The voltages applied to the piezoelectric actuators include components designed to scan the beam in a circular pattern so that the beam traces out a narrow cone (60 microradians wide in the initial application) about the direction in which it is nominally aimed. This scan is performed at a frequency (2.5 Hz in the initial application) well below the resonance frequency of any vibration of the interferometer. The laser beam makes a round trip to both corner-cube reflectors and then interferes with the launched beam. The interference is detected on a photodiode. The length of the optical path is measured by a heterodyne technique: A 100- kHz frequency shift between the launched beam and a reference beam imposes, on the detected signal, an interferometric phase shift proportional to the length of the optical path. A phase meter comprising analog filters and specialized digital circuitry converts the phase shift to an indication of displacement, generating a digital signal proportional to the path length.

  9. Color multiplexing method to capture front and side images with a capsule endoscope.

    PubMed

    Tseng, Yung-Chieh; Hsu, Hsun-Ching; Han, Pin; Tsai, Cheng-Mu

    2015-10-01

    This paper proposes a capsule endoscope (CE), based on color multiplexing, to simultaneously record front and side images. Only one lens associated with an X-cube prism is employed to catch the front and side view profiles in the CE. Three color filters and polarizers are placed on three sides of an X-cube prism. When objects locate at one of the X-cube's three sides, front and side view profiles of different colors will be caught through the proposed lens and recorded at the color image sensor. The proposed color multiplexing CE (CMCE) is designed with a field of view of up to 210 deg and a 180 lp/mm resolution under f-number 2.8 and overall length 13.323 mm. A ray-tracing simulation in the CMCE with the color multiplexing mechanism verifies that the CMCE not only records the front and side view profiles at the same time, but also has great image quality at a small size.

  10. Crystalline embryos at ice-vapor interfaces

    NASA Technical Reports Server (NTRS)

    Bartley, D. L.

    1976-01-01

    The nucleation of small monolayer ice-like clusters at the basal and prism ice-vapor interfaces is considered. It is found that the basal surfaces prefer triangular embryos with an orientation that reverses from layer to layer, whereas the most stable clusters on the prism surfaces are rectangular in configuration. At any given saturation ratio, the preferred prism clusters are found to have a critical energy of formation significantly lower than that of the basal clusters, basically because of differences in cluster corner free energies.

  11. Dual surface interferometer

    DOEpatents

    Pardue, R.M.; Williams, R.R.

    1980-09-12

    A double-pass interferometer is provided which allows direct measurement of relative displacement between opposed surfaces. A conventional plane mirror interferometer may be modified by replacing the beam-measuring path cube-corner reflector with an additional quarterwave plate. The beam path is altered to extend to an opposed plane mirrored surface and the reflected beam is placed in interference with a retained reference beam split from dual-beam source and retroreflected by a reference cube-corner reflector mounted stationary with the interferometer housing. This permits direct measurement of opposed mirror surfaces by laser interferometry while doubling the resolution as with a conventional double-pass plane mirror laser interferometer system.

  12. Dual surface interferometer

    DOEpatents

    Pardue, Robert M.; Williams, Richard R.

    1982-01-01

    A double-pass interferometer is provided which allows direct measurement of relative displacement between opposed surfaces. A conventional plane mirror interferometer may be modified by replacing the beam-measuring path cube-corner reflector with an additional quarter-wave plate. The beam path is altered to extend to an opposed plane mirrored surface and the reflected beam is placed in interference with a retained reference beam split from dual-beam source and retroreflected by a reference cube-corner reflector mounted stationary with the interferometer housing. This permits direct measurement of opposed mirror surfaces by laser interferometry while doubling the resolution as with a conventional double-pass plane mirror laser interferometer system.

  13. Animal-eyeball vs. road-sign retroreflectors.

    PubMed

    Greene, Nathaniel R; Filko, Brian J

    2010-01-01

    The retroreflective characteristics of ex-vitro cow and deer eyeballs were compared to those of man-made materials used in road signs and bicycle-style reflectors. Reflected intensities were measured using a goniometer that consists of a green He-Ne laser as the light source, and a photomultiplier tube as the detector. It was found that the best quality road-sign reflector, made from a 200-micron-scale, close-packed array of corner cubes, is approximately six times more efficient than a cow eyeball at returning light in the direction of the incoming beam. Less expensive man-made retroreflectors, utilizing 35-micron glass beads (as in mailbox decals) or millimeter-scale arrays of corner cubes (bicycle-style reflectors) are, however, less efficient than the cow eye. The high quality of animal eyeball optics is evidenced by their extremely tight angular spread (full width half maximum congruent with 1 degrees) of retroreflected intensity about the incident path. Moreover, as the reflector itself is rotated relative to the incident beam, the eyeballs preserve their efficiency of retroreflection better than the man-made materials. Interference-diffraction patterns were observed in the retroreflected beams from the small-scale corner cubes, but were not observed in eyeball retroreflection.

  14. Experimental evaluation of the performance of pulsed two-color laser-ranging systems

    NASA Technical Reports Server (NTRS)

    Im, Kwaifong E.; Gardner, Chester S.; Abshire, James B.; Mcgarry, Jan F.

    1987-01-01

    Two-color laser-ranging systems can be used to estimate the atmospheric delay by measuring the difference in propagation times between two optical pulses transmitted at different wavelengths. This paper describes horizontal-path ranging experiments that were conducted using flat diffuse targets and cube-corner reflector arrays. Measurements of the timing accuracy of the cross-correlation estimator, atmospheric delay, received pulse shapes, and signal power spectra are presented. The results are in general agreement with theory and indicate that target speckle can be the dominant noise source when the target is small and is located far from the ranging system or when the target consists of a small number of cube-corner reflectors.

  15. Laser radar range and detection performance for MEMS corner cube retroreflector arrays

    NASA Astrophysics Data System (ADS)

    Grasso, Robert J.; Odhner, Jefferson E.; Stewart, Hamilton; McDaniel, Robert V.

    2004-12-01

    BAE SYSTEMS reports on a program to characterize the performance of MEMS corner cube retroreflector arrays under laser illumination. These arrays have significant military and commercial application in the areas of: 1) target identification; 2) target tracking; 3) target location; 4) identification friend-or-foe (IFF); 5) parcel tracking, and; 6) search and rescue assistance. BAE SYSTEMS has theoretically determined the feasibility of these devices to learn if sufficient signal-to-noise performance exists to permit a cooperative laser radar sensor to be considered for device location and interrogation. Results indicate that modest power-apertures are required to achieve SNR performance consistent with high probability of detection and low false alarm rates.

  16. Laser radar range and detection performance for MEMS corner cube retroreflector arrays

    NASA Astrophysics Data System (ADS)

    Grasso, Robert J.; Jost, Steven R.; Smith, M. J.; McDaniel, Robert V.

    2004-01-01

    BAE SYSTEMS reports on a program to characterize the performance of MEMS corner cube retroreflector arrays under laser illumination. These arrays have significant military and commercial application in the areas of: (1) target identification; (2) target tracking; (3) target location; (4) identification friend-or-foe (IFF); (5) parcel tracking, and; (6) search and rescue assistance. BAE SYSTEMS has theoretically determined the feasibility of these devices to learn if sufficient signal-to-noise performance exists to permit a cooperative laser radar sensor to be considered for device location and interrogation. Results indicate that modest power-apertures are required to achieve SNR performance consistent with high probability of detection and low false alarm rates.

  17. Comparison of residual stresses in Inconel 718 simple parts made by electron beam melting and direct laser metal sintering

    DOE PAGES

    Kolbus, Lindsay M.; Payzant, E. Andrew; Cornwell, Paris A.; ...

    2015-01-10

    Residual stress profiles were mapped using neutron diffraction in two simple prism builds of Inconel 718: one fabricated with electron beam melting and the other with direct laser sintering. Spatially indexed stress-free cubes were obtained by EDM sectioning equivalent prisms of similar shape. The (311) interplanar spacing examined for the EDM sectioned sample was compared to the interplanar spacings calculated to fulfill force and moment balance. We have shown that Applying force and moment balance is a necessary supplement to the measurements for the stress-free cubes with respect to accurate stress calculations in additively manufactured components. Furthermore, our work hasmore » shown that residual stresses in electron beam melting parts are much smaller than that of direct laser metal sintering parts.« less

  18. Simplified design of thin-film polarizing beam splitter using embedded symmetric trilayer stack.

    PubMed

    Azzam, R M A

    2011-07-01

    An analytically tractable design procedure is presented for a polarizing beam splitter (PBS) that uses frustrated total internal reflection and optical tunneling by a symmetric LHL trilayer thin-film stack embedded in a high-index prism. Considerable simplification arises when the refractive index of the high-index center layer H matches the refractive index of the prism and its thickness is quarter-wave. This leads to a cube design in which zero reflection for the p polarization is achieved at a 45° angle of incidence independent of the thicknesses of the identical symmetric low-index tunnel layers L and L. Arbitrarily high reflectance for the s polarization is obtained at subwavelength thicknesses of the tunnel layers. This is illustrated by an IR Si-cube PBS that uses an embedded ZnS-Si-ZnS trilayer stack.

  19. Noise properties of a corner-cube Michelson interferometer LWIR hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Bergstrom, D.; Renhorn, I.; Svensson, T.; Persson, R.; Hallberg, T.; Lindell, R.; Boreman, G.

    2010-04-01

    Interferometric hyperspectral imagers using infrared focal plane array (FPA) sensors have received increasing interest within the field of security and defence. Setups are commonly based upon either the Sagnac or the Michelson configuration, where the former is usually preferred due to its mechanical robustness. However, the Michelson configuration shows advantages in larger FOV due to better vignetting performance and improved signal-to-noise ratio and cost reduction due to relaxation of beamsplitter specifications. Recently, a laboratory prototype of a more robust and easy-to-align corner-cube Michelson hyperspectral imager has been demonstrated. The prototype is based upon an uncooled bolometric FPA in the LWIR (8-14 μm) spectral band and in this paper the noise properties of this hyperspectral imager are discussed.

  20. Development of the Laser Retroreflector Array (LRA) for SARAL

    NASA Astrophysics Data System (ADS)

    Costes, Vincent; Gasc, Karine; Sengenes, Pierre; Salcedo, Corinne; Imperiali, Stéphan; du Jeu, Christian

    2017-11-01

    CNES (French spatial agency) will provide the AltiKa high resolution altimeter, Doris instrument and the LRA (Laser Retroreflector Array) for SARAL (Satellite with Argos and AltiKa) in cooperation with ISRO (Indian space agency). The LRA is a passive equipment reflecting the laser beams coming from the Earth ground stations. Computing the send-return time travel of the laser beams allows the determination of the satellite altitude within an accuracy of a few millimeters. The reflective function is done by a set of 9 corner cube reflectors, with a conical arrangement providing a 150 degrees wide field of view over the full 360 degrees azimuth angle. According to CNES optomechanical specifications, the LRA has been developed by SESO (French optical firm). SESO has succeeded in providing the corner cube reflectors with a very stringent dihedral angle error of 1.6 arcsec and an accuracy within +/-0.5 arcsec. During this development, SESO has performed mechanical, thermal and thermo-optical analyses. The optical gradient of each corner cube, as well as angular deviations and PSF (Point Spread Function) in each laser range finding direction, have been computed. Mechanical and thermal tests have been successfully performed. A thermo-optical test has successfully confirmed the optical effect of the predicted in-flight thermal gradients. Each reflector is characterized in order to find its best location in the LRA housing and give the maximum optimization to the space telemetering mission.

  1. Gold coatings for cube-corner retro-reflectors

    NASA Astrophysics Data System (ADS)

    Dligatch, Svetlana; Gross, Mark; Netterfield, Roger P.; Pereira, Nathan; Platt, Benjamin C.; Nemati, Bijan

    2005-09-01

    The Space Interferometry Mission (SIM) PlanetQuest is managed by the Jet Propulsion Laboratory for the National Aeronautics and Space Administration. SIM requires, among other things, high precision double cube-corner retroreflectors. A test device has recently been fabricated for this project with demanding specifications on the optical surfaces and gold reflective coatings. Several gold deposition techniques were examined to meet the stringent specifications on uniformity, optical properties, micro-roughness and surface quality. We report on a comparative study of optical performance of gold films deposited by resistive and e-beam pvaporation, including measurements of the scattering from the coated surfaces. The effects of oxygen bombardment and titanium under-layer on optical properties and adhesion were evaluated. The influence of surface preparation on the optical properties was examined also.

  2. Broadband IR polarizing beam splitter using a subwavelength-structured one-dimensional photonic-crystal layer embedded in a high-index prism.

    PubMed

    Khanfar, H K; Azzam, R M A

    2009-09-20

    An iterative procedure for the design of a polarizing beam splitter (PBS) that uses a form-birefringent, subwavelength-structured, one-dimensional photonic-crystal layer (SWS 1-D PCL) embedded in a high-index cubical prism is presented. The PBS is based on index matching and total transmission for the p polarization and total internal reflection for the s polarization at the prism-PCL interface at 45 degrees angle of incidence. A high extinction ratio in reflection (>50 dB) over the 4-12 microm IR spectral range is achieved using a SWS 1-D PCL of ZnTe embedded in a ZnS cube within an external field of view of +/-6.6 degrees and in the presence of grating filling factor errors of up to +/-10%. Comparable results, but with wider field of view, are also obtained with a Ge PCL embedded in a Si prism.

  3. MICROWAVE-ASSISTED SHAPE-CONTROLLED BULK SYNTHESIS OF NOBLE NANOCRYSTALS AND THEIR CATALYTIC PROPERTIES

    EPA Science Inventory

    Bulk and shape-controlled synthesis of gold (Au) nanostructures with various shapes such as prisms, cubes and hexagons is described that occurs via microwave-assisted spontaneous reduction of noble metal salts using an aqueous solution of α-D-glucose, sucrose and maltose. The exp...

  4. Nominal SARAL Transfer Function

    NASA Technical Reports Server (NTRS)

    Arnold, David A.; Lemoine, Frank (Editor)

    2015-01-01

    This paper gives a calculation of the range correction and cross section of the SARAL (Satellite with Argos and ALtiKa) Indian/French ocean radar satellite retroreflector array assuming the cube corners are coated and have a dihedral angle offset of about 1.5 arcseconds to account for velocity aberration. The cubes are assumed to all have the same orientation within the mounting. The derived range correction may be applied in precise orbit determination analyses that use Satellite Laser Ranging (SLR) data to SARAL.

  5. Laser interferometry method for absolute measurement of the acceleration of gravity

    NASA Technical Reports Server (NTRS)

    Hudson, O. K.

    1971-01-01

    Gravimeter permits more accurate and precise absolute measurement of g without reference to Potsdam values as absolute standards. Device is basically Michelson laser beam interferometer in which one arm is mass fitted with corner cube reflector.

  6. Nonpolarizing beam splitter designed by frustrated total internal reflection inside a glass cube.

    PubMed

    Xu, Xueke; Shao, Jianda; Fan, Zhengxiu

    2006-06-20

    A method for the design of an all-dielectric nonpolarizing prism beam splitter utilizing the principle of frustrated total internal reflection is reported. The nonpolarizing condition for a prism beam splitter is discussed, and some single layer design examples are elaborated. The concept can be applied to a wide range of wavelengths and arbitrary transmittance values, and with the help of a computer design program examples of 400-700 nm, T(p)=T(s)=0.5+/-0.01, with incident angles of 45 degrees and 62 degrees are given. In addition, the sensitivity and application of the design are also discussed.

  7. Corner Reflector Mathematics

    ERIC Educational Resources Information Center

    Popelka, Susan R.

    2011-01-01

    Tiny prisms in reflective road signs and safety vests have interesting geometrical properties that can be discussed at any level of high school mathematics. At the beginning of the school year, the author teaches a unit on these reflective materials in her precalculus class so that students can review and strengthen their geometry and trigonometry…

  8. Don't Forget the Reflector.

    ERIC Educational Resources Information Center

    Morton, N.

    1991-01-01

    Various modes of reflection are classified and practical examples of devices, such as cat's eyes, are discussed. Typical light rays are traced through several systems, providing exercises with varying degrees of difficulty. Corner-cube retroreflectors, glass spheres, reflecting luminaries, light concentrators, parabolic reflectors, and off-set and…

  9. Development Challenges of Utilizing a Corner Cube Mechanism Design with Successful IASI Flight Heritage for the Infrared Sounder (IRS) on MTG: Recurrent Mechanical Design not Correlated to Recurrent Development

    NASA Astrophysics Data System (ADS)

    Spanoudakis, Peter; Schwab, Philippe; Kiener, Lionel; Saudan, Herve; Perruchoud, Gerald

    2015-09-01

    The Corner Cube Mechanism (CCM) design for the Infra-Red Sounder (IRS) on MTG is based on the successful mechanism currently in orbit on the Infrared Atmospheric Sounding Interferometers (IASI) on the Metop satellites. The overall CCM performance is described with attention given to the specific design developments for the MTG project. A description is presented of the modifications introduced and challenges encountered to adapt the IASI space heritage design (which is only 15 years old) to meet the MTG specifications. A detailed account is provided regarding the tests performed on the adapted components for the new programme. The major issues encountered and solutions proposed are illustrated concerning the voice- coil actuator development, optical switch design, fatigue life of the flexure components and the adaptation of the launch locking device. Nevertheless, an Engineering Qualification Model was rapidly manufactured and now undergoing a qualification test campaign.

  10. Ammoniated alkali fullerides (ND(3))(x)NaA(2)C(60): ammonia specific effects and superconductivity.

    PubMed

    Margadonna, Serena; Aslanis, Efstathios; Prassides, Kosmas

    2002-08-28

    The crystal structure of the superconducting (ND(3))(x)()NaA(2)C(60) (0.7 < or = x < or = 1, A= K, Rb) fullerides (T(c)= 6-15 K) has been studied by synchrotron X-ray and neutron powder diffraction. It is face-centered cubic (fcc) to low temperatures with Na(+)-ND(3) pairs residing in the octahedral interstices. These are disordered over the corners of two "interpenetrating" cubes with the Na(+) ions and the N atoms displaced by approximately 2.0 A and approximately 0.5 A from the center of the site and statically disordered over the corners of the inner and outer cube, respectively. Close contacts between the D atoms of the ND(3) molecules and electron rich 6:6 C-C bonds of neighboring C(60) units provide the signature of weak N-D.pi hydrogen-bonding interactions, which control the intermolecular packing in the crystal and may determine the unusual superconducting properties.

  11. Analytic Expressions for the Gravity Gradient Tensor of 3D Prisms with Depth-Dependent Density

    NASA Astrophysics Data System (ADS)

    Jiang, Li; Liu, Jie; Zhang, Jianzhong; Feng, Zhibing

    2017-12-01

    Variable-density sources have been paid more attention in gravity modeling. We conduct the computation of gravity gradient tensor of given mass sources with variable density in this paper. 3D rectangular prisms, as simple building blocks, can be used to approximate well 3D irregular-shaped sources. A polynomial function of depth can represent flexibly the complicated density variations in each prism. Hence, we derive the analytic expressions in closed form for computing all components of the gravity gradient tensor due to a 3D right rectangular prism with an arbitrary-order polynomial density function of depth. The singularity of the expressions is analyzed. The singular points distribute at the corners of the prism or on some of the lines through the edges of the prism in the lower semi-space containing the prism. The expressions are validated, and their numerical stability is also evaluated through numerical tests. The numerical examples with variable-density prism and basin models show that the expressions within their range of numerical stability are superior in computational accuracy and efficiency to the common solution that sums up the effects of a collection of uniform subprisms, and provide an effective method for computing gravity gradient tensor of 3D irregular-shaped sources with complicated density variation. In addition, the tensor computed with variable density is different in magnitude from that with constant density. It demonstrates the importance of the gravity gradient tensor modeling with variable density.

  12. Making a Cat's Eye in a Classroom

    ERIC Educational Resources Information Center

    Rovsek, Barbara

    2010-01-01

    Three plain mirrors, perpendicular to each other, reflect a beam of light back into the direction it came from. An activity is suggested where pupils can employ this feature of perpendicular mirrors and make their own corner cube retroreflector--a kind of cat's eye. (Contains 7 figures and 1 footnote.)

  13. An optically passive method that doubles the rate of 2-Ghz timing fiducials

    NASA Astrophysics Data System (ADS)

    Boni, R.; Kendrick, J.; Sorce, C.

    2017-08-01

    Solid-state optical comb-pulse generators provide a convenient and accurate method to include timing fiducials in a streak camera image for time base correction. Commercially available vertical-cavity surface-emitting lasers (VCSEL's) emitting in the visible currently in use can be modulated up to 2 GHz. An optically passive method is presented to interleave a time-delayed path of the 2-GHz comb with itself, producing a 4-GHz comb. This technique can be applied to VCSEL's with higher modulation rates. A fiber-delivered, randomly polarized 2-GHz VCSEL comb is polarization split into s-polarization and p-polarization paths. One path is time delayed relative to the other by twice the 2-GHz rate with +/-1-ps accuracy; the two paths then recombine at the fiber-coupled output. High throughput (>=90%) is achieved by carefully using polarization beam-splitting cubes, a total internal reflection beam-path-steering prism, and antireflection coatings. The glass path-length delay block and turning prism are optically contacted together. The beam polarizer cubes that split and recombine the paths are precision aligned and permanently cemented into place. We expect the palm-sized, inline fiber-coupled, comb-rate-doubling device to maintain its internal alignment indefinitely.

  14. Multi-scale reflection modulator-based optical interconnects

    NASA Astrophysics Data System (ADS)

    Nair, Rohit

    This dissertation describes the design, analysis, and experimental validation of micro- and macro-optical components for implementing optical interconnects at multiple scales for varied applications. Three distance scales are explored: millimeter, centimeter, and meter-scales. At the millimeter-scale, we propose the use of optical interconnects at the intra-chip level. With the rapid scaling down of CMOS critical dimensions in accordance to Moore's law, the bandwidth requirements of global interconnects in microprocessors has exceeded the capabilities of metal links. These are the wires that connect the most remote parts of the chip and are disproportionately problematic in terms of chip area and power consumption. Consequently, in the mid-2000s, we saw a shift in the chip architecture: a move towards multicore designs. However, this only delays the inevitable communication bottleneck between cores. To satisfy this bandwidth, we propose to replace the global metal interconnects with optical interconnects. We propose to use the hybrid integration of silicon with GaAs/AlAs-based multiple quantum well devices as optical modulators and photodetectors along with polymeric waveguides to transport the light. We use grayscale lithography to fabricate curved facets into the waveguides to couple light into the modulators and photodetectors. Next, at the chip-to-chip level in high-performance multiprocessor computing systems, communication distances vary from a few centimeters to tens of centimeters. An optical design for coupling light from off-chip lasers to on-chip surface-normal modulators is proposed in order to implement chip-to-chip free-space optical interconnects. The method uses a dual-prism module constructed from prisms made of two different glasses. The various alignment tolerances of the proposed system are investigated and found to be well within pick-and-place accuracies. For the off-chip lasers, vertical cavity surface emitting lasers (VCSELs) are proposed. The rationale behind using on-chip modulators rather than VCSELs is to avoid VCSEL thermal loads on chip, and because of higher reliability of modulators than VCSELs. Particularly above 10Gbps, an empirical model developed shows the rapid decrease of VCSEL median time to failure vs. data rate. Thus the proposed interconnect scheme which utilizes continuous wave VCSELs that are externally modulated by on-chip multiple quantum well modulators is applicable for chip-to-chip optical interconnects at 20Gbps and higher line data rates. Finally, for applications such as remote telemetry, where the interrogation distances can vary from a few meters to tens or even hundreds of meters we demonstrate a modulated retroreflector that utilizes InGaAs/InAlAs-based large-area multiple quantum well modulators on all three faces of a retroreflector. The large-area devices, fabricated by metalorganic chemical vapor deposition, are characterized in terms of the yield and leakage currents. A yield higher than that achieved previously using devices fabricated by molecular beam epitaxy is observed. The retroreflector module is constructed using standard FR4 printed circuit boards, thereby simplifying the wiring issue. A high optical contrast ratio of 8.23dB is observed for a drive of 20V. A free-standing PCB retroreflector is explored and found to have insufficient angular tolerances (+/-0.5 degrees). We show that the angular errors in the corner-cube construction can be corrected for using off-the-shelf optical components as opposed to mounting the PCBs on a precision corner cube, as has been done previously.

  15. Gold coatings for cube-corner retro-reflectors

    NASA Technical Reports Server (NTRS)

    Dligatch, Svetlana; Gross, Mark; Netterfield, Roger P.; Pereira, Nathan; Platt, Benjamin C.; Nemati, Bijan

    2005-01-01

    We report on a comparative study of optical performance of gold films deposited by resistive and e-beam evaporation, including measurements of the scattering from the coated surfaces. The effects of oxygen bombardment and titanium under-layer on optical properties and adhesion were evaluated. The influence of surface preparation on the optical properties was examined also.

  16. Semiconductor laser-based ranging instrument for earth gravity measurements

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Millar, Pamela S.; Sun, Xiaoli

    1995-01-01

    A laser ranging instrument is being developed to measure the spatial variations in the Earth's gravity field. It will range in space to a cube corner on a passive co-orbiting sub-satellite with a velocity accuracy of 20 to 50 microns/sec by using AlGaAs lasers intensity modulated at 2 GHz.

  17. Molecular structure of Ti8C12 and related complexes.

    PubMed Central

    Pauling, L

    1992-01-01

    Application of valence-bond theory leads to the assignment to the molecule Ti8C12 of a cubic structure, point group Ohm3m, with 8 Ti at the cube corners, +/-(x x x, x, x x [symbol, see text]) where x = 1.78 A, and with 12 C in pairs in the cube faces, +/-(0 y z, [symbol, see text], 0, y z [symbol, see text]) where y = 1.78 A and z = 0.71 A. The Ti-C and C-C bonds have bond number 4/3, corresponding to resonance of single and double bonds in 2:1 ratio. PMID:11607323

  18. Two Comments on Bond Angles

    NASA Astrophysics Data System (ADS)

    Glaister, P.

    1997-09-01

    Tetrahedral Bond Angle from Elementary Trigonometry The alternative approach of using the scalar (or dot) product of vectors enables the determination of the bond angle in a tetrahedral molecule in a simple way. There is, of course, an even more straightforward derivation suitable for students who are unfamiliar with vectors, or products thereof, but who do know some elementary trigonometry. The starting point is the figure showing triangle OAB. The point O is the center of a cube, and A and B are at opposite corners of a face of that cube in which fits a regular tetrahedron. The required bond angle alpha = AÔB; and using Pythagoras' theorem, AB = 2(square root 2) is the diagonal of a face of the cube. Hence from right-angled triangle OEB, tan(alpha/2) = (square root 2) and therefore alpha = 2tan-1(square root 2) is approx. 109° 28' (see Fig. 1).

  19. Wide-Field Retroreflectors

    NASA Technical Reports Server (NTRS)

    Page, Norman A.; Tubbs, Eldred F.

    1994-01-01

    Retroreflectors made of concentric spherical optical elements developed for use in interferometric metrological systems. Used to provide reference point on structure to be aligned precisely in two or three dimensions by use of intersecting laser beams. Acceptance angle much larger than that of cat's-eye or corner-cube retroreflector: Simultaneously reflects laser beams separated by angles as large as 180 degrees.

  20. Characterization of spatial and spectral resolution of a rotating prism chromotomographic hyperspectral imager

    NASA Astrophysics Data System (ADS)

    Bostick, Randall L.; Perram, Glen P.; Tuttle, Ronald

    2009-05-01

    The Air Force Institute of Technology (AFIT) has built a rotating prism chromotomographic hyperspectral imager (CTI) with the goal of extending the technology to exploit spatially extended sources with quickly varying (> 10 Hz) phenomenology, such as bomb detonations and muzzle flashes. This technology collects successive frames of 2-D data dispersed at different angles multiplexing spatial and spectral information which can then be used to reconstruct any arbitrary spectral plane(s). In this paper, the design of the AFIT instrument is described and then tested against a spectral target with near point source spatial characteristics to measure spectral and spatial resolution. It will be shown that, in theory, the spectral and spatial resolution in the 3-D spectral image cube is the nearly the same as a simple prism spectrograph with the same design. However, error in the knowledge of the prism linear dispersion at the detector array as a function of wavelength and projection angle will degrade resolution without further corrections. With minimal correction for error and use of a simple shift-and-add reconstruction algorithm, the CTI is able to produce a spatial resolution of about 2 mm in the object plane (234 μrad IFOV) and is limited by chromatic aberration. A spectral resolution of less than 1nm at shorter wavelengths is shown, limited primarily by prism dispersion.

  1. Chromotomography for a rotating-prism instrument using backprojection, then filtering.

    PubMed

    Deming, Ross W

    2006-08-01

    A simple closed-form solution is derived for reconstructing a 3D spatial-chromatic image cube from a set of chromatically dispersed 2D image frames. The algorithm is tailored for a particular instrument in which the dispersion element is a matching set of mechanically rotated direct vision prisms positioned between a lens and a focal plane array. By using a linear operator formalism to derive the Tikhonov-regularized pseudoinverse operator, it is found that the unique minimum-norm solution is obtained by applying the adjoint operator, followed by 1D filtering with respect to the chromatic variable. Thus the filtering and backprojection (adjoint) steps are applied in reverse order relative to an existing method. Computational efficiency is provided by use of the fast Fourier transform in the filtering step.

  2. A novel plane mirror interferometer without using corner cube reflectors

    NASA Astrophysics Data System (ADS)

    Büchner, H.-J.; Jäger, G.

    2006-04-01

    The conception and properties will be introduced of an interferometer that exclusively uses plane mirrors as reflectors; thus, these interferometers correspond well to the original Michelson interferometer. First, the relationship between the interference conditions and the detection with photodiodes will be discussed using the example of known interferometers as well as reasons given for primarily using corner cube reflectors in these devices. Next, the conceptual design of the plane mirror interferometer will be presented. This type of interferometer possesses new properties which are significant for metrological and technical applications. Only one measuring beam exists between the polarizing beam splitter and the measuring mirror and this beam alone represents the Abbe axis. This property allows the significant reduction of the Abbe error. The interferometer is able to tolerate tilting on the order of about 1'. This ensures the orthogonality between the measuring beam and the measuring mirror during the measurement. This property can be used in three-dimensional measurements to erect the three measuring beams as a x-y-z Cartesian coordinate system on the basis of three orthogonal mirrors. The plane-mirror interferometer also allows non-contact measurements of planar and curved surfaces, e.g. silicon wafers.

  3. A study of the micro- and nanoscale deformation behavior of individual austenitic dendrites in a FeCrMoVC cast alloy using micro- and nanoindentation experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeisig, J., E-mail: j.zeisig@ifw-dresden.de; Hufenbach, J.; Wendrock, H.

    2016-04-04

    Micro- and nanoindentation experiments were conducted to investigate the deformation mechanisms in a Fe79.4Cr13Mo5V1C1.6 (wt. %) cast alloy. This alloy consists of an as cast microstructure mainly composed of austenite, martensite, and a complex carbide network. During microhardness testing, metastable austenite transforms partially into martensite confirmed by electron backscatter diffraction. For nanoindentation tests, two different indenter geometries were applied (Berkovich and cube corner type). Load-displacement curves of nanoindentation in austenitic dendrites depicted pop-ins after transition into plastic deformation for both nanoindenters. Characterizations of the region beneath a nanoindent by transmission electron microscopy revealed a martensitic transformation as an activated deformationmore » mechanism and suggest a correlation with the pop-in phenomena of the load-displacement curves. Furthermore, due to an inhomogeneous chemical composition within the austenitic dendrites, more stabilized regions deform by mechanical twinning. This additional deformation mechanism was only observed for the cube corner indenter with the sharper geometry since higher shear stresses are induced beneath the contact area.« less

  4. Study on Mechanical Properties of Concrete Using Plastic Waste as an Aggregate

    NASA Astrophysics Data System (ADS)

    Jaivignesh, B.; Sofi, A.

    2017-07-01

    Disposal of large quantity of plastic causes land, water and air pollution etc.., so a study is conducted to recycle the plastic in concrete. This work investigates about the replacement of natural aggregate with non-biodegradable plastic aggregate made up of mixed plastic waste in concrete. Several tests are conducted such as compressive strength of cube, split tensile strength of cylinder, flexural strength test of prism to identify the properties and behavior of concrete using plastic aggregate. Replacement of fine aggregate weight by 10%, 15%, 20% with Plastic fine (PF) aggregate and for each replacement of fine aggregate 15%, 20%, 25% of coarse aggregate replacement also conducted with Plastic Coarse(PC) aggregate. In literatures reported that the addition of plastic aggregate in concrete causes the reduction of strength in concrete due to poor bonding between concrete and plastic aggregate, so addition of 0.3% of steel fiber by weight of cement in concrete is done to improve the concrete strength. Totally 60 cubes, 60 cylinders and 40 prisms are casted to identify the compressive strength, split tensile strength and flexural strength respectively. Casted specimens are tested at 7 and 28 days. The identified results from concrete using plastic aggregate are compared with conventional concrete. Result shows that reduction in mechanical properties of plastic aggregate added concrete. This reduction in strength is mainly due to poor bond strength between cement and plastic aggregate.

  5. Single-lens 3D digital image correlation system based on a bilateral telecentric lens and a bi-prism: Systematic error analysis and correction

    NASA Astrophysics Data System (ADS)

    Wu, Lifu; Zhu, Jianguo; Xie, Huimin; Zhou, Mengmeng

    2016-12-01

    Recently, we proposed a single-lens 3D digital image correlation (3D DIC) method and established a measurement system on the basis of a bilateral telecentric lens (BTL) and a bi-prism. This system can retrieve the 3D morphology of a target and measure its deformation using a single BTL with relatively high accuracy. Nevertheless, the system still suffers from systematic errors caused by manufacturing deficiency of the bi-prism and distortion of the BTL. In this study, in-depth evaluations of these errors and their effects on the measurement results are performed experimentally. The bi-prism deficiency and the BTL distortion are characterized by two in-plane rotation angles and several distortion coefficients, respectively. These values are obtained from a calibration process using a chessboard placed into the field of view of the system; this process is conducted after the measurement of tested specimen. A modified mathematical model is proposed, which takes these systematic errors into account and corrects them during 3D reconstruction. Experiments on retrieving the 3D positions of the chessboard grid corners and the morphology of a ceramic plate specimen are performed. The results of the experiments reveal that ignoring the bi-prism deficiency will induce attitude error to the retrieved morphology, and the BTL distortion can lead to its pseudo out-of-plane deformation. Correcting these problems can further improve the measurement accuracy of the bi-prism-based single-lens 3D DIC system.

  6. Heat transfer to four fineness-ratio-1.6 hexagonal prisms with various corner radii at Mach 6

    NASA Technical Reports Server (NTRS)

    Hunt, J. L.

    1972-01-01

    An investigation was conducted in the Langley 20-inch Mach 6 tunnel to define the aerodynamic heat transfer to the radioisotope fuel cask (heat source) of the SNAP-19/Pioneer power system. The shape of the SNAP-19/Pioneer heat source is that of a hexagonal prism with flat ends; the fineness ratio, based on maximum (edge to edge) diameter, is 1.61. Phase-change-paint heat-transfer data and schlieren photographs were obtained on four possible 1/2-scale entry configurations of the SNAP-19/Pioneer heat source. Tests were conducted over a wide range of attitudes and at nominal Reynolds numbers, based on the length of the unablated configuration, of 33,000; 84,000; and 2,200,000.

  7. Determination of the crystal structure and composition of Li6Be4OH12 by the stochastic method.

    PubMed Central

    Pauling, L

    1990-01-01

    Because of the failure to find a structure for LiBeH3 with a face-centered unit cube with edge 5.09 A, the x-ray powder pattern has been reindexed for a body-centered unit cube with edge 7.24 A. Application of the principles of structural chemistry leads to the formula Li6Be4OH12 and to a structure involving Be4OH12 clusters formed by 4 BeOH3 tetrahedra with their O corner shared, Be--(H,O) bond length 1.59 A, and with the clusters joined to one another by Li with octahedral or rectangular-planar coordination of 6 H or 4 H, Li-H bond lengths about 1.92 A. PMID:11607052

  8. Determination of the crystal structure and composition of Li6Be4OH12 by the stochastic method.

    PubMed

    Pauling, L

    1990-01-01

    Because of the failure to find a structure for LiBeH3 with a face-centered unit cube with edge 5.09 A, the x-ray powder pattern has been reindexed for a body-centered unit cube with edge 7.24 A. Application of the principles of structural chemistry leads to the formula Li6Be4OH12 and to a structure involving Be4OH12 clusters formed by 4 BeOH3 tetrahedra with their O corner shared, Be--(H,O) bond length 1.59 A, and with the clusters joined to one another by Li with octahedral or rectangular-planar coordination of 6 H or 4 H, Li-H bond lengths about 1.92 A.

  9. Asynchronous Communication Scheme For Hypercube Computer

    NASA Technical Reports Server (NTRS)

    Madan, Herb S.

    1988-01-01

    Scheme devised for asynchronous-message communication system for Mark III hypercube concurrent-processor network. Network consists of up to 1,024 processing elements connected electrically as though were at corners of 10-dimensional cube. Each node contains two Motorola 68020 processors along with Motorola 68881 floating-point processor utilizing up to 4 megabytes of shared dynamic random-access memory. Scheme intended to support applications requiring passage of both polled or solicited and unsolicited messages.

  10. Retro-detective control structures for free-space optical communication links.

    PubMed

    Jin, Xian; Barg, Jason E; Holzman, Jonathan F

    2009-12-21

    A corner-cube-based retro-detection photocell is introduced. The structure consists of three independent and mutually perpendicular photodiodes (PDs), whose differential photocurrents can be used to probe the alignment state of incident beams. These differential photocurrents are used in an actively-controlled triangulation procedure to optimize the communication channel alignment in a free-space optical (FSO) system. The active downlink and passive uplink communication capabilities of this system are demonstrated.

  11. Preliminary results from the portable standard satellite laser ranging intercomparison with MOBLAS-7

    NASA Technical Reports Server (NTRS)

    Selden, Michael; Varghese, Thomas K.; Heinick, Michael; Oldham, Thomas

    1993-01-01

    Conventional Satellite Laser Ranging (SLR) instrumentation has been configured and successfully used to provide high-accuracy laboratory measurements on the LAGEOS-2 and TOPEX cube-corner arrays. The instrumentation, referred to as the Portable Standard, has also been used for field measurements of satellite ranges in tandem with MOBLAS-7. Preliminary results of the SLR measurements suggest that improved range accuracy can be achieved using this system. Results are discussed.

  12. Long-range and depth-selective imaging of macroscopic targets using low-coherence and wide-field interferometry (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Woo, Sungsoo; Kang, Sungsam; Yoon, Changhyeong; Choi, Wonshik

    2016-03-01

    With the advancement of 3D display technology, 3D imaging of macroscopic objects has drawn much attention as they provide the contents to display. The most widely used imaging methods include a depth camera, which measures time of flight for the depth discrimination, and various structured illumination techniques. However, these existing methods have poor depth resolution, which makes imaging complicated structures a difficult task. In order to resolve this issue, we propose an imaging system based upon low-coherence interferometry and off-axis digital holographic imaging. By using light source with coherence length of 200 micro, we achieved the depth resolution of 100 micro. In order to map the macroscopic objects with this high axial resolution, we installed a pair of prisms in the reference beam path for the long-range scanning of the optical path length. Specifically, one prism was fixed in position, and the other prism was mounted on a translation stage and translated in parallel to the first prism. Due to the multiple internal reflections between the two prisms, the overall path length was elongated by a factor of 50. In this way, we could cover a depth range more than 1 meter. In addition, we employed multiple speckle illuminations and incoherent averaging of the acquired holographic images for reducing the specular reflections from the target surface. Using this newly developed system, we performed imaging targets with multiple different layers and demonstrated imaging targets hidden behind the scattering layers. The method was also applied to imaging targets located around the corner.

  13. Determination of Atomic and Molecular Excited-State Lifetimes Using an Opto-electronic Cross-Correlation Method.

    DTIC Science & Technology

    1981-10-07

    new instrument (cf. Fig. 1) is simply a four - quadrant ring-diode multi- 5 plier (Fig. 2). The reference frequency (RF) and local oscillator (LO) inputs...movement, and scan speed of the corner-cube. Other Components. A rotating-sector chopper modulates the laser pulse train at a frequency of approximately 50...the cross-correlation experiment. In this application, the detection bandpass is simply displaced from DC to the chopper frequency; problems arising

  14. Method of calculating retroreflector-array transfer functions. [laser range finders

    NASA Technical Reports Server (NTRS)

    Arnold, D. A.

    1978-01-01

    Techniques and equations used in calculating the transfer functions to relate the observed return laser pulses to the center of mass of the Lageos satellite retroflector array, and for most of the retroreflector-equipped satellites now in orbit are described. The methods derived include the effects of coherent interference, diffraction, polarization, and dihedral-angle offsets. Particular emphasis is given to deriving expressions for the diffraction pattern and active reflecting area of various cube-corner designs.

  15. Vertical high-precision Michelson wavemeter

    NASA Astrophysics Data System (ADS)

    Morales, A.; de Urquijo, J.; Mendoza, A.

    1993-01-01

    We have designed and tested a traveling, Michelson-type vertical wavemeter for the wavelength measurement of tunable continuous-wave lasers in the visible part of the spectrum. The interferometer has two movable corner cubes, suspending vertically from a driving setup resembling Atwood's machine. To reduce the fraction-of-fringe error, a vernier-type coincidence circuit was used. Although simple, this wavemeter has a relative precision of 3.2 parts in 109 for an overall fringe count of about 7×106.

  16. TEM in situ cube-corner indentation analysis using ViBe motion detection algorithm

    NASA Astrophysics Data System (ADS)

    Yano, K. H.; Thomas, S.; Swenson, M. J.; Lu, Y.; Wharry, J. P.

    2018-04-01

    Transmission electron microscopic (TEM) in situ mechanical testing is a promising method for understanding plasticity in shallow ion irradiated layers and other volume-limited materials. One of the simplest TEM in situ experiments is cube-corner indentation of a lamella, but the subsequent analysis and interpretation of the experiment is challenging, especially in engineering materials with complex microstructures. In this work, we: (a) develop MicroViBE, a motion detection and background subtraction-based post-processing approach, and (b) demonstrate the ability of MicroViBe, in combination with post-mortem TEM imaging, to carry out an unbiased qualitative interpretation of TEM indentation videos. We focus this work around a Fe-9%Cr oxide dispersion strengthened (ODS) alloy, irradiated with Fe2+ ions to 3 dpa at 500 °C. MicroViBe identifies changes in Laue contrast that are induced by the indentation; these changes accumulate throughout the mechanical loading to generate a "heatmap" of features in the original TEM video that change the most during the loading. Dislocation loops with b = ½ <111> identified by post-mortem scanning TEM (STEM) imaging correspond to hotspots on the heatmap, whereas positions of dislocation loops with b = <100> do not correspond to hotspots. Further, MicroViBe enables consistent, objective quantitative approximation of the b = ½ <111> dislocation loop number density.

  17. Flexible corner cube retroreflector array for temperature and strain sensing† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7ra13284k

    PubMed Central

    Khalid, Muhammad Waqas; Ahmed, Rajib; Yetisen, Ali K.

    2018-01-01

    Optical sensors for detecting temperature and strain play a crucial role in the analysis of environmental conditions and real-time remote sensing. However, the development of a single optical device that can sense temperature and strain simultaneously remains a challenge. Here, a flexible corner cube retroreflector (CCR) array based on passive dual optical sensing (temperature and strain) is demonstrated. A mechanical embossing process was utilised to replicate a three-dimensional (3D) CCR array in a soft flexible polymer film. The fabricated flexible CCR array samples were experimentally characterised through reflection measurements followed by computational modelling. As fabricated samples were illuminated with a monochromatic laser beam (635, 532, and 450 nm), a triangular shape reflection was obtained at the far-field. The fabricated flexible CCR array samples tuned retroreflected light based on external stimuli (temperature and strain as an applied force). For strain and temperature sensing, an applied force and temperature, in the form of weight suspension, and heat flow was applied to alter the replicated CCR surface structure, which in turn changed its optical response. Directional reflection from the heated flexible CCR array surface was also measured with tilt angle variation (max. up to 10°). Soft polymer CCRs may have potential in remote sensing applications, including measuring the temperature in space and in nuclear power stations. PMID:29568510

  18. 45 Mbps cat's eye modulating retro-reflector link over 7 Km

    NASA Astrophysics Data System (ADS)

    Rabinovich, W. S.; Mahon, R.; Goetz, P. G.; Swingen, L.; Murphy, J.; Ferraro, M.; Burris, R.; Suite, M.; Moore, C. I.; Gilbreath, G. C.; Binari, S.

    2006-09-01

    Modulating retro-reflectors (MRR) allow free space optical links with no need for pointing, tracking or a laser on one end of the link. They work by coupling a passive optical retro-reflector with an optical modulator. The most common kind of MRR uses a corner cube retro-reflector. These devices must have a modulator whose active area is as large as the area of the corner cube. This limits the ability to close longer range high speed links because the large aperture need to return sufficient light implies a large modulator capacitance. To overcome this limitation we developed the concept of a cat's eye MRR. Cat's eye MRRs place the modulator in the focal plane of a lens system designed to passively retro-reflect light. Because the light focuses onto the modulator, a small, low capacitance, modulator can be used with a large optical aperture. However, the position of the focal spot varies with the angle of incidence so an array of modulators must be placed in the focal plane, In addition, to avoid having to drive all the modulator pixels, an angle of arrival sensor must be used. We discuss several cat's eye MRR systems with near diffraction limited performance and bandwidths of 45 Mbps. We also discuss a link to a cat's eye MRR over a 7 Km range.

  19. Development of a Single-Longitudinal-Mode Ho:YAG Laser Based on Corner Cube

    NASA Astrophysics Data System (ADS)

    Jing, Wu; You-Lun, Ju; Tong-Yu, Dai; Zhen-Guo, Zhang; Bao-Quan, Yao; Yue-Zhu, Wang

    2016-04-01

    Not Available Supported by the National Natural Science Foundation of China under Grant Nos 61308009 and 61405047, the China Postdoctoral Science Foundation Funded Project under Grant No 2013M540288, the Fundamental Research Funds for the Central Universities under Grant Nos HIT.NSRIF.2014044 and HIT.NSRIF.2015042, the Science Fund for Outstanding Youths of Heilongjiang Province under Grant No JQ201310, and the Heilongjiang Postdoctoral Science Foundation Funded Project under Grant No LBH-Z14085.

  20. Next-generation laser retroreflectors for GNSS, solar system exploration, geodesy, gravitational physics and earth observation

    NASA Astrophysics Data System (ADS)

    Dell'Agnello, S.; Boni, A.; Cantone, C.; Ciocci, E.; Martini, M.; Patrizi, G.; Tibuzzi, M.; Delle Monache, G.; Vittori, R.; Bianco, G.; Currie, D.; Intaglietta, N.; Salvatori, L.; Lops, C.; Contessa, S.; Porcelli, L.; Mondaini, C.; Tuscano, P.; Maiello, M.

    2017-11-01

    The SCF_Lab (Satellite/lunar/gnss laser ranging and altimetry Characterization Facility Laboratory) of INFNLNF is designed to cover virtually LRAs (Laser Retroreflector Arrays) of CCRs (Cube Corner Retroreflectors) for missions in the whole solar system, with a modular organization of its instrumentation, two redundant SCF (SCF_Lab Characterization Facilities), and an evolutionary measurement approach, including customization and potentially upgrade on-demand. See http://www.lnf.infn.it/esperimenti/etrusco/ for a general description.

  1. Enhanced backscatter of optical beams reflected in turbulent air

    NASA Astrophysics Data System (ADS)

    Nelson, W.; Palastro, J. P.; Wu, C.; Davis, C. C.

    2015-07-01

    Optical beams propagating through air acquire phase distortions from turbulent fluctuations in the refractive index. While these distortions are usually deleterious to propagation, beams reflected in a turbulent medium can undergo a local recovery of spatial coherence and intensity enhancement referred to as enhanced backscatter (EBS). Using a combination of lab-scale experiments and simulations, we investigate the EBS of optical beams reflected from corner cubes and rough surfaces, and identify the regimes in which EBS is most distinctly observed.

  2. InGaAs Multiple Quantum Well Modulating Retro-reflector for Free Space Optical Communications

    DTIC Science & Technology

    2002-01-01

    PIN optical modulators grown on GaAs substrates by molecular beam epitaxy ,J. Vac Sci. B 18, 1609-16 13 (2000). Peter G. Goetz, W. S. Rabinovich...reflector is then interrogated by a cw laser beam from a conventional optical communications system and returns a modulated signal beam to the...optical communication systems. By mounting an electro-optic shutter in front of the corner- cube, the retro-reflected beam can be turned on or off (or at

  3. Majorana states in prismatic core-shell nanowires

    NASA Astrophysics Data System (ADS)

    Manolescu, Andrei; Sitek, Anna; Osca, Javier; Serra, Llorenç; Gudmundsson, Vidar; Stanescu, Tudor Dan

    2017-09-01

    We consider core-shell nanowires with conductive shell and insulating core and with polygonal cross section. We investigate the implications of this geometry on Majorana states expected in the presence of proximity-induced superconductivity and an external magnetic field. A typical prismatic nanowire has a hexagonal profile, but square and triangular shapes can also be obtained. The low-energy states are localized at the corners of the cross section, i.e., along the prism edges, and are separated by a gap from higher energy states localized on the sides. The corner localization depends on the details of the shell geometry, i.e., thickness, diameter, and sharpness of the corners. We study systematically the low-energy spectrum of prismatic shells using numerical methods and derive the topological phase diagram as a function of magnetic field and chemical potential for triangular, square, and hexagonal geometries. A strong corner localization enhances the stability of Majorana modes to various perturbations, including the orbital effect of the magnetic field, whereas a weaker localization favorizes orbital effects and reduces the critical magnetic field. The prismatic geometry allows the Majorana zero-energy modes to be accompanied by low-energy states, which we call pseudo Majorana, and which converge to real Majoranas in the limit of small shell thickness. We include the Rashba spin-orbit coupling in a phenomenological manner, assuming a radial electric field across the shell.

  4. Research on ground-based LWIR hyperspectral imaging remote gas detection

    NASA Astrophysics Data System (ADS)

    Yang, Zhixiong; Yu, Chunchao; Zheng, Weijian; Lei, Zhenggang; Yan, Min; Yuan, Xiaochun; Zhang, Peizhong

    2015-10-01

    The new progress of ground-based long-wave infrared remote sensing is presented, which describes the windowing spatial and temporal modulation Fourier spectroscopy imaging in details. The prototype forms the interference fringes based on the corner-cube of spatial modulation of Michelson interferometer, using cooled long-wave infrared photovoltaic staring FPA (focal plane array) detector. The LWIR hyperspectral imaging is achieved by the process of collection, reorganization, correction, apodization, FFT etc. from data cube. Noise equivalent sensor response (NESR), which is the sensitivity index of CHIPED-1 LWIR hyperspectral imaging prototype, can reach 5.6×10-8W/(cm-1.sr.cm2) at single sampling. Hyperspectral imaging is used in the field of organic gas VOC infrared detection. Relative to wide band infrared imaging, it has some advantages. Such as, it has high sensitivity, the strong anti-interference ability, identify the variety, and so on.

  5. Isomer-Specific Spectroscopy of Benzene-(H2O)n, n = 6,7: Benzene's Role in Reshaping Water's Three-Dimensional Networks.

    PubMed

    Tabor, Daniel P; Kusaka, Ryoji; Walsh, Patrick S; Sibert, Edwin L; Zwier, Timothy S

    2015-05-21

    The water hexamer and heptamer are the smallest sized water clusters that support three-dimensional hydrogen-bonded networks, with several competing structures that could be altered by interactions with a solute. Using infrared-ultraviolet double resonance spectroscopy, we record isomer-specific OH stretch infrared spectra of gas-phase benzene-(H2O)(6,7) clusters that demonstrate benzene's surprising role in reshaping (H2O)(6,7). The single observed isomer of benzene-(H2O)6 incorporates an inverted book structure rather than the cage or prism. The main conformer of benzene-(H2O)7 is an inserted-cubic structure in which benzene replaces one water molecule in the S4-symmetry cube of the water octamer, inserting itself into the water cluster by engaging as a π H-bond acceptor with one water and via C-H···O donor interactions with two others. The corresponding D(2d)-symmetry inserted-cube structure is not observed, consistent with the calculated energetic preference for the S4 over the D(2d) inserted cube. A reduced-dimension model that incorporates stretch-bend Fermi resonance accounts for the spectra in detail and sheds light on the hydrogen-bonding networks themselves and on the perturbations imposed on them by benzene.

  6. High-order central ENO finite-volume scheme for hyperbolic conservation laws on three-dimensional cubed-sphere grids

    NASA Astrophysics Data System (ADS)

    Ivan, L.; De Sterck, H.; Susanto, A.; Groth, C. P. T.

    2015-02-01

    A fourth-order accurate finite-volume scheme for hyperbolic conservation laws on three-dimensional (3D) cubed-sphere grids is described. The approach is based on a central essentially non-oscillatory (CENO) finite-volume method that was recently introduced for two-dimensional compressible flows and is extended to 3D geometries with structured hexahedral grids. Cubed-sphere grids feature hexahedral cells with nonplanar cell surfaces, which are handled with high-order accuracy using trilinear geometry representations in the proposed approach. Varying stencil sizes and slope discontinuities in grid lines occur at the boundaries and corners of the six sectors of the cubed-sphere grid where the grid topology is unstructured, and these difficulties are handled naturally with high-order accuracy by the multidimensional least-squares based 3D CENO reconstruction with overdetermined stencils. A rotation-based mechanism is introduced to automatically select appropriate smaller stencils at degenerate block boundaries, where fewer ghost cells are available and the grid topology changes, requiring stencils to be modified. Combining these building blocks results in a finite-volume discretization for conservation laws on 3D cubed-sphere grids that is uniformly high-order accurate in all three grid directions. While solution-adaptivity is natural in the multi-block setting of our code, high-order accurate adaptive refinement on cubed-sphere grids is not pursued in this paper. The 3D CENO scheme is an accurate and robust solution method for hyperbolic conservation laws on general hexahedral grids that is attractive because it is inherently multidimensional by employing a K-exact overdetermined reconstruction scheme, and it avoids the complexity of considering multiple non-central stencil configurations that characterizes traditional ENO schemes. Extensive numerical tests demonstrate fourth-order convergence for stationary and time-dependent Euler and magnetohydrodynamic flows on cubed-sphere grids, and robustness against spurious oscillations at 3D shocks. Performance tests illustrate efficiency gains that can be potentially achieved using fourth-order schemes as compared to second-order methods for the same error level. Applications on extended cubed-sphere grids incorporating a seventh root block that discretizes the interior of the inner sphere demonstrate the versatility of the spatial discretization method.

  7. Output-Mirror-Tuning Terahertz-Wave Parametric Oscillator with an Asymmetrical Porro-Prism Resonator Configuration

    NASA Astrophysics Data System (ADS)

    Zhang, Ruiliang; Qu, Yanchen; Zhao, Weijiang; Liu, Chuang; Chen, Zhenlei

    2017-06-01

    We demonstrate a terahertz-wave parametric oscillator (TPO) with an asymmetrical porro-prism (PP) resonator configuration, consisting of a close PP corner reflector and a distant output mirror relative to the MgO:LiNbO3 crystal. Based on this cavity, frequency tuning of Stokes and the accompanied terahertz (THz) waves is realized just by rotating the plane mirror. Furthermore, THz output with high efficiency and wide tuning range is obtained. Compared with a conventional TPO employing a plane-parallel resonator of the same cavity length and output loss, the low end of the frequency tuning range is extended to 0.96 THz from 1.2 THz. The highest output obtained at 1.28 THz is enhanced by about 25%, and the oscillation threshold pump energy measured at 1.66 THz is reduced by about 4.5%. This resonator configuration also shows some potential to simplify the structure and application for intracavity TPOs.

  8. NUCLEAR REACTOR CORE DESIGN

    DOEpatents

    Mahlmeister, J.E.; Peck, W.S.; Haberer, W.V.; Williams, A.C.

    1960-03-22

    An improved core design for a sodium-cooled, graphitemoderated nuclear reactor is described. The improved reactor core comprises a number of blocks of moderator material, each block being in the shape of a regular prism. A number of channels, extending the length of each block, are disposed around the periphery. When several blocks are placed in contact to form the reactor core, the channels in adjacent blocks correspond with each other to form closed conduits extending the length of the core. Fuel element clusters are disposed in these closed conduits, and liquid coolant is forced through the annulus between the fuel cluster and the inner surface of the conduit. In a preferred embodiment of the invention, the moderator blocks are in the form of hexagonal prisms with longitudinal channels cut into the corners of the hexagon. The main advantage of an "edge-loaded" moderator block is that fewer thermal neutrons are absorbed by the moderator cladding, as compared with a conventional centrally loaded moderator block.

  9. Characterizing the Inner Accretionary Prism of the Nankai Trough with 3D Seismic and Logging While Drilling at IODP Site C0002

    NASA Astrophysics Data System (ADS)

    Boston, B.; Moore, G. F.; Jurado, M. J.; Sone, H.; Tobin, H. J.; Saffer, D. M.; Hirose, T.; Toczko, S.; Maeda, L.

    2014-12-01

    The deeper, inner parts of active accretionary prisms have been poorly studied due the lack of drilling data, low seismic image quality and typically thick overlying sediments. Our project focuses on the interior of the Nankai Trough inner accretionary prism using deep scientific drilling and a 3D seismic cube. International Ocean Discovery Program (IODP) Expedition 348 extended the existing riser hole to more than 3000 meters below seafloor (mbsf) at Site C0002. Logging while drilling (LWD) data included gamma ray, resistivity, resistivity image, and sonic logs. LWD analysis of the lower section revealed on the borehole images intense deformation characterized by steep bedding, faults and fractures. Bedding plane orientations were measured throughout, with minor gaps at heavily deformed zones disrupting the quality of the resistivity images. Bedding trends are predominantly steeply dipping (60-90°) to the NW. Interpretation of fractures and faults in the image log revealed the existence of different sets of fractures and faults and variable fracture density, remarkably high at fault zones. Gamma ray, resistivity and sonic logs indicated generally homogenous lithology interpretation along this section, consistent with the "silty-claystone" predominant lithologies described on cutting samples. Drops in sonic velocity were observed at the fault zones defined on borehole images. Seismic reflection interpretation of the deep faults in the inner prism is exceedingly difficult due to a strong seafloor multiple, high-angle bedding dips, and low frequency of the data. Structural reconstructions were employed to test whether folding of seismic horizons in the overlying forearc basin could be from an interpreted paleothrust within the inner prism. We used a trishear-based restoration to estimate fault slip on folded horizons landward of C0002. We estimate ~500 m of slip from a steeply dipping deep thrust within the last ~0.9 Ma. Folding is not found in the Kumano sediments near C0002, where normal faults and tilting dominate the modern basin deformation. Both logging and seismic are consistent in characterizing a heavily deformed inner prism. Most of this deformation must have occurred during or before formation of the overlying modern Kumano forearc basin sediments.

  10. SU-F-T-661: Dependence of Gold Nano Particles Cluster Morphology On Dose Enhancement of Photon Radiation Therapy Apply for Radiation Biology Effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, S; Chung, K; Han, Y

    Purpose: Injected gold nano particles (GNPs) to a body for dose enhancement are known to form in the tumorcell cluster morphology. We investigated the dependence of dose enhancement on the morphology characteristic with an approximated morphology model by using Monte Carlo simulations. Methods: For MC simulation, TOPAS version 2.0P-03 was used. GNP cluster morphology was approximated as a body center cubic(BCC) model by placing 8 GNPs at the corner and one at the center of cube with length from 2.59 µm to 0.25 µm located in a 4 µm length water filled cube phantom. 4 µm length square shaped beamsmore » of poly-energetic 50, 260 kVp photons were irradiated to the water filled cube phantom with 100 nm diameter GNPs in it. Dose enhancement ratio(DER) was computed as a function of distance from the surface of the GNP at the cube center for 18 cubes geometries. For scoring particles, 10 nm width of concentric shell shaped detector was constructed up to 100 nm from the center. Total dose in a sphere of 100 nm radius of detector were normalized to 2.59 µm length cube morphology. To verified biological effect of BCC model applied to cell survival curve fitting. Results: DER increase as the distance of the GNPs reduces. DER was largest for 0.25 µm length cube. Dependence of GNP distance DER increment was 1.73, 1.60 for 50 kVp, 260 kVp photons, respectively. Also, Using BCC model applied to cell survival curve was well prediction. Conclusion: DER with GNPs was larger when they are closely packed in the phantom. Therefore, better therapeutic effects can be expected with close-packed GNPs. This research was supported by the NRF funded by the Ministry of Science, ICT & Future Planning (2012M3A9B6055201 and 2012R1A1A2042414), Samsung Medical Center grant[GFO1130081].« less

  11. High-level ab initio calculations for the four low-lying families of minima of (H2O)(20): 1. Estimates of MP2/CBS binding energies and comparison with empirical potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fanourgakis, Georgios S.; Apra, Edoardo; Xantheas, Sotiris S.

    2004-08-08

    We report estimates of complete basis set (CBS) limits at the second-order Møller-Plesset perturbation level of theory (MP2) for the binding energies of the lowest lying isomers within each of the four major families of minima of (H2O)20. These were obtained by performing MP2 calculations with the family of correlation-consistent basis sets up to quadruple zeta quality, augmented with additional diffuse functions (aug-cc-pVnZ, n=D, T, Q). The MP2/CBS estimates are: -200.1 kcal/mol (dodecahedron, 30 hydrogen bonds), -212.6 kcal/mol (fused cubes, 36 hydrogen bonds), -215.0 (face-sharing pentagonal prisms, 35 hydrogen bonds) and –217.9 kcal/mol (edge-sharing pentagonal prisms, 34 hydrogen bonds). Themore » energetic ordering of the various (H2O)20 isomers does not follow monotonically the number of hydrogen bonds as in the case of smaller clusters such as the different isomers of the water hexamer. The dodecahedron lies ca. 18 kcal/mol higher in energy than the most stable edge-sharing pentagonal prism isomer. The TIP4P, ASP-W4, TTM2-R, AMOEBA and TTM2-F empirical potentials also predict the energetic stabilization of the edge-sharing pentagonal prisms with respect to the dodecahedron, albeit they universally underestimate the cluster binding energies with respect to the MP2/CBS result. Among them, the TTM2-F potential was found to predict the absolute cluster binding energies to within < 1% from the corresponding MP2/CBS values, whereas the error for the rest of the potentials considered in this study ranges from 3-5%.« less

  12. Strong and weak second-order topological insulators with hexagonal symmetry and ℤ3 index

    NASA Astrophysics Data System (ADS)

    Ezawa, Motohiko

    2018-06-01

    We propose second-order topological insulators (SOTIs) whose lattice structure has a hexagonal symmetry C6. We start with a three-dimensional weak topological insulator constructed on a stacked triangular lattice, which has only side topological surface states. We then introduce an additional mass term which gaps out the side surface states but preserves the hinge states. The resultant system is a three-dimensional SOTI. The bulk topological quantum number is shown to be the Z3 index protected by inversion time-reversal symmetry I T and rotoinversion symmetry I C6 . We obtain three phases: trivial, strong, and weak SOTI phases. We argue the origin of these two types of SOTIs. A hexagonal prism is a typical structure respecting these symmetries, where six topological hinge states emerge at the side. The building block is a hexagon in two dimensions, where topological corner states emerge at the six corners in the SOTI phase. Strong and weak SOTIs are obtained when the interlayer hopping interaction is strong and weak, respectively.

  13. Self-Assembly of Flux-Closure Polygons from Magnetite Nanocubes.

    PubMed

    Szyndler, Megan W; Corn, Robert M

    2012-09-06

    Well-defined nanoscale flux-closure polygons (nanogons) have been fabricated on hydrophilic surfaces from the face-to-face self-assembly of magnetite nanocubes. Uniform ferrimagnetic magnetite nanocubes (∼86 nm) were synthesized and characterized with a combination of electron microscopy, diffraction, and magnetization measurements. The nanocubes were subsequently cast onto hydrophilic substrates, wherein the cubes lined up face-to-face and formed a variety of polygons due to magnetostatic and hydrophobic interactions. The generated surfaces consist primarily of three- and four-sided nanogons; polygons ranging from two to six sides were also observed. Further examination of the nanogons showed that the constraints of the face-to-face assembly of nanocubes often led to bowed sides, strained cube geometries, and mismatches at the acute angle vertices. Additionally, extra nanocubes were often present at the vertices, suggesting the presence of external magnetostatic fields at the polygon corners. These nanogons are inimitable nanoscale magnetic structures with potential applications in the areas of magnetic memory storage and high-frequency magnetics.

  14. SU-E-T-570: New Quality Assurance Method Using Motion Tracking for 6D Robotic Couches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheon, W; Cho, J; Ahn, S

    Purpose: To accommodate geometrically accurate patient positioning, a robotic couch that is capable of 6-degrees of freedom has been introduced. However, conventional couch QA methods are not sufficient to enable the necessary accuracy of tests. Therefore, we have developed a camera based motion detection and geometry calibration system for couch QA. Methods: Employing a Visual-Tracking System (VTS, BonitaB10, Vicon, UK) which tracks infrared reflective(IR) markers, camera calibration was conducted using a 5.7 × 5.7 × 5.7 cm{sup 3} cube attached with IR markers at each corner. After positioning a robotic-couch at the origin with the cube on the table top,more » 3D coordinates of the cube’s eight corners were acquired by VTS in the VTS coordinate system. Next, positions in reference coordinates (roomcoordinates) were assigned using the known relation between each point. Finally, camera calibration was completed by finding a transformation matrix between VTS and reference coordinate systems and by applying a pseudo inverse matrix method. After the calibration, the accuracy of linear and rotational motions as well as couch sagging could be measured by analyzing the continuously acquired data of the cube while the couch moves to a designated position. Accuracy of the developed software was verified through comparison with measurement data when using a Laser tracker (FARO, Lake Mary, USA) for a robotic-couch installed for proton therapy. Results: VTS system could track couch motion accurately and measured position in room-coordinates. The VTS measurements and Laser tracker data agreed within 1% of difference for linear and rotational motions. Also because the program analyzes motion in 3-Dimension, it can compute couch sagging. Conclusion: Developed QA system provides submillimeter/ degree accuracy which fulfills the high-end couch QA. This work was supported by the National Research Foundation of Korea funded by Ministry of Science, ICT & Future Planning. (2013M2A2A7043507 and 2012M3A9B6055201)« less

  15. Study of hollow corner retroreflectors for use in a synchronous orbit

    NASA Technical Reports Server (NTRS)

    Yoder, P. R., Jr.

