Iwai, Ichiro; Kunizawa, Naomi; Yagi, Eiichiro; Hirao, Tetsuji; Hatta, Ichiro
2013-03-27
The stratum corneum dehydrates after exogenous hydration due to skincare or bathing. In this study, sheets of stratum corneum were isolated from reconstructed human epidermis and the barrier function and structure of these sheets were assessed during drying with the aim of improving our understanding of skincare. Water diffusion through the sheets of stratum corneum decreased with drying, accompanied by decreased thickness and increased visible light transmission through the sheets. Electron paramagnetic resonance revealed that the order parameter values of stratum corneum lipids increased with drying. X-ray diffraction analysis revealed increases in the diffraction intensity of lamellar structures, with an 11-12 nm periodicity and spacing of 0.42 nm for lattice structures with drying. These results suggest that the drying process improves the barrier function of the stratum corneum by organizing the intercellular lipids in a vertically compressed arrangement.
Fatty acids are required for epidermal permeability barrier function.
Mao-Qiang, M; Elias, P M; Feingold, K R
1993-08-01
The permeability barrier is mediated by a mixture of ceramides, sterols, and free fatty acids arranged as extracellular lamellar bilayers in the stratum corneum. Whereas prior studies have shown that cholesterol and ceramides are required for normal barrier function, definitive evidence for the importance of nonessential fatty acids is not available. To determine whether epidermal fatty acid synthesis also is required for barrier homeostasis, we applied 5-(tetradecyloxy)-2-furancarboxylic acid (TOFA), an inhibitor of acetyl CoA carboxylase, after disruption of the barrier by acetone or tape stripping. TOFA inhibits epidermal fatty acid by approximately 50% and significantly delays barrier recovery. Moreover, coadministration of palmitate with TOFA normalizes barrier recovery, indicating that the delay is due to a deficiency in bulk fatty acids. Furthermore, TOFA treatment also delays the return of lipids to the stratum corneum and results in abnormalities in the structure of lamellar bodies, the organelle which delivers lipid to the stratum corneum. In addition, the organization of secreted lamellar body material into lamellar bilayers within the stratum corneum interstices is disrupted by TOFA treatment. Finally, these abnormalities in lamellar body and stratum corneum membrane structure are corrected by coapplication of palmitate with TOFA. These results demonstrate a requirement for bulk fatty acids in barrier homeostasis. Thus, inhibiting the epidermal synthesis of any of the three key lipids that form the extracellular, lipid-enriched membranes of the stratum corneum results in an impairment in barrier homeostasis.
Fatty acids are required for epidermal permeability barrier function.
Mao-Qiang, M; Elias, P M; Feingold, K R
1993-01-01
The permeability barrier is mediated by a mixture of ceramides, sterols, and free fatty acids arranged as extracellular lamellar bilayers in the stratum corneum. Whereas prior studies have shown that cholesterol and ceramides are required for normal barrier function, definitive evidence for the importance of nonessential fatty acids is not available. To determine whether epidermal fatty acid synthesis also is required for barrier homeostasis, we applied 5-(tetradecyloxy)-2-furancarboxylic acid (TOFA), an inhibitor of acetyl CoA carboxylase, after disruption of the barrier by acetone or tape stripping. TOFA inhibits epidermal fatty acid by approximately 50% and significantly delays barrier recovery. Moreover, coadministration of palmitate with TOFA normalizes barrier recovery, indicating that the delay is due to a deficiency in bulk fatty acids. Furthermore, TOFA treatment also delays the return of lipids to the stratum corneum and results in abnormalities in the structure of lamellar bodies, the organelle which delivers lipid to the stratum corneum. In addition, the organization of secreted lamellar body material into lamellar bilayers within the stratum corneum interstices is disrupted by TOFA treatment. Finally, these abnormalities in lamellar body and stratum corneum membrane structure are corrected by coapplication of palmitate with TOFA. These results demonstrate a requirement for bulk fatty acids in barrier homeostasis. Thus, inhibiting the epidermal synthesis of any of the three key lipids that form the extracellular, lipid-enriched membranes of the stratum corneum results in an impairment in barrier homeostasis. Images PMID:8102380
Gehring, W; Gloor, M
2000-07-01
In a randomized, double-blind, placebo-controlled study the effect of topical dexpanthenol (CAS 81-13-0) formulated in two different lipophilic vehicles on epidermal barrier function in vivo was carried out. Seven days' treatment with dexpanthenol improved stratum corneum hydration and reduced transepidermal water loss. Active treatment was statistically different from the vehicle control on both measures. Our results suggest that topical dexpanthenol formulated in either lipophilic vehicle stabilizes the skin barrier function.
In vitro models to estimate drug penetration through the compromised stratum corneum barrier.
Engesland, André; Škalko-Basnet, Nataša; Flaten, Gøril Eide
2016-11-01
The phospholipid vesicle-based permeation assay (PVPA) is a recently established in vitro stratum corneum model to estimate the permeability of intact and healthy skin. The aim here was to further evolve this model to mimic the stratum corneum in a compromised skin barrier by reducing the barrier functions in a controlled manner. To mimic compromised skin barriers, PVPA barriers were prepared with explicitly defined reduced barrier function and compared with literature data from both human and animal skin with compromised barrier properties. Caffeine, diclofenac sodium, chloramphenicol and the hydrophilic marker calcein were tested to compare the PVPA models with established models. The established PVPA models mimicking the stratum corneum in healthy skin showed good correlation with biological barriers by ranking drugs similar to those ranked by the pig ear skin model and were comparable to literature data on permeation through healthy human skin. The PVPA models provided reproducible and consistent results with a distinction between the barriers mimicking compromised and healthy skin. The trends in increasing drug permeation with an increasing degree of compromised barriers for the model drugs were similar to the literature data from other in vivo and in vitro models. The PVPA models have the potential to provide permeation predictions when investigating drugs or cosmeceuticals intended for various compromised skin conditions and can thus possibly reduce the time and cost of testing as well as the use of animal testing in the early development of drug candidates, drugs and cosmeceuticals.
Haftek, M
2002-01-01
Epidermal differentiation is a continuous process, constituting and renewing a protective layer at the skin surface: the stratum corneum, composed of cornified keratinocytes that is a barrier to water diffusion. Massive loss of physiologic liquids is one of the severest consequences of extensive burns. The stratum corneum also protects the subjacent tissues from xenobiotic aggression, ultraviolet radiation (70 p. cent of UVB absorption) and from mechanic aggression. The integrity of the stratum corneum depends on three elements: 1) the physico-chemical quality of the cornified cells, 2) the persistence of mechanical junctions uniting these cells and 3) the organization and composition of the lipid "mortar" in the intercellular spaces. Since all these components are issued from the keratinocyte differentiation process, any perturbation may, in time, induce modifications in the "barrier" function of the epidermis. The barrier quality varies, depending on its localization (soles of the feet, palms of the hands and transitional epidermis of the lips), during skin healing (priority to keratinocyte proliferation to the detriment of maturation) under the influence of treatment (retinoids, vitamin D derivatives), in the course of aging and diseases: ichtyosis and other keratinization genodermatoses, benign (including psoriasis) and malignant hyperproliferative diseases. Furthermore, the relative impermeability of the stratum corneum is an important factor limiting the penetration and diffusion of allergens, but also local drugs delivered with local and systemic trans-epidermal treatments. Further knowledge is required on the function of the epidermal barrier and the mechanism regulating cohesion/desquamation of the stratum corneum to understand certain hereditary diseases, improve efficacy of topical therapeutic products and optimize cosmetic formulations.
NASA Astrophysics Data System (ADS)
Ezerskaia, A.; Pereira, S. F.; Urbach, H. P.; Varghese, B.
2017-02-01
Skin barrier function relies on well balanced water and lipid system of stratum corneum. Optimal hydration and oiliness levels are indicators of skin health and integrity. We demonstrate an accurate and sensitive depth profiling of stratum corneum sebum and hydration levels using short wave infrared spectroscopy in the spectral range around 1720 nm. We demonstrate that short wave infrared spectroscopic technique combined with tape stripping can provide morequantitative and more reliable skin barrier function information in the low hydration regime, compared to conventional biophysical methods.
Tfayli, Ali; Jamal, Dima; Vyumvuhore, Raoul; Manfait, Michel; Baillet-Guffroy, Arlette
2013-11-07
The stratum corneum is the outermost layer of the skin; its barrier function is highly dependent on the composition and the structure as well as the organization of lipids in its extracellular matrix. Ceramides, free fatty acids and cholesterol represent the major lipid classes present in this matrix. They play an important role in maintaining the normal hydration levels required for the normal physiological function. Despite the advancement in the understanding of the structure, composition and the function of the stratum corneum (SC), the concern of "dry skin" remains important in dermatology and care research. Most studies focus on the quantification of water in the skin using different techniques including Raman spectroscopy, while the studies that investigate the effect of hydration on the quality of the barrier function of the skin are limited. Raman spectroscopy provides structural, conformational and organizational information that could help elucidate the effect of hydration on the barrier function of the skin. In order to assess the effect of relative humidity on the lipid barrier function; we used Raman spectroscopy to follow-up the evolution of the conformation and the organization of three synthetic ceramides (CER) differing from each other by the nature of their polar heads (sphingosine, phytosphingosine and α hydroxyl sphingosine), CER 2, III and 5 respectively. CER III and 5 showed a more compact and ordered organization with stronger polar interactions at intermediate relative humidity values, while CER 2 showed opposite tendencies to those observed with CER III and 5.
Jiang, S; Koo, S W; Lee, S H
1998-03-01
It has been reported that artificial restoration of barrier function by a water vapor-impermeable membrane after tape stripping induces barrier abrogation in hairless mice, impeding rather than enhancing barrier recovery. To address this issue, we examined the morphologic changes in the epidermis after tape stripping and occlusion with a water vapor-impermeable membrane in murine skin. Male hairless mice were used for all studies of barrier perturbation and occlusion. Barrier disruption was achieved by repeated application of cellophane tape. Immediately after tape stripping the animals were wrapped in a tightly fitting water vapor-impermeable membrane. Transepidermal water loss (TEWL) was measured 20 min after tape stripping and 14, 24, 36, 48 and 60 h after occlusion. For electron microscopy the samples were treated with osmium tetroxide (OsO4) or ruthenium tetroxide (RuO4). When tape-stripped animals were wrapped in a water vapor-impermeable membrane, thereby preventing water flux, barrier function did not recover normally. These results demonstrate that an artificial block to TEWL with an impermeable membrane did not enhance barrier recovery. By electron microscopy many transitional cells and lacunae of various sizes were seen within the intercellular spaces of the stratum corneum after occlusion following tape stripping. Occlusion also caused alterations in both lipid lamellar membrane structures in the stratum corneum interstices and the lamellar bodies in the cytosol of granulocytes and transitional cells. Secreted lamellar body contents also appeared to be abnormal in the stratum corneum-stratum granulosum junction.
NASA Astrophysics Data System (ADS)
Lademann, J.; Richter, H.; Astner, S.; Patzelt, A.; Knorr, F.; Sterry, W.; Antoniou, Ch
2008-04-01
Normal skin barrier function is an essential aspect of skin homeostasis and regeneration. Dynamic inflammatory, proliferative and neoplastic skin processes such as wound healing, psoriasis and contact dermatitis are associated with a significant disruption of the skin barrier. In recent years, there has been increasing interest in evaluating cosmetic and pharmacologic products for their ability to restore these protective properties. The gold standard for characterization of barrier function has been the measurement of the transepidermal water loss, however the disadvantage of this method is its interference with several endogenous and exogenous factors such as hydration, perspiration and topically applied substances. This study was aimed to test the clinical applicability of a fluorescence confocal laser scanning microscope (LSM) for a systematic morphologic analysis of the structure, integrity and thickness of the stratum corneum in 10 otherwise healthy volunteers. The influence of skin treatment with commercial moisturizing cream on skin barrier function was evaluated in serial non-invasive examinations. Our findings showed that in vivo LSM may represent a simple and efficient method for the characterization of skin barrier properties, such as the thickness and hydration of the stratum corneum.
Sensitive skin at menopause; dew point and electrometric properties of the stratum corneum.
Paquet, F; Piérard-Franchimont, C; Fumal, I; Goffin, V; Paye, M; Piérard, G E
1998-01-12
A number of menopausal women experience skin sensitive to various environmental threats. Two panels of 15 menopausal women on or without HRT were compared. We studied the response of their stratum corneum to variations in environmental humidity, either in air or in response to an emollient. Environment dew point and electrometric measurements on the skin were recorded to search for correlations. Data show that the baseline stratum corneum hydration is influenced by the dew point. HRT improves the barrier function of the skin. The use of emollient further extends the improvement in the functional properties of skin in menopausal women. Both HRT and an emollient can counteract in part some of the deleterious effects of cold and dry weather.
Christman, Jeremy C; Fix, Deborah K; Lucus, Sawanna C; Watson, Debrah; Desmier, Emma; Wilkerson, Rolanda J Johnson; Fixler, Charles
2012-01-01
Despite numerous body moisturizers being available, cosmetic xerosis continues to be a leading skin problem for consumers. We performed two 35-day studies to evaluate the ability of a variety of body moisturizers containing various levels of oils/lipids, humectants, as well as other ingredients (e.g., niacinamide) to improve stratum corneum integrity. 63 and 58 female subjects were enrolled and randomized in an incomplete block design to six of nine products (eight moisturizers or no treatment control) in studies 1 and 2, respectively. The primary endpoints included visual dryness by a qualified skin grader, skin hydration as measured by Corneometer, and barrier integrity as measured by transepidermal water loss (TEWL). The primary comparisons for the two niacinamide/glycerin moisturizers were to the other six moisturizers and to the no treatment control for each endpoint. The two niacinamide/glycerin moisturizers demonstrated an overall better solution towards rapid and prolonged improvement of cosmetic xerosis due to functional improvement of stratum corneum barrier function compared to no treatment and the other moisturizers tested. These studies establish the benefit of including niacinamide in a body moisturizer to improve the integrity of the stratum corneum and thus reduce cosmetic xerosis over time.
Sugiura, Ayumi; Nomura, Tsuyoshi; Mizuno, Atsuko; Imokawa, Genji
2014-07-01
Atopic dermatitis is characterized by disruption of the cutaneous barrier due to reduced ceramide levels even in non-lesional dry skin. Following further acute barrier disruption by repeated tape strippings, we re-characterized the non-lesional dry skin of subjects with atopic dermatitis, which shows significantly reduced levels of barrier function and ceramide but not of beta-glucocerebrosidase activity. For the first time, we report an abnormal trans-epidermal water loss homeostasis in which delayed recovery kinetics of trans-epidermal water loss occurred on the first day during the 4 days after acute barrier disruption compared with healthy control skin. Interestingly, whereas the higher ceramide level in the stratum corneum of healthy control skin was further significantly up-regulated at 4 days post-tape stripping, the lower ceramide level in the stratum corneum of subjects with atopic dermatitis was not significantly changed. In a parallel study, whereas beta-glucocerebrosidase activity at 4 days post-tape stripping was significantly up-regulated in healthy control skin compared with before tape stripping, the level of that activity remained substantially unchanged in atopic dermatitis. These findings indicate that subjects with atopic dermatitis have a defect in sphingolipid-metabolic processing that generates ceramide in the interface between the stratum corneum and the epidermis. The results also support the notion that the continued disruption of barrier function in atopic dermatitis non-lesional skin is associated with the impaired homeostasis of a ceramide-generating process, which underscores an atopy-specific inflammation-triggered ceramide deficiency that is distinct from other types of dermatitis.
Kieć-Świcrczyńska, Marta; Chomiczewska-Skóra, Dorota; Świerczyńska-Machura, Dominika; Kręcisz, Beata
2014-01-01
Nurses are prone to develop hand eczema due to occupational exposure to irritants, including wet work. The aim of the study was to evaluate the impact of wet work on selected skin properties, reflecting epidermal barrier function--transepidermal water loss (TEWL) and stratum corneum hydration--and additionally skin viscoelasticity, in nurses. Study subjects included 90 nurses employed in hospital wards. Measurements were carried out within the dorsal aspect of the dominant hand, using a Cutometer MPA 580 equipped with Tewameter TM 300 and Corneometer CM 825 (Courage & Khazaka, Germany) probes. Examina- tions took place on hospital premises. Similar measurements were performed in the control group of females non-exposed to irritants. In the examined group of nurses, mean TEWL was 15.5 g/h/m2 and was higher than in the control group (12.99 g/h/m2). After rejecting the extreme results, the difference between the groups proved to be statistically significant (p < 0.05). The mean value of stratum corneum hydration was lower in the examined group (37.915) compared with the control group (40.05), but the difference was not sta tistically significant. Also results of viscoelasticity assessment showed no significant differences between studied groups. The results of the assessment of skin biophysical properties show that wet work exerts a moderately adverse impact on skin condition. A higher TEWL value and a lower stratum corneum hydration in workers exposed to irritants reflect an adverse impact of these factors on the epidermal barrier function.
Stratum corneum hydration and skin surface pH in patients with atopic dermatitis.
Knor, Tanja; Meholjić-Fetahović, Ajša; Mehmedagić, Aida
2011-01-01
Atopic dermatitis (AD) is a chronically relapsing skin disease with genetic predisposition, which occurs most frequently in preschool children. It is considered that dryness and pruritus, which are always present in AD, are in correlation with degradation of the skin barrier function. Measurement of hydration and pH value of the stratum corneum is one of the noninvasive methods for evaluation of skin barrier function. The aim of the study was to assess skin barrier function by measuring stratum corneum hydration and skin surface pH of the skin with lesions, perilesional skin and uninvolved skin in AD patients, and skin in a healthy control group. Forty-two patients were included in the study: 21 young and adult AD patients and 21 age-matched healthy controls. Capacitance, which is correlated with hydration of stratum corneum and skin surface pH were measured on the forearm in the above areas by SM810/CM820/pH900 combined units (Courage AND Khazaka, Germany). The mean value of water capacitance measured in AD patients was 44.1 ± 11.6 AU (arbitrary units) on the lesions, 60.2 ± 12.4 AU on perilesional skin and 67.2 ± 8.8 AU on uninvolved skin. In healthy controls, the mean value was 74.1 ± 9.2 AU. The mean pH value measured in AD patients was 6.13 ± 0.52 on the lesions, 5.80 ± 0.41 on perilesional skin, and 5.54 ± 0.49 on uninvolved skin. In control group, the mean pH of the skin surface was 5.24 ± 0.40. The values of both parameters measured on lesional skin were significantly different (capacitance decreased and pH increased) from the values recorded on perilesional skin and uninvolved skin. The same held for the relation between perilesional and uninvolved skin. According to study results, the uninvolved skin of AD patients had significantly worse values of the measured parameters as compared with control group. The results of this study suggested the skin barrier function to be degraded in AD patients, which is specifically expressed in lesional skin.
Genetic Algorithm for Opto-thermal Skin Hydration Depth Profiling Measurements
NASA Astrophysics Data System (ADS)
Cui, Y.; Xiao, Perry; Imhof, R. E.
2013-09-01
Stratum corneum is the outermost skin layer, and the water content in stratum corneum plays a key role in skin cosmetic properties as well as skin barrier functions. However, to measure the water content, especially the water concentration depth profile, within stratum corneum is very difficult. Opto-thermal emission radiometry, or OTTER, is a promising technique that can be used for such measurements. In this paper, a study on stratum corneum hydration depth profiling by using a genetic algorithm (GA) is presented. The pros and cons of a GA compared against other inverse algorithms such as neural networks, maximum entropy, conjugate gradient, and singular value decomposition will be discussed first. Then, it will be shown how to use existing knowledge to optimize a GA for analyzing the opto-thermal signals. Finally, these latest GA results on hydration depth profiling of stratum corneum under different conditions, as well as on the penetration profiles of externally applied solvents, will be shown.
Gentle cleansing and moisturizing for patients with atopic dermatitis and sensitive skin.
Cheong, Wai Kwong
2009-01-01
Atopic dermatitis is a common condition characterized by pruritus, inflammation, and dryness of the skin. Inflammation disrupts the barrier function of the stratum corneum, predisposing the skin to be dry, and increases susceptibility to irritants and secondary bacterial infection. Sensitive skin is common, reported by 40-50% of women and 30% of men in the US, Europe, and Japan. Basic requirements in managing eczema and sensitive skin include effective cleansers that do not compromise skin barrier integrity, alleviation of skin dryness, and restoration of skin barrier function through the use of therapeutic moisturizers. The selection of a skin cleanser is therefore an important part of managing these conditions. Studies have reported clinical improvement with the use of soap-free cleansers in combination with topical treatments. While topical corticosteroids and immunosuppressive agents are mainstays of treatment for atopic dermatitis, therapeutic moisturizers are important adjuncts. Moisturizers improve skin hydration, reduce susceptibility to irritation, restore the integrity of the stratum corneum, and enhance the efficacy of topical corticosteroids.
Management of Patients with Atopic Dermatitis: The Role of Emollient Therapy
Catherine Mack Correa, M.; Nebus, Judith
2012-01-01
Atopic dermatitis is a common inflammatory skin disorder that afflicts a growing number of young children. Genetic, immune, and environmental factors interact in a complex fashion to contribute to disease expression. The compromised stratum corneum found in atopic dermatitis leads to skin barrier dysfunction, which results in aggravation of symptoms by aeroallergens, microbes, and other insults. Infants—whose immune system and epidermal barrier are still developing—display a higher frequency of atopic dermatitis. Management of patients with atopic dermatitis includes maintaining optimal skin care, avoiding allergic triggers, and routinely using emollients to maintain a hydrated stratum corneum and to improve barrier function. Flares of atopic dermatitis are often managed with courses of topical corticosteroids or calcineurin inhibitors. This paper discusses the role of emollients in the management of atopic dermatitis, with particular emphasis on infants and young children. PMID:23008699
DOE Office of Scientific and Technical Information (OSTI.GOV)
J Torin Huzil; S Sivaloganathan; M Kohandel
The delivery of drugs through the skin provides a convenient route of administration that is often preferable to injection because it is noninvasive and can typically be self-administered. These two factors alone result in a significant reduction of medical complications and improvement in patient compliance. Unfortunately, a significant obstacle to dermal and transdermal drug delivery alike is the resilient barrier that the epidermal layers of the skin, primarily the stratum corneum, presents for the diffusion of exogenous chemical agents. Further advancement of transdermal drug delivery requires the development of novel delivery systems that are suitable for modern, macromolecular protein andmore » nucleotide therapeutic agents. Significant effort has already been devoted to obtain a functional understanding of the physical barrier properties imparted by the epidermis, specifically the membrane structures of the stratum corneum. However, structural observations of membrane systems are often hindered by low resolutions, making it difficult to resolve the molecular mechanisms related to interactions between lipids found within the stratum corneum. Several models describing the molecular diffusion of drug molecules through the stratum corneum have now been postulated, where chemical permeation enhancers are thought to disrupt the underlying lipid structure, resulting in enhanced permeability. Recent investigations using biphasic vesicles also suggested a possibility for novel mechanisms involving the formation of complex polymorphic lipid phases. In this review, we discuss the advantages and limitations of permeation-enhancing strategies and how computational simulations, at the atomic scale, coupled with physical observations can provide insight into the mechanisms of diffusion through the stratum corneum.« less
Guan, Yong-Mei; Tao, Ling; Zhu, Xiao-Fang; Zang, Zhen-Zhong; Jin, Chen; Chen, Li-Hua
2017-09-01
The aim of this paper was to explore the effects of Frankincense and Myrrh essential oil on transdermal absorption, and investigate the mechanism of permeation on the microstructure and molecular structure of stratum corneum. Through the determination of stratum corneum/medium partition coefficient of ferulicacid in Chuanxiong influenced by Frankincense and Myrrh essential oil, the effects of volatile oil of frankincense and Myrrh on the the microscopic and molecular structure of stratum corneum were explored by observation of skin stratum corneum structure under scanning electron microscopy, and investigation of frankincense and myrrh essential oil effects on the molecular structure of keratin and lipids in stratum corneum under Fourier transform infrared spectroscopy. The results showed that the oil could enhance the distribution of ferulic acid in the stratum corneum and medium, and to a certain extent damaged the imbricate structure of stratum corneum which was originally regularly, neatly, and closely arranged; some epidermal scales turned upward, with local peeling phenomenon. In addition, frankincense and myrrh essential oil caused the relative displacement of CH2 stretching vibration peak of stratum corneum lipids and amide stretching vibration peak of stratum corneum keratin, indicating that frankincense and myrrh essential oil may change the conformation of lipid and keratin in the stratum corneum, increase the bilayer liquidity of the stratum corneum lipid, and change the orderly and compact structure to increase the skin permeability and reduce the effect of barrier function. It can be concluded that Frankincense and Myrrh essential oil can promote the permeation effect by increasing the distribution of drugs in the stratum corneum and changing the structure of the stratum corneum. Copyright© by the Chinese Pharmaceutical Association.
Role of lipids in the formation and maintenance of the cutaneous permeability barrier.
Feingold, Kenneth R; Elias, Peter M
2014-03-01
The major function of the skin is to form a barrier between the internal milieu and the hostile external environment. A permeability barrier that prevents the loss of water and electrolytes is essential for life on land. The permeability barrier is mediated primarily by lipid enriched lamellar membranes that are localized to the extracellular spaces of the stratum corneum. These lipid enriched membranes have a unique structure and contain approximately 50% ceramides, 25% cholesterol, and 15% free fatty acids with very little phospholipid. Lamellar bodies, which are formed during the differentiation of keratinocytes, play a key role in delivering the lipids from the stratum granulosum cells into the extracellular spaces of the stratum corneum. Lamellar bodies contain predominantly glucosylceramides, phospholipids, and cholesterol and following the exocytosis of lamellar lipids into the extracellular space of the stratum corneum these precursor lipids are converted by beta glucocerebrosidase and phospholipases into the ceramides and fatty acids, which comprise the lamellar membranes. The lipids required for lamellar body formation are derived from de novo synthesis by keratinocytes and from extra-cutaneous sources. The lipid synthetic pathways and the regulation of these pathways are described in this review. In addition, the pathways for the uptake of extra-cutaneous lipids into keratinocytes are discussed. This article is part of a Special Issue entitled The Important Role of Lipids in the Epidermis and their Role in the Formation and Maintenance of the Cutaneous Barrier. Guest Editors: Kenneth R. Feingold and Peter Elias. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Athanasopoulos, D.; Svarnas, P.; Ladas, S.; Kennou, S.; Koutsoukos, P.
2018-05-01
The Stratum corneum is the outermost layer of the skin, acting as a protective barrier of the epidermis, and its surface properties are directly related to the spreading of topically applied drugs and cosmetics. Numerous works have been devoted to the wettability of this layer over the past 70 years, but, despite the extensive application of atmospheric-pressure plasmas to dermatology, stratum corneum wettability with respect to plasma-induced species has never been considered. The present report assesses the treatment of human stratum corneum epidermidis by atmospheric-pressure pulsed cold plasma-jets for various time intervals and both chemical and morphological modifications are probed. The increase and saturation of the surface free energy due to functionalization are demonstrated, whereas prolonged treatment leads to tissue local disruption (tissue integrity is lost, and stratum corneum looks exfoliated, porous, and even thermally damaged). The latter point arises skepticism about the common practice of contacting atmospheric-pressure plasmas with skin without any previous precautions since the lost skin surface integrity may allow the penetration of pathogenic microorganisms.
Sales, Katiuchia Uzzun; Masedunskas, Andrius; Bey, Alexandra L.; Rasmussen, Amber; Weigert, Roberto; List, Karin; Szabo, Roman; Overbeek, Paul A.; Bugge, Thomas H.
2010-01-01
Deficiency in the serine protease inhibitor LEKTI is the etiological origin of Netherton syndrome. The principal morbidities of the disease are stratum corneum detachment and chronic inflammation. We show that the membrane protease, matriptase, initiates Netherton syndrome in a LEKTI-deficient mouse model by premature activation of a pro-kallikrein-related cascade. Auto-activation of pro-inflammatory and stratum corneum detachment-associated pro-kallikrein-related peptidases was either low or undetectable, but they were efficiently activated by matriptase. Ablation of matriptase from LEKTI-deficient mice dampened inflammation, eliminated aberrant protease activity, prevented stratum corneum detachment, and improved epidermal barrier function. The study uncovers a pathogenic matriptase-pro-kallikrein pathway that could be operative in several human skin and inflammatory diseases. PMID:20657595
Mack Correa, Mary Catherine; Mao, Guangru; Saad, Peter; Flach, Carol R; Mendelsohn, Richard; Walters, Russel M
2014-01-01
Plant-derived oils consisting of triglycerides and small amounts of free fatty acids (FFAs) are commonly used in skincare regimens. FFAs are known to disrupt skin barrier function. The objective of this study was to mechanistically study the effects of FFAs, triglycerides and their mixtures on skin barrier function. The effects of oleic acid (OA), glyceryl trioleate (GT) and OA/GT mixtures on skin barrier were assessed in vivo through measurement of transepidermal water loss (TEWL) and fluorescein dye penetration before and after a single application. OA's effects on stratum corneum (SC) lipid order in vivo were measured with infrared spectroscopy through application of perdeuterated OA (OA-d34). Studies of the interaction of OA and GT with skin lipids included imaging the distribution of OA-d34 and GT ex vivo with IR microspectroscopy and thermodynamic analysis of mixtures in aqueous monolayers. The oil mixtures increased both TEWL and fluorescein penetration 24 h after a single application in an OA dose-dependent manner, with the highest increase from treatment with pure OA. OA-d34 penetrated into skin and disordered SC lipids. Furthermore, the ex vivo IR imaging studies showed that OA-d34 permeated to the dermal/epidermal junction while GT remained in the SC. The monolayer experiments showed preferential interspecies interactions between OA and SC lipids, while the mixing between GT and SC lipids was not thermodynamically preferred. The FFA component of plant oils may disrupt skin barrier function. The affinity between plant oil components and SC lipids likely determines the extent of their penetration and clinically measurable effects on skin barrier functions. PMID:24372651
Effectiveness of Sunscreen at Preventing Solar UV-Induced Alterations of Human Stratum Corneum
NASA Astrophysics Data System (ADS)
Martinez, O.; Dauskardt, R.; Biniek, K.; Novoa, F.
2012-12-01
The outermost layer of the epidermis, the stratum corneum, protects the body from harmful environmental conditions by serving as a selective barrier. Solar ultraviolet (UV) radiation is one of the most common conditions the body encounters and is responsible for many negative skin responses, including compromised barrier function. UV exposure has dramatic effects on stratum corneum cell cohesion and mechanical integrity that are related to its effects on the stratum corneum's intercellular lipids. Hypothesis Sunscreen contains chemicals that absorb UV radiation to prevent the radiation from penetrating the skin. Thus, it is expected that the application of sunscreen on human stratum corneum will reduce UV-induced alterations of human stratum corneum. Procedures/Equipment Human tissue was processed in order to isolate the stratum corneum, the top layer of the epidermis. Double cantilever beam (DCB) testing was used to study the effect of UV radiation on human stratum corneum. Two different types of DCB samples were created: control DCB samples with the application of carrier and UV light to the stratum corneum and DCB samples with the application of sunscreen and UV light to the stratum corneum. For the control sample, one side of the stratum corneum was glued to a polycarbonate beam and carrier was applied. Then, the sample was placed 10 cm away from the UV lamp inside of the environmental chamber and were exposed to UV dosages of about 800 J/cm2. Once this step was complete, a second polycarbonate beam was glued to the other side of the stratum corneum. The steps were similar for the DCB sample that had sunscreen applied and that was exposed to UV light. After gluing one side of the stratum corneum to a polycarbonate beam, Octinoxate sunscreen was applied. The next steps were similar to those of the control sample. All DCB samples were then let out to dry for two hours in a dry box in order for the moisture from the lab to be extracted. Each DCB sample was tested with a Delaminator test system (DTS Company). The Delaminator was used to measure the force required to break the bonds between the Stratum Corneum lipid layers. Delamination energies, Gc, were presented as mean values ± 1.96 x the standard error of the mean (STDEM) in which the mean values reported are expected to fall within these bounds with 95% confidence. Results The samples for the UV exposed carrier and Octinoxate samples were tested. Various samples were used to compare the average delamination energy in order to fulfill the 95% confidence level. The delamination energy was lower for the carrier samples than for the Octinoxate samples. The average Gc value for the carrier samples was 5, and the average Gc value for the Octinoxate samples was 7. Conclusion In response to the averaging lower Gc value for the carrier, it is evident that sunscreen does protect the stratum corneum's mechanical properties. It took higher delamination energy to break apart the lipids in the sunscreen sample than it did for the carrier sample. Therefore, the sunscreen helps the stratum corneum contain its intercellular cohesion.
Liu, Z.; Fluhr, J.W.; Song, S.P.; Sun, Z.; Wang, H.; Shi, Y.J.; Elias, P.M.; Man, M.-Q.
2010-01-01
Previous studies have demonstrated that UVB radiation changes the epidermal permeability barrier and stratum corneum (SC) hydration. It is well known that sun exposure causes erythema, sunburn and melanoma. However, whether daily sun exposure alters SC integrity and epidermal permeability barrier function is largely unknown, especially in Chinese subjects. In the present study, we assess the SC integrity, SC hydration and epidermal permeability barrier function following various doses of sun exposure. A total of 258 subjects (124 males and 134 females) aged 18–50 years were enrolled. A multifunctional skin physiology monitor (Courage & Khazaka MPA5) was used to measure SC hydration and transepidermal water loss (TEWL) on the forearms. In males, basal TEWL was higher with higher doses of sun exposure than with lower doses and control, whereas in females, basal TEWL was higher with lower doses of sun exposure than with higher doses and control. In the group with higher doses of sun exposure, TEWL in females was significantly lower than that in males. The barrier recovery was faster in females than in males in both control and lower-dose groups. In both males and females, barrier recovery was delayed with higher doses of sun exposure. In males, sun exposure did not alter SC hydration, while in females SC hydration was lower with lower doses of sun exposure as compared with control and higher doses of sun exposure. These results demonstrated that sun-induced changes in SC function and SC hydration vary with gender and the extent of sun exposure. PMID:20571289
Proksch, E; Nissen, H P
2002-12-01
Dexpanthenol-containing creams have been widely used for treatment of lesions (superficial wounds) of the skin and mucous membranes. Dexpanthenol is converted in tissues to pantothenic acid, a component of coenzyme A. Coenzyme A catalyses early steps in the synthesis of fatty acids and sphingolipids which are of crucial importance for stratum corneum lipid bilayers and cell membrane integrity. In the present study, the effects were examined of a dexpanthenol-containing cream on skin barrier repair, stratum corneum hydration, skin roughness, and inflammation after sodium lauryl sulphate (SLS)-induced irritation. Irritation was induced by application of SLS in patch test chambers. The dexpanthenol-contaming cream or the vehicle were applied twice daily and barrier repair, hydration, roughness, and inflammation of the skin were determined by using biophysical methods. Significantly accelerated skin barrier repair was found in treatments with the dexpanthenol-containing cream (verum) compared with vehicle-treated (placebo) or untreated skin. Both verum and placebo showed an increase in stratum corneum hydration, but significantly more so with the dexpanthenol-containing cream. Both creams reduced skin roughness, but again the verum was superior. The dexpanthenol-containing cream significantly reduced skin redness as a sign of inflammation in contrast to the vehicle, which produced no effect. Treatment with a dexpanthenol-containing cream showed significantly enhanced skin barrier repair and stratum corneum hydration, while reducing skin roughness and inflammation.
Effects of various vehicles on skin hydration in vivo.
Wiedersberg, S; Leopold, C S; Guy, R H
2009-01-01
The stratum corneum, the outermost layer of the skin, regulates the passive loss of water to the environment. Furthermore, it is well accepted that drug penetration is influenced by skin hydration, which may be manipulated by the application of moisturizing or oleaginous vehicles. Measurements of transepidermal water loss (TEWL), and of skin hydration using a corneometer, were used to assess the effect of different vehicles on stratum corneum barrier function in vivo in human volunteers. A microemulsion significantly increased skin hydration relative to a reference vehicle based on medium chain triglycerides; in contrast, Transcutol(R) lowered skin hydration. TEWL measurements confirmed these observations. Copyright 2009 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Huzil, J. Torin; Sivaloganathan, Siv; Kohandel, Mohammad; Foldvari, Marianna
2011-11-01
The advancement of dermal and transdermal drug delivery requires the development of delivery systems that are suitable for large protein and nucleic acid-based therapeutic agents. However, a complete mechanistic understanding of the physical barrier properties associated with the epidermis, specifically the membrane structures within the stratum corneum, has yet to be developed. Here, we describe the assembly and computational modeling of stratum corneum lipid bilayers constructed from varying ratios of their constituent lipids (ceramide, free fatty acids and cholesterol) to determine if there is a difference in the physical properties of stratum corneum compositions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ajani, Gati; Sato, Nobuyuki; Mack, Judith A.
2007-08-15
Repeated injury to the stratum corneum of mammalian skin (caused by friction, soaps, or organic solvents) elicits hyperkeratosis and epidermal thickening. Functionally, these changes serve to restore the cutaneous barrier and protect the organism. To better understand the molecular and cellular basis of this response, we have engineered an in vitro model of acetone-induced injury using organotypic epidermal cultures. Rat epidermal keratinocytes (REKs), grown on a collagen raft in the absence of any feeder fibroblasts, developed all the hallmarks of a true epidermis including a well-formed cornified layer. To induce barrier injury, REK cultures were treated with intermittent 30-s exposuresmore » to acetone then were fixed and paraffin-sectioned. After two exposures, increased proliferation (Ki67 and BrdU staining) was observed in basal and suprabasal layers. After three exposures, proliferation became confined to localized buds in the basal layer and increased terminal differentiation was observed (compact hyperkeratosis of the stratum corneum, elevated levels of K10 and filaggrin, and heightened transglutaminase activity). Thus, barrier disruption causes epidermal hyperplasia and/or enhances differentiation, depending upon the extent and duration of injury. Given that no fibroblasts are present in the model, the ability to mount a hyperplastic response to barrier injury is an inherent property of keratinocytes.« less
Gonçalves, Giovana M; Brianezi, Gabrielli; Miot, Hélio Amante
2017-01-01
The pH of the skin is slightly acidic (4.6 to 5.8) which is important for appropriate antibacterial, antifungal, constitution of barrier function, as well as structuring and maturation of the stratum corneum. This study aimed to evaluate the pH of the main commercial moisturizers and liquid soaps in Brazil. Thus, pH of the products was quantified by pH meter in three measurements. A total of 38 moisturizers and six commercial liquid soaps were evaluated. Mean pH of 63% and 50% of the moisturizing and liquid soaps presented results above 5.5, disfavoring repair, function, and synthesis of dermal barrier.
Liu, X; Cleary, J; German, G K
2016-10-01
The outermost layer of skin, or stratum corneum, regulates water loss and protects underlying living tissue from environmental pathogens and insults. With cracking, chapping or the formation of exudative lesions, this functionality is lost. While stratum corneum exhibits well defined global mechanical properties, macroscopic mechanical testing techniques used to measure them ignore the structural heterogeneity of the tissue and cannot provide any mechanistic insight into tissue fracture. As such, a mechanistic understanding of failure in this soft tissue is lacking. This insight is critical to predicting fracture risk associated with age or disease. In this study, we first quantify previously unreported global mechanical properties of isolated stratum corneum including the Poisson's ratio and mechanical toughness. African American breast stratum corneum is used for all assessments. We show these parameters are highly dependent on the ambient humidity to which samples are equilibrated. A multi-scale investigation assessing the influence of structural heterogeneities on the microscale nucleation and propagation of cracks is then performed. At the mesoscale, spatially resolved equivalent strain fields within uniaxially stretched stratum corneum samples exhibit a striking heterogeneity, with localized peaks correlating closely with crack nucleation sites. Subsequent crack propagation pathways follow inherent topographical features in the tissue and lengthen with increased tissue hydration. At the microscale, intact corneocytes and polygonal shaped voids at crack interfaces highlight that cracks propagate in superficial cell layers primarily along intercellular junctions. Cellular fracture does occur however, but is uncommon. Human stratum corneum protects the body against harmful environmental pathogens and insults. Upon mechanical failure, this barrier function is lost. Previous studies characterizing the mechanics of stratum corneum have used macroscopic testing equipment designed for homogenous materials. Such measurements ignore the tissue's rich topography and heterogeneous structure, and cannot describe the underlying mechanistic process of tissue failure. For the first time, we establish a mechanistic insight into the failure mechanics of soft heterogeneous tissues by investigating how cracks nucleate and propagate in stratum corneum. We further quantify previously unreported values of the tissue's Poisson's ratio and toughness, and their dramatic variation with ambient humidity. To date, skin models examining drug delivery, wound healing, and ageing continue to estimate these parameters. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Kikuchi, Keisuke; Todo, Hiroaki; Sugibayashi, Kenji
2014-01-01
Two unique pressure-sensitive adhesive (PSA) tapes (PSA-A, -B) with different adhesive properties of commercial PSAs were prepared and evaluated for their usefulness as a pretreatment material prior to the application of transdermal therapeutic systems or topical drug formulations and also as a peeling agent against excess layers of the stratum corneum. In the present study, in vitro permeation experiments were conducted using vertical type diffusion cells and excised hairless rat or porcine skin from which the stratum corneum had been stripped several times with PSAs. The results obtained revealed that PSA-A and -B had higher stripping or peeling effects than those of the marketed PSAs. Marked changes were observed in skin barrier function before and after stripping using PSAs, and the enhancement effect on the skin permeation of drugs achieved by stripping the stratum corneum was markedly different between the PSAs. PSA-A, in particular, markedly improved skin permeation and the skin concentration of topically applied chemical compounds because it removed many layers of the stratum corneum when skin was stripped only a few times. In contrast, when PSA-B was used to pretreat the skin surface, the extent of skin permeation and concentration of drugs was safely increased because only a few layers of the stratum corneum were removed, even with repeated stripping. The enhancement effect achieved by PSA-B was not as high as that by PSA-A. Thus, stripping with PSA-A can be used as a penetration enhancement tool, whereas PSA-B can be used as a peeling material against excess layers of the stratum corneum.
Kubota, Takahiro
2012-06-01
Skin roughness is a term commonly used in Japan to describe a poor skin condition related to a rough and dry skin surface that develops as a result of various damaging effects from the environment or skin inflammation. Recovery from skin roughness requires skin care for a long period, thus it is important to prevent development of such skin changes. PROTECT X2 contains agents used for a protective covering of the skin from frequent hand washing or use of alcohol-based disinfectants. These unique components are also thought to be effective to treat skin roughness of the dorsa of the hands and heels. In the present study, we evaluated the effectiveness of PROTECT X2 to increase skin surface hydration state, as well as enhance the barrier function of the stratum corneum of the dorsa of the hands and heels in elderly individuals. A total of 8 elderly subjects and their caretakers without any skin diseases participated in the study. They applied PROTECT X2 by themselves to the dorsum area of 1 hand and heel 3 to 5 times daily for 1 month, while the opposite sides were left untreated. We measured stratum corneum (SC) hydration and transepidermal water loss (TEWL) before beginning treatment, then 1 week and 1 month after the start of treatment to compare between the treated and untreated skin. SC hydration state after applications of PROTECT X2 was 1.5- to 3.0-fold higher than that of the untreated skin in the dorsa of both hands and heels, indicating that the moisturizing ingredients accompanied by water were replenished in those areas where the cream was applied. Also, TEWL in the dorsum of the hands was 17.0-27.9% lower on the treated side, indicating improvement in SC barrier function. On the basis of these findings, we concluded that PROTECT X2 enhances water-holding in the SC and aids the barrier function of the skin in the dorsum of the hands. In addition, we consider that this formulation is useful for not only protecting the hands from the effects of such agents as detergents and alcohol-based disinfectants, but also for protecting heel skin covered by a thick SC from dry and cold conditions such as those encountered in winter. However, since the SC in that area is much thicker than that of the hands, the barrier function was not significantly improved within 1 month of daily treatments.
Could tight junctions regulate the barrier function of the aged skin?
Svoboda, Marek; Bílková, Zuzana; Muthný, Tomáš
2016-03-01
The skin is known to be the largest organ in human organism creating interface with outer environment. The skin provides protective barrier against pathogens, physical and chemical insults, and against uncontrolled loss of water. The barrier function was primarily attributed to the stratum corneum (SC) but recent studies confirmed that epidermal tight junctions (TJs) also play important role in maintaining barrier properties of the skin. Independent observations indicate that barrier function and its recovery is impaired in aged skin. However, trans-epidermal water loss (TEWL) values remains rather unchanged in elderly population. UV radiation as major factor of photoageing impairs TJ proteins, but TJs have great self-regenerative potential. Since it may be possible that TJs can compensate TEWL in elderly due to its regenerative and compensatory capabilities, important question remains to be answered: how are TJs regulated during skin ageing? This review provides an insight into TJs functioning as epidermal barrier and summarizes current knowledge about the impact of ageing on the barrier function of the skin and epidermal TJs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
An evaluation of the skin stripping of wound dressing adhesives.
Waring, M; Bielfeldt, S; Mätzold, K; Wilhelm, K P; Butcher, M
2011-09-01
This study looks at six different modern wound dressings to investigate how likely they are to cause skin stripping and impairment of the skin's barrier function. Healthy volunteers had each dressing applied, removed and reapplied to the skin on their back over the study period of 15 days. Skin barrier function was investigated using the amount of transepidermal water loss (TEWL) and then related to the amount of skin stripping, investigated by measuring stained skin removal, the thickness of the stratum corneum after treatment, and the amount of skin attached to the removed dressings. General signs of trauma, such as skin dryness and erythema, were investigated by subjective and objective parameters. TEWL values measured on the untreated test area, as well as after application of Urgotul Trio, remained relatively unchanged and Mepilex Border decreased slightly (?1g/m2/h), while all other dressings displayed an increased in TEWL: Allevyn Adhesive (5g/m2/h), Versiva XC (14g/m2/h), Comfeel Plus (22g/m2/h) and Biatain (28g/m2/h). By the end of the study, only the untreated area (mean 43% dye remaining), Mepilex Border (76%) and Urgotul Trio (34%) areas had visible dye remaining. It is interesting to note that the untreated site had a colour change, suggesting loss of stratum corneum, due to the shedding of skin cells from the surface. The increase in total skin colour for Comfeel Plus and Biatain after day 8 might be assigned to an increased redness due to erythema. All the dressings showed evidence of stratum corneum attached to the adhesive, except Mepilex Border, which appeared to be free of any attached stratum corneum. Overall the best performance in terms of skin protection and failure to cause skin trauma was found to be for Mepilex Border. This project was funded by a grant from Mölnlycke Healthcare Ltd.
Effects of adhesive dressings on stratum corneum conductance.
Cavallini, Maurizio; Gazzola, Riccardo; Vaienti, Luca
2012-05-01
Stratum corneum is a fundamental layer of epidermis. It acts as a barrier, with antimicrobial features, regulating skin permeability and integrity as well. Adhesive dressings and their removal could alter this layer, affecting cutaneous water balance and lipid composition of stratum corneum. These changes could be monitored by measurement of cutaneous hydration. Ninety-two patients affected by wounds dressed with adhesive tapes or plasters have been studied. Measurement of skin conductance under tape/plaster and in the surrounding healthy skin, immediately after removal of dressing has been performed. Dressing age, wound localization, and characteristics were also considered. Adhesive dressings alter significantly stratum corneum conductance. Although healthy skin hydration has significant variations throughout the body, cutaneous conductance under adhesive dressing in different areas displays no significative changes. Moreover, the increase in hydration due to adhesive tapes/plasters showed no association with wound dehiscence. Adhesive dressings cause a significative increase in stratum corneum conductance, acting as a barrier to apocrine secretions. Although different hydration levels have been observed in healthy skin throughout the body, no difference exists under adhesive dressing among different regions, suggesting no contraindications in their employment throughout the body. Increase in cutaneous hydration showed no correlations with wound dehiscence, thus confirming safety and practicality of these dressings. © 2011 John Wiley & Sons A/S.
Fukagawa, Satoko; Haramizu, Satoshi; Sasaoka, Shun; Yasuda, Yuka; Tsujimura, Hisashi; Murase, Takatoshi
2017-09-01
Coffee polyphenols (CPPs), including chlorogenic acid, exert various physiological activities. The purpose of this study was to investigate the effects of CPPs on skin properties and microcirculatory function in humans. In this double-blind, placebo-controlled study, 49 female subjects with mildly xerotic skin received either a test beverage containing CPPs (270 mg/100 mL/day) or a placebo beverage for 8 weeks. The ingestion of CPPs significantly lowered the clinical scores for skin dryness, decreased transepidermal water loss, skin surface pH, and increased stratum corneum hydration and the responsiveness of skin blood flow during local warming. Moreover, the amounts of free fatty acids and lactic acid in the stratum corneum significantly increased after the ingestion of CPPs. These results suggest that an 8-week intake of CPPs improve skin permeability barrier function and hydration, with a concomitant improvement in microcirculatory function, leading to efficacy in the alleviation of mildly xerotic skin.
Gonçalves, Giovana M; Brianezi, Gabrielli; Miot, Hélio Amante
2017-01-01
The pH of the skin is slightly acidic (4.6 to 5.8) which is important for appropriate antibacterial, antifungal, constitution of barrier function, as well as structuring and maturation of the stratum corneum. This study aimed to evaluate the pH of the main commercial moisturizers and liquid soaps in Brazil. Thus, pH of the products was quantified by pH meter in three measurements. A total of 38 moisturizers and six commercial liquid soaps were evaluated. Mean pH of 63% and 50% of the moisturizing and liquid soaps presented results above 5.5, disfavoring repair, function, and synthesis of dermal barrier. PMID:29166523
NASA Astrophysics Data System (ADS)
Patzelt, A.; Sterry, W.; Lademann, J.
2010-12-01
A major function of the skin is to provide a protective barrier at the interface between external environment and the organism. For skin barrier measurement, a multiplicity of methods is available. As standard methods, the determination of the transepidermal water loss (TEWL) as well as the measurement of the stratum corneum hydration, are widely accepted, although they offer some obvious disadvantages such as increased interference liability. Recently, new optical and spectroscopic methods have been introduced to investigate skin barrier properties in vivo. Especially, laser scanning microscopy has been shown to represent an excellent tool to study skin barrier integrity in many areas of relevance such as cosmetology, occupation, diseased skin, and wound healing.
van Smeden, Jeroen; Bouwstra, Joke A
2016-01-01
Human skin acts as a primary barrier between the body and its environment. Crucial for this skin barrier function is the lipid matrix in the outermost layer of the skin, the stratum corneum (SC). Two of its functions are (1) to prevent excessive water loss through the epidermis and (2) to avoid that compounds from the environment permeate into the viable epidermal and dermal layers and thereby provoke an immune response. The composition of the SC lipid matrix is dominated by three lipid classes: cholesterol, free fatty acids and ceramides. These lipids adopt a highly ordered, 3-dimensional structure of stacked densely packed lipid layers (lipid lamellae): the lateral and lamellar lipid organization. The way in which these lipids are ordered depends on the composition of the lipids. One very common skin disease in which the SC lipid barrier is affected is atopic dermatitis (AD). This review addresses the SC lipid composition and organization in healthy skin, and elaborates on how these parameters are changed in lesional and nonlesional skin of AD patients. Concerning the lipid composition, the changes in the three main lipid classes and the importance of the carbon chain lengths of the lipids are discussed. In addition, this review addresses how these changes in lipid composition induce changes in lipid organization and subsequently correlate with an impaired skin barrier function in both lesional and nonlesional skin of these patients. Furthermore, the effect of filaggrin and mutations in the filaggrin gene on the SC lipid composition is critically discussed. Also, the breakdown products of filaggrin, the natural moisturizing factor molecules and its relation to SC-pH is described. Finally, the paper discusses some major changes in epidermal lipid biosynthesis in patients with AD and other related skin diseases, and how inflammation has a deteriorating effect on the SC lipids and SC biosynthesis. The review ends with perspectives on future studies in relation to other skin diseases. © 2016 S. Karger AG, Basel.
Sahle, Fitsum F; Metz, Hendrik; Wohlrab, Johannes; Neubert, Reinhard H H
2013-02-01
To improve the solubility and penetration of Ceramide AP (CER [AP]) into the stratum corneum that potentially restores the barrier function of aged and affected skin. CER [AP] microemulsions (MEs) were formulated using lecithin, Miglyol® 812 (miglyol) and water-1,2 pentandiol (PeG) mixture as amphiphilic, oily and hydrophilic components, respectively. The nanostructure of the MEs was revealed using electrical conductivity, differential scanning calorimeter (DSC) and electron paramagnetic resonance (EPR) techniques. Photon correlation spectroscopy (PCS) was used to measure the sizes and shape of ME droplets. The release and penetration of the CER into the stratum corneum was investigated in vitro using a multi-layer membrane model. The MEs exhibited excellent thermodynamic stability (>2 years) and loading capacity (0.5% CER [AP]). The pseudo-ternary phase diagrams of the MEs were obtained and PCS results showed that the droplets are spherical in shape and bigger in size. In vitro investigations showed that the MEs exhibited excellent rate and extent of release and penetration. Stable lecithin-based CER [AP] MEs that significantly enhance the solubility and penetration of CER [AP] into the stratum corneum were developed. The MEs also have better properties than the previously reported polyglycerol fatty acid surfactant-based CER [AP] MEs.
Using FLIM in the study of permeability barrier function of aged and young skin
NASA Astrophysics Data System (ADS)
Xu, P.; Choi, E. H.; Man, M. Q.; Crumrine, D.; Mauro, T.; Elias, P.
2006-02-01
Aged skin commonly is afflicted by inflammatory skin diseases or xerosis/eczema that can be triggered or exacerbated by impaired epidermal permeability barrier homeostasis. It has been previously described a permeability barrier defect in humans of advanced age (> 75 years), which in a murine analog >18 mos, could be attributed to reduced lipid synthesis synthesis. However, the functional abnormality in moderately aged mice is due not to decreased lipid synthesis, but rather to a specific defect in stratum corneum (SC) acidification causing impaired lipid processing processing. Endogenous Na +/H + antiporter (NHE1) level was found declined in moderately aged mouse epidermis. This acidification defect leads to perturbed permeability barrier homeostasis through more than one pathways, we addressed suboptimal activation of the essential, lipid-processing enzyme, β-glucocerebrosidase (BGC) is linked to elevated SC pH. Finally, the importance of the epidermis acidity is shown by the normalization of barrier function after exogenous acidification of moderately aged skin.
Shaping the Skin: The Interplay of Mesoscale Geometry and Corneocyte Swelling
NASA Astrophysics Data System (ADS)
Evans, Myfanwy E.; Roth, Roland
2014-01-01
The stratum corneum, the outer layer of mammalian skin, provides a remarkable barrier to the external environment, yet it has highly variable permeability properties where it actively mediates between inside and out. On prolonged exposure to water, swelling of the corneocytes (skin cells composed of keratin intermediate filaments) is the key process by which the stratum corneum controls permeability and mechanics. As for many biological systems with intricate function, the mesoscale geometry is optimized to provide functionality from basic physical principles. Here we show that a key mechanism of corneocyte swelling is the interplay of mesoscale geometry and thermodynamics: given helical tubes with woven geometry equivalent to the keratin intermediate filament arrangement, the balance of solvation free energy and elasticity induces swelling of the system, importantly with complete reversibility. Our result remarkably replicates macroscopic experimental data of native through to fully hydrated corneocytes. This finding not only highlights the importance of patterns and morphology in nature but also gives valuable insight into the functionality of skin.
Skin physiology and textiles - consideration of basic interactions.
Wollina, U; Abdel-Naser, M B; Verma, S
2006-01-01
The skin exerts a number of essential protective functions ensuring homeostasis of the whole body. In the present review barrier function of the skin, thermoregulation, antimicrobial defence and the skin-associated immune system are discussed. Barrier function is provided by the dynamic stratum corneum structure composed of lipids and corneocytes. The stratum corneum is a conditio sine qua non for terrestrial life. Impairment of barrier function can be due to injury and inflammatory skin diseases. Textiles, in particular clothing, interact with skin functions in a dynamic pattern. Mechanical properties like roughness of fabric surface are responsible for non-specific skin reactions like wool intolerance or keratosis follicularis. Thermoregulation, which is mediated by local blood flow and evaporation of sweat, is an important subject for textile-skin interactions. There are age-, gender- and activity-related differences in thermoregulation of skin that should be considered for the development of specifically designed fabrics. The skin is an important immune organ with non-specific and specific activities. Antimicrobial textiles may interfere with non-specific defence mechanisms like antimicrobial peptides of skin or the resident microflora. The use of antibacterial compounds like silver, copper or triclosan is a matter of debate despite their use for a very long period. Macromolecules with antimicrobial activity like chitosan that can be incorporated into textiles or inert material like carbon fibres or activated charcoal seem to be promising agents. Interaction of textiles with the specific immune system of skin is a rare event but may lead to allergic contact dermatitis. Electronic textiles and other smart textiles offer new areas of usage in health care and risk management but bear their own risks for allergies.
Egawa, Gyohei; Kabashima, Kenji
2016-08-01
Atopic dermatitis (AD) is the most common inflammatory skin disease in the industrialized world and has multiple causes. Over the past decade, data from both experimental models and patients have highlighted the primary pathogenic role of skin barrier deficiency in patients with AD. Increased access of environmental agents into the skin results in chronic inflammation and contributes to the systemic "atopic (allergic) march." In addition, persistent skin inflammation further attenuates skin barrier function, resulting in a positive feedback loop between the skin epithelium and the immune system that drives pathology. Understanding the mechanisms of skin barrier maintenance is essential for improving management of AD and limiting downstream atopic manifestations. In this article we review the latest developments in our understanding of the pathomechanisms of skin barrier deficiency, with a particular focus on the formation of the stratum corneum, the outermost layer of the skin, which contributes significantly to skin barrier function. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Barbero, Ana M; Frasch, H Frederick
2017-08-28
The impact of the complex structure of the stratum corneum on transdermal penetration is not yet fully described by existing models. A quantitative and thorough study of skin permeation is essential for chemical exposure assessment and transdermal delivery of drugs. The objective of this study is to analyze the effects of heterogeneity, anisotropy, asymmetry, follicular diffusion, and location of the main barrier of diffusion on percutaneous permeation. In the current study, the solution of the transient diffusion through a two-dimensional-anisotropic brick-and-mortar geometry of the stratum corneum is obtained using the commercial finite element program COMSOL Multiphysics. First, analytical solutions of an equivalent multilayer geometry are used to determine whether the lipids or corneocytes constitute the main permeation barrier. Also these analytical solutions are applied for validations of the finite element solutions. Three illustrative compounds are analyzed in these sections: diethyl phthalate, caffeine and nicotine. Then, asymmetry with depth and follicular diffusion are studied using caffeine as an illustrative compound. The following findings are drawn from this study: the main permeation barrier is located in the lipid layers; the flux and lag time of diffusion through a brick-and-mortar geometry are almost identical to the values corresponding to a multilayer geometry; the flux and lag time are affected when the lipid transbilayer diffusivity or the partition coefficients vary with depth, but are not affected by depth-dependent corneocyte diffusivity; and the follicular contribution has significance for low transbilayer lipid diffusivity, especially when flux between the follicle and the surrounding stratum corneum is involved. This study demonstrates that the diffusion is primarily transcellular and the main barrier is located in the lipid layers. Published by Elsevier B.V.
Ishikawa, Junko; Shimotoyodome, Yoshie; Ito, Shotaro; Miyauchi, Yuki; Fujimura, Tsutomu; Kitahara, Takashi; Hase, Tadashi
2013-03-01
The objective of this study was to clarify variations of the ceramide (CER) profile in human stratum corneum (SC) in different seasons and in different regions of the body and to estimate the contributions of CERs to the SC barrier and water-holding functions. Based on the information that there are great variations of SC functions among body sites, we compared the CER profiles obtained from ten different anatomical sites in healthy Japanese males in four seasons. Not only the physiological parameters of skin but also the CER profile showed body region and seasonal variations. The total CER level, the CER composition and the C34-CER[NS] species displayed strong correlations with the values of transepidermal water loss and capacitance throughout the body. Especially in the cheek, a strong correlation between the capacitance and the CER profile was observed. There were seasonal variations of the CER profile in the lip, upper arm and palm. Our results indicate that regional and seasonal variations of the CER profile may contribute to SC functions.
Grether-Beck, Susanne; Felsner, Ingo; Brenden, Heidi; Kohne, Zippora; Majora, Marc; Marini, Alessandra; Jaenicke, Thomas; Rodriguez-Martin, Marina; Trullas, Carles; Hupe, Melanie; Elias, Peter M.; Krutmann, Jean
2012-01-01
Urea is an endogenous metabolite, known to enhance stratum corneum hydration. Yet, topical urea anecdotally also improves permeability barrier function, and it appears to exhibit antimicrobial activity. Hence, we hypothesized that urea is not merely a passive metabolite, but a small-molecule regulator of epidermal structure and function. In 21 human volunteers, topical urea improved barrier function in parallel with enhanced antimicrobial peptide (LL-37 and β-defensin-2) expression. Urea both stimulates expression of, and is transported into keratinocytes by two urea transporters, UT-A1 and UT-A2, and by aquaporin 3, 7 and 9. Inhibitors of these urea transporters block the downstream biological effects of urea, which include increased mRNA and protein levels for: (i) transglutaminase-1, involucrin, loricrin and filaggrin; (ii) epidermal lipid synthetic enzymes, and (iii) cathelicidin/LL-37 and β-defensin-2. Finally, we explored the potential clinical utility of urea, showing that topical urea applications normalized both barrier function and antimicrobial peptide expression in a murine model of atopic dermatitis (AD). Together, these results show that urea is a small-molecule regulator of epidermal permeability barrier function and antimicrobial peptide expression after transporter uptake, followed by gene regulatory activity in normal epidermis, with potential therapeutic applications in diseased skin. PMID:22418868
Tokudome, Yoshihiro; Masutani, Noriomi; Uchino, Shohei; Fukai, Hisano
2017-10-27
Purified glucosylceramide from beet extract (beet GlcCer) and beet extract containing an equal amount of GlcCer were administered orally to ultra violet B (UVB)-irradiated mice, and differences in the protective effects against skin barrier dysfunction caused by UVB irradiation were compared. In the beet GlcCer group, epidermal thickening and the decrease in stratum corneum (SC) ceramide content caused by UVB irradiation were reduced. In the group that was orally administered beet extract containing glucosylceramide, effects similar to those in the beet GlcCer group were observed. Oral administration of beet GlcCer had no obvious effects against an increase in TEWL or decrease in SC water content after UVB irradiation, but there was improvement in the beet extract group. Oral administration of beet GlcCer is effective in improving skin barrier function in UVB-irradiated mice. Beet extract contains constituents other than GlcCer that are also effective in improving skin barrier function.
Haag, S F; Tscherch, K; Arndt, S; Kleemann, A; Gersonde, I; Lademann, J; Rohn, S; Meinke, M C
2014-02-01
Hyperforin is well-known for its anti-inflammatory, anti-tumor, anti-bacterial, and antioxidant properties. The application of a hyperforin-rich verum cream could strengthen the skin barrier function by reducing radical formation and stabilizing stratum corneum lipids. Here, it was investigated whether topical treatment with a hyperforin-rich cream increases the radical protection of the skin during VIS/NIR irradiation. Skin lipid profile was investigated applying HPTLC on skin lipid extracts. Furthermore, the absorption- and scattering coefficients, which influence radical formation, were determined. 11 volunteers were included in this study. After a single cream application, VIS/NIR-induced radical formation could be completely inhibited by both verum and placebo showing an immediate protection. After an application period of 4weeks, radical formation could be significantly reduced by 45% following placebo application and 78% after verum application showing a long-term protection. Furthermore, the skin lipids in both verum and placebo groups increased directly after a single cream application but only significantly for ceramide [AP], [NP1], and squalene. After long-term cream application, concentration of cholesterol and the ceramides increased, but no significance was observed. These results indicate that regular application of the hyperforin-rich cream can reduce radical formation and can stabilize skin lipids, which are responsible for the barrier function. Copyright © 2013 Elsevier B.V. All rights reserved.
Ratz-Łyko, A.; Arct, J.; Pytkowska, K.
2016-01-01
Centella asiatica extract is a rich source of natural bioactive substances, triterpenoid saponins, flavonoids, phenolic acids, triterpenic steroids, amino acids and sugars. Thus, many scavenging free radicals, exhibit antiinflammatory activity and affect on the stratum corneum hydration and epidermal barrier function. The aim of the present study was to evaluate the in vivo moisturizing and antiinflammatory properties of cosmetic formulations (oil-in-water emulsion cream and hydrogel) containing different concentrations of Centella asiatica extract. The study was conducted over four weeks on a group of 25 volunteers after twice a day application of cosmetic formulations with Centella asiatica extract (2.5 and 5%, w/w) on their forearms. The measurement of basic skin parameters (stratum corneum hydration and epidermal barrier function) was performed once a week. The in vivo antiinflammatory activity based on the methyl nicotinate model of microinflammation in human skin was evaluated after four weeks application of tested formulations. In vivo tests formulations containing 5% of Centella asiatica extract showed the best efficacy in improving skin moisture by increase of skin surface hydration state and decrease in transepidermal water loss as well as exhibited antiinflammatory properties based on the methyl nicotinate model of microinflammation in human skin. Comparative tests conducted by corneometer, tewameter and chromameter showed that cosmetic formulations containing Centella asiatica extract have the moisturizing and antiinflammatory properties. PMID:27168678
Quantification of texture match of the skin graft: function and morphology of the stratum corneum.
Inoue, K; Matsumoto, K
1986-01-01
In an attempt to analyze the "texture match" of grafted skin, functional and morphological aspects of the stratum corneum were studied using the Skin Surface Hydrometer (IBS Inc.) and the scanning electron microscope. The results showed that hygroscopicity and water holding capacity of the stratum corneum played a crucial role in making the skin surface soft and smooth. Morphologically there were regional differences in the surface pattern and the mean area of corneocytes, suggesting that these differences affect skin texture. It is suggested that the present functional and morphological studies of the stratum corneum can provide a quantitative measure of the "texture match".
Mohammed, D; Crowther, J M; Matts, P J; Hadgraft, J; Lane, M E
2013-01-30
Niacinamide-containing moisturisers are known be efficacious in alleviating dry skin conditions and improving stratum corneum (SC) barrier function. However, the mechanisms of action of niacinamide at the molecular level in the SC are still not well understood. Previously, we have reported the development of novel methods to probe SC barrier properties in vivo. The aim of the present study was to characterise changes in Trans Epidermal Water Loss (TEWL), corneocyte surface area and maturity, selected protease activities and SC thickness after repeated application of a simple vehicle containing niacinamide. A commercial formulation was also included as a reference. The left and right mid-volar forearms of 20 healthy volunteers were used as study sites, to which topical formulations were applied twice daily for 28 days. After successive tape-stripping, corneocyte maturity and surface area were assessed. In addition, activity of the desquamatory kallikrein (KLK) protease enzymes KLK5 and KLK7, and tryptase and plasmin (implicated in inflammatory process) were measured using a fluorogenic probe assay. The amount of protein removed and TEWL were also recorded. SC thickness before and after treatment was determined using Confocal Raman Spectroscopy (CRS). Overall (i) corneocyte maturity and surface area decreased with increasing number of tape strips, (ii) activity of both the desquamatory and inflammatory enzymes was highest in the outer layers of the SC and decreased with depth (iii) TEWL increased as more SC layers were removed. Furthermore, areas treated with formulations containing niacinamide were significantly different to pre-treatment baseline and untreated/vehicle-control treated sites, with larger and more mature corneocytes, decreased inflammatory activity, decreased TEWL and increased SC thickness. These data (a) confirm the utility of measures and metrics developed previously for the non-invasive assay of SC barrier function, (b) present an holistic picture of a SC compartment managing barrier function through dynamic optimisation of pathlength and quality of building materials used, and (c) shed new light on niacinamide as a topical formulation adjunct with unique SC barrier-augmentation properties. Copyright © 2012 Elsevier B.V. All rights reserved.
Kim, Dong Young; Park, Hyun Sun; Yoon, Hyun-Sun; Cho, Soyun
2015-10-01
Keloids and hypertrophic scars are prevalent and psychologically distressful dermatologic conditions. Various treatment modalities have been tried but without complete success by any one method. We evaluated the efficacy of a combination of intense pulsed light (IPL) device and intralesional corticosteroid injection for the treatment of keloids and hypertrophic scars with respect to the recovery of skin barrier function. Totally 52 Korean patients were treated by the combined treatment at 4-8-week intervals. Using digital photographs, changes in scar appearance were assessed with modified Vancouver Scar Scale (MVSS), physicians' global assessment (PGA) and patient's satisfaction score. In 12 patients, the stratum corneum (SC) barrier function was assessed by measuring transepidermal water loss (TEWL) and SC capacitance. Most scars demonstrated significant clinical improvement in MVSS, PGA and patient's satisfaction score after the combined therapy. A significant decrease of TEWL and elevation of SC capacitance were also documented after the treatment. The combination therapy (IPL + corticosteroid injection) not only improves the appearance of keloids and hypertrophic scars but also increases the recovery level of skin hydration status in terms of the skin barrier function.
Sampling the stratum corneum for toxic chemicals.
Coman, Garrett; Blickenstaff, Nicholas R; Blattner, Collin M; Andersen, Rosa; Maibach, Howard I
2014-01-01
Dermal exposure is an important pathway in environmental health. Exposure comes from contaminated water, soil, treated surfaces, textiles, aerosolized chemicals, and agricultural products. It can occur in homes, schools, play areas, and work settings in the form of industrial sources, consumer products, or hazardous wastes. Dermal exposure is most likely to occur through contact with liquids, water, soil, sediment, and contaminated surfaces. The ability to detect and measure exposure to toxic materials on the skin is an important environmental health issue. The stratum corneum is the skin's first and principal barrier layer of protection from the outside world. It has a complex structure that can effectively protect against a wide variety of physical, chemical, and biological contaminants. However, there are a variety of chemical agents that can damage the stratum corneum and the underlying epidermis, dermis and subcutis, and/or enter systemic circulation through the skin. There are numerous ways of sampling the stratum corneum for these toxic materials like abrasion techniques, biopsy, suction blistering, imaging, washing, wipe sampling, tape stripping, and spot testing. Selecting a method likely depends on the particular needs of the situation. Hence, there is a need to review practical considerations for their use in sampling the stratum corneum for toxins.
Kon, Yuka; Ichikawa-Shigeta, Yoshie; Iuchi, Terumi; Nakajima, Yukari; Nakagami, Gojiro; Tabata, Keiko; Sanada, Hiromi; Sugama, Junko
The purpose of this study was to examine the effects of a skin barrier cream with moisturization and skin-protectant characteristics for improving the severity of incontinence-associated dermatitis (IAD) pertaining to the skin physiology and appearance. We measured the following outcomes: (1) skin physiological characteristics indicating skin protection and enhancement of the skin's moisture barrier (stratum corneum hydration, dermis hydration level, transepidermal water loss, and skin pH); and (2) changes in skin appearance (the degree of erythema and pigmentation, and the sulcus cutis condition). Single-blind, cluster randomized controlled trial. The study was conducted in a long-term care facility in Japan between November 7, 2011, and May 6, 2012. We used block randomization to obtain a random sample of 6 (4 experimental and 2 control) out of 10 available wards. All subjects were elderly women with IAD of the buttock or inner thigh. We assessed 295 patients, but only 33 met inclusion criteria; 18 were allocated to the experimental group and 15 were allocated to the control group. All participants were managed with cleansing with a skin cleanser and application of a moisturizer daily. In addition, a skin barrier cream designed to enhance the skin's moisture barrier and act as a protective barrier was applied to the skin of patients in the experimental group 3 times a day when absorptive briefs were changed. Skin physiological and appearance characteristics were scored only at the buttock or thigh area. All data were collected on days 1 and 14 of the study. Univariate analysis found that the erythema index was lower in the intervention group than in the control group at day 14 (P = .004). Multivariate analysis found significant associations between use of the skin barrier cream and increased stratum corneum hydration (β= .443, P = .031), decreased skin pH (β=-.439, P = .020), and magnitude of erythema (β=-.451, P = .018). Study findings suggest that a barrier cream designed to enhance the skin's moisture barrier and act as a skin protectant increased stratum corneum hydration, reduced cutaneous pH, and reduced erythema.
Relationship between biochemical factors and skin symptoms in chronic venous disease.
Takai, Yasushi; Hiramoto, Keiichi; Nishimura, Yoshiyuki; Ooi, Kazuya
2017-05-01
Chronic venous disease (CVD) is a common venous disease of the lower extremities and patients often develop symptoms of itching and skin roughness. An easy to use and objective skin examination was recently developed that allows measurement of the level of stratum corneum content and transepidermal water loss (TEWL), which can indicate the status of the barrier function of the stratum corneum. Previous studies demonstrated that histamine production from mast cells, and tryptase and matrix metalloprotease-9 levels were associated with skin inflammation. This study aimed to clarify the relationship between dry skin and inflammatory mediators that mediate the skin symptoms of CVD subjects. The study enrolled 27 subjects with CVD and a control group consisting of 9 volunteers. The itching onset frequency was higher in women (70.4%) compared with men (50.0%). To analyze the mechanisms involved in itching we measured blood inflammatory mediators pre- and post-sclerotherapy. There was a significant decrease in Substance P, histamine, IgE, and tryptase levels post-sclerotherapy compared with those at pre-sclerotherapy. These levels were associated with the severity of itching. In addition, compared with the control subjects, there was a significant increase in the stratum corneum water content and a decrease in the TEWL in the 27 patients with CVD. This was associated with a decrease in the itching symptoms. Our findings indicate that sclerotherapy decreased levels of inflammatory mediators, increased stratum corneum water content and decreased TEWL, which coincided with reduced itching in CVD patients, indicating they might be therapeutic targets.
Improving diaper design to address incontinence associated dermatitis
2010-01-01
Background Incontinence associated dermatitis (IAD) is an inflammatory skin disease mainly triggered by prolonged skin contact with urine, feces but also liberal detergent use when cleansing the skin. To minimize the epidermal barrier challenge we optimized the design of adult incontinence briefs. In the fluid absorption area we interposed a special type of acidic, curled-type of cellulose between the top sheet in contact with the skin and the absorption core beneath containing the polyacrylate superabsorber. The intention was to minimize disturbance of the already weak acid mantle of aged skin. We also employed air-permeable side panels to minimize skin occlusion and swelling of the stratum corneum. Methods The surface pH of diapers was measured after repeated wetting with a urine substitute fluid at the level of the top sheet. Occlusive effects and hydration of the stratum corneum were measured after a 4 hour application of different side panel materials by corneometry on human volunteers. Finally, we evaluated skin symptoms in 12 patients with preexisting IAD for 21 days following the institutional switch to the optimized diaper design. Local skin care protocols remained in place unchanged. Results The improved design created a surface pH of 4.6 which was stable even after repeated wetting throughout a 5 hour period. The "standard design" briefs had values of 7.1, which is alkaline compared to the acidic surface of normal skin. Side panels made from non-woven material with an air-permeability of more than 1200 l/m2/s avoided excessive hydration of the stratum corneum when compared to the commonly employed air-impermeable plastic films. Resolution of pre-existing IAD skin lesions was noted in 8 out of 12 patients after the switch to the optimized brief design. Conclusions An improved design of adult-type briefs can create an acidic pH on the surface and breathable side panels avoid over-hydration of the stratum corneum and occlusion. This may support the epidermal barrier function and may help to reduce the occurrence of IAD. PMID:21092161
Electrical measurement of the hydration state of the skin surface in vivo.
Tagami, H
2014-09-01
Healthy skin surface is smooth and soft, because it is covered by the properly hydrated stratum corneum (SC), an extremely thin and soft barrier membrane produced by the underlying normal epidermis. By contrast, the skin surfaces covering pathological lesions exhibit dry and scaly changes and the SC shows poor barrier function. The SC barrier function has been assessed in vivo by instrumentally measuring transepidermal water loss (TEWL). However, there was a lack of any appropriate method for evaluating the hydration state of the skin surface in vivo until 1980 when we reported the feasibility of employing high-frequency conductance or capacitance to evaluate it quickly and accurately. With such measurements, we can assess easily the moisturizing efficacy of various topical agents in vivo as well as the distribution pattern of water in the SC by combining it with a serial tape-stripping procedure of the skin surface. © 2014 The Author BJD © 2014 British Association of Dermatologists.
Waring, Mike; Bielfeldt, Stephan; Mätzold, Katja; Wilhelm, Klaus-Peter
2013-02-01
Chronic wounds require frequent dressing changes. Adhesive dressings used for this indication can be damaging to the stratum corneum, particularly in the elderly where the skin tends to be thinner. Understanding the level of damage caused by dressing removal can aid dressing selection. This study used a novel methodology that applied a stain to the skin and measured the intensity of that stain after repeated application and removal of a series of different adhesive types. Additionally, a traditional method of measuring skin barrier damage (transepidermal water loss) was also undertaken and compared with the staining methodology. The staining methodology and measurement of transepidermal water loss differentiated the adhesive dressings, showing that silicone adhesives caused least trauma to the skin. The staining methodology was shown to be as effective as transepidermal water loss in detecting damage to the stratum corneum and was shown to detect disruption of the barrier earlier than the traditional technique. © 2012 John Wiley & Sons A/S.
Surfactants have multi-fold effects on skin barrier function.
Lemery, Emmanuelle; Briançon, Stéphanie; Chevalier, Yves; Oddos, Thierry; Gohier, Annie; Boyron, Olivier; Bolzinger, Marie-Alexandrine
2015-01-01
The stratum corneum (SC) is responsible for the barrier properties of the skin and the role of intercorneocyte skin lipids, particularly their structural organization, in controlling SC permeability is acknowledged. Upon contacting the skin, surfactants interact with the SC components leading to barrier damage. To improve knowledge of the effect of several classes of surfactant on skin barrier function at three different levels. The influence of treatments of human skin explants with six non-ionic and four ionic surfactant solutions on the physicochemical properties of skin was investigated. Skin surface wettability and polarity were assessed through contact angle measurements. Infrared spectroscopy allowed monitoring the SC lipid organization. The lipid extraction potency of surfactants was evaluated thanks to HPLC-ELSD assays. One anionic and one cationic surfactant increased the skin polarity by removing the sebaceous and epidermal lipids and by disturbing the organization of the lipid matrix. Another cationic surfactant displayed a detergency effect without disturbing the skin barrier. Several non-ionic surfactants disturbed the lipid matrix organization and modified the skin wettability without any extraction of the skin lipids. Finally two non-ionic surfactants did not show any effect on the investigated parameters or on the skin barrier. The polarity, the organization of the lipid matrix and the lipid composition of the skin allowed describing finely how surfactants can interact with the skin and disturb the skin barrier function.
Tfayli, Ali; Bonnier, Franck; Farhane, Zeineb; Libong, Danielle; Byrne, Hugh J; Baillet-Guffroy, Arlette
2014-06-01
The use of animals for scientific research is increasingly restricted by legislation, increasing the demand for human skin models. These constructs present comparable bulk lipid content to human skin. However, their permeability is significantly higher, limiting their applicability as models of barrier function, although the molecular origins of this reduced barrier function remain unclear. This study analyses the stratum corneum (SC) of one such commercially available reconstructed skin model (RSM) compared with human SC by spectroscopic imaging and chromatographic profiling. Total lipid composition was compared by chromatographic analysis (HPLC). Raman spectroscopy was used to evaluate the conformational order, lateral packing and distribution of lipids in the surface and skin/RSM sections. Although HPLC indicates that all SC lipid classes are present, significant differences are observed in ceramide profiles. Raman imaging demonstrated that the RSM lipids are distributed in a non-continuous matrix, providing a better understanding of the limited barrier function. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Mechanics, morphology, and mobility in stratum corneum membranes
NASA Astrophysics Data System (ADS)
Olmsted, Peter; Das, Chinmay; Noro, Massimo
2012-02-01
The stratum corneum is the outermost layer of skin, and serves as a protective barrier against external agents, and to control moisture. It comprises keratin bodies (corneocytes) embedded in a matrix of lipid bilayers. Unlike the more widely studied phospholipid bilayers, the SC bilayers are typically in a gel-like state. Moreover, the SC membrane composition is radically different from more fluid counterparts: it comprises single tailed fatty acids, ceramides, and cholesterol; with many distinct ceramides possessing different lengths of tails, and always with two tails of different lengths. I will present insight from computer simulations into the morphology, mechanical properties, and diffusion (barrier) properties of these highly heterogeneous membranes. Our results provide some clue as to the design principles for the SC membrane, and is an excellent example of the use of wide polydispersity by natural systems.
A network model of successive partitioning-limited solute diffusion through the stratum corneum.
Schumm, Phillip; Scoglio, Caterina M; van der Merwe, Deon
2010-02-07
As the most exposed point of contact with the external environment, the skin is an important barrier to many chemical exposures, including medications, potentially toxic chemicals and cosmetics. Traditional dermal absorption models treat the stratum corneum lipids as a homogenous medium through which solutes diffuse according to Fick's first law of diffusion. This approach does not explain non-linear absorption and irregular distribution patterns within the stratum corneum lipids as observed in experimental data. A network model, based on successive partitioning-limited solute diffusion through the stratum corneum, where the lipid structure is represented by a large, sparse, and regular network where nodes have variable characteristics, offers an alternative, efficient, and flexible approach to dermal absorption modeling that simulates non-linear absorption data patterns. Four model versions are presented: two linear models, which have unlimited node capacities, and two non-linear models, which have limited node capacities. The non-linear model outputs produce absorption to dose relationships that can be best characterized quantitatively by using power equations, similar to the equations used to describe non-linear experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleischer, N.M.
The skin is a heterogeneous, bi-directional impediment to chemical flux, in which the stratum corneum is a major, though not the sole, rate-limiting barrier layer to permeation. Systemic toxicity following dermal exposure to environmental chemicals and use of skin as a portal for systemic administration of drugs have led to extensive investigations of the inward flux of xenobiotics applied to the outer surface of skin. Those investigations mainly utilized in vitro experimental systems that were limited by the absence of normal physiologic functions. The objective of the present research was to investigate an in vivo skin permeation model system thatmore » was sensitive to perturbations of skin capillary physiology and stratum corneum. A [open quotes]fuzzy[close quotes] rat model system was devised that employed outward cutaneous migration of a systemically administered permeation probe, isoflurane. Specially devised, transdermal vapor collection devices were used to capture the outward flux of isoflurane through the skin. Isoflurane flux measurements, coupled with blood isoflurane concentrations, were used to calculate cutaneous permeability coefficients (K[sub p]) of isolflurane, as an index of permeation, under various conditions of normal or perturbed cutaneous physiologic states. Physiologic perturbations were performed to test the sensitivity of the model system to detect effects of minoxidil-mediated vasodilation, phenylephrine-mediated vasoconstriction, and leukotriene D[sub 4]-mediated increased capillary permeability on the outward flux of isoflurane. Tape stripping and topical ether-ethanol application produced either physical removal or chemical disruption of the stratum corneum, respectively. Minoxidil, leukotriene D[sub 4], tape stripping of stratum corneum, and topical ether-ethanol experiments produced statistically significant increases (52 to 193%) in the K[sub p's], while phenylephrine had no significant effect on isoflurane permeation.« less
Potential Applications of Phyto-Derived Ceramides in Improving Epidermal Barrier Function.
Tessema, Efrem N; Gebre-Mariam, Tsige; Neubert, Reinhard H H; Wohlrab, Johannes
2017-01-01
The outer most layer of the skin, the stratum corneum, consists of corneocytes which are coated by a cornified envelope and embedded in a lipid matrix of ordered lamellar structure. It is responsible for the skin barrier function. Ceramides (CERs) are the backbone of the intercellular lipid membranes. Skin diseases such as atopic dermatitis and psoriasis and aged skin are characterized by dysfunctional skin barrier and dryness which are associated with reduced levels of CERs. Previously, the effectiveness of supplementation of synthetic and animal-based CERs in replenishing the depleted natural skin CERs and restoring the skin barrier function have been investigated. Recently, however, the barrier function improving effect of plant-derived CERs has attracted much attention. Phyto-derived CERs (phytoCERs) are preferable due to their assumed higher safety as they are mostly isolated from dietary sources. The beneficial effects of phytoCER-based oral dietary supplements for skin hydration and skin barrier reinforcement have been indicated in several studies involving animal models as well as human subjects. Ingestible dietary supplements containing phytoCERs are also widely available on the market. Nonetheless, little effort has been made to investigate the potential cosmetic applications of topically administered phytoCERs. Therefore, summarizing the foregoing investigations and identifying the gap in the scientific data on plant-derived CERs intended for skin-health benefits are of paramount importance. In this review, an attempt is made to synthesize the information available in the literature regarding the effects of phytoCER-based oral dietary supplements on skin hydration and barrier function with the underlying mechanisms. © 2017 S. Karger AG, Basel.
