Sample records for coronary vascular dysfunction

  1. Low-intensity interval exercise training attenuates coronary vascular dysfunction and preserves Ca²⁺-sensitive K⁺ current in miniature swine with LV hypertrophy.

    PubMed

    Emter, Craig A; Tharp, Darla L; Ivey, Jan R; Ganjam, Venkataseshu K; Bowles, Douglas K

    2011-10-01

    Coronary vascular dysfunction has been observed in several models of heart failure (HF). Recent evidence indicates that exercise training is beneficial for patients with HF, but the precise intensity and underlying mechanisms are unknown. Left ventricular (LV) hypertrophy can play a significant role in the development of HF; therefore, the purpose of this study was to assess the effects of low-intensity interval exercise training on coronary vascular function in sedentary (HF) and exercise trained (HF-TR) aortic-banded miniature swine displaying LV hypertrophy. Six months postsurgery, in vivo coronary vascular responses to endothelin-1 (ET-1) and adenosine were measured in the left anterior descending coronary artery. Baseline and maximal coronary vascular conductance were similar between all groups. ET-1-induced reductions in coronary vascular conductance (P < 0.05) were greater in HF vs. sedentary control and HF-TR groups. Pretreatment with the ET type A (ET(A)) receptor blocker BQ-123 prevented ET-1 hypersensitivity in HF animals. Whole cell voltage clamp was used to characterize composite K(+) currents (I(K(+))) in coronary smooth muscle cells. Raising internal Ca(2+) from 200 to 500 nM increased Ca(2+)-sensitive K(+) current in HF-TR and control, but not HF animals. In conclusion, an ET(A)-receptor-mediated hypersensitivity to ET-1, elevated resting LV wall tension, and decreased coronary smooth muscle cell Ca(2+)-sensitive I(K(+)) was found in sedentary animals with LV hypertrophy. Low-intensity interval exercise training preserved normal coronary vascular function and smooth muscle cell Ca(2+)-sensitive I(K(+)), illustrating a potential mechanism underlying coronary vascular dysfunction in a large-animal model of LV hypertrophy. Our results demonstrate the potential clinical impact of exercise on coronary vascular function in HF patients displaying pathological LV hypertrophy.

  2. Low-intensity interval exercise training attenuates coronary vascular dysfunction and preserves Ca2+-sensitive K+ current in miniature swine with LV hypertrophy

    PubMed Central

    Tharp, Darla L.; Ivey, Jan R.; Ganjam, Venkataseshu K.; Bowles, Douglas K.

    2011-01-01

    Coronary vascular dysfunction has been observed in several models of heart failure (HF). Recent evidence indicates that exercise training is beneficial for patients with HF, but the precise intensity and underlying mechanisms are unknown. Left ventricular (LV) hypertrophy can play a significant role in the development of HF; therefore, the purpose of this study was to assess the effects of low-intensity interval exercise training on coronary vascular function in sedentary (HF) and exercise trained (HF-TR) aortic-banded miniature swine displaying LV hypertrophy. Six months postsurgery, in vivo coronary vascular responses to endothelin-1 (ET-1) and adenosine were measured in the left anterior descending coronary artery. Baseline and maximal coronary vascular conductance were similar between all groups. ET-1-induced reductions in coronary vascular conductance (P < 0.05) were greater in HF vs. sedentary control and HF-TR groups. Pretreatment with the ET type A (ETA) receptor blocker BQ-123 prevented ET-1 hypersensitivity in HF animals. Whole cell voltage clamp was used to characterize composite K+ currents (IK+) in coronary smooth muscle cells. Raising internal Ca2+ from 200 to 500 nM increased Ca2+-sensitive K+ current in HF-TR and control, but not HF animals. In conclusion, an ETA-receptor-mediated hypersensitivity to ET-1, elevated resting LV wall tension, and decreased coronary smooth muscle cell Ca2+-sensitive IK+ was found in sedentary animals with LV hypertrophy. Low-intensity interval exercise training preserved normal coronary vascular function and smooth muscle cell Ca2+-sensitive IK+, illustrating a potential mechanism underlying coronary vascular dysfunction in a large-animal model of LV hypertrophy. Our results demonstrate the potential clinical impact of exercise on coronary vascular function in HF patients displaying pathological LV hypertrophy. PMID:21841018

  3. Neutrophil subsets and their gene signature associate with vascular inflammation and coronary atherosclerosis in lupus

    PubMed Central

    Carlucci, Philip M.; Purmalek, Monica M.; Dey, Amit K.; Temesgen-Oyelakin, Yenealem; Sakhardande, Simantini; Joshi, Aditya A.; Lerman, Joseph B.; Fike, Alice; Davis, Michael; Chung, Jonathan H.; Playford, Martin P.; Naqi, Mohammad; Mistry, Pragnesh; Gutierrez-Cruz, Gustavo; Dell’Orso, Stefania; Naz, Faiza; Salahuddin, Taufiq; Natarajan, Balaji; Tsai, Wanxia L.; Gupta, Sarthak; Grayson, Peter; Chen, Marcus Y.; Sun, Hong-Wei; Hasni, Sarfaraz; Mehta, Nehal N.

    2018-01-01

    BACKGROUND. Systemic lupus erythematosus (SLE) is associated with enhanced risk of atherosclerotic cardiovascular disease not explained by Framingham risk score (FRS). Immune dysregulation associated to a distinct subset of lupus proinflammatory neutrophils (low density granulocytes; LDGs) may play key roles in conferring enhanced CV risk. This study assessed if lupus LDGs are associated with in vivo vascular dysfunction and inflammation and coronary plaque. METHODS. SLE subjects and healthy controls underwent multimodal phenotyping of vascular disease by quantifying vascular inflammation (18F-fluorodeoxyglucose–PET/CT [18F-FDG–PET/CT]), arterial dysfunction (EndoPAT and cardio-ankle vascular index), and coronary plaque burden (coronary CT angiography). LDGs were quantified by flow cytometry. Cholesterol efflux capacity was measured in high-density lipoprotein–exposed (HDL-exposed) radioactively labeled cell lines. Whole blood RNA sequencing was performed to assess associations between transcriptomic profiles and vascular phenotype. RESULTS. Vascular inflammation, arterial stiffness, and noncalcified plaque burden (NCB) were increased in SLE compared with controls even after adjustment for traditional risk factors. In SLE, NCB directly associated with LDGs and associated negatively with cholesterol efflux capacity in fully adjusted models. A neutrophil gene signature reflective of the most upregulated genes in lupus LDGs associated with vascular inflammation and NCB. CONCLUSION. Individuals with SLE demonstrate vascular inflammation, arterial dysfunction, and NCB, which may explain the higher reported risk for acute coronary syndromes. The association of LDGs and neutrophil genes with vascular disease supports the hypothesis that distinct neutrophil subsets contribute to vascular damage and unstable coronary plaque in SLE. Results also support previous observations that neutrophils may disrupt HDL function and thereby promote atherogenesis. TRIAL REGISTRATION. Clinicaltrials.gov NCT00001372 FUNDING. Intramural Research Program NIAMS/NIH (ZIA AR041199) and Lupus Research Institute PMID:29669944