    1975-01-01

    The performance of a hollow corner cube retroreflector made up of three mutually perpendicular optically flat mirrors when undergoing the thermal-mechanical strains induced by a spacecraft environment was studied. Of particular interest was a device of 200 square centimeter optical aperture used on a satellite in a synchronous orbit. It was assumed that the reflector always faces the earth. The effects of direct solar irradiance, earthshine, and albedo were considered. The results included the maximum mirror surface temperature during the orbit as well as the worst-case loss of optical performance due to thermally-induced mirror distortions. It was concluded that a device made of three suitably coated flat ULE mirrors, optically contacted to each other and supported mechanically in a nonrigid mount, would be expected to concentrate over 80 percent of the theoretical maximum energy in the central of the far field diffraction pattern. Continued development of the device through a detailed design, fabrication, and test phase was recommended.

  16. The study of the mission instruments of GOSAT-2

    NASA Astrophysics Data System (ADS)

    Suto, H.; Nakajima, M.; Kuze, A.; Shiomi, K.; Shimoda, H.

    2012-12-01

    Greenhouse Gases Observing Satellite "GOSAT" was launched in January of 2009 and have observed the carbon dioxide and the methane almost four years. Additionally, the Level 1B algorithm has been improved based on the on board calibration and ground test using Engineering model and the accuracy of the level 1B data, that is the spectrum, has been improved. This has led to the more accurate calculation of the concentration of carbon dioxide and methane with small bias. At the same time, some issues have become clearer little by little through the on orbit operation. Especially a lot of data have been affected by the cloud, so few data have been used until now. However, the satellite has come to be recognized as an effective means of the detection of the global distribution of the greenhouse gases concentration. And in addition to the effort to resolve the issues which have become clear until now, the improvement of the observation performance have been required by a lot of users. Therefore, we researched the concrete requirements of users and set the mission requirements for GOSAT-2. Based on this mission requirement, we have studied the possibilities of these requirements. This study was implemented as premises for the usage of the Fourier Transform Spectrometer to detect the greenhouse gases as well as GOSAT. We considered the methods to increase the number of the useful data. For example, the reduction of the footprints size, increase of the number of the IFOV, the intelligent pointing and so on. It's necessary to maintain the Signal to Noise ration of the GOSAT. In addition to the method to increase the number of the useful data, we have researched the size of the aperture of the optics to maintain the signal to noise ratio corresponding to the reduction of the footprint seize. But the possibility of the corner cube used in the Fourier transform spectrometer limits the aperture size. We decided the aperture size (and corner cube size) based on the trade-off among corner cube size, footprint size and signal to noise ratio and the opinions of the scientists. In addition to the improvements of the performaces, the following requirements has been presented. To evaluate the relative matters of the anthropogenic emissions, to contribute to the MRV of REDD+ and so on. In order to meet these requirements the Fourier Transform Spectrometer on GOSAT-2 will has the additional observation channel for the carbon monoxide and Imager will has the spectrometer using the grating for Nitorgen Dioxide. Now we are investigating the possibilities of these additional functions and increase of the performances and we will decide the specifications of GOSAT-2 within one year.

  17. A quantitative study on magnesium alloy stent biodegradation.

    PubMed

    Gao, Yuanming; Wang, Lizhen; Gu, Xuenan; Chu, Zhaowei; Guo, Meng; Fan, Yubo

    2018-06-06

    Insufficient scaffolding time in the process of rapid corrosion is the main problem of magnesium alloy stent (MAS). Finite element method had been used to investigate corrosion of MAS. However, related researches mostly described all elements suffered corrosion in view of one-dimensional corrosion. Multi-dimensional corrosions significantly influence mechanical integrity of MAS structures such as edges and corners. In this study, the effects of multi-dimensional corrosion were studied using experiment quantitatively, then a phenomenological corrosion model was developed to consider these effects. We implemented immersion test with magnesium alloy (AZ31B) cubes, which had different numbers of exposed surfaces to analyze differences of dimension. It was indicated that corrosion rates of cubes are almost proportional to their exposed-surface numbers, especially when pitting corrosions are not marked. The cubes also represented the hexahedron elements in simulation. In conclusion, corrosion rate of every element accelerates by increasing corrosion-surface numbers in multi-dimensional corrosion. The damage ratios among elements with the same size are proportional to the ratios of corrosion-surface numbers under uniform corrosion. The finite element simulation using proposed model provided more details of changes of morphology and mechanics in scaffolding time by removing 25.7% of elements of MAS. The proposed corrosion model reflected the effects of multi-dimension on corrosions. It would be used to predict degradation process of MAS quantitatively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Preliminary Neutronics Analysis of the ITER Toroidal Interferometer and Polarimeter Diagnostic Corner Cube Retroreflectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tresemer, K. R.

    2015-07-01

    ITER is an international project under construction in France that will demonstrate nuclear fusion at a power plant-relevant scale. The Toroidal Interferometer and Polarimeter (TIP) Diagnostic will be used to measure the plasma electron line density along 5 laser-beam chords. This line-averaged density measurement will be input to the ITER feedback-control system. The TIP is considered the primary diagnostic for these measurements, which are needed for basic ITER machine control. Therefore, system reliability & accuracy is a critical element in TIP’s design. There are two major challenges to the reliability of the TIP system. First is the survivability and performancemore » of in-vessel optics and second is maintaining optical alignment over long optical paths and large vessel movements. Both of these issues greatly depend on minimizing the overall distortion due to neutron & gamma heating of the Corner Cube Retroreflectors (CCRs). These are small optical mirrors embedded in five first wall locations around the vacuum vessel, corresponding to certain plasma tangency radii. During the development of the design and location of these CCRs, several iterations of neutronics analyses were performed to determine and minimize the total distortion due to nuclear heating of the CCRs. The CCR corresponding to TIP Channel 2 was chosen for analysis as a good middle-road case, being an average distance from the plasma (of the five channels) and having moderate neutron shielding from its blanket shield housing. Results show that Channel 2 meets the requirements of the TIP Diagnostic, but barely. These results suggest other CCRs might be at risk of exceeding thermal deformation due to nuclear heating.« less

  19. Measuring Cyclic Error in Laser Heterodyne Interferometers

    NASA Technical Reports Server (NTRS)

    Ryan, Daniel; Abramovici, Alexander; Zhao, Feng; Dekens, Frank; An, Xin; Azizi, Alireza; Chapsky, Jacob; Halverson, Peter

    2010-01-01

    An improved method and apparatus have been devised for measuring cyclic errors in the readouts of laser heterodyne interferometers that are configured and operated as displacement gauges. The cyclic errors arise as a consequence of mixing of spurious optical and electrical signals in beam launchers that are subsystems of such interferometers. The conventional approach to measurement of cyclic error involves phase measurements and yields values precise to within about 10 pm over air optical paths at laser wavelengths in the visible and near infrared. The present approach, which involves amplitude measurements instead of phase measurements, yields values precise to about .0.1 microns . about 100 times the precision of the conventional approach. In a displacement gauge of the type of interest here, the laser heterodyne interferometer is used to measure any change in distance along an optical axis between two corner-cube retroreflectors. One of the corner-cube retroreflectors is mounted on a piezoelectric transducer (see figure), which is used to introduce a low-frequency periodic displacement that can be measured by the gauges. The transducer is excited at a frequency of 9 Hz by a triangular waveform to generate a 9-Hz triangular-wave displacement having an amplitude of 25 microns. The displacement gives rise to both amplitude and phase modulation of the heterodyne signals in the gauges. The modulation includes cyclic error components, and the magnitude of the cyclic-error component of the phase modulation is what one needs to measure in order to determine the magnitude of the cyclic displacement error. The precision attainable in the conventional (phase measurement) approach to measuring cyclic error is limited because the phase measurements are af-

  20. The design of common aperture and multi-band optical system based on day light telescope

    NASA Astrophysics Data System (ADS)

    Chen, Jiao; Wang, Ling; Zhang, Bo; Teng, Guoqi; Wang, Meng

    2017-02-01

    As the development of electro-optical weapon system, the technique of common path and multi-sensor are used popular, and becoming a trend. According to the requirement of miniaturization and lightweight for electro-optical stabilized sighting system, a day light telescope/television viewing-aim system/ laser ranger has been designed in this thesis, which has common aperture. Thus integration scheme of multi-band and common aperture has been adopted. A day light telescope has been presented, which magnification is 8, field of view is 6°, and distance of exit pupil is more than 20mm. For 1/3" CCD, television viewing-aim system which has 156mm focal length, has been completed. In addition, laser ranging system has been designed, with 10km raging distance. This paper outlines its principle which used day light telescope as optical reference of correcting the optical axis. Besides, by means of shared objective, reserved image with inverting prism and coating beam-splitting film on the inclined plane of the cube prism, the system has been applied to electro-optical weapon system, with high-resolution of imaging and high-precision ranging.

  1. Aerial 3D display by use of a 3D-shaped screen with aerial imaging by retro-reflection (AIRR)

    NASA Astrophysics Data System (ADS)

    Kurokawa, Nao; Ito, Shusei; Yamamoto, Hirotsugu

    2017-06-01

    The purpose of this paper is to realize an aerial 3D display. We design optical system that employs a projector below a retro-reflector and a 3D-shaped screen. A floating 3D image is formed with aerial imaging by retro-reflection (AIRR). Our proposed system is composed of a 3D-shaped screen, a projector, a quarter-wave retarder, a retro-reflector, and a reflective polarizer. Because AIRR forms aerial images that are plane-symmetric of the light sources regarding the reflective polarizer, the shape of the 3D screen is inverted from a desired aerial 3D image. In order to expand viewing angle, the 3D-shaped screen is surrounded by a retro-reflector. In order to separate the aerial image from reflected lights on the retro- reflector surface, the retro-reflector is tilted by 30 degrees. A projector is located below the retro-reflector at the same height of the 3D-shaped screen. The optical axis of the projector is orthogonal to the 3D-shaped screen. Scattered light on the 3D-shaped screen forms the aerial 3D image. In order to demonstrate the proposed optical design, a corner-cube-shaped screen is used for the 3D-shaped screen. Thus, the aerial 3D image is a cube that is floating above the reflective polarizer. For example, an aerial green cube is formed by projecting a calculated image on the 3D-shaped screen. The green cube image is digitally inverted in depth by our developed software. Thus, we have succeeded in forming aerial 3D image with our designed optical system.

  2. Current developments in optical engineering and commercial optics; Proceedings of the Meeting, San Diego, CA, Aug. 7-11, 1989

    NASA Technical Reports Server (NTRS)

    Fischer, Robert E. (Editor); Pollicove, Harvey M. (Editor); Smith, Warren J. (Editor)

    1989-01-01

    Various papers on current developments in optical engineering and commercial optics are presented. Individual topics addressed include: large optics fabrication technology drivers and new manufacturing techniques, new technology for beryllium mirror production, design examples of hybrid refractive-diffractive lenses, optical sensor designs for detecting cracks in optical materials, retroreflector field-of-view properties for open and solid cube corners, correction of misalignment-dependent aberrations of the HST via phase retrieval, basic radiometry review for seeker test set, radiation effects on visible optical elements, and nonlinear simulation of efficiency for large-orbit nonwiggler FELs.

  3. Laser-ranging scanning system to observe topographical deformations of volcanoes.

    PubMed

    Aoki, T; Takabe, M; Mizutani, K; Itabe, T

    1997-02-20

    We have developed a laser-ranging system to observe the topographical structure of volcanoes. This system can be used to measure the distance to a target by a laser and shows the three-dimensional topographical structure of a volcano with an accuracy of 30 cm. This accuracy is greater than that of a typical laser-ranging system that uses a corner-cube reflector as a target because the reflected light jitters as a result of inclination and unevenness of the target ground surface. However, this laser-ranging system is useful for detecting deformations of topographical features in which placement of a reflector is difficult, such as in volcanic regions.

  4. Circular polarization beam splitter that uses frustrated total internal reflection by an embedded symmetric achiral multilayer coating.

    PubMed

    Azzam, R M A; De, A

    2003-03-01

    A symmetric achiral trilayer structure, which consists of a high-index center layer sandwiched between two identical low-index films and embedded in a high-index prism, is designed to produce equal and opposite quarter-wave retardation in reflection and transmission and equal throughput for the p and s polarization at oblique incidence. Such a device splits a beam of incident linearly polarized light into two orthogonally circularly polarized components of equal power that travel in different directions. A visible (633-nm) design that operates at a 60 degree angle of incidence and an infrared (10.6-microm) 45 degree cube design are presented. The spectral and angular sensitivities of the device are also considered.

  5. Elastic Properties of 3D-Printed Rock Models: Dry and Saturated Cracks

    NASA Astrophysics Data System (ADS)

    Huang, L.; Stewart, R.; Dyaur, N.

    2014-12-01

    Many regions of subsurface interest are, or will be, fractured. In addition, these zones many be subject to varying saturations and stresses. New 3D printing techniques using different materials and structures, provide opportunities to understand porous or fractured materials and fluid effects on their elastic properties. We use a 3D printer (Stratasys Dimension SST 768) to print two rock models: a solid octahedral prism and a porous cube with thousands of penny-shaped cracks. The printing material is ABS thermal plastic with a density of 1.04 g/cm3. After printing, we measure the elastic properties of the models, both dry and 100% saturated with water. Both models exhibit VTI (Vertical Transverse Isotropic) symmetry due to laying (about 0.25 mm thick) of the printing process. The prism has a density of 0.96 g/cm3 before saturation and 1.00 g/cm3 after saturation. Its effective porosity is calculated to be 4 %. We use ultrasonic transducers (500 kHz) to measure both P- and shear-wave velocities, and the raw material has a P-wave velocity of 1.89 km/s and a shear-wave velocity of 0.91 km/s. P-wave velocity in the un-saturated prism increases from 1.81 km/s to 1.84 km/s after saturation in the direction parallel to layering and from 1.73 km/s to 1.81 km/s in the direction perpendicular to layering. The fast shear-wave velocity decreases from 0.88 km/s to 0.87 km/s and the slow shear-wave velocity decreases from 0.82 km/s to 0.81 km/s. The cube, printed with penny-shaped cracks, gives a density of 0.79 g/cm3 and a porosity of 24 %. We measure its P-wave velocity as 1.78 km/s and 1.68 km/s in the direction parallel and perpendicular to the layering, respectively. Its fast shear-wave velocity is 0.88 km/s and slow shear-wave velocity is 0.70 km/s. The penny-shaped cracks have significant influence on the elastic properties of the 3D-printed rock models. To better understand and explain the fluid effects on the elastic properties of the models, we apply the extended anisotropic Gassmann's equations to predict the effects of saturation changes. We find that the predictions match observations from the experimental data within 1 % difference.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanjeewa, Liurukara D.; McMillen, Colin D.; McGuire, Michael A.

    We synthesized manganese vanadate fluorides using high-temperature hydrothermal techniques with BaF 2 as a mineralizer. Ba 3Mn 2(V 2O 7) 2F 2 crystallizes in space group C2/c and consists of dimers built from edge-sharing MnO 4F 2 trigonal prisms with linking V 2O 7 groups. Ba 7Mn 8O 2(VO 4) 2F 23 crystallizes in space group Cmmm, with a manganese oxyfluoride network built from edge- and corner-sharing Mn 2+/3+(O,F) 6 octahedra. The resulting octahedra form alternating Mn 2+ and Mn 2+/3+ layers separated by VO 4 tetrahedra. This latter compound exhibits a canted antiferromagnetic order below TN = 25 K.

  7. Enhanced backscatter of optical beams reflected in atmospheric turbulence

    NASA Astrophysics Data System (ADS)

    Nelson, W.; Palastro, J. P.; Wu, C.; Davis, C. C.

    2014-10-01

    Optical beams propagating through the atmosphere acquire phase distortions from turbulent fluctuations in the refractive index. While these distortions are usually deleterious to propagation, beams reflected in a turbulent medium can undergo a local recovery of spatial coherence and intensity enhancement referred to as enhanced backscatter (EBS). Using simulations, we investigate the EBS of optical beams reflected from mirrors, corner cubes, and rough surfaces, and identify the regimes in which EBS is most distinctly observed. Standard EBS detection requires averaging the reflected intensity over many passes through uncorrelated turbulence. Here we present an algorithm called the "tilt-shift method" which allows detection of EBS in static turbulence, improving its suitability for potential applications.

  8. Computer access security code system

    NASA Technical Reports Server (NTRS)

    Collins, Earl R., Jr. (Inventor)

    1990-01-01

    A security code system for controlling access to computer and computer-controlled entry situations comprises a plurality of subsets of alpha-numeric characters disposed in random order in matrices of at least two dimensions forming theoretical rectangles, cubes, etc., such that when access is desired, at least one pair of previously unused character subsets not found in the same row or column of the matrix is chosen at random and transmitted by the computer. The proper response to gain access is transmittal of subsets which complete the rectangle, and/or a parallelepiped whose opposite corners were defined by first groups of code. Once used, subsets are not used again to absolutely defeat unauthorized access by eavesdropping, and the like.

  9. Evolution from education to practical use in University of Tokyo's nano-satellite activities

    NASA Astrophysics Data System (ADS)

    Nakasuka, Shinichi; Sako, Nobutada; Sahara, Hironori; Nakamura, Yuya; Eishima, Takashi; Komatsu, Mitsuhito

    2010-04-01

    The paper overviews recent nano-satellite development activities of University of Tokyo, Intelligent Space Systems Laboratory (ISSL). Development of real satellites and actually launching them provides excellent materials for space engineering education as well as project management, which is rather difficult to teach in usual class lectures. In addition, it may lead to a new way of space development with its cheap and quick access to space. Two educational CubeSats were launched successfully in 2003 and 2005, and they have been surviving in space more than 5 years, which showed that the COTS (commercial off the shelf) can be reliably used in space if the system is designed appropriately. Based on the experiences and technologies obtained in CubeSat projects, ISSL initiated practical applications of nano-satellite, starting with PRISM, 8 kg remote sensing satellite aiming for 30 m ground resolution and Nano-JASMINE, 20 kg astrometry satellite, which will be launched in 2009 and 2010, respectively. In order to support these kinds of student-oriented activities in Japan, University Space Engineering Consortium (UNISEC) was founded in 2002 by the author's group, which has had large effect of further facilitating students' space-related activities in Japan. Significance and history of such activities are reviewed briefly, followed by the objectives and future vision of such nano-satellite activities.

  10. Evaluation of a MMW active through-the-wall surveillance system

    NASA Astrophysics Data System (ADS)

    Currie, Nicholas C.; Stiefvater, Kenneth

    2002-08-01

    This paper discusses the TWS data collected with a state-of- the-art 100 GHz radar imager developed for law enforcement use by Millivision, PPC. The system collects a cube of data consisting of 16 azimuth elements by 16 elevation elements by 256 range elements. The cube represents 11 degrees by 11 degrees by 25 m of coverage. The relatively narrow field-of- view (fov) was extended by physically moving the antenna in 11 degree segments and collecting data which is stitched together into larger images, e.g. a 3X3 stitched image represents 33 degrees by 33 degrees by 26 m of coverage. Unfortunately, this stitching process required up to 5 minutes to collect a single (3X3) stitched image. Thus, motion had to be simulated. The paper will discuss the phenomenology of the MMW radar return from various objects including walls, wall-corners, desks and other furniture, and persons simulating walking. Successive frames from a simulated move of a man and woman walking will be presented, and the actual movie shown at the presentation. Comments will be offered as to the practicality of active MMW imaging for TWS application.

  11. New perspectives for high accuracy SLR with second generation geodesic satellites

    NASA Technical Reports Server (NTRS)

    Lund, Glenn

    1993-01-01

    This paper reports on the accuracy limitations imposed by geodesic satellite signatures, and on the potential for achieving millimetric performances by means of alternative satellite concepts and an optimized 2-color system tradeoff. Long distance laser ranging, when performed between a ground (emitter/receiver) station and a distant geodesic satellite, is now reputed to enable short arc trajectory determinations to be achieved with an accuracy of 1 to 2 centimeters. This state-of-the-art accuracy is limited principally by the uncertainties inherent to single-color atmospheric path length correction. Motivated by the study of phenomena such as postglacial rebound, and the detailed analysis of small-scale volcanic and strain deformations, the drive towards millimetric accuracies will inevitably be felt. With the advent of short pulse (less than 50 ps) dual wavelength ranging, combined with adequate detection equipment (such as a fast-scanning streak camera or ultra-fast solid-state detectors) the atmospheric uncertainty could potentially be reduced to the level of a few millimeters, thus, exposing other less significant error contributions, of which by far the most significant will then be the morphology of the retroreflector satellites themselves. Existing geodesic satellites are simply dense spheres, several 10's of cm in diameter, encrusted with a large number (426 in the case of LAGEOS) of small cube-corner reflectors. A single incident pulse, thus, results in a significant number of randomly phased, quasi-simultaneous return pulses. These combine coherently at the receiver to produce a convolved interference waveform which cannot, on a shot to shot basis, be accurately and unambiguously correlated to the satellite center of mass. This paper proposes alternative geodesic satellite concepts, based on the use of a very small number of cube-corner retroreflectors, in which the above difficulties are eliminated while ensuring, for a given emitted pulse, the return of a single clean pulse with an adequate cross-section.

  12. Wave-optics simulation of the double-pass beam propagation in modulating retro-reflector FSO systems using a corner cube reflector.

    PubMed

    Yang, Guowei; You, Shengzui; Bi, Meihua; Fan, Bing; Lu, Yang; Zhou, Xuefang; Li, Jing; Geng, Hujun; Wang, Tianshu

    2017-09-10

    Free-space optical (FSO) communication utilizing a modulating retro-reflector (MRR) is an innovative way to convey information between the traditional optical transceiver and the semi-passive MRR unit that reflects optical signals. The reflected signals experience turbulence-induced fading in the double-pass channel, which is very different from that in the traditional single-pass FSO channel. In this paper, we consider the corner cube reflector (CCR) as the retro-reflective device in the MRR. A general geometrical model of the CCR is established based on the ray tracing method to describe the ray trajectory inside the CCR. This ray tracing model could treat the general case that the optical beam is obliquely incident on the hypotenuse surface of the CCR with the dihedral angle error and surface nonflatness. Then, we integrate this general CCR model into the wave-optics (WO) simulation to construct the double-pass beam propagation simulation. This double-pass simulation contains the forward propagation from the transceiver to the MRR through the atmosphere, the retro-reflection of the CCR, and the backward propagation from the MRR to the transceiver, which can be realized by a single-pass WO simulation, the ray tracing CCR model, and another single-pass WO simulation, respectively. To verify the proposed CCR model and double-pass WO simulation, the effective reflection area, the incremental phase, and the reflected beam spot on the transceiver plane of the CCR are analyzed, and the numerical results are in agreement with the previously published results. Finally, we use the double-pass WO simulation to investigate the double-pass channel in the MRR FSO systems. The histograms of the turbulence-induced fading in the forward and backward channels are obtained from the simulation data and are fitted by gamma-gamma (ΓΓ) distributions. As the two opposite channels are highly correlated, we model the double-pass channel fading by the product of two correlated ΓΓ random variables (RVs).

  13. Spectral behavior of a terahertz quantum-cascade laser.

    PubMed

    Hensley, J M; Montoya, Juan; Allen, M G; Xu, J; Mahler, L; Tredicucci, A; Beere, H E; Ritchie, D A

    2009-10-26

    In this paper, the spectral behavior of two terahertz (THz) quantum cascade lasers (QCLs) operating both pulsed and cw is characterized using a heterodyne technique. Both lasers emitting around 2.5 THz are combined onto a whisker contact Schottky diode mixer mounted in a corner cube reflector. The resulting difference frequency beatnote is recorded in both the time and frequency domain. From the frequency domain data, we measure the effective laser linewidth and the tuning rates as a function of both temperature and injection current and show that the current tuning behavior cannot be explained by temperature tuning mechanisms alone. From the time domain data, we characterize the intrapulse frequency tuning behavior, which limits the effective linewidth to approximately 5 MHz.

  14. Three-dimensional volume containing multiple two-dimensional information patterns

    NASA Astrophysics Data System (ADS)

    Nakayama, Hirotaka; Shiraki, Atsushi; Hirayama, Ryuji; Masuda, Nobuyuki; Shimobaba, Tomoyoshi; Ito, Tomoyoshi

    2013-06-01

    We have developed an algorithm for recording multiple gradated two-dimensional projection patterns in a single three-dimensional object. When a single pattern is observed, information from the other patterns can be treated as background noise. The proposed algorithm has two important features: the number of patterns that can be recorded is theoretically infinite and no meaningful information can be seen outside of the projection directions. We confirmed the effectiveness of the proposed algorithm by performing numerical simulations of two laser crystals: an octagonal prism that contained four patterns in four projection directions and a dodecahedron that contained six patterns in six directions. We also fabricated and demonstrated an actual prototype laser crystal from a glass cube engraved by a laser beam. This algorithm has applications in various fields, including media art, digital signage, and encryption technology.

  15. Recognition of Simple 3D Geometrical Objects under Partial Occlusion

    NASA Astrophysics Data System (ADS)

    Barchunova, Alexandra; Sommer, Gerald

    In this paper we present a novel procedure for contour-based recognition of partially occluded three-dimensional objects. In our approach we use images of real and rendered objects whose contours have been deformed by a restricted change of the viewpoint. The preparatory part consists of contour extraction, preprocessing, local structure analysis and feature extraction. The main part deals with an extended construction and functionality of the classifier ensemble Adaptive Occlusion Classifier (AOC). It relies on a hierarchical fragmenting algorithm to perform a local structure analysis which is essential when dealing with occlusions. In the experimental part of this paper we present classification results for five classes of simple geometrical figures: prism, cylinder, half cylinder, a cube, and a bridge. We compare classification results for three classical feature extractors: Fourier descriptors, pseudo Zernike and Zernike moments.

  16. Whole-angle spherical retroreflector using concentric layers of homogeneous optical media.

    PubMed

    Oakley, John P

    2007-03-01

    Spherical retroreflectors have a much greater acceptance angle than conventional retroreflectors such as corner cubes. However, the optical performance of known spherical reflectors is limited by spherical aberration. It is shown that third-order spherical aberration may be corrected by using two or more layers of homogeneous optical media of different refractive indices. The performance of the retroreflector is characterized by the scattering (or radar) cross section, which is calculated by using optical design software. A practical spherical reflector is described that offers a significant increase in optical performance over existing devices. No gradient index components are required, and the device is constructed by using conventional optical materials and fabrication techniques. The experimental results confirm that the device operates correctly at the design wavelength of 690 nm.

  17. Phase and vacancy behaviour of hard "slanted" cubes

    NASA Astrophysics Data System (ADS)

    van Damme, R.; van der Meer, B.; van den Broeke, J. J.; Smallenburg, F.; Filion, L.

    2017-09-01

    We use computer simulations to study the phase behaviour for hard, right rhombic prisms as a function of the angle of their rhombic face (the "slant" angle). More specifically, using a combination of event-driven molecular dynamics simulations, Monte Carlo simulations, and free-energy calculations, we determine and characterize the equilibrium phases formed by these particles for various slant angles and densities. Surprisingly, we find that the equilibrium crystal structure for a large range of slant angles and densities is the simple cubic crystal—despite the fact that the particles do not have cubic symmetry. Moreover, we find that the equilibrium vacancy concentration in this simple cubic phase is extremely high and depends only on the packing fraction and not the particle shape. At higher densities, a rhombic crystal appears as the equilibrium phase. We summarize the phase behaviour of this system by drawing a phase diagram in the slant angle-packing fraction plane.

  18. Study on dependence of dose enhancement on cluster morphology of gold nanoparticles in radiation therapy using a body-centred cubic model.

    PubMed

    Ahn, Sang Hee; Chung, Kwangzoo; Shin, Jung Wook; Cheon, Wonjoong; Han, Youngyih; Park, Hee Chul; Choi, Doo Ho

    2017-09-15

    Gold nanoparticles (GNPs) injected in a body for dose enhancement in radiation therapy are known to form clusters. We investigated the dependence of dose enhancement on the GNP morphology using Monte-Carlo simulations and compared the model predictions with experimental data. The cluster morphology was approximated as a body-centred cubic (BCC) structure by placing GNPs at the 8 corners and the centre of a cube with an edge length of 0.22-1.03 µm in a 4  ×  4  ×  4 µm 3 water-filled phantom. We computed the dose enhancement ratio (DER) for 50 and 260 kVp photons as a function of the distance from the cube centre for 12 different cube sizes. A 10 nm-wide concentric shell shaped detector was placed up to 100 nm away from a GNP at the cube centre. For model validation, simulations based on BCC and nanoparticle random distribution (NRD) models were performed using parameters that corresponded to the experimental conditions, which measured increases in the relative biological effect due to GNPs. We employed the linear quadratic model to compute cell surviving fraction (SF) and sensitizer enhancement ratio (SER). The DER is inversely proportional to the distance to the GNPs. The largest DERs were 1.97 and 1.80 for 50 kVp and 260 kVp photons, respectively. The SF predicted by the BCC model agreed with the experimental value within 10%, up to a 5 Gy dose, while the NRD model showed a deviation larger than 10%. The SERs were 1.21  ±  0.13, 1.16  ±  0.11, and 1.08  ±  0.11 according to the experiment, BCC, and NRD models, respectively. We most accurately predicted the GNP radiosensitization effect using the BCC approximation and suggest that the BCC model is effective for use in nanoparticle dosimetry.

  19. Study on dependence of dose enhancement on cluster morphology of gold nanoparticles in radiation therapy using a body-centred cubic model

    NASA Astrophysics Data System (ADS)

    Ahn, Sang Hee; Chung, Kwangzoo; Shin, Jung Wook; Cheon, Wonjoong; Han, Youngyih; Park, Hee Chul; Choi, Doo Ho

    2017-10-01

    Gold nanoparticles (GNPs) injected in a body for dose enhancement in radiation therapy are known to form clusters. We investigated the dependence of dose enhancement on the GNP morphology using Monte-Carlo simulations and compared the model predictions with experimental data. The cluster morphology was approximated as a body-centred cubic (BCC) structure by placing GNPs at the 8 corners and the centre of a cube with an edge length of 0.22-1.03 µm in a 4  ×  4  ×  4 µm3 water-filled phantom. We computed the dose enhancement ratio (DER) for 50 and 260 kVp photons as a function of the distance from the cube centre for 12 different cube sizes. A 10 nm-wide concentric shell shaped detector was placed up to 100 nm away from a GNP at the cube centre. For model validation, simulations based on BCC and nanoparticle random distribution (NRD) models were performed using parameters that corresponded to the experimental conditions, which measured increases in the relative biological effect due to GNPs. We employed the linear quadratic model to compute cell surviving fraction (SF) and sensitizer enhancement ratio (SER). The DER is inversely proportional to the distance to the GNPs. The largest DERs were 1.97 and 1.80 for 50 kVp and 260 kVp photons, respectively. The SF predicted by the BCC model agreed with the experimental value within 10%, up to a 5 Gy dose, while the NRD model showed a deviation larger than 10%. The SERs were 1.21  ±  0.13, 1.16  ±  0.11, and 1.08  ±  0.11 according to the experiment, BCC, and NRD models, respectively. We most accurately predicted the GNP radiosensitization effect using the BCC approximation and suggest that the BCC model is effective for use in nanoparticle dosimetry.

  20. SU-E-T-234: Daily Quality Assurance for a Six Degrees of Freedom Couch Using a Novel Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woods, K; Woollard, J; Ayan, A

    2015-06-15

    Purpose: To test the accuracy and reproducibility of both translational and rotational movements for a couch with six degrees of freedom (6DoF) using a novel phantom design Methods: An end-to-end test was carried out using two different phantoms. A 6 cm3 cube with a central fiducial BB (WL-QA Sun Nuclear) and a custom fabricated rectangular prism (31 cm x 8 cm x 8 cm), placed on a baseplate with known angular offsets for pitch, roll and yaw with a central fiducial BB and unique surface structures for registration purposes, were used. The end-to-end test included an initial CT simulation formore » a reference study, setup to an offset mark on each phantom, registration of the reference CT to the acquired cone-beam CT, and final Winston-Lutz delivery at four cardinal gantry angles. Results for both translational and rotational movements were recorded and compared for both phantoms. Results: Translational and rotational measurements were performed with a PerfectPitch (Varian) couch for 10 trials for both phantoms. Distinct translational shifts were [−5.372±0.384mm, −10.183±0.137mm, 14.028±0.155mm] for the cube and [7.520±0.159mm, −9.117±0.101mm, 16.273±0.115mm] for the prototype phantom for lateral, longitudinal, and vertical shifts, respectively. Distinct rotational adjustments were [1.121±0.102o, −1.067±0.235o, −2.662±0.380o] for the cube and [2.534±0.059o, 1.994±0.025o, 2.094±0.076o] for the prototype for pitch, roll, and yaw, respectively. Winston-Lutz test results performed after 6DoF couch correction from each cardinal gantry angle ranged from 0.26–0.72mm for the cube and 0.55–0.86mm for the prototype. Conclusion: The prototype phantom is more precise for both translational and rotational adjustments compared to a commercial phantom. The design of the prototype phantom allows for a more discernible visual confirmation of correct translational and rotational adjustments with the prototype phantom. Winston-Lutz results are more accurate for the commercial phantom but are still within tolerance for the prototype phantom.« less

  1. Compressive strength, flexural strength and water absorption of concrete containing palm oil kernel shell

    NASA Astrophysics Data System (ADS)

    Noor, Nurazuwa Md; Xiang-ONG, Jun; Noh, Hamidun Mohd; Hamid, Noor Azlina Abdul; Kuzaiman, Salsabila; Ali, Adiwijaya

    2017-11-01

    Effect of inclusion of palm oil kernel shell (PKS) and palm oil fibre (POF) in concrete was investigated on the compressive strength and flexural strength. In addition, investigation of palm oil kernel shell on concrete water absorption was also conducted. Total of 48 concrete cubes and 24 concrete prisms with the size of 100mm × 100mm × 100mm and 100mm × 100mm × 500mm were prepared, respectively. Four (4) series of concrete mix consists of coarse aggregate was replaced by 0%, 25%, 50% and 75% palm kernel shell and each series were divided into two (2) main group. The first group is without POF, while the second group was mixed with the 5cm length of 0.25% of the POF volume fraction. All specimen were tested after 7 and 28 days of water curing for a compression test, and flexural test at 28 days of curing period. Water absorption test was conducted on concrete cube age 28 days. The results showed that the replacement of PKS achieves lower compressive and flexural strength in comparison with conventional concrete. However, the 25% replacement of PKS concrete showed acceptable compressive strength which within the range of requirement for structural concrete. Meanwhile, the POF which should act as matrix reinforcement showed no enhancement in flexural strength due to the balling effect in concrete. As expected, water absorption was increasing with the increasing of PKS in the concrete cause by the porous characteristics of PKS

  2. A multi-channel capacitive probe for electrostatic fluctuation measurement in the Madison Symmetric Torus reversed field pinch.

    PubMed

    Tan, Mingsheng; Stone, Douglas R; Triana, Joseph C; Almagri, Abdulgader F; Fiksel, Gennady; Ding, Weixing; Sarff, John S; McCollam, Karsten J; Li, Hong; Liu, Wandong

    2017-02-01

    A 40-channel capacitive probe has been developed to measure the electrostatic fluctuations associated with the tearing modes deep into Madison Symmetric Torus (MST) reversed field pinch plasma. The capacitive probe measures the ac component of the plasma potential via the voltage induced on stainless steel electrodes capacitively coupled with the plasma through a thin annular layer of boron nitride (BN) dielectric (also serves as the particle shield). When bombarded by the plasma electrons, BN provides a sufficiently large secondary electron emission for the induced voltage to be very close to the plasma potential. The probe consists of four stalks each with ten cylindrical capacitors that are radially separated by 1.5 cm. The four stalks are arranged on a 1.3 cm square grid so that at each radial position, there are four electrodes forming a square grid. Every two adjacent radial sets of four electrodes form a cube. The fluctuating electric field can be calculated by the gradient of the plasma potential fluctuations at the eight corners of the cube. The probe can be inserted up to 15 cm (r/a = 0.7) into the plasma. The capacitive probe has a frequency bandwidth from 13 Hz to 100 kHz, amplifier-circuit limit, sufficient for studying the tearing modes (5-30 kHz) in the MST reversed-field pinch.

  3. DE 102 - A numerically integrated ephemeris of the moon and planets spanning forty-four centuries

    NASA Technical Reports Server (NTRS)

    Newhall, X. X.; Standish, E. M.; Willams, J. G.

    1983-01-01

    It is pointed out that the 1960's were the turning point for the generation of lunar and planetary ephemerides. All previous measurements of the positions of solar system bodies were optical angular measurements. New technological improvements leading to immense changes in observational accuracy are related to developments concerning radar, Viking landers on Mars, and laser ranges to lunar corner cube retroreflectors. Suitable numerical integration techniques and more comprehensive physical models were developed to match the accuracy of the modern data types. The present investigation is concerned with the first integrated ephemeris, DE 102, which covers the entire span of the historical astronomical observations of usable accuracy which are known. The fit is made to modern data. The integration spans the time period from 1411 BC to 3002 AD.

  4. Microinterferometer transducer

    DOEpatents

    Corey, III, Harry S.

    1979-01-01

    An air-bearing microinterferometer transducer is provided for increased accuracy, range and linearity over conventional displacement transducers. A microinterferometer system is housed within a small compartment of an air-bearing displacement transducer housing. A movable cube corner reflector of the interferometer is mounted to move with the displacement gauging probe of the transducer. The probe is disposed for axial displacement by means of an air-bearing. Light from a single frequency laser is directed into an interferometer system within the transducer housing by means of a self-focusing fiber optic cable to maintain light coherency. Separate fringe patterns are monitored by a pair of fiber optic cables which transmit the patterns to a detecting system. The detecting system includes a bidirectional counter which counts the light pattern fringes according to the direction of movement of the probe during a displacement gauging operation.

  5. Manganese Vanadate Chemistry in Hydrothermal BaF 2 Brines: Ba 3 Mn 2 (V 2 O 7 ) 2 F 2 and Ba 7 Mn 8 O 2 (VO 4 ) 2 F 23

    DOE PAGES

    Sanjeewa, Liurukara D.; McMillen, Colin D.; McGuire, Michael A.; ...

    2016-12-05

    We synthesized manganese vanadate fluorides using high-temperature hydrothermal techniques with BaF 2 as a mineralizer. Ba 3Mn 2(V 2O 7) 2F 2 crystallizes in space group C2/c and consists of dimers built from edge-sharing MnO 4F 2 trigonal prisms with linking V 2O 7 groups. Ba 7Mn 8O 2(VO 4) 2F 23 crystallizes in space group Cmmm, with a manganese oxyfluoride network built from edge- and corner-sharing Mn 2+/3+(O,F) 6 octahedra. The resulting octahedra form alternating Mn 2+ and Mn 2+/3+ layers separated by VO 4 tetrahedra. This latter compound exhibits a canted antiferromagnetic order below TN = 25 K.

  6. OceanCubes: An Affordable Cabled Observatory System for Integrated Long-Term, High Frequency Biological, Chemical, and Physical Measurements for Understanding Coastal Ecosystems

    NASA Astrophysics Data System (ADS)

    Gallager, S. M.

    2016-02-01

    Understanding how coastal ocean processes are forcing and/or responding to ecosystem change is a central premise in current oceanographic research and monitoring. A distributed, high capacity observing capability is necessary to address biological processes requiring high frequency observations on short ( turbulence, internal waves), moderate (typhoons), and decadal time scales (e.g., NAO, El Nino-SO, PDO). The current belief that ocean observing systems need to be expensive, large, difficult to deploy and limited in capacity was tested by developing OceanCubes, an end-to-end cabled observational system with real-time telemetry, state-of-the-art sensor packages, high level of expandability, and diver maintained to reduce operating costs. A modular approach allows for a scalable system that can grow over time to accommodate budgets. The control volume design allows for measurement of material flux and energy from the water column to the benthos at a rate of s-1. The sensor package is connected by electro-optical cable to shore providing the capability for internet-based teleoperation by scientists world-wide. The central node provides underwater mateable connections for > 22 serial and Ethernet-based sensors (CTD, four ADCPs, chlorophyll and CDOM fluorescence, O2, nitrate, pCO2, pH, a bio-optical package, a Continuous Plankton Imaging and Classification Sensor (CPICS) for mesoplankton, a pan and tilt webcam, and two stereo cameras to observe and track fish communities. ADCPs and temperature strings mark the corners of the 162,000 m3 control volume. Disparate data streams are remotely archived, correlated, and analyzed while plankton and fish are identified using state-of-the-art machine vision and learning techniques. Two OceanCubes have been installed in Japan (Okinawa and Oshima Island, Tokyo) and have survived several typhoon seasons. Two additional systems are planned for either side of the Panamanian Isthmus. Results of these systems will be discussed.

  7. High-frequency fluctuation measurements by far-infrared laser Faraday-effect polarimetry-interferometry and forward scattering system on MST.

    PubMed

    Ding, W X; Lin, L; Duff, J R; Brower, D L

    2014-11-01

    Magnetic fluctuation-induced transport driven by global tearing modes has been measured by Faraday-effect polarimetry and interferometry (phase measurements) in the MST reversed field pinch. However, the role of small-scale broadband magnetic and density turbulence in transport remains unknown. In order to investigate broadband magnetic turbulence, we plan to upgrade the existing detector system by using planar-diode fundamental waveguide mixers optimized for high sensitivity. Initial tests indicate these mixers have ×10 sensitivity improvement compared to currently employed corner-cube Schottky-diode mixers and ×5 lower noise. Compact mixer design will allow us to resolve the wavenumbers up to k ∼ 1-2 cm(-1) for beam width w = 1.5 cm and 15 cm(-1) for beam width w = 2 mm. The system can also be used to measure the scattered signal (amplitude measurement) induced by both plasma density and magnetic fluctuations.

  8. High Precision Time Transfer in Space with a Hydrogen Maser on MIR

    NASA Technical Reports Server (NTRS)

    Mattison, Edward M.; Vessot, Robert F. C.

    1996-01-01

    An atomic hydrogen maser clock system designed for long term operation in space will be installed on the Russian space station Mir, in late 1997. The H-maser's frequency stability will be measured using pulsed laser time transfer techniques. Daily time comparisons made with a precision of better than 100 picoseconds will allow an assessment of the long term stability of the space maser at a level on the order of 1 part in 10(sup 15) or better. Laser pulse arrival times at the spacecraft will be recorded with a resolution of 10 picoseconds relative to the space clock's time scale. Cube corner reflectors will reflect the pulses back to the Earth laser station to determine the propagation delay and enable comparison with the Earth-based time scale. Data for relativistic and gravitational frequency corrections will be obtained from a Global Positioning System (GPS) receiver.

  9. Earthquake stress via event ratio levels: Application to the 2011 and 2016 Oklahoma seismic sequences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walter, William R.; Yoo, Seung -Hoon; Mayeda, Kevin

    Here, we develop a new methodology for determining earthquake stress drop and apparent stress values via spectral ratio asymptotic levels. With sufficient bandwidth, the stress ratio for a pair of events can be directly related to these low- and high-frequency levels. This avoids the need to assume a particular spectral model and derive stress drop from cubed corner frequency measures. The method can be applied to spectral ratios for any pair of closely related earthquakes and is particularly well suited for coda envelope methods that provide good azimuthally averaged, point-source measures. We apply the new method to the 2011 Praguemore » and 2016 Pawnee earthquake sequences in Oklahoma. The sequences show stress scaling with size and depth, with the largest events having apparent stress levels near 1 MPa and smaller and/or shallower events having systematically lower stress values.« less

  10. Earthquake stress via event ratio levels: Application to the 2011 and 2016 Oklahoma seismic sequences

    DOE PAGES

    Walter, William R.; Yoo, Seung -Hoon; Mayeda, Kevin; ...

    2017-04-03

    Here, we develop a new methodology for determining earthquake stress drop and apparent stress values via spectral ratio asymptotic levels. With sufficient bandwidth, the stress ratio for a pair of events can be directly related to these low- and high-frequency levels. This avoids the need to assume a particular spectral model and derive stress drop from cubed corner frequency measures. The method can be applied to spectral ratios for any pair of closely related earthquakes and is particularly well suited for coda envelope methods that provide good azimuthally averaged, point-source measures. We apply the new method to the 2011 Praguemore » and 2016 Pawnee earthquake sequences in Oklahoma. The sequences show stress scaling with size and depth, with the largest events having apparent stress levels near 1 MPa and smaller and/or shallower events having systematically lower stress values.« less

  11. Automated interferometric alignment system for paraboloidal mirrors

    DOEpatents

    Maxey, L. Curtis

    1993-01-01

    A method is described for a systematic method of interpreting interference fringes obtained by using a corner cube retroreflector as an alignment aid when aigning a paraboloid to a spherical wavefront. This is applicable to any general case where such alignment is required, but is specifically applicable in the case of aligning an autocollimating test using a diverging beam wavefront. In addition, the method provides information which can be systematically interpreted such that independent information about pitch, yaw and focus errors can be obtained. Thus, the system lends itself readily to automation. Finally, although the method is developed specifically for paraboloids, it can be seen to be applicable to a variety of other aspheric optics when applied in combination with a wavefront corrector that produces a wavefront which, when reflected from the correctly aligned aspheric surface will produce a collimated wavefront like that obtained from the paraboloid when it is correctly aligned to a spherical wavefront.

  12. Automated interferometric alignment system for paraboloidal mirrors

    DOEpatents

    Maxey, L.C.

    1993-09-28

    A method is described for a systematic method of interpreting interference fringes obtained by using a corner cube retroreflector as an alignment aid when aligning a paraboloid to a spherical wavefront. This is applicable to any general case where such alignment is required, but is specifically applicable in the case of aligning an autocollimating test using a diverging beam wavefront. In addition, the method provides information which can be systematically interpreted such that independent information about pitch, yaw and focus errors can be obtained. Thus, the system lends itself readily to automation. Finally, although the method is developed specifically for paraboloids, it can be seen to be applicable to a variety of other aspheric optics when applied in combination with a wavefront corrector that produces a wavefront which, when reflected from the correctly aligned aspheric surface will produce a collimated wavefront like that obtained from the paraboloid when it is correctly aligned to a spherical wavefront. 14 figures.

  13. Micromachined electrostatic vertical actuator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Abraham P.; Sommargren, Gary E.; McConaghy, Charles F.

    A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized inmore » a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion` micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.« less

  14. Micromachined electrostatic vertical actuator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, A.P.; Sommargren, G.E.; McConaghy, C.F.

    A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized inmore » a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion, micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.« less

  15. Mobile quantum gravity sensor with unprecedented stability

    NASA Astrophysics Data System (ADS)

    Freier, C.; Hauth, M.; Schkolnik, V.; Leykauf, B.; Schilling, M.; Wziontek, H.; Scherneck, H.-G.; Müller, J.; Peters, A.

    2016-06-01

    Changes of surface gravity on Earth are of great interest in geodesy, earth sciences and natural resource exploration. They are indicative of Earth system's mass redistributions and vertical surface motion, and are usually measured with falling corner-cube- and superconducting gravimeters (FCCG and SCG). Here we report on absolute gravity measurements with a mobile quantum gravimeter based on atom interferometry. The measurements were conducted in Germany and Sweden over periods of several days with simultaneous SCG and FCCG comparisons. They show the best-reported performance of mobile atomic gravimeters to date with an accuracy of 39nm/s2, long-term stability of 0.5nm/s2 and short-term noise of 96nm/s2/√Hz. These measurements highlight the unique properties of atomic sensors. The achieved level of performance in a transportable instrument enables new applications in geodesy and related fields, such as continuous absolute gravity monitoring with a single instrument under rough environmental conditions.

  16. Spectroscopic method for Earth-satellite-Earth laser long-path absorption measurements using Retroreflector In Space (RIS)

    NASA Technical Reports Server (NTRS)

    Sugimoto, Nobuo; Minato, Atsushi; Sasano, Yasuhiro

    1992-01-01

    The Retroreflector in Space (RIS) is a single element cube-corner retroreflector with a diameter of 0.5 m designed for earth-satellite-earth laser long-path absorption experiments. The RIS is to be loaded on the Advanced Earth Observing System (ADEOS) satellite which is scheduled for launch in Feb. 1996. The orbit for ADEOS is a sun synchronous subrecurrent polar-orbit with an inclination of 98.6 deg. It has a period of 101 minutes and an altitude of approximately 800 km. The local time at descending node is 10:15-10:45, and the recurrent period is 41 days. The velocity relative to the ground is approximately 7 km/s. In the RIS experiment, a laser beam transmitted from a ground station is reflected by RIS and received at the ground station. The absorption of the intervening atmosphere is measured in the round-trip optical path.

  17. Determination of the thickness of the embedding phase in 0D nanocomposites

    NASA Astrophysics Data System (ADS)

    Martínez-Martínez, D.; Sánchez-López, J. C.

    2017-11-01

    0D nanocomposites formed by small nanoparticles embedded in a second phase are very interesting systems which may show properties that are beyond those observed in the original constituents alone. One of the main parameters to understand the behavior of such nanocomposites is the determination of the separation between two adjacent nanoparticles, in other words, the thickness of the embedding phase. However, its experimental measurement is extremely complicated. Therefore, its evaluation is performed by an indirect approach using geometrical models. The ones typically used represent the nanoparticles by cubes or spheres. In this paper the used geometrical models are revised, and additional geometrical models based in other parallelohedra (hexagonal prism, rhombic and elongated dodecahedron and truncated octahedron) are presented. Additionally, a hybrid model that shows a transition between the spherical and tessellated models is proposed. Finally, the different approaches are tested on a set of titanium carbide/amorphous carbon (TiC/a-C) nanocomposite films to estimate the thickness of the a-C phase and explain the observed hardness properties.

  18. How Ag Nanospheres Are Transformed into AgAu Nanocages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreau, Liane M.; Schurman, Charles A.; Kewalramani, Sumit

    Bimetallic hollow, porous noble metal nanoparticles are of broad interest for biomedical, optical and catalytic applications. The most straightforward method for preparing such structures involves the reaction between HAuCl4 and well-formed Ag particles, typically spheres, cubes, or triangular prisms, yet the mechanism underlying their formation is poorly understood at the atomic scale. By combining in situ nanoscopic and atomic-scale characterization techniques (XAFS, SAXS, XRF, and electron microscopy) to follow the process, we elucidate a plausible reaction pathway for the conversion of citrate-capped Ag nanospheres to AgAu nanocages; importantly, the hollowing event cannot be explained by the nanoscale Kirkendall effect, normore » by Galvanic exchange alone, two processes that have been previously proposed. We propose a modification of the bulk Galvanic exchange process that takes into account considerations that can only occur with nanoscale particles. This nanoscale Galvanic exchange process explains the novel morphological and chemical changes associated with the typically observed hollowing process.« less

  19. Prism adaptation by mental practice.

    PubMed

    Michel, Carine; Gaveau, Jérémie; Pozzo, Thierry; Papaxanthis, Charalambos

    2013-09-01

    The prediction of our actions and their interaction with the external environment is critical for sensorimotor adaptation. For instance, during prism exposure, which deviates laterally our visual field, we progressively correct movement errors by combining sensory feedback with forward model sensory predictions. However, very often we project our actions to the external environment without physically interacting with it (e.g., mental actions). An intriguing question is whether adaptation will occur if we imagine, instead of executing, an arm movement while wearing prisms. Here, we investigated prism adaptation during mental actions. In the first experiment, participants (n = 54) performed arm pointing movements before and after exposure to the optical device. They were equally divided into six groups according to prism exposure: Prisms-Active, Prisms-Imagery, Prisms-Stationary, Prisms-Stationary-Attention, No Conflict-Prisms-Imagery, No Prisms-Imagery. Adaptation, measured by the difference in pointing errors between pre-test and post-test, occurred only in Prisms-Active and Prisms-Imagery conditions. The second experiment confirmed the results of the first experiment and further showed that sensorimotor adaptation was mainly due to proprioceptive realignment in both Prisms-Active (n = 10) and Prisms-Imagery (n = 10) groups. In both experiments adaptation was greater following actual than imagined pointing movements. The present results are the first demonstration of prism adaptation by mental practice under prism exposure and they are discussed in terms of internal forward models and sensorimotor plasticity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Comparison of near fusional vergence ranges with rotary prisms and with prism bars.

    PubMed

    Goss, David A; Becker, Emily

    2011-02-01

    Common methods for determination of fusional vergence ranges make use of rotary prisms in the phoropter or prism bars out of the phoropter. This study compared near fusional vergence ranges with rotary prisms with those with prism bars. Fifty young adults served as subjects. Odd-numbered subjects had rotary prism vergences performed before prism bar vergences. For even-numbered subjects, prism bar vergences were done first. Base-in (BI) vergences were done before base-out (BO) vergences with both rotary prisms and prism bars. A coefficient of agreement was calculated by multiplying the standard deviation of the individual subject differences between rotary prisms and prism bars by 1.96, to approximate the range within which the 2 tests would agree 95% of the time. The lowest coefficient of agreement was 7.3Δ for the BI recovery. The others were high, ranging from 15.4Δ for the BO recovery to 19.5Δ for the BO break. Fusional vergence ranges determined by prism bars out of the phoropter cannot be used interchangeably with those determined by phoropter rotary prisms for the purpose of follow-up on individual patients or for the purpose of comparison with norms. Copyright © 2010 American Optometric Association. Published by Elsevier Inc. All rights reserved.

  1. Laser Reliability Prediction

    DTIC Science & Technology

    1975-08-01

    prism adjustment screw 12 - 45° prism adjustment lockscrew 13-45° prism 14 - Porro prism 15 - Collimating telescope X-axis adjustment lockscrew...4) 16 - Q-switch tilt adjustment screw 17 - Q-switch tilt adjustment lockscrew (4) 18 - Porro prism adjustment nut (3) 19 - Porro prism mounting...is increased by several orders of magnitude. "Q" switch technology has progressed from rotating prisms or mirrors to electro-optical (E/0

  2. Suicidality assessment with PRISM-S - simple, fast, and visual: a brief nonverbal method to assess suicidality in adolescent and adult patients.

    PubMed

    Harbauer, Gregor; Ring, Mariann; Schuetz, Christopher; Andreae, Andreas; Haas, Sebastian

    2013-01-01

    The PRISM-S task was developed at the Crisis Intervention Center (KIZ) Winterthur, Switzerland, to enable an assessment of the degree of suicidality in less than 5 minutes with a simple, visual instrument. Comparison of validity and clinical use of the new PRISM-S task with other instruments known as "gold standards". Quantitative pilot study enlisting 100 inpatients admitted to the KIZ, aged 15-42 years. Patients' suicidality was assessed by the PRISM-S task during the first clinical interview and compared to data obtained by standardized suicidality instruments. The patients completed the PRISM-S task in 2 to 5 minutes without difficulty. Data show significant positive correlations between the suicidality as assessed by PRISM-S and the gold standards, i.e., DSI-SS (r = 0.59, N = 65, p < .0001). There is no strong evidence that PRISM-S is useful for outpatients or in other settings. The experiences gained with outpatients/patients with other disorders are promising but have not been systematically evaluated. The results do not rely on a randomized design. The sample consists of persons coming to the crisis intervention center. PRISM-S offers a brief, easy-to-administer, and valid method to assess patients' suicidality. The simple instruction facilitates its use in other languages and other cultures as well. The acceptance by patients and health professionals was good, with no one refusing to complete the task.

  3. Optical switch using Risley prisms

    DOEpatents

    Sweatt, William C.; Christenson, Todd R.

    2003-04-15

    An optical switch using Risley prisms and rotary microactuators to independently rotate the wedge prisms of each Risley prism pair is disclosed. The optical switch comprises an array of input Risley prism pairs that selectively redirect light beams from a plurality of input ports to an array of output Risley prism pairs that similarly direct the light beams to a plurality of output ports. Each wedge prism of each Risley prism pair can be independently rotated by a variable-reluctance stepping rotary microactuator that is fabricated by a multi-layer LIGA process. Each wedge prism can be formed integral to the annular rotor of the rotary microactuator by a DXRL process.

  4. Optical Switch Using Risley Prisms

    DOEpatents

    Sweatt, William C.; Christenson, Todd R.

    2005-02-22

    An optical switch using Risley prisms and rotary microactuators to independently rotate the wedge prisms of each Risley prism pair is disclosed. The optical switch comprises an array of input Risley prism pairs that selectively redirect light beams from a plurality of input ports to an array of output Risley prism pairs that similarly direct the light beams to a plurality of output ports. Each wedge prism of each Risley prism pair can be independently rotated by a variable-reluctance stepping rotary microactuator that is fabricated by a multi-layer LIGA process. Each wedge prism can be formed integral to the annular rotor of the rotary microactuator by a DXRL process.

  5. Local field potential spectral tuning in motor cortex during reaching.

    PubMed

    Heldman, Dustin A; Wang, Wei; Chan, Sherwin S; Moran, Daniel W

    2006-06-01

    In this paper, intracortical local field potentials (LFPs) and single units were recorded from the motor cortices of monkeys (Macaca fascicularis) while they preformed a standard three-dimensional (3-D) center-out reaching task. During the center-out task, the subjects held their hands at the location of a central target and then reached to one of eight peripheral targets forming the corners of a virtual cube. The spectral amplitudes of the recorded LFPs were calculated, with the high-frequency LFP (HF-LFP) defined as the average spectral amplitude change from baseline from 60 to 200 Hz. A 3-D linear regression across the eight center-out targets revealed that approximately 6% of the beta LFPs (18-26 Hz) and 18% of the HF-LFPs were tuned for velocity (p-value < 0.05), while 10% of the beta LFPs and 15% of the HF-LFPs were tuned for position. These results suggest that a multidegree-of-freedom brain-machine interface is possible using high-frequency LFP recordings in motor cortex.

  6. Advances in laser technology for the atmospheric sciences; Proceedings of the Seminar, San Diego, Calif., August 25, 26, 1977

    NASA Technical Reports Server (NTRS)

    Trolinger, J. D. (Editor); Moore, W. W.

    1977-01-01

    These papers deal with recent research, developments, and applications in laser and electrooptics technology, particularly with regard to atmospheric effects in imaging and propagation, laser instrumentation and measurements, and particle measurement. Specific topics include advanced imaging techniques, image resolution through atmospheric turbulence over the ocean, an efficient method for calculating transmittance profiles, a comparison of a corner-cube reflector and a plane mirror in folded-path and direct transmission through atmospheric turbulence, line-spread instrumentation for propagation measurements, scaling laws for thermal fluctuations in the layer adjacent to ocean waves, particle sizing by laser photography, and an optical Fourier transform analysis of satellite cloud imagery. Other papers discuss a subnanosecond photomultiplier tube for laser application, holography of solid propellant combustion, diagnostics of turbulence by holography, a camera for in situ photography of cloud particles from a hail research aircraft, and field testing of a long-path laser transmissometer designed for atmospheric visibility measurements.

  7. The SPQR experiment: detecting damage to orbiting spacecraft with ground-based telescopes

    NASA Astrophysics Data System (ADS)

    Paolozzi, Antonio; Porfilio, Manfredi; Currie, Douglas G.; Dantowitz, Ronald F.

    2007-09-01

    The objective of the Specular Point-like Quick Reference (SPQR) experiment was to evaluate the possibility of improving the resolution of ground-based telescopic imaging of manned spacecraft in orbit. The concept was to reduce image distortions due to atmospheric turbulence by evaluating the Point Spread Function (PSF) of a point-like light reference and processing the spacecraft image accordingly. The target spacecraft was the International Space Station (ISS) and the point-like reference was provided by a laser beam emitted by the ground station and reflected back to the telescope by a Cube Corner Reflector (CCR) mounted on an ISS window. The ultimate objective of the experiment was to demonstrate that it is possible to image spacecraft in Low Earth Orbit (LEO) with a resolution of 20 cm, which would have probably been sufficient to detect the damage which caused the Columbia disaster. The experiment was successfully performed from March to May 2005. The paper provides an overview of the SPQR experiment.

  8. SLR tracking of GPS-35

    NASA Technical Reports Server (NTRS)

    Pavlis, Erricos C.

    1994-01-01

    An experiment was designed to launch a corner cube retroreflector array on one of the Global Positioning Satellites (GPS). The launch on Aug. 31, 1993 ushered in the era of SLR tracking of GPS spacecraft. Once the space operations group finished the check-out procedures for the new satellite, the agreed upon SLR sites were allowed to track it. The first site to acquire GPS-35 was the Russian system at Maidanak and closely after the MLRS system at McDonald Observatory, Texas. The laser tracking network is currently tracking the GPS spacecraft known as GPS-35 or PRN 5 with great success. From the NASA side there are five stations that contribute data regularly and nearly as many from the international partners. Upcoming modifications to the ground receivers will allow for a further increase in the tracking capabilities of several additional sites and add some desperately needed southern hemisphere tracking. We are analyzing the data and are comparing SLR-derived orbits to those determined on the basis of GPS radiometric data.

  9. Avalanching strain dynamics during the hydriding phase transformation in individual palladium nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ulvestad, A.; Welland, M. J.; Collins, S. S. E.

    2015-12-11

    Phase transitions in reactive environments are crucially important in energy and information storage, catalysis and sensors. Nanostructuring active particles can yield faster charging/ discharging kinetics, increased lifespan and record catalytic activities. However, establishing the causal link between structure and function is challenging for nanoparticles, as ensemble measurements convolve intrinsic single-particle properties with sample diversity. Here we study the hydriding phase transformation in individual palladium nanocubes in situ using coherent X-ray diffractive imaging. The phase transformation dynamics, which involve the nucleation and propagation of a hydrogen-rich region, are dependent on absolute time (aging) and involve intermittent dynamics (avalanching). A hydrogen-rich surfacemore » layer dominates the crystal strain in the hydrogen-poor phase, while strain inversion occurs at the cube corners in the hydrogen-rich phase. A three-dimensional phase-field model is used to interpret the experimental results. In conclusion, our experimental and theoretical approach provides a general framework for designing and optimizing phase transformations for single nanocrystals in reactive environments.« less

  10. Catheter guided by optical coherence domain reflectometry

    DOEpatents

    Everett, Matthew; Colston, Billy W.; Da Silva, Luiz B.; Matthews, Dennis

    2002-01-01

    A guidance and viewing system based on multiplexed optical coherence domain reflectometry is incorporated into a catheter, endoscope, or other medical device to measure the location, thickness, and structure of the arterial walls or other intra-cavity regions at discrete points on the medical device during minimally invasive medical procedures. The information will be used both to guide the device through the body and to evaluate the tissue through which the device is being passed. Multiple optical fibers are situated along the circumference of the device. Light from the distal end of each fiber is directed onto the interior cavity walls via small diameter optics (such as gradient index lenses and mirrored corner cubes). Both forward viewing and side viewing fibers can be included. The light reflected or scattered from the cavity walls is then collected by the fibers and multiplexed at the proximal end to the sample arm of an optical low coherence reflectometer. The system may also be implemented in a nonmedical inspection device.

  11. A magnetic hysteresis model

    NASA Technical Reports Server (NTRS)

    Flatley, Thomas W.; Henretty, Debra A.

    1995-01-01

    The Passive Aerodynamically Stabilized Magnetically Damped Satellite (PAMS) will be deployed from the Space Shuttle and used as a target for a Shuttle-mounted laser. It will be a cylindrical satellite with several corner cube reflectors on the ends. The center of mass of the cylinder will be near one end, and aerodynamic torques will tend to align the axis of the cylinder with the spacecraft velocity vector. Magnetic hysteresis rods will be used to provide passive despin and oscillation-damping torques on the cylinder. The behavior of the hysteresis rods depends critically on the 'B/H' curves for the combination of materials and rod length-to-diameter ratio ('l-over-d'). These curves are qualitatively described in most Physics textbooks in terms of major and minor 'hysteresis loops'. Mathematical modeling of the functional relationship between B and H is very difficult. In this paper, the physics involved is not addressed, but an algorithm is developed which provides a close approximation to empirically determined data with a few simple equations suitable for use in computer simulations.

  12. Experimental Satellite Quantum Communications

    NASA Astrophysics Data System (ADS)

    Vallone, Giuseppe; Bacco, Davide; Dequal, Daniele; Gaiarin, Simone; Luceri, Vincenza; Bianco, Giuseppe; Villoresi, Paolo

    2015-07-01

    Quantum communication (QC), namely, the faithful transmission of generic quantum states, is a key ingredient of quantum information science. Here we demonstrate QC with polarization encoding from space to ground by exploiting satellite corner cube retroreflectors as quantum transmitters in orbit and the Matera Laser Ranging Observatory of the Italian Space Agency in Matera, Italy, as a quantum receiver. The quantum bit error ratio (QBER) has been kept steadily low to a level suitable for several quantum information protocols, as the violation of Bell inequalities or quantum key distribution (QKD). Indeed, by taking data from different satellites, we demonstrate an average value of QBER =4.6 % for a total link duration of 85 s. The mean photon number per pulse μsat leaving the satellites was estimated to be of the order of one. In addition, we propose a fully operational satellite QKD system by exploiting our communication scheme with orbiting retroreflectors equipped with a modulator, a very compact payload. Our scheme paves the way toward the implementation of a QC worldwide network leveraging existing receivers.

  13. GLRS-R 2-colour retroreflector target design and predicted performance

    NASA Astrophysics Data System (ADS)

    Lund, Glenn

    The retroreflector ground target design for the GLRS-R spaceborne dual wavelength laser ranging system is described. The passive design flows down from the requirements of high station autonomy, high global field of view, little or no multiple pulse returns, and adequate optical cross section for most ranging geometries. The solution makes use of five hollow cube corner retroreflectors of which one points to the zenith and the remaining four are inclined from the vertical at uniform azimuthal spacings. The need for large retroreflectors is expected to generate narrow diffraction lobes. A good compromise solution is found by spoiling just one of the retroereflector dihedral angles from 90 deg, thus generating two symmetrically oriented diffraction lobes in the return beam. The required spoil angles are found to have little dependance on ground target latitude. Various link budget analyses are presented. They show the influence of such factors as point ahead optimization, turbulence, ranging angle, atmospheric visibility, and ground target thermal deformations.

  14. Optical coherence domain reflectometry guidewire

    DOEpatents

    Colston, Billy W.; Everett, Matthew; Da Silva, Luiz B.; Matthews, Dennis

    2001-01-01

    A guidewire with optical sensing capabilities is based on a multiplexed optical coherence domain reflectometer (OCDR), which allows it to sense location, thickness, and structure of the arterial walls or other intra-cavity regions as it travels through the body during minimally invasive medical procedures. This information will be used both to direct the guidewire through the body by detecting vascular junctions and to evaluate the nearby tissue. The guidewire contains multiple optical fibers which couple light from the proximal to distal end. Light from the fibers at the distal end of the guidewire is directed onto interior cavity walls via small diameter optics such as gradient index lenses and mirrored corner cubes. Both forward viewing and side viewing fibers can be included. The light reflected or scattered from the cavity walls is then collected by the fibers, which are multiplexed at the proximal end to the sample arm of an optical low coherence reflectometer. The guidewire can also be used in nonmedical applications.