Biophysical effects of repetitive removal of adhesive dressings on peri-ulcer skin.
Zillmer, R; Agren, M S; Gottrup, F; Karlsmark, T
2006-05-01
To study the effect of repeated removal of four different adhesive dressings on peri-ulcer skin using quantitative non-invasive techniques. Forty-five patients with open (n = 29) or healed (n = 16) venous leg ulcers were included. Peri-ulcer skin was treated for 14 days with patches of two different hydrocolloid-based adhesive dressings, one polyurethane adhesive and one soft silicone adhesive dressing. Normal skin of the patients' ventral forearm was also treated identically. Adhesive patches of the dressings were replaced every second day. The skin barrier function was assessed by measuring transepidermal water loss and stratum corneum hydration by measuring electrical conductance. Thirty-nine patients completed the study. The hydrocolloid adhesives increased transepidermal water loss and conductance while the polyurethane and soft silicone adhesives did not influence these parameters significantly compared with adjacent non-treated peri-ulcer skin. For normal forearm skin, similar relative effects among the four adhesives were found. Repetitive treatment with hydrocolloid-based adhesive dressings induced major functional alterations of the stratum corneum. In contrast, a polyurethane adhesive and a soft silicone adhesive dressing did not alter transepidermal water loss or conductance of peri-ulcer skin.
Kopečná, Monika; Macháček, Miloslav; Prchalová, Eva; Štěpánek, Petr; Drašar, Pavel; Kotora, Martin; Vávrová, Kateřina
2017-03-01
Skin permeation/penetration enhancers are substances that enable drug delivery through or into the skin. To search for new enhancers with high but reversible activity and acceptable toxicity, we synthesized a series of D-glucose derivatives, both hydrophilic and amphiphilic. Initial evaluation of the ability of these sugar derivatives to increase permeation and penetration of theophylline through/into human skin compared with a control (no enhancer) or sorbitan monolaurate (Span 20; positive control) revealed dodecyl 6-amino-6-deoxy-α-D-glucopyranoside 5 as a promising enhancer. Furthermore, this amino sugar 5 increased epidermal concentration of a highly hydrophilic antiviral cidofovir by a factor of 7. The effect of compound 5 on skin electrical impedance suggested its direct interaction with the skin barrier. Infrared spectroscopy of isolated stratum corneum revealed no effect of enhancer 5 on the stratum corneum proteins but an overall decrease in the lipid chain order. The enhancer showed acceptable toxicity on HaCaT keratinocyte and 3T3 fibroblast cell lines. Finally, transepidermal water loss returned to baseline values after enhancer 5 had been removed from the skin. Compound 5, a dodecyl amino glucoside, is a promising enhancer that acts through a reversible interaction with the stratum corneum lipids.
The Permeability Enhancing Mechanism of DMSO in Ceramide Bilayers Simulated by Molecular Dynamics
Notman, Rebecca; den Otter, Wouter K.; Noro, Massimo G.; Briels, W. J.; Anwar, Jamshed
2007-01-01
The lipids of the topmost layer of the skin, the stratum corneum, represent the primary barrier to molecules penetrating the skin. One approach to overcoming this barrier for the purpose of delivery of active molecules into or via the skin is to employ chemical permeability enhancers, such as dimethylsulfoxide (DMSO). How these molecules exert their effect at the molecular level is not understood. We have investigated the interaction of DMSO with gel-phase bilayers of ceramide 2, the predominant lipid in the stratum corneum, by means of molecular dynamics simulations. The simulations satisfactorily reproduce the phase behavior and the known structural parameters of ceramide 2 bilayers in water. The effect of DMSO on the gel-phase bilayers was investigated at various concentrations over the range 0.0−0.6 mol fraction DMSO. The DMSO molecules accumulate in the headgroup region and weaken the lateral forces between the ceramides. At high concentrations of DMSO (≥0.4 mol fraction), the ceramide bilayers undergo a phase transition from the gel phase to the liquid crystalline phase. The liquid-crystalline phase of ceramides is expected to be markedly more permeable to solutes than the gel phase. The results are consistent with the experimental evidence that high concentrations of DMSO fluidize the stratum corneum lipids and enhance permeability. PMID:17513383
Darlenski, Razvigor; Kazandjieva, Jana; Tsankov, Nikolai; Fluhr, Joachim W
2013-11-01
The aim of the study was to disclose interactions between epidermal barrier, skin irritation and sensitization in healthy and diseased skin. Transepidermal water loss (TEWL) and stratum corneum hydration (SCH) were assessed in adult patients with atopic dermatitis (AD), rosacea and healthy controls. A 4-h patch test with seven concentrations of sodium lauryl sulphate was performed to determine the irritant threshold (IT). Contact sensitization pattern was revealed by patch testing with European baseline series. Subjects with a lower IT had higher TEWL values and lower SCH. Subjects with positive allergic reactions had significantly lower IT. In AD, epidermal barrier deterioration was detected on both volar forearm and nasolabial fold, while in rosacea, impeded skin physiology parameters were observed on the facial skin only, suggesting that barrier impediment is restricted to the face in rosacea, in contrast with AD where the abnormal skin physiology is generalized. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Status of surfactants as penetration enhancers in transdermal drug delivery
Som, Iti; Bhatia, Kashish; Yasir, Mohd.
2012-01-01
Surfactants are found in many existing therapeutic, cosmetic, and agro-chemical preparations. In recent years, surfactants have been employed to enhance the permeation rates of several drugs via transdermal route. The application of transdermal route to a wider range of drugs is limited due to significant barrier to penetration across the skin which is associated with the outermost stratum corneum layer. Surfactants have effects on the permeability characteristics of several biological membranes including skin. They have the potential to solubilize lipids within the stratum corneum. The penetration of the surfactant molecule into the lipid lamellae of the stratum corneum is strongly dependent on the partitioning behavior and solubility of surfactant. Surfactants ranging from hydrophobic agents such as oleic acid to hydrophilic sodium lauryl sulfate have been tested as permeation enhancer to improve drug delivery. This article reviews the status of surfactants as permeation enhancer in transdermal drug delivery of various drugs. PMID:22368393
Ambient humidity and the skin: the impact of air humidity in healthy and diseased states.
Goad, N; Gawkrodger, D J
2016-08-01
Humidity, along with other climatic factors such as temperature and ultraviolet radiation, can have an important impact on the skin. Limited data suggest that external humidity influences the water content of the stratum corneum. An online literature search was conducted through Pub-Med using combinations of the following keywords: skin, skin disease, humidity, dermatoses, dermatitis, eczema, and mist. Publications included in this review were limited to (i) studies in humans or animals, (ii) publications showing relevance to the field of dermatology, (iii) studies published in English and (iv) publications discussing humidity as an independent influence on skin function. Studies examining environmental factors as composite influences on skin health are only included where the impact of humidity on the skin is also explored in isolation of other environmental factors. A formal systematic review was not feasible for this topic due to the heterogeneity of the available research. Epidemiological studies indicated an increase in eczema with low internal (indoors) humidity and an increase in eczema with external high humidity. Other studies suggest that symptoms of dry skin appear with low humidity internal air-conditioned environments. Murine studies determined that low humidity caused a number of changes in the skin, including the impairment of the desquamation process. Studies in humans demonstrated a reduction in transepidermal water loss (TEWL) (a measure of the integrity of the skin's barrier function) with low humidity, alterations in the water content in the stratum corneum, decreased skin elasticity and increased roughness. Intervention with a humidifying mist increased the water content of the stratum corneum. Conversely, there is some evidence that low humidity conditions can actually improve the barrier function of the skin. Ambient relative humidity has an impact on a range of parameters involved in skin health but the literature is inconclusive. Further studies are needed to better delineate the interactions that can occur in normal and diseased states. Therapeutic measures might be forthcoming especially for skin diseases such as eczema, which are regarded as being characterized by 'skin dryness'. Further research examining the interaction between different environmental exposures thought to impact the skin, and indeed the interplay between genetic, environmental and immunological influences, are required. © 2016 European Academy of Dermatology and Venereology.
Skin barrier function recovery after diamond microdermabrasion.
Kim, Hei Sung; Lim, Sook Hee; Song, Ji Youn; Kim, Mi-Yeon; Lee, Ji Ho; Park, Jong Gap; Kim, Hyung Ok; Park, Young Min
2009-10-01
Microdermabrasion is a popular method for facial rejuvenation and is performed worldwide. Despite its extensive usage, there are few publications on skin barrier change after microdermabrasion and none concerning diamond microdermabrasion. Our object was to see changes in transepidermal water loss (TEWL), hydration and erythema of the face following diamond microdermabrasion. Twenty-eight patients were included in this spilt face study. TEWL, stratum corneum hydration and the degree of erythema were measured from the right and left sides of the face (forehead and cheek) at baseline. One side of the face was treated with diamond microdermabrasion and the other side was left untreated. Measurements were taken right after the procedure and repeated at set time intervals. Diamond microdermabrasion was associated with a statistically significant increase in TEWL immediately after the procedure and at 24 h. However, on day 2, levels of TEWL were back to baseline. An increase in hydration and erythema was observed right after microdermabrasion, but both returned to baseline on day 1. The results show that skin barrier function of the forehead and cheek recovers within 2 days of diamond microdermabrasion. Diamond microdermabrasion performed on a weekly basis, as presently done, is expected to allow sufficient time for the damaged skin to recover its barrier function in most parts of the face.
Del Rosso, James Q.; Levin, Jacqueline
2011-01-01
It has been recognized for approximately 50 years that the stratum corneum exhibits biological properties that contribute directly to maintaining and sustaining healthy skin. Continued basic science and clinical research coupled with keen clinical observation has led to more recent recognition and general acceptance that the stratum corneum completes many vital “barrier” tasks, including but not limited to regulating epidermal water content and the magnitude of water loss; mitigating exogenous oxidants that can damage components of skin via an innate antioxidant system; preventing or limiting cutaneous infection via multiple antimicrobial peptides; responding via innate immune mechanisms to “cutaneous invaders” of many origins, including microbes, true allergens, and other antigens; and protecting its neighboring cutaneous cells and structures that lie beneath from damaging effects of ultraviolet radiation. Additionally, specific abnormalities of the stratum corneum are associated with the clinical expression of certain disease states. This article provides a thorough “primer” for the clinician, reviewing the multiple normal homeostatic functions of the stratum corneum and the cutaneous challenges that arise when individual functions of this thin yet very active epidermal layer are compromised by exogenous and/or endogenous factors. PMID:21938268
The barrier function of organotypic non-melanoma skin cancer models.
Zoschke, Christian; Ulrich, Martina; Sochorová, Michaela; Wolff, Christopher; Vávrová, Kateřina; Ma, Nan; Ulrich, Claas; Brandner, Johanna M; Schäfer-Korting, Monika
2016-07-10
Non-melanoma skin cancer (NMSC) is the most frequent human cancer with continuously rising incidences worldwide. Herein, we investigated the molecular basis for the impaired skin barrier function of organotypic NMSC models. We unraveled disturbed epidermal differentiation by reflectance confocal microscopy and histopathological evaluation. While the presence of claudin-4 and occludin were distinctly reduced, zonula occludens protein-1 was more wide-spread, and claudin-1 was heterogeneously distributed within the NMSC models compared with normal reconstructed human skin. Moreover, the cancer altered stratum corneum lipid packing and profile with decreased cholesterol content, increased phospholipid amount, and altered ceramide subclasses. These alterations contributed to increased surface pH and to 1.5 to 2.6-fold enhanced caffeine permeability of the NMSC models. Three topical applications of ingenol mebutate gel (0.015%) caused abundant epidermal cell necrosis, decreased Ki-67 indices, and increased lactate dehydrogenase activity. Taken together, our study provides new biological insights into the microenvironment of organotypic NMSC models, improves the understanding of the disease model by revealing causes for impaired skin barrier function in NMSC models at the molecular level, and fosters human cell-based approaches in preclinical drug evaluation. Copyright © 2016 Elsevier B.V. All rights reserved.
Notman, Rebecca; Anwar, Jamshed; Briels, W J; Noro, Massimo G; den Otter, Wouter K
2008-11-15
Transmembrane pore formation is central to many biological processes such as ion transport, cell fusion, and viral infection. Furthermore, pore formation in the ceramide bilayers of the stratum corneum may be an important mechanism by which penetration enhancers such as dimethylsulfoxide (DMSO) weaken the barrier function of the skin. We have used the potential of mean constraint force (PMCF) method to calculate the free energy of pore formation in ceramide bilayers in both the innate gel phase and in the DMSO-induced fluidized state. Our simulations show that the fluid phase bilayers form archetypal water-filled hydrophilic pores similar to those observed in phospholipid bilayers. In contrast, the rigid gel-phase bilayers develop hydrophobic pores. At the relatively small pore diameters studied here, the hydrophobic pores are empty rather than filled with bulk water, suggesting that they do not compromise the barrier function of ceramide membranes. A phenomenological analysis suggests that these vapor pores are stable, below a critical radius, because the penalty of creating water-vapor and tail-vapor interfaces is lower than that of directly exposing the strongly hydrophobic tails to water. The PMCF free energy profile of the vapor pore supports this analysis. The simulations indicate that high DMSO concentrations drastically impair the barrier function of the skin by strongly reducing the free energy required for pore opening.
Notman, Rebecca; Anwar, Jamshed; Briels, W. J.; Noro, Massimo G.; den Otter, Wouter K.
2008-01-01
Transmembrane pore formation is central to many biological processes such as ion transport, cell fusion, and viral infection. Furthermore, pore formation in the ceramide bilayers of the stratum corneum may be an important mechanism by which penetration enhancers such as dimethylsulfoxide (DMSO) weaken the barrier function of the skin. We have used the potential of mean constraint force (PMCF) method to calculate the free energy of pore formation in ceramide bilayers in both the innate gel phase and in the DMSO-induced fluidized state. Our simulations show that the fluid phase bilayers form archetypal water-filled hydrophilic pores similar to those observed in phospholipid bilayers. In contrast, the rigid gel-phase bilayers develop hydrophobic pores. At the relatively small pore diameters studied here, the hydrophobic pores are empty rather than filled with bulk water, suggesting that they do not compromise the barrier function of ceramide membranes. A phenomenological analysis suggests that these vapor pores are stable, below a critical radius, because the penalty of creating water-vapor and tail-vapor interfaces is lower than that of directly exposing the strongly hydrophobic tails to water. The PMCF free energy profile of the vapor pore supports this analysis. The simulations indicate that high DMSO concentrations drastically impair the barrier function of the skin by strongly reducing the free energy required for pore opening. PMID:18708461
Yuan, Chao; Zou, Ying; Xueqiu, Yao; Miyauchi, Yuki; Fujimura, Tsutomu; Kitahara, Takashi; Wang, Xuemin
2017-01-01
The properties of infant skin regarding its structure and stratum corneum (SC) properties during development compared to adult skin have been reported only for a few races and body sites. The aim of this study was to understand the developmental changes of skin properties in Chinese infants, focusing on SC ceramides and protein secondary structure, which are important for skin barrier function. Three body sites with distinct characteristics (cheeks, inner upper arms, and buttocks) were assessed. Sixty pairs of Chinese infants and their mothers were measured for SC hydration, transepidermal water loss, ceramide levels, sebum with an ester bond, and protein secondary structure of superficial SC. Skin hydration decreased with age at all body sites. TEWL was similar between the 2–12- and 13–24-month-old groups but was higher than the adult group at the buttocks and inner upper arms and was equal to the adult group at the cheeks. These differences coincided with differences in protein secondary structure. Ceramide and sebum levels were lower in the infant groups. We conclude that both the SC functions and the components of infant skin are still developing and are not fully adapted as in adult skin at each body site examined. PMID:29098152
Orally administered ketoconazole: route of delivery to the human stratum corneum.
Harris, R; Jones, H E; Artis, W M
1983-01-01
Delivery of ketoconazole to human stratum corneum was studied. Thirteen healthy volunteers, three patients with chronic fungal disease and one patient with palmar-plantar hyperhidrosis were given 400 mg of ketoconazole daily for various lengths of time. The ketoconazole content of palmar stratum corneum, eccrine sweat, sebum, and serum was measured by high-pressure liquid chromatography (sensitivity, 0.005 to 0.010 microgram/ml). Palmar stratum corneum obtained after 7 and 14 days of daily administration contained up to 14 micrograms of ketoconazole per g. Ketoconazole was not found in sebum after 7 or 14 days of daily ingestion of the antimycotic agent. Sebum from three patients with chronic fungal infection treated for greater than 9 months contained ketoconazole (means, 4.7 micrograms/g). Thermogenic whole body eccrine sweat contained a mean of 0.059 microgram/ml on day 7 and 0.084 microgram/ml on day 14 of daily administration. Ketoconazole appeared in thermogenic whole body eccrine sweat and palmar hyperhidrotic sweat within 1 h after a single oral dose. Partition studies of ketoconazole containing eccrine sweat demonstrated a 10-fold greater concentration in the sediment phase (desquamated keratinocytes) compared with the clear supernatant phase. In vitro studies with [3H]ketoconazole-supplemented supernatant sweat revealed preferential binding to stratum corneum, hair, and nails and its partitioning to lipid-rich sebum. We conclude that eccrine sweat rapidly transports ketoconazole across the blood-skin barrier, where it may bind or partition to keratinocytes and surface lipids. PMID:6318663
Lee, S; McAuliffe, D J; Kollias, N; Flotte, T J; Doukas, A G
2001-01-01
Photomechanical waves render the stratum corneum permeable and allow macromolecules to diffuse into the epidermis and dermis. The aim of this study was to investigate the combined action of photomechanical waves and sodium lauryl sulfate, an anionic surfactant, for transdermal delivery. A single photomechanical wave was applied to the skin of rats in the presence of sodium lauryl sulfate. The sodium lauryl sulfate solution was removed and aqueous solutions of rhodamine-B dextran (40 kDa molecular weight) were applied to the skin at time points 2, 30, and 60 minutes post-exposure. The presence of rhodamine-B dextran in the skin was measured by fluorescence emission spectroscopy in vivo and fluorescence microscopy of frozen biopsies. The use of sodium lauryl sulfate delayed the recovery of the stratum corneum barrier and extended the time available for the diffusion of dextran through it. The combination of photomechanical waves and surfactants can enhance transdermal drug delivery. Copyright 2001 Wiley-Liss, Inc.
Topgaard, Daniel; Sparr, Emma
2017-01-01
Solvents are commonly used in pharmaceutical and cosmetic formulations and sanitary products and cleansers. The uptake of solvent into the skin may change the molecular organization of skin lipids and proteins, which may in turn alter the protective skin barrier function. We herein examine the molecular effects of 10 different solvents on the outermost layer of skin, the stratum corneum (SC), using polarization transfer solid-state NMR on natural abundance 13C in intact SC. With this approach it is possible to characterize the molecular dynamics of solvent molecules when present inside intact SC and to simultaneously monitor the effects caused by the added solvent on SC lipids and protein components. All solvents investigated cause an increased fluidity of SC lipids, with the most prominent effects shown for the apolar hydrocarbon solvents and 2-propanol. However, no solvent other than water shows the ability to fluidize amino acids in the keratin filaments. The solvent molecules themselves show reduced molecular mobility when incorporated in the SC matrix. Changes in the molecular properties of the SC, and in particular alternation in the balance between solid and fluid SC components, may have significant influences on the macroscopic SC barrier properties as well as mechanical properties of the skin. Deepened understanding of molecular effects of foreign compounds in SC fluidity can therefore have strong impact on the development of skin products in pharmaceutical, cosmetic, and sanitary applications. PMID:28028209
Phase behavior of stratum corneum lipids in mixed Langmuir-Blodgett monolayers.
ten Grotenhuis, E; Demel, R A; Ponec, M; Boer, D R; van Miltenburg, J C; Bouwstra, J A
1996-01-01
The lipids found in the bilayers of the stratum corneum fulfill the vital barrier role of mammalian bodies. The main classes of lipids found in stratum corneum are ceramides, cholesterol, and free fatty acids. For an investigation of their phase behavior, mixed Langmuir-Blodgett monolayers of these lipids were prepared. Atomic force microscopy was used to investigate the structure of the monolayers as a function of the monolayer composition. Three different types of ceramide were used: ceramide extracted from pigskin, a commercially available ceramide with several fatty acid chain lengths, and two synthetic ceramides that have only one fatty acid chain length. In pigskin ceramide-cholesterol mixed monolayers phase separation was observed. This phase separation was also found for the commercially available type III Sigma ceramide-cholesterol mixed monolayers with molar ratios ranging from 1:0.1 to 1:1. These monolayers separated into two phases, one composed of the long fatty acid chain fraction of Sigma ceramide III and the other of the short fatty acid chain fraction of Sigma ceramide III mixed with cholesterol. Mixtures with a higher cholesterol content consisted of only one phase. These observations were confirmed by the results obtained with synthetic ceramides, which have only one fatty acid chain length. The synthetic ceramide with a palmitic acid (16:0) chain mixed with cholesterol, and the synthetic ceramide with a lignoceric acid (24:0) chain did not. Free fatty acids showed a preference to mix with one of these phases, depending on their fatty acid chain lengths. The results of this investigation suggest that the model system used in this study is in good agreement with those of other studies concerning the phase behavior of the stratum corneum lipids. By varying the composition of the monolayers one can study the role of each lipid class in detail. Images FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 5 FIGURE 6 PMID:8874014
Epidermal Permeability Barrier Recovery Is Delayed in Vitiligo-Involved Sites
Liu, J.; Man, W.Y.; Lv, C.Z.; Song, S.P.; Shi, Y.J.; Elias, P.M.; Man, M.Q.
2010-01-01
Background/Objectives Prior studies have demonstrated that both the skin surface pH and epidermal permeability barrier function vary with skin pigmentation types. Although melanin deficiency is the main feature of vitiligo, alterations in cutaneous biophysical properties in vitiligo have not yet been well defined. In the present study, stratum corneum (SC) hydration, the skin surface pH and epidermal permeability barrier function in vitiligo were evaluated. Methods A total of 30 volunteers with vitiligo comprising 19 males and 11 females aged 13–51 years (mean age: 27.91 ± 2.06 years) were enrolled in this study. The skin surface pH, SC hydration, melanin/erythema index and transepidermal water loss (TEWL) were measured by respective probes connected to a Courage-Khazaka MPA5. SC integrity was determined by measuring the TEWL following each D-Squame application. The barrier recovery rate was assessed at 5 h following barrier disruption by repeated tape stripping. Results In addition to SC hydration, both melanin and erythema index were significantly lower in vitiligo lesions than in contralateral, nonlesional sites, while no difference in skin surface pH between vitiligo-involved and uninvolved areas was observed. In addition, neither the basal TEWL nor SC integrity in the involved areas differed significantly from that in the uninvolved areas. However, barrier recovery in vitiligo-involved sites was significantly delayed in comparison with uninvolved sites (40.83 ± 5.39% vs. 58.30 ± 4.71%; t = 2.441; p < 0.02). Conclusion Barrier recovery following tape stripping of the SC is delayed in vitiligo. Therefore, improvement in epidermal permeability barrier function may be an important unrecognized factor to be considered in treating patients with vitiligo. PMID:20185976
Duplan, Hélène; Questel, Emmanuel; Hernandez-Pigeon, Hélène; Galliano, Marie Florence; Caruana, Antony; Ceruti, Isabelle; Ambonati, Marco; Mejean, Carine; Damour, Odile; Castex-Rizzi, Nathalie; Bessou-Touya, Sandrine; Schmitt, Anne-Marie
2011-01-01
10-Hydroxy-2-decenoic acid, a natural fatty acid only found in royal jelly, may be of value in correcting skin barrier dysfunction. We evaluated the activity of Hydroxydecine(®), its synthetic counterpart, in vitro on the regulation of epidermal differentiation markers, ex vivo on the inflammatory response and restoration of skin barrier function, and in vivo on UV-induced xerosis in healthy human volunteers. In cultured normal human keratinocytes, Hydroxydecine(®) induced involucrin, transglutaminase-1 and filaggrin protein production. In topically Hydroxydecine(®)-treated skin equivalents, immunohistochemical analysis revealed an increase in involucrin, transglutaminase-1 and filaggrin staining. In a model of thymic stromal lymphopoietin (TSLP)-induced inflamed epidermis, a Hydroxydecine(®)-containing emulsion inhibited TSLP release. In a model of inflammation and barrier impairment involving human skin explants maintained alive, Hydroxydecine(®) balm restored stratum corneum cohesion and significantly increased filaggrin expression, as shown by immunohistochemistry. It also decreased pro-inflammatory cytokine secretion (IL-4, IL-5 and IL-13). In healthy volunteers with UV-induced xerosis, the hydration index increased by +28.8% (p<0.01) and +60.4% (p<0.001) after 7 and 21 days of treatment with Hydroxydecine(®) cream, respectively. Hydroxydecine(®) thus proved its efficacy in activating keratinocyte differentiation processes in vitro, restoring skin barrier function and reducing inflammation ex vivo, and hydrating dry skin in vivo.
Oba, Chisato; Morifuji, Masashi; Ichikawa, Satomi; Ito, Kyoko; Kawahata, Keiko; Yamaji, Taketo; Asami, Yukio; Itou, Hiroyuki; Sugawara, Tatsuya
2015-01-01
Exposure to ultraviolet-B (UV-B) irradiation causes skin barrier defects. Based on earlier findings that milk phospholipids containing high amounts of sphingomyelin (SM) improved the water content of the stratum corneum (SC) in normal mice, here we investigated the effects of dietary milk SM on skin barrier defects induced by a single dose of UV-B irradiation in hairless mice. Nine week old hairless mice were orally administrated SM (146 mg/kg BW/day) for a total of ten days. After seven days of SM administration, the dorsal skin was exposed to a single dose of UV-B (20 mJ/cm2). Administration of SM significantly suppressed an increase in transepidermal water loss and a decrease in SC water content induced by UV-B irradiation. SM supplementation significantly maintained covalently-bound ω-hydroxy ceramide levels and down-regulated mRNA levels of acute inflammation-associated genes, including thymic stromal lymphopoietin, interleukin-1 beta, and interleukin-6. Furthermore, significantly higher levels of loricrin and transglutaminase-3 mRNA were observed in the SM group. Our study shows for the first time that dietary SM modulates epidermal structures, and can help prevent disruption of skin barrier function after UV-B irradiation.
Enhanced barrier functions and anti-inflammatory effect of cultured coconut extract on human skin.
Kim, Soomin; Jang, Ji Eun; Kim, Jihee; Lee, Young In; Lee, Dong Won; Song, Seung Yong; Lee, Ju Hee
2017-08-01
Natural plant oils have been used as a translational alternative to modern medicine. Particularly, virgin coconut oil (VCO) has gained popularity because of its potential benefits in pharmaceutical, nutritional, and cosmetic applications. Cultured coconut extract (CCE) is an alternative end product of VCO, which undergoes a further bacterial fermentation process. This study aimed to investigate the effects of CCE on human skin. We analyzed the expression of skin barrier molecules and collagens after applying CCE on human explanted skin. To evaluate the anti-inflammatory properties of CCE, the expression of inflammatory markers was analyzed after ultraviolet B (UVB) irradiation. The CCE-treated group showed increased expression of cornified cell envelope components, which contribute to protective barrier functions of the stratum corneum. Further, the expression of inflammatory markers was lower in the CCE-treated group after exposure to UVB radiation. These results suggest an anti-inflammatory effect of CCE against UVB irradiation-induced inflammation. Additionally, the CCE-treated group showed increased collagen and hyaluronan synthase-3 expression. In our study, CCE showed a barrier-enhancing effect and anti-inflammatory properties against ex vivo UVB irradiation-induced inflammation. The promising effect of CCE may be attributed to its high levels of polyphenols and fatty acid components. Copyright © 2017 Elsevier Ltd. All rights reserved.
Björklund, Sebastian; Pham, Quoc Dat; Jensen, Louise Bastholm; Knudsen, Nina Østergaard; Nielsen, Lars Dencker; Ekelund, Katarina; Ruzgas, Tautgirdas; Engblom, Johan; Sparr, Emma
2016-10-01
In the development of transdermal and topical products it is important to understand how formulation ingredients interact with the molecular components of the upper layer of the skin, the stratum corneum (SC), and thereby influence its macroscopic barrier properties. The aim here was to investigate the effect of two commonly used excipients, transcutol and dexpanthenol, on the molecular as well as the macroscopic properties of the skin membrane. Polarization transfer solid-state NMR methods were combined with steady-state flux and impedance spectroscopy measurements to investigate how these common excipients influence the molecular components of SC and its barrier function at strictly controlled hydration conditions in vitro with excised porcine skin. The NMR results provide completely new molecular insight into how transcutol and dexpanthenol affect specific molecular segments of both SC lipids and proteins. The presence of transcutol or dexpanthenol in the formulation at fixed water activity results in increased effective skin permeability of the model drug metronidazole. Finally, impedance spectroscopy data show clear changes of the effective skin capacitance after treatment with transcutol or dexpanthenol. Based on the complementary data, we are able to draw direct links between effects on the molecular properties and on the macroscopic barrier function of the skin barrier under treatment with formulations containing transcutol or dexpanthenol. Copyright © 2016 Elsevier Inc. All rights reserved.
Mori, T; Ishida, K; Mukumoto, S; Yamada, Y; Imokawa, G; Kabashima, K; Kobayashi, M; Bito, T; Nakamura, M; Ogasawara, K; Tokura, Y
2010-01-01
Background Two types of atopic dermatitis (AD) have been proposed, with different pathophysiological mechanisms underlying this seemingly heterogeneous disorder. The extrinsic type shows high IgE levels presumably as a consequence of skin barrier damage and feasible allergen permeation, whereas the intrinsic type exhibits normal IgE levels and is not mediated by allergen-specific IgE. Objectives To investigate the relationship between pruritus perception threshold and skin barrier function of patients with AD in a comparison between the extrinsic and intrinsic types. Methods Enrolled in this study were 32 patients with extrinsic AD, 17 with intrinsic AD and 24 healthy individuals. The barrier function of the stratum corneum was assessed by skin surface hydration and transepidermal water loss (TEWL), and pruritus perception was evaluated by the electric current perception threshold (CPT) of sensory nerves upon neuroselective transcutaneous electric stimulation. Results Skin surface hydration was significantly lower and TEWL was significantly higher in extrinsic AD than intrinsic AD or normal controls. Although there was no statistically significant difference in CPT among extrinsic AD, intrinsic AD and normal controls, CPT was significantly correlated with skin surface hydration and inversely with TEWL in intrinsic AD and normal controls, but not extrinsic AD. Finally, CPT was correlated with the visual analogue scale of itch in the nonlesional skin of patients with extrinsic but not intrinsic AD. Conclusions Patients with extrinsic AD have an impaired barrier, which increases the pre-existing pruritus but rather decreases sensitivity to external stimuli. In contrast, patients with intrinsic AD retain a normal barrier function and sensory reactivity to external pruritic stimuli.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Xin R., E-mail: xia@ncsu.ed; Monteiro-Riviere, Nancy A.; Riviere, Jim E.
2010-01-01
Pristine fullerenes (C{sub 60}) in different solvents will be used in many industrial and pharmaceutical manufacturing and derivatizing processes. This report explores the impact of solvents on skin penetration of C{sub 60} from different types of industrial solvents (toluene, cyclohexane, chloroform and mineral oil). Yorkshire weanling pigs (n = 3) were topically dosed with 500 muL of 200 mug/mL C{sub 60} in a given solvent for 24 h and re-dosed daily for 4 days to simulate the worst scenario in occupational exposures. The dose sites were tape-stripped and skin biopsies were taken after 26 tape-strips for quantitative analysis. When dosedmore » in toluene, cyclohexane or chloroform, pristine fullerenes penetrated deeply into the stratum corneum, the primary barrier of skin. More C{sub 60} was detected in the stratum corneum when dosed in chloroform compared to toluene or cyclohexane. Fullerenes were not detected in the skin when dosed in mineral oil. This is the first direct evidence of solvent effects on the skin penetration of pristine fullerenes. The penetration of C{sub 60} into the stratum corneum was verified using isolated stratum corneum in vitro; the solvent effects on the stratum corneum absorption of C{sub 60} were consistent with those observed in vivo. In vitro flow-through diffusion cell experiments were conducted in pig skin and fullerenes were not detected in the receptor solutions by 24 h. The limit of detection was 0.001 mug/mL of fullerenes in 2 mL of the receptor solutions.« less
Microbiome dynamics of human epidermis following skin barrier disruption
2012-01-01
Background Recent advances in sequencing technologies have enabled metagenomic analyses of many human body sites. Several studies have catalogued the composition of bacterial communities of the surface of human skin, mostly under static conditions in healthy volunteers. Skin injury will disturb the cutaneous homeostasis of the host tissue and its commensal microbiota, but the dynamics of this process have not been studied before. Here we analyzed the microbiota of the surface layer and the deeper layers of the stratum corneum of normal skin, and we investigated the dynamics of recolonization of skin microbiota following skin barrier disruption by tape stripping as a model of superficial injury. Results We observed gender differences in microbiota composition and showed that bacteria are not uniformly distributed in the stratum corneum. Phylogenetic distance analysis was employed to follow microbiota development during recolonization of injured skin. Surprisingly, the developing neo-microbiome at day 14 was more similar to that of the deeper stratum corneum layers than to the initial surface microbiome. In addition, we also observed variation in the host response towards superficial injury as assessed by the induction of antimicrobial protein expression in epidermal keratinocytes. Conclusions We suggest that the microbiome of the deeper layers, rather than that of the superficial skin layer, may be regarded as the host indigenous microbiome. Characterization of the skin microbiome under dynamic conditions, and the ensuing response of the microbial community and host tissue, will shed further light on the complex interaction between resident bacteria and epidermis. PMID:23153041
Early-life risk factors for occurrence of atopic dermatitis during the first year.
Sugiyama, Mikio; Arakawa, Hirokazu; Ozawa, Kiyoshi; Mizuno, Takahisa; Mochizuki, Hiroyuki; Tokuyama, Kenichi; Morikawa, Akihiro
2007-03-01
In a prospective birth cohort study, we sought to identify perinatal predictors of the occurrence of atopic dermatitis in the first year of life. Associations of family history, infection during pregnancy, cord blood cytokine concentrations, and skin function parameters with atopic dermatitis were analyzed. Stratum corneum hydration was measured with an impedance meter until 5 days after delivery and again at 1 month. Complete data were obtained for 213 infants, including 27 diagnosed by a physician as having atopic dermatitis during their first year and 26 diagnosed as having infantile eczema during their first month. The risk of atopic dermatitis during the first year of life was related to maternal atopic dermatitis, lower concentrations of macrophage inflammatory protein-1beta in cord blood, and greater skin moisture in the surface and stratum corneum of the forehead and cheek at 1 month of age but not to viral or bacterial infection during pregnancy or breastfeeding. Paternal hay fever was associated negatively with the development of atopic dermatitis. High concentrations of interleukin-5, interleukin-17, and macrophage chemotactic protein-1 and only surface moisture in the cheek were associated with greater risk of infantile eczema in the first month. The association of atopic dermatitis in infancy with reduced neonatal macrophage inflammatory protein-1beta levels suggests a link with immature immune responses at birth. Stratum corneum barrier disruption in atopic dermatitis may involve impairment of cutaneous adaptation to extrauterine life. The majority of risk factors had different effects on infant eczema and atopic dermatitis, indicating different causes.
Biomaterials as novel penetration enhancers for transdermal and dermal drug delivery systems.
Chen, Yang; Wang, Manli; Fang, Liang
2013-01-01
The highly organized structure of the stratum corneum provides an effective barrier to the drug delivery into or across the skin. To overcome this barrier function, penetration enhancers are always used in the transdermal and dermal drug delivery systems. However, the conventional chemical enhancers are often limited by their inability to delivery large and hydrophilic molecules, and few to date have been routinely incorporated into the transdermal formulations due to their incompatibility and local irritation issues. Therefore, there has been a search for the compounds that exhibit broad enhancing activity for more drugs without producing much irritation. More recently, the use of biomaterials has emerged as a novel method to increase the skin permeability. In this paper, we present an overview of the investigations on the feasibility and application of biomaterials as penetration enhancers for transdermal or dermal drug delivery systems.
Recent Advances in Skin Penetration Enhancers for Transdermal Gene and Drug Delivery.
Amjadi, Morteza; Mostaghaci, Babak; Sitti, Metin
2017-01-01
There is a growing interest in transdermal delivery systems because of their noninvasive, targeted, and on-demand delivery of gene and drugs. However, efficient penetration of therapeutic compounds into the skin is still challenging largely due to the impermeability of the outermost layer of the skin, known as stratum corneum. Recently, there have been major research activities to enhance the skin penetration depth of pharmacological agents. This article reviews recent advances in the development of various strategies for skin penetration enhancement. We show that approaches such as ultrasound waves, laser, and microneedle patches have successfully been employed to physically disrupt the stratum corneum structure for enhanced transdermal delivery. Rather than physical approaches, several non-physical route have also been utilized for efficient transdermal delivery across the skin barrier. Finally, we discuss some clinical applications of transdermal delivery systems for gene and drug delivery. This paper shows that transdermal delivery devices can potentially function for diverse healthcare and medical applications while further investigations are still necessary for more efficient skin penetration of gene and drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Heavy Cigarette Smokers in a Chinese Population Display a Compromised Permeability Barrier
Xin, Shujun; Ye, Li; Lv, Chengzhi; Elias, Peter M.
2016-01-01
Cigarette smoking is associated with various cutaneous disorders with defective permeability. Yet, whether cigarette smoking influences epidermal permeability barrier function is largely unknown. Here, we measured skin biophysical properties, including permeability barrier homeostasis, stratum corneum (SC) integrity, SC hydration, skin surface pH, and skin melanin/erythema index, in cigarette smokers. A total of 99 male volunteers were enrolled in this study. Smokers were categorized as light-to-moderate (<20 cigarettes/day) or heavy smokers (≥20 cigarettes/day). An MPA5 was used to measure SC hydration and skin melanin/erythema index on the dorsal hand, forehead, and cheek. Basal transepidermal water loss (TEWL) and barrier recovery rates were assessed on the forearm. A Skin-pH-Meter pH900 was used to measure skin surface pH. Our results showed that heavy cigarette smokers exhibited delayed barrier recovery after acute abrogation (1.02% ± 13.06 versus 16.48% ± 6.07), and barrier recovery rates correlated negatively with the number of daily cigarettes consumption (p = 0.0087). Changes in biophysical parameters in cigarette smokers varied with body sites. In conclusion, heavy cigarette smokers display compromised permeability barrier homeostasis, which could contribute, in part, to the increased prevalence of certain cutaneous disorders characterized by defective permeability. Thus, improving epidermal permeability barrier should be considered for heavy cigarette smokers. PMID:27437403
Transdermal drug delivery: from micro to nano
NASA Astrophysics Data System (ADS)
Pegoraro, Carla; MacNeil, Sheila; Battaglia, Giuseppe
2012-03-01
Delivery across skin offers many advantages compared to oral or intravenous routes of drug administration. Skin however is highly impermeable to most molecules on the basis of size, hydrophilicity, lipophilicity and charge. For this reason it is often necessary to temporarily alter the barrier properties of skin for effective administration. This can be done by applying chemical enhancers, which alter the lipid structure of the top layer of skin (the stratum corneum, SC), by applying external forces such as electric currents and ultrasounds, by bypassing the stratum corneum via minimally invasive microneedles or by using nano-delivery vehicles that can cross and deliver their payload to the deeper layers of skin. Here we present a critical summary of the latest technologies used to increase transdermal delivery.
Díaz, Yenisleidy de Las Mercedes Zulueta; Mottola, Milagro; Vico, Raquel V; Wilke, Natalia; Fanani, María Laura
2016-01-19
In this work, we tested the hypothesis that the incorporation of amphiphilic drugs into lipid membranes may be regulated by their rheological properties. For this purpose, two members of the l-ascorbic acid alkyl esters family (ASCn) were selected, ASC16 and ASC14, which have different rheological properties when organized at the air/water interface. They are lipophilic forms of vitamin C used in topical pharmacological preparations. The effect of the phase state of the host lipid membranes on ASCn incorporation was explored using Langmuir monolayers. Films of pure lipids with known phase states have been selected, showing liquid-expanded, liquid-condensed, and solid phases as well as pure cholesterol films in liquid-ordered state. We also tested ternary and quaternary mixed films that mimic the properties of cholesterol containing membranes and of the stratum corneum. The compressibility and shear properties of those monolayers were assessed in order to define its phase character. We found that the length of the acyl chain of the ASCn compounds induces differential changes in the rheological properties of the host membrane and subtly regulates the kinetics and extent of the penetration process. The capacity for ASCn uptake was found to depend on the phase state of the host film. The increase in surface pressure resultant after amphiphile incorporation appears to be a function of the capacity of the host membrane to incorporate such amphiphile as well as the rheological response of the film. Hence, monolayers that show a solid phase state responded with a larger surface pressure increase to the incorporation of a comparable amount of amphiphile than liquid-expanded ones. The cholesterol-containing films, including the mixture that mimics stratum corneum, allowed a very scarce ASCn uptake independently of the membrane diffusional properties. This suggests an important contribution of Cho on the maintenance of the barrier function of stratum corneum.
Influence of DMPS on the water retention capacity of electroporated stratum corneum: ATR-FTIR study.
Sckolnick, Maria; Hui, Sek-Wen; Sen, Arindam
2008-02-28
Anionic lipids like phosphatidylserine are known to significantly enhance electroporation mediated transepidermal transport of polar solutes of molecular weights up to 10kDa. The underlying mechanism of the effect of anionic lipids on transdermal transport is not fully understood. The main barrier to transdermal transport lies within the intercellular lipid matrix (ILM) of the stratum corneum (SC) and our previous studies indicate that dimyristoyl phosphatidylserine (DMPS) can perturb the packing of this lipid matrix. Here we report on our investigation on water retention in the SC following electroporation in the presence and the absence of DMPS. The water content in the outer most layers of the SC of full thickness porcine skin was determined using ATR-FTIR-spectroscopy. The results show that in the presence of DMPS, the SC remains in a state of enhanced hydration for longer periods after electroporation. This increase in water retention in the SC by DMPS is likely to play an important role in trans-epidermal transport, since improved hydration of the skin barrier can be expected to increase the partitioning of polar solutes and possibly the permeability.
NASA Astrophysics Data System (ADS)
Popov, Alexey P.; Lademann, Jürgen; Priezzhev, Alexander V.; Myllylä, Risto
2007-07-01
Stratum corneum (horny layer) is a superficial skin layer consisting of dead cells. To reveal in-depth penetration profiles of substances topically applied onto skin surface, a minimally invasive method called tape stripping is widely used. It introduces consecutive removal of micrometer-thick cell layers of stratum corneum from the same treated skin area using an adhesive tape. Prerequisite to the substance penetration profile is the reconstruction of the removed stratum corneum by analyzing the amount of corneocytes (cells of stratum corneum from) stuck to each tape strip. Before application in vivo on humans, porcine skin is often used for such kind of studies. In this paper, we present results of the experiments with porcine skin in vitro (ears of freshly slaughtered pigs) and compare them with those carried out on humans in vivo (flexor forearm) taken from references. As we proved experimentally, there is a linear dependence between the absorbance (equals to logarithm of inverse transmittance) and thickness of the corneocytes on tape strips for all wavelength of the investigated region (300-1050 nm). Dependence of the cumulative absorbance of removed stratum corneum on tape strip number can be satisfactory fitted by an exponential function. This relationship allows evaluation of the relative share of the removed stratum corneum without complete removal of the layer. All the obtained results correlate well with those obtained on humans.
Danby, Simon G; AlEnezi, Tareq; Sultan, Amani; Lavender, Tina; Chittock, John; Brown, Kirsty; Cork, Michael J
2013-01-01
Natural oils are advocated and used throughout the world as part of neonatal skin care, but there is an absence of evidence to support this practice. The goal of the current study was to ascertain the effect of olive oil and sunflower seed oil on the biophysical properties of the skin. Nineteen adult volunteers with and without a history of atopic dermatitis were recruited into two randomized forearm-controlled mechanistic studies. The first cohort applied six drops of olive oil to one forearm twice daily for 5 weeks. The second cohort applied six drops of olive oil to one forearm and six drops of sunflower seed oil to the other twice daily for 4 weeks. The effect of the treatments was evaluated by determining stratum corneum integrity and cohesion, intercorneocyte cohesion, moisturization, skin-surface pH, and erythema. Topical application of olive oil for 4 weeks caused a significant reduction in stratum corneum integrity and induced mild erythema in volunteers with and without a history of atopic dermatitis. Sunflower seed oil preserved stratum corneum integrity, did not cause erythema, and improved hydration in the same volunteers. In contrast to sunflower seed oil, topical treatment with olive oil significantly damages the skin barrier, and therefore has the potential to promote the development of, and exacerbate existing, atopic dermatitis. The use of olive oil for the treatment of dry skin and infant massage should therefore be discouraged. These findings challenge the unfounded belief that all natural oils are beneficial for the skin and highlight the need for further research. © 2012 Wiley Periodicals, Inc.
Jungersted, Jakob Mutanu; Høgh, Julie K; Hellegren, Lars I; Jemec, Gregor B E; Agner, Tove
2011-05-01
The skin barrier, located in the stratum corneum, is influenced mainly by the lipid and protein composition of this layer. In eczematous diseases impairment of the skin barrier is thought to be of prime importance. Topical anti-inflammatory drugs and emollients are the most widely used eczema treatments. The aim of this study was to examine the effects of topically applied corticosteroid, tacrolimus and emollient on stratum corneum lipids and barrier parameters. Nineteen healthy volunteers participated in the study. Both forearms of the subjects were divided into four areas, which were treated twice daily for one week with betamethasone, tacrolimus, emollient, or left untreated, respectively. After one week each area was challenged with a 24 h sodium lauryl sulphate patch test. The lipids were collected using the cyanoacrylate method and evaluated by high performance thin layer chromatography. For evaluation of the skin barrier, transepidermal water loss, erythema and electrical capacitance were measured. The ceramide/cholesterol ratio was increased in betamethasone- (p = 0.008) and tacrolimus-treated (p = 0.025) skin compared with emollient-treated skin. No differences in ceramide subgroups were found between treatment regimes. Pretreatment with betamethasone (p = 0.01) or with tacrolimus (p = 0.001) causes a decreased inflammatory response to sodium lauryl sulphate compared with emollient. In conclusion, treatment with betamethasone and tacrolimus has a positive effect on the ceramide/cholesterol ratio and susceptibility to irritant reaction compared with an emollient.
Godefroy, S; Peyre, M; Garcia, N; Muller, S; Sesardic, D; Partidos, C D
2005-08-01
The high accessibility of the skin and the presence of immunocompetent cells in the epidermis makes this surface an attractive route for needle-free administration of vaccines. However, the lining of the skin by the stratum corneum is a major obstacle to vaccine delivery. In this study we examined the effect of skin barrier disruption on the immune responses to the cross-reacting material CRM(197), a nontoxic mutant of diphtheria toxin (DTx) that is considered as a vaccine candidate. Application of CRM(197), together with cholera toxin (CT), onto the tape-stripped skin of mice elicited antibody responses that had anti-DTx neutralizing activity. Vaccine delivery onto mildly ablated skin or intact skin did not elicit any detectable anti-CRM(197) antibodies. Mice immunized with CRM(197) alone onto the tape-stripped skin mounted a vigorous antigen-specific proliferative response. In contrast, the induction of cellular immunity after CRM(197) deposition onto mildly ablated or intact skin was adjuvant dependent. Furthermore, epidermal cells were activated and underwent apoptosis that was more pronounced when the stratum corneum was removed by tape stripping. Overall, these findings highlight the potential for transcutaneous delivery of CRM(197) and establish a correlation between the degree of barrier disruption and levels of antigen-specific immune responses. Moreover, these results provide the first evidence that the development of a transcutaneous immunization strategy for diphtheria, based on simple and practical methods to disrupt the skin barrier, is feasible.
Berardesca, Enzo; Mortillo, Susan; Cameli, Norma; Ardigo, Marco; Mariano, Maria
2018-05-10
Atopic dermatitis is a chronic, pruritic inflammatory skin disease that adversely affects quality of life. The current study evaluates the efficacy of a shower cream and a lotion, each with skin-identical lipids and emollients, in the treatment of atopic dry skin of subjects with a history of atopic condition. In all, 40 healthy females with clinically dry skin on the lower legs were enrolled in the study and underwent 4 weeks of daily use of the shower cream and 2 additional weeks of both the shower cream and the body lotion. Subjects were evaluated at day 0, week 4, and week 6. Skin barrier function was assessed by Tewameter ® , skin hydration by Corneometer ® , smoothness and desquamation by Visioscan ® , and stratum corneum architecture by reflectance confocal microscopy (RCM). The investigator assessed the degree of dryness, roughness, redness, cracks, tingling and itch, and subjective self-assessment evaluated the perception of skin soothing, smoothness, and softness. Skin barrier function and skin moisture maintenance were significantly improved using the shower cream. The lotion with physiological lipids, together with the shower cream, also improved skin barrier function and moisture. Both the shower cream and the body lotion reduced clinical dryness, roughness, redness, cracks, tingling and itch, according to the dermatologist, and increased soothing, smoothness, and softness, according to the subjects of the study. The combination of a shower cream and a lotion with physiological lipids efficiently restores skin barrier function and increases skin hydration, becoming an effective skin-care option for patients with atopic dry skin. © 2018 Wiley Periodicals, Inc.
Barrier Requirements as the Evolutionary “Driver” of Epidermal Pigmentation in Humans
ELIAS, PETER M.; MENON, GOPINATHAN; WETZEL, BRUCE K.; WILLIAMS, JOHN (JACK) W.
2011-01-01
Current explanations for the development of epidermal pigmentation during human evolution are not tenable as stand-alone hypotheses. Accordingly, we assessed instead whether xeric- and UV-B-induced stress to the epidermal permeability barrier, critical to survival in a terrestrial environment, could have “driven” the development of epidermal pigmentation. (1) Megadroughts prevailed in central Africa when hominids expanded into open savannahs [≈1.5–0.8 million years ago], resulting in sustained exposure to both extreme aridity and erythemogenic UV-B, correlating with genetic evidence that pigment developed ≈1.2 million years ago. (2) Pigmented skin is endowed with enhanced permeability barrier function, stratum corneum integrity/cohesion, and a reduced susceptibility to infections. The enhanced function of pigmented skin can be attributed to the lower pH of the outer epidermis, likely due to the persistence of (more-acidic) melanosomes into the outer epidermis, as well as the conservation of genes associated with eumelanin synthesis and melanosome acidification (e.g., TYR, OCA2 [p protein], SLC24A5, SLC45A2, MATP) in pigmented populations. Five keratinocyte-derived signals (stem cell factor⇒KIT; FOXn1⇒FGF2; IL-1α, NGF, and p53) are potential candidates to have stimulated the sequential development of epidermal pigmentation in response to stress to the barrier. We summarize evidence here that epidermal interfollicular pigmentation in early hominids likely evolved in response to stress to the permeability barrier. PMID:20209486
Topical use of dexpanthenol: a 70th anniversary article.
Proksch, Ehrhardt; de Bony, Raymond; Trapp, Sonja; Boudon, Stéphanie
2017-12-01
Approximately 70 years ago, the first topical dexpanthenol-containing formulation (Bepanthen™ Ointment) has been developed. Nowadays, various topical dexpanthenol preparations exist, tailored according to individual requirements. Topical dexpanthenol has emerged as frequently used formulation in the field of dermatology and skin care. Various studies confirmed dexpanthenol's moisturizing and skin barrier enhancing potential. It prevents skin irritation, stimulates skin regeneration and promotes wound healing. Two main directions in the use of topical dexpanthenol-containing formulations have therefore been pursued: as skin moisturizer/skin barrier restorer and as facilitator of wound healing. This 70th anniversary paper reviews studies with topical dexpanthenol in skin conditions where it is most frequently used. Although discovered decades ago, the exact mechanisms of action of dexpanthenol have not been fully elucidated yet. With the adoption of new technologies, new light has been shed on dexpanthenol's mode of action at the molecular level. It appears that dexpanthenol increases the mobility of stratum corneum molecular components which are important for barrier function and modulates the expression of genes important for wound healing. This review will update readers on recent advances in this field.
Yu, Guo; Zhang, Guojin; Flach, Carol R; Mendelsohn, Richard
2013-06-01
Vibrational spectroscopy and imaging have been used to compare barrier properties in human skin, porcine skin, and two human skin equivalents, Epiderm 200X with an enhanced barrier and Epiderm 200 with a normal barrier. Three structural characterizations were performed. First, chain packing and conformational order were compared in isolated human stratum corneum (SC), isolated porcine SC, and in the Epiderm 200X surface layers. The infrared (IR) spectrum of isolated human SC revealed a large proportion of orthorhombically packed lipid chains at physiological temperatures along with a thermotropic phase transition to a state with hexagonally packed chains. In contrast, the lipid phase at physiological temperatures in both porcine SC and in Epiderm 200X, although dominated by conformationally ordered chains, lacked significant levels of orthorhombic subcell packing. Second, confocal Raman imaging of cholesterol bands showed extensive formation of cholesterol-enriched pockets within the human skin equivalents (HSEs). Finally, IR imaging tracked lipid barrier dimensions as well as the spatial disposition of ordered lipids in human SC and Epiderm 200X. These approaches provide a useful set of experiments for exploring structural differences between excised human skin and HSEs, which in turn may provide a rationale for the functional differences observed among these preparations.
Chaudhuri, R K; Bojanowski, K
2017-10-01
The study involved the synthesis of a novel derivative of caprylic acid - isosorbide dicaprylate (IDC) - and the evaluation of its potential in improving water homoeostasis and epidermal barrier function in human skin. The effect of IDC on gene expression was assayed in skin organotypic cultures by DNA microarrays. The results were then confirmed for a few key genes by quantitative PCR, immuno- and cytochemistry. Final validation of skin hydration properties was obtained by four separate clinical studies. Level of hydration was measured by corneometer either by using 2% IDC lotion alone vs placebo or in combination with 2% glycerol lotion vs 2% glycerol only. A direct comparison in skin hydration between 2% IDC and 2% glycerol lotions was also carried out. The epidermal barrier function improvement was assessed by determining changes in transepidermal water loss (TEWL) on the arms before and after treatment with 2% IDC lotion versus placebo. IDC was found to upregulate the expression of AQP3, CD44 and proteins involved in keratinocyte differentiation as well as the formation and function of stratum corneum. A direct comparison between 2% IDC versus 2% glycerol lotions revealed a three-fold advantage of IDC in providing skin hydration. Severely dry skin treated with 2% IDC in combination with 2% glycerol showed 133% improvement, whereas 35% improvement was observed with moderately dry human skin. Topical isosorbide dicaprylate favourably modulates genes involved in the maintenance of skin structure and function, resulting in superior clinical outcomes. By improving skin hydration and epidermal permeability barrier, it offers therapeutic applications in skin ageing. © 2017 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Topical use of dexpanthenol in skin disorders.
Ebner, Fritz; Heller, Andreas; Rippke, Frank; Tausch, Irene
2002-01-01
Pantothenic acid is essential to normal epithelial function. It is a component of coenzyme A, which serves as a cofactor for a variety of enzyme-catalyzed reactions that are important in the metabolism of carbohydrates, fatty acids, proteins, gluconeogenesis, sterols, steroid hormones, and porphyrins. The topical use of dexpanthenol, the stable alcoholic analog of pantothenic acid, is based on good skin penetration and high local concentrations of dexpanthenol when administered in an adequate vehicle, such as water-in-oil emulsions. Topical dexpanthenol acts like a moisturizer, improving stratum corneum hydration, reducing transepidermal water loss and maintaining skin softness and elasticity. Activation of fibroblast proliferation, which is of relevance in wound healing, has been observed both in vitro and in vivo with dexpanthenol. Accelerated re-epithelization in wound healing, monitored by means of the transepidermal water loss as an indicator of the intact epidermal barrier function, has also been seen. Dexpanthenol has been shown to have an anti-inflammatory effect on experimental ultraviolet-induced erythema. Beneficial effects of dexpanthenol have been observed in patients who have undergone skin transplantation or scar treatment, or therapy for burn injuries and different dermatoses. The stimulation of epithelization, granulation and mitigation of itching were the most prominent effects of formulations containing dexpanthenol. In double-blind placebo-controlled clinical trials, dexpanthenol was evaluated for its efficacy in improving wound healing. Epidermal wounds treated with dexpanthenol emulsion showed a reduction in erythema, and more elastic and solid tissue regeneration. Monitoring of transepidermal water loss showed a significant acceleration of epidermal regeneration as a result of dexpanthenol therapy, as compared with the vehicle. In an irritation model, pretreatment with dexpanthenol cream resulted in significantly less damage to the stratum corneum barrier, compared with no pretreatment. Adjuvant skin care with dexpanthenol considerably improved the symptoms of skin irritation, such as dryness of the skin, roughness, scaling, pruritus, erythema, erosion/fissures, over 3 to 4 weeks. Usually, the topical administration of dexpanthenol preparations is well tolerated, with minimal risk of skin irritancy or sensitization.
Liu, Zhili; Song, Shunpeng; Luo, Wenhai; Elias, Peter M; Man, Mao-Qiang
2012-02-01
Previous studies have demonstrated that sun-induced alteration of epidermal permeability barrier function varies with gender and age. In the present study, we assess the stratum corneum (SC) hydration in sun-exposed males and females. A total of 168 subjects (84 males and 84 females) aged 19-75 years were enrolled. A multifunctional skin physiology monitor was used to measure SC hydration. In comparison with non-sun exposure, sun exposure does not cause a significant change in SC hydration in either young males or young females, whereas in aged females, a significant reduction of SC hydration is seen on the forehead and the dorsal hand of sun-exposed subjects. SC hydration on the canthus of both aged males and aged females is significantly lower than that of young subjects. Additionally, SC hydration on the dorsal hand of aged females is also significantly lower as compared with young females. Sun-induced reduction of SC hydration is more evident on the dorsal hand of aged females than that of males (P<0.001). Moreover, the SC rehydration capacity is significantly lower in sun-exposed aged females than in age-matched males. These results demonstrated that sun-induced changes of the SC hydration property vary with age and gender. © 2011 John Wiley & Sons A/S.
Mechanism and determinants of nanoparticle penetration through human skin
NASA Astrophysics Data System (ADS)
Labouta, Hagar I.; El-Khordagui, Labiba K.; Kraus, Tobias; Schneider, Marc
2011-12-01
The ability of nanoparticles to penetrate the stratum corneum was the focus of several studies. Yet, there are controversial issues available for particle penetration due to different experimental setups. Meanwhile, there is little known about the mechanism and determinants of their penetration. In this paper the penetration of four model gold nanoparticles of diameter 6 and 15 nm, differing in surface polarity and the nature of the vehicle, through human skin was studied using multiphoton microscopy. This is in an attempt to profoundly investigate the parameters governing particle penetration through human skin. Our results imply that nanoparticles at this size range permeate the stratum corneum in a similar manner to drug molecules, mainly through the intercellular pathways. However, due to their particulate nature, permeation is also dependent on the complex microstructure of the stratum corneum with its tortuous aqueous and lipidic channels, as shown from our experiments performed using skin of different grades of barrier integrity. The vehicle (toluene-versus-water) had a minimal effect on skin penetration of gold nanoparticles. Other considerations in setting up a penetration experiment for nanoparticles were also studied. The results obtained are important for designing a new transdermal carrier and for a basic understanding of skin-nanoparticle interaction.
Meinke, Martina C; Richter, Heike; Kleemann, Anke; Lademann, Juergen; Tscherch, Kathrin; Rohn, Sascha; Schempp, Christoph M
2015-05-01
Atopic dermatitis (AD) is a multifactorial inflammatory skin disease that affects both children and adults in an increasing manner. The treatment of AD often reduces subjective skin parameters, such as itching, dryness, and tension, but the inflammation cannot be cured. Laser scanning microscopy was used to investigate the skin surface, epidermal, and dermal characteristics of dry and atopic skin before and after treatment with an ointment rich in hyperforin, which is known for its anti-inflammatory effects. The results were compared to subjective parameters and transepidermal water loss, stratum corneum moisture, and stratum corneum lipids. Using biophysical methods, in particular laser scanning microscopy, it was found that atopic skin has distinct features compared to healthy skin. Treatment with a hyperforin-rich ointment resulted in an improvement of the stratum corneum moisture, skin surface dryness, skin lipids, and the subjective skin parameters, indicating that the barrier is stabilized and improved by the ointment. But in contrast to the improved skin surface, the inflammation in the deeper epidermis/dermis often continues to exist. This could be clearly shown by the reflectance confocal microscopy (RCM) measurements. Therefore, RCM measurements could be used to investigate the progress in treatment of atopic dermatitis.
NASA Astrophysics Data System (ADS)
Meinke, Martina C.; Richter, Heike; Kleemann, Anke; Lademann, Juergen; Tscherch, Kathrin; Rohn, Sascha; Schempp, Christoph M.
2015-05-01
Atopic dermatitis (AD) is a multifactorial inflammatory skin disease that affects both children and adults in an increasing manner. The treatment of AD often reduces subjective skin parameters, such as itching, dryness, and tension, but the inflammation cannot be cured. Laser scanning microscopy was used to investigate the skin surface, epidermal, and dermal characteristics of dry and atopic skin before and after treatment with an ointment rich in hyperforin, which is known for its anti-inflammatory effects. The results were compared to subjective parameters and transepidermal water loss, stratum corneum moisture, and stratum corneum lipids. Using biophysical methods, in particular laser scanning microscopy, it was found that atopic skin has distinct features compared to healthy skin. Treatment with a hyperforin-rich ointment resulted in an improvement of the stratum corneum moisture, skin surface dryness, skin lipids, and the subjective skin parameters, indicating that the barrier is stabilized and improved by the ointment. But in contrast to the improved skin surface, the inflammation in the deeper epidermis/dermis often continues to exist. This could be clearly shown by the reflectance confocal microscopy (RCM) measurements. Therefore, RCM measurements could be used to investigate the progress in treatment of atopic dermatitis.
Mohammed, D; Yang, Q; Guy, R H; Matts, P J; Hadgraft, J; Lane, M E
2012-09-01
Skin surface tape-stripping is an extensively used technique to examine the distribution profile, penetration and safety of various active compounds. It is also a widely accepted method to probe skin barrier properties and more specifically, those of the stratum corneum (SC). The amount of SC removed by tape-stripping is generally determined either gravimetrically or by extraction and measurement of SC proteins. A novel infra-red densitometry (IRD) technique has recently been introduced to measure SC protein content. In the present study, IRD was investigated as an alternative method to measure the mass of SC removed by tape-stripping. Tape-stripping experiments were conducted on human volunteers. The weight of the stratum corneum removed was assessed by the gravimetric approach and by IRD. Transepidermal water loss (TEWL) was also measured before and after each tape-strip. A linear correlation coefficient was obtained for the data from the gravimetric and IRD measurements (r(2)=0.65; n=240). IRD is therefore proposed as a rapid, non-destructive alternative to the gravimetric approach to estimate the amount of SC removed by tape-stripping in vivo. Copyright © 2012 Elsevier B.V. All rights reserved.
Li, Jiagui; Leyva-Castillo, Juan Manuel; Hener, Pierre; Eisenmann, Aurelie; Zaafouri, Sarra; Jonca, Nathalie; Serre, Guy; Birling, Marie-Christine; Li, Mei
2016-07-01
Epidermal barrier dysfunction has been recognized as a critical factor in the initiation and exacerbation of skin inflammation, particularly in patients with atopic dermatitis (AD) and AD-like congenital disorders, including peeling skin syndrome type B. However, inflammatory responses developed in barrier-defective skin, as well as the underlying mechanisms, remained incompletely understood. We aimed to decipher inflammatory axes and the cytokine network in mouse skin on breakdown of epidermal stratum corneum barrier. We generated Cdsn(iep-/-) mice with corneodesmosin ablation in keratinocytes selectively in an inducible manner. We characterized inflammatory responses and cytokine expression by using histology, immunohistochemistry, ELISA, and quantitative PCR. We combined mouse genetic tools, antibody-mediated neutralization, signal-blocking reagents, and topical antibiotic treatment to explore the inflammatory axes. We show that on breakdown of the epidermal stratum corneum barrier, type 2 and type 17 inflammatory responses are developed simultaneously, driven by thymic stromal lymphopoietin (TSLP) and IL-23, respectively. Importantly, we reveal a counterregulation between these 2 inflammatory axes. Furthermore, we show that protease-activated receptor 2 signaling is involved in mediating the TSLP/type 2 axis, whereas skin bacteria are engaged in induction of the IL-23/type 17 axis. Moreover, we find that IL-1β is induced in skin of Cdsn(iep-/-) mice and that blockade of IL-1 signaling suppresses both TSLP and IL-23 expression and ameliorates skin inflammation. The inflammatory phenotype in barrier-defective skin is shaped by counterregulation between the TSLP/type 2 and IL-23/type 17 axes. Targeting IL-1 signaling could be a promising therapeutic option for controlling skin inflammation in patients with peeling skin syndrome type B and other diseases related to epidermal barrier dysfunction, including AD. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Higuchi, Hidetoshi; Kurumado, Hisatoshi; Mori, Maya; Degawa, Aiko; Fujisawa, Hideyo; Kuwano, Atsutoshi; Nagahata, Hajime
2009-01-01
The effects of ammonia and hydrogen sulfide on the physical and biochemical properties of the claw horn of Holstein cows were evaluated. Significant (P < 0.05, 0.01) decreases in hardness and elasticity were found in claw horns soaked in ammonia (NH3) and hydrogen sulfide (H2S) solutions compared with those that were soaked in water for 12, 24, and 48 h. Water absorption rate, as a indicator of permeability barrier function, increased significantly (P < 0.05) over time during the soaking period and was found to be dependent on the concentrations of NH3 and H2S in the solutions. The contents of ceramide, the main lipid component for the permeability barrier system of the stratum corneum, were significantly decreased in claw horns soaked in NH3 and H2S solutions compared with the values before soaking. Quantities of eluted protein released from claw horns treated with NH3 and H2S solutions were approximately 20 times and 30 to 40 times greater than those released from claw horns treated with water alone. Interestingly, the quantities of cytokeratin 10, the main cytoskeletal protein of the stratum corneum, eluted from claw horns treated with NH3 and H2S solutions were markedly greater than the quantity released from horns soaked in water. Our results suggest that abnormal changes in the physical property of claw horn caused by NH3 and H2S treatment are due to disruption of the biochemical property of the claw horn induced by these chemical agents derived from slurry. PMID:19337390
Metabolic approaches to enhance transdermal drug delivery. 1. Effect of lipid synthesis inhibitors.
Tsai, J C; Guy, R H; Thornfeldt, C R; Gao, W N; Feingold, K R; Elias, P M
1996-06-01
The intercellular domains of the stratum corneum, which contain a mixture of cholesterol, free fatty acids, and ceramides, mediate both the epidermal permeability barrier and the transdermal delivery of both lipophilic and hydrophilic molecules. Prior studies have shown that each of the three key lipid classes is required for normal barrier function. For example, selective inhibition of either cholesterol, fatty acid, or ceramide synthesis in the epidermis delays barrier recovery rates after barrier perturbation of hairless mouse skin in vivo. In this study, we investigated the potential of certain inhibitors of lipid synthesis to enhance the transdermal delivery of lidocaine or caffeine as a result of their capacity to perturb barrier homeostasis. After acetone disruption of the barrier, the extent of lidocaine delivery and the degree of altered barrier function paralleled each other. Moreover, the further alteration in barrier function produced by either the fatty acid synthesis inhibitor 5-(tetradecyloxy)-2-furancarboxylic acid (TOFA), the cholesterol synthesis inhibitor fluvastatin (FLU), or cholesterol sulfate (CS) resulted in a further increase in lidocaine absorption. Furthermore, coapplications of TOFA and CS together caused an additive increase in lidocaine uptake. Finally, a comparable increase in drug delivery occurred when the barrier was disrupted initially with DMSO instead of acetone; coapplications of TOFA and FLU together again delayed barrier recovery and increased drug delivery by about 8-fold vs delivery from a standard enhancing vehicle. Whereas these metabolic inhibitors also variably increased the octanol/water partitioning of the drugs studied (perhaps via complexion or pH alterations), physicochemical effects of the inhibitors alone did not alter drug uptake in intact skin; i.e., passive mechanisms alone cannot account for the net increase in drug delivery. Our results show that modulations of epidermal lipid biosynthesis, following application of conventional, chemical penetration enhancers, cause a further boost in drug delivery, attributable to the ability of these agents to alter both permeability barrier homeostasis and thermodynamics. This biochemical/metabolic approach provides a novel means to enhance transdermal drug delivery in conjunction with the concurrent or prior use of chemical enhancers.
Heise, H M; Lampen, P; Stücker, M
2003-11-01
The supply of oxygen to the viable skin tissue within the upper layers is not only secured by the cutaneous blood vascular system, but to a significant part also by oxygen diffusion from the atmosphere through the horny layer. The aim of this study was to examine whether changes in haemoglobin oxygenation can be observed within the isolated perfused bovine udder skin used as a skin model by removing the upper horny layer by adhesive tape stripping. Diffuse reflectance spectroscopy in the visible spectral range was used for non-invasive characterisation of haemoglobin oxygenation in skin under in vitro conditions. Mid-infrared attenuated total reflectance spectroscopy was employed for analysing the surface layer of the stratum corneum with respect to keratin, water and lipid components. Skin barrier disruption was achieved by repeated stripping of superficial corneocyte layers by adhesive tape. Significant changes in skin haemoglobin oxygenation were observed for skin areas with reduced lipid concentration and a reduced stratum corneum layer, as determined from the quantitative evaluation of the diffuse reflectance skin spectra. The result can be interpreted as an increase of oxygen diffusion after the removal of the upper horny layer.
Brewster Angle Microscopy Study of Model Stratum Corneum Lipid Monolayers at the Air-Water Interface
NASA Astrophysics Data System (ADS)
Adams, Ellen; Champagne, Alex; William, Joseph; Allen, Heather
2012-04-01
As the first and last barrier in the body, the stratum corneum (SC) is essential to life. Understanding the interactions and organization of lipids within the SC provides insight into essential physiological processes, including water loss prevention and the adsorption of substances from the environment. Langmuir monolayers have long been used to study complex systems, such as biological membranes and marine aerosols, due to their ability to shed light on intermolecular interactions. In this study, lipid mixtures with varying cholesterol and cerebroside ratios were investigated at the air/water interface. Surface tension measurements along with Brewster angle microscopy (BAM) images were used to examine the lipid phase transitions. Results indicate that cholesterol and cerebrosides form miscible monolayers, exhibiting ideal behavior. BAM images of a singular, uniform collapse phase also suggest formation of a miscible monolayer.
Clinical severity correlates with impaired barrier in filaggrin-related eczema.
Nemoto-Hasebe, Ikue; Akiyama, Masashi; Nomura, Toshifumi; Sandilands, Aileen; McLean, W H Irwin; Shimizu, Hiroshi
2009-03-01
Mutations in the gene-encoding filaggrin (FLG), a key molecule involved in skin barrier function, have been shown to be a major predisposing factor for atopic dermatitis (AD; eczema). To elucidate the pathomechanisms underlying filaggrin-related AD, we investigated stratum corneum (SC) hydration and transepidermal water loss (TEWL) as parameters of barrier function in AD patients harboring FLG mutations compared to AD patients without any FLG mutation. In filaggrin-related AD, SC hydration was both significantly reduced (P<0.01-0.05) and thicker (P<0.01-0.05) than that in healthy controls. TEWL was demonstrably increased in non-filaggrin AD compared to healthy controls (P<0.01-0.05). The objective score of atopic dermatitis (OSCORAD), a disease clinical severity index, significantly correlated with TEWL (r=0.81, P<0.005), SC hydration (r=-0.65, P<0.05), and SC thickness (r=0.59, P<0.05) in filaggrin-related AD. On the contrary, there was no correlation between these parameters and the OSCORAD in non-filaggrin AD. Furthermore, a significant correlation was obtained between the OSCORAD and specific IgE for house dust (r=0.66, P<0.05), mite allergen (r=0.53, P<0.05), and cat dander (r=0.64, P<0.05) in filaggrin-related AD, but not in non-filaggrin AD. All these data suggest that experimentally demonstrable skin barrier defects due to FLG mutations may play a crucial role in the pathogenesis of AD.
Ochalek, M; Podhaisky, H; Ruettinger, H-H; Wohlrab, J; Neubert, R H H
2012-10-01
The barrier function of two quaternary stratum corneum (SC) lipid model membranes, which were previously characterized with regard to the lipid organization, was investigated based on diffusion studies of model drugs with varying lipophilicities. Diffusion experiments of a hydrophilic drug, urea, and more lipophilic drugs than urea (i.e. caffeine, diclofenac sodium) were conducted using Franz-type diffusion cells. The amount of permeated drug was analyzed using either HPLC or CE technique. The subjects of interest in the present study were the investigation of the influence of physicochemical properties of model drugs on their diffusion and permeation through SC lipid model membranes, as well as the study of the impact of the constituents of these artificial systems (particularly ceramide species) on their barrier properties. The diffusion through both SC lipid model membranes and the human SC of the most hydrophilic model drug, urea, was faster than the permeation of the more lipophilic drugs. The slowest rate of permeation through SC lipid systems occurred in the case of caffeine. The composition of SC lipid model membranes has a significant impact on their barrier function. Model drugs diffused and permeated faster through Membrane II (presence of Cer [EOS]). In terms of the barrier properties, Membrane II is much more similar to the human SC than Membrane I. Copyright © 2012 Elsevier B.V. All rights reserved.
Momota, Yutaka; Shimada, Kenichiro; Gin, Azusa; Matsubara, Takako; Azakami, Daigo; Ishioka, Katsumi; Nakamura, Yuka; Sako, Toshinori
2016-10-01
A closed chamber evaporimeter is suitable for measuring transepidermal water loss (TEWL) in cats because of the compact device size, tolerance to sudden movement and short measuring time. TEWL is a representative parameter for skin barrier dysfunction, which is one of the clinical signs of atopic dermatitis in humans and dogs. Measurement of feline TEWL has been reported, but applicability of this parameter has not been validated. The aims of this study were to determine if tape stripping is a valid experimental model in cats for studying TEWL and to determine if a closed chambered system is a suitable measurement tool for cats. Ten clinically normal cats. In order to evaluate variation of the measured values, TEWL was measured at the right and left side of the three clipped regions (axillae, lateral thigh and groin). Subsequently, TEWL was measured using sequential tape stripping of the stratum corneum as a model of acute barrier disruption. The variations between both sides of the three regions showed no significant difference. Sequential tape stripping was associated with increasing values for TEWL. Feline TEWL was shown to reflect changes in the skin barrier in an experimental model using a closed chamber system and has the potential for evaluating skin barrier function in cats with skin diseases. © 2016 ESVD and ACVD.
NASA Astrophysics Data System (ADS)
Szikszai, Z.; Kertész, Zs.; Bodnár, E.; Borbíró, I.; Angyal, A.; Csedreki, L.; Furu, E.; Szoboszlai, Z.; Kiss, Á. Z.; Hunyadi, J.
2011-10-01
Skin penetration is one of the potential routes for nanoparticles to gain access into the human body. Ultrafine metal oxides, such as titanium dioxide and zinc oxide are widely used in cosmetic and health products like sunscreens. These oxides are potent UV filters and the particle size smaller than 200 nm makes the product more transparent compared to formulations containing coarser particles. The present study continues the work carried out in the frame of the NANODERM: “Quality of skin as a barrier to ultrafine particles” European project and complements our previous investigations on human skin with compromised barrier function. Atopic dermatitis (a type of eczema) is an inflammatory, chronically relapsing, non-contagious skin disease. It is very common in children but may occur at any age. The exact cause of atopic dermatitis is unknown, but is likely due to a combination of impaired barrier function together with a malfunction in the body's immune system. In this study, skin samples were obtained from two patients suffering from atopic dermatitis. Our results indicate that the ultrafine zinc oxide particles, in a hydrophobic basis gel with an application time of 2 days or 2 weeks, have penetrated deeply into the stratum corneum in these patients. On the other hand, penetration into the stratum spinosum was not observed even in the case of the longer application time.
Effect of soaps and detergents on epidermal barrier function.
Wolf, Ronni; Parish, Lawrence Charles
2012-01-01
The past decade has witnessed an explosion of new impartial information about the complex interaction of the skin with topically applied substances, including soaps and detergents. Despite of all these new data, our knowledge on the exact pathomechanism and molecular events leading to detergent-induced barrier dysfunction remains incomplete and the answers continue to elude us. The longtime prevailing opinion which contends that the damaging effect of soaps and detergents is related to their property to extract and remove useful intercellular lipids has mostly been abandoned. Although this effect might be involved in the damaging effect, it is definitely not the sole mechanism, nor, indeed, is it even the main one. Skin proteins damage, the interaction with keratins and their denaturation, swelling of cell membranes and collagen fibers, cytotoxicity expressed with cellular lysis are other important mechanisms. One proposed mechanism is that an initial stratum corneum hyper-hydration results from a continuous disruption of the secondary and tertiary structures of keratin protein by surfactants, exposing new water-binding sites, thereby increasing the hydration of the membrane. Following evaporation of excess water, the denatured keratin possesses a decreased water-binding capacity and decreased ability to function as a barrier. Recent studies have also emphasized the effects of detergents on lipid synthesis, on lipid-metabolizing enzymes and on keratinocyte differentiation. Copyright © 2012 Elsevier Inc. All rights reserved.
Topical application of nanoparticles: prospects and safety aspects (Conference Presentation)
NASA Astrophysics Data System (ADS)
Lademann, Jürgen M.; Richter, Heike; Jung, Sora; Meinke, Martina C.; Rühl, Eckart; Alexiev, Ulrike; Calderon, Marcelo; Patzelt, Alexa
2016-03-01
The requirements on nanoparticles for cosmetic and medical applications are very different. While nanoparticles applied in sunscreens shall remain on the skin surface or in the upper cell layers of the stratum corneum, nanoparticles for medical drug delivery shall penetrate through the skin barrier to the target structures in the living cells. Under the Collaborative Research Project 1112 various methods are used at the CCP to investigate the cutaneous penetration and storage of nanoparticles, hair follicles being in the focus of attention. Human hair follicles are ideal target structures for drug delivery. Hosting both the stem and dendritic cells, they are surrounded by a dense network of blood vessels. Investigating nanoparticles of different size and materials, particles of approximately 600 nm in diameter were found to penetrate best into the hair follicles, where they can be stored for maximally 10 days. Their retention time in the hair follicles exceeds that in the stratum corneum by almost one order of magnitude. Particles penetrate more efficiently into the hair follicles than non-particulate substances. For particles from 40 nm-1 µm in diameter, however, no follicular penetration has been detectable if the skin barrier was intact. This is plausible as the hair follicle has its own barrier. It will be demonstrated that the best way for drug delivery is the application of drug-loaded particulate carrier systems. In the hair follicles the particles may either dissolve and release the drug, or an external signal must trigger the drug release from the particle.
Ishii, Yuki; Sugimoto, Saho; Izawa, Naoki; Sone, Toshiro; Chiba, Katsuyoshi; Miyazaki, Kouji
2014-07-01
Recent studies have shown that some probiotics affect not only the gut but also the skin. However, the effects of probiotics on ultraviolet (UV)-induced skin damage are poorly understood. In this study, we aim to examine whether oral administration of live Bifidobacterium breve strain Yakult (BBY), a typical probiotic, can attenuate skin barrier perturbation caused by UV and reactive oxygen species (ROS) in hairless mice. The mice were orally supplemented with a vehicle only or BBY once a day for nine successive days. Mouse dorsal skin was irradiated with UV from days 6 to 9. The day after the final irradiation, the transepidermal water loss (TEWL), stratum corneum hydration, and oxidation-related factors of the skin were evaluated. We elucidated that BBY prevented the UV-induced increase in TEWL and decrease in stratum corneum hydration. In addition, BBY significantly suppressed the UV-induced increase in hydrogen peroxide levels, oxidation of proteins and lipids, and xanthine oxidase activity in the skin. Conversely, antioxidant capacity did not change regardless of whether BBY was administered or not. In parameters we evaluated, there was a positive correlation between the increase in TEWL and the oxidation levels of proteins and lipids. Our results suggest that oral administration of BBY attenuates UV-induced barrier perturbation and oxidative stress of the skin, and this antioxidative effect is not attributed to enhancement of antioxidant capacity but to the prevention of ROS generation.
Tight Junction Defects in Atopic Dermatitis
De Benedetto, Anna; Rafaels, Nicholas M.; McGirt, Laura Y.; Ivanov, Andrei I.; Georas, Steve N.; Cheadle, Chris; Berger, Alan E.; Zhang, Kunzhong; Vidyasagar, Sadasivan; Yoshida, Takeshi; Boguniewicz, Mark; Hata, Tissa; Schneider, Lynda C.; Hanifin, Jon M.; Gallo, Richard L.; Novak, Natalija; Weidinger, Stephan; Beaty, Terri H.; Leung, Donald Y.; Barnes, Kathleen C.; Beck, Lisa A.
2010-01-01
Background Atopic dermatitis (AD) is characterized by dry skin and a hyperreactive immune response to allergens, two cardinal features that are caused in part by epidermal barrier defects. Tight junctions (TJ) reside immediately below the stratum corneum and regulate the selective permeability of the paracellular pathway. Objective We evaluated the expression/function of the TJ protein, claudin-1 in epithelium from AD and nonatopic (NA) subjects and screened two American populations for SNPs in CLDN1. Methods Expression profiles of nonlesional epithelium from extrinsic AD, NA and psoriasis subjects were generated using Illumina’s BeadChips. Dysregulated intercellular proteins were validated by tissue staining and qPCR. Bioelectric properties of epithelium were measured in Ussing chambers. Functional relevance of claudin-1 was assessed using a knockdown approach in primary human keratinocytes (PHK). Twenty seven haplotype-tagging SNPs in CLDN1 were screened in two independent AD populations. Results We observed strikingly reduced expression of the TJ proteins claudin-1 and -23 only in AD, which were validated at the mRNA and protein levels. Claudin-1 expression inversely correlated with Th2 biomarkers. We observed a remarkable impairment of the bioelectric barrier function in AD epidermis. In vitro, we confirmed that silencing claudin-1 expression in human keratinocytes diminishes TJ function while enhancing keratinocyte proliferation. Finally, CLDN1 haplotype-tagging single nucleotide polymorphisms revealed associations with AD in two North American populations. Conclusion Taken together, these data suggest that an impaired epidermal TJ is a novel feature of skin barrier dysfunction and immune dysregulation observed in AD, and that CLDN1 may be a new susceptibility gene in this disease. PMID:21163515
Transdermal delivery of biomacromolecules using lipid-like nanoparticles
NASA Astrophysics Data System (ADS)
Bello, Evelyn A.
The transdermal delivery of biomacromolecules, including proteins and nucleic acids, is challenging, owing to their large size and the penetration-resistant nature of the stratum corneum. Thus, an urgent need exists for the development of transdermal delivery methodologies. This research focuses on the use of cationic lipid-like nanoparticles (lipidoids) for the transdermal delivery of proteins, and establishes an in vitro model for the study. The lipidoids used were first combinatorially designed and synthesized; afterwards, they were employed for protein encapsulation in a vesicular system. A skin penetration study demonstrated that lipidoids enhance penetration depth in a pig skin model, overcoming the barrier that the stratum corneum presents. This research has successfully identified active lipidoids capable of efficiently penetrating the skin; therefore, loading proteins into lipidoid nanoparticles will facilitate the transdermal delivery of proteins. Membrane diffusion experiments were used to confirm the results. This research has confirmed that lipidoids are a suitable material for transdermal protein delivery enhancement.
Igawa, Satomi; Kishibe, Mari; Minami-Hori, Masako; Honma, Masaru; Tsujimura, Hisashi; Ishikawa, Junko; Fujimura, Tsutomu; Murakami, Masamoto; Ishida-Yamamoto, Akemi
2017-02-01
Atopic dermatitis (AD) is a common inflammatory skin disorder. Chronic AD lesions present hyperkeratosis, indicating a disturbed desquamation process. KLK7 is a serine protease involved in the proteolysis of extracellular corneodesmosome components, including desmocollin 1 and corneodesmosin, which leads to desquamation. KLK7 is secreted by lamellar granules and upregulated in AD lesional skin. However, despite increased KLK7 protein levels, immunostaining and electron microscopy indicated numerous corneodesmosomes remaining in the uppermost layer of the stratum corneum from AD lesions. We aimed to clarify the discrepancy between KLK7 overexpression and retention of corneodesmosomes on AD corneocytes. Western blot analysis indicated abnormal corneodesmosin degradation patterns in stratum corneum from AD lesions. The KLK activity of tape-stripped corneocytes from AD lesions was not significantly elevated in in situ zymography, which was our new attempt to detect the protease activity more precisely than conventional assays. This ineffective KLK activation was associated with impaired KLK7 secretion from lamellar granules and increased expression of LEKTI in AD. Such imbalances in protease-protease inhibitor interactions could lead to abnormal proteolysis of corneodesmosomes and compact hyperkeratosis. Upregulated expression of LEKTI might be a compensatory mechanism to prevent further barrier dysfunction in AD. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Molecular dynamics simulations of stratum corneum lipid models: fatty acids and cholesterol.