  4. Coronary microvascular dysfunction in diabetes mellitus

    PubMed Central

    Selthofer-Relatic, Kristina; Drenjancevic, Ines; Bacun, Tatjana; Bosnjak, Ivica; Kibel, Dijana; Gros, Mario

    2017-01-01

    The significance, mechanisms and consequences of coronary microvascular dysfunction associated with diabetes mellitus are topics into which we have insufficient insight at this time. It is widely recognized that endothelial dysfunction that is caused by diabetes in various vascular beds contributes to a wide range of complications and exerts unfavorable effects on microcirculatory regulation. The coronary microcirculation is precisely regulated through a number of interconnected physiological processes with the purpose of matching local blood flow to myocardial metabolic demands. Dysregulation of this network might contribute to varying degrees of pathological consequences. This review discusses the most important findings regarding coronary microvascular dysfunction in diabetes from pre-clinical and clinical perspectives. PMID:28643578

  5. Quantification of coronary flow reserve in patients with ischaemic and non-ischaemic cardiomyopathy and its association with clinical outcomes.

    PubMed

    Majmudar, Maulik D; Murthy, Venkatesh L; Shah, Ravi V; Kolli, Swathy; Mousavi, Negareh; Foster, Courtney R; Hainer, Jon; Blankstein, Ron; Dorbala, Sharmila; Sitek, Arkadiusz; Stevenson, Lynne W; Mehra, Mandeep R; Di Carli, Marcelo F

    2015-08-01

    Patients with left ventricular systolic dysfunction frequently show abnormal coronary vascular function, even in the absence of overt coronary artery disease. Moreover, the severity of vascular dysfunction might be related to the aetiology of cardiomyopathy.We sought to determine the incremental value of assessing coronary vascular dysfunction among patients with ischaemic (ICM) and non-ischaemic (NICM) cardiomyopathy at risk for adverse cardiovascular outcomes. Coronary flow reserve (CFR, stress/rest myocardial blood flow) was quantified in 510 consecutive patients with rest left ventricular ejection fraction (LVEF) ≤45% referred for rest/stress myocardial perfusion PET imaging. The primary end point was a composite of major adverse cardiovascular events (MACE) including cardiac death, heart failure hospitalization, late revascularization, and aborted sudden cardiac death.Median follow-up was 8.2 months. Cox proportional hazards model was used to adjust for clinical variables. The annualized MACE rate was 26.3%. Patients in the lowest two tertiles of CFR (CFR ≤ 1.65) experienced higher MACE rates than those in the highest tertile (32.6 vs. 15.5% per year, respectively, P = 0.004), irrespective of aetiology of cardiomyopathy. Impaired coronary vascular function, as assessed by reduced CFR by PET imaging, is common in patients with both ischaemic and non-ischaemic cardiomyopathy and is associated with MACE. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  6. Comprehensive assessment of impaired peripheral and coronary artery endothelial functions in smokers using brachial artery ultrasound and oxygen-15-labeled water PET.

    PubMed

    Ochi, Noriki; Yoshinaga, Keiichiro; Ito, Yoichi M; Tomiyama, Yuuki; Inoue, Mamiko; Nishida, Mutsumi; Manabe, Osamu; Shibuya, Hitoshi; Shimizu, Chikara; Suzuki, Eriko; Fujii, Satoshi; Katoh, Chietsugu; Tamaki, Nagara

    2016-10-01

    Comprehensive evaluation of endothelium-dependent and endothelium-independent vascular functions in peripheral arteries and coronary arteries in smokers has never been performed previously. Through the use of brachial artery ultrasound and oxygen-15-labeled water positron emission tomography (PET), we sought to investigate peripheral and coronary vascular dysfunctions in smokers. Eight smokers and 10 healthy individuals underwent brachial artery ultrasound at rest, during reactive hyperemia [250mmHg cuff occlusion (flow-mediated dilatation (FMD)], and following sublingual nitroglycerin (NTG) administration. Myocardial blood flow (MBF) was assessed through O-15-labeled water PET at rest, during adenosine triphosphate (ATP) administration, and during a cold pressor test (CPT). Through ultrasound, smokers were shown to have significantly reduced %FMD compared to controls (6.62±2.28% vs. 11.29±2.75%, p=0.0014). As assessed by O-15-labeled water PET, smokers were shown to have a significantly lower CPT response than were controls (21.1±9.5% vs. 50.9±16.9%, p=0.0004). There was no relationship between %FMD and CPT response (r=0.40, p=0.097). Endothelium-independent vascular dilatation was similar for both groups in terms of coronary flow reserve with PET (p=0.19). Smokers tended to have lower %NTG in the brachial artery (p=0.055). Smokers exhibited impaired coronary endothelial function as well as peripheral brachial artery endothelial function. In addition, there was no correlation between PET and ultrasound measurements, possibly implying that while smokers may have systemic vascular endothelial dysfunction, the characteristics of that dysfunction may be different in peripheral arteries and coronary arteries. Copyright © 2016. Published by Elsevier Ltd.