  15. Avalanching strain dynamics during the hydriding phase transformation in individual palladium nanoparticles

    NASA Astrophysics Data System (ADS)

    Ulvestad, A.; Welland, M. J.; Collins, S. S. E.; Harder, R.; Maxey, E.; Wingert, J.; Singer, A.; Hy, S.; Mulvaney, P.; Zapol, P.; Shpyrko, O. G.

    2015-12-01

    Phase transitions in reactive environments are crucially important in energy and information storage, catalysis and sensors. Nanostructuring active particles can yield faster charging/discharging kinetics, increased lifespan and record catalytic activities. However, establishing the causal link between structure and function is challenging for nanoparticles, as ensemble measurements convolve intrinsic single-particle properties with sample diversity. Here we study the hydriding phase transformation in individual palladium nanocubes in situ using coherent X-ray diffractive imaging. The phase transformation dynamics, which involve the nucleation and propagation of a hydrogen-rich region, are dependent on absolute time (aging) and involve intermittent dynamics (avalanching). A hydrogen-rich surface layer dominates the crystal strain in the hydrogen-poor phase, while strain inversion occurs at the cube corners in the hydrogen-rich phase. A three-dimensional phase-field model is used to interpret the experimental results. Our experimental and theoretical approach provides a general framework for designing and optimizing phase transformations for single nanocrystals in reactive environments.

  16. Avalanching strain dynamics during the hydriding phase transformation in individual palladium nanoparticles

    PubMed Central

    Ulvestad, A.; Welland, M. J.; Collins, S. S. E.; Harder, R.; Maxey, E.; Wingert, J.; Singer, A.; Hy, S.; Mulvaney, P.; Zapol, P.; Shpyrko, O. G.

    2015-01-01

    Phase transitions in reactive environments are crucially important in energy and information storage, catalysis and sensors. Nanostructuring active particles can yield faster charging/discharging kinetics, increased lifespan and record catalytic activities. However, establishing the causal link between structure and function is challenging for nanoparticles, as ensemble measurements convolve intrinsic single-particle properties with sample diversity. Here we study the hydriding phase transformation in individual palladium nanocubes in situ using coherent X-ray diffractive imaging. The phase transformation dynamics, which involve the nucleation and propagation of a hydrogen-rich region, are dependent on absolute time (aging) and involve intermittent dynamics (avalanching). A hydrogen-rich surface layer dominates the crystal strain in the hydrogen-poor phase, while strain inversion occurs at the cube corners in the hydrogen-rich phase. A three-dimensional phase-field model is used to interpret the experimental results. Our experimental and theoretical approach provides a general framework for designing and optimizing phase transformations for single nanocrystals in reactive environments. PMID:26655832

  17. Long-term frequency and amplitude stability of a solid-nitrogen-cooled, continuous wave THz quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Danylov, Andriy A.; Waldman, Jerry; Light, Alexander R.; Goyette, Thomas M.; Giles, Robert H.; Qian, Xifeng; Chandrayan, Neelima; Goodhue, William D.; Nixon, William E.

    2012-02-01

    Operational temperature increase of CW THz QCLs to 77 K has enabled us to employ solid nitrogen (SN2) as the cryogen. A roughing pump was used to solidify liquid nitrogen and when the residual vapor pressure in the nitrogen reservoir reached the pumping system's minimum pressure the temperature equilibrated and remained constant until all the nitrogen sublimated. The hold time compared to liquid helium has thereby increased approximately 70-fold, and at a greatly reduced cost. The milliwatt CW QCL was at a temperature of approximately 60 K, dissipating 5 W of electrical power. To measure the long-term frequency, current, and temperature stability, we heterodyned the free-running 2.31 THz QCL with a CO2 pumped far-infrared gas laser line in methanol (2.314 THz) in a corner-cube Schottky diode and recorded the IF frequency, current and temperature. Under these conditions the performance characteristics of the QCL, which will be reported, exceeded that of a device mounted in a mechanical cryocooler.

  18. InGaAs multiple quantum well modulating retro-reflector for free-space optical communications

    NASA Astrophysics Data System (ADS)

    Rabinovich, William S.; Gilbreath, G. Charmaine; Goetz, Peter G.; Mahon, Rita; Katzer, D. Scott; Ikossi-Anastasiou, Kiki; Binari, Steven C.; Meehan, Timothy J.; Stell, Mena F.; Sokolsky, Ilene; Vasquez, John A.; Vilcheck, Michael J.

    2002-01-01

    Modulating retro-reflectors provide means for free space optical communication without the need for a laser, telescope or pointer tracker on one end of the link. These systems work by coupling a retro-reflector with an electro- optic shutter. The modulating retro-reflector is then interrogated by a cw laser beam from a conventional optical communications system and returns a modulated signal beam to the interrogator. Over the last few years the Naval Research Laboratory has developed modulating retro-reflector based on corner cubes and large area Transmissive InGaAs multiple quantum well modulators. These devices can allow optical links at speeds up to about 10 Mbps. We will discuss the critical performance characteristics of such systems including modulating rate, power consumption, optical contrast ratio and operating wavelength. In addition a new modulating retro-reflector architecture based upon cat s eye retroreflectors will be discussed. This architecture has the possibility for data rates of hundreds of megabits per second at power consumptions below 100 mW.

  19. Properties of concrete modified with waste Low Density Polyethylene and saw dust ash

    NASA Astrophysics Data System (ADS)

    Srimanikandan, P.; Sreenath, S.

    2017-07-01

    The increase in industrialization creates need for disposal of large quantity of by-products. To overcome the difficulty of disposal, these by-products can be used as a replacement for raw material. In this concern, non-conventional industrial wastes such as plastic bags, PET bottles, pulverized waste Low Density Polyethylene (LDPE) and biological waste such as saw-dust ash, coconut coir were used as a replacement in concrete. In this project, saw-dust ash and pulverized waste LDPE were introduced as the partial replacement for cement and fine aggregates respectively. 0%, 5%, 10%, 15% and 20% of sand by volume was replaced with LDPE and 0%, 1%, 3%, 5% and 10% of cement by volume was replaced with saw dust ash. Standard cube, cylinder and prism specimens were cast to assess the compressive strength, split tensile strength and flexural strength of modified concrete after 28 days of curing. Optimum percentage of replacement was found by comparing the test results. The mix with 5% of LDPE and 3% of saw dust ash showed a better result among the other mixes.

  20. Influence of thermal residual stress on behaviour of metal matrix composites reinforced with particles

    NASA Astrophysics Data System (ADS)

    Guzmán, R. E.; Hernández Arroyo, E.

    2016-02-01

    The properties of a metallic matrix composites materials (MMC's) reinforced with particles can be affected by different events occurring within the material in a manufacturing process. The existence of residual stresses resulting from the manufacturing process of these materials (MMC's) can markedly differentiate the curves obtained in tensile tests obtained from compression tests. One of the themes developed in this work is the influence of residual stresses on the mechanical behaviour of these materials. The objective of this research work presented is numerically estimate the thermal residual stresses using a unit cell model for the Mg ZC71 alloy reinforced with SiC particles with volume fraction of 12% (hot-forging technology). The MMC's microstructure is represented as a three dimensional prismatic cube-shaped with a cylindrical reinforcing particle located in the centre of the prism. These cell models are widely used in predicting stress/strain behaviour of MMC's materials, in this analysis the uniaxial stress/strain response of the composite can be obtained through the calculation using the commercial finite-element code.

  1. Cerebellar inactivation impairs memory of learned prism gaze-reach calibrations.

    PubMed

    Norris, Scott A; Hathaway, Emily N; Taylor, Jordan A; Thach, W Thomas

    2011-05-01

    Three monkeys performed a visually guided reach-touch task with and without laterally displacing prisms. The prisms offset the normally aligned gaze/reach and subsequent touch. Naive monkeys showed adaptation, such that on repeated prism trials the gaze-reach angle widened and touches hit nearer the target. On the first subsequent no-prism trial the monkeys exhibited an aftereffect, such that the widened gaze-reach angle persisted and touches missed the target in the direction opposite that of initial prism-induced error. After 20-30 days of training, monkeys showed long-term learning and storage of the prism gaze-reach calibration: they switched between prism and no-prism and touched the target on the first trials without adaptation or aftereffect. Injections of lidocaine into posterolateral cerebellar cortex or muscimol or lidocaine into dentate nucleus temporarily inactivated these structures. Immediately after injections into cortex or dentate, reaches were displaced in the direction of prism-displaced gaze, but no-prism reaches were relatively unimpaired. There was little or no adaptation on the day of injection. On days after injection, there was no adaptation and both prism and no-prism reaches were horizontally, and often vertically, displaced. A single permanent lesion (kainic acid) in the lateral dentate nucleus of one monkey immediately impaired only the learned prism gaze-reach calibration and in subsequent days disrupted both learning and performance. This effect persisted for the 18 days of observation, with little or no adaptation.

  2. Cerebellar inactivation impairs memory of learned prism gaze-reach calibrations

    PubMed Central

    Hathaway, Emily N.; Taylor, Jordan A.; Thach, W. Thomas

    2011-01-01

    Three monkeys performed a visually guided reach-touch task with and without laterally displacing prisms. The prisms offset the normally aligned gaze/reach and subsequent touch. Naive monkeys showed adaptation, such that on repeated prism trials the gaze-reach angle widened and touches hit nearer the target. On the first subsequent no-prism trial the monkeys exhibited an aftereffect, such that the widened gaze-reach angle persisted and touches missed the target in the direction opposite that of initial prism-induced error. After 20–30 days of training, monkeys showed long-term learning and storage of the prism gaze-reach calibration: they switched between prism and no-prism and touched the target on the first trials without adaptation or aftereffect. Injections of lidocaine into posterolateral cerebellar cortex or muscimol or lidocaine into dentate nucleus temporarily inactivated these structures. Immediately after injections into cortex or dentate, reaches were displaced in the direction of prism-displaced gaze, but no-prism reaches were relatively unimpaired. There was little or no adaptation on the day of injection. On days after injection, there was no adaptation and both prism and no-prism reaches were horizontally, and often vertically, displaced. A single permanent lesion (kainic acid) in the lateral dentate nucleus of one monkey immediately impaired only the learned prism gaze-reach calibration and in subsequent days disrupted both learning and performance. This effect persisted for the 18 days of observation, with little or no adaptation. PMID:21389311

  3. [Validity of the suicidality assessment instrument PRISM-S (Pictoral Representation of Illness Self Measure - Suicidality)].

    PubMed

    Ring, Mariann; Harbauer, Gregor; Haas, Sebastian; Schuetz, Christopher; Andreae, Andreas; Maercker, Andreas; Ajdacic-Gross, Vladeta

    2014-01-01

    In routine clinical practice the assessment of suicidality proves to be difficult and complex. The aim of the present study was to examine if PRISM can be used to measure validly the person's subjectively perceived suicidality. The nonverbal visualization technique PRISM (Pictoral Representation of Illness and Self Measure) has been developed by Büchi et al. (2002) to evaluate the perceived burden of suffering due to physical illness. The adapted version of PRISM used in our study is called PRISM-S (Pictoral Representation of Illness and Self Measure - Suicidality). 156 eligible inpatients, admitted voluntarily to the crisis intervention centre Winterthur, participated in the study. We used as gold standards the well established assessment tools the Beck Scale of Suicide Ideation (BSS) and the Depressive Symptome Inventory - Subscale (DSI-SS). The results showed high correlations between PRISM-S and the BSS (r = - 0,73) and the DSI-SS scores (r = - 0,76). Clinicians, general practitioners, psychiatrists and psychologists receive with PRISM-S a valid suicidality assessment tool that is very brief and easy to administer in clinical settings.

  4. The effect of compliant prisms on subduction zone earthquakes and tsunamis

    NASA Astrophysics Data System (ADS)

    Lotto, Gabriel C.; Dunham, Eric M.; Jeppson, Tamara N.; Tobin, Harold J.

    2017-01-01

    Earthquakes generate tsunamis by coseismically deforming the seafloor, and that deformation is largely controlled by the shallow rupture process. Therefore, in order to better understand how earthquakes generate tsunamis, one must consider the material structure and frictional properties of the shallowest part of the subduction zone, where ruptures often encounter compliant sedimentary prisms. Compliant prisms have been associated with enhanced shallow slip, seafloor deformation, and tsunami heights, particularly in the context of tsunami earthquakes. To rigorously quantify the role compliant prisms play in generating tsunamis, we perform a series of numerical simulations that directly couple dynamic rupture on a dipping thrust fault to the elastodynamic response of the Earth and the acoustic response of the ocean. Gravity is included in our simulations in the context of a linearized Eulerian description of the ocean, which allows us to model tsunami generation and propagation, including dispersion and related nonhydrostatic effects. Our simulations span a three-dimensional parameter space of prism size, prism compliance, and sub-prism friction - specifically, the rate-and-state parameter b - a that determines velocity-weakening or velocity-strengthening behavior. We find that compliant prisms generally slow rupture velocity and, for larger prisms, generate tsunamis more efficiently than subduction zones without prisms. In most but not all cases, larger, more compliant prisms cause greater amounts of shallow slip and larger tsunamis. Furthermore, shallow friction is also quite important in determining overall slip; increasing sub-prism b - a enhances slip everywhere along the fault. Counterintuitively, we find that in simulations with large prisms and velocity-strengthening friction at the base of the prism, increasing prism compliance reduces rather than enhances shallow slip and tsunami wave height.

  5. Effects of Prism Eyeglasses on Objective and Subjective Fixation Disparity

    PubMed Central

    Schroth, Volkhard; Joos, Roland; Jaschinski, Wolfgang

    2015-01-01

    In optometry of binocular vision, the question may arise whether prisms should be included in eyeglasses to compensate an oculomotor and/or sensory imbalance between the two eyes. The corresponding measures of objective and subjective fixation disparity may be reduced by the prisms, or the adaptability of the binocular vergence system may diminish effects of the prisms over time. This study investigates effects of wearing prisms constantly for about 5 weeks in daily life. Two groups of 12 participants received eyeglasses with prisms having either a base-in direction or a base-out direction with an amount up to 8 prism diopters. Prisms were prescribed based on clinical fixation disparity test plates at 6 m. Two dependent variables were used: (1) subjective fixation disparity was indicated by a perceived offset of dichoptic nonius lines that were superimposed on the fusion stimuli and (2) objective fixation disparity was measured with a video based eye tracker relative to monocular calibration. Stimuli were presented at 6 m and included either central or more peripheral fusion stimuli. Repeated measurements were made without the prisms and with the prisms after about 5 weeks of wearing these prisms. Objective and subjective fixation disparity were correlated, but the type of fusion stimulus and the direction of the required prism may play a role. The prisms did not reduce the fixation disparity to zero, but induced significant changes in fixation disparity with large effect sizes. Participants receiving base-out prisms showed hypothesized effects, which were concurrent in both types of fixation disparity. In participants receiving base-in prisms, the individual effects of subjective and objective effects were negatively correlated: the larger the subjective (sensory) effect, the smaller the objective (motor) effect. This response pattern was related to the vergence adaptability, i.e. the individual fusional vergence reserves. PMID:26431525

  6. High-Power Prismatic Devices for Oblique Peripheral Prisms

    PubMed Central

    Peli, Eli; Bowers, Alex R.; Keeney, Karen; Jung, Jae-Hyun

    2016-01-01

    ABSTRACT Purpose Horizontal peripheral prisms for hemianopia provide field expansion above and below the horizontal meridian; however, there is a vertical gap leaving the central area (important for driving) without expansion. In the oblique design, tilting the bases of both prism segments toward the horizontal meridian moves the field expansion area vertically and centrally (closing the central gap) while the prisms remain in the peripheral location. However, tilting the prisms results also in a reduction of the lateral field expansion. Higher prism powers are needed to counter this effect. Methods We developed, implemented, and tested a series of designs aimed at increasing the prism power to reduce the central gap while maintaining wide lateral expansion. The designs included inserting the peripheral prisms into carrier lenses that included yoked prism in the opposite direction, combination of two Fresnel segments attached at the base and angled to each other (bi-part prisms), and creating Fresnel prism–like segments from nonparallel periscopic mirror pairs (reflective prisms). Results A modest increase in lateral power was achieved with yoked-prism carriers. Bi-part combination of 36Δ Fresnel segments provided high power with some reduction in image quality. Fresnel reflective prism segments have potential for high power with superior optical quality but may be limited in field extent or by interruptions of the expanded field. Extended apical scotomas, even with unilateral fitting, may limit the utility of very high power prisms. The high-power bi-part and reflective prisms enable a wider effective eye scanning range (more than 15 degrees) into the blind hemifield. Conclusions Conventional prisms of powers higher than the available 57Δ are limited by the binocular impact of a wider apical scotoma and a reduced effective eye scanning range to the blind side. The various designs that we developed may overcome these limitations and find use in various other field expansion applications. PMID:26866438

  7. Contamination of disposable tonometer prisms during tonometry.

    PubMed

    Rajak, S N; Paul, J; Sharma, V; Vickers, S

    2006-03-01

    Due to the theoretical possibility of prion transmission in applanation tonometry, many ophthalmological units in the United Kingdom now use disposable tonometer prisms. We have investigated the potential for bacterial and viral transmission from the health practitioner to the patient via disposable prisms. All staff who perform applanation tonometry at the Sussex Eye Hospital (SEH) received a questionnaire to evaluate if the applanating face of the prism is touched during tonometry and the ease of use of the disposable prism compared to the reusable prisms that were previously used. We then cultured prisms handled by a random sample of staff members for common bacteria. Finally, we constructed a model to investigate the possibility of interpatient adenoviral transmission via disposable tonometer prisms. The questionnaire revealed that almost 50% of the staff admit to touching the applanating face of the tonometer prism prior to applanation. Cultures of the prisms grew a range of bacteria including Staphylococcus epidermidis, Staphylococcus aureus, and Bacillus species. The viral model suggested that adenovirus could be transmitted by applanation tonometry. The use of disposable prisms for applanation tonometry may reduce the risk of prion transmission but is not bacteriologically or virologically aseptic. This is a potential infection risk to patients.

  8. Fresnel prisms and their effects on visual acuity and binocularity.

    PubMed Central

    Véronneau-Troutman, S

    1978-01-01

    1. The visual acuity with the Fresnel membrane prism is significantly less than that with the conventional prism of the same power for all prism powers from 12 delta through 30 delata at distance and from 15 delta through 30 delta at near. 2. The difference in the visual acuity between base up and base down, and between base in and base out, is not significantly different for either the Fresnel membrane prism or for the conventional prism. 3. For both Fresnel membrane prism and the conventional prism, the visual acuity when looking straight ahead. 4. Using Fresnel membrane prisms of the same power from different lots, the visual acuity varied significantly. The 30 delta prism caused the widest range in visual acuity. 5. When normal subjects are fitted with the higher powers of the Fresnel membrane prism, fusion and stereopsis are disrupted to such an extent that the use of this device to restore or to improve binocular vision in cases with large-angle deviations is seriously questioned. 6. Moreover, the disruption of fusion and stereopsis is abrupt and severe and does not parallel the decrease in visual acuity. The severely reduced ability to maintain fusion may be related to the optical aberrations, which, in turn, may be due to the molding process and the polyvinyl chloride molding material. 7. Through the flexibility of the membrane prism is a definite advantage, because of its proclivity to reduce visual acuity and increase aberrations its prescription for adults often must be limited to only one eye. 8. For the same reasons in the young child with binocular vision problems, the membrane prism presently available should be prescribed over both eyes only in powers less than 20 delta. When the membrane prism is to be used as a partial occluder (over one eye only), any power can be used. 9. The new Fresnel "hard" prism reduces visual acuity minimally and rarely disrupts binocularity, thus increasing the potential for prismotherapy to establish binocularity. This prism is currently available only for use as a trial set. Since the cosmetic appearance of the Fresnel "hard" prism is similar to that of the Fresnel membrane prism and it is easier to maintain, it would be the prism of choice (over all other types) for bilateral prescriptions in the young patient with emmetropia. The manufacturer is urged to make these prisms available to fit a special round adjustable frame, such as that developed in Europe for use with the wafer prism. Images FIGURE 14 A FIGURE 14 B FIGURE 2 A FIGURE 2 B FIGURE 12 PMID:754384

  9. Driving With Hemianopia VI: Peripheral Prisms and Perceptual-Motor Training Improve Detection in a Driving Simulator

    PubMed Central

    Houston, Kevin E.; Peli, Eli; Goldstein, Robert B.; Bowers, Alex R.

    2018-01-01

    Purpose Drivers with homonymous hemianopia (HH) were previously found to have impaired detection of blind-side hazards, yet in many jurisdictions they may obtain a license. We evaluated whether oblique 57Δ peripheral prisms (p-prisms) and perceptual-motor training improved blind-side detection rates. Methods Patients with HH (n = 11) wore p-prisms for 2 weeks and then received perceptual-motor training (six visits) detecting and touching stimuli in the prism-expanded vision. In a driving simulator, patients drove and pressed the horn upon detection of pedestrians who ran toward the roadway (26 from each side): (1) without p-prisms at baseline; (2) with p-prisms after 2 weeks acclimation but before training; (3) with p-prisms after training; and (4) 3 months later. Results P-prisms improved blind-side detection from 42% to 56%, which further improved after training to 72% (all P < 0.001). Blind-side timely responses (adequate time to have stopped) improved from 31% without to 44% with p-prisms (P < 0.001) and further improved with training to 55% (P = 0.02). At the 3-month follow-up, improvements from training were maintained for detection (65%; P = 0.02) but not timely responses (P = 0.725). There was wide between-subject variability in baseline detection performance and response to p-prisms. There were no negative effects of p-prisms on vehicle control or seeing-side performance. Conclusions P-prisms improved detection with no negative effects, and training may provide additional benefit. Translational Relevance In jurisdictions where people with HH are legally driving, these data aid in clinical decision making by providing evidence that p-prisms improve performance without negative effects. PMID:29359111

  10. Thermo-optical vacuum testing of Galileo In-Orbit Validation laser retroreflectors

    NASA Astrophysics Data System (ADS)

    Dell'Agnello, S.; Boni, A.; Cantone, C.; Ciocci, E.; Contessa, S.; Delle Monache, G.; Lops, C.; Martini, M.; Patrizi, G.; Porcelli, L.; Salvatori, L.; Tibuzzi, M.; Intaglietta, N.; Tuscano, P.; Mondaini, C.; Maiello, M.; Doyle, D.; García-Prieto, R.; Navarro-Reyes, D.

    2016-06-01

    The Galileo constellation is a space research and development program of the European Union to help navigate users all over the world. The Galileo IOV (In-Orbit Validation) are the first test satellites of the Galileo constellation and carry satellite laser retroreflectors as part of their payload systems for precision orbit determination and performance assessment. INFN-LNF SCF_Lab (Satellite/lunar/GNSS laser ranging/altimetry and Cube/microsat Characterization Facilities Laboratory) has been performing tests on a sample of the laser array segment under the Thermo-optical vacuum testing of Galileo IOV laser retro-reflectors of Galileo IOV LRA project, as defined in ESA-INFN Contract No. 4000108617/13/NL/PA. We will present the results of FFDP (Far Field Diffraction Pattern) and thermal relaxation times measurements in relevant space conditions of Galileo IOV CCRs (Cube Corner Retroreflectors) provided by ESA-ESTEC. A reference for the performance of laser ranging on Galileo satellites is the FFDP of a retroreflector in its design specifications and a Galileo retroreflector, in air and isothermal conditions, should have a minimum return intensity within the range [ 0.55 ×106m2- 2.14 ×106m2 ] (ESA-INFN, 2013). Measurements, performed in SCF_Lab facility, demonstrated that the 7 Galileo IOV laser retroreflectors under test were compliant with design performance expectations (Porcelli et al., 2015). The kind of tests carried out for this activity are the first performed on spare Galileo IOV hardware, made available after the launch of the four Galileo IOV satellites (2011 and 2012), which were the operational core of the constellation. The characterisation of the retroreflectors against their design requirements is important because LRAs (Laser Retroreflector Arrays) will be flown on all Galileo satellites.

  11. 21 CFR 886.1660 - Gonioscopic prism.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Gonioscopic prism. 886.1660 Section 886.1660 Food... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1660 Gonioscopic prism. (a) Identification. A gonioscopic prism is a device that is a prism intended to be placed on the eye to study the anterior chamber...

  12. 21 CFR 886.1660 - Gonioscopic prism.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Gonioscopic prism. 886.1660 Section 886.1660 Food... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1660 Gonioscopic prism. (a) Identification. A gonioscopic prism is a device that is a prism intended to be placed on the eye to study the anterior chamber...

  13. 21 CFR 886.1660 - Gonioscopic prism.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Gonioscopic prism. 886.1660 Section 886.1660 Food... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1660 Gonioscopic prism. (a) Identification. A gonioscopic prism is a device that is a prism intended to be placed on the eye to study the anterior chamber...

  14. 21 CFR 886.1660 - Gonioscopic prism.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Gonioscopic prism. 886.1660 Section 886.1660 Food... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1660 Gonioscopic prism. (a) Identification. A gonioscopic prism is a device that is a prism intended to be placed on the eye to study the anterior chamber...

  15. Considering Apical Scotomas, Confusion, and Diplopia When Prescribing Prisms for Homonymous Hemianopia

    PubMed Central

    Apfelbaum, Henry L.; Ross, Nicole C.; Bowers, Alex R.; Peli, Eli

    2013-01-01

    Purpose: While prisms are commonly prescribed for homonymous hemianopia to extend or expand the visual field, they cause potentially troubling visual side effects, including nonveridical location of perceived images, diplopia, and visual confusion. In addition, the field behind a prism at its apex is lost to an apical scotoma equal in magnitude to the amount of prism shift. The perceptual consequences of apical scotomas and the other effects of various designs were examined to consider parameters and designs that can mitigate the impact of these effects. Methods: Various configurations of sector and peripheral prisms were analyzed, in various directions of gaze, and their visual effects were illustrated using simulated perimetry. A novel “percept” diagram was developed that yielded insights into the patient's view through the prisms. The predictions were verified perimetrically with patients. Results: The diagrams distinguish between potentially beneficial field expansion via visual confusion and the pericentrally disturbing and useless effect of diplopia, and their relationship to prism power and gaze direction. They also illustrate the nonexpanding substitution of field segments of some popular prism designs. Conclusions: Yoked sector prisms have no effect at primary gaze or when gaze is directed toward the seeing hemifield, and they introduce pericentral field loss when gaze is shifted into them. When fitted unilaterally, sector prisms also have an effect only when the gaze is directed into the prism and may cause a pericentral scotoma and/or central diplopia. Peripheral prisms are effective at essentially all gaze angles. Since gaze is not directed into them, they avoid problematic pericentral effects. We derive useful recommendations for prism power and position parameters, including novel ways of fitting prisms asymmetrically. Translational Relevance: Clinicians will find these novel diagrams, diagramming techniques, and analyses valuable when prescribing prismatic aids for hemianopia and when designing new prism devices for patients with various types of field loss. PMID:24049719

  16. Peripheral prism glasses: effects of moving and stationary backgrounds.

    PubMed

    Shen, Jieming; Peli, Eli; Bowers, Alex R

    2015-04-01

    Unilateral peripheral prisms for homonymous hemianopia (HH) expand the visual field through peripheral binocular visual confusion, a stimulus for binocular rivalry that could lead to reduced predominance and partial suppression of the prism image, thereby limiting device functionality. Using natural-scene images and motion videos, we evaluated whether detection was reduced in binocular compared with monocular viewing. Detection rates of nine participants with HH or quadranopia and normal binocularity wearing peripheral prisms were determined for static checkerboard perimetry targets briefly presented in the prism expansion area and the seeing hemifield. Perimetry was conducted under monocular and binocular viewing with targets presented over videos of real-world driving scenes and still frame images derived from those videos. With unilateral prisms, detection rates in the prism expansion area were significantly lower in binocular than in monocular (prism eye) viewing on the motion background (medians, 13 and 58%, respectively, p = 0.008) but not the still frame background (medians, 63 and 68%, p = 0.123). When the stimulus for binocular rivalry was reduced by fitting prisms bilaterally in one HH and one normally sighted subject with simulated HH, prism-area detection rates on the motion background were not significantly different (p > 0.6) in binocular and monocular viewing. Conflicting binocular motion appears to be a stimulus for reduced predominance of the prism image in binocular viewing when using unilateral peripheral prisms. However, the effect was only found for relatively small targets. Further testing is needed to determine the extent to which this phenomenon might affect the functionality of unilateral peripheral prisms in more real-world situations.

  17. Peripheral Prism Glasses: Effects of Moving and Stationary Backgrounds

    PubMed Central

    Shen, Jieming; Peli, Eli; Bowers, Alex R.

    2015-01-01

    Purpose Unilateral peripheral prisms for homonymous hemianopia (HH) expand the visual field through peripheral binocular visual confusion, a stimulus for binocular rivalry that could lead to reduced predominance (partial local suppression) of the prism image and limit device functionality. Using natural-scene images and motion videos, we evaluated whether detection was reduced in binocular compared to monocular viewing. Methods Detection rates of nine participants with HH or quadranopia and normal binocularity wearing peripheral prisms were determined for static checkerboard perimetry targets briefly presented in the prism expansion area and the seeing hemifield. Perimetry was conducted under monocular and binocular viewing with targets presented over videos of real-world driving scenes and still frame images derived from those videos. Results With unilateral prisms, detection rates in the prism expansion area were significantly lower in binocular than monocular (prism eye) viewing on the motion background (medians 13% and 58%, respectively, p = 0.008), but not the still frame background (63% and 68%, p = 0.123). When the stimulus for binocular rivalry was reduced by fitting prisms bilaterally in 1 HH and 1 normally-sighted subject with simulated HH, prism-area detection rates on the motion background were not significantly different (p > 0.6) in binocular and monocular viewing. Conclusions Conflicting binocular motion appears to be a stimulus for reduced predominance of the prism image in binocular viewing when using unilateral peripheral prisms. However, the effect was only found for relatively small targets. Further testing is needed to determine the extent to which this phenomenon might affect the functionality of unilateral peripheral prisms in more real-world situations. PMID:25785533

  18. Ca(5)Zr(3)F(22).

    PubMed

    Oudahmane, Abdelghani; El-Ghozzi, Malika; Avignant, Daniel

    2012-04-01

    Single crystals of Ca(5)Zr(3)F(22), penta-calcium trizirconium docosafluoride, were obtained unexpectedly by solid-state reaction between CaF(2) and ZrF(4) in the presence of AgF. The structure of the title compound is isotypic with that of Sr(5)Zr(3)F(22) and can be described as being composed of layers with composition [Zr(3)F(20)](8-) made up from two different [ZrF(8)](4-) square anti-prisms (one with site symmetry 2) by corner-sharing. The layers extending parallel to the (001) plane are further linked by Ca(2+) cations, forming a three-dimensional network. Amongst the four crystallographically different Ca(2+) ions, three are located on twofold rotation axes. The Ca(2+) ions exhibit coordination numbers ranging from 8 to 12, depending on the cut off, with very distorted fluorine environments. Two of the Ca(2+) ions occupy inter-stices between the layers whereas the other two are located in void spaces of the [Zr(3)F(20)](8-) layer and alternate with the two Zr atoms along [010]. The crystal under investigation was an inversion twin.

  19. Impact of high power and angle of incidence on prism corrections for visual field loss.

    PubMed

    Jung, Jae-Hyun; Peli, Eli

    2014-01-17

    Prism distortions and spurious reflections are not usually considered when prescribing prisms to compensate for visual field loss due to homonymous hemianopia. Distortions and reflections in the high power Fresnel prisms used in peripheral prism placement can be considerable, and the simplifying assumption that prism deflection power is independent of angle of incidence into the prisms results in substantial errors. We analyze the effects of high prism power and incidence angle on the field expansion, size of the apical scotomas, and image compression/expansion. We analyze and illustrate the effects of reflections within the Fresnel prisms, primarily due to reflections at the bases, and secondarily due to surface reflections. The strength and location of these effects differs materially depending on whether the serrated prismatic surface is placed toward or away from the eye, and this affects the contribution of the reflections to visual confusion, diplopia, false alarms, and loss of contrast. We conclude with suggestions for controlling and mitigating these effects in clinical practice.

  20. [Research on improving spectrum resolution of optimized Wollaston prism array].

    PubMed

    Zhang, Peng; Wang, Jian-Rong; Zhang, Guo-Chen; Hou, Wen

    2011-11-01

    In order to not affect the image quality of interference fringes on the basis of the structure by increasing the structure angle of Wollaston prism to improve spectrum resolution, the authors optimized the structure of Wollaston prism. Calculating the function of the splitting angle and the structure angle, analysis indicated that taking the isosceles triangle prism with the same nature of the second wedge-shaped prism after the Wollaston prism, which makes the o and e light parallel to the optical axis, and alpha=0 degrees, the imaging interference fringes are no longer affected by changes in the splitting angle. Several optimized Wollaston prisms were made as an array to improve the spectral resolution. Experiments used traditional and optimized Wollaston prism array to detect the spectrum of the 980 nm laser. Experimental data showed that using optimized Wollaston prism array gets a clearer contrast of interference fringes, and the spectral data with Fourier transform are more accurate with DSP.

  1. Impact of high power and angle of incidence on prism corrections for visual field loss

    PubMed Central

    Jung, Jae-Hyun; Peli, Eli

    2014-01-01

    Prism distortions and spurious reflections are not usually considered when prescribing prisms to compensate for visual field loss due to homonymous hemianopia. Distortions and reflections in the high power Fresnel prisms used in peripheral prism placement can be considerable, and the simplifying assumption that prism deflection power is independent of angle of incidence into the prisms results in substantial errors. We analyze the effects of high prism power and incidence angle on the field expansion, size of the apical scotomas, and image compression/expansion. We analyze and illustrate the effects of reflections within the Fresnel prisms, primarily due to reflections at the bases, and secondarily due to surface reflections. The strength and location of these effects differs materially depending on whether the serrated prismatic surface is placed toward or away from the eye, and this affects the contribution of the reflections to visual confusion, diplopia, false alarms, and loss of contrast. We conclude with suggestions for controlling and mitigating these effects in clinical practice. PMID:24497649

  2. What's the Cube Quest Challenge?

    NASA Technical Reports Server (NTRS)

    Cockrell, Jim

    2016-01-01

    Cube Quest Challenge, sponsored by Space Technology Mission Directorates Centennial Challenges program, is NASAs first in-space prize competition. Cube Quest is open to any U.S.-based, non-government CubeSat developer. Entrants will compete for one of three available 6U CubeSat dispenser slots on the EM-1 mission the first un-crewed lunar flyby of the Orion spacecraft launched by the Space Launch System in early 2018. The Cube Quest Challenge will award up to $5M in prizes. The advanced CubeSat technologies demonstrated by Cube Quest winners will enable NASA, universities, and industry to more quickly and affordably accomplish science and exploration objectives. This paper describes the teams, their novel CubeSat designs, and the emerging technologies for CubeSat operations in deep space environment.

  3. Photogrammetry Tool for Forensic Analysis

    NASA Technical Reports Server (NTRS)

    Lane, John

    2012-01-01

    A system allows crime scene and accident scene investigators the ability to acquire visual scene data using cameras for processing at a later time. This system uses a COTS digital camera, a photogrammetry calibration cube, and 3D photogrammetry processing software. In a previous instrument developed by NASA, the laser scaling device made use of parallel laser beams to provide a photogrammetry solution in 2D. This device and associated software work well under certain conditions. In order to make use of a full 3D photogrammetry system, a different approach was needed. When using multiple cubes, whose locations relative to each other are unknown, a procedure that would merge the data from each cube would be as follows: 1. One marks a reference point on cube 1, then marks points on cube 2 as unknowns. This locates cube 2 in cube 1 s coordinate system. 2. One marks reference points on cube 2, then marks points on cube 1 as unknowns. This locates cube 1 in cube 2 s coordinate system. 3. This procedure is continued for all combinations of cubes. 4. The coordinate of all of the found coordinate systems is then merged into a single global coordinate system. In order to achieve maximum accuracy, measurements are done in one of two ways, depending on scale: when measuring the size of objects, the coordinate system corresponding to the nearest cube is used, or when measuring the location of objects relative to a global coordinate system, a merged coordinate system is used. Presently, traffic accident analysis is time-consuming and not very accurate. Using cubes with differential GPS would give absolute positions of cubes in the accident area, so that individual cubes would provide local photogrammetry calibration to objects near a cube.

  4. Prion-like nanofibrils of small molecules (PriSM): A new frontier at the intersection of supramolecular chemistry and cell biology.

    PubMed

    Zhou, Jie; Du, Xuewen; Xu, Bing

    2015-01-01

    Formed by non-covalent interactions and not defined at genetic level, the assemblies of small molecules in biology are complicated and less explored. A common morphology of the supramolecular assemblies of small molecules is nanofibrils, which coincidentally resembles the nanofibrils formed by proteins such as prions. So these supramolecular assemblies are termed as prion-like nanofibrils of small molecules (PriSM). Emerging evidence from several unrelated fields over the past decade implies the significance of PriSM in biology and medicine. This perspective aims to highlight some recent advances of the research on PriSM. This paper starts with description of the intriguing similarities between PriSM and prions, discusses the paradoxical features of PriSM, introduces the methods for elucidating the biological functions of PriSM, illustrates several examples of beneficial aspects of PriSM, and finishes with the promises and current challenges in the research of PriSM. We anticipate that the research of PriSM will contribute to the fundamental understanding at the intersection of supramolecular chemistry and cell biology and ultimately lead to a new paradigm of molecular (or supramolecular) therapeutics for biomedicine.

  5. Prion-like nanofibrils of small molecules (PriSM): A new frontier at the intersection of supramolecular chemistry and cell biology

    PubMed Central

    Zhou, Jie; Du, Xuewen; Xu, Bing

    2015-01-01

    Abstract Formed by non-covalent interactions and not defined at genetic level, the assemblies of small molecules in biology are complicated and less explored. A common morphology of the supramolecular assemblies of small molecules is nanofibrils, which coincidentally resembles the nanofibrils formed by proteins such as prions. So these supramolecular assemblies are termed as prion-like nanofibrils of small molecules (PriSM). Emerging evidence from several unrelated fields over the past decade implies the significance of PriSM in biology and medicine. This perspective aims to highlight some recent advances of the research on PriSM. This paper starts with description of the intriguing similarities between PriSM and prions, discusses the paradoxical features of PriSM, introduces the methods for elucidating the biological functions of PriSM, illustrates several examples of beneficial aspects of PriSM, and finishes with the promises and current challenges in the research of PriSM. We anticipate that the research of PriSM will contribute to the fundamental understanding at the intersection of supramolecular chemistry and cell biology and ultimately lead to a new paradigm of molecular (or supramolecular) therapeutics for biomedicine. PMID:25738892

  6. Prism adaptation speeds reach initiation in the direction of the prism after-effect.

    PubMed

    Striemer, Christopher L; Borza, Carley A

    2017-10-01

    Damage to the temporal-parietal cortex in the right hemisphere often leads to spatial neglect-a disorder in which patients are unable to attend to sensory input from their contralesional (left) side. Neglect has been associated with both attentional and premotor deficits. That is, in addition to having difficulty with attending to the left side, patients are often slower to initiate leftward vs. rightward movements (i.e., directional hypokinesia). Previous research has indicated that a brief period of adaptation to rightward shifting prisms can reduce symptoms of neglect by adjusting the patient's movements leftward, toward the neglected field. Although prism adaptation has been shown to reduce spatial attention deficits in patients with neglect, very little work has examined the effects of prisms on premotor symptoms. In the current study, we examined this in healthy individuals using leftward shifting prisms to induce a rightward shift in the egocentric reference frame, similar to neglect patients prior to prism adaptation. Specifically, we examined the speed with which healthy participants initiated leftward and rightward reaches (without visual feedback) prior to and following adaptation to either 17° leftward (n = 16) or 17° rightward (n = 15) shifting prisms. Our results indicated that, following adaptation, participants were significantly faster to initiate reaches towards targets located in the direction opposite the prism shift. That is, participants were faster to initiate reaches to right targets following leftward prism adaptation and were faster to initiate reaches to left targets following rightward prism adaptation. Overall, these results are consistent with the idea that prism adaptation can influence the speed with which a reach can be initiated toward a target in the direction opposite the prism shift, possibly through altering activity in neural circuits involved in reach planning.

  7. Pictorial Representation of Illness and Self Measure (PRISM): A novel visual instrument to measure quality of life in dermatological inpatients.

    PubMed

    Mühleisen, Beda; Büchi, Stefan; Schmidhauser, Simone; Jenewein, Josef; French, Lars E; Hofbauer, Günther F L

    2009-07-01

    To validate the PRISM (Pictorial Representation of Illness and Self Measure) tool, a novel visual instrument, for the assessment of health-related quality of life in dermatological inpatients compared with the Dermatology Life Quality Index (DLQI) and the Skindex-29 questionnaires and to report qualitative information on PRISM. In an open longitudinal study, PRISM and Skindex-29 and DLQI questionnaires were completed and HRQOL measurements compared. Academic dermatological inpatient ward. The study population comprised 227 sequential dermatological inpatients on admission. Patients completed the PRISM tool and the Skindex-29 and DLQI questionnaires at admission and discharge. PRISM Self-Illness Separation (SIS) score; Skindex-29 and DLQI scores; and qualitative PRISM information by Mayring inductive qualitative context analysis. The PRISM scores correlated well with those from the Skindex-29 (rho = 0.426; P < .001) and DLQI (rho = 0.304; P < .001) questionnaires. Between PRISM and Skindex-29 scores, the highest correlations were for dermatitis (rho = 0.614) and leg ulcer (rho = 0.554), and between PRISM and DLQI scores, the highest correlations were for psoriasis (rho = 0.418) and tumor (rho = 0.399). The PRISM tool showed comparable or higher sensitivity than quality of life questionnaires to assess changes in the burden of suffering during hospitalization. Inductive qualitative context analysis revealed impairment of adjustment and self-image as major aspects. Patients overall expected symptomatic and functional improvement. In patients with psoriasis and leg ulcers, many expected no treatment benefit. The PRISM tool proved to be convenient and reliable for health-related quality of life assessment, applicable for a wide range of skin diseases, and correlated with DLQI and Skindex-29 scores. With the PRISM tool, free-text answers allow for the assessment of individual information and potentially customized therapeutic approaches.

  8. Asymmetric transmission in prisms using structures and materials with isotropic-type dispersion.

    PubMed

    Gundogdu, Funda Tamara; Serebryannikov, Andriy E; Cakmak, A Ozgur; Ozbay, Ekmel

    2015-09-21

    It is demonstrated that strong asymmetry in transmission can be obtained at the Gaussian beam illumination for a single prism based on a photonic crystal (PhC) with isotropic-type dispersion, as well as for its analog made of a homogeneous material. Asymmetric transmission can be realized with the aid of refraction at a proper orientation of the interfaces and wedges of the prism, whereas neither contribution of higher diffraction orders nor anisotropic-type dispersion is required. Furthermore, incidence toward a prism wedge can be used for one of two opposite directions in order to obtain asymmetry. Thus, asymmetric transmission is a general property of the prism configurations, which can be obtained by using simple geometries and quite conventional materials. The obtained results show that strong asymmetry can be achieved in PhC prisms with (nearly) circular shape of equifrequency dispersion contours, in both cases associated with the index of refraction 01. For the comparison purposes, results are also presented for solid uniform non-magnetic prisms made of a material with the same value of n. It is shown in zero-loss approximation that the PhC prism and the ultralow-index material prism (01. Possible contributions of scattering on the individual rods and diffraction on the wedge to the resulting mechanism are discussed. Analogs of unidirectional splitting and unidirectional deflection regimes, which are known from the studies of PhC gratings, are obtained in PhC prisms and solid uniform prisms, i.e. without higher diffraction orders.

  9. Crystal structure of tetra­wickmanite, Mn2+Sn4+(OH)6

    PubMed Central

    Lafuente, Barbara; Yang, Hexiong; Downs, Robert T.

    2015-01-01

    The crystal structure of tetra­wickmanite, ideally Mn2+Sn4+(OH)6 [mangan­ese(II) tin(IV) hexa­hydroxide], has been determined based on single-crystal X-ray diffraction data collected from a natural sample from Långban, Sweden. Tetra­wickmanite belongs to the octa­hedral-framework group of hydroxide-perovskite minerals, described by the general formula BB’(OH)6 with a perovskite derivative structure. The structure differs from that of an ABO3 perovskite in that the A site is empty while each O atom is bonded to an H atom. The perovskite B-type cations split into ordered B and B′ sites, which are occupied by Mn2+ and Sn4+, respectively. Tetra­wickmanite exhibits tetra­gonal symmetry and is topologically similar to its cubic polymorph, wickmanite. The tetra­wickmanite structure is characterized by a framework of alternating corner-linked [Mn2+(OH)6] and [Sn4+(OH)6] octa­hedra, both with point-group symmetry -1. Four of the five distinct H atoms in the structure are statistically disordered. The vacant A site is in a cavity in the centre of a distorted cube formed by eight octa­hedra at the corners. However, the hydrogen-atom positions and their hydrogen bonds are not equivalent in every cavity, resulting in two distinct environments. One of the cavities contains a ring of four hydrogen bonds, similar to that found in wickmanite, while the other cavity is more distorted and forms crankshaft-type chains of hydrogen bonds, as previously proposed for tetra­gonal stottite, Fe2+Ge4+(OH)6. PMID:25878828

  10. Stereoacuity as an indicator of prism adaptation.

    PubMed

    Momeni-Moghaddam, Hamed; Eperjesi, Frank; Kundart, James; Mostafavi-Nam, Kazem

    2014-08-01

    The purpose of this study was to determine whether stereoacuity can be used as an indicator of prism adaptation. In particular, we wanted to know whether the time required for stereoacuity to return to the initial level after viewing through a prism can be used to determine the degree of adaptation. Eighteen subjects participated in this study. Stereoacuity and dissociated phoria were determined using the TNO stereotest and the Maddox rod, respectively. Prism vergences were measured using a prism bar. For each participant, prism power equivalent to the blur point of base-in (BI) and base-out (BO) fusional vergence at 40 cm was divided and placed in front of both eyes. At 0, 3, 6, 9 and 12 min after prism introduction, the stereoacuity was measured, and at 0 and 12 min, the heterophoria was measured. The repeated measures ANOVA showed a significant difference between the mean stereoacuity for BI and BO prisms at the different measurement times (p < 0.05). For BO prism, the initial value was different between 0 and 3 min after the prism introduction, whereas for BI prism, a difference in stereoacuity was found between the pre-prism value and the value at 0, 3 and 6 min. The size of the heterophoria with BO and BI prisms was different from 0 to 12 min (p < 0.05). The time required for stereoacuity to return to baseline level was more than 3 min for BO, and more than 6 min for BI prism. In addition, the time required to return to baseline values was not similar for the stereoacuity and heterophoria. The recovery of stereoacuity is slower when adapting to divergence, as when looking from near to far. This implies that stereopsis responds faster to near targets than to distant one, and may precede complete phoria adaptation.

  11. First-order approximation error analysis of Risley-prism-based beam directing system.

    PubMed

    Zhao, Yanyan; Yuan, Yan

    2014-12-01

    To improve the performance of a Risley-prism system for optical detection and measuring applications, it is necessary to be able to determine the direction of the outgoing beam with high accuracy. In previous works, error sources and their impact on the performance of the Risley-prism system have been analyzed, but their numerical approximation accuracy was not high. Besides, pointing error analysis of the Risley-prism system has provided results for the case when the component errors, prism orientation errors, and assembly errors are certain. In this work, the prototype of a Risley-prism system was designed. The first-order approximations of the error analysis were derived and compared with the exact results. The directing errors of a Risley-prism system associated with wedge-angle errors, prism mounting errors, and bearing assembly errors were analyzed based on the exact formula and the first-order approximation. The comparisons indicated that our first-order approximation is accurate. In addition, the combined errors produced by the wedge-angle errors and mounting errors of the two prisms together were derived and in both cases were proved to be the sum of errors caused by the first and the second prism separately. Based on these results, the system error of our prototype was estimated. The derived formulas can be implemented to evaluate beam directing errors of any Risley-prism beam directing system with a similar configuration.

  12. Forward and inverse solutions for three-element Risley prism beam scanners.

    PubMed

    Li, Anhu; Liu, Xingsheng; Sun, Wansong

    2017-04-03

    Scan blind zone and control singularity are two adverse issues for the beam scanning performance in double-prism Risley systems. In this paper, a theoretical model which introduces a third prism is developed. The critical condition for a fully eliminated scan blind zone is determined through a geometric derivation, providing several useful formulae for three-Risley-prism system design. Moreover, inverse solutions for a three-prism system are established, based on the damped least-squares iterative refinement by a forward ray tracing method. It is shown that the efficiency of this iterative calculation of the inverse solutions can be greatly enhanced by a numerical differentiation method. In order to overcome the control singularity problem, the motion law of any one prism in a three-prism system needs to be conditioned, resulting in continuous and steady motion profiles for the other two prisms.

  13. Dynamic changes in brain activity during prism adaptation.

    PubMed

    Luauté, Jacques; Schwartz, Sophie; Rossetti, Yves; Spiridon, Mona; Rode, Gilles; Boisson, Dominique; Vuilleumier, Patrik

    2009-01-07

    Prism adaptation does not only induce short-term sensorimotor plasticity, but also longer-term reorganization in the neural representation of space. We used event-related fMRI to study dynamic changes in brain activity during both early and prolonged exposure to visual prisms. Participants performed a pointing task before, during, and after prism exposure. Measures of trial-by-trial pointing errors and corrections allowed parametric analyses of brain activity as a function of performance. We show that during the earliest phase of prism exposure, anterior intraparietal sulcus was primarily implicated in error detection, whereas parieto-occipital sulcus was implicated in error correction. Cerebellum activity showed progressive increases during prism exposure, in accordance with a key role for spatial realignment. This time course further suggests that the cerebellum might promote neural changes in superior temporal cortex, which was selectively activated during the later phase of prism exposure and could mediate the effects of prism adaptation on cognitive spatial representations.

  14. A Pilot Study of Perceptual-Motor Training for Peripheral Prisms

    PubMed Central

    Houston, Kevin E.; Bowers, Alex R.; Fu, Xianping; Liu, Rui; Goldstein, Robert B.; Churchill, Jeff; Wiegand, Jean-Paul; Soo, Tim; Tang, Qu; Peli, Eli

    2016-01-01

    Purpose Peripheral prisms (p-prisms) shift peripheral portions of the visual field of one eye, providing visual field expansion for patients with hemianopia. However, patients rarely show adaption to the shift, incorrectly localizing objects viewed within the p-prisms. A pilot evaluation of a novel computerized perceptual-motor training program aiming to promote p-prism adaption was conducted. Methods Thirteen patients with hemianopia fitted with 57Δ oblique p-prisms completed the training protocol. They attended six 1-hour visits reaching and touching peripheral checkerboard stimuli presented over videos of driving scenes while fixating a central target. Performance was measured at each visit and after 3 months. Results There was a significant reduction in touch error (P = 0.01) for p-prism zone stimuli from pretraining median of 16.6° (IQR 12.1°–19.6°) to 2.7° ( IQR 1.0°–8.5°) at the end of training. P-prism zone reaction times did not change significantly with training (P > 0.05). P-prism zone detection improved significantly (P = 0.01) from a pretraining median 70% (IQR 50%–88%) to 95% at the end of training (IQR 73%–98%). Three months after training improvements had regressed but performance was still better than pretraining. Conclusions Improved pointing accuracy for stimuli detected in prism-expanded vision of patients with hemianopia wearing 57Δ oblique p-prisms is possible and training appears to further improve detection. Translational Relevance This is the first use of this novel software to train adaptation of visual direction in patients with hemianopia wearing peripheral prisms. PMID:26933522

  15. Single-lens stereovision system using a prism: position estimation of a multi-ocular prism.

    PubMed

    Cui, Xiaoyu; Lim, Kah Bin; Zhao, Yue; Kee, Wei Loon

    2014-05-01

    In this paper, a position estimation method using a prism-based single-lens stereovision system is proposed. A multifaced prism was considered as a single optical system composed of few refractive planes. A transformation matrix which relates the coordinates of an object point to its coordinates on the image plane through the refraction of the prism was derived based on geometrical optics. A mathematical model which is able to denote the position of an arbitrary faces prism with only seven parameters is introduced. This model further extends the application of the single-lens stereovision system using a prism to other areas. Experimentation results are presented to prove the effectiveness and robustness of our proposed model.

  16. An Optimum Space-to-Ground Communication Concept for CubeSat Platform Utilizing NASA Space Network and Near Earth Network

    NASA Technical Reports Server (NTRS)

    Wong, Yen F.; Kegege, Obadiah; Schaire, Scott H.; Bussey, George; Altunc, Serhat; Zhang, Yuwen; Patel Chitra

    2016-01-01

    National Aeronautics and Space Administration (NASA) CubeSat missions are expected to grow rapidly in the next decade. Higher data rate CubeSats are transitioning away from Amateur Radio bands to higher frequency bands. A high-level communication architecture for future space-to-ground CubeSat communication was proposed within NASA Goddard Space Flight Center. This architecture addresses CubeSat direct-to-ground communication, CubeSat to Tracking Data Relay Satellite System (TDRSS) communication, CubeSat constellation with Mothership direct-to-ground communication, and CubeSat Constellation with Mothership communication through K-Band Single Access (KSA). A study has been performed to explore this communication architecture, through simulations, analyses, and identifying technologies, to develop the optimum communication concepts for CubeSat communications. This paper presents details of the simulation and analysis that include CubeSat swarm, daughter ship/mother ship constellation, Near Earth Network (NEN) S and X-band direct to ground link, TDRSS Multiple Access (MA) array vs Single Access mode, notional transceiver/antenna configurations, ground asset configurations and Code Division Multiple Access (CDMA) signal trades for daughter ship/mother ship CubeSat constellation inter-satellite cross link. Results of space science X-band 10 MHz maximum achievable data rate study are summarized. CubeSat NEN Ka-Band end-to-end communication analysis is provided. Current CubeSat communication technologies capabilities are presented. Compatibility test of the CubeSat transceiver through NEN and SN is discussed. Based on the analyses, signal trade studies and technology assessments, the desired CubeSat transceiver features and operation concepts for future CubeSat end-to-end communications are derived.

  17. Less-expensive Rochon prisms

    NASA Technical Reports Server (NTRS)

    Ammann, E. O.; Massey, G. A.

    1970-01-01

    Inexpensive Rochon prisms can be produced by substituting easily polished glass for one-half of the calcite. Reciprocal polarizing properties of a conventional Rochon prism are retained, and angular separation between ordinary and extraordinary rays is the same as in all-calcite prism.

  18. Goldmann tonometer error correcting prism: clinical evaluation.

    PubMed

    McCafferty, Sean; Lim, Garrett; Duncan, William; Enikov, Eniko T; Schwiegerling, Jim; Levine, Jason; Kew, Corin

    2017-01-01

    Clinically evaluate a modified applanating surface Goldmann tonometer prism designed to substantially negate errors due to patient variability in biomechanics. A modified Goldmann prism with a correcting applanation tonometry surface (CATS) was mathematically optimized to minimize the intraocular pressure (IOP) measurement error due to patient variability in corneal thickness, stiffness, curvature, and tear film adhesion force. A comparative clinical study of 109 eyes measured IOP with CATS and Goldmann prisms. The IOP measurement differences between the CATS and Goldmann prisms were correlated to corneal thickness, hysteresis, and curvature. The CATS tonometer prism in correcting for Goldmann central corneal thickness (CCT) error demonstrated a reduction to <±2 mmHg in 97% of a standard CCT population. This compares to only 54% with CCT error <±2 mmHg using the Goldmann prism. Equal reductions of ~50% in errors due to corneal rigidity and curvature were also demonstrated. The results validate the CATS prism's improved accuracy and expected reduced sensitivity to Goldmann errors without IOP bias as predicted by mathematical modeling. The CATS replacement for the Goldmann prism does not change Goldmann measurement technique or interpretation.

  19. RainCube 6U CubeSat

    NASA Image and Video Library

    2018-05-17

    The RainCube 6U CubeSat with fully-deployed antenna. RainCube, CubeRRT and TEMPEST-D are currently integrated aboard Orbital ATKs Cygnus spacecraft and are awaiting launch on an Antares rocket. After the CubeSats have arrived at the station, they will be deployed into low-Earth orbit and will begin their missions to test these new technologies useful for predicting weather, ensuring data quality, and helping researchers better understand storms. https://photojournal.jpl.nasa.gov/catalog/PIA22457

  20. CubeSat Artist Rendering and NASA M-Cubed/COVE

    NASA Image and Video Library

    2012-02-14

    The image on the left is an artist rendering of Montana State University Explorer 1 CubeSat; at right is a CubeSat created by the University of Michigan designated the Michigan Mulitpurpose Mini-satellite, or M-Cubed.

  1. Effect of contact angle on the orientation, stability, and assembly of dense floating cubes.

    PubMed

    Daniello, Robert; Khan, Kashan; Donnell, Michael; Rothstein, Jonathan P

    2014-02-01

    In this paper, the effect of contact angle, density, and size on the orientation, stability, and assembly of floating cubes was investigated. All the cubes tested were more dense than water. Floatation occurred as a result of capillary stresses induced by deformation of the air-water interface. The advancing contact angle of the bare acrylic cubes was measured to be 85°. The contact angle of the cubes was increased by painting the cubes with a commercially available superhydrophobic paint to reach an advancing contact angle of 150°. Depending on their size, density, and contact angle, the cubes were observed to float in one of three primary orientations: edge up, vertex up, and face up. An experimental apparatus was built such that the sum of the gravitational force, buoyancy force, and capillary forces could be measured using a force transducer as a function of cube position as it was lowered through the air-water interface. Measurements showed that the maximum capillary forces were always experienced for the face up orientation. However, when floatation was possible in the vertex up orientation, it was found to be the most stable cube orientation because it had the lowest center of gravity. A series of theoretical predictions were performed for the cubes floating in each of the three primary orientations to calculate the net force on the cube. The theoretical predictions were found to match the experimental measurements well. A cube stability diagram of cube orientation as a function of cube contact angle and size was prepared from the predictions of theory and found to match the experimental observations quite well. The assembly of cubes floating face up and vertex up were also studied for assemblies of two, three, and many cubes. Cubes floating face up were found to assemble face-to-face and form regular square lattice patterns with no free interface between cubes. Cubes floating vertex up were found to assemble in a variety of different arrangements including edge-to-edge, vertex-to-vertex, face-to-face, and vertex-to-face with the most probably assembly being edge-to-edge. Large numbers of vertex up cubes were found to pack with a distribution of orientations and alignments.

  2. Studying the neural bases of prism adaptation using fMRI: A technical and design challenge.

    PubMed

    Bultitude, Janet H; Farnè, Alessandro; Salemme, Romeo; Ibarrola, Danielle; Urquizar, Christian; O'Shea, Jacinta; Luauté, Jacques

    2017-12-01

    Prism adaptation induces rapid recalibration of visuomotor coordination. The neural mechanisms of prism adaptation have come under scrutiny since the observations that the technique can alleviate hemispatial neglect following stroke, and can alter spatial cognition in healthy controls. Relative to non-imaging behavioral studies, fMRI investigations of prism adaptation face several challenges arising from the confined physical environment of the scanner and the supine position of the participants. Any researcher who wishes to administer prism adaptation in an fMRI environment must adjust their procedures enough to enable the experiment to be performed, but not so much that the behavioral task departs too much from true prism adaptation. Furthermore, the specific temporal dynamics of behavioral components of prism adaptation present additional challenges for measuring their neural correlates. We developed a system for measuring the key features of prism adaptation behavior within an fMRI environment. To validate our configuration, we present behavioral (pointing) and head movement data from 11 right-hemisphere lesioned patients and 17 older controls who underwent sham and real prism adaptation in an MRI scanner. Most participants could adapt to prismatic displacement with minimal head movements, and the procedure was well tolerated. We propose recommendations for fMRI studies of prism adaptation based on the design-specific constraints and our results.

  3. Disposable versus non-disposable tonometer prisms: a UK national survey

    PubMed Central

    Jasani, Kirti M; Putri, Christine; Pearl, Amy; Sattar, Nayeem; Mercieca, Karl; Spaeth, George; Bhan-Bhargava, Archana

    2017-01-01

    Purpose To determine the prevalence of disposable tonometer versus non-disposable tonometer use in the UK and to determine methods of decontamination and frequency of replacement of prisms. A total of 137 ophthalmology departments were interviewed by telephone using a structured questionnaire. The main outcome measured were:types of tonometer prisms used in clinic (disposable, non-disposable and/or other)average disposable prisms used per clinic sessionaverage lifespan of non-disposable prismsprism preference by glaucoma and other teams within department. A cost and benefit analysis was then performed on the data acquired. Results One hundred and fifty-five departments were identified for the survey. Of these, 137 (88.3%) responded. Eighty-one departments (59.1%) used Tonosafe prisms alone, whereas 22 departments (16.1%) used Goldmann non-disposable prisms exclusively. Thirty-five departments (64%) on average have a change rate of 26.5% per year (range: 0–100, median: 20) attributed to damage, loss or theft. Sixteen departments (29%) reported that prisms were used until damaged or lost. Four departments (7%) were uncertain of their prism usage and could not provide further information. Conclusions Majority of eye departments in the UK opt for disposable prisms. This survey shows the perceived cost-effectiveness of disposable prisms is overestimated when the true cost of disinfection and damage is taken into account. Significant cost savings coupled with the low risk of infectivity (if decontaminated properly) should prompt clinicians and ophthalmic departments worldwide to reconsider the use of non-disposable prisms. PMID:29354698

  4. Reuse of waste iron as a partial replacement of sand in concrete.

    PubMed

    Ismail, Zainab Z; Al-Hashmi, Enas A

    2008-11-01

    One of the major environmental issues in Iraq is the large quantity of waste iron resulting from the industrial sector which is deposited in domestic waste and in landfills. A series of 109 experiments and 586 tests were carried out in this study to examine the feasibility of reusing this waste iron in concrete. Overall, 130 kg of waste iron were reused to partially replace sand at 10%, 15%, and 20% in a total of 1703 kg concrete mixtures. The tests performed to evaluate waste-iron concrete quality included slump, fresh density, dry density, compressive strength, and flexural strength tests: 115 cubes of concrete were molded for the compressive strength and dry density tests, and 87 prisms were cast for the flexural strength tests. This work applied 3, 7, 14, and 28 days curing ages for the concrete mixes. The results confirm that reuse of solid waste material offers an approach to solving the pollution problems that arise from an accumulation of waste in a production site; in the meantime modified properties are added to the concrete. The results show that the concrete mixes made with waste iron had higher compressive strengths and flexural strengths than the plain concrete mixes.

  5. Enhanced optical discrimination system based on switchable retroreflective films

    NASA Astrophysics Data System (ADS)

    Schultz, Phillip; Heikenfeld, Jason

    2016-04-01

    Reported herein is the design, characterization, and demonstration of a laser interrogation and response optical discrimination system based on large-area corner-cube retroreflective films. The switchable retroreflective films use light-scattering liquid crystal to modulate retroreflected intensity. The system can operate with multiple wavelengths (visible to infrared) and includes variable divergence optics for irradiance adjustments and ease of system alignment. The electronic receiver and switchable retroreflector offer low-power operation (<4 mW standby) on coin cell batteries with rapid interrogation to retroreflected signal reception response times (<15 ms). The entire switchable retroreflector film is <1 mm thick and is flexible for optimal placement and increased angular response. The system was demonstrated in high ambient lighting conditions (daylight, 18k lux) with a visible 10-mW output 635-nm source out to a distance of 400 m (naked eye detection). Nighttime demonstrations were performed using a 1.5-mW, 850-nm infrared laser diode out to a distance of 400 m using a night vision camera. This system could have tagging and conspicuity applications in commercial or military settings.

  6. Directable weathering of concave rock using curvature estimation.

    PubMed

    Jones, Michael D; Farley, McKay; Butler, Joseph; Beardall, Matthew

    2010-01-01

    We address the problem of directable weathering of exposed concave rock for use in computer-generated animation or games. Previous weathering models that admit concave surfaces are computationally inefficient and difficult to control. In nature, the spheroidal and cavernous weathering rates depend on the surface curvature. Spheroidal weathering is fastest in areas with large positive mean curvature and cavernous weathering is fastest in areas with large negative mean curvature. We simulate both processes using an approximation of mean curvature on a voxel grid. Both weathering rates are also influenced by rock durability. The user controls rock durability by editing a durability graph before and during weathering simulation. Simulations of rockfall and colluvium deposition further improve realism. The profile of the final weathered rock matches the shape of the durability graph up to the effects of weathering and colluvium deposition. We demonstrate the top-down directability and visual plausibility of the resulting model through a series of screenshots and rendered images. The results include the weathering of a cube into a sphere and of a sheltered inside corner into a cavern as predicted by the underlying geomorphological models.

  7. Experimental quasi-single-photon transmission from satellite to earth.

    PubMed

    Yin, Juan; Cao, Yuan; Liu, Shu-Bin; Pan, Ge-Sheng; Wang, Jin-Hong; Yang, Tao; Zhang, Zhong-Ping; Yang, Fu-Min; Chen, Yu-Ao; Peng, Cheng-Zhi; Pan, Jian-Wei

    2013-08-26

    Free-space quantum communication with satellites opens a promising avenue for global secure quantum network and large-scale test of quantum foundations. Recently, numerous experimental efforts have been carried out towards this ambitious goal. However, one essential step--transmitting single photons from the satellite to the ground with high signal-to-noise ratio (SNR) at realistic environments--remains experimental challenging. Here, we report a direct experimental demonstration of the satellite-ground transmission of a quasi-single-photon source. In the experiment, single photons (~0.85 photon per pulse) are generated by reflecting weak laser pulses back to earth with a cube-corner retro-reflector on the satellite CHAMP, collected by a 600-mm diameter telescope at the ground station, and finally detected by single-photon counting modules after 400-km free-space link transmission. With the help of high accuracy time synchronization, narrow receiver field-of-view and high-repetition-rate pulses (76 MHz), a SNR of better than 16:1 is obtained, which is sufficient for a secure quantum key distribution. Our experimental results represent an important step towards satellite-ground quantum communication.

  8. Post-Flight Estimation of Motion of Space Structures: Part 2

    NASA Technical Reports Server (NTRS)

    Brugarolas, Paul; Breckenridge, William

    2008-01-01

    A computer program related to the one described in the immediately preceding article estimates the relative position of two space structures that are hinged to each other. The input to the program consists of time-series data on distances, measured by two range finders at different positions on one structure, to a corner-cube retroreflector on the other structure. Given a Cartesian (x,y,z) coordinate system and the known x coordinate of the retroreflector relative to the y,z plane that contains the range finders, the program estimates the y and z coordinates of the retroreflector. The estimation process involves solving for the y,z coordinates of the intersection between (1) the y,z plane that contains the retroreflector and (2) spheres, centered on the range finders, having radii equal to the measured distances. In general, there are two such solutions and the program chooses the one consistent with the design of the structures. The program implements a Kalman filter. The output of the program is a time series of estimates of the relative position of the structures.