Höltje, M; Förster, T; Brandt, B; Engels, T; von Rybinski, W; Höltje, H D
2001-03-09
We report the results of an investigation on stratum corneum lipids, which present the main barrier of the skin. Molecular dynamics simulations, thermal analysis and FTIR measurements were applied. The primary objective of this work was to study the effect of cholesterol on skin structure and dynamics. Two molecular models were constructed, a free fatty acid bilayer (stearic acid, palmitic acid) and a fatty acid/cholesterol mixture at a 1:1 molar ratio. Our simulations were performed at constant pressure and temperature on a nanosecond time scale. The resulting model structures were characterized by calculating surface areas per headgroup, conformational properties, atom densities and order parameters of the fatty acids. Analysis of the simulations indicates that the free fatty acid fraction of stratum corneum lipids stays in a highly ordered crystalline state at skin temperatures. The phase behavior is strongly influenced when cholesterol is added. Cholesterol smoothes the rigid phases of the fatty acids: the order of the hydrocarbon tails (mainly of the last eight bonds) is reduced, the area per molecule becomes larger, the fraction of trans dihedrals is lower and the hydrophobic thickness is reduced. The simulation results are in good agreement with our experimental data from FTIR analysis and NIR-FT Raman spectroscopy.
Topical bioavailability of diclofenac from locally-acting, dermatological formulations.
Cordery, S F; Pensado, A; Chiu, W S; Shehab, M Z; Bunge, A L; Delgado-Charro, M B; Guy, R H
2017-08-30
Assessment of the bioavailability of topically applied drugs designed to act within or beneath the skin is a challenging objective. A number of different, but potentially complementary, techniques are under evaluation. The objective of this work was to evaluate in vitro skin penetration and stratum corneum tape-stripping in vivo as tools with which to measure topical diclofenac bioavailability from three approved and commercialized products (two gels and one solution). Drug uptake into, and its subsequent clearance from, the stratum corneum of human volunteers was used to estimate the input rate of diclofenac into the viable skin layers. This flux was compared to that measured across excised porcine skin in conventional diffusion cells. Both techniques clearly demonstrated (a) the superiority in terms of drug delivery from the solution, and (b) that the two gels performed similarly. There was qualitative and, importantly, quantitative agreement between the in vitro and in vivo measurements of drug flux into and beyond the viable skin. Evidence is therefore presented to support an in vivo - in vitro correlation between methods to assess topical drug bioavailability. The potential value of the stratum corneum tape-stripping technique to quantify drug delivery into (epi)dermal and subcutaneous tissue beneath the barrier is demonstrated. Copyright © 2017 Elsevier B.V. All rights reserved.
Decreased sudomotor function is involved in the formation of atopic eczema in the cubital fossa.
Takahashi, Aya; Murota, Hiroyuki; Matsui, Saki; Kijima, Akiko; Kitaba, Shun; Lee, Jeong-Beom; Katayama, Ichiro
2013-12-01
Eczema in the cubital fossa, which is susceptible to sweat, is frequently observed in atopic dermatitis (AD). However, there has been no direct evidence that sweating causes eczema in the cubital fossa. To investigate this issue, axon reflex-mediated sweating volume (AXR) and skin barrier function in the cubital fossa were measured in subjects with AD and in healthy volunteers, and were applied to clinical feature of the cubital fossa. AXR in the cubital fossa decreased in AD subjects; it positively correlated only with water-holding capacity in healthy subjects but not in patients with in AD. Furthermore, AD subjects with lichenoid eczema and either prurigo or papules over the cubital fossa showed extremely decreased AXR. These results suggest that decreased sweating is a major source of water in the stratum corneum, and decreased sudomotor function may be involved in both the cause and aggravation of representative atopic eczema in the cubital fossa.
NASA Astrophysics Data System (ADS)
Yoon, Yong-Kyu; Park, Jung-Hwan; Lee, Jeong-Woo; Prausnitz, Mark R.; Allen, Mark G.
2011-02-01
Transdermal drug delivery can be enabled by various methods that increase the permeability of the skin's outer barrier of stratum corneum, including skin exposure to heat and chemical enhancers, such as ethanol. Combining these approaches for the first time, in this study we designed a microdevice consisting of an array of microchambers filled with ethanol that is vaporized using an integrated microheater and ejected through a micronozzle contacting the skin surface. In this way, we hypothesize that the hot ethanol vapor can increase skin permeability upon contacting the skin surface. The tapered micronozzle and the microchamber designed for this application were realized using proximity-mode inclined rotational ultraviolet lithography, which facilitates easy fabrication of complex three-dimensional structures, convenient integration with other functional layers, low fabrication cost, and mass production. The resulting device had a micronozzle with an orifice inner and outer diameter of 220 and 320 µm, respectively, and an extruded height of 250 µm. When the microchamber was filled with an ethanol gel and activated, the resulting ethanol vapor jet increased the permeability of human cadaver epidermis to a model compound, calcein, by approximately 17 times, which is attributed to thermal and chemical disruption of stratum corneum structure. This thermal microjet system can serve as a tool not only for transdermal drug delivery, but also for a variety of biomedical applications.
NASA Astrophysics Data System (ADS)
Fujiwara, Ai; Hinokitani, Toshihiro; Goto, Kenichi; Arai, Tsunenori
2004-07-01
To develop the noninvasive transdermal drug delivery system, pulsed lasers (argon-fluoride excimer laser (ArF laser) and erbium:yittrium aluminum garnet laser (Er:YAG laser)) were used to partially ablate the stratum corneum (SC), the upper layer of the skin. Because of the barrier function of the SC to drug permeation, the number of drugs especially macromolecules used in transdermal drug delivery system without skin irritation has been limited. Ultrastructural changes on the SC surface of ablated Yucatan micropig skin in vitro were observed with Environmental Scanning Electron Microscope. The result indicated that the structural changes varied according to each laser sources and irradiation conditions (laser fluences and numbers of pulses). Many granular structures of about 2 μm in diameter were observed in the ablated sites on ArF laser with lower fluence exposure (30 mJ/cm2, 200 pulses), and plane structures in the sites with higher fluence exposure (80 mJ/cm2, 80 pulses). In contrast, the ablation of Er:YAG laser created some pores of about 20 μm across on the surface of the SC. Under the irradiation condition of partial ablation, the skin permeability of macromolecule compound was enhanced. This partial SC ablation by pulsed laser could be possible candidate of the noninvasive transdermal drug delivery system with good physiological conditions of skin.
Stratum corneum cytokines and skin irritation response to sodium lauryl sulfate.
De Jongh, Cindy M; Verberk, Maarten M; Withagen, Carien E T; Jacobs, John J L; Rustemeyer, Thomas; Kezic, Sanja
2006-06-01
Little is known about cytokines involved in chronic irritant contact dermatitis. Individual cytokine profiles might explain at least part of the differences in the individual response to irritation. Our objective was to investigate the relation between baseline stratum corneum (SC) cytokine levels and the skin response to a single and a repeated irritation test. This study also aimed to determine changes in SC cytokine levels after repeated irritation. Transepidermal water loss (TEWL) and erythema were measured in 20 volunteers after single 24-hr exposure to 1% sodium lauryl sulfate (SLS), and during and after repeated exposure to 0.1% SLS over a 3-week period. SC cytokine levels were measured from an unexposed skin site and from the repeatedly exposed site. Interleukin (IL)-1alpha decreased by 30% after repeated exposure, while IL-1RA increased 10-fold and IL-8 increased fourfold. Baseline IL-1RA and IL-8 values were predictors of TEWL and erythema after single exposure (r = 0.55-0.61). 6 subjects showed barrier recovery during repeated exposure. Baseline IL-1RA and IL-8 levels are likely to be indicators of higher skin irritability after single exposure to SLS. Barrier repair in some of the subjects might explain the lack of agreement between the TEWL response after single and repeated irritation.
Fluhr, J W; Kelterer, D; Fuchs, S; Kaatz, M; Grieshaber, R; Kleesz, P; Elsner, P
2005-01-01
Biogenic amines are potential irritants e.g. in fish-, meat-, milk- and egg-processing professions like cooks, butchers and bakers. The aim of this study was to test the irritative and barrier-disrupting properties of the biogenic amines ammonium hydroxide (AM), dimethylamine (DMA) and trimethylamine (TMA). A repeated sequential irritation of 30 min twice per day was performed over a total of 4 days (tandem repeated irritation test) on the back of 20 healthy volunteers of both sexes with AM, DMA, TMA and sodium lauryl sulphate (SLS). The epidermal barrier function was assessed with a Tewameter TM 210, stratum corneum surface pH was measured with a Skin-pH-Meter 900, inflammation was assessed with a Chromameter CR-300 on the a* axis for redness and a visual score was recorded. All tested biogenic amines (AM, DMA and TMA) induced a barrier disruption and a pH increase paralleled with a 1-day-delayed onset of inflammatory signs. These effects were further enhanced and accelerated by a sequential application of SLS together with the biogenic amines, and inflammation occurred earlier than with the single compounds. Acetic acid (AA) in contrast did only show mild barrier disruption and no significant inflammatory signs. Our system allowed a ranking of the different compounds in their irritative potential in the tandem irritation with SLS: SLS > NaOH > TMA > AA > AM > DMA. The results are suggestive that in the food-processing industry the simultaneous contact with biogenic amines and harmful detergents like SLS should be minimized. Copyright 2005 S. Karger AG, Basel.
Stratum corneum integrity as a predictor for peristomal skin problems in ostomates.
Nybaek, H; Lophagen, S; Karlsmark, T; Bang Knudsen, D; Jemec, G B E
2010-02-01
Peristomal skin problems are common, most often the result is disruption of the skin barrier and this may account for more than one in three visits to ostomy nurses. Therefore a specific assessment of individual risk factors relating to the skin barrier function would be of great interest. Skin barrier integrity in ostomy patients with peristomal skin problems (PSP) was compared with that of ostomy patients with normal skin (controls) using transepidermal water loss (TEWL). Mechanical barrier disruption was determined by a tape stripping test and chemical barrier disruption [sodium lauryl sulphate (SLS) 0.25%]. Patients and controls had a highly significant increase in TEWL value in the peristomal area compared with nonperistomal contralateral abdominal skin (P < 0.0001 for both groups). The skin barrier of normal-looking contralateral skin of ostomates was found to be borderline impaired in patients with PSP compared with those without. A linear association was seen between the number of tape strips removed and TEWL for both cases and controls. Tape stripping suggested that patients with PSP had less resilient skin (P = 0.002). A significant difference in TEWL value between cases and controls was also seen for the SLS patch test on the dorsal skin (P = 0.02). Successive tape stripping, a situation analogous to the normal use of a pouching system, caused a higher degree of barrier damage more rapidly in patients with PSP, indicating an impaired mechanical quality of the barrier. The SLS exposure test suggested a generally increased susceptibility to irritant dermatitis as assessed by TEWL. Our findings suggest tape stripping and SLS testing may have a role as predictive tests to identify patients at risk of PSP.
Update of Ablative Fractionated Lasers to Enhance Cutaneous Topical Drug Delivery.
Waibel, Jill S; Rudnick, Ashley; Shagalov, Deborah R; Nicolazzo, Danielle M
2017-08-01
Ablative fractional lasers (AFXL) enhance uptake of therapeutics and this newly emerging field is called laser-assisted drug delivery (LAD). This new science has emerged over the past decade and is finding its way into clinical practice. LAD is poised to change how medicine delivers drugs. Topical and systemic application of pharmaceutical agents for therapeutic effect is an integral part of medicine. With topical therapy, the stratum corneum barrier of the skin impairs the ability of drugs to enter the body. The purpose of LAD is to alter the stratum corneum, epidermis, and dermis to facilitate increased penetration of a drug, device, or cell to its respected target. AFXL represents an innovative, non-invasive strategy to overcome the epidermal barrier. LAD employs three steps: (1) breakdown of the skin barrier with a laser, (2) optional use a laser for a therapeutic effect, (3) delivery of the medicine through laser channels to further enhance the therapeutic effect. The advantages of using lasers for drug delivery include the ease of accessibility, the non-invasive aspect, and its effectiveness. By changing the laser settings, one may use LAD to have a drug remain locally within the skin or to have systemic delivery. Many drugs are not intended for use in the dermis and so it has yet to be determined which drugs are appropriate for this technique. It appears this developing technology has the ability to be a new delivery system for both localized and systemic delivery of drugs, cells, and other molecules. With responsible development AFXL-assisted drug delivery may become a new important part of medicine.
A Coarse-grained Model of Stratum Corneum Lipids: Free Fatty Acids and Ceramide NS
Moore, Timothy C.; Iacovella, Christopher R.; Hartkamp, Remco; Bunge, Annette L.; McCabe, Clare
2017-01-01
Ceramide (CER)-based biological membranes are used both experimentally and in simulations as simplified model systems of the skin barrier. Molecular dynamics studies have generally focused on simulating preassembled structures using atomistically detailed models of CERs, which limit the system sizes and timescales that can practically be probed, rendering them ineffective for studying particular phenomena, including self-assembly into bilayer and lamellar superstructures. Here, we report on the development of a coarse-grained (CG) model for CER NS, the most abundant CER in human stratum corneum. Multistate iterative Boltzmann inversion is used to derive the intermolecular pair potentials, resulting in a force field that is applicable over a range of state points and suitable for studying ceramide self-assembly. The chosen CG mapping, which includes explicit interaction sites for hydroxyl groups, captures the directional nature of hydrogen bonding and allows for accurate predictions of several key structural properties of CER NS bilayers. Simulated wetting experiments allow the hydrophobicity of CG beads to be accurately tuned to match atomistic wetting behavior, which affects the whole system since inaccurate hydrophobic character is found to unphysically alter the lipid packing in hydrated lamellar states. We find that CER NS can self-assemble into multilamellar structures, enabling the study of lipid systems more representative of the multilamellar lipid structures present in the skin barrier. The coarse-grained force field derived herein represents an important step in using molecular dynamics to study the human skin barrier, which gives a resolution not available through experiment alone. PMID:27564869
Stimulation of the penetration of particles into the skin by plasma tissue interaction
NASA Astrophysics Data System (ADS)
Lademann, O.; Richter, H.; Kramer, A.; Patzelt, A.; Meinke, M. C.; Graf, C.; Gao, Q.; Korotianskiy, E.; Rühl, E.; Weltmann, K.-D.; Lademann, J.; Koch, S.
2011-10-01
A high number of treatments in dermatology are based on the penetration of topically applied drugs through the skin barrier. This process is predominantly inefficient, on account of the strong protection properties of the upper skin layer - the stratum corneum. If the skin barrier is damaged, the penetration efficiency of topically applied drugs increases. Therefore, different methods have been developed to influence the barrier properties of the skin. Recently, it could be demonstrated that a cold tissue tolerable plasma (TTP) produced by a plasma-jet can strongly enhance drug delivery through the skin. These investigations were performed by using a solution of fluorescent dye as a model drug. In the present study, these investigations were carried out using fluorescent silica particles at different sizes. The aim of the study was to investigate whether or not there is a limitation in size for topically applied substances to pass through the skin barrier after plasma treatment.
Investigation of depilatory mechanism by use of multiphoton fluorescent microscopy
NASA Astrophysics Data System (ADS)
Lin, Chiao-Ying; Lee, Gie-ne; Jee, Shiou-Hwa; Dong, Chen-Yuan; Lin, Sung-Jan
2007-07-01
Transdermal drug delivery provides a non-invasive route of drug administration, and can be a alternative method to oral delivery and injection. The stratum corneum (SC) of skin acts as the main barrier to transdermal drug delivery. Studies suggest that depilatory enhances permeability of drug through the epidermis. However, transdermal delivery pathway and mechanism are not completely understood. Previous studies have found that depilatory changes the keratinocytes of epidermis, and cause the protein in combination with lipid extraction of SC to become disordered. Nevertheless, those studies did not provide images of those processes. The aim of this study is to characterize the penetration enhancing effect of depilatory agent and the associated structural alterations of stratum corneum. Fresh human foreskin is treated by a depilatory agent for 10 minutes and then subjected to the treatment of fluorescent model drugs of hydrophilic rhodamine and hydrophobic rhodamine-RE. The penetration of model drugs is imaged and quantified by multiphoton microscopy. Our results showed that the penetration of both hydrophilic and hydrophobic agents can be enhanced and multifocal detachment of surface corneocytes is revealed. Nile red staining revealed, instead of a regular motar distribution of lipid around the brick of corneocytes, a disorganized and homogenized pattern of lipid distribution. We concluded that depilatory agents enhance drug penetration by disrupting both the cellular integrity of corneocytes and the regular packing of intercellular lipid of stratum corneum.
Newborn infant skin: physiology, development, and care.
Visscher, Marty O; Adam, Ralf; Brink, Susanna; Odio, Mauricio
2015-01-01
Infant skin is critical to the newborn child's transition from the womb environment to the journey to self-sufficiency. This review provides an integrative perspective on the skin development in full term and premature infants. There is a particular focus on the role of vernix caseosa and on the implications of skin development for epidermal penetration of exogenous compounds. Healthy full-term newborn skin is well-developed and functional at birth, with a thick epidermis and well-formed stratum corneum (SC) layers. Transepidermal water loss is very low at birth, equal to, or lower than adults, indicating a highly effective skin barrier. Vernix facilitates SC development in full-term infants through a variety of mechanisms including physical protection from amniotic fluid and enzymes, antimicrobial effects, skin surface pH lowering, provision of lipids, and hydration. Premature infants, particularly those of very low birth weight, have a poor skin barrier with few cornified layers and deficient dermal proteins. They are at increased risk for skin damage, increased permeability to exogenous agents and infection. The SC barrier develops rapidly after birth but complete maturation requires weeks to months. The best methods for caring for infant skin, particularly in the diaper region, are described and related to these developmental changes. Copyright © 2015 Elsevier Inc. All rights reserved.
Gruber, Robert; Sugarman, Jeffrey L.; Crumrine, Debra; Hupe, Melanie; Mauro, Theodora M.; Mauldin, Elizabeth A.; Thyssen, Jacob P.; Brandner, Johanna M.; Hennies, Hans-Christian; Schmuth, Matthias; Elias, Peter M.
2016-01-01
Although keratosis pilaris (KP) is common, its etiopathogenesis remains unknown. KP is associated clinically with ichthyosis vulgaris and atopic dermatitis and molecular genetically with filaggrin-null mutations. In 20 KP patients and 20 matched controls, we assessed the filaggrin and claudin 1 genotypes, the phenotypes by dermatoscopy, and the morphology by light and transmission electron microscopy. Thirty-five percent of KP patients displayed filaggrin mutations, demonstrating that filaggrin mutations only partially account for the KP phenotype. Major histologic and dermatoscopic findings of KP were hyperkeratosis, hypergranulosis, mild T helper cell type 1-dominant lymphocytic inflammation, plugging of follicular orifices, striking absence of sebaceous glands, and hair shaft abnormalities in KP lesions but not in unaffected skin sites. Changes in barrier function and abnormal paracellular permeability were found in both interfollicular and follicular stratum corneum of lesional KP, which correlated ultrastructurally with impaired extracellular lamellar bilayer maturation and organization. All these features were independent of filaggrin genotype. Moreover, ultrastructure of corneodesmosomes and tight junctions appeared normal, immunohistochemistry for claudin 1 showed no reduction in protein amounts, and molecular analysis of claudin 1 was unremarkable. Our findings suggest that absence of sebaceous glands is an early step in KP pathogenesis, resulting in downstream hair shaft and epithelial barrier abnormalities. PMID:25660180
Transcending epithelial and intracellular biological barriers; a prototype DNA delivery device.
McCaffrey, Joanne; McCrudden, Cian M; Ali, Ahlam A; Massey, Ashley S; McBride, John W; McCrudden, Maelíosa T C; Vicente-Perez, Eva M; Coulter, Jonathan A; Robson, Tracy; Donnelly, Ryan F; McCarthy, Helen O
2016-03-28
Microneedle technology provides the opportunity for the delivery of DNA therapeutics by a non-invasive, patient acceptable route. To deliver DNA successfully requires consideration of both extra and intracellular biological barriers. In this study we present a novel two tier platform; i) a peptide delivery system, termed RALA, that is able to wrap the DNA into nanoparticles, protect the DNA from degradation, enter cells, disrupt endosomes and deliver the DNA to the nucleus of cells ii) a microneedle (MN) patch that will house the nanoparticles within the polymer matrix, breach the skin's stratum corneum barrier and dissolve upon contact with skin interstitial fluid thus releasing the nanoparticles into the skin. Our data demonstrates that the RALA is essential for preventing DNA degradation within the poly(vinylpyrrolidone) (PVP) polymer matrix. In fact the RALA/DNA nanoparticles (NPs) retained functionality when in the MN arrays after 28days and over a range of temperatures. Furthermore the physical strength and structure of the MNs was not compromised when loaded with the NPs. Finally we demonstrated the effectiveness of our MN-NP platform in vitro and in vivo, with systemic gene expression in highly vascularised regions. Taken together this 'smart-system' technology could be applied to a wide range of genetic therapies. Copyright © 2016. Published by Elsevier B.V.
Prescott, Susan L; Larcombe, Danica-Lea; Logan, Alan C; West, Christina; Burks, Wesley; Caraballo, Luis; Levin, Michael; Etten, Eddie Van; Horwitz, Pierre; Kozyrskyj, Anita; Campbell, Dianne E
2017-01-01
Skin barrier structure and function is essential to human health. Hitherto unrecognized functions of epidermal keratinocytes show that the skin plays an important role in adapting whole-body physiology to changing environments, including the capacity to produce a wide variety of hormones, neurotransmitters and cytokine that can potentially influence whole-body states, and quite possibly, even emotions. Skin microbiota play an integral role in the maturation and homeostatic regulation of keratinocytes and host immune networks with systemic implications. As our primary interface with the external environment, the biodiversity of skin habitats is heavily influenced by the biodiversity of the ecosystems in which we reside. Thus, factors which alter the establishment and health of the skin microbiome have the potential to predispose to not only cutaneous disease, but also other inflammatory non-communicable diseases (NCDs). Indeed, disturbances of the stratum corneum have been noted in allergic diseases (eczema and food allergy), psoriasis, rosacea, acne vulgaris and with the skin aging process. The built environment, global biodiversity losses and declining nature relatedness are contributing to erosion of diversity at a micro-ecological level, including our own microbial habitats. This emphasises the importance of ecological perspectives in overcoming the factors that drive dysbiosis and the risk of inflammatory diseases across the life course.
Chang, Man-Jau; Huang, Huey-Chun; Chang, Hsien-Cheh; Chang, Tsong-Min
2008-07-01
Retention of water in the stratum corneum of skin epidermis plays an important role in regulation of skin function. Loss of water may decline skin appearance gradually and lead to irregular skin disorders. The root extract of Lithospermum erythrorhizon (LES) is known for its various pharmacological activities. However, the potential skin care effect of LES is not clear. The aim of this study was to evaluate the moisturizing efficacy and skin barrier repairing activity of LES. For this study, 30 healthy Asian females (age 20-30) with healthy skin had applied the test emulsions twice daily over a period of 28 days. The skin properties were measured by skin bioengineering techniques. Our preliminary results indicated that LES show moisturizing effect on skin hydration in a time- and dose-dependent pattern, and the maximum increase in skin humidity was 11.77 +/- 1.18% for emulsion LES5.00. Particularly, LES-containing emulsions significantly improve skin barrier function by decreasing the value of transepidermal water loss (TEWL) in a time- and dose-dependent pattern, and the maximum decrease in TEWL value was 7.68 +/- 0.79% for emulsion LES5.00. Taken together, our data demonstrate that LES is more effective in increasing skin humidity and decreasing the TEWL values, indicating the potential skin care effects of LES.
Development of a Perfusion Platform for Dynamic Cultivation of in vitro Skin Models.
Strüver, Kay; Friess, Wolfgang; Hedtrich, Sarah
2017-01-01
Reconstructed skin models are suitable test systems for toxicity testing and for basic investigations on (patho-)physiological aspects of human skin. Reconstructed human skin, however, has clear limitations such as the lack of immune cells and a significantly weaker skin barrier function compared to native human skin. Potential reasons for the latter might be the lack of mechanical forces during skin model cultivation which is performed classically in static well-plate setups. Mechanical forces and shear stress have a major impact on tissue formation and, hence, tissue engineering. In the present work, a perfusion platform was developed allowing dynamic cultivation of in vitro skin models. The platform was designed to cultivate reconstructed skin at the air-liquid interface with a laminar and continuous medium flow below the dermis equivalent. Histological investigations confirmed the formation of a significantly thicker stratum corneum compared to the control cultivated under static conditions. Moreover, the skin differentiation markers involucrin and filaggrin as well as the tight junction proteins claudin 1 and occludin showed increased expression in the dynamically cultured skin models. Unexpectedly, despite improved differentiation, the skin barrier function of the dynamically cultivated skin models was not enhanced compared with the skin models cultivated under static conditions. © 2017 S. Karger AG, Basel.
Moghadam, Shadi H; Saliaj, Evi; Wettig, Shawn D; Dong, Chilbert; Ivanova, Marina V; Huzil, J Torin; Foldvari, Marianna
2013-06-03
The outermost layer of the skin, known as the stratum corneum (SC), is composed of dead corneocytes embedded in an intercellular lipid matrix consisting of ceramides, free fatty acids, and cholesterol. The high level of organization within this matrix protects the body by limiting the permeation of most compounds through the skin. While essential for its protective functions, the SC poses a significant barrier for the delivery of topically applied pharmaceutical agents. Chemical permeation enhancers (CPEs) can increase delivery of small drug compounds into the skin by interacting with the intercellular lipids through physical processes including extraction, fluidization, increased disorder, and phase separation. However, it is not clear whether these same mechanisms are involved in delivery of biotherapeutic macromolecules, such as proteins. Here we describe the effect of three categories of CPEs {solvents [ethanol, propylene glycol, diethylene glycol monoethyl ether (transcutol), oleic acid], terpenes [menthol, nerol, camphor, methyl salicylate], and surfactants [Tween 80, SDS, benzalkonium chloride, polyoxyl 40 hydrogenated castor oil (Cremophor RH40), didecyldimethylammonium bromide (DDAB), didecyltrimethylammonium bromide (DTAB)]} on the lipid organizational structure of human SC as determined by X-ray scattering studies. Small- and wide-angle X-ray scattering studies were conducted to correlate the degree of structural changes and hydrocarbon chain packing in SC lipids caused by these various classes of CPEs to the extent of permeation of interferon alpha-2b (IFNα), a 19 kDa protein drug, into human skin. With the exception of solvents, propylene glycol and ethanol, all classes of CPEs caused increased disordering of lamellar and lateral packing of lipids. We observed that the highest degree of SC lipid disordering was caused by surfactants (especially SDS, DDAB, and DTAB) followed by terpenes, such as nerol. Interestingly, in vitro skin permeation studies indicated that, in most cases, absorption of IFNα was low and that an increase in SC lipid disorder does not correspond to an increase in IFNα absorption.
Gene expression profiling in melasma in Korean women.
Chung, Bo Young; Noh, Tai Kyung; Yang, Sang Hwa; Kim, Il Hwan; Lee, Mi Woo; Yoon, Tae Jin; Chang, Sung Eun
2014-01-01
There has been a paucity of data about the difference in gene expression between melasma lesional skin and normal adjacent one. Our aim was to identify novel genes involved in the pathogenesis of melasma. We performed a microarray analysis and confirmed the results on quantitative real-time polymerase chain reaction (qRT-PCR) in Korean women with melasma. There were 334 genes whose degree of expression showed a significant difference between melasma lesional skin and normal adjacent one. Of these, five were confirmed on qRT-PCR. In melasma lesional skin, there were down-regulation of genes involved in the PPAR signaling pathway and up-regulation of genes involved in neuronal component and the functions of stratum corneum barrier. This result suggests that the pathogenesis of melasma might be associated with novel genes involved in the above signaling pathway in Korean women.
Yonezawa, Kaori; Haruna, Megumi; Matsuzaki, Masayo; Shiraishi, Mie; Kojima, Reiji
2018-01-01
An effective newborn skincare protocol has not been established. We aimed to evaluate the effects of moisturizing skincare, including using lotion and reducing routine bathing. Our hypothesis was that moisturizing skincare would improve skin barrier function. This randomized controlled trial included 227 healthy Asian newborns between 1 week and 3 months old. We compared moisturizing skincare (bathing every 2 days and using lotion daily; intervention, n = 113) to daily bathing without lotion (control, n = 114). We assessed the skin barrier function (transepidermal water loss [TEWL], stratum corneum hydration [SCH], skin pH and sebum secretion) as a primary outcome at 3 months old. We also assessed the incidence of skin problems according to parents' diary reports. Compared with the control, the intervention group had a lower face TEWL (mean ± standard deviation, 14.69 ± 7.38 vs 17.08 ± 8.26 g/m 2 per h, P = 0.033), higher face SCH (60.38 ± 13.66 vs 53.52 ± 14.55, P = 0.001) and higher body SCH (58.89 ± 12.96 vs 53.02 ± 10.08, P < 0.001). Compared with the control, newborns in the intervention group had significantly lower rates of diaper dermatitis between birth and 1 month old (6.3% vs 15.9%, P = 0.022), and tended to have lower rates of body skin problems between 1 and 3 months (42.1% vs 55.2%, P = 0.064). Moisturizing skincare was effective for improving skin barrier function and preventing newborns' diaper dermatitis. The results of our study may help parents make informed decisions about newborn skincare. © 2017 Japanese Dermatological Association.
Therapeutic Implications of a Barrier-Based Pathogenesis of Atopic Dermatitis
Wakefield, Joan S.
2015-01-01
Excessive Th2 cell signaling and IgE production play key roles in the pathogenesis of atopic dermatitis (AD). Yet, recent information suggests that the inflammation in AD instead is initiated by inherited insults to the barrier, including a strong association between mutations in FILAGGRIN and SPINK5 in Netherton syndrome, the latter of which provides an important clue that AD is provoked by excess serine protease activity. But acquired stressors to the barrier may also be required to initiate inflammation in AD, and in addition, microbial colonization by Staphylococcus aureus both amplifies inflammation, but also further stresses the barrier in AD. Therapeutic implications of these insights are as follows: While current therapy has been largely directed toward ameliorating Th2-mediated inflammation and/or pruritus, these therapies are fraught with short-term and potential long-term risks. In contrast, “barrier repair” therapy, with a ceramide-dominant triple-lipid mixture of stratum corneum lipids, is more logical, of proven efficacy, and it provides a far-improved safety profile. PMID:21174234
In-vivo dynamic characterization of microneedle skin penetration using optical coherence tomography
NASA Astrophysics Data System (ADS)
Enfield, Joey; O'Connell, Marie-Louise; Lawlor, Kate; Jonathan, Enock; O'Mahony, Conor; Leahy, Martin
2010-07-01
The use of microneedles as a method of circumventing the barrier properties of the stratum corneum is receiving much attention. Although skin disruption technologies and subsequent transdermal diffusion rates are being extensively studied, no accurate data on depth and closure kinetics of microneedle-induced skin pores are available, primarily due to the cumbersome techniques currently required for skin analysis. We report on the first use of optical coherence tomography technology to image microneedle penetration in real time and in vivo. We show that optical coherence tomography (OCT) can be used to painlessly measure stratum corneum and epidermis thickness, as well as microneedle penetration depth after microneedle insertion. Since OCT is a real-time, in-vivo, nondestructive technique, we also analyze skin healing characteristics and present quantitative data on micropore closure rate. Two locations (the volar forearm and dorsal aspect of the fingertip) have been assessed as suitable candidates for microneedle administration. The results illustrate the applicability of OCT analysis as a tool for microneedle-related skin characterization.
Saeidpour, S; Lohan, S B; Anske, M; Unbehauen, M; Fleige, E; Haag, R; Meinke, M C; Bittl, R; Teutloff, C
2017-07-01
The skin and especially the stratum corneum (SC) act as a barrier and protect epidermal cells and thus the whole body against xenobiotica of the external environment. Topical skin treatment requires an efficient drug delivery system (DDS). Polymer-based nanocarriers represent novel transport vehicles for dermal application of drugs. In this study dendritic core-multishell (CMS) nanoparticles were investigated as promising candidates. CMS nanoparticles were loaded with a drug (analogue) and were applied to penetration studies of skin. We determined by dual-frequency electron paramagnetic resonance (EPR) how dexamethasone (Dx) labelled with 3-carboxy-2,2,5,5-tetramethyl-1-pyrrolidinyloxy (PCA) is associated with the CMS. The micro-environment of the drug loaded to CMS nanoparticles was investigated by pulsed high-field EPR at cryogenic temperature, making use of the fact that magnetic parameters (g-, A-matrices, and spin-lattice relaxation time) represent specific probes for the micro-environment. Additionally, the rotational correlation time of spin-labelled Dx was probed by continuous wave EPR at ambient temperature, which provides independent information on the drug environment. Furthermore, the penetration depth of Dx into the stratum corneum of porcine skin after different topical applications was investigated. The location of Dx in the CMS nanoparticles is revealed and the function of CMS as penetration enhancers for topical application is shown. Copyright © 2016 Elsevier B.V. All rights reserved.
Oh, Myoung Jin; Cho, Young Hoon; Cha, So Yoon; Lee, Eun Ok; Kim, Jin Wook; Kim, Sun Ki; Park, Chang Seo
2017-01-01
Ceramides in the human stratum corneum (SC) are a mixture of diverse N -acylated fatty acids (FAs) with different chain lengths. C24 is the major class of FAs of ceramides. However, there are also other classes of ceramides with diverse chain lengths of FAs, and these lengths generally range from C16 to C26. This study aimed to prepare several types of phytoceramide containing diverse chain lengths of N -acylated FAs and compare them with C18-ceramide N -stearoyl phytosphingosine (NP) in terms of their effects on the physiological properties of the SC. We chose natural oils, such as horse fat oil, shea butter, sunflower oil, and a mixture of macadamia nut, shea butter, moringa, and meadowfoam seed oil, as sources of FAs and phytosphingosine as a sphingoid backbone to synthesize diverse phytoceramides. Each phytoceramide exhibited a distinctive formation of the lamellar structure, and their FA profiles were similar to those of their respective natural oil. The skin barrier properties, as analyzed in human skin, clearly demonstrated that all the phytoceramides improved the recovery rate of the damaged SC and enhanced hydration better than C18-ceramide NP did. In conclusion, natural oil-derived phytoceramides could represent a novel class of ceramides for cosmetic applications in the development of an ideal skin barrier moisturizer.
Lee, Hae-Jin; Lee, Noo Ri; Jung, Minyoung; Kim, Dong Hye; Choi, Eung Ho
2015-12-01
Prolonged and/or repeated damage to the skin barrier followed by atopic dermatitis (AD) is an initial step in atopic march that ultimately progresses to respiratory allergy. Maintaining normal stratum corneum (SC) acidity has been suggested as a therapeutic or preventive strategy for barrier impairment caused by skin inflammation. We determined whether a representative AD murine model, NC/Nga mice, develops airway inflammation after repeated epicutaneous application followed by inhalation of house dust mite (HDM), implying atopic march, and whether prolongation of non-proper SC acidity accelerates respiratory allergy. HDM was applied to the skin of NC/Nga mice, accompanied by the application of neutral cream (pH 7.4) or acidic cream (pH 2.8) for 6 weeks. Intranasal inhalation of HDM was administered daily during the last 3 days. Repeated epicutaneous applications followed by inhalation of HDM in NC/Nga mice induced an atopic march-like progression from AD lesions to respiratory allergy. Concurrent neutral cream treatment accelerated or aggravated the allergic inflammation in the skin and respiratory system, whereas an acidic cream partially alleviated these symptoms. Collectively, we developed an atopic march in NC/Nga mice by HDM application, and found that prevention of a neutral environment in the SC may be an interventional method to inhibit the march.
[Skin hydration and hydrating products].
Duplan, H; Nocera, T
2018-05-01
One of the skin's principal functions is to protect the body against its environment by maintaining an effective epidermal barrier, not only against external factors, but also to prevent water loss from the body. Indeed, water homeostasis is vital for the normal physiological functioning of skin. Hydration levels affect not only visible microscopic parameters such as the suppleness and softness of skin, but also molecular parameters, enzyme activities and cellular signalling within the epidermis. The body is continually losing some of its water, but this phenomenon is limited and the optimal hydration gradient in skin is ensured via a set of sophisticated regulatory processes that rely on the functional and dynamic properties of the uppermost level of the skin consisting of the stratum corneum. The present article brings together data recently acquired in the fields of skin hydration and the characterisation of dehydrated or dry skin, whether through study of the regulatory processes involved or as a result of changes in the techniques used for in situ measurement, and thus in optimisation of management. Copyright © 2018. Published by Elsevier Masson SAS.
Tight junctions form a barrier in porcine hair follicles.
Mathes, Christiane; Brandner, Johanna M; Laue, Michael; Raesch, Simon S; Hansen, Steffi; Failla, Antonio V; Vidal, Sabine; Moll, Ingrid; Schaefer, Ulrich F; Lehr, Claus-Michael
2016-02-01
Follicular penetration has gained increasing interest regarding (i) safety concerns about (environmentally born) xenobiotics available to the hair follicle (HF), e.g. nanomaterials or allergens which should not enter the skin, and (ii) the possibility for non-invasive follicular drug and antigen delivery. However, not much is known about barriers in the HF which have to be surpassed upon uptake and/or penetration into surrounding tissue. Thus, aim of this work was a detailed investigation of this follicular barrier function, as well as particle uptake into the HF of porcine skin which is often used as a model system for human skin for such purposes. We show that follicular tight junctions (TJs) form a continuous barrier from the infundibulum down to the suprabulbar region, complementary to the stratum corneum in the most exposed upper follicular region, but remaining as the only barrier in the less accessible lower follicular regions. In the bulbar region of the HF no TJ barrier was found, demonstrating the importance of freely supplying this hair-forming part with e.g. nutrients or hormones from the dermal microenvironment. Moreover, the dynamic character of the follicular TJ barrier was shown by modulating its permeability using EDTA. After applying polymeric model-nanoparticles (154 nm) to the skin, transmission electron microscopy revealed that the majority of the particles were localized in the upper part of the HF where the double-barrier is present. Only few penetrated deeper, reaching regions where TJs act as the only barrier, and no particles were observed in the bulbar, barrier-less region. Lastly, the equivalent expression and distribution of TJ proteins in human and porcine HF further supports the suitability of porcine skin as a predictive model to study the follicular penetration and further biological effects of dermally applied nanomaterials in humans. Copyright © 2016 Elsevier GmbH. All rights reserved.
Stratum corneum dysfunction in dandruff
Turner, G A; Hoptroff, M; Harding, C R
2012-01-01
Summary Synopsis Dandruff is characterized by a flaky, pruritic scalp and affects up to half the world’s population post-puberty. The aetiology of dandruff is multifactorial, influenced by Malassezia, sebum production and individual susceptibility. The commensal yeast Malassezia is a strong contributory factor to dandruff formation, but the presence of Malassezia on healthy scalps indicates that Malassezia alone is not a sufficient cause. A healthy stratum corneum (SC) forms a protective barrier to prevent water loss and maintain hydration of the scalp. It also protects against external insults such as microorganisms, including Malassezia, and toxic materials. Severe or chronic barrier damage can impair proper hydration, leading to atypical epidermal proliferation, keratinocyte differentiation and SC maturation, which may underlie some dandruff symptoms. The depleted and disorganized structural lipids of the dandruff SC are consistent with the weakened barrier indicated by elevated transepidermal water loss. Further evidence of a weakened barrier in dandruff includes subclinical inflammation and higher susceptibility to topical irritants. We are proposing that disruption of the SC of the scalp may facilitate dandruff generation, in part by affecting susceptibility to metabolites from Malassezia. Treatment of dandruff with cosmetic products to directly improve SC integrity while providing effective antifungal activity may thus be beneficial. Résumé Les pellicules se caractérisent par un cuir chevelu prurigineux, squameux, et affectent jusqu’à la moitié de la population post-pubertaire du monde. L’étiologie des pellicules est multifactorielle, influencée par Malassezia, par la production de sébum, et par la susceptibilité individuelle. La levure commensale Malassezia est un facteur fortement contributif à la formation de pellicules, mais la présence de Malassezia aussi sur les cuirs chevelus sains indique que Malassezia seule n’est pas une cause suffisante. Un stratum corneum (SC) sain forme une barrière protectrice pour empêcher la perte d’eau et maintenir l’hydratation du cuir chevelu. Il protège également contre les agressions externes tels les micro-organismes, y compris Malassezia, ou des substances toxiques. Des dommages aigus ou chroniques au niveau de la barrière peuvent nuire à une bonne hydratation, conduisant à des effets atypiques de la prolifération épidermique, de la différenciation des kératinocytes, et de la maturation du SC, ce qui peut expliquer une partie des symptômes des pellicules. L’appauvrissement et la désorganisation des lipides structurels d’un stratum corneum sujet aux pellicules sont compatibles avec la notion d’une barrière affaiblie telle qu’indiquée par une perte d’eau transépidermique élevée. Une preuve supplémentaire d’une barrière affaiblie dans les cas des pellicules est fournie par un niveau d’inflammation infraclinique et une plus grande susceptibilité aux irritants topiques. Nous proposons que la perturbation du SC du cuir chevelu facilite la production de pellicules, en partie en augmentant la sensibilité aux métabolites de Malassezia. Le traitement des pellicules avec des produits cosmétiques pour améliorer directement l’intégrité du SC, tout en offrant une activité antifongique efficace peut donc être bénéfique. PMID:22515370
Epidermal Dysfunction Leads to an Age-Associated Increase in Levels of Serum Inflammatory Cytokines.
Hu, Lizhi; Mauro, Theodora M; Dang, Erle; Man, George; Zhang, Jing; Lee, Dale; Wang, Gang; Feingold, Kenneth R; Elias, Peter M; Man, Mao-Qiang
2017-06-01
Even though elderly populations lack visible or other clinical signs of inflammation, their serum cytokine and C-reactive protein levels typically are elevated. However, the origin of age-associated systemic inflammation is unknown. Our previous studies showed that abnormalities in epidermal function provoke cutaneous inflammation, and because intrinsically aged skin displays compromised permeability barrier homeostasis and reduced stratum corneum hydration, we hypothesized here that epidermal dysfunction could contribute to the elevations in serum cytokines in the elderly. Our results show first that acute disruption of the epidermal permeability barrier in young mice leads not only to a rapid increase in cutaneous cytokine mRNA expression but also an increase in serum cytokine levels. Second, cytokine levels in both the skin and serum increase in otherwise normal, aged mice (>12 months). Third, expression of tumor necrosis factor-α and amyloid A mRNA levels increased in the epidermis, but not in the liver, in parallel with a significant elevation in serum levels of cytokines. Fourth, disruption of the permeability barrier induced similar elevations in epidermal and serum cytokine levels in normal and athymic mice, suggesting that T cells play a negligible role in the elevations in cutaneous and serum inflammatory cytokines induced by epidermal dysfunction. Fifth, correction of epidermal function significantly reduced cytokine levels not only in the skin but also in the serum of aged mice. Together, these results indicate that the sustained abnormalities in epidermal function in chronologically aged skin contribute to the elevated serum levels of inflammatory cytokines, potentially predisposing the elderly to the subsequent development or exacerbation of chronic inflammatory disorders. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Prausnitz, Mark R.; Langer, Robert
2009-01-01
Transdermal drug delivery has made an important contribution to medical practice, but has yet to fully achieve its potential as an alternative to oral delivery and hypodermic injections. First-generation transdermal delivery systems have continued their steady increase in clinical use for delivery of small, lipophilic, low-dose drugs. Second-generation delivery systems using chemical enhancers, non-cavitational ultrasound and iontophoresis have also resulted in clinical products; the ability of iontophoresis to control delivery rates in real time provides added functionality. Third-generation delivery systems target their effects to skin’s barrier layer of stratum corneum using microneedles, thermal ablation, microdermabrasion, electroporation and cavitational ultrasound. Microneedles and thermal ablation are currently progressing through clinical trials for delivery of macromolecules and vaccines, such as insulin, parathyroid hormone and influenza vaccine. Using these novel second- and third-generation enhancement strategies, transdermal delivery is poised to significantly increase impact on medicine. PMID:18997767
Tezel, Ahmet; Mitragotri, Samir
2003-12-01
Interactions of acoustic cavitation bubbles with biological tissues play an important role in biomedical applications of ultrasound. Acoustic cavitation plays a particularly important role in enhancing transdermal transport of macromolecules, thereby offering a noninvasive mode of drug delivery (sonophoresis). Ultrasound-enhanced transdermal transport is mediated by inertial cavitation, where collapses of cavitation bubbles microscopically disrupt the lipid bilayers of the stratum corneum. In this study, we describe a theoretical analysis of the interactions of cavitation bubbles with the stratum corneum lipid bilayers. Three modes of bubble-stratum corneum interactions including shock wave emission, microjet penetration into the stratum corneum, and impact of microjet on the stratum corneum are considered. By relating the mechanical effects of these events on the stratum corneum structure, the relationship between the number of cavitation events and collapse pressures with experimentally measured increase in skin permeability was established. Theoretical predictions were compared to experimentally measured parameters of cavitation events.
Microneedles for intradermal and transdermal delivery
Tuan-Mahmood, Tuan-Mazlelaa; McCrudden, Maeliosa T.C.; Torrisi, Barbara M.; McAlister, Emma; Garland, Martin J; Singh, Thakur Raghu Raj; Donnelly, Ryan F
2014-01-01
The formidable barrier properties of the uppermost layer of the skin, the stratum corneum impose significant limitations for successful systemic delivery of a broad range of therapeutic molecules, particularly macromolecules and genetic material. Microneedle delivery has been proposed as a strategy to breach the SC barrier function in order to facilitate effective transport of molecules across the skin. This strategy involves the use of micron sized needles fabricated from different materials and using different geometries to create transient aqueous conduits across the skin. Microneedles in isolation, or in combination with other enhancing strategies, have been shown to dramatically enhance the skin permeability of numerous therapeutic molecules including biopharmaceuticals either in vitro, ex vivo or in vivo. Progress in the areas of microneedle design, development and manufacture have proven promising in terms of the potential use of this emerging delivery method in clinical applications such as insulin delivery, transcutaneous immunisations and cutaneous gene delivery. This review article focuses on recent and potential future developments in microneedle technologies. This will include the detailing of progress made in microneedle design, an exploration of the challenges faced in this field and potential forward strategies to embrace the exploitation of microneedle methodologies, while considering the inherent safety aspects of such therapeutic tools. PMID:23680534
Seasonal changes in epidermal ceramides are linked to impaired barrier function in acne patients.
Pappas, Apostolos; Kendall, Alexandra C; Brownbridge, Luke C; Batchvarova, Nikoleta; Nicolaou, Anna
2018-01-21
Acne skin demonstrates increased transepidermal water loss (TEWL) compared with healthy skin, which may be due, in part, to altered ceramide (CER) levels. We analysed ceramides in the stratum corneum of healthy and acne skin, and studied seasonal variation over the course of a year. Using ultraperformance liquid chromatography with electrospray ionisation and tandem mass spectrometry (UPLC/ESI-MS/MS), we identified 283 ceramides. Acne-affected skin demonstrated overall lower levels of ceramides, with notable reductions in CER[NH] and CER[AH] ceramides, as well as the acylceramides CER[EOS] and CER[EOH]; these differences were more apparent in the winter months. Lower ceramide levels reflected an increase in TEWL in acne, compared with healthy skin, which partly resolves in the summer. Individual ceramide species with 18-carbon 6-hydroxysphingosine (H) bases (including CER[N(24)H(18)], CER[N(26)H(18)], CER[A(24)H(18)], CER[A(26)H(18)]) were significantly reduced in acne skin, suggesting that CER[NH] and CER[AH] species may be particularly important in a healthy skin barrier. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Elentner, Andreas; Schmuth, Matthias; Yannoutsos, Nikolaos; Eichmann, Thomas O; Gruber, Robert; Radner, Franz P W; Hermann, Martin; Del Frari, Barbara; Dubrac, Sandrine
2018-01-01
The skin is in daily contact with environmental pollutants, but the long-term effects of such exposure remain underinvestigated. Many of these toxins bind and activate the pregnane X receptor (PXR), a ligand-activated transcription factor that regulates genes central to xenobiotic metabolism. The objective of this work was to investigate the effect of constitutive activation of PXR in the basal layer of the skin to mimic repeated skin exposure to noxious molecules. We designed a transgenic mouse model that overexpresses the human PXR gene linked to the herpes simplex VP16 domain under the control of the keratin 14 promoter. We show that transgenic mice display increased transepidermal water loss and elevated skin pH, abnormal stratum corneum lipids, focal epidermal hyperplasia, activated keratinocytes expressing more thymic stromal lymphopoietin, a T helper type 2/T helper type 17 skin immune response, and increased serum IgE. Furthermore, the cutaneous barrier dysfunction precedes development of the T helper type 2/T helper type 17 inflammation in transgenic mice, thereby mirroring the time course of atopic dermatitis development in humans. Moreover, further experiments suggest increased PXR signaling in the skin of patients with atopic dermatitis when compared with healthy skin. Thus, PXR activation by environmental pollutants may compromise epidermal barrier function and favor an immune response resembling atopic dermatitis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Kuswahyuning, Rina; Roberts, Michael S
2014-06-01
This study sought to understand the mechanism by which the steady state flux of nicotine across the human skin from aqueous solutions is markedly decreased at higher nicotine concentrations. Nicotine's steady state flux through human epidermis and its amount in the stratum corneum for a range of aqueous nicotine solutions was determined using Franz diffusion cells, with the nicotine analysed by high performance liquid chromatography (HPLC). Nicotine's thermodynamic activity in the various solutions was estimated from its partial vapour pressure and stratum corneum hydration was determined using a corneometer. The amount of nicotine retained in the stratum corneum was estimated from the nicotine amount found in individual stratum corneum tape strips and a D-Squame determined weight for each strip. The observed steady state flux of nicotine across human epidermis was found to show a parabolic dependence on nicotine concentration, with the flux proportional to its thermodynamic activity up to a concentration of 48% w/w. The nicotine retention in the stratum corneum showed a similar dependency on concentration whereas the diffusivity of nicotine in the stratum corneum appeared to be concentration independent. This retention, in turn, could be estimated from the extent of stratum corneum hydration and the nicotine concentration in the applied solution and volume of water in the skin. Nonlinear dependency of nicotine skin flux on its concentration results from a dehydration induced decrease in its stratum corneum retention at higher concentration and not dehydration induced changes nicotine diffusivity in the stratum corneum.
Oh, Myoung Jin; Cho, Young Hoon; Cha, So Yoon; Lee, Eun Ok; Kim, Jin Wook; Kim, Sun Ki; Park, Chang Seo
2017-01-01
Ceramides in the human stratum corneum (SC) are a mixture of diverse N-acylated fatty acids (FAs) with different chain lengths. C24 is the major class of FAs of ceramides. However, there are also other classes of ceramides with diverse chain lengths of FAs, and these lengths generally range from C16 to C26. This study aimed to prepare several types of phytoceramide containing diverse chain lengths of N-acylated FAs and compare them with C18-ceramide N-stearoyl phytosphingosine (NP) in terms of their effects on the physiological properties of the SC. We chose natural oils, such as horse fat oil, shea butter, sunflower oil, and a mixture of macadamia nut, shea butter, moringa, and meadowfoam seed oil, as sources of FAs and phytosphingosine as a sphingoid backbone to synthesize diverse phytoceramides. Each phytoceramide exhibited a distinctive formation of the lamellar structure, and their FA profiles were similar to those of their respective natural oil. The skin barrier properties, as analyzed in human skin, clearly demonstrated that all the phytoceramides improved the recovery rate of the damaged SC and enhanced hydration better than C18-ceramide NP did. In conclusion, natural oil-derived phytoceramides could represent a novel class of ceramides for cosmetic applications in the development of an ideal skin barrier moisturizer. PMID:28979153
Dendritic Core-Multishell Nanocarriers in Murine Models of Healthy and Atopic Skin.
Radbruch, Moritz; Pischon, Hannah; Ostrowski, Anja; Volz, Pierre; Brodwolf, Robert; Neumann, Falko; Unbehauen, Michael; Kleuser, Burkhard; Haag, Rainer; Ma, Nan; Alexiev, Ulrike; Mundhenk, Lars; Gruber, Achim D
2017-12-01
Dendritic hPG-amid-C18-mPEG core-multishell nanocarriers (CMS) represent a novel class of unimolecular micelles that hold great potential as drug transporters, e.g., to facilitate topical therapy in skin diseases. Atopic dermatitis is among the most common inflammatory skin disorders with complex barrier alterations which may affect the efficacy of topical treatment.Here, we tested the penetration behavior and identified target structures of unloaded CMS after topical administration in healthy mice and in mice with oxazolone-induced atopic dermatitis. We further examined whole body distribution and possible systemic side effects after simulating high dosage dermal penetration by subcutaneous injection.Following topical administration, CMS accumulated in the stratum corneum without penetration into deeper viable epidermal layers. The same was observed in atopic dermatitis mice, indicating that barrier alterations in atopic dermatitis had no influence on the penetration of CMS. Following subcutaneous injection, CMS were deposited in the regional lymph nodes as well as in liver, spleen, lung, and kidney. However, in vitro toxicity tests, clinical data, and morphometry-assisted histopathological analyses yielded no evidence of any toxic or otherwise adverse local or systemic effects of CMS, nor did they affect the severity or course of atopic dermatitis.Taken together, CMS accumulate in the stratum corneum in both healthy and inflammatory skin and appear to be highly biocompatible in the mouse even under conditions of atopic dermatitis and thus could potentially serve to create a depot for anti-inflammatory drugs in the skin.
Multiscale modeling of transdermal drug delivery
NASA Astrophysics Data System (ADS)
Rim, Jee Eun
2006-04-01
This study addresses the modeling of transdermal diffusion of drugs, to better understand the permeation of molecules through the skin, and especially the stratum corneum, which forms the main permeation barrier of the skin. In transdermal delivery of systemic drugs, the drugs diffuse from a patch placed on the skin through the epidermis to the underlying blood vessels. The epidermis is the outermost layer of the skin and can be further divided into the stratum corneum (SC) and the viable epidermis layers. The SC consists of keratinous cells (corneocytes) embedded in the lipid multi-bilayers of the intercellular space. It is widely accepted that the barrier properties of the skin mostly arises from the ordered structure of the lipid bilayers. The diffusion path, at least for lipophilic molecules, seems to be mainly through the lipid bilayers. Despite the advantages of transdermal drug delivery compared to other drug delivery routes such as oral dosing and injections, the low percutaneous permeability of most compounds is a major difficulty in the wide application of transdermal drug delivery. In fact, many transdermal drug formulations include one or more permeation enhancers that increase the permeation of the drug significantly. During the last two decades, many researchers have studied percutaneous absorption of drugs both experimentally and theoretically. However, many are based on pharmacokinetic compartmental models, in which steady or pseudo-steady state conditions are assumed, with constant diffusivity and partitioning for single component systems. This study presents a framework for studying the multi-component diffusion of drugs coupled with enhancers through the skin by considering the microstructure of the stratum corneum (SC). A multiscale framework of modeling the transdermal diffusion of molecules is presented, by first calculating the microscopic diffusion coefficient in the lipid bilayers of the SC using molecular dynamics (MD). Then a homogenization procedure is performed over a model unit cell of the heterogeneous SC, resulting in effective diffusion parameters. These effective parameters are the macroscopic diffusion coefficients for the homogeneous medium that is "equivalent" to the heterogeneous SC, and thus can be used in finite element simulations of the macroscopic diffusion process.
Hahnel, Elisabeth; Blume-Peytavi, Ulrike; Trojahn, Carina; Kottner, Jan
2017-11-13
Geriatric patients are affected by a range of skin conditions and dermatological diseases, functional limitations and chronic diseases. Skin problems are highly prevalent in elderly populations. Aim of this study was to investigate possible associations between health, functional and cutaneous variables in aged long-term care residents. This observational, cross-sectional, descriptive prevalence study was conducted in a random sample of 10 institutional long-term care facilities in Berlin. In total, n = 223 residents were included. Demographic and functional characteristics, xerosis cutis, incontinence associated dermatitis, pressure ulcers and skin tears were assessed. Stratum corneum hydration, transepidermal water loss, skin surface pH and skin temperature were measured. Data analysis was descriptive and explorative. To explore possible bivariate associations, a correlation matrix was created. The correlation matrix was also used to detect possible collinearity in the subsequent regression analyses. Mean age (n = 223) was 83.6 years, 67.7% were female. Most residents were affected by xerosis cutis (99.1%; 95% CI: 97.7% - 100.0%). The prevalence of pressure ulcers was 9.0% (95% CI: 5.0% - 13.0%), of incontinence associated dermatitis 35.4% (95% CI: 29.9% - 42.2%) and of skin tears 6.3% (95% CI: 3.2% - 9.5%). Biophysical skin parameters were not associated with overall care dependency, but with age and skin dryness. In general, skin dryness and measured skin barrier parameters were associated between arms and legs indicating similar overall skin characteristics of the residents. Prevalence of xerosis cutis, pressure ulcers and skin tears were high, indicating the load of these adverse skin conditions in this population. Only few associations of demographic characteristics, skin barrier impairments and the occurrence of dry skin, pressure ulcers, skin tears and incontinence-associated dermatitis have been detected, that might limit the diagnostic value of skin barrier parameters in this population. Overall, the measured skin barrier parameters seem to have limited diagnostic value for the reported skin conditions except xerosis cutis. This study is registered at https://clinicaltrials.gov/ct2/show/NCT02216526 . Registration date: 8th November 2014.
Pershing, Lynn K; Nelson, Joel L; Corlett, Judy L; Shrivastava, Surendra P; Hare, Don B; Shah, Vinod P
2003-05-01
A new dermatopharmacokinetic (DPK) approach has been proposed for bioequivalence determination of topical drug products by comparing the drug content kinetics in stratum corneum. We sought to establish any correlation between clinical safety/efficacy and DPK approach in bioequivalence determination of tretinoin gel 0.025%. Tretinoin and isotretinoin were quantified in human volar forearm stratum corneum as a function of time with 3 tretinoin gel 0.025% products in 49 patients. Stratum corneum layers were harvested using multiple adhesive disks, which were subsequently extracted and quantified for both isomers by high-performance liquid chromatography. Products with similar composition and therapeutic equivalence were found bioequivalent, and products with different composition and clinical profiles were found bioinequivalent by DPK methodology. There is a direct correlation between DPK parameters in healthy patients and clinical safety/efficacy of tretinoin gel products in patients with acne. Data support the use of DPK parameters and methodology in the bioequivalence assessment of topical tretinoin gel products.
NASA Astrophysics Data System (ADS)
Rajasekaran, Ramu; Bergamo Lopes, Monica; Magrini, Taciana D.; Figueira Lopes Cançado, Ana Clara; Abrahao Martin, Airton
2017-02-01
Stratum Corneum is the outer covering of the body, which serves as a barrier to infection. The composition of the skin changes withexternal environmental factors, such as temperature, sun irradiation, air pollutants, chemical hazards, as well as other factors.Solar radiation,especially IR radiation is being used as medicine for wound healing processes, in cosmetology, in physiotherapy and warming of muscles. Also, it was reported that the IR radiation produces free radicals and the excess production of free radicals causes irreversible damages. It has been reported that heat may be transmitted by IR radiation, which results in raised skin temperature and the chronic heat exposure of human skin may cause alterations. Erythema igne is one such disease known to be caused by chronic heat exposure. Many techniques have been adopted for monitoring the changes in the skin, which includes the tape stripping and biopsy as the primary methodology. However, these in vitro techniques are invasive, time consuming, and may not provide the actual information as in in vivo conditions. Confocal Raman spectroscopy,which is non-invasive and real time was considered as a potential tool for the in vivo analysis of the distribution and characteristics of different metabolic conditions and their variations of the skin. In this regard, we aimed at in vivo characterization of the IR induced changes in the stratum corneum of human volunteers. The results of Raman spectral signatures with respect to the control and IR exposed skin will be discussed.
Muenyi, Clarisse S.; Carrion, Sandra Leon; Jones, Lynn A.; Kennedy, Lawrence H.; Slominski, Andrzej T.
2014-01-01
Background: Development of the epidermal permeability barrier (EPB) is essential for neonatal life. Defects in this barrier are found in many skin diseases such as atopic dermatitis. Objective: We investigated the effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the development and function of the EPB. Methods: Timed-pregnant C57BL/6J mice were gavaged with corn oil or TCDD (10 μg/kg body weight) on gestation day 12. Embryos were harvested on embryonic day (E) 15, E16, E17, and postnatal day (PND) 1. Results: A skin permeability assay showed that TCDD accelerated the development of the EPB, beginning at E15. This was accompanied by a significant decrease in transepidermal water loss (TEWL), enhanced stratification, and formation of the stratum corneum (SC). The levels of several ceramides were significantly increased at E15 and E16. PND1 histology revealed TCDD-induced acanthosis and epidermal hyperkeratosis. This was accompanied by disrupted epidermal tight junction (TJ) function, with increased dye leakage at the terminal claudin-1–staining TJs of the stratum granulosum. Because the animals did not have enhanced rates of TEWL, a commonly observed phenotype in animals with TJ defects, we performed tape-stripping. Removal of most of the SC resulted in a significant increase in TEWL in TCDD-exposed PND1 pups compared with their control group. Conclusions: These findings demonstrate that in utero exposure to TCDD accelerates the formation of an abnormal EPB with leaky TJs, warranting further study of environmental exposures, epithelial TJ integrity, and atopic disease. Citation: Muenyi CS, Leon Carrion S, Jones LA, Kennedy LH, Slominski AT, Sutter CH, Sutter TR. 2014. Effects of in utero exposure of C57BL/6J mice to 2,3,7,8-tetrachlorodibenzo-p-dioxin on epidermal permeability barrier development and function. Environ Health Perspect 122:1052–1058; http://dx.doi.org/10.1289/ehp.1308045 PMID:24904982
Current and future technological advances in transdermal gene delivery.
Chen, Xianfeng
2017-12-19
Transdermal gene delivery holds significant advantages as it is able to minimize the problems of systemic administration such as enzymatic degradation, systemic toxicity, and poor delivery to target tissues. This technology has the potential to transform the treatment and prevention of a range of diseases. However, the skin poses a great barrier for gene delivery because of the "bricks-and-mortar" structure of the stratum corneum and the tight junctions between keratinocytes in the epidermis. This review systematically summarizes the typical physical and chemical approaches to overcome these barriers and facilitate gene delivery via skin for applications in vaccination, wound healing, skin cancers and skin diseases. Next, the advantages and disadvantages of different approaches are discussed and the insights for future development are provided. Copyright © 2017 Elsevier B.V. All rights reserved.
Controlling the hydration of the skin though the application of occluding barrier creams
Sparr, Emma; Millecamps, Danielle; Isoir, Muriel; Burnier, Véronique; Larsson, Åsa; Cabane, Bernard
2013-01-01
The skin is a barrier membrane that separates environments with profoundly different water contents. The barrier properties are assured by the outer layer of the skin, the stratum corneum (SC), which controls the transepidermal water loss. The SC acts as a responding membrane, since its hydration and permeability vary with the boundary condition, which is the activity of water at the outer surface of the skin. We show how this boundary condition can be changed by the application of a barrier cream that makes a film with a high resistance to the transport of water. We present a quantitative model that predicts hydration and water transport in SC that is covered by such a film. We also develop an experimental method for measuring the specific resistance to water transport of films made of occluding barrier creams. Finally, we combine the theoretical model with the measured properties of the barrier creams to predict how a film of cream changes the activity of water at the outer surface of the SC. Using the known variations of SC permeability and hydration with the water activity in its environment (i.e. the relative humidity), we can thus predict how a film of barrier cream changes SC hydration. PMID:23269846
Controlling the hydration of the skin though the application of occluding barrier creams.
Sparr, Emma; Millecamps, Danielle; Isoir, Muriel; Burnier, Véronique; Larsson, Åsa; Cabane, Bernard
2013-03-06
The skin is a barrier membrane that separates environments with profoundly different water contents. The barrier properties are assured by the outer layer of the skin, the stratum corneum (SC), which controls the transepidermal water loss. The SC acts as a responding membrane, since its hydration and permeability vary with the boundary condition, which is the activity of water at the outer surface of the skin. We show how this boundary condition can be changed by the application of a barrier cream that makes a film with a high resistance to the transport of water. We present a quantitative model that predicts hydration and water transport in SC that is covered by such a film. We also develop an experimental method for measuring the specific resistance to water transport of films made of occluding barrier creams. Finally, we combine the theoretical model with the measured properties of the barrier creams to predict how a film of cream changes the activity of water at the outer surface of the SC. Using the known variations of SC permeability and hydration with the water activity in its environment (i.e. the relative humidity), we can thus predict how a film of barrier cream changes SC hydration.
Koga, Hiroyasu; Nanjoh, Yasuko; Toga, Tetsuo; Pillai, Radhakrishnan; Jo, William; Tsuboi, Ryoji
2016-01-01
To compare drug concentrations in the stratum corneum following daily application of luliconazole and terbinafine cream in a guinea pig tinea pedis model. Luliconazole 1% cream or terbinafine 1% cream were topically applied once daily to hind limbs of guinea pigs for 14 days. Drug concentration in stratum corneum of plantar skin was measured by HPLC-UV on days 1, 3, 7, 10, and 14. Separately, creams were applied daily for 5 days to the hind limbs of guinea pigs and skin drug release determined. In addition, drug retention in the stratum corneum was assessed by infecting guinea pigs with Trichophyton mentagrophytes, 14 and 21 days after a single application of luliconazole or terbinafine creams. Luliconazole stratum corneum concentrations were higher than those of terbinafine throughout the study. Concentrations of luliconazole and terbinafine were 71.6μg/g and 36.6μg/g, respectively, after a single application (P<.05), reaching steady state after 10 days. Cumulative release of luliconazole from the stratum corneum was 4.5 times greater than with terbinafine. Unlike terbinafine, no fungal invasion of the stratum corneum was seen 14 days post-treatment with luliconazole. Drug concentrations of luliconazole in the stratum corneum and subsequent release are greater than those achieved with terbinafine and may contribute to clinical efficacy. Luliconazole may also provide greater protection against disease recurrence.
Mochizuki, H; Tadaki, H; Takami, S; Muramatsu, R; Hagiwara, S; Mizuno, T; Arakawa, H
2009-05-01
Atopic dermatitis is a disease of skin barrier dysfunction and outside stimuli can cross the skin barrier. To examine a new method for evaluating the outside to inside skin transparency with a colorimeter and yellow dyes. In study 1, a total of 28 volunteer subjects (24 normal and four with atopic dermatitis) participated. After provocation with yellow dye, the skin colour of all the subjects was measured using a colorimeter. The skin transparency index was calculated by the changes of the skin colour to yellow. Other variables of skin function, including transepidermal water loss (TEWL) and stratum corneum hydration, were also measured. In study 2, the skin transparency index was evaluated for a cohort of 38 patients with atopic dermatitis, 27 subjects with dry skin and 29 healthy controls. In study 1, the measurement of skin colour (b*) using tartrazine showed good results. There was a significant relationship between the skin transparency index with tartrazine and the atopic dermatitis score (P = 0.014). No other measurements of skin function, including the TEWL, were correlated. In study 2, the skin transparency index score obtained with tartrazine in the patients with atopic dermatitis was significantly higher than that of the controls and those with dry skin (P < 0.001 and P = 0.022, respectively). However, the TEWL in patients with atopic dermatitis was not significantly higher than that of patients with dry skin and the TEWL in subjects with dry skin was not higher than that of the controls. This method, which used a colorimeter and food dye, is noninvasive, safe and reliable for the evaluation of out-in skin transparency and can demonstrate the characteristic dysfunction in the skin barrier in patients with atopic dermatitis.
NASA Astrophysics Data System (ADS)
Quintano, Endika; Ganzedo, Unai; Díez, Isabel; Figueroa, Félix L.; Gorostiaga, José M.
2013-10-01
Gelidium corneum (Hudson) J.V. Lamouroux is a very important primary producer in the Cantabrian coastal ecosystem. Some local declines in their populations have been recently detected in the Basque coast. Occurrences of yellowing and an unusual branch breakdown pattern have also been reported for some G. corneum populations. In order to gain further insight into those environmental stressors operating at a local scale, here we investigate if shallow subtidal populations of G. corneum living under potentially different conditions of irradiance (PAR and UVA) and water temperature exhibit differences in some biochemical indicators of stress, namely C:N, antioxidant activity (radical cation of 2,2‧-azino-bis (3-ethylbenzothiazoline-6-sulfonate); ABTS+ assay) and mycosporine-like amino acids (MAAs) (Asterine 330 and Palythine). We hypothesised that G. corneum subjected to higher ambient levels of irradiance and water temperature would show higher C:N ratios, lower antioxidant activity and higher MAA concentrations. Our results partially support this hypothesis. We found that G. corneum exposed to increased levels of irradiance (PAR, UVA) exhibited greater C:N ratios and lower antioxidant activity (higher IC50), whereas no relationship was found regarding MAAs. No differences in biochemical performance in relation to temperature were detected among G. corneum exposed to comparable high light. Similarly, G. corneum growing under lower UVA radiation levels showed no differences in any of the measured biochemical variables with regard to PAR and water temperature. These findings suggest that, among the environmental factors examined, UVA radiation may be an important driver in regulating the along-shore variation in G. corneum biochemical performance. Therefore, the role of irradiance, especially UV radiation, in potential future alterations in Cantabrian G. corneum populations cannot be ruled out as a potential underlying factor.
Pan, Tai-Long; Wang, Pei-Wen; Aljuffali, Ibrahim A; Huang, Chi-Ting; Lee, Chiang-Wen; Fang, Jia-You
2015-04-01
Ambient particulate matters (PMs) are known as inducers that adversely affect a variety of human organs. In this study, we aimed to evaluate the influence of PMs on the permeation of drugs and sunscreens via the skin. The role of skin-barrier properties such as the stratum corneum (SC) and tight junctions (TJs) during the delivery process was explored. This work was conducted using both in vitro and in vivo experiments in pigs to check the responses of the skin to PMs. PMs primarily containing heavy metals (1648a) and polycyclic aromatic hydrocarbons (PAHs, 1649b) were employed to treat the skin. According to the transepidermal water loss (TEWL), 1649b but not 1648a significantly disrupted the SC integrity by 2-fold compared to the PBS control. The immunohistochemistry (IHC) of cytokeratin, filaggrin, and E-cadherin exhibited that 1649b mildly damaged TJs. The cytotoxicity of keratinocytes and skin fibroblasts caused by 1649b was stronger than that caused by 1648a. The 1649b elicited apoptosis via caspase-3 activation. The proteomic profiles showed that PMs upregulated Annexin A2 by >5-fold, which can be a biomarker of PM-induced barrier disruption. We found that the skin uptake of ascorbic acid, an extremely hydrophilic drug, was increased from 74 to 112 μg/g by 1649b treatment. The extremely lipophilic drug tretinoin also showed a 2.6-fold increase of skin accumulation. Oxybenzone and dextran absorption was not affected by PMs. The in vivo dye distribution visualized by fluorescence microscopy had indicated that 1649b intervention promoted permeant partitioning into SC. Caution should be taken in exposing the skin to airborne dust due to its ability to reduce barrier function and increase the risk of drug overabsorption, although this effect was not very marked. Copyright © 2015 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Leroy, Marie; Lefèvre, Thierry; Pouliot, Roxane; Auger, Michèle; Laroche, Gaétan
2015-06-01
Psoriasis is a chronic dermatosis that affects around 3% of the world's population. The etiology of this autoimmune pathology is not completely understood. The barrier function of psoriatic skin is known to be strongly altered, but the structural modifications at the origin of this dysfunction are not clear. To develop strategies to reduce symptoms of psoriasis or adequate substitutes for modeling, a deep understanding of the organization of psoriatic skin at a molecular level is required. Infrared and Raman microspectroscopies have been used to obtain direct molecular-level information on psoriatic and healthy human skin biopsies. From the intensities and positions of specific vibrational bands, the lipid and protein distribution and the lipid order have been mapped in the different layers of the skin. Results showed a similar distribution of lipids and collagen for normal and psoriatic human skin. However, psoriatic skin is characterized by heterogeneity in lipid/protein composition at the micrometer scale, a reduction in the definition of skin layer boundaries and a decrease in lipid chain order in the stratum corneum as compared to normal skin. A global decrease of the structural organization is exhibited in psoriatic skin that is compatible with an alteration of its barrier properties.
Builles, Nicolas; Frouin, Éric; Scott, Dan; Ramos, Jeanne; Marti-Mestres, Gilberte
2015-01-01
For most xenobiotics, the rates of percutaneous absorption are limited by diffusion through the horny layer of skin. However, percutaneous absorption of chemicals may seriously increase when the skin is damaged. The aim of this work was to develop an in vitro representative model of mechanically damaged skins. The epidermal barrier was examined following exposure to a razor, a rotating brush, and a microneedle system in comparison to tape-stripping which acted as a reference. Excised full-thickness skins were mounted on a diffusion chamber in order to evaluate the effect of injuries and to mimic physiological conditions. The transepidermal water loss (TEWL) was greatly increased when the barrier function was compromised. Measurements were made for all the damaged biopsies and observed histologically by microscopy. On human and porcine skins, the tape-stripping application (0 to 40 times) showed a proportional increase in TEWL which highlights the destruction of the stratum corneum. Similar results were obtained for all cosmetic instruments. This is reflected in our study by the nonsignificant difference of the mean TEWL scores between 30 strips and mechanical damage. For a specific appreciation, damaged skins were then selected to qualitatively evaluate the absorption of a chlorogenic acid solution using fluorescence microscopy. PMID:26247021
Natural (Mineral, Vegetable, Coconut, Essential) Oils and Contact Dermatitis.
Verallo-Rowell, Vermén M; Katalbas, Stephanie S; Pangasinan, Julia P
2016-07-01
Natural oils include mineral oil with emollient, occlusive, and humectant properties and the plant-derived essential, coconut, and other vegetable oils, composed of triglycerides that microbiota lipases hydrolyze into glycerin, a potent humectant, and fatty acids (FAs) with varying physico-chemical properties. Unsaturated FAs have high linoleic acid used for synthesis of ceramide-I linoleate, a barrier lipid, but more pro-inflammatory omega-6:-3 ratios above 10:1, and their double bonds form less occlusive palisades. VCO FAs have a low linoleic acid content but shorter and saturated FAs that form a more compact palisade, more anti-inflammatory omega-6:-3 ratio of 2:1, close to 7:1 of olive oil, which disrupts the skin barrier, otherwise useful as a penetration enhancer. Updates on the stratum corneum illustrate how this review on the contrasting actions of NOs provide information on which to avoid and which to select for barrier repair and to lower inflammation in contact dermatitis genesis.
Bicellar systems as vehicle for the treatment of impaired skin.
Rubio, L; Alonso, C; Rodríguez, G; Cócera, M; Barbosa-Barros, L; Coderch, L; de la Maza, A; Parra, J L; López, O
2014-02-01
This study assesses the potential usefulness of bicellar systems to retard the penetration of drugs into damaged skin. The active compound used in this study was diclofenac diethylamine (DDEA). Initially, physicochemical characterisation of the DDEA bicellar systems was performed at different temperatures by small-angle X-ray scattering (SAXS), wide-angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC) techniques. Subsequently, in vitro percutaneous absorption of bicellar systems into in vitro damaged skin was studied. SAXS results indicated a slight decrease in the width of their bilayers with increasing temperature, with no apparent stacking in those systems. WAXS patterns were compatible with an orthorhombic lateral packing of the nanoaggregates. The thermogram obtained by DSC indicated a decrease in gel-to-liquid crystalline transition temperature (Tm) when the drug was included into bicellar systems. A retardation effect for DDEA was detected by in vitro percutaneous absorption studies when DDEA was vehiculised in the bicellar systems with respect to an aqueous solution of the drug. It seems that the use of bicellar systems as a vehicle for topical application of DDEA on skin with an impaired barrier function may inhibit the penetration of DDEA to the systemic level. Such systems may consequently repair stratum corneum barrier function to some extent. The use of these systems could be considered a new alternative strategy to treat topically pathological skin with different drugs. Copyright © 2013 Elsevier B.V. All rights reserved.
The effects of heat on skin barrier function and in vivo dermal absorption.
Oliveira, Gabriela; Leverett, Jesse C; Emamzadeh, Mandana; Lane, Majella E
2014-04-10
Enhanced delivery of ingredients across the stratum corneum (SC) is of great interest for improving the efficacy of topically applied formulations. Various methods for improving dermal penetration have been reported including galvanic devices and micro-needles. From a safety perspective it is important that such approaches do not compromise SC barrier function. This study investigates the influence of topically applied heat in vivo on the dermal uptake and penetration of a model active, allantoin from gel and lotion formulations. A custom designed device was used to deliver 42°C for 30s daily to human subjects after application of two formulations containing allantoin. The results were compared with sites treated with formulations containing no active and no heat, and a control site. In addition to penetration of allantoin, the integrity of the SC was monitored using trans-epidermal water loss (TEWL) measurements. The results showed that just 30s of 42°C topically applied heat was enough to cause significantly more penetration of allantoin from the lotion formulation compared with no application of heat. TEWL data indicated that the integrity of the skin was not compromised by the treatment. However, the application of heat did not promote enhanced penetration of the active from the gel formulation. Vehicle composition is therefore an important factor when considering thermal enhancement strategies for targeting actives to the skin. Copyright © 2014 Elsevier B.V. All rights reserved.
Kikuchi-Numagami, K; Suetake, T; Yanai, M; Takahashi, M; Tanaka, M; Tagami, H
2000-06-01
The skin of golfers' hands provides a suitable model to study the effect of chronic sun exposure, because one of their hands is exposed to the outer environment, especially sunlight, while the other one is always protected by a glove during play. Our purpose was to find out the influence of photodamage on the properties of the skin surface of middle-aged Japanese by using non-invasive methods. We measured hydration state, and water barrier function of the stratum corneum (SC) and the color of the skin of the dorsum of the hands. In a separate study, we evaluated the skin surface contour by using replicas taken from the skin in a slightly stretched or relaxed position. We found a significant decrease in hydration of the skin surface of the exposed skin as compared to that of the protected skin, whereas no such difference was found with transepidermal water loss, a parameter for water barrier function of the SC. Luminance of skin color was also reduced in the sun-exposed skin. Replica analysis revealed that large wrinkles developing in a relaxed position were more prominent on the exposed than on the protected skin, while fine furrows noted in a slightly stretched position were shallower on the former than the latter. The data obtained indicate that the chronically exposed skin of golfers' hands shows morphological and functional changes resulting from long time exposure to the outer environment especially sunlight. Furthermore, bioengineering non-invasive methods are found to be useful to detect early photodamage of the skin in a more quantitative fashion which is rather difficult to demonstrate clinically.
Rizzo, William B.
2014-01-01
Normal fatty aldehyde and alcohol metabolism is essential for epidermal differentiation and function. Long-chain aldehydes are produced by catabolism of several lipids including fatty alcohols, sphingolipids, ether glycerolipids, isoprenoid alcohols and certain aliphatic lipids that undergo α- or ω-oxidation. The fatty aldehyde generated by these pathways is chiefly metabolized to fatty acid by fatty aldehyde dehydrogenase (FALDH, alternately known as ALDH3A2), which also functions to oxidize fatty alcohols as a component of the fatty alcohol:NAD oxidoreductase (FAO) enzyme complex. Genetic deficiency of FALDH/FAO in patients with Sjögren-Larsson syndrome (SLS) results in accumulation of fatty aldehydes, fatty alcohols and related lipids (ether glycerolipids, wax esters) in cultured keratinocytes. These biochemical changes are associated with abnormalities in formation of lamellar bodies in the stratum granulosum and impaired delivery of their precursor membranes to the stratum corneum (SC). The defective extracellular SC membranes are responsible for a leaky epidermal water barrier and ichthyosis. Although lamellar bodies appear to be the pathogenic target for abnormal fatty aldehyde/alcohol metabolism in SLS, the precise biochemical mechanisms are yet to be elucidated. Nevertheless, studies in SLS highlight the critical importance of FALDH and normal fatty aldehyde/alcohol metabolism for epidermal function. PMID:24036493
Sasaki, Takashi; Shiohama, Aiko; Kubo, Akiharu; Kawasaki, Hiroshi; Ishida-Yamamoto, Akemi; Yamada, Taketo; Hachiya, Takayuki; Shimizu, Atsushi; Okano, Hideyuki; Kudoh, Jun; Amagai, Masayuki
2013-11-01
Flaky tail (ma/ma Flg(ft/ft)) mice have a frameshift mutation in the filaggrin (Flg(ft)) gene and are widely used as a model of human atopic dermatitis associated with FLG mutations. These mice possess another recessive hair mutation, matted (ma), and develop spontaneous dermatitis under specific pathogen-free conditions, whereas genetically engineered Flg(-/-) mice do not. We identified and characterized the gene responsible for the matted hair and dermatitis phenotype in flaky tail mice. We narrowed down the responsible region by backcrossing ma/ma mice with wild-type mice and identified the mutation using next-generation DNA sequencing. We attempted to rescue the matted phenotype by introducing the wild-type matted transgene. We characterized the responsible gene product by using whole-mount immunostaining of epidermal sheets. We demonstrated that ma, but not Flg(ft), was responsible for the dermatitis phenotype and corresponded to a Tmem79 gene nonsense mutation (c.840C>G, p.Y280*), which encoded a 5-transmembrane protein. Exogenous Tmem79 expression rescued the matted hair and dermatitis phenotype of Tmem79(ma/ma) mice. Tmem79 was mainly expressed in the trans-Golgi network in stratum granulosum cells in the epidermis in both mice and humans. The Tmem79(ma/ma) mutation impaired the lamellar granule secretory system, which resulted in altered stratum corneum formation and a subsequent spontaneous dermatitis phenotype. The Tmem79(ma/ma) mutation is responsible for the spontaneous dermatitis phenotype in matted mice, probably as a result of impaired lamellar granule secretory system and altered stratum corneum barrier function. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Bozkurt, Alican; Kose, Kivanc; Fox, Christi A.; Dy, Jennifer; Brooks, Dana H.; Rajadhyaksha, Milind
2016-02-01
Study of the stratum corneum (SC) in human skin is important for research in barrier structure and function, drug delivery, and water permeability of skin. The optical sectioning and high resolution of reflectance confocal microscopy (RCM) allows visual examination of SC non-invasively. Here, we present an unsupervised segmentation algorithm that can automatically delineate thickness of the SC in RCM images of human skin in-vivo. We mimic clinicians visual process by applying complex wavelet transform over non-overlapping local regions of size 16 x 16 μm called tiles, and analyze the textural changes in between consecutive tiles in axial (depth) direction. We use dual-tree complex wavelet transform to represent textural structures in each tile. This transform is almost shift-invariant, and directionally selective, which makes it highly efficient in texture representation. Using DT-CWT, we decompose each tile into 6 directional sub-bands with orientations in +/-15, 45, and 75 degrees and a low-pass band, which is the decimated version of the input. We apply 3 scales of decomposition by recursively transforming the low-pass bands and obtain 18 bands of different directionality at different scales. We then calculate mean and variance of each band resulting in a feature vector of 36 entries. Feature vectors obtained for each stack of tiles in axial direction are then clustered using spectral clustering in order to detect the textural changes in depth direction. Testing on a set of 15 RCM stacks produced a mean error of 5.45+/-1.32 μm, compared to the "ground truth" segmentation provided by a clinical expert reader.
Wang, Siyu; Zhang, Guirong; Meng, Huimin; Li, Li
2013-02-01
Evidence demonstrated that sweat was an important factor affecting skin physiological properties. We intended to assess the effects of exercise-induced sweating on the sebum, stratum corneum (SC) hydration and skin surface pH of facial skin. 102 subjects (aged 5-60, divided into five groups) were enrolled to be measured by a combination device called 'Derma Unit SSC3' in their frontal and zygomatic regions when they were in a resting state (RS), at the beginning of sweating (BS), during excessive sweating (ES) and an hour after sweating (AS), respectively. Compared to the RS, SC hydration in both regions increased at the BS or during ES, and sebum increased at the BS but lower during ES. Compared to during ES, Sebum increased in AS but lower than RS. Compared to the RS, pH decreased in both regions at the BS in the majority of groups, and increased in frontal region during ES and in zygomatic region in the AS. There was an increase in pH in both regions during ES in the majority of groups compared to the BS, but a decrease in the AS compared to during ES. The study implies that even in summer, after we sweat excessively, lipid products should be applied locally in order to maintain stability of the barrier function of the SC. The study suggests that after a short term(1 h or less) of self adjustment, excessive sweat from moderate exercise will not impair the primary acidic surface pH of the facial skin. Exercise-induced sweating significantly affected the skin physiological properties of facial region. © 2012 John Wiley & Sons A/S.