  7. Inhibition of endoplasmic reticulum stress improves coronary artery function in type 2 diabetic mice.

    PubMed

    Choi, Soo-Kyoung; Lim, Mihwa; Yeon, Soo-In; Lee, Young-Ho

    2016-06-01

    What is the central question of this study? Endoplasmic reticulum (ER) stress has been reported to be involved in type 2 diabetes; however, the role of exacerbated ER stress in vascular dysfunction in type 2 diabetes remains unknown. What is the main finding and its importance? The main findings of this study are that ER stress is increased in the coronary arteries in type 2 diabetes, and inhibition of ER stress using taurine-conjugated ursodeoxycholic acid improves vascular function, which is associated with normalization of the myogenic response and endothelium-dependent relaxation. Vascular dysfunction is a major complication in type 2 diabetes. Although endoplasmic reticulum (ER) stress has been suggested to be a contributory factor in cardiovascular diseases, the relationship between ER stress and vascular dysfunction in type 2 diabetes remains unclear. Thus, in the present study, we examined whether ER stress contributes to coronary artery dysfunction and whether inhibition of ER stress ameliorates vascular function in type 2 diabetes. Type 2 diabetic mice and their control counterparts were treated with an ER stress inhibitor (taurine-conjugated ursodeoxycholic acid, 150 mg kg(-1)  day(-1) , by i.p. injection) for 2 weeks or not treated. The myogenic response and endothelium-dependent relaxation were measured in pressurized coronary arteries. In type 2 diabetic mice, blood glucose and body weight were elevated compared with control mice. The myogenic response was potentiated and endothelium-dependent relaxation impaired in coronary arteries from the type 2 diabetic mice. Interestingly, treatment with the ER stress inhibitor normalized the myogenic responses and endothelium-dependent relaxation. These data were associated with an increase in ER stress marker expression or phosphorylation (IRE1-XBP-1 and PERK-eIF2α) in type 2 diabetic mice, which were reduced by treatment with the ER stress inhibitor. Inhibition of ER stress normalizes the myogenic response and improves vascular function in type 2 diabetes. Therefore, ER stress could be a potential target for cardiovascular diseases in diabetes mellitus. © 2016 The Authors. Experimental Physiology © 2016 The Physiological Society.

  8. Osteocalcin expression by circulating endothelial progenitor cells in patients with coronary atherosclerosis.

    PubMed

    Gössl, Mario; Mödder, Ulrike I; Atkinson, Elizabeth J; Lerman, Amir; Khosla, Sundeep

    2008-10-14

    This study was designed to test whether patients with coronary atherosclerosis have increases in circulating endothelial progenitor cells (EPCs) expressing an osteogenic phenotype. Increasing evidence indicates a link between bone and the vasculature, and bone marrow and circulating osteogenic cells have been identified by staining for the osteoblastic marker, osteocalcin (OCN). Endothelial progenitor cells contribute to vascular repair, but repair of vascular injury may result in calcification. Using cell surface markers (CD34, CD133, kinase insert domain receptor [KDR]) to identify EPCs, we examined whether patients with coronary atherosclerosis had increases in the percentage of EPCs expressing OCN. We studied 72 patients undergoing invasive coronary assessment: control patients (normal coronary arteries and no endothelial dysfunction, n = 21) versus 2 groups with coronary atherosclerosis-early coronary atherosclerosis (normal coronary arteries but with endothelial dysfunction, n = 22) and late coronary atherosclerosis (severe, multivessel coronary artery disease, n = 29). Peripheral blood mononuclear cells were analyzed using flow cytometry. Compared with control patients, patients with early or late coronary atherosclerosis had significant increases (approximately 2-fold) in the percentage of CD34+/KDR+ and CD34+/CD133+/KDR+ cells costaining for OCN. Even larger increases were noted in the early and late coronary atherosclerosis patients in the percentage of CD34+/CD133-/KDR+ cells costaining for OCN (5- and 2-fold, p < 0.001 and 0.05, respectively). A higher percentage of EPCs express OCN in patients with coronary atherosclerosis compared with subjects with normal endothelial function and no structural coronary artery disease. These findings have potential implications for the mechanisms of vascular calcification and for the development of novel markers for coronary atherosclerosis.

  9. Nitric Oxide-Mediated Coronary Flow Regulation in Patients with Coronary Artery Disease: Recent Advances

    PubMed Central

    Toda, Noboru; Tanabe, Shinichi; Nakanishi, Sadanobu

    2011-01-01

    Nitric oxide (NO) formed via endothelial NO synthase (eNOS) plays crucial roles in the regulation of coronary blood flow through vasodilatation and decreased vascular resistance, and in inhibition of platelet aggregation and adhesion, leading to the prevention of coronary circulatory failure, thrombosis, and atherosclerosis. Endothelial function is impaired by several pathogenic factors including smoking, chronic alcohol intake, hypercholesterolemia, obesity, hyperglycemia, and hypertension. The mechanisms underlying endothelial dysfunction include reduced NO synthase (NOS) expression and activity, decreased NO bioavailability, and increased production of oxygen radicals and endogenous NOS inhibitors. Atrial fibrillation appears to be a risk factor for endothelial dysfunction. Endothelial dysfunction is an important predictor of coronary artery disease (CAD) in humans. Penile erectile dysfunction, associated with impaired bioavailability of NO produced by eNOS and neuronal NOS, is also considered to be highly predictive of ischemic heart disease. There is evidence suggesting an important role of nitrergic innervation in coronary blood flow regulation. Prophylactic and therapeutic measures to eliminate pathogenic factors inducing endothelial and nitrergic nerve dysfunction would be quite important in preventing the genesis and development of CAD. PMID:22942627

  10. [Endothelial dysfunction as a marker of vascular aging syndrome on the background of hypertension, coronary heart disease, gout and obesity].

    PubMed

    Vatseba, M O

    2013-09-01

    Under observation were 40 hypertensive patients with coronary heart disease, gout and obesity I and II degree. Patients with hypertension in combination with coronary heart disease, gout and obesity, syndrome of early vascular aging is shown by increased stiffness of arteries, increased peak systolic flow velocity, pulse blood presure, the thickness of the intima-media complex, higher level endotelinemia and reduced endothelial vasodilation. Obtained evidence that losartan in complex combination with basic therapy and metamaks in complex combination with basic therapy positively affect the elastic properties of blood vessels and slow the progression of early vascular aging syndrome.

  11. Leptin resistance extends to the coronary vasculature in prediabetic dogs and provides a protective adaptation against endothelial dysfunction.