  9. Macroscopic superpositions and gravimetry with quantum magnetomechanics.

    PubMed

    Johnsson, Mattias T; Brennen, Gavin K; Twamley, Jason

    2016-11-21

    Precision measurements of gravity can provide tests of fundamental physics and are of broad practical interest for metrology. We propose a scheme for absolute gravimetry using a quantum magnetomechanical system consisting of a magnetically trapped superconducting resonator whose motion is controlled and measured by a nearby RF-SQUID or flux qubit. By driving the mechanical massive resonator to be in a macroscopic superposition of two different heights our we predict that our interferometry protocol could, subject to systematic errors, achieve a gravimetric sensitivity of Δg/g ~ 2.2 × 10 -10  Hz -1/2 , with a spatial resolution of a few nanometres. This sensitivity and spatial resolution exceeds the precision of current state of the art atom-interferometric and corner-cube gravimeters by more than an order of magnitude, and unlike classical superconducting interferometers produces an absolute rather than relative measurement of gravity. In addition, our scheme takes measurements at ~10 kHz, a region where the ambient vibrational noise spectrum is heavily suppressed compared the ~10 Hz region relevant for current cold atom gravimeters.

  10. Macroscopic superpositions and gravimetry with quantum magnetomechanics

    PubMed Central

    Johnsson, Mattias T.; Brennen, Gavin K.; Twamley, Jason

    2016-01-01

    Precision measurements of gravity can provide tests of fundamental physics and are of broad practical interest for metrology. We propose a scheme for absolute gravimetry using a quantum magnetomechanical system consisting of a magnetically trapped superconducting resonator whose motion is controlled and measured by a nearby RF-SQUID or flux qubit. By driving the mechanical massive resonator to be in a macroscopic superposition of two different heights our we predict that our interferometry protocol could, subject to systematic errors, achieve a gravimetric sensitivity of Δg/g ~ 2.2 × 10−10 Hz−1/2, with a spatial resolution of a few nanometres. This sensitivity and spatial resolution exceeds the precision of current state of the art atom-interferometric and corner-cube gravimeters by more than an order of magnitude, and unlike classical superconducting interferometers produces an absolute rather than relative measurement of gravity. In addition, our scheme takes measurements at ~10 kHz, a region where the ambient vibrational noise spectrum is heavily suppressed compared the ~10 Hz region relevant for current cold atom gravimeters. PMID:27869142

  11. Lunar and Lagrangian Point L1 L2 CubeSat Communication and Navigation Considerations

    NASA Technical Reports Server (NTRS)

    Schaire, Scott; Wong, Yen F.; Altunc, Serhat; Bussey, George D.; Shelton, Marta; Folta, Dave; Gramling, Cheryl; Celeste, Peter; Anderson, Mike; Perrotto, Trish; hide

    2017-01-01

    CubeSats have grown in sophistication to the point that relatively low-cost mission solutions could be undertaken for planetary exploration. There are unique considerations for Lunar and L1L2 CubeSat communication and navigation compared with low earth orbit CubeSats. This paper explores those considerations as they relate to the MoreheadGSFC Lunar IceCube Mission. The Lunar IceCube is a CubeSat mission led by Morehead State University with participation from NASA Goddard Space Flight Center, JPL, the Busek Company and Vermont Tech. It will search for surface water ice and other resources from a high inclination lunar orbit. Lunar IceCube is one of a select group of CubeSats designed to explore beyond low-earth orbit that will fly on NASAs Space Launch System (SLS) as secondary payloads for Exploration Mission (EM) 1. Lunar IceCube and the EM-1 CubeSats will lay the groundwork for future lunar and L1L2 CubeSat missions. This paper discusses communication and navigation needs for the Lunar IceCube mission and navigation and radiation tolerance requirements related to lunar and L1L2 orbits. Potential CubeSat radio and antennas for such missions are investigated and compared. Ground station coverage, link analysis, and ground station solutions are also discussed. There are currently modifications in process for the Morehead ground station. Further enhancement of the Morehead ground station and the NASA Near Earth Network (NEN) are being examined. This paper describes how the NEN may support Lunar and L1L2 CubeSats without any enhancements and potential expansion of NEN to better support such missions in the future. The potential NEN enhancements include upgrading current NEN Cortex receiver with Forward Error Correction (FEC) Turbo Code, providing X-band Uplink capability, and adding ranging options. The benefits of ground station enhancements for CubeSats flown on NASA Exploration Missions (EM) are presented. The paper also discusses other initiatives that the NEN is studying to better support the CubeSat community, including streamlining the compatibility test, planning and scheduling associated with CubeSat missions.

  12. Resultant vertical prism in toric soft contact lenses.

    PubMed

    Sulley, Anna; Hawke, Ryan; Lorenz, Kathrine Osborn; Toubouti, Youssef; Olivares, Giovanna

    2015-08-01

    Rotational stability of toric soft contact lenses (TSCLs) is achieved using a range of designs. Designs utilising prism or peripheral ballast may result in residual prism in the optic zone. This study quantifies the vertical prism in the central 6mm present in TSCLs with various stabilisation methods. Vertical prism was computed using published refractive index and vertical thickness changes in the central optic zone on a full lens thickness map. Thickness maps were measured using scanning transmission microscopy. Designs tested were reusable, silicone hydrogel and hydrogel TSCLs: SofLens(®) Toric, PureVision(®)2 for Astigmatism, PureVision(®) Toric, Biofinity(®) Toric, Avaira(®) Toric, clariti(®) toric, AIR OPTIX(®) for ASTIGMATISM and ACUVUE OASYS(®) for ASTIGMATISM; with eight parameter combinations for each lens (-6.00DS to +3.00DS, -1.25DC, 90° and 180° axes). All TSCL designs evaluated had vertical prism in the optic zone except one which had virtually none (0.01Δ). Mean prism ranged from 0.52Δ to 1.15Δ, with three designs having prism that varied with sphere power. Vertical prism in ACUVUE OASYS(®) for ASTIGMATISM was significantly lower than all other TSCLs tested. TSCL designs utilising prism-ballast and peri-ballast for stabilisation have vertical prism in the central optic zone. In monocular astigmats fitted with a TSCL or those wearing a mix of toric designs, vertical prism imbalance could create or exacerbate disturbances in binocular vision function. Practitioners should be aware of this potential effect when selecting which TSCL designs to prescribe, particularly for monocular astigmats with pre-existing binocular vision anomalies, and when managing complaints of asthenopia in monocular astigmats. Copyright © 2015 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  13. Reinforcement of the Cube texture during recrystallization of a 1050 aluminum alloy partially recrystallized and 10% cold-rolled

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Wei; Helbert, Anne-Laure, E-mail: anne-laure.helbert@u-psud.fr; Baudin, Thierry

    In high purity Aluminum, very strong {l_brace}100{r_brace}<001> recrystallization texture is developed after 98% cold rolling and annealing at 500 Degree-Sign C. On the contrary, in Aluminum alloys of commercial purity, the Cube component hardly exceeds 30% after complete recrystallization. Parameters controlling Cube orientation development are mainly the solute dragging due to impurities in solid solution and the stored deformation energy. In the present study, besides the 85% cold rolling, two extra annealings and a slight cold rolling are introduced in the processing route to increase the Cube volume fraction. The Cube development was analyzed by X-ray diffraction and Electron BackScatteredmore » Diffraction (EBSD). The nucleation and growth mechanisms responsible for the large Cube growth were investigated using FEG/EBSD in-situ heating experiments. Continuous recrystallization was observed in Cube oriented grains and competed with SIBM (Strain Induced Boundary Migration) mechanism. This latter was favored by the stored energy gap introduced during the additional cold-rolling between the Cube grains and their neighbors. Finally, a Cube volume fraction of 65% was reached after final recrystallization. - Highlights: Black-Right-Pointing-Pointer EBSD in-situ heating experiments of aluminum alloy of commercial purity. Black-Right-Pointing-Pointer A 10% cold-rolling after a partial recrystallization improved Cube nucleation and growth. Black-Right-Pointing-Pointer Annealing before cold-rolling limited the solute drag effect and permitted a large Cube growth. Black-Right-Pointing-Pointer Cube development is enhanced by continuous recrystallization of Cube sub-grains. Black-Right-Pointing-Pointer The preferential Cube growth occurs by SIBM of small Cube grains.« less

  14. Prism adaptation magnitude has differential influences on perceptual versus manual responses.

    PubMed

    Striemer, Christopher L; Russell, Karyn; Nath, Priya

    2016-10-01

    Previous research has indicated that rightward prism adaptation can reduce symptoms of spatial neglect following right brain damage. In addition, leftward prism adaptation can create "neglect-like" patterns of performance in healthy adults on tasks that measure attention and spatial biases. Although a great deal of research has focused on which behaviors are influenced by prism adaptation, very few studies have focused directly on how the magnitude of visual shift induced by prisms might be related to the observed aftereffects, or the effects of prisms on measures of attentional and spatial biases. In the current study, we examined these questions by having groups of healthy adult participants complete manual line bisection and landmark tasks prior to and following adaptation to either 8.5° (15 diopter; n = 22) or 17° (30 diopter; n = 25) leftward shifting prisms. Our results demonstrated a significantly larger rightward shift in straight-ahead pointing (a measure of prism aftereffect) following adaptation to 17°, compared to 8.5° leftward shifting prisms. In addition, only 17° leftward shifting prisms resulted in a significant rightward shift in line bisection following adaptation. However, there was a significant change in performance on the landmark task pre- versus post-adaptation in both the 8.5° and 17° leftward shifting prism groups. Interestingly, correlation analyses indicated that changes in straight-ahead pointing pre- versus post-adaptation were positively correlated with changes in performance on the manual line bisection task, but not the landmark task. These data suggest that larger magnitudes of prism adaptation seem to have a greater influence on tasks that require a response with the adapted hand (i.e., line bisection), compared to tasks that only require a perceptual judgment (i.e., the landmark task). In addition, these data provide further evidence that the effects of prisms on manual and perceptual responses are not related to one another.

  15. Rotatable prism for pan and tilt

    NASA Technical Reports Server (NTRS)

    Ball, W. B.

    1980-01-01

    Compact, inexpensive, motor-driven prisms change field of view of TV camera. Camera and prism rotate about lens axis to produce pan effect. Rotating prism around axis parallel to lens produces tilt. Size of drive unit and required clearance are little more than size of camera.

  16. 21 CFR 886.1660 - Gonioscopic prism.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1660 Gonioscopic prism. (a) Identification. A gonioscopic prism is a device that is a prism intended to be placed on the eye to study the anterior chamber. The device may have angled mirrors to facilitate visualization of anatomical features. (b...

  17. Prion-like Nanofibrils of Small Molecules (PriSM) Selectively Inhibit Cancer Cells by Impeding Cytoskeleton Dynamics*

    PubMed Central

    Kuang, Yi; Long, Marcus J. C.; Zhou, Jie; Shi, Junfeng; Gao, Yuan; Xu, Chen; Hedstrom, Lizbeth; Xu, Bing

    2014-01-01

    Emerging evidence reveals that prion-like structures play important roles to maintain the well-being of cells. Although self-assembly of small molecules also affords prion-like nanofibrils (PriSM), little is known about the functions and mechanisms of PriSM. Previous works demonstrated that PriSM formed by a dipeptide derivative selectively inhibiting the growth of glioblastoma cells over neuronal cells and effectively inhibiting xenograft tumor in animal models. Here we examine the protein targets, the internalization, and the cytotoxicity pathway of the PriSM. The results show that the PriSM selectively accumulate in cancer cells via macropinocytosis to impede the dynamics of cytoskeletal filaments via promiscuous interactions with cytoskeletal proteins, thus inducing apoptosis. Intriguingly, Tau proteins are able to alleviate the effect of the PriSM, thus protecting neuronal cells. This work illustrates PriSM as a new paradigm for developing polypharmacological agents that promiscuously interact with multiple proteins yet result in a primary phenotype, such as cancer inhibition PMID:25157102

  18. Pure rotation of a prism on a ramp

    PubMed Central

    Zhao, Zhen; Liu, Caishan; Ma, Daolin

    2014-01-01

    In this work, we study a prism with a cross section in polygon rolling on a ramp inclined at a small angle. The prism under gravity rolls purely around each individual edge, intermittently interrupted by a sequence of face collisions between the side face of the prism and the ramp. By limiting the prism in a planar motion, we propose a mathematical model to deal with the events of the impacts. With a pair of laser-Doppler vibrometers, experiments are also conducted to measure the motions of various prisms made of different materials and with different edge number. Not only are good agreements achieved between our numerical and experimental results, but also an intriguing physical phenomenon is discovered: the purely rolling motion is nearly independent of the prism's materials, yet it is closely related to the prism's geometry. Imagine that an ideal circular section can be approximately equivalent to a polygon with a large enough edge number N, the finding presented in this paper may help discover the physical mechanism of rolling friction. PMID:25197242

  19. Compound prism design principles, I

    PubMed Central

    Hagen, Nathan; Tkaczyk, Tomasz S.

    2011-01-01

    Prisms have been needlessly neglected as components used in modern optical design. In optical throughput, stray light, flexibility, and in their ability to be used in direct-view geometry, they excel over gratings. Here we show that even their well-known weak dispersion relative to gratings has been overrated by designing doublet and double Amici direct-vision compound prisms that have 14° and 23° of dispersion across the visible spectrum, equivalent to 800 and 1300 lines/mm gratings. By taking advantage of the multiple degrees of freedom available in a compound prism design, we also show prisms whose angular dispersion shows improved linearity in wavelength. In order to achieve these designs, we exploit the well-behaved nature of prism design space to write customized algorithms that optimize directly in the nonlinear design space. Using these algorithms, we showcase a number of prism designs that illustrate a performance and flexibility that goes beyond what has often been considered possible with prisms. PMID:22423145

  20. Predicting protein-protein interactions on a proteome scale by matching evolutionary and structural similarities at interfaces using PRISM.

    PubMed

    Tuncbag, Nurcan; Gursoy, Attila; Nussinov, Ruth; Keskin, Ozlem

    2011-08-11

    Prediction of protein-protein interactions at the structural level on the proteome scale is important because it allows prediction of protein function, helps drug discovery and takes steps toward genome-wide structural systems biology. We provide a protocol (termed PRISM, protein interactions by structural matching) for large-scale prediction of protein-protein interactions and assembly of protein complex structures. The method consists of two components: rigid-body structural comparisons of target proteins to known template protein-protein interfaces and flexible refinement using a docking energy function. The PRISM rationale follows our observation that globally different protein structures can interact via similar architectural motifs. PRISM predicts binding residues by using structural similarity and evolutionary conservation of putative binding residue 'hot spots'. Ultimately, PRISM could help to construct cellular pathways and functional, proteome-scale annotation. PRISM is implemented in Python and runs in a UNIX environment. The program accepts Protein Data Bank-formatted protein structures and is available at http://prism.ccbb.ku.edu.tr/prism_protocol/.

  1. Pure rotation of a prism on a ramp.

    PubMed

    Zhao, Zhen; Liu, Caishan; Ma, Daolin

    2014-09-08

    In this work, we study a prism with a cross section in polygon rolling on a ramp inclined at a small angle. The prism under gravity rolls purely around each individual edge, intermittently interrupted by a sequence of face collisions between the side face of the prism and the ramp. By limiting the prism in a planar motion, we propose a mathematical model to deal with the events of the impacts. With a pair of laser-Doppler vibrometers, experiments are also conducted to measure the motions of various prisms made of different materials and with different edge number. Not only are good agreements achieved between our numerical and experimental results, but also an intriguing physical phenomenon is discovered: the purely rolling motion is nearly independent of the prism's materials, yet it is closely related to the prism's geometry. Imagine that an ideal circular section can be approximately equivalent to a polygon with a large enough edge number N , the finding presented in this paper may help discover the physical mechanism of rolling friction.

  2. Mechanism of Prism-Coupled Scanning Tunneling Microscope Light Emission

    NASA Astrophysics Data System (ADS)

    Iida, Wataru; Ahamed, Jamal U.; Katano, Satoshi; Uehara, Yoichi

    2011-09-01

    We have investigated the mechanism of scanning tunneling microscope light emission (STM-LE) in a prism-coupled configuration using finite difference time domain analysis. In this configuration, the sample is a metallic thin film evaporated on the bottom surface of a hemispherical glass prism. STM light emitted into the prism (prism-side emission) through the metallic film is measured. Since both localized surface plasmons (LSP) and surface plasmon polaritons (SPP) contribute to prism-side emission, this emission is stronger than that in conventional STM-LE measured from the sample surface side, which is radiated by LSP alone. We show that the spatial resolution of prism-side emission is determined not by the propagation length of SPP, but by the lateral size of LSP, similarly to conventional (i.e., tip side) STM-LE. Thus, we conclude that, by using the prism-coupled configuration, the signal level of STM-LE improves without the loss of spatial resolution attained in tip side emission.

  3. Influence of the apex angle of a hollow prism made from an ordinary commercial glass plate as a simple refractometer to the accuracy of the refractive index measurement of the edible oil

    NASA Astrophysics Data System (ADS)

    Idris, N.; Maswati; Yusibani, E.

    2018-05-01

    The influence of the apex angle of a hollow prism used as a simple refractometer to the accuracy of a refractive index measurement of the edible oil samples was studied. The hollow prism was made from an ordinary commercial glass plate with a thickness of 2 mm. The apex angle of the constructed hollow prism was varied. The edible oil sample used in this study was palm oil, namely the packaged, branded oil sample and the bulk oil sample. For measuring the refractive index, the oil sample was filled in the constructed hollow prism, and then a helium-neon laser beam was passed through the oil sample at a certain angle of incidence. The angle of minimum deviation of the transmitted laser He-Ne beam was measured and then was used for calculating the refractive index of the oil sample. The refractive index measurement was made using the hollow prism with different apex angles, ranging from 300 to 600. The measurement accuracy was estimated by comparing the refractive index measured using the hollow prisms to that of obtained using a standard Abbe refractometer. It was found that the refractive index of the edible oil can be measured accurately by using the hollow prism. It was also found that the accuracy of the refractive index measurement significantly changes with the apex angle of the hollow prism. The refractive index values measured using this simple refractometer deviate up to 3,49% from the refractive index value measured using the standard Abbe refractometer, especially when the apex angle of the prism is 30°. The measurement results with high accuracies obtained when using the hollow prisms with apex angles of 450 and 600. The optimum apex angle for the present constructed hollow prism is 450. The refractive index obtained using the hollow prism with the apex angle of 450 is 1,4623 and 1,4438 for the bulk oil and the packed, branded oil samples, respectively. This result suggests that the apex angle of the prism used affects largely the accuracy of the refractive index measurement.

  4. An improved prism for use in laser resonators

    NASA Astrophysics Data System (ADS)

    Richards, J.

    1981-08-01

    The use of compound total internal reflection prisms rather than Porro prisms in polarisation coupled lasers is proposed. Performance advantages resulting from the use of these prisms include higher output without the need to bias the Pockels cell, ability to give a larger range of output coupling and independence of performance on the refractive index of the prism. In conventional Q-switched lasers the use of the prism at the Pockels cell end of the resonator instead of the usual 100% reflecting mirror also leads to some advantages including better hold-off, elimination of the need to bias the Pockels cell and insensitivity in one plane to angular misalignment.

  5. An Improved Prism for Use in Laser Resonators

    DTIC Science & Technology

    1981-08-01

    reflection (TIR) prisms , will be shown to give significant advantages over the use of Porro prisms when used in polarisation coupled laser resonators . 2... resonator as shown in figure 2. As in the case of the crossed- Porro laser an in-line or folded configuration can be used. The compound TIR prism at the...thrashold, etc, rather than on refractive index, as in the case of Porro prisms . In conventional Q-switched Nd:YAG resonators , replacement of the 100

  6. The Geometric Theory of Roof Reflector Resonators

    DTIC Science & Technology

    1976-12-01

    reflector, if properly oriented, (The terms "roof-top prism ," "right-angle prism ," and - incorrectly - " Porro prism " are encountered in .the literature...Q-switch prisms ) in laser resonators have been infrequent compared to the attention given spherical mirrors. This chapter summarizes the relevant...designator (Refs 42 and 43). In one experiment, a 900 roof prism was tested in a resonator with a 70% reflecting filat mirror. Thus, in Fig. 2, the right roof

  7. Successful treatment of diplopia with prism improves health-related quality of life.

    PubMed

    Hatt, Sarah R; Leske, David A; Liebermann, Laura; Holmes, Jonathan M

    2014-06-01

    To report change in strabismus-specific health-related quality of life (HRQOL) following treatment with prism. Retrospective cross-sectional study. Thirty-four patients with diplopia (median age 63, range 14-84 years) completed the Adult Strabismus-20 questionnaire (100-0, best to worst HRQOL) and a diplopia questionnaire in a clinical practice before prism and in prism correction. Before prism, diplopia was "sometimes" or worse for reading and/or straight-ahead distance. Prism treatment success was defined as diplopia rated "never" or "rarely" on the diplopia questionnaire for reading and straight-ahead distance. Failure was defined as worsening or no change in diplopia. For both successes and failures, mean Adult Strabismus-20 scores were compared before prism and in prism correction. Each of the 4 Adult Strabismus-20 domains (self-perception, interactions, reading function, and general function) was analyzed separately. Twenty-three of 34 (68%) were successes and 11 (32%) were failures. For successes, reading function improved from 57 ± 27 (SD) before prism to 69 ± 27 in-prism correction (difference 12 ± 20, 95% CI 3.2-20.8, P = .02) and general function improved from 66 ± 25 to 80 ± 18 (difference 14 ± 22, 95% CI 5.0-23.6, P = .003). Self-perception and interaction domains remained unchanged (P > .2). For failures there was no significant change in Adult Strabismus-20 score on any domain (P > .4). Successful correction of diplopia with prism is associated with improvement in strabismus-specific HRQOL, specifically reading function and general function. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Epidemiology, genetics, and subtyping of preserved ratio impaired spirometry (PRISm) in COPDGene.

    PubMed

    Wan, Emily S; Castaldi, Peter J; Cho, Michael H; Hokanson, John E; Regan, Elizabeth A; Make, Barry J; Beaty, Terri H; Han, MeiLan K; Curtis, Jeffrey L; Curran-Everett, Douglas; Lynch, David A; DeMeo, Dawn L; Crapo, James D; Silverman, Edwin K

    2014-08-06

    Preserved Ratio Impaired Spirometry (PRISm), defined as a reduced FEV1 in the setting of a preserved FEV1/FVC ratio, is highly prevalent and is associated with increased respiratory symptoms, systemic inflammation, and mortality. Studies investigating quantitative chest tomographic features, genetic associations, and subtypes in PRISm subjects have not been reported. Data from current and former smokers enrolled in COPDGene (n = 10,192), an observational, cross-sectional study which recruited subjects aged 45-80 with ≥10 pack years of smoking, were analyzed. To identify epidemiological and radiographic predictors of PRISm, we performed univariate and multivariate analyses comparing PRISm subjects both to control subjects with normal spirometry and to subjects with COPD. To investigate common genetic predictors of PRISm, we performed a genome-wide association study (GWAS). To explore potential subgroups within PRISm, we performed unsupervised k-means clustering. The prevalence of PRISm in COPDGene is 12.3%. Increased dyspnea, reduced 6-minute walk distance, increased percent emphysema and decreased total lung capacity, as well as increased segmental bronchial wall area percentage were significant predictors (p-value <0.05) of PRISm status when compared to control subjects in multivariate models. Although no common genetic variants were identified on GWAS testing, a significant association with Klinefelter's syndrome (47XXY) was observed (p-value < 0.001). Subgroups identified through k-means clustering include a putative "COPD-subtype", "Restrictive-subtype", and a highly symptomatic "Metabolic-subtype". PRISm subjects are clinically and genetically heterogeneous. Future investigations into the pathophysiological mechanisms behind and potential treatment options for subgroups within PRISm are warranted. Clinicaltrials.gov Identifier: NCT000608764.

  9. 21 CFR 886.1655 - Ophthalmic Fresnel prism.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ophthalmic Fresnel prism. 886.1655 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1655 Ophthalmic Fresnel prism. (a) Identification. An ophthalmic Fresnel prism is a device that is a thin plastic sheet with embossed rulings which...

  10. 21 CFR 886.1655 - Ophthalmic Fresnel prism.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ophthalmic Fresnel prism. 886.1655 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1655 Ophthalmic Fresnel prism. (a) Identification. An ophthalmic Fresnel prism is a device that is a thin plastic sheet with embossed rulings which...

  11. 21 CFR 886.1655 - Ophthalmic Fresnel prism.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ophthalmic Fresnel prism. 886.1655 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1655 Ophthalmic Fresnel prism. (a) Identification. An ophthalmic Fresnel prism is a device that is a thin plastic sheet with embossed rulings which...

  12. 21 CFR 886.1655 - Ophthalmic Fresnel prism.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ophthalmic Fresnel prism. 886.1655 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1655 Ophthalmic Fresnel prism. (a) Identification. An ophthalmic Fresnel prism is a device that is a thin plastic sheet with embossed rulings which...

  13. 21 CFR 886.1655 - Ophthalmic Fresnel prism.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ophthalmic Fresnel prism. 886.1655 Section 886...) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1655 Ophthalmic Fresnel prism. (a) Identification. An ophthalmic Fresnel prism is a device that is a thin plastic sheet with embossed rulings which...

  14. Hybrid display of static image and aerial image by use of transparent acrylic cubes and retro-reflectors

    NASA Astrophysics Data System (ADS)

    Morita, Shogo; Ito, Shusei; Yamamoto, Hirotsugu

    2017-02-01

    Aerial display can form transparent floating screen in the mid-air and expected to provide aerial floating signage. We have proposed aerial imaging by retro-reflection (AIRR) to form a large aerial LED screen. However, luminance of aerial image is not sufficiently high so as to be used for signage under broad daylight. The purpose of this paper is to propose a novel aerial display scheme that features hybrid display of two different types of images. Under daylight, signs made of cubes are visible. At night, or under dark lighting situation, aerial LED signs become visible. Our proposed hybrid display is composed of an LED sign, a beam splitter, retro-reflectors, and transparent acrylic cubes. Aerial LED sign is formed with AIRR. Furthermore, we place transparent acrylic cubes on the beam splitter. Light from the LED sign enters transparent acrylic cubes, reflects twice in the transparent acrylic cubes, exit and converge to planesymmetrical position with light source regarding the cube array. Thus, transparent acrylic cubes also form the real image of the source LED sign. Now, we form a sign with the transparent acrylic cubes so that this cube-based sign is apparent under daylight. We have developed a proto-type display by use of 1-cm transparent cubes and retro-reflective sheeting and successfully confirmed aerial image forming with AIRR and transparent cubes as well as cube-based sign under daylight.

  15. Ultradispersive adaptive prism based on a coherently prepared atomic medium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sautenkov, Vladimir A.; P. N. Lebedev Institute of Physics, Moscow 119991; Li Hebin

    2010-06-15

    We have experimentally demonstrated an ultra-dispersive optical prism made from a coherently driven Rb atomic vapor. The prism possesses spectral angular dispersion that is 6 orders of magnitude higher than that of a prism made of optical glass; such angular dispersion allows one to spatially resolve light beams with different frequencies separated by a few kilohertz. The prism operates near the resonant frequency of atomic vapor and its dispersion is optically controlled by a coherent driving field.

  16. Prism fingerprint sensor that uses a holographic optical element

    NASA Astrophysics Data System (ADS)

    Bahuguna, R. D.; Corboline, Tom

    1996-09-01

    A prism fingerprint sensor is described that uses a holographic grating glued to a right-angled prism. A light source normally illuminates the hypotenuse side of the prism with the finger pressed against the grating. The ridges and valleys of the finger are sensed on the basis of the principle of total internal reflection. The grating is used essentially to correct the distortion usually present with prism sensors. The quality of the fingerprint is very good: the pores on the ridges can be seen.

  17. An Optimum Space-to-Ground Communication Concept for CubeSat Platform Utilizing NASA Space Network and Near Earth Network

    NASA Technical Reports Server (NTRS)

    Wong, Yen F.; Kegege, Obadiah; Schaire, Scott H.; Bussey, George; Altunc, Serhat; Zhang, Yuwen; Patel, Chitra

    2016-01-01

    National Aeronautics and Space Administration (NASA) CubeSat missions are expected to grow rapidly in the next decade. Higher data rate CubeSats are transitioning away from Amateur Radio bands to higher frequency bands. A high-level communication architecture for future space-to-ground CubeSat communication was proposed within NASA Goddard Space Flight Center. This architecture addresses CubeSat direct-to-ground communication, CubeSat to Tracking Data Relay Satellite System (TDRSS) communication, CubeSat constellation with Mothership direct-to-ground communication, and CubeSat Constellation with Mothership communication through K-Band Single Access (KSA).A Study has been performed to explore this communication architecture, through simulations, analyses, and identifying technologies, to develop the optimum communication concepts for CubeSat communications. This paper will present details of the simulation and analysis that include CubeSat swarm, daughter shipmother ship constellation, Near Earth Network (NEN) S and X-band direct to ground link, TDRS Multiple Access (MA) array vs Single Access mode, notional transceiverantenna configurations, ground asset configurations and Code Division Multiple Access (CDMA) signal trades for daughter mother CubeSat constellation inter-satellite crosslink. Results of Space Science X-band 10 MHz maximum achievable data rate study will be summarized. Assessment of Technology Readiness Level (TRL) of current CubeSat communication technologies capabilities will be presented. Compatibility test of the CubeSat transceiver through NEN and Space Network (SN) will be discussed. Based on the analyses, signal trade studies and technology assessments, the functional design and performance requirements as well as operation concepts for future CubeSat end-to-end communications will be derived.

  18. Experimental static aerodynamics of a regular hexagonal prism in a low density hypervelocity flow

    NASA Technical Reports Server (NTRS)

    Guy, R. W.; Mueller, J. N.; Lee, L. P.

    1972-01-01

    A regular hexagonal prism, having a fineness ratio of 1.67, has been tested in a wind tunnel to determine its static aerodynamic characteristics in a low-density hypervelocity flow. The prism tested was a 1/4-scale model of the graphite heat shield which houses the radioactive fuel for the Viking spacecraft auxiliary power supply. The basic hexagonal prism was also modified to simulate a prism on which ablation of one of the six side flats had occurred. This modified hexagonal prism was tested to determine the effects on the aerodynamic characteristics of a shape change caused by ablation during a possible side-on stable reentry.

  19. CubeIndexer: Indexer for regions of interest in data cubes

    NASA Astrophysics Data System (ADS)

    Chilean Virtual Observatory; Araya, Mauricio; Candia, Gabriel; Gregorio, Rodrigo; Mendoza, Marcelo; Solar, Mauricio

    2015-12-01

    CubeIndexer indexes regions of interest (ROIs) in data cubes reducing the necessary storage space. The software can process data cubes containing megabytes of data in fractions of a second without human supervision, thus allowing it to be incorporated into a production line for displaying objects in a virtual observatory. The software forms part of the Chilean Virtual Observatory (ChiVO) and provides the capability of content-based searches on data cubes to the astronomical community.

  20. PRogram In Support of Moms (PRISM): Development and Beta Testing.

    PubMed

    Byatt, Nancy; Pbert, Lori; Hosein, Safiyah; Swartz, Holly A; Weinreb, Linda; Allison, Jeroan; Ziedonis, Douglas

    2016-08-01

    Most women with perinatal depression do not receive depression treatment. The authors describe the development and beta testing of a new program, PRogram In Support of Moms (PRISM), to improve treatment of perinatal depression in obstetric practices. A multidisciplinary work group of seven perinatal and behavioral health professionals was convened to design, refine, and beta-test PRISM in an obstetric practice. Iterative feedback and problem solving facilitated development of PRISM components, which include provider training and a toolkit, screening procedures, implementation assistance, and access to immediate psychiatric consultation. Beta testing with 50 patients over two months demonstrated feasibility and suggested that PRISM may improve provider screening rates and self-efficacy to address depression. On the basis of lessons learned, PRISM will be enhanced to integrate proactive patient engagement and monitoring into obstetric practices. PRISM may help overcome patient-, provider-, and system-level barriers to managing perinatal depression in obstetric settings.

  1. Lunar and Lagrangian Point L1 L2 CubeSat Communication and Navigation Considerations

    NASA Technical Reports Server (NTRS)

    Schaire, Scott; Wong, Yen F.; Altunc, Serhat; Bussey, George; Shelton, Marta; Folta, Dave; Gramling, Cheryl; Celeste, Peter; Anderson, Mile; Perrotto, Trish; hide

    2017-01-01

    CubeSats have grown in sophistication to the point that relatively low-cost mission solutions could be undertaken for planetary exploration. There are unique considerations for lunar and L1/L2 CubeSat communication and navigation compared with low earth orbit CubeSats. This paper explores those considerations as they relate to the Lunar IceCube Mission. The Lunar IceCube is a CubeSat mission led by Morehead State University with participation from NASA Goddard Space Flight Center, Jet Propulsion Laboratory, the Busek Company and Vermont Tech. It will search for surface water ice and other resources from a high inclination lunar orbit. Lunar IceCube is one of a select group of CubeSats designed to explore beyond low-earth orbit that will fly on NASA’s Space Launch System (SLS) as secondary payloads for Exploration Mission (EM) 1. Lunar IceCube and the EM-1 CubeSats will lay the groundwork for future lunar and L1/L2 CubeSat missions. This paper discusses communication and navigation needs for the Lunar IceCube mission and navigation and radiation tolerance requirements related to lunar and L1/L2 orbits. Potential CubeSat radios and antennas for such missions are investigated and compared. Ground station coverage, link analysis, and ground station solutions are also discussed. This paper will describe modifications in process for the Morehead ground station, as well as further enhancements of the Morehead ground station and NASA Near Earth Network (NEN) that are being considered. The potential NEN enhancements include upgrading current NEN Cortex receiver with Forward Error Correction (FEC) Turbo Code, providing X-band uplink capability, and adding ranging options. The benefits of ground station enhancements for CubeSats flown on NASA Exploration Missions (EM) are presented. This paper also describes how the NEN may support lunar and L1/L2 CubeSats without any enhancements. In addition, NEN is studying other initiatives to better support the CubeSat community, including streamlining the compatibility testing, planning and scheduling associated with CubeSat missions. Because of the lower cost, opportunity for simultaneous multipoint observations, it is inevitable that CubeSats will continue to increase in popularity for not only LEO missions, but for lunar and L1/L2 missions as well. The challenges for lunar and L1/L2 missions for communication and navigation are much greater than for LEO missions, but are not insurmountable. Advancements in flight hardware and ground infrastructure will ease the burden.

  2. The Program for Regional and International Shorebird Monitoring (PRISM)

    Treesearch

    Jonathan Bart; Brad Andres; Stephen Brown; Garry Donaldson; Brian Harrington; Vicky Johnston; Stephanie Jones; Guy Morrison; Susan Skagen

    2005-01-01

    This report describes the “Program for Regional and International Shorebird Monitoring” (PRISM). PRISM is being implemented by a Canada-United States Shorebird Monitoring and Assessment Committee formed in 2001 by the Canadian Shorebird Working Group and the U.S. Shorebird Council. PRISM provides a single blueprint for implementing the shorebird...

  3. 21 CFR 886.5810 - Ophthalmic prism reader.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Ophthalmic prism reader. 886.5810 Section 886.5810...) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5810 Ophthalmic prism reader. (a) Identification. An ophthalmic prism reader is a device intended for use by a patient who is in a supine position...

  4. 21 CFR 886.5810 - Ophthalmic prism reader.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ophthalmic prism reader. 886.5810 Section 886.5810...) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5810 Ophthalmic prism reader. (a) Identification. An ophthalmic prism reader is a device intended for use by a patient who is in a supine position...

  5. 21 CFR 886.5810 - Ophthalmic prism reader.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Ophthalmic prism reader. 886.5810 Section 886.5810...) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5810 Ophthalmic prism reader. (a) Identification. An ophthalmic prism reader is a device intended for use by a patient who is in a supine position...

  6. 21 CFR 886.5810 - Ophthalmic prism reader.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ophthalmic prism reader. 886.5810 Section 886.5810...) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5810 Ophthalmic prism reader. (a) Identification. An ophthalmic prism reader is a device intended for use by a patient who is in a supine position...

  7. Symmetry Breaking Analysis of Prism Adaptation's Latent Aftereffect

    ERIC Educational Resources Information Center

    Frank, Till D.; Blau, Julia J. C.; Turvey, Michael T.

    2012-01-01

    The effect of prism adaptation on movement is typically reduced when the movement at test (prisms off) differs on some dimension from the movement at training (prisms on). Some adaptation is latent, however, and only revealed through further testing in which the movement at training is fully reinstated. Applying a nonlinear attractor dynamic model…

  8. Prion-like nanofibrils of small molecules (PriSM) selectively inhibit cancer cells by impeding cytoskeleton dynamics.

    PubMed

    Kuang, Yi; Long, Marcus J C; Zhou, Jie; Shi, Junfeng; Gao, Yuan; Xu, Chen; Hedstrom, Lizbeth; Xu, Bing

    2014-10-17

    Emerging evidence reveals that prion-like structures play important roles to maintain the well-being of cells. Although self-assembly of small molecules also affords prion-like nanofibrils (PriSM), little is known about the functions and mechanisms of PriSM. Previous works demonstrated that PriSM formed by a dipeptide derivative selectively inhibiting the growth of glioblastoma cells over neuronal cells and effectively inhibiting xenograft tumor in animal models. Here we examine the protein targets, the internalization, and the cytotoxicity pathway of the PriSM. The results show that the PriSM selectively accumulate in cancer cells via macropinocytosis to impede the dynamics of cytoskeletal filaments via promiscuous interactions with cytoskeletal proteins, thus inducing apoptosis. Intriguingly, Tau proteins are able to alleviate the effect of the PriSM, thus protecting neuronal cells. This work illustrates PriSM as a new paradigm for developing polypharmacological agents that promiscuously interact with multiple proteins yet result in a primary phenotype, such as cancer inhibition. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Left-Deviating Prism Adaptation in Left Neglect Patient: Reflexions on a Negative Result

    PubMed Central

    Luauté, Jacques; Jacquin-Courtois, Sophie; O'Shea, Jacinta; Christophe, Laure; Rode, Gilles; Boisson, Dominique; Rossetti, Yves

    2012-01-01

    Adaptation to right-deviating prisms is a promising intervention for the rehabilitation of patients with left spatial neglect. In order to test the lateral specificity of prism adaptation on left neglect, the present study evaluated the effect of left-deviating prism on straight-ahead pointing movements and on several classical neuropsychological tests in a group of five right brain-damaged patients with left spatial neglect. A group of healthy subjects was also included for comparison purposes. After a single session of exposing simple manual pointing to left-deviating prisms, contrary to healthy controls, none of the patients showed a reliable change of the straight-ahead pointing movement in the dark. No significant modification of attentional paper-and-pencil tasks was either observed immediately or 2 hours after prism adaptation. These results suggest that the therapeutic effect of prism adaptation on left spatial neglect relies on a specific lateralized mechanism. Evidence for a directional effect for prism adaptation both in terms of the side of the visuomanual adaptation and therefore possibly in terms of the side of brain affected by the stimulation is discussed. PMID:23050168

  10. Improvements in Fabrication of 3D SU-8 Prisms for Low-Coupling-Loss Interconnections Between Fibers and Waveguides

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh-Hang; Chu, Thi-Xuan; Nguyen, Long; Nguyen, Hai-Binh; Lee, Chun-Wei; Tseng, Fan-Gang; Chen, Te-Chang; Lee, Ming-Chang

    2016-11-01

    Fabrication of three-dimensional (3D) SU-8 (an epoxy-based negative photoresist from MicroChem) prisms as low-loss couplers for interconnection between optical components, particularly optical fibers and silicon-on-isolator waveguides (SOI WGs), which have mismatched mode sizes, has been investigated. With an interfacial structure formed by a 3D SU-8 prism partly overlaying an SOI WG end with a portion of buried oxide (BOX) removed under the interface, low-loss coupling is ensured and the transmission efficiency can reach 70%. To fabricate these 3D SU-8 prisms, a simple method with two photolithography steps was used for SU-8 hinges and CYTOP (an amorphous fluoropolymer from AGC Chemicals) prism windows, with mild soft and hard bakes, to define the prism profiles with diluted SU-8 filled in the CYTOP prism windows. A buffered oxide etchant is used to remove BOX parts under the interfaces. Some of the fabricated structures were tested, demonstrating the contribution of overlaying SU-8 prisms to the transmission efficiency of optical interconnections between fibers and SOI WGs.

  11. PRISM: Enmeshment of illness and self-schema.

    PubMed

    Denton, Fiona; Sharpe, Louise; Schrieber, Leslie

    2004-01-01

    The Pictorial Representation of Illness and Self Measure (PRISM) is a recently developed tool purported to assess burden of suffering due to illness. The nature of the PRISM task suggests a conceptual link to the illness self-schema construct hypothesised to be present in some individuals with chronic illness. This study investigates the relationship between PRISM and schema as measured by cognitive bias. 43 patients with systemic lupus erythematosus (SLE) completed an information-processing task involving endorsement of positive and negative illness words as descriptors of themselves, followed by free recall of the words. The outcome measures were endorsement and recall bias for negative illness words. Patients also completed the PRISM task and were assessed on other physical and psychological variables. PRISM did not correlate significantly with age, depression, functional impairment or disease activity. In a multiple regression analysis, only recall bias made an independent contribution to PRISM. Illness self-schema appears to play a significant role in determining the way in which SLE patients complete the PRISM task. This is discussed in light of a schema enmeshment model recently proposed in the cognitive bias literature. Copyright 2004 S. Karger AG, Basel

  12. Standardization of motion sickness induced by left-right and up-down reversing prisms

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.; Vanderploeg, J. M.; Brumley, E. A.; Kolafa, J. J.; Wood, S. J.

    1990-01-01

    Reversing prisms are known to produce symptoms of motion sickness, and have been used to provide a chronic stimulus for training subjects on symptom recognition and regulation. However, testing procedures with reversing prisms have not been standardized. A set of procedures were evaluated which could be standardized using prisms for provocation and to compare the results between Right/Left Reversing Prisms (R/L-RP) and Up/Down Reversing Prisms (U/D-RP). Fifteen subjects were tested with both types of prisms using a self paced walking course throughout the laboratory with work stations established at specified intervals. The work stations provided tasks requiring eye-hand-foot coordination and various head movements. Comparisons were also made between these prism tests and two other standardized susceptibility tests, the KC-135 parabolic static chair test and the Staircase Velocity Motion Test (SVMT). Two different types of subjective symptom reports were compared. The R/L-RP were significantly more provocative than the U/D-RP. The incidence of motion sickness symptoms for the R/L-RP was similar to the KC-135 parabolic static chair test. Poor correlations were found between the prism tests and the other standardized susceptibility tests, which might indicate that different mechanisms are involved in provoking motion sickness for these different tests.

  13. Activation of the cerebellar cortex and the dentate nucleus in a prism adaptation fMRI study.

    PubMed

    Küper, Michael; Wünnemann, Meret J S; Thürling, Markus; Stefanescu, Roxana M; Maderwald, Stefan; Elles, Hans G; Göricke, Sophia; Ladd, Mark E; Timmann, Dagmar

    2014-04-01

    During prism adaptation two types of learning processes can be distinguished. First, fast strategic motor control responses are predominant in the early course of prism adaptation to achieve rapid error correction within few trials. Second, slower spatial realignment occurs among the misaligned visual and proprioceptive sensorimotor coordinate system. The aim of the present ultra-highfield (7T) functional magnetic resonance imaging (fMRI) study was to explore cerebellar cortical and dentate nucleus activation during the course of prism adaptation in relation to a similar visuomotor task without prism exposure. Nineteen young healthy participants were included into the study. Recently developed normalization procedures were applied for the cerebellar cortex and the dentate nucleus. By means of subtraction analysis (early prism adaptation > visuomotor, early prism adaptation > late prism adaptation) we identified ipsilateral activation associated with strategic motor control responses within the posterior cerebellar cortex (lobules VIII and IX) and the ventro-caudal dentate nucleus. During the late phase of adaptation we observed pronounced activation of posterior parts of lobule VI, although subtraction analyses (late prism adaptation > visuomotor) remained negative. These results are in good accordance with the concept of a representation of non-motor functions, here strategic control, within the ventro-caudal dentate nucleus. Copyright © 2013 Wiley Periodicals, Inc.

  14. PRISM 3: expanded prediction of natural product chemical structures from microbial genomes

    PubMed Central

    Skinnider, Michael A.; Merwin, Nishanth J.; Johnston, Chad W.

    2017-01-01

    Abstract Microbial natural products represent a rich resource of pharmaceutically and industrially important compounds. Genome sequencing has revealed that the majority of natural products remain undiscovered, and computational methods to connect biosynthetic gene clusters to their corresponding natural products therefore have the potential to revitalize natural product discovery. Previously, we described PRediction Informatics for Secondary Metabolomes (PRISM), a combinatorial approach to chemical structure prediction for genetically encoded nonribosomal peptides and type I and II polyketides. Here, we present a ground-up rewrite of the PRISM structure prediction algorithm to derive prediction of natural products arising from non-modular biosynthetic paradigms. Within this new version, PRISM 3, natural product scaffolds are modeled as chemical graphs, permitting structure prediction for aminocoumarins, antimetabolites, bisindoles and phosphonate natural products, and building upon the addition of ribosomally synthesized and post-translationally modified peptides. Further, with the addition of cluster detection for 11 new cluster types, PRISM 3 expands to detect 22 distinct natural product cluster types. Other major modifications to PRISM include improved sequence input and ORF detection, user-friendliness and output. Distribution of PRISM 3 over a 300-core server grid improves the speed and capacity of the web application. PRISM 3 is available at http://magarveylab.ca/prism/. PMID:28460067

  15. Randomized crossover clinical trial of real and sham peripheral prism glasses for hemianopia

    PubMed Central

    Bowers, Alex R.; Keeney, Karen; Peli, Eli

    2013-01-01

    Objective To evaluate the efficacy of real relative to sham peripheral prism glasses for patients with complete homonymous hemianopia and without visual neglect. Methods Patients recruited at 13 clinics were allocated by minimization into a double-masked, crossover trial with two groups. One group received real (57Δ) oblique and sham (≤ 5Δ) horizontal prisms; the other received real horizontal and sham oblique, in counterbalanced order. A masked data collector at each clinic administered questionnaires after each 4-week crossover period. Main outcome measure The primary outcome was the overall difference, across the two periods of the crossover, between the proportion of participants who wanted to continue with (said “yes” to) real prisms and the proportion who said yes to sham prisms. The secondary outcome was the difference in perceived mobility improvement between real and sham prisms. Results Of 73 patients randomized, 61 completed the crossover. A significantly higher proportion said yes to real than sham prisms (64% vs. 36%; odds ratio 5.3, 95% CI 1.8 to 21.0). Participants who continued wear after 6 months reported greater improvement in mobility with real than sham prisms at crossover end (p=0.002); participants who discontinued wear reported no difference. Conclusion Real peripheral prism glasses were more helpful for obstacle avoidance when walking than sham glasses, with no differences between the horizontal and oblique designs. Applications to clinical practice Peripheral prism glasses provide a simple and inexpensive mobility rehabilitation intervention for hemianopia. PMID:24201760

  16. Is the aligning prism measured with the Mallett unit correlated with fusional vergence reserves?

    PubMed

    Conway, Miriam L; Thomas, Jennifer; Subramanian, Ahalya

    2012-01-01

    The Mallett Unit is a clinical test designed to detect the fixation disparity that is most likely to occur in the presence of a decompensated heterophoria. It measures the associated phoria, which is the "aligning prism" needed to nullify the subjective disparity. The technique has gained widespread acceptance within professions such as optometry, for investigating suspected cases of decompensating heterophoria; it is, however, rarely used by orthoptists and ophthalmologists. The aim of this study was to investigate whether fusional vergence reserves, measured routinely by both orthoptists and ophthalmologists to detect heterophoria decompensation, were correlated with aligning prism (associated phoria) in a normal clinical population. Aligning prism (using the Mallett Unit) and fusional vergence reserves (using a prism bar) were measured in 500 participants (mean 41.63 years; standard deviation 11.86 years) at 40 cm and 6 m. At 40 cm a strong correlation (p<0.001) between base in aligning prism (Exo FD) and positive fusional reserves was found. Of the participants with zero aligning prism 30% had reduced fusional reserves. At 6 m a weak correlation between base out aligning prism (Eso FD) and negative fusional reserves was found to break (p = 0.01) and to recovery (p = 0.048). Of the participants with zero aligning prism 12% reported reduced fusional reserves. For near vision testing, the strong inverse correlation between base in aligning prism (Exo FD) and fusional vergence reserves supports the notion that both measures are indicators of decompensation of heterophoria. For distance vision testing and for those patients reporting zero aligning prism further research is required to determine why the relationship appears to be weak/non-existent?

  17. Can Pediatric Risk of Mortality Score (PRISM III) Be Used Effectively in Initial Evaluation and Follow-up of Critically Ill Cancer Patients Admitted to Pediatric Oncology Intensive Care Unit (POICU)? A Prospective Study, in a Tertiary Cancer Center in Egypt.

    PubMed

    Sayed, Heba A; Ali, Amany M; Elzembely, Mahmoud M

    2017-11-23

    Pediatric Risk of Mortality Score (PRISM III-12) is a physiology-based predictor for risk of mortality. We conducted prospective study from January 1, 2014 to 2015 in pediatric oncology intensive care unit (POICU) at South Egypt Cancer Institute, Egypt to explore the ability of 1st PRISM III-12 to predict the risk of mortality in critically ill cancer patients and the ability of serial PRISM III measured every 72 hours to follow-up the patients' clinical condition during POICU stay. In total, 123 (78 males) children were included. Median age was 5 years (1 to 15 y). Death rate was 20%. 1st PRISM III-12 mean was 19 (0 to 61). The mean 1st PRISM III-12 for survivors was significantly higher compared with nonsurvivors (15 vs. 37 respectively; P<0.001). 1st PRISM III-12 mean was significantly correlated to the reasons for admission and organ failures' number (P<0.001 and <0.001). 1st PRISM III-12 correlated weakly positive with the length of stay (r=0.2; P=0.024). Receiver operator curve for 1st PRISM III-12 was 0.913 (95% confidence interval, 0.85-0.98; P<0.001). Decline in serial PRISM III was significantly correlated with favorable (survivor) outcome (P<0.001). We concluded that PRISM III-12 can be used effectively in predicting the risk of mortality and following the clinical condition of patients during POICU stay.

  18. Successful treatment of diplopia with prism improves health-related quality of life

    PubMed Central

    Hatt, Sarah R.; Leske, David A.; Liebermann, Laura; Holmes, Jonathan M.

    2014-01-01

    Purpose To report change in strabismus-specific health-related quality of life (HRQOL) following treatment with prism. Design Retrospective cross-sectional study Methods Thirty-four patients with diplopia (median age 63, range 14 to 84 years) completed the Adult Strabismus-20 questionnaire (100 to 0, best to worst HRQOL) and a diplopia questionnaire in a clinical practice before prism and in prism correction. Before prism, diplopia was “sometimes” or worse for reading and/or straight ahead distance. Prism treatment success was defined as diplopia rated “never” or “rarely” on the Diplopia Questionnaire for reading and straight ahead distance. Failure was defined as worsening or no change in diplopia. For both successes and failures, mean Adult Strabismus -20 scores were compared pre-prism and in prism correction. Each of the four Adult Strabismus -20 domains (Self-perception, Interactions, Reading function and General function) were analyzed separately. Results Twenty-three (68%) of 34 were successes and 11 (32%) were failures. For successes, Reading Function improved from 57 ± 27 (SD) before prism to 69 ± 27 in-prism correction (difference 12 ± 20, 95% CI 3.2 to 20.8, P=0.02) and General Function improved from 66 ± 25 to 80 ± 18 (difference 14 ± 22, 95% CI 5.0 to 23.6, P=0.003). Self-perception and Interaction domains remained unchanged (P>0.2). For failures there was no significant change in Adult Strabismus -20 score on any domain (P>0.4). Conclusions Successful correction of diplopia with prism is associated with improvement in strabismus-specific HRQOL, specifically reading function and general function. PMID:24561171

  19. PRISM, a Novel Visual Metaphor Measuring Personally Salient Appraisals, Attitudes and Decision-Making: Qualitative Evidence Synthesis.

    PubMed

    Sensky, Tom; Büchi, Stefan

    2016-01-01

    PRISM (the Pictorial Representation of Illness and Self Measure) is a novel, simple visual instrument. Its utility was initially discovered serendipitously, but has been validated as a quantitative measure of suffering. Recently, new applications for different purposes, even in non-health settings, have encouraged further exploration of how PRISM works, and how it might be applied. This review will summarise the results to date from applications of PRISM and propose a generic conceptualisation of how PRISM works which is consistent with all these applications. A systematic review, in the form of a qualitative evidence synthesis, was carried out of all available published data on PRISM. Fifty-two publications were identified, with a total of 8254 participants. Facilitated by simple instructions, PRISM has been used with patient groups in a variety of settings and cultures. As a measure of suffering, PRISM has, with few exceptions, behaved as expected according to Eric Cassell's seminal conceptualisation of suffering. PRISM has also been used to assess beliefs about or attitudes to stressful working conditions, interpersonal relations, alcohol consumption, and suicide, amongst others. This review supports PRISM behaving as a visual metaphor of the relationship of objects (eg 'my illness') to a subject (eg 'myself') in a defined context (eg 'my life at the moment'). As a visual metaphor, it is quick to complete and yields personally salient information. PRISM is likely to have wide applications in assessing beliefs, attitudes, and decision-making, because of its properties, and because it yields both quantitative and qualitative data. In medicine, it can serve as a generic patient-reported outcome measure. It can serve as a tool for representational guidance, can be applied to developing strategies visually, and is likely to have applications in coaching, psychological assessment and therapeutic interventions.

  20. Goldmann tonometry tear film error and partial correction with a shaped applanation surface.

    PubMed

    McCafferty, Sean J; Enikov, Eniko T; Schwiegerling, Jim; Ashley, Sean M

    2018-01-01

    The aim of the study was to quantify the isolated tear film adhesion error in a Goldmann applanation tonometer (GAT) prism and in a correcting applanation tonometry surface (CATS) prism. The separation force of a tonometer prism adhered by a tear film to a simulated cornea was measured to quantify an isolated tear film adhesion force. Acrylic hemispheres (7.8 mm radius) used as corneas were lathed over the apical 3.06 mm diameter to simulate full applanation contact with the prism surface for both GAT and CATS prisms. Tear film separation measurements were completed with both an artificial tear and fluorescein solutions as a fluid bridge. The applanation mire thicknesses were measured and correlated with the tear film separation measurements. Human cadaver eyes were used to validate simulated cornea tear film separation measurement differences between the GAT and CATS prisms. The CATS prism tear film adhesion error (2.74±0.21 mmHg) was significantly less than the GAT prism (4.57±0.18 mmHg, p <0.001). Tear film adhesion error was independent of applanation mire thickness ( R 2 =0.09, p =0.04). Fluorescein produces more tear film error than artificial tears (+0.51±0.04 mmHg; p <0.001). Cadaver eye validation indicated the CATS prism's tear film adhesion error (1.40±0.51 mmHg) was significantly less than that of the GAT prism (3.30±0.38 mmHg; p =0.002). Measured GAT tear film adhesion error is more than previously predicted. A CATS prism significantly reduced tear film adhesion error bŷ41%. Fluorescein solution increases the tear film adhesion compared to artificial tears, while mire thickness has a negligible effect.

  1. Randomized crossover clinical trial of real and sham peripheral prism glasses for hemianopia.

    PubMed

    Bowers, Alex R; Keeney, Karen; Peli, Eli

    2014-02-01

    There is a major lack of randomized controlled clinical trials evaluating the efficacy of prismatic treatments for hemianopia. Evidence for their effectiveness is mostly based on anecdotal case reports and open-label evaluations without a control condition. To evaluate the efficacy of real relative to sham peripheral prism glasses for patients with complete homonymous hemianopia. Double-masked, randomized crossover trial at 13 study sites, including the Peli laboratory at Schepens Eye Research Institute, 11 vision rehabilitation clinics in the United States, and 1 in the United Kingdom. Patients were 18 years or older with complete homonymous hemianopia for at least 3 months and without visual neglect or significant cognitive decline. Patients were allocated by minimization into 2 groups. One group received real (57-prism diopter) oblique and sham (<5-prism diopter) horizontal prisms; the other received real horizontal and sham oblique, in counterbalanced order. Each crossover period was 4 weeks. The primary outcome was the overall difference, across the 2 periods of the crossover, between the proportion of participants who wanted to continue with (said yes to) real prisms and the proportion who said yes to sham prisms. The secondary outcome was the difference in perceived mobility improvement between real and sham prisms. Of 73 patients randomized, 61 completed the crossover. A significantly higher proportion said yes to real than sham prisms (64% vs 36%; odds ratio, 5.3; 95% CI, 1.8-21.0). Participants who continued wear after 6 months reported greater improvement in mobility with real than sham prisms at crossover end (P = .002); participants who discontinued wear reported no difference. Real peripheral prism glasses were more helpful for obstacle avoidance when walking than sham glasses, with no differences between the horizontal and oblique designs. Peripheral prism glasses provide a simple and inexpensive mobility rehabilitation intervention for hemianopia. clinicaltrials.gov Identifier: NCT00494676.

  2. Kinematic markers dissociate error correction from sensorimotor realignment during prism adaptation.

    PubMed

    O'Shea, Jacinta; Gaveau, Valérie; Kandel, Matthieu; Koga, Kazuo; Susami, Kenji; Prablanc, Claude; Rossetti, Yves

    2014-03-01

    This study investigated the motor control mechanisms that enable healthy individuals to adapt their pointing movements during prism exposure to a rightward optical shift. In the prism adaptation literature, two processes are typically distinguished. Strategic motor adjustments are thought to drive the pattern of rapid endpoint error correction typically observed during the early stage of prism exposure. This is distinguished from so-called 'true sensorimotor realignment', normally measured with a different pointing task, at the end of prism exposure, which reveals a compensatory leftward 'prism after-effect'. Here, we tested whether each mode of motor compensation - strategic adjustments versus 'true sensorimotor realignment' - could be distinguished, by analyzing patterns of kinematic change during prism exposure. We hypothesized that fast feedforward versus slower feedback error corrective processes would map onto two distinct phases of the reach trajectory. Specifically, we predicted that feedforward adjustments would drive rapid compensation of the initial (acceleration) phase of the reach, resulting in the rapid reduction of endpoint errors typically observed early during prism exposure. By contrast, we expected visual-proprioceptive realignment to unfold more slowly and to reflect feedback influences during the terminal (deceleration) phase of the reach. The results confirmed these hypotheses. Rapid error reduction during the early stage of prism exposure was achieved by trial-by-trial adjustments of the motor plan, which were proportional to the endpoint error feedback from the previous trial. By contrast, compensation of the terminal reach phase unfolded slowly across the duration of prism exposure. Even after 100 trials of pointing through prisms, adaptation was incomplete, with participants continuing to exhibit a small rightward shift in both the reach endpoints and in the terminal phase of reach trajectories. Individual differences in the degree of adaptation of the terminal reach phase predicted the magnitude of prism after-effects. In summary, this study identifies distinct kinematic signatures of fast strategic versus slow sensorimotor realignment processes, which combine to adjust motor performance to compensate for a prismatic shift. © 2013 Elsevier Ltd. All rights reserved.

  3. The effect of prism on preferred retinal locus.

    PubMed

    Lewerenz, David; Blanco, Daniel; Ratzlaff, Chase; Zodrow, Ashley

    2018-03-01

    Whether prism, especially base-up prism, affects the area of the retina used for fixation in a patient with central scotoma has been a controversial subject for 35 years. Our pilot study employed microperimetry to evaluate the effect of base-up prism on the fixation locus, or preferred retinal locus (PRL), in subjects with central scotoma. We used a microperimeter to assess the PRL in 13 visually impaired subjects with central scotoma under four conditions: no lens, a lens with no prism (control lens), 6 Δ base-up, and 10 Δ base-up. The PRL was measured in degrees in horizontal and vertical co-ordinates from the centre of the optic disc using graphical analysis. The PRL with the control lens was not significantly different from the PRL with no lens. The preferred retinal loci with the two powers of prism were compared to the control lens and showed a superior shift in 22 of 26 cases (84.6 per cent). The amount of movement was significantly different from zero (p = 0.001 for 6 Δ and p = 0.004 for 10 Δ ). The vertical movement with the 10 Δ prism (1.73 ± 1.73 degrees) was not significantly greater (p = 0.562) than with the 6 Δ prism (1.37 ± 1.08 degrees). The shift was significantly less than the prism powers used (p < 0.001), and the amount of vertical relocation was not significantly different from the amount of horizontal movement. In our study, base-up prism appears to shift the PRL in the direction of the prism base most of the time, but our findings do not support the use of prism as a way of predictably relocating the PRL. More study is indicated to evaluate whether such a small shift is clinically or functionally significant. © 2017 Optometry Australia.

  4. Integration and Environmental Qualification Testing of Spacecraft Structures in Support of the Naval Postgraduate School CubeSat Launcher Program

    DTIC Science & Technology

    2009-06-01

    2 3. Space Access Challenges to the CubeSat Community........ 3 B. NPSCUL/NPSCUL-LITE PROGRAM HISTORY TO DATE...Astronautics, AIAA Space 2008 Conference and Exhibition, 2008. 3 3. Space Access Challenges to the CubeSat Community In less than ten years since... challenges to space access for CubeSats.5 Launch of a CubeSat aboard US launch vehicles from US launch facilities would allow CubeSats of a sensitive nature

  5. Temporal mapping and analysis

    NASA Technical Reports Server (NTRS)

    O'Hara, Charles G. (Inventor); Shrestha, Bijay (Inventor); Vijayaraj, Veeraraghavan (Inventor); Mali, Preeti (Inventor)

    2011-01-01

    A compositing process for selecting spatial data collected over a period of time, creating temporal data cubes from the spatial data, and processing and/or analyzing the data using temporal mapping algebra functions. In some embodiments, the temporal data cube is creating a masked cube using the data cubes, and computing a composite from the masked cube by using temporal mapping algebra.

  6. EarthCube's Assessment Framework: Ensuring Return on Investment

    NASA Astrophysics Data System (ADS)

    Lehnert, K.

    2016-12-01

    EarthCube is a community-governed, NSF-funded initiative to transform geoscience research by developing cyberinfrastructure that improves access, sharing, visualization, and analysis of all forms of geosciences data and related resources. EarthCube's goal is to enable geoscientists to tackle the challenges of understanding and predicting a complex and evolving solid Earth, hydrosphere, atmosphere, and space environment systems. EarthCube's infrastructure needs capabilities around data, software, and systems. It is essential for EarthCube to determine the value of new capabilities for the community and the progress of the overall effort to demonstrate its value to the science community and Return on Investment for the NSF. EarthCube is therefore developing an assessment framework for research proposals, projects funded by EarthCube, and the overall EarthCube program. As a first step, a software assessment framework has been developed that addresses the EarthCube Strategic Vision by promoting best practices in software development, complete and useful documentation, interoperability, standards adherence, open science, and education and training opportunities for research developers.

  7. Occurrence of rhombic prisms in some structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nyman, H.

    1976-02-01

    An ideal rhombic prism is defined as two regular trigonal prisms sharing a square face. In terms of such rhombic prisms, the structures of CrB and ..cap alpha..-PdCl/sub 2/, U/sub 3/Si/sub 2/ and Au/sub 3/Zn, and CoCa/sub 3/ and PdS are easily described. A network of rhombic prisms, with cubic symmetry, is also used to describe the structures of CoAs/sub 3/, Sc(OH)/sub 3/, WAl/sub 12/, and NaMn/sub 7/O/sub 12/.

  8. Wollaston prism phase-stepping point diffraction interferometer and method

    DOEpatents

    Rushford, Michael C.

    2004-10-12

    A Wollaston prism phase-stepping point diffraction interferometer for testing a test optic. The Wollaston prism shears light into reference and signal beams, and provides phase stepping at increased accuracy by translating the Wollaston prism in a lateral direction with respect to the optical path. The reference beam produced by the Wollaston prism is directed through a pinhole of a diaphragm to produce a perfect spherical reference wave. The spherical reference wave is recombined with the signal beam to produce an interference fringe pattern of greater accuracy.

  9. Pointing error analysis of Risley-prism-based beam steering system.

    PubMed

    Zhou, Yuan; Lu, Yafei; Hei, Mo; Liu, Guangcan; Fan, Dapeng

    2014-09-01

    Based on the vector form Snell's law, ray tracing is performed to quantify the pointing errors of Risley-prism-based beam steering systems, induced by component errors, prism orientation errors, and assembly errors. Case examples are given to elucidate the pointing error distributions in the field of regard and evaluate the allowances of the error sources for a given pointing accuracy. It is found that the assembly errors of the second prism will result in more remarkable pointing errors in contrast with the first one. The pointing errors induced by prism tilt depend on the tilt direction. The allowances of bearing tilt and prism tilt are almost identical if the same pointing accuracy is planned. All conclusions can provide a theoretical foundation for practical works.

  10. Active CryoCubeSat

    NASA Technical Reports Server (NTRS)

    Swenson, Charles

    2016-01-01

    The Active CryoCubeSat project will demonstrate an advanced thermal control system for a 6-Unit (6U) CubeSat platform. A miniature, active thermal control system, in which a fluid is circulated in a closed loop from thermal loads to radiators, will be developed. A miniature cryogenic cooler will be integrated with this system to form a two-stage thermal control system. Key components will be miniaturized by using advanced additive manufacturing techniques resulting in a thermal testbed for proving out these technologies. Previous CubeSat missions have not tackled the problem of active thermal control systems nor have any past or current CubeSat missions included cryogenic instrumentation. This Active CryoCubeSat development effort will provide completely new capacities for CubeSats and constitutes a major advancement over the state-of-the-art in CubeSat thermal control.

  11. CubeSat Launch Initiative Overview and CubeSat 101

    NASA Technical Reports Server (NTRS)

    Higginbotham, Scott

    2017-01-01

    The National Aeronautics and Space Administration (NASA) recognizes the tremendous potential that CubeSats (very small satellites) have to inexpensively demonstrate advanced technologies, collect scientific data, and enhance student engagement in Science, Technology, Engineering, and Mathematics (STEM). The CubeSat Launch Initiative (CSLI) was created to provide launch opportunities for CubeSats developed by academic institutions, non-profit entities, and NASA centers. This presentation will provide an overview of the CSLI, its benefits, and its results. This presentation will also provide high level CubeSat 101 information for prospective CubeSat developers, describing the development process from concept through mission operations while highlighting key points that developers need to be mindful of.