Structure of the integument of southern right whales, Eubalaena australis.
Reeb, Desray; Best, Peter Barrington; Kidson, Susan Hillary
2007-06-01
Skin (integument) anatomy reflects adaptations to particular environments. It is hypothesized that cetacean (whale) integument will show unique anatomical adaptations to an aquatic environment, particularly regarding differences in temperature, density, and pressure. In this study, the gross and histological structure of the southern right whale integument is described and compared with terrestrial mammals and previous descriptions of mysticete (baleen whale) and odontocete (toothed whale) species. Samples were taken of the integument of 98 free-swimming southern right whales, Eubalaena australis, and examined by both light and electron microscopy. Results show that three epidermal layers are present, with the stratum corneum being parakeratotic in nature. As in bowhead whales, southern right whales possess an acanthotic epidermis and a notably thick hypodermis, with epidermal rods and extensive papillomatosis. However, unlike bowhead whales, southern right whales possess an uninterrupted hypodermal layer. Surprisingly, the integument of balaenids (right and bowhead mysticetes) in general is more like that of odontocetes than that of the more closely related balaenopterids (rorqual mysticetes). Similarities to odontocetes were found specifically in the collagen fibers in a fat-free zone of the reticular dermal layer and the elastic fibers in the dermal and hypodermal layers. Callosities, a distinctive feature of this genus, have a slightly thicker stratum corneum and are usually associated with hairs that have innervated and vascularized follicles. These hairs may function as vibrissae, thus aiding in aquatic foraging by allowing rapid detection of changes in prey density. Although the thick insulatory integument makes right whales bulky and slow-moving, it is an adaptation for living in cold water. Epidermal thickness, presence of epidermal rods, and callosities may act as barriers against mechanical injury from bodily contact with conspecifics or hard surfaces in the environment (e.g., rocks, ice). 2007 Wiley-Liss, Inc.
Organization of lipids in avian stratum corneum: Changes with temperature and hydration.
Champagne, Alex M; Allen, Heather C; Bautista-Jimenez, Robin C; Williams, Joseph B
2016-02-01
In response to increases in ambient temperature (Ta), many animals increase total evaporative water loss (TEWL) through their skin and respiratory passages to maintain a constant body temperature, a response that compromises water balance. In birds, cutaneous water loss (CWL) accounts for approximately 65% of TEWL at thermoneutral temperatures. Although the proportion of TEWL accounted for by CWL decreases to only 25% at high Ta, the magnitude of CWL still increases, suggesting changes in the barrier function of the skin. The stratum corneum (SC) is composed of flat, dead cells called corneocytes embedded in a matrix of lipids, many of which arrange in layers called lamellae. The classes of lipids that comprise these lamellae, and their attendant physical properties, determine the rate of CWL. We measured CWL at 25, 30, 35, and 40 °C in House Sparrows (Passer domesticus) caught in the winter and summer, and in sparrows acclimated to warm and cold lab environments. We then used Fourier transform infrared spectroscopy to measure lipid-lipid and lipid-water interactions in the SC under different conditions of temperature and hydration, and correlated these results with lipid classes in the SC. As CWL increased at higher temperatures, the amount of gauche defects in lipid alkyl chains increased, indicating that lipid disorder is partially responsible for higher CWL at high temperatures. However, variation in CWL between groups could not be explained by the amount of gauche defects, and this remaining variation may be attributed to greater amounts of cerebrosides in birds with low CWL, as the sugar moieties of cerebrosides lie outside lipid lamellae and form strong hydrogen bonds with water molecules. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Vyumvuhore, Raoul; Tfayli, Ali; Duplan, Hélène; Delalleau, Alexandre; Manfait, Michel; Baillet-Guffroy, Arlette
2013-07-21
Skin hydration plays an important role in the optimal physical properties and physiological functions of the skin. Despite the advancements in the last decade, dry skin remains the most common characteristic of human skin disorders. Thus, it is important to understand the effect of hydration on Stratum Corneum (SC) components. In this respect, our interest consists in correlating the variations of unbound and bound water content in the SC with structural and organizational changes in lipids and proteins using a non-invasive technique: Raman spectroscopy. Raman spectra were acquired on human SC at different relative humidity (RH) levels (4-75%). The content of different types of water, bound and free, was measured using the second derivative and curve fitting of the Raman bands in the range of 3100-3700 cm(-1). Changes in lipidic order were evaluated using νC-C and νC-H. To analyze the effect of RH on the protein structure, we examined in the Amide I region, the Fermi doublet of tyrosine, and the νasymCH3 vibration. The contributions of totally bound water were found not to vary with humidity, while partially bound water varied with three different rates. Unbound water increased greatly when all sites for bound water were saturated. Lipid organization as well as protein deployment was found to be optimal at intermediate RH values (around 60%), which correspond to the maximum of SC water binding capacity. This analysis highlights the relationship between bound water, the SC barrier state and the protein structure and elucidates the optimal conditions. Moreover, our results showed that increased content of unbound water in the SC induces disorder in the structures of lipids and proteins.
Muñoz-Garcia, Agustí; Ro, Jennifer; Brown, Johnie C; Williams, Joseph B
2008-02-01
Because cutaneous water loss (CWL) represents half of total water loss in birds, selection to reduce CWL may be strong in desert birds. We previously found that CWL of house sparrows from a desert population was about 25% lower than that of individuals from a mesic environment. The stratum corneum (SC), the outer layer of the epidermis, serves as the primary barrier to water vapor diffusion through the skin. The avian SC is formed by layers of corneocytes embedded in a lipid matrix consisting of cholesterol, free fatty acids and two classes of sphingolipids, ceramides and cerebrosides. The SC of birds also serves a thermoregulatory function; high rates of CWL keep body temperatures under lethal limits in episodes of heat stress. In this study, we used high-performance liquid chromatography coupled with atmospheric pressure photoionization-mass spectrometry (HPLC/APPI-MS) to identify and quantify over 200 sphingolipids in the SC of house sparrows from desert and mesic populations. Principal components analysis (PCA) led to the hypotheses that sphingolipids in the SC of desert sparrows have longer carbon chains in the fatty acid moiety and are more polar than those found in mesic sparrows. We also tested the association between principal components and CWL in both populations. Our study suggested that a reduction in CWL found in desert sparrows was, in part, the result of modifications in chain length and polarity of the sphingolipids, changes that apparently determine the interactions of the lipid molecules within the SC.
[Updates on the earlier treatments for atopic dermatitis].
Jelen, G
1998-01-01
The GERDA classes have the function of updating our knowledge of dermato-allergology. One of the themes tackled this year was the treatment of atopic dermatitis. Apart from consideration of treatment or exception with cortisone, it seemed to be of interest to find the relevance of "old treatments" for atopic dermatitis, either preventive or symptomatic. Preventive treatment made reference to correction of food factors (diet in infants, removal of maternal allergens, supplementation on fatty acids) and of environmental factors especially the fight against house dust mites by use of anti-mite mattress covers. Miracle treatments of atopy do not always exist. Thus there is often need for, besides local corticosteroid therapy, an external symptomatic treatment where the emphasis is on the struggle against skin microbiology, the fight against pruritic inflammatory conditions and above all the battle against xerosis. Knowledge of the physiology of the stratum corneum gives better understanding of the effect of emollients and moisturizers in restoration of the cutaneous barrier, of which dysfunction is one of the elements of atopic dermatitis.
Wright, Linnzi K M; Lee, Robyn B; Clarkson, Edward D; Lumley, Lucille A
2016-01-01
Nerve agents with low volatility such as VX are primarily absorbed through the skin when released during combat or a terrorist attack. The barrier function of the stratum corneum may be compromised during certain stages of development, allowing VX to more easily penetrate through the skin. However, age-related differences in the lethal potency of VX have yet to be evaluated using the percutaneous (pc) route of exposure. Thus, we estimated the 24 and 48 h median lethal dose for pc exposure to VX in male and female rats during puberty and early adulthood. Pubescent, female rats were less susceptible than both their male and adult counterparts to the lethal effects associated with pc exposure to VX possibly because of hormonal changes during that stage of development. This study emphasizes the need to control for both age and sex when evaluating the toxicological effects associated with nerve agent exposure in the rat model.
Kieć-Swierczyńska, Marta; Chomiczewska, Dorota; Krecisz, Beata
2010-01-01
Wet work is one of the most important risk factors of occupational skin diseases. Exposure of hands to the wet environment for more than 2 hours daily, wearing moisture-proof protective gloves for a corresponding period of time or necessity to wash hands frequently lead to the disruption of epidermal stratum corneum, damage to skin barrier function and induction of irritant contact dermatitis. It may also promote penetration of allergens into the skin and increase the risk of sensitization to occupational allergens. Exposure to wet work plays a significant role in occupations, such as hairdressers and barbers, nurses and other health care workers, cleaning staff, food handlers and metalworkers. It is more common among women because many occupations involving wet work are female-dominated. The incidence of wet-work-induced occupational skin diseases can be reduced by taking appropriate preventive measures. These include identification of high-risk groups, education of workers, organization of work enabling to minimize the exposure to wet work, use of personal protective equipment and skin care after work.
Evaluation of a human bio-engineered skin equivalent for drug permeation studies.
Asbill, C; Kim, N; El-Kattan, A; Creek, K; Wertz, P; Michniak, B
2000-09-01
To test the barrier function of a bio-engineered human skin (BHS) using three model drugs (caffeine, hydrocortisone, and tamoxifen) in vitro. To investigate the lipid composition and microscopic structure of the BHS. The human skin substitute was composed of both epidermal and dermal layers, the latter having a bovine collagen matrix. The permeability of the BHS to three model drugs was compared to that obtained in other percutaneous testing models (human cadaver skin, hairless mouse skin, and EpiDerm). Lipid analysis of the BHS was performed by high performance thin layered chromatography. Histological evaluation of the BHS was performed using routine H&E staining. The BHS mimicked human skin in terms of lipid composition, gross ultrastructure, and the formation of a stratum corneum. However, the permeability of the BHS to caffeine, hydrocortisone, and tamoxifen was 3-4 fold higher than that of human cadaver skin. In summary, the results indicate that the BHS may be an acceptable in vitro model for drug permeability testing.
Genetics Home Reference: Netherton syndrome
... stratum corneum. LEKT1 is also involved in normal hair growth, the development of lymphocytes in the thymus, and ... Loss of LEKT1 function also results in abnormal hair growth and immune dysfunction that leads to allergies, asthma, ...
Anissimov, Yuri G; Zhao, Xin; Roberts, Michael S; Zvyagin, Andrei V
2012-10-01
Fluorescence recovery after photo-bleaching experiments were performed in human stratum corneum in vitro. Fluorescence multiphoton tomography was used, which allowed the dimensions of the photobleached volume to be at the micron scale and located fully within the lipid phase of the stratum corneum. Analysis of the fluorescence recovery data with simplified mathematical models yielded the diffusion coefficient of small molecular weight organic fluorescent dye Rhodamine B in the stratum corneum lipid phase of about (3-6) × 10(-9)cm(2) s(-1). It was concluded that the presented method can be used for detailed analysis of localised diffusion coefficients in the stratum corneum phases for various fluorescent probes. Copyright © 2012 Elsevier B.V. All rights reserved.
Kownatzki, E
2003-12-01
The high rate of hand problems associated with the hand hygiene of medical professions is due to a combination of damaging factors: (1) the removal of barrier lipids by detergent cleaning and alcohol antisepsis followed by a loss of moisturizers and stratum corneum water and (2) the overhydration of the stratum corneum by sweat trapped within gloves. Together the facilitate the invasion of irritants and allergens which elicit inflammatory responses in the dermis. Among the lipids and water-soluble substances removed are natural antibacterials. Their loss leads to increased growth of transient and pathogenic micro-organisms which jeapordizes the very intention of skin hygiene. The kinetics of damage and its repair, and epidemiological evidence suggest that modern synthetic detergents as used in foaming liquid cleansers are the major offender. Conversely, the replacement of detergents with non-detergent emulsion cleansers has been shown to be effective in reducing the prevalence of hand problems among hospital staff. Presently recommended hand antisepsis reduces the risks to patients, but puts the burden on the health care provider. Rather than fighting micro-organisms at the expense of the skin's health, the skin and its own defences should be considered a collaborator in combating infectious diseases.
Champagne, Alex M; Muñoz-Garcia, Agustí; Shtayyeh, Tamer; Tieleman, B Irene; Hegemann, Arne; Clement, Michelle E; Williams, Joseph B
2012-12-15
Intercellular and covalently bound lipids within the stratum corneum (SC), the outermost layer of the epidermis, are the primary barrier to cutaneous water loss (CWL) in birds. We compared CWL and intercellular SC lipid composition in 20 species of birds from desert and mesic environments. Furthermore, we compared covalently bound lipids with CWL and intercellular lipids in the lark family (Alaudidae). We found that CWL increases in birds from more mesic environments, and this increase was related to changes in intercellular SC lipid composition. The most consistent pattern that emerged was a decrease in the relative amount of cerebrosides as CWL increased, a pattern that is counterintuitive based on studies of mammals with Gaucher disease. Although covalently bound lipids in larks did not correlate with CWL, we found that covalently bound cerebrosides correlated positively with intercellular cerebrosides and intercellular cholesterol ester, and intercellular cerebrosides correlated positively with covalently bound free fatty acids. Our results led us to propose a new model for the organization of lipids in the avian SC, in which the sugar moieties of cerebrosides lie outside of intercellular lipid layers, where they may interdigitate with adjacent intercellular cerebrosides or with covalently bound cerebrosides.
Albèr, C; Buraczewska-Norin, I; Kocherbitov, V; Saleem, S; Lodén, M; Engblom, J
2014-10-01
The mammalian skin is a barrier that effectively separates the water-rich interior of the body from the normally dryer exterior. Changes in the external conditions, for example ambient humidity, have been shown to affect the skin barrier properties. The prime objective of this study was to evaluate the effect of water activity of a topical formulation on skin hydration and permeability. A second objective was to gain more understanding on how two commonly used humectants, urea and glycerol, affect skin barrier function in vivo. Simple aqueous formulations were applied under occlusion to the volar forearm of healthy volunteers. Following 4-h exposure, skin water loss (by transepidermal water loss measurements), skin hydration (by Corneometry) and skin permeability (by time to vasodilation due to benzyl nicotinate exposure) were monitored. The results demonstrate that a relatively small change in the water activity of a topical formulation is sufficient to induce considerable effects on stratum corneum hydration and permeability to exogenous substances. Exposing the skin to high water activity leads to increased skin hydration and also increased permeability. Furthermore, urea and glycerol promote skin hydration and permeability even at reduced water activity of the applied formulation. These results highlight the importance of considering the water activity in topically applied formulations and the potential benefit of using humectants. The results may impact formulation optimization in how to facilitate skin hydration and to modify skin permeability by temporarily open and close the skin barrier. © 2014 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Marcott, Curtis; Lo, Michael; Kjoller, Kevin; Domanov, Yegor; Balooch, Guive; Luengo, Gustavo S
2013-06-01
An atomic force microscope (AFM) and a tunable infrared (IR) laser source have been combined in a single instrument (AFM-IR) capable of producing ~200-nm spatial resolution IR spectra and absorption images. This new capability enables IR spectroscopic characterization of human stratum corneum at unprecendented levels. Samples of normal and delipidized stratum corneum were embedded, cross-sectioned and mounted on ZnSe prisms. A pulsed tunable IR laser source produces thermomechanical expansion upon absorption, which is detected through excitation of contact resonance modes in the AFM cantilever. In addition to reducing the total lipid content, the delipidization process damages the stratum corneum morphological structure. The delipidized stratum corneum shows substantially less long-chain CH2 -stretching IR absorption band intensity than normal skin. AFM-IR images that compare absorbances at 2930/cm (lipid) and 3290/cm (keratin) suggest that regions of higher lipid concentration are located at the perimeter of corneocytes in the normal stratum corneum. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Sun, Q; Tran, M; Smith, B; Winefordner, J D
2000-11-01
Laser-induced breakdown spectroscopy (LIBS) was used to evaluate the effect of barrier creams (skin protective creams) on human skin. A Nd: YAG laser at 1,064 nm was used with a pulse energy of 100 mJ. A method was developed to measure the effectiveness of barrier creams against zinc ion absorption from aqueous zinc chloride solution and oil paste zinc oxide, which represent model hydrophilic and lipophilic metal compounds, respectively. Zinc was chosen since it posed no risk to human skin. 3 representative commercial barrier creams advertised as being effective against lipophilic and hydrophilic substances were evaluated by measuring zinc absorbed through the stratum corneum. 4 consecutive skin surface biopsies (SSB) were taken from biceps of the forearms of 6 volunteers at time periods of 0.5 h and 3 h after application of the protective cream. Results were compared with control skin where no barrier cream was used. The zinc atomic emission line at 213.9 nm was selected. Gate delay and gate width time was optimized to obtain the best signal-to-noise ratio (SNR) and precision. This method provided a facile and rapid screening of the effectiveness of skin barrier creams against zinc ion penetration. The barrier creams were shown to provide appreciable protection against the penetration of both ZnCl2 and ZnO into the skin.
A fermented barley and soybean formula enhances skin hydration.
Lee, Sein; Kim, Jong-Eun; Suk, Sujin; Kwon, Oh Wook; Park, Gaeun; Lim, Tae-Gyu; Seo, Sang Gwon; Kim, Jong Rhan; Kim, Dae Eung; Lee, Miyeong; Chung, Dae Kyun; Jeon, Jong Eun; Cho, Dong Woon; Hurh, Byung Serk; Kim, Sun Yeou; Lee, Ki Won
2015-09-01
Skin hydration is one of the primary aims of beauty and anti-aging treatments. Barley (Hordeum vulgare) and soybean (Glycine max) are major food crops, but can also be used as ingredients for the maintenance of skin health. We developed a natural product-based skin treatment using a barley and soybean formula (BS) incorporating yeast fermentation, and evaluated its skin hydration effects as a dietary supplement in a clinical study. Participants ingested a placebo- (n = 33) or BS- (3 g/day) containing drink (n = 32) for 8 weeks. A significant increase in hydration in the BS group as compared to the placebo group was observed on the faces of subjects after 4 and 8 weeks, and on the forearm after 4 weeks. Decreases in stratum corneum (SC) thickness were also observed on the face and forearm. BS enhanced hyaluronan (HA) and skin barrier function in vitro and reduced Hyal2 expression in human dermal fibroblasts (HDF). BS also recovered ultraviolet (UV) B-induced downregulation of HA in HaCaT cells. These results suggest that BS has promising potential for development as a health functional food to enhance skin health.
A fermented barley and soybean formula enhances skin hydration
Lee, Sein; Kim, Jong-Eun; Suk, Sujin; Kwon, Oh Wook; Park, Gaeun; Lim, Tae-gyu; Seo, Sang Gwon; Kim, Jong Rhan; Kim, Dae Eung; Lee, Miyeong; Chung, Dae Kyun; Jeon, Jong Eun; Cho, Dong Woon; Hurh, Byung Serk; Kim, Sun Yeou; Lee, Ki Won
2015-01-01
Skin hydration is one of the primary aims of beauty and anti-aging treatments. Barley (Hordeum vulgare) and soybean (Glycine max) are major food crops, but can also be used as ingredients for the maintenance of skin health. We developed a natural product-based skin treatment using a barley and soybean formula (BS) incorporating yeast fermentation, and evaluated its skin hydration effects as a dietary supplement in a clinical study. Participants ingested a placebo- (n = 33) or BS- (3 g/day) containing drink (n = 32) for 8 weeks. A significant increase in hydration in the BS group as compared to the placebo group was observed on the faces of subjects after 4 and 8 weeks, and on the forearm after 4 weeks. Decreases in stratum corneum (SC) thickness were also observed on the face and forearm. BS enhanced hyaluronan (HA) and skin barrier function in vitro and reduced Hyal2 expression in human dermal fibroblasts (HDF). BS also recovered ultraviolet (UV) B-induced downregulation of HA in HaCaT cells. These results suggest that BS has promising potential for development as a health functional food to enhance skin health. PMID:26388675
Ahad, Abdul; Aqil, Mohd; Ali, Asgar
2016-01-01
The main barrier for transdermal delivery is the obstacle property of the stratum corneum. Many types of chemical penetration enhancers have been used to breach the skin barrier; among the penetration enhancers, terpenes are found as the most highly advanced, safe, and proven category. In the present investigation, the terpenes anethole, menthone, and eugenol were used to enhance the permeation of valsartan through rat skin in vitro and their enhancement mechanism was investigated. Skin permeation studies of valsartan across rat skin in the absence and the presence of terpenes at 1% w/v, 3% w/v, and 5% w/v in vehicle were carried out using the transdermal diffusion cell sampling system across rat skin and samples were withdrawn from the receptor compartment at 1, 2, 3, 4, 6, 8, 10, 12, and 24 h and analysed for drug content by the HPLC method. The mechanism of skin permeation enhancement of valsartan by terpenes treatment was evaluated by Fourier transform infrared spectroscopy (FTIR) analysis and differential scanning calorimetry (DSC). All the investigated terpenes provided a significant (p < 0.01) enhancement in the valsartan flux at a concentration of 1%, and less so at 3% and 5%. The effectiveness of terpenes at 1% concentration was in the following order: anethole > menthone > eugenol with 4.4-, 4.0-, and 3.0-fold enhancement ratio over control, respectively. DSC study showed that the treatment of stratum corneum with anethole shifted endotherm down to lower melting point while FTIR studies revealed that anethole produced maximum decrease in peak height and area than other two terpenes. The investigated terpenes can be successfully used as potential enhancers for the enhancement of skin permeation of lipophilic drug.
Skin permeation and antioxidant efficacy of topically applied resveratrol.
Alonso, Cristina; Martí, M; Barba, C; Carrer, V; Rubio, L; Coderch, L
2017-08-01
The permeation of resveratrol was assessed by in vitro and in vivo experiments 24 h after topical administration. The in vitro profile of resveratrol was assessed by Raman spectroscopy. Human skin permeation was analysed in vivo by the tape stripping method with the progressive removal of the stratum corneum layers using adhesive tape strips. Moreover, the free radical scavenging activity of resveratrol after its topical application was determined using the DPPH assay. The Raman spectra indicated that the topically applied resveratrol penetrates deep into the skin. The results showed high amounts of resveratrol in the different stratum corneum layers close to the surface and a constant lower amount in the upper layers of the viable epidermis. The concentration of resveratrol present in the outermost stratum corneum layers was obtained by tape stripping after in vivo application. The results demonstrated that resveratrol mainly remained in the human stratum corneum layers. After topical application, resveratrol maintained its antiradical activity. The antioxidant efficacy of the compound was higher in the inner layers of the stratum corneum. As these results have demonstrated, topically applied resveratrol reinforces the antioxidant system of the stratum corneum and provides an efficient means of increasing the tissue levels of antioxidants in the human epidermis.
Törmä, Hans; Berne, Berit
2009-12-01
Detergents irritate skin and affect skin barrier homeostasis. In this study, healthy skin was exposed to 1% sodium lauryl sulphate (SLS) in water for 24 h. Biopsies were taken 6 h to 8 days post exposure. Lipid patterns were stained in situ and real-time polymerase chain reaction (PCR) was used to examine mRNA expression of enzymes synthesizing barrier lipids, peroxisome proliferator-activated receptors (PPAR) and lipoxygenases. The lipid pattern was disorganized from 6 h to 3 days after SLS exposure. Concomitant changes in mRNA expression included: (i) reduction, followed by induction, of ceramide-generating beta-glucocerebrosidase, (ii) increase on day 1 of two other enzymes for ceramide biosynthesis and (iii) persistent reduction of acetyl-CoA carboxylase-B, a key enzyme in fatty acid synthesis. Surprisingly, the rate-limiting enzyme in cholesterol synthesis, HMG-CoA reductase, was unaltered. Among putative regulators of barrier lipids synthesis, PPARalpha and PPARgamma exhibited reduced mRNA expression, while PPARbeta/delta and LXRbeta were unaltered. Epidermal lipoxygenase-3, which may generate PPARalpha agonists, exhibited reduced expression. In conclusion, SLS induces reorganization of lipids in the stratum corneum, which play a role in detergents' destruction of the barrier. The changes in mRNA expression of enzymes involved in synthesizing barrier lipids are probably important for the restoration of the barrier.
Huang, Huey-Chun; Chang, Tsong-Min
2008-08-01
Stratum corneum intercellular lipids, such as ceramides, play an important role in the regulation of skin water barrier homeostasis and water-holding capacity. Aim To evaluate the potential water retention capacity of control emulsion and three oil-in-water (o/w) emulsions containing ceramide 1, ceramide 3, or both. Fifteen healthy Asian women (age, 20-30 years) with healthy skin, pretreated with sodium lauryl sulfate (SLS), applied the tested emulsions twice daily over a period of 28 days. Skin hydration and transepidermal water loss (TEWL) values were measured on the indicated days with a Corneometer(R)825 and a TEWAMETER TM210, respectively. The maximum increase in skin humidity was reached after 4 weeks, with values of 21.9 +/- 1.8% and 8.9 +/- 0.9% for emulsion C and control emulsion, respectively. The maximum decrease in TEWL was also reached after 4 weeks, with values of 36.7 +/- 4.7% and 5.1 +/- 0.8% for the same emulsions. It can be concluded that all the tested ceramide-containing emulsions improved skin barrier function when compared with untreated skin. There was some indication that ceramides 1 and 3 contained in emulsion C might exert a beneficial synergistic effect on skin biochemical properties, such as skin hydration and TEWL, and play a key role in the protection mechanism against SLS irritation.
Confocal laser scanning microscopy to estimate nanoparticles' human skin penetration in vitro.
Zou, Ying; Celli, Anna; Zhu, Hanjiang; Elmahdy, Akram; Cao, Yachao; Hui, Xiaoying; Maibach, Howard
2017-01-01
With rapid development of nanotechnology, there is increasing interest in nanoparticle (NP) application and its safety and efficacy on human skin. In this study, we utilized confocal laser scanning microscopy to estimate NP skin penetration. Three different-sized polystyrene NPs marked with red fluorescence were applied to human skin, and Calcium Green 5N was used as a counterstain. Dimethyl sulfoxide (DMSO) and ethanol were used as alternative vehicles for NPs. Tape stripping was utilized as a barrier-damaged skin model. Skin biopsies dosed with NPs were incubated at 4°C or 37°C for 24 hours and imaged using confocal laser scanning microscopy. NPs were localized in the stratum corneum (SC) and hair follicles without penetrating the epidermis/dermis. Barrier alteration with tape stripping and change in incubation temperature did not induce deeper penetration. DMSO enhanced NP SC penetration but ethanol did not. Except with DMSO vehicle, these hydrolyzed polystyrene NPs did not penetrate intact or barrier-damaged human "viable" epidermis. For further clinical relevance, in vivo human skin studies and more sensitive analytic chemical methodology are suggested.
Fourier transform Raman spectroscopic studies of human and animal skins
NASA Astrophysics Data System (ADS)
Barry, Brian W.; Edwards, Howell G.; Williams, Adrian C.
1994-01-01
The stratum corneum is the outermost layer of the skin and provides the principal barrier for the ingress of chemicals and environmental toxins into human and animal tissues. However, human skin has several advantages for the administration of therapeutic agents (transdermal drug delivery), but problems occur with the supply, storage, and biohazardous nature of human tissue. Hence, alternative animal tissues have been prepared to model drug diffusion across human skin but the molecular basis for comparison is lacking. Here, FT-Raman spectra of mammalian (human and pig) and reptilian (snake) skins have been obtained and the structural dissimilarities are correlated with drug diffusion studies across the tissues.
Heisig, M; Lieckfeldt, R; Wittum, G; Mazurkevich, G; Lee, G
1996-03-01
The diffusion equation should be solved for the non-steady-state problem of drug diffusion within a two-dimensional, biphasic stratum corneum membrane having homogeneous lipid and corneocyte phases. A numerical method was developed for a brick-and-mortar SC-geometry, enabling an explicit solution for time-dependent drug concentration within both phases. The lag time and permeability were calculated. It is shown how the barrier property of this model membrane depends on relative phase permeability, corneocyte alignment, and corneocyte-lipid partition coefficient. Additionally, the time-dependent drug concentration profiles within the membrane can be observed during the lag and steady-state phases. The model SC-membrane predicts, from purely morphological principles, lag times and permeabilities that are in good agreement with experimental values. The long lag times and very small permeabilities reported for human SC can only be predicted for a highly-staggered corneocyte geometry and corneocytes that are 1000 times less permeable than the lipid phase. Although the former conclusion is reasonable, the latter is questionable. The elongated, flattened corneocyte shape renders lag time and permeability insensitive to large changes in their alignment within the SC. Corneocyte/lipid partitioning is found to be fundamentally different to SC/donor partitioning, since increasing drug lipophilicity always reduces both lag time and permeability.
Hoffman, D R; Kroll, L M; Basehoar, A; Reece, B; Cunningham, C T; Koenig, D W
2014-02-01
Natural moisturizing factor (NMF) serves as the primary humectant of the stratum corneum (SC), principally comprised of hygroscopic amino acids and derivatives that absorb moisture. Barrier disruption has been shown to differentially affect the levels of specific NMF components, though the kinetics of NMF component restoration following disruption have not been examined. Here, we investigated the impact of barrier disruption caused by surfactant exposure on a subset of NMF components immediately following exposure and out to 10 days post-exposure. Volunteers wore patches containing either 1% w/v sodium lauryl sulphate (SLS) or distilled water on their forearms for 24 h. Measurements of transepidermal water loss, erythema, SC water content and a subset of SC NMF and lipid components were obtained at both sites before treatment, the day of patch removal, and 1, 2, 3, 6, and 10 days following treatment. Most measured NMF components decreased in response to SLS exposure. Exceptions were increases in lactate, ornithine and urea, and no difference in proline levels. In the days following exposure, reduced levels of several NMF components continued at the SLS site; however, all measured NMF components demonstrated equivalence to the vehicle control within 10 days. Histidine pH 7, lactate, ornithine and urea were the first to achieve levels equivalent to the vehicle control site, normalizing within 1 day after patch removal. Results imply that NMF components derived from sweat and urea cycling are least impacted by SLS exposure whereas NMF components derived from degradation of filaggrin and/or other S-100 proteins are most impacted. This implies the restoration of the processes responsible for S-100 protein processing into free amino acids takes several days to return to normal. Further examination of the enzymes involved in S-100 protein processing following barrier disruption would provide insight into the pathway(s) for NMF restoration during SC recovery. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Viciolle, E; Castilho, P; Rosado, C
2012-12-01
Laurus novocanariensis is an endemic plant from the Madeira Island forest that derives a fatty oil, with a strong spicy odour, from its berries that has been used for centuries in traditional medicine to treat skin ailments. This work aimed to investigate the effect of the application of both the oil and its essential oil on normal skin, to assess their safety and potential benefits. Diffusion studies with Franz cells using human epidermal membranes were conducted. The steady-state fluxes of two model molecules through untreated skin were compared with those obtained after a 2-h pre-treatment with either the oil or the essential oil. Additionally, eleven volunteers participated in the in vivo study that was conducted on the forearm and involved daily application of the oil for 5 days. Measurements were performed every day in the treated site with bioengineering methods that measure erythema, irritation and loss of barrier function. Slightly higher steady-state fluxes were observed for both the lipophilic and the hydrophilic molecule when the epidermal membranes were pre-treated. Nevertheless, such differences had no statistical significance, which seems to confirm that neither the oil nor the essential oil impaired the epidermal barrier. Results collected with the Chromameter, the Laser Doppler Flowmeter and the visual scoring are in agreement with those established in the in vitro study. They indicate that the repeated application of the oil did not cause erythema, because the results observed in the first day of the study were maintained throughout the week. Application of the oil did not affect the skin barrier function, because the transepidermal water loss remained constant throughout the study. The stratum corneum hydration was slightly reduced on days 4 and 5. This work shows that both the oil and the essential oil were well tolerated by the skin and did not cause significant barrier impairment or irritation. © 2012 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Promotion of hair growth by newly synthesized ceramide mimetic compound.
Park, Bu-Mahn; Bak, Soon-Sun; Shin, Kyung-Oh; Kim, Minhee; Kim, Daehwan; Jung, Sang-Hun; Jeong, Sekyoo; Sung, Young Kwan; Kim, Hyun Jung
2017-09-09
Based on the crucial roles of ceramides in skin barrier function, use of ceramides or their structural mimetic compounds, pseudoceramides, as cosmetic ingredients are getting more popular. While currently used pseudoceramides are intended to substitute the structural roles of ceramides in stratum corneum, development of bioactive pseudoceramides has been repeatedly reported. In this study, based on the potential involvement of sphingolipids in hair cycle regulation, we investigated the effects of newly synthesized pseudoceramide, bis-oleamido isopropyl alcohol (BOI), on hair growth using cultured human hair follicles and animal models. BOI treatment promoted hair growth in cultured human hair follicles ex vivo and induced earlier conversion of telogen into anagen. Although we did not find a significant enhancement of growth factor expression and follicular cell proliferation, BOI treatment resulted in an increased sphinganine and sphingosine contents as well as increased ceramides contents in cultured dermal papilla (DP) cells. Taken together, our data strongly suggest that biologically active pseudoceramide promotes hair growth by stimulating do novo synthesis of sphingolipids in DP cells. Copyright © 2017 Elsevier Inc. All rights reserved.
Ng, Shiow-Fern; Rouse, Jennifer J; Sanderson, Francis D; Eccleston, Gillian M
2012-03-01
Synthetic membranes are composed of thin sheets of polymeric macromolecules that can control the passage of components through them. Generally, synthetic membranes used in drug diffusion studies have one of two functions: skin simulation or quality control. Synthetic membranes for skin simulation, such as the silicone-based membranes polydimethylsiloxane and Carbosil, are generally hydrophobic and rate limiting, imitating the stratum corneum. In contrast, synthetic membranes for quality control, such as cellulose esters and polysulfone, are required to act as a support rather than a barrier. These synthetic membranes also often contain pores; hence, they are called porous membranes. The significance of Franz diffusion studies and synthetic membranes in quality control studies involves an understanding of the fundamentals of synthetic membranes. This article provides a general overview of synthetic membranes, including a brief background of the history and the common applications of synthetic membranes. This review then explores the types of synthetic membranes, the transport mechanisms across them, and their relevance in choosing a synthetic membrane in Franz diffusion cell studies for formulation assessment purposes.
Novel hydrogel-based preparation-free EEG electrode.
Alba, Nicolas Alexander; Sclabassi, Robert J; Sun, Mingui; Cui, Xinyan Tracy
2010-08-01
The largest obstacles to signal transduction for electroencephalography (EEG) recording are the hair and the epidermal stratum corneum of the skin. In typical clinical situations, hair is parted or removed, and the stratum corneum is either abraded or punctured using invasive penetration devices. These steps increase preparation time, discomfort, and the risk of infection. Cross-linked sodium polyacrylate gel swelled with electrolyte was explored as a possible skin contact element for a prototype preparation-free EEG electrode. As a superabsorbent hydrogel, polyacrylate can swell with electrolyte solution to a degree far beyond typical contemporary electrode materials, delivering a strong hydrating effect to the skin surface. This hydrating power allows the material to increase the effective skin contact surface area through wetting, and noninvasively decrease or bypass the highly resistive barrier of the stratum corneum, allowing for reduced impedance and improved electrode performance. For the purposes of the tests performed in this study, the polyacrylate was prepared both as a solid elastic gel and as a flowable paste designed to penetrate dense scalp hair. The gel can hold 99.2% DI water or 91% electrolyte solution, and the water content remains high after 29 h of air exposure. The electrical impedance of the gel electrode on unprepared human forearm is significantly lower than a number of commercial ECG and EEG electrodes. This low impedance was maintained for at least 8 h (the longest time period measured). When a paste form of the electrode was applied directly onto scalp hair, the impedance was found to be lower than that measured with commercially available EEG paste applied in the same manner. Time-frequency transformation analysis of frontal lobe EEG recordings indicated comparable frequency response between the polyacrylate-based electrode on unprepared skin and the commercial EEG electrode on abraded skin. Evoked potential recordings demonstrated signal-to-noise ratios of the experimental and commercial electrodes to be effectively equivalent. These results suggest that the polyacrylate-based electrode offers a powerful option for EEG recording without scalp preparation.
Lee, Woan-Ruoh; Shen, Shing-Chuan; Sung, Calvin T; Liu, Pei-Ying; Fang, Jia-You
2018-04-26
Most of the investigations into laser-assisted skin permeation have used the intact skin as the permeation barrier. Whether the laser is effective in improving cutaneous delivery via barrier-defective skin is still unclear. In this study, ablative (Er:YAG) and non-ablative (Er:glass) lasers were examined for the penetration of peptide and siRNA upon topical application on in vitro skin with a healthy or disrupted barrier. An enhanced peptide flux (6.9 fold) was detected after tape stripping of the pig stratum corneum (SC). A further increase of flux to 11.7 fold was obtained after Er:YAG laser irradiation of the SC-stripped skin. However, the application of Er:glass modality did not further raise the flux via the SC-stripped skin. A similar trend was observed in the case of psoriasiform skin. Conversely, the flux was enhanced 3.7 and 2.6 fold after treatment with the Er:YAG and the Er:glass laser on the atopic dermatitis (AD)-like skin. The 3-D skin structure captured by confocal microscopy proved the distribution of peptide and siRNA through the microchannels and into the surrounding tissue. The fractional laser was valid for ameliorating macromolecule permeation into barrier-disrupted skin although the enhancement level was lower than that of normal skin.
Vyumvuhore, Raoul; Tfayli, Ali; Biniek, Krysta; Duplan, Hélène; Delalleau, Alexandre; Manfait, Michel; Dauskardt, Reinhold; Baillet-Guffroy, Arlette
2015-03-01
Proper hydration of the stratum corneum (SC) is important for maintaining skin's vital functions. Water loss causes development of drying stresses, which can be perceived as 'tightness', and plays an important role in dry skin damage processes. However, molecular structure modifications arising from water loss and the subsequent development of stress has not been established. We investigated the drying stress mechanism by studying, ex vivo, the behaviors of the SC components during water desorption from initially fully hydrated samples using Raman spectroscopy. Simultaneously, we measure the SC mechanical stress with a substrate curvature instrument. Very good correlations of water loss to the mechanical stress of the stratum corneum were obtained, and the latter was found to depend mainly on the unbound water fraction. In addition to that, the water loss is accompanied with an increase of lipids matrix compactness characterized by lower chain freedom, while protein structure showed an increase in amount of α-helices, a decline in α-sheets, and an increase in folding in the tertiary structure of keratin. The drying process of SC involves a complex interplay of water binding, molecular modifications, and mechanical stress. This article provides a better understanding of the molecular mechanism associated to SC mechanics. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lee, Woan-Ruoh; Shen, Shing-Chuan; Aljuffali, Ibrahim A; Li, Yi-Ching; Fang, Jia-You
2014-11-01
Alopecia usually cannot be cured because of the available drug therapy being unsatisfactory. To improve the efficiency of treatment, erbium-yttrium-aluminum-garnet (Er-YAG) laser treatment was conducted to facilitate skin permeation of antialopecia drugs such as minoxidil (MXD), diphencyprone (DPCP), and peptide. In vitro and in vivo percutaneous absorption experiments were carried out by using nude mouse skin and porcine skin as permeation barriers. Fluorescence and confocal microscopies were used to visualize distribution of permeants within the skin. Laser ablation at a depth of 6 and 10 μm enhanced MXD skin accumulation twofold to ninefold depending on the skin barriers selected. DPCP absorption showed less enhancement by laser irradiation as compared with MXD. An ablation depth of 10 μm could increase the peptide flux from zero to 4.99 and 0.33 μg cm(-2) h(-1) for nude mouse skin and porcine skin, respectively. The laser treatment also promoted drug uptake in the hair follicles, with DPCP demonstrating the greatest enhancement (sixfold compared with the control). The imaging of skin examined by microscopies provided evidence of follicular and intercellular delivery assisted by the Er-YAG laser. Besides the ablative effect of removing the stratum corneum, the laser may interact with sebum to break up the barrier function, increasing the skin delivery of antialopecia drugs. The minimally invasive, well-controlled approach of laser-mediated drug permeation offers a potential way to treat alopecia. This study's findings provide the basis for the first report on laser-assisted delivery of antialopecia drugs. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
DFD-01 Reduces Transepidermal Water Loss and Improves Skin Hydration and Flexibility.
Jackson, J Mark; Grove, Gary L; Allenby, Kent; Houser, Tim
2017-12-01
In plaque psoriasis, the benefit of topical steroids is well established. The vehicle formulation of topical steroids may also provide benefit in addition to the effects of the steroid itself. DFD-01 (betamethasone dipropionate spray, 0.05%) is a formulation composed of a topical steroid in an emollient-like vehicle that enhances penetration to the target site of inflammation in the skin. The aim of this study was to assess the effect of DFD-01 and its vehicle on skin hydration and barrier function in compromised skin and to evaluate its effect on flexibility in healthy skin. Eighteen healthy white volunteers were enrolled in each of two studies. In Study 1, dry shaving of volar forearms created a compromised skin barrier, through which transepidermal water loss (TEWL) was measured using an evaporimeter. Capacitance, a measure of epidermal hydration, was also measured at baseline and at 1, 2 and 4 h after application of DFD-01 or its vehicle formulation. In Study 2, intact skin flexibility was tested with a cutometer before and at 1, 2 and 4 h after application of DFD-01 or vehicle. In Study 1, both DFD-01 and its vehicle were effective at reducing TEWL through the compromised stratum corneum. Capacitance measurements confirmed this finding; razor-chafed skin treated with either DFD-01 or vehicle exhibited levels of skin hydration similar to unshaved control skin. Study 2 found softening and greater flexibility of normal skin treated with either DFD-01 or vehicle compared with nontreated control skin samples. These tests suggest that the DFD-01 formulation and its vehicle are each effective at retaining moisture within a damaged skin barrier and for softening and increasing the flexibility of intact skin. Dr. Reddy's Laboratories.
Defects of filaggrin-like proteins in both lesional and nonlesional atopic skin.
Pellerin, Laurence; Henry, Julie; Hsu, Chiung-Yueh; Balica, Stéfana; Jean-Decoster, Catherine; Méchin, Marie-Claire; Hansmann, Britta; Rodriguez, Elke; Weindinger, Stefan; Schmitt, Anne-Marie; Serre, Guy; Paul, Carle; Simon, Michel
2013-04-01
Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by a disturbed epidermal barrier. In a subset of patients, this is explained by nonsense mutations in the gene encoding filaggrin (FLG). We sought to evaluate the respective role of FLG mutations and proinflammatory cytokines and to assess the expression of FLG, hornerin (HRNR), and FLG2, 2 FLG-like proteins, which are involved in epidermal barrier functions, in normal skin and both lesional and nonlesional skin of patients with AD. An FLG-genotyped cohort of 73 adults with AD and 73 aged-matched control subjects was analyzed by using immunohistochemistry and immunoblotting. Normal primary human keratinocytes were differentiated in either the absence or presence of IL-4, IL-13, and IL-25. Compared with control subjects, FLG, HRNR, and FLG2 were detected at significantly lower levels in the skin of patients with AD, irrespective of their FLG genotype. The reduction was greater in lesional compared with nonlesional skin. In addition, the proFLG/FLG ratio was found to be higher in the skin of wild-type patients than in control subjects. Cytokine treatment of keratinocytes induced a dramatic reduction in FLG, FLG2, and HRNR expression both at the mRNA and protein levels. The stratum corneum of lesional but also clinically unaffected skin of adults with AD is abnormal, with reduced expression of FLG and FLG-like proteins. In addition to nonsense mutations, proinflammatory cytokines and some defects in the proFLG processing can contribute to the FLG downregulation. Our study suggests that skin inflammation reduces the expression of FLG-like proteins, contributing to the AD-related epidermal barrier dysfunction. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
Ultrasound mediated transdermal drug delivery.
Azagury, Aharon; Khoury, Luai; Enden, Giora; Kost, Joseph
2014-06-01
Transdermal drug delivery offers an attractive alternative to the conventional drug delivery methods of oral administration and injections. However, the stratum corneum serves as a barrier that limits the penetration of substances to the skin. Application of ultrasound (US) irradiation to the skin increases its permeability (sonophoresis) and enables the delivery of various substances into and through the skin. This review presents the main findings in the field of sonophoresis in transdermal drug delivery as well as transdermal monitoring and the mathematical models associated with this field. Particular attention is paid to the proposed enhancement mechanisms and future trends in the fields of cutaneous vaccination and gene therapy. Copyright © 2014 Elsevier B.V. All rights reserved.
Yeom, Mijung; Kim, Sung-Hun; Lee, Bombi; Han, Jeong-Jun; Chung, Guk Hoon; Choi, Hee-Don; Lee, Hyejung; Hahm, Dae-Hyun
2012-08-01
Irritant contact dermatitis (ICD) is an inflammatory skin disease triggered by exposure to a chemical that is toxic or irritating to the skin. A major characteristic of chronic ICD is an inflammatory dry-skin condition with associated itching. Although glucosylceramide (GlcCer) is known to improve the skin barrier function, its mechanism of action is unknown. Using a mouse model of oxazolone-induced chronic ICD, this study investigated the effects of oral administration of GlcCer on inflammatory dry skin. Chronic ICD was induced by repeated application of oxazolone in mice. GlcCer was orally administered once daily throughout the elicitation phase. The beneficial efficacy of GlcCer on cutaneous inflammation was evaluated by assessing ear thickness, lymph node weight, histological findings, and mRNA expression of pro-inflammatory cytokines such as IL-1β and IL-6. Additionally, parameters of the itch-associated response, including scratching behavior, water content of the skin, and aquaporin-3 levels in the lesional ear, were measured. Oral GlcCer administration significantly suppressed mRNA expression of the pro-inflammatory cytokines IL-1β and IL-6. GlcCer also suppressed ear swelling, lymph node weight gains, and infiltration of leukocytes and mast cells in ICD mice. In oxazolone-induced ICD mice, GlcCer significantly inhibited irritant-related scratching behavior and dehydration of the stratum corneum, and decreased aquaporin-3 expression. Our results indicate that GlcCer suppressed inflammation not only by inhibiting cytokine production but also by repairing the skin barrier function, suggesting a potential beneficial role for GlcCer in the improvement of chronic ICD. Copyright © 2012 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
Biniek, Krysta; Tfayli, Ali; Vyumvuhore, Raoul; Quatela, Alessia; Galliano, Marie-Florence; Delalleau, Alexandre; Baillet-Guffroy, Arlette; Dauskardt, Reinhold H; Duplan, Helene
2018-06-22
An important aspect of the biomechanical behavior of the stratum corneum (SC) is the drying stresses that develop with water loss. These stresses act as a driving force for damage in the form of chapping and cracking. Betasitosterol is a plant sterol with a structure similar to cholesterol, a key component in the intercellular lipids of the outermost layer of human skin, the SC. Cholesterol plays an important role in stabilizing the SC lipid structure, and altered levels of cholesterol have been linked with SC barrier abnormalities. Betasitosterol is currently applied topically to skin for treatment of wounds and burns. However, it is unknown what effect betasitosterol has on the biomechanical barrier function of skin. Here, by analyzing the drying stress profile of SC generated during a kinetics of dehydration, we show that betasitosterol, in combination with two emollient molecules, isocetyl stearoyl stearate (ISS) and glyceryl tri-2-ethylhexanoate (GTEH), causes a significant modulation of the drying stress behavior of the SC by reducing both the maximal peak stress height and average plateau of the drying stress profile. Raman spectra analyses demonstrate that the combination of betasitosterol with the two emollients, ISS and GTEH, allows a high water retention capacity within the SC, while the lipid conformational order by increasing the amount of trans conformers. Our study highlights the advantage of combining a biomechanical approach together with Raman spectroscopy in engineering a suitable combination of molecules for alleviating dryness and dry skin damage. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Passive and iontophoretic transport through the skin polar pathway.
Li, S K; Peck, K D
2013-01-01
The purpose of the present article is to briefly recount the contributions of Prof. William I. Higuchi to the area of skin transport. These contributions include developing fundamental knowledge of the barrier properties of the stratum corneum, mechanisms of skin transport, concentration gradient across skin in topical drug applications that target the viable epidermal layer, and permeation enhancement by chemical and electrical means. The complex and changeable nature of the skin barrier makes it difficult to assess and characterize the critical parameters that influence skin permeation. The systematic and mechanistic approaches taken by Dr. Higuchi in studying these parameters provided fundamental knowledge in this area and had a measured and lasting influence upon this field of study. This article specifically reviews the validation and characterization of the polar permeation pathway, the mechanistic model of skin transport, the influence of the dermis on the target skin concentration concept, and iontophoretic transport across the polar pathway of skin including the effects of electroosmosis and electropermeabilization. © 2013 S. Karger AG, Basel.
Deciphering the Complexities of Atopic Dermatitis: Shifting Paradigms in Treatment Approaches
Leung, Donald Y. M.; Guttman-Yassky, Emma
2014-01-01
Atopic dermatitis (AD) is the most common chronic inflammatory skin disease. It often precedes the development of food allergy and asthma. Recent insights into AD reveal abnormalities in terminal differentiation of the epidermal epithelium leading to a defective stratum corneum, which allows enhanced allergen penetration and systemic IgE sensitization. Atopic skin is also predisposed to colonization or infection by pathogenic microbes, most notably Staphylococcus aureus and herpes simplex virus (HSV). Causes of this abnormal skin barrier are complex and driven by a combination of genetic, environmental and immunologic factors. These factors likely account for the heterogeneity of AD onset, severity and natural history of this skin disease. Recent studies suggest prevention of AD can be achieved by early interventions protecting the skin barrier. Onset of lesional AD requires effective control of local and systemic immune activation for optimal management. Early intervention may improve long term outcomes for AD and reduce the systemic allergen sensitization leading to associated allergic diseases in the gastrointestinal and respiratory tract. PMID:25282559
Matsumura, Hajime; Imai, Ryutaro; Ahmatjan, Niyaz; Ida, Yukiko; Gondo, Masahide; Shibata, Dai; Wanatabe, Katsueki
2014-02-01
In recent years, adhesive wound dressings have been increasingly applied postoperatively because of their ease of use as they can be kept in place without having to cut and apply surgical tapes and they can cover a wound securely. However, if a wound dressing strongly adheres to the wound, a large amount of stratum corneum is removed from the newly formed epithelium or healthy periwound skin. Various types of adhesives are used on adhesive wound dressings and the extent of skin damage depends on how much an adhesive sticks to the wound or skin surface. We quantitatively determined and compared the amount of stratum corneum removed by eight different wound dressings including polyurethane foam using acrylic adhesive, silicone-based adhesive dressing, composite hydrocolloid and self-adhesive polyurethane foam in healthy volunteers. The results showed that wound dressings with silicone adhesive and self-adhesive polyurethane foam removed less stratum corneum, whereas composite hydrocolloid and polyurethane foam using acrylic adhesive removed more stratum corneum. © 2012 The Authors. International Wound Journal © 2012 Medicalhelplines.com Inc and John Wiley & Sons Ltd.
Confocal laser scanning microscopy to estimate nanoparticles’ human skin penetration in vitro
Elmahdy, Akram; Cao, Yachao; Hui, Xiaoying; Maibach, Howard
2017-01-01
Objective With rapid development of nanotechnology, there is increasing interest in nanoparticle (NP) application and its safety and efficacy on human skin. In this study, we utilized confocal laser scanning microscopy to estimate NP skin penetration. Methods Three different-sized polystyrene NPs marked with red fluorescence were applied to human skin, and Calcium Green 5N was used as a counterstain. Dimethyl sulfoxide (DMSO) and ethanol were used as alternative vehicles for NPs. Tape stripping was utilized as a barrier-damaged skin model. Skin biopsies dosed with NPs were incubated at 4°C or 37°C for 24 hours and imaged using confocal laser scanning microscopy. Results NPs were localized in the stratum corneum (SC) and hair follicles without penetrating the epidermis/dermis. Barrier alteration with tape stripping and change in incubation temperature did not induce deeper penetration. DMSO enhanced NP SC penetration but ethanol did not. Conclusion Except with DMSO vehicle, these hydrolyzed polystyrene NPs did not penetrate intact or barrier-damaged human “viable” epidermis. For further clinical relevance, in vivo human skin studies and more sensitive analytic chemical methodology are suggested. PMID:29184403
Electrochemical monitoring of native catalase activity in skin using skin covered oxygen electrode.
Nocchi, Sarah; Björklund, Sebastian; Svensson, Birgitta; Engblom, Johan; Ruzgas, Tautgirdas
2017-07-15
A skin covered oxygen electrode, SCOE, was constructed with the aim to study the enzyme catalase, which is part of the biological antioxidative system present in skin. The electrode was exposed to different concentrations of H 2 O 2 and the amperometric current response was recorded. The observed current is due to H 2 O 2 penetration through the outermost skin barrier (referred to as the stratum corneum, SC) and subsequent catalytic generation of O 2 by catalase present in the underlying viable epidermis and dermis. By tape-stripping the outermost skin layers we demonstrate that SC is a considerable diffusion barrier for H 2 O 2 penetration. Our experiments also indicate that skin contains a substantial amount of catalase, which is sufficient to detoxify H 2 O 2 that reaches the viable epidermis after exposure of skin to high concentrations of peroxide (0.5-1mM H 2 O 2 ). Further, we demonstrate that the catalase activity is reduced at acidic pH, as compared with the activity at pH 7.4. Finally, experiments with often used penetration enhancer thymol shows that this compound interferes with the catalase reaction. Health aspect of this is briefly discussed. Summarizing, the results of this work show that the SCOE can be utilized to study a broad spectrum of issues involving the function of skin catalase in particular, and the native biological antioxidative system in skin in general. Copyright © 2017 Elsevier B.V. All rights reserved.
Microemulsion and Microemulsion-Based Gels for Topical Antifungal Therapy with Phytochemicals.
Boonme, Prapaporn; Kaewbanjong, Jarika; Amnuaikit, Thanaporn; Andreani, Tatiana; Silva, Amélia M; Souto, Eliana B
2016-01-01
Skin fungal infections are regular injuries suffered by people living in tropical areas. Most common pathogens are Trichophyton, Microsporum and Epidermophyton which can cause skin lesions in many parts of body. Topical antifungal phytochemicals are commonly used to avoid systemic adverse events and are more convenient for patient application than those administered by other routes. However, the effectiveness of topical treatments in eradicating fungal infection is more limited since the stratum corneum acts as the skin barrier, resulting in long treatment duration and low patient's compliance. The goal of this work is to identify optimized drug delivery systems to improve topic clinical efficacy. Microemulsions i.e. liquid dispersions of oil and water stabilized with an interfacial film of surfactant are well known drug delivery systems. A thickening agent may be included to form microemulsion-based gels to increase skin adhesion. Microemulsions and microemulsion-based gels can be loaded with several hydrophilic and lipophilic drugs because they are composed of both water and oil phases. Microemulsions and microemulsion-based gels can also be used for the delivery of many drugs including antifungal drugs through stratum corneum due to their capacity to act as skin penetration enhancement. In addition to a comprehensive review of microemulsion and microemulsion-based gels as suitable carriers for skin delivery of various antifungal drugs, this review also aims to discuss the delivery of antifungal phytochemicals.
Dapic, Irena; Kobetic, Renata; Brkljacic, Lidija; Kezic, Sanja; Jakasa, Ivone
2018-02-01
The free fatty acids (FFAs) are one of the major components of the lipids in the stratum corneum (SC), the uppermost layer of the skin. Relative composition of FFAs has been proposed as a biomarker of the skin barrier status in patients with atopic dermatitis (AD). Here, we developed an LC-ESI-MS/MS method for simultaneous quantification of a range of FFAs with long and very long chain length in the SC collected by adhesive tape (D-Squame). The method, based on derivatization with 2-bromo-1-methylpyridinium iodide and 3-carbinol-1-methylpyridinium iodide, allowed highly sensitive detection and quantification of FFAs using multiple reaction monitoring. For the quantification, we applied a surrogate analyte approach and internal standardization using isotope labeled derivatives of FFAs. Adhesive tapes showed the presence of several FFAs, which are also present in the SC, a problem encountered in previous studies. Therefore, the levels of FFAs in the SC were corrected using C12:0, which was present on the adhesive tape, but not detected in the SC. The method was applied to SC samples from patients with atopic dermatitis and healthy subjects. Quantification using multiple reaction monitoring allowed sufficient sensitivity to analyze FFAs of chain lengths C16-C28 in the SC collected on only one tape strip. Copyright © 2017 John Wiley & Sons, Ltd.
Pappinen, Sari; Hermansson, Martin; Kuntsche, Judith; Somerharju, Pentti; Wertz, Philip; Urtti, Arto; Suhonen, Marjukka
2008-04-01
The present report is a part of our continuing efforts to explore the utility of the rat epidermal keratinocyte organotypic culture (ROC) as an alternative model to human skin in transdermal drug delivery and skin irritation studies of new chemical entities and formulations. The aim of the present study was to compare the stratum corneum lipid content of ROC with the corresponding material from human skin. The lipid composition was determined by thin-layer chromatography (TLC) and mass-spectrometry, and the thermal phase transitions of stratum corneum were studied by differential scanning calorimetry (DSC). All major lipid classes of the stratum corneum were present in ROC in a similar ratio as found in human stratum corneum. Compared to human skin, the level of non-hydroxyacid-sphingosine ceramide (NS) was increased in ROC, while alpha-hydroxyacid-phytosphingosine ceramide (AP) and non-hydroxyacid-phytosphingosine ceramides (NP) were absent. Also some alterations in fatty acid profiles of ROC ceramides were noted, e.g., esterified omega-hydroxyacid-sphingosine contained increased levels of oleic acid instead of linoleic acid. The fraction of lipids covalently bound to corneocyte proteins was distinctly lower in ROC compared to human skin, in agreement with the results from DSC. ROC underwent a lipid lamellar order to disorder transition (T2) at a slightly lower temperature (68 degrees C) than human skin (74 degrees C). These differences in stratum corneum lipid composition and the thermal phase transitions may explain the minor differences previously observed in drug permeation between ROC and human skin.
Quantification of skin penetration of antioxidants of varying lipophilicity.
Abla, M J; Banga, A K
2013-02-01
Antioxidants play a vital role in protecting the skin from environmental distress. As the skin is constantly exposed to harmful UV radiation, endogenous antioxidants present in the superficial layers of the skin neutralize reactive oxygen species. Over time, antioxidants become depleted and loss their protective effect on the skin. Therefore, supplementing skin with topical antioxidant can help replenish this loss and fight the oxidative stress. The objective of this study was to deliver antioxidants topically and quantify the amount permeated in the stratum corneum and underlying skin. Polyphenols (catechin, resveratrol and curcumin) and vitamin (retinol) with various lipophilic properties were delivered via porcine ear skin, using propylene glycol as a vehicle. The amount in the stratum corneum and underlying skin was quantified using tape stripping and skin extraction methods, respectively, and samples were analysed via HPLC. All four antioxidants permeated into the skin from the propylene glycol vehicle. The order of the amount of antioxidant in the stratum corneum was catechin > resveratrol~ retinol> curcumin, whereas that in the underlying skin was retinol > catechin~ resveratrol~ curcumin. Of the total amount of polyphenols in the skin, approximately 90% was retained in the stratum corneum whereas 10% was quantified in the underlying skin. In contrast, 10% of retinol was retained in the stratum corneum whereas 90% permeated in the underlying skin. Polyphenols (catechin, resveratrol and curcumin) showed high concentration in the stratum corneum whereas retinol showed high accumulation in the underlying layers of the skin. © 2012 The Authors ICS © 2012 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Leite-Silva, Vânia R; Liu, David C; Sanchez, Washington Y; Studier, Hauke; Mohammed, Yousuf H; Holmes, Amy; Becker, Wolfgang; Grice, Jeffrey E; Benson, Heather Ae; Roberts, Michael S
2016-05-01
We assessed the effects of flexing and massage on human skin penetration and toxicity of topically applied coated and uncoated zinc oxide nanoparticles (˜75 nm) in vivo. Noninvasive multiphoton tomography with fluorescence lifetime imaging was used to evaluate the penetration of nanoparticles through the skin barrier and cellular apoptosis in the viable epidermis. All nanoparticles applied to skin with flexing and massage were retained in the stratum corneum or skin furrows. No significant penetration into the viable epidermis was seen and no cellular toxicity was detected. Exposure of normal in vivo human skin to these nanoparticles under common in-use conditions of flexing or massage is not associated with significant adverse events.
Zaid Alkilani, Ahlam; McCrudden, Maelíosa T.C.; Donnelly, Ryan F.
2015-01-01
The skin offers an accessible and convenient site for the administration of medications. To this end, the field of transdermal drug delivery, aimed at developing safe and efficacious means of delivering medications across the skin, has in the past and continues to garner much time and investment with the continuous advancement of new and innovative approaches. This review details the progress and current status of the transdermal drug delivery field and describes numerous pharmaceutical developments which have been employed to overcome limitations associated with skin delivery systems. Advantages and disadvantages of the various approaches are detailed, commercially marketed products are highlighted and particular attention is paid to the emerging field of microneedle technologies. PMID:26506371
Goto, Norio; Morita, Yutaka; Terada, Katsuhide
2016-01-01
The transfer of urea from a urea formulation to the stratum corneum varies with the formulation base and form, and impacts the formulation's therapeutic effect. Consequently, determining the amount of urea transferred is essential for developing efficient formulations. This study assessed a simple method for measuring the amount of urea accumulated in the stratum corneum. Conventional methods rely on labeling urea used in the formulation with radiocarbon ((14)C) or other radioactive isotopes (RIs), retrieving the transferred urea from the stratum corneum by tape stripping, then quantitating the urea. The handling and use of RIs, however, is subject to legal regulation and can only be performed in sanctioned facilities, so methods employing RIs are neither simple nor convenient. We therefore developed a non-radiolabel method "tape stripping-colorimetry (T-C)" that combines tape stripping with colorimetry (urease-glutamate dehydrogenase (GLDH)) for the quantitative measurement of urea. Urea in the stratum corneum is collected by tape stripping and measured using urease-GLDH, which is commonly used to measure urea nitrogen in blood tests. The results indicate that accurate urea measurement by the T-C method requires the application of 1400 mg (on hairless rats) of a 20% urea solution on a 50 cm(2) (5×10 cm) area. Further, we determined the amount of urea accumulated in the stratum corneum using formulations with different urea concentrations, and the time course of urea accumulation from formulations differing in the rate of urea crystallization. We demonstrate that the T-C method is simple and convenient, with no need for (14)C or other RIs.
Soybean-fragmented proteoglycans against skin aging.
Barba, Clara; Alonso, Cristina; Sánchez, Isabel; Suñer, Elisa; Sáez-Martín, L C; Coderch, Luisa
2017-08-01
The majority of age-dependent skin changes happen in the dermis layer inducing changes in skin collagen and in the proteoglycans. The main aim of this work is to study the efficacy of a Proteum serum, containing soybean-fragmented proteoglycans, against skin aging. In vitro tests were performed to evaluate the Proteum serum ability on activating the production of collagen and proteoglycans. An in vivo long-term study was performed to determine the efficacy of the Proteum serum when applied on skin. Protection of healthy skin against detergent-induced dermatitis and the antioxidant properties of the applied Proteum serum were also studied. The in vitro tests demonstrated that the Proteum serum was able to elevate the production of molecules which are essential for supporting the dermal extracellular matrix organization. These results were correlated by the in vivo measurements where a clear trend on improving the measured skin parameters due to the Proteum serum application was found. A beneficial effect of the Proteum serum was demonstrated with an improvement in the skin roughness and a reinforcement of the skin barrier function. Moreover, a significant protector effect on human stratum corneum against lipids peroxides (LPO) was demonstrated.
Er:YAG laser-induced changes in skin in vivo and transdermal drug delivery
NASA Astrophysics Data System (ADS)
Flock, Stephen T.; Stern, Tom; Lehman, Paul; Dinehart, Scott; Franz, Tom; Liu, George; Stern, Scott J.
1997-05-01
It has been shown that laser ablation of stratum corneum, in vitro, can result in an increased uptake of topically applied pharmaceuticals. We have performed measurements of drug permeation, using an in vitro model of human skin, that involves a portable Er:YAG laser used to ablate the stratum corneum. For the first time, this method of drug administration was tested in vivo in human volunteers, whereby a hydrocortisone blanching assay was used to assess the efficiency of the procedure. The results show that this is a safe and efficient way to ablate stratum corneum for the purpose of enhanced transcutaneous drug administration.
Bloksgaard, M; Brewer, J R; Pashkovski, E; Ananthapadmanabhan, K P; Sørensen, J A; Bagatolli, L A
2014-02-01
Understanding the structural and dynamical features of skin is critical for advancing innovation in personal care and drug discovery. Synthetic detergent mixtures used in commercially available body wash products are thought to be less aggressive towards the skin barrier when compared to conventional detergents. The aim of this work is to comparatively characterize the effect of a mild synthetic cleanser mixture (SCM) and sodium dodecyl sulphate (SDS) on the hydration state of the intercellular lipid matrix and on proton activity of excised skin stratum corneum (SC). Experiments were performed using two-photon excitation fluorescence microscopy. Fluorescent images of fluorescence reporters sensitive to proton activity and hydration of SC were obtained in excised skin and examined in the presence and absence of SCM and SDS detergents. Hydration of the intercellular lipid matrix to a depth of 10 μm into the SC was increased upon treatment with SCM, whereas SDS shows this effect only at the very surface of SC. The proton activity of SC remained unaffected by treatment with either detergent. While our study indicates that the SC is very resistant to external stimuli, it also shows that, in contrast to the response to SDS, SCM to some extent modulates the in-depth hydration properties of the intercellular lipid matrix within excised skin SC. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
The irritation potential and reservoir effect of mild soaps.
Lodén, Marie; Buraczewska, Izabela; Edlund, Fredrik
2003-08-01
Identification and reduction of external noxious factors is one key point in the strategy for the treatment and reduction of contact dermatitis. A wide variety of soaps on the market are claimed to be suitable for the use on sensitive skin due to their mildness. The aim of the present study was to illustrate possible differences in the irritation potential of 8 products and to investigate whether surfactant residues may form an irritant reservoir on the skin. The study was double-blind, randomized using healthy human volunteers. The inherent capacity of the products to induce irritation was determined using conventional patch test technique, whereas detection of potential surfactant residues on the skin was done using a methodology developed in the 1960s for detection of the corticosteroid reservoir in the stratum corneum. The method comprised the release of active substance from the stratum corneum reservoir by occlusion of the skin with an aluminium chamber, followed by evaluation of the biological response. In the present study, the soap-treated area was rinsed with water and then occluded. Instrumental measurements of the transepidermal water loss and superficial skin blood flow served as indicators of the injurious effects of the products. The results showed large differences in irritation potential between the products, and some of them demonstrated considerable damaging effect. Moreover, the study proved the presence of barrier-impairing residues on the skin after rinsing with water. Subclinical skin damage can make the skin vulnerable to further irritation and delay recovery of chronic irritant contact dermatitis.
Yi, Qi-Feng; Yan, Jin; Tang, Si-Yuan; Huang, Hui; Kang, Li-Yang
2016-01-01
The aim of the present paper was to investigate the promoting activity of borneol on the transdermal permeation of drugs with differing lipophilicity, and probe its alterations in molecular organization of stratum corneum (SC) lipids. The toxicity of borneol was evaluated in epidermal keratinocyte HaCaT and dermal fibroblast CCC-HSF-1 cell cultures and compared to known enhancers, and its irritant profile was also assessed by transepidermal water loss (TEWL) evaluation. The promoting effect of borneol on the transdermal permeation of five model drugs, namely 5-fluorouracil, antipyrine, aspirin, salicylic acid and ibuprofen, which were selected based on their lipophilicity denoted by logp value, were performed using in vitro skin permeation studies. Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) was employed to monitor the borneol-induced alteration in molecular organization of SC lipids. The enhancer borneol displayed lower cytotoxicity or irritation in comparison to the well-established and standard enhancer Azone. Borneol could effectively promote the transdermal permeation of five model drugs, and its enhancement ratios were found to be parabolic curve with the logp values of drugs, which exhibited the optimum permeation activity for relatively hydrophilic drugs (an estimated logp value of -0.5 ∼0.5). The molecular mechanism studies suggested that borneol could perturb the structure of SC lipid alkyl chains, and extract part of SC lipids, resulting in the alteration in the skin permeability barrier.
Clement, Michelle E; Muñoz-Garcia, Agustí; Williams, Joseph B
2012-04-01
Lipids of the stratum corneum (SC), the outer layer of the epidermis of birds and mammals, provide a barrier to water vapor diffusion through the skin. The SC of birds consists of flat dead cells, called corneocytes, and two lipid compartments: an intercellular matrix and a monolayer of covalently bound lipids (CBLs) attached to the outer surface of the corneocytes. We previously found two classes of sphingolipids, ceramides and cerebrosides, covalently bound to corneocytes in the SC of house sparrows (Passer domesticus L.); these lipids were associated with cutaneous water loss (CWL). In this study, we collected adult and nestling house sparrows from Ohio and nestlings from Saudi Arabia, acclimated them to either high or low humidity, and measured their rates of CWL. We also measured CWL for natural populations of nestlings from Ohio and Saudi Arabia, beginning when chicks were 2 days old until they fledged. We then evaluated the composition of the CBLs of the SC of sparrows using thin layer chromatography. We found that adult house sparrows had a greater diversity of CBLs in their SC than previously described. During ontogeny, nestling sparrows increased the amount of CBLs and developed their CBLs differently, depending on their habitat. Acclimating nestlings to different humidity regimes did not alter the ontogeny of the CBLs, suggesting that these lipids represent a fundamental component of SC organization that does not respond to short-term environmental change.
Skin Barrier Restoration and Moisturization Using Horse Oil-Loaded Dissolving Microneedle Patches.
Lee, Chisong; Eom, Younghyon Andrew; Yang, Huisuk; Jang, Mingyu; Jung, Sang Uk; Park, Ye Oak; Lee, Si Eun; Jung, Hyungil
2018-01-01
Horse oil (HO) has skin barrier restoration and skin-moisturizing effects. Although cream formulations have been used widely and safely, their limited penetration through the stratum corneum is a major obstacle to maximizing the cosmetic efficacy of HO. Therefore, we aimed to encapsulate HO in a cosmetic dissolving microneedle (DMN) for efficient transdermal delivery. To overcome these limitations of skin permeation, HO-loaded DMN (HO-DMN) patches were developed and evaluated for their efficacy and safety using in vitro and clinical studies. Despite the lipophilic nature of HO, the HO-DMN patches had a sharp shape and uniform array, with an average length and tip diameter of 388.36 ± 16.73 and 38.54 ± 5.29 µm, respectively. The mechanical strength of the HO-DMN patches was sufficient (fracture force of 0.29 ± 0.01 N), and they could successfully penetrate pig skin. During the 4-week clinical evaluation, HO-DMN patches caused significant improvements in skin and dermal density, skin elasticity, and moisturization. Additionally, a brief safety assessment showed that the HO-DMN patches induced negligible adverse events. The HO-DMNs are efficient, safe, and convenient for wide use in cosmetic applications for skin barrier restoration and moisturization. © 2018 S. Karger AG, Basel.
Microneedle-based drug delivery systems: Microfabrication, drug delivery, and safety
Donnelly, Ryan F.; Raj Singh, Thakur Raghu; Woolfson, A. David
2010-01-01
Many promising therapeutic agents are limited by their inability to reach the systemic circulation, due to the excellent barrier properties of biological membranes, such as the stratum corneum (SC) of the skin or the sclera/cornea of the eye and others. The outermost layer of the skin, the SC, is the principal barrier to topically-applied medications. The intact SC thus provides the main barrier to exogenous substances, including drugs. Only drugs with very specific physicochemical properties (molecular weight < 500 Da, adequate lipophilicity, and low melting point) can be successfully administered transdermally. Transdermal delivery of hydrophilic drugs and macromolecular agents of interest, including peptides, DNA, and small interfering RNA is problematic. Therefore, facilitation of drug penetration through the SC may involve by-pass or reversible disruption of SC molecular architecture. Microneedles (MNs), when used to puncture skin, will by-pass the SC and create transient aqueous transport pathways of micron dimensions and enhance the transdermal permeability. These micropores are orders of magnitude larger than molecular dimensions, and, therefore, should readily permit the transport of hydrophilic macromolecules. Various strategies have been employed by many research groups and pharmaceutical companies worldwide, for the fabrication of MNs. This review details various types of MNs, fabrication methods and, importantly, investigations of clinical safety of MN. PMID:20297904
A de novo variant in the ASPRV1 gene in a dog with ichthyosis.
Bauer, Anina; Waluk, Dominik P; Galichet, Arnaud; Timm, Katrin; Jagannathan, Vidhya; Sayar, Beyza S; Wiener, Dominique J; Dietschi, Elisabeth; Müller, Eliane J; Roosje, Petra; Welle, Monika M; Leeb, Tosso
2017-03-01
Ichthyoses are a heterogeneous group of inherited cornification disorders characterized by generalized dry skin, scaling and/or hyperkeratosis. Ichthyosis vulgaris is the most common form of ichthyosis in humans and caused by genetic variants in the FLG gene encoding filaggrin. Filaggrin is a key player in the formation of the stratum corneum, the uppermost layer of the epidermis and therefore crucial for barrier function. During terminal differentiation of keratinocytes, the precursor profilaggrin is cleaved by several proteases into filaggrin monomers and eventually processed into free amino acids contributing to the hydration of the cornified layer. We studied a German Shepherd dog with a novel form of ichthyosis. Comparing the genome sequence of the affected dog with 288 genomes from genetically diverse non-affected dogs we identified a private heterozygous variant in the ASPRV1 gene encoding "aspartic peptidase, retroviral-like 1", which is also known as skin aspartic protease (SASPase). The variant was absent in both parents and therefore due to a de novo mutation event. It was a missense variant, c.1052T>C, affecting a conserved residue close to an autoprocessing cleavage site, p.(Leu351Pro). ASPRV1 encodes a retroviral-like protease involved in profilaggrin-to-filaggrin processing. By immunofluorescence staining we showed that the filaggrin expression pattern was altered in the affected dog. Thus, our findings provide strong evidence that the identified de novo variant is causative for the ichthyosis in the affected dog and that ASPRV1 plays an essential role in skin barrier formation. ASPRV1 is thus a novel candidate gene for unexplained human forms of ichthyoses.
In Vivo Multiphoton Microscopy for Investigating Biomechanical Properties of Human Skin.
Liang, Xing; Graf, Benedikt W; Boppart, Stephen A
2011-06-01
The biomechanical properties of living cells depend on their molecular building blocks, and are important for maintaining structure and function in cells, the extracellular matrix, and tissues. These biomechanical properties and forces also shape and modify the cellular and extracellular structures under stress. While many studies have investigated the biomechanics of single cells or small populations of cells in culture, or the properties of organs and tissues, few studies have investigated the biomechanics of complex cell populations in vivo. With the use of advanced multiphoton microscopy to visualize in vivo cell populations in human skin, the biomechanical properties are investigated in a depth-dependent manner in the stratum corneum and epidermis using quasi-static mechanical deformations. A 2D elastic registration algorithm was used to analyze the images before and after deformation to determine displacements in different skin layers. In this feasibility study, the images and results from one human subject demonstrate the potential of the technique for revealing differences in elastic properties between the stratum corneum and the rest of the epidermis. This interrogational imaging methodology has the potential to enable a wide range of investigations for understanding how the biomechanical properties of in vivo cell populations influence function in health and disease.
Microneedle-based drug delivery systems for transdermal route.
Pierre, Maria Bernadete Riemma; Rossetti, Fabia Cristina
2014-03-01
Transdermal delivery offers an attractive, noninvasive administration route but it is limited by the skin's barrier to penetration. Minimally invasive techniques, such as the use of microneedles (MNs), bypass the stratum corneum (SC) barrier to permit the drug's direct access to the viable epidermis. These novel micro devices have been developed to puncture the skin for the transdermal delivery of hydrophilic drugs and macromolecules, including peptides, DNA and other molecules, that would otherwise have difficulty passing the outermost layer of the skin, the SC. Using the tools of the microelectronics industry, MNs have been fabricated with a range of sizes, shapes and materials. MNs have been shown to be robust enough to penetrate the skin and dramatically increase the skin permeability of several drugs. Moreover, MNs have reduced needle insertion pain and tissue trauma and provided controlled delivery across the skin. This review focuses on the current state of the art in the transdermal delivery of drugs using various types of MNs and developments in the field of microscale devices, as well as examples of their uses and clinical safety.
Magnetophoresis for enhancing transdermal drug delivery: Mechanistic studies and patch design
Murthy, S. Narasimha; Sammeta, Srinivasa M.; Bower, C.
2017-01-01
Magnetophoresis is a method of enhancement of drug permeation across the biological barriers by application of magnetic field. The present study investigated the mechanistic aspects of magnetophoretic transdermal drug delivery and also assessed the feasibility of designing a magnetophoretic transdermal patch system for the delivery of lidocaine. In vitro drug permeation studies were carried out across the porcine epidermis at different magnetic field strengths. The magnetophoretic drug permeation “flux enhancement factor” was found to increase with the applied magnetic field strength. The mechanistic studies revealed that the magnetic field applied in this study did not modulate permeability of the stratum corneum barrier. The predominant mechanism responsible for magnetically mediated drug permeation enhancement was found to be “magnetokinesis”. The octanol/water partition coefficient of drugs was also found to increase when exposed to the magnetic field. A reservoir type transdermal patch system with a magnetic backing was designed for in vivo studies. The dermal bioavailability (AUC0–6 h) from the magnetophoretic patch system in vivo, in rats was significantly higher than the similarly designed nonmagnetic control patch. PMID:20728484
Climate change and cutaneous water loss of birds.
Williams, Joseph B; Muñoz-Garcia, Agustí; Champagne, Alex
2012-04-01
There is a crucial need to understand how physiological systems of animals will respond to increases in global air temperature. Water conservation may become more important for some species of birds, especially those living in deserts. Lipids of the stratum corneum (SC), the outer layer of the epidermis, create the barrier to water vapor diffusion, and thus control cutaneous water loss (CWL). An appreciation of the ability of birds to change CWL by altering lipids of the skin will be important to predict responses of birds to global warming. The interactions of these lipids are fundamental to the modulation of water loss through skin. Cerebrosides, with their hexose sugar moiety, are a key component of the SC in birds, but how these lipids interact with other lipids of the SC, or how they form hydrogen bonds with water molecules, to form a barrier to water vapor diffusion remains unknown. An understanding of how cerebrosides interact with other lipids of the SC, and of how the hydroxyl groups of cerebrosides interact with water molecules, may be a key to elucidating the control of CWL by the SC.
Shah, D K; Khandavilli, S; Panchagnula, R
2008-09-01
Vehicles and permeation enhancers (PEs) used in transdermal drug delivery (TDD) of a drug can affect skin hydration, integrity and permeation of the solute administered. This investigation was designed to study the effect of the most commonly used vehicles and PEs on rat skin hydration, barrier function and permeation of an amphiphilic drug, imipramine hydrochloride (IMH). An array of well-established techniques were used to confirm the findings of the study. Thermogravimetric analysis (TGA) and Fourier transform infrared (FTIR) spectroscopy were used to determine changes in skin hydration. Alteration of the stratum corneum (SC) structure was investigated using FTIR studies. To monitor the barrier function alteration, transepidermal water loss (TEWL) measurement and permeation studies were performed. Our findings indicate that with hydration, there was an increase in the bound water content of the skin, and pseudoequilibrium of hydration (a drastic decrease in hydration rate) was achieved at around 12 h. Hydration increased the ratio between amide-I and amide-II peaks in FTIR and reduced the C-H stretching peak area. Both propylene glycol (PG) and ethanol (EtOH) dehydrated skin, with the latter showing a predominant effect. Furthermore, it was confirmed that PG and EtOH decreased the bound water content due to alteration in the protein domains and extraction of SC lipids, respectively. The effect of hydration on the SC was found to be similar to that reported for temperature. Permeation studies revealed that the dehydration caused by vehicles decreased IMH flux, whereas the flux was enhanced by PEs. The role of partition was predominant for the permeation of IMH through dehydrated skin. A synergistic effect was observed for PG and menthol in the enhancement of IMH. Further findings provided strong evidence that PG affects protein domains and EtOH extracts lipids from the bilayer. Both PG and EtOH, with or without PEs, increased TEWL. Initial TEWL was well correlated with the flux of IMH through the same skin. It was found that both PG and EtOH affect the permeation of solute and TEWL by dehydration. The experiments also proved that the initial TEWL value has a strong potential as a predictive tool for the permeation of the solute. Copyright 2008 Prous Science, S.A.U. or its licensors. All rights reserved.
Kim, David; Farthing, Matthew W.; Miller, Cass T.; Nylander-French, Leena A.
2008-01-01
The objective of this research was to develop a mathematical description of uptake of aromatic and aliphatic hydrocarbons into the stratum corneum of human skin in vivo. A simple description based on Fick’s Laws of diffusion was used to predict the spatiotemporal variation of naphthalene, 1- and 2-methylnaphthalene, undecane, and dodecane in the stratum corneum of human volunteers. The estimated values of the diffusion coefficients for each chemical were comparable to values predicted using in vitro skin systems and biomonitoring studies. These results demonstrate the value of measuring dermal exposure using the tape-strip technique and the importance of quantifying of dermal uptake. PMID:18423910
An ex vivo human skin model for studying skin barrier repair.
Danso, Mogbekeloluwa O; Berkers, Tineke; Mieremet, Arnout; Hausil, Farzia; Bouwstra, Joke A
2015-01-01
In the studies described in this study, we introduce a novel ex vivo human skin barrier repair model. To develop this, we removed the upper layer of the skin, the stratum corneum (SC) by a reproducible cyanoacrylate stripping technique. After stripping the explants, they were cultured in vitro to allow the regeneration of the SC. We selected two culture temperatures 32 °C and 37 °C and a period of either 4 or 8 days. After 8 days of culture, the explant generated SC at a similar thickness compared to native human SC. At 37 °C, the early and late epidermal differentiation programmes were executed comparably to native human skin with the exception of the barrier protein involucrin. At 32 °C, early differentiation was delayed, but the terminal differentiation proteins were expressed as in stripped explants cultured at 37 °C. Regarding the barrier properties, the SC lateral lipid organization was mainly hexagonal in the regenerated SC, whereas the lipids in native human SC adopt a more dense orthorhombic organization. In addition, the ceramide levels were higher in the cultured explants at 32 °C and 37 °C than in native human SC. In conclusion, we selected the stripped ex vivo skin model cultured at 37 °C as a candidate model to study skin barrier repair because epidermal and SC characteristics mimic more closely the native human skin than the ex vivo skin model cultured at 32 °C. Potentially, this model can be used for testing formulations for skin barrier repair. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Cunningham, David D; Young, Douglas F
2003-09-01
Obtaining representative physiological samples for glucose analysis remains a challenge especially when developing less invasive glucose monitoring systems for diabetic patients. In the present study the glucose content of the stratum corneum was compared with the amount of glucose obtained by short aqueous extractions from a site on the dorsal wrist, using high pressure liquid chromatography with pulsed amperometric detection. Ten successive aqueous 1-minute extractions of the site yielded a total of 60 ng cm(-2). The total glucose content of the stratum corneum of the site, determined from 30 successive tape-strippings of the site, was 360 ng cm(-2). After tape-stripping, the transcutaneous aqueous extraction rate was 86 +/- 13 ng cm(-2) min(-1), compared with rates of 80-600 ng cm(-2) min(-1) obtained with suction effusion or microdialysis after tape-stripping. Glucose on the surface of the skin and within the stratum corneum should be considered as sources of extraneous glucose contamination during testing of less invasive glucose monitoring devices.
NASA Astrophysics Data System (ADS)
Quintano, E.; Díez, I.; Muguerza, N.; Figueroa, F. L.; Gorostiaga, J. M.