    PubMed

    Knudson, Jarrod D; Dincer, U Deniz; Dick, Gregory M; Shibata, Haruki; Akahane, Rie; Saito, Masayuki; Tune, Johnathan D

    2005-09-01

    Hyperleptinemia, associated with prediabetes, is an independent risk factor for coronary artery disease and a mediator of coronary endothelial dysfunction. We previously demonstrated that acutely raising the leptin concentration to levels comparable with those observed in human obesity significantly attenuates coronary dilation/relaxation to acetylcholine (ACh) both in vivo in anesthetized dogs and in vitro in isolated canine coronary rings. Accordingly, the purpose of this investigation was to extend these studies to a model of prediabetes with chronic hyperleptinemia. In the present investigation, experiments were conducted on control and high-fat-fed dogs. High-fat feeding caused a significant increase (131%) in plasma leptin concentration. Furthermore, in high-fat-fed dogs, exogenous leptin did not significantly alter vascular responses to ACh in vivo or in vitro. Coronary vasodilator responses to ACh (0.3-30.0 microg/min) and sodium nitroprusside (1.0-100.0 microg/min) were not significantly different from those observed in control dogs. Also, high-fat feeding did not induce a switch to an endothelium-derived hyperpolarizing factor as a major mediator of muscarinic coronary vasodilation, because dilation to ACh was abolished by combined pretreatment with N(omega)-nitro-l-arginine methyl ester (150 microg/min ic) and indomethacin (10 mg/kg iv). Quantitative, real-time PCR revealed no significant difference in coronary artery leptin receptor gene expression between control and high-fat-fed dogs. In conclusion, high-fat feeding induces resistance to the coronary vascular effects of leptin, and this represents an early protective adaptation against endothelial dysfunction. The resistance is not due to altered endothelium-dependent or -independent coronary dilation, increased endothelium-derived hyperpolarizing factor, or changes in coronary leptin receptor mRNA levels.

  12. Coronary arterial BK channel dysfunction exacerbates ischemia/reperfusion-induced myocardial injury in diabetic mice.

    PubMed

    Lu, Tong; Jiang, Bin; Wang, Xiao-Li; Lee, Hon-Chi

    2016-09-01

    The large conductance Ca(2+)-activated K(+) (BK) channels, abundantly expressed in coronary artery smooth muscle cells (SMCs), play a pivotal role in regulating coronary circulation. A large body of evidence indicates that coronary arterial BK channel function is diminished in both type 1 and type 2 diabetes. However, the consequence of coronary BK channel dysfunction in diabetes is not clear. We hypothesized that impaired coronary BK channel function exacerbates myocardial ischemia/reperfusion (I/R) injury in streptozotocin-induced diabetic mice. Combining patch-clamp techniques and cellular biological approaches, we found that diabetes facilitated the colocalization of angiotensin II (Ang II) type 1 receptors and BK channel α-subunits (BK-α), but not BK channel β1-subunits (BK-β1), in the caveolae of coronary SMCs. This caveolar compartmentation in vascular SMCs not only enhanced Ang II-mediated inhibition of BK-α but also produced a physical disassociation between BK-α and BK-β1, leading to increased infarct size in diabetic hearts. Most importantly, genetic ablation of caveolae integrity or pharmacological activation of coronary BK channels protected the cardiac function of diabetic mice from experimental I/R injury in both in vivo and ex vivo preparations. Our results demonstrate a vascular ionic mechanism underlying the poor outcome of myocardial injury in diabetes. Hence, activation of coronary BK channels may serve as a therapeutic target for cardiovascular complications of diabetes.

  13. Ameliorating Endothelial Mitochondrial Dysfunction Restores Coronary Function via Transient Receptor Potential Vanilloid 1-Mediated Protein Kinase A/Uncoupling Protein 2 Pathway.

    PubMed

    Xiong, Shiqiang; Wang, Peijian; Ma, Liqun; Gao, Peng; Gong, Liuping; Li, Li; Li, Qiang; Sun, Fang; Zhou, Xunmei; He, Hongbo; Chen, Jing; Yan, Zhencheng; Liu, Daoyan; Zhu, Zhiming

    2016-02-01

    Coronary heart disease arising from atherosclerosis is a leading cause of cardiogenic death worldwide. Mitochondria are the principal source of reactive oxygen species (ROS), and defective oxidative phosphorylation by the mitochondrial respiratory chain contributes to ROS generation. Uncoupling protein 2 (UCP2), an adaptive antioxidant defense factor, protects against mitochondrial ROS-induced endothelial dysfunction in atherosclerosis. The activation of transient receptor potential vanilloid 1 (TRPV1) attenuates vascular dysfunction. Therefore, whether TRPV1 activation antagonizes coronary lesions by alleviating endothelial mitochondrial dysfunction and enhancing the activity of the protein kinase A/UCP2 pathway warrants examination. ApoE(-/-), ApoE(-/-)/TRPV1(-/-), and ApoE(-/-)/UCP2(-/-) mice were fed standard chow, a high-fat diet (HFD), or the HFD plus 0.01% capsaicin. HFD intake profoundly impaired coronary vasodilatation and myocardial perfusion and shortened the survival duration of ApoE(-/-) mice. TRPV1 or UCP2 deficiency exacerbated HFD-induced coronary dysfunction and was associated with increased ROS generation and reduced nitric oxide production in the endothelium. The activation of TRPV1 by capsaicin upregulated UCP2 expression via protein kinase A phosphorylation, thereby alleviating endothelial mitochondrial dysfunction and inhibiting mitochondrial ROS generation. In vivo, dietary capsaicin supplementation enhanced coronary relaxation and prolonged the survival duration of HFD-fed ApoE(-/-) mice. These effects were not observed in ApoE(-/-) mice lacking the TRPV1 or UCP2 gene. The upregulation of protein kinase A /UCP2 via TRPV1 activation ameliorates coronary dysfunction and prolongs the lifespan of atherosclerotic mice by ameliorating endothelial mitochondrial dysfunction. Dietary capsaicin supplementation may represent a promising intervention for the primary prevention of coronary heart disease. © 2015 American Heart Association, Inc.

  14. Lipid Emulsions Containing Medium Chain Triacylglycerols Blunt Bradykinin-Induced Endothelium-Dependent Relaxation in Porcine Coronary Artery Rings.

    PubMed

    Amissi, Said; Boisramé-Helms, Julie; Burban, Mélanie; Rashid, Sherzad K; León-González, Antonio J; Auger, Cyril; Toti, Florence; Meziani, Ferhat; Schini-Kerth, Valérie B

    2017-03-01

    Lipid emulsions for parenteral nutrition are used to provide calories and essential fatty acids for patients. They have been associated with hypertriglyceridemia, hypercholesterolemia, and metabolic stress, which may promote the development of endothelial dysfunction in patients. The aim of the present study was to determine whether five different industrial lipid emulsions may affect the endothelial function of coronary arteries. Porcine coronary artery rings were incubated with lipid emulsions 0.5, 1, or 2% (v/v) for 30 min before the determination of vascular reactivity in organ chambers and the level of oxidative stress using electron paramagnetic resonance. Incubation of coronary artery rings with either Lipidem ® , Medialipid ® containing long- and medium-chain triacylglycerols (LCT/MCT), or SMOFlipid ® containing LCT, MCT, omega-9, and -3, significantly reduced the bradykinin-induced endothelium-dependent relaxation, affecting both the nitric oxide (NO) and endothelium-dependent hyperpolarization (EDH) components, whereas, Intralipid ® containing LCT (soybean oil) and ClinOleic ® containing LCT (soybean and olive oil) did not have such an effect. The endothelial dysfunction induced by Lipidem ® was significantly improved by indomethacin, a cyclooxygenase (COX) inhibitor, inhibitors of oxidative stress (N-acetylcysteine, superoxide dismutase, catalase) and transition metal chelating agents (neocuproine, tetrathiomolybdate, deferoxamine and L-histidine). Lipidem ® significantly increased the arterial level of oxidative stress. The present findings indicate that lipid emulsions containing LCT/MCT induce endothelial dysfunction in coronary artery rings by blunting both NO- and EDH-mediated relaxations. The Lipidem ® -induced endothelial dysfunction is associated with increased vascular oxidative stress and the formation of COX-derived vasoconstrictor prostanoids.