  12. Corner detection and sorting method based on improved Harris algorithm in camera calibration

    NASA Astrophysics Data System (ADS)

    Xiao, Ying; Wang, Yonghong; Dan, Xizuo; Huang, Anqi; Hu, Yue; Yang, Lianxiang

    2016-11-01

    In traditional Harris corner detection algorithm, the appropriate threshold which is used to eliminate false corners is selected manually. In order to detect corners automatically, an improved algorithm which combines Harris and circular boundary theory of corners is proposed in this paper. After detecting accurate corner coordinates by using Harris algorithm and Forstner algorithm, false corners within chessboard pattern of the calibration plate can be eliminated automatically by using circular boundary theory. Moreover, a corner sorting method based on an improved calibration plate is proposed to eliminate false background corners and sort remaining corners in order. Experiment results show that the proposed algorithms can eliminate all false corners and sort remaining corners correctly and automatically.

  13. Magnetic resonance imaging demonstrates compartmental muscle mechanisms of human vertical fusional vergence

    PubMed Central

    Clark, Robert A.

    2015-01-01

    Vertical fusional vergence (VFV) normally compensates for slight vertical heterophorias. We employed magnetic resonance imaging to clarify extraocular muscle contributions to VFV induced by monocular two-prism diopter (1.15°) base-up prism in 14 normal adults. Fusion during prism viewing requires monocular infraduction. Scans were repeated without prism, and with prism shifted contralaterally. Contractility indicated by morphometric indexes was separately analyzed in medial and lateral vertical rectus and superior oblique (SO) putative compartments, and superior and inferior horizontal rectus extraocular muscle putative compartments, but in the whole inferior oblique (IO). Images confirmed appropriate VFV that was implemented by the inferior rectus (IR) medial compartment contracting ipsilateral and relaxing contralateral to prism. There was no significant contractility in the IR lateral compartment. The superior but not inferior lateral rectus (LR) compartment contracted significantly in the prism viewing eye, but not contralateral to prism. The IO contracted ipsilateral but not contralateral to the prism. In the infraducting eye, the SO medial compartment relaxed significantly, while the lateral compartment was unchanged; contralateral to prism, the SO lateral compartment contracted, while the medial compartment was unchanged. There was no contractility in the superior or medial rectus muscles in either eye. There was no globe retraction. We conclude that the vertical component of VFV is primarily implemented by IR medial compartment contraction. Since appropriate vertical rotation is not directly implemented, or is opposed, by associated differential LR and SO compartmental activity, and IO contraction, these actions probably implement a torsional component of VFV. PMID:25589593

  14. Optimization of SPR signals: Monitoring the physical structures and refractive indices of prisms

    NASA Astrophysics Data System (ADS)

    Maisarah Mukhtar, Wan; Halim, Razman Mohd; Hassan, Hazirah

    2017-11-01

    Surface plasmon resonance (SPR) can only be achieved if sufficient energy is provided at the boundary between metal and dielectric. An employment of prism as a light coupler by using Kretschmann configuration is one of the alternative for the production of adequate energy to be generated as surface plasmon polaritons (SPP). This work is carried out to investigate the effect of physical structure of the prism and its refractive index to the excitation of SPPs. A 50nm gold thin metal film with dielectric constant of ɛ=-12.45i+1.3 was deposited on the hypotenuse surface of the prisms. The physical structures of the prisms were varied such as triangular, conical, hemispherical and half cylindrical. These prisms were classified into two types of refractive indices (RI), namely n=1.51(type BK7) and n=1.77(type SF11). Based on SPR curve analyses, we discovered that strong SPR signals which consist of 82.98% photons were excited as SPPs can be obtained by using type-BK7 prism with physical structures of hemispherical or half cylindrical. From the view of selectivity ability as sensors, the usage of type-SF11 prisms (half cylindrical and hemispherical) able to enhance this impressive feature in which sharp SPR curves with small FWHM values were obtained. In conclusion, apart from properties of thin film materials, the physical structure of prisms and their RI values play crucial roles to obtain optimum SPR signal. High sensitivity SPR sensor can be established with the appointment of type-BK7 prisms (hemispherical or half cylindrical shape) as light couplers.

  15. Is adaptation to perceived interocular differences in height explained by vertical fusional eye movements?

    PubMed

    Maier, Felix M; Schaeffel, Frank

    2013-07-24

    To find out whether adaptation to a vertical prism involves more than fusional vertical eye movements. Adaptation to a vertical base-up 3 prism diopter prism was measured in a custom-programmed Maddox test in nine visually normal emmetropic subjects (mean age 27.0 ± 2.8 years). Vertical eye movements were binocularly measured in six of the subjects with a custom-programmed binocular video eye tracker. In the Maddox test, some subjects adjusted the perceived height as expected from the power of the prism while others appeared to ignore the prism. After 15 minutes of adaptation, the interocular difference in perceived height was reduced by on average 51% (from 0.86°-0.44°). The larger the initially perceived difference in height in a subject, the larger the amplitude of adaptation was. Eye tracking showed that the prism generated divergent vertical eye movements of 1.2° on average, which was less than expected from its power. Differences in eye elevation were maintained as long as the prism was in place. Small angles of lateral head tilt generated large interocular differences in eye elevation, much larger than the effects introduced by the prism. Vertical differences in retinal image height were compensated by vertical fusional eye movements but some subjects responded poorly to a vertical prism in both experiments; fusional eye movements were generally too small to realign both foveae with the fixation target; and the prism adaptation in the Maddox test was fully explained by the changes in vertical eye position, suggesting that no further adaptational mechanism may be involved.

  16. Peripheral Prism Glasses: Effects of Dominance, Suppression and Background

    PubMed Central

    Ross, Nicole C.; Bowers, Alex R.; Optom, M.C.; Peli, Eli

    2012-01-01

    Purpose Unilateral peripheral prisms for homonymous hemianopia (HH) place different images on corresponding peripheral retinal points, a rivalrous situation in which local suppression of the prism image could occur and thus limit device functionality. Detection with peripheral prisms has primarily been evaluated using conventional perimetry where binocular rivalry is unlikely to occur. We quantified detection over more visually complex backgrounds and examined the effects of ocular dominance. Methods Detection rates of 8 participants with HH or quadranopia and normal binocularity wearing unilateral peripheral prism glasses were determined for static perimetry targets briefly presented in the prism expansion area (in the blind hemifield) and the seeing hemifield, under monocular and binocular viewing, over uniform gray and more complex patterned backgrounds. Results Participants with normal binocularity had mixed sensory ocular dominance, demonstrated no difference in detection rates when prisms were fitted on the side of the HH or the opposite side (p>0.2), and had detection rates in the expansion area that were not different for monocular and binocular viewing over both backgrounds (p>0.4). However, two participants with abnormal binocularity and strong ocular dominance demonstrated reduced detection in the expansion area when prisms were fitted in front of the non-dominant eye. Conclusions We found little evidence of local suppression of the peripheral prism image for HH patients with normal binocularity. However, in cases of strong ocular dominance, consideration should be given to fitting prisms before the dominant eye. Although these results are promising, further testing in more realistic conditions including image motion is needed. PMID:22885783

  17. Use of prism adaptation in children with unilateral brain lesion: Is it feasible?

    PubMed

    Riquelme, Inmaculada; Henne, Camille; Flament, Benoit; Legrain, Valéry; Bleyenheuft, Yannick; Hatem, Samar M

    2015-01-01

    Unilateral visuospatial deficits have been observed in children with brain damage. While the effectiveness of prism adaptation for treating unilateral neglect in adult stroke patients has been demonstrated previously, the usefulness of prism adaptation in a pediatric population is still unknown. The present study aims at evaluating the feasibility of prism adaptation in children with unilateral brain lesion and comparing the validity of a game procedure designed for child-friendly paediatric intervention, with the ecological task used for prism adaptation in adult patients. Twenty-one children with unilateral brain lesion randomly were assigned to a prism group wearing prismatic glasses, or a control group wearing neutral glasses during a bimanual task intervention. All children performed two different bimanual tasks on randomly assigned consecutive days: ecological tasks or game tasks. The efficacy of prism adaptation was measured by assessing its after-effects with visual open loop pointing (visuoproprioceptive test) and subjective straight-ahead pointing (proprioceptive test). Game tasks and ecological tasks produced similar after-effects. Prismatic glasses elicited a significant shift of visuospatial coordinates which was not observed in the control group. Prism adaptation performed with game tasks seems an effective procedure to obtain after-effects in children with unilateral brain lesion. The usefulness of repetitive prism adaptation sessions as a therapeutic intervention in children with visuospatial deficits and/or neglect, should be investigated in future studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. PRISM 3: expanded prediction of natural product chemical structures from microbial genomes.

    PubMed

    Skinnider, Michael A; Merwin, Nishanth J; Johnston, Chad W; Magarvey, Nathan A

    2017-07-03

    Microbial natural products represent a rich resource of pharmaceutically and industrially important compounds. Genome sequencing has revealed that the majority of natural products remain undiscovered, and computational methods to connect biosynthetic gene clusters to their corresponding natural products therefore have the potential to revitalize natural product discovery. Previously, we described PRediction Informatics for Secondary Metabolomes (PRISM), a combinatorial approach to chemical structure prediction for genetically encoded nonribosomal peptides and type I and II polyketides. Here, we present a ground-up rewrite of the PRISM structure prediction algorithm to derive prediction of natural products arising from non-modular biosynthetic paradigms. Within this new version, PRISM 3, natural product scaffolds are modeled as chemical graphs, permitting structure prediction for aminocoumarins, antimetabolites, bisindoles and phosphonate natural products, and building upon the addition of ribosomally synthesized and post-translationally modified peptides. Further, with the addition of cluster detection for 11 new cluster types, PRISM 3 expands to detect 22 distinct natural product cluster types. Other major modifications to PRISM include improved sequence input and ORF detection, user-friendliness and output. Distribution of PRISM 3 over a 300-core server grid improves the speed and capacity of the web application. PRISM 3 is available at http://magarveylab.ca/prism/. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. Composite Spectrometer Prisms

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.; Page, N. A.; Rodgers, J. M.

    1985-01-01

    Efficient linear dispersive element for spectrometer instruments achieved using several different glasses in multiple-element prism. Good results obtained in both two-and three-element prisms using variety of different glass materials.

  20. Causes and consequences of the great strength variability among soft Nankai accretionary prism sediments from offshore SW-Japan

    NASA Astrophysics Data System (ADS)

    Stipp, Michael; Schumann, Kai; Leiss, Bernd; Ullemeyer, Klaus

    2014-05-01

    The Nankai Trough Seismogenic Zone Experiment of the International Ocean Discovery Program (IODP) is the very first attempt to drill into the seismogenic part of a subduction zone. Offshore SW-Japan the oceanic Philippine sea plate is subducted beneath the continental Eurasian plate causing earthquakes of magnitude 8.0 to 8.5 and related tsunamis with a recurrence rate of 80-100 years. For the tsunamigenic potential of the forearc slope and accreted sediments their mechanical strength, composition and fabrics have been investigated. 19 drill core samples of IODP Expeditions 315, 316 and 333 were experimentally deformed in a triaxial cell under consolidated and undrained conditions at confining pressures of 400-1000 kPa, room temperature, axial shortening rates of 0.01-9.0 mm/min, and up to an axial strain of ˜64% (Stipp et al., 2013). With respect to the mechanical behavior, two distinct sample groups could be distinguished. Weak samples from the upper and middle forearc slope of the accretionary prism show a deviatoric peak stress after only a few percent strain (< 10%) and a continuous stress decrease after a maximum combined with a continuous increase in pore pressure. Strong samples from the accretionary prism toe display a constant residual stress at maximum level or even a continuous stress increase together with a decrease in pore pressure towards high strain (Stipp et al., 2013). Synchrotron texture and composition analysis of the experimentally deformed and undeformed samples using the Rietveld refinement program MAUD indicates an increasing strength of the illite and kaolinite textures with increasing depth down to 523 m below sea floor corresponding to a preferred mineral alignment due to compaction. Experimentally deformed samples have generally stronger textures than related undeformed core samples and they show also increasing strength of the illite and kaolinite textures with increasing axial strain. Mechanically weak samples have a bulk clay plus calcite content of 31-65 vol.-% and most of their illite, kaolinite, smectite and calcite [001]-pole figures have maxima >1.5 mrd. Strong samples which were deformed to approximately the same amount of strain (up to 40%) have no calcite and a bulk clay content of 24-36 vol.-%. Illite, kaolinite and smectite [001]-pole figure maxima are mostly <1.5 mrd, except for one sample which was deformed to a considerably higher strain (64%). The higher clay and calcite content and the stronger textures of the mechanically weak samples can be related to a collapsing pore space of the originally flocculated clay aggregates. This process is insignificant in the strong samples from the prism toe, for which deformation would tend to involve large rock volumes and lead to strain dissipation. The weak samples from the forearc slope which become even weaker with increasing strain may provoke mechanical runaway situations allowing for earthquake rupture, surface breakage and tsunami generation. Stipp, M., Rolfs, M., Kitamura, Y., Behrmann, J.H., Schumann, K., Schulte-Kortnack, D. and Feeser, V. 2013. G-Cubed 14/11, doi: 10.1002/ggge.20290.

  1. Frontal lesions predict response to prism adaptation treatment in spatial neglect: A randomised controlled study.

    PubMed

    Goedert, Kelly M; Chen, Peii; Foundas, Anne L; Barrett, A M

    2018-03-20

    Spatial neglect commonly follows right hemisphere stroke. It is defined as impaired contralesional stimulus detection, response, or action, causing functional disability. While prism adaptation treatment is highly promising to promote functional recovery of spatial neglect, not all individuals respond. Consistent with a primary effect of prism adaptation on spatial movements, we previously demonstrated that functional improvement after prism adaptation treatment is linked to frontal lobe lesions. However, that study was a treatment-only study with no randomised control group. The current study randomised individuals with spatial neglect to receive 10 days of prism adaptation treatment or to receive only standard care (control group). Replicating our earlier results, we found that the presence of frontal lesions moderated response to prism adaptation treatment: among prism-treated patients, only those with frontal lesions demonstrated functional improvements in their neglect symptoms. Conversely, among individuals in the standard care control group, the presence of frontal lesions did not modify recovery. These results suggest that further research is needed on how frontal lesions may predict response to prism adaptation treatment. Additionally, the results help elucidate the neural network involved in spatial movement and could be used to aid decisions about treatment.

  2. CubeRovers for Lunar Exploration

    NASA Astrophysics Data System (ADS)

    Tallaksen, A. P.; Horchler, A. D.; Boirum, C.; Arnett, D.; Jones, H. L.; Fang, E.; Amoroso, E.; Chomas, L.; Papincak, L.; Sapunkov, O. B.; Whittaker, W. L.

    2017-10-01

    CubeRover is a 2-kg class of lunar rover that seeks to standardize and democratize surface mobility and science, analogous to CubeSats. This CubeRover will study in-situ lunar surface trafficability and descent engine blast ejecta phenomena.

  3. Chemistry Cube Game - Exploring Basic Principles of Chemistry by Turning Cubes.

    PubMed

    Müller, Markus T

    2018-02-01

    The Chemistry Cube Game invites students at secondary school level 1 and 2 to explore basic concepts of chemistry in a playful way, either as individuals or in teams. It consists of 15 different cubes, 9 cubes for different acids, their corresponding bases and precursors, and 6 cubes for different reducing and oxidising agents. The cubes can be rotated in those directions indicated. Each 'allowed' vertical or horizontal rotation of 90° stands for a chemical reaction or a physical transition. Two different games and playing modes are presented here: First, redox chemistry is introduced for the formation of salts from elementary metals and non-metals. Second, the speciation of acids and bases at different pH-values is shown. The cubes can be also used for games about environmental chemistry such as the carbon and sulphur cycle, covering the topic of acid rain, or the nitrogen cycle including ammoniac synthesis, nitrification and de-nitrification.

  4. Methods for gas detection using stationary hyperspectral imaging sensors

    DOEpatents

    Conger, James L [San Ramon, CA; Henderson, John R [Castro Valley, CA

    2012-04-24

    According to one embodiment, a method comprises producing a first hyperspectral imaging (HSI) data cube of a location at a first time using data from a HSI sensor; producing a second HSI data cube of the same location at a second time using data from the HSI sensor; subtracting on a pixel-by-pixel basis the second HSI data cube from the first HSI data cube to produce a raw difference cube; calibrating the raw difference cube to produce a calibrated raw difference cube; selecting at least one desired spectral band based on a gas of interest; producing a detection image based on the at least one selected spectral band and the calibrated raw difference cube; examining the detection image to determine presence of the gas of interest; and outputting a result of the examination. Other methods, systems, and computer program products for detecting the presence of a gas are also described.

  5. Rhomboid prism pair for rotating the plane of parallel light beams

    NASA Technical Reports Server (NTRS)

    Orloff, K. L. (Inventor); Yanagita, H.

    1982-01-01

    An optical system is described for rotating the plane defined by a pair of parallel light beams. In one embodiment a single pair of rhomboid prisms have their respective input faces disposed to receive the respective input beams. Each prism is rotated about an axis of revolution coaxial with each of the respective input beams by means of a suitable motor and gear arrangement to cause the plane of the parallel output beams to be rotated relative to the plane of the input beams. In a second embodiment, two pairs of rhomboid prisms are provided. In a first angular orientation of the output beams, the prisms merely decrease the lateral displacement of the output beams in order to keep in the same plane as the input beams. In a second angular orientation of the prisms, the input faces of the second pair of prisms are brought into coincidence with the input beams for rotating the plane of the output beams by a substantial angle such as 90 deg.

  6. A study on suppressing transmittance fluctuations for air-gapped Glan-type polarizing prisms

    NASA Astrophysics Data System (ADS)

    Zhang, Chuanfa; Li, Dailin; Zhu, Huafeng; Li, Chuanzhi; Jiao, Zhiyong; Wang, Ning; Xu, Zhaopeng; Wang, Xiumin; Song, Lianke

    2018-05-01

    Light intensity transmittance is a key parameter for the design of polarizing prisms, while sometimes its experimental curves based on spatial incident angle presents periodical fluctuations. Here, we propose a novel method for completely suppressing these fluctuations via setting a glued error angle in the air gap of Glan-Taylor prisms. The proposal consists of: an accurate formula of the intensity transmittance for Glan-Taylor prisms, a numerical simulation and a contrast experiment of Glan-Taylor prisms for analyzing the causes of the fluctuations, and a simple method for accurately measuring the glued error angle. The result indicates that when the setting glued error angle is larger than the critical angle for a certain polarizing prism, the fluctuations can be completely suppressed, and a smooth intensity transmittance curve can be obtained. Besides, the critical angle in the air gap for suppressing the fluctuations is decreased with the increase of beam spot size. This method has the advantage of having less demand for the prism position in optical systems.

  7. Compact cross-dispersion device based on a prism and a plane transmission grating

    NASA Astrophysics Data System (ADS)

    Yang, Qinghua; Wang, Weiqiang

    2018-05-01

    This paper presents a cross-dispersion prism-grating device using a plane transmission grating attached directly to a prism, which is different from traditional cross-dispersion grating-prism systems that are based on the reflection grating. Unlike conventional direct-vision grism or constant-dispersion grism in which both the prism and grating have the same dispersion direction, for this device the dispersion directions of the prism and grating are different. The analytical expressions for the cross-dispersion of this device are derived in detail and the formulas of the footprint of the dispersed spectra are given. The numerical results and ray-tracing simulations by ZEMAX are shown. The device provides a compact, small-sized and broadband cross-dispersion device used for the medium resolution spectrometer.

  8. Device for magneto-optic signal detection with a small crystal prism.

    PubMed

    Saito, K; Sato, S; Shino, K; Taniguchi, T

    2000-03-10

    A device made of a birefringent crystal for signal detection of magneto-optic (MO) disks is presented. The light beam from a MO disk is separated into two orthogonally polarized components at the surface of a birefringent prism. After these two components are reflected by the top and the bottom surfaces of the prism inside, at the detector they become sufficiently separated from each other for discrete detection, even though the prism is small. A method for calculating the light intensities and the positions of focused beams in a birefringent prism and the results of a fundamental experiment are presented.

  9. Fault structure, properties and activity of the Makran Accretionary Prism and implications for seismogenic potential

    NASA Astrophysics Data System (ADS)

    Smith, G. L.; McNeill, L. C.; Henstock, T.; Bull, J. M.

    2011-12-01

    The Makran subduction zone is the widest accretionary prism in the world (~400km), generated by convergence between the Arabian and Eurasian tectonic plates. It represents a global end-member, with a 7km thick incoming sediment section. Accretionary prisms have traditionally been thought to be aseismic due to the presence of unconsolidated sediment and elevated basal pore pressures. The seismogenic potential of the Makran subduction zone is unclear, despite a Mw 8.1 earthquake in 1945 that may have been located on the plate boundary beneath the prism. In this study, a series of imbricate landward dipping (seaward verging) thrust faults have been interpreted across the submarine prism (outer 70 km) using over 6000km of industry multichannel seismic data and bathymetric data. A strong BSR (bottom simulating reflector) is present throughout the prism (excluding the far east). An unreflective décollement is interpreted from the geometry of the prism thrusts. Two major sedimentary units are identified in the input section, the lower of which contains the extension of the unreflective décollement surface. Between 60%-100% of the input section is currently being accreted. The geometry of piggy-back basin stratigraphy shows that the majority of thrusts, including those over 50km from the trench, are recently active. Landward thrusts show evidence for reactivation after periods of quiescence. Negative polarity fault plane reflectors are common in the frontal thrusts and in the eastern prism, where they may be related to increased fault activity and fluid expulsion, and are rarer in older landward thrusts. Significant NE-SW trending basement structures (The Murray Ridge and Little Murray Ridge) on the Arabian plate intersect the deformation front and affect sediment input to the subduction zone. Prism taper and structure are apparently primarily controlled by sediment supply and the secondary influence of subducting basement ridges. The thick, likely distal, sediment section in the west produces a prism with a simple imbricate structure. As basement depth is reduced over the Little Murray Ridge, the accretionary prism structure (fault spacing and deformation front position) changes. In the east, proximity to the Murray Ridge and triple junction is expressed through a reduction in prism width and reduced fault activity. The resulting prism structure and morphology can ultimately be used to assess likely sediment properties and hence seismic potential at the plate boundary.

  10. Transforming White Light into Rainbows: Segmentation Strategies for Successful School Tax Elections

    ERIC Educational Resources Information Center

    Senden, J. Bradford; Lifto, Don E.

    2009-01-01

    In the late 1600s, British physicist Sir Isaac Newton first demonstrated refraction and dispersion in a triangular prism. He discovered that a prism could decompose white light into a spectrum. Hold a prism up to the light at the correct angle and white light magically splits into vivid colors of the rainbow! So what do prisms and rainbows have to…

  11. Random sequential adsorption of cubes

    NASA Astrophysics Data System (ADS)

    Cieśla, Michał; Kubala, Piotr

    2018-01-01

    Random packings built of cubes are studied numerically using a random sequential adsorption algorithm. To compare the obtained results with previous reports, three different models of cube orientation sampling were used. Also, three different cube-cube intersection algorithms were tested to find the most efficient one. The study focuses on the mean saturated packing fraction as well as kinetics of packing growth. Microstructural properties of packings were analyzed using density autocorrelation function.

  12. BurstCube: A CubeSat for Gravitational Wave Counterparts

    NASA Astrophysics Data System (ADS)

    Perkins, Jeremy S.; Racusin, Judith; Briggs, Michael; de Nolfo, Georgia; Caputo, Regina; Krizmanic, John; McEnery, Julie E.; Shawhan, Peter; Morris, David; Connaughton, Valerie; Kocevski, Dan; Wilson-Hodge, Colleen A.; Hui, Michelle; Mitchell, Lee; McBreen, Sheila

    2018-01-01

    We present BurstCube, a novel CubeSat that will detect and localize Gamma-ray Bursts (GRBs). BurstCube is a selected mission that will detect long GRBs, attributed to the collapse of massive stars, short GRBs (sGRBs), resulting from binary neutron star mergers, as well as other gamma-ray transients in the energy range 10-1000 keV. sGRBs are of particular interest because they are predicted to be the counterparts of gravitational wave (GW) sources soon to be detectable by LIGO/Virgo. BurstCube contains 4 CsI scintillators coupled with arrays of compact low-power Silicon photomultipliers (SiPMs) on a 6U Dellingr bus, a flagship modular platform that is easily modifiable for a variety of 6U CubeSat architectures. BurstCube will complement existing facilities such as Swift and Fermi in the short term, and provide a means for GRB detection, localization, and characterization in the interim time before the next generation future gamma-ray mission flies, as well as space-qualify SiPMs and test technologies for future use on larger gamma-ray missions. The ultimate configuration of BurstCube is to have a set of ~10 BurstCubes to provide all-sky coverage to GRBs for substantially lower cost than a full-scale mission.

  13. PRISM, a Novel Visual Metaphor Measuring Personally Salient Appraisals, Attitudes and Decision-Making: Qualitative Evidence Synthesis

    PubMed Central

    Sensky, Tom; Büchi, Stefan

    2016-01-01

    Background PRISM (the Pictorial Representation of Illness and Self Measure) is a novel, simple visual instrument. Its utility was initially discovered serendipitously, but has been validated as a quantitative measure of suffering. Recently, new applications for different purposes, even in non-health settings, have encouraged further exploration of how PRISM works, and how it might be applied. This review will summarise the results to date from applications of PRISM and propose a generic conceptualisation of how PRISM works which is consistent with all these applications. Methods A systematic review, in the form of a qualitative evidence synthesis, was carried out of all available published data on PRISM. Results Fifty-two publications were identified, with a total of 8254 participants. Facilitated by simple instructions, PRISM has been used with patient groups in a variety of settings and cultures. As a measure of suffering, PRISM has, with few exceptions, behaved as expected according to Eric Cassell’s seminal conceptualisation of suffering. PRISM has also been used to assess beliefs about or attitudes to stressful working conditions, interpersonal relations, alcohol consumption, and suicide, amongst others. Discussion This review supports PRISM behaving as a visual metaphor of the relationship of objects (eg ‘my illness’) to a subject (eg ‘myself’) in a defined context (eg ‘my life at the moment’). As a visual metaphor, it is quick to complete and yields personally salient information. PRISM is likely to have wide applications in assessing beliefs, attitudes, and decision-making, because of its properties, and because it yields both quantitative and qualitative data. In medicine, it can serve as a generic patient-reported outcome measure. It can serve as a tool for representational guidance, can be applied to developing strategies visually, and is likely to have applications in coaching, psychological assessment and therapeutic interventions. PMID:27214024

  14. Do dissociated or associated phoria predict the comfortable prism?

    PubMed Central

    Otto, Joanna M. N.; Kromeier, Miriam; Bach, Michael

    2008-01-01

    Background Dissociated and associated phoria are measures of latent strabismus under artificial viewing conditions. We examined to what extent dissociated and associated phoria predict the “comfortable prism”, i.e. the prism that appears most comfortable under natural viewing conditions. Methods For associated phoria, a configuration resembling the Mallett test was employed: both eyes were presented with a fixation cross, surrounded by fusionable objects. Nonius lines served as monocular markers. For dissociated phoria, the left eye was presented with all the Mallett elements, while only a white spot was presented to the right eye. To determine the comfortable prism, all the Mallett elements, including the Nonius lines, were shown to both eyes. In each of the three tests, the observer had to adjust a pair of counterrotating prisms. To avoid any (possibly prejudiced) influence of the experimenter, the prismatic power was recorded with a potentiometer. Twenty non-strabismic subjects with a visual acuity of ≥1.0 in each eye were examined. Results The range of the intertrial mean was for dissociated phoria from +9.3 eso to −5.9 cm/m exo, for associated phoria from +11.2 eso to −3.3 cm/m exo, and for the comfortable prism from +4.8 eso to −4.1 cm/m exo (cm/m = prism dioptre). In most observers, the phoria parameters differed greatly from the comfortable prism. On average, the phoria values were shifted about 2 cm/m towards the eso direction in relation to the comfortable prism (associated phoria not less than dissociated phoria). Conclusions The deviation of both, dissociated and associated phoria, from the comfortable prism suggests that the abnormal viewing conditions under which the phoria parameters are determined induce artefacts. Accordingly, the findings cast doubt on current textbook recommendations to use dissociated or associated phoria as a basis for therapeutic prisms. Rather, patients should be allowed to determine their comfortable prism under natural viewing conditions. PMID:18379816

  15. Prism adaptation does not alter configural processing of faces

    PubMed Central

    Bultitude, Janet H.; Downing, Paul E.; Rafal, Robert D.

    2013-01-01

    Patients with hemispatial neglect (‘neglect’) following a brain lesion show difficulty responding or orienting to objects and events on the left side of space. Substantial evidence supports the use of a sensorimotor training technique called prism adaptation as a treatment for neglect. Reaching for visual targets viewed through prismatic lenses that induce a rightward shift in the visual image results in a leftward recalibration of reaching movements that is accompanied by a reduction of symptoms in patients with neglect. The understanding of prism adaptation has also been advanced through studies of healthy participants, in whom adaptation to leftward prismatic shifts results in temporary neglect-like performance. Interestingly, prism adaptation can also alter aspects of non-lateralised spatial attention. We previously demonstrated that prism adaptation alters the extent to which neglect patients and healthy participants process local features versus global configurations of visual stimuli. Since deficits in non-lateralised spatial attention are thought to contribute to the severity of neglect symptoms, it is possible that the effect of prism adaptation on these deficits contributes to its efficacy. This study examines the pervasiveness of the effects of prism adaptation on perception by examining the effect of prism adaptation on configural face processing using a composite face task. The composite face task is a persuasive demonstration of the automatic global-level processing of faces: the top and bottom halves of two familiar faces form a seemingly new, unknown face when viewed together. Participants identified the top or bottom halves of composite faces before and after prism adaptation. Sensorimotor adaptation was confirmed by significant pointing aftereffect, however there was no significant change in the extent to which the irrelevant face half interfered with processing. The results support the proposal that the therapeutic effects of prism adaptation are limited to dorsal stream processing. PMID:25110574

  16. An optofluidic prism tuned by two laminar flows.

    PubMed

    Xiong, S; Liu, A Q; Chin, L K; Yang, Y

    2011-06-07

    This paper presents a tunable optofluidic prism based on the configuration of two laminar flow streams with different refractive indices in a triangular chamber. The chambers with 70° and 90° apex angles are designed based on simulation results, which provide the optimum working range and avoid recirculating flows in the chambers. In addition, a hydrodynamic model has been developed to predict the tuning of the prisms by the variation in the flow rates. Prisms with different refractive indices are realized using benzyl alcohol and deionized (DI) water as the inner liquids, respectively. The mixture of ethylene glycol and DI water with an effective refractive index matched to that of the microchannel is used as the outer liquid. The apex angle of the prism is tuned from 75° to 135° by adjusting the ratio of the two flow rates. Subsequently, the deviation angle of the output light beam is tuned from -13.5° to 22°. One of the new features of this optofluidic prism is its capability to transform from a symmetric to an asymmetric prism with the assistance of a third flow. Two optical behaviours have been performed using the optofluidic prism. First, parallel light beam scanning is achieved with a constant deviation angle of 10° and a tuning range of 60 μm using the asymmetric prism. The detected output light intensity is increased by 65.7%. Second, light dispersion is experimentally demonstrated using 488-nm and 633-nm laser beams. The two laser beams become distinguishable with a deviation angle difference of 2.5° when the apex angle of the prism reaches 116°.

  17. Applanation tonometry: interobserver and prism agreement using the reusable Goldmann applanation prism and the Tonosafe disposable prism.

    PubMed

    Ajtony, Csilla; Elkarmouty, Ahmed; Barton, Keith; Kotecha, Aachal

    2016-06-01

    To evaluate the levels of agreement between the standard reusable prism and a disposable prism, and to examine the agreement between ophthalmologists, nursing and technical staff when measuring intraocular pressure (IOP) using the Goldmann applanation tonometer. Three hundred eyes of 300 patients were recruited. IOP measurements were made in a randomised order by three observer groups consisting of ophthalmologists and ophthalmic technicians/nurses taken from a pool of clinicians working within a busy outpatient clinic. Agreement was calculated by Bland-Altman analysis, showing the mean difference and 95% limits of agreement (LoA) of measurements. The mean difference between the reusable and disposable prism IOP measurements was <0.5 mm Hg. The LoA ranged from ±3.1 to ±4.9 mm Hg, depending on the observer group. The interobserver variability was <1 mm Hg across all observer groups; the LoA was slightly higher for observers using the reusable prism (range between ±4.3 and ±5.6 mm Hg) compared with using the disposable prism (range between ±3.7 and ±5.4 mm Hg) across observer groups. There is an acceptable agreement between IOP measurements made with the reusable Goldmann tonometer prism and the disposable Tonosafe prism. Interobserver variability in IOP measurements within an outpatient setting is larger than that found within a research setting, and may be of a level that impacts on clinical decision-making. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  18. Prism adaptation does not alter configural processing of faces.

    PubMed

    Bultitude, Janet H; Downing, Paul E; Rafal, Robert D

    2013-01-01

    Patients with hemispatial neglect ('neglect') following a brain lesion show difficulty responding or orienting to objects and events on the left side of space. Substantial evidence supports the use of a sensorimotor training technique called prism adaptation as a treatment for neglect. Reaching for visual targets viewed through prismatic lenses that induce a rightward shift in the visual image results in a leftward recalibration of reaching movements that is accompanied by a reduction of symptoms in patients with neglect. The understanding of prism adaptation has also been advanced through studies of healthy participants, in whom adaptation to leftward prismatic shifts results in temporary neglect-like performance. Interestingly, prism adaptation can also alter aspects of non-lateralised spatial attention. We previously demonstrated that prism adaptation alters the extent to which neglect patients and healthy participants process local features versus global configurations of visual stimuli. Since deficits in non-lateralised spatial attention are thought to contribute to the severity of neglect symptoms, it is possible that the effect of prism adaptation on these deficits contributes to its efficacy. This study examines the pervasiveness of the effects of prism adaptation on perception by examining the effect of prism adaptation on configural face processing using a composite face task. The composite face task is a persuasive demonstration of the automatic global-level processing of faces: the top and bottom halves of two familiar faces form a seemingly new, unknown face when viewed together. Participants identified the top or bottom halves of composite faces before and after prism adaptation. Sensorimotor adaptation was confirmed by significant pointing aftereffect, however there was no significant change in the extent to which the irrelevant face half interfered with processing. The results support the proposal that the therapeutic effects of prism adaptation are limited to dorsal stream processing.

  19. Is the Aligning Prism Measured with the Mallett Unit Correlated with Fusional Vergence Reserves?

    PubMed Central

    Conway, Miriam L.; Thomas, Jennifer; Subramanian, Ahalya

    2012-01-01

    Background The Mallett Unit is a clinical test designed to detect the fixation disparity that is most likely to occur in the presence of a decompensated heterophoria. It measures the associated phoria, which is the “aligning prism” needed to nullify the subjective disparity. The technique has gained widespread acceptance within professions such as optometry, for investigating suspected cases of decompensating heterophoria; it is, however, rarely used by orthoptists and ophthalmologists. The aim of this study was to investigate whether fusional vergence reserves, measured routinely by both orthoptists and ophthalmologists to detect heterophoria decompensation, were correlated with aligning prism (associated phoria) in a normal clinical population. Methodology/Principal Findings Aligning prism (using the Mallett Unit) and fusional vergence reserves (using a prism bar) were measured in 500 participants (mean 41.63 years; standard deviation 11.86 years) at 40 cm and 6 m. At 40 cm a strong correlation (p<0.001) between base in aligning prism (Exo FD) and positive fusional reserves was found. Of the participants with zero aligning prism 30% had reduced fusional reserves. At 6 m a weak correlation between base out aligning prism (Eso FD) and negative fusional reserves was found to break (p = 0.01) and to recovery (p = 0.048). Of the participants with zero aligning prism 12% reported reduced fusional reserves. Conclusions/Significance For near vision testing, the strong inverse correlation between base in aligning prism (Exo FD) and fusional vergence reserves supports the notion that both measures are indicators of decompensation of heterophoria. For distance vision testing and for those patients reporting zero aligning prism further research is required to determine why the relationship appears to be weak/non-existent? PMID:22905174

  20. 14 CFR 67.203 - Eye.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... this paragraph are not required except for persons found to have more than 1 prism diopter of hyperphoria, 6 prism diopters of esophoria, or 6 prism diopters of exophoria. If any of these values are...

  1. 14 CFR 67.103 - Eye.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... this paragraph are not required except for persons found to have more than 1 prism diopter of hyperphoria, 6 prism diopters of esophoria, or 6 prism diopters of exophoria. If any of these values are...

  2. 14 CFR 67.203 - Eye.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... this paragraph are not required except for persons found to have more than 1 prism diopter of hyperphoria, 6 prism diopters of esophoria, or 6 prism diopters of exophoria. If any of these values are...

  3. 14 CFR 67.103 - Eye.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... this paragraph are not required except for persons found to have more than 1 prism diopter of hyperphoria, 6 prism diopters of esophoria, or 6 prism diopters of exophoria. If any of these values are...

  4. 14 CFR 67.203 - Eye.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... this paragraph are not required except for persons found to have more than 1 prism diopter of hyperphoria, 6 prism diopters of esophoria, or 6 prism diopters of exophoria. If any of these values are...

  5. 14 CFR 67.103 - Eye.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... this paragraph are not required except for persons found to have more than 1 prism diopter of hyperphoria, 6 prism diopters of esophoria, or 6 prism diopters of exophoria. If any of these values are...

  6. Design of direct-vision cyclo-olefin-polymer double Amici prism for spectral imaging.

    PubMed

    Wang, Lei; Shao, Zhengzheng; Tang, Wusheng; Liu, Jiying; Nie, Qianwen; Jia, Hui; Dai, Suian; Zhu, Jubo; Li, Xiujian

    2017-10-20

    A direct-vision Amici prism is a desired dispersion element in the value of spectrometers and spectral imaging systems. In this paper, we focus on designing a direct-vision cyclo-olefin-polymer double Amici prism for spectral imaging systems. We illustrate a designed structure: E48R/N-SF4/E48R, from which we obtain 13 deg dispersion across the visible spectrum, which is equivalent to 700 line pairs/mm grating. We construct a simulative spectral imaging system with the designed direct-vision cyclo-olefin-polymer double Amici prism in optical design software and compare its imaging performance to a glass double Amici prism in the same system. The results of spot-size RMS demonstrate that the plastic prism can serve as well as their glass competitors and have better spectral resolution.

  7. Modeling laser brightness from cross Porro prism resonators

    NASA Astrophysics Data System (ADS)

    Forbes, Andrew; Burger, Liesl; Litvin, Igor Anatolievich

    2006-08-01

    Laser brightness is a parameter often used to compare high power laser beam delivery from various sources, and incorporates both the power contained in the particular mode, as well as the propagation of that mode through the beam quality factor, M2. In this study a cross Porro prism resonator is considered; crossed Porro prism resonators have been known for some time, but until recently have not been modeled as a complete physical optics system that allows the modal output to be determined as a function of the rotation angle of the prisms. In this paper we consider the diffraction losses as a function of the prism rotation angle relative to one another, and combine this with the propagation of the specific modes to determine the laser output brightness as a function of the prism orientation.

  8. Processing and review interface for strong motion data (PRISM) software, version 1.0.0—Methodology and automated processing

    USGS Publications Warehouse

    Jones, Jeanne; Kalkan, Erol; Stephens, Christopher

    2017-02-23

    A continually increasing number of high-quality digital strong-motion records from stations of the National Strong-Motion Project (NSMP) of the U.S. Geological Survey (USGS), as well as data from regional seismic networks within the United States, call for automated processing of strong-motion records with human review limited to selected significant or flagged records. The NSMP has developed the Processing and Review Interface for Strong Motion data (PRISM) software to meet this need. In combination with the Advanced National Seismic System Quake Monitoring System (AQMS), PRISM automates the processing of strong-motion records. When used without AQMS, PRISM provides batch-processing capabilities. The PRISM version 1.0.0 is platform independent (coded in Java), open source, and does not depend on any closed-source or proprietary software. The software consists of two major components: a record processing engine and a review tool that has a graphical user interface (GUI) to manually review, edit, and process records. To facilitate use by non-NSMP earthquake engineers and scientists, PRISM (both its processing engine and review tool) is easy to install and run as a stand-alone system on common operating systems such as Linux, OS X, and Windows. PRISM was designed to be flexible and extensible in order to accommodate new processing techniques. This report provides a thorough description and examples of the record processing features supported by PRISM. All the computing features of PRISM have been thoroughly tested.

  9. Prism adaptation enhances activity of intact fronto-parietal areas in both hemispheres in neglect patients.

    PubMed

    Saj, Arnaud; Cojan, Yann; Vocat, Roland; Luauté, Jacques; Vuilleumier, Patrik

    2013-01-01

    Unilateral spatial neglect involves a failure to report or orient to stimuli in the contralesional (left) space due to right brain damage, with severe handicap in everyday activities and poor rehabilitation outcome. Because behavioral studies suggest that prism adaptation may reduce spatial neglect, we investigated the neural mechanisms underlying prism effects on visuo-spatial processing in neglect patients. We used functional magnetic resonance imaging (fMRI) to examine the effect of (right-deviating) prisms on seven patients with left neglect, by comparing brain activity while they performed three different spatial tasks on the same visual stimuli (bisection, search, and memory), before and after a single prism-adaptation session. Following prism adaptation, fMRI data showed increased activation in bilateral parietal, frontal, and occipital cortex during bisection and visual search, but not during the memory task. These increases were associated with significant behavioral improvement in the same two tasks. Changes in neural activity and behavior were seen only after prism adaptation, but not attributable to mere task repetition. These results show for the first time the neural substrates underlying the therapeutic benefits of prism adaptation, and demonstrate that visuo-motor adaptation induced by prism exposure can restore activation in bilateral brain networks controlling spatial attention and awareness. This bilateral recruitment of fronto-parietal networks may counteract the pathological biases produced by unilateral right hemisphere damage, consistent with recent proposals that neglect may reflect lateralized deficits induced by bilateral hemispheric dysfunction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Targeted quantification of low ng/mL level proteins in human serum without immunoaffinity depletion

    PubMed Central

    Shi, Tujin; Sun, Xuefei; Gao, Yuqian; Fillmore, Thomas L.; Schepmoes, Athena A.; Zhao, Rui; He, Jintang; Moore, Ronald J.; Kagan, Jacob; Rodland, Karin D.; Liu, Tao; Liu, Alvin Y.; Smith, Richard D.; Tang, Keqi; Camp, David G.; Qian, Wei-Jun

    2013-01-01

    We recently reported an antibody-free targeted protein quantification strategy, termed high-pressure, high-resolution separations with intelligent selection and multiplexing (PRISM) for achieving significantly enhanced sensitivity using selected reaction monitoring (SRM) mass spectrometry. Integrating PRISM with front-end IgY14 immunoaffinity depletion, sensitive detection of targeted proteins at 50–100 pg/mL levels in human blood plasma/serum was demonstrated. However, immunoaffinity depletion is often associated with undesired losses of target proteins of interest. Herein we report further evaluation of PRISM-SRM quantification of low-abundance serum proteins without immunoaffinity depletion. Limits of quantification (LOQ) at low ng/mL levels with a median coefficient of variation (CV) of ~12% were achieved for proteins spiked into human female serum. PRISM-SRM provided >100-fold improvement in the LOQ when compared to conventional LC-SRM measurements. PRISM-SRM was then applied to measure several low-abundance endogenous serum proteins, including prostate-specific antigen (PSA), in clinical prostate cancer patient sera. PRISM-SRM enabled confident detection of all target endogenous serum proteins except the low pg/mL-level cardiac troponin T. A correlation coefficient >0.99 was observed for PSA between the results from PRISM-SRM and immunoassays. Our results demonstrate that PRISM-SRM can successful quantify low ng/mL proteins in human plasma or serum without depletion. We anticipate broad applications for PRISM-SRM quantification of low-abundance proteins in candidate biomarker verification and systems biology studies. PMID:23763644

  11. CUBES Project Support

    NASA Technical Reports Server (NTRS)

    Jenkins, Kenneth T., Jr.

    2012-01-01

    CUBES stands for Creating Understanding and Broadening Education through Satellites. The goal of the project is to allow high school students to build a small satellite, or CubeSat. Merritt Island High School (MIHS) was selected to partner with NASA, and California Polytechnic State University (Cal-Poly}, to build a CubeSat. The objective of the mission is to collect flight data to better characterize maximum predicted environments inside the CubeSat launcher, Poly-Picosatellite Orbital Deplorer (P-POD), while attached to the launch vehicle. The MIHS CubeSat team will apply to the NASA CubeSat Launch Initiative, which provides opportunities for small satellite development teams to secure launch slots on upcoming expendable launch vehicle missions. The MIHS team is working to achieve a test launch, or proof of concept flight aboard a suborbital launch vehicle in early 2013.

  12. EarthCube - A Community-led, Interdisciplinary Collaboration for Geoscience Cyberinfrastructure

    NASA Astrophysics Data System (ADS)

    Allison, M. L.; Keane, C. M.; Robinson, E.

    2015-12-01

    The EarthCube Test Enterprise Governance Project completed its initial two-year long process to engage the community and test a demonstration governing organization with the goal of facilitating a community-led process on designing and developing a geoscience cyberinfrastructure. Conclusions are that EarthCube is viable, has engaged a broad spectrum of end-users and contributors, and has begun to foster a sense of urgency around the importance of open and shared data. Levels of trust among participants are growing. At the same time, the active participants in EarthCube represent a very small sub-set of the larger population of geoscientists. Results from Stage I of this project have impacted NSF decisions on the direction of the EarthCube program. The overall tone of EarthCube events has had a constructive, problem-solving orientation. The technical and organizational elements of EarthCube are poised to support a functional infrastructure for the geosciences community. The process for establishing shared technological standards has notable progress but there is a continuing need to expand technological and cultural alignment. Increasing emphasis is being given to the interdependencies among EarthCube funded projects. The newly developed EarthCube Technology Plan highlights important progress in this area by five working groups focusing on: 1. Use cases; 2. Funded project gap analysis; 3. Testbed development; 4. Standards; and 5. Architecture. There is ample justification to continue running a community-led governance framework that facilitates agreement on a system architecture, guides EarthCube activities, and plays an increasing role in making the EarthCube vision of cyberinfrastructure for the geosciences operational. There is widespread community expectation for support of a multiyear EarthCube governing effort to put into practice the science, technical, and organizational plans that have and are continuing to emerge.

  13. User’s Guide Engineering Data Compendium Human Perception and Performance

    DTIC Science & Technology

    1988-01-01

    covered (CRef. 1.222) by large wedges of sound-absorbing material to minimize Achromatic. (1) Characterized by an absence of chroma reflections and...walk model. A model of the perception and Risley prism. A prism assembly comprised of two thin decision response components in reaction time tasks... wedge prisms (generally identical) arranged in series. According to the model, an ideal detector accumulates Rotating the two prisms in opposite

  14. Postural stability changes during large vertical diplopia induced by prism wear in normal subjects.

    PubMed

    Matsuo, Toshihiko; Yamasaki, Hanako; Yasuhara, Hirotaka; Hasebe, Kayoko

    2013-01-01

    To test the effect of double vision on postural stability, we measured postural stability by electric stabilometry before prism-wearing and immediately, 15, 30, and 60min after continuous prism-wearing with 6 prism diopters in total (a 3-prism-diopter prism placed with the base up in front of one eye and with the base down in front of the other eye) in 20 normal adult individuals with their eyes open or closed. Changes in stabilometric parameters in the time course of 60min were analyzed statistically by repeated-measure analysis of variance. When subjectsセ eyes were closed, the total linear length (cm) and the unit-time length (cm/sec) of the sway path were significantly shortened during the 60-minute prism-wearing (p<0.05). No significant change was noted in any stabilometric parameters obtained with the eyes open during the time course. In conclusion, postural stability did not change with the eyes open in the condition of large vertical diplopia, induced by prism-wearing for 60min, while the stability became better when measured with the eyes closed. A postural control mechanism other than that derived from visual input might be reinforced under abnormal visual input such as non-fusionable diplopia.

  15. Goldmann Tonometer Prism with an Optimized Error Correcting Applanation Surface.

    PubMed

    McCafferty, Sean; Lim, Garrett; Duncan, William; Enikov, Eniko; Schwiegerling, Jim

    2016-09-01

    We evaluate solutions for an applanating surface modification to the Goldmann tonometer prism, which substantially negates the errors due to patient variability in biomechanics. A modified Goldmann or correcting applanation tonometry surface (CATS) prism is presented which was optimized to minimize the intraocular pressure (IOP) error due to corneal thickness, stiffness, curvature, and tear film. Mathematical modeling with finite element analysis (FEA) and manometric IOP referenced cadaver eyes were used to optimize and validate the design. Mathematical modeling of the optimized CATS prism indicates an approximate 50% reduction in each of the corneal biomechanical and tear film errors. Manometric IOP referenced pressure in cadaveric eyes demonstrates substantial equivalence to GAT in nominal eyes with the CATS prism as predicted by modeling theory. A CATS modified Goldmann prism is theoretically able to significantly improve the accuracy of IOP measurement without changing Goldmann measurement technique or interpretation. Clinical validation is needed but the analysis indicates a reduction in CCT error alone to less than ±2 mm Hg using the CATS prism in 100% of a standard population compared to only 54% less than ±2 mm Hg error with the present Goldmann prism. This article presents an easily adopted novel approach and critical design parameters to improve the accuracy of a Goldmann applanating tonometer.

  16. Jones matrix formulation of a Porro prism laser resonator with waveplates: theoretical and experimental analysis

    NASA Astrophysics Data System (ADS)

    Agrawal, L.; Bhardwaj, A.; Pal, S.; Kumar, A.

    2007-11-01

    This article presents the results of a detailed theoretical and experimental analysis carried out on a folded Z-shaped polarization coupled, electro-optically Q-switched laser resonator with Porro prisms and waveplates. The advantages of adding waveplates in a Porro prism resonator have been explored for creating high loss condition prior to Q-switching and obtaining variable reflectivity with fixed orientation of Porro prism. Generalized expressions have been derived in terms of azimuth angles and phase shifts introduced by the polarizing elements. These expressions corroborate with known reported results under appropriate substitutions. A specific case of a crossed Porro prism diode-pumped Nd:YAG laser has been theoretically and experimentally investigated. In the feedback arm, a 0.57λ waveplate oriented at 135° completely compensates the phase shift of a fused silica Porro prism and provides better tolerances than a BK-7 prism/0.60λ waveplate combination to stop prelasing. The fused silica prism/0.57λ combination with waveplate at 112° acts like a 100% mirror and was utilized for optimization of free running performance. The effective reflectivity was determined for various orientations of the quarter waveplate in the gain arm to numerically estimate the Q-switched laser pulse parameters through rate equation analysis. Experimental results match well with the theoretical analysis.

  17. Accuracy assessment of ALOS optical instruments: PRISM and AVNIR-2

    NASA Astrophysics Data System (ADS)

    Tadono, Takeo; Shimada, Masanobu; Iwata, Takanori; Takaku, Junichi; Kawamoto, Sachi

    2017-11-01

    This paper describes the updated results of calibration and validation to assess the accuracies for optical instruments onboard the Advanced Land Observing Satellite (ALOS, nicknamed "Daichi"), which was successfully launched on January 24th, 2006 and it is continuously operating very well. ALOS has an L-band Synthetic Aperture Radar called PALSAR and two optical instruments i.e. the Panchromatic Remotesensing Instrument for Stereo Mapping (PRISM) and the Advanced Visible and Near Infrared Radiometer type-2 (AVNIR-2). PRISM consists of three radiometers and is used to derive a digital surface model (DSM) with high spatial resolution that is an objective of the ALOS mission. Therefore, geometric calibration is important in generating a precise DSM with stereo pair images of PRISM. AVNIR-2 has four radiometric bands from blue to near infrared and uses for regional environment and disaster monitoring etc. The radiometric calibration and image quality evaluation are also important for AVNIR-2 as well as PRISM. This paper describes updated results of geometric calibration including geolocation determination accuracy evaluations of PRISM and AVNIR-2, image quality evaluation of PRISM, and validation of generated PRISM DSM. These works will be done during the ALOS mission life as an operational calibration to keep absolute accuracies of the standard products.

  18. Build an Earthquake City! Grades 6-8.

    ERIC Educational Resources Information Center

    Rushton, Erik; Ryan, Emily; Swift, Charles

    In this activity, students build a city out of sugar cubes, bouillon cubes, and gelatin cubes. The city is then put through simulated earthquakes to see which cube structures withstand the shaking the best. This activity requires a 50-minute time period for completion. (Author/SOE)

  19. Influence of Visual Prism Adaptation on Auditory Space Representation.

    PubMed

    Pochopien, Klaudia; Fahle, Manfred

    2017-01-01

    Prisms shifting the visual input sideways produce a mismatch between the visual versus felt position of one's hand. Prism adaptation eliminates this mismatch, realigning hand proprioception with visual input. Whether this realignment concerns exclusively the visuo-(hand)motor system or it generalizes to acoustic inputs is controversial. We here show that there is indeed a slight influence of visual adaptation on the perceived direction of acoustic sources. However, this shift in perceived auditory direction can be fully explained by a subconscious head rotation during prism exposure and by changes in arm proprioception. Hence, prism adaptation does only indirectly generalize to auditory space perception.

  20. Prism Window for Optical Alignment

    NASA Technical Reports Server (NTRS)

    Tang, Hong

    2008-01-01

    A prism window has been devised for use, with an autocollimator, in aligning optical components that are (1) required to be oriented parallel to each other and/or at a specified angle of incidence with respect to a common optical path and (2) mounted at different positions along the common optical path. The prism window can also be used to align a single optical component at a specified angle of incidence. Prism windows could be generally useful for orienting optical components in manufacture of optical instruments. "Prism window" denotes an application-specific unit comprising two beam-splitter windows that are bonded together at an angle chosen to obtain the specified angle of incidence.

  1. CubeSat Initiatives at KSC

    NASA Technical Reports Server (NTRS)

    Berg, Jared J.

    2014-01-01

    Even though the Small PayLoad Integrated Testing Services or SPLITS line of business is newly established, KSC has been involved in a variety of CubeSat projects and programs. CubeSat development projects have been initiated through educational outreach partnerships with schools and universities, commercial partnerships and internal training initiatives. KSC has also been involved in CubeSat deployment through programs to find launch opportunities to fly CubeSats as auxiliary payloads on previously planned missions and involvement in the development of new launch capabilities for small satellites. This overview will highlight the CubeSat accomplishments at KSC and discuss planning for future projects and opportunities.

  2. Recognition and classification of oscillatory patterns of electric brain activity using artificial neural network approach

    NASA Astrophysics Data System (ADS)

    Pchelintseva, Svetlana V.; Runnova, Anastasia E.; Musatov, Vyacheslav Yu.; Hramov, Alexander E.

    2017-03-01

    In the paper we study the problem of recognition type of the observed object, depending on the generated pattern and the registered EEG data. EEG recorded at the time of displaying cube Necker characterizes appropriate state of brain activity. As an image we use bistable image Necker cube. Subject selects the type of cube and interpret it either as aleft cube or as the right cube. To solve the problem of recognition, we use artificial neural networks. In our paper to create a classifier we have considered a multilayer perceptron. We examine the structure of the artificial neural network and define cubes recognition accuracy.

  3. Interplanetary CubeSat Navigational Challenges

    NASA Technical Reports Server (NTRS)

    Martin-Mur, Tomas J.; Gustafson, Eric D.; Young, Brian T.

    2015-01-01

    CubeSats are miniaturized spacecraft of small mass that comply with a form specification so they can be launched using standardized deployers. Since the launch of the first CubeSat into Earth orbit in June of 2003, hundreds have been placed into orbit. There are currently a number of proposals to launch and operate CubeSats in deep space, including MarCO, a technology demonstration that will launch two CubeSats towards Mars using the same launch vehicle as NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) Mars lander mission. The MarCO CubeSats are designed to relay the information transmitted by the InSight UHF radio during Entry, Descent, and Landing (EDL) in real time to the antennas of the Deep Space Network (DSN) on Earth. Other CubeSatts proposals intend to demonstrate the operation of small probes in deep space, investigate the lunar South Pole, and visit a near Earth object, among others. Placing a CubeSat into an interplanetary trajectory makes it even more challenging to pack the necessary power, communications, and navigation capabilities into such a small spacecraft. This paper presents some of the challenges and approaches for successfully navigating CubeSats and other small spacecraft in deep space.

  4. Some Experiments with Thin Prisms.

    ERIC Educational Resources Information Center

    Fernando, P. C. B.

    1980-01-01

    Described are several experiments, for a course in geometrical optics or for a college physics laboratory, which have a bearing on ophthalmic optics. Experiments include the single thin prism, crossed prisms, and the prismatic power of a lens. (Author/DS)

  5. How CubeSats contribute to Science and Technology in Astronomy and Astrophysics

    NASA Astrophysics Data System (ADS)

    Cahoy, Kerri Lynn; Douglas, Ewan; Carlton, Ashley; Clark, James; Haughwout, Christian

    2017-01-01

    CubeSats are nanosatellites, spacecraft typically the size of a shoebox or backpack. CubeSats are made up of one or more 10 cm x 10 cm x 10 cm units weighing 1.33 kg (each cube is called a “U”). CubeSats benefit from relatively easy and inexpensive access to space because they are designed to slide into fully enclosed spring-loaded deployer pods before being attached as an auxiliary payload to a larger vehicle, without adding risk to the vehicle or its primary payload(s). Even though CubeSats have inherent resource and aperture limitations due to their small size, over the past fifteen years, researchers and engineers have miniaturized components and subsystems, greatly increasing the capabilities of CubeSats. We discuss how state of the art CubeSats can address both science objectives and technology objectives in Astronomy and Astrophysics. CubeSats can contribute toward science objectives such as cosmic dawn, galactic evolution, stellar evolution, extrasolar planets and interstellar exploration.CubeSats can contribute to understanding how key technologies for larger missions, like detectors, microelectromechanical systems, and integrated optical elements, can not only survive launch and operational environments (which can often be simulated on the ground), but also meet performance specifications over long periods of time in environments that are harder to simulate properly, such as ionizing radiation, the plasma environment, spacecraft charging, and microgravity. CubeSats can also contribute to both science and technology advancements as multi-element space-based platforms that coordinate distributed measurements and use formation flying and large separation baselines to counter their restricted individual apertures.

  6. Achieving Science with CubeSats: Thinking Inside the Box

    NASA Astrophysics Data System (ADS)

    Zurbuchen, Thomas H.; Lal, Bhavya

    2017-01-01

    We present the results of a study conducted by the National Academies of Sciences, Engineering, and Medicine. The study focused on the scientific potential and technological promise of CubeSats. We will first review the growth of the CubeSat platform from an education-focused technology toward a platform of importance for technology development, science, and commercial use, both in the United States and internationally. The use has especially exploded in recent years. For example, of the over 400 CubeSats launched since 2000, more than 80% of all science-focused ones have been launched just in the past four years. Similarly, more than 80% of peer-reviewed papers describing new science based on CubeSat data have been published in the past five years.We will then assess the technological and science promise of CubeSats across space science disciplines, and discuss a subset of priority science goals that can be achieved given the current state of CubeSat capabilities. Many of these goals address targeted science, often in coordination with other spacecraft, or by using sacrificial or high-risk orbits that lead to the demise of the satellite after critical data have been collected. Other goals relate to the use of CubeSats as constellations or swarms, deploying tens to hundreds of CubeSats that function as one distributed array of measurements.Finally, we will summarize our conclusions and recommendations from this study; especially those focused on nearterm investment that could improve the capabilities of CubeSats toward increased science and technological return and enable the science communities’ use of CubeSats.

  7. Achieving Science with CubeSats: Thinking Inside the Box

    NASA Astrophysics Data System (ADS)

    Lal, B.; Zurbuchen, T.

    2016-12-01

    In this paper, we present a study conducted by the National Academies of Sciences, Engineering, and Medicine. The study focused on the scientific potential and technological promise of CubeSats. We will first review the growth of the CubeSat platform from an education-focused technology toward a platform of importance for technology development, science, and commercial use, both in the United States and internationally. The use has especially exploded in recent years. For example, of the over 400 CubeSats launched since 2000, more than 80% of all science-focused ones have been launched just in the past four years. Similarly, more than 80% of peer-reviewed papers describing new science based on CubeSat data have been published in the past five years. We will then assess the technological and science promise of CubeSats across space science disciplines, and discuss a subset of priority science goals that can be achieved given the current state of CubeSat capabilities. Many of these goals address targeted science, often in coordination with other spacecraft, or by using sacrificial or high-risk orbits that lead to the demise of the satellite after critical data have been collected. Other goals relate to the use of CubeSats as constellations or swarms, deploying tens to hundreds of CubeSats that function as one distributed array of measurements. Finally, we will summarize our conclusions and recommendations from this study; especially those focused on near-term investment that could improve the capabilities of CubeSats toward increased science and technological return and enable the science communities' use of CubeSats.

  8. PRISM: Priority Symptom Management Project phase I: assessment.

    PubMed

    Ropka, M E; Spencer-Cisek, P

    2001-01-01

    To provide an overview of the process, goals, and outcome recommendations from the assessment phase of the Oncology Nursing Society's Priority Symptom Management (PRISM) project and to provide the foundation for a series of evidence-based practice and qualitative systematic review articles generated from the first phase of PRISM. Published articles, abstracts, and books; computerized databases; nonpublished research; personal communications; and proceedings of the PRISM summit meeting. Symptom management is a key component in quality cancer care. The assessment phase of PRISM yielded systematic reviews with an evidence-based framework to evaluate key symptoms, developed a framework for teaching and evaluating other symptoms, and recommended future ONS initiatives. Outcome recommendations from the PRISM summit targeted practice; professional and public education; research; and health policy. These activities provide background for subsequent evidence-based practice and qualitative systematic review articles that will focus on cancer symptom management.

  9. Limited Plasticity of Prismatic Visuomotor Adaptation

    PubMed Central

    Wischhusen, Sven; Fahle, Manfred

    2017-01-01

    Movements toward an object displaced optically through prisms adapt quickly, a striking example for the plasticity of neuronal visuomotor programs. We investigated the degree and time course of this system’s plasticity. Participants performed goal-directed throwing or pointing movements with terminal feedback before, during, and after wearing prism goggles shifting the visual world laterally either to the right or to the left. Prism adaptation was incomplete even after 240 throwing movements, still deviating significantly laterally by on average of 0.8° (CI = 0.20°) at the end of the adaptation period. The remaining lateral deviation was significant for pointing movements only with left shifting prisms. In both tasks, removal of the prisms led to an aftereffect which disappeared in the course of further training. This incomplete prism adaptation may be caused by movement variability combined with an adaptive neuronal control system exhibiting a finite capacity for evaluating movement errors. PMID:28473909

  10. Effect of prescribed prism on monocular interpupillary distances and fitting heights for progressive add lenses.

    PubMed

    Brooks, C W; Riley, H D

    1994-06-01

    Success in fitting progressive addition lenses is dependent upon the accurate placement of the progressive zone. Both eyes must track simultaneously within the boundary of the progressive corridor. Vertical prism will displace the wearer's lines of sight and consequently eye position. Because fitting heights are measured using an empty frame, subjects with vertical phorias usually will fuse, and not show the vertical differences in pupil heights during the measuring process. Therefore, when prescriptions contain vertical prism one must consider the changes in measured fitting heights that will occur once the lenses are placed in the frame. Fitting heights must be altered approximately 0.3 mm for each vertical prism diopter prescribed. The fitting height adjustment is opposite from the base direction of the prescribed prism. An explanation of the effect of prescribed horizontal prism on monocular interpupillary distance (PD) measurements is also included.

  11. IceCube

    Science.gov Websites

    . PDF file High pT muons in Cosmic-Ray Air Showers with IceCube. PDF file IceCube Performance with Artificial Light Sources: the road to a Cascade Analyses + Energy scale calibration for EHE. PDF file , 2006. PDF file Thorsten Stetzelberger "IceCube DAQ Design & Performance" Nov 2005 PPT

  12. Structural Stability Assessment of the High Frequency Antenna for Use on the Buccaneer CubeSat in Low Earth Orbit

    DTIC Science & Technology

    2014-05-01

    UNCLASSIFIED UNCLASSIFIED Structural Stability Assessment of the High Frequency Antenna for Use on the Buccaneer CubeSat in Low Earth...DSTO-TN-1295 ABSTRACT The Buccaneer CubeSat will be fitted with a high frequency antenna made from spring steel measuring tape. The geometry...High Frequency Antenna for Use on the Buccaneer CubeSat in Low Earth Orbit Executive Summary The Buccaneer CubeSat will be fitted with a

  13. Surface Proton Transfer Promotes Four-Electron Oxygen Reduction on Gold Nanocrystal Surfaces in Alkaline Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Fang; Zhang, Yu; Liu, Shizhong

    Four-electron oxygen reduction reaction (4e-ORR), as a key pathway in energy conversion, is preferred over the two-electron reduction pathway that falls short in dissociating dioxygen molecules. Gold (Au) surfaces exhibit high sensitivity of the ORR pathway to its atomic structures. The long-standing puzzle remains unsolved why the Au surfaces with {100} sub-facets were exceptionally capable to catalyze the 4e-ORR in alkaline solution, though limited within a narrow potential window. Herein we report the discovery of a dominant 4e-ORR over the whole potential range on {310} surface of Au nanocrystal shaped as truncated ditetragonal prism (TDP). In contrast, ORR pathways onmore » single-crystalline facets of shaped nanoparticles, including {111} on nano-octahedra and {100} on nano-cubes, are similar to their single-crystal counterparts. Combining our experimental results with density functional theory calculations, we elucidate the key role of surface proton transfers from co-adsorbed H 2O molecules in activating the facet- and potential-dependent 4e ORR on Au in alkaline solutions. These results elucidate how surface atomic structures determine the reaction pathways via bond scission and formation among weakly adsorbed water and reaction intermediates. The new insight helps in developing facet-specific nanocatalysts for various reactions.« less

  14. Surface Proton Transfer Promotes Four-Electron Oxygen Reduction on Gold Nanocrystal Surfaces in Alkaline Solution

    DOE PAGES

    Lu, Fang; Zhang, Yu; Liu, Shizhong; ...