2017-12-01
In recent decades a decline in the foundation species Gelidium corneum (Hudson) J. V. Lamouroux has been detected along the Basque coast (northern Spain). This decline has been attributed to several factors, but recent studies have found a relationship between high irradiance and the biochemical and physiological stress of G. corneum. Since physiological responses to changes in light occur well before variations in morphology, the present study seeks to use a size-class demographic approach to investigate whether shallow subtidal populations of G. corneum off the Basque coast show different frond bleaching, density and biomass under different irradiance conditions. The results revealed that the bleaching incidence and cover were positively related to irradiance, whereas biomass was negatively related. The effect of the irradiance level on frond density was found to vary with size-class, i.e. fronds up to 15 cm showed greater densities under high light conditions (126.6 to 262.2 W m- 2) whereas the number of larger fronds (> 20 cm) per unit area was lower. In conclusion, the results of the present study suggest that irradiance might be a key factor for controlling along-shore bleaching, frond density and biomass in G. corneum. Further research should be carried out on the physiology of this canopy species in relation to its bed structure and on the interaction of irradiance and other abiotic (nutrients, temperature, wave energy) and biotic factors (grazing pressure).
Free fatty acids chain length distribution affects the permeability of skin lipid model membranes.
Uchiyama, Masayuki; Oguri, Masashi; Mojumdar, Enamul H; Gooris, Gert S; Bouwstra, Joke A
2016-09-01
The lipid matrix in the stratum corneum (SC) plays an important role in the barrier function of the skin. The main lipid classes in this lipid matrix are ceramides (CERs), cholesterol (CHOL) and free fatty acids (FFAs). The aim of this study was to determine whether a variation in CER subclass composition and chain length distribution of FFAs affect the permeability of this matrix. To examine this, we make use of lipid model membranes, referred to as stratum corneum substitute (SCS). We prepared SCS containing i) single CER subclass with either a single FFA or a mixture of FFAs and CHOL, or ii) a mixture of various CER subclasses with either a single FFA or a mixture of FFAs and CHOL. In vitro permeation studies were performed using ethyl-p-aminobenzoic acid (E-PABA) as a model drug. The flux of E-PABA across the SCS containing the mixture of FFAs was higher than that across the SCS containing a single FA with a chain length of 24 C atoms (FA C24), while the E-PABA flux was not effected by the CER composition. To select the underlying factors for the changes in permeability, the SCSs were examined by Fourier transform infrared spectroscopy (FTIR) and Small angle X-ray scattering (SAXS). All lipid models demonstrated a similar phase behavior. However, when focusing on the conformational ordering of the individual FFA chains, the shorter chain FFA (with a chain length of 16, 18 or 20 C atoms forming only 11m/m% of the total FFA level) had a higher conformational disordering, while the conformational ordering of the chains of the CER and FA C24 and FA C22 hardly did not change irrespective of the composition of the SCS. In conclusion, the conformational mobility of the short chain FFAs present only at low levels in the model SC lipid membranes has a great impact on the permeability of E-PABA. Copyright © 2016 Elsevier B.V. All rights reserved.
Jordan, Laura
2016-11-01
Occupational irritant contact dermatitis (OICD) is a dif cult and hard to manage condition. It occurs more frequently in certain occupations where contact with harsh chemicals, use of alcohol-based disinfectants, and frequent hand washing heightens the risk. Treatment for OICD includes patient education in addition to physical, topical, and systemic therapies. To review the pathogenesis and treatment options for OICD and evaluate the ef cacy of a selective skin-care regimen involv- ing a hand protectant cream alone as well as combined with a repair cream and speci c cleanser. A single-center open study was performed comprising 42 healthy male and female adult volunteers prone to occupational irritant contact dermatitis due to frequent wet work or contact with detergents. Between day 0 and day 7, subjects applied a hand protectant cream as needed on both hands (at least twice daily). On days 7 to 14, subjects applied a hand protectant cream and cleanser as needed on both hands (at least twice daily) as well as a repair cream each evening. A diary log was given to each volunteer for application control and for a subjective evaluation of daily tolerability. In these subjects prone to occupational irritant contact dermatitis, the hand protectant cream applied during the initial 7-day period was effective in restoring the damaged skin barrier and improving the stratum corneum hydration. A regimen that combined the hand protectant and repair creams with a speci c cleanser during a further 7-day period allowed contin- ued improvement of skin hydration and additional clinical bene ts while respecting the skin barrier function. The results of this study support the use of a 3-step approach for patients who are at risk of repeated exposure to external irritants. J Drugs Dermatol. 2016;15(suppl 11):s81-85..
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tseng, Te-Yu; Yang, Chiu-Sheng; Chen, Yang-Fang
In this letter, we propose an efficient methodology of investigating dynamic properties of sulforhodamine B and rhodamine B hexyl ester molecules transporting across ex-vivo human stratum corneum with and without oleic acid enhancement. Three-dimensional, time-lapse fluorescence images of the stratum corneum can be obtained using two-photon fluorescence microscopy. Furthermore, temporal quantifications of transport enhancements in diffusion parameters can be achieved with the use of Fick's second law. Dynamic characterization of solutes transporting across the stratum corneum is an effective method for understanding transient phenomena in transdermal delivery of probe molecules, leading to improved delivery strategies of molecular species for therapeuticmore » purposes.« less
Steinbach, S C; Triani, R; Bennedsen, L; Gabel, A; Haeusler, O; Wohlrab, J; Neubert, R H H
2017-08-01
Ceramide [NP] is an integral component of the stratum corneum (SC) lipid matrix and is capable of forming tough and stable lamellar structures. It was proven, that in skin diseases as psoriasis or atopic dermatitis different ceramide (CER) classes, including [NP], are degraded. It is obvious that topically application of CER on impaired skin is useful for repairing the skin barrier but a tendency for low penetration due to its poor solubility in conventional dosage forms was observed. Therefore, a stable and physiologic compatible colloidal carrier system, a microemulsion (ME), was developed and characterized. The increasing knowledge of the new colloidal systems in this last decade shows their benefits in dermal application. Isosorbide (Polysorb P) was incorporated into the ME developed. It was expected that Polysorb P has a retarder potential in order to accumulate the CER in the SC, the outermost layer of the skin. Thereby the CER [NP] would be able to interact with the affected skin layers to strengthen the skin barrier. The release and penetration behavior of the CER [NP] from the ME was assessed ex vivo in a Franz diffusion cell. The results of the study showed that CER [NP] penetrate largely in the upper layers of the skin (from SC to stratum basale), which was the desired region. A recovery in the acceptor could not be detected that underlines an accumulation in upper layers. Furthermore, significantly increased values for the SC for the ME with retarder were not received. No differences in the concentrations of CER [NP] were observed. However, the toxicity of MEs was investigated using heńs egg test chorioallantoic membrane (HET-CAM). For the isosorbide-containing ME no difference was obtained in comparison to the non-containing. The results showed that both MEs are safe to be used on the skin for the controlled penetration of CER [NP] into the skin. The isosorbide had no effect on the irritating effect as well as on the penetration of the used CER.
The rational design of biomimetic skin barrier lipid formulations using biophysical methods.
Bulsara, P A; Varlashkin, P; Dickens, J; Moore, D J; Rawlings, A V; Clarke, M J
2017-04-01
The focus of this communication was to study phospholipid-structured emulsions whose phase behaviour is modified with monoalkyl fatty amphiphiles. Ideally, these systems would mimic key physical and structural attributes observed in human stratum corneum (SC) so that they better alleviate xerotic skin conditions. Phosphatidylcholine-structured emulsions were prepared, and their phase behaviour modified with monoalkyl fatty amphiphiles. The effect of molecular volume, acyl chain length and head-group interactions was studied using a combination of physical methods. Water vapour transmission rate (WVTR) was used as a primary test to assess occlusive character. Changes in the vibrational modes observed in Fourier transform infrared (FTIR) spectroscopy and bilayer spacing measured by X-ray diffraction (XRD) were then applied to elucidate the lateral and lamellar microstructural characteristics in the systems. Water vapour transmission rate demonstrated that as the phosphatidylcholine acyl chain length increased from C14, to C18, to C22, there was a corresponding increase in occlusive character. The addition of monoalkyl fatty amphiphiles such as behenic acid, behenyl alcohol or cetostearyl alcohol to a base formulation incorporating dipalmitoyl and distearoylphosphatidylcholine (C18) was seen to further increase barrier characteristics of the emulsions. FTIR methods used to probe lipid-chain conformational ordering demonstrated that as phosphatidylcholine acyl chain lengths increased, there was a corresponding improvement in acyl chain ordering, with an increase in thermal transition temperatures. The addition of a monoalkyl fatty amphiphile resulted in conformational order and thermal transition temperature improvements trending towards those observed in stratum corneum. FTIR also demonstrated that systems containing behenic acid or behenyl alcohol exhibited features associated with orthorhombic character. X-ray diffraction data showed that addition of monoalkyl fatty amphiphile also resulted in thicker lamellar structures than when those agents are not present. The generalized approach described herein is shown to mechanistically describe the occlusive character of phospholipid-structured formulations in the presence of long-chain fatty acids or alcohols and that they exhibit characteristics mimicking those found in human SC lipids. © 2016 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Skin hydration and lifestyle-related factors in community-dwelling older people.
Iizaka, Shinji
2017-09-01
This study aimed to investigate skin hydration status of the lower legs by comparing several methods and examining lifestyle-related factors in community-dwelling older people. A cross-sectional study was conducted in three community settings in Japan from autumn to winter. Participants were older people aged ≥65 years (n=118). Skin hydration status of the lower legs was evaluated by stratum corneum hydration using an electrical device, clinical symptoms by an expert's observation and the visual analogue scale. Lifestyle factors of skin care were evaluated by a self-administered questionnaire. The mean age of participants was 74.4 years and 83.9% were women. Stratum corneum hydration was significantly correlated with clinical scores by an expert's observation (rho=-0.46, P<0.001), but it was not correlated with the visual analogue scale (rho=-0.08, P=0.435). Among participants who did not perceive dry skin, 57.5% showed low stratum corneum hydration. Hospitalization in the past year (b=-9.4, P=0.008), excessive bathing habits (b=-4.6, P=0.014), and having an outdoor hobby (b=-5.7, P=0.007) were negatively associated, and diuretics (b=11.5, P=0.002) and lotion-type moisturizer use (b=4.6, P=0.022) were positively associated with stratum corneum hydration. Stratum corneum hydration measurements show an adequate association with observation-based evaluation by an expert, but poor agreement with subjective evaluation in community-dwelling older people. Hospitalization experience and lifestyle factors are associated with skin hydration. Copyright © 2017 Elsevier B.V. All rights reserved.
van Hoogdalem, E J; Terpstra, I J; Baven, A L
1996-01-01
Erythromycin with or without additional zinc acetate is used topically in the treatment of acne vulgaris. A potential effect of zinc on the stratum corneum penetration of erythromycin was investigated in human volunteers. Skin surface washings and tape strippings from the skin of the back were collected after drug applications in 12 subjects for quantification of erythromycin levels. Zinc acetate increased the amount remaining on the back skin at 6 h after application from 40 +/- 19 to 56 +/- 15% of the dose and, vice versa, reduced the amount in stratum corneum strips from 22 +/- 7 to 18 +/- 7%, both with statistical significance. The effect varied with body region. Zinc acetate thus provided to prolong the residence time of erythromycin on the skin.
Cau, Laura; Pendaries, Valérie; Lhuillier, Emeline; Thompson, Paul R; Serre, Guy; Takahara, Hidenari; Méchin, Marie-Claire; Simon, Michel
2017-05-01
Deimination (also known as citrullination), the conversion of arginine in a protein to citrulline, is catalyzed by a family of enzymes called peptidylarginine deiminases (PADs). Three PADs are expressed in the epidermis, one of their targets being filaggrin. Filaggrin plays a central role in atopic dermatitis and is a key protein for the epidermal barrier. It aggregates keratins and is cross-linked to cornified envelopes. Following its deimination, it is totally degraded to release free amino acids, contributing to the natural moisturizing factor (NMF). The mechanisms controlling this multistep catabolism in human are unknown. To test whether external humidity plays a role, and investigate the molecular mechanisms involved. Specimens of reconstructed human epidermis (RHEs) produced in humid or dry conditions (>95% or 30-50% relative humidity) were compared. RHEs produced in the dry condition presented structural changes, including a thicker stratum corneum and a larger amount of keratohyalin granules. The transepidermal water loss and the stratum corneum pH were decreased whereas the quantity of NMF was greater. This highly suggested that filaggrin proteolysis was up-regulated. The expression/activity of the proteases involved in filaggrin breakdown did not increase while PAD1 expression and the deimination rate of proteins, including filaggrin, were drastically enhanced. Partial inhibition of PADs with Cl-amidine reversed the effect of dryness on filaggrin breakdown. These results demonstrate the importance of external humidity in the control of human filaggrin metabolism, and suggest that deimination plays a major role in this regulation. Copyright © 2017 Japanese Society for Investigative Dermatology. All rights reserved.
Presence and persistence of a highly ordered lipid phase state in the avian stratum corneum.
Champagne, Alex M; Pigg, Victoria A; Allen, Heather C; Williams, Joseph B
2018-06-07
To survive high temperatures in a terrestrial environment, animals must effectively balance evaporative heat loss and water conservation. In passerine birds, cutaneous water loss (CWL) is the primary avenue of water loss at thermoneutral temperatures and increases slightly as ambient temperature increases, indicating a change in the permeability of the skin. In the stratum corneum (SC), the outermost layer of the skin, lipids arranged in layers called lamellae serve as the primary barrier to CWL in birds. The permeability of these lamellae depends in large part on the ability of lipid molecules to pack closely together in an ordered orthorhombic phase state. However, as temperature increases, lipids of the SC become more disordered, and may pack in more permeable hexagonal or liquid crystalline phase states. In this study, we used Fourier transform infrared spectroscopy to monitor the phase state of lipids in the SC of house sparrows ( Passer domesticus ) at skin temperatures ranging from 25 to 50°C. As temperature increased, lipids became slightly more disordered, but remained predominantly in the orthorhombic phase, consistent with the small increase in CWL observed in house sparrows as ambient temperature increases. These results differ considerably from studies on mammalian SC, which find a predominantly hexagonal arrangement of lipids at temperatures above 37°C, and the increased order in avian SC may be explained by longer lipid chain length, scarcity of cholesterol and the presence of cerebrosides. Our results lend further insight into the arrangement and packing of individual lipid molecules in avian SC. © 2018. Published by The Company of Biologists Ltd.
The revised EEMCO guidance for the in vivo measurement of water in the skin.
Berardesca, Enzo; Loden, Marie; Serup, Jorgen; Masson, Philippe; Rodrigues, Luis Monteiro
2018-06-20
Noninvasive quantification of stratum corneum water content is widely used in skin research and topical product development. The original EEMCO guidelines on measurements of skin hydration by electrical methods and transepidermal water loss (TEWL) by evaporimeter published in 1997 and 2001 have been revisited and updated with the incorporation of recently available technologies. Electrical methods and open-chamber evaporimeters for measurement of TEWL are still the preferred techniques to measure the water balance in the stratum corneum. The background technology and biophysics of these instruments remain relevant and valid. However, new methods that can image surface hydration and measure depth profiles of dermal water content now available. Open-chamber measurement of TEWL has been supplemented with semiopen and closed chamber probes, which are more robust to environmental influence and therefore convenient to use and more applicable to field studies. However, closed chamber methods interfere with the evaporation of water, and the methods cannot be used for continuous monitoring. Validation of methods with respect to intra- and inter-instrument variation remains challenging. No validation standard or test phantom is available. The established methods for measurement of epidermal water content and TEWL have been supplemented with important new technologies including methods that allow imaging of epidermal water distribution and water depth profiles. A much more complete and sophisticated characterization of the various aspects of the dermal water barrier has been accomplished by means of today's noninvasive techniques; however, instrument standardization and validation remain a challenge. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Gajjar, Rachna M; Kasting, Gerald B
2014-11-15
The overall goal of this research was to further develop and improve an existing skin diffusion model by experimentally confirming the predicted absorption rates of topically-applied volatile organic compounds (VOCs) based on their physicochemical properties, the skin surface temperature, and the wind velocity. In vitro human skin permeation of two hydrophilic solvents (acetone and ethanol) and two lipophilic solvents (benzene and 1,2-dichloroethane) was studied in Franz cells placed in a fume hood. Four doses of each (14)C-radiolabed compound were tested - 5, 10, 20, and 40μLcm(-2), corresponding to specific doses ranging in mass from 5.0 to 63mgcm(-2). The maximum percentage of radiolabel absorbed into the receptor solutions for all test conditions was 0.3%. Although the absolute absorption of each solvent increased with dose, percentage absorption decreased. This decrease was consistent with the concept of a stratum corneum deposition region, which traps small amounts of solvent in the upper skin layers, decreasing the evaporation rate. The diffusion model satisfactorily described the cumulative absorption of ethanol; however, values for the other VOCs were underpredicted in a manner related to their ability to disrupt or solubilize skin lipids. In order to more closely describe the permeation data, significant increases in the stratum corneum/water partition coefficients, Ksc, and modest changes to the diffusion coefficients, Dsc, were required. The analysis provided strong evidence for both skin swelling and barrier disruption by VOCs, even by the minute amounts absorbed under these in vitro test conditions. Copyright © 2014 Elsevier Inc. All rights reserved.
Muñoz-Garcia, Agustí; Williams, Joseph B.
2008-01-01
Intercellular lipids of the stratum corneum (SC), the outer layer of the epidermis, form a barrier to water vapor diffusion through the skin. Previously, we measured cutaneous water loss (CWL) and lipid composition of the SC of adult house sparrows from two populations, one living in the deserts of Saudi Arabia and another living in mesic Ohio. Adult desert house sparrows had a lower CWL, a lower proportion of free fatty acids, and a higher proportion of ceramides and cerebrosides in the SC compared with mesic sparrows. In this study, we investigated developmental plasticity of CWL and lipid composition of the SC in desert and mesic nestling house sparrows reared in low and high humidity and compared our results with previous work on adults. We measured CWL of nestlings and analyzed the lipid composition of the SC using thin-layer chromatography. We showed that nestling house sparrows from both localities had higher CWL than adults in their natural environment, a result of major modifications of the lipid composition of the SC. The expression of plasticity in CWL seems to be a response to opposed selection pressures, thermoregulation and water conservation, at different life stages, on which regulation of CWL plays a crucial role. Desert nestlings showed a greater degree of plasticity in CWL and lipid composition of the SC than did mesic nestlings, a finding consistent with the idea that organisms exposed to more environmental stress ought to be more plastic than individuals living in more benign environments. PMID:18838693
Muñoz-Garcia, Agustí; Williams, Joseph B
2008-10-07
Intercellular lipids of the stratum corneum (SC), the outer layer of the epidermis, form a barrier to water vapor diffusion through the skin. Previously, we measured cutaneous water loss (CWL) and lipid composition of the SC of adult house sparrows from two populations, one living in the deserts of Saudi Arabia and another living in mesic Ohio. Adult desert house sparrows had a lower CWL, a lower proportion of free fatty acids, and a higher proportion of ceramides and cerebrosides in the SC compared with mesic sparrows. In this study, we investigated developmental plasticity of CWL and lipid composition of the SC in desert and mesic nestling house sparrows reared in low and high humidity and compared our results with previous work on adults. We measured CWL of nestlings and analyzed the lipid composition of the SC using thin-layer chromatography. We showed that nestling house sparrows from both localities had higher CWL than adults in their natural environment, a result of major modifications of the lipid composition of the SC. The expression of plasticity in CWL seems to be a response to opposed selection pressures, thermoregulation and water conservation, at different life stages, on which regulation of CWL plays a crucial role. Desert nestlings showed a greater degree of plasticity in CWL and lipid composition of the SC than did mesic nestlings, a finding consistent with the idea that organisms exposed to more environmental stress ought to be more plastic than individuals living in more benign environments.
Brisson, Paul
1974-01-01
Clinical effectiveness of topically applied medications depends on the ability of the active ingredient to leave its vehicle and penetrate into the epidermis. The stratum corneum is that layer of the epidermis which functionally is the most important in limiting percutaneous absorption, showing the characteristics of a composite semipermeable membrane. A mathematical expression of transepidermal diffusion may be derived from Fick's Law of mass transport; factors altering the rate of diffusion are discussed. PMID:4597976
Fujimura, Tsutomu; Miyauchi, Yuki; Shima, Kyoko; Hotta, Mitsuyuki; Tsujimura, Hisashi; Kitahara, Takashi; Takema, Yoshinori; Palungwachira, Pakhawadee; Laohathai, Diane; Chanthothai, Jetchawa; Nararatwanchai, Thamthiwat
2018-01-01
Ethnic and racial differences in infant skin have not been well characterized. The purpose of this study was to establish whether there are ethnic differences and similarities in the stratum corneum (SC) functions of Thai and Chinese infants. Healthy infants 6 to 24 months of age (N = 60; 30 Thai, 30 Chinese) who resided in Bangkok, Thailand, were enrolled. Transepidermal water loss (TEWL) and SC hydration (capacitance) on the thigh, buttock, and upper arm were measured. Ceramide content was determined in the SC on the upper arm. SC hydration was not remarkably different between the two ethnicities at any site measured, but TEWL was significantly higher in Chinese infants than in Thai infants at all sites. Hydration of the SC was not significantly correlated with age in either ethnicity. TEWL had significant but weak correlations with age on the thigh and upper arm in Thai infants. Ceramide content was significantly higher in Chinese SC than in Thai SC. No relationship between ceramide content and TEWL or hydration was observed in either ethnicity. The significant differences in TEWL and ceramide contents between Chinese and Thai infant skin could prove useful in designing skin care and diapering products that are best suited for each ethnicity. © 2017 Wiley Periodicals, Inc.
Rao, Yue-feng; Chen, Wei; Liang, Xing-guang; Huang, Yong-zhuo; Miao, Jing; Liu, Lin; Lou, Yan; Zhang, Xing-guo; Wang, Ben; Tang, Rui-kang; Chen, Zhong; Lu, Xiao-yang
2015-01-14
The transdermal administration of chemotherapeutic agents is a persistent challenge for tumor treatments. A model anticancer agent, epirubicin (EPI), is attached to functionalized superparamagnetic iron-oxide nanoparticles (SPION). The covalent modification of the SPION results in EPI-SPION, a potential drug delivery vector that uses magnetism for the targeted transdermal chemotherapy of skin tumors. The spherical EPI-SPION composite exhibits excellent magnetic responsiveness with a saturation magnetization intensity of 77.8 emu g(-1) . They feature specific pH-sensitive drug release, targeting the acidic microenvironment typical in common tumor tissues or endosomes/lysosomes. Cellular uptake studies using human keratinocyte HaCaT cells and melanoma WM266 cells demonstrate that SPION have good biocompatibility. After conjugation with EPI, the nanoparticles can inhibit WM266 cell proliferation; its inhibitory effect on tumor proliferation is determined to be dose-dependent. In vitro transdermal studies demonstrate that the EPI-SPION composites can penetrate deep inside the skin driven by an external magnetic field. The magnetic-field-assisted SPION transdermal vector can circumvent the stratum corneum via follicular pathways. The study indicates the potential of a SPION-based vector for feasible transdermal therapy of skin cancer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Özcan, Ipek; Azizoğlu, Erkan; Senyiğit, Taner; Özyazıcı, Mine; Özer, Özgen
2013-01-01
The objective of this study was to prepare a suitable formulation for dermal delivery of diflucortolone valerate (DFV) that would maintain the localization in skin layers without any penetration and to optimize efficiency of DFV. Drug-loaded lecithin/chitosan nanoparticles with high entrapment efficiency (86.8%), were successfully prepared by ionic interaction technique. Sustained release of DFV was achieved without any initial burst release. Nanoparticles were also incorporated into chitosan gel at different ratios for preparing a more suitable formulation for topical drug delivery with adequate viscosity. In ex-vivo permeation studies, nanoparticles increased the accumulation of DFV especially in the stratum corneum + epidermis of rat skin without any significant permeation. Retention of DFV from nanoparticle in chitosan gel formulation (0.01%) was twofold higher than commercial cream, although it contained ten times less DFV. Nanoparticles in gel formulations produced significantly higher edema inhibition in rats compared with commercial cream in in-vivo studies. Skin blanching assay using a chromameter showed vasoconstriction similar to that of the commercial product. There were no barrier function changes upon application of nanoparticles. In-vitro and in-vivo results demonstrated that lecithin/chitosan nanoparticles in chitosan gel may be a promising carrier for dermal delivery of DFV in various skin disorders.
Özcan, İpek; Azizoğlu, Erkan; Şenyiğit, Taner; Özyazıcı, Mine; Özer, Özgen
2013-01-01
The objective of this study was to prepare a suitable formulation for dermal delivery of diflucortolone valerate (DFV) that would maintain the localization in skin layers without any penetration and to optimize efficiency of DFV. Drug-loaded lecithin/chitosan nanoparticles with high entrapment efficiency (86.8%), were successfully prepared by ionic interaction technique. Sustained release of DFV was achieved without any initial burst release. Nanoparticles were also incorporated into chitosan gel at different ratios for preparing a more suitable formulation for topical drug delivery with adequate viscosity. In ex-vivo permeation studies, nanoparticles increased the accumulation of DFV especially in the stratum corneum + epidermis of rat skin without any significant permeation. Retention of DFV from nanoparticle in chitosan gel formulation (0.01%) was twofold higher than commercial cream, although it contained ten times less DFV. Nanoparticles in gel formulations produced significantly higher edema inhibition in rats compared with commercial cream in in-vivo studies. Skin blanching assay using a chromameter showed vasoconstriction similar to that of the commercial product. There were no barrier function changes upon application of nanoparticles. In-vitro and in-vivo results demonstrated that lecithin/chitosan nanoparticles in chitosan gel may be a promising carrier for dermal delivery of DFV in various skin disorders. PMID:23390364
Lauterbach, Andreas; Müller-Goymann, Christel C
2015-11-01
Lipid nanoparticles (LN) such as solid lipid nanoparticles (SLN) and nanolipid carriers (NLC) feature several claimed benefits for topical drug therapy including biocompatible ingredients, drug release modification, adhesion to the skin, and film formation with subsequent hydration of the superficial skin layers. However, penetration and permeation into and across deeper skin layers are restricted due to the barrier function of the stratum corneum (SC). As different kinds of nanoparticles provide the potential for penetration into hair follicles (HF) LN are applicable drug delivery systems (DDS) for this route in order to enhance the dermal and transdermal bioavailability of active pharmaceutical ingredients (API). Therefore, this review addresses the HF as application site, published formulations of LN which showed follicular penetration (FP), and characterization methods in order to identify and quantify the accumulation of API delivered by the LN in the HF. Since LN are based on lipids that appear in human sebum which is the predominant medium in HF an increased localization of the colloidal carriers as well as a promoted drug release may be assumed. Therefore, sebum-like lipid material and a size of less or equal 640 nm are appropriate specifications for FP of particulate formulations. Copyright © 2015 Elsevier B.V. All rights reserved.
Kikuchi, K; Tagami, H; Akaraphanth, R; Aiba, S
2011-01-01
Although the nipple and areola of the breast constitute a unique and prominent area on the chest, so far no study has been done on the functional properties of their skin surfaces. To study the stratum corneum (SC) covering the areola using noninvasive methods. Eighteen adult healthy subjects comprising nine men and nine women and 18 age- and sex-matched patients with atopic dermatitis (AD), none of whom had visible skin lesions, participated in the study. Transepidermal water loss (TEWL), skin surface hydration and skin surface lipid levels were measured on the areola and adjacent breast skin. The size of the skin surface corneocytes of these skin regions was assessed. All the healthy subjects showed significantly higher TEWL accompanied by smaller sized corneocytes on the areola than on the adjacent breast skin. Only female subjects revealed a significantly higher skin surface hydration state together with significantly increased skin surface lipid levels on the areola than on the adjacent breast skin. These sex differences were observed even in patients with AD. Comparison between healthy individuals and the patients with AD demonstrated higher TEWL, decreased skin surface hydration state and lower skin surface lipid levels associated with smaller sized corneocytes in the areola in the patients with AD, especially in male patients. In adults, the SC barrier function and SC water-binding capacity of the areola were functionally poorer than in the adjacent skin, being covered by smaller sized corneocytes and lower amounts of skin surface lipids, especially in men and in patients with AD. © 2011 The Authors. BJD © 2011 British Association of Dermatologists 2011.
Chronic inflammation is etiology of extrinsic aging.
Thornfeldt, Carl R
2008-03-01
Skin care regimens using active ingredients that are recommended by physicians who treat mucocutaneous conditions including aging should become more focused on reversing and preventing chronic inflammation. This adjustment of therapeutic and preventive strategies is necessary because chronic inflammation appears strongly linked to many preventable and treatable skin diseases and conditions such as visible skin aging. Mucocutaneous inflammation as the final common pathway of many systemic and mucocutaneous diseases including extrinsic aging has been established at the molecular and cellular levels. The corollary to this strategy includes inhibition of primary activators of mucocutaneous inflammation such as stratum corneum permeability barrier disruption, blocking any pro-inflammatory environmental insult such as ultraviolet radiation, and quenching tissue responses to these insults. This review will present the scientific rationale substantiating the conclusion that chronic inflammation is the common denominator in many mucocutaneous pathophysiologic processes including extrinsic skin aging.
Transfollicular delivery takes root: the future for vaccine design?
Hansen, Steffi; Lehr, Claus-Michael
2014-01-01
The immunological environment of hair follicles has lately received the attention of researchers in the context of transfollicular drug delivery, particularly for improving needle-free transcutaneous immunization. Hair follicles represent shunt pathways across the stratum corneum barrier, which may facilitate the absorption of large or hydrophilic molecules such as vaccine antigens. Currently researchers have identified opportunities and challenges created by transfollicular vaccination. Nanotechnology may facilitate transfollicular delivery in several ways as nanoparticles penetrate deeper and to a higher extent into hair follicles than solutions. Also, nanoencapsulation can stabilize antigens and increase their antigenicity. This seems necessary as only a limited portion of topically applied antigen is available via the hair follicles and as the responsiveness of perifollicular Langerhans cells varies during hair cycle. These problems may be overcome by developing more efficient adjuvant-coupled nanocarriers with high antigen payload.
Şenyiğit, Taner; Sonvico, Fabio; Rossi, Alessandra; Tekmen, Işıl; Santi, Patrizia; Colombo, Paolo; Nicoli, Sara; Özer, Özgen
2016-12-26
The aim of this work was to assess in vivo the anti-inflammatory efficacy and tolerability of clobetasol propionate (CP) loaded lecithin/chitosan nanoparticles incorporated into chitosan gel for topical application (CP 0.005%). As a comparison, a commercial cream (CP 0.05% w / w ), and a sodium deoxycholate gel (CP 0.05% w / w ) were also evaluated. Lecithin/chitosan nanoparticles were prepared by self-assembling of the components obtained by direct injection of soybean lecithin alcoholic solution containing CP into chitosan aqueous solution. Nanoparticles obtained had a particle size around 250 nm, narrow distribution (polydispersity index below 0.2) and positive surface charge, provided by a superficial layer of the cationic polymer. The nanoparticle suspension was then loaded into a chitosan gel, to obtain a final CP concentration of 0.005%. The anti-inflammatory activity was evaluated using carrageenan-induced hind paw edema test on Wistar rats, the effect of formulations on the barrier property of the stratum corneum were determined using transepidermal water loss measurements (TEWL) and histological analysis was performed to evaluate the possible presence of morphological changes. The results obtained indicate that nanoparticle-in-gel formulation produced significantly higher edema inhibition compared to other formulations tested, although it contained ten times less CP. TEWL measurements also revealed that all formulations have no significant disturbance on the barrier function of skin. Furthermore, histological analysis of rat abdominal skin did not show morphological tissue changes nor cell infiltration signs after application of the formulations. Taken together, the present data show that the use of lecithin/chitosan nanoparticles in chitosan gel as a drug carrier significantly improves the risk-benefit ratio as compared with sodium-deoxycholate gel and commercial cream formulations of CP.
In Vivo Assessment of Clobetasol Propionate-Loaded Lecithin-Chitosan Nanoparticles for Skin Delivery
Şenyiğit, Taner; Sonvico, Fabio; Rossi, Alessandra; Tekmen, Işıl; Santi, Patrizia; Colombo, Paolo; Nicoli, Sara; Özer, Özgen
2016-01-01
The aim of this work was to assess in vivo the anti-inflammatory efficacy and tolerability of clobetasol propionate (CP) loaded lecithin/chitosan nanoparticles incorporated into chitosan gel for topical application (CP 0.005%). As a comparison, a commercial cream (CP 0.05% w/w), and a sodium deoxycholate gel (CP 0.05% w/w) were also evaluated. Lecithin/chitosan nanoparticles were prepared by self-assembling of the components obtained by direct injection of soybean lecithin alcoholic solution containing CP into chitosan aqueous solution. Nanoparticles obtained had a particle size around 250 nm, narrow distribution (polydispersity index below 0.2) and positive surface charge, provided by a superficial layer of the cationic polymer. The nanoparticle suspension was then loaded into a chitosan gel, to obtain a final CP concentration of 0.005%. The anti-inflammatory activity was evaluated using carrageenan-induced hind paw edema test on Wistar rats, the effect of formulations on the barrier property of the stratum corneum were determined using transepidermal water loss measurements (TEWL) and histological analysis was performed to evaluate the possible presence of morphological changes. The results obtained indicate that nanoparticle-in-gel formulation produced significantly higher edema inhibition compared to other formulations tested, although it contained ten times less CP. TEWL measurements also revealed that all formulations have no significant disturbance on the barrier function of skin. Furthermore, histological analysis of rat abdominal skin did not show morphological tissue changes nor cell infiltration signs after application of the formulations. Taken together, the present data show that the use of lecithin/chitosan nanoparticles in chitosan gel as a drug carrier significantly improves the risk-benefit ratio as compared with sodium-deoxycholate gel and commercial cream formulations of CP. PMID:28035957
Zhu, Y.H.; Song, S.P.; Luo, W.; Elias, P.M.; Man, M.Q.
2011-01-01
Background and Objectives Studies have demonstrated that some cutaneous biophysical properties vary with age, gender and body sites. However, the characteristics of the skin friction coefficient in different genders and age groups have not yet been well established. In the present study, we assess the skin friction coefficient in a larger Chinese population. Methods A total of 633 subjects (300 males and 333 females) aged 0.15–79 years were enrolled. A Frictiometer® FR 770 and Corneometer® CM 825 (C&K MPA 5) were used to measure the skin friction coefficient and stratum corneum hydration, respectively, on the dorsal surface of the hand, the forehead and the canthus. Results In the females, the maximum skin friction coefficients on both the canthus and the dorsal hand skin were observed around the age of 40 years. In the males, the skin friction coefficient on the dorsal hand skin gradually increased from 0 to 40 years of age, and changed little afterward. Skin friction coefficients on some body sites were higher in females than in age-matched males in some age groups. On the canthus and the dorsal hand skin of females, a positive correlation was found between skin friction coefficient and stratum corneum hydration (p < 0.001 and p < 0.0001, respectively). In contrast, in males, the skin friction coefficient was positively correlated with stratum corneum hydration on the forehead and the dorsal hand skin (p < 0.05 and p < 0.0001, respectively). Conclusion The skin friction coefficient varies with age, gender and body site, and positively correlates with stratum corneum hydration on some body sites. PMID:21088455
Zhu, Y H; Song, S P; Luo, W; Elias, P M; Man, M Q
2011-01-01
Studies have demonstrated that some cutaneous biophysical properties vary with age, gender and body sites. However, the characteristics of the skin friction coefficient in different genders and age groups have not yet been well established. In the present study, we assess the skin friction coefficient in a larger Chinese population. A total of 633 subjects (300 males and 333 females) aged 0.15-79 years were enrolled. A Frictiometer FR 770 and Corneometer CM 825 (C&K MPA 5) were used to measure the skin friction coefficient and stratum corneum hydration, respectively, on the dorsal surface of the hand, the forehead and the canthus. In the females, the maximum skin friction coefficients on both the canthus and the dorsal hand skin were observed around the age of 40 years. In the males, the skin friction coefficient on the dorsal hand skin gradually increased from 0 to 40 years of age, and changed little afterward. Skin friction coefficients on some body sites were higher in females than in age-matched males in some age groups. On the canthus and the dorsal hand skin of females, a positive correlation was found between skin friction coefficient and stratum corneum hydration (p < 0.001 and p < 0.0001, respectively). In contrast, in males, the skin friction coefficient was positively correlated with stratum corneum hydration on the forehead and the dorsal hand skin (p < 0.05 and p < 0.0001, respectively). The skin friction coefficient varies with age, gender and body site, and positively correlates with stratum corneum hydration on some body sites. Copyright © 2010 S. Karger AG, Basel.
Matsunaka, H; Yamamoto, Y; Furukawa, F
2017-02-01
Skin melanin content is an important indicator for ascertaining the pathology of skin pigmentation diseases, but its analysis necessitates a biopsy or other means of collecting tissue, posing a considerable burden to the patient, and making it difficult to observe how a given skin site changes over time. Here, we aimed to establish a non-invasive method for quantifying the eumelanin and pheomelanin content of the stratum corneum. Sun-exposed and non-exposed samples from 10 healthy Japanese subjects were compared. We harvested the outermost layer of the stratum corneum by tape-stripping, considering the outer side of the forearm as a sun-exposed area, and medial side of the upper arm as a non-exposed area. Four additional subjects were included in the analysis of change in melanin content over time at the same skin site. The anterior lower leg received a single exposure to two minimal erythema dose sunlight, and the stratum corneum was harvested from the same site over a period of 20 weeks; we subsequently quantified the levels of eumelanin and pheomelanin using high-performance liquid chromatography. We were able to accurately quantify the eumelanin and pheomelanin contents of the stratum corneum, and to observe the evolution of the same skin site over time. Eumelanin levels were significantly higher in the sun-exposed area, with a peak in melanin observed after 11-15 weeks of sun exposure. This non-invasive method can serve as a marker for pathology of skin pigmentation diseases such as malignant tumors. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Particle based vaccine formulations for transcutaneous immunization.
Mittal, Ankit; Raber, Anne S; Lehr, Claus-Michael; Hansen, Steffi
2013-09-01
Vaccine formulations on the basis of nano- (NP) or microparticles (MP) can solve issues with stabilization, controlled release, and poor immunogenicity of antigens. Likewise transcutaneous immunization (TCI) promises superior immunogenicity as well as the advantages of needle-free application compared with conventional intramuscular injections. Thus the combination of both strategies seems to be a very valuable approach. However, until now TCI using particle based vaccine formulations has made no impact on medical practice. One of the main difficulties is that NPs and MPs cannot penetrate the skin to an extent that would allow the application of the required dose of antigen. This is due to the formidable stratum corneum (SC) barrier, the limited amount of antigen in the formulation and often an insufficient immunogenicity. A multitude of strategies are currently under investigation to overcome these issues. We highlight selected methods presenting a spectrum of solutions ranging from transfollicular delivery, to devices disrupting the SC barrier and the combination of particle based vaccines with adjuvants discussing their advantages and shortcomings. Some of these are currently at an experimental state while others are already in clinical testing. All methods have been shown to be capable of transcutaneous antigen delivery.
Sensitive skin and stratum corneum reactivity to household cleaning products.
Goffin, V; Piérard-Franchimont, C; Piérard, G E
1996-02-01
Products intended for individuals with sensitive skin are being increasingly developed by formulators of household cleaning products. However, there is currently no consensus about the definition and recognition of the biological basis of sensitive skin. We sought to determine the relation between the nature of environmental threat perceived as aggressive by panelists, and the stratum corneum reactivity to household cleaning products as measured by the corneosurfametry test. Results indicate substantial differences in irritancy potential between proprietary products. Corneosurfametry data show significant differences in stratum corneum reactivity between, on the one hand, individuals with either non-sensitive skin or skin sensitive to climate/fabrics, and, on the other hand, individuals with detergent-sensitive skin. It is concluded that sensitive skin is not one single condition. Sound information in rating detergent-sensitive skin may be gained by corneosurfametry.
The Structure of the Human Vaginal Stratum Corneum and its Role in Immune Defense
Anderson, Deborah J.; Marathe, Jai; Pudney, Jeffrey
2014-01-01
The superficial layers of the human vaginal epithelium, which form an interface between host and environment, are comprised of dead flattened cells that have undergone a terminal cell differentiation program called cornification. This entails extrusion of nuclei and intercellular organelles, and the depletion of functional DNA and RNA precluding the synthesis of new proteins. As a consequence, the terminally differentiated cells do not maintain robust intercellular junctions and have a diminished capacity to actively respond to microbial exposure, yet the vaginal stratum corneum (SC) mounts an effective defense against invasive microbial infections. The vaginal SC in reproductive aged women is comprised of loosely connected glycogen-filled cells which are permeable to bacterial and viral microbes as well as molecular and cellular mediators of immune defense. We propose here that the vaginal SC provides a unique microenvironment that maintains vaginal health by fostering endogenous lactobacillii and retaining critical mediators of acquired and innate immunity. A better understanding of the molecular and physicochemical properties of the vaginal SC could promote the design of more effective topical drugs and microbicides. PMID:24661416
Gravimetric method for in vitro calibration of skin hydration measurements.
Martinsen, Ørjan G; Grimnes, Sverre; Nilsen, Jon K; Tronstad, Christian; Jang, Wooyoung; Kim, Hongsig; Shin, Kunsoo; Naderi, Majid; Thielmann, Frank
2008-02-01
A novel method for in vitro calibration of skin hydration measurements is presented. The method combines gravimetric and electrical measurements and reveals an exponential dependency of measured electrical susceptance to absolute water content in the epidermal stratum corneum. The results also show that absorption of water into the stratum corneum exhibits three different phases with significant differences in absorption time constant. These phases probably correspond to bound, loosely bound, and bulk water.
Interdigital athlete's foot. The interaction of dermatophytes and resident bacteria.
Leyden, J J; Kligman, A M
1978-10-01
Quantitative cultures in 140 cases of interdigital "athlete's foot" established the following clinical-microbiological correlations. In 39 cases of mild, scaling, relatively asymptomatic variety, fungi were recovered in 84% of cases. As the disease progressed to maceration, hyperkeratosis, and increased symptoms, recovery of fungi fell to 55% in moderately symptomatic and to 36% in severe cases. Symptomatic cases had increasing numbers of resident aerobic organisms, particularly large colony diphtheroids. Experimental manipulations of the interspace microflora in volunteers, monitored with quantitative cultures, demonstrated that symptomatic, macerated, hyperkeratotic process results from an overgrowth of resident organisms if the stratum corneum barrier is damaged by preexisting fungi, while overgrowth of the same organisms in normal, fungus-free interspaces does not produce lesions. These experiments support the conclusion that athlete's foot represents a continuum from a relatively asymptomatic, scaling eruption produced by fungi to a symptomatic, macerated, hyperkeratotic variety that is caused by an overgrowth of bacteria.
Inflammatory peeling skin syndrome caused a novel mutation in CDSN.
Telem, Dana Fuchs; Israeli, Shirli; Sarig, Ofer; Sprecher, Eli
2012-04-01
Generalized peeling skin syndrome (PSS) is a rare autosomal recessive dermatosis manifesting with continuous exfoliation of the stratum corneum. The inflammatory (type B) subtype of PSS was recently found to be caused by deleterious mutations in the CDSN gene encoding corneodesmosin, a major component of desmosomal junctions in the uppermost layers of the epidermis. In the present study, we assessed a 10-month-old baby, who presented with generalized superficial peeling of the skin. Using PCR amplification and direct sequencing, we identified the third PSS-associated mutation in CDSN, a homozygous 4 bp duplication in the second exon of the gene (c.164_167dup GCCT; p.Thr57ProfsX6). These data further support the notion that corneodesmosin deficiency impairs cell-cell adhesion in the upper epidermis, paving the way for an abnormal inflammatory response due to epidermal barrier disruption.
Brian Barry: innovative contributions to transdermal and topical drug delivery.
Williams, A C
2013-01-01
Brian Barry published over 300 research articles across topics ranging from colloid science, vasoconstriction and the importance of thermodynamics in dermal drug delivery to exploring the structure and organisation of the stratum corneum barrier lipids and numerous strategies for improving topical and transdermal drug delivery, including penetration enhancers, supersaturation, coacervation, eutectic formation and the use of varied liposomes. As research in the area blossomed in the early 1980s, Brian wrote the book that became essential reading for both new and established dermal delivery scientists, explaining the background mathematics and principles through to formulation design. Brian also worked with numerous scientists, as collaborators and students, who have themselves taken his rigorous approach to scientific investigation into their own research groups. This paper can only describe a small fraction of the many significant contributions that Brian made to the field during his 40-year academic career.
Evans, Richard L; Turner, Graham A; Bates, Susan; Robinson, Teresa; Arnold, David; Marriott, Robert E; Pudney, Paul D A; Bonnist, Eleanor Y M; Green, Darren
2017-11-01
The study objectives were to demonstrate that glycerol, when topically applied from a roll-on antiperspirant formulation, can be delivered directly to human skin ex vivo and the axillary stratum corneum (SC) in vivo, and to assess whether it improves the quality of the axillary skin barrier. Ex vivo human skin absorption of glycerol was measured following application of a roll-on antiperspirant formulation containing 4% 13 C 3 -glycerol. Skin distribution of 13 C 3 -glycerol over 24 h was assessed using gas chromatography-mass spectrometry. In vivo axillary SC penetration was measured by confocal Raman spectroscopy and multivariate curve-resolution software 1 h after topical application of a roll-on antiperspirant formulation containing 8% deuterated glycerol (d 5 -glycerol). A clinical study was conducted to determine the efficacy of a roll-on antiperspirant formulation containing 4% glycerol in reducing shaving-induced visual irritation and in increasing axillary-skin hydration. Ex vivo skin absorption studies indicated that the formulation delivered 13 C 3 -glycerol into the SC at all timepoints over the 24-h period. In vivo Raman measurements (1 h after application) demonstrated that d 5 -glycerol was detectable to a depth of at least 10 μm in the axillary SC. Application of 4% glycerol from a roll-on antiperspirant formulation to the axilla was associated with significantly less visible irritation and greater skin hydration than observed with the control (glycerol-free) product. These studies demonstrate that glycerol, incorporated in a roll-on antiperspirant formulation, is delivered directly and rapidly to all depths of the axillary SC, and results in improvements in visible irritation and hydration in the axilla.
Brazzelli, V; Berardesca, E; Rona, C; Borroni, G
2008-01-01
The purpose of this placebo-controlled right-left intra-individual pre/post comparison study was to evaluate the efficacy of a new bi-layer composite membrane, composed of a layer of knitted cotton and a layer of semi-permeable polyurethane, developed in order to improve skin hydration. Eighteen healthy subjects entered the study. A T-shirt, dedicated to this study, was prepared and it was worn for 8 h, mimicking overnight wearing. Before and at the removal of the T-shirt an objective quantification of skin parameters was performed by measuring hydration, transepidermal water loss (TEWL) and skin surface pH, bilaterally, on the inner side of the forearm. Measurements were performed both at the interface between the skin and the bi-layer composite membrane or cotton and on the outer side of the membrane (to assess permeation of water and occlusive properties of the product) with and without a single application of a moisturizer. A statistically significant improvement of skin hydration, recorded on the stratum corneum underneath the bi-layer membrane versus cotton alone, was measured both with (p < 0.0001) and without application of the moisturizer (p < 0.002). TEWL was shown to decrease significantly on the side of the bi-layer membrane, if compared with cotton (p < 0.008), after application of the moisturizer. TEWL through the membrane showed no significant differences as compared to placebo, confirming the permeability of the fabric. Our data suggest that this bi-layer composite membrane can promote the hydration process of the stratum corneum, increasing the hydrating properties of the moisturizer agent. (c) 2007 S. Karger AG, Basel
Kessner, Doreen; Brezesinski, Gerald; Funari, Sergio S; Dobner, Bodo; Neubert, Reinhard H H
2010-01-01
The stratum corneum (SC), the outermost layer of the mammalian skin, is the main skin barrier. Ceramides (CERs) as the major constituent of the SC lipid matrix are of particular interest. At the moment, 11 classes of CERs are identified, but the effect of each single ceramide species is still not known. Therefore in this article, the thermotropic behaviour of the long chain omega-acylceramides CER[EOS] and CER[EOP] was studied using X-ray powder diffraction and FT-Raman spectroscopy. It was found that the omega-acylceramides CER[EOS] and CER[EOP] do not show a pronounced polymorphism which is observed for shorter chain ceramides as a significant feature. The phase behaviour of both ceramides is strongly influenced by the extremely long acyl-chain residue. The latter has a much stronger influence compared with the structure of the polar head group, which is discussed as extremely important for the appearance of a rich polymorphism. Despite the strong influence of the long chain, the additional OH-group of the phyto-sphingosine type CER[EOP] influences the lamellar repeat distance and the chain packing. The less polar sphingosine type CER[EOS] is stronger influenced by the long acyl-chain residue. Hydration is necessary for the formation of an extended hydrogen-bonding network between the polar head groups leading to the appearance of a long-periodicity phase (LPP). In contrast, the more polar CER[EOP] forms the LPP with densely packed alkyl chains already in the dry state.
Ex vivo skin absorption of terpenes from Vicks VapoRub ointment.
Cal, Krzysztof; Sopala, Monika
2008-08-01
The pharmaceutical market offers a wide range of inhalant drug products applied on the skin that contain essential oils and/or their isolated compounds, i.e. terpenes. Because there are few data concerning the skin penetration of terpenes, especially from complex carriers, the goal of this study was to determine the ex vivo skin absorption kinetics of chosen terpenes, namely eucalyptol, menthol, camphor, alpha-pinene, and beta-pinene, from the product Vicks VapoRub. Human cadaver skin was placed in a flow-through diffusion chamber and the product was applied for 15, 30, and 60 min. After the application time the skin was separated into layers using a tape-stripping technique: three fractions of stratum corneum and epidermis with dermis, and terpenes amounts in the samples were determined by gas-chromatography. The investigated terpenes showed different absorption characteristics related to their physicochemical properties and did not permeate through the skin into the acceptor fluid. Eucalyptol had the largest total accumulation in the stratum corneum and in the epidermis with dermis, while alpha-pinene penetrated into the skin in the smallest amount. The short time in which saturation of the stratum corneum with the terpenes occurred and the high accumulation of most of the investigated terpenes in the skin layers proved that these compounds easily penetrate and permeate the stratum corneum and that in vivo they may easily penetrate into the blood circulation.
Jung, Sang-Myung; Yoon, Gwang Heum; Lee, Hoo Chul; Jung, Moon Hee; Yu, Sun Il; Yeon, Seung Ju; Min, Seul Ki; Kwon, Yeo Seon; Hwang, Jin Ha; Shin, Hwa Sung
2015-01-01
Atopic dermatitis (AD) is a complex skin disease primarily characterized by psoriasis of the stratum corneum. AD drugs have usually been used in acidic and hydrophilic solvents to supply moisture and prevent lipid defects. Ceramide is a typical treatment agent to regenerate the stratum corneum and relieve symptoms of AD. However, ceramide has limitation on direct use for skin because of its low dispersion properties in hydrophilic phase and side effects at excessive treatment. In this study, ceramide imbedded PLGA nanoparticles were developed with chitosan coating (Chi-PLGA/Cer) to overcome this problem. The chitosan coating enhanced initial adherence to the skin and prevented the initial burst of ceramide, but was degraded by the weakly acidic nature of skin, resulting in controlled release of ceramide with additional driving force of the squeezed PLGA nanoparticles. Additionally, the coating kinetics of chitosan were controlled by manipulating the reaction conditions and then mathematically modeled. The Chi-PLGA/Cer was not found to be cytotoxic and ceramide release was controlled by pH, temperature, and chitosan coating. Finally, Chi-PLGA/Cer was demonstrated to be effective at stratum corneum regeneration in a rat AD model. Overall, the results presented herein indicated that Chi-PLGA/Cer is a novel nanodrug for treatment of AD. PMID:26666701
In vitro and in vivo topical delivery studies of tretinoin-loaded ultradeformable vesicles.
Ascenso, Andreia; Salgado, Ana; Euletério, Carla; Praça, Fabíola Garcia; Bentley, Maria Vitória Lopes Badra; Marques, Helena C; Oliveira, Helena; Santos, Conceição; Simões, Sandra
2014-09-01
Ultradeformable vesicles are highly promising tools to enhance the percutaneous transport of different drugs such as tretinoin across the skin barrier and also to increase the formulation stability at absorption site and reduce the drug induced irritation. Topical delivery of tretinoin-loaded ultradeformable vesicles (tretinoin-UDV) was evaluated concerning different studies, such as: the release and permeation profiles (tape stripping); skin penetration (fluorescence analysis); induced electrical changes in skin barrier properties; cytotoxicity (Trypan Blue assay) and skin irritation in in vivo conditions (Draize test). The novel formulation performance was also compared to a commercial tretinoin formulation regarding in vivo studies. It was obtained a sustained and controlled drug release, as expected for UDV formulation. In addition, a dermal delivery was observed regarding the permeation study since it was not detected any drug amount in the receptor phase after 24h. Nile Red-UDV stained intensively mostly in the stratum corneum, corroborating the tape stripping results. Tretinoin-UDV decreased skin resistance, suggesting its ability to induce skin barrier disruption. Finally, the formulation vehicle (empty UDV) and tretinoin-UDV were not toxic under in vitro and in vivo conditions, at least, at 5×10(-3)mg/mL and 0.5mg/mL of tretinoin, respectively. Tretinoin-UDV is a promising delivery system for tretinoin dermal delivery without promoting skin irritation (unlike other commercial formulations), which is quite advantageous for therapeutic purpose. Copyright © 2014 Elsevier B.V. All rights reserved.
Choe, ChunSik; Schleusener, Johannes; Lademann, Jürgen; Darvin, Maxim E
2017-08-01
The intercellular lipids (ICL) of stratum corneum (SC) play an important role in maintaining the skin barrier function. The lateral and lamellar packing order of ICL in SC is not homogenous, but rather depth-dependent. This study aimed to analyze the influence of the topically applied mineral-derived (paraffin and petrolatum) and plant-derived (almond oil and jojoba oil) oils on the depth-dependent ICL profile ordering of the SC in vivo. Confocal Raman microscopy (CRM), a unique tool to analyze the depth profile of the ICL structure non-invasively, is employed to investigate the interaction between oils and human SC in vivo. The results show that the response of SC to oils' permeation varies in the depths. All oils remain in the upper layers of the SC (0-20% of SC thickness) and show predominated differences of ICL ordering from intact skin. In these depths, skin treated with plant-derived oils shows more disordered lateral and lamellar packing order of ICL than intact skin (p<0.05). In the intermediate layers of SC (30-50% of SC thickness), the oils do not influence the lateral packing order of SC ICL (p>0.1), except plant-derived oils at the depth 30% of SC thickness. In the deeper layers of the SC (60-100% of SC thickness), no difference between ICL lateral packing order of the oil-treated and intact skin can be observed, except that at the depths of 70-90% of the SC thickness, where slight changes with more disorder states are measured for plant-derived oil treated skin (p<0.1), which could be explained by the penetration of free fatty acid fractions in the deep-located SC areas. Both oil types remain in the superficial layers of the SC (0-20% of the SC thickness). Skin treated with mineral- and plant-derived oils shows significantly higher disordered lateral and lamellar packing order of ICL in these layers of the SC compared to intact skin. Plant-derived oils significantly changed the ICL ordering in the depths of 30% and 70-90% of the SC thickness, which is likely due to the penetration of free fatty acids in the deeper layers of the SC. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.
Transcutaneous drug delivery by liposomes using fractional laser technology.
Fujimoto, Takahiro; Wang, Jian; Baba, Kazuki; Oki, Yuka; Hiruta, Yuki; Ito, Masayuki; Ito, Shinobu; Kanazawa, Hideko
2017-07-01
Transdermal delivery of hydrophilic peptides remains a challenge due to their poor cellular uptake and transdermal penetration. We hypothesize that combination of a CO 2 fractional laser to enhance percutaneous absorption and liposomes as transdermal carriers would improve skin penetration of hydrophilic drugs. NA. Liposomes were prepared using membrane fusion lipid dioleoylphosphatidylethanolamine, and used to deliver 5-carboxyfluorescein (CF) and fluorescein isothiocyanate-conjugated ovalbumin (OVA-FITC) as model hydrophilic peptide drugs. Liposome size was estimated by dynamic light scattering. Liposome uptake into murine macrophage cells and penetration or permeation into Yucatan micropig skin after irradiation by CO 2 fractional laser at varying energy levels (laser power and exposure duration) were investigated using Franz cell and fluorescence microscopy. Oxidative damage to the irradiated mouse skin was assessed by electron spin resonance. Size of CF and OVA-FITC encapsulated liposomes was 324 ± 75 nm. Cellular uptake of OVA-FITC delivered by liposomes was 10-fold higher (1,370 relative fluorescence units, RFU) than delivered in solution form (130 RFU). Fractional laser irradiation increased skin permeation rate of CF liposomes (0-10%) and OVA-FITC liposomes (4-40%) in a dose-dependent manner. Although peeling off the stratum corneum facilitated CF liposome penetration at low energy levels (2.69-3.29 J/cm 2 ; 10-20 W for 500 μs), drug permeation was similar (7-8%) in peeled or untreated skin at higher laser energy levels (6.06 J/cm 2 ; 20 W for 1,500 μs). FITC penetrated deeper in the skin after laser irradiation. However, OH, O2-, and VC reactive oxygen species were generated upon irradiation of the skin with a fractional CO 2 laser. Increasing laser power and irradiation, time increased liposome uptake by cells and penetration of peptide drugs across the skin in a dose-dependent manner. High-energy CO 2 fractional laser overcomes the rate-limiting barrier function of the stratum corneum. Further investigations are required to establish the safety and efficacy of fractional laser-irradiation assisted delivery of liposome-encapsulated drugs as a transcutaneous drug delivery system. Lasers Surg. Med. 49:525-532, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Park, T H; Park, C H; Ha, S K; Lee, S H; Song, K S; Lee, H Y; Han, D S
1995-12-01
The aetiology and the pathophysiological mechanisms underlying the development of dry skin in uraemia are still unclear, but the hydration status of stratum corneum clearly influences the appearance of skin. The xerotic skin texture is often referred to as 'dry skin' and has been suggested as a cause of uraemic pruritus. To understand the aetiology of dry skin in uraemia we measured the status of skin surface hydration of uraemic patients with the corneometer and skin surface hydrometer, the functional capacity and the urea concentration of stratum corneum and the response of eccrine sweat gland to sudorific agent (0.05% pilocarpine HCL) in 18 age-matched haemodialysis patients and 10 healthy volunteers. We also performed the water sorption-desorption test to uraemic and control subjects after application of urea in various concentrations. Uraemic patient's skin showed decreased water content compared to control subjects. However, we found no correlation between dry skin and pruritus. Although the urea concentration of the horny layer in uraemic patients was elevated compared to control subjects (28.2 microgram/cm2 vs 5.04 micrograms/cm2, P < 0.05), its moisturizing effect to relieve pruritus is questionable because its artificial application revealed no improvement of the functional capacity of horny layer in concentration 5 times higher than the physiological concentration. Uraemic patients showed decreased sweating response to sudorific agent. In conclusion, the functional abnormalities of eccrine sweat glands may be account for dry skin in uraemic patients at least in part, but there is no correlation between xerosis and pruritus.
Patterns of aluminum hydroxychloride deposition onto the skin.
Mayeux, Géraldine; Xhauflaire-Uhoda, Emmanuelle; Piérard, Gérald E
2012-02-01
Aluminum hydroxychloride (AlCl(3) ) is an antiperspirant. To revisit the AlCl(3) deposition in vivo and in vitro on glass slides and stratum corneum (SC) harvested by cyanoacrylate skin surface strippings (CSSS). Transepidermal water loss (TEWL) was assessed following application of 5% AlCl(3) on the forearms. The AlCl(3) -coated skin, glass slides and CSSS were observed using two ultraviolet light-emitting CCD cameras in order to record changes in specular reflectance related to AlCl(3) deposition. In addition, the corneoxenometry bioassay was performed in order to predict AlCl(3) irritation. AlCl(3) deposited on glass slides looked as linear threads and rings of similar sizes. AlCl(3) deposits on skin were almost restricted inside the microrelief lines and as annular deposits at their crossings where acrosyringia are opening. After daily AlCl(3) applications, deposits extended on the CSSS plateaus. At rest in absence of sweating, TEWL was decreased following AlCl(3) applications. During physical exercise, the TEWL increase was limited on the AlCl(3) areas. CSSS appeared unreactive to AlCl(3) at the corneoxenometry bioassay. The similar aspect of AlCl(3) deposits on human SC and on glass slides suggested a physical property of AlCl(3) . Repetitive applications of AlCl(3) increased both the deposit area and the barrier function. © 2011 John Wiley & Sons A/S.
Yang, Yang; Sunoqrot, Suhair; Stowell, Chelsea; Ji, Jingli; Lee, Chan-Woo; Kim, Jin Woong; Khan, Seema A.; Hong, Seungpyo
2012-01-01
The barrier functions of the stratum corneum (SC) and the epidermal layers present a tremendous challenge in achieving effective transdermal delivery of drug molecules. Although a few reports have shown that poly(amidoamine) (PAMAM) dendrimers are effective skin penetration enhancers, little is known regarding the fundamental mechanisms behind the dendrimer-skin interactions. In this paper, we have performed a systematic study to better elucidate how dendrimers interact with skin layers depending on their size and surface groups. Franz diffusion cells and confocal microscopy were employed to observe dendrimer interactions with full-thickness porcine skin samples. We have found that smaller PAMAM dendrimers (generation 2 (G2)) penetrate the skin layers more efficiently than the larger ones (G4). We have also found that G2 PAMAM dendrimers that are surface modified by either acetylation or carboxylation exhibit increased skin permeation and likely diffuse through an extracellular pathway. In contrast, amine-terminated dendrimers show enhanced cell internalization and skin retention but reduced skin permeation. In addition, conjugation of oleic acid (OA) to G2 dendrimers increases their 1-octanol/PBS partition coefficient, resulting in increased skin absorption and retention. Here we report that size, surface charge, and hydrophobicity directly dictate the permeation route and efficiency of dendrimer translocation across the skin layers, providing a design guideline for engineering PAMAM dendrimers as a potential transdermal delivery vector. PMID:22621160
Diwakar, Ganesh; Rana, Jatinder; Saito, Lisa; Vredeveld, Doug; Zemaitis, Dorothy; Scholten, Jeffrey
2014-09-01
In recent years, dietary fatty acids have been extensively evaluated for nutritional as well as cosmetic benefits. Among the dietary fats, the omega-3 (ω3) and omega-6 (ω6) forms of polyunsaturated fatty acids (PUFAs) have been found to exhibit many biological functions in the skin such as prevention of transepidermal water loss, maintenance of the stratum corneum epidermal barrier, and disruption of melanogenesis in epidermal melanocytes. In this study, we examined the effect of chia seed extract, high in ω3 (linolenic acid) and ω6 (linoleic acid) PUFAs, for its capacity to affect melanogenesis. Chia seed extract was shown to inhibit melanin biosynthesis in Melan-a cells; however, linoleic and α-linolenic acids alone did not effectively reduce melanin content. Further investigation demonstrated that chia seed extract in combination with pomegranate fruit extract had a synergistic effect on the inhibition of melanin biosynthesis with no corresponding effect on tyrosinase activity. Investigation of the possible mechanism of action revealed that chia seed extract downregulated expression of melanogenesis-related genes (Tyr, Tyrp1, and Mc1r), alone and in combination with pomegranate fruit extract, suggesting that the inhibition of melanin biosynthesis by a novel combination of chia seed and pomegranate fruit extracts is possibly due to the downregulation of gene expression of key melanogenic enzymes. Copyright © 2014 Elsevier B.V. All rights reserved.
Guo, Shan; Moore, Timothy C.; Iacovella, Christopher R.; Strickland, L. Anderson; McCabe, Clare
2014-01-01
Ceramides are known to be a key component of the stratum corneum, the outermost protective layer of the skin that controls barrier function. In this work, molecular dynamics simulations are used to examine the behavior of ceramide bilayers, focusing on non-hydroxy sphingosine (NS) and non-hydroxy phytosphingosine (NP) ceramides. Here, we propose a modified version of the CHARMM force field for ceramide simulation, which is directly compared to the more commonly used GROMOS-based force field of Berger (Biophys. J. 1997, 72); while both force fields are shown to closely match experiment from a structural standpoint at the physiological temperature of skin, the modified CHARMM force field is better able to capture the thermotropic phase transitions observed in experiment. The role of ceramide chemistry and its impact on structural ordering is examined by comparing ceramide NS to NP, using the validated CHARMM-based force field. These simulations demonstrate that changing from ceramide NS to NP results in changes to the orientation of the OH groups in the lipid headgroups. The arrangement of OH groups perpendicular to the bilayer normal for ceramide NP, verse parallel for NS, results in the formation of a distinct hydrogen bonding network, that is ultimately responsible for shifting the gel-to-liquid phase transition to higher temperature, in direct agreement with experiment. PMID:24501589
Microplastic Effect Thresholds for Freshwater Benthic Macroinvertebrates
2018-01-01
Now that microplastics have been detected in lakes, rivers, and estuaries all over the globe, evaluating their effects on biota has become an urgent research priority. This is the first study that aims at determining the effect thresholds for a battery of six freshwater benthic macroinvertebrates with different species traits, using a wide range of microplastic concentrations. Standardized 28 days single species bioassays were performed under environmentally relevant exposure conditions using polystyrene microplastics (20–500 μm) mixed with sediment at concentrations ranging from 0 to 40% sediment dry weight (dw). Microplastics caused no effects on the survival of Gammarus pulex, Hyalella azteca, Asellus aquaticus, Sphaerium corneum, and Tubifex spp. and no effects were found on the reproduction of Lumbriculus variegatus. No significant differences in growth were found for H. azteca, A. aquaticus, S. corneum, L. variegatus, and Tubifex spp. However, G. pulex showed a significant reduction in growth (EC10 = 1.07% sediment dw) and microplastic uptake was proportional with microplastic concentrations in sediment. These results indicate that although the risks of environmentally realistic concentrations of microplastics may be low, they still may affect the biodiversity and the functioning of aquatic communities which after all also depend on the sensitive species. PMID:29337537
Microplastic Effect Thresholds for Freshwater Benthic Macroinvertebrates.
Redondo-Hasselerharm, Paula E; Falahudin, Dede; Peeters, Edwin T H M; Koelmans, Albert A
2018-02-20
Now that microplastics have been detected in lakes, rivers, and estuaries all over the globe, evaluating their effects on biota has become an urgent research priority. This is the first study that aims at determining the effect thresholds for a battery of six freshwater benthic macroinvertebrates with different species traits, using a wide range of microplastic concentrations. Standardized 28 days single species bioassays were performed under environmentally relevant exposure conditions using polystyrene microplastics (20-500 μm) mixed with sediment at concentrations ranging from 0 to 40% sediment dry weight (dw). Microplastics caused no effects on the survival of Gammarus pulex, Hyalella azteca, Asellus aquaticus, Sphaerium corneum, and Tubifex spp. and no effects were found on the reproduction of Lumbriculus variegatus. No significant differences in growth were found for H. azteca, A. aquaticus, S. corneum, L. variegatus, and Tubifex spp. However, G. pulex showed a significant reduction in growth (EC 10 = 1.07% sediment dw) and microplastic uptake was proportional with microplastic concentrations in sediment. These results indicate that although the risks of environmentally realistic concentrations of microplastics may be low, they still may affect the biodiversity and the functioning of aquatic communities which after all also depend on the sensitive species.
Large-scale human skin lipidomics by quantitative, high-throughput shotgun mass spectrometry.
Sadowski, Tomasz; Klose, Christian; Gerl, Mathias J; Wójcik-Maciejewicz, Anna; Herzog, Ronny; Simons, Kai; Reich, Adam; Surma, Michal A
2017-03-07
The lipid composition of human skin is essential for its function; however the simultaneous quantification of a wide range of stratum corneum (SC) and sebaceous lipids is not trivial. We developed and validated a quantitative high-throughput shotgun mass spectrometry-based platform for lipid analysis of tape-stripped SC skin samples. It features coverage of 16 lipid classes; total quantification to the level of individual lipid molecules; high reproducibility and high-throughput capabilities. With this method we conducted a large lipidomic survey of 268 human SC samples, where we investigated the relationship between sampling depth and lipid composition, lipidome variability in samples from 14 different sampling sites on the human body and finally, we assessed the impact of age and sex on lipidome variability in 104 healthy subjects. We found sebaceous lipids to constitute an abundant component of the SC lipidome as they diffuse into the topmost SC layers forming a gradient. Lipidomic variability with respect to sampling depth, site and subject is considerable, and mainly accredited to sebaceous lipids, while stratum corneum lipids vary less. This stresses the importance of sampling design and the role of sebaceous lipids in skin studies.
Du, Fang; Hönzke, Stefan; Neumann, Falko; Keilitz, Juliane; Chen, Wei; Ma, Nan; Hedtrich, Sarah; Haag, Rainer
2016-11-28
The topical application of drugs allows for a local application in skin disease and can reduce side effects. Here we present biodegradable core-multishell (CMS) nanocarriers which are composed of a hyperbranched polyglycerol core functionalized with diblock copolymers consisting of polycaprolactone (PCL) and poly(ethylene glycol) (mPEG) as the outer shell. The anti-inflammatory drug Dexamethasone (Dexa) was loaded into these CMS nanocarriers. DLS results suggested that Dexa loaded nanoparticles mostly act as a unimolecular carrier system. With longer PCL segments, a better transport capacity is observed. In vitro skin permeation studies showed that CMS nanocarriers could improve the Nile red penetration through the skin by up to 7 times, compared to a conventional cream formulation. Interestingly, covalently FITC-labeled CMS nanocarriers remain in the stratum corneum layer. This suggests the enhancement is due to the release of cargo after being transported into the stratum corneum by the CMS nanocarriers. In addition, the hPG-PCL-mPEG CMS nanocarriers exhibited good stability, low cytotoxicity, and their production can easily be scaled up, which makes them promising nanocarriers for topical drug delivery. Copyright © 2016 Elsevier B.V. All rights reserved.
Volumetric Visualization of Human Skin
NASA Astrophysics Data System (ADS)
Kawai, Toshiyuki; Kurioka, Yoshihiro
We propose a modeling and rendering technique of human skin, which can provide realistic color, gloss and translucency for various applications in computer graphics. Our method is based on volumetric representation of the structure inside of the skin. Our model consists of the stratum corneum and three layers of pigments. The stratum corneum has also layered structure in which the incident light is reflected, refracted and diffused. Each layer of pigment has carotene, melanin or hemoglobin. The density distributions of pigments which define the color of each layer can be supplied as one of the voxel values. Surface normals of upper-side voxels are fluctuated to produce bumps and lines on the skin. We apply ray tracing approach to this model to obtain the rendered image. Multiple scattering in the stratum corneum, reflective and absorptive spectrum of pigments are considered. We also consider Fresnel term to calculate the specular component for glossy surface of skin. Some examples of rendered images are shown, which can successfully visualize a human skin.
Bîrlea, Sinziana I; Corley, Gavin J; Bîrlea, Nicolae M; Breen, Paul P; Quondamatteo, Fabio; OLaighin, Gearóid
2009-01-01
We propose a new method for extracting the electrical properties of human skin based on the time constant analysis of its exponential response to impulse stimulation. As a result of this analysis an adjacent finding has arisen. We have found that stratum corneum electroporation can be detected using this analysis method. We have observed that a one time-constant model is appropriate for describing the electrical properties of human skin at low amplitude applied voltages (<30V), and a two time-constant model best describes skin electrical properties at higher amplitude applied voltages (>30V). Higher voltage amplitudes (>30V) have been proven to create pores in the skin's stratum corneum which offer a new, lower resistance, pathway for the passage of current through the skin. Our data shows that when pores are formed in the stratum corneum they can be detected, in-vivo, due to the fact that a second time constant describes current flow through them.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, S.R.
The primary aim of this study was to develop non-invasive, physical means to quantitatively assess the epidermal turnover kinetics and barrier properties of the skin and relate these to the cutaneous irritation which results from ultraviolet light irradiation and mold thermal burns. After systematically injecting radiolabeled glycine, the appearance of radioactivity at the skin's surface indicated the transit time of radiolabeled cells through the skin. By plotting the data as the cumulative specific activity against time and then fitting them with a third order polynomial equation, it is possible to estimate the turnover time of the stratum corneum. The skinmore » turnover was coordinated with non-invasive transepidermal water loss (TEWL) studies determined with an evaporimeter. In vitro diffusion studies of the permeability of hydrocortisone through UVB irradiated and thermally burned skin were also performed. The studies indicated that irritated skin offers a relatively low diffusional resistance to hydrocortisone. Depending on the severity of the trauma, the increases in hydrocortisone's permeability coefficient through irritated skin ranged from a low of about 2 times normal to a high of about 210 times normal. Trauma-induced changes in hydrocortisone permeability parallel changes in TEWL, proving that the barrier deficient state resulting from rapid epidermal turnover is a general phenomenon.« less
Sanz, Roser; Calpena, Ana C; Mallandrich, Mireia; Clares, Beatriz
2015-01-01
Topical administration is an appealing method for drug delivery due to its non-invasiveness, self-controlled application, avoidance of first-pass metabolism in the liver and reduction of systemic side effects compared to other conventional routes such as oral and parenteral. However, topical administration must overcome the permeable barriers that skin and mucosa represent for the drug to achieve its desired therapeutic effect. Penetration of drugs through human skin is mainly impaired by the stratum corneum- the uppermost keratinized skin layer. In contrast, the stratified squamous epithelium (a nonkeratinized tissue) represents the major physical barrier for transbuccal drug administration in humans. Different technologies have been studied to enhance the bioavailability or local effects of drugs administered through skin and buccal mucosa. Those technologies involve the use of physical or chemical enhancers and new dosage forms such as vesicles, cyclodextrins, nanoparticles and other complex systems. Combinations of these technologies may further increase drug delivery in some cases. As analgesia is one of the main therapeutic effects sought through topical administration, this paper focuses on the review of drug delivery systems to improve the topical and transdermal/transbuccal drug delivery of substances with known analgesic action. A discussion of their possibilities and limitations is also included.
Shackleford, J M; Yielding, K L
1987-09-01
This study was undertaken to test the fiber-optic perfusion fluorometer as a direct means of evaluating skin absorption and exsorption in hairless mice. Skin-barrier compromise was accomplished in the absorption experiments by application of dimethyl sulfoxide to the skin surface or by partial removal of the stratum corneum with sticky tape. Absorbed fluorescein was measured easily in unanesthetized control (skin-barrier intact) and experimental mice. Unabsorbed chemical did not fluoresce 15 minutes after application, although it was present on the surface of the skin as a dry powder. The time course of fluorescein elimination from the skin was related to a rapid phase (vascular removal) and a slow phase (reservoir entrapment). In the exsorption experiments the fluorescein was injected intraperitoneally. Back skin on the right side was swabbed with either dimethyl sulfoxide or 1% capsaicin in alcohol prior to the injections, and differences in skin fluorescence on the left (control) and right sides were recorded. One application of dimethyl sulfoxide or capsaicin increased the level of skin exsorption. Three applications of dimethyl sulfoxide almost doubled the amount of exsorbed dye, whereas three applications of the capsaicin inhibited the exsorption process. It was concluded that the fiber-optic perfusion fluorometer provides an excellent technique in support of other methods of investigating the skin.
NASA Astrophysics Data System (ADS)
MacDermaid, Christopher M.; DeVane, Russell H.; Klein, Michael L.; Fiorin, Giacomo
2014-12-01
The level of hydration controls the cohesion between apposed lamellae of saturated free fatty acids found in the lipid matrix of stratum corneum, the outermost layer of mammalian skin. This multilamellar lipid matrix is highly impermeable to water and ions, so that the local hydration shell of its fatty acids may not always be in equilibrium with the acidity and relative humidity, which significantly change over a course of days during skin growth. The homeostasis of the stratum corneum at each moment of its growth likely requires a balance between two factors, which affect in opposite ways the diffusion of hydrophilic species through the stratum corneum: (i) an increase in water order as the lipid lamellae come in closer contact, and (ii) a decrease in water order as the fraction of charged fatty acids is lowered by pH. Herein molecular dynamics simulations are employed to estimate the impact of both effects on water molecules confined between lamellae of fatty acids. Under conditions where membrane undulations are energetically favorable, the charged fatty acids are able to sequester cations around points of contact between lamellae that are fully dehydrated, while essentially maintaining a multilamellar structure for the entire system. This observation suggests that the undulations of the fatty acid lamellae control the diffusion of hydrophilic species through the water phase by altering the positional and rotational order of water molecules in the embedded/occluded "droplets."
Brooks, J; Ersser, S J; Cowdell, F; Gardiner, E; Mengistu, A; Matts, P J
2017-11-01
Podoconiosis affects an estimated 3 million people in Ethiopia with a further 19 million at risk. Volcanic soil and pathogens enter skin breaches in the feet causing inflammation, lymphoedema and hyperkeratosis. There is no robust evidence on optimal podoconiosis skincare regimens to improve skin barrier function (SBF). To evaluate the effectiveness of a new, low-cost, evidence-based intervention to improve SBF in the lower limbs of those with podoconiosis. A randomized controlled trial (NCT02839772) was conducted over 3 months in two podoconiosis clinics (n = 193). The intervention comprised 2% (v/v) glycerine added to a reduced volume of soaking water. The control group received the current skincare regimen. Primary outcome measures were transepidermal water loss (TEWL) and stratum corneum hydration (SCH) at four specific sites on the lower limbs. Improvement in SBF was observed in both groups across all measurement sites and time points, although this was significantly greater in the experimental group. TEWL reduced in both groups at all sites. For example, on top of the foot the estimated group difference in TEWL at visit 4 was 1·751 [standard error (SE) = 0·0390] in favour of the experimental group [t = 3·15, degrees of freedom (df) = 189·58, P = 0·002, 95% confidence interval (CI) 0·066-2·85], indicating a greater reduction in TEWL in the experimental group. Similarly, at the same site the estimated group difference in SCH at visit 4 was -2·041 (SE = 0·572) in favour of the experimental group (t = -3·56, df = 186·74, P < 0·001, 95% CI -3·16 to -0·91), indicating a greater increase in SCH in the experimental group. There were also significantly greater reductions in odour, number of wounds and largest foot circumference in the experimental vs. the control group. The addition of 2% (v/v) glycerol to a reduced volume (83% reduction) of soaking water significantly improved SBF. © 2017 British Association of Dermatologists.
Leyva-Mendivil, Maria F; Page, Anton; Bressloff, Neil W; Limbert, Georges
2015-09-01
The study of skin biophysics has largely been driven by consumer goods, biomedical and cosmetic industries which aim to design products that efficiently interact with the skin and/or modify its biophysical properties for health or cosmetic benefits. The skin is a hierarchical biological structure featuring several layers with their own distinct geometry and mechanical properties. Up to now, no computational models of the skin have simultaneously accounted for these geometrical and material characteristics to study their complex biomechanical interactions under particular macroscopic deformation modes. The goal of this study was, therefore, to develop a robust methodology combining histological sections of human skin, image-processing and finite element techniques to address fundamental questions about skin mechanics and, more particularly, about how macroscopic strains are transmitted and modulated through the epidermis and dermis. The work hypothesis was that, as skin deforms under macroscopic loads, the stratum corneum does not experience significant strains but rather folds/unfolds during skin extension/compression. A sample of fresh human mid-back skin was processed for wax histology. Sections were stained and photographed by optical microscopy. The multiple images were stitched together to produce a larger region of interest and segmented to extract the geometry of the stratum corneum, viable epidermis and dermis. From the segmented structures a 2D finite element mesh of the skin composite model was created and geometrically non-linear plane-strain finite element analyses were conducted to study the sensitivity of the model to variations in mechanical properties. The hybrid experimental-computational methodology has offered valuable insights into the simulated mechanics of the skin, and that of the stratum corneum in particular, by providing qualitative and quantitative information on strain magnitude and distribution. Through a complex non-linear interplay, the geometry and mechanical characteristics of the skin layers (and their relative balance), play a critical role in conditioning the skin mechanical response to macroscopic in-plane compression and extension. Topographical features of the skin surface such as furrows were shown to act as an efficient means to deflect, convert and redistribute strain-and so stress-within the stratum corneum, viable epidermis and dermis. Strain reduction and amplification phenomena were also observed and quantified. Despite the small thickness of the stratum corneum, its Young׳s modulus has a significant effect not only on the strain magnitude and directions within the stratum corneum layer but also on those of the underlying layers. This effect is reflected in the deformed shape of the skin surface in simulated compression and extension and is intrinsically linked to the rather complex geometrical characteristics of each skin layer. Moreover, if the Young׳s modulus of the viable epidermis is assumed to be reduced by a factor 12, the area of skin folding is likely to increase under skin compression. These results should be considered in the light of published computational models of the skin which, up to now, have ignored these characteristics. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effects of adenosine 5'-monophosphate on epidermal turnover.
Furukawa, Fukumi; Kanehara, Shoko; Harano, Fumiki; Shinohara, Shigeo; Kamimura, Junko; Kawabata, Shigekatsu; Igarashi, Sachiyo; Kawamura, Mitsuaki; Yamamoto, Yuki; Miyachi, Yoshiki
2008-10-01
The structure and function of the epidermis is maintained by cell renewal based on epidermal turnover. Epidermal turnover is delayed by aging, and it is thought that the delay of the epidermal turnover is a cause of aging alternation of skin. The epidermal turnover is related to the energy metabolism of epidermal basal cells. Adenosine 5'-triphosphate (ATP) is needed for cell renewal: cell division, and adenosine 5'-monophosphate (AMP) increases the amount of intracellular ATP. These findings suggest that AMP accelerates the epidermal turnover delayed by aging. This study investigated whether AMP and adenosine 5'-monophosphate disodium salt (AMP2Na) accelerates the epidermal turnover. An effect of AMP2Na on cell proliferation was examined by our counting of keratinocytes. An effect of AMP2Na on cell cycle was examined by our counting of basal cells in DNA synthetic period of hairless rats. The effects of AMP2Na (or AMP) on the epidermal turnover were examined by our measuring stratum corneum transit time by use of guinea pigs, and by our measuring stratum corneum surface area by use of hairless rats and in a clinical pharmacological study. The AMP2Na showed two different profiles on the proliferation of primary cultured keratinocytes. At a low concentration it induced cell growth, whereas at a high concentration it inhibited cell growth. The number of basal cells in the DNA synthetic period of AMP2Na was significantly higher than that of the vehicle in hairless rats. The stratum corneum transit time of AMP2Na was significantly shorter than that of the vehicle in guinea pigs. The corneocyte surface area of emulsion containing AMP2Na was significantly smaller than that of the vehicle in volunteers. We conclude that AMP promotes the cell proliferation and the cell cycle progression of epidermal basal cells and accelerates epidermal turnover safely. In addition, AMP is useful for skin rejuvenation in dermatology and aesthetic dermatology.
NASA Astrophysics Data System (ADS)
Huck, Volker; Gorzelanny, Christian; Thomas, Kai; Mess, Christian; Dimitrova, Valentina; Schwarz, Martin; Riemann, Iris; Niemeyer, Verena; Luger, Thomas A.; König, Karsten; Schneider, Stefan W.
2011-03-01
Increasing incidence of inflammatory skin diseases such as Atopic Dermatitis (AD) has been noted in the past years. According to recent estimations around 15% of newborn subjects are affected with a disease severity that requires medical treatment. Although its pathogenesis is multifactorial, recent reports indicate that an impaired physical skin barrier predispose for the development of AD. The major part of this barrier is formed by the stratum corneum (SC) wherein corneocytes are embedded in a complex matrix of proteins and lipids. Its components were synthesized in the stratum granulosum (SG) and secreted via lamellar bodies at the SC/SG interface. Within a clinical in vivo study we focused on the skin metabolism at the SC/SG interface in AD affected patients in comparison to healthy subjects. Measurement of fluorescence life-time of NADH provides access to the metabolic state of skin. Due to the application of a 5D intravital tomographic skin analysis we facilitate the non-invasive investigation of human epidermis in the longitudinal course of AD therapy. We could ascertain by blinded analysis of 40 skin areas of 20 patients in a three month follow-up that the metabolic status at the SC/SG interface was altered in AD compromised skin even in non-lesional, apparent healthy skin regions. This illustrates an impaired skin barrier formation even at non-affected skin of AD subjects appearing promotive for the development of acute skin inflammation. Therefore, our findings allow a deeper understanding of the individual disease development and the improved management of the therapeutic intervention in clinical application.