  15. Resistin impairs endothelium-dependent dilation to bradykinin, but not acetylcholine, in the coronary circulation.

    PubMed

    Dick, Gregory M; Katz, Paige S; Farias, Martin; Morris, Michael; James, Jeremy; Knudson, Jarrod D; Tune, Johnathan D

    2006-12-01

    Elevated plasma levels of fat-derived signaling molecules are associated with obesity, vascular endothelial dysfunction, and coronary heart disease; however, little is known about their direct coronary vascular effects. Accordingly, we examined mechanisms by which one adipokine, resistin, affects coronary vascular tone and endothelial function. Studies were conducted in anesthetized dogs and isolated coronary artery rings. Resistin did not change coronary blood flow, mean arterial pressure, or heart rate. Resistin had no effect on acetylcholine-induced relaxation of artery rings; however, resistin did impair bradykinin-induced relaxation. Selective impairment was also observed in vivo, as resistin attenuated vasodilation to bradykinin but not to acetylcholine. Resistin had no effect on dihydroethidium fluorescence, an indicator of superoxide (O(2)(-)) production, and the inhibitory effect of resistin on bradykinin-induced relaxation persisted in the presence of Tempol, a superoxide dismutase mimetic. To determine whether resistin impaired production of and/or responses to nitric oxide (NO) or prostaglandins (e.g., prostacyclin; PGI(2)), we performed experiments with N(omega)-nitro-L-arginine methyl ester (L-NAME) and indomethacin. The effect of resistin to attenuate bradykinin-induced vasodilation persisted in the presence of L-NAME or indomethacin, suggesting resistin may act at a cell signaling point upstream of NO or PGI(2) production. Resistin-induced endothelial dysfunction is not generalized, and it is not consistent with effects mediated by O(2)(-) or interference with NO or PGI(2) signaling. The site of the resistin-induced impairment is unknown but may be at the bradykinin receptor or a closely associated signal transduction machinery proximal to NO synthase or cyclooxygenase.

  16. Vascular endothelial dysfunction in Duchenne muscular dystrophy is restored by bradykinin through upregulation of eNOS and nNOS

    PubMed Central

    Dabiré, Hubert; Barthélémy, Inès; Blanchard-Gutton, Nicolas; Sambin, Lucien; Sampedrano, Carolina Carlos; Gouni, Vassiliki; Unterfinger, Yves; Aguilar, Pablo; Thibaud, Jean-Laurent; Ghaleh, Bijan; Bizé, Alain; Pouchelon, Jean-Louis; Blot, Stéphane; Berdeaux, Alain; Hittinger, Luc; Chetboul, Valérie; Su, Jin Bo

    2012-01-01

    Little is known about the vascular function and expression of endothelial and neuronal nitric oxide synthases (eNOS and nNOS) in Duchenne muscular dystrophy (DMD). Bradykinin is involved in the regulation of eNOS expression induced by angiotensin-converting enzyme inhibitors. We characterized the vascular function and eNOS and nNOS expression in a canine model of DMD and evaluated the effects of chronic bradykinin treatment. Vascular function was examined in conscious golden retriever muscular dystrophy (GRMD) dogs with left ventricular dysfunction (measured by echocardiography) and in isolated coronary arteries. eNOS and nNOS proteins in carotid arteries were measured by western blot and cyclic guanosine monophosphate (cGMP) content was analyzed by radioimmunoassay. Compared with controls, GRMD dogs had an impaired vasodilator response to acetylcholine. In isolated coronary artery, acetylcholine-elicited relaxation was nearly absent in placebo-treated GRMD dogs. This was explained by reduced nNOS and eNOS proteins and cGMP content in arterial tissues. Chronic bradykinin infusion (1 μg/min, 4 weeks) restored in vivo and in vitro vascular response to acetylcholine to the level of control dogs. This effect was NO-mediated through upregulation of eNOS and nNOS expression. In conclusion, this study is the first to demonstrate that DMD is associated with NO-mediated vascular endothelial dysfunction linked to an altered expression of eNOS and nNOS, which can be overcome by bradykinin. PMID:22193759

  17. False Positive Stress Testing: Does Endothelial Vascular Dysfunction Contribute to ST-Segment Depression in Women? A Pilot Study.

    PubMed

    Sharma, Shilpa; Mehta, Puja K; Arsanjani, Reza; Sedlak, Tara; Hobel, Zachary; Shufelt, Chrisandra; Jones, Erika; Kligfield, Paul; Mortara, David; Laks, Michael; Diniz, Marcio; Bairey Merz, C Noel

    2018-06-19

    The utility of exercise-induced ST-segment depression for diagnosing ischemic heart disease (IHD) in women is unclear. Based on evidence that IHD pathophysiology in women involves coronary vascular dysfunction, we hypothesized that coronary vascular dysfunction contributes to exercise electrocardiography (Ex-ECG) ST-depression in the absence of obstructive CAD, so-called "false positive" results. We tested our hypothesis in a pilot study evaluating the relationship between peripheral vascular endothelial function and Ex-ECG. Twenty-nine asymptomatic women without cardiac risk factors underwent maximal Bruce protocol exercise treadmill testing and peripheral endothelial function assessment using peripheral arterial tonometry (Itamar EndoPAT 2000) to measure reactive hyperemia index (RHI). The relationship between RHI and Ex-ECG ST-segment depression was evaluated using logistic regression and differences in subgroups using two-tailed t-tests. Mean age was 54 ± 7 years, body mass index 25 ± 4 kg/m 2 , and RHI 2.51 ± 0.66. Three women (10%) had RHI less than 1.68, consistent with abnormal peripheral endothelial function, while 18 women (62%) met criteria for a positive Ex-ECG based on ST-segment depression in contiguous leads. Women with and without ST-segment depression had similar baseline and exercise vital signs, metabolic equivalents (METS) achieved, and RHI (all p>0.05). RHI did not predict ST-segment depression. Our pilot study demonstrates a high prevalence of exercise-induced ST-segment depression in asymptomatic, middle-aged, overweight women. Peripheral vascular endothelial dysfunction did not predict Ex-ECG ST-segment depression. Further work is needed to investigate the utility of vascular endothelial testing and Ex-ECG for IHD diagnostic and management purposes in women. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  18. The presence of African American race predicts improvement in coronary endothelial function after supplementary L-arginine.