    2017-05-11

    Four-electron oxygen reduction reaction (4e-ORR), as a key pathway in energy conversion, is preferred over the two-electron reduction pathway that falls short in dissociating dioxygen molecules. Gold (Au) surfaces exhibit high sensitivity of the ORR pathway to its atomic structures. The long-standing puzzle remains unsolved why the Au surfaces with {100} sub-facets were exceptionally capable to catalyze the 4e-ORR in alkaline solution, though limited within a narrow potential window. Herein we report the discovery of a dominant 4e-ORR over the whole potential range on {310} surface of Au nanocrystal shaped as truncated ditetragonal prism (TDP). In contrast, ORR pathways onmore » single-crystalline facets of shaped nanoparticles, including {111} on nano-octahedra and {100} on nano-cubes, are similar to their single-crystal counterparts. Combining our experimental results with density functional theory calculations, we elucidate the key role of surface proton transfers from co-adsorbed H 2O molecules in activating the facet- and potential-dependent 4e ORR on Au in alkaline solutions. These results elucidate how surface atomic structures determine the reaction pathways via bond scission and formation among weakly adsorbed water and reaction intermediates. The new insight helps in developing facet-specific nanocatalysts for various reactions.« less

  15. Salt-induced square prism Pd microtubes and their ethanol electrocatalysis properties

    NASA Astrophysics Data System (ADS)

    Jiang, Kunpeng; Ma, Shenghua; Wang, Yinan; Zhang, Ying; Han, Xiaojun

    2017-05-01

    The synthesis of square prism tubes are always challenging due to their thermo and dynamical instability. We demonstrated a simple method using Pd2+ doped PoPD oligomers as building blocks to assemble into 1D square prism metal-organic microtubes, which consists of cataphracted nanosheets on the surfaces. After high temperature treatment, the microtubes became square prism Pd tubes with a cross section size of 3 μm. The pure Pd microtubes showed excellent catalyzing activity towards the electro oxidation of ethanol. Their electrochemically active surface area is 48.2 m2 g-1, which indicates the square prism Pd tubes have great potential in the field of fuel cell.

  16. Prism users guide.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weirs, V. Gregory

    2012-03-01

    Prism is a ParaView plugin that simultaneously displays simulation data and material model data. This document describes its capabilities and how to use them. A demonstration of Prism is given in the first section. The second section contains more detailed notes on less obvious behavior. The third and fourth sections are specifically for Alegra and CTH users. They tell how to generate the simulation data and SESAME files and how to handle aspects of Prism use particular to each of these codes.

  17. Synthesis of hexagonal wurtzite Cu{sub 2}ZnSnS{sub 4} prisms by an ultrasound-assisted microwave solvothermal method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Long, Fei, E-mail: long.drf@gmail.com; Chi, Shangsen; Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083

    Wurtzite Cu{sub 2}ZnSnS{sub 4} (CZTS) hexagonal prisms were synthesized by a simple ultrasound-microwave solvothermal method. The product was characterized by XRD, FESEM, EDS, TEM, Raman and UV–vis spectrometer. The hexagonal prisms were 0.5–2 μm wide and 5–12 μm long. The PVP played an important role in the formation of the CZTS hexagonal prisms. In addition, the ultrasound-assisted microwave process was helpful for synthesis of wurtzite rather than kesterite phase CZTS. A nucleation–dissolution–recrystallization mechanism was also proposed to explain the growth of the CZTS hexagonal prisms. - Graphical abstract: Wurtzite Cu{sub 2}ZnSnS{sub 4} hexagonal prisms were synthesized by ultrasound-microwave solvothermal method.more » The ultrasound-assisted microwave process and PVP were useful to the growth of CZTS. A nucleation–dissolution–recrystallization growth mechanism was also proposed. - Highlights: • Wurtzite Cu{sub 2}ZnSnS{sub 4} was prepared by ultrasound-assisted microwave solvothermal method. • The wurtzite CZTS hexagonal prisms are demonstrated a band gap of 1.49 eV. • Synergistic effect of ultrasound and microwave is helpful to prepare Wurtzite CZTS. • PVP plays an important role in the formation of the CZTS hexagonal prisms. • Nucleation–dissolution–recrystallization growth mechanism of the CZTS was proposed.« less

  18. Controlled formation of intense hot spots in Pd@Ag core-shell nanooctapods for efficient photothermal conversion

    NASA Astrophysics Data System (ADS)

    Liu, Maochang; Yang, Yang; Li, Naixu; Du, Yuanchang; Song, Dongxing; Ma, Lijing; Wang, Yi; Zheng, Yiqun; Jing, Dengwei

    2017-08-01

    Plasmonic Ag nanostructures have been of great interest for such applications in cancer therapy and catalysis, etc. However, the relatively week Ag-Ag interaction and spontaneous atom diffusion make it very difficult to generate concaved or branched structures in Ag nanocrystals with sizes less than 100 nm, which has been considered very favorable for plasmonic effects. Herein, by employing a cubic Pd seed and a specific reducing agent to restrict the surface diffusion of Ag atoms, Pd@Ag core-shell nanooctapod structures where Ag atoms can be selectively deposited onto the corner sites of the Pd cubes were obtained. Such selective decoration enables us to precisely control the locations for the hot spot formation during light irradiation. We find that the branched nanooctapod structure shows strong absorption in the visible-light region and generates intense hot spots around the octapod arms of Ag. As such, the photothermal conversion efficiency could be significantly improved by more than 50% with a colloid solution containing only ppm-level nanooctapods compared with pure water. The reported nanostructure is expected to find extensive applications due to its controlled formation of light-induced hot spots at certain points on the crystal surface.

  19. High accuracy step gauge interferometer

    NASA Astrophysics Data System (ADS)

    Byman, V.; Jaakkola, T.; Palosuo, I.; Lassila, A.

    2018-05-01

    Step gauges are convenient transfer standards for the calibration of coordinate measuring machines. A novel interferometer for step gauge calibrations implemented at VTT MIKES is described. The four-pass interferometer follows Abbe’s principle and measures the position of the inductive probe attached to a measuring head. The measuring head of the instrument is connected to a balanced boom above the carriage by a piezo translation stage. A key part of the measuring head is an invar structure on which the inductive probe and the corner cubes of the measuring arm of the interferometer are attached. The invar structure can be elevated so that the probe is raised without breaking the laser beam. During probing, the bending of the probe and the interferometer readings are recorded and the measurement face position is extrapolated to zero force. The measurement process is fully automated and the face positions of the steps can be measured up to a length of 2 m. Ambient conditions are measured continuously and the refractive index of air is compensated for. Before measurements the step gauge is aligned with an integrated 2D coordinate measuring system. The expanded uncertainty of step gauge calibration is U=\\sqrt{{{(64 nm)}2}+{{(88× {{10}-9}L)}2}} .

  20. Robust feature detection and local classification for surfaces based on moment analysis.

    PubMed

    Clarenz, Ulrich; Rumpf, Martin; Telea, Alexandru

    2004-01-01

    The stable local classification of discrete surfaces with respect to features such as edges and corners or concave and convex regions, respectively, is as quite difficult as well as indispensable for many surface processing applications. Usually, the feature detection is done via a local curvature analysis. If concerned with large triangular and irregular grids, e.g., generated via a marching cube algorithm, the detectors are tedious to treat and a robust classification is hard to achieve. Here, a local classification method on surfaces is presented which avoids the evaluation of discretized curvature quantities. Moreover, it provides an indicator for smoothness of a given discrete surface and comes together with a built-in multiscale. The proposed classification tool is based on local zero and first moments on the discrete surface. The corresponding integral quantities are stable to compute and they give less noisy results compared to discrete curvature quantities. The stencil width for the integration of the moments turns out to be the scale parameter. Prospective surface processing applications are the segmentation on surfaces, surface comparison, and matching and surface modeling. Here, a method for feature preserving fairing of surfaces is discussed to underline the applicability of the presented approach.

  1. GLRS-R 2-colour retroreflector target design and predicted performance

    NASA Technical Reports Server (NTRS)

    Lund, Glenn

    1993-01-01

    This paper reports on the retroreflector ground-target design for the GLRS-R spaceborne dual-wavelength laser ranging system. The described passive design flows down from the requirements of high station autonomy, high global FOV (up to 60 degrees zenith angle), little or no multiple pulse returns, and adequate optical cross section for most ranging geometries. The proposed solution makes use of 5 hollow cube-corner retroreflectors of which one points to the zenith and the remaining four are inclined from the vertical at uniform azimuthal spacings. The need for fairly large (is approximately 10 cm) retroreflectors is expected (within turbulence limitations) to generate quite narrow diffraction lobes, thus placing non-trivial requirements on the vectorial accuracy of velocity aberration corrections. A good compromise solution is found by appropriately spoiling just one of the retroreflector dihedral angles from 90 degrees, thus generating two symmetrically oriented diffraction lobes in the return beam. The required spoil angles are found to have little dependence on ground target latitude. Various link budget analyses are presented, showing the influence of such factors as point-ahead optimization, turbulence, ranging angle, atmospheric visibility and ground target thermal deformations.

  2. A study of 35-ghz radar-assisted orbital maneuvering vehicle/space telescope docking

    NASA Technical Reports Server (NTRS)

    Mcdonald, M. W.

    1986-01-01

    An experiment was conducted to study the effects of measuring range and range rate information from a complex radar target (a one-third scale model of the Edwin P. Hubble Space Telescope). The radar ranging system was a 35-GHz frequency-modulated continuous wave unit developed in the Communication Systems Branch of the Information and Electronic Systems Laboratory at Marshall Space Flight Cneter. Measurements were made over radar-to-target distances of 5 meters to 15 meters to simulate the close distance realized in the final stages of space vehicle docking. The Space Telescope model target was driven by an antenna positioner through a range of azimuth and elevation (pitch) angles to present a variety of visual aspects of the aft end to the radar. Measurements were obtained with and without a cube corner reflector mounted in the center of the aft end of the model. The results indicate that range and range rate measurements are performed significantly more accurately with the cooperative radar reflector affixed. The results further reveal that range rate (velocity) can be measured accurately enough to support the required soft docking with the Space Telescope.

  3. Laser ranging application to time transfer using geodetic satellite and to other Japanese space programs

    NASA Technical Reports Server (NTRS)

    Kunimori, Hiroo; Takahashi, Fujinobu; Itabe, Toshikazu; Yamamoto, Atsushi

    1993-01-01

    Communications Research Laboratory (CRL) has been developing a laser time transfer system using a satellite laser ranging (SLR) system. We propose Japanese geodetic satellite 'AJISAI', launched in 1986 as a target satellite. The surface is covered not only with corner cube reflectors but also with mirrors. The mirrors are originally designed for observation of flushing solar light reflected by the separate mirrors while the satellite is spinning. In the experiment, synchronized laser pulses are transferred via specified mirror from one station to another while the satellite is up on the horizon to both stations. The system is based on the epoch timing ranging system with 40 ps ranging precision, connected together with UTC(CRL). Simulation study indicates that two stations at thousands of km distance from each other can be linked with signal strength of more than 10 photons and the distributed images of laser beam from AJISAI mirrors give many chances for two stations to link each other during a single AJISAI pass. Retro-reflector In Space for Advanced Earth Observation Satellite (ADEOS) and RendDezVous docking mission of Experimental Technology Satellite-7 (ETS-7) are briefly presented.

  4. Gravity and the geoid in the Nepal Himalaya

    NASA Technical Reports Server (NTRS)

    Bilham, Roger

    1992-01-01

    Materials within the Himalaya are rising due to convergence between India and Asia. If the rate of erosion is comparable to the rate of uplift, the mean surface elevation will remain constant. Any slight imbalance in these two processes will lead to growth or attrition of the Himalaya. Although buried rocks, minerals and surface control points in the Himalaya are undoubtably rising, the growth or collapse or the Himalaya depends on the erosion rate which is invisible to geodetic measurements. A way to measure erosion rate is to measure the rate of change of gravity in a region of uplift. Essentially gravity should change precisely in accord with a change in elevation of the point in a free air gradient if erosion equals uplift rate. A measurement of absolute gravity was made simultaneously with measurements of GPS height within the Himalaya. Absolute gravity is estimated from the change in velocity per unit distance of a falling corner cube in a vacuum. Time is measured with an atomic clock and the unit distance corresponds to the wavelength of an iodine stabilized laser. An experiment undertaken in the Himalaya in 1991 provide a site description also with a instrument description.

  5. GLRS-R 2-colour retroreflector target design and predicted performance

    NASA Astrophysics Data System (ADS)

    Lund, Glenn

    1993-06-01

    This paper reports on the retroreflector ground-target design for the GLRS-R spaceborne dual-wavelength laser ranging system. The described passive design flows down from the requirements of high station autonomy, high global FOV (up to 60 degrees zenith angle), little or no multiple pulse returns, and adequate optical cross section for most ranging geometries. The proposed solution makes use of 5 hollow cube-corner retroreflectors of which one points to the zenith and the remaining four are inclined from the vertical at uniform azimuthal spacings. The need for fairly large (is approximately 10 cm) retroreflectors is expected (within turbulence limitations) to generate quite narrow diffraction lobes, thus placing non-trivial requirements on the vectorial accuracy of velocity aberration corrections. A good compromise solution is found by appropriately spoiling just one of the retroreflector dihedral angles from 90 degrees, thus generating two symmetrically oriented diffraction lobes in the return beam. The required spoil angles are found to have little dependence on ground target latitude. Various link budget analyses are presented, showing the influence of such factors as point-ahead optimization, turbulence, ranging angle, atmospheric visibility and ground target thermal deformations.

  6. Nitrogen removal in moving bed sequencing batch reactor using polyurethane foam cubes of various sizes as carrier materials.

    PubMed

    Lim, Jun-Wei; Seng, Chye-Eng; Lim, Poh-Eng; Ng, Si-Ling; Sujari, Amat-Ngilmi Ahmad

    2011-11-01

    The performance of moving bed sequencing batch reactors (MBSBRs) added with 8 % (v/v) of polyurethane (PU) foam cubes as carrier media in nitrogen removal was investigated in treating low COD/N wastewater. The results indicate that MBSBR with 8-mL cubes achieved the highest total nitrogen (TN) removal efficiency of 37% during the aeration period, followed by 31%, 24% and 19 % for MBSBRs with 27-, 64- and 125-mL cubes, respectively. The increased TN removal in MBSBRs was mainly due to simultaneous nitrification and denitrification (SND) process which was verified by batch studies. The relatively lower TN removal in MBSBR with larger PU foam cubes was attributed to the observation that larger PU foam cubes were not fully attached by biomass. Higher concentrations of 8-mL PU foam cubes in batch reactors yielded higher TN removal. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Electrowetting-driven solar indoor lighting (e-SIL): an optofluidic approach towards sustainable buildings.

    PubMed

    Thio, Si Kuan; Jiang, Dongyue; Park, Sung-Yong

    2018-06-12

    Optofluidics is an emerging research field that combines the two disciplines of microfluidics and optics. By using microfluidic technologies for light control, optofluidic devices can offer several advantages over solid-type optical components, including optical-grade smoothness at the fluidic interface and a high degree of optical tunability without bulky and complex mechanical moving parts. These features have made optofluidic devices more versatile and reconfigurable to improve their optical performances. In this paper, we present a novel optofluidic sunlight manipulation technology for solar indoor lighting using the electrowetting principle. Rooftop sunlight is collected by a solar concentrator and guided to individual rooms along an optical fiber (waveguide) on the bottom of which tunable liquid prisms are linearly integrated. In the light-off mode, electrowetting controls the apex angle of the prisms to be φ = 0°. Under this condition, incoming sunlight experiences total internal reflection and thus keeps propagating along the optical fiber without leaking to the prism bottom for indoor lighting. In contrast, when liquid prisms are controlled to have the angle at φ > 0°, incoming sunlight is partially transmitted to the bottom surface of the arrayed prisms to contribute to interior illumination. Simulation studies validate that our electrowetting-driven solar indoor lighting (e-SIL) system is capable of variably tuning the lighting power from 0% to 98.6% of the input solar power by controlling the prism angle and varying the refractive index of prism materials. For experimental studies, we fabricated an array of 5 prisms filled with silicone oil and water. Using a fiber illuminator as a white light source that includes visible light with various incident angles, we have demonstrated two important lighting functions, (1) light on/off and (2) illumination power control. Lighting performance can be further enhanced by lowering the aspect ratio of the prism as well as increasing the number of prisms. The e-SIL technology based on tunable liquid prisms offers a new approach towards sustainable buildings that are able to reduce their electricity usage as well as provide a healthy and comfortable indoor environment under illumination of natural sunlight.

  8. JPL-20180416-INSIGHf-0001-Marco Media Reel 1

    NASA Image and Video Library

    2018-04-16

    Mars Cube One is a Mars flyby mission consisting of two CubeSats that is planned for launch alongside NASA's InSight Mars lander mission. This will be the first interplanetary CubeSat mission. If successful, the CubeSats will relay entry, descent, and landing (EDL) data to Earth during InSight's landing.

  9. 49 CFR 390.203 - PRISM State registration/biennial updates.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the Performance and Registration Information Systems Management (PRISM) program (authorized under... FEDERAL MOTOR CARRIER SAFETY REGULATIONS; GENERAL Unified Registration System § 390.203 PRISM State... procedures, provided the State has integrated the USDOT registration/update capability into its vehicle...

  10. 49 CFR 390.203 - PRISM State registration/biennial updates.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the Performance and Registration Information Systems Management (PRISM) program (authorized under... FEDERAL MOTOR CARRIER SAFETY REGULATIONS; GENERAL Unified Registration System § 390.203 PRISM State... procedures, provided the State has integrated the USDOT registration/update capability into its vehicle...

  11. Massively Clustered CubeSats NCPS Demo Mission

    NASA Technical Reports Server (NTRS)

    Robertson, Glen A.; Young, David; Kim, Tony; Houts, Mike

    2013-01-01

    Technologies under development for the proposed Nuclear Cryogenic Propulsion Stage (NCPS) will require an un-crewed demonstration mission before they can be flight qualified over distances and time frames representative of a crewed Mars mission. In this paper, we describe a Massively Clustered CubeSats platform, possibly comprising hundreds of CubeSats, as the main payload of the NCPS demo mission. This platform would enable a mechanism for cost savings for the demo mission through shared support between NASA and other government agencies as well as leveraged commercial aerospace and academic community involvement. We believe a Massively Clustered CubeSats platform should be an obvious first choice for the NCPS demo mission when one considers that cost and risk of the payload can be spread across many CubeSat customers and that the NCPS demo mission can capitalize on using CubeSats developed by others for its own instrumentation needs. Moreover, a demo mission of the NCPS offers an unprecedented opportunity to invigorate the public on a global scale through direct individual participation coordinated through a web-based collaboration engine. The platform we describe would be capable of delivering CubeSats at various locations along a trajectory toward the primary mission destination, in this case Mars, permitting a variety of potential CubeSat-specific missions. Cameras on various CubeSats can also be used to provide multiple views of the space environment and the NCPS vehicle for video monitoring as well as allow the public to "ride along" as virtual passengers on the mission. This collaborative approach could even initiate a brand new Science, Technology, Engineering and Math (STEM) program for launching student developed CubeSat payloads beyond Low Earth Orbit (LEO) on future deep space technology qualification missions. Keywords: Nuclear Propulsion, NCPS, SLS, Mars, CubeSat.

  12. NASA Near Earth Network (NEN) Support for Lunar and L1/L2 CubeSats

    NASA Technical Reports Server (NTRS)

    Schaire, Scott; Altunc, Serhat; Wong, Yen; Shelton, Marta; Celeste, Peter; Anderson, Michael; Perrotto, Trish

    2017-01-01

    The NASA Near Earth Network (NEN) consists of globally distributed tracking stations, including NASA, commercial, and partner ground stations, that are strategically located to maximize the coverage provided to a variety of orbital and suborbital missions, including those in LEO, GEO, HEO, lunar and L1/L2 orbits. The NENs future mission set includes and will continue to include CubeSat missions. The majority of the CubeSat missions destined to fly on EM-1, launching in late 2018, many in a lunar orbit, will communicate with ground based stations via X-band and will utilize the NASA Jet Propulsion Laboratory (JPL) developed IRIS radio. The NEN recognizes the important role CubeSats are beginning to play in carrying out NASAs mission and is therefore investigating the modifications needed to provide IRIS radio compatibility. With modification, the NEN could potentially expand support to the EM-1 lunar CubeSats.The NEN could begin providing significant coverage to lunar CubeSat missions utilizing three to four of the NENs mid-latitude sites. This coverage would supplement coverage provided by the JPL Deep Space Network (DSN). The NEN, with smaller apertures than DSN, provides the benefit of a larger beamwidth that could be beneficial in the event of uncertain ephemeris data. In order to realize these benefits the NEN would need to upgrade stations targeted based on coverage ability and current configuration/ease of upgrade, to ensure compatibility with the IRIS radio. In addition, the NEN is working with CubeSat radio developers to ensure NEN compatibility with alternative CubeSat radios for Lunar and L1/L2 CubeSats. The NEN has provided NEN compatibility requirements to several radio developers who are developing radios that offer lower cost and, in some cases, more capabilities with fewer constraints. The NEN is ready to begin supporting CubeSat missions. The NEN is considering network upgrades to broaden the types of CubeSat missions that can be supported and is supporting both the CubeSat community and radio developers to ensure future CubeSat missions have multiple options when choosing a network for their communications support.

  13. Prism adaptation does not change the rightward spatial preference bias found with ambiguous stimuli in unilateral neglect

    PubMed Central

    Sarri, Margarita; Greenwood, Richard; Kalra, Lalit; Driver, Jon

    2011-01-01

    Previous research has shown that prism adaptation (prism adaptation) can ameliorate several symptoms of spatial neglect after right-hemisphere damage. But the mechanisms behind this remain unclear. Recently we reported that prisms may increase leftward awareness for neglect in a task using chimeric visual objects, despite apparently not affecting awareness in a task using chimeric emotional faces (Sarri et al., 2006). Here we explored potential reasons for this apparent discrepancy in outcome, by testing further whether the lack of a prism effect on the chimeric face task task could be explained by: i) the specific category of stimuli used (faces as opposed to objects); ii) the affective nature of the stimuli; and/or iii) the particular task implemented, with the chimeric face task requiring forced-choice judgements of lateral ‘preference’ between pairs of identical, but left/right mirror-reversed chimeric face tasks (as opposed to identification for the chimeric object task). We replicated our previous pattern of no impact of prisms on the emotional chimeric face task here in a new series of patients, while also similarly finding no beneficial impact on another lateral ‘preference’ measure that used non-face non-emotional stimuli, namely greyscale gradients. By contrast, we found the usual beneficial impact of prism adaptation (prism adaptation) on some conventional measures of neglect, and improvements for at least some patients in a different face task, requiring explicit discrimination of the chimeric or non-chimeric nature of face stimuli. The new findings indicate that prism therapy does not alter spatial biases in neglect as revealed by ‘lateral preference tasks’ that have no right or wrong answer (requiring forced-choice judgements on left/right mirror-reversed stimuli), regardless of whether these employ face or non-face stimuli. But our data also show that prism therapy can beneficially modulate some aspects of visual awareness in spatial neglect not only for objects, but also for face stimuli, in some cases. PMID:20171612

  14. The PRISM3D paleoenvironmental reconstruction

    USGS Publications Warehouse

    Dowsett, H.; Robinson, M.; Haywood, A.M.; Salzmann, U.; Hill, Daniel; Sohl, L.E.; Chandler, M.; Williams, Mark; Foley, K.; Stoll, D.K.

    2010-01-01

    The Pliocene Research, Interpretation and Synoptic Mapping (PRISM) paleoenvironmental reconstruction is an internally consistent and comprehensive global synthesis of a past interval of relatively warm and stable climate. It is regularly used in model studies that aim to better understand Pliocene climate, to improve model performance in future climate scenarios, and to distinguish model-dependent climate effects. The PRISM reconstruction is constantly evolving in order to incorporate additional geographic sites and environmental parameters, and is continuously refined by independent research findings. The new PRISM three dimensional (3D) reconstruction differs from previous PRISM reconstructions in that it includes a subsurface ocean temperature reconstruction, integrates geochemical sea surface temperature proxies to supplement the faunal-based temperature estimates, and uses numerical models for the first time to augment fossil data. Here we describe the components of PRISM3D and describe new findings specific to the new reconstruction. Highlights of the new PRISM3D reconstruction include removal of Hudson Bay and the Great Lakes and creation of open waterways in locations where the current bedrock elevation is less than 25m above modern sea level, due to the removal of the West Antarctic Ice Sheet and the reduction of the East Antarctic Ice Sheet. The mid-Piacenzian oceans were characterized by a reduced east-west temperature gradient in the equatorial Pacific, but PRISM3D data do not imply permanent El Niño conditions. The reduced equator-to-pole temperature gradient that characterized previous PRISM reconstructions is supported by significant displacement of vegetation belts toward the poles, is extended into the Arctic Ocean, and is confirmed by multiple proxies in PRISM3D. Arctic warmth coupled with increased dryness suggests the formation of warm and salty paleo North Atlantic Deep Water (NADW) and a more vigorous thermohaline circulation system that may have provided the enhanced ocean heat transport necessary to move warm surface water to the Arctic. New deep ocean temperature data also suggests greater warmth and further southward penetration of paleo NADW.

  15. CubeSats for Astrophysics: The Current Perspective

    NASA Astrophysics Data System (ADS)

    Ardila, David R.; Shkolnik, Evgenya; Gorjian, Varoujan

    2017-01-01

    Cubesats are small satellites built to multiples of 1U (1000 cm3). The 2016 NRC Report “Achieving Science with CubeSats” indicates that between 2013 and 2018 NASA and NSF sponsored 104 CubeSats. Of those, only one is devoted to astrophysics: HaloSat (PI: P. Kaaret), a 6U CubeSat with an X-ray payload to study the hot galactic halo.Despite this paucity of missions, CubeSats have a lot of potential for astrophysics. To assess the science landscape that a CubeSat astrophysics mission may occupy, we consider the following parameters:1-Wavelength: CubeSats are not competitive in the visible, unless the application (e.g. high precision photometry) is difficult to do from the ground. Thermal IR science is limited by the lack of low-power miniaturized cryocoolers and by the large number of infrared astrophysical missions launched or planned. In the UV, advances in δ-doping processes result in larger sensitivity with smaller apertures. Commercial X-ray detectors also allow for competitive science.2-Survey vs. Pointed observations: All-sky surveys have been done at most wavelengths from X-rays to Far-IR and CubeSats will not be able to compete in sensitivity with them. CubeSat science should then center on specific objects or object classes. Due to poor attitude control, unresolved photometry is scientifically more promising that extended imaging.3-Single-epoch vs. time domain: CubeSat apertures cannot compete in sensitivity with big satellites when doing single-epoch observations. However, time-domain astrophysics is an area in which CubeSats can provide very valuable science return.Technologically, CubeSat astrophysics is limited by:1-Lack of large apertures: The largest aperture CubeSat launched is ~10 cm, although deployable apertures as large as 20 cm could be fitted to 6U buses.2-Poor attitude control: State-of-the-art systems have demonstrated jitter of ~10” on timescales of seconds. Jitter imposes limits on image quality and, coupled with detector errors, limits the S/N.Other technology limitations include the lack of high-bandwidth communication and low-power miniaturized cryocoolers. However, even with today’s technological limitations, astrophysics applications of CubeSats are only limited by our imagination.

  16. Near Earth Network (NEN) CubeSat Communications

    NASA Technical Reports Server (NTRS)

    Schaire, Scott

    2017-01-01

    The NASA Near Earth Network (NEN) consists of globally distributed tracking stations, including NASA, commercial, and partner ground stations, that are strategically located to maximize the coverage provided to a variety of orbital and suborbital missions, including those in LEO (Low Earth Orbit), GEO (Geosynchronous Earth Orbit), HEO (Highly Elliptical Orbit), lunar and L1-L2 orbits. The NEN's future mission set includes and will continue to include CubeSat missions. The first NEN-supported CubeSat mission will be the Cubesat Proximity Operations Demonstration (CPOD) launching into LEO in 2017. The majority of the CubeSat missions destined to fly on EM-1, launching in late 2018, many in a lunar orbit, will communicate with ground-based stations via X-band and will utilize the NASA Jet Propulsion Laboratory (JPL)-developed IRIS (Satellite Communication for Air Traffic Management) radio. The NEN recognizes the important role CubeSats are beginning to play in carrying out NASAs mission and is therefore investigating the modifications needed to provide IRIS radio compatibility. With modification, the NEN could potentially expand support to the EM-1 (Exploration Mission-1) lunar CubeSats. The NEN could begin providing significant coverage to lunar CubeSat missions utilizing three to four of the NEN's mid-latitude sites. This coverage would supplement coverage provided by the JPL Deep Space Network (DSN). The NEN, with smaller apertures than DSN, provides the benefit of a larger beamwidth that could be beneficial in the event of uncertain ephemeris data. In order to realize these benefits the NEN would need to upgrade stations targeted based on coverage ability and current configuration ease of upgrade, to ensure compatibility with the IRIS radio. In addition, the NEN is working with CubeSat radio developers to ensure NEN compatibility with alternative CubeSat radios for Lunar and L1-L2 CubeSats. The NEN has provided NEN compatibility requirements to several radio developers who are developing radios that offer lower cost and, in some cases, more capabilities with fewer constraints. The NEN is ready to begin supporting CubeSat missions. The NEN is considering network upgrades to broaden the types of CubeSat missions that can be supported and is supporting both the CubeSat community and radio developers to ensure future CubeSat missions have multiple options when choosing a network for their communications support.

  17. NASA Near Earth Network (NEN) Support for Lunar and L1/L2 CubeSats

    NASA Technical Reports Server (NTRS)

    Schaire, Scott H.

    2017-01-01

    The NASA Near Earth Network (NEN) consists of globally distributed tracking stations, including NASA, commercial, and partner ground stations, that are strategically located to maximize the coverage provided to a variety of orbital and suborbital missions, including those in LEO, GEO, HEO, lunar and L1/L2 orbits. The NENs future mission set includes and will continue to include CubeSat missions. The first NEN supported CubeSat mission will be the Cubesat Proximity Operations Demonstration (CPOD) launching into low earth orbit (LEO) in early 2017. The majority of the CubeSat missions destined to fly on EM-1, launching in late 2018, many in a lunar orbit, will communicate with ground based stations via X-band and will utilize the NASA Jet Propulsion Laboratory (JPL) developed IRIS radio. The NEN recognizes the important role CubeSats are beginning to play in carrying out NASAs mission and is therefore investigating the modifications needed to provide IRIS radio compatibility. With modification, the NEN could potentially expand support to the EM-1 lunar CubeSats. The NEN could begin providing significant coverage to lunar CubeSat missions utilizing three to four of the NENs mid-latitude sites. This coverage would supplement coverage provided by the JPL Deep Space Network (DSN). The NEN, with smaller apertures than DSN, provides the benefit of a larger beamwidth that could be beneficial in the event of uncertain ephemeris data. In order to realize these benefits the NEN would need to upgrade stations targeted based on coverage ability and current configurationease of upgrade, to ensure compatibility with the IRIS radio.In addition, the NEN is working with CubeSat radio developers to ensure NEN compatibility with alternative CubeSat radios for Lunar and L1/L2 CubeSats. The NEN has provided NEN compatibility requirements to several radio developers who are developing radios that offer lower cost and, in some cases, more capabilities with fewer constraints. The NEN is ready to begin supporting CubeSat missions. The NEN is considering network upgrades to broaden the types of CubeSat missions that can be supported and is supporting both the CubeSat community and radio developers to ensure future CubeSat missions have multiple options when choosing a network for their communications support.

  18. Privacy-preserving data cube for electronic medical records: An experimental evaluation.

    PubMed

    Kim, Soohyung; Lee, Hyukki; Chung, Yon Dohn

    2017-01-01

    The aim of this study is to evaluate the effectiveness and efficiency of privacy-preserving data cubes of electronic medical records (EMRs). An EMR data cube is a complex of EMR statistics that are summarized or aggregated by all possible combinations of attributes. Data cubes are widely utilized for efficient big data analysis and also have great potential for EMR analysis. For safe data analysis without privacy breaches, we must consider the privacy preservation characteristics of the EMR data cube. In this paper, we introduce a design for a privacy-preserving EMR data cube and the anonymization methods needed to achieve data privacy. We further focus on changes in efficiency and effectiveness that are caused by the anonymization process for privacy preservation. Thus, we experimentally evaluate various types of privacy-preserving EMR data cubes using several practical metrics and discuss the applicability of each anonymization method with consideration for the EMR analysis environment. We construct privacy-preserving EMR data cubes from anonymized EMR datasets. A real EMR dataset and demographic dataset are used for the evaluation. There are a large number of anonymization methods to preserve EMR privacy, and the methods are classified into three categories (i.e., global generalization, local generalization, and bucketization) by anonymization rules. According to this classification, three types of privacy-preserving EMR data cubes were constructed for the evaluation. We perform a comparative analysis by measuring the data size, cell overlap, and information loss of the EMR data cubes. Global generalization considerably reduced the size of the EMR data cube and did not cause the data cube cells to overlap, but incurred a large amount of information loss. Local generalization maintained the data size and generated only moderate information loss, but there were cell overlaps that could decrease the search performance. Bucketization did not cause cells to overlap and generated little information loss; however, the method considerably inflated the size of the EMR data cubes. The utility of anonymized EMR data cubes varies widely according to the anonymization method, and the applicability of the anonymization method depends on the features of the EMR analysis environment. The findings help to adopt the optimal anonymization method considering the EMR analysis environment and goal of the EMR analysis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. CubeSat Integration into the Space Situational Awareness Architecture

    NASA Astrophysics Data System (ADS)

    Morris, K.; Wolfson, M.; Brown, J.

    2013-09-01

    Lockheed Martin Space Systems Company has recently been involved in developing GEO Space Situational Awareness architectures, which allows insights into how cubesats can augment the current national systems. One hole that was identified in the current architecture is the need for timelier metric track observations to aid in the chain of custody. Obtaining observations of objects at GEO can be supported by CubeSats. These types of small satellites are increasing being built and flown by government agencies like NASA and SMDC. CubeSats are generally mass and power constrained allowing for only small payloads that cannot typically mimic traditional flight capability. CubeSats do not have a high reliability and care must be taken when choosing mission orbits to prevent creating more debris. However, due to the low costs, short development timelines, and available hardware, CubeSats can supply very valuable benefits to these complex missions, affordably. For example, utilizing CubeSats for advanced focal plane demonstrations to support technology insertion into the next generation situational awareness sensors can help to lower risks before the complex sensors are developed. CubeSats can augment the planned ground and space based assets by creating larger constellations with more access to areas of interest. To aid in maintaining custody of objects, a CubeSat constellation at 500 km above GEO would provide increased point of light tracking that can augment the ground SSA assets. Key features of the Cubesat include a small visible camera looking along the GEO belt, a small propulsion system that allows phasing between CubeSats, and an image processor to reduce the data sent to the ground. An elegant communications network will also be used to provide commands to and data from multiple CubeSats. Additional CubeSats can be deployed on GSO launches or through ride shares to GEO, replenishing or adding to the constellation with each launch. Each CubeSat would take images of the GEO belt, process out the stars, and then downlink the data to the ground. This data can then be combined with the existing metric track data to enhance the coverage and timeliness. With the current capability of CubeSats and their payloads, along with the launch constraints, the near term focus is to integrate into existing architectures by reducing technology risks, understanding unique phenomenology, and augment mission collection capability. Understanding the near term benefits of utilizing CubeSats will better inform the SSA mission developers how to integrate CubeSats into the next generation of architectures from the start.

  20. Detail, corner pilaster remnant, gable return on facade, Our Corner ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail, corner pilaster remnant, gable return on facade, Our Corner Saloon, view to northeast (210mm lens with electronic flash fill) - Our Corner Saloon, 301 First Street, Eureka, Humboldt County, CA

  1. Prisms to Shift Pain Away: Pathophysiological and Therapeutic Exploration of CRPS with Prism Adaptation.

    PubMed

    Christophe, Laure; Chabanat, Eric; Delporte, Ludovic; Revol, Patrice; Volckmann, Pierre; Jacquin-Courtois, Sophie; Rossetti, Yves

    Complex Regional Pain Syndrome (CRPS) is an invalidating chronic condition subsequent to peripheral lesions. There is growing consensus for a central contribution to CRPS. However, the nature of this central body representation disorder is increasingly debated. Although it has been repeatedly argued that CRPS results in motor neglect of the affected side, visual egocentric reference frame was found to be deviated toward the pain, that is, neglect of the healthy side. Accordingly, prism adaptation has been successfully used to normalize this deviation. This study aimed at clarifying whether 7 CRPS patients exhibited neglect as well as exploring the pathophysiological mechanisms of this manifestation and of the therapeutic effects of prism adaptation. Pain and quality of life, egocentric reference frames (visual and proprioceptive straight-ahead), and neglect tests (line bisection, kinematic analyses of motor neglect and motor extinction) were repeatedly assessed prior to, during, and following a one-week intense prism adaptation intervention. First, our results provide no support for visual and motor neglect in CRPS. Second, reference frames for body representations were not systematically deviated. Third, intensive prism adaptation intervention durably ameliorated pain and quality of life. As for spatial neglect, understanding the therapeutic effects of prism adaptation deserves further investigations.

  2. SU-G-IeP1-13: Sub-Nyquist Dynamic MRI Via Prior Rank, Intensity and Sparsity Model (PRISM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, B; Gao, H

    Purpose: Accelerated dynamic MRI is important for MRI guided radiotherapy. Inspired by compressive sensing (CS), sub-Nyquist dynamic MRI has been an active research area, i.e., sparse sampling in k-t space for accelerated dynamic MRI. This work is to investigate sub-Nyquist dynamic MRI via a previously developed CS model, namely Prior Rank, Intensity and Sparsity Model (PRISM). Methods: The proposed method utilizes PRISM with rank minimization and incoherent sampling patterns for sub-Nyquist reconstruction. In PRISM, the low-rank background image, which is automatically calculated by rank minimization, is excluded from the L1 minimization step of the CS reconstruction to further sparsify themore » residual image, thus allowing for higher acceleration rates. Furthermore, the sampling pattern in k-t space is made more incoherent by sampling a different set of k-space points at different temporal frames. Results: Reconstruction results from L1-sparsity method and PRISM method with 30% undersampled data and 15% undersampled data are compared to demonstrate the power of PRISM for dynamic MRI. Conclusion: A sub- Nyquist MRI reconstruction method based on PRISM is developed with improved image quality from the L1-sparsity method.« less

  3. 3D Printed Prisms with Tunable Dispersion for the THz Frequency Range

    NASA Astrophysics Data System (ADS)

    Busch, Stefan F.; Castro-Camus, Enrique; Beltran-Mejia, Felipe; Balzer, Jan C.; Koch, Martin

    2018-04-01

    Here, we present a 3D printed prism for THz waves made out of an artificial dielectric material in which the dispersion can be tuned by external compression. The artificial material consists of thin dielectric layers with variable air spacings which has been produced using a fused deposition molding process. The material properties are carefully characterized and the functionality of the prisms is in a good agreement with the underlying theory. These prisms are durable, lightweight, inexpensive, and easy to produce.

  4. 3D Printed Prisms with Tunable Dispersion for the THz Frequency Range

    NASA Astrophysics Data System (ADS)

    Busch, Stefan F.; Castro-Camus, Enrique; Beltran-Mejia, Felipe; Balzer, Jan C.; Koch, Martin

    2018-06-01

    Here, we present a 3D printed prism for THz waves made out of an artificial dielectric material in which the dispersion can be tuned by external compression. The artificial material consists of thin dielectric layers with variable air spacings which has been produced using a fused deposition molding process. The material properties are carefully characterized and the functionality of the prisms is in a good agreement with the underlying theory. These prisms are durable, lightweight, inexpensive, and easy to produce.

  5. Optical power splitter for splitting high power light

    DOEpatents

    English, Jr., Ronald E.; Christensen, John J.

    1995-01-01

    An optical power splitter for the distribution of high-power light energy has a plurality of prisms arranged about a central axis to form a central channel. The input faces of the prisms are in a common plane which is substantially perpendicular to the central axis. A beam of light which is substantially coaxial to the central axis is incident on the prisms and at least partially strikes a surface area of each prism input face. The incident beam also partially passes through the central channel.

  6. Retroreflective Phase Retardation Prisms.

    DTIC Science & Technology

    1981-06-01

    resonant cavity of a 1.064 Mm laser. This report shows that it is possible to coat the reflecting surfaces of a porro prism so that incident plane...with controlled phase retardation can be made by coating each reflecting surface of a porro prism with a single dielectric film. The amount of phase...of angle of incidence (n, < n2) S. Phase change on reflection as a function of angle of incidence (n" n ) [RL-0202-’R 6. Porro prism 7. Phase change

  7. Development of Novel Integrated Antennas for CubeSats

    NASA Technical Reports Server (NTRS)

    Jackson, David; Fink, Patrick W.; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Development of Novel Integrated Antennas for CubeSats project is directed at the development of novel antennas for CubeSats to replace the bulky and obtrusive antennas (e.g., whip antennas) that are typically used. The integrated antennas will not require mechanical deployment and thus will allow future CubeSats to avoid potential mechanical problems and therefore improve mission reliability. Furthermore, the integrated antennas will have improved functionality and performance, such as circular polarization for improved link performance, compared with the conventional antennas currently used on CubeSats.

  8. [Integration design and diffraction characteristics analysis of prism-grating-prism].

    PubMed

    He, Tian-Bo; Bayanheshig; Li, Wen-Hao; Kong, Peng; Tang, Yu-Guo

    2014-01-01

    Prism-grating-prism (PGP) module is the important dispersing component in the hyper spectral imager. In order to effectively predict the distribution of diffraction efficiency of the whole PGP component and its diffraction characteristics before fabrication, a method of the PGP integration design is proposed. From the point of view of the volume phase holographic grating (VPHG) design, combined with the restrictive correlation between the various parameters of prisms and grating, we compiled the analysis software for calculating the whole PGP's diffraction efficiency. Furthermore, the effects of the structure parameters of prisms and grating on the PGP's diffraction characteristics were researched in detail. In particular we discussed the Bragg wavelength shift behaviour of the grating and a broadband PGP spectral component with high diffraction efficiency was designed for the imaging spectrometers. The result of simulation indicated that the spectral bandwidth of the PGP becomes narrower with the dispersion coefficient of prism 1 material decreasing; Bragg wavelength shift characteristics broaden the bandwidth of VPHG both spectrally and angularly, higher angular selectivity is desirable for selection requirements of the prism 1 material, and it can be easily tuned to achieve spectral bandwidth suitable for imaging PGP spectrograph; the vertex angle of prism 1, the film thickness and relative permittivity modulation of the grating have a significant impact on the distribution of PGP's diffraction efficiency, so precision control is necessary when fabrication. The diffraction efficiency of the whole PGP component designed by this method is no less than 50% in the wavelength range from 400 to 1000 nm, the specific design parameters have been given in this paper that have a certain reference value for PGP fabrication.

  9. Validation of PRISM (Pictorial Representation of Illness and Self Measure) as a novel visual assessment tool for the burden of suffering in tinnitus patients.

    PubMed

    Peter, Nicole; Kleinjung, Tobias; Horat, Lukas; Schmidt-Weitmann, Sabine; Meyer, Martin; Büchi, Stefan; Weidt, Steffi

    2016-03-22

    Chronic subjective tinnitus is a frequent condition that affects the subject's quality of life. The lack of objective measures of tinnitus necessitates the use of self-reporting and often time-consuming questionnaires for evaluating tinnitus severity. The Pictorial Representation of Illness and Self Measure (PRISM) is a two dimensional pictorial method to assess the burden of suffering. Patients illustrate their burden of suffering by the distance from a "self" to an illness circle, whereby a shorter distance indicates a higher burden of suffering. The aim of this prospective observational study was to validate the burden of suffering measured with PRISM in tinnitus patients by comparing it with different standardized questionnaires currently used in tinnitus evaluation. A total of 188 patients filled out an online-based survey including sociodemographic variables and the following questionnaires: Tinnitus Handicap Inventory (THI), Tinnitus Questionnaire (TQ), WHO Quality of Life-Questionnaire (WHOQOL-BREF), and the Beck Depression Inventory (BDI). The subtle differences in the burden of suffering were accessed by using PRISM as an iPad version. Based on PRISM performance patients could easily be assigned in three groups, these being mildly, moderately, or severely affected akin to the standard questionnaires. The burden of suffering measured with PRISM correlated with the tinnitus severity (THI and TQ), depressive symptoms (BDI), and health related quality of life (WHOQOL-BREF) (all p ≤ 0.001). In the three PRISM groups tinnitus severity (THI and TQ), and depressive symptoms (BDI) differed significantly (all p ≤ 0.01). PRISM is an easily understood and time saving method for the assessment of burden of suffering in tinnitus patients. In daily clinical practice PRISM can help to identify patients with decompensated tinnitus that require more intensive treatment.

  10. Accurate geometrical optics model for single-lens stereovision system using a prism.

    PubMed

    Cui, Xiaoyu; Lim, Kah Bin; Guo, Qiyong; Wang, DaoLei

    2012-09-01

    In this paper, we proposed a new method for analyzing the image formation of a prism. The prism was considered as a single optical system composed of some planes. By analyzing each plane individually and then combining them together, we derived a transformation matrix which can express the relationship between an object point and its image by the refraction of a prism. We also explained how to use this matrix for epipolar geometry and three-dimensional point reconstruction. Our method is based on optical geometry and could be used in a multiocular prism. Experimentation results are presented to prove the accuracy of our method is better than former researchers' and is comparable with that of the multicamera stereovision system.

  11. Cavity Enhanced Absorption Spectroscopy Using a Broadband Prism Cavity and a Supercontinuum Source

    NASA Astrophysics Data System (ADS)

    Johnston, Paul S.; Lehmann, Kevin K.

    2009-06-01

    The multiplex advantage of current cavity enhanced spectrometers is limited by the high reflectivity bandwidth of the mirrors used to construct the high finesse cavity. Previously, we reported the design and construction of a new spectrometer that circumvents this limitation by utilizing Brewster^{,}s angle prism retroreflectors. The prisms, made from fused silica and combined with a supercontinuum source generated by pumping a highly nonlinear photonic crystal fiber, yields a spectral window ranging from 500 nm to 1750 nm. Recent progress in the instruments development will be discussed, including work on modeling the prism cavity losses, alternative prism material for use in the UV and mid-IR spectral regions, and a new high power supercontinuum source based on mode-locked picosecond laser.

  12. Does prism width from the shell prismatic layer have a random distribution?

    NASA Astrophysics Data System (ADS)

    Vancolen, Séverine; Verrecchia, Eric

    2008-10-01

    A study of the distribution of the prism width inside the prismatic layer of Unio tumidus (Philipsson 1788, Diss Hist-Nat, Berling, Lundæ) from Lake Neuchâtel, Switzerland, has been conducted in order to determine whether or not this distribution is random. Measurements of 954 to 1,343 prism widths (depending on shell sample) have been made using a scanning electron microscope in backscattered electron mode. A white noise test has been applied to the distribution of prism sizes (i.e. width). It shows that there is no temporal cycle that could potentially influence their formation and growth. These results suggest that prism widths are randomly distributed, and related neither to external rings nor to environmental constraints.

  13. Negative index effects from a homogeneous positive index prism

    NASA Astrophysics Data System (ADS)

    Marcus, Sherman W.; Epstein, Ariel

    2017-12-01

    Cellular structured negative index metamaterials in the form of a right triangular prism have often been tested by observing the refraction of a beam across the prism hypotenuse which is serrated in order to conform to the cell walls. We show that not only can this negative index effect be obtained from a homogeneous dielectric prism having a positive index of refraction, but in addition, for sampling at the walls of the cellular structure, the phase in the material has the illusory appearance of moving in a negative direction. Although many previous reports relied on refraction direction and phase velocity of prism structures to verify negative index design, our investigation indicates that to unambiguously demonstrate material negativity additional empirical evidence is required.

  14. Phase-Scrambler Plate Spreads Point Image

    NASA Technical Reports Server (NTRS)

    Edwards, Oliver J.; Arild, Tor

    1992-01-01

    Array of small prisms retrofit to imaging lens. Phase-scrambler plate essentially planar array of small prisms partitioning aperture of lens into many subapertures, and prism at each subaperture designed to divert relatively large diffraction spot formed by that subaperture to different, specific point on focal plane.

  15. Finite element analysis and experiment on high pressure apparatus with split cylinder

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Li, Mingzhe; Yang, Yunfei; Wang, Bolong; Li, Yi

    2017-07-01

    Ultra-high pressure belt-type die was designed with a large sample volume prism cavity and a split cylinder which was divided into eight segments to eliminate circumferential stress. The cylinder of this type die has no cambered surface on inner wall, and the inner hole is a hexagonal prism-type cavity. The divided bodies squeeze with each other, providing the massive support and lateral support effect of the cylinder. Simulation results indicate that the split cylinder with the prism cavity possesses much smaller stress and more uniform stress distribution. The split cylinder with the prism cavity has been shown to bear larger compressive stresses in radial, circumferential and axial directions due to its structure, and tungsten carbide is most effective in pure compression so this type cylinder could bear higher pressure. Experimental results prove that the high pressure apparatus with a prism-type cavity could bear higher pressure. The apparatus with a prism cavity could bear 52.2% more pressure than the belt-type die.

  16. DSM Generation from ALSO/PRISM Images Using SAT-PP

    NASA Astrophysics Data System (ADS)

    Wolff, Kirsten; Gruen, Armin

    2008-11-01

    One of the most important products of ALOS/PRISM image data are accurate DSMs. To exploit the full potential of the full resolution of PRISM for DSM generation, a highly developed image matcher is needed. As a member of the validation and calibration team for PRISM we published earlier results of DSM generation using PRISM image triplets in combination with our software package SAT-PP. The overall accuracy across all object and image features for all tests lies between 1-5 pixels in matching, depending primarily on surface roughness, vegetation, image texture and image quality. Here we will discuss some new results. We focus on four different topics: the use of two different evaluation methods, the difference between a 5m and a 10m GSD for the final PRISM DSM, the influence of the level of initial information and the comparison of the quality of different combinations of the three different views forward, nadir and backward. All tests have been conducted with our testfield Bern/Thun, Switzerland.

  17. Internal validation of the prognostic index for spine metastasis (PRISM) for stratifying survival in patients treated with spinal stereotactic radiosurgery.

    PubMed

    Jensen, Garrett; Tang, Chad; Hess, Kenneth R; Bishop, Andrew J; Pan, Hubert Y; Li, Jing; Yang, James N; Tannir, Nizar M; Amini, Behrang; Tatsui, Claudio; Rhines, Laurence; Brown, Paul D; Ghia, Amol J

    2017-01-01

    We sought to validate the Prognostic Index for Spinal Metastases (PRISM), a scoring system that stratifies patients into subgroups by overall survival.Methods and materials: The PRISM was previously created from multivariate Cox regression with patients enrolled in prospective single institution trials of stereotactic spine radiosurgery (SSRS) for spinal metastasis. We assess model calibration and discrimination within a validation cohort of patients treated off-trial with SSRS for metastatic disease at the same institution. The training and validation cohorts consisted of 205 and 249 patients respectively. Similar survival trends were shown in the 4 PRISM. Survival was significantly different between PRISM subgroups (P<0.0001). C-index for the validation cohort was 0.68 after stratification into subgroups. We internally validated the PRISM with patients treated off-protocol, demonstrating that it can distinguish subgroups by survival, which will be useful for individualizing treatment of spinal metastases and stratifying patients for clinical trials.

  18. Assessing the Impact of Atopic Dermatitis on the Patients' Parents with the Visual Instrument 'Caregiver-PRISM'.

    PubMed

    Marinello, Elena; Linder, Dennis; Spoto, Andrea; Palmer, Katie; Rohrer, Peter Michael; Büchi, Stefan; Trapp, Michael; Trapp, Eva-Maria; Hoerlesberger, Nina; Piaserico, Stefano; Peserico, Andrea; Gatta, Michela; Belloni Fortina, Anna

    2016-01-01

    There is a need to improve the quality of communication between clinicians and parents of young patients with atopic eczema (AE). To create a tool to measure the suffering that caregivers experience in association with their child's AE (Caregiver Pictorial Representation of Illness and Self-Measure, Caregiver-PRISM), assess the validity and reliability, and identify factors associated with caregiver suffering. Caregiver-PRISM was administered to 45 parents of patients from an AE outpatient service (Padua, Italy). Caregiver-PRISM had a good test-retest reliability (r = 0.85; t7 = 4.13; p < 0.05), content validity and construct validity when used in parents of AE children. Parents with a less positive family affective climate, higher education, or with children following a diet experienced higher suffering associated with their child's AE, demonstrated by lower Caregiver-PRISM scores (p < 0.05). Our results support the use of Caregiver-PRISM in parents of AE patients to assess suffering associated with patients' illness. © 2016 S. Karger AG, Basel.

  19. PRISM: Processing routines in IDL for spectroscopic measurements (installation manual and user's guide, version 1.0)

    USGS Publications Warehouse

    Kokaly, Raymond F.

    2011-01-01

    This report describes procedures for installing and using the U.S. Geological Survey Processing Routines in IDL for Spectroscopic Measurements (PRISM) software. PRISM provides a framework to conduct spectroscopic analysis of measurements made using laboratory, field, airborne, and space-based spectrometers. Using PRISM functions, the user can compare the spectra of materials of unknown composition with reference spectra of known materials. This spectroscopic analysis allows the composition of the material to be identified and characterized. Among its other functions, PRISM contains routines for the storage of spectra in database files, import/export of ENVI spectral libraries, importation of field spectra, correction of spectra to absolute reflectance, arithmetic operations on spectra, interactive continuum removal and comparison of spectral features, correction of imaging spectrometer data to ground-calibrated reflectance, and identification and mapping of materials using spectral feature-based analysis of reflectance data. This report provides step-by-step instructions for installing the PRISM software and running its functions.

  20. Porro prism lasers: a new perspective

    NASA Astrophysics Data System (ADS)

    Burger, Liesl; Forbes, Andrew

    2008-08-01

    Porro prism lasers are insensitive to misalignment caused by, for example, shock and temperature variation, making them useful in field applications, for example in target designation and range-finding systems. This property is a result of the property of Porro prisms that they return a reflected beam parallel to the incident beam, regardless of any tilt on the prism. These lasers are generally used in a marginally stable or unstable configuration for low divergence, but in the stable configuration some interesting kaleidoscope modes can be modelled. In previous work on Porro prism resonators we formulated an analytical method of determining which Porro angles resonate and result in petal output modes, as well as the corresponding number of petals. This work has been verified using a numerical model as well as experimentally. We have developed this work further and have investigated the losses associated with a range of Porro angles as well as the effects of these losses on the resulting modes. We conclude by summarizing the design considerations for Porro prism lasers.

  1. ePRISM: A case study in multiple proxy and mixed temporal resolution integration

    USGS Publications Warehouse

    Robinson, Marci M.; Dowsett, Harry J.

    2010-01-01

    As part of the Pliocene Research, Interpretation and Synoptic Mapping (PRISM) Project, we present the ePRISM experiment designed I) to provide climate modelers with a reconstruction of an early Pliocene warm period that was warmer than the PRISM interval (similar to 3.3 to 3.0 Ma), yet still similar in many ways to modern conditions and 2) to provide an example of how best to integrate multiple-proxy sea surface temperature (SST) data from time series with varying degrees of temporal resolution and age control as we begin to build the next generation of PRISM, the PRISM4 reconstruction, spanning a constricted time interval. While it is possible to tie individual SST estimates to a single light (warm) oxygen isotope event, we find that the warm peak average of SST estimates over a narrowed time interval is preferential for paleoclimate reconstruction as it allows for the inclusion of more records of multiple paleotemperature proxies.

  2. Prism-based single-camera system for stereo display

    NASA Astrophysics Data System (ADS)

    Zhao, Yue; Cui, Xiaoyu; Wang, Zhiguo; Chen, Hongsheng; Fan, Heyu; Wu, Teresa

    2016-06-01

    This paper combines the prism and single camera and puts forward a method of stereo imaging with low cost. First of all, according to the principle of geometrical optics, we can deduce the relationship between the prism single-camera system and dual-camera system, and according to the principle of binocular vision we can deduce the relationship between binoculars and dual camera. Thus we can establish the relationship between the prism single-camera system and binoculars and get the positional relation of prism, camera, and object with the best effect of stereo display. Finally, using the active shutter stereo glasses of NVIDIA Company, we can realize the three-dimensional (3-D) display of the object. The experimental results show that the proposed approach can make use of the prism single-camera system to simulate the various observation manners of eyes. The stereo imaging system, which is designed by the method proposed by this paper, can restore the 3-D shape of the object being photographed factually.

  3. Compact Packaging of Photonic Millimeter-Wave Receiver

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung; Pouch, John; Miranda, Felix; Levi, Anthony F.

    2007-01-01

    A carrier structure made from a single silicon substrate is the basis of a compact, lightweight, relatively inexpensive package that holds the main optical/electronic coupling components of a photonic millimeter-wave receiver based on a lithium niobate resonator disk. The design of the package is simple and provides for precise relative placement of optical components, eliminating the need for complex, bulky positioning mechanisms like those commonly used to align optical components to optimize focus and coupling. Although a prototype of the package was fabricated as a discrete unit, the design is amenable to integration of the package into a larger photonic and/or electronic receiver system. The components (see figure) include a lithium niobate optical resonator disk of 5-mm diameter and .200- m thickness, positioned adjacent to a millimeter- wave resonator electrode. Other components include input and output coupling prisms and input and output optical fibers tipped with ball lenses for focusing and collimation, respectively. Laser light is introduced via the input optical fiber and focused into the input coupling prism. The input coupling prism is positioned near (but not in contact with) the resonator disk so that by means of evanescent-wave coupling, the input laser light in the prism gives rise to laser light propagating circumferentially in guided modes in the resonator disk. Similarly, a portion of the circumferentially propagating optical power is extracted from the disk by evanescent-wave coupling from the disk to the output coupling prism, from whence the light passes through the collimating ball lens into the output optical fiber. The lens-tipped optical fibers must be positioned at a specified focal distance from the prisms. The optical fibers and the prisms must be correctly positioned relative to the resonator disk and must be oriented to obtain the angle of incidence (55 in the prototype) required for evanescent-wave coupling of light into and out of the desired guided modes in the resonator disk. To satisfy all these requirements, precise alignment features are formed in the silicon substrate by use of a conventional wet-etching process. These features include a 5-mm-diameter, 50- m-deep cavity that holds the disk; two trapezoidal-cross-section recesses for the prisms; and two grooves that hold the optical fibers at the correct positions and angles relative to the prisms and disk. The fiber grooves contain abrupt tapers, near the prisms, that serve as hard stops for positioning the lenses at the focal distance from the prisms. There are also two grooves for prismadjusting rods. The design provides a little slack in the prism recesses for adjusting the positions of the prisms by means of these rods to optimize the optical coupling.

  4. Multi-energy CT based on a prior rank, intensity and sparsity model (PRISM).

    PubMed

    Gao, Hao; Yu, Hengyong; Osher, Stanley; Wang, Ge

    2011-11-01

    We propose a compressive sensing approach for multi-energy computed tomography (CT), namely the prior rank, intensity and sparsity model (PRISM). To further compress the multi-energy image for allowing the reconstruction with fewer CT data and less radiation dose, the PRISM models a multi-energy image as the superposition of a low-rank matrix and a sparse matrix (with row dimension in space and column dimension in energy), where the low-rank matrix corresponds to the stationary background over energy that has a low matrix rank, and the sparse matrix represents the rest of distinct spectral features that are often sparse. Distinct from previous methods, the PRISM utilizes the generalized rank, e.g., the matrix rank of tight-frame transform of a multi-energy image, which offers a way to characterize the multi-level and multi-filtered image coherence across the energy spectrum. Besides, the energy-dependent intensity information can be incorporated into the PRISM in terms of the spectral curves for base materials, with which the restoration of the multi-energy image becomes the reconstruction of the energy-independent material composition matrix. In other words, the PRISM utilizes prior knowledge on the generalized rank and sparsity of a multi-energy image, and intensity/spectral characteristics of base materials. Furthermore, we develop an accurate and fast split Bregman method for the PRISM and demonstrate the superior performance of the PRISM relative to several competing methods in simulations.

  5. PRogram In Support of Moms (PRISM): a pilot group randomized controlled trial of two approaches to improving depression among perinatal women.

    PubMed

    Byatt, Nancy; Moore Simas, Tiffany A; Biebel, Kathleen; Sankaran, Padma; Pbert, Lori; Weinreb, Linda; Ziedonis, Douglas; Allison, Jeroan

    2017-10-10

    This pilot study was designed to inform a larger effectiveness trial by: (1) assessing the feasibility of the PRogram In Support of Moms (PRISM) and our study procedures; and, (2) determining the extent to which PRISM as compared to an active comparison group, the Massachusetts Child Access Psychiatry Program (MCPAP) for Moms alone, improves depression among perinatal women. Four practices were randomized to either PRISM or MCPAP for Moms alone, a state-wide telephonic perinatal psychiatry program. PRISM includes MCPAP for Moms plus implementation assistance with local champions, training, and implementation of office prompts and procedures to enhance depression screening, assessment and treatment. Patients with Edinburgh Postnatal Depression Scales (EPDS) ≥ 10 were recruited during pregnancy, and completed the EPDS and a structured interview at baseline and 3-12 weeks' postpartum. Among MCPAP for Moms alone practices, patients' (n = 9) EPDS scores improved from 15.22 to 10.11 (p = 0.010), whereas in PRISM practices patients' (n = 21) EPDS scores improved from 13.57 to 6.19 (p = 0.001); the between groups difference-of-differences was 2.27 (p = 0.341). PRISM was beneficial for patients, clinicians, and support staff. Both PRISM and MCPAP for Moms alone improve depression symptom severity and the percentage of women with an EPDS >10. The improvement difference between groups was not statistically significant due to limited power associated with small sample size.

  6. Improving Social Support for Older Adults Through Technology: Findings From the PRISM Randomized Controlled Trial.

    PubMed

    Czaja, Sara J; Boot, Walter R; Charness, Neil; Rogers, Wendy A; Sharit, Joseph

    2018-05-08

    Information and communication technology holds promise in terms of providing support and reducing isolation among older adults. We evaluated the impact of a specially designed computer system for older adults, the Personal Reminder Information and Social Management (PRISM) system. The trial was a multisite randomized field trial conducted at 3 sites. PRISM was compared to a Binder condition wherein participants received a notebook that contained paper content similar to that contained in PRISM. The sample included 300 older adults at risk for social isolation who lived independently in the community (Mage = 76.15 years). Primary outcome measures included indices of social isolation, social support, loneliness, and well-being. Secondary outcome measures included indices of computer proficiency and attitudes toward technology. Data were collected at baseline and at 6 and 12 months post-randomization. The PRISM group reported significantly less loneliness and increased perceived social support and well-being at 6 months. There was a trend indicating a decline in social isolation. Group differences were not maintained at 12 months, but those in the PRISM condition still showed improvements from baseline. There was also an increase in computer self-efficacy, proficiency, and comfort with computers for PRISM participants at 6 and 12 months. The findings suggest that access to technology applications such as PRISM may enhance social connectivity and reduce loneliness among older adults and has the potential to change attitudes toward technology and increase technology self-efficacy.

  7. General model for the pointing error analysis of Risley-prism system based on ray direction deviation in light refraction

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Yuan, Yan; Su, Lijuan; Huang, Fengzhen; Bai, Qing

    2016-09-01

    The Risley-prism-based light beam steering apparatus delivers superior pointing accuracy and it is used in imaging LIDAR and imaging microscopes. A general model for pointing error analysis of the Risley prisms is proposed in this paper, based on ray direction deviation in light refraction. This model captures incident beam deviation, assembly deflections, and prism rotational error. We derive the transmission matrixes of the model firstly. Then, the independent and cumulative effects of different errors are analyzed through this model. Accuracy study of the model shows that the prediction deviation of pointing error for different error is less than 4.1×10-5° when the error amplitude is 0.1°. Detailed analyses of errors indicate that different error sources affect the pointing accuracy to varying degree, and the major error source is the incident beam deviation. The prism tilting has a relative big effect on the pointing accuracy when prism tilts in the principal section. The cumulative effect analyses of multiple errors represent that the pointing error can be reduced by tuning the bearing tilting in the same direction. The cumulative effect of rotational error is relative big when the difference of these two prism rotational angles equals 0 or π, while it is relative small when the difference equals π/2. The novelty of these results suggests that our analysis can help to uncover the error distribution and aid in measurement calibration of Risley-prism systems.

  8. Tunnel Vision Prismatic Field Expansion: Challenges and Requirements

    PubMed Central

    Apfelbaum, Henry; Peli, Eli

    2015-01-01

    Purpose No prismatic solution for peripheral field loss (PFL) has gained widespread acceptance. Field extended by prisms has a corresponding optical scotoma at the prism apices. True expansion can be achieved when each eye is given a different view (through visual confusion). We analyze the effects of apical scotomas and binocular visual confusion in different designs to identify constraints on any solution that is likely to meet acceptance. Methods Calculated perimetry diagrams were compared to perimetry with PFL patients wearing InWave channel prisms and Trifield spectacles. Percept diagrams illustrate the binocular visual confusion. Results Channel prisms provide no benefit at primary gaze. Inconsequential extension was provided by InWave prisms, although accessible with moderate gaze shifts. Higher-power prisms provide greater extension, with greater paracentral scotoma loss, but require uncomfortable gaze shifts. Head turns, not eye scans, are needed to see regions lost to the apical scotomas. Trifield prisms provide field expansion at all gaze positions, but acceptance was limited by disturbing effects of central binocular visual confusion. Conclusions Field expansion when at primary gaze (where most time is spent) is needed while still providing unobstructed central vision. Paracentral multiplexing prisms we are developing that superimpose shifted and see-through views may accomplish that. Translational Relevance Use of the analyses and diagramming techniques presented here will be of value when considering prismatic aids for PFL, and could have prevented many unsuccessful designs and the improbable reports we cited from the literature. New designs must likely address the challenges identified here. PMID:26740910

  9. Tunnel Vision Prismatic Field Expansion: Challenges and Requirements.

    PubMed

    Apfelbaum, Henry; Peli, Eli

    2015-12-01

    No prismatic solution for peripheral field loss (PFL) has gained widespread acceptance. Field extended by prisms has a corresponding optical scotoma at the prism apices. True expansion can be achieved when each eye is given a different view (through visual confusion). We analyze the effects of apical scotomas and binocular visual confusion in different designs to identify constraints on any solution that is likely to meet acceptance. Calculated perimetry diagrams were compared to perimetry with PFL patients wearing InWave channel prisms and Trifield spectacles. Percept diagrams illustrate the binocular visual confusion. Channel prisms provide no benefit at primary gaze. Inconsequential extension was provided by InWave prisms, although accessible with moderate gaze shifts. Higher-power prisms provide greater extension, with greater paracentral scotoma loss, but require uncomfortable gaze shifts. Head turns, not eye scans, are needed to see regions lost to the apical scotomas. Trifield prisms provide field expansion at all gaze positions, but acceptance was limited by disturbing effects of central binocular visual confusion. Field expansion when at primary gaze (where most time is spent) is needed while still providing unobstructed central vision. Paracentral multiplexing prisms we are developing that superimpose shifted and see-through views may accomplish that. Use of the analyses and diagramming techniques presented here will be of value when considering prismatic aids for PFL, and could have prevented many unsuccessful designs and the improbable reports we cited from the literature. New designs must likely address the challenges identified here.