Yoshida-Amano, Yasuko; Nomura, Tomoko; Sugiyama, Yoshinori; Iwata, Kayoko; Higaki, Yuko; Tanahashi, Masanori
2017-02-01
Cutaneous blood flow plays an important role in the thermoregulation, oxygen supply, and nutritional support necessary to maintain the skin. However, there is little evidence for a link between blood flow and skin physiology. Therefore, we conducted surveys of healthy volunteers to determine the relationship(s) between dry skin properties and cutaneous vascular function. Water content of the stratum corneum, transepidermal water loss, and visual dryness score were investigated as dry skin parameters. Cutaneous blood flow in the resting state, the recovery rate (RR) of skin temperature on the hand after a cold-stress test, and the responsiveness of facial skin blood flow to local cooling were examined as indices of cutaneous vascular functions. The relationships between dry skin parameters and cutaneous vascular functions were assessed. The RR correlated negatively with the visual dryness score of skin on the leg but correlated positively with water content of the stratum corneum on the arm. No significant correlation between the resting state of blood flow and dry skin parameters was observed. In both the face and the body, deterioration in skin dryness from summer to winter was significant in subjects with low RR. The RR correlated well with the responsiveness of facial skin blood flow to local cooling, indicating that the RR affects systemic dry skin conditions. These results suggest that the RR but not blood flow at the resting state is associated with dry skin conditions and is involved in skin homeostasis during seasonal environmental changes. © 2016 The Authors. International Journal of Dermatology published by John Wiley & Sons Ltd on behalf of International Society of Dermatology.
Water-filtered infrared-A (wIRA) can act as a penetration enhancer for topically applied substances
Otberg, Nina; Grone, Diego; Meyer, Lars; Schanzer, Sabine; Hoffmann, Gerd; Ackermann, Hanns; Sterry, Wolfram; Lademann, Jürgen
2008-01-01
Background: Water-filtered infrared-A (wIRA) irradiation has been shown to enhance penetration of clinically used topically applied substances in humans through investigation of functional effects of penetrated substances like vasoconstriction by cortisone. Aim of the study: Investigation of the influence of wIRA irradiation on the dermatopharmacokinetics of topically applied substances by use of optical methods, especially to localize penetrating substances, in a prospective randomised controlled study in humans. Methods: The penetration profiles of the hydrophilic dye fluorescein and the lipophilic dye curcumin in separate standard water-in-oil emulsions were determined on the inner forearm of test persons by tape stripping in combination with spectroscopic measurements. Additionally, the penetration was investigated in vivo by laser scanning microscopy. Transepidermal water loss, hydration of the epidermis, and surface temperature were determined. Three different procedures (modes A, B, C) were used in a randomised order on three separate days of investigation in each of 12 test persons. In mode A, the two dyes were applied on different skin areas without water-filtered infrared-A (wIRA) irradiation. In mode B, the skin surface was irradiated with wIRA over 30 min before application of the two dyes (Hydrosun® radiator type 501, 10 mm water cuvette, orange filter OG590, water-filtered spectrum: 590–1400 nm with dominant amount of wIRA). In mode C, the two dyes were applied and immediately afterwards the skin was irradiated with wIRA over 30 min. In all modes, tape stripping started 30 min after application of the formulations. Main variable of interest was the ratio of the amount of the dye in the deeper (second) 10% of the stratum corneum to the amount of the dye in the upper 10% of the stratum corneum. Results: The penetration profiles of the hydrophilic fluorescein showed in case of pretreatment or treatment with wIRA (modes B and C) an increased penetration depth compared to the non-irradiated skin (mode A): The ratio of the amount of the dye in the deeper (second) 10% of the stratum corneum to the amount of the dye in the upper 10% of the stratum corneum showed medians and interquartile ranges for mode A of 0.017 (0.007/0.050), for mode B of 0.084 (0.021/0.106), for mode C of 0.104 (0.069/0.192) (difference between modes: p=0.0112, significant; comparison mode A with mode C: p<0.01, significant). In contrast to fluorescein, the lipophilic curcumin showed no differences in the penetration kinetics, in reference to whether the skin was irradiated with wIRA or not. These effects were confirmed by laser scanning microscopy. Water-filtered infrared-A irradiation increased the hydration of the stratum corneum: transepidermal water loss rose from approximately 8.8 g m-2 h-1 before wIRA irradiation to 14.2 g m-2 h-1 after wIRA irradiation and skin hydration rose from 67 to 87 relative units. Skin surface temperature increased from 32.8°C before wIRA to 36.4°C after wIRA irradiation. Discussion: The better penetration of the hydrophilic dye fluorescein after or during skin irradiation (modes B and C) can be explained by increased hydration of the stratum corneum by irradiation with wIRA. Conclusions: As most topically applied substances for the treatment of patients are mainly hydrophilic, wIRA can be used to improve the penetration of substances before or after application of substances – in the first case even of thermolabile substances – with a broad clinical relevance as a contact free alternative to an occlusive dressing. PMID:19675735
Grove, Gary; Zerweck, Charles; Houser, Tim; Andrasfay, Anthony; Gauthier, Bob; Holland, Charles; Piacquadio, Daniel
2017-02-01
This study measured skin hydration and occlusivity of two test products [halobetasol propionate lotion, 0.05% (HBP Lotion) and Ultravate® (halobetasol propionate) cream, 0.05% (HBP Cream)] at 2, 4, and 6 hours after application to skin test sites previously challenged by dry shaving, which was performed to compromise the integrity of the stratum corneum barrier. Trans-epidermal water loss (TEWL), an indicator of skin barrier function, was measured using cyberDERM, inc. RG-1 evaporimeter. Skin hydration was evaluated using IBS SkiCon-200 conductance meter. Test products were applied bilaterally on dry-shaved sites on the volar forearm sites, according to a randomization scheme, with two test sites untreated to serve as "dry-shaved" controls. TEWL and conductance were measured at 2, 4, and 6 hours post-treatment. HBP Lotion displayed a significant increase in skin hydration at 2, 4, and 6 hours post-treatment compared to the baseline values and dry-shaved controls (each, P less than 0.001). However, HBP Cream produced statistically significant increased skin hydration only after 6 hours (P less than 0.05). HBP Lotion was significantly more effective than HBP Cream in increasing skin hydration at 2 and 4 hours post-treatment (each, P less than 0.001), and had a directional advantage (not statistically significant) at 6 hours. Neither test product had a significant occlusive effect as measured by TEWL at 2, 4, and 6 hours post-application. Both formulations of HBP (Lotion and Cream) contributed to skin moisturization, as measured by skin conductance. HBP Lotion produced a significantly more rapid onset and higher level of moisturization at 2 and 4 hours post-application compared to HBP Cream. The TEWL results indicate that neither HBP Lotion nor HBP Cream provided any significant occlusivity to the skin.
J Drugs Dermatol. 2017;16(2):140-144.
.Functional respiratory morphology in the newborn quokka wallaby (Setonix brachyurus)
Makanya, A N; Tschanz, S A; Haenni, B; Burri, P H
2007-01-01
A morphological and morphometric study of the lung of the newborn quokka wallaby (Setonix brachyurus) was undertaken to assess its morphofunctional status at birth. Additionally, skin structure and morphometry were investigated to assess the possibility of cutaneous gas exchange. The lung was at canalicular stage and comprised a few conducting airways and a parenchyma of thick-walled tubules lined by stretches of cuboidal pneumocytes alternating with squamous epithelium, with occasional portions of thin blood–gas barrier. The tubules were separated by abundant intertubular mesenchyme, aggregations of developing capillaries and mesenchymal cells. Conversion of the cuboidal pneumocytes to type I cells occurred through cell broadening and lamellar body extrusion. Superfluous cuboidal cells were lost through apoptosis and subsequent clearance by alveolar macrophages. The establishment of the thin blood–gas barrier was established through apposition of the incipient capillaries to the formative thin squamous epithelium. The absolute volume of the lung was 0.02 ± 0.001 cm3 with an air space surface area of 4.85 ± 0.43 cm2. Differentiated type I pneumocytes covered 78% of the tubular surface, the rest 22% going to long stretches of type II cells, their precursors or low cuboidal transitory cells with sparse lamellar bodies. The body weight-related diffusion capacity was 2.52 ± 0.56 mL O2 min−1 kg−1. The epidermis was poorly developed, and measured 29.97 ± 4.88 µm in thickness, 13% of which was taken by a thin layer of stratum corneum, measuring 4.87 ± 0.98 µm thick. Superficial capillaries were closely associated with the epidermis, showing the possibility that the skin also participated in some gaseous exchange. Qualitatively, the neonate quokka lung had the basic constituents for gas exchange but was quantitatively inadequate, implying the significance of percutaneous gas exchange. PMID:17553103
When to suspect tinea; a histopathologic study of 103 cases of PAS-positive tinea.
Elbendary, Amira; Valdebran, Manuel; Gad, AbdAllah; Elston, Dirk M
2016-10-01
The histopathologic features of tinea vary widely and its diagnosis could be easily missed if the index of suspicion is not high. We aimed in this study to detect histopathologic features that could be a clue for diagnosis We retrospectively reviewed 103 cases of tinea, confirmed by Periodic acid-Schiff (PAS) staining. For each case, gender, biopsy site, and pre-biopsy suspicion were recorded. The presence or absence of 17 microscopic features was noted. Concordance between pre-biopsy and histopathologic diagnosis was noted in 57.28% of cases, suggesting that the diagnosis is often not suspected clinically. Among the histopathologic features studied, a compact stratum corneum (either uniform or forming a layer beneath a basket weave stratum corneum), parakeratosis, mild spongiosis and neutrophils in the stratum corneum and within the blood vessels were the most frequent features noted. This study suggests histopathologic clues that should prompt the pathologist to order a PAS stain, especially when diagnosis is not suspected clinically. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Recent advances in X-ray microanalysis in dermatology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forslind, B.; Grundin, T.G.; Lindberg, M.
1985-01-01
Electron microprobe and proton microprobe X-ray analysis can be used in several areas of dermatological research. With a proton probe, the distribution of trace elements in human hair can be determined. Electron microprobe analysis on freeze-dried cryosections of guinea-pig and human epidermis shows a marked gradient of Na, P and K over the stratum granulosum. In sections of freeze-substituted human skin this gradient is less steep. This difference is likely to be due to a decrease in water content of the epidermis towards the stratum corneum. Electron microprobe analysis of the epidermis can, for analysis of trace elements, be complementedmore » by the proton microprobe. Quantitative agreement between the two techniques can be obtained by the use of a standard. Proton microprobe analysis was used to determine the distribution of Ni or Cr in human epidermis exposed to nickel or chromate ions. Possible differences in water content between the stratum corneum of patients with atopic eczema and normal stratum corneum was investigated in skin freeze-substituted with Br-doped resin. No significant differences were observed.« less
Piérard, Gérald E; Courtois, Justine; Ritacco, Caroline; Humbert, Philippe; Fanian, Ferial; Piérard-Franchimont, Claudine
2015-01-01
Background In cosmetic science, noninvasive sampling of the upper part of the stratum corneum is conveniently performed using strippings with adhesive-coated discs (SACD) and cyanoacrylate skin surface strippings (CSSSs). Methods Under controlled conditions, it is possible to scrutinize SACD and CSSS with objectivity using appropriate methods of analytical morphology. These procedures apply to a series of clinical conditions including xerosis grading, comedometry, corneodynamics, corneomelametry, corneosurfametry, corneoxenometry, and dandruff assessment. Results With any of the analytical evaluations, SACD and CSSS provide specific salient information that is useful in the field of cosmetology. In particular, both methods appear valuable and complementary in assessing the human skin compatibility of personal skincare products. Conclusion A set of quantitative analytical methods applicable to the minimally invasive and low-cost SACD and CSSS procedures allow for a sound assessment of cosmetic effects on the stratum corneum. Under regular conditions, both methods are painless and do not induce adverse events. Globally, CSSS appears more precise and informative than the regular SACD stripping. PMID:25767402
Vargas, K; Wertz, P W; Drake, D; Morrow, B; Soll, D R
1994-04-01
Cells of the laboratory strain 3153A of Candida albicans can be stimulated to undergo high-frequency phenotypic switching by a low dose of UV. We have compared the adhesive properties of cells exhibiting the basic original smooth (o-smooth) phenotype and three switch phenotypes (star, irregular wrinkle, and revertant smooth) to buccal epithelium and stratum corneum. The generalized hierarchy of adhesion is as follows: o-smooth > irregular wrinkle > revertant smooth > star. This is the inverse of the hierarchy of the proportions of elongate hyphae formed by these phenotypes in culture. These results suggest that the differences in adhesion between o-smooth and the three switch phenotypes of strain 3153A reflect, at least in part, the level of interference due to the formation of elongate hyphae, which tend to cause clumping in suspension. No major differences in the levels of adhesion of cells of the different phenotypes between buccal epithelium and stratum corneum were observed. Results which demonstrate that buccal epithelium induces germination (hypha formation) by conditioning the medium are also presented.
Preparation of Keratin Hydrolysate from Chicken Feathers and Its Application in Cosmetics.
Mokrejš, Pavel; Huťťa, Matouš; Pavlačková, Jana; Egner, Pavlína
2017-11-27
Keratin hydrolysates (KHs) are established standard components in hair cosmetics. Understanding the moisturizing effects of KH is advantageous for skin-care cosmetics. The goals of the protocol are: (1) to process chicken feathers into KH by alkaline-enzymatic hydrolysis and purify it by dialysis, and (2) to test if adding KH into an ointment base (OB) increases hydration of the skin and improves skin barrier function by diminishing transepidermal water loss (TEWL). During alkaline-enzymatic hydrolysis feathers are first incubated at a higher temperature in an alkaline environment and then, under mild conditions, hydrolyzed with proteolytic enzyme. The solution of KH is dialyzed, vacuum dried, and milled to a fine powder. Cosmetic formulations comprising from oil in water emulsion (O/W) containing 2, 4, and 6 weight% of KH (based on the weight of the OB) are prepared. Testing the moisturizing properties of KH is carried out on 10 men and 10 women at time intervals of 1, 2, 3, 4, 24, and 48 h. Tested formulations are spread at degreased volar forearm sites. The skin hydration of stratum corneum (SC) is assessed by measuring capacitance of the skin, which is one of the most world-wide used and simple methods. TEWL is based on measuring the quantity of water transported per a defined area and period of time from the skin. Both methods are fully non-invasive. KH makes for an excellent occlusive; depending on the addition of KH into OB, it brings about a 30% reduction in TEWL after application. KH also functions as a humectant, as it binds water from the lower layers of the epidermis to the SC; at the optimum KH addition in the OB, up to 19% rise in hydration in men and 22% rise in women occurs.
Parish, W E; Read, J; Paterson, S E
2005-09-01
Three variants of the living skin equivalent cultures were compared in order to determine the most suitable to grow human differentiated epidermis to test beneficial properties of nutrients. Criteria of culture quality were mitotic index and transepidermal water loss (TEWL) assayed by means of a ServoMed Evaporimeter EP-2TM (ServoMed, Kinna, Sweden). Standards were donor skin mean mitotic index 11.1% and TEWL of living subjects mean 6.4 g/m(2)/h. Cultures (i) in 5% serum, 10 ng/ml of epidermal growth factor (EGF) at 37 degrees C and 95% relative humidity (RH); mitotic index on day 14, 19.2%, but on day 21, 1.8% and TEWL 9.5 g/m(2)/h on day 18. (ii) In 1% serum, no EGF, 33 degrees C and 95% RH, mitotic index on day 21, 9.1% and TEWL, 9.5% on day 18. (iii) Culture in same medium, 33 degrees C and 60% RH, mitotic index on day 28, 9.5% and TEWL 6.1 g/m(2)/h on day 18 as in vivo. Incubation in 60% RH was achieved using a novel chamber and dishes exposing only the corneum, sealing the medium. Vitamins C and E were used as model test nutrients. Culture conditions were 1% serum, no EGF at 33 degrees C and 95% RH. Vitamin C at 142 and 284 microM increased the mitotic index after 10- and 15-day treatment, but at 586 microM it was weakly toxic. Vitamin E at 20 and 40 microM did not. Both vitamins reduced TEWL providing functional data in support of previous reports on barrier properties. These are functional biomarkers of skin benefit relevant to skin in vivo.
Microneedles As a Delivery System for Gene Therapy
Chen, Wei; Li, Hui; Shi, De; Liu, Zhenguo; Yuan, Weien
2016-01-01
Gene delivery systems can be divided to two major types: vector-based (either viral vector or non-viral vector) and physical delivery technologies. Many physical carriers, such as electroporation, gene gun, ultrasound start to be proved to have the potential to enable gene therapy. A relatively new physical delivery technology for gene delivery consists of microneedles (MNs), which has been studied in many fields and for many molecule types and indications. Microneedles can penetrate the stratum corneum, which is the main barrier for drug delivery through the skin with ease of administration and without significant pain. Many different kinds of MNs, such as metal MNs, coated MNs, dissolving MNs have turned out to be promising in gene delivery. In this review, we discussed the potential as well as the challenges of utilizing MNs to deliver nucleic acids for gene therapy. We also proposed that a combination of MNs and other gene delivery approaches may lead to a better delivery system for gene therapy. PMID:27303298
NASA Astrophysics Data System (ADS)
Kamali, T.; Doronin, A.; Rattanapak, T.; Hook, S.; Meglinski, I.
2012-08-01
Immunization is one of the most efficient and cost-effective means for the prevention of diseases. The latest trend for inducing protective immunity is topical application of vaccines to intact skin rather than invasive administration via injection. Apart from being a non-invasive route of drug delivery, skin itself also offers advantages through the presence of cells of the immune system in both the dermis and epidermis. However, vaccine penetration through the outermost layers of skin is limited by the barrier provided by the Stratum corneum. In the current study utilizing conventional Optical Coherence Tomography (OCT) we investigate the transcutaneous delivery of a nano- particulate peptide vaccine into mouse skin in vivo. We demonstrate that a front of molecular diffusion within the skin can be clearly observed by using cross-correlations of successive 2D OCT images. Thus, OCT provides a unique tool for quantitative assessment of dynamics of diffusion of drugs, target compounds, analytes, cosmetics and various chemical agents in biological tissues in vivo.
Jacques-Jamin, Carine; Jeanjean-Miquel, Corinne; Domergue, Anaïs; Bessou-Touya, Sandrine; Duplan, Hélène
2017-01-01
Information is lacking on the dermal penetration of topically applied formulations on in vitro skin models, under conditions where the stratum corneum (SC) is damaged. Therefore, we have developed a standardized in vitro barrier-disrupted skin model using tape stripping. Different tape stripping conditions were evaluated using histology, transepidermal water loss, infrared densitometry, and caffeine absorption. The effects of tape stripping were comparable using pig and human skin. Optimized conditions were used to test the effect of SC damage and UV irradiation on the absorption of an UV filter combination present in a sunscreen. The bioavailability of the filters was extremely low regardless of the extent of skin damage, suggesting bioavailability would not be increased if the consumer applied the sunscreen to sun-damaged skin. This standardized in vitro methodology using pig or human skin for damaged skin will add valuable information for the safety assessment of topically applied products. © 2017 S. Karger AG, Basel.
Williams, C; Wilkinson, M; McShane, P; Pennington, D; Fernandez, C; Pierce, S
2011-06-01
Healthcare-associated infection is an important worldwide problem that could be reduced by better hand hygiene practice. However, an increasing number of healthcare workers are experiencing irritant contact dermatitis of the hands as a result of repeated hand washing. This may lead to a reduced level of compliance with regard to hand hygiene. To assess whether a measure of acute irritation by hand soaps could predict the effects of repeated usage over a 2-week period. In a double-blind, randomized comparison study, the comparative irritation potential of four different hand soaps was assessed over a 24-h treatment period. The effect of repeated hand washing with the hand soap products over a 2-week period in healthy adult volunteers on skin barrier function was then determined by assessment of transepidermal water loss (TEWL), epidermal hydration and a visual assessment using the Hand Eczema Severity Index (HECSI) at days 0, 7 and 14. A total of 121 subjects from the 123 recruited completed phase 1 of the study. All four products were seen to be significantly different from each other in terms of the irritant reaction observed and all products resulted in a significantly higher irritation compared with the no-treatment control. Seventy-nine of the initial 121 subjects were then enrolled into the repeated usage study. A statistically significant worsening of the clinical condition of the skin as measured by HECSI was seen from baseline to day 14 in those subjects repeatedly washing their hands with two of the four soap products (products C and D) with P-values of 0·02 and 0·01, respectively. Subclinical assessment of the skin barrier function by measuring epidermal hydration was significantly increased from baseline to day 7 after repeated hand washing with products A, B and D but overall no significant change was seen in all four products tested by day 14. A statistically significant increase in TEWL at day 14 was seen for product A (P = 0·02) indicating a worsening of skin barrier function. This effect was also seen initially for product D at day 7 although this was then lost at day 14. Further regression analysis was then performed to see if the acute irritant test data for each product correlated with the skin barrier data from the repeated usage component of the study. This showed that the results of acute irritant testing of the individual products did not predict the results of chronic use of hand soaps. The results from phase 2 of our study confirm the work of previous studies that show that regular exposure to irritants in daily life leads to stratum corneum damage and impairment of the skin barrier. Although significant differences were seen between the products in phase 1 of the study, regression analysis showed that the results of patch testing of the individual products did not predict the results of chronic use of hand soaps. When designing a study to assess the effects of cumulative use of a product on the skin, the study should mirror the use conditions of the product as closely as possible. © 2011 The Authors. BJD © 2011 British Association of Dermatologists.
The influence of daily dish-washing with synthetic detergent on human skin.
Klein, G; Grubauer, G; Fritsch, P
1992-08-01
The effects of regular dish-washing on the stratum corneum barrier function, as determined by transepidermal water loss (TEWL), and objective and subjective skin parameters, were investigated in a 'use test' performed by 18 healthy volunteers. Hands were soaked in a 0.05% solution of a commercial dish-washing product (three times/day, for 15 min, at 37 degrees C) over a period of 3 weeks; one hand was unprotected and the other was protected with a commercial rubber glove. TEWL increased in 13/18 volunteers by more than 25% above baseline on exposed hands within the first 2 weeks of the study. Objective skin signs (erythema, scaling, fissures) and subjective symptoms (itching, dryness, smarting) occurred almost exclusively in subjects with substantial TEWL increases and were most prominent 1-2 weeks following peak TEWL values. There was a highly significant correlation between cumulative relative symptom scores and TEWL changes. TEWL increase and symptom scores were not correlated with a history of inhalant allergy and/or elevated serum IgE levels. Three volunteers, who had shown the highest increase of TEWL values and the most intense clinical reactions to the detergent were subjected to a control experiment in which one hand was soaked in warm tap-water following the same experimental protocol. No significant effects on TEWL values or skin symptoms were observed. We conclude that regular exposure to low concentrations of detergents as used for dish-washing is capable of inducing skin lesions in a substantial proportion of individuals.
Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases
Zhang, Zheng; Tsai, Pei-Chin; Ramezanli, Tannaz; Michniak-Kohn, Bozena B.
2013-01-01
Human skin not only functions as a permeation barrier (mainly due to the stratum corneum layer), but also provides a unique delivery pathway for therapeutic and other active agents. These compounds penetrate via intercellular, intracellular and transappendageal routes, resulting in topical delivery (into skin strata) and transdermal delivery (to subcutaneous tissues and into the systemic circulation). Passive and active permeation enhancement methods have been widely applied to increase the cutaneous penetration. The pathology, pathogenesis and topical treatment approaches of dermatological diseases, such as psoriasis, contact dermatitis, and skin cancer, are then discussed. Recent literature has demonstrated that nanoparticles-based topical delivery systems can be successful in treating these skin conditions. The studies are reviewed starting with the nanoparticles based on natural polymers specially chitosan, followed by those made of synthetic, degradable (aliphatic polyesters) and non-degradable (polyarylates) polymers; emphasis is given to nanospheres made of polymers derived from naturally occurring metabolites, the tyrosine-derived nanospheres (TyroSpheres™). In summary, the nanoparticles-based topical delivery systems combine the advantages of both the nano-sized drug carriers and the topical approach, and are promising for the treatment of skin diseases. For the perspectives, the penetration of ultra-small nanoparticles (size smaller than 40 nm) into skin strata, the targeted delivery of the encapsulated drugs to hair follicle stem cells, and the combination of nanoparticles and microneedle array technologies for special applications such as vaccine delivery are discussed. PMID:23386536
Lavender, Tina; Bedwell, Carol; Roberts, Stephen A; Hart, Anna; Turner, Mark A; Carter, Lesley-Anne; Cork, Michael J
2013-01-01
Objectives To examine the hypothesis that the use of a wash product formulated for newborn (<1 month of age) bathing is not inferior (no worse) to bathing with water only. Design Assessor-blinded, randomized, controlled, noninferiority trial. Setting A teaching hospital in the Northwest of England and in participants’ homes. Participants Three-hundred-and-seven healthy, term infants recruited within 48 hours of birth. Method We compared bathing with a wash product (n = 159) to bathing with water alone (n = 148). The primary outcome was transepidermal water loss (TEWL) at 14 days postbirth; the predefined difference deemed to be unimportant was 1.2. Secondary outcomes comprised changes in stratum corneum hydration, skin surface pH, clinical observations of the skin, and maternal views. Results Complete TEWL data were obtained for 242 (78.8%) infants. Wash was noninferior to water alone in terms of TEWL (intention-to-treat analysis: 95% confidence interval [CI] for difference [wash–water, adjusted for family history of eczema, neonate state, and baseline] −1.24, 1.07; per protocol analysis: 95% CI −1.42, 1.09). No significant differences were found in secondary outcomes. Conclusion We were unable to detect any differences between the newborn wash product and water. These findings provide reassurance to parents who choose to use the test newborn wash product or other technically equivalent cleansers and provide the evidence for health care professionals to support parental choice. PMID:23421327
Lavender, Tina; Bedwell, Carol; Roberts, Stephen A; Hart, Anna; Turner, Mark A; Carter, Lesley-Anne; Cork, Michael J
2013-01-01
To examine the hypothesis that the use of a wash product formulated for newborn (<1 month of age) bathing is not inferior (no worse) to bathing with water only. Assessor-blinded, randomized, controlled, noninferiority trial. A teaching hospital in the Northwest of England and in participants' homes. Three-hundred-and-seven healthy, term infants recruited within 48 hours of birth. We compared bathing with a wash product (n = 159) to bathing with water alone (n = 148). The primary outcome was transepidermal water loss (TEWL) at 14 days postbirth; the predefined difference deemed to be unimportant was 1.2. Secondary outcomes comprised changes in stratum corneum hydration, skin surface pH, clinical observations of the skin, and maternal views. Complete TEWL data were obtained for 242 (78.8%) infants. Wash was noninferior to water alone in terms of TEWL (intention-to-treat analysis: 95% confidence interval [CI] for difference [wash-water, adjusted for family history of eczema, neonate state, and baseline] -1.24, 1.07; per protocol analysis: 95% CI -1.42, 1.09). No significant differences were found in secondary outcomes. We were unable to detect any differences between the newborn wash product and water. These findings provide reassurance to parents who choose to use the test newborn wash product or other technically equivalent cleansers and provide the evidence for health care professionals to support parental choice. © 2013 AWHONN, the Association of Women's Health, Obstetric and Neonatal Nurses.
Školová, Barbora; Kováčik, Andrej; Tesař, Ondřej; Opálka, Lukáš; Vávrová, Kateřina
2017-05-01
Ceramides based on phytosphingosine, sphingosine and dihydrosphingosine are essential constituents of the skin lipid barrier that protects the body from excessive water loss. The roles of the individual ceramide subclasses in regulating skin permeability and the reasons for C4-hydroxylation of these sphingolipids are not completely understood. We investigated the chain length-dependent effects of dihydroceramides, sphingosine ceramides (with C4-unsaturation) and phytoceramides (with C4-hydroxyl) on the permeability, lipid organization and thermotropic behavior of model stratum corneum lipid membranes composed of ceramide/lignoceric acid/cholesterol/cholesteryl sulfate. Phytoceramides with very long C24 acyl chains increased the permeability of the model lipid membranes compared to dihydroceramides or sphingosine ceramides with the same chain lengths. Either unsaturation or C4-hydroxylation of dihydroceramides induced chain length-dependent increases in membrane permeability. Infrared spectroscopy showed that C4-hydroxylation of the sphingoid base decreased the relative ratio of orthorhombic chain packing in the membrane and lowered the miscibility of C24 phytoceramide with lignoceric acid. The phase separation in phytoceramide membranes was confirmed by X-ray diffraction. In contrast, phytoceramides formed strong hydrogen bonds and highly thermostable domains. Thus, the large heterogeneity in ceramide structures and in their aggregation mechanisms may confer resistance towards the heterogeneous external stressors that are constantly faced by the skin barrier. Copyright © 2017 Elsevier B.V. All rights reserved.
Comparison of atmospheric microplasma and plasma jet irradiation for increasing of skin permeability
NASA Astrophysics Data System (ADS)
Shimizu, K.; Tran, N. A.; Hayashida, K.; Blajan, M.
2016-08-01
Atmospheric plasma is attracting interest for medical applications such as sterilization, treatment of cancer cells and blood coagulation. Application of atmospheric plasma in dermatology has potential as a novel tool for wound healing, skin rejuvenation and treatment of wrinkles. In this study, we investigated the enhancement of percutaneous absorption of dye as alternative agents of transdermal drugs. Hypodermic needles are often the only way to deliver large-molecule drugs into the dermis, although a safe transdermal drug delivery method that does not require needles would be desirable. We therefore explored the feasibility of using atmospheric microplasma irradiation to enhance percutaneous absorption of drugs, as an alternative delivery method to conventional hypodermic needles. Pig skin was used as a biological sample, exposed to atmospheric microplasma, and analyzed by attenuated total reflection-Fourier transform infrared spectroscopy. A tape stripping test, a representative method for evaluating skin barrier performance, was also conducted for comparison. Transepidermal water loss (TEWL) was measured and compared with and without atmospheric microplasma irradiation, to quantify water evaporation from the inner body through the skin barrier. The results show that the stratum corneum, the outermost skin layer, could be chemically and physically modified by atmospheric microplasma irradiation. Physical damage to the skin by microplasma irradiation and an atmospheric plasma jet was also assessed by observing the skin surface. The results suggest that atmospheric microplasma has the potential to enhance percutaneous absorption.
Emulsion-Based Intradermal Delivery of Melittin in Rats.
Han, Sang Mi; Kim, Se Gun; Pak, Sok Cheon
2017-05-19
Bee venom (BV) has long been used as a traditional medicine. The aim of the present study was to formulate a BV emulsion with good rheological properties for dermal application and investigate the effect of formulation on the permeation of melittin through dermatomed rat skin. A formulated emulsion containing 1% ( w / v ) BV was prepared. The emulsion was compared with distilled water (DW) and 25% ( w / v ) N -methyl-2-pyrrolidone (NMP) in DW. Permeation of melittin from aqueous solution through the dermatomed murine skin was evaluated using the Franz diffusion cells. Samples of receptor cells withdrawn at pre-determined time intervals were measured for melittin amount. After the permeation study, the same skin was used for melittin extraction. In addition, a known amount of melittin (5 μg/mL) was added to stratum corneum, epidermis, and dermis of the rat skin, and the amount of melittin was measured at pre-determined time points. The measurement of melittin from all samples was done with HPLC-MS/MS. No melittin was detected in the receptor phase at all time points in emulsion, DW, or NMP groups. When the amount of melittin was further analyzed in stratum corneum, epidermis, and dermis from the permeation study, melittin was still not detected. In an additional experiment, the amount of melittin added to all skin matrices was corrected against the amount of melittin recovered. While the total amount of melittin was retained in the stratum corneum, less than 10% of melittin remained in epidermis and dermis within 15 and 30 min, respectively. Skin microporation with BV emulsion facilitates the penetration of melittin across the stratum corneum into epidermis and dermis, where emulsified melittin could have been metabolized by locally-occurring enzymes.
Buono, Michael J; Stone, Michael; Cannon, Daniel T
2016-03-01
The purpose of this study was to determine if K+ is leached from the stratum corneum when sweat is present on the skin's surface. The results will help address whether sweat [K+] previously reported in the literature are artifactually elevated as a result of K+ leaching. Twelve (six female, six male) healthy volunteers participated in this study. After thorough skin cleansing and preparation with isopropyl alcohol and high-performance liquid chromatography-grade distilled water, three sites were chosen and a 50 μL drop of artificial sweat was pipetted directly onto the skin. The artificial sweat had a [K+] of 4 mEq·L-1, an osmolality of 120 mosm·L-1, and a pH of 6.0. Immediately following, a clear plastic cover slip (~6 cm2) with a shallow 0.8 cm2 convex impression in the center was applied over each drop, preventing evaporation. Each sample was allowed to sit on the forearm, under the plastic cover slip, for 10 min. The mean (±SD) [K+] in 'artificial' sweat not exposed to the skin was measured to be 4.2±0.4 mEq·L-1. After 10 min of exposure to the stratum corneum of the forearm, the artificial sweat had a mean (±SD) [K+] of 3.9±0.3 mEq·L-1. There was no significant difference (p>0.05) in the [K+] between the control artificial sweat and the samples collected after 10 min of exposure to forearm skin. These results do not support the hypothesis that significant K+ leaching from the stratum corneum into standing sweat is the cause for the previously reported elevated sweat [K+].
Skin penetration and antioxidant effect of cosmeto-textiles with gallic acid.
Alonso, C; Martí, M; Barba, C; Lis, M; Rubio, L; Coderch, L
2016-03-01
In this work, the antioxidant gallic acid (GA) has been encapsulated in microspheres prepared with poly-ε-caprolactone (PCL) and incorporated into polyamide (PA) obtaining the cosmeto-textile. The topical application of the cosmeto-textile provides a reservoir effect in the skin delivery of GA. The close contact of the cosmeto-textile, containing microsphere-encapsulated GA (ME-GA), with the skin and their corresponding occlusion, may be the main reasons that explain the crossing of active principle (GA) through the skin barrier, located in the stratum corneum, and its penetration into the different compartments of the skin, epidermis and dermis. An ex vivo assessment was performed to evaluate the antioxidant effect of the ME-GA on the stratum corneum (SC) using the thiobarbituric acid-reactive species (TBARS) test. The test is based on a non-invasive ex vivo methodology that evaluates lipid peroxides formed in the outermost layers of the SC from human volunteers after UV radiation to determine the effectiveness of an antioxidant. In this case, a ME-GA cosmeto-textile or ME-GA formulation were applied to the skin in vivo and lipid peroxidation (LPO) in the horny layer were determined after UV irradiation. This methodology may be used as a quality control tool to determine ex vivo the percentage of LPO inhibition on human SC for a variety of antioxidants that are topically applied, in this case GA. Results show that LPO formation was inhibited in human SC when GA was applied directly or embedded in the cosmeto-textile, demonstrating the effectiveness of both applications. The percentage of LPO inhibition obtained after both topical applications was approximately 10% for the cosmeto-textile and 41% for the direct application of microspheres containing GA. This methodology could be used to determine the effectiveness of topically applied antioxidants encapsulated in cosmeto-textiles on human SC. Copyright © 2016 Elsevier B.V. All rights reserved.
Dermostyx (IB1) - High efficacy and safe topical skin protectant against percutaneous toxic agents.
Dachir, Shlomit; Barness, Izhak; Fishbine, Eliezer; Meshulam, Jacob; Sahar, Rita; Eisenkraft, Arik; Amir, Adina; Kadar, Tamar
2017-04-01
Prevention of the penetration of toxic agents through the skin is crucial for both military troops and civilian populations. We have developed a novel topical skin protectant (TSP), coded as IB1 and commercially available as Dermostyx protective solution (Rekah Pharm, Israel). The formulation afforded significant protection against chemical warfare agents such as sulfur mustard (SM) and VX (2LD50), pesticides such as parathion and irritants such as acrolein. The efficacy of the protectant was evaluated in the pig model using clinical, histological and biochemical monitoring. A single topical application prior to exposure to the toxic agents reduced significantly the size and severity of skin lesions and ameliorated or prevented systemic clinical symptoms. The barrier properties of IB1 are immediate upon application and remain effective for at least 12 h. It is absorbed into the stratum corneum of the skin and remains there until rinsing with water, yet the ingredients are not absorbed into the body. The formulation is a hydrophilic water-based solution, composed of magnesium sulfate and glycerin that are widely used in cosmetic and medicine, and was shown to be safe in preclinical and in Phase I clinical studies. The suggested mode of action is based on the unique interaction of glycerin with the stratum corneum, changing its properties to hydrophilic and on the "salting out" effect of magnesium sulfate. The expected use of the TSP is by application on exposed skin areas and sensitive skin sites (e.g. armpits, groin, waist), when necessary. A quantity of 10 ml is sufficient for one application covering approximately 20% of the body surface area. The formulation was approved for human use by the Israel Ministry of Health and a CE mark certificate in Europe has been recently issued (Class I). Dermostyx has been adopted by the IDF and first responders as a skin protectant for special needs. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Fluhr, Joachim W; Breternitz, Maria; Kowatzki, Doreen; Bauer, Andrea; Bossert, Joerg; Elsner, Peter; Hipler, Uta-Christina
2010-08-01
The epidermal part of the skin is the major interface between the internal body and the external environment. The skin has a specific physiology and is to different degrees adapted for protection against multiple exogenous stress factors. Clothing is the material with the longest and most intensive contact to human skin. It plays a critical role especially in inflammatory dermatoses or skin conditions with an increased susceptibility of bacterial and fungal infections like atopic dermatitis. Previously, we have shown a dose-dependent antibacterial and antifungal activity of silver-loaded seaweed-based cellulosic fibres. We studied the mode of action of silver-loaded seaweed-based cellulosic fiber and performed a broad safety assessment. The principal aim was to analyse the effects of wearing the textile on epidermal skin physiology in 37 patients with atopic dermatitis in a controlled, randomized single-blinded in vivo study. Furthermore, the sensitization potential was tested in a patch test in 111 panellists. We could demonstrate in vitro a dose-dependent scavenging of induced reactive oxygen species by silver-loaded seaweed-based cellulosic fibers. Safety assessment of these fibres showed no detectable release of silver ions. Furthermore, ex vivo assessment after 24 h application both in healthy volunteers and patients with atopic dermatitis by sequential tape stripping and subsequently raster electron microscopy and energy dispersive microanalysis analysis revealed no detectable amounts of silver in any of stratum corneum layers. Serum analysis of silver showed no detectable levels. The in vivo patch testing of 111 volunteers revealed no sensitization against different SeaCell Active (SeaCell GmbH, Rudolstadt, Germany) containing fabrics. The in vivo study on 37 patients with known atopic dermatitis and mild-to-moderate eczema on their arms were randomly assigned to either silver-loaded seaweed fibre T-shirts or to cotton T-shirts for 8 weeks. A significant reduction in Staphylococcus aureus colonization was detectable for the silver T-shirts compared with cotton T-shirts without any changes in non-pathogenic surface bacteria colonization. Furthermore, a more pronounced improvement in barrier function (transepidermal water loss) was observed in mildly involved eczema areas during the first 4 weeks of the study. Stratum corneum hydration and surface pH improved in both treatment groups over time. The tested silver-loaded seaweed fibre can be regarded as safe and seams to be suited for application in bio-active textiles in atopic dermatitis based on its positive in vivo activity.
Application of Gelidium corneum edible films containing carvacrol for ham packages.
Lim, G O; Hong, Y H; Song, K B
2010-01-01
We prepared an edible film of Gelidium corneum (GC) containing carvacrol as an antimicrobial and antioxidative agent. The GC film containing carvacrol significantly decreased the WVP, while TS and %E values were increased, compared to the film without carvacrol. Increasing amounts of an antimicrobial agent increased antimicrobial activity against Escherichia coli O157:H7 and Listeria monocytogenes. Application of the film to ham packaging successfully inhibited the microbial growth and lipid oxidation of ham during storage. Our results indicate that GC film can be a useful edible packaging material for food products, and the incorporation of carvacrol in the GC film may extend the shelf life.
Induction of a Hardening Phenomenon and Quantitative Changes of Ceramides in Stratum Corneum
Park, Sook Young; Kim, Jin Hye; Cho, Soo Ick; Kim, Kyeong Il; Cho, Hee Jin; Park, Chun Wook; Lee, Cheol Heon
2014-01-01
Background Hardening phenomenon of human skin after repeated exposure to the irritants is well-known, but the precise mechanism remains elusive. Objective To modify the previous experimental model of hardening phenomenon by repeated applications of two different concentrations of sodium lauryl sulfate (SLS) solutions to Korean healthy volunteers and to investigate the quantitative changes of ceramides in stratum corneum before and after chronic repeated irritation. Methods Eight hundred microliters of distilled water containing 0.1% and 2% SLS was applied for 10 minutes on the forearm of 41 healthy volunteers for 3 weeks. After an intervening 3-week rest, 24-hour patch tests with 1% SLS were conducted on previously irritated sites. Transepidermal water loss (TEWL), erythema index and quantity of ceramide were measured in the stratum corneum before and after irritation. Results TEWL values on the sites preirritated with 2% SLS were lower than those with 0.1% SLS. Hardening phenomenon occurred in 24 volunteers at day 44. The changes in ceramide levels were not significantly higher in the hardened skin than in the non-hardened skin. Conclusion Repetitive stimulation with a higher concentration of SLS can more easily trigger skin hardening. PMID:24648684
Interaction of phloretin and 6-ketocholestanol with DPPC-liposomes as phospholipid model membranes.
Auner, Barbara G; O'Neill, Michael A A; Valenta, Claudia; Hadgraft, Jonathan
2005-04-27
Phloretin and 6-ketocholestanol are penetration enhancers for percutaneous delivery of certain topically applied drugs. In the present study some physicochemical experiments have been performed to elucidate the mechanism of action of phloretin and 6-ketocholestanol. The penetration enhancing effect of phloretin and 6-ketocholestanol is believed to be due to their increase of the fluidity of the intercellular lipid bilayers of the stratum corneum. Phospholipid vesicles were chosen as a simple model to represent these bilayers. The effect of phloretin and 6-ketocholestanol on phase transition temperature and enthalpy was studied using differential scanning calorimetry. Beside of that the size of liposomes was monitored when the amount of penetration enhancer in the liposome preparation was changed. Addition of increasing amounts of phloretin and 6-ketocholestanol to the bilayer resulted in lowering of phase transition temperatures and increasing the enthalpy. Additionally the size of the liposomes was increased when penetration enhancer was added. The results suggest that phloretin as well as 6-ketocholestanol would interact with stratum corneum lipids in a similar manner, both reduce the diffusional resistance of the stratum corneum to drugs with balanced hydrophilic-lipophilic characteristics.
Role of ascorbic acid in stratum corneum lipid models exposed to UV irradiation.
Trommer, Hagen; Böttcher, Roif; Pöppl, Andreas; Hoentsch, Joachim; Wartewig, Siegfried; Neubert, Reinhard H H
2002-07-01
The effects of ascorbic acid on Stratum corneum lipid models following ultraviolet irradiation were studied adding iron ions as transition metal catalysts. Lipid peroxidation was quantified by the thiobarbituric acid assay. The qualitative changes were studied on a molecular level by mass spectrometry. To elucidate the nature of free radical involvement we carried out electron paramagnetic resonance studies. The influence of ascorbic acid on the concentration of hydroxyl radicals was examined using the spin trapping technique. Moreover, we checked the vitamin's ability to react with stable radicals. Ascorbic acid was found to have prooxidative effects in all lipid systems in a concentration dependent manner. The degradation products of ascorbic acid after its prooxidative action were detected. The concentration of the hydroxyl radicals in the Fenton assay was decreased by ascorbic acid. The quantification assay of 2,2-diphenyl-1-picrylhydrazyl hydrate showed reduced concentration levels of the stable radical caused by ascorbic acid. Considering human skin and its constant exposure to UV light and oxygen, an increased pool of iron ions in irradiated skin and the depletion of co-antioxidants, the administration of ascorbic acid in cosmetic formulations or in sunscreens could unfold adverse effects among the Stratum corneum lipids.
Skin care in nursing: A critical discussion of nursing practice and research.
Kottner, Jan; Surber, Christian
2016-09-01
Skin (self-)care is part of human life from birth until death. Today many different skin care practices, preferences, traditions and routines exist in parallel. In addition, preventive and therapeutic skin care is delivered in nursing and healthcare by formal and informal caregivers. The aim of this contribution is a critical discussion about skin care in the context of professional nursing practice. An explicit skin assessment using accurate diagnostic statements is needed for clinical decision making. Special attention should be paid on high risk skin areas, which may be either too dry or too moist. From a safety perspective the protection and maintenance of skin integrity should have the highest priority. Skin cleansing is the removal of unwanted substances from the skin surface. Despite cleansing efficacy soap, other surfactants and water will inevitably always result in the destruction of the skin barrier. Thousands of products are available to hydrate, moisturize, protect and restore skin properties dependent upon their formulation and the concentration of ingredients. These products intended to left in contact with skin exhibit several actions on and in the skin interfering with skin biology. Unwanted side effects include hyper-hydration and disorganization of lipid bilayers in the stratum corneum, a dysfunctional barrier, increased susceptibility to irritants and allergies, and increases of skin surface pH. Where the skin barrier is impaired appropriate interventions, e.g. apply lipophilic products in sufficient quantity to treat dry skin or protect the skin from exposure to irritants should be provided. A key statement of this contribution is: every skin care activity matters. Every time something is placed on the skin, a functional and structural response is provoked. This response can be either desired or undesired, beneficial or harmful. The choice of all skin care interventions in nursing and healthcare practice must be based on an accurate assessment of the skin and concomitant health conditions and on a clearly defined outcome. A standardized skin care and skin care product language is needed for researchers planning and conducting clinical trials, for reviewers doing systematic reviews and evidence-base summaries, for nurses and other healthcare workers to deliver evidence-based and safe skin care. Copyright © 2016. Published by Elsevier Ltd.
Rationalization of reduced penetration of drugs through ceramide gel phase membrane.
Paloncýová, Markéta; DeVane, Russell H; Murch, Bruce P; Berka, Karel; Otyepka, Michal
2014-11-25
Since computing resources have advanced enough to allow routine molecular simulation studies of drug molecules interacting with biologically relevant membranes, a considerable amount of work has been carried out with fluid phospholipid systems. However, there is very little work in the literature on drug interactions with gel phase lipids. This poses a significant limitation for understanding permeation through the stratum corneum where the primary pathway is expected to be through a highly ordered lipid matrix. To address this point, we analyzed the interactions of p-aminobenzoic acid (PABA) and its ethyl (benzocaine) and butyl (butamben) esters with two membrane bilayers, which differ in their fluidity at ambient conditions. We considered a dioleoylphosphatidylcholine (DOPC) bilayer in a fluid state and a ceramide 2 (CER2, ceramide NS) bilayer in a gel phase. We carried out unbiased (100 ns long) and biased z-constraint molecular dynamics simulations and calculated the free energy profiles of all molecules along the bilayer normal. The free energy profiles converged significantly slower for the gel phase. While the compounds have comparable affinities for both membranes, they exhibit penetration barriers almost 3 times higher in the gel phase CER2 bilayer. This elevated barrier and slower diffusion in the CER2 bilayer, which are caused by the high ordering of CER2 lipid chains, explain the low permeability of the gel phase membranes. We also compared the free energy profiles from MD simulations with those obtained from COSMOmic. This method provided the same trends in behavior for the guest molecules in both bilayers; however, the penetration barriers calculated by COSMOmic did not differ between membranes. In conclusion, we show how membrane fluid properties affect the interaction of drug-like molecules with membranes.
Jadoul, A; Tanojo, H; Préat, V; Bouwstra, J A; Spies, F; Boddé, H E
1998-08-01
Application of high voltage pulses (HVP) to the skin has been shown to promote the transdermal drug delivery by a mechanism involving skin electroporation. The aim of this study was to detect potential changes in lipid phase and ultrastructure induced in human stratum corneum by various HVP protocols, using differential thermal analysis and freeze-fracture electron microscopy. Due to the time involved between the moment the electric field is switched off and the analysis, only "secondary" phenomena rather than primary events could be observed. A decrease in enthalpies for the phase transitions observed at 70 degrees C and 85 degrees C was detected by differential thermal analysis after HVP treatment. No changes in transition temperature could be seen. The freeze-fracture electron microscopy study revealed a dramatic perturbation of the lamellar ordering of the intercellular lipid after application of HVP. Most of the planes displayed rough surfaces. The lipid lamellae exhibited rounded off steps or a vanished stepwise order. There was no evidence for perturbation of the corneocytes content. In conclusion, the freeze-fracture electron microscopy and differential thermal analysis studies suggest that HVP application induces a general perturbation of the stratum corneum lipid ultrastructure.
Abd, Eman; Benson, Heather A. E.; Roberts, Michael S.; Grice, Jeffrey E.
2018-01-01
In this work, we examined enhanced skin delivery of minoxidil applied in nanoemulsions incorporating skin penetration enhancers. Aliquots of fully characterized oil-in-water nanoemulsions (1 mL), containing minoxidil (2%) and the skin penetration enhancer oleic acid or eucalyptol as oil phases, were applied to full-thickness excised human skin in Franz diffusion cells, while aqueous solutions (1 mL) containing minoxidil were used as controls. Minoxidil in the stratum corneum (SC), hair follicles, deeper skin layers, and flux through the skin over 24 h was determined, as well as minoxidil solubility in the formulations and in the SC. The nanoemulsions significantly enhanced the permeation of minoxidil through skin compared with control solutions. The eucalyptol formulations (NE) promoted minoxidil retention in the SC and deeper skin layers more than did the oleic acid formulations, while the oleic acid formulations (NO) gave the greatest hair follicle penetration. Minoxidil maximum flux enhancement was associated with increases in both minoxidil SC solubility and skin diffusivity in both nanoemulsion systems. The mechanism of enhancement appeared to be driven largely by increased diffusivity, rather than increased partitioning into the stratum corneum, supporting the concept of enhanced fluidity and disruption of stratum corneum lipids. PMID:29370122
Dainichi, Teruki; Amano, Satoshi; Matsunaga, Yukiko; Iriyama, Shunsuke; Hirao, Tetsuji; Hariya, Takeshi; Hibino, Toshihiko; Katagiri, Chika; Takahashi, Motoji; Ueda, Setsuko; Furue, Masutaka
2006-02-01
Chemical peeling with salicylic acid in polyethylene glycol vehicle (SA-PEG), which specifically acts on the stratum corneum, suppresses the development of skin tumors in UVB-irradiated hairless mice. To elucidate the mechanism through which chemical peeling with SA-PEG suppresses skin tumor development, the effects of chemical peeling on photodamaged keratinocytes and cornified envelopes (CEs) were evaluated in vivo. Among UVB-irradiated hairless mice, the structural atypia and expression of p53 protein in keratinocytes induced by UVB irradiation were intensely suppressed in the SA-PEG-treated mice 28 days after the start of weekly SA-PEG treatments when compared to that in the control UVB-irradiated mice. Incomplete expression of filaggrin and loricrin in keratinocytes from the control mice was also improved in keratinocytes from the SA-PEG-treated mice. In photo-exposed human facial skin, immature CEs were replaced with mature CEs 4 weeks after treatment with SA-PEG. Restoration of photodamaged stratum corneum by treatment with SA-PEG, which may affect remodeling of the structural environment of the keratinocytes, involved the normalization of keratinocyte differentiation and suppression of skin tumor development. These results suggest that the stratum corneum plays a protective role against carcinogenesis, and provide a novel strategy for the prevention of photo-induced skin tumors.
Evo-Devo of Amniote Integuments and Appendages
Wu, Ping; Hou, Lianhai; Plikus, Maksim; Hughes, Michael; Scehnet, Jeffrey; Suksaweang, Sanong; Widelitz, Randall B.; Jiang, Ting-Xin; Chuong, Cheng-Ming
2015-01-01
Integuments form the boundary between an organism and the environment. The evolution of novel developmental mechanisms in integuments and appendages allows animals to live in diverse ecological environments. Here we focus on amniotes. The major achievement for reptile skin is an adaptation to the land with the formation of a successful barrier. The stratum corneum enables this barrier to prevent water loss from the skin and allowed amphibian/reptile ancestors to go onto the land. Overlapping scales and production of β-keratins provide strong protection. Epidermal invagination led to the formation of avian feather and mammalian hair follicles in the dermis. Both adopted a proximal - distal growth mode that maintains endothermy. Feathers form hierarchical branches which produce the vane that makes flight possible. Recent discoveries of feathered dinosaurs in China inspire new thinking on the origin of feathers. In the laboratory, epithelial - mesenchymal recombinations and molecular mis-expressions were carried out to test the plasticity of epithelial organ formation. We review the work on the transformation of scales into feathers, conversion between barbs and rachis, and the production of “chicken teeth”. In mammals, tilting the balance of the BMP pathway in K14 noggin transgenic mice alters the number, size and phenotypes of different ectodermal organs, making investigators rethink the distinction between morpho-regulation and pathological changes. Models on the evolution of feathers and hairs from reptile integuments are discussed. A hypothetical Evo-Devo space where diverse integument appendages can be placed according to complex phenotypes and novel developmental mechanisms is presented. PMID:15272390
Nanoparticles for transcutaneous vaccination
Hansen, Steffi; Lehr, Claus‐Michael
2012-01-01
Summary The living epidermis and dermis are rich in antigen presenting cells (APCs). Their activation can elicit a strong humoral and cellular immune response as well as mucosal immunity. Therefore, the skin is a very attractive site for vaccination, and an intradermal application of antigen may be much more effective than a subcutaneous or intramuscular injection. However, the stratum corneum (SC) is a most effective barrier against the invasion of topically applied vaccines. Products which have reached the stage of clinical testing, avoid this problem by injecting the nano‐vaccine intradermally or by employing a barrier disrupting method and applying the vaccine to a relatively large skin area. Needle‐free vaccination is desirable from a number of aspects: ease of application, improved patient acceptance and less risk of infection among them. Nanocarriers can be designed in a way that they can overcome the SC. Also incorporation into nanocarriers protects instable antigen from degradation, improves uptake and processing by APCs, and facilitates endosomal escape and nuclear delivery of DNA vaccines. In addition, sustained release systems may build a depot in the tissue gradually releasing antigen which may avoid booster doses. Therefore, nanoformulations of vaccines for transcutaneous immunization are currently a very dynamic field of research. Among the huge variety of nanocarrier systems that are investigated hopes lie on ultra‐flexible liposomes, superfine rigid nanoparticles and nanocarriers, which are taken up by hair follicles. The potential and pitfalls associated with these three classes of carriers will be discussed. PMID:21854553
In vivo skin moisturizing measurement by high-resolution 3 Tesla magnetic resonance imaging.
Mesrar, J; Ognard, J; Garetier, M; Chechin, D; Misery, L; Ben Salem, D
2017-08-01
Magnetic resonance imaging (MRI) is rarely used for the exploration of skin, even if studies have validated both feasibility of skin MRI and its interest for anatomical, physiological, and biochemical study of the skin. The purpose of this study is to explore moisturizing of the different skin layers using 3-T scan. An MRI of the heel's skin was performed using a 23 mm coil diameter on a 3T scan with a FFE (Fast Field Echo) 3D T1-weighted sequence and a TSE (Turbo Spin Echo) calculation T2-weighted sequence (pixels size of respectively 60 and 70 μm). This study was conducted on 35 healthy volunteers, who were scanned before applying moisturizer topic and 1 h after applying it. Region of interest in the stratum corneum, the epidermis and the dermis were generated on the T2 mapping. The thickness of each layer was measured. The T1 sequence allowed accurate cross-examination repositioning to ensure the comparability of the measurements. Among the 35 cases, two were excluded from the analysis because of movement artifacts. Measurements before and after moisturizer topic application displayed a T2 increase of 48.94% (P < 0.0001) in the stratum corneum and of 5.45% (P < 0.0001) in the epidermis yet without significant difference in the dermis. There was no significant link between the thickness of the stratum corneum and the T2 increase. However, there was a strong correlation between the thickness of the stratum corneum and the thickness of the epidermis (P < 0.001; rhô=0.72). High-resolution MRI allows fine exploration of anatomical and physiological properties of the skin and can further be used to extend the studies of skin hydration. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Reptile scale paradigm: Evo-Devo, pattern formation and regeneration
Chang, Cheng; Wu, Ping; Baker, Ruth E.; Maini, Philip K.; Alibardi, Lorenzo; Chuong, Cheng-Ming
2010-01-01
The purpose of this perspective is to highlight the merit of the reptile integument as an experimental model. Reptiles represent the first amniotes. From stem reptiles, extant reptiles, birds and mammals have evolved. Mammal hairs and feathers evolved from Therapsid and Sauropsid reptiles, respectively. The early reptilian integument had to adapt to the challenges of terrestrial life, developing a multi-layered stratum corneum capable of barrier function and ultraviolet protection. For better mechanical protection, diverse reptilian scale types have evolved. The evolution of endothermy has driven the convergent evolution of hair and feather follicles: both form multiple localized growth units with stem cells and transient amplifying cells protected in the proximal follicle. This topological arrangement allows them to elongate, molt and regenerate without structural constraints. Another unique feature of reptile skin is the exquisite arrangement of scales and pigment patterns, making them testable models for mechanisms of pattern formation. Since they face the constant threat of damage on land, different strategies were developed to accommodate skin homeostasis and regeneration. Temporally, they can be under continuous renewal or sloughing cycles. Spatially, they can be diffuse or form discrete localized growth units (follicles). To understand how gene regulatory networks evolved to produce increasingly complex ectodermal organs, we have to study how prototypic scale-forming pathways in reptiles are modulated to produce appendage novelties. Despite the fact that there are numerous studies of reptile scales, molecular analyses have lagged behind. Here, we underscore how further development of this novel experimental model will be valuable in filling the gaps of our understanding of the Evo-Devo of amniote integuments. PMID:19557687
Hoffmann, J; Heisler, E; Karpinski, S; Losse, J; Thomas, D; Siefken, W; Ahr, H-J; Vohr, H-W; Fuchs, H W
2005-10-01
The determination of a possible corrosive or irritative potential of certain products and ingredients is necessary for their classification and labeling requirements. Reconstructed skin as a model system provides fundamental advantages to single cell culture testing and leads to promising results as shown by different validation studies (for review: Fentem, J.H., Botham, P.A., 2002. ECVAM's activities in validating alternative tests for skin corrosion and irritation. ATLA 30(Suppl. 2), 61-67). In this study we introduce our new reconstructed epidermis "Epidermal-Skin-Test" (EST-1,000). This fully grown epidermis consists of proliferating as well as differentiating keratinocytes. EST-1,000 shows a high comparability to normal human skin as shown by histological and immunohistochemical data. Characteristic markers (KI-67, CK 1/10/5/14, transglutaminase, collagen IV, involucrin, beta 1 integrin) can be identified easily. The main focus of this work was to characterize EST-1,000 especially with respect to its barrier function by testing several substances of known corrosive potential. Skin corrosion was detected by the cytotoxic effect of the substances on a reconstructed epidermis after short-term application to the stratum corneum. The effect was determined by standard MTT assay and accompanying histological analysis. Hence EST-1,000 shows a very high predictive potential and closes the gap between animal testing and the established full-thickness model Advanced-Skin-Test 2,000 (AST-2,000) (Noll, M., Merkle, M.-L., Kandsberger, M., Matthes, T., Fuchs, H., Graeve, T., 1999. Reconstructed human skin (AST-2,000) as a tool for pharmaco-toxicology. ATLA 27, 302).
NASA Astrophysics Data System (ADS)
Darvin, M. E.; Richter, H.; Zhu, Y. J.; Meinke, M. C.; Knorr, F.; Gonchukov, S. A.; Koenig, K.; Lademann, J.
2014-07-01
Two state-of-the-art microscopic optical methods, namely, confocal laser scanning microscopy in the fluorescence and reflectance regimes and multiphoton tomography in the autofluorescence and second harmonic generation regimes, are compared for porcine skin ex vivo and healthy human skin in vivo. All skin layers such as stratum corneum (SC), stratum spinosum (SS), stratum basale (SB), papillary dermis (PD) and reticular dermis (RD) as well as transition zones between these skin layers are measured noninvasively at a high resolution, using the above mentioned microscopic methods. In the case of confocal laser scanning microscopy (CLSM), measurements in the fluorescence regime were performed by using a fluorescent dye whose topical application on the surface is well suited for the investigation of superficial SC and characterisation of the skin barrier function. For investigations of deeply located skin layers, such as SS, SB and PD, the fluorescent dye must be injected into the skin, which markedly limits fluorescence measurements using CLSM. In the case of reflection CLSM measurements, the obtained results can be compared to the results of multiphoton tomography (MPT) for all skin layers excluding RD. CLSM cannot distinguish between dermal collagen and elastin measuring their superposition in the RD. By using MPT, it is possible to analyse the collagen and elastin structures separately, which is important for the investigation of anti-aging processes. The resolution of MPT is superior to CLSM. The advantages and limitations of both methods are discussed and the differences and similarities between human and porcine skin are highlighted.
Akarsu, Sevgi; Fetil, Emel; Yücel, Filiz; Gül, Eylem; Güneş, Ali T
2012-05-01
Clindamycin phosphate (CDP), benzoyl peroxide (BPO) and salicylic acid (SA) are known to be effective acne therapy agents depending on their anti-inflammatory and comedolytic properties. The purpose of this study was to investigate the efficacy and tolerability of the addition of SA treatment to CDP and BPO (SA and CDP + BPO) and compare it with CDP + BPO in patients with mild to moderate facial acne vulgaris. Forty-nine patients were enrolled in a 12 week prospective, single-blind, randomized, comparative clinical study. Efficacy was assessed by lesion counts, global improvement, quality of life index and measurements of skin barrier functions. Local side effects were also evaluated. Both combinations were effective in reducing total lesion (TL), inflammatory lesion (IL) and non-inflammatory lesion (NIL) counts. There were statistically significant differences between treatment groups for reductions in NIL counts beyond 2 weeks, IL counts and TL counts throughout the all study weeks, and global improvement scores evaluated by patients and investigator at the end of the study in favor of SA and CDP + BPO treatment when compared to CDP + BPO treatment. Both combinations significantly decreased stratum corneum hydration, although skin sebum values decreased with SA and CDP + BPO treatment. These combinations were also well tolerated except significantly higher frequency of mild to moderate transient dryness in patients applied SA and CDP + BPO. The addition of SA to CDP + BPO treatment demonstrated significantly better and faster results in terms of reductions in acne lesion counts and well tolerated except for higher frequency of mild to moderate transient dryness. © 2011 Japanese Dermatological Association.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Darvin, M E; Richter, H; Zhu, Y J
Two state-of-the-art microscopic optical methods, namely, confocal laser scanning microscopy in the fluorescence and reflectance regimes and multiphoton tomography in the autofluorescence and second harmonic generation regimes, are compared for porcine skin ex vivo and healthy human skin in vivo. All skin layers such as stratum corneum (SC), stratum spinosum (SS), stratum basale (SB), papillary dermis (PD) and reticular dermis (RD) as well as transition zones between these skin layers are measured noninvasively at a high resolution, using the above mentioned microscopic methods. In the case of confocal laser scanning microscopy (CLSM), measurements in the fluorescence regime were performed bymore » using a fluorescent dye whose topical application on the surface is well suited for the investigation of superficial SC and characterisation of the skin barrier function. For investigations of deeply located skin layers, such as SS, SB and PD, the fluorescent dye must be injected into the skin, which markedly limits fluorescence measurements using CLSM. In the case of reflection CLSM measurements, the obtained results can be compared to the results of multiphoton tomography (MPT) for all skin layers excluding RD. CLSM cannot distinguish between dermal collagen and elastin measuring their superposition in the RD. By using MPT, it is possible to analyse the collagen and elastin structures separately, which is important for the investigation of anti-aging processes. The resolution of MPT is superior to CLSM. The advantages and limitations of both methods are discussed and the differences and similarities between human and porcine skin are highlighted. (laser biophotonics)« less
Davoudi, Seyyed Masoud; Keshavarz, Saeed; Sadr, Bardia; Shohrati, Majid; Naghizadeh, Mohammad Mehdi; Farsinejad, Khalil; Rashighi-Firouzabadi, Mehdi; Zartab, Hamed; Firooz, Alireza
2009-08-01
Skin lesions are among the most common complications of contact with sulfur mustard. This study was aimed to measure skin water content and transepidermal water loss (TEWL) in patients with a history of sulfur mustard contact. Three hundred ten male participants were included in this study: 87 (28.1%) sulfur mustard-exposed patients with current skin lesions (group 1), 71 (22.9%) sulfur mustard-exposed patients without skin lesions (group 2), 78 (25.2%) patients with dermatitis (group 3) and 74 (23.8%) normal controls (group 4) The water content and TEWL of skin was measured at four different locations of the body: forehead, suprasternal, palm and dorsum of hand. Nonparametric statistical tests (Kruskal-Wallis) were used to compare the four groups, and P < 0.05 was considered statistically significant. The mean age of participants were 44.0 +/- 6.7, 41.9 +/- 5.9, 43.8 +/- 9.3 and 44.8 +/- 8.9 years in groups 1 to 4, respectively (P = 0.146). Xerosis, post-lesional hyperpigmentation and lichenification were significantly more common in either sulfur mustard-exposed participants or non-exposed participants with dermatitis (P < 0.05). Skin hydration was higher in subjects with sulfur mustard contact than in non-injured participants (P < 0.05) in the dorsum and palm of hands and forehead. TEWL was significantly higher in participants only in suprasternal area and dorsum of hand. Contact with sulfur mustard agent can alter biophysical properties of the skin--especially the function of stratum corneum as a barrier to water loss-several years after exposure.
Layegh, Pouran; Maleki, Masoud; Mousavi, Seyed Reza; Yousefzadeh, Hadis; Momenzadeh, Akram; Golmohammadzadeh, Shiva; Balali-Mood, Mahdi
2015-07-01
Despite almost the three decades passed since the chemical attacks of Iraqi's army against the Iranian troops, some veterans are still suffering from long-term complications of sulfur mustard (SM) poisoning, including certain skin complaints specially dryness, burning, and pruritus. We thus aimed to evaluate the skin's water and lipid content in patients with a disability of >25% due to complications of SM poisoning and compare them with a matched control group. Sixty-nine male participants were included in this study; 43 SM-exposed patients, and 26 normal controls from their close relatives. The water and lipid content was measured in four different locations: Extensor and flexor sides of forearms and lateral and medial sides of legs by the Corneometer CM 820/Sebumeter SM 810. Collected data was analyzed and P ≤ 0.05 was considered as statistically significant. The mean age of the patients and controls was 49.53 ± 11.34 (ranges: 40-71) and 29.08 ± 8.836 (ranges: 15-49 years), respectively. In the veterans group, the main cutaneous complaint was itching and skin dryness. Cherry angioma, dry skin, and pruritus were significantly more common in the SM-exposed cases than in the controls. (P = 0.01, 0.05, and 0.04, respectively). The moisture and lipid content of all areas were lower in the SM-exposed group, but it was only significant in skin sebum of lateral sides of legs (P = 0.02). Exposure to SM could decrease the function of stratum corneum and lipid production as a barrier, even after several years of its exposure.
Microemulsions based transdermal drug delivery systems.
Vadlamudi, Harini C; Narendran, Hyndavi; Nagaswaram, Tejeswari; Yaga, Gowri; Thanniru, Jyotsna; Yalavarthi, Prasanna R
2014-01-01
Since the discovery of microemulsions by Jack H Schulman, there has been huge progress made in applying microemulsion systems in plethora of research and industrial process. Microemulsions are optically isotropic systems consisting of water, oil and amphiphile. These systems are beneficial due to their thermodynamic stability, optical clarity, ease of preparation, higher diffusion and absorption rates. Moreover, it has been reported that the ingredients of microemulsion can effectively overcome the diffusion barrier and penetrate through the stratum corneum of the skin. Hence it becomes promising for both transdermal and dermal drug delivery. However, low viscosity of microemulsion restrains its applicability in pharmaceutical industry. To overcome the above drawback, the low viscous microemulsions were added to viscous gel bases to potentiate its applications as topical drug delivery systems so that various drug related toxic effects and erratic drug absorption can be avoided. The present review deals with the microemulsions, various techniques involved in the development of organic nanoparticles. The review emphasized on microemulsion based systems such as hydrogels and organogels. The physicochemical characteristics, mechanical properties, rheological and stability principles involved in microemulsion based viscous gels were also explored.
Zhang, Ding; Wang, Huai-Ji; Cui, Xiu-Ming; Wang, Cheng-Xiao
2017-06-01
In this work, imidazolium ionic liquids (imidazolium ILs) were employed as the novel chemical permeation enhancers (CPEs) and their performances and mechanisms of action were deeply investigated. Testosterone was used as a model drug to investigate the transdermal delivery enhancement of twenty imdidazolium ILs. The results suggested that the promotion activity connected to the structure and composition of the ILs. The quantitative structure-activity relationship (QSAR) model revealed a good linearity between the electronic properties of ILs and their enhancements. Furthermore, the transepidermal water loss (TEWL) and scanning laser confocal microscope (CLSM) examinations showed the strong improvement of ILs on skin barrier permeability, which were well correlated with the drug penetration profiles. The total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and atomic force microscope (AFM) evaluations of skins indicated that the ILs can disrupt the regular and compact arrangements of the corneocytes, change the surface properties of stratum corneum, and make the skin structure more permeable. Our work demonstrated the significant skin permeation promotion profiles of the imidazolium ILs, which are of great potential in transdermal drug delivery systems.
Rattanapak, Teerawan; Birchall, James C.; Young, Katherine; Kubo, Atsuko; Fujimori, Sayumi; Ishii, Masaru; Hook, Sarah
2014-01-01
Delivery of vaccines into the skin provides many advantages over traditional parenteral vaccination and is a promising approach due to the abundance of antigen presenting cells (APC) residing in the skin including Langerhans cells (LC) and dermal dendritic cells (DDC). However, the main obstacle for transcutaneous immunization (TCI) is the effective delivery of the vaccine through the stratum corneum (SC) barrier to the APC in the deeper skin layers. This study therefore utilized microneedles (MN) and a lipid-based colloidal delivery system (cubosomes) as a synergistic approach for the delivery of vaccines to APC in the skin. The process of vaccine uptake and recruitment by specific types of skin APC was investigated in real-time over 4 hours in B6.Cg-Tg (Itgax-EYFP) 1 Mnz/J mice by two-photon microscopy. Incorporation of the vaccine into a particulate delivery system and the use of MN preferentially increased vaccine antigen uptake by a highly motile subpopulation of skin APC known as CD207+ DC. No uptake of antigen or any response to immunisation by LC could be detected. PMID:24586830
Ilic, L; Gowrishankar, T R; Vaughan, T E; Herndon, T O; Weaver, J C
2001-01-01
We describe an extension of semiconductor fabrication methods that creates individual approximately 200 microm diameter aqueous pathways through human stratum corneum at predetermined sites. Our hypothesis is that spatially localized electroporation of the multilamellar lipid bilayer membranes provides rapid delivery of salicylic acid to the keratin within corneocytes, leading to localized keratin disruption and then to a microconduit. A microconduit penetrating the isolated stratum corneum supports a volumetric flow of order 0.01 ml per s with a pressure difference of only 0.01 atm (about 10(2) Pa). This study provides a method for rapidly microengineering a pathway in the skin to interface future devices for transdermal drug delivery and sampling of biologically relevant fluids.
The effects of aromatherapy on pruritus in patients undergoing hemodialysis.
Ro, You-Ja; Ha, Hyae-Chung; Kim, Chun-Gill; Yeom, Hye-A
2002-08-01
This study was designed to investigate the effects of aromatherapy on pruritus in patients with chronic renal failure undergoing hemodialysis. The participants were 29 adult patients living in Seoul, Korea. Thirteen patients were assigned to the experimental group and received the aromatherapy massage on the arm 3 times a week for 4 weeks. Pruritus score, skin pH, stratum corneum hydration, and pruritus-related biochemical markers were measured before and after the treatment. The results showed that pruritus score was significantly decreased after aromatherapy. Skin pH showed no significant changes in either group while stratum corneum hydration increased significantly in the experimental group after aromatherapy. The results support the use aromatherapy as a useful and effective method of managing pruritus in patients undergoing hemodialysis.
Effects of microgravity on epidermal development in the rat
NASA Technical Reports Server (NTRS)
Hoath, Steven B.
1995-01-01
The overall goal of this project was to investigate the effects of prolonged weightlessness on the development of the skin in the fetal and newborn rat. Specifically, we used the NASA microgravitational rat model to test the following hypotheses: (1) Exposure of the pregnant rat to microscopy during late gestation will diminish the transport of calcium across the placenta from the mother to the fetus leading to decreases in total epidermal and dermal calcium content; (2) Microgravity will lead to slowing of body growth and diminish the rate of formation of the outermost layer of the epidermis and the stratum corneum; and (3) Microgravity will lead to formation of a stratum corneum with decreased DC electrical resistance and increased permeability to tritiated water.
Döge, Nadine; Hönzke, Stefan; Schumacher, Fabian; Balzus, Benjamin; Colombo, Miriam; Hadam, Sabrina; Rancan, Fiorenza; Blume-Peytavi, Ulrike; Schäfer-Korting, Monika; Schindler, Anke; Rühl, Eckart; Skov, Per Stahl; Church, Martin K; Hedtrich, Sarah; Kleuser, Burkhard; Bodmeier, Roland; Vogt, Annika
2016-11-28
Understanding penetration not only in intact, but also in lesional skin with impaired skin barrier function is important, in order to explore the surplus value of nanoparticle-based drug delivery for anti-inflammatory dermatotherapy. Herein, short-term ex vivo cultures of (i) intact human skin, (ii) skin pretreated with tape-strippings and (iii) skin pre-exposed to sodium lauryl sulfate (SLS) were used to assess the penetration of dexamethasone (Dex). Intradermal microdialysis was utilized for up to 24h after drug application as commercial cream, nanocrystals or ethyl cellulose nanocarriers applied at the therapeutic concentration of 0.05%, respectively. In addition, Dex was assessed in culture media and extracts from stratum corneum, epidermis and dermis after 24h, and the results were compared to those in heat-separated split skin from studies in Franz diffusion cells. Providing fast drug release, nanocrystals significantly accelerated the penetration of Dex. In contrast to the application of cream and ethyl cellulose nanocarriers, Dex was already detectable in eluates after 6h when applying nanocrystals on intact skin. Disruption of the skin barrier further accelerated and enhanced the penetration. Encapsulation in ethyl cellulose nanocarriers delayed Dex penetration. Interestingly, for all formulations highly increased concentrations in the dialysate were observed in tape-stripped skin, whereas the extent of enhancement was less in SLS-exposed skin. The results were confirmed in tissue extracts and were in line with the predictions made by in vitro release studies and ex vivo Franz diffusion cell experiments. The use of 45kDa probes further enabled the collection of inflammatory cytokines. However, the estimation of glucocorticoid efficacy by Interleukin (IL)-6 and IL-8 analysis was limited due to the trauma induced by the probe insertion. Ex vivo intradermal microdialysis combined with culture media analysis provides an effective, skin-sparing method for preclinical assessment of novel drug delivery systems at therapeutic doses in models of diseased skin. Copyright © 2016 Elsevier B.V. All rights reserved.
Lee, Woan-Ruoh; Shen, Shing-Chuan; Al-Suwayeh, Saleh A; Li, Yi-Ching; Fang, Jia-You
2012-06-01
While laser skin resurfacing is expected to result in reduced barrier function and increased risk of drug absorption, the extent of the increment has not yet been systematically investigated. We aimed to establish the skin permeation profiles of tetracycline and sunscreens after exposure to the erbium:yttrium-aluminum-garnet (Er:YAG) laser during postoperative periods. Physiological and histopathological examinations were carried out for 5 days after laser treatment on nude mice. Percutaneous absorption of the permeants was determined by an in vitro Franz cell. Ablation depths varied in reaching the stratum corneum (10 μm, 2.5 J/cm²) to approach the epidermis (25 μm, 6.25 J/cm²) and upper dermis (40 μm, 10 J/cm²). Reepithelialization evaluated by transepidermal water loss was complete within 2-4 days and depended on the ablation depth. Epidermal hyperplasia was observed in the 40-μm-treated group. The laser was sufficient to disrupt the skin barrier and allow the transport of the permeants into and across the skin. The laser fluence was found to play an important role in modulating skin absorption. A 25-μm ablation depth increased tetracycline flux 84-fold. A much smaller enhancement (3.3-fold) was detected for tetracycline accumulation within the skin. The laser with different fluences produced enhancement of oxybenzone skin deposition of 3.4-6.4-fold relative to the untreated group. No penetration across the skin was shown regardless of whether titanium dioxide was applied to intact or laser-treated skin. However, laser resurfacing increased the skin deposition of titanium dioxide from 46 to 109-188 ng/g. Tetracycline absorption had recovered to the level of intact skin after 5 days, while more time was required for oxybenzone absorption. The in vivo skin accumulation and plasma concentration revealed that the laser could increase tetracycline absorption 2-3-fold. The experimental results indicated that clinicians should be cautious when determining the dose for postoperative treatment. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Gratieri, Taís; Kalia, Yogeshvar N
2013-02-01
The architecture and composition of the stratum corneum make it a particularly effective barrier against the topical and transdermal delivery of hydrophilic molecules and ions. As a result, different strategies have been explored in order to expand the range of therapeutic agents that can be administered by this route. Iontophoresis involves the application of a small electric potential to increase transport into and across the skin. Since current flow is preferentially via transport pathways with at least some aqueous character, it is ideal for hydrosoluble molecules containing ionisable groups. Hence, the physicochemical properties that limit partitioning and passive diffusion through the intercellular lipid matrix are beneficial for electrically-assisted delivery. The presence of fixed ionisable groups in the skin (pI 4-4.5) means that application of the electric field results in a convective solvent flow (i.e., electroosmosis) in the direction of ion motion so as to neutralise membrane charge. Hence, under physiological conditions, cation electrotransport is due to both electromigration and electroosmosis-their relative contribution depends on the formulation conditions and the physicochemical properties of the permeant. Different mathematical models have been developed to provide a theoretical framework in order to explain iontophoretic transport kinetics. They usually involve solutions of the Nernst-Planck equation - using either the constant field (Goldman) or electroneutrality (Nernst) approximations - with or without terms for the convective solvent flow component. Investigations have also attempted to elucidate the nature of ion transport pathways and to explain the effect of current application on the electrical properties of the skin-more specifically, the stratum corneum. These studies have led to the development of different equivalent circuit models. These range from simple parallel arrangements of a resistor and a capacitor to the inclusion of the more esoteric "constant phase element"; the latter provides a better mathematical description of the "non-ideal" behaviour of skin impedance. However, in addition to simply providing a "mathematical" fit of the observed data, it is essential to relate these circuit elements to biological structures present in the skin. More recently, attention has also turned to what happens when the permeant crosses the epidermis and reaches the systemic circulation and pharmacokinetic models have been proposed to interpret data from iontophoretic delivery studies in vivo. Here, we provide an overview of mathematical models that have been proposed to describe (i) the effect of current application on the skin and the implications for potential iontophoretic transport pathways, (ii) electrotransport kinetics and (iii) the fate of iontophoretically delivered drugs once they enter the systemic circulation. Copyright © 2012 Elsevier B.V. All rights reserved.
Greco, Gabriele; Hagen, Franziska; Meißner, Svenja; Shen, Zanming; Lu, Zhongyan; Amasheh, Salah; Aschenbach, Jörg R
2018-02-15
The objective of this study was to investigate whether individual short-chain fatty acids (SCFA) have a different potential to either regulate the formation of the ruminal epithelial barrier (REB) at physiological pH or to damage the REB at acidotic ruminal pH. Ruminal epithelia of sheep were incubated in Ussing chambers on their mucosal side in buffered solutions (pH 6.1 or 5.1) containing no SCFA (control), 30 mM of either acetate, propionate or butyrate, or 100 mM acetate. Epithelial conductance (Gt), short-circuit current (Isc), and fluorescein flux rates were measured over 7 h. Thereafter, mRNA and protein abundance, as well as localization of the tight junction proteins claudin (Cldn)-1, -4, -7, and occludin were analyzed. At pH 6.1, butyrate increased Gt and decreased Isc, with additional decreases in claudin-7 mRNA and protein abundance (each P < 0.05) and disappearance of Cldn-7 immunosignals from the stratum corneum. By contrast, the mRNA abundance of Cldn-1 and/or Cldn-4 were upregulated by 30 mM propionate, 30 mM butyrate, or 100 mM acetate (P < 0.05), however, without coordinated changes in protein abundance. At luminal pH 5.1, neither Gt, Isc, nor TJ protein abundance was altered in the absence of SCFA; only fluorescein flux rates were slightly increased (P < 0.05) and fluorescein signals were no longer restricted to the stratum corneum. The presence of acetate, propionate, or butyrate at pH 5.1 increased fluorescein flux rates and Gt, and decreased Isc (each P < 0.05). Protein abundance of Cldn-1 was decreased in all SCFA treatments but 30 mM butyrate; abundance of Cldn -4 and -7 was decreased in all SCFA treatments but 30 mM acetate; and abundance of occludin was decreased in all SCFA treatments but 30 mM propionate (each P < 0.05). Immunofluorescence staining of SCFA-treated tissues at pH 5.1 showed disappearance of Cldn-7, discontinuous pattern for Cldn-4 and blurring of occludin and Cldn-1 signals in tight junction complexes. The fluorescein dye appeared to freely diffuse into deeper cell layers. The strongest increase in Gt and consistent decreases in the abundance and immunosignals of tight junction proteins were observed with 100 mM acetate at pH 5.1. We conclude that SCFA may contribute differently to the REB formation at luminal pH 6.1 with possible detrimental effects of butyrate at 30 mM concentration. At luminal pH 5.1, all SCFA elicited REB damage with concentration appearing more critical than SCFA species.
Russell, Meghan
2012-01-01
Vitamin D3 has been called the “sunshine” vitamin since the formation of vitamin D is mediated by exposure to sunlight. Vitamin D3 is linked to many health benefits, however serum levels of vitamin D3 have been decreasing over the last few decades and the lower levels of vitamin D3 may have consequences on normal physiology. We investigated the association between serum 25-hydroxyvitamin D (25(OH)D) levels and stratum corneum conductance as well as the effect of topical application of cholecalciferol (vitamin D3) on dry skin. Eighty three subjects were recruited and blood serum levels and skin conductance measurements were taken after a one week washout. A correlation was observed between vitamin D levels and skin moisture content, individuals with lower levels of vitamin D had lower average skin moisture. Subsequently, a 3-week split leg, randomized, vehicle controlled clinical study was conducted on a subset of 61 of the above individuals who were identified with non-sufficient vitamin D serum levels. Topical supplementation with cholecalciferol significantly increased measurements of skin moisturization and resulted in improvements in subjective clinical grading of dry skin. Taken together our finding suggest a relationship between serum vitamin D3 (25(OH)D) levels and hydration of the stratum corneum and further demonstrate the skin moisture benefit from topical application of vitamin D3. PMID:23112909
Russell, Meghan
2012-09-01
Vitamin D(3) has been called the "sunshine" vitamin since the formation of vitamin D is mediated by exposure to sunlight. Vitamin D(3) is linked to many health benefits, however serum levels of vitamin D(3) have been decreasing over the last few decades and the lower levels of vitamin D(3) may have consequences on normal physiology. We investigated the association between serum 25-hydroxyvitamin D (25(OH)D) levels and stratum corneum conductance as well as the effect of topical application of cholecalciferol (vitamin D(3)) on dry skin. Eighty three subjects were recruited and blood serum levels and skin conductance measurements were taken after a one week washout. A correlation was observed between vitamin D levels and skin moisture content, individuals with lower levels of vitamin D had lower average skin moisture. Subsequently, a 3-week split leg, randomized, vehicle controlled clinical study was conducted on a subset of 61 of the above individuals who were identified with non-sufficient vitamin D serum levels. Topical supplementation with cholecalciferol significantly increased measurements of skin moisturization and resulted in improvements in subjective clinical grading of dry skin. Taken together our finding suggest a relationship between serum vitamin D(3) (25(OH)D) levels and hydration of the stratum corneum and further demonstrate the skin moisture benefit from topical application of vitamin D(3).
Penetration of gold nanoparticles across the stratum corneum layer of thick-Skin.
Raju, Gayathri; Katiyar, Neeraj; Vadukumpully, Sajini; Shankarappa, Sahadev A
2018-02-01
Transdermal particulate penetration across thick-skin, such as that of palms and sole, is particularly important for drug delivery for disorders such as small fiber neuropathies. Nanoparticle-based drug delivery across skin is believed to have much translational applications, but their penetration especially through thick-skin, is not clear. This study specifically investigates the effectiveness of gold nanoparticles (AuNPs) for thick-skin penetration, especially across the stratum corneum (SC) as a function of particle size. The thick-skinned hind-paw of rat was used to characterize depth and distribution of AuNPs of varying sizes, namely, 22±3, 105±11, and 186±20nm. Epidermal penetration of AuNPs was characterized both, in harvested skin from the hind-paw using a diffusion chamber, as well as in vivo. Harvested skin segments exposed to 22nm AuNPs for only 3h demonstrated higher penetration (p<0.05) as compared to the 105 and 186nm particles. In animal studies, hind-paw skin of adult rats exposed to AuNPs solution for the same time, demonstrated nanoparticles in blood on the 4th day, and histological analysis revealed AuNPs in epidermal layers just below the SC, with no apparent tissue response. We conclude that the thick-skin allows nanoparticle penetration and acts as a depot for release of AuNPs into circulation long after the initial exposure has ceased. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.