    PubMed

    Houghton, Jan L; Philbin, Edward F; Strogatz, David S; Torosoff, Mikhail T; Fein, Steven A; Kuhner, Patricia A; Smith, Vivienne E; Carr, Albert A

    2002-04-17

    The purpose of our study was to determine if the presence of African American ethnicity modulates improvement in coronary vascular endothelial function after supplementary L-arginine. Endothelial dysfunction is an early stage in the development of coronary atherosclerosis and has been implicated in the pathogenesis of hypertension and cardiomyopathy. Amelioration of endothelial dysfunction has been demonstrated in patients with established coronary atherosclerosis or with risk factors in response to infusion of L-arginine, the precursor of nitric oxide. Racial and gender patterns in L-arginine responsiveness have not, heretofore, been studied. Invasive testing of coronary artery and microvascular reactivity in response to graded intracoronary infusions of acetylcholine (ACh) +/- L-arginine was carried out in 33 matched pairs of African American and white subjects with no angiographic coronary artery disease. Pairs were matched for age, gender, indexed left ventricular mass, body mass index and low-density lipoprotein cholesterol. In addition to the matching parameters, there were no significant differences in peak coronary blood flow (CBF) response to intracoronary adenosine or in the peak CBF response to ACh before L-arginine infusion. However, absolute percentile improvement in CBF response to ACh infusion after L-arginine, as compared with before, was significantly greater among African Americans as a group (45 +/- 10% vs. 4 +/- 6%, p = 0.0016) and after partitioning by gender. The mechanism of this increase was mediated through further reduction in coronary microvascular resistance. L-arginine infusion also resulted in greater epicardial dilator response after ACh among African Americans. We conclude that intracoronary infusion of L-arginine provides significantly greater augmentation of endothelium-dependent vascular relaxation in those of African American ethnicity when compared with matched white subjects drawn from a cohort electively referred for coronary angiography. Our findings suggest that there are target populations in which supplementary L-arginine may be of therapeutic benefit in the amelioration of microvascular endothelial dysfunction. In view of the excess prevalence of cardiomyopathy among African Americans, pharmacologic correction of microcirculatory endothelial dysfunction in this group is an important area of further investigation and may ultimately prove to be clinically indicated.

  19. Peripheral Endothelial Function After Arterial Switch Operation for D-looped Transposition of the Great Arteries.

    PubMed

    Sun, Heather Y; Stauffer, Katie Jo; Nourse, Susan E; Vu, Chau; Selamet Tierney, Elif Seda

    2017-06-01

    Coronary artery re-implantation during arterial switch operation in patients with D-looped transposition of the great arteries (D-TGA) can alter coronary arterial flow and increase shear stress, leading to local endothelial dysfunction, although prior studies have conflicting results. Endothelial pulse amplitude testing can predict coronary endothelial dysfunction by peripheral arterial testing. This study tested if, compared to healthy controls, patients with D-TGA after arterial switch operation had peripheral endothelial dysfunction. Patient inclusion criteria were (1) D-TGA after neonatal arterial switch operation; (2) age 9-29 years; (3) absence of known cardiovascular risk factors such as hypertension, diabetes, hypercholesterolemia, vascular disease, recurrent vasovagal syncope, and coronary artery disease; and (4) ability to comply with overnight fasting. Exclusion criteria included (1) body mass index ≥85th percentile, (2) use of medications affecting vascular tone, or (3) acute illness. We assessed endothelial function by endothelial pulse amplitude testing and compared the results to our previously published data in healthy controls (n = 57). We tested 20 D-TGA patients (16.4 ± 4.8 years old) who have undergone arterial switch operation at a median age of 5 days (0-61 days). Endothelial pulse amplitude testing indices were similar between patients with D-TGA and controls (1.78 ± 0.61 vs. 1.73 ± 0.54, p = 0.73).In our study population of children and young adults, there was no evidence of peripheral endothelial dysfunction in patients with D-TGA who have undergone arterial switch operation. Our results support the theory that coronary arterial wall thickening and abnormal vasodilation reported in these patients is a localized phenomenon and not reflective of overall atherosclerotic burden.

  20. Endothelin-1 and ET receptors impair left ventricular function by mediated coronary arteries dysfunction in chronic intermittent hypoxia rats.

    PubMed

    Wang, Jin-Wei; Li, Ai-Ying; Guo, Qiu-Hong; Guo, Ya-Jing; Weiss, James W; Ji, En-Sheng

    2017-01-01

    Obstructive sleep apnea (OSA) results in cardiac dysfunction and vascular endothelium injury. Chronic intermittent hypoxia (CIH), the main characteristic of OSAS, is considered to be mainly responsible for cardiovascular system impairment. This study is aimed to evaluate the role of endothelin-1(ET-1) system in coronary injury and cardiac dysfunction in CIH rats. In our study, Sprague-Dawley rats were exposed to CIH (FiO 2 9% for 1.5 min, repeated every 3 min for 8 h/d, 7 days/week for 3 weeks). After 3 weeks, the left ventricular developed pressure (LVDP) and coronary resistance (CR) were measured with the langendorff mode in isolated hearts. Meanwhile, expressions of ET-1 and ET receptors were detected by immunohistochemical and western blot, histological changes were also observed to determine effects of CIH on coronary endothelial cells. Results suggested that decreased LVDP level combined with augmented coronary resistance was exist in CIH rats. CIH could induce endothelial injury and endothelium-dependent vasodilatation dysfunction in the coronary arteries. Furthermore, ET-1 and ET A receptor expressions in coronary vessels were increased after CIH exposure, whereas ET B receptors expression was decreased. Coronary contractile response to ET-1 in both normoxia and CIH rats was inhibited by ET A receptor antagonist BQ123. However, ET B receptor antagonist BQ788 enhanced ET-1-induced contractile in normoxia group, but had no significant effects on CIH group. These results indicate that CIH-induced cardiac dysfunction may be associated with coronary injury. ET-1 plays an important role in coronary pathogenesis of CIH through ET A receptor by mediating a potent vasoconstrictor response. Moreover, decreased ET B receptor expression that leads to endothelium-dependent vasodilatation decline, might be also participated in coronary and cardiac dysfunction. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  1. The effect of bioresorbable vascular scaffold implantation on distal coronary endothelial function in dyslipidemic swine with and without diabetes.