  10. EarthCube - A Community-led, Interdisciplinary Collaboration for Geoscience Cyberinfrastructure

    NASA Astrophysics Data System (ADS)

    Dick, Cindy; Allison, Lee

    2016-04-01

    The US NSF EarthCube Test Enterprise Governance Project completed its initial two-year long process to engage the community and test a demonstration governing organization with the goal of facilitating a community-led process on designing and developing a geoscience cyberinfrastructure. Conclusions are that EarthCube is viable, has engaged a broad spectrum of end-users and contributors, and has begun to foster a sense of urgency around the importance of open and shared data. Levels of trust among participants are growing. At the same time, the active participants in EarthCube represent a very small sub-set of the larger population of geoscientists. Results from Stage I of this project have impacted NSF decisions on the direction of the EarthCube program. The overall tone of EarthCube events has had a constructive, problem-solving orientation. The technical and organizational elements of EarthCube are poised to support a functional infrastructure for the geosciences community. The process for establishing shared technological standards has notable progress but there is a continuing need to expand technological and cultural alignment. Increasing emphasis is being given to the interdependencies among EarthCube funded projects. The newly developed EarthCube Technology Plan highlights important progress in this area by five working groups focusing on: 1. Use cases; 2. Funded project gap analysis; 3. Testbed development; 4. Standards; and 5. Architecture. The EarthCube governance implementing processes to facilitate community convergence on a system architecture, which is expected to emerge naturally from a set of data principles, user requirements, science drivers, technology capabilities, and domain needs.

  11. Linking Humans to Data: Designing an Enterprise Architecture for EarthCube

    NASA Astrophysics Data System (ADS)

    Xu, C.; Yang, C.; Meyer, C. B.

    2013-12-01

    National Science Foundation (NSF)'s EarthCube is a strategic initiative towards a grand enterprise that holistically incorporates different geoscience research domains. The EarthCube as envisioned by NSF is a community-guided cyberinfrastructure (NSF 2011). The design of EarthCube enterprise architecture (EA) offers a vision to harmonize processes between the operations of EarthCube and its information technology foundation, the geospatial cyberinfrastructure. (Yang et al. 2010). We envision these processes as linking humans to data. We report here on fundamental ideas that would ultimately materialize as a conceptual design of EarthCube EA. EarthCube can be viewed as a meta-science that seeks to advance knowledge of the Earth through cross-disciplinary connections made using conventional domain-based earth science research. In order to build capacity that enables crossing disciplinary chasms, a key step would be to identify the cornerstones of the envisioned enterprise architecture. Human and data inputs are the two key factors to the success of EarthCube (NSF 2011), based upon which three hypotheses have been made: 1) cross disciplinary collaboration has to be achieved through data sharing; 2) disciplinary differences need to be articulated and captured in both computer and human understandable formats; 3) human intervention is crucial for crossing the disciplinary chasms. We have selected the Federal Enterprise Architecture Framework (FEAF, CIO Council 2013) as the baseline for the envisioned EarthCube EA, noting that the FEAF's deficiencies can be improved upon with inputs from three other popular EA frameworks. This presentation reports the latest on the conceptual design of an enterprise architecture in support of EarthCube.

  12. A Lunar Laser Retroreflector for the FOR the 21ST Century (LLRRA-21): Selenodesy, Science and Status

    NASA Astrophysics Data System (ADS)

    Currie, D. G.; Delle Monache, G.; Dell'Agnello, S.

    2010-12-01

    The Lunar Laser Ranging Program using the Apollo Cube Corner Retroreflector (CCR) Arrays [1] has operated as the only active experiment on the lunar surface for the past 4 decades. During this time it has provided control points for the lunar coordinate system, contributed to the determination of the physical properties of the moon and provided some of the best tests of General Relativity [2]. In terms of the physical properties of the moon, Lunar Laser Ranging (LLR) has detected, evaluated the shape and the frictional behavior of the boundaries of the liquid core. This and other areas will be addressed. The LLR Program has evaluated the PPN parameters, addressed the possible changes in the gravitational constant and the properties of the self-energy of the gravitational field. Initially the Apollo CCRs contributed a negligible fraction of the ranging error. Over the decades, the ground stations have improved by more than a factor of 200. Now, the existing Apollo retroreflector arrays contribute a significant fraction of the limiting errors in the range measurements due to the lunar librations tilting of the array of CCRs and thus contribution to the spreading of the return laser pulse. The University of Maryland, as the Principal Investigator for the original Apollo arrays, is now proposing a new approach to the Lunar Laser Array technology [3]. The investigation of this new technology, by two teams with Professor Currie as PI, is currently being supported by two NASA programs, the LSSO and LUNAR. The LUNAR program at the University of Colorado the is funded through the NLSI. Both LSSO and the LUNAR programs are in collaboration with the INFN-LNF in Frascati, Italy. After the proposed installation during the next lunar landing, the new arrays will support ranging observations that are a factor 100 more accurate than the current Apollo Cube Corner Retroreflector (CCR) Arrays. The new fundamental selenodetic, cosmological physics and the lunar physics [3] that this new LLRRA-21 can provide will be described. In the initial design of the new array, there are three major challenges: 1) Validate the ability to fabricate the required CCR; 2) Address the thermal and optical effects of the absorption of solar radiation within the CCR; 3) Validate an emplacement technique for the CCR package on the lunar surface to remain stable over the lunar day/night cycle and the long term. References: [1] C. O. Alley 1, R. F. Chang 1, D. G. Currie 1, Apollo 11 Laser Ranging Retro-Reflector: Initial Measurements from the McDonald Observatory Science 23 January 1970: Vol. 167. no. 3917, pp. 368 - 370 [2] P. L. Bender, D. G. Currie, S. K. Poultney The Lunar Laser Ranging Experiment Science 19 October 1973: Vol. 182. no. 4109, pp. 229 - 238 [3] D. G. Currie; S. Dell-Agnello; G. Delle Monache. A LUNAR LASER REFLECTOR FOR THE 21ST CENTURY Acta Astronatica to be published

  13. Automatic Modelling of Rubble Mound Breakwaters from LIDAR Data

    NASA Astrophysics Data System (ADS)

    Bueno, M.; Díaz-Vilariño, L.; González-Jorge, H.; Martínez-Sánchez, J.; Arias, P.

    2015-08-01

    Rubble mound breakwaters maintenance is critical to the protection of beaches and ports. LiDAR systems provide accurate point clouds from the emerged part of the structure that can be modelled to make it more useful and easy to handle. This work introduces a methodology for the automatic modelling of breakwaters with armour units of cube shape. The algorithm is divided in three main steps: normal vector computation, plane segmentation, and cube reconstruction. Plane segmentation uses the normal orientation of the points and the edge length of the cube. Cube reconstruction uses the intersection of three perpendicular planes and the edge length. Three point clouds cropped from the main point cloud of the structure are used for the tests. The number of cubes detected is around 56 % for two of the point clouds and 32 % for the third one over the total physical cubes. Accuracy assessment is done by comparison with manually drawn cubes calculating the differences between the vertexes. It ranges between 6.4 cm and 15 cm. Computing time ranges between 578.5 s and 8018.2 s. The computing time increases with the number of cubes and the requirements of collision detection.

  14. An evaluation of space time cube representation of spatiotemporal patterns.

    PubMed

    Kristensson, Per Ola; Dahlbäck, Nils; Anundi, Daniel; Björnstad, Marius; Gillberg, Hanna; Haraldsson, Jonas; Mårtensson, Ingrid; Nordvall, Mathias; Ståhl, Josefine

    2009-01-01

    Space time cube representation is an information visualization technique where spatiotemporal data points are mapped into a cube. Information visualization researchers have previously argued that space time cube representation is beneficial in revealing complex spatiotemporal patterns in a data set to users. The argument is based on the fact that both time and spatial information are displayed simultaneously to users, an effect difficult to achieve in other representations. However, to our knowledge the actual usefulness of space time cube representation in conveying complex spatiotemporal patterns to users has not been empirically validated. To fill this gap, we report on a between-subjects experiment comparing novice users' error rates and response times when answering a set of questions using either space time cube or a baseline 2D representation. For some simple questions, the error rates were lower when using the baseline representation. For complex questions where the participants needed an overall understanding of the spatiotemporal structure of the data set, the space time cube representation resulted in on average twice as fast response times with no difference in error rates compared to the baseline. These results provide an empirical foundation for the hypothesis that space time cube representation benefits users analyzing complex spatiotemporal patterns.

  15. Reply to ‘No correction for the light propagation within the cube: Comment on Relativistic theory of the falling cube gravimeter’

    NASA Astrophysics Data System (ADS)

    Ashby, Neil

    2018-06-01

    The comment (Nagornyi 2018 Metrologia) claims that, notwithstanding the conclusions stated in the paper Relativistic theory of the falling cube gravimeter (Ashby 2008 Metrologia 55 1–10), there is no need to consider the dimensions or refractive index of the cube in fitting data from falling cube absolute gravimeters; additional questions are raised about matching quartic polynomials while determining only three quantities. The comment also suggests errors were made in Ashby (2008 Metrologia 55 1–10) while implementing the fitting routines on which the conclusions were based. The main contention of the comment is shown to be invalid because retarded time was not properly used in constructing a fictitious cube position. Such a fictitious position, fixed relative to the falling cube, is derived and shown to be dependent on cube dimensions and refractive index. An example is given showing how in the present context, polynomials of fourth order can be effectively matched by determining only three quantities, and a new compact characterization of the interference signal arriving at the detector is given. Work of the U.S. government, not subject to copyright.

  16. Survey on the implementation and reliability of CubeSat electrical bus interfaces

    NASA Astrophysics Data System (ADS)

    Bouwmeester, Jasper; Langer, Martin; Gill, Eberhard

    2017-06-01

    This paper provides results and conclusions on a survey on the implementation and reliability aspects of CubeSat bus interfaces, with an emphasis on the data bus and power distribution. It provides recommendations for a future CubeSat bus standard. The survey is based on a literature study and a questionnaire representing 60 launched CubeSats and 44 to be launched CubeSats. It is found that the bus interfaces are not the main driver for mission failures. However, it is concluded that the Inter Integrated Circuit (I2C) data bus, as implemented in a great majority of the CubeSats, caused some catastrophic satellite failures and a vast amount of bus lockups. The power distribution may lead to catastrophic failures if the power lines are not protected against overcurrent. A connector and wiring standard widely implemented in CubeSats is based on the PC/104 standard. Most participants find the 104 pin connector of this standard too large. For a future CubeSat bus interface standard, it is recommended to implement a reliable data bus, a power distribution with overcurrent protection and a wiring harness with smaller connectors compared with PC/104.

  17. Comment on Schuster's Technique for Focusing the Prism Spectrometer.

    ERIC Educational Resources Information Center

    Beynon, John

    1991-01-01

    Discussed is the physics that underpins Schuster's technique for obtaining a parallel light beam for use in various prism and grating experiments. Basic physics concepts using geometrical optics of prism, together with elementary differential calculus are explained as well as the mechanics of Schuster's technique. (KR)

  18. 21 CFR 886.5810 - Ophthalmic prism reader.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Ophthalmic prism reader. 886.5810 Section 886.5810 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Therapeutic Devices § 886.5810 Ophthalmic prism reader. (a...

  19. GreenCube and RocketCube: Low-Resource Sensorcraft for Atmospheric and Ionospheric Science

    NASA Astrophysics Data System (ADS)

    Bracikowski, P. J.; Lynch, K. A.; Slagle, A. K.; Fagin, M. H.; Currey, S. R.; Siddiqui, M. U.

    2009-12-01

    In situ atmospheric and ionospheric studies benefit greatly from the ability to separate variations in space from variations in time. Arrays of many probes are a method of doing this, but because of the technical character and expense of developing large arrays, so far probe arrays have been the domain of well-funded science missions. CubeSats and low-resource craft (``Picosats") are an avenue for bringing array-based studies of the atmosphere and ionosphere into the mainstream. The Lynch Rocket Lab at Dartmouth College is attempting to develop the instruments, experience, and heritage to implement arrays of many low-resource sensorcraft while doing worthwhile science in the development process. We are working on two CubeSat projects to reach this goal: GreenCube for atmospheric studies and RocketCube for ionospheric studies. GreenCube is an undergraduate student-directed high-altitude balloon-borne 3U CubeSat. GreenCube I was a bus, telemetry, and mechanical system development project. GreenCube I flew in the fall of 2008. The flight was successfully recovered and tracked over the 97km range and through the 29km altitude rise. GreenCube I carried six thermal housekeeping sensors, a GPS, a magnetometer, and a HAM radio telemetry system with a reporting rate of once every 30 seconds. The velocity profile obtained from the GPS data implies the presence of atmospheric gravity waves during the flight. GreenCube II flew in August 2009 with the science goal of detecting atmospheric gravity waves over the White Mountains of New Hampshire. Two balloons with identical payloads were released 90 seconds apart to make 2-point observations. Each payload carried a magnetometer, 5 thermistors for ambient temperature readings, a GPS, and an amateur radio telemetry system with a 7 second reporting cadence. A vertically oriented video camera on one payload and a horizontally oriented video camera on the other recorded the characteristics of gravity waves in the nearby clouds. We expect to be able to detect atmospheric gravity waves from the GPS-derived position and velocity of the two balloons and the ambient temperature profiles. Preliminary analysis of the temperature data shows indications of atmospheric gravity waves. RocketCube is a graduate student-designed low-resource sensorcraft development project being designed for future ionospheric multi-point missions. The FPGA-based bus system, based on GreenCube’s systems, will be able to control and digitize analog data from any low voltage instrument and telemeter that data. RocketCube contains a GPS and high-resolution magnetometer for position and orientation information. The Lynch Rocket Lab's initial interest in developing RocketCube is to investigate the k-spectrum of density irregularities in the auroral ionosphere. To this end, RocketCube will test a new Petite retarding potential analyzer Ion Probe (PIP) for examining subsonic and supersonic thermal ion populations in the ionosphere. The tentatively planned launch will be from a Wallops Flight Facility sounding rocket test flight in 2011. RocketCube serves as a step toward a scientific auroral sounding rocket mission that will feature an array of subpayloads to study the auroral ionosphere.

  20. Cluster analysis in systems of magnetic spheres and cubes

    NASA Astrophysics Data System (ADS)

    Pyanzina, E. S.; Gudkova, A. V.; Donaldson, J. G.; Kantorovich, S. S.

    2017-06-01

    In the present work we use molecular dynamics simulations and graph-theory based cluster analysis to compare self-assembly in systems of magnetic spheres, and cubes where the dipole moment is oriented along the side of the cube in the [001] crystallographic direction. We show that under the same conditions cubes aggregate far less than their spherical counterparts. This difference can be explained in terms of the volume of phase space in which the formation of the bond is thermodynamically advantageous. It follows that this volume is much larger for a dipolar sphere than for a dipolar cube.

  1. ELaNa - Educational Launch of Nanosatellite Providing Routine RideShare Opportunities

    NASA Technical Reports Server (NTRS)

    Skrobot, Garrett Lee; Coelho, Roland

    2012-01-01

    Since the creation of the NASA CubeSat Launch Initiative (NCSLI), the need for CubeSat rideshares has dramatically increased. After only three releases of the initiative, a total of 66 CubeSats now await launch opportunities. So, how is this challenge being resolved? NASA's Launch Services Program (LSP) has studied how to integrate PPODs on Athena, Atlas V, and Delta IV launch vehicles and has been instrumental in developing several carrier systems to support CubeSats as rideshares on NASA missions. In support of the first two ELaNa missions the Poly-Picosatellite Orbital Deployer (P-POD) was adapted for use on a Taurus XL (ELaNa I) and a Delta n (ELaNa III). Four P-PODs, which contained a total eight CubeSats, were used on these first ELaNa missions. Next up is ELaNa VI, which will launch on an Atlas V in August 2012. The four ELaNa VI CubeSats, in three P-PODs, are awaiting launch, having been integrated in the NPSCuLite. To increase rideshare capabilities, the Launch Services Program (LSP) is working to integrate P-PODs on Falcon 9 missions. The proposed Falcon 9 manifest will provide greater opportunities for the CubeSat community. For years, the standard CubeSat size was 1 U to 3U. As the desire to include more science in each cube grows, so does the standard CubeSat size. No longer is a 1 U, 1.5U, 2U or 3U CubeSat the only option available; the new CubeSat standard will include 6U and possibly even 12U. With each increase in CubeSat size, the CubeSat community is pushing the capability of the current P-POD design. Not only is the carrier system affected, but integration to the Launch Vehicle is also a concern. The development of a system to accommodate not only the 3U P-POD but also carriers for larger CubeSats is ongoing. LSP considers payloads in the lkg to 180 kg range rideshare or small/secondary payloads. As new and emerging small payloads are developed, rideshare opportunities and carrier systems need to be identified and secured. The development of a rideshare carrier system is not always cost effective. Sometimes a launch vehicle with an excellent performance record appears to be a great rideshare candidate however, after completing a feasibility study, LSP may determine that the cost of the rideshare carrier system is too great and, due to budget constraints, the development cannot go forward. With the current budget environment, one cost effective way to secure rideshare opportunities is to look for synergy with other government organizations that share the same interest.

  2. SpaceCube Version 1.5

    NASA Technical Reports Server (NTRS)

    Geist, Alessandro; Lin, Michael; Flatley, Tom; Petrick, David

    2013-01-01

    SpaceCube 1.5 is a high-performance and low-power system in a compact form factor. It is a hybrid processing system consisting of CPU (central processing unit), FPGA (field-programmable gate array), and DSP (digital signal processor) processing elements. The primary processing engine is the Virtex- 5 FX100T FPGA, which has two embedded processors. The SpaceCube 1.5 System was a bridge to the SpaceCube 2.0 and SpaceCube 2.0 Mini processing systems. The SpaceCube 1.5 system was the primary avionics in the successful SMART (Small Rocket/Spacecraft Technology) Sounding Rocket mission that was launched in the summer of 2011. For SMART and similar missions, an avionics processor is required that is reconfigurable, has high processing capability, has multi-gigabit interfaces, is low power, and comes in a rugged/compact form factor. The original SpaceCube 1.0 met a number of the criteria, but did not possess the multi-gigabit interfaces that were required and is a higher-cost system. The SpaceCube 1.5 was designed with those mission requirements in mind. The SpaceCube 1.5 features one Xilinx Virtex-5 FX100T FPGA and has excellent size, weight, and power characteristics [4×4×3 in. (approx. = 10×10×8 cm), 3 lb (approx. = 1.4 kg), and 5 to 15 W depending on the application]. The estimated computing power of the two PowerPC 440s in the Virtex-5 FPGA is 1100 DMIPS each. The SpaceCube 1.5 includes two Gigabit Ethernet (1 Gbps) interfaces as well as two SATA-I/II interfaces (1.5 to 3.0 Gbps) for recording to data drives. The SpaceCube 1.5 also features DDR2 SDRAM (double data rate synchronous dynamic random access memory); 4- Gbit Flash for storing application code for the CPU, FPGA, and DSP processing elements; and a Xilinx Platform Flash XL to store FPGA configuration files or application code. The system also incorporates a 12 bit analog to digital converter with the ability to read 32 discrete analog sensor inputs. The SpaceCube 1.5 design also has a built-in accelerometer. In addition, the system has 12 receive and transmit RS- 422 interfaces for legacy support. The SpaceCube 1.5 processor card represents the first NASA Goddard design in a compact form factor featuring the Xilinx Virtex- 5. The SpaceCube 1.5 incorporates backward compatibility with the Space- Cube 1.0 form factor and stackable architecture. It also makes use of low-cost commercial parts, but is designed for operation in harsh environments.

  3. A Simple Experimental Setup to Clearly Show that Light Does Not Recombine After Passing Through Two Prisms

    NASA Astrophysics Data System (ADS)

    Garcia-Molina, Rafael; del Mazo, Alejandro; Velasco, Santiago

    2018-01-01

    We present a simple and cheap experimental setup that clearly shows how the colors of the white light spectrum after passing a prism do not recombine when emerging from an identical second prism, as it is still found in many references.

  4. A Simple Experimental Setup to Clearly Show That Light Does Not Recombine after Passing through Two Prisms

    ERIC Educational Resources Information Center

    Garcia-Molina, Rafael; del Mazo, Alejandro; Velasco, Santiago

    2018-01-01

    We present a simple and cheap experimental setup that clearly shows how the colors of the white light spectrum after passing a prism do not recombine when emerging from an identical second prism, as it is still found in many references.

  5. Optical power splitter for splitting high power light

    DOEpatents

    English, R.E. Jr.; Christensen, J.J.

    1995-04-18

    An optical power splitter for the distribution of high-power light energy has a plurality of prisms arranged about a central axis to form a central channel. The input faces of the prisms are in a common plane which is substantially perpendicular to the central axis. A beam of light which is substantially coaxial to the central axis is incident on the prisms and at least partially strikes a surface area of each prism input face. The incident beam also partially passes through the central channel. 5 figs.

  6. Strongly-Refractive One-Dimensional Photonic Crystal Prisms

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor)

    2004-01-01

    One-dimensional (1D) photonic crystal prisms can separate a beam of polychromatic electromagnetic waves into constituent wavelength components and can utilize unconventional refraction properties for wavelength dispersion over significant portions of an entire photonic band rather than just near the band edges outside the photonic band gaps. Using a ID photonic crystal simplifies the design and fabrication process and allows the use of larger feature sizes. The prism geometry broadens the useful wavelength range, enables better optical transmission, and exhibits angular dependence on wavelength with reduced non-linearity. The properties of the 1 D photonic crystal prism can be tuned by varying design parameters such as incidence angle, exit surface angle, and layer widths. The ID photonic crystal prism can be fabricated in a planar process, and can be used as optical integrated circuit elements.

  7. Development of salt production technology using prism greenhouse method

    NASA Astrophysics Data System (ADS)

    Guntur, G.; Jaziri, A. A.; Prihanto, A. A.; Arisandi, D. M.; Kurniawan, A.

    2018-01-01

    The main problem of salt production in Indonesia is low productivity and quality because the technology used commonly by Indonesian salt farmers is traditional method. This research aims to increase production of salt by using the prism greenhouse method. The prism greenhouse method is a salt production system with a combination of several salt production technologies, including geomembrane, threaded filter, and prism greenhouse technology. This research method used descriptive method. The results of this study were the productivity increased threefold, and the quality of salt produced also increased in terms of the content of NaCl from 85% to 95%. In addition, salt production with the prism greenhouse method has several advantages, such as faster harvest time, weather resistance, easy to use, and higher profit than traditional methods.

  8. Characterizing structures on borehole images and logging data of the Nankai trough accretionary prism: new insights

    NASA Astrophysics Data System (ADS)

    Jurado, Maria Jose

    2016-04-01

    IODP has extensively used the D/V Chikyu to drill the Kumano portion of the Nankai Trough, including two well sites within the Kumano Basin. IODP Expeditions 338 and 348 drilled deep into the inner accretionary prism south of the Kii Peninsula collecting a suite of LWD data, including natural gamma ray, electrical resistivity logs and borehole images, suitable to characterize structures (fractures and faults) inside the accretionary prism. Structural interpretation and analysis of logging-while-drilling data in the deep inner prism revealed intense deformation of a generally homogenous lithology characterized by bedding that dips steeply (60-90°) to the NW, intersected by faults and fractures. Multiple phases of deformation are characterized. IODP Expedition borehole images and LWD data acquired in the last decade in previous and results of NantroSEIZE IODP Expeditions (314, 319) were also analyzed to investigate the internal geometries and structures of the Nankai Trough accretionary prism. This study focused mainly on the characterization of the different types of structures and their specific position within the accretionary prism structures. New structural constraints and methodologies as well as a new approach to the characterization of study of active structures inside the prism will be presented.

  9. Prisms to Shift Pain Away: Pathophysiological and Therapeutic Exploration of CRPS with Prism Adaptation

    PubMed Central

    Volckmann, Pierre; Jacquin-Courtois, Sophie

    2016-01-01

    Complex Regional Pain Syndrome (CRPS) is an invalidating chronic condition subsequent to peripheral lesions. There is growing consensus for a central contribution to CRPS. However, the nature of this central body representation disorder is increasingly debated. Although it has been repeatedly argued that CRPS results in motor neglect of the affected side, visual egocentric reference frame was found to be deviated toward the pain, that is, neglect of the healthy side. Accordingly, prism adaptation has been successfully used to normalize this deviation. This study aimed at clarifying whether 7 CRPS patients exhibited neglect as well as exploring the pathophysiological mechanisms of this manifestation and of the therapeutic effects of prism adaptation. Pain and quality of life, egocentric reference frames (visual and proprioceptive straight-ahead), and neglect tests (line bisection, kinematic analyses of motor neglect and motor extinction) were repeatedly assessed prior to, during, and following a one-week intense prism adaptation intervention. First, our results provide no support for visual and motor neglect in CRPS. Second, reference frames for body representations were not systematically deviated. Third, intensive prism adaptation intervention durably ameliorated pain and quality of life. As for spatial neglect, understanding the therapeutic effects of prism adaptation deserves further investigations. PMID:27668094

  10. Effect of prism adaptation on left dichotic listening deficit in neglect patients: glasses to hear better?

    PubMed

    Jacquin-Courtois, S; Rode, G; Pavani, F; O'Shea, J; Giard, M H; Boisson, D; Rossetti, Y

    2010-03-01

    Unilateral neglect is a disabling syndrome frequently observed following right hemisphere brain damage. Symptoms range from visuo-motor impairments through to deficient visuo-spatial imagery, but impairment can also affect the auditory modality. A short period of adaptation to a rightward prismatic shift of the visual field is known to improve a wide range of hemispatial neglect symptoms, including visuo-manual tasks, mental imagery, postural imbalance, visuo-verbal measures and number bisection. The aim of the present study was to assess whether the beneficial effects of prism adaptation may generalize to auditory manifestations of neglect. Auditory extinction, whose clinical manifestations are independent of the sensory modalities engaged in visuo-manual adaptation, was examined in neglect patients before and after prism adaptation. Two separate groups of neglect patients (all of whom exhibited left auditory extinction) underwent prism adaptation: one group (n = 6) received a classical prism treatment ('Prism' group), the other group (n = 6) was submitted to the same procedure, but wore neutral glasses creating no optical shift (placebo 'Control' group). Auditory extinction was assessed by means of a dichotic listening task performed three times: prior to prism exposure (pre-test), upon prism removal (0 h post-test) and 2 h later (2 h post-test). The total number of correct responses, the lateralization index (detection asymmetry between the two ears) and the number of left-right fusion errors were analysed. Our results demonstrate that prism adaptation can improve left auditory extinction, thus revealing transfer of benefit to a sensory modality that is orthogonal to the visual, proprioceptive and motor modalities directly implicated in the visuo-motor adaptive process. The observed benefit was specific to the detection asymmetry between the two ears and did not affect the total number of responses. This indicates a specific effect of prism adaptation on lateralized processes rather than on general arousal. Our results suggest that the effects of prism adaptation can extend to unexposed sensory systems. The bottom-up approach of visuo-motor adaptation appears to interact with higher order brain functions related to multisensory integration and can have beneficial effects on sensory processing in different modalities. These findings should stimulate the development of therapeutic approaches aimed at bypassing the affected sensory processing modality by adapting other sensory modalities.

  11. IceCube

    Science.gov Websites

    Press and Public Interest IceCube Acronym Dictionary Articles about IceCube "Inside Story the End of the Earth" LBNL CRD Report Education/ Public Interest A New Window on the Universe Ice

  12. CubeSat evolution: Analyzing CubeSat capabilities for conducting science missions

    NASA Astrophysics Data System (ADS)

    Poghosyan, Armen; Golkar, Alessandro

    2017-01-01

    Traditionally, the space industry produced large and sophisticated spacecraft handcrafted by large teams of engineers and budgets within the reach of only a few large government-backed institutions. However, over the last decade, the space industry experienced an increased interest towards smaller missions and recent advances in commercial-off-the-shelf (COTS) technology miniaturization spurred the development of small spacecraft missions based on the CubeSat standard. CubeSats were initially envisioned primarily as educational tools or low cost technology demonstration platforms that could be developed and launched within one or two years. Recently, however, more advanced CubeSat missions have been developed and proposed, indicating that CubeSats clearly started to transition from being solely educational and technology demonstration platforms to offer opportunities for low-cost real science missions with potential high value in terms of science return and commercial revenue. Despite the significant progress made in CubeSat research and development over the last decade, some fundamental questions still habitually arise about the CubeSat capabilities, limitations, and ultimately about their scientific and commercial value. The main objective of this review is to evaluate the state of the art CubeSat capabilities with a special focus on advanced scientific missions and a goal of assessing the potential of CubeSat platforms as capable spacecraft. A total of over 1200 launched and proposed missions have been analyzed from various sources including peer-reviewed journal publications, conference proceedings, mission webpages as well as other publicly available satellite databases and about 130 relatively high performance missions were downselected and categorized into six groups based on the primary mission objectives including "Earth Science and Spaceborne Applications", "Deep Space Exploration", "Heliophysics: Space Weather", "Astrophysics", "Spaceborne In Situ Laboratory", and "Technology Demonstration" for in-detail analysis. Additionally, the evolution of CubeSat enabling technologies are surveyed for evaluating the current technology state of the art as well as identifying potential areas that will benefit the most from further technology developments for enabling high performance science missions based on CubeSat platforms.

  13. Electroosmotic flow mixing in zigzag microchannels.

    PubMed

    Chen, Jia-Kun; Yang, Ruey-Jen

    2007-03-01

    In this study we performed numerical and experimental investigations into the mixing of EOFs in zigzag microchannels with two different corner geometries, namely sharp corners and flat corners. In the zigzag microchannel with sharp corners, the flow travels more rapidly near the inner wall of the corner than near the outer wall as a result of the higher electric potential drop. The resulting velocity gradient induces a racetrack effect, which enhances diffusion within the fluid and hence improves the mixing performance. The simulation results reveal that the mixing index is approximately 88.83%. However, the sharp-corner geometry causes residual liquid or bubbles to become trapped in the channel at the point where the flow is almost stationary, when the channel is in the process of cleaning. Accordingly, a zigzag microchannel with flat-corner geometry is developed. The flat-corner geometry forms a convergent-divergent type nozzle which not only enhances the mixing performance in the channel, but also prevents the accumulation of residual liquid or bubbles. Scaling analysis reveals that this corner geometry leads to an effective increase in the mixing length. The experimental results reveal that the mixing index is increased to 94.30% in the flat-corner zigzag channel. Hence, the results demonstrate that the mixing index of the flat-corner zigzag channel is better than that of the conventional sharp-corner microchannel. Finally, the results of Taguchi analysis indicate that the attainable mixing index is determined primarily by the number of corners in the microchannel and by the flow passing height at each corner.

  14. EarthCube - Results of Test Governance in Geoscience Cyberinfrastructure

    NASA Astrophysics Data System (ADS)

    Davis, R.; Allison, M. L.; Keane, C. M.; Robinson, E.

    2016-12-01

    In September 2016, the EarthCube Test Enterprise Governance Project completed its three-year long process to engage the community and test a demonstration governing organization with the goal of facilitating a community-led process on designing and developing a geoscience cyberinfrastructure to transform geoscience research. The EarthCube initiative is making an important transition from creating a coherent community towards adoption and implemention of technologies that can serve scientists working in and across many domains. The emerging concept of a "system of systems" approach to cyberinfrastructure architecture is a critical concept in the EarthCube program, but has not been fully defined. Recommendations from an NSF-appointed Advisory Committee include: a. developing a succinct definition of EarthCube; b. changing the community-elected governance approach towards structured rather than consensus-driven decision-making; c. restructuring the process to articulate program solicitations; and d. producing an effective implementation roadmap. These are seen as prerequisites to adoption of best practices, system concepts, and evolving to a production track. The EarthCube governing body is preparing responses to the Advisory Committee findings and recommendations with a target delivery date of late 2016 but broader involvement may be warranted. We conclude that there is ample justification to continue evolving to a governance framework that facilitates convergence on a system architecture that guides EarthCube activities and plays an influential role in making operational the EarthCube vision of cyberinfrastructure for the geosciences. There is widespread community expectation for support of a multiyear EarthCube governing effort to put into practice the science, technical, and organizational plans that are continuing to emerge. However, the active participants in EarthCube represent a small sub-set of the larger population of geoscientists.

  15. D Visualization of Volcanic Ash Dispersion Prediction with Spatial Information Open Platform in Korea

    NASA Astrophysics Data System (ADS)

    Youn, J.; Kim, T.

    2016-06-01

    Visualization of disaster dispersion prediction enables decision makers and civilian to prepare disaster and to reduce the damage by showing the realistic simulation results. With advances of GIS technology and the theory of volcanic disaster prediction algorithm, the predicted disaster dispersions are displayed in spatial information. However, most of volcanic ash dispersion predictions are displayed in 2D. 2D visualization has a limitation to understand the realistic dispersion prediction since its height could be presented only by colour. Especially for volcanic ash, 3D visualization of dispersion prediction is essential since it could bring out big aircraft accident. In this paper, we deals with 3D visualization techniques of volcanic ash dispersion prediction with spatial information open platform in Korea. First, time-series volcanic ash 3D position and concentrations are calculated with WRF (Weather Research and Forecasting) model and Modified Fall3D algorithm. For 3D visualization, we propose three techniques; those are 'Cube in the air', 'Cube in the cube', and 'Semi-transparent plane in the air' methods. In the 'Cube in the Air', which locates the semitransparent cubes having different color depends on its particle concentration. Big cube is not realistic when it is zoomed. Therefore, cube is divided into small cube with Octree algorithm. That is 'Cube in the Cube' algorithm. For more realistic visualization, we apply 'Semi-transparent Volcanic Ash Plane' which shows the ash as fog. The results are displayed in the 'V-world' which is a spatial information open platform implemented by Korean government. Proposed techniques were adopted in Volcanic Disaster Response System implemented by Korean Ministry of Public Safety and Security.

  16. Evolution of Deformation and Recrystallization Textures in High-Purity Ni and the Ni-5 at. pct W Alloy

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Pinaki P.; Ray, Ranjit K.; Tsuji, Nobuhiro

    2010-11-01

    An attempt has been made to study the evolution of texture in high-purity Ni and Ni-5 at. pct W alloy prepared by the powder metallurgy route followed by heavy cold rolling ( 95 pct deformation) and recrystallization. The deformation textures of the two materials are of typical pure metal or Cu-type texture. Cube-oriented ( left\\{ {00 1} right\\}left< { 100} rightrangle ) regions are present in the deformed state as long thin bands, elongated in the rolling direction (RD). These bands are characterized by a high orientation gradient inside, which is a result of the rotation of the cube-oriented cells around the RD toward the RD-rotated cube ( left\\{ {0 1 3} right\\}left< { 100} rightrangle ). Low-temperature annealing produces a weak cube texture along with the left\\{ {0 1 3} right\\}left< { 100} rightrangle component, with the latter being much stronger in high-purity Ni than in the Ni-W alloy. At higher temperatures, the cube texture is strengthened considerably in the Ni-W alloy; however, the cube volume fraction in high-purity Ni is significantly lower because of the retention of the left\\{ {0 1 3} right\\}left< { 100} rightrangle component. The difference in the relative strengths of the cube, and the left\\{ {0 1 3} right\\}left< { 100} rightrangle components in the two materials is evident from the beginning of recrystallization in which more left\\{ {0 1 3} right\\}left< { 100} rightrangle -oriented grains than near cube grains form in high-purity Ni. The preferential nucleation of the near cube and the left\\{ {0 1 3} right\\}left< { 100} rightrangle grains in these materials seems to be a result of the high orientation gradients associated with the cube bands that offer a favorable environment for early nucleation.

  17. DAsHER CD: Developing a Data-Oriented Human-Centric Enterprise Architecture for EarthCube

    NASA Astrophysics Data System (ADS)

    Yang, C. P.; Yu, M.; Sun, M.; Qin, H.; Robinson, E.

    2015-12-01

    One of the biggest challenges that face Earth scientists is the resource discovery, access, and sharing in a desired fashion. EarthCube is targeted to enable geoscientists to address the challenges by fostering community-governed efforts that develop a common cyberinfrastructure for the purpose of collecting, accessing, analyzing, sharing and visualizing all forms of data and related resources, through the use of advanced technological and computational capabilities. Here we design an Enterprise Architecture (EA) for EarthCube to facilitate the knowledge management, communication and human collaboration in pursuit of the unprecedented data sharing across the geosciences. The design results will provide EarthCube a reference framework for developing geoscience cyberinfrastructure collaborated by different stakeholders, and identifying topics which should invoke high interest in the community. The development of this EarthCube EA framework leverages popular frameworks, such as Zachman, Gartner, DoDAF, and FEAF. The science driver of this design is the needs from EarthCube community, including the analyzed user requirements from EarthCube End User Workshop reports and EarthCube working group roadmaps, and feedbacks or comments from scientists obtained by organizing workshops. The final product of this Enterprise Architecture is a four-volume reference document: 1) Volume one is this document and comprises an executive summary of the EarthCube architecture, serving as an overview in the initial phases of architecture development; 2) Volume two is the major body of the design product. It outlines all the architectural design components or viewpoints; 3) Volume three provides taxonomy of the EarthCube enterprise augmented with semantics relations; 4) Volume four describes an example of utilizing this architecture for a geoscience project.

  18. Estimating severity of burn in children: Pediatric Risk of Mortality (PRISM) score versus Abbreviated Burn Severity Index (ABSI).

    PubMed

    Berndtson, Allison E; Sen, Soman; Greenhalgh, David G; Palmieri, Tina L

    2013-09-01

    The purpose of our study is to validate the Pediatric Risk of Mortality (PRISM) score and compare the accuracy of PRISM predicted outcomes to the Abbreviated Burn Severity Index (ABSI). We hypothesized that the PRISM score is more accurate in predicting mortality and hospital length of stay than the ABSI in children with severe burns. All children <18 years of age admitted to a regional pediatric burn center between January 1, 2008 and July 1, 2010 were reviewed. Those with a Total Body Surface Area (TBSA) burn ≥20% who were admitted within 7 days of injury were selected for our study. Measured parameters included: demographics, burn characteristics, PRISM and ABSI scores at admission, and outcomes (mortality, hospital length of stay (LOS), ventilator days and cause of death). A total of 83 patients met criteria and had complete data sets. The mean age (±SEM) was 8.0±0.6 years, mean % TBSA burn 49.9±2.1%, 62.7% were male, and 45.8% had inhalation injury. Hospital LOS was 74.4±7.9 days, with 31.5±4.9 ventilator days. Mean PRISM score ranged from 14.2 to 16.0, with ABSI scores 7.9 to 8.5. Actual overall mortality was 18.1% compared to a PRISM predicted mortality of 19.8±2.5% (p<0.001, r=0.570). ABSI predicted mortality varied from 10 to 20% for a score of 7.9 to 30-50% for a score of 8.5. Logistic regression showed that both PRISM (p<0.001) and ABSI (p<0.001) mortality predictions accurately estimated actual mortality, which remained true in a combined model. ABSI was predictive of hospital LOS (p<0.001) and ventilator days (p<0.001) while PRISM was not (p=0.326 and p=0.863). Both PRISM and ABSI scores are predictive of mortality in severely burned children. Only ABSI correlates with hospital length of stay and ventilator days, and thus may also be more useful in predicting ICU resource utilization. Copyright © 2013 Elsevier Ltd and ISBI. All rights reserved.

  19. [Do prisms according to Hans-Joachim Haase improve stereoacuity?].

    PubMed

    Kromeier, Miriam; Schmitt, Christina; Bach, Michael; Kommerell, Guntram

    2002-06-01

    The "Measuring and Correcting Methodology" after H.-J. Haase (MKH) aims at converting "fixation disparity" into bicentral fixation, using prismatic spectacles. In the context of the MKH, fixation disparity is diagnosed by a series of subjective tests. According to H.-J. Haase, a long-standing fixation disparity can lead to "disparate correspondence" between the central areas of both retinae, which consolidates the fixation disparity and gradually converts a "young" into an "old fixation disparity". In "old fixation disparity" it is thought that bicentral fixation does not occur anymore, so that stereoacuity is impaired. However, prismatic spectacles can, according to H.-J. Haase, restitute bicentral fixation and consequently improve stereoacuity, even in some cases of "old fixation disparity". Ten non-strabismic subjects with a visual acuity of >/= 1.0 in both eyes were examined. It turned out that all ten had, according to MKH, a "disparate correspondence", 5 subjects with a "young" and 5 with an "old fixation disparity". According to the MKH, a correcting prism was determined. All 10 subjects underwent the automatic Freiburg Stereoacuity Test, without and with the MKH-prism. Without the MKH-prism, the stereoscopic threshold ranged between 1.5 and 14.5 arcsec. With the MKH-prism, the values were not significantly different. Stereoacuity ranged between good and excellent in the 5 subjects with "young" as well as in the 5 subjects with "old fixation disparity". The MKH-prism did not improve the stereoacuity in any of the subjects. These results cast doubt on Haase's assertion that an "old fixation disparity" implies a reduced stereoacuity. Hence, the premise for a benefit of the MKH-prism with respect of stereoacuity is not substantiated. In the 5 subjects with a "young fixation disparity", the good stereoacuity is consistent with Haase's theory, so that a benefit of the MKH-prism for stereoacuity was not expected. In previous studies, stereoacuity was found to be better with the MKH-prism than without it. These studies are questionable since learning with repeated testing was not taken into account. We conclude that there is no sound evidence for the assumption that the MKH-prism can improve stereoacuity.

  20. Microstructural features of carious human enamel imaged with back-scattered electrons.

    PubMed

    Pearce, E I; Nelson, D G

    1989-02-01

    We have used back-scattered electrons (BE) in the scanning electron microscope to produce mineral density images of enamel. Flat surfaces of artificially-carious enamel, softened in an intra-oral experiment, and naturally-carious (white spot) enamel were polished to a high gloss with diamond lapping compound, rendering them almost featureless by secondary electron scanning electron microscopy. They were then examined at 10 to 30 kV in a Philips 505 instrument fitted with a 4-quadrant BE detector. Study of surfaces prepared approximately parallel to the natural surface showed that mineral was lost from both prism core and the interprismatic region, leaving a thin mineral-rich rim at the prism periphery. The same lesions viewed longitudinally on a surface prepared perpendicular to the natural surface showed mineral-rich bands at the prism margins in the outer enamel. Near the advancing front of the lesion, the prism junctions were widened and the prism cores sometimes hypermineralized. Natural lesions sectioned in the prism long axis showed features previously seen with other techniques, e.g., cross-striations and striae of Retzius, but in much greater detail. Mineral enrichment at the prism periphery in the lesion body and a widening of the prism junction at the advancing fronts of lesions in permanent teeth were most obvious. Calculations showed that with an accelerating voltage of 30 kV, the images reflected mineral density up to 4 microns beneath the surface. BE microscopy produces a high-resolution image of mineral loss or gain in carious enamel, with relatively easy sample preparation.

  1. Experimental Evaluation of Turning Vane Designs for High-speed and Coupled Fan-drive Corners of 0.1-scale Model of NASA Lewis Research Center's Proposed Altitude Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Gelder, Thomas F.; Moore, Royce D.; Shyne, Rickey J.; Boldman, Donald R.

    1987-01-01

    Two turning vane designs were experimentally evaluated for the fan-drive corner (corner 2) coupled to an upstream diffuser and the high-speed corner (corner 1) of the 0.1 scale model of NASA Lewis Research Center's proposed Altitude Wind Tunnel. For corner 2 both a controlled-diffusion vane design (vane A4) and a circular-arc vane design (vane B) were studied. The corner 2 total pressure loss coefficient was about 0.12 with either vane design. This was about 25 percent less loss than when corner 2 was tested alone. Although the vane A4 design has the advantage of 20 percent fewer vanes than the vane B design, its vane shape is more complex. The effects of simulated inlet flow distortion on the overall losses for corner 1 or 2 were small.

  2. Propulsion System and Orbit Maneuver Integration in CubeSats: Trajectory Control Strategies Using Micro Ion Propulsion

    NASA Technical Reports Server (NTRS)

    Hudson, Jennifer; Martinez, Andres; Petro, Andrew

    2015-01-01

    The Propulsion System and Orbit Maneuver Integration in CubeSats project aims to solve the challenges of integrating a micro electric propulsion system on a CubeSat in order to perform orbital maneuvers and control attitude. This represents a fundamentally new capability for CubeSats, which typically do not contain propulsion systems and cannot maneuver far beyond their initial orbits.

  3. Keeping It in Three Dimensions: Measuring the Development of Mental Rotation in Children with the Rotated Colour Cube Test (RCCT)

    ERIC Educational Resources Information Center

    Lutke, Nikolay; Lange-Kuttner, Christiane

    2015-01-01

    This study introduces the new Rotated Colour Cube Test (RCCT) as a measure of object identification and mental rotation using single 3D colour cube images in a matching-to-sample procedure. One hundred 7- to 11-year-old children were tested with aligned or rotated cube models, distracters and targets. While different orientations of distracters…

  4. Cube search, revisited.

    PubMed

    Zhang, Xuetao; Huang, Jie; Yigit-Elliott, Serap; Rosenholtz, Ruth

    2015-03-16

    Observers can quickly search among shaded cubes for one lit from a unique direction. However, replace the cubes with similar 2-D patterns that do not appear to have a 3-D shape, and search difficulty increases. These results have challenged models of visual search and attention. We demonstrate that cube search displays differ from those with "equivalent" 2-D search items in terms of the informativeness of fairly low-level image statistics. This informativeness predicts peripheral discriminability of target-present from target-absent patches, which in turn predicts visual search performance, across a wide range of conditions. Comparing model performance on a number of classic search tasks, cube search does not appear unexpectedly easy. Easy cube search, per se, does not provide evidence for preattentive computation of 3-D scene properties. However, search asymmetries derived from rotating and/or flipping the cube search displays cannot be explained by the information in our current set of image statistics. This may merely suggest a need to modify the model's set of 2-D image statistics. Alternatively, it may be difficult cube search that provides evidence for preattentive computation of 3-D scene properties. By attributing 2-D luminance variations to a shaded 3-D shape, 3-D scene understanding may slow search for 2-D features of the target. © 2015 ARVO.

  5. Cube search, revisited

    PubMed Central

    Zhang, Xuetao; Huang, Jie; Yigit-Elliott, Serap; Rosenholtz, Ruth

    2015-01-01

    Observers can quickly search among shaded cubes for one lit from a unique direction. However, replace the cubes with similar 2-D patterns that do not appear to have a 3-D shape, and search difficulty increases. These results have challenged models of visual search and attention. We demonstrate that cube search displays differ from those with “equivalent” 2-D search items in terms of the informativeness of fairly low-level image statistics. This informativeness predicts peripheral discriminability of target-present from target-absent patches, which in turn predicts visual search performance, across a wide range of conditions. Comparing model performance on a number of classic search tasks, cube search does not appear unexpectedly easy. Easy cube search, per se, does not provide evidence for preattentive computation of 3-D scene properties. However, search asymmetries derived from rotating and/or flipping the cube search displays cannot be explained by the information in our current set of image statistics. This may merely suggest a need to modify the model's set of 2-D image statistics. Alternatively, it may be difficult cube search that provides evidence for preattentive computation of 3-D scene properties. By attributing 2-D luminance variations to a shaded 3-D shape, 3-D scene understanding may slow search for 2-D features of the target. PMID:25780063

  6. Prism Foil from an LCD Monitor as a Tool for Teaching Introductory Optics

    ERIC Educational Resources Information Center

    Planinsic, Gorazd; Gojkosek, Mihael

    2011-01-01

    Transparent prism foil is part of a backlight system in LCD monitors that are widely used today. This paper describes the optical properties of the prism foil and several pedagogical applications suitable for undergraduate introductory physics level. Examples include experiments that employ refraction, total internal reflection, diffraction and…

  7. Investigating First Year Elementary Mathematics Teacher Education Students' Knowledge of Prism

    ERIC Educational Resources Information Center

    Bozkurt, Ali; Koc, Yusuf

    2012-01-01

    The purpose of this study was to investigate first year elementary mathematics teacher education students' knowledge of prism. For this goal, the participants were asked to define the geometric concept of prism. The participants were 158 first year elementary mathematics teacher education students from a public university in Southern Turkey. The…

  8. Left to Right: Representational Biases for Numbers and the Effect of Visuomotor Adaptation

    ERIC Educational Resources Information Center

    Loftus, Andrea M.; Nicholls, Michael E. R.; Mattingley, Jason B.; Bradshaw, John L.

    2008-01-01

    Adaptation to right-shifting prisms improves left neglect for mental number line bisection. This study examined whether adaptation affects the mental number line in normal participants. Thirty-six participants completed a mental number line task before and after adaptation to either: left-shifting prisms, right-shifting prisms or control…

  9. Hierarchically triangular prism structured Co3O4: Self-supported fabrication and photocatalytic property

    EPA Science Inventory

    The formation of ammonium cobalt (II) phosphate was utilized to synthesize unprecedented 3D structures of Co3O4, triangular prisms and trunk-like structures, via a self-supported and organics-free method. The length of a triangular side of the prepared 3D triangular prisms is ~1...

  10. PRISM Climate Group, Oregon State U

    Science.gov Websites

    FAQ PRISM Climate Data The PRISM Climate Group gathers climate observations from a wide range of monitoring networks, applies sophisticated quality control measures, and develops spatial climate datasets to reveal short- and long-term climate patterns. The resulting datasets incorporate a variety of modeling

  11. Digital Beam Steering Device Based on Decoupled Birefringent Prism Deflector and Polarization Rotator

    NASA Technical Reports Server (NTRS)

    Pishnyak, Oleg; Kreminska, Lyubov; Laventovich, Oleg D.; Pouch, John J.; Miranda, Felix A.; Winker, Bruce K.

    2004-01-01

    We describe digital beam deflectors (DBDs) based on liquid crystals. Each stage of the device comprises a polarization rotator and a birefringent prism deflector. The birefringent prism deflects the beam by an angle that depends on polarization of the incident beam. The prism can be made of the uniaxial smectic A (SmA) liquid crystal (LC) or a solid crystal such as yttrium orthovanadate (YVO4). SmA prisms have high birefringence and can be constructed in a variety of shapes, including single prisms and prismatic blazed gratings of different angles and profiles. We address the challenges of uniform alignment of SmA, such as elimination of focal conic domains. Rotation of linear polarization is achieved by an electrically switched twisted nematic (TN) cell. A DBD composed of N rotator-deflector pairs steers the beam into 2(sup N) directions. As an example, we describe a four-stage DBD deflecting normally incident laser beam within the range of +/- 56 mrad with 8 mrad steps. Redirection of the beam is achieved by switching the TN cells.

  12. The Program for Regional and International Shorebird Monitoring (PRISM)

    USGS Publications Warehouse

    Bart, J.; Andres, B.; Brown, S.; Donaldson, G.; Harrington, B.; Johnston, V.; Jones, S.; Morrison, R.I.G.; Skagen, S.K.

    2005-01-01

    This report describes the "Program for Regional and International Shorebird Monitoring" (PRISM). PRISM is being implemented by a Canada-United States Shorebird Monitoring and Assessment Committee formed in 2001 by the Canadian Shorebird Working Group and the U.S. Shorebird Council. PRISM provides a single blueprint for implementing the shorebird conservation plans recently completed in Canada and the United States. The goals of PRISM are to (1) estimate the size of breeding population of 74 shorebird taxa in North America; (2) describe the distribution, abundance, and habitat relationships for each of these taxa; (3) monitor trends in shorebird population size; (4) monitor shorebird numbers at stopover locations, and; (5) assist local managers in meeting their shorebird conservation goals. PRISM has four main components: arctic and boreal breeding surveys, temperate breeding surveys, temperate non-breeding surveys, and neotropical surveys. Progress on, and action items for, each major component are described. The more important major tasks for immediate action are carrying out the northern surveys, conducting regional analyses to design the program of migration counts, and evaluating aerial photographic surveys for migration and winter counts.

  13. Object tracking with robotic total stations: Current technologies and improvements based on image data

    NASA Astrophysics Data System (ADS)

    Ehrhart, Matthias; Lienhart, Werner

    2017-09-01

    The importance of automated prism tracking is increasingly triggered by the rising automation of total station measurements in machine control, monitoring and one-person operation. In this article we summarize and explain the different techniques that are used to coarsely search a prism, to precisely aim at a prism, and to identify whether the correct prism is tracked. Along with the state-of-the-art review, we discuss and experimentally evaluate possible improvements based on the image data of an additional wide-angle camera which is available for many total stations today. In cases in which the total station's fine aiming module loses the prism, the tracked object may still be visible to the wide-angle camera because of its larger field of view. The theodolite angles towards the target can then be derived from its image coordinates which facilitates a fast reacquisition of the prism. In experimental measurements we demonstrate that our image-based approach for the coarse target search is 4 to 10-times faster than conventional approaches.

  14. Two-photon laser scanning microscopy with electrowetting-based prism scanning

    PubMed Central

    Supekar, Omkar D.; Ozbay, Baris N.; Zohrabi, Mo; Nystrom, Philip D.; Futia, Gregory L.; Restrepo, Diego; Gibson, Emily A.; Gopinath, Juliet T.; Bright, Victor M.

    2017-01-01

    Laser scanners are an integral part of high resolution biomedical imaging systems such as confocal or 2-photon excitation (2PE) microscopes. In this work, we demonstrate the utility of electrowetting on dielectric (EWOD) prisms as a lateral laser-scanning element integrated in a conventional 2PE microscope. To the best of our knowledge, this is the first such demonstration for EWOD prisms. EWOD devices provide a transmissive, low power consuming, and compact alternative to conventional adaptive optics, and hence this technology has tremendous potential. We demonstrate 2PE microscope imaging of cultured mouse hippocampal neurons with a FOV of 130 × 130 μm2 using EWOD prism scanning. In addition, we show simulations of the optical system with the EWOD prism, to evaluate the effect of propagating a Gaussian beam through the EWOD prism on the imaging quality. Based on the simulation results a beam size of 0.91 mm full width half max was chosen to conduct the imaging experiments, resulting in a numerical aperture of 0.17 of the imaging system. PMID:29296477

  15. Genomes to natural products PRediction Informatics for Secondary Metabolomes (PRISM)

    PubMed Central

    Skinnider, Michael A.; Dejong, Chris A.; Rees, Philip N.; Johnston, Chad W.; Li, Haoxin; Webster, Andrew L. H.; Wyatt, Morgan A.; Magarvey, Nathan A.

    2015-01-01

    Microbial natural products are an invaluable source of evolved bioactive small molecules and pharmaceutical agents. Next-generation and metagenomic sequencing indicates untapped genomic potential, yet high rediscovery rates of known metabolites increasingly frustrate conventional natural product screening programs. New methods to connect biosynthetic gene clusters to novel chemical scaffolds are therefore critical to enable the targeted discovery of genetically encoded natural products. Here, we present PRISM, a computational resource for the identification of biosynthetic gene clusters, prediction of genetically encoded nonribosomal peptides and type I and II polyketides, and bio- and cheminformatic dereplication of known natural products. PRISM implements novel algorithms which render it uniquely capable of predicting type II polyketides, deoxygenated sugars, and starter units, making it a comprehensive genome-guided chemical structure prediction engine. A library of 57 tailoring reactions is leveraged for combinatorial scaffold library generation when multiple potential substrates are consistent with biosynthetic logic. We compare the accuracy of PRISM to existing genomic analysis platforms. PRISM is an open-source, user-friendly web application available at http://magarveylab.ca/prism/. PMID:26442528

  16. Porous Ni-Co-Mn oxides prisms for high performance electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Zhao, Jianbo; Li, Man; Li, Junru; Wei, Chengzhen; He, Yuyue; Huang, Yixuan; Li, Qiaoling

    2017-12-01

    Porous Ni-Co-Mn oxides prisms have been successfully synthesized via a facile route. The process involves the preparation of nickel-cobalt-manganese acetate hydroxide by a simple co-precipitation method and subsequently the thermal treatment. The as-synthesized Ni-Co-Mn oxides prisms had a large surface area (96.53 m2 g-1) and porous structure. As electrode materials for supercapacitors, porous Ni-Co-Mn oxides prisms showed a high specific capacitance of 1623.5 F g-1 at 1.0 A g-1. Moreover, the porous Ni-Co-Mn oxides prisms were also employed as positive electrode materials to assemble flexible solid-state asymmetric supercapacitors. The resulting flexible device had a maximum volumetric energy density (0.885 mW h cm-3) and power density (48.9 mW cm-3). Encouragingly, the flexible device exhibited good cycling stability with only about 2.2% loss after 5000 charge-discharge cycles and excellent mechanical stability. These results indicate that porous Ni-Co-Mn oxides prisms have the promising application in high performance electrochemical energy storage.

  17. Working RideShare for the U Class Payload

    NASA Technical Reports Server (NTRS)

    Skrobot, Garrett L.

    2014-01-01

    Presentation to describe current status of the Launch Services Program's (LSP) education launch of nano satellite project. U class are payloads that are of a form factor of the 1U CubeSats - 10cm Cubed. Over the past three years these small spacecraft have grown in popularity in both the Government and the Commercial market. There is an increase in the number of NASA CubeSats selected and yet a very low launch rate. Why the low launch rate? - Funding, more money = more launches - CubeSat being selective about the orbit - CubeSats not being ready. This trend is expected to continue with current manifesting practices.

  18. Trajectory design for a cislunar CubeSat leveraging dynamical systems techniques: The Lunar IceCube mission

    NASA Astrophysics Data System (ADS)

    Bosanac, Natasha; Cox, Andrew D.; Howell, Kathleen C.; Folta, David C.

    2018-03-01

    Lunar IceCube is a 6U CubeSat that is designed to detect and observe lunar volatiles from a highly inclined orbit. This spacecraft, equipped with a low-thrust engine, is expected to be deployed from the upcoming Exploration Mission-1 vehicle. However, significant uncertainty in the deployment conditions for secondary payloads impacts both the availability and geometry of transfers that deliver the spacecraft to the lunar vicinity. A framework that leverages dynamical systems techniques is applied to a recently updated set of deployment conditions and spacecraft parameter values for the Lunar IceCube mission, demonstrating the capability for rapid trajectory design.

  19. KSC-2013-3996

    NASA Image and Video Library

    2013-11-17

    CAPE CANAVERAL, Fla. -- At the News Center at NASA's Kennedy Space Center in Florida, Andrew Petro, the agency's acting director of the Early Stage Innovation Division of the Office of the Chief Technologist, discusses the agency’s CubeSat Launch initiative. CubeSats provide opportunities for small satellite payloads to fly on rockets planned for upcoming launches. CubeSats, a class of research spacecraft called nanosatellites, are flown as auxiliary payloads on previously planned missions. The cube-shaped satellites are approximately four inches long, have a volume of about one quart and weigh about three pounds. For more information, visit: http://www.nasa.gov/directorates/heo/home/CubeSats_initiative.html Photo credit: NASA/Kim Shiflett

  20. KSC-2013-3993

    NASA Image and Video Library

    2013-11-17

    CAPE CANAVERAL, Fla. -- At the News Center at NASA's Kennedy Space Center in Florida, Andrew Petro, the agency's acting director of the Early Stage Innovation Division of the Office of the Chief Technologist, discusses the agency’s CubeSat Launch initiative. CubeSats provide opportunities for small satellite payloads to fly on rockets planned for upcoming launches. CubeSats, a class of research spacecraft called nanosatellites, are flown as auxiliary payloads on previously planned missions. The cube-shaped satellites are approximately four inches long, have a volume of about one quart and weigh about three pounds. For more information, visit: http://www.nasa.gov/directorates/heo/home/CubeSats_initiative.html Photo credit: NASA/Kim Shiflett

  1. KSC-2013-3995

    NASA Image and Video Library

    2013-11-17

    CAPE CANAVERAL, Fla. -- At the News Center at NASA's Kennedy Space Center in Florida, Andrew Petro, the agency's acting director of the Early Stage Innovation Division of the Office of the Chief Technologist, discusses the agency’s CubeSat Launch initiative. CubeSats provide opportunities for small satellite payloads to fly on rockets planned for upcoming launches. CubeSats, a class of research spacecraft called nanosatellites, are flown as auxiliary payloads on previously planned missions. The cube-shaped satellites are approximately four inches long, have a volume of about one quart and weigh about three pounds. For more information, visit: http://www.nasa.gov/directorates/heo/home/CubeSats_initiative.html Photo credit: NASA/Kim Shiflett

  2. KSC-2013-3994

    NASA Image and Video Library

    2013-11-17

    CAPE CANAVERAL, Fla. -- At the News Center at NASA's Kennedy Space Center in Florida, Andrew Petro, the agency's acting director of the Early Stage Innovation Division of the Office of the Chief Technologist, discusses the agency’s CubeSat Launch initiative. CubeSats provide opportunities for small satellite payloads to fly on rockets planned for upcoming launches. CubeSats, a class of research spacecraft called nanosatellites, are flown as auxiliary payloads on previously planned missions. The cube-shaped satellites are approximately four inches long, have a volume of about one quart and weigh about three pounds. For more information, visit: http://www.nasa.gov/directorates/heo/home/CubeSats_initiative.html Photo credit: NASA/Kim Shiflett

  3. Beam splitter and method for generating equal optical path length beams

    DOEpatents

    Qian, Shinan; Takacs, Peter

    2003-08-26

    The present invention is a beam splitter for splitting an incident beam into first and second beams so that the first and second beams have a fixed separation and are parallel upon exiting. The beam splitter includes a first prism, a second prism, and a film located between the prisms. The first prism is defined by a first thickness and a first perimeter which has a first major base. The second prism is defined by a second thickness and a second perimeter which has a second major base. The film is located between the first major base and the second major base for splitting the incident beam into the first and second beams. The first and second perimeters are right angle trapezoidal shaped. The beam splitter is configured for generating equal optical path length beams.

  4. PRISM Spectrograph Optical Design

    NASA Technical Reports Server (NTRS)

    Chipman, Russell A.

    1995-01-01

    The objective of this contract is to explore optical design concepts for the PRISM spectrograph and produce a preliminary optical design. An exciting optical configuration has been developed which will allow both wavelength bands to be imaged onto the same detector array. At present the optical design is only partially complete because PRISM will require a fairly elaborate optical system to meet its specification for throughput (area*solid angle). The most complex part of the design, the spectrograph camera, is complete, providing proof of principle that a feasible design is attainable. This camera requires 3 aspheric mirrors to fit inside the 20x60 cm cross-section package. A complete design with reduced throughput (1/9th) has been prepared. The design documents the optical configuration concept. A suitable dispersing prism material, CdTe, has been identified for the prism spectrograph, after a comparison of many materials.

  5. Forward and inverse solutions for Risley prism based on the Denavit-Hartenberg methodology

    NASA Astrophysics Data System (ADS)

    Beltran-Gonzalez, A.; Garcia-Torales, G.; Strojnik, M.; Flores, J. L.; Garcia-Luna, J. L.

    2017-08-01

    In this work forward and inverse solutions for two-element Risley prism for pointing and scanning beam systems are developed. A more efficient and faster algorithm is proposed to make an analogy of the Risley prism system compared with a robotic system with two degrees of freedom. This system of equations controls each Risley prism individually as a planar manipulator arm of two links. In order to evaluate the algorithm we implement it in a pointing system. We perform popular routines such as the linear, spiral and loops traces. Using forward and inverse solutions for two-element Risley prism it is also possible to point at coordinates specified by the user, provided they are within the pointer area of work area. Experimental results are showed as a validation of our proposal.

  6. Collapsible Cubes and Other Curiosities.

    ERIC Educational Resources Information Center

    Johnson, Scott; Walser, Hans

    1997-01-01

    Describes some general techniques for making collapsible models, including spiral models, for all the Platonic solids except the cube. Discusses the nature of the dissections of the faces necessary for the construction of the spiral cube. (ASK)

  7. Using Additive Manufacturing to Print a CubeSat Propulsion System

    NASA Technical Reports Server (NTRS)

    Marshall, William M.

    2015-01-01

    CubeSats are increasingly being utilized for missions traditionally ascribed to larger satellites CubeSat unit (1U) defined as 10 cm x 10 cm x 11 cm. Have been built up to 6U sizes. CubeSats are typically built up from commercially available off-the-shelf components, but have limited capabilities. By using additive manufacturing, mission specific capabilities (such as propulsion), can be built into a system. This effort is part of STMD Small Satellite program Printing the Complete CubeSat. Interest in propulsion concepts for CubeSats is rapidly gaining interest-Numerous concepts exist for CubeSat scale propulsion concepts. The focus of this effort is how to incorporate into structure using additive manufacturing. End-use of propulsion system dictates which type of system to develop-Pulse-mode RCS would require different system than a delta-V orbital maneuvering system. Team chose an RCS system based on available propulsion systems and feasibility of printing using a materials extrusion process. Initially investigated a cold-gas propulsion system for RCS applications-Materials extrusion process did not permit adequate sealing of part to make this a functional approach.

  8. Girls in detail, boys in shape: gender differences when drawing cubes in depth.

    PubMed

    Lange-Küttner, C; Ebersbach, M

    2013-08-01

    The current study tested gender differences in the developmental transition from drawing cubes in two- versus three dimensions (3D), and investigated the underlying spatial abilities. Six- to nine-year-old children (N = 97) drew two occluding model cubes and solved several other spatial tasks. Girls more often unfolded the various sides of the cubes into a layout, also called diagrammatic cube drawing (object design detail). In girls, the best predictor for drawing the cubes was Mental Rotation Test (MRT) accuracy. In contrast, boys were more likely to preserve the optical appearance of the cube array. Their drawing in 3D was best predicted by MRT reaction time and the Embedded Figures Test (EFT). This confirmed boys' stronger focus on the contours of an object silhouette (object shape). It is discussed whether the two gender-specific approaches to drawing in three dimensions reflect two sides of the appearance-reality distinction in drawing, that is graphic syntax of object design features versus visual perception of projective space. © 2012 The British Psychological Society.