Soltanipoor, Maryam; Kezic, Sanja; Sluiter, Judith K; Rustemeyer, Thomas
2017-02-28
Health care workers (HCW) are at high risk for developing occupational hand dermatitis (HD) due to frequent exposure to 'wet work'. Amongst HCWs, nurses are at highest risk, with an estimated point prevalence of HD ranging between 12 and 30%. The burden of disease is high with chronicity, sick leave, risk of unemployment and impaired quality of life. Despite evidence from the medical literature on the risk factors and the importance of skin care in the prevention of HD, in practice, compliance to skin care protocols are below 30%. New preventive strategies are obviously needed. This is a cluster randomized controlled trial, focusing on nurses performing wet work. In total, 20 wards are recruited to include 504 participating nurses in the study at baseline. The wards will be randomized to an intervention or a control group and followed up for 18 months. The intervention consists of the facilitation of creams being available at the wards combined with the continuous electronic monitoring of their consumption with regular feedback on skin care performance in teams of HCWs. Both the intervention and the control group receive basic education on skin protection (as 'care as usual'). Every 6 months, participants of both groups will fill in the questionnaires regarding exposure to wet work and skin protective behavior. Furthermore, skin condition will be assessed and samples of the stratum corneum collected. The effect of the intervention will be measured by comparing the change in Hand Eczema Severity Index (HECSI score) from baseline to 12 months. The Natural Moisturizing Factor (NMF) levels, measured in the stratum corneum as an early biomarker of skin barrier damage, and the total consumption of creams per ward will be assessed as a secondary outcome. This trial will assess the clinical effectiveness of an intervention program to prevent hand dermatitis among health care workers TRIAL REGISTRATION: Netherlands Trial Register (NTR), identification number NTR5564 . Registered on 2 November 2015.
Structure-activity relationship of chemical penetration enhancers in transdermal drug delivery.
Kanikkannan, N; Kandimalla, K; Lamba, S S; Singh, M
2000-06-01
Transdermal drug delivery (TDD) is the administration of therapeutic agents through intact skin for systemic effect. TDD offers several advantages over the conventional dosage forms such as tablets, capsules and injections. Currently there are about eight drugs marketed as transdermal patches. Examples of such products include nitroglycerin (angina pectoris), clonidine (hypertension), scopolamine (motion sickness), nicotine (smoking cessation), fentanil (pain) and estradiol (estrogen deficiency). Since skin is an excellent barrier for drug transport, only potent drugs with appropriate physicochemical properties (low molecular weight, adequate solubility in aqueous and non-aqueous solvents, etc) are suitable candidates for transdermal delivery. Penetration enhancement technology is a challenging development that would increase significantly the number of drugs available for transdermal administration. The permeation of drugs through skin can be enhanced by physical methods such as iontophoresis (application of low level electric current) and phonophoresis (use of ultra sound energy) and by chemical penetration enhancers (CPE). In this review, we have discussed about the CPE which have been investigated for TDD. CPE are compounds that enhance the permeation of drugs across the skin. The CPE increase skin permeability by reversibly altering the physicochemical nature of the stratum corneum, the outer most layer of skin, to reduce its diffusional resistance. These compounds increase skin permeability also by increasing the partition coefficient of the drug into the skin and by increasing the thermodynamic activity of the drug in the vehicle. This review compiles the various CPE used for the enhancement of TDD, the mechanism of action of different chemical enhancers and the structure-activity relationship of selected and extensively studied enhancers such as fatty acids, fatty alcohols and terpenes. Based on the chemical structure of penetration enhancers (such as chain length, polarity, level of unsaturation and presence of some special groups such as ketones), the interaction between the stratum corneum and penetration enhancers may vary which will result in significant differences in penetration enhancement. Our review also discusses the various factors to be considered in the selection of an appropriate penetration enhancer for the development of transdermal delivery systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gajjar, Rachna M.; Kasting, Gerald B., E-mail: Gerald.Kasting@uc.edu
The overall goal of this research was to further develop and improve an existing skin diffusion model by experimentally confirming the predicted absorption rates of topically-applied volatile organic compounds (VOCs) based on their physicochemical properties, the skin surface temperature, and the wind velocity. In vitro human skin permeation of two hydrophilic solvents (acetone and ethanol) and two lipophilic solvents (benzene and 1,2-dichloroethane) was studied in Franz cells placed in a fume hood. Four doses of each {sup 14}C-radiolabed compound were tested — 5, 10, 20, and 40 μL cm{sup −2}, corresponding to specific doses ranging in mass from 5.0 tomore » 63 mg cm{sup −2}. The maximum percentage of radiolabel absorbed into the receptor solutions for all test conditions was 0.3%. Although the absolute absorption of each solvent increased with dose, percentage absorption decreased. This decrease was consistent with the concept of a stratum corneum deposition region, which traps small amounts of solvent in the upper skin layers, decreasing the evaporation rate. The diffusion model satisfactorily described the cumulative absorption of ethanol; however, values for the other VOCs were underpredicted in a manner related to their ability to disrupt or solubilize skin lipids. In order to more closely describe the permeation data, significant increases in the stratum corneum/water partition coefficients, K{sub sc}, and modest changes to the diffusion coefficients, D{sub sc}, were required. The analysis provided strong evidence for both skin swelling and barrier disruption by VOCs, even by the minute amounts absorbed under these in vitro test conditions. - Highlights: • Human skin absorption of small doses of VOCs was measured in vitro in a fume hood. • The VOCs tested were ethanol, acetone, benzene and 1,2-dichloroethane. • Fraction of dose absorbed for all compounds at all doses tested was less than 0.3%. • The more aggressive VOCs absorbed at higher levels than diffusion model predictions. • We conclude that even small exposures to VOCs temporarily alter skin permeability.« less
Piérard, Gérald E.; Piérard-Franchimont, Claudine; Paquet, Philippe; Hermanns-Lê, Trinh; Delvenne, Philippe
2014-01-01
In the dermatopathology field, some simple available laboratory tests require minimum equipment for establishing a diagnosis. Among them, the cyanoacrylate skin surface stripping (CSSS), formerly named skin surface biopsy or follicular biopsy, represents a convenient low cost procedure. It is a minimally invasive method collecting a continuous sheet of stratum corneum and horny follicular casts. In the vast majority of cases, it is painless and is unassociated with adverse events. CSSS can be performed in subjects of any age. The method has a number of applications in diagnostic dermatopathology and cosmetology, as well as in experimental dermatology settings. A series of derived analytic procedures include xerosis grading, comedometry, corneofungimetry, corneodynamics of stratum corneum renewal, corneomelametry, corneosurfametry, and corneoxenometry. PMID:25177726
Nanoparticles for transcutaneous vaccination.
Hansen, Steffi; Lehr, Claus-Michael
2012-03-01
The living epidermis and dermis are rich in antigen presenting cells (APCs). Their activation can elicit a strong humoral and cellular immune response as well as mucosal immunity. Therefore, the skin is a very attractive site for vaccination, and an intradermal application of antigen may be much more effective than a subcutaneous or intramuscular injection. However, the stratum corneum (SC) is a most effective barrier against the invasion of topically applied vaccines. Products which have reached the stage of clinical testing, avoid this problem by injecting the nano-vaccine intradermally or by employing a barrier disrupting method and applying the vaccine to a relatively large skin area. Needle-free vaccination is desirable from a number of aspects: ease of application, improved patient acceptance and less risk of infection among them. Nanocarriers can be designed in a way that they can overcome the SC. Also incorporation into nanocarriers protects instable antigen from degradation, improves uptake and processing by APCs, and facilitates endosomal escape and nuclear delivery of DNA vaccines. In addition, sustained release systems may build a depot in the tissue gradually releasing antigen which may avoid booster doses. Therefore, nanoformulations of vaccines for transcutaneous immunization are currently a very dynamic field of research. Among the huge variety of nanocarrier systems that are investigated hopes lie on ultra-flexible liposomes, superfine rigid nanoparticles and nanocarriers, which are taken up by hair follicles. The potential and pitfalls associated with these three classes of carriers will be discussed. © 2011 The Authors; Microbial Biotechnology © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.
Delivery of resveratrol, a red wine polyphenol, from solutions and hydrogels via the skin.
Hung, Chi-Feng; Lin, Yin-Ku; Huang, Zih-Rou; Fang, Jia-You
2008-05-01
Resveratrol, the main active polyphenol in red wine, has been demonstrated to show benefits against skin disorders. The bioavailability of orally administered resveratrol is insufficient to permit high enough drug concentrations for systemic therapy. In this study, we examined the feasibility of the topical/transdermal delivery of resveratrol. The effects of vehicles on the in vitro permeation and skin deposition from saturated solutions such as aqueous buffers and soybean oil were investigated. The general trend for the delivery from solutions was: pH 6 buffer=pH 8 buffer>10% glycerol formal in pH 6 buffer>pH 9.9 buffer>pH 10.8 buffer>soybean oil. A linear relationship was established between the permeability coefficient (K(p)) and drug accumulation in the skin reservoir. Viable epidermis/dermis served as the predominant barrier for non-ionic resveratrol permeation. On the other hand, both the stratum corneum (SC) and viable skin acted as barriers to anionic resveratrol. Several prototype hydrogel systems were also studied as resveratrol vehicles. The viscosity but not the polarity of the hydrogels controlled resveratrol permeation/deposition. Piceatannol, a derivative of resveratrol with high pharmacological activity, showed 11.6-fold lower skin permeation compared to resveratrol. The safety profiles of resveratrol suggested that the hydrogel caused no SC disruption or skin erythema. It was concluded that delivery via a skin route may be a potent way to achieve the therapeutic effects of resveratrol. This is the first report to establish the permeation profiles for topically applied resveratrol.
Aoyama, H; Tanaka, M; Hara, M; Tabata, N; Tagami, H
1999-01-01
The pathogenesis of nummular eczema (NE) is still unknown. It often develops on the lower legs of elderly individuals with xerotic changes during the winter months. Such winter exacerbation is also observed in atopic dermatitis, in which there is a high incidence of cutaneous immune reactivities against environmental aeroallergens. Because of the total lack of information about skin reactivities in NE patients, we performed immunological as well as functional studies in their uninvolved skin. Prick tests and chamber scarification patch tests for representative aeroallergens were conducted on the flexor surface of the forearm in 26 NE patients, in 21 age-matched elderly persons without NE and in 43 healthy young controls. We found that the elderly subjects, regardless of their background, showed a significantly higher immediate skin reactivity to Candida albicans than the young controls. In contrast, patch testing revealed that, unlike the age-matched elderly subjects who showed a decrease in incidence of positive patch test reactions, the NE patients retained delayed contact sensitivity at a level comparable to that of the young healthy controls. They showed a significantly higher percentage of positive patch test reactions to Dermatophagoides farinae allergen (46%) and house dust allergen (35%) than the age-matched controls. Moreover, they also showed a significantly higher percentage of delayed hypersensitive reactions to C. albicans allergen (85%) than the age-matched controls (48%). Noninvasive functional assessment of the stratum corneum (SC) in unaffected skin areas of the lower legs in 8 NE patients demonstrated that, though the water barrier function of the SC was comparable to that of the age-matched controls, they showed a significantly lower hydration state of the SC than the age-matched controls. The xerotic skin of elderly individuals facilitates the development of cracking and fissuring of the skin surface in dry and cold winter. Such damage in the SC is sometimes aggravated by inadvertent scratching due to pruritus, allowing skin permeation of various environmental allergens. They may induce eczematous changes in those with preserved adequate delayed hypersensitivity despite their advanced age.
Babayeva, L; Akarsu, S; Fetil, E; Güneş, A T
2011-03-01
No single effective topical treatment is available for treating all pathogenic factors causing acne vulgaris (AV). Salicylic acid (SA), tretinoin (all-TRA) and clindamycin phosphate (CDP) are known to to be effective agents depending on their comedolytic and anti-inflammatory properties. To compare the efficacy and tolerability of SA and CDP combination (SA+CDP) with all-TRA and CDP (all-TRA+CDP) in patients with mild to moderate facial AV. Forty-six patients aged between 18 and 35 years were enrolled in a 12-week prospective, single-blind, randomized and comparative clinical study. Efficacy was assessed by lesion counts, global improvement, quality of life index and measurement of skin barrier functions. Local side effects were also evaluated. Both combinations were effective in reducing total lesion (TL), inflammatory lesion (IL) and non-inflammatory lesion (NIL) counts and showed significant global improvement as evaluated by the investigator. At the end of the study, there was no significant difference between the two groups in terms of all lesion counts. In addition, TL counts decreased faster in the all-TRA+CDP group compared with those in the SA+CDP group, with a significant difference between the two groups occurring as early as 2 weeks. Safety evaluations demonstrated that the incidence of mild to moderate side effects generally peaked at week 2 and declined gradually thereafter. Both combinations did not have an effect on stratum corneum hydration, although skin sebum values decreased with SA+CDP treatment. Combination of SA+CDP and all-TRA+CDP was effective in decreasing lesion counts and well tolerated with minimal local cutaneous reactions in patients with mild to moderate AV. © 2010 The Authors. Journal of the European Academy of Dermatology and Venereology © 2010 European Academy of Dermatology and Venereology.
Nanotopographical Cues for Modulating Fibrosis and Drug Delivery
NASA Astrophysics Data System (ADS)
Walsh, Laura Aiko Michelle
Nanotopography in the cellular microenvironment provides biological cues and therefore has potential to be a useful tool for directing cellular behavior. Fibrotic encapsulation of implanted devices and materials can wall off and eventually cause functional failure of the implant. Drug delivery requires penetrating the epithelium, which encapsulates the body and provides a barrier to separate the body from its external environment. Both of these challenges could be elegantly surmounted using nanotopography, which would harness innate cellular responses to topographic cues to elicit desired cellular behavior. To this end, we fabricated high and low aspect ratio nanotopographically patterned thin films. Using scanning electron microscopy, real time polymerase chain reaction, immunofluorescence microscopy, in vitro drug delivery assays, transmission electron microscopy, inhibitor studies, and rabbit and rat in vivo drug delivery studies, we investigated cellular response to our nanotopographic thin films. We determined that high aspect ratio topography altered fibroblast morphology and decreased proliferation, possibly due to decreased protein adsorption. The fibroblasts also down regulated expression of mRNA of key factors associated with fibrosis, such as collagens 1 and 3. Low aspect ratio nanotopography increased drug delivery in vitro across an intestinal epithelial model monolayer by increasing paracellular permeability and remodeling the tight junction. This increase in drug delivery required integrin engagement and MLCK activity, and is consistent with the increased focal adhesion formation. Tight junction remodeling was also observed in a multilayered keratinocyte model, showing this mechanism can be generalized to multiple epithelium types. By facilitating direct contact of nanotopography with the viable epidermis using microneedles to pierce the stratum corneum, we are able to transdermally deliver a 150 kiloDalton, IgG-based therapeutic in vivo..
Ionic liquids as antimicrobials, solvents, and prodrugs for treating skin disease
NASA Astrophysics Data System (ADS)
Zakrewsky, Michael A.
The skin is the largest organ in the body. It provides a compliant interface for needle-free drug delivery, while avoiding major degradative pathways associated with the GI tract. These can result in improved patient compliance and sustained and controlled release compared to other standard delivery methods such as intravenous injection, subcutaneous injection, and oral delivery. Concurrently, for the treatment of skin related diseases (e.g. bacterial infection, skin cancer, psoriasis, atopic dermatitis, etc.) cutaneous application provides targeted delivery to the disease site, allowing the use of more potent therapeutics with fewer systemic side effects. Unfortunately, the outer layer of the skin -- the stratum corneum (SC) -- presents a significant barrier to most foreign material. This is particularly true for large hydrophilic molecules (>500Da), which must partition through tortuous lipid channels in the SC to penetrate deep tissue layers where the majority of skin-related diseases reside. Interestingly, over the last few decades ionic liquids (ILs) have emerged as a burgeoning class of designer solvents. ILs have been proven beneficial for use in industrial processing, catalysis, pharmaceuticals, and electrochemistry to name a few. The ability to modulate either the cation or anion individually presents an advantageous framework for tuning secondary characteristics without sacrificing the primary function of the IL. Here we report the use of novel ILs for cutaneous drug delivery. Specifically, we demonstrate their potential as potent, broad-spectrum antimicrobials, as solvents for topical delivery of hydrophilic and hydrophobic drugs, and as prodrugs to either reduce the dose-dependent toxicity of drugs that cause skin irritation or enhance delivery of macromolecules into skin and cells. Thus, our results clearly demonstrate ILs holds promise as a transformative platform for treating skin disease.
Animal models for transdermal drug delivery.
Panchagnula, R; Stemmer, K; Ritschel, W A
1997-06-01
The purpose of this investigation was to compare the permeation characteristics of two different compounds (extremely polar and nonpolar), i.e., tritium-labeled water (W) and 14C-labeled 7-hydroxycoumarin (7-OHC), among 16 different species, including human skin. Snake skin exhibited highest permeability for both W and 7-OHC. Permeability and lag time values of W and 7-OHC across Brattleboro rat and hairless guinea pig are very close to human skin. Skin thickness in micrometers (full thickness, epidermis and stratum corneum, and stratum corneum), and number of hair follicles present in each cm2 were determined for each species. There was no relationship between number of hair follicles and permeability values for both W and 7-OHC. The skin thickness (full) was related to the relative permeability values of W, whereas for 7-OHC it was not.
Sanada, Hiromi; Nakagami, Gojiro; Takehara, Kimie; Goto, Taichi; Ishii, Nanase; Yoshida, Satoshi; Ryu, Mizuyuki; Tsunemi, Yuichiro
2014-01-01
Tinea pedis is a preventable skin disease common in elderly or diabetic patients. Daily foot washing is effective for prevention, but can be difficult for many patients. Additionally, conventional methods cannot eliminate fungi within the stratum corneum, a common site for fungal invasion. This study investigates the antifungal effects, cytotoxicity, permeability, and efficacy of non-woven textiles containing polyhexamethylene biguanide (PHMB) mixed with sophorolipid. Permeability of PHMB with varying concentrations of sophorolipid was assessed via a cultured skin model. Stratum corneum PHMB concentration was quantified by polyvinylsulphuric acid potassium salt titration and cytotoxicity was assayed via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. Antifungal effects were evaluated via a new cultured skin/Trichophyton mentagrophytes model, with varying PHMB exposure duration. Clinically-isolated Trichophyton were applied to the feet of four healthy volunteers and then immediately treated with the following methods: washing with soap, a non-woven textile with PHMB, the textile without PHMB, or without washing. Fungal colony forming units (CFUs) were evaluated after one of these treatments were performed. Sophorolipid with various concentrations significantly facilitated PHMB permeation into the stratum corneum, which was not in a dose-dependent manner. Significant PHMB antifungal effects were achieved at 30 min, with low cytotoxicity. Textiles containing PHMB significantly reduced CFU of fungi in healthy volunteers to levels comparable to soap washing. Our results indicate the utility of this product for tinea pedis prevention in clinical settings. PMID:27429269
Sanada, Hiromi; Nakagami, Gojiro; Takehara, Kimie; Goto, Taichi; Ishii, Nanase; Yoshida, Satoshi; Ryu, Mizuyuki; Tsunemi, Yuichiro
2014-04-08
Tinea pedis is a preventable skin disease common in elderly or diabetic patients. Daily foot washing is effective for prevention, but can be difficult for many patients. Additionally, conventional methods cannot eliminate fungi within the stratum corneum, a common site for fungal invasion. This study investigates the antifungal effects, cytotoxicity, permeability, and efficacy of non-woven textiles containing polyhexamethylene biguanide (PHMB) mixed with sophorolipid. Permeability of PHMB with varying concentrations of sophorolipid was assessed via a cultured skin model. Stratum corneum PHMB concentration was quantified by polyvinylsulphuric acid potassium salt titration and cytotoxicity was assayed via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide. Antifungal effects were evaluated via a new cultured skin/Trichophyton mentagrophytes model, with varying PHMB exposure duration. Clinically-isolated Trichophyton were applied to the feet of four healthy volunteers and then immediately treated with the following methods: washing with soap, a non-woven textile with PHMB, the textile without PHMB, or without washing. Fungal colony forming units (CFUs) were evaluated after one of these treatments were performed. Sophorolipid with various concentrations significantly facilitated PHMB permeation into the stratum corneum, which was not in a dose-dependent manner. Significant PHMB antifungal effects were achieved at 30 min, with low cytotoxicity. Textiles containing PHMB significantly reduced CFU of fungi in healthy volunteers to levels comparable to soap washing. Our results indicate the utility of this product for tinea pedis prevention in clinical settings.
McAuley, W J; Chavda-Sitaram, S; Mader, K T; Tetteh, J; Lane, M E; Hadgraft, J
2013-04-15
Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy has been used to investigate the effects of three fatty acid esters on skin permeation. Propylene glycol diperlargonate (DPPG), isopropyl myristate (IPM) and isostearyl isostearate (ISIS) were selected as pharmaceutically relevant solvents with a range of lipophilicities and cyanophenol (CNP) was used as a model drug. The resultant data were compared with that obtained when water was used as the solvent. The diffusion of CNP, DPPG and IPM across epidermis was successfully described by a Fickian model. When ISIS was used as a solvent Fickian behaviour was only obtained across isolated stratum corneum suggesting that the hydrophilic layers of the epidermis interfere with the permeation of the hydrophobic ISIS. The diffusion coefficients of CNP across epidermis in the different solvents were not significantly different. Using chemometric data analysis diffusion profiles for the solvents were deconvoluted from that of the skin and modelled. Each of these solvents was found to diffuse at a faster rate across the skin than CNP. DPPG considerably increased the concentration of CNP in the stratum corneum in comparison with the other solvents indicating strong penetration enhancer potential. In contrast IPM produced a similar CNP concentration in the stratum corneum to water with ISIS resulting in a lower CNP concentration suggesting negligible enhancement and penetration retardation effects for these two solvents respectively. Copyright © 2013 Elsevier B.V. All rights reserved.
Tretinoin-loaded liposomal formulations: from lab to comparative clinical study in acne patients.
Rahman, Salwa Abdel; Abdelmalak, Nevine Shawky; Badawi, Alia; Elbayoumy, Tahany; Sabry, Nermeen; El Ramly, Amany
2016-05-01
Topical tretinoin is the most commonly used retinoid for acne. However, its irritative potential on the applied area and the barrier properties of the stratum corneum limit its use. The objective of the present study was to formulate tretinoin liposomal gel to obtain a formula with lower skin irritation potential and greater clinical effect. A statistical 2(4) factorial design was adopted. Sixteen formulae prepared and were properly evaluated. A candidate formula (F13G) prepared with 0.025% tretinoin, phospholipid- cholesterol-dicetylphosphate (9:1:0.01) and incorporated in 1% carbopol gel was selected for skin irritation test. Clinical study was conducted on acne patients and compared to marketed product. All liposomes formulations were spherical in shape. The addition of cholesterol in the film hydration method significantly decreased the vesicle size, and increased the percentage of incorporation efficiency at (p < 0.05). The presence of dicetylphosphate significantly increased drug release but did not affect the percentage of incorporation efficiency and vesicle size. The results of the clinical study in acne patients revealed that F13G showed significantly higher efficacy when compared to marketed product (p < 0.05).
Spray-on transdermal drug delivery systems.
Ibrahim, Sarah A
2015-02-01
Transdermal drug delivery possesses superior advantages over other routes of administration, particularly minimizing first-pass metabolism. Transdermal drug delivery is challenged by the barrier nature of skin. Numerous technologies have been developed to overcome the relatively low skin permeability, including spray-on transdermal systems. A transdermal spray-on system (TSS) usually consists of a solution containing the drug, a volatile solvent and in many cases a chemical penetration enhancer. TSS promotes drug delivery via the complex interplay between solvent evaporation and drug-solvent drag into skin. The volatile solvent carries the drug into the upper layers of the stratum corneum, and as the volatile solvent evaporates, an increase in the thermodynamic activity of the drug occurs resulting in an increased drug loading in skin. TSS is easily applied, delivering flexible drug dosage and associated with lower incidence of skin irritation. TSS provides a fast-drying product where the volatile solvent enables uniform drug distribution with minimal vehicle deposition on skin. TSS ensures precise dose administration that is aesthetically appealing and eliminates concerns of residual drug associated with transdermal patches. Furthermore, it provides a better alternative to traditional transdermal products due to ease of product development and manufacturing.
NASA Astrophysics Data System (ADS)
Choi, Sanghoon; Kim, Jin Woong; Lee, Yong Joong; Delmas, Thomas; Kim, Changhwan; Park, Soyeun; Lee, Ho
2014-10-01
This study experimentally evaluates the self-targeting ability of asiaticoside-loaded nanoemulsions compared with nontargeted nanoemulsions in ex vivo experiments with porcine skin samples. Homebuilt two-photon and confocal laser-scanning microscopes were employed to noninvasively examine the transdermal delivery of two distinct nanoemulsions. Prior to the application of nanoemulsions, we noninvasively observed the morphology of porcine skin using two-photon microscopy. We have successfully visualized the distributions of the targeted and nontargeted nanoemulsions absorbed into the porcine skin samples. Asiaticoside-loaded nanoemulsions showed an improved ex vivo transdermal delivery through the stratum corneum compared with nonloaded nanoemulsions. As a secondary measure, nanoemulsions-applied samples were sliced in the depth direction with a surgical knife in order to obtain the complete depth-direction distribution profile of Nile red fluorescence. XZ images demonstrated that asiaticoside-loaded nanoemulsion penetrated deeper into the skin compared with nontargeted nanoemulsions. The basal layer boundary is clearly visible in the case of the asiaticoside-loaded skin sample. These results reaffirm the feasibility of using self-targeting ligands to improve permeation through the skin barrier for cosmetics and topical drug applications.
The success of microneedle-mediated vaccine delivery into skin
Marshall, Sarah; Sahm, Laura J.; Moore, Anne C.
2016-01-01
ABSTRACT Microneedles (MNs) are designed to specifically target the outermost, skin barrier layer, the stratum corneum, creating transient pathways for minimally invasive transcutaneous delivery. It is reported that MNs can facilitate delivery without stimulating the pain receptors or damaging blood vessels that lie beneath, thus being perceived as painless and associated with reduced bleeding. This immunocompetence of the skin, coupled with its ease of access, makes this organ an attractive vaccination site. The purpose of this review was to collate primary scientific literature pertaining to MN-mediated in vivo vaccination programmes. A total of 62 original research articles are presented, compiling vaccination strategies in 6 different models (mouse, rat, guinea pig, rabbit, pig, macaque and human). Vaccines tested span a wide range of viral, bacterial and protozoan pathogens and includes 7 of the 13 vaccine-preventable diseases, as defined by the WHO. This review highlights the paucity of available clinical trial data. MN-delivered vaccines have demonstrated safety and immunogenicity in pre-clinical models and boast desirable attributes such as painless administration, thermostability, dose-sparing capacity and the potential for self-administration. These advantages should contribute to enhanced global vaccine access. PMID:27050528
Steele, Michael A; Croom, Jim; Kahler, Melissa; AlZahal, Ousama; Hook, Sarah E; Plaizier, Kees; McBride, Brian W
2011-06-01
Alterations in rumen epithelial structure and function during grain-induced subacute ruminal acidosis (SARA) are largely undescribed. In this study, four mature nonlactating dairy cattle were transitioned from a high-forage diet (HF; 0% grain) to a high-grain diet (HG; 65% grain). After feeding the HG diet for 3 wk, the cattle were transitioned back to the original HF diet, which was fed for an additional 3 wk. Continuous ruminal pH was measured on a weekly basis, and rumen papillae were biopsied during the baseline and at the first and final week of each diet. The mean, minimum, and maximum daily ruminal pH were depressed (P < 0.01) in the HG period compared with the HF period. During the HG period, SARA was diagnosed only during week 1, indicating ruminal adaptation to the HG diet. Microscopic examination of the papillae revealed a reduction (P < 0.01) in the stratum basale, spinosum, and granulosum layers, as well as total depth of the epithelium during the HG period. The highest (P < 0.05) papillae lesion scores were noted during week 1 when SARA occurred. Biopsied papillae exhibited a decline in cellular junctions, extensive sloughing of the stratum corneum, and the appearance of undifferentiated cells near the stratum corneum. Differential mRNA expression of candidate genes, including desmoglein 1 and IGF binding proteins 3, 5, and 6, was detected between diets using qRT-PCR. These results suggest that the structural integrity of the rumen epithelium is compromised during grain feeding and is associated with the differential expression of genes involved in epithelial growth and structure.
Yokoi, Aya; Endo, Koji; Ozawa, Toshiaki; Miyaki, Masahiro; Matsuo, Keiko; Nozawa, Kazumi; Manabe, Motomu; Takagi, Yutaka
2014-12-01
Because excess sebum and/or metabolites of sebum induce skin problems, cleansers that can remove those kinds of sebum are sought after. However, many people, especially who have little facial sebum, are afraid to wash off sebum well because that may induce dry skin. This concern may be caused by the result that cleansers with a high cleansing ability tend to decrease not only facial sebum but also natural moisturizing factors and intercellular lipids that are essential for cutaneous function. Recently, we have developed a new cleanser based on sodium laureth carboxylate and alkyl carboxylates (AEC/soap) that cleans sebum well without penetrating the stratum corneum. This trial was aim to clarify the effects of sebum removal by AEC/soap-based cleanser on the induction of dry skin. We designed a controlled single blind parallel trial. Thirty female subjects with mild dry skin were assigned randomly to two groups: one group used AEC/soap-based cleanser while the other group kept using their usual facial cleanser twice a day for 4 weeks in the winter season. Using a colored artificial sebum mixture, it was demonstrated that this cleanser washed sebum well. Following usage of this cleanser, their dry skin improved rather than worsen which was indicated by instrumental analysis and visual assessment. These improvements were recognized by subjects. These results suggest that AEC/soap-based cleanser washes off facial sebum well, but it has little effect on the induction of dry skin because of less penetration into stratum corneum. © 2014 Wiley Periodicals, Inc.
Topical delivery of a preformed photosensitizer for photodynamic therapy of cutaneous lesions
NASA Astrophysics Data System (ADS)
Oleinick, Nancy L.; Kenney, Malcolm E.; Lam, Minh; McCormick, Thomas; Cooper, Kevin D.; Baron, Elma D.
2012-02-01
Photosensitizers for photodynamic therapy (PDT) are most commonly delivered to patients or experimental animals via intravenous injection. After initial distribution throughout the body, there can be some preferential accumulation within tumors or other abnormal tissue in comparison to the surrounding normal tissue. In contrast, the photosensitizer precursor, 5-aminolevulinic acid (ALA) or one of its esters, is routinely administered topically, and more specifically, to target skin lesions. Following metabolic conversion to protoporphyrin IX, the target area is photoilluminated, limiting peripheral damage and targeting the effective agent to the desired region. However, not all skin lesions are responsive to ALA-PDT. Topical administration of fully formed photosensitizers is less common but is receiving increased attention, and some notable advances with selected approved and experimental photosensitizers have been published. Our team has examined topical administration of the phthalocyanine photosensitizer Pc 4 to mammalian (human, mouse, pig) skin. Pc 4 in a desired formulation and concentration was applied to the skin surface at a rate of 5-10 μL/cm2 and kept under occlusion. After various times, skin biopsies were examined by confocal microscopy, and fluorescence within regions of interest was quantified. Early after application, images show the majority of the Pc 4 fluorescence within the stratum corneum and upper epidermis. As a function of time and concentration, penetration of Pc 4 across the stratum corneum and into the epidermis and dermis was observed. The data indicate that Pc 4 can be delivered to skin for photodynamic activation and treatment of skin pathologies.
NASA Astrophysics Data System (ADS)
Szikszai, Z.; Kertész, Zs.; Bodnár, E.; Major, I.; Borbíró, I.; Kiss, Á. Z.; Hunyadi, J.
2010-06-01
Ultrafine metal oxides, such as titanium dioxide and zinc oxide are widely used in cosmetic and health products like sunscreens. These oxides are potent UV filters and the small particle size makes the product more transparent compared to formulations containing coarser particles. In the present work the penetration of ultrafine zinc oxide into intact and tape-stripped human skin was investigated using nuclear microprobe techniques, such as proton induced X-ray spectroscopy and scanning transmission ion microscopy. Our results indicate that the penetration of ultrafine zinc oxide, in a hydrophobic basis gel with 48 h application time, is limited to the stratum corneum layer of the intact skin. Removing the stratum corneum partially or entirely by tape-stripping did not cause the penetration of the particles into the deeper dermal layers; the zinc particles remained on the surface of the skin.
Biometrological assessment of the preventive effect of a miconazole spray powder on athlete's foot.
Piérard, G E; Wallace, R; De Doncker, P
1996-09-01
Prevention of athlete's foot is a difficult problem. Using non-invasive biometrological methods, we evaluated the changes induced in the stratum corneum by a 3-week treatment with miconazole spray powder. A total of 16 athletes apparently at risk of developing tinea pedis, but without any evidence for the disease at the time of inclusion, participated in the study. They applied the medicated powder to one foot daily, while the other foot remained untreated to serve as a control. No adverse events occurred. In comparison with the control site, the capacitance of the toeweb skin was significantly reduced by the treatment. The ex vivo bioassay of dermatophyte culture on stratum corneum demonstrated a significant inhibition of growth of Trichophyton mentagrophytes var. interdigital at the treated site. The results of this study provide indirect evidence that the regular use of miconazole spray powder decreases the risk of developing athlete's foot.
An In vitro Model for Bacterial Growth on Human Stratum Corneum.
van der Krieken, Danique A; Ederveen, Thomas H A; van Hijum, Sacha A F T; Jansen, Patrick A M; Melchers, Willem J G; Scheepers, Paul T J; Schalkwijk, Joost; Zeeuwen, Patrick L J M
2016-11-02
The diversity and dynamics of the skin microbiome in health and disease have been studied recently, but adequate model systems to study skin microbiotas in vitro are largely lacking. We developed an in vitro system that mimics human stratum corneum, using human callus as substrate and nutrient source for bacterial growth. The growth of several commensal and pathogenic bacterial strains was measured for up to one week by counting colony-forming units or by quantitative PCR with strain-specific primers. Human skin pathogens were found to survive amidst a minimal microbiome consisting of 2 major skin commensals: Staphylococcus epidermidis and Propionibacterium acnes. In addition, complete microbiomes, taken from the backs of healthy volunteers, were inoculated and maintained using this system. This model may enable the modulation of skin microbiomes in vitro and allow testing of pathogens, biological agents and antibiotics in a medium-throughput format.
Transdermal delivery of therapeutic agent
NASA Technical Reports Server (NTRS)
Kwiatkowski, Krzysztof C. (Inventor); Hayes, Ryan T. (Inventor); Magnuson, James W. (Inventor); Giletto, Anthony (Inventor)
2008-01-01
A device for the transdermal delivery of a therapeutic agent to a biological subject that includes a first electrode comprising a first array of electrically conductive microprojections for providing electrical communication through a skin portion of the subject to a second electrode comprising a second array of electrically conductive microprojections. Additionally, a reservoir for holding the therapeutic agent surrounding the first electrode and a pulse generator for providing an exponential decay pulse between the first and second electrodes may be provided. A method includes the steps of piercing a stratum corneum layer of skin with two arrays of conductive microprojections, encapsulating the therapeutic agent into biocompatible charged carriers, surrounding the conductive microprojections with the therapeutic agent, generating an exponential decay pulse between the two arrays of conductive microprojections to create a non-uniform electrical field and electrokinetically driving the therapeutic agent through the stratum corneum layer of skin.
Infrared free electron laser enhanced transdermal drug delivery
NASA Astrophysics Data System (ADS)
Awazu, Kunio; Uchizono, Takeyuki; Suzuki, Sachiko; Yoshikawa, Kazushi
2005-08-01
It is necessary to control enhancement of transdermal drug delivery with non-invasive. The present study was investigated to assess the effectivity of enhancing the drug delivery by irradiating 6-μm region mid infrared free electron laser (MIR-FEL). The enhancement of transdermal drug (lidocaine) delivery of the samples (hairless mouse skin) irradiated with lasers was examined for flux (μg/cm2/h) and total penetration amount (μg/cm2) of lidocaine by High performance Liquid Chromatography (HPLC). The flux and total amount penatration date was enhanced 200-300 fold faster than the control date by the laser irradiation. FEL irradiating had the stratum corneum, and had the less thermal damage in epidermis. The effect of 6-μm region MIR-FEL has the enhancement of transdermal drug delivery without removing the stratum corneum because it has the less thermal damage. It leads to enhancement drug delivery system with non-invasive laser treatment.
Ichthyosis associated with widespread tinea corporis: report of three cases.
Freitas, Camila Fernanda Novak Pinheiro de; Mulinari-Brenner, Fabiane; Fontana, Hanae Rafaela; Gentili, Arthur Conelian; Hammerschmidt, Mariana
2013-01-01
Ichthyoses are a common group of keratinization disorders. A non-inflammatory generalized persistent skin desquamation is observed. It is characterized by increased cell turnover, thickening of the stratum corneum and functional changes of sebaceous and sweat glands. All of these favor fungal proliferation. Dermatophytes may infect skin, hair and nails causing ringworm or tinea. They have the ability to obtain nutrients from keratinized material. One of its most prevalent genera is Trichophyton rubrum. Although tineas and ichthyoses are quite common, the association of the two entities is rarely reported in the literature. Three cases of ichthyosis associated with widespread infection by T. rubrum are presented. Resistance to several antifungal treatments was responsible for worsening of ichthyosis signs and symptoms.
Ichthyosis associated with widespread tinea corporis: report of three cases*
de Freitas, Camila Fernanda Novak Pinheiro; Mulinari-Brenner, Fabiane; Fontana, Hanae Rafaela; Gentili, Arthur Conelian; Hammerschmidt, Mariana
2013-01-01
Ichthyoses are a common group of keratinization disorders. A non-inflammatory generalized persistent skin desquamation is observed. It is characterized by increased cell turnover, thickening of the stratum corneum and functional changes of sebaceous and sweat glands. All of these favor fungal proliferation. Dermatophytes may infect skin, hair and nails causing ringworm or tinea. They have the ability to obtain nutrients from keratinized material. One of its most prevalent genera is Trichophyton rubrum. Although tineas and ichthyoses are quite common, the association of the two entities is rarely reported in the literature. Three cases of ichthyosis associated with widespread infection by T. rubrum are presented. Resistance to several antifungal treatments was responsible for worsening of ichthyosis signs and symptoms. PMID:24068140
van Smeden, Jeroen; Boiten, Walter A; Hankemeier, Thomas; Rissmann, Robert; Bouwstra, Joke A; Vreeken, Rob J
2014-01-01
Ceramides (CERs), cholesterol, and free fatty acids (FFAs) are the main lipid classes in human stratum corneum (SC, outermost skin layer), but no studies report on the detailed analysis of these classes in a single platform. The primary aims of this study were to 1) develop an LC/MS method for (semi-)quantitative analysis of all main lipid classes present in human SC; and 2) use this method to study in detail the lipid profiles of human skin substitutes and compare them to human SC lipids. By applying two injections of 10μl, the developed method detects all major SC lipids using RPLC and negative ion mode APCI-MS for detection of FFAs, and NPLC using positive ion mode APCI-MS to analyze CERs and cholesterol. Validation showed this lipid platform to be robust, reproducible, sensitive, and fast. The method was successfully applied on ex vivo human SC, human SC obtained from tape strips and human skin substitutes (porcine SC and human skin equivalents). In conjunction with FFA profiles, clear differences in CER profiles were observed between these different SC sources. Human skin equivalents more closely mimic the lipid composition of human stratum corneum than porcine skin does, although noticeable differences are still present. These differences gave biologically relevant information on some of the enzymes that are probably involved in SC lipid processing. For future research, this provides an excellent method for (semi-)quantitative, 'high-throughput' profiling of SC lipids and can be used to advance the understanding of skin lipids and the biological processes involved. © 2013.
Haque, Tasnuva; Lane, Majella E; Sil, Bruno C; Crowther, Jonathan M; Moore, David J
2017-03-30
Niacinamide (NIA) is an amide form of vitamin B3 which is used in cosmetic formulations to improve various skin conditions and it has also been shown to increase stratum corneum thickness following repeated application. In this study, three doses (5, 20 and 50μL per cm 2 ) of two NIA containing oil-in-water skin barrier-mimetic formulations were evaluated in silicone membrane and porcine ear skin and compared with a commercial control formulation. Permeation studies were conducted over 24h in Franz cells and at the end of the experiment membranes were washed and niacinamide was extracted. For the three doses, retention or deposition of NIA was generally higher in porcine skin compared with silicone membrane, consistent with the hydrophilic nature of the active. Despite the control containing a higher amount of active, comparable amounts of NIA were deposited in skin for all formulations for all doses; total skin absorption values (permeation and retention) of NIA were also comparable across all formulations. For infinite (50μL) and finite (5μL) doses the absolute permeation of NIA from the control formulation was significantly higher in porcine skin compared with both test formulations. This likely reflects differences in formulation components and/or presence of skin penetration enhancers in the formulations. Higher permeation for the 50 and 20μL dose was also evident in porcine skin compared with silicone membrane but the opposite is the case for the finite dose. The findings point to the critical importance of dose and occlusion when evaluating topical formulations in vitro and also the likelihood of exaggerated effects of excipients on permeation at infinite and pseudo-finite dose applications. Copyright © 2017 Elsevier B.V. All rights reserved.
Release and in vitro skin permeation of polyphenols from cosmetic emulsions.
Zillich, O V; Schweiggert-Weisz, U; Hasenkopf, K; Eisner, P; Kerscher, M
2013-10-01
Polyphenols are natural antioxidants, which can inhibit oxidative chain reactions in human skin and prevent therefore some skin diseases and premature ageing. A prerequisite of this behaviour is their permeation through the skin barrier, in particular the stratum corneum (SC). In this study, we investigated the skin permeation kinetic of polyphenols, incorporated to semisolid emulsions, and the release of polyphenols from the emulsions. Mixtures of model substances, consisting of catechin, epigallocatechin gallate (EGCG), resveratrol, quercetin, rutin and protocatechuic acid (PCA), were formulated into o/w emulsions with different oil phase content. The in vitro experiments were carried out in Franz-type diffusion cells by means of ex vivo pig skin and a cellulose membrane. The increased oil content in the emulsion led to a significant decrease in initial release coefficients (K(r)), diffusion coefficients within the formulation (D(v)) and skin permeation coefficients (K(p)), respectively. The study considered the dependence of K(r) on molecular weight and lipophilicity of polyphenolics. For both more hydrophilic and more lipophilic substance groups, the values for K(r) were inverse proportional to molecular weight. For catechin, quercetin, rutin, resveratrol and PCA, a good correlation between K(p) and K(r) parameters was obtained. The most permeable substance was PCA (K(p) = 1.2·10(-3) cm h(-1)), and the least permeable was quercetin (K(p) = 1.5·10(-5) cm h(-1)). All substances could pass the SC barrier and were found mostly in the epidermis and dermis, confirming the potential of polyphenols as anti-ageing active cosmetic ingredients. © 2013 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Modeling of transdermal drug delivery with a microneedle array
NASA Astrophysics Data System (ADS)
Lv, Y.-G.; Liu, J.; Gao, Y.-H.; Xu, B.
2006-11-01
Transdermal drug delivery is generally limited by the extraordinary barrier properties of the stratum corneum, the outer 10-15 µm layer of skin. A conventional needle inserted across this barrier and into deeper tissues could effectively deliver drugs. However, it would lead to infection and cause pain, thereby reducing patient compliance. In order to administer a frequent injection of insulin and other therapeutic agents more efficiently, integrated arrays with very short microneedles were recently proposed as very good candidates for painless injection or extraction. A variety of microneedle designs have thus been made available by employing the fabrication tools of the microelectronics industry and using materials such as silicon, metals, polymers and glass with feature sizes ranging from sub-micron to nanometers. At the same time, experiments were also made to test the capability of the microneedles to inject drugs into tissues. However, due to the difficulty encountered in measurement, a detailed understanding of the spatial and transient drug delivery process still remains unclear up to now. To better grasp the mechanisms involved, quantitative theoretical models were developed in this paper to simultaneously characterize the flow and drug transport, and numerical solutions were performed to predict the kinetics of dispersed drugs injected into the skin from a microneedle array. Calculations indicated that increasing the initial injection velocity and accelerating the blood circulation in skin tissue with high porosity are helpful to enhance the transdermal drug delivery. This study provides the first quantitative simulation of fluid injection through a microneedle array and drug species transport inside the skin. The modeling strategy can also possibly be extended to deal with a wider range of clinical issues such as targeted nanoparticle delivery for therapeutics or molecular imaging.
Larese Filon, Francesca; Bello, Dhimiter; Cherrie, John W; Sleeuwenhoek, Anne; Spaan, Suzanne; Brouwer, Derk H
2016-08-01
The paper reviews and critically assesses the evidence on the relevance of various skin uptake pathways for engineered nanoparticles, nano-objects, their agglomerates and aggregates (NOAA). It focuses especially in occupational settings, in the context of nanotoxicology, risk assessment, occupational medicine, medical/epidemiological surveillance efforts, and the development of relevant exposure assessment strategies. Skin uptake of nanoparticles is presented in the context of local and systemic health effects, especially contact dermatitis, skin barrier integrity, physico-chemical properties of NOAA, and predisposing risk factors, such as stratum corneum disruption due to occupational co-exposure to chemicals, and the presence of occupational skin diseases. Attention should be given to: (1) Metal NOAA, since the potential release of ions may induce local skin effects (e.g. irritation and contact dermatitis) and absorption of toxic or sensitizing metals; (2) NOAA with metal catalytic residue, since potential release of ions may also induce local skin effects and absorption of toxic metals; (3) rigid NOAA smaller than 45nm that can penetrate and permeate the skin; (4) non rigid or flexible NOAA, where due to their flexibility liposomes and micelles can penetrate and permeate the intact skin; (5) impaired skin condition of exposed workers. Furthermore, we outline possible situations where health surveillance could be appropriate where there is NOAA occupational skin exposures, e.g. when working with nanoparticles made of sensitizer metals, NOAA containing sensitizer impurities, and/or in occupations with a high prevalence of disrupted skin barrier integrity. The paper furthermore recommends a stepwise approach to evaluate risk related to NOAA to be applied in occupational exposure and risk assessment, and discusses implications related to health surveillance, labelling, and risk communication. Copyright © 2016 Elsevier GmbH. All rights reserved.
Chen, Xiaodi; Threlkeld, Steven W.; Cummings, Erin E.; Juan, Ilona; Makeyev, Oleksandr; Besio, Walter G.; Gaitanis, John; Banks, William A.; Sadowska, Grazyna B.; Stonestreet, Barbara S.
2012-01-01
The blood-brain barrier is a restrictive interface between the brain parenchyma and the intravascular compartment. Tight junctions contribute to the integrity of the blood-brain barrier. Hypoxic-ischemic damage to the blood-brain barrier could be an important component of fetal brain injury. We hypothesized that increases in blood-brain barrier permeability after ischemia depend upon the duration of reperfusion and that decreases in tight junction proteins are associated with the ischemia-related impairment in blood-brain barrier function in the fetus. Blood-brain barrier function was quantified with the blood-to-brain transfer constant (Ki) and tight junction proteins by Western immunoblot in fetal sheep at 127 days-of-gestation without ischemia, and 4-, 24-, or 48-h after ischemia. The largest increase in Ki (P<0.05) was 4-h after ischemia. Occludin and claudin-5 expressions decreased at 4-h, but returned toward control levels 24- and 48-h after ischemia. Zonula occludens-1 and -2 decreased after ischemia. Inverse correlations between Ki and tight junction proteins suggest that the decreases in tight junction proteins contribute to impaired blood-brain barrier function after ischemia. We conclude that impaired blood-brain barrier function is an important component of hypoxic-ischemic brain injury in the fetus, and that increases in quantitatively measured barrier permeability (Ki) change as a function of the duration of reperfusion after ischemia. The largest increase in permeability occurs 4-h after ischemia and blood-brain barrier function improves early after injury because the blood-brain barrier is less permeable 24- and 48- than 4-h after ischemia. Changes in the tight junction molecular composition are associated with increases in blood-brain barrier permeability after ischemia. PMID:22986172
Potential barrier classification by short-time measurement
NASA Astrophysics Data System (ADS)
Granot, Er'El; Marchewka, Avi
2006-03-01
We investigate the short-time dynamics of a delta-function potential barrier on an initially confined wave packet. There are mainly two conclusions: (A) At short times the probability density of the first particles that passed through the barrier is unaffected by it. (B) When the barrier is absorptive (i.e., its potential is imaginary) it affects the transmitted wave function at shorter times than a real potential barrier. Therefore, it is possible to distinguish between an imaginary and a real potential barrier by measuring its effect at short times only on the transmitting wave function.
Shaving effects on percutaneous penetration: clinical implications.
Hamza, Muhammad; Tohid, Hassaan; Maibach, Howard
2015-01-01
Human/animal shaving biology. To assess the effect of shaving on percutaneous penetration and skin function. We screened 500+publications in Pub Med, Scopus, Cochrane Library and pertinent journals out of which only 17 were deemed relevant. Terms for searches included shaving and skin, percutaneous penetration and shaving, skin absorption and shaving, absorption of dyes and shaving, skin penetration, effects of shaving and absorption, shave and dyes, axillary shaving and stratum corneum, shaving and breast cancer, shaving and infections, etc. Shaving appears to have an exaggerated effect on percutaneous absorption; however, some studies do not support this evidence. Shaving enhances percutaneous penetration of some chemicals; however this effect is species and chemical specific. Further investigations of chemicals of varying physio-chemical properties are mandated before a generalized theory can be promulgated.
A model for quantitative evaluation of skin damage at adhesive wound dressing removal.
Matsumura, Hajime; Ahmatjan, Niyaz; Ida, Yukiko; Imai, Ryutaro; Wanatabe, Katsueki
2013-06-01
The removal of adhesive wound dressings from the wound surface involves a risk of damaging the intact stratum corneum and regenerating epithelium. Pain associated with the removal of wound dressings is a major issue for patients and medical personnel. Recently, wound dressings coated with a silicone adhesive have been developed to reduce such skin damage and pain on removal and they have received good evaluation in various clinical settings. However, there is neither a standard method to quantify whether or not the integrity of the stratum corneum and regenerating epithelium is retained or if both structures are damaged by the removal of wound dressings, nor are there standardised values with which to assess skin damage. We applied six different types of adhesive wound dressing on plain copy paper printed with black ink by a laser printer, removed the dressings, examined the adhesive-coated surface of the wound dressings using a high-power videoscope, and examined the stripped areas. Wound dressings coated with a silicone adhesive showed significantly less detachment of the stratum corneum and regenerating epithelium, followed by those coated with polyurethane, hydrocolloid, and acrylic adhesives. The assessment method utilised in this study revealed distinct differences between wound dressing types, but less variation in the evaluation outcome of each type. This assessment method may be useful for the evaluation of adhesive wound dressings, particularly during product development. However, further studies will be needed to examine the effectiveness of this assessment method in the clinical setting because the adherent properties of polyurethane and hydrocolloid adhesives may be altered by the absorption of water from the skin. © 2012 The Authors. International Wound Journal © 2012 John Wiley & Sons Ltd and Medicalhelplines.com Inc.
Ogiso, T; Iwaki, M; Paku, T
1995-04-01
The enhancing capacity of various chemicals, which are widely recognized as enhancers, for the transdermal penetration into full-thickness rat skin of a model lipophilic drug [indomethacin (IND)] and a hydrophilic permeant (urea) was estimated by an in vitro technique. In addition, the fluidity of the stratum corneum lipids, the partitioning of IND into skin, the lipid (ceramides) extraction from the stratum corneum by enhancers, and the IND solubility in enhancer vehicle were measured and related to the enhancing capacity. In vitro permeation experiments with hairless rat skin unequivocally revealed that the enhancers varied in abilities to enhance the fluxes of both agents. Laurocapram, isopropylmyristate (IPM), sodium oleate, and cineol increased fluxes of both agents to a great extent, but N-methyl-2-pyrrolidone (NMP), N,N-diethyl-m-tolamide (DEET), and oleyl oleate were less effective acclerants. Many enhancers increased the fluidity of the lipids [with a threshold of approximately 0.6-0.8 ns at 37 degrees C in the rotational correlation time (tau c)], the skin partitioning of IND, the extraction of ceramides from the cornified cells, and the thermodynamic activity of IND in vehicle (calculated from the solubility) to varying extents. A good correlation was observed between the increase in the fluidity of stratum corneum lipids and the partitioning of IND into skin, between the increase in the fluidity and the flux or the decrease in lag time for IND, between the removal of ceramides and the skin partitioning of IND, and between the removal of ceramides and the flux of urea (p < 0.05 in all cases).(ABSTRACT TRUNCATED AT 250 WORDS)
Trait-based modelling of bioaccumulation by freshwater benthic invertebrates.
Sidney, Livia Alvarenga; Diepens, Noël J; Guo, Xiaoying; Koelmans, Albert A
2016-07-01
Understanding the role of species traits in chemical exposure is crucial for bioaccumulation and toxicity assessment of chemicals. We measured and modelled bioaccumulation of polychlorinated biphenyls (PCBs) in Chironomus riparius, Hyalella azteca, Lumbriculus variegatus and Sphaerium corneum. We used a battery test procedure with multiple enclosures in one aquarium, which maximized uniformity of exposure for the different species, such that the remaining variability was due mostly to species traits. The relative importance of uptake from either pore water or sediment ingestion was manipulated by using 28 d aged standard OECD sediment with low (1%) and medium (5%) OM content and 13 months aged sediment with medium OM (5%) content. Survival was ≥76% and wet weight increased for all species. Reproduction of H. azteca and weight gain of H. azteca and S. corneum were significantly higher in the medium OM aged sediments than in other sediments, perhaps due to a more developed microbial community (i.e., increase in food resources). Biota-sediment accumulation factors (BSAF) ranged from 3 to 114, depending on species and PCB congener, with C. riparius (3-10)
Dew point effect of cooled hydrogel pads on human stratum corneum biosurface.
Xhauflaire-Uhoda, Emmanuelle; Paquet, Philippe; Piérard, Gérald E
2008-01-01
Cooled hydrogel pads are used to prevent overheating effects of laser therapy. They do not induce cold injuries to the skin, but their more subtle physiological effects have not been thoroughly studied. To describe the changes in transepidermal water loss and electrometric properties of the skin surface following application of cooled hydrogel pads. Measurements were performed on normal forearm skin of 27 healthy volunteers and on freshly excised skin from abdominoplasty. LaserAid hydrogel pads cooled to 4 degrees C were placed for 15 min on the forearm skin. Measurements of transepidermal water loss (TEWL) and electrometric properties (Corneometer, Nova DPM 900) were performed before application and after removal of the cooled pads. A consistent increase in corneometer units, dermal phase meter (DPM) values and TEWL were recorded at removal of the cooled hydrogel pads. Both the in vivo and in vitro assessments brought similar information. The similar changes disclosed in vitro and in vivo suggest that a common physical process is operating in these conditions. The observed phenomenon is opposite to the predicted events given by the Arrhenius law probably because of the combination of cooling and occlusion by the pads. A dew point effect (air temperature at which relative humidity is maximal) is likely involved in the moisture content of the stratum corneum. Thus, the biological impact of using cooling hydrogel pads during laser therapy is different from the effect of a cryogenic spray cooling procedure. The better preservation of the water balance in the stratum corneum by the cooled hydrogel pads could have a beneficial esthetic effect on laser treated areas. (c) 2008 S. Karger AG, Basel.
Appearance benefits of skin moisturization.
Jiang, Z-X; DeLaCruz, J
2011-02-01
Skin hydration is essential for skin health. Moisturized skin is generally regarded as healthy and healthy looking. It is thus speculated that there may be appearance benefits of skin moisturization. This means that there are corresponding changes in the optical properties when skin is moisturized. The appearance of the skin is the result of light reflection, scattering and absorption at various skin layers of the stratum corneum, epidermis, dermis and beyond. The appearance benefits of skin moisturization are likely primarily due to the changes in the optical properties of the stratum corneum. We hypothesize that the major optical effect of skin moisturization is the decrease of light scattering at the skin surface, i.e., the stratum corneum. This decrease of surface scattering corresponds to an increase of light penetration into the deeper layers of the skin. An experiment was conducted to measure the corresponding change in skin spectral reflectance, the skin scattering coefficient and skin translucency with a change in skin hydration. In the experiment, skin hydration was decreased with the topical application of acetone and alcohol and increased with the topical application of known moisturizers and occlusives such as PJ. It was found that both the skin spectral reflectance and the skin scattering coefficient increased when the skin was dehydrated and decreased when the skin was hydrated. Skin translucency increased as the skin became moisturized. The results agree with the hypothesis that there is less light scattering at the skin surface and more light penetration into the deeper skin layers when the skin is moisturized. As a result, the skin appears darker, more pinkish and more translucent. © 2010 John Wiley & Sons A/S.
Miyajima, Atsushi; Hirota, Takashi; Sugioka, Akihito; Fukuzawa, Masao; Sekine, Mari; Yamamoto, Yosuke; Yoshimasu, Takashi; Kigure, Akira; Anata, Taichi; Noguchi, Wataru; Akagi, Keita; Komoda, Masayo
2016-09-01
Ivermectin (IVM) is used as an anthelmintic agent in many countries. To evaluate the effect of high-fat (HF) meal intake on the pharmacokinetics of IVM, a clinical trial was conducted in Japanese patients with scabies. The patients were administrated Stromectol(®) tablets in the fasted state, and after 1 week they were also administrated it after a HF meal (fed state). After the administration, IVM concentrations in plasma and the stratum corneum were determined. The geometric mean of fed/fasted ratio of area under IVM concentration-time curve (AUC) in plasma was 1.25 (90% confidence interval, 1.09-1.43), suggesting the tendency to increased absorption after a HF meal. The fed/fasted ratio of the maximum IVM concentration in the stratum corneum was well correlated with that in plasma. In addition, no serious adverse events were observed during the trial, while a mild increase of aspartate aminotransferase and alanine aminotransferase activity in plasma was observed under the fed state in two patients. The mean AUC of IVM in plasma of those two patients were approximately threefold higher than that of the other patients at that time. On the other hand, the treatment success rate was 76.9% at 7 days after the second administration, which was comparable with the expected level. The present study not only demonstrates that HF meal intake increases the IVM concentration in plasma and the stratum corneum in Japanese patients with scabies, but also suggests the possibility that HF meals increase the risk of hepatic dysfunction by the increased exposure of IVM. © 2016 Japanese Dermatological Association.
Alimperti, Stella; Mirabella, Teodelinda; Bajaj, Varnica; Polacheck, William; Pirone, Dana M; Duffield, Jeremy; Eyckmans, Jeroen; Assoian, Richard K; Chen, Christopher S
2017-08-15
The integrity of the endothelial barrier between circulating blood and tissue is important for blood vessel function and, ultimately, for organ homeostasis. Here, we developed a vessel-on-a-chip with perfused endothelialized channels lined with human bone marrow stromal cells, which adopt a mural cell-like phenotype that recapitulates barrier function of the vasculature. In this model, barrier function is compromised upon exposure to inflammatory factors such as LPS, thrombin, and TNFα, as has been observed in vivo. Interestingly, we observed a rapid physical withdrawal of mural cells from the endothelium that was accompanied by an inhibition of endogenous Rac1 activity and increase in RhoA activity in the mural cells themselves upon inflammation. Using a system to chemically induce activity in exogenously expressed Rac1 or RhoA within minutes of stimulation, we demonstrated RhoA activation induced loss of mural cell coverage on the endothelium and reduced endothelial barrier function, and this effect was abrogated when Rac1 was simultaneously activated. We further showed that N -cadherin expression in mural cells plays a key role in barrier function, as CRISPR-mediated knockout of N -cadherin in the mural cells led to loss of barrier function, and overexpression of N -cadherin in CHO cells promoted barrier function. In summary, this bicellular model demonstrates the continuous and rapid modulation of adhesive interactions between endothelial and mural cells and its impact on vascular barrier function and highlights an in vitro platform to study the biology of perivascular-endothelial interactions.
Chen, X; Threlkeld, S W; Cummings, E E; Juan, I; Makeyev, O; Besio, W G; Gaitanis, J; Banks, W A; Sadowska, G B; Stonestreet, B S
2012-12-13
The blood-brain barrier is a restrictive interface between the brain parenchyma and the intravascular compartment. Tight junctions contribute to the integrity of the blood-brain barrier. Hypoxic-ischemic damage to the blood-brain barrier could be an important component of fetal brain injury. We hypothesized that increases in blood-brain barrier permeability after ischemia depend upon the duration of reperfusion and that decreases in tight junction proteins are associated with the ischemia-related impairment in blood-brain barrier function in the fetus. Blood-brain barrier function was quantified with the blood-to-brain transfer constant (K(i)) and tight junction proteins by Western immunoblot in fetal sheep at 127 days of gestation without ischemia, and 4, 24, or 48 h after ischemia. The largest increase in K(i) (P<0.05) was 4 h after ischemia. Occludin and claudin-5 expressions decreased at 4 h, but returned toward control levels 24 and 48 h after ischemia. Zonula occludens-1 and -2 decreased after ischemia. Inverse correlations between K(i) and tight junction proteins suggest that the decreases in tight junction proteins contribute to impaired blood-brain barrier function after ischemia. We conclude that impaired blood-brain barrier function is an important component of hypoxic-ischemic brain injury in the fetus, and that increases in quantitatively measured barrier permeability (K(i)) change as a function of the duration of reperfusion after ischemia. The largest increase in permeability occurs 4 h after ischemia and blood-brain barrier function improves early after injury because the blood-brain barrier is less permeable 24 and 48 than 4 h after ischemia. Changes in the tight junction molecular composition are associated with increases in blood-brain barrier permeability after ischemia. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Nash, Stephen G.; Polyak, R.; Sofer, Ariela
1994-01-01
When a classical barrier method is applied to the solution of a nonlinear programming problem with inequality constraints, the Hessian matrix of the barrier function becomes increasingly ill-conditioned as the solution is approached. As a result, it may be desirable to consider alternative numerical algorithms. We compare the performance of two methods motivated by barrier functions. The first is a stabilized form of the classical barrier method, where a numerically stable approximation to the Newton direction is used when the barrier parameter is small. The second is a modified barrier method where a barrier function is applied to a shifted form of the problem, and the resulting barrier terms are scaled by estimates of the optimal Lagrange multipliers. The condition number of the Hessian matrix of the resulting modified barrier function remains bounded as the solution to the constrained optimization problem is approached. Both of these techniques can be used in the context of a truncated-Newton method, and hence can be applied to large problems, as well as on parallel computers. In this paper, both techniques are applied to problems with bound constraints and we compare their practical behavior.
Erickson, Michelle A.
2018-01-01
Central nervous system (CNS) barriers predominantly mediate the immune-privileged status of the brain, and are also important regulators of neuroimmune communication. It is increasingly appreciated that communication between the brain and immune system contributes to physiologic processes, adaptive responses, and disease states. In this review, we discuss the highly specialized features of brain barriers that regulate neuroimmune communication in health and disease. In section I, we discuss the concept of immune privilege, provide working definitions of brain barriers, and outline the historical work that contributed to the understanding of CNS barrier functions. In section II, we discuss the unique anatomic, cellular, and molecular characteristics of the vascular blood–brain barrier (BBB), blood–cerebrospinal fluid barrier, and tanycytic barriers that confer their functions as neuroimmune interfaces. In section III, we consider BBB-mediated neuroimmune functions and interactions categorized as five neuroimmune axes: disruption, responses to immune stimuli, uptake and transport of immunoactive substances, immune cell trafficking, and secretions of immunoactive substances. In section IV, we discuss neuroimmune functions of CNS barriers in physiologic and disease states, as well as pharmacological interventions for CNS diseases. Throughout this review, we highlight many recent advances that have contributed to the modern understanding of CNS barriers and their interface functions. PMID:29496890
[Recent studies on corneal epithelial barrier function].
Liu, F F; Li, W; Liu, Z G; Chen, W S
2016-08-01
Corneal epithelium, the outermost layer of eyeball, is the main route for foreign materials to enter the eye. Under physiological conditions, the corneal epithelial superficial cells form a functionally selective permeability barrier. Integral corneal epithelial barrier function not only ensures the enrolling of nutrients which is required for regular metabolism, but also prevents foreign bodies, or disease-causing microorganism invasion. Recently, a large number of clinical and experimental studies have shown that abnormal corneal epithelial barrier function is the pathological basis for many ocular diseases. In addition, some study found that corneal epithelial barrier constitutes a variety of proteins involved in cell proliferation, differentiation, apoptosis, and a series of physiological and pathological processes. This paper reviewed recent studies specifically on the corneal epithelial barrier, highlights of its structure, function and influence factors. (Chin J Ophthalmol, 2016, 52: 631-635).
van den Bogaard, Ellen; Podolsky, Michael; Smits, Jos; Cui, Xiao; John, Christian; Gowda, Krishne; Desai, Dhimant; Amin, Shantu; Schalkwijk, Joost; Perdew, Gary H.
2015-01-01
Stimulation of the aryl hydrocarbon receptor (AHR) by xenobiotics is known to affect epidermal differentiation and skin barrier formation. The physiological role of endogenous AHR signaling in keratinocyte differentiation is not known. We used murine and human skin models to address the hypothesis that AHR activation is required for normal keratinocyte differentiation. Using transcriptome analysis of Ahr-/- and Ahr+/+ murine keratinocytes, we found significant enrichment of differentially expressed genes linked to epidermal differentiation. Primary Ahr-/- keratinocytes showed a significant reduction in terminal differentiation gene and protein expression, similar to Ahr+/+ keratinocytes treated with AHR antagonists GNF351 and CH223191, or the selective AHR modulator (SAhRM), SGA360. In vitro keratinocyte differentiation led to increased AHR levels and subsequent nuclear translocation, followed by induced CYP1A1 gene expression. Monolayer cultured primary human keratinocytes treated with AHR antagonists also showed an impaired terminal differentiation program. Inactivation of AHR activity during human skin equivalent development severely impaired epidermal stratification, terminal differentiation protein expression and stratum corneum formation. As disturbed epidermal differentiation is a main feature of many skin diseases, pharmacological agents targeting AHR signaling or future identification of endogenous keratinocyte-derived AHR ligands should be considered as potential new drugs in dermatology. PMID:25602157
Kubota, Koji; Shibata, Akira; Yamaguchi, Toshikazu
2016-04-30
In spite of numerous advantages, transdermal drug delivery systems are unfeasible for most drugs because of the barrier effect of the stratum corneum. Ionic liquids were recently used to enhance transdermal drug delivery by improving drug solubility. In the present study, safe and effective ionic liquids for transdermal absorption were obtained as salts generated by a neutralization reaction between highly biocompatible aliphatic carboxylic acids (octanoic acid or isostearic acid) and aliphatic amines (diisopropanolamine or triisopropanolamine) (Medrx Co., Ltd., 2009). The mechanism of skin permeability enhancement by ionic liquids was investigated by hydrophilic phenol red and hydrophobic tulobuterol. Further, the skin permeation enhancing effect was remarkably superior in the acid excess state rather than the neutralization state. Infrared absorption spectrum analysis confirmed that ionic liquids/aliphatic carboxylic acid/aliphatic amine are coexisting at all mixing states. In the acid excess state, ionic liquids interact with aliphatic carboxylic acids via hydrogen bonds. Thus, the skin permeation enhancing effect is not caused by the ionic liquid alone. The "liquid salt mixture," referred to as a complex of ingredients coexisting with ionic liquids, forms a molecular assembly incorporating hydrophilic drug. This molecular assembly was considered an effective and safety enhancer of transdermal drug permeation. Copyright © 2016. Published by Elsevier B.V.
Tsai, Meng-Tsan; Lee, I-Chi; Lee, Zhung-Fu; Liu, Hao-Li; Wang, Chun-Chieh; Choia, Yo-Chun; Chou, Hsin-Yi; Lee, Jiann-Der
2016-01-01
Transdermal drug-delivery systems (TDDS) have been a growing field in drug delivery because of their advantages over parenteral and oral administration. Recent studies illustrate that microneedles (MNs) can effectively penetrate through the stratum corneum barrier to facilitate drug delivery. However, the temporal effects on skin and drug diffusion are difficult to investigate in vivo. In this study, we used optical coherence tomography (OCT) to observe the process by which MNs dissolve and to investigate the temporal effects on mouse skin induced by MNs, including the morphological and vascular changes. Moreover, the recovery process of the skin was observed with OCT. Additionally, we proposed a method to observe drug delivery by estimation of cross-correlation relationship between sequential 2D OCT images obtained at the same location, reflecting the variation in the backscattered intensity due to the diffusion of the rhodamine molecules encapsulated in MNs. Our observations supported the hypothesis that the temporal effects on skin due to MNs, the dissolution of MNs, and the drug diffusion process can be quantitatively evaluated with OCT. The results showed that OCT can be a potential tool for in vivo monitoring of effects and outcomes when MNs are used as a TDDS. PMID:27231627
Hall, Jessica M. F.; Cruser, desAnges; Podawiltz, Alan; Mummert, Diana I.; Jones, Harlan; Mummert, Mark E.
2012-01-01
Psychological stress, an evolutionary adaptation to the fight-or-flight response, triggers a number of physiological responses that can be deleterious under some circumstances. Stress signals activate the hypothalamus-pituitary-adrenal (HPA) axis and the sympathetic nervous system. Elements derived from those systems (e.g., cortisol, catecholamines and neuropeptides) can impact the immune system and possible disease states. Skin provides a first line of defense against many environmental insults. A number of investigations have indicated that the skin is especially sensitive to psychological stress, and experimental evidence shows that the cutaneous innate and adaptive immune systems are affected by stressors. For example, psychological stress has been shown to reduce recovery time of the stratum corneum barrier after its removal (innate immunity) and alters antigen presentation by epidermal Langerhans cells (adaptive immunity). Moreover, psychological stress may trigger or exacerbate immune mediated dermatological disorders. Understanding how the activity of the psyche-nervous -immune system axis impinges on skin diseases may facilitate coordinated treatment strategies between dermatologists and psychiatrists. Herein, we will review the roles of the HPA axis and the sympathetic nervous system on the cutaneous immune response. We will selectively highlight how the interplay between psychological stress and the immune system affects atopic dermatitis and psoriasis. PMID:22969795
Sarheed, Omar; Abdul Rasool, Bazigha K
2011-01-01
It has now been known for over a decade that low frequency ultrasound can be used to effectively enhance transdermal drug penetration - an approach termed sonophoresis. Mechanistically, acoustic cavitation results in the creation of defects in the stratum corneum that allow accelerated absorption of topically applied molecules. The aim of this study was to develop an optimised sonophoresis protocol for studying transdermal drug delivery in vitro. To this end, caffeine was selected as a model hydrophilic drug while porcine skin was used as a model barrier. Following acoustic validation, 20kHz ultrasound was applied for different durations (range: 5 s to 10 min) using three different modes (10%, 33% or 100% duty cycles) and two distinct sonication procedures (either before or concurrent with drug deposition). Each ultrasonic protocol was assessed in terms of its heating and caffeine flux-enhancing effects. It was found that the best regimen was a concurrent 5 min, pulsed (10% duty cycle) beam of SATA intensity 0.37 W/cm2. A key insight was that in the case of pulsed beams of 10% duty cycle, sonication concurrent with drug deposition was superior to sonication prior to drug deposition and potential mechanisms for this are discussed. PMID:21629673
Impacts of chemical enhancers on skin permeation and deposition of terbinafine.
Erdal, Meryem Sedef; Peköz, Ayca Yıldız; Aksu, Buket; Araman, Ahmet
2014-08-01
The addition of chemical enhancers into formulations is the most commonly employed approach to overcome the skin barrier. The objective of this work was to evaluate the effect of vehicle and chemical enhancers on the skin permeation and accumulation of terbinafine, an allylamine antifungal drug. Terbinafine (1% w/w) was formulated as a Carbopol 934 P gel formulation in presence and absence of three chemical enhancers, nerolidol, dl-limonene and urea. Terbinafine distribution and deposition in stratum corneum (SC) and skin following 8-h ex vivo permeation study was determined using a sequential tape stripping procedure. The conformational order of SC lipids was investigated by ATR-FTIR spectroscopy. Nerolidol containing gel formulation produced significantly higher enhancement in terbinafine permeation through skin and its skin accumulation was increased. ATR-FTIR results showed enhancer induced lipid bilayer disruption in SC. Urea resulted in enhanced permeation of terbinafine across the skin and a balanced distribution to the SC was achieved. But, dl-limonene could not minimize the accumulation of terbinafine in the upper SC. Nerolidol dramatically improved the skin permeation and deposition of terbinafine in the skin that might help to optimize targeting of the drug to the epidermal sites as required for both of superficial and deep cutaneous fungal infections.
Tan, Grace; Xu, Peng; Lawson, Louise B.; He, Jibao; Freytag, Lucia C.; Clements, John D.; John, Vijay T.
2010-01-01
Although hydration is long known to improve the permeability of skin, penetration of macromolecules such as proteins is limited and the understanding of enhanced transport is based on empirical observations. This study uses high-resolution cryo-scanning electron microscopy to visualize microstructural changes in the stratum corneum (SC) and enable a mechanistic interpretation of biomacromolecule penetration through highly hydrated porcine skin. Swollen corneocytes, separation of lipid bilayers in the SC intercellular space to form cisternae, and networks of spherical particulates are observed in porcine skin tissue hydrated for a period of 4–10 h. This is explained through compaction of skin lipids when hydrated, a reversal in the conformational transition from unilamellar liposomes in lamellar granules to lamellae between keratinocytes when the SC skin barrier is initially established. Confocal microscopy studies show distinct enhancement in penetration of fluorescein isothiocyanate-bovine serum albumin (FITC-BSA) through skin hydrated for 4–10 h, and limited penetration of FITC-BSA once skin is restored to its natively hydrated structure when exposed to the environment for 2–3 h. These results demonstrate the effectiveness of a 4–10 h hydration period to enhance transcutaneous penetration of large biomacromolecules without permanently damaging the skin. PMID:19582754
Time-resolved fluorescence microscopy (FLIM) as an analytical tool in skin nanomedicine.
Alexiev, Ulrike; Volz, Pierre; Boreham, Alexander; Brodwolf, Robert
2017-07-01
The emerging field of nanomedicine provides new approaches for the diagnosis and treatment of diseases, for symptom relief, and for monitoring of disease progression. Topical application of drug-loaded nanoparticles for the treatment of skin disorders is a promising strategy to overcome the stratum corneum, the upper layer of the skin, which represents an effective physical and biochemical barrier. The understanding of drug penetration into skin and enhanced penetration into skin facilitated by nanocarriers requires analytical tools that ideally allow to visualize the skin, its morphology, the drug carriers, drugs, their transport across the skin and possible interactions, as well as effects of the nanocarriers within the different skin layers. Here, we review some recent developments in the field of fluorescence microscopy, namely Fluorescence Lifetime Imaging Microscopy (FLIM)), for improved characterization of nanocarriers, their interactions and penetration into skin. In particular, FLIM allows for the discrimination of target molecules, e.g. fluorescently tagged nanocarriers, against the autofluorescent tissue background and, due to the environmental sensitivity of the fluorescence lifetime, also offers insights into the local environment of the nanoparticle and its interactions with other biomolecules. Thus, FLIM shows the potential to overcome several limits of intensity based microscopy. Copyright © 2017 Elsevier B.V. All rights reserved.
Ibuprofen transport into and through skin from topical formulations: in vitro-in vivo comparison.
Herkenne, Christophe; Naik, Aarti; Kalia, Yogeshvar N; Hadgraft, Jonathan; Guy, Richard H
2007-01-01
The goal was to compare ibuprofen transport into and through skin in vivo in man and in vitro (across silicone membranes and freshly excised pig skin) from four marketed formulations. Ibuprofen gels were administered in vivo for 30 minutes. The stratum corneum (SC) at the application site was then tape-stripped, quantified gravimetrically, and extracted for drug analysis. Together with concomitant transepidermal water loss measurements, SC drug concentration-depth profiles were reproducibly determined and fitted mathematically to obtain a partition coefficient, a first-order rate constant related to ibuprofen diffusivity, and the total drug amount in the SC at the end of the application. All derived parameters were consistent across formulations. Ibuprofen permeation data through both silicone membrane and pig ear skin were also fitted to yield partitioning and diffusion parameters. The former revealed that ibuprofen partitioned differently from the gels into this model barrier. Across pig skin, however, better correlation with in vivo results was found. The dermatopharmacokinetic approach, using SC tape-stripping, offers a valid method to assess equivalency between topical drug formulations. In vitro experiments must be extrapolated cautiously to the clinic, especially when complex interactions between real formulations, which deliver both drug and excipients, and the skin occur.
Birchall, James; Coulman, Sion; Anstey, Alexander; Gateley, Chris; Sweetland, Helen; Gershonowitz, Amikam; Neville, Lewis; Levin, Galit
2006-04-07
The skin is a valuable organ for the development and exploitation of gene medicines. Delivering genes to skin is restricted however by the physico-chemical properties of DNA and the stratum corneum (SC) barrier. In this study, we demonstrate the utility of an innovative technology that creates transient microconduits in human skin, allowing DNA delivery and resultant gene expression within the epidermis and dermis layers. The radio frequency (RF)-generated microchannels were of sufficient morphology and depth to permit the epidermal delivery of 100 nm diameter nanoparticles. Model fluorescent nanoparticles were used to confirm the capacity of the channels for augmenting diffusion of macromolecules through the SC. An ex vivo human organ culture model was used to establish the gene expression efficiency of a beta-galactosidase reporter plasmid DNA applied to ViaDerm treated skin. Skin treated with ViaDerm using 50 microm electrode arrays promoted intense levels of gene expression in the viable epidermis. The intensity and extent of gene expression was superior when ViaDerm was used following a prior surface application of the DNA formulation. In conclusion, the RF-microchannel generator (ViaDerm) creates microchannels amenable for delivery of nanoparticles and gene therapy vectors to the viable region of skin.
Microneedle-mediated vaccine delivery: Harnessing cutaneous immunobiology to improve efficacy
Al-Zahrani, S; Zaric, M; McCrudden, C; Scott, C; Kissenpfennig, A; Donnelly, Ryan F.
2014-01-01
Introduction We describe the use of microneedle arrays for delivery to targets within the skin itself. Breaching the skin’s stratum corneum barrier raises the possibility of administration of vaccines, gene vectors, antibodies and even nanoparticles, all of which have at least their initial effect on populations of skin cells. Areas Covered Intradermal vaccine delivery, in particular, holds enormous potential for improved therapeutic outcomes for patients, particularly those in the developing world. Various vaccine-delivery strategies have been employed and here we discuss each one in turn. We also describe the importance of cutaneous immunobiology on the effect produced by microneedle-mediated intradermal vaccination. Expert Opinion Microneedle-mediated vaccine holds enormous potential for patient benefit. In order for microneedle vaccine strategies to fulfil their potential, however, the proportion of an immune response that is due to local action of delivered vaccines on skin antigen presenting cells and what is due to a systemic effect from vaccine reaching the systemic circulation must be determined. Moreover, industry will need to invest significantly in new equipment and instrumentation in order to mass produce microneedle vaccines consistently. Finally, microneedles will need to demonstrate consistent dose delivery across patient groups and match this to reliable immune responses before they will replace tried- and-tested needle-and-syringe based-approaches. PMID:22475249
Models of wound healing: an emphasis on clinical studies.
Wilhelm, K-P; Wilhelm, D; Bielfeldt, S
2017-02-01
The healing of wounds has always provided challenges for the medical community whether chronic or acute. Understanding the processes which enable wounds to heal is primarily carried out by the use of models, in vitro, animal and human. It is generally accepted that the use of human models offers the best opportunity to understand the factors that influence wound healing as well as to evaluate efficacy of treatments applied to wounds. The objective of this article is to provide an overview of the different methodologies that are currently used to experimentally induce wounds of various depths in human volunteers and examines the information that may be gained from them. There is a number of human volunteer healing models available varying in their invasiveness to reflect the different possible depth levels of wounds. Currently available wound healing models include sequential tape stripping, suction blister, abrasion, laser, dermatome, and biopsy techniques. The various techniques can be utilized to induce wounds of variable depth, from removing solely the stratum corneum barrier, the epidermis to even split-thickness or full thickness wounds. Depending on the study objective, a number of models exist to study wound healing in humans. These models provide efficient and reliable results to evaluate treatment modalities. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Analysis of in vivo penetration of textile dyes causing allergic reactions
NASA Astrophysics Data System (ADS)
Lademann, J.; Patzelt, A.; Worm, M.; Richter, H.; Sterry, W.; Meinke, M.
2009-10-01
Contact allergies to textile dyes are common and can cause severe eczema. In the present study, we investigated the penetration of a fluorescent textile dye, dissolved from a black pullover, into the skin of one volunteer during perspiration and nonperspiration. Previously, wearing this pullover had induced a severe contact dermatitis in an 82-year old woman, who was not aware of her sensitization to textile dyes. The investigations were carried out by in vivo laser scanning microscopy. It could be demonstrated that the dye was eluted from the textile material by sweat. Afterwards, the dye penetrated into the stratum corneum and into the hair follicles. Inside the hair follicles, the fluorescent signal was still detectable after 24 h, whereas it was not verifiable anymore in the stratum corneum, Laser scanning microscopy represents an efficient tool for in vivo investigation of the penetration and storage of topically applied substances and allergens into the human skin and reveals useful hints for the development and optimization of protection strategies.
Ku, K-J; Hong, Y-H; Song, K B
2008-04-01
We prepared an edible Gelidium corneum (GC) film containing catechin and examined the microbial growth and quality change during storage of sausages packaged with the film. Incorporation of catechin in the film improved film tensile strength and water vapor permeability. The film's antimicrobial activity against Eschericha coli O157:H7 increased with increasing catechin concentrations and resulted in a decrease in the populations of the bacteria by 1.93 log CFU/g at 150 mg of catechin. For the sausage samples inoculated with E. coli O157:H7 and Listeria monocytogenes, the samples packed with the GC film showed a decrease in populations of E. coli O157:H7 and L. monocytogenes by 1.81 and 1.44 log CFU/g, respectively, compared to the control after 5 d of storage. In addition, the sausage samples packed with the GC film had lower degrees of lipid oxidation. The results suggest that sausages can be packed with GC film to extend shelf life.
Haine, Aung Thu; Koga, Yuki; Hashimoto, Yuta; Higashi, Taishi; Motoyama, Keiichi; Arima, Hidetoshi; Niidome, Takuro
2017-10-01
Transdermal protein delivery is a useful and attractive method for protein therapy and dermal vaccination. However, this delivery method is restricted by the low permeability of the stratum corneum. The purpose of this study was to develop a transdermal delivery system for enhancement of protein permeability into the skin. First, we prepared a transparent gel patch made of polysaccharides with gold nanorods on the gel surface and fluorescein isothiocyanate-modified ovalbumin (FITC-OVA) inside. Next, the gel patch was placed on mouse skin to allow contact with the coated gold nanorods, and irradiated by a continuous-wave laser. The laser irradiation heated the gold nanorods and the skin temperature increased to 43°C, resulting in enhanced translocation of FITC-OVA into the skin. These results confirmed the capability of the transdermal protein delivery system to perforate the stratum corneum and thus facilitate the passage of proteins across the skin. Copyright © 2017 Elsevier B.V. All rights reserved.
In vivo confocal Raman spectroscopy study of the vitamin A derivative perfusion through human skin
NASA Astrophysics Data System (ADS)
dos Santos, Laurita; Téllez Soto, Claudio A.; Favero, Priscila P.; Martin, Airton A.
2016-03-01
In vivo confocal Raman spectroscopy is a powerful non-invasive technique able to analyse the skin constituents. This technique was applied to transdermal perfusion studies of the vitamin A derivative in human skin. The composition of the stratum corneum (lipid bilayer) is decisive for the affinity and transport of the vitamin through skin. The vitamin A is significantly absorbed by human skin when applied with water in oil emulsion or hydro-alcoholic gel. The purpose of this study is to elucidate the behaviour of vitamin A derivative into human skin without the presence of enhancers. The results showed that the intensity band of the derivative (around 1600 cm-1), which represents the -C=O vibrational mode, was detected in different stratum corneum depths (up to 20 μm). This Raman peak of vitamin A derivative has non-coincident band with the Raman spectra of the skin epidermis, demonstrating that compound penetrated in forearm skin.