    PubMed

    van den Heuvel, Mieke; Sorop, Oana; van Ditzhuijzen, Nienke S; de Vries, René; van Duin, Richard W B; Peters, Ilona; van Loon, Janine E; de Maat, Moniek P; van Beusekom, Heleen M; van der Giessen, Wim J; Jan Danser, A H; Duncker, Dirk J

    2018-02-01

    We studied the effect of bioresorbable vascular scaffold (BVS) implantation on distal coronary endothelial function, in swine on a high fat diet without (HFD) or with diabetes (DM+HFD). Five DM+HFD and five HFD swine underwent BVS implantation on top of coronary plaques, and were studied six months later. Conduit artery segments >5mm proximal and distal to the scaffold and corresponding segments of non-scaffolded coronary arteries, and segments of small arteries within the flow-territory of scaffolded and non-scaffolded arteries were harvested for in vitro vasoreactivity studies. Conduit segments proximal and distal of the BVS edges showed reduced endothelium-dependent vasodilation as compared to control vessels (p≤0.01), with distal segments being most prominently affected(p≤0.01). Endothelial dysfunction was only observed in DM±HFD swine and was principally due to a loss of NO. Endothelium-independent vasodilation and vasoconstriction were unaffected. Surprisingly, segments from the microcirculation distal to the BVS showed enhanced endothelium-dependent vasodilation (p<0.01), whereas endothelium-independent vasodilation and vasoconstriction were unaltered. This enhanced vasorelaxation was only observed in DM+HFD swine, and did not appear to be either NO- or EDHF-mediated. Six months of BVS implantation in DM+HFD swine causes NO-mediated endothelial dysfunction in nearby coronary segments, which is accompanied by a, possibly compensatory, increase in endothelial function of the distal microcirculation. Endothelial dysfunction extending into coronary conduit segments beyond the implantation-site, is in agreement with recent reports expressing concern for late scaffold thrombosis and of early BVS failure in diabetic patients. Copyright © 2017. Published by Elsevier B.V.

  2. Beer elicits vasculoprotective effects through Akt/eNOS activation.

    PubMed

    Vilahur, Gemma; Casani, Laura; Mendieta, Guiomar; Lamuela-Raventos, Rosa M; Estruch, Ramon; Badimon, Lina

    2014-12-01

    There is controversy regarding the effect of alcohol beverage intake in vascular vasodilatory function in peripheral arteries. The effects of beer intake in coronary vasodilation remain unknown. We investigated whether regular beer intake (alcohol and alcohol-free) protects against hypercholesterolaemia-induced coronary endothelial dysfunction and the mechanisms behind this effect. Pigs were fed 10 days: (i) a Western-type hypercholesterolaemic diet (WD); (ii) WD+low-dose beer (12·5 g alcohol/day); (iii) WD+moderate-dose beer (25 g alcohol/day); or (iv) WD+moderate-dose alcohol-free-beer (0·0 g alcohol/day). Coronary responses to endothelium-dependent vasoactive drugs (acetylcholine: receptor mediated; calcium ionophore-A23189: nonreceptor mediated), endothelium-independent vasoactive drug (SNP) and L-NMMA (NOS-antagonist) were evaluated in the LAD coronary artery by flow Doppler. Coronary Akt/eNOS activation, MCP-1 expression, oxidative DNA damage and superoxide production were assessed. Lipid profile, lipoproteins resistance to oxidation and urinary isoxanthohumol concentration were evaluated. Alcoholic and nonalcoholic beer intake prevented WD-induced impairment of receptor- and non-receptor-operated endothelial-dependent coronary vasodilation. All animals displayed a similar vasodilatory response to SNP and L-NMMA blunted all endothelial-dependent vasorelaxation responses. Haemodynamic parameters remained unchanged. Coronary arteries showed lower DNA damage and increased Akt/eNOS axis activation in beer-fed animals. Animals taking beer showed HDL with higher antioxidant capacity, higher LDL resistance to oxidation and increased isoxanthohumol levels. Weight, lipids levels, liver enzymes and MCP-1 expression were not affected by beer intake. Non-alcoholic-related beer components protect against hyperlipemia-induced coronary endothelial dysfunction by counteracting vascular oxidative damage and preserving the Akt/eNOS pathway. Light-to-moderate beer consumption prevents and/or reduces the endothelial dysfunction associated with cardiovascular risk factors. © 2014 Stichting European Society for Clinical Investigation Journal Foundation.

  3. Coronary blood flow during percutaneous hemopump in patients at high risk for angioplasty

    NASA Astrophysics Data System (ADS)

    Geschwind, Herbert J.; Dubois-Rande, Jean Luc; Dupouy, Patrick J.; Larrazet, Fabrice S.; Kvasnicka, Jan; El-Ghalid, Ahmed; Deleuze, Philippe; Loisance, Daniel

    1995-05-01

    Hemopump is a ventricular assist device which is aimed at improving the management of high- risk patients for PTCA. The aim of the study was to access coronary blood flow velocity during hemopump. The hemopump was inserted percutaneously into the femoral artery. Coronary blood flow was measured with a 12 MHz Doppler-tipped guidewire proximal and distal to the stenosis before, during and after PTCA. Coronary vascular reserve was assessed by intracoronary 12 mg bolus injection of Papaverine. Collateral flow was assessed during balloon occlusion by inverted velocity signals below baseline. Eight patients aged 59 +/- 11 yrs, with unstable angina, a last patent vessel and/or major left ventricular dysfunction (EF < 0.20) had hemopump during PTCA of stenosis (86 +/- 14%) of the LAD (n equals 4) or the LCX (n equals 4). Collateral flow was slightly increased (+25 +/- 18%) by the Hemopump. Hemopump did not strongly affect coronary flow velocity, did not significantly increase collateral flow and increased slightly coronary vascular reserve.