  9. Disorganized behavior on Link's cube test is sensitive to right hemispheric frontal lobe damage in stroke patients

    PubMed Central

    Kopp, Bruno; Rösser, Nina; Tabeling, Sandra; Stürenburg, Hans Jörg; de Haan, Bianca; Karnath, Hans-Otto; Wessel, Karl

    2014-01-01

    One of Luria's favorite neuropsychological tasks for challenging frontal lobe functions was Link's cube test (LCT). The LCT is a cube construction task in which the subject must assemble 27 small cubes into one large cube in such a manner that only the painted surfaces of the small cubes are visible. We computed two new LCT composite scores, the constructive plan composite score, reflecting the capability to envisage a cubical-shaped volume, and the behavioral (dis-) organization composite score, reflecting the goal-directedness of cube construction. Voxel-based lesion-behavior mapping (VLBM) was used to test the relationship between performance on the LCT and brain injury in a sample of stroke patients with right hemisphere damage (N = 32), concentrated in the frontal lobe. We observed a relationship between the measure of behavioral (dis-) organization on the LCT and right frontal lesions. Further work in a larger sample, including left frontal lobe damage and with more power to detect effects of right posterior brain injury, is necessary to determine whether this observation is specific for right frontal lesions. PMID:24596552

  10. Software Requirements Specification for Lunar IceCube

    NASA Astrophysics Data System (ADS)

    Glaser-Garbrick, Michael R.

    Lunar IceCube is a 6U satellite that will orbit the moon to measure water volatiles as a function of position, altitude, and time, and measure in its various phases. Lunar IceCube, is a collaboration between Morehead State University, Vermont Technical University, Busek, and NASA. The Software Requirements Specification will serve as contract between the overall team and the developers of the flight software. It will provide a system's overview of the software that will be developed for Lunar IceCube, in that it will detail all of the interconnects and protocols for each subsystem's that Lunar IceCube will utilize. The flight software will be written in SPARK to the fullest extent, due to SPARK's unique ability to make software free of any errors. The LIC flight software does make use of a general purpose, reusable application framework called CubedOS. This framework imposes some structuring requirements on the architecture and design of the flight software, but it does not impose any high level requirements. It will also detail the tools that we will be using for Lunar IceCube, such as why we will be utilizing VxWorks.

  11. High Data Rates for AubieSat-2 A & B, Two CubeSats Performing High Energy Science in the Upper Atmosphere

    NASA Technical Reports Server (NTRS)

    Sims, William H.

    2015-01-01

    This paper will discuss a proposed CubeSat size (3 Units / 6 Units) telemetry system concept being developed at Marshall Space Flight Center (MSFC) in cooperation with Auburn University. The telemetry system incorporates efficient, high-bandwidth communications by developing flight-ready, low-cost, PROTOFLIGHT software defined radio (SDR) payload for use on CubeSats. The current telemetry system is slightly larger in dimension of footprint than required to fit within a 0.75 Unit CubeSat volume. Extensible and modular communications for CubeSat technologies will provide high data rates for science experiments performed by two CubeSats flying in formation in Low Earth Orbit. The project is a collaboration between the University of Alabama in Huntsville and Auburn University to study high energy phenomena in the upper atmosphere. Higher bandwidth capacity will enable high-volume, low error-rate data transfer to and from the CubeSats, while also providing additional bandwidth and error correction margin to accommodate more complex encryption algorithms and higher user volume.

  12. Corner stores: the perspective of urban youth.

    PubMed

    Sherman, Sandra; Grode, Gabrielle; McCoy, Tara; Vander Veur, Stephanie S; Wojtanowski, Alexis; Sandoval, Brianna Almaguer; Foster, Gary D

    2015-02-01

    We examined the perspectives of low-income, urban youth about the corner store experience to inform the development of corner store interventions. Focus groups were conducted to understand youth perceptions regarding their early shopping experiences, the process of store selection, reasons for shopping in a corner store, parental guidance about corner stores, and what their ideal, or "dream corner store" would look like. Thematic analysis was employed to identify themes using ATLAS.ti (version 6.1, 2010, ATLAS.ti GmbH) and Excel (version 2010, Microsoft Corp). Focus groups were conducted in nine kindergarten-through-grade 8 (K-8) public schools in low-income neighborhoods with 40 fourth- to sixth-graders with a mean age of 10.9±0.8 years. Youth report going to corner stores with family members at an early age. By second and third grades, a growing number of youth reported shopping unaccompanied by an older sibling or adult. Youth reported that the products sold in stores were the key reason they choose a specific store. A small number of youth said their parents offered guidance on their corner store purchases. When youth were asked what their dream corner store would look like, they mentioned wanting a combination of healthy and less-healthy foods. These data suggest that, among low-income, urban youth, corner store shopping starts at a very young age and that product, price, and location are key factors that affect corner store selection. The data also suggest that few parents offer guidance about corner store purchases, and youth are receptive to having healthier items in corner stores. Corner store intervention efforts should target young children and their parents/caregivers and aim to increase the availability of affordable, healthier products. Copyright © 2015 Academy of Nutrition and Dietetics. Published by Elsevier Inc. All rights reserved.

  13. Prism adaptation in the healthy brain: the shift in line bisection judgments is long lasting and fluctuates.

    PubMed

    Schintu, Selene; Pisella, Laure; Jacobs, Stéphane; Salemme, Romeo; Reilly, Karen T; Farnè, Alessandro

    2014-01-01

    Rightward prism adaptation has been shown to ameliorate visuospatial biases in right brain-damaged patients with neglect, and a single session of prism adaptation can lead to improvements that last up to several hours. Leftward prism adaptation in neurologically healthy individuals induces neglect-like biases in visuospatial tasks. The duration of these effects in healthy individuals, typically assumed to be ephemeral, has never been investigated. Here we assessed the time-course of the adaptation-induced modifications in a classical perceptual line bisection task that was repeatedly administered for approximately 40min after a single session of adaptation to either a leftward or rightward prismatic deviation. Consistent with previous reports, only adaptation to leftward-deviating prisms induced a visuospatial shift on perceptual line bisection judgments. The typical pattern of pseudoneglect was counteracted by a rightward shift in midline judgments, which became significant between 5 and 10 min after adaptation, fluctuated between being significant or not several times in the 40 min following adaptation, and was present as late as 35 min. In contrast, the sensorimotor aftereffect was present immediately after adaptation to both rightward and leftward deviating prisms, decayed initially then remained stable until 40 min. These results demonstrate that both the sensorimotor and visuospatial effects last for at least 35 min, but that the visuospatial shift needs time to fully develop and fluctuates. By showing that the effects of prism adaptation in the undamaged brain are not ephemeral, these findings reveal the presence of another, so-far neglected dimension in the domain of the cognitive effects induced by prism adaptation, namely time. The prolonged duration of the induced visuospatial shift, previously considered to be a feature of prism adaptation unique to brain-damaged subjects, also applies to the normal brain. © 2013 Published by Elsevier Ltd.

  14. Quantitative evaluation of human cerebellum-dependent motor learning through prism adaptation of hand-reaching movement.

    PubMed

    Hashimoto, Yuji; Honda, Takeru; Matsumura, Ken; Nakao, Makoto; Soga, Kazumasa; Katano, Kazuhiko; Yokota, Takanori; Mizusawa, Hidehiro; Nagao, Soichi; Ishikawa, Kinya

    2015-01-01

    The cerebellum plays important roles in motor coordination and learning. However, motor learning has not been quantitatively evaluated clinically. It thus remains unclear how motor learning is influenced by cerebellar diseases or aging, and is related with incoordination. Here, we present a new application for testing human cerebellum-dependent motor learning using prism adaptation. In our paradigm, the participant wearing prism-equipped goggles touches their index finger to the target presented on a touchscreen in every trial. The whole test consisted of three consecutive sessions: (1) 50 trials with normal vision (BASELINE), (2) 100 trials wearing the prism that shifts the visual field 25° rightward (PRISM), and (3) 50 trials without the prism (REMOVAL). In healthy subjects, the prism-induced finger-touch error, i.e., the distance between touch and target positions, was decreased gradually by motor learning through repetition of trials. We found that such motor learning could be quantified using the "adaptability index (AI)", which was calculated by multiplying each probability of [acquisition in the last 10 trials of PRISM], [retention in the initial five trials of REMOVAL], and [extinction in the last 10 trials of REMOVAL]. The AI of cerebellar patients less than 70 years old (mean, 0.227; n = 62) was lower than that of age-matched healthy subjects (0.867, n = 21; p < 0.0001). While AI did not correlate with the magnitude of dysmetria in ataxic patients, it declined in parallel with disease progression, suggesting a close correlation between the impaired cerebellar motor leaning and the dysmetria. Furthermore, AI decreased with aging in the healthy subjects over 70 years old compared with that in the healthy subjects less than 70 years old. We suggest that our paradigm of prism adaptation may allow us to quantitatively assess cerebellar motor learning in both normal and diseased conditions.

  15. Targeted quantification of low ng/mL level proteins in human serum without immunoaffinity depletion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Tujin; Sun, Xuefei; Gao, Yuqian

    2013-07-05

    We recently reported an antibody-free targeted protein quantification strategy, termed high-pressure, high-resolution separations with intelligent selection and multiplexing (PRISM) for achieving significantly enhanced sensitivity using selected reaction monitoring (SRM) mass spectrometry. Integrating PRISM with front-end IgY14 immunoaffinity depletion, sensitive detection of targeted proteins at 50-100 pg/mL levels in human blood plasma/serum was demonstrated. However, immunoaffinity depletion is often associated with undesired losses of target proteins of interest. Herein we report further evaluation of PRISM-SRM quantification of low-abundance serum proteins without immunoaffinity depletion and the multiplexing potential of this technique. Limits of quantification (LOQs) at low ng/mL levels with a medianmore » CV of ~12% were achieved for proteins spiked into human female serum using as little as 2 µL serum. PRISM-SRM provided up to ~1000-fold improvement in the LOQ when compared to conventional SRM measurements. Multiplexing capability of PRISM-SRM was also evaluated by two sets of serum samples with 6 and 21 target peptides spiked at the low attomole/µL levels. The results from SRM measurements for pooled or post-concatenated samples were comparable to those obtained from individual peptide fractions in terms of signal-to-noise ratios and SRM peak area ratios of light to heavy peptides. PRISM-SRM was applied to measure several ng/mL-level endogenous plasma proteins, including prostate-specific antigen, in clinical patient sera where correlation coefficients > 0.99 were observed between the results from PRISM-SRM and ELISA assays. Our results demonstrate that PRISM-SRM can be successfully used for quantification of low-abundance endogenous proteins in highly complex samples. Moderate throughput (50 samples/week) can be achieved by applying the post-concatenation or fraction multiplexing strategies. We anticipate broad applications for targeted PRISM-SRM quantification of low-abundance cellular proteins in systems biology studies as well as candidate biomarkers in biofluids.« less

  16. Quantitative Evaluation of Human Cerebellum-Dependent Motor Learning through Prism Adaptation of Hand-Reaching Movement

    PubMed Central

    Hashimoto, Yuji; Honda, Takeru; Matsumura, Ken; Nakao, Makoto; Soga, Kazumasa; Katano, Kazuhiko; Yokota, Takanori; Mizusawa, Hidehiro; Nagao, Soichi; Ishikawa, Kinya

    2015-01-01

    The cerebellum plays important roles in motor coordination and learning. However, motor learning has not been quantitatively evaluated clinically. It thus remains unclear how motor learning is influenced by cerebellar diseases or aging, and is related with incoordination. Here, we present a new application for testing human cerebellum-dependent motor learning using prism adaptation. In our paradigm, the participant wearing prism-equipped goggles touches their index finger to the target presented on a touchscreen in every trial. The whole test consisted of three consecutive sessions: (1) 50 trials with normal vision (BASELINE), (2) 100 trials wearing the prism that shifts the visual field 25° rightward (PRISM), and (3) 50 trials without the prism (REMOVAL). In healthy subjects, the prism-induced finger-touch error, i.e., the distance between touch and target positions, was decreased gradually by motor learning through repetition of trials. We found that such motor learning could be quantified using the “adaptability index (AI)”, which was calculated by multiplying each probability of [acquisition in the last 10 trials of PRISM], [retention in the initial five trials of REMOVAL], and [extinction in the last 10 trials of REMOVAL]. The AI of cerebellar patients less than 70 years old (mean, 0.227; n = 62) was lower than that of age-matched healthy subjects (0.867, n = 21; p < 0.0001). While AI did not correlate with the magnitude of dysmetria in ataxic patients, it declined in parallel with disease progression, suggesting a close correlation between the impaired cerebellar motor leaning and the dysmetria. Furthermore, AI decreased with aging in the healthy subjects over 70 years old compared with that in the healthy subjects less than 70 years old. We suggest that our paradigm of prism adaptation may allow us to quantitatively assess cerebellar motor learning in both normal and diseased conditions. PMID:25785588

  17. A system for measuring bottom profile, waves and currents in the high-energy nearshore environment

    USGS Publications Warehouse

    Sallenger, A.H.; Howard, P.C.; Fletcher, C. H.; Howd, P.A.

    1983-01-01

    A new data-acquisition system capable of measuring waves, currents and the nearshore profile in breaking waves as high as 5 m has been developed and successfully field-tested. Components of the mechanical system are a sled carrying a vertical mast, a double-drum winch placed landward of the beach, and a line that runs from one drum of the winch around three blocks, which are the corners of a right triangle, to the other drum of the winch. The sled is attached to the shore-normal side of the triangular line arrangement and is pulled offshore by one drum of the winch and onshore by the other. The profile is measured as the sled is towed along the shore-normal transect using an infrared rangefinder mounted landward of the winch and optical prisms mounted on top of the sled's mast. A pressure sensor and two-axis electromagnetic current meter are mounted on the frame of the sled. These data are encoded on the sled and telemetered to a receiving/recording station onshore. Preliminary results suggest that near-bottom offshore-flowing currents during periods of high-energy swell are important in forcing changes to the configuration of the nearshore profile. ?? 1983.

  18. A Mixed-Valent Molybdenum Monophosphate with a Layer Structure: KMo 3P 2O 14

    NASA Astrophysics Data System (ADS)

    Guesdon, A.; Borel, M. M.; Leclaire, A.; Grandin, A.; Raveau, B.

    1994-03-01

    A new mixed-valent molybdenum monophosphate with a layer structure KMo 3P 2O 14 has been isolated. It crystallizes in the space group P2 1/ m with a = 8.599(2) Å, b = 6.392(2) Å, c = 10.602(1) Å, and β = 111.65(2)°. The layers [Mo 3P 2O 14] ∞ are parallel to (100) and consist of [MoPO 8] ∞ chains running along limitb→ , in which one MoO 6 octahedron alternates with one PO 4 tetrahedron. In fact, four [MoPO 8] ∞ chains share the corners of their polyhedra and the edges of their octahedra, forming [Mo 4P 4O 24] ∞ columns which are linked through MoO 5 bipyramids along limitc→. The K + ions interleaved between these layers are surrounded by eight oxygens, forming bicapped trigonal prisms KO 8. Besides the unusual trigonal bipyramids MoO 5, this structure is also characterized by a tendency to the localization of the electrons, since one octahedral site is occupied by Mo(V), whereas the other octahedral site and the trigonal bipyramid are occupied by Mo(VI). The similarity of this structure with pure octahedral layer structures suggests the possibility of generating various derivatives, and of ion exchange properties.

  19. Structure of first- and second-stage mineralized elements in teeth of the sea urchin Lytechinus variegatus.

    PubMed

    Robach, J S; Stock, S R; Veis, A

    2009-12-01

    Microstructure of the teeth of the sea urchin Lytechinus variegatus was investigated using optical microscopy, SEM (scanning electron microscopy) and SIMS (secondary ion mass spectroscopy). The study focused on the internal structure of the first-stage mineral structures of high Mg calcite (primary, secondary and carinar process plates, prisms) and on morphology of the columns of second-stage mineral (very high Mg calcite) that cement the first-stage material together. Optical micrographs under polarized light revealed contrast in the centers (midlines) of carinar process plates and in prisms in polished sections; staining of primary and carinar process plates revealed significant dye uptake at the plate centers. Demineralization with and without fixation revealed that the midlines of primary and carinar process plates (but not secondary plates) and the centers of prisms differed from the rest of the plate or prism, and SIMS showed proteins concentrated in these plate centers. SEM was used to study the morphology of columns, the fracture surfaces of mature teeth and the 3D morphology of prisms. These observations of internal structures in plates and prisms offer new insight into the mineralization process and suggest an important role for protein inclusions within the first-stage mineral. Some of the 3D structures not reported previously, such as twisted prisms and stacks of carinar process plates with nested wrinkles, may represent structural strengthening strategies.

  20. PRISM Software: Processing and Review Interface for Strong‐Motion Data

    USGS Publications Warehouse

    Jones, Jeanne M.; Kalkan, Erol; Stephens, Christopher D.; Ng, Peter

    2017-01-01

    A continually increasing number of high‐quality digital strong‐motion records from stations of the National Strong Motion Project (NSMP) of the U.S. Geological Survey, as well as data from regional seismic networks within the United States, calls for automated processing of strong‐motion records with human review limited to selected significant or flagged records. The NSMP has developed the Processing and Review Interface for Strong Motion data (PRISM) software to meet this need. In combination with the Advanced National Seismic System Quake Monitoring System (AQMS), PRISM automates the processing of strong‐motion records. When used without AQMS, PRISM provides batch‐processing capabilities. The PRISM software is platform independent (coded in Java), open source, and does not depend on any closed‐source or proprietary software. The software consists of two major components: a record processing engine composed of modules for each processing step, and a review tool, which is a graphical user interface for manual review, edit, and processing. To facilitate use by non‐NSMP earthquake engineers and scientists, PRISM (both its processing engine and review tool) is easy to install and run as a stand‐alone system on common operating systems such as Linux, OS X, and Windows. PRISM was designed to be flexible and extensible to accommodate implementation of new processing techniques. All the computing features have been thoroughly tested.

  1. The Use of PRISM (Pictorial Representation of Illness and Self Measure) in Patients Affected by Chronic Cutaneous Ulcers.

    PubMed

    Monari, Paola; Pelizzari, Laura; Crotti, Silvia; Damiani, Giovanni; Calzavara-Pinton, Piergiacomo; Gualdi, Giulio

    2015-11-01

    PRISM (Pictorial Representation of Illness and Self Measure) is a nonverbal visualization instrument. The authors chose to use this tool to avoid the limitation of the other tests for the assessment of quality of life by using interview methods that depend on the cognitive and cultural level of the patient. The aim of the study was to assess the impact on the quality of life of different types of chronic wounds using the PRISM test. The PRISM test was administered by the same medical student to each patient visiting the dermatology department for a routine visit and medication. The PRISM test was administered to 77 patients with chronic cutaneous ulcers referred to the Dermatology Department of the Spedali Civili of Brescia, Italy. The authors analyzed the "Self-llness-Separation"' (SIS) value, which resulted from the PRISM test, and related it to sex, age, and ulcer etiology. Considering all categories, the mean SIS was 9.58 cm; a different perception of the disease between the sexes was noted and also in the subgroups based on the ulcer's different etiology. In addition, the age of the affected patients influenced the SIS value. PRISM is an easy and sensitive instrument to record information about the patient's expectations and suffering in order to improve the overall physician-patient relationship.

  2. Effectiveness of individual resource-oriented joint protection education in people with rheumatoid arthritis. A randomized controlled trial.

    PubMed

    Niedermann, Karin; de Bie, Rob A; Kubli, Regula; Ciurea, Adrian; Steurer-Stey, Claudia; Villiger, Peter M; Büchi, Stefan

    2011-01-01

    the modern joint protection (JP) concept for people with rheumatoid arthritis (RA) is an active coping strategy to improve daily tasks and role performance by changing working methods and using assistive devices. Effective group JP education includes psycho-educational interventions. The Pictorial Representation of Illness and Self Measure (PRISM) is an interactive hands-on-tool, assessing (a) the individual's perceived burden of illness and (b) relevant individual resources. Both issues are important for intrinsic motivation to take action and change behaviour. This study compared individual conventional JP education (C-JP) with PRISM-based JP education (PRISM-JP). an assessor-blinded multicentre randomized controlled trial, including four JP education sessions over 3 weeks, with assessments at baseline and 3 months. in total 53 RA patients participated. At 3 months, the PRISM-JP (n=26) participants did significantly better compared to the C-JP participants (n=27) in JP behaviour (p=0.02 and p=0.008 when corrected for baseline values), Arthritis Self-efficacy (ASES, p=0.015) and JP self-efficacy (JP-SES, p=0.047). Within-group analysis also showed less hand pain (p<0.001) in PRISM-JP group. PRISM-JP more effectively supported learning of JP methods, with meaningful occupations, resource activation and self-efficacy acting as important mediators. PRISM improved patient-clinician communication and is feasible for occupational therapy. 2010 Elsevier Ireland Ltd. All rights reserved.

  3. Soft-bed experiments beneath Engabreen, Norway: Regelation, infiltration, basal slip and bed deformation

    USGS Publications Warehouse

    Iverson, N.R.; Hooyer, T.S.; Fischer, U.H.; Cohen, D.; Moore, P.L.; Jackson, M.; Lappegard, G.; Kohler, J.

    2007-01-01

    To avoid some of the limitations of studying soft-bed processes through boreholes, a prism of simulated till (1.8 m ?? 1.6 m ?? 0.45 m) with extensive instrumentation was constructed in a trough blasted in the rock bed of Engabreen, a temperate glacier in Norway. Tunnels there provide access to the bed beneath 213 m of ice. Pore-water pressure was regulated in the prism by pumping water to it. During experiments lasting 7-12 days, the glacier regelated downward into the prism to depths of 50-80 mm, accreting ice-infiltrated till at rates predicted by theory. During periods of sustained high pore-water pressure (70-100% of overburden), ice commonly slipped over the prism, due to a water layer at the prism surface. Deformation of the prism was activated when this layer thinned to a sub-millimeter thickness. Shear strain in the till was pervasive and decreased with depth. A model of slip by ploughing of ice-infiltrated till across the prism surface accounts for the slip that occurred when effective pressure was sufficiently low or high. Slip at low effective pressures resulted from water-layer thickening that increased non-linearly with decreasing effective pressure. If sufficiently widespread, such slip over soft glacier beds, which involves no viscous deformation resistance, may instigate abrupt increases in glacier velocity.

  4. Structure of first- and second-stage mineralized elements in teeth of the sea urchin Lytechinus variegatus

    PubMed Central

    Robach, J. S.; Stock, S. R.; Veis, A.

    2009-01-01

    Microstructure of the teeth of the sea urchin Lytechinus variegatus was investigated using optical microscopy, SEM (scanning electron microscopy) and SIMS (secondary ion mass spectroscopy). The study focused on the internal structure of the first-stage mineral structures of high Mg calcite (primary, secondary and carinar process plates; prisms) and on morphology of the columns of second-stage mineral (very high Mg calcite) that cement the first-stage material together. Optical micrographs under polarized light revealed contrast in the centers (midlines) of carinar process plates and in prisms in polished sections; staining of primary and carinar process plates revealed significant dye uptake at the plate centers. Demineralization with and without fixation revealed that the midlines of primary and carinar process plates (but not secondary plates) and the centers of prisms differed from the rest of the plate or prism, and SIMS showed proteins concentrated in these plate centers. SEM was used to study the morphology of columns, the fracture surfaces of mature teeth and the 3D morphology of prisms. These observations of internal structures in plates and prisms offer new insight into the mineralization process and suggest an important role for protein inclusions within the first-stage mineral. Some of the 3D structures not reported previously, such as twisted prisms and stacks of carinar process plates with nested wrinkles, may represent structural strengthening strategies. PMID:19616101

  5. CubeSat Launch Initiative

    NASA Technical Reports Server (NTRS)

    Higginbotham, Scott

    2016-01-01

    The National Aeronautics and Space Administration (NASA) recognizes the tremendous potential that CubeSats (very small satellites) have to inexpensively demonstrate advanced technologies, collect scientific data, and enhance student engagement in Science, Technology, Engineering, and Mathematics (STEM). The CubeSat Launch Initiative (CSLI) was created to provide launch opportunities for CubeSats developed by academic institutions, non-profit entities, and NASA centers. This presentation will provide an overview of the CSLI, its benefits, and its results.

  6. Power generation and solar panels for an MSU CubeSat

    NASA Astrophysics Data System (ADS)

    Sassi, Soundouss

    This thesis is a power generation study of a proposed CubeSat at Mississippi State University (MSU). CubeSats are miniaturized satellites of 10 x 10 x 10 cm in dimension. Their power source once in orbit is the sun during daylight and the batteries during eclipse. MSU CubeSat is equipped with solar panels. This effort will discuss two types of cells: Gallium Arsenide and Silicon; and which one will suit MSU CubeSat best. Once the cell type is chosen, another decision regarding the electrical power subsystem will be made. Solar array design can only be done once the choice of the electrical power subsystem and the solar cells is made. Then the power calculation for different mission durations will start along with the sizing of the solar arrays. In the last part the batteries are introduced and discussed in order to choose one type of batteries for MSU CubeSat.

  7. Teaching group theory using Rubik's cubes

    NASA Astrophysics Data System (ADS)

    Cornock, Claire

    2015-10-01

    Being situated within a course at the applied end of the spectrum of maths degrees, the pure mathematics modules at Sheffield Hallam University have an applied spin. Pure topics are taught through consideration of practical examples such as knots, cryptography and automata. Rubik's cubes are used to teach group theory within a final year pure elective based on physical examples. Abstract concepts, such as subgroups, homomorphisms and equivalence relations are explored with the cubes first. In addition to this, conclusions about the cubes can be made through the consideration of algebraic approaches through a process of discovery. The teaching, learning and assessment methods are explored in this paper, along with the challenges and limitations of the methods. The physical use of Rubik's cubes within the classroom and examination will be presented, along with the use of peer support groups in this process. The students generally respond positively to the teaching methods and the use of the cubes.

  8. ECITE: A Testbed for Assessment of Technology Interoperability and Integration wiht Architecture Components

    NASA Astrophysics Data System (ADS)

    Graves, S. J.; Keiser, K.; Law, E.; Yang, C. P.; Djorgovski, S. G.

    2016-12-01

    ECITE (EarthCube Integration and Testing Environment) is providing both cloud-based computational testing resources and an Assessment Framework for Technology Interoperability and Integration. NSF's EarthCube program is funding the development of cyberinfrastructure building block components as technologies to address Earth science research problems. These EarthCube building blocks need to support integration and interoperability objectives to work towards a coherent cyberinfrastructure architecture for the program. ECITE is being developed to provide capabilities to test and assess the interoperability and integration across funded EarthCube technology projects. EarthCube defined criteria for interoperability and integration are applied to use cases coordinating science problems with technology solutions. The Assessment Framework facilitates planning, execution and documentation of the technology assessments for review by the EarthCube community. This presentation will describe the components of ECITE and examine the methodology of cross walking between science and technology use cases.

  9. EarthCube: A Community-Driven Cyberinfrastructure for the Geosciences

    NASA Astrophysics Data System (ADS)

    Koskela, Rebecca; Ramamurthy, Mohan; Pearlman, Jay; Lehnert, Kerstin; Ahern, Tim; Fredericks, Janet; Goring, Simon; Peckham, Scott; Powers, Lindsay; Kamalabdi, Farzad; Rubin, Ken; Yarmey, Lynn

    2017-04-01

    EarthCube is creating a dynamic, System of Systems (SoS) infrastructure and data tools to collect, access, analyze, share, and visualize all forms of geoscience data and resources, using advanced collaboration, technological, and computational capabilities. EarthCube, as a joint effort between the U.S. National Science Foundation Directorate for Geosciences and the Division of Advanced Cyberinfrastructure, is a quickly growing community of scientists across all geoscience domains, as well as geoinformatics researchers and data scientists. EarthCube has attracted an evolving, dynamic virtual community of more than 2,500 contributors, including earth, ocean, polar, planetary, atmospheric, geospace, computer and social scientists, educators, and data and information professionals. During 2017, EarthCube will transition to the implementation phase. The implementation will balance "innovation" and "production" to advance cross-disciplinary science goals as well as the development of future data scientists. This presentation will describe the current architecture design for the EarthCube cyberinfrastructure and implementation plan.

  10. Miniature Radioisotope Thermoelectric Power Cubes

    NASA Technical Reports Server (NTRS)

    Patel, Jagdish U.; Fleurial, Jean-Pierre; Snyder, G. Jeffrey; Caillat, Thierry

    2004-01-01

    Cube-shaped thermoelectric devices energized by a particles from radioactive decay of Cm-244 have been proposed as long-lived sources of power. These power cubes are intended especially for incorporation into electronic circuits that must operate in dark, extremely cold locations (e.g., polar locations or deep underwater on Earth, or in deep interplanetary space). Unlike conventional radioisotope thermoelectric generators used heretofore as central power sources in some spacecraft, the proposed power cubes would be small enough (volumes would range between 0.1 and 0.2 cm3) to play the roles of batteries that are parts of, and dedicated to, individual electronic-circuit packages. Unlike electrochemical batteries, these power cubes would perform well at low temperatures. They would also last much longer: given that the half-life of Cm-244 is 18 years, a power cube could remain adequate as a power source for years, depending on the power demand in its particular application.

  11. Calibration of the Wedge Prism

    Treesearch

    Charles B. Briscoe

    1957-01-01

    Since the introduction of plotless cruising in this country by Grosenbaugh and the later suggestion of using a wedge prism as an angle gauge by Bruce this method of determining basal area has been widely adopted in the South. One of the factors contributing to the occasionally unsatisfactory results obtained is failure to calibrate the prism used. As noted by Bruce the...

  12. Beam Switching of an Nd:YAG Laser Using Domain-Engineered Prisms in Magnesium-Oxide-Doped Congruent Lithium Niobate

    DTIC Science & Technology

    2010-08-01

    In this work, a novel electro - optic beam switch (EOBS) is designed, fabricated and demonstrated. The EOBS presented in this work is designed for a...consists of a series of electronically controlled prisms fabricated by ferroelectric domain inversion in an electro - optic crystal wafer. The prisms are

  13. Multibeam collimator uses prism stack

    NASA Technical Reports Server (NTRS)

    Minott, P. O.

    1981-01-01

    Optical instrument creates many divergent light beams for surveying and machine element alignment applications. Angles and refractive indices of stack of prisms are selected to divert incoming laser beam by small increments, different for each prism. Angles of emerging beams thus differ by small, precisely-controlled amounts. Instrument is nearly immune to vibration, changes in gravitational force, temperature variations, and mechanical distortion.

  14. A Longitudinal Study of Prism Adaptation in Infants from Six to Nine Months of Age.

    ERIC Educational Resources Information Center

    McDonnell, Paul M.; Abraham, Wayne C.

    1981-01-01

    Confirms that aftereffects of prism adaptation can be obtained in infants between 5 and 9 months of age and that the magnitude of these aftereffects is comparable to those found in adult studies. Evidence of a shift in hand preference toward the direction of prism displacement was replicated. (Author/RH)

  15. Ultrafast Laser Techniques

    DTIC Science & Technology

    1991-06-05

    2 Prism Dye Amplifiers .................................................................................. 2 Axicon...carried out under this project. PRISM DYE AMPLIFIERS A first effort was devoted to setting up an amplifier system for the output of a short pulse dye laser...For amplification up to pulse energies of approximately 500 p.J/pulse we chose three stages of prism amplifier cells, with diameters of 1 m, 3 mm

  16. A Wideband Corner-Reflector Antenna for 240 to 400 MHz.

    DTIC Science & Technology

    1983-09-19

    8217 .; ,:,:. .-.:.,.;.. - -... - .- . -.. .-- v...- ..... .-. .-.- 1,.:..- FIGURES 1. Corner Reflector with Open-Sleeve Dipole Feed ............ ...... 7 2...Open-Sleeve Dipole Feed for Corner Reflector, 240-400 MHz........ 8 3. Closeup Photo of Open-Sleeve Dpole ..................... ...... 8 4. VSWR of...4-ft Corner Reflector, Open-Sleeve Dipole Feed .......... 9 5. Gain of Corner Reflector............ .............. . ....... 9 6. Measured E- and H

  17. XeCl excimer laser with new prism resonator configurations and its performance characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benerji, N. S., E-mail: nsb@rrcat.gov.in, E-mail: bsingh@rrcat.gov.in; Singh, A.; Varshnay, N.

    2015-07-15

    New resonator cavity configurations, namely, the prism resonator and unstable prism resonator, are demonstrated for the first time in an excimer (XeCl) laser with interesting and novel results. High misalignment tolerance ∼50 mrad is achieved with considerably reduced beam divergence of less than ∼1 mrad without reduction in output power capabilities of the laser. The misalignment tolerance of ∼50 mrad is a dramatic improvement of ∼25 times compared to ∼2 mrad normally observed in standard excimer laser with plane-plane cavity. Increase in depth of focus from 3 mm to 5.5 mm was also achieved in case of prism resonator configurationmore » with an improvement of about 60%. Unstable prism resonator configuration is demonstrated here in this paper with further reduction in beam divergence to about 0.5 mrad using plano-convex lens as output coupler. The misalignment tolerance in case of unstable prism resonator was retained at about 30 mrad which is a high value compared to standard unstable resonators. The output beam spot was completely filled with flat-top profile with prism resonator configurations, which is desired for various material processing applications. Focusing properties and beam divergence in case of prism resonator have been investigated using SEM (scanning electron microscope) images. SEM images of the focused spot size (∼20 μm holes) on metal sheet indicate beam divergence of about 0.05 mrad which is about 1.5 times diffraction limit. Energy contained in this angle is thus sufficient for micro-machining applications. Clean and sharp edges of the micro-holes show high pointing stability with multiple shot exposures. Such characteristics of the excimer laser system will be extremely useful in micro-machining and other field applications.« less

  18. XeCl excimer laser with new prism resonator configurations and its performance characteristics.

    PubMed

    Benerji, N S; Singh, A; Varshnay, N; Singh, Bijendra

    2015-07-01

    New resonator cavity configurations, namely, the prism resonator and unstable prism resonator, are demonstrated for the first time in an excimer (XeCl) laser with interesting and novel results. High misalignment tolerance ∼50 mrad is achieved with considerably reduced beam divergence of less than ∼1 mrad without reduction in output power capabilities of the laser. The misalignment tolerance of ∼50 mrad is a dramatic improvement of ∼25 times compared to ∼2 mrad normally observed in standard excimer laser with plane-plane cavity. Increase in depth of focus from 3 mm to 5.5 mm was also achieved in case of prism resonator configuration with an improvement of about 60%. Unstable prism resonator configuration is demonstrated here in this paper with further reduction in beam divergence to about 0.5 mrad using plano-convex lens as output coupler. The misalignment tolerance in case of unstable prism resonator was retained at about 30 mrad which is a high value compared to standard unstable resonators. The output beam spot was completely filled with flat-top profile with prism resonator configurations, which is desired for various material processing applications. Focusing properties and beam divergence in case of prism resonator have been investigated using SEM (scanning electron microscope) images. SEM images of the focused spot size (∼20 μm holes) on metal sheet indicate beam divergence of about 0.05 mrad which is about 1.5 times diffraction limit. Energy contained in this angle is thus sufficient for micro-machining applications. Clean and sharp edges of the micro-holes show high pointing stability with multiple shot exposures. Such characteristics of the excimer laser system will be extremely useful in micro-machining and other field applications.

  19. Accretionary processes along the Middle America Trench off Costa Rica

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shipley, T.H.; Stoffa, P.L.; McIntosh, K.

    1990-06-01

    The geometry of large-scale structures within modern accretionary prisms is known entirely from seismic reflection studies using single or grids of two-dimensional profiles. Off Costa Rica the authors collected a three-dimensional reflection data set covering a 9 km wide {times} 22 km long {times} 6 km thick volume of the accretionary prism just arcward of the Middle America Trench. The three-dimensional processing and ability to examine the prism as a volume has provided the means to map structures from a few hundred meters to kilometers in size with confidence. Reflections from within the prism define the gross structural features andmore » tectonic processes active along this particular portion of the Middle America Trench. So far in the analysis, these data illustrate the relationships between the basement, the prism shape, and overlying slope sedimentary deposits. For instance, the subducted basement relief (of several hundred meters amplitude) does seem to affect the larger scale through-going faults within the prism. Offscraping of the uppermost 45 m of sediments occurs within 4 km of the trench creating a small pile of sediments at the base of the trench. How this offscraped sediment is incorporated into the prism is still being investigated. Underplating of parts of the 400 m thick subducted section begin: at a very shallow structural level, 4 to 10 km arcward of the trench. Amplitude anomalies associated with some of the larger arcward dipping structures in the prism and surface mud volcanoes suggest that efficient fluid migration paths may extend from the top of the downgoing slab at the shelf edge out into the lower and middle slope region, a distance of 50 to 100 km.« less

  20. Experimental Study of Fillets to Reduce Corner Effects in an Oblique Shock-Wave/Boundary Layer Interaction

    NASA Technical Reports Server (NTRS)

    Hirt, Stefanie M.

    2015-01-01

    A test was conducted in the 15 cm x 15 cm supersonic wind tunnel at NASA Glenn Research Center that focused on corner effects of an oblique shock-wave/boundary-layer interaction. In an attempt to control the interaction in the corner region, eight corner fillet configurations were tested. Three parameters were considered for the fillet configurations: the radius, the fillet length, and the taper length from the square corner to the fillet radius. Fillets effectively reduced the boundary-layer thickness in the corner; however, there was an associated penalty in the form of increased boundary-layer thickness at the tunnel centerline. Larger fillet radii caused greater reductions in boundary-layer thickness along the corner bisector. To a lesser, but measureable, extent, shorter fillet lengths resulted in thinner corner boundary layers. Overall, of the configurations tested, the largest radius resulted in the best combination of control in the corner, evidenced by a reduction in boundary-layer thickness, coupled with minimal impacts at the tunnel centerline.

  1. Method for protecting chip corners in wet chemical etching of wafers

    DOEpatents

    Hui, Wing C.

    1994-01-01

    The present invention is a corner protection mask design that protects chip corners from undercutting during anisotropic etching of wafers. The corner protection masks abut the chip corner point and extend laterally from segments along one or both corner sides of the corner point, forming lateral extensions. The protection mask then extends from the lateral extensions, parallel to the direction of the corner side of the chip and parallel to scribe lines, thus conserving wafer space. Unmasked bomb regions strategically formed in the protection mask facilitate the break-up of the protection mask during etching. Corner protection masks are useful for chip patterns with deep grooves and either large or small chip mask areas. Auxiliary protection masks form nested concentric frames that etch from the center outward are useful for small chip mask patterns. The protection masks also form self-aligning chip mask areas. The present invention is advantageous for etching wafers with thin film windows, microfine and micromechanical structures, and for forming chip structures more elaborate than presently possible.

  2. Method for protecting chip corners in wet chemical etching of wafers

    DOEpatents

    Hui, W.C.

    1994-02-15

    The present invention is a corner protection mask design that protects chip corners from undercutting during anisotropic etching of wafers. The corner protection masks abut the chip corner point and extend laterally from segments along one or both corner sides of the corner point, forming lateral extensions. The protection mask then extends from the lateral extensions, parallel to the direction of the corner side of the chip and parallel to scribe lines, thus conserving wafer space. Unmasked bomb regions strategically formed in the protection mask facilitate the break-up of the protection mask during etching. Corner protection masks are useful for chip patterns with deep grooves and either large or small chip mask areas. Auxiliary protection masks form nested concentric frames that etch from the center outward are useful for small chip mask patterns. The protection masks also form self-aligning chip mask areas. The present invention is advantageous for etching wafers with thin film windows, microfine and micromechanical structures, and for forming chip structures more elaborate than presently possible. 63 figures.

  3. The generation of tire cornering forces in aircraft with a free-swiveling nose gear

    NASA Technical Reports Server (NTRS)

    Daugherty, R. H.; Stubbs, S. M.

    1985-01-01

    An experimental investigation was conducted to study the effect of various parameters on the cornering forces produced by a rolling aircraft tire installed on a tilted, free-swiveling nose gear. The parameters studied included tilt angle, trial, tire inflation pressure, rake angle, vertical load, and whether or not a twin tire configuration corotates. These parameters were evaluated by measuring the cornering force produced by an aircraft tire installed on the nose gear of a modified vehicle as it was towed slowly. Cornering force coefficient increased with increasing tilt angle. Increasing trial or rake angle decreased the magnitude of the cornering force coefficient. Tire inflation pressure had no effect on the cornering force coefficient. Increasing vertical load decreased the cornering force coefficient. When the tires of a twin tire system rotated independently, the cornering force coefficients were the same as those for the single-tire configuration. When the twin tire system was made to corotate, however, the cornering force coefficients increased significantly.

  4. A study of the cornering forces generated by aircraft tires on a tilted, free-swiveling nose gear

    NASA Technical Reports Server (NTRS)

    Daugherty, R. H.; Stubbs, S. M.

    1985-01-01

    An experimental investigation was conducted to study the effect of various parameters on the cornering forces produced by a rolling aircraft tire installed on a tilted, free-swiveling nose gear. The parameters studied included tilt angle, trial, tire inflation pressure, rake angle, vertical load, and whether or not a twin tire configuration corotates. These parameters were evaluated by measuring the cornering force produced by an aircraft tire installed on the nose gear of a modified vehicle as it was towed slowly. Cornering force coefficient increased with increasing tilt angle. Increasing trial or rake angle decreased the magnitude of the cornering force coefficient. Tire inflation pressure had no effect on the cornering force coefficient. Increasing vertical load decreased the cornering force coefficient. When the tires of a twin tire system rotated independently, the cornering force coefficients were the same as those for the single-tire configuration. When the twin tire system was made to corotate, however, the cornering force coefficients increased significantly.

  5. AGILE confirmation of gamma-ray activity from the IceCube-170922A error region

    NASA Astrophysics Data System (ADS)

    Lucarelli, F.; Piano, G.; Pittori, C.; Verrecchia, F.; Tavani, M.; Bulgarelli, A.; Munar-Adrover, P.; Minervini, G.; Ursi, A.; Vercellone, S.; Donnarumma, I.; Fioretti, V.; Zoli, A.; Striani, E.; Cardillo, M.; Gianotti, F.; Trifoglio, M.; Giuliani, A.; Mereghetti, S.; Caraveo, P.; Perotti, F.; Chen, A.; Argan, A.; Costa, E.; Del Monte, E.; Evangelista, Y.; Feroci, M.; Lazzarotto, F.; Lapshov, I.; Pacciani, L.; Soffitta, P.; Sabatini, S.; Vittorini, V.; Pucella, G.; Rapisarda, M.; Di Cocco, G.; Fuschino, F.; Galli, M.; Labanti, C.; Marisaldi, M.; Pellizzoni, A.; Pilia, M.; Trois, A.; Barbiellini, G.; Vallazza, E.; Longo, F.; Morselli, A.; Picozza, P.; Prest, M.; Lipari, P.; Zanello, D.; Cattaneo, P. W.; Rappoldi, A.; Colafrancesco, S.; Parmiggiani, N.; Ferrari, A.; Paoletti, F.; Antonelli, A.; Giommi, P.; Salotti, L.; Valentini, G.; D'Amico, F.

    2017-09-01

    Following the IceCube observation of a high-energy neutrino candidate event, IceCube-170922A, at T0 = 17/09/22 20:54:30.43 UT (https://gcn.gsfc.nasa.gov/gcn3/21916.gcn3), and the detection of increased gamma-ray activity from a previously known Fermi-LAT gamma-ray source (3FGL J0509.4+0541) in the IceCube-170922A error region (ATel #10791), we have analysed the AGILE-GRID data acquired in the days before and after the neutrino event T0, searching for significant gamma-ray excess above 100 MeV from a position compatible with the IceCube and Fermi-LAT error regions.

  6. Expanding Access: An Evaluation of ReadCube Access as an ILL Alternative.

    PubMed

    Grabowsky, Adelia

    2016-01-01

    ReadCube Access is a patron-driven, document delivery system that provides immediate access to articles from journals owned by Nature Publishing Group. The purpose of this study was to evaluate the use of ReadCube Access as an interlibrary loan (ILL) alternative for nonsubscribed Nature journals at Auburn University, a research university with a School of Pharmacy and a School of Veterinary Medicine. An analysis of ten months' usage and costs are presented along with the results of a user satisfaction survey. Auburn University Libraries found ReadCube to be an acceptable alternative to ILL for unsubscribed Nature journals and at current levels of use and cost, consider ReadCube to be financially sustainable.

  7. Constraining sterile neutrinos with AMANDA and IceCube atmospheric neutrino data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esmaili, Arman; Peres, O.L.G.; Halzen, Francis, E-mail: aesmaili@ifi.unicamp.br, E-mail: halzen@icecube.wisc.edu, E-mail: orlando@ifi.unicamp.br

    2012-11-01

    We demonstrate that atmospheric neutrino data accumulated with the AMANDA and the partially deployed IceCube experiments constrain the allowed parameter space for a hypothesized fourth sterile neutrino beyond the reach of a combined analysis of all other experiments, for Δm{sup 2}{sub 41}∼<1 eV{sup 2}. Although the IceCube data wins the statistics in the analysis, the advantage of a combined analysis of AMANDA and IceCube data is the partial remedy of yet unknown instrumental systematic uncertainties. We also illustrate the sensitivity of the completed IceCube detector, that is now taking data, to the parameter space of 3+1 model.

  8. [Shared decision-making and individualized goal setting - a pilot trial using PRISM (Pictorial Representation of Illness and Self Measure) in psychiatric inpatients].

    PubMed

    Büchi, S; Straub, S; Schwager, U

    2010-12-01

    Although there is much talk about shared decision making and individualized goal setting, there is a lack of knowledge and knowhow in their realization in daily clinical practice. There is a lack in tools for easy applicable tools to ameliorate person-centred individualized goal setting processes. In three selected psychiatric inpatients the semistructured, theory driven use of PRISM (Pictorial Representation of Illness and Self Measure) in patients with complex psychiatric problems is presented and discussed. PRISM sustains a person-centred individualized process of goal setting and treatment and reinforces the active participation of patients. The process of visualisation and synchronous documentation is validated positively by patients and clinicians. The visual goal setting requires 30 to 45 minutes. In patients with complex psychiatric illness PRISM was used successfully to ameliorate individual goal setting. Specific effects of PRISM-visualisation are actually evaluated in a randomized controlled trial.

  9. Direct view zoom scope with single focal plane and adaptable reticle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagwell, Brett

    A direct view telescopic sight includes objective lens, eyepiece, and prism erector assemblies. The objective lens assembly is mounted to receive light of an image from an object direction and direct the light along an optical path. The eyepiece assembly is mounted to receive the light along the optical path and to emit the light of the image along an eye-ward direction. The prism erector assembly is positioned between the objective lens and eyepiece assemblies and includes first and second prism elements through which the optical path passes. The first and second prism elements invert the image. A reticle elementmore » is disposed on or adjacent to a surface of one of the first or second prism elements to combine a reticle on the image. The image is brought into focus at only a single focal plane between the objective lens and eyepiece assemblies at a given time.« less

  10. CubeSub

    NASA Technical Reports Server (NTRS)

    Slettebo, Christian; Jonsson, Lars Jonas

    2016-01-01

    This presentation introduces and discusses the development of the CubeSub submersible concept, an Autonomous Underwater Vehicle (AUV) designed around the CubeSat satellite form factor. The presented work is part of the author's MSc thesis in Aerospace Engineering at the Royal Institute of Technology, Stockholm, Sweden, and was performed during an internship at the Mission Design Division of the NASA Ames Research Center, Moffett Field, CA. Still in the early stages of its development, the CubeSub is to become a submersible test-bed for technology qualified for underwater and space environments. With the long-term goal of exploring the underwater environments in outer space, such as the alleged subsurface ocean of Jupiter's moon Europa, a number of technology and operational procedures must be developed and matured. To assist in this, the CubeSub platform is introduced as a tool to allow engineers and scientists to easily test qualified technology underwater. A CubeSat is a class of miniaturized satellite built to a standardized size. The base size is 1U (U for unit), corresponding to a 100 x 100 x 113.5 cu mm cube. A 1U CubeSat can in other words easily be held in one hand. Stacking units give larger satellite sizes such as the also commonly used 1.5U, 2U and 3U. The CubeSat standard is in itself already well established and hundreds of CubeSats have to date been launched into space. Compatible technology is readily available and the know-how exists in the space industry, all of which makes it a firm ground to stand on for the CubeSub. The rationale behind using the CubeSat form factor is to make use of this pre-existing foundation, making the CubeSub easy to develop, modular and readily available. It will thereby aid in the process of maturing the concept of a fully space qualified submersible headed for outer space. As a further clarification, the CubeSub is itself not meant for outer space, but to facilitate development of such a vessel. Along with its uses as a testbed, the CubeSub also holds the potential to become a useful tool for exploration and experimentation here on Earth. A highly standardized system utilizing well-known hardware can reduce the cost and required work load for researchers wishing to perform experiments and exploration. Users could design sensors and experiments to comply with the already well established CubeSat standard, which are then carried by the CubeSub to the region of interest. This in turn means that the end users can focus more on formulating the experiment itself and less about how to get it where they want it. The CubeSub is designed to be built up by modules, which can be assembled in different configurations to fulfill different needs. Each module will be powered individually and intermodular communication will be wireless, removing the need for wiring. The inside of the cylindrical hull will be flooded with ambient water to enhance the interaction between payloads and surrounding environment. The overall torpedo-like shape is similar to that of a conventional AUV, slender and smooth. This is to make for a low drag, reduce the risk of snagging on surrounding objects and make it possible to deploy through an ice sheet via a narrow borehole or navigate in tight areas. To keep costs low and further accelerate development, rapid prototyping is utilized wherever possible. Full-scale prototypes are being constructed through 3D-printing and using COTS (Commercial Off-The-Shelf) components. 3D-printing is used both for the largest hull components and the relatively small and delicate propellers. Arduino boards are used for control and internal communication

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abercrombie, Robert Knox; Richardson, Gregory David; Scudiere, Matthew Bligh

    A pad is disclosed for use in a weighing system for weighing a load. The pad includes a weighing platform, load cells, and foot members. Improvements to the pad reduce or substantially eliminate rotation of one or more of the corner foot members. A flexible foot strap disposed between the corner foot members reduces rotation of the respective foot members about vertical axes through the corner foot members and couples the corner foot members such that rotation of one corner foot member results in substantially the same amount of rotation of the other corner foot member. In a strapless variantmore » one or more fasteners prevents substantially all rotation of a foot member. In a diagonal variant, a foot strap extends between a corner foot member and the weighing platform to reduce rotation of the foot member about a vertical axis through the corner foot member.« less

  12. NPS CubeSat Launcher Design, Process and Requirements

    DTIC Science & Technology

    2009-06-01

    Soviet era ICBM. The first Dnepr launch in July 2006 consisted of fourteen CubeSats in five P-PODs, while the second in April 2007 consisted of...Regulations (ITAR). ITAR restricts the export of defense-related products and technology on the United States Munitions List. Although one might not...think that CubeSat technology would fall under ITAR, in fact a large amount of Aerospace technology , including some that could be used on CubeSats is

  13. The design and performance of IceCube DeepCore

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Allen, M. M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brown, A. M.; Buitink, S.; Caballero-Mora, K. S.; Carson, M.; Chirkin, D.; Christy, B.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; Cruz Silva, A. H.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; Degner, T.; Demirörs, L.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Góra, D.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, B.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Kroll, G.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lünemann, J.; Madsen, J.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pérez de los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schmidt, T.; Schönwald, A.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Stüer, M.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; van Eijndhoven, N.; Vandenbroucke, J.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Zoll, M.

    2012-05-01

    The IceCube neutrino observatory in operation at the South Pole, Antarctica, comprises three distinct components: a large buried array for ultrahigh energy neutrino detection, a surface air shower array, and a new buried component called DeepCore. DeepCore was designed to lower the IceCube neutrino energy threshold by over an order of magnitude, to energies as low as about 10 GeV. DeepCore is situated primarily 2100 m below the surface of the icecap at the South Pole, at the bottom center of the existing IceCube array, and began taking physics data in May 2010. Its location takes advantage of the exceptionally clear ice at those depths and allows it to use the surrounding IceCube detector as a highly efficient active veto against the principal background of downward-going muons produced in cosmic-ray air showers. DeepCore has a module density roughly five times higher than that of the standard IceCube array, and uses photomultiplier tubes with a new photocathode featuring a quantum efficiency about 35% higher than standard IceCube PMTs. Taken together, these features of DeepCore will increase IceCube's sensitivity to neutrinos from WIMP dark matter annihilations, atmospheric neutrino oscillations, galactic supernova neutrinos, and point sources of neutrinos in the northern and southern skies. In this paper we describe the design and initial performance of DeepCore.

  14. The Design and Performance of IceCube DeepCore

    NASA Technical Reports Server (NTRS)

    Stamatikos, M.

    2012-01-01

    The IceCube neutrino observatory in operation at the South Pole, Antarctica, comprises three distinct components: a large buried array for ultrahigh energy neutrino detection, a surface air shower array, and a new buried component called DeepCore. DeepCore was designed to lower the IceCube neutrino energy threshold by over an order of magnitude, to energies as low as about 10 GeV. DeepCore is situated primarily 2100 m below the surface of the icecap at the South Pole, at the bottom center of the existing IceCube array, and began taking pbysics data in May 2010. Its location takes advantage of the exceptionally clear ice at those depths and allows it to use the surrounding IceCube detector as a highly efficient active veto against the principal background of downward-going muons produced in cosmic-ray air showers. DeepCore has a module density roughly five times higher than that of the standard IceCube array, and uses photomultiplier tubes with a new photocathode featuring a quantum efficiency about 35% higher than standard IceCube PMTs. Taken together, these features of DeepCore will increase IceCube's sensitivity to neutrinos from WIMP dark matter annihilations, atmospheric neutrino oscillations, galactic supernova neutrinos, and point sources of neutrinos in the northern and southern skies. In this paper we describe the design and initial performance of DeepCore.

  15. FAST TRACK COMMUNICATION: Growth melt asymmetry in ice crystals under the influence of spruce budworm antifreeze protein

    NASA Astrophysics Data System (ADS)

    Pertaya, Natalya; Celik, Yeliz; Di Prinzio, Carlos L.; Wettlaufer, J. S.; Davies, Peter L.; Braslavsky, Ido

    2007-10-01

    Here we describe studies of the crystallization behavior of ice in an aqueous solution of spruce budworm antifreeze protein (sbwAFP) at atmospheric pressure. SbwAFP is an ice binding protein with high thermal hysteresis activity, which helps protect Choristoneura fumiferana (spruce budworm) larvae from freezing as they overwinter in the spruce and fir forests of the north eastern United States and Canada. Different types of ice binding proteins have been found in many other species. They have a wide range of applications in cryomedicine and cryopreservation, as well as the potential to protect plants and vegetables from frost damage through genetic engineering. However, there is much to learn regarding the mechanism of action of ice binding proteins. In our experiments, a solution containing sbwAFP was rapidly frozen and then melted back, thereby allowing us to produce small single crystals. These maintained their hexagonal shapes during cooling within the thermal hysteresis gap. Melt-growth-melt sequences in low concentrations of sbwAFP reveal the same shape transitions as are found in pure ice crystals at low temperature (-22 °C) and high pressure (2000 bar) (Cahoon et al 2006 Phys. Rev. Lett. 96 255502) while both growth and melt shapes display faceted hexagonal morphology, they are rotated 30° relative to one another. Moreover, the initial melt shape and orientation is recovered in the sequence. To visualize the binding of sbwAFP to ice, we labeled the antifreeze protein with enhanced green fluorescent protein (eGFP) and observed the sbwAFP-GFP molecules directly on ice crystals using confocal microscopy. When cooling the ice crystals, facets form on the six primary prism planes (slowest growing planes) that are evenly decorated with sbwAFP-GFP. During melting, apparent facets form on secondary prism planes (fastest melting planes), leaving residual sbwAFP at the six corners of the hexagon. Thus, the same general growth-melt behavior of an apparently rotated crystal that is observed in pure ice under high pressure and low temperature is reproduced in ice under the influence of sbwAFP at ambient pressure and temperatures near 0 °C.

  16. EarthCube: A Community Organization for Geoscience Cyberinfrastructure

    NASA Astrophysics Data System (ADS)

    Patten, K.; Allison, M. L.

    2014-12-01

    The National Science Foundation's (NSF) EarthCube initiative is a community-driven approach to building cyberinfrastructure for managing, sharing, and exploring geoscience data and information to better address today's grand-challenge science questions. The EarthCube Test Enterprise Governance project is a two-year effort seeking to engage diverse geo- and cyber-science communities in applying a responsive approach to the development of a governing system for EarthCube. During Year 1, an Assembly of seven stakeholder groups representing the broad EarthCube community developed a draft Governance Framework. Finalized at the June 2014 EarthCube All Hands Meeting, this framework will be tested during the demonstration phase in Year 2, beginning October 2014. A brief overview of the framework: Community-elected members of the EarthCube Leadership Council will be responsible for managing strategic direction and identifying the scope of EarthCube. Three Standing Committees will also be established to oversee the development of technology and architecture, to coordinate among new and existing data facilities, and to represent the academic geosciences community in driving development of EarthCube cyberinfrastructure. An Engagement Team and a Liaison Team will support communication and partnerships with internal and external stakeholders, and a central Office will serve a logistical support function to the governance as a whole. Finally, ad hoc Working Groups and Special Interest Groups will take on other issues related to EarthCube's goals. The Year 2 demonstration phase will test the effectiveness of the proposed framework and allow for elements to be changed to better meet community needs. It will begin by populating committees and teams, and finalizing leadership and decision-making processes to move forward on community-selected priorities including identifying science drivers, coordinating emerging technical elements, and coming to convergence on system architecture. A January mid-year review will assemble these groups to analyze the effectiveness of the framework and make adjustments as necessary. If successful, this framework will move EarthCube forward as a collaborative platform and potentially act as a model for future NSF investments in geoscience cyberinfrastructure.

  17. SpaceCube Mini

    NASA Technical Reports Server (NTRS)

    Lin, Michael; Petrick, David; Geist, Alessandro; Flatley, Thomas

    2012-01-01

    This version of the SpaceCube will be a full-fledged, onboard space processing system capable of 2500+ MIPS, and featuring a number of plug-andplay gigabit and standard interfaces, all in a condensed 3x3x3 form factor [less than 10 watts and less than 3 lb (approximately equal to 1.4 kg)]. The main processing engine is the Xilinx SIRF radiation- hardened-by-design Virtex-5 FX-130T field-programmable gate array (FPGA). Even as the SpaceCube 2.0 version (currently under test) is being targeted as the platform of choice for a number of the upcoming Earth Science Decadal Survey missions, GSFC has been contacted by customers who wish to see a system that incorporates key features of the version 2.0 architecture in an even smaller form factor. In order to fulfill that need, the SpaceCube Mini is being designed, and will be a very compact and low-power system. A similar flight system with this combination of small size, low power, low cost, adaptability, and extremely high processing power does not otherwise exist, and the SpaceCube Mini will be of tremendous benefit to GSFC and its partners. The SpaceCube Mini will utilize space-grade components. The primary processing engine of the Mini is the Xilinx Virtex-5 SIRF FX-130T radiation-hardened-by-design FPGA for critical flight applications in high-radiation environments. The Mini can also be equipped with a commercial Xilinx Virtex-5 FPGA with integrated PowerPCs for a low-cost, high-power computing platform for use in the relatively radiation- benign LEOs (low-Earth orbits). In either case, this version of the Space-Cube will weigh less than 3 pounds (.1.4 kg), conform to the CubeSat form-factor (10x10x10 cm), and will be low power (less than 10 watts for typical applications). The SpaceCube Mini will have a radiation-hardened Aeroflex FPGA for configuring and scrubbing the Xilinx FPGA by utilizing the onboard FLASH memory to store the configuration files. The FLASH memory will also be used for storing algorithm and application code for the PowerPCs and the Xilinx FPGA. In addition, it will feature highspeed DDR SDRAM (double data rate synchronous dynamic random-access memory) to store the instructions and data of active applications. This version will also feature SATA-II and Gigabit Ethernet interfaces. Furthermore, there will also be general-purpose, multi-gigabit interfaces. In addition, the system will have dozens of transceivers that can support LVDS (low-voltage differential signaling), RS-422, or SpaceWire. The SpaceCube Mini includes an I/O card that can be customized to meet the needs of each mission. This version of the SpaceCube will be designed so that multiple Minis can be networked together using SpaceWire, Ethernet, or even a custom protocol. Scalability can be provided by networking multiple SpaceCube Minis together. Rigid-Flex technology is being targeted for the construction of the SpaceCube Mini, which will make the extremely compact and low-weight design feasible. The SpaceCube Mini is designed to fit in the compact CubeSat form factor, thus allowing deployment in a new class of missions that the previous SpaceCube versions were not suited for. At the time of this reporting, engineering units should be available in the summer 2012.

  18. ELaNa - Educational Launch of Nanosatellite Enhance Education Through Space Flight

    NASA Technical Reports Server (NTRS)

    Skrobot, Garrett Lee

    2011-01-01

    One of NASA's missions is to attract and retain students in the science, technology, engineering and mathematics (STEM) disciplines. Creating missions or programs to achieve this important goal helps strengthen NASA and the nation's future work force as well as engage and inspire Americans and the rest of the world. During the last three years, in an attempt to revitalize educational space flight, NASA generated a new and exciting initiative. This initiative, NASA's Educational Launch of Nanosatellite (ELaNa), is now fully operational and producing exciting results. Nanosatellites are small secondary satellite payloads called CubeSats. One of the challenges that the CubeSat community faced over the past few years was the lack of rides into space. Students were building CubeSats but they just sat on the shelf until an opportunity arose. In some cases, these opportunities never developed and so the CubeSat never made it to orbit. The ELaNa initiative is changing this by providing sustainable launch opportunities for educational CubeSats. Across America, these CubeSats are currently being built by students in high school all the way through graduate school. Now students know that if they build their CubeSat, submit their proposal and are selected for an ELaNa mission, they will have the opportunity to fly their satellite. ELaNa missions are the first educational cargo to be carried on expendable launch vehicles (ELY) for NASA's Launch Services Program (LSP). The first ELaNa CubeSats were slated to begin their journey to orbit in February 2011 with NASA's Glory mission. Due to an anomaly with the launch vehicle, ELaNa II and Glory failed to reach orbit. This first ELaNa mission was comprised of three IU CubeSats built by students at Montana State University (Explorer Prime Flight 1), the University of Colorado (HERMES), and Kentucky Space, a consortium of state universities (KySat). The interface between the launch vehicle and the CubeSat, the Poly-Picosatellite Orbital Deployer (P-POD), was developed and built by students at California Polytechnic State University (Cal Poly). Integrating a P-POD on a NASA ELV was not an easy task. The creation of new processes and requirements as well as numerous reviews and approvals were necessary within NASA before the first ELaNa mission could be attached to a NASA launch vehicle (LV). One of the key objectives placed on an ELaNa mission is that the CubeSat and PPOD does not increase the baseline risk to the primary mission and launch vehicle. The ELaNa missions achieve this objective by placing a rigorous management and engineering process on both the LV and CubeSat teams. So, what is the future of ELaNa? Currently there are 16 P-POD missions manifested across four launch vehicles to support educational CubeSats selected under the NASA CubeSat Initiative. From this initiative, a rigorous selection process produced 22-student CubeSat missions that are scheduled to fly before the end of 2012. For the initiative to continue, organizations need to submit proposals to the annual CubeSat initiative call so they have the opportunity to be manifested and launched.

  19. Three-dimensional construction and omni-directional rolling analysis of a novel frame-like lattice modular robot

    NASA Astrophysics Data System (ADS)

    Ding, Wan; Wu, Jianxu; Yao, Yan'an

    2015-07-01

    Lattice modular robots possess diversity actuation methods, such as electric telescopic rod, gear rack, magnet, robot arm, etc. The researches on lattice modular robots mainly focus on their hardware descriptions and reconfiguration algorithms. Meanwhile, their design architectures and actuation methods perform slow telescopic and moving speeds, relative low actuation force verse weight ratio, and without internal space to carry objects. To improve the mechanical performance and reveal the locomotion and reconfiguration binary essences of the lattice modular robots, a novel cube-shaped, frame-like, pneumatic-based reconfigurable robot module called pneumatic expandable cube(PE-Cube) is proposed. The three-dimensional(3D) expanding construction and omni-directional rolling analysis of the constructed robots are the main focuses. The PE-Cube with three degrees of freedom(DoFs) is assembled by replacing the twelve edges of a cube with pneumatic cylinders. The proposed symmetric construction condition makes the constructed robots possess the same properties in each supporting state, and a binary control strategy cooperated with binary actuator(pneumatic cylinder) is directly adopted to control the PE-Cube. Taking an eight PE-Cube modules' construction as example, its dynamic rolling simulation, static rolling condition, and turning gait are illustrated and discussed. To testify telescopic synchronization, respond speed, locomotion feasibility, and repeatability and reliability of hardware system, an experimental pneumatic-based robotic system is built and the rolling and turning experiments of the eight PE-Cube modules' construction are carried out. As an extension, the locomotion feasibility of a thirty-two PE-Cube modules' construction is analyzed and proved, including dynamic rolling simulation, static rolling condition, and dynamic analysis in free tipping process. The proposed PE-Cube module, construction method, and locomotion analysis enrich the family of the lattice modular robot and provide the instruction to design the lattice modular robot.

  20. PolarCube: A High Resolution Passive Microwave Satellite for Sounding and Imaging at 118 GHz

    NASA Astrophysics Data System (ADS)

    Weaver, R. L.; Gallaher, D. W.; Gasiewski, A. J.; Sanders, B.; Periasamy, L.; Hwang, K.; Alvarenga, G.; Hickey, A. M.

    2013-12-01

    PolarCube is a 3U CubeSat hosting an eight-channel passive microwave spectrometer operating at the 118.7503 GHz oxygen resonance that is currently in development. The project has an anticipated launch date in early 2015. It is currently being designed to operate for approximately12 months on orbit to provide the first global 118-GHz spectral imagery of the Earth over full seasonal cycle and to sound Arctic vertical temperature structure. The principles used by PolarCube for temperature sounding are well established in number of peer-reviewed papers going back more than two decades, although the potential for sounding from a CubeSat has never before been demonstrated in space. The PolarCube channels are selected to probe atmospheric emission over a range of vertical levels from the surface to lower stratosphere. This capability has been available operationally for over three decades, but at lower frequencies and higher altitudes that do not provide the spatial resolution that will be achieved by PolarCube. While the NASA JPSS ATMS satellite sensor provides global coverage at ~32 km resolution, the PolarCube will improve on this resolution by a factor of two, thus facilitating the primary science goal of determining sea ice concentration and extent while at the same time collecting profile data on atmospheric temperature. Additionally, we seek to correlate freeze-thaw line data from SMAP with our near simultaneously collected atmospheric temperature data. In addition to polar science, PolarCube will provide a first demonstration of a very low cost passive microwave sounder that if operated in a fleet configuration would have the potential to fulfill the goals of the Precipitation Atmospheric Temperature and Humidity (PATH) mission, as defined in the NRC Decadal Survey. PolarCube 118-GHz passive microwave spectrometer in deployed configuration

Top