Transdermal Delivery of siRNA through Microneedle Array
NASA Astrophysics Data System (ADS)
Deng, Yan; Chen, Jiao; Zhao, Yi; Yan, Xiaohui; Zhang, Li; Choy, Kwongwai; Hu, Jun; Sant, Himanshu J.; Gale, Bruce K.; Tang, Tao
2016-02-01
Successful development of siRNA therapies has significant potential for the treatment of skin conditions (alopecia, allergic skin diseases, hyperpigmentation, psoriasis, skin cancer, pachyonychia congenital) caused by aberrant gene expression. Although hypodermic needles can be used to effectively deliver siRNA through the stratum corneum, the major challenge is that this approach is painful and the effects are restricted to the injection site. Microneedle arrays may represent a better way to deliver siRNAs across the stratum corneum. In this study, we evaluated for the first time the ability of the solid silicon microneedle array for punching holes to deliver cholesterol-modified housekeeping gene (Gapdh) siRNA to the mouse ear skin. Treating the ear with microneedles showed permeation of siRNA in the skin and could reduce Gapdh gene expression up to 66% in the skin without accumulation in the major organs. The results showed that microneedle arrays could effectively deliver siRNA to relevant regions of the skin noninvasively.
Aconite poisoning following the percutaneous absorption of Aconitum alkaloids.
Chan, Thomas Y K
2012-11-30
In vitro experiment using the modified Franz-type diffusion cell has demonstrated that the human skin is permeable to aconitine and mesaconitine. To characterise the risk of systemic toxicity following the topical applications of aconite tincture and raw aconite roots, relevant reports of percutaneous absorption of Aconitum alkaloids and aconite poisoning are reviewed. Published reports indicate that aconite tincture and raw aconite roots can be absorbed through the skin into systemic circulation to cause fatal and non-fatal aconite poisoning. Both aconite tincture and raw aconite roots contain very high concentrations of Aconitum alkaloids, which allow penetration of the stratum corneum along the diffusion gradient. The risk of systemic toxicity is even higher if Aconitum alkaloids are held in occlusive contact with the skin and the epidermis (stratum corneum) is already damaged. The public should be warned of the danger in using these topical aconite preparations and the risk of systemic toxicity following percutaneous absorption of Aconitum alkaloids. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Simal-Gándara, J; Sarria-Vidal, M; Koorevaar, A; Rijk, R
2000-08-01
The advent of the functional barrier concept in food packaging has brought with it a requirement for fast tests of permeation through potential barrier materials. In such tests it would be convenient for both foodstuffs and materials below the functional barrier (sub-barrier materials) to be represented by standard simulants. By means of inverse gas chromatography, liquid paraffin spiked with appropriate permeants was considered as a potential simulant of sub-barrier materials based on polypropylene (PP) or similar polyolefins. Experiments were performed to characterize the kinetics of the permeation of low molecular weight model permeants (octene, toluene and isopropanol) from liquid paraffin, through a surrogate potential functional barrier (25 microns-thick oriented PP) into the food stimulants olive oil and 3% (w/v) acetic acid. These permeation results were interpreted in terms of three permeation kinetic models regarding the solubility of a particular model permeant in the post-barrier medium (i.e. the food simulant). The results obtained justify the development and evaluation of liquid sub-barrier simulants that would allow flexible yet rigorous testing of new laminated multilayer packaging materials.
A Lagrange multiplier and Hopfield-type barrier function method for the traveling salesman problem.
Dang, Chuangyin; Xu, Lei
2002-02-01
A Lagrange multiplier and Hopfield-type barrier function method is proposed for approximating a solution of the traveling salesman problem. The method is derived from applications of Lagrange multipliers and a Hopfield-type barrier function and attempts to produce a solution of high quality by generating a minimum point of a barrier problem for a sequence of descending values of the barrier parameter. For any given value of the barrier parameter, the method searches for a minimum point of the barrier problem in a feasible descent direction, which has a desired property that lower and upper bounds on variables are always satisfied automatically if the step length is a number between zero and one. At each iteration, the feasible descent direction is found by updating Lagrange multipliers with a globally convergent iterative procedure. For any given value of the barrier parameter, the method converges to a stationary point of the barrier problem without any condition on the objective function. Theoretical and numerical results show that the method seems more effective and efficient than the softassign algorithm.
Dang, C; Xu, L
2001-03-01
In this paper a globally convergent Lagrange and barrier function iterative algorithm is proposed for approximating a solution of the traveling salesman problem. The algorithm employs an entropy-type barrier function to deal with nonnegativity constraints and Lagrange multipliers to handle linear equality constraints, and attempts to produce a solution of high quality by generating a minimum point of a barrier problem for a sequence of descending values of the barrier parameter. For any given value of the barrier parameter, the algorithm searches for a minimum point of the barrier problem in a feasible descent direction, which has a desired property that the nonnegativity constraints are always satisfied automatically if the step length is a number between zero and one. At each iteration the feasible descent direction is found by updating Lagrange multipliers with a globally convergent iterative procedure. For any given value of the barrier parameter, the algorithm converges to a stationary point of the barrier problem without any condition on the objective function. Theoretical and numerical results show that the algorithm seems more effective and efficient than the softassign algorithm.
Standards for the Protection of Skin Barrier Function.
Giménez-Arnau, Ana
2016-01-01
The skin is a vital organ, and through our skin we are in close contact with the entire environment. If we lose our skin we lose our life. The barrier function of the skin is mainly driven by the sophisticated epidermis in close relationship with the dermis. The epidermal epithelium is a mechanically, chemically, biologically and immunologically active barrier submitted to continuous turnover. The barrier function of the skin needs to be protected and restored. Its own physiology allows its recovery, but many times this is not sufficient. This chapter is focused on the standards to restore, treat and prevent barrier function disruption. These standards were developed from a scientific, academic and clinical point of view. There is a lack of standardized administrative recommendations. Still, there is a walk to do that will help to reduce the social and economic burden of diseases characterized by an abnormal skin barrier function. © 2016 S. Karger AG, Basel.
Regulation of Endothelial Barrier Function by Cyclic Nucleotides: The Role of Phosphodiesterases
Surapisitchat, James
2014-01-01
The endothelium plays an important role in maintaining normal vascular function. Endothelial barrier dysfunction leading to increased permeability and vascular leakage is associated with several pathological conditions such as edema and sepsis. Thus, the development of drugs that improve endothelial barrier function is an active area of research. In this chapter, the current knowledge concerning the signaling pathways regulating endothelial barrier function is discussed with a focus on cyclic nucleotide second messengers (cAMP and cGMP) and cyclic nucleotide phosphodiesterases (PDEs). Both cAMP and cGMP have been shown to have differential effects on endothelial permeability in part due to the various effector molecules, crosstalk, and compartmentalization of cyclic nucleotide signaling. PDEs, by controlling the amplitude, duration, and localization of cyclic nucleotides, have been shown to play a critical role in regulating endothelial barrier function. Thus, PDEs are attractive drug targets for the treatment of disease states involving endothelial barrier dysfunction. PMID:21695641
Regulation of endothelial barrier function by cyclic nucleotides: the role of phosphodiesterases.
Surapisitchat, James; Beavo, Joseph A
2011-01-01
The endothelium plays an important role in maintaining normal vascular function. Endothelial barrier dysfunction leading to increased permeability and vascular leakage is associated with several pathological conditions such as edema and sepsis. Thus, the development of drugs that improve endothelial barrier function is an active area of research. In this chapter, the current knowledge concerning the signaling pathways regulating endothelial barrier function is discussed with a focus on cyclic nucleotide second messengers (cAMP and cGMP) and cyclic nucleotide phosphodiesterases (PDEs). Both cAMP and cGMP have been shown to have differential effects on endothelial permeability in part due to the various effector molecules, crosstalk, and compartmentalization of cyclic nucleotide signaling. PDEs, by controlling the amplitude, duration, and localization of cyclic nucleotides, have been shown to play a critical role in regulating endothelial barrier function. Thus, PDEs are attractive drug targets for the treatment of disease states involving endothelial barrier dysfunction.
Shin, Hee Soon; Jung, Sun Young; Back, Su Yeon; Do, Jeong-Ryong; Shon, Dong-Hwa
2015-01-01
Fructus Arctii is used as a traditional herbal medicine to treat inflammatory diseases in oriental countries. This study aimed to investigate effect of F. Arctii extract on intestinal barrier function in human intestinal epithelial Caco-2 cells and to reveal the active component of F. Arctii. We measured transepithelial electrical resistance (TEER) value (as an index of barrier function) and ovalbumin (OVA) permeation (as an index of permeability) to observe the changes of intestinal barrier function. The treatment of F. Arctii increased TEER value and decreased OVA influx on Caco-2 cell monolayers. Furthermore, we found that arctigenin as an active component of F. Arctii increased TEER value and reduced permeability of OVA from apical to the basolateral side but not arctiin. In the present study, we revealed that F. Arctii could enhance intestinal barrier function, and its active component was an arctigenin on the functionality. We expect that the arctigenin from F. Arctii could contribute to prevention of inflammatory, allergic, and infectious diseases by reinforcing intestinal barrier function. PMID:26550018
The impact of aging on epithelial barriers.
Parrish, Alan R
2017-10-02
The epithelium has many critical roles in homeostasis, including an essential responsibility in establishing tissue barriers. In addition to the fundamental role in separating internal from external environment, epithelial barriers maintain nutrient, fluid, electrolyte and metabolic waste balance in multiple organs. While, by definition, barrier function is conserved, the structure of the epithelium varies across organs. For example, the skin barrier is a squamous layer of cells with distinct structural features, while the lung barrier is composed of a very thin single cell to minimize diffusion space. With the increased focus on age-dependent alterations in organ structure and function, there is an emerging interest in the impact of age on epithelial barriers. This review will focus on the impact of aging on the epithelial barrier of several organs, including the skin, lung, gastrointestinal tract and the kidney, at a structural and functional level.
Homoclinic orbits and critical points of barrier functions
NASA Astrophysics Data System (ADS)
Cannarsa, Piermarco; Cheng, Wei
2015-06-01
We interpret the close link between the critical points of Mather's barrier functions and minimal homoclinic orbits with respect to the Aubry sets on {{T}}n . We also prove a critical point theorem for barrier functions and the existence of such homoclinic orbits on {{T}}2 as an application.
Chen, Tingting; Kim, Choon Young; Kaur, Amandeep; Lamothe, Lisa; Shaikh, Maliha; Keshavarzian, Ali; Hamaker, Bruce R
2017-03-22
Impaired gut barrier function plays an important role in the development of many diseases such as obesity, inflammatory bowel disease, and in HIV infection. Dietary fibres have been shown to improve intestinal barrier function through their fermentation products, short chain fatty acids (SCFAs), and the effects of individual SCFAs have been studied. Here, different SCFA mixtures representing possible compositions from fibre fermentation products were studied for protective and reparative effects on intestinal barrier function. The effect of fermentation products from four dietary fibres, i.e. resistant starch, fructooligosaccharides, and sorghum and corn arabinoxylan (varying in their branched structure) on barrier function was positively correlated with their SCFA concentration. Pure SCFA mixtures of various concentrations and compositions were tested using a Caco-2 cell model. SCFAs at a moderate concentration (40-80 mM) improved barrier function without causing damage to the monolayer. In a 40 mM SCFA mixture, the butyrate proportion at 20% and 50% showed both a protective and a reparative effect on the monolayer to disrupting agents (LPS/TNF-α) applied simultaneously or prior to the SCFA mixtures. Relating this result to dietary fibre selection, slow fermenting fibres that deliver appropriate concentrations of SCFAs to the epithelium with a high proportion of butyrate may improve barrier function.
Szél, E; Polyánka, H; Szabó, K; Hartmann, P; Degovics, D; Balázs, B; Németh, I B; Korponyai, C; Csányi, E; Kaszaki, J; Dikstein, S; Nagy, K; Kemény, L; Erős, G
2015-12-01
Glycerol is known to possess anti-irritant and hydrating properties and previous studies suggested that xylitol may also have similar effects. Our aim was to study whether different concentrations of these polyols restore skin barrier function and soothe inflammation in sodium lauryl sulphate (SLS)-induced acute irritation. The experiments were performed on male SKH-1 hairless mice. The skin of the dorsal region was exposed to SLS (5%) for 3 h alone or together with 5% or 10% of glycerol respectively. Further two groups received xylitol solutions (8.26% and 16.52% respectively) using the same osmolarities, which were equivalent to those of the glycerol treatments. The control group was treated with purified water. Transepidermal water loss (TEWL) and skin hydration were determined. Microcirculatory parameters of inflammation were observed by means of intravital videomicroscopy (IVM). Furthermore, accumulation of neutrophil granulocytes and lymphocytes, the expression of inflammatory cytokines and SLS penetration were assessed, as well. Treatment with the 10% of glycerol and both concentrations of xylitol inhibited the SLS-induced elevation of TEWL and moderated the irritant-induced increase in dermal blood flow and in the number of leucocyte-endothelial interactions. All concentrations of the applied polyols improved hydration and prevented the accumulation of lymphocytes near the treatment site. At the mRNA level, neither glycerol nor xylitol influenced the expression of interleukin-1 alpha. However, expression of interleukin-1 beta was significantly decreased by the 10% glycerol treatment, while expression of tumour necrosis factor-alpha decreased upon the same treatment, as well as in response to xylitol. Higher polyol treatments decreased the SLS penetration to the deeper layers of the stratum corneum. Both of the analysed polyols exert considerable anti-irritant and anti-inflammatory properties, but the effective concentration of xylitol is lower than that of glycerol. © 2015 European Academy of Dermatology and Venereology.
Evangelista, Mara Therese Padilla; Abad-Casintahan, Flordeliz; Lopez-Villafuerte, Lillian
2014-01-01
Atopic dermatitis (AD) is a chronic skin disease characterized by defects in the epidermal barrier function and cutaneous inflammation, in which transepidermal water loss (TEWL) is increased and the ability of the stratum corneum to hold water is impaired, causing decreased skin capacitance and hydration. This study investigated the effects of topical virgin coconut oil (VCO) and mineral oil, respectively, on SCORAD (SCORing of Atopic Dermatitis) index values, TEWL, and skin capacitance in pediatric patients with mild to moderate AD, using a randomized controlled trial design in which participants and investigators were blinded to the treatments allocated. Patients were evaluated at baseline, and at 2, 4, and 8 weeks. A total of 117 patients were included in the analysis. Mean SCORAD indices decreased from baseline by 68.23% in the VCO group and by 38.13% in the mineral oil group (P < 0.001). In the VCO group, 47% (28/59) of patients achieved moderate improvement and 46% (27/59) showed an excellent response. In the mineral oil group, 34% (20/58) of patients showed moderate improvement and 19% (11/58) achieved excellent improvement. The VCO group achieved a post-treatment mean TEWL of 7.09 from a baseline mean of 26.68, whereas the mineral oil group demonstrated baseline and post-treatment TEWL values of 24.12 and 13.55, respectively. In the VCO group, post-treatment skin capacitance rose to 42.3 from a baseline mean of 32.0, whereas that in the mineral oil group increased to 37.49 from a baseline mean of 31.31. Thus, among pediatric patients with mild to moderate AD, topical application of VCO for eight weeks was superior to that of mineral oil based on clinical (SCORAD) and instrumental (TEWL, skin capacitance) assessments. © 2013 The International Society of Dermatology.
Jeon, Hyerin; Kim, Dong Hye; Nho, Youn-Hwa; Park, Ji-Eun; Kim, Su-Nam; Choi, Eung Ho
2016-01-01
Activation of peroxisome proliferator-activated receptors (PPAR) α/γ is known to inhibit the increases in matrix metalloproteinase (MMP) and reactive oxygen species (ROS) induced by ultraviolet light (UV). Extracts of natural herbs, such as Kochia scoparia and Rosa multiflora, have a PPAR α/γ dual agonistic effect. Therefore, we investigated whether and how they have an antiaging effect on photoaging skin. Eighteen-week-old hairless mice were irradiated with UVA 14 J/cm2 and UVB 40 mJ/cm2 three times a week for 8 weeks. A mixture of extracts of Kochia scoparia and Rosa multiflora (KR) was topically applied on the dorsal skin of photoaging mice twice a day for 8 weeks. Tesaglitazar, a known PPAR α/γ agonist, and vehicle (propylene glycol:ethanol = 7:3, v/v) were applied as positive and negative controls, respectively. Dermal effects (including dermal thickness, collagen density, dermal expression of procollagen 1 and collagenase 13) and epidermal effects (including skin barrier function, epidermal proliferation, epidermal differentiation, and epidermal cytokines) were measured and compared. In photoaging murine skin, KR resulted in a significant recovery of dermal thickness as well as dermal fibroblasts, although it did not change dermal collagen density. KR increased the expression of dermal transforming growth factor (TGF)-β. The dermal effects of KR were explained by an increase in procollagen 1 expression, induced by TGF-β, and a decrease in MMP-13 expression. KR did not affect basal transepidermal water loss (TEWL) or stratum corneum (SC) integrity, but did decrease SC hydration. It also did not affect epidermal proliferation or epidermal differentiation. KR decreased the expression of epidermal interleukin (IL)-1α. Collectively, KR showed possible utility as a therapeutic agent for photoaging skin, with few epidermal side effects such as epidermal hyperplasia or poor differentiation. PMID:27854351
Jeon, Hyerin; Kim, Dong Hye; Nho, Youn-Hwa; Park, Ji-Eun; Kim, Su-Nam; Choi, Eung Ho
2016-11-16
Activation of peroxisome proliferator-activated receptors (PPAR) α/γ is known to inhibit the increases in matrix metalloproteinase (MMP) and reactive oxygen species (ROS) induced by ultraviolet light (UV). Extracts of natural herbs, such as Kochia scoparia and Rosa multiflora , have a PPAR α/γ dual agonistic effect. Therefore, we investigated whether and how they have an antiaging effect on photoaging skin. Eighteen-week-old hairless mice were irradiated with UVA 14 J/cm² and UVB 40 mJ/cm² three times a week for 8 weeks. A mixture of extracts of Kochia scoparia and Rosa multiflora (KR) was topically applied on the dorsal skin of photoaging mice twice a day for 8 weeks. Tesaglitazar, a known PPAR α/γ agonist, and vehicle (propylene glycol:ethanol = 7:3, v / v ) were applied as positive and negative controls, respectively. Dermal effects (including dermal thickness, collagen density, dermal expression of procollagen 1 and collagenase 13) and epidermal effects (including skin barrier function, epidermal proliferation, epidermal differentiation, and epidermal cytokines) were measured and compared. In photoaging murine skin, KR resulted in a significant recovery of dermal thickness as well as dermal fibroblasts, although it did not change dermal collagen density. KR increased the expression of dermal transforming growth factor (TGF)-β. The dermal effects of KR were explained by an increase in procollagen 1 expression, induced by TGF-β, and a decrease in MMP-13 expression. KR did not affect basal transepidermal water loss (TEWL) or stratum corneum (SC) integrity, but did decrease SC hydration. It also did not affect epidermal proliferation or epidermal differentiation. KR decreased the expression of epidermal interleukin (IL)-1α. Collectively, KR showed possible utility as a therapeutic agent for photoaging skin, with few epidermal side effects such as epidermal hyperplasia or poor differentiation.
Symmetry analysis of a model for the exercise of a barrier option
NASA Astrophysics Data System (ADS)
O'Hara, J. G.; Sophocleous, C.; Leach, P. G. L.
2013-09-01
A barrier option takes into account the possibility of an unacceptable change in the price of the underlying stock. Such a change could carry considerable financial loss. We examine one model based upon the Black-Scholes-Merton Equation and determine the functional forms of the barrier function and rebate function which are consistent with a solution of the underlying evolution partial differential equation using the Lie Theory of Extended Groups. The solution is consistent with the possibility of no rebate and the barrier function is very similar to one adopted on an heuristic basis.
Schottky barrier amorphous silicon solar cell with thin doped region adjacent metal Schottky barrier
Carlson, David E.; Wronski, Christopher R.
1979-01-01
A Schottky barrier amorphous silicon solar cell incorporating a thin highly doped p-type region of hydrogenated amorphous silicon disposed between a Schottky barrier high work function metal and the intrinsic region of hydrogenated amorphous silicon wherein said high work function metal and said thin highly doped p-type region forms a surface barrier junction with the intrinsic amorphous silicon layer. The thickness and concentration of p-type dopants in said p-type region are selected so that said p-type region is fully ionized by the Schottky barrier high work function metal. The thin highly doped p-type region has been found to increase the open circuit voltage and current of the photovoltaic device.
Flexible barrier film, method of forming same, and organic electronic device including same
Blizzard, John; Tonge, James Steven; Weidner, William Kenneth
2013-03-26
A flexible barrier film has a thickness of from greater than zero to less than 5,000 nanometers and a water vapor transmission rate of no more than 1.times.10.sup.-2 g/m.sup.2/day at 22.degree. C. and 47% relative humidity. The flexible barrier film is formed from a composition, which comprises a multi-functional acrylate. The composition further comprises the reaction product of an alkoxy-functional organometallic compound and an alkoxy-functional organosilicon compound. A method of forming the flexible barrier film includes the steps of disposing the composition on a substrate and curing the composition to form the flexible barrier film. The flexible barrier film may be utilized in organic electronic devices.
Amone-P'Olak, Kennedy; Jones, Peter; Meiser-Stedman, Richard; Abbott, Rosemary; Ayella-Ataro, Paul Stephen; Amone, Jackson; Ovuga, Emilio
2014-12-01
Exposure to war is associated with considerable risks for long-term mental health problems (MHP) and poor functioning. Yet little is known about functioning and mental health service (MHS) use among former child soldiers (FCS). We assessed whether different categories of war experiences predict functioning and perceived need for, sources of and barriers to MHS among FCS. Data were drawn from an on-going War-affected Youths (WAYS) cohort study of FCS in Uganda. Participants completed questionnaires about war experiences, functioning and perceived need for, sources of and barriers to MHS. Regression analyses and parametric tests were used to assess between-group differences. Deaths, material losses, threat to loved ones and sexual abuse significantly predicted poor functioning. FCS who received MHS function better than those who did not. Females reported more emotional and behavioural problems and needed MHS more than males. FCS who function poorly indicated more barriers to MHS than those who function well. Stigma, fear of family break-up and lack of health workers were identified as barriers to MHS. Various war experiences affect functioning differently. A significant need for MHS exists amidst barriers to MHS. Nevertheless, FCS are interested in receiving MHS and believe it would benefit them. © The Author 2014. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Effects of polysaccharide from mycelia of Ganoderma lucidum on intestinal barrier functions of rats.
Jin, Mingliang; Zhu, Yimin; Shao, Dongyan; Zhao, Ke; Xu, Chunlan; Li, Qi; Yang, Hui; Huang, Qingsheng; Shi, Junling
2017-01-01
The intestinal mucosal barriers play essential roles not only in the digestion and absorption of nutrients, but also the innate defense against most intestinal pathogens. In the present study, polysaccharide from the mycelia of Ganoderma lucidum was given via oral administration to rats (100mg/kg body weight, 21days) to investigate its effects on intestinal barrier functions, including the mechanical barrier, immunological barrier and biological barrier function. It was found that the polysaccharide administration could significantly up-regulate the expression of occludin, nuclear factor-κB p65 (NF-κB p65) and secretory immunoglobulin A (SIgA) in ileum, markedly improve the levels of interferon-γ (IFN-γ), interleukin-2 (IL-2), and IL-4, and decrease the level of diamine oxidase (DAO) in serum. Meanwhile, rats from the polysaccharide group showed significant higher microbiota richness in cecum as reflected by the Chao 1 index compared with the control group. Moreover, the polysaccharide decreased the Firmicutes-to-Bacteroidetes ratio. Our results indicated that the polysaccharide from the mycelia of G. lucidum might be used as functional agent to regulate the intestinal barrier functions. Copyright © 2016 Elsevier B.V. All rights reserved.
Abnormal Barrier Function in Gastrointestinal Disorders.
Farré, Ricard; Vicario, María
2017-01-01
There is increasing concern in identifying the mechanisms underlying the intimate control of the intestinal barrier, as deregulation of its function is strongly associated with digestive (organic and functional) and a number of non-digestive (schizophrenia, diabetes, sepsis, among others) disorders. The intestinal barrier is a complex and effective defensive functional system that operates to limit luminal antigen access to the internal milieu while maintaining nutrient and electrolyte absorption. Intestinal permeability to substances is mainly determined by the physicochemical properties of the barrier, with the epithelium, mucosal immunity, and neural activity playing a major role. In functional gastrointestinal disorders (FGIDs), the absence of structural or biochemical abnormalities that explain chronic symptoms is probably close to its end, as recent research is providing evidence of structural gut alterations, at least in certain subsets, mainly in functional dyspepsia (FD) and irritable bowel syndrome (IBS). These alterations are associated with increased permeability, which seems to reflect mucosal inflammation and neural activation. The participation of each anatomical and functional component of barrier function in homeostasis and intestinal dysfunction is described, with a special focus on FGIDs.
Thermal phase transition behavior of lipid layers on a single human corneocyte cell.
Imai, Tomohiro; Nakazawa, Hiromitsu; Kato, Satoru
2013-09-01
We have improved the selected area electron diffraction method to analyze the dynamic structural change in a single corneocyte cell non-invasively stripped off from human skin surface. The improved method made it possible to obtain reliable diffraction images to trace the structural change in the intercellular lipid layers on a single corneocyte cell during heating from 24°C to 100°C. Comparison of the results with those of synchrotron X-ray diffraction experiments on human stratum corneum sheets revealed that the intercellular lipid layers on a corneocyte cell exhibit essentially the same thermal phase transitions as those in a stratum corneum sheet. These results suggest that the structural features of the lipid layers are well preserved after the mechanical stripping of the corneocyte cell. Moreover, electron diffraction analyses of the thermal phase transition behaviors of the corneocyte cells that had the lipid layers with different distributions of orthorhombic and hexagonal domains at 24°C suggested that small orthorhombic domains interconnected with surrounding hexagonal domains transforms in a continuous manner into new hexagonal domains. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Ribeiro, Renato Cesar de Azevedo; Barreto, Stella Maria de Andrade Gomes; Ostrosky, Elissa Aarantes; da Rocha-Filho, Pedro Alves; Veríssimo, Lourena Mafra; Ferrari, Márcio
2015-02-02
This study aimed to produce and characterize an oil in water (O/W) nanoemulsion containing Opuntia ficus-indica (L.) Mill hydroglycolic extract, as well as evaluate its preliminary and accelerated thermal stability and moisturizing efficacy. The formulations containing 0.5% of xanthan gum (FX) and 0.5% of xanthan gum and 1% of Opuntia ficus-indica MILL extract (FXE) were white, homogeneus and fluid in aspect. Both formulations were stable during preliminary and accelerated stability tests. FX and FXE presented a pH compatible to skin pH (4.5-6.0); droplet size varying from 92.2 to 233.6 nm; a polydispersion index (PDI) around 0.200 and a zeta potential from -26.71 to -47.01 mV. FXE was able to increase the water content of the stratum corneum for 5 h after application on the forearm. The O/W nanoemulsions containing 1% of Opuntia ficus-indica (L.) Mill extract presented suitable stability for at least for 60 days. Besides, this formulation was able to increase the water content of stratum corneum, showing its moisturizing efficacy.
Transdermal transport pathway creation: Electroporation pulse order.
Becker, Sid; Zorec, Barbara; Miklavčič, Damijan; Pavšelj, Nataša
2014-11-01
In this study we consider the physics underlying electroporation which is administered to skin in order to radically increase transdermal drug delivery. The method involves the application of intense electric fields to alter the structure of the impermeable outer layer, the stratum corneum. A generally held view in the field of skin electroporation is that the skin's drop in resistance (to transport) is proportional to the total power of the pulses (which may be inferred by the number of pulses administered). Contrary to this belief, experiments conducted in this study show that the application of high voltage pulses prior to the application of low voltage pulses result in lower transport than when low voltage pulses alone are applied (when less total pulse power is administered). In order to reconcile these unexpected experimental results, a computational model is used to conduct an analysis which shows that the high density distribution of very small aqueous pathways through the stratum corneum associated with high voltage pulses is detrimental to the evolution of larger pathways that are associated with low voltage pulses. Copyright © 2014 Elsevier Inc. All rights reserved.
Sarcoptic mange in free-ranging raccoon dogs (Nyctereutes procyonoides) in Japan.
Ninomiya, Hiroyoshi; Ogata, Munetsugu
2005-06-01
Sarcoptes scabiei infestation was diagnosed in three freshly dead free-ranging raccoon dogs (Nyctereutes procyonoides) in Kanagawa Prefecture, Japan. The dogs presented with an alopecic pruritic skin disease, with signs of alopecia on the ears, muzzle, around the eyes, elbow, thigh and the neck, and hyperpigmented and crusted skin lesions, which had a severe malodour. Skin scrapings revealed the presence of the mite Sarcoptes scabiei. Histopathology of lesions demonstrated marked acanthosis, hyperkeratosis, parakeratosis and fungal elements, which were subsequently identified as Acremonium sp., Alternaria sp. and an unknown fungus. Mite segments were located mainly in the stratum corneum and also in the stratum granulosum. Tunnels could be observed in the hyperkeratotic stratum corneum. Scanning electron microscopy (SEM) revealed the tortoise-like Sarcoptes scabiei with four long bristles, suckers and blade-like claws on legs 1 and 2, cuticular spines, prominent body striations and a terminal anus. SEM also revealed an adult female mite digging a tunnel with the head wedged into the very end of the closed burrow. Tunnels filled with eggshells, corneocyte debris and faecal pellets were also observed.
Biochemical changes in desmosomes of bovine muzzle epidermis during differentiation.
Konohana, A; Konohana, I; Roberts, G P; Marks, R
1987-10-01
Biochemical changes taking place in desmosomes during differentiation have been studied. Bovine muzzle epidermis was sliced horizontally into 6 layers, 0.2 mm thick, and desmosomes were isolated from each layer. These were then analyzed by polyacrylamide gel electrophoresis. The electrophoretic patterns of desmosomal proteins from the 6 layers were found to be qualitatively similar to each other, but there was an increase in the ratio of the amount of 150 kD glycoprotein (desmoglein I) relative to 240 and 210 kD proteins (desmoplakins) in the upper layers of the epidermis. This finding was supported by the similar increase observed in electrophoretic patterns of proteins extracted directly from each layer of the epidermis in electrophoretic sample buffer. In order to study the fate of desmosomal components in the stratum corneum, serial skin surface biopsies were stained with antisera against desmosomal components using indirect immunofluorescence techniques. This experiment showed that desmosomal proteins and glycoproteins persist in the stratum corneum but quantitatively decrease in the outer layers. This decrease may play a significant role in desquamation.
Kerr, Kathy; Schwartz, James R; Filloon, Thomas; Fieno, Angela; Wehmeyer, Ken; Szepietowski, Jacek C; Mills, Kevin J
2011-06-01
Dandruff and seborrhoeic dermatitis are accompanied by bothersome itch. We have established a novel non-invasive methodology to sample histamine levels in the stratum corneum in order to facilitate an understanding of pruritogenesis in this condition. Histamine levels were assessed in two groups of subjects with dandruff before and after 3 weeks of treatment with a commercial potentiated zinc pyrithione shampoo. A comparative population without dandruff was also studied. Itch self-perception was quantified on a visual analogue scale. The histamine level in subjects with dandruff was more than twice that in those who did not have dandruff. Under conditions known to resolve flaking symptoms, the shampoo led to a reduction in histamine in subjects with dandruff to a level that was statistically indistinguishable from those who did not have dandruff. This reduction in histamine was accompanied by a highly significant reduction in the perception of itch intensity. These findings suggest an association between the subjective perception of itch in the scalp and the level of histamine in the skin.
[Advance in studies on food allergy mechanism based on gut barrier].
Wang, Juan-hong; Li, Huan-zhou; Li, Meng; Pan, Su-hua
2015-04-01
Food allergies, as a type of adverse immune-mediated reactions to ingested food proteins, have become a serious public health issue that harms children and adults health, with increasing incidence year by year. However, without effective therapy for food allergies, doctors-have mostly advised to avoid allergens and provided symptomatic treatment. According to the findings of many studies, allergic diseases are correlated with intestinal barrier function injury, as evidenced by the significant increase in the intestinal permeability among patients with food allergies. In this paper, recent studies on correlations between food allergies and intestinal barrier functions, intestinal barrier function injury mechanisms of allergic foods and food allergy intervention strategies based on intestinal barrier functions were summarized to provide reference for laboratory researches and clinical treatment of food allergic diseases.
An oncological view on the blood-testis barrier.
Bart, Joost; Groen, Harry J M; van der Graaf, Winette T A; Hollema, Harry; Hendrikse, N Harry; Vaalburg, Willem; Sleijfer, Dirk T; de Vries, Elisabeth G E
2002-06-01
The function of the blood-testis barrier is to protect germ cells from harmful influences; thus, it also impedes the delivery of chemotherapeutic drugs to the testis. The barrier has three components: first, a physicochemical barrier consisting of continuous capillaries, Sertoli cells in the tubular wall, connected together with narrow tight junctions, and a myoid-cell layer around the seminiferous tubule. Second, an efflux-pump barrier that contains P-glycoprotein in the luminal capillary endothelium and on the myoid-cell layer; and multidrug-resistance associated protein 1 located basolaterally on Sertoli cells. Third, an immunological barrier, consisting of Fas ligand on Sertoli cells. Inhibition of P-glycoprotein function offers the opportunity to increase the delivery of cytotoxic drugs to the testis. In the future, visualisation of function in the blood-testis barrier may also be helpful to identify groups of patients in whom testis conservation is safe or to select drugs that are less harmful to fertility.
Hill, Jennifer N; Balbale, Salva; Lones, Keshonna; LaVela, Sherri L
2017-01-01
Assessments of function in persons with spinal cord injury (SCI) often utilize pre-defined constructs and measures without consideration of patient context, including how patients define function and what matters to them. We utilized photovoice to understand how individuals define function, facilitators and barriers to function, and adaptations to support functioning. Veterans with SCI were provided with cameras and guidelines to take photographs of things that: (1) help with functioning, (2) are barriers to function, and (3) represent adaptations used to support functioning. Interviews to discuss photographs followed and were audio-recorded, transcribed, and analyzed using grounded-thematic coding. Nvivo 8 was used to store and organize data. Participants (n = 9) were male (89%), Caucasian (67%), had paraplegia (75%), averaged 64 years of age, and were injured, on average, for 22 years. Function was described in several ways: the concept of 'normalcy,' aspects of daily living, and ability to be independent. Facilitators included: helpful tools, physical therapy/therapists, transportation, and caregivers. Barriers included: wheelchair-related issues and interior/exterior barriers both in the community and in the hospital. Examples of adaptations included: traditional examples like ramps, and also creative examples like the use of rubber bands on a can to help with grip. Patient-perspectives elicited in-depth information that expanded the common definition of function by highlighting the concept of "normality," facilitators and barriers to function, and adaptations to optimize function. These insights emphasize function within a patient-context, emphasizing a holistic definition of function that can be used to develop personalized, patient-driven care plans. Published by Elsevier Inc.
Hou, Maihua; Sun, Richard; Hupe, Melanie; Kim, Peggy L.; Park, Kyungho; Crumrine, Debra; Lin, Tzu-kai; Santiago, Juan Luis; Mauro, Theodora M.; Elias, Peter M.; Man, Mao-Qiang
2013-01-01
The beneficial effects of certain herbal medicines on cutaneous function have been appreciated for centuries. Among these agents, Chrysanthemum extract, apigenin, has been used for skin care, particularly in China, for millennia. However, the underlying mechanisms by which apigenin benefits the skin are not known. In the present study, we first determined whether topical apigenin positively influences permeability barrier homeostasis, and then the basis thereof. Hairless mice were treated topically with either 0.1% apigenin or vehicle alone twice-daily for 9 days. At the end of treatments, permeability barrier function was assessed with either an electrolytic water analyzer or a Tewameter. Our results show that topical apigenin significantly enhanced permeability barrier homeostasis after tape stripping, though basal permeability barrier function remained unchanged. Improved barrier function correlated with enhanced filaggrin expression and lamellar body production, which was paralleled by elevated mRNA levels for the epidermal ABCA12. The mRNA levels for key lipid synthetic enzymes also were up-regulated by apigenin. Finally, both CAMP and mBD3 immunostaining were increased by apigenin. We conclude that topical apigenin improves epidermal permeability barrier function by stimulating epidermal differentiation, lipid synthesis and secretion, as well as cutaneous antimicrobial peptide production. Apigenin could be useful for the prevention and treatment of skin disorders characterized by permeability barrier dysfunction, associated with reduced filaggrin levels, and impaired antimicrobial defenses, such as atopic dermatitis. PMID:23489424
NASA Astrophysics Data System (ADS)
Borja, Angel; Chust, Guillem; Fontán, Almudena; Garmendia, Joxe Mikel; Uyarra, María C.
2018-05-01
Canopy-forming macroalgae are experiencing large biogeographical shifts due to climate change. One of them (Gelidium corneum) has shown a dramatic decline in biomass in northern Spain, in the past 20 years. We investigate here two most plausible hypotheses to explain its decline: (i) a combination of increasing wave energy and decrease of irradiance in the growth season; and (ii) a combination of increasing light in summer and decreasing nutrient concentration. Using a dataset of biomass and environmental variables (1993-2016), in three sectors and three water depths, we have determined that the variables explaining more biomass variability were: suspended solids, nitrate, sunlight hours, significant wave height threshold exceedances (Hs5m), temperature, silicate, and nitrite. When undertaking multiple regression analyses for the whole depth range, only the model including sunlight hours with Hs5m was selected, being highly significant (p < 0.0001) and explaining 37% of the variability. When comparing the macroalgal biomass between the initial period of the series (where the biomass was stable) and final period (showing biomass decline), 45% decrease was observed while the Hs5m increase was 41%, detaching the algae from the substratum during the growth season. The decline rate in biomass with time, at each sector and depth, was highly correlated (p < 0.001) to the wave energy flux received at each depth, which was higher at 5 m in all sectors, decreasing with depth. In turn, nutrients, instead of decreasing, have increased, and only nitrate presented a significant negative correlation with G. corneum biomass, which was not significant after detrending. The significant (p = 0.001) increase in rainfall over the studied period can explain the increase of those nutrients. Hence, we question whether the effect of nutrients is such, as already described. The most likely factor explaining the decline of this macroalga was the combination of sunlight hours decrease and Hs5m increase.
Schmitt, Thomas; Lange, Stefan; Sonnenberger, Stefan; Dobner, Bodo; Demé, Bruno; Neubert, Reinhard H H; Gooris, Gert; Bouwstra, Joke A
2017-12-01
This study was able to investigate the different influence of the d- and l-ceramide [AP] on the lamellar as well as molecular nanostructure of stratum corneum simulating lipid model mixtures. In this case, neutron diffraction together with specifically deuterated ceramide was used as an effective tool to investigate the lamellar and the molecular nanostructure of the mixtures. It could clearly be demonstrated, that both isomers show distinctly different characteristics, even though the variation between both is only a single differently arranged OH-group. The l-ceramide [AP] promotes a crystalline like phase behaviour even if mixed with ceramide [NP], cholesterol and free fatty acids. The d-ceramide [AP] only shows crystalline-like features if mixed only with cholesterol and free fatty acids but adopts a native-like behaviour if additionally mixed with ceramide [NP]. It furthermore demonstrates that the l-ceramide [AP] should not be used for any applications concerning ceramide substitution. It could however possibly serve its own purpose, if this crystalline like behaviour has some kind of positive influence on the SC or can be utilized for any practical applications. The results obtained in this study demonstrate that the diastereomers of ceramide [AP] are an attractive target for further research because their influence on the lamellar as well as the nanostructure is exceptionally strong. Additionally, the results furthermore show a very strong influence on hydration of the model membrane. With these properties, the d-ceramide [AP] could be effectively used to simulate native like behaviour even in very simple mixtures and could also have a strong impact on the native stratum corneum as well as high relevance for dermal ceramide substitution. The unnatural l-ceramide [AP] on the other hand should be investigated further, to assess its applicability. Copyright © 2017 Elsevier B.V. All rights reserved.
Schmitt, Thomas; Lange, Stefan; Sonnenberger, Stefan; Dobner, Bodo; Demé, Bruno; Langner, Andreas; Neubert, Reinhard H H
2018-06-18
This study used neutron diffraction to investigate a ceramide-[NP] C24/[AP] C24 /[EOS]-br C30/cholesterol/lignoceric acid (0.6: 0.3: 0.1: 0.7: 1) based stratum corneum modelling system. By adding specifically deuterated ceramides-[NP]-D 3 , [AP]-D 3 , and [EOS]-br-D 3 , detailed information on the lamellar and the nanostructure of the system was obtained. For the short periodicity phase a natural-like lamellar repeat distance of 5.47 ± 0.02 nm was observed, similar to the [NP]/[AP] base system without the [EOS]-br. Unlike in this system the ceramides here were slightly tilted, hinting towards a slightly less natural arrangement. Due to the deuteration it was possible to observe that the long ceramide chains were overlapping in the lamellar mid-plane. This is considered to be an important feature for the natural stratum corneum. Despite the presence of a ceramide [EOS] analogue - able to form a long phase arrangement - no distinct long periodicity phase was formed, despite a slightly higher than natural ω-acyl ceramide ratio of 10 mol%. The deuterated variant of this ceramide determined that the very long ceramide was integrated into the short periodicity phase, spanning multiple layers instead. The - compared to the base system - unchanged repeat distance highlights the stability of this structure. Furthermore, the localisation of the very long ceramide in the short periodicity phase indicates the possibility of a crosslinking effect and thus a multilayer stabilizing role for the ceramide [EOS]. It can be concluded, that additionally to the mere presence of ceramide-[EOS] more complex conditions have to be met in order to form this long phase. This has to be further investigated in the future. Copyright © 2018 Elsevier B.V. All rights reserved.
Vincent, C; Serre, G; Basile, J P; Lestra, H C; Girbal, E; Sebbag, M; Soleilhavoup, J P
1990-01-01
Serum IgG, labelling the stratum corneum of the rat oesophagus epithelium, so-called anti-keratin antibodies (AKA) constitute the most specific marker for the diagnosis of rheumatoid arthritis. In this study, we investigated 31 IgG AKA-positive rheumatoid sera and 21 control sera from patients with non-rheumatoid inflammatory rheumatic diseases. The serum level of IgG1,2,3 and 4 was determined by radial immunodiffusion and the subclass distribution of IgG AKA by a three-step semi-quantitative immunofluorescence assay using standard monoclonal antibodies specific for each of the four human IgG subclasses. In the rheumatoid sera, the serum level of IgG1 was found to be significantly increased and the level of IgG2 significantly decreased with regard to the control sera, while the levels of IgG3 and 4 as well as total IgG were in the normal range. IgG1,2,3, and 4 AKA were detected in 27 (87%), 6 (19%), 4 (13%) and 11 (35%) of the 31 rheumatoid sera, respectively, and were found to be independent of the clinical and biological indices of the disease. In spite of inter-individual heterogeneity, two predominant profiles were distinguished: IgG1 (alone) and IgG(1 + 4), which together represented 18 sera (58%). The large predominance of IgG1 AKA and the quasi-absence of IgG2 AKA suggest that the recognized antigen may be partly comprised of protein. Moreover, the high frequency of occurrence of IgG4 AKA might result from chronic exposure to the eliciting antigen, which could be a genuine autoantigen since we demonstrated that it is also present in the stratum corneum of human epidermis. Images Fig. 1 PMID:1696185
Smith, I M; Baker, A; Arneborg, N; Jespersen, L
2015-11-01
The human gastrointestinal epithelium makes up the largest barrier separating the body from the external environment. Whereas invasive pathogens cause epithelial barrier disruption, probiotic micro-organisms modulate tight junction regulation and improve epithelial barrier function. In addition, probiotic strains may be able to reduce epithelial barrier disruption caused by pathogenic species. The aim of this study was to explore non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Benchmarking against established probiotic strains, we evaluated the ability of four nonpathogenic yeast species to modulate transepithelial electrical resistance (TER) across a monolayer of differentiated human colonocytes (Caco-2 cells). Further, we assessed yeast modulation of a Salmonella Typhimurium-induced epithelial cell barrier function insult. Our findings demonstrate distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function. While the established probiotic yeast Saccharomyces boulardii increased TER across a Caco-2 monolayer by 30%, Kluyveromyces marxianus exhibited significantly stronger properties of TER enhancement (50% TER increase). In addition, our data demonstrate significant yeast-mediated modulation of Salmonella-induced epithelial cell barrier disruption and identify K. marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study demonstrates distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Further, our data demonstrate significant yeast-mediated modulation of Salmonella Typhimurium-induced epithelial cell barrier disruption and identify Kluyveromyces marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study is the first to demonstrate significant non-Saccharomyces yeast-mediated epithelial cell barrier protection from Salmonella invasion, thus encouraging future efforts aimed at confirming the observed effects in vivo and driving further strain development towards novel yeast probiotics. © 2015 The Society for Applied Microbiology.
Schottky-type grain boundaries in CCTO ceramics
NASA Astrophysics Data System (ADS)
Felix, A. A.; Orlandi, M. O.; Varela, J. A.
2011-10-01
In this work we studied electrical barriers existing at CaCu 3Ti 4O 12 (CCTO) ceramics using dc electrical measurements. CCTO pellets were produced by solid state reaction method and X-ray diffractograms showed which single phase polycrystalline samples were obtained. The samples were electrically characterized by dc and ac measurements as a function of temperature, and semiconductor theory was applied to analyze the barrier at grain boundaries. The ac results showed the sample's permittivity is almost constant ( 104) as function of temperature at low frequencies and it changes from 100 to 104 as the temperature increases at high frequencies. Using dc measurements as a function of temperature, the behavior of barriers was studied in detail. Comparison between Schottky and Poole-Frenkel models was performed, and results prove that CCTO barriers are more influenced by temperature than by electric field (Schottky barriers). Besides, the behavior of barrier width as function of temperature was also studied and experimental results confirm the theoretical assumptions.
Barriers to activity and participation for stroke survivors in rural China.
Zhang, Lifang; Yan, Tiebin; You, Liming; Li, Kun
2015-07-01
To investigate environmental barriers reported by stroke survivors in the rural areas of China and to determine the impact of environmental barriers on activity and participation relative to demographic characteristics and body functioning. Cross-sectional survey. Structured interviews in the participants' homes. Community-dwelling stroke survivors in the rural areas of China (N=639). Not applicable. Activity and participation (Chinese version of the World Health Organization Disability Assessment Schedule 2.0), environmental barriers (Craig Hospital Inventory of Environmental Factors), neurological function (Canadian Neurological Scale), cognitive function (Abbreviated Mental Test), and depression (6-item Hamilton Rating Scale for Depression). Physical/structural barriers are the major impediment to activity and participation for these participants (odds ratio, 1.86 and 1.99 for activity and participation, respectively; P<.01). Services/assistance barriers primarily impede participation rather than activity (odds ratio, 1.58 in participation; P<.05). Physical/structural and services/assistance barriers were considered the dominant barriers to activity and participation for stroke survivors in the rural areas of China. Attitudinal/support and policy barriers did not emerge as serious concerns. To generate an enabling environment, physical/structural and services/assistance barriers are the environmental barriers to be decreased and eliminated first. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Shah, Viral; Choudhury, Bijaya Krushna
2017-11-01
A revolutionary paradigm shift is being observed currently, towards the use of therapeutic biologics for disease management. The present research was focused on designing an efficient dosage form for transdermal delivery of α-choriogonadotropin (high molecular weight biologic), through biodegradable polymeric microneedles. Polyvinylpyrrolidone-based biodegradable microneedle arrays loaded with high molecular weight polypeptide, α-choriogonadotropin, were fabricated for its systemic delivery via transdermal route. Varied process and formulation parameters were optimized for fabricating microneedle array, which in turn was expected to temporally rupture the stratum corneum layer of the skin, acting as a major barrier to drug delivery through transdermal route. The developed polymeric microneedles were optimized on the basis of quality attributes like mechanical strength, axial strength, insertion ratio, and insertion force analysis. The optimized polymeric microneedle arrays were characterized for in vitro drug release studies, ex vivo drug permeation studies, skin resealing studies, and in vivo pharmacokinetic studies. Results depicted that fabricated polymeric microneedle arrays with mechanical strength of above 5 N and good insertion ratio exhibited similar systemic bioavailability of α-choriogonadotropin in comparison to marketed subcutaneous injection formulation of α-choriogonadotropin. Thus, it was ultimately concluded that the designed drug delivery system can serve as an efficient tool for systemic delivery of therapeutic biologics, with an added benefit of overcoming the limitations of parenteral delivery, achieving better patient acceptability and compliance.
2012-01-01
Background Two commercially available microneedle rollers with a needle length of 200 μm and 300 μm were selected to examine the influence of microneedle pretreatment on the percutaneous permeation of four non-steroidal anti-inflammatory drugs (diclofenac, ibuprofen, ketoprofen, paracetamol) with different physicochemical drug characteristics in Franz-type diffusion cells. Samples of the receptor fluids were taken at predefined times over 6 hours and were analysed by UV–VIS high-performance liquid-chromatography. Histological examinations after methylene blue application were additionally performed to gather information about barrier disruption. Results Despite no visible pores in the stratum corneum, the microneedle pretreatment resulted in a twofold (200 μm) and threefold higher (300 μm) flux through the pretreated skin samples compared to untreated skin samples for ibuprofen and ketoprofen (LogKow > 3, melting point < 100°C). The flux of the hydrophilic compounds diclofenac and paracetamol (logKow < 1, melting point > 100°C) increased their amount by four (200 μm) to eight (300 μm), respectively. Conclusion Commercially available microneedle rollers with 200–300 μm long needles enhance the drug delivery of topically applied non-steroidal anti-inflammatory drugs and represent a valuable tool for percutaneous permeation enhancement particularly for substances with poor permeability due to a hydrophilic nature and high melting points. PMID:22947102
Nanostructured lipid carriers to enhance transdermal delivery and efficacy of diclofenac.
Nguyen, Chien Ngoc; Nguyen, Thi Thuy Trang; Nguyen, Hanh Thuy; Tran, Tuan Hiep
2017-10-01
Lipid carrier-mediated transdermal drug delivery offers several advantages because it is non-irritating and non-toxic, provides effective control of drug release, and forms an adhesive film that hydrates the outer skin layers. However, to penetrate the deeper skin layers, these formulations need to overcome several barriers in the stratum corneum. This study evaluates factors influencing particle size and drug-loading capacity, which play a key role in drug permeation and efficacy. Diclofenac sodium was chosen as the model drug. The fabrication of diclofenac sodium-loaded lipid nanoparticles was optimized by modulating several parameters, including the lipids and surfactants employed, the drug/lipid ratio, and the pH of the aqueous phase. The physical properties and loading efficiencies of the nanoparticles were characterized. The optimized formulation was then dispersed into a polymer solution to form a gel, which demonstrated a sustained ex vivo permeation of diclofenac sodium over 24 h through excised rat skin and a higher drug penetrating capacity than that of a commercially available gel. In vivo anti-inflammatory activity was assessed in a rat carrageenan-induced paw edema model; the anti-edema effects of the prepared gel and commercially available gel over 24 h were comparable. The present findings indicate the effects of particle size and drug loading on the ability of nanostructured lipid carrier preparations to provide transdermal drug delivery.
Yosipovitch, Gil; Meredith, Gregory; Chan, Yiong Huak; Goh, Chee Leok
2004-02-01
The perception of pain is a personal experience influenced by many factors, including genetic, ethnic and cultural issues. Understanding these perceptions is especially important in dermatologic patients undergoing minor surgical operations and who often differ in their pain response to surgical treatments. Little is known about how these differences affect the perception of experimental pain. The purpose of this study was to determine experimental pain perception differences in three distinct East Asian ethnic populations. Pain thresholds were examined with a psychophysical computerized quantitative thermal sensory testing device (TSA 2001) in healthy volunteers recruited from three different Asian ethnic groups. Using the methods of limits, experimental pain perception threshold was measured on the forehead and volar aspect of the forearm in 49 healthy subjects. The measurements were then repeated after skin barrier perturbation with adhesive tape stripping of the stratum corneum. All three ethnic groups were analyzed separately with respect to age, gender educational level and skin type. A total of 20 Chinese, 14 Malay and 15 Indian subjects completed the study. Thermal pain thresholds were similar in all three ethnic groups before and after tape strippings. No significant differences were noted between genders. Using quantitative sensory thermal testing, we demonstrated that no significant differences in pain occur between different races and genders.
Regenerated keratin membrane to match the in vitro drug diffusion through human epidermis
Selmin, Francesca; Cilurzo, Francesco; Aluigi, Annalisa; Franzè, Silvia; Minghetti, Paola
2012-01-01
This work aimed to develop membranes made of regenerated keratin and ceramides (CERs) to match the barrier property of the human stratum corneum in in vitro percutaneous absorption studies. The membrane composition was optimized on the basis of the in vitro drug diffusion profiles of ibuprofen, propranolol and testosterone chosen as model drugs on the basis of their different diffusion and solubility properties. The data were compared to those obtained using human epidermis. The ATR-FTIR and SEM analyses revealed that CERs were suspended into the regenerated keratin matrix, even if a partial solubilization occurred. It resulted in the membranes being physically stable after exposure to aqueous buffer and/or mineral oil and the fluxes of ibuprofen and propranolol from these vehicles through membranes and human skin were of the same order of magnitude. The best relationship with human epidermis data was obtained with 180 μm-thick membrane containing 1% ceramide III and 1% ceramide VI. The data on the testosterone diffusion were affected by the exposure of the membrane to a water/ethanol solution over a prolonged period of time, indicating that such an organic solvent was able to modify the supermolecular organization of keratin and CERs. The keratin/CER membranes can represent a simplified model to assay the in vitro skin permeability study of small molecules. PMID:25755997
NASA Astrophysics Data System (ADS)
Tran, Melissa A.; Gowda, Raghavendra; Park, Eun-Joo; Adair, James; Smith, Nadine; Kester, Mark; Robertson, Gavin P.
2009-04-01
Melanoma is the most deadly form of skin cancer. Currently early surgical removal is the best treatment option for melanoma patients with little hope of successful treatment of late stage melanoma. Clearly new treatment options must be explored. Topical administration of drugs provides the advantage of being able to apply large quantities of drug in close proximity to the tumor without the issue of systemic side effects. However, the natural barrier formed by the skin must first be overcome for topical treatment to become a viable option. With this in mind we have sought to use low-frequency ultrasound to transiently permeabilize the stratum corneum and successfully deliver liposomal siRNA to melanoma cells residing at the basement membrane. B-Raf is one of the most frequently activated genes in melanoma, making it an ideal candidate for targeting via siRNA. The novel liposomes used in this study load siRNA, protect if from the outside environment and lead to knockdown of target message. Combining ultrasound with liposomal siRNA we show that siRNA can be delivered into melanoma cells. Additionally, we show that siRNA to mutant B-Raf can effectively inhibit melanoma growth in reconstructs and in mice by 60% and 30% respectively. Therefore, ultrasound with liposomal siRNA is a potentially valuable treatment option for melanoma patients.
Zhu, Yongjian; Choe, Chun-Sik; Ahlberg, Sebastian; Meinke, Martina C; Alexiev, Ulrike; Lademann, Juergen; Darvin, Maxim E
2015-05-01
In order to investigate the penetration depth of silver nanoparticles (Ag NPs) inside the skin, porcine ears treated with Ag NPs are measured by two-photon tomography with a fluorescence lifetime imaging microscopy (TPT-FLIM) technique, confocal Raman microscopy (CRM), and surface-enhanced Raman scattering (SERS) microscopy. Ag NPs are coated with poly-N-vinylpyrrolidone and dispersed in pure water solutions. After the application of Ag NPs, porcine ears are stored in the incubator for 24 h at a temperature of 37°C. The TPT-FLIM measurement results show a dramatic decrease of the Ag NPs' signal intensity from the skin surface to a depth of 4 μm. Below 4 μm, the Ag NPs' signal continues to decline, having completely disappeared at 12 to 14 μm depth. CRM shows that the penetration depth of Ag NPs is 11.1 ± 2.1 μm. The penetration depth measured with a highly sensitive SERS microscopy reaches 15.6 ± 8.3 μm. Several results obtained with SERS show that the penetration depth of Ag NPs can exceed the stratum corneum (SC) thickness, which can be explained by both penetration of trace amounts of Ag NPs through the SC barrier and by the measurements inside the hair follicle, which cannot be excluded in the experiment.
Probiotics promote endocytic allergen degradation in gut epithelial cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Chun-Hua; Liu, Zhi-Qiang; Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON
Highlights: Black-Right-Pointing-Pointer Knockdown of A20 compromised the epithelial barrier function. Black-Right-Pointing-Pointer The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Black-Right-Pointing-Pointer Antigens transported across A20-deficient HT-29 monolayers conserved antigenicity. Black-Right-Pointing-Pointer Probiotic proteins increased the expression of A20 in HT-29 cells. -- Abstract: Background and aims: Epithelial barrier dysfunction plays a critical role in the pathogenesis of allergic diseases; the mechanism is to be further understood. The ubiquitin E3 ligase A20 (A20) plays a role in the endocytic protein degradation in the cells. This study aims to elucidate the role of A20 in the maintenance of gut epithelial barriermore » function. Methods: Gut epithelial cell line, HT-29 cell, was cultured into monolayers to evaluate the barrier function in transwells. RNA interference was employed to knock down the A20 gene in HT-29 cells to test the role of A20 in the maintenance of epithelial barrier function. Probiotic derived proteins were extracted from the culture supernatants using to enhance the expression of A20 in HT-29 cells. Results: The results showed that the knockdown of A20 compromised the epithelial barrier function in HT-29 monolayers, mainly increased the intracellular permeability. The fusion of endosome/lysosome was disturbed in the A20-deficient HT-29 cells. Allergens collected from the transwell basal chambers of A20-deficient HT-29 monolayers still conserved functional antigenicity. Treating with probiotic derived proteins increased the expression of A20 in HT-29 cells and promote the barrier function. Conclusion: A20 plays an important role in the maintenance of epithelial barrier function as shown by HT-29 monolayer. Probiotic derived protein increases the expression of A20 and promote the HT-29 monolayer barrier function.« less
RNase 7 participates in cutaneous innate control of Corynebacterium amycolatum.
Walter, Stephanie; Rademacher, Franziska; Kobinger, Nicole; Simanski, Maren; Gläser, Regine; Harder, Jürgen
2017-10-24
Nondiphtheria corynebacteria are typical members of the skin microbiota. However, in addition to being harmless inhabitants of healthy skin commensal skin-derived corynebacteria such as C. amycolatum occasionally also cause infections. This suggests that human skin must harbor adequate mechanisms to control the growth of corynebacteria on the skin surface. Here we show that keratinocytes are able to detect the presence of C. amycolatum leading to the epidermal growth factor receptor (EGFR)-dependent induction of the antimicrobial protein RNase 7. C. amycolatum-mediated induction of RNase 7 was also confirmed in a human 3D skin equivalent. The functional relevance of these findings was demonstrated by potent antimicrobial activity of RNase 7 against C. amycolatum and C. xerosis. In addition, the capacity of human stratum corneum to restrict the growth of C. amycolatum was significantly attenuated when RNase 7 was inactivated by a specific RNase 7-neutralizing antibody. Taken together, the interaction of RNase 7 with C. amycolatum indicates that RNase 7 may function as important effector molecule to control the growth of corynebacteria on human skin.
Lasers as an approach for promoting drug delivery via skin.
Lin, Chih-Hung; Aljuffali, Ibrahim A; Fang, Jia-You
2014-04-01
Using lasers can be an effective drug permeation-enhancement approach for facilitating drug delivery into or across the skin. The controlled disruption and ablation of the stratum corneum (SC), the predominant barrier for drug delivery, is achieved by the use of lasers. The possible mechanisms of laser-assisted drug permeation are the direct ablation of the skin barrier, optical breakdown by a photomechanical wave and a photothermal effect. It has been demonstrated that ablative approaches for enhancing drug transport provide some advantages, including increased bioavailability, fast treatment time, quick recovery of SC integrity and the fact that skin surface contact is not needed. In recent years, the concept of using laser techniques to treat the skin has attracted increasing attention. This review describes recent developments in using nonablative and ablative lasers for drug absorption enhancement. This review systematically introduces the concepts and enhancement mechanisms of lasers, highlighting the potential of this technique for greatly increasing drug absorption via the skin. Lasers with different wavelengths and types are employed to increase drug permeation. These include the ruby laser, the erbium:yttrium-gallium-garnet laser, the neodymium-doped yttrium-aluminum-garnet laser and the CO2 laser. Fractional modality is a novel concept for promoting topical/transdermal drug delivery. The laser is useful in enhancing the permeation of a wide variety of permeants, such as small-molecule drugs, macromolecules and nanoparticles. This potential use of the laser affords a new treatment for topical/transdermal application with significant efficacy. Further studies using a large group of humans or patients are needed to confirm and clarify the findings in animal studies. Although the laser fluence or output energy used for enhancing drug absorption is much lower than for treatment of skin disorders and rejuvenation, the safety of using lasers is still an issue. Caution should be used in optimizing the feasible conditions of the lasers in balancing the effectiveness of permeation enhancement and skin damage.
Anti-inflammatory and immunomodulatory effects of Aquaphilus dolomiae extract on in vitro models.
Aries, Marie-Françoise; Hernandez-Pigeon, Hélène; Vaissière, Clémence; Delga, Hélène; Caruana, Antony; Lévêque, Marguerite; Bourrain, Muriel; Ravard Helffer, Katia; Chol, Bertrand; Nguyen, Thien; Bessou-Touya, Sandrine; Castex-Rizzi, Nathalie
2016-01-01
Atopic dermatitis (AD) is a common skin disease characterized by recurrent pruritic inflammatory skin lesions resulting from structural and immune defects of the skin barrier. Previous studies have shown the clinical efficacy of Avène thermal spring water in AD, and a new microorganism, Aquaphilus dolomiae was suspected to contribute to these unique properties. The present study evaluated the anti-inflammatory, antipruritic, and immunomodulatory properties of ES0, an original biological extract of A. dolomiae , in immune and inflammatory cell models in order to assess its potential use in the treatment of AD. An ES0 extract containing periplasmic and membrane proteins, peptides, lipopolysaccharides, and exopolysaccharides was obtained from A. dolomiae. The effects of the extract on pruritus and inflammatory mediators and immune mechanisms were evaluated by using various AD cell models and assays. In a keratinocyte model, ES0 inhibited the expression of the inflammatory mediators, thymic stromal lymphopoietin, interleukin (IL)-18, IL-4R, IL-8, monocyte chemoattractant protein-3, macrophage inflammatory protein-3α, and macrophage-derived chemokine and induced the expression of involucrin, which is involved in skin barrier keratinocyte terminal differentiation. In addition, ES0 inhibited protease-activated receptor-2 activation in HaCaT human keratinocytes stimulated by stratum corneum tryptic enzyme and T helper type (Th) 1, Th2, and Th17 cytokine production in Staphylococcal enterotoxin B-stimulated CD4+ lymphocytes. Lastly, ES0 markedly activated innate immunity through toll-like receptor (TLR) 2, TLR4, and TLR5 activation (in recombinant human embryonic kidney 293 cells) and through antimicrobial peptide induction (psoriasin, human beta-defensin-2, and cathelicidin), mainly through TLR5 activation (in normal human keratinocytes). Overall, these in vitro results confirm the marked regulatory activity of this A. dolomiae extract on inflammatory and immune responses, which may be of value by virtue of its potential as an adjunctive treatment of AD inflammatory and pruritic lesions.
Closed-chamber transepidermal water loss measurement: microclimate, calibration and performance.
Imhof, R E; De Jesus, M E P; Xiao, P; Ciortea, L I; Berg, E P
2009-04-01
The importance of transepidermal water loss (TEWL) as a measure of the skin barrier is well recognized. Currently, the open-chamber method is dominant, but it is increasingly challenged by newer closed-chamber technologies. Whilst there is familiarity with open-chamber characteristics, there is uncertainty about the capabilities of the challengers. The main issues are related to how microclimate affects TEWL measurements. The aim of this paper is to provide a framework for understanding the effects of microclimate on TEWL measurement. Part of the problem is that TEWL measurement is indirect. TEWL is the diffusion of condensed water through the stratum corneum (SC), whereas TEWL methods measure water vapour flux in the air above the SC. This vapour flux depends on (i) the rate of supply of water to the skin surface and (ii) the rate of evaporation of water from the skin surface. Rate (i) is a skin property (TEWL), rate (ii) is a microclimate property. The controlling rate for the combined process is the lower of the above two rates. Therefore, TEWL instruments measure TEWL only when TEWL is the rate-limiting process. Another problem is that SC barrier property and SC hydration are affected by the microclimate adjacent to the skin surface. This is discussed insofar as it affects the measurement of TEWL. The conclusion is that such changes occur on a timescale that is long compared with TEWL measurement times. An important aspect of TEWL measurement is calibration. We present an analysis of the traditional wet-cup method and a new droplet method that is traceable and has been independently verified by a standards laboratory. Finally, we review performance indicators of commercial closed-chamber instruments with reference to open-chamber instruments. The main findings are that TEWL readings correlate well, but there are significant differences in the other aspects of performance.
Xie, Feng; Chai, Jia-Ke; Hu, Quan; Yu, Yong-Hui; Ma, Li; Liu, Ling-Ying; Zhang, Xu-Long; Li, Bai-Ling; Zhang, Dong-Hai
2016-06-30
The aim of the present study was to investigate the potential application of (+)-camphor as a penetration enhancer for the transdermal delivery of drugs with differing lipophilicity. The skin irritation of camphor was evaluated by in vitro cytotoxicity assays and in vivo transdermal water loss (TEWL) measurements. A series of model drugs with a wide span of lipophilicity (logP value ranging from 3.80 to -0.95), namely indometacin, lidocaine, aspirin, antipyrine, tegafur and 5-fluorouracil, were tested using in vitro transdermal permeation experiments to assess the penetration-enhancing profile of camphor. Meanwhile, the in vivo skin microdialysis was carried out to further investigate the enhancing effect of camphor on the lipophilic and hydrophilic model drugs (i.e. lidocaine and tegafur). SC (stratum corneum)/vehicle partition coefficient and Fourier transform infrared spectroscopy (FTIR) were performed to probe the regulation action of camphor in the skin permeability barrier. It was found that camphor produced a relatively low skin irritation, compared with the frequently-used and standard penetration enhancer laurocapram. In vitro skin permeation studies showed that camphor could significantly facilitate the transdermal absorption of model drugs with differing lipophilicity, and the penetration-enhancing activities were in a parabola curve going downwards with the drug logP values, which displayed the optimal penetration-enhancing efficiency for the weak lipophilic or hydrophilic drugs (an estimated logP value of 0). In vivo skin microdialysis showed that camphor had a similar penetration behavior on transdermal absorption of model drugs. Meanwhile, the partition of lipophilic drugs into SC was increased after treatment with camphor, and camphor also produced a shift of CH2 vibration of SC lipid to higher wavenumbers and decreased the peak area of the CH2 vibration, probably resulting in the alteration of the skin permeability barrier. This suggests that camphor might be a safe and effective penetration enhancer for transdermal drug delivery. Copyright © 2016 Elsevier B.V. All rights reserved.
Functions of an engineered barrier system for a nuclear waste repository in basalt
NASA Astrophysics Data System (ADS)
Coons, W. E.; Moore, E. L.; Smith, M. J.; Kaser, J. D.
1980-01-01
The functions of components selected for an engineered barrier system for a nuclear waste repository in basalt are defined providing a focal point for barrier material research and development by delineating the purpose and operative lifetime of each component of the engineered system. A five component system (comprised of waste form, canister, buffer, overpack, and tailored backfill) is discussed. Redundancy is provided by subsystems of physical and chemical barriers which act in concert with the geology to provide a formidable barrier to transport of hazardous materials to the biosphere. The barrier system is clarified by examples pertinent to storage in basalt, and a technical approach to barrier design and material selection is proposed.
Weiner, N; Williams, N; Birch, G; Ramachandran, C; Shipman, C; Flynn, G
1989-01-01
The topical delivery of liposomally encapsulated interferon was evaluated in the cutaneous herpes simplex virus guinea pig model. Application of liposomally entrapped interferon caused a reduction of lesion scores, whereas application of interferon formulated as a solution or as an emulsion was ineffective. The method of liposomal preparation rather than the lipid composition of the bilayers appeared to be the most important factor for reducing lesion scores. Only liposomes prepared by the dehydration-rehydration method were effective. This finding implied that the dehydration and subsequent rehydration of the liposomes facilitate partitioning of the interferon into liposomal bilayers, where the drug is positioned for transfer into the lipid compartment of the stratum corneum. Liposomes do not appear to function as permeation enhancers but seem to provide the needed physicochemical environment for transfer of interferon into the skin. PMID:2802550
Aldwaikat, Mai; Alarjah, Mohammed
2015-01-01
Ultrasound temporally increases skin permeability by altering stratum corneum SC function (sonophoresis). The objective of this study was to evaluate the effect of variable ultrasound conditions on the permeation of diclofenac sodium DS with range of physicochemical properties through EpiDerm™. Permeation studies were carried out in vitro using Franz diffusion cell. HPLC method was used for the determination of the concentration of diclofenac sodium in receiving compartment. Parameters like ultrasound frequency, application time, amplitude, and mode of sonication and distance of ultrasound horn from skin were investigated, and the conditions where the maximum enhancement rate obtained were determined. Application of ultrasound enhanced permeation of diclofenac sodium across EpiDerm™ by fivefolds. The most effective enhancing parameters were power sonication of 20kHz frequency, 20% amplitude at continuous mode for 5min. Copyright © 2014. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Hermsmeier, Maiko; Sawant, Tanvee; Lac, Diana; Yamamoto, Akira; Chen, Xin; Nagavarapu, Usha; Evans, Conor L.; Chan, Kin Foong
2017-02-01
Minocycline is an antibiotic regularly prescribed to treat acne vulgaris. The only commercially available minocycline comes in an oral dosage form, which often results in systemic adverse effects. A topical minocycline composition (BPX-01) was developed to provide localized and targeted delivery to the epidermis and pilosebaceous unit where acne-related bacteria, Propionibacterium acnes (P. acnes), reside. As minocycline is a known fluorophore, fluorescence microscopy was performed to investigate its potential use in visualizing minocycline distribution within tissues. BPX-01 with various concentrations of minocycline, was applied topically to freshly excised human facial skin specimens. Spatial distribution of minocycline and its fluorescence intensity within the stratum corneum, epidermis, dermis, and pilosebaceous unit were assessed. The resulting fluorescence intensity data as a function of minocycline concentration may indicate clinically relevant therapeutic doses of topical BPX-01 needed to kill P. acnes and reduce inflammation for successful clinical outcomes.
Wagner, Matthieu; Mavon, Alain; Haidara, Hamidou; Vallat, Marie-France; Duplan, Hélène; Roucoules, Vincent
2012-02-01
Despite of its complex multicomponent organization and its compact architecture, the Stratum corneum (SC) is not completely impermeable to substances directly applied on the skin surface. A huge number of works have been dedicated to the understanding of the mechanisms involved in substance permeation by exploring deeper layers than the SC itself. Surprisingly, there is a poor interest in studies relating to interactions which may occur in the near-surface region (i.e. approximately 1 nm depth) of the SC. In this work, equilibrium proton-transfer reactions have been used as probes to define in a fundamental point of view the nature of the SC interactions with its environment. Such titration curves are investigated on 'in vitro' SC (isolated SC from abdominal skin tissue) and on 'in vivo' volar forearm (a sebum poor area). The results are discussed in term of work of adhesion and surface pKa values. Because SC can 'reconstruct' under heating, influence of the temperature on titration curves is investigated and the role of the different components is discussed. Different sigmoidal transitions were observed. Two common pKa values (pKa(1) = 4 and pKa(2) = 11.5) were clearly identified in both cases and associated to an acid-base character. By playing with the temperature of 'in vitro' SC, the 'accessibility' of polar functions was increased, thus refining the results by revealing an amphoteric character with an acid-to-base transition at pH 3.5 and two acid transitions at pH = 6.5 and pH = 11.5. Adhesion forces between an Atomic Force Microscopy (AFM) tip and a single isolated corneocyte through buffered liquid media were also investigated to better understand the role of the individual corneocytes. © 2011 The Authors. ICS © 2011 Society of Cosmetic Scientists and the Société Française de Cosmétologie.
Multidimensionally constrained relativistic mean-field study of triple-humped barriers in actinides
NASA Astrophysics Data System (ADS)
Zhao, Jie; Lu, Bing-Nan; Vretenar, Dario; Zhao, En-Guang; Zhou, Shan-Gui
2015-01-01
Background: Potential energy surfaces (PES's) of actinide nuclei are characterized by a two-humped barrier structure. At large deformations beyond the second barrier, the occurrence of a third barrier was predicted by macroscopic-microscopic model calculations in the 1970s, but contradictory results were later reported by a number of studies that used different methods. Purpose: Triple-humped barriers in actinide nuclei are investigated in the framework of covariant density functional theory (CDFT). Methods: Calculations are performed using the multidimensionally constrained relativistic mean field (MDC-RMF) model, with the nonlinear point-coupling functional PC-PK1 and the density-dependent meson exchange functional DD-ME2 in the particle-hole channel. Pairing correlations are treated in the BCS approximation with a separable pairing force of finite range. Results: Two-dimensional PES's of 226,228,230,232Th and 232,235,236,238U are mapped and the third minima on these surfaces are located. Then one-dimensional potential energy curves along the fission path are analyzed in detail and the energies of the second barrier, the third minimum, and the third barrier are determined. The functional DD-ME2 predicts the occurrence of a third barrier in all Th nuclei and 238U . The third minima in 230 ,232Th are very shallow, whereas those in 226 ,228Th and 238U are quite prominent. With the functional PC-PK1 a third barrier is found only in 226 ,228 ,230Th . Single-nucleon levels around the Fermi surface are analyzed in 226Th, and it is found that the formation of the third minimum is mainly due to the Z =90 proton energy gap at β20≈1.5 and β30≈0.7 . Conclusions: The possible occurrence of a third barrier on the PES's of actinide nuclei depends on the effective interaction used in multidimensional CDFT calculations. More pronounced minima are predicted by the DD-ME2 functional, as compared to the functional PC-PK1. The depth of the third well in Th isotopes decreases with increasing neutron number. The origin of the third minimum is due to the proton Z =90 shell gap at relevant deformations.
The Drosophila blood-brain barrier: development and function of a glial endothelium.
Limmer, Stefanie; Weiler, Astrid; Volkenhoff, Anne; Babatz, Felix; Klämbt, Christian
2014-01-01
The efficacy of neuronal function requires a well-balanced extracellular ion homeostasis and a steady supply with nutrients and metabolites. Therefore, all organisms equipped with a complex nervous system developed a so-called blood-brain barrier, protecting it from an uncontrolled entry of solutes, metabolites or pathogens. In higher vertebrates, this diffusion barrier is established by polarized endothelial cells that form extensive tight junctions, whereas in lower vertebrates and invertebrates the blood-brain barrier is exclusively formed by glial cells. Here, we review the development and function of the glial blood-brain barrier of Drosophila melanogaster. In the Drosophila nervous system, at least seven morphologically distinct glial cell classes can be distinguished. Two of these glial classes form the blood-brain barrier. Perineurial glial cells participate in nutrient uptake and establish a first diffusion barrier. The subperineurial glial (SPG) cells form septate junctions, which block paracellular diffusion and thus seal the nervous system from the hemolymph. We summarize the molecular basis of septate junction formation and address the different transport systems expressed by the blood-brain barrier forming glial cells.
Lee, Ji-Hae; Choi, Chang Soon; Bae, Il-Hong; Choi, Jin Kyu; Park, Young-Ho; Park, Miyoung
2018-04-30
Although it is established that epidermal barrier disturbance and immune dysfunction resulting in IgE sensitization are critical factors in the development of cutaneous inflammation, the pathogenesis and targeted therapy of atopic dermatitis (AD)-specific pathways have still been unknown. Taking into account the fact that Th2 cytokines in AD have both unique and overlapping functions including increased epidermal thickening, inflammation, and decreased expressing of the barrier proteins keratinocyte differentiation, we sought to clarify our hypothesis that TRPV1 antagonist plays a critical role in skin barrier function and can be a therapeutic target for AD. AD-like dermatitis was induced in hairless mice by repeated oxazolone (Ox) challenges to hairless mice. The functional studies concerning skin barrier function, anti-inflammatory action, and molecular mechanism by TRPV1 antagonism were conducted by histopathological assays, ELISA, qPCR, western blotting, and skin blood flow measurement. Topically administered TRPV1 antagonist, PAC-14028 (Asivatrep: C 21 H 22 F 5 N 3 O 3 S), improved AD-like dermatitis and skin barrier functions, and restored the expression of epidermal differentiation markers. In addition, the PAC-14028 cream significantly inhibited cutaneous inflammation by decreasing the expression of serum IgE, and the epidermal expression of IL-4, and IL-13 in Ox-AD mice. These results may provide a novel insight into the molecular mechanism of PAC-14028 cream involved in anti-inflammatory effects and skin barrier functions by suppressing the multiple signaling pathways including IL-4/-13-mediated activation of JAK/STAT, TRPV1, and neuropeptides. PAC-14028 cream can be a potential therapeutic tool for the treatment of chronic inflammation and disrupted barrier function in patients with AD. Copyright © 2018 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.
Effects of Fe particle irradiation on human endothelial barrier structure and function
NASA Astrophysics Data System (ADS)
Sharma, Preety; Guida, Peter; Grabham, Peter
2014-07-01
Space travel involves exposure to biologically effective heavy ion radiation and there is consequently a concern for possible degenerative disorders in humans. A significant target for radiation effects is the microvascular system, which is crucial to healthy functioning of the tissues. Its pathology is linked to disrupted endothelial barrier function and is not only a primary event in a range of degenerative diseases but also an important influencing factor in many others. Thus, an assessment of the effects of heavy ion radiation on endothelial barrier function would be useful for estimating the risks of space travel. This study was aimed at understanding the effects of high LET Fe particles (1 GeV/n) and is the first investigation of the effects of charged particles on the function of the human endothelial barrier. We used a set of established and novel endpoints to assess barrier function after exposure. These include, trans-endothelial electrical resistance (TEER), morphological effects, localization of adhesion and cell junction proteins (in 2D monolayers and in 3D tissue models), and permeability of molecules through the endothelial barrier. A dose of 0.50 Gy was sufficient to cause a progressive reduction in TEER measurements that were significant 48 hours after exposure. Concurrently, there were morphological changes and a 14% loss of cells from monolayers. Gaps also appeared in the normally continuous cell-border localization of the tight junction protein - ZO-1 but not the Platelet endothelial cell adhesion molecule (PECAM-1) in both monolayers and in 3D vessel models. Disruption of barrier function was confirmed by increased permeability to 3 kDa and 10 kDa dextran molecules. A dose of 0.25 Gy caused no detectible change in cell number, morphology, or TEER, but did cause barrier disruption since there were gaps in the cell border localization of ZO-1 and an increased permeability to 3 kDa dextran. These results indicate that Fe particles potently have impact on human endothelial barrier function and represent a risk for degenerative diseases in the space environment.
Apoplastic Diffusion Barriers in Arabidopsis
Schreiber, Lukas; Franke, Rochus Benni; Geldner, Niko; Reina-Pinto, José J.; Kunst, Ljerka
2013-01-01
During the development of Arabidopsis and other land plants, diffusion barriers are formed in the apoplast of specialized tissues within a variety of plant organs. While the cuticle of the epidermis is the primary diffusion barrier in the shoot, the Casparian strips and suberin lamellae of the endodermis and the periderm represent the diffusion barriers in the root. Different classes of molecules contribute to the formation of extracellular diffusion barriers in an organ- and tissue-specific manner. Cutin and wax are the major components of the cuticle, lignin forms the early Casparian strip, and suberin is deposited in the stage II endodermis and the periderm. The current status of our understanding of the relationships between the chemical structure, ultrastructure and physiological functions of plant diffusion barriers is discussed. Specific aspects of the synthesis of diffusion barrier components and protocols that can be used for the assessment of barrier function and important barrier properties are also presented. PMID:24465172
2012-01-01
Background Linaclotide has been proposed as a treatment for the same gastrointestinal indications for which lubiprostone has been approved, chronic idiopathic constipation and irritable bowel syndrome with constipation. Stressors damage the epithelial cell barrier and cellular homeostasis leading to loss of these functions. Effects of active linaclotide on repair of barrier and cell function in pig jejunum after ischemia and in T84 cells after treatment with proinflammatory cytokines, interferon-γ and tumor necrosis factor-α were examined. Comparison with effects of lubiprostone, known to promote repair of barrier function was carried out. Results In ischemia-damaged pig jejunum, using measurements of transepithelial resistance, 3H-mannitol fluxes, short-circuit current (Cl− secretion) and occludin localization, active linaclotide failed to effectively promote repair of the epithelial barrier or recovery of short-circuit current, whereas lubiprostone promoted barrier repair and increased short-circuit current. In control pig jejunum, 1 μM linaclotide and 1 μM lubiprostone both caused similar increases in short-circuit current (Cl− secretion). In T84 cells, using measurements of transepithelial resistance, fluxes of fluorescent macromolecules, occludin and mitochondrial membrane potential, active linaclotide was virtually ineffective against damage caused by interferon-γ and tumor necrosis factor-α, while lubiprostone protected or promoted repair of epithelial barrier and cell function. Barrier protection/repair by lubiprostone was inhibited by methadone, a ClC-2 inhibitor. Linaclotide, but not lubiprostone increased [cGMP]i as expected and [Ca2+]i and linaclotide depolarized while lubiprostone hyperpolarized the T84 plasma membrane potential suggesting that lubiprostone may lead to greater cellular stability compared to linaclotide. In T84 cells, as found with linaclotide but not with lubiprostone, transepithelial resistance was slightly but significantly decreased by guanylin, STa and 8-bromo cGMP and fluorescent dextran fluxes were increased by guanylin. However the physiological implications of these small but statistically significant changes remain unclear. Conclusions Considering the physiological importance of epithelial barrier function and cell integrity and the known impact of stressors, the finding that lubiprostone, but not active linaclotide, exhibits the additional distinct property of effective protection or repair of the epithelial barrier and cell function after stress suggests potential clinical importance for patients with impaired or compromised barrier function such as might occur in IBS. PMID:22553939
Cuppoletti, John; Blikslager, Anthony T; Chakrabarti, Jayati; Nighot, Prashant K; Malinowska, Danuta H
2012-05-03
Linaclotide has been proposed as a treatment for the same gastrointestinal indications for which lubiprostone has been approved, chronic idiopathic constipation and irritable bowel syndrome with constipation. Stressors damage the epithelial cell barrier and cellular homeostasis leading to loss of these functions. Effects of active linaclotide on repair of barrier and cell function in pig jejunum after ischemia and in T84 cells after treatment with proinflammatory cytokines, interferon-γ and tumor necrosis factor-α were examined. Comparison with effects of lubiprostone, known to promote repair of barrier function was carried out. In ischemia-damaged pig jejunum, using measurements of transepithelial resistance, (3)H-mannitol fluxes, short-circuit current (Cl(-) secretion) and occludin localization, active linaclotide failed to effectively promote repair of the epithelial barrier or recovery of short-circuit current, whereas lubiprostone promoted barrier repair and increased short-circuit current. In control pig jejunum, 1 μM linaclotide and 1 μM lubiprostone both caused similar increases in short-circuit current (Cl(-) secretion). In T84 cells, using measurements of transepithelial resistance, fluxes of fluorescent macromolecules, occludin and mitochondrial membrane potential, active linaclotide was virtually ineffective against damage caused by interferon-γ and tumor necrosis factor-α, while lubiprostone protected or promoted repair of epithelial barrier and cell function. Barrier protection/repair by lubiprostone was inhibited by methadone, a ClC-2 inhibitor. Linaclotide, but not lubiprostone increased [cGMP]i as expected and [Ca(2+)]i and linaclotide depolarized while lubiprostone hyperpolarized the T84 plasma membrane potential suggesting that lubiprostone may lead to greater cellular stability compared to linaclotide. In T84 cells, as found with linaclotide but not with lubiprostone, transepithelial resistance was slightly but significantly decreased by guanylin, STa and 8-bromo cGMP and fluorescent dextran fluxes were increased by guanylin. However the physiological implications of these small but statistically significant changes remain unclear. Considering the physiological importance of epithelial barrier function and cell integrity and the known impact of stressors, the finding that lubiprostone, but not active linaclotide, exhibits the additional distinct property of effective protection or repair of the epithelial barrier and cell function after stress suggests potential clinical importance for patients with impaired or compromised barrier function such as might occur in IBS.