  4. N-acetylcysteine improves coronary and peripheral vascular function.

    PubMed

    Andrews, N P; Prasad, A; Quyyumi, A A

    2001-01-01

    We investigated whether N-acetylcysteine (NAC), a reduced thiol that modulates redox state and forms adducts of nitric oxide (NO), improves endothelium-dependent vasomotion. Coronary atherosclerosis is associated with endothelial dysfunction and reduced NO activity. In 16 patients undergoing cardiac catheterization, seven with and nine without atherosclerosis, we assessed endothelium-dependent vasodilation with acetylcholine (ACH) and endothelium-independent vasodilation with nitroglycerin (NTG) and sodium nitroprusside (SNP) before and after intracoronary NAC. In 14 patients femoral vascular responses to ACH, NTG and SNP were measured before and after NAC. Intraarterial NAC did not change resting coronary or peripheral vascular tone. N-acetylcysteine potentiated ACH-mediated coronary vasodilation; coronary blood flow was 36 +/- 11% higher (p < 0.02), and epicardial diameter changed from -1.2 +/- 2% constriction to 4.7 +/- 2% dilation after NAC (p = 0.03). Acetylcholine-mediated femoral vasodilation was similarly potentiated by NAC (p = 0.001). Augmentation of the ACH response was similar in patients with or without atherosclerosis. N-acetylcysteine did not affect NTG-mediated vasodilation in either the femoral or coronary circulations and did not alter SNP responses in the femoral circulation. In contrast, coronary vasodilation with SNP was significantly greater after NAC (p < 0.05). Thiol supplementation with NAC improves human coronary and peripheral endothelium-dependent vasodilation. Nitroglycerin responses are not enhanced, but SNP-mediated responses are potentiated only in the coronary circulation. These NO-enhancing effects of thiols reflect the importance of the redox state in the control of vascular function and may be of therapeutic benefit in treating acute and chronic manifestations of atherosclerosis.

  5. Statin withdrawal: clinical implications and molecular mechanisms.

    PubMed

    Cubeddu, Luigi X; Seamon, Matthew J

    2006-09-01

    Retrospective analyses of data from the Platelet Receptor Inhibition in Ischemic Syndrome Management (PRISM), the National Registry of Myocardial Infarction 4, and the Global Registry of Acute Coronary Events (GRACE) trials revealed that the benefits of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) on acute coronary outcomes are rapidly lost and outcomes worsened if statins are discontinued during a patient's hospitalization for an acute coronary syndrome. Withdrawal of statin therapy in the first 24 hours of hospitalization for non-ST-elevation myocardial infarction increased the hospital morbidity and mortality rate versus continued therapy (11.9% vs 5.7%, p<0.01). Data from the Treating New Targets (TNT) study, however, suggested that short-term discontinuation of statin therapy in patients with stable cardiac conditions may not substantially increase the risk of acute coronary syndromes. In patients with acute coronary syndromes who discontinue statins, the rapid increase in risk of an event may result not only from the lost benefits from the therapy, but also from rebound inhibition of vascular protective substances and activation of vascular deleterious substances. Statins inhibit cholesterol synthesis in vascular cells. By reducing levels of isoprenoid intermediates, statins increase the production of nitric oxide and downregulate angiotensin II AT(1) receptors, endothelin-1, vascular inflammatory adhesion molecules, and inflammatory cytokines. These benefits are rapidly lost and often transiently reversed when statins are acutely discontinued. Acute removal of pleiotropic effects and rebound vascular dysfunction may be more important in an acute coronary event, where inflammation promotes rupture of atherosclerotic plaques and inflammatory and prothrombosis markers are present in high concentration, than in stable chronic vascular disease. In the absence of data from randomized controlled trials, current information suggests that statin therapy should be continued, and possibly boosted, during hospitalization for an acute coronary syndrome. Because statins are discontinued during the early hospitalization of many patients, practitioners must ensure that statins are not omitted, unless contraindicated, from the treatment of patients with acute coronary syndromes.

  6. IRAP inhibition using HFI419 prevents moderate to severe acetylcholine mediated vasoconstriction in a rabbit model.

    PubMed

    El-Hawli, Aisha; Qaradakhi, Tawar; Hayes, Alan; Rybalka, Emma; Smith, Renee; Caprnda, Martin; Opatrilova, Radka; Gazdikova, Katarina; Benckova, Maria; Kruzliak, Peter; Zulli, Anthony

    2017-02-01

    Coronary artery vasospasm (constriction) caused by reduced nitric oxide bioavailability leads to myocardial infarction. Reduced endothelial release of nitric oxide by the neurotransmitter acetylcholine, leads to paradoxical vasoconstriction as it binds to smooth muscle cell M3 receptors. Thus, inhibition of coronary artery vasospasm will improve clinical outcomes. Inhibition of insulin regulated aminopeptidase has been shown to improve vessel function, thus we tested the hypothesis that HFI419, an inhibitor of insulin regulated aminopeptidase, could reduce blood vessel constriction to acetylcholine. The abdominal aorta was excised from New Zealand white rabbits (n=15) and incubated with 3mM Hcy to induce vascular dysfunction in vitro for 1h. HFI419 was added 5min prior to assessment of vascular function by cumulative doses of acetylcholine. In some rings, vasoconstriction to acetylcholine was observed in aortic rings after pre-incubation with 3mM homocysteine. Incubation with HFI419 inhibited the vasoconstrictive response to acetylcholine, thus improving, but not normalizing, vascular function (11.5±8.9% relaxation vs 79.2±37% constriction, p<0.05). Similarly, in another group with mild vasoconstriction, HFI419 inhibited this effect (34.9±4.6% relaxation vs 11.1±5.2%, constriction, p<0.05). HFI419 had no effect on control aorta or aorta with mild aortic dysfunction. The present study shows that HFI419 prevents acetylcholine mediated vasoconstriction in dysfunctional blood vessels. HFI419 had no effect on normal vasodilation. Our results indicate a therapeutic potential of HFI419 in reducing coronary artery vasospasm. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. Smoking and atherosclerosis: mechanisms of disease and new therapeutic approaches.

    PubMed

    Siasos, Gerasimos; Tsigkou, Vasiliki; Kokkou, Eleni; Oikonomou, Evangelos; Vavuranakis, Manolis; Vlachopoulos, Charalambos; Verveniotis, Alexis; Limperi, Maria; Genimata, Vasiliki; Papavassiliou, Athanasios G; Stefanadis, Christodoulos; Tousoulis, Dimitris

    2014-01-01

    It has been clear that at least 1 billion adults worldwide are smokers and at least 700 million children are passive smokers at home. Smoking exerts a detrimental effect to many organ systems and is responsible for illnesses such as lung cancer, pneumonia, chronic obstructive pulmonary disease, cancer of head and neck, cancer of the urinary and gastrointestinal tract, periodontal disease, cataract and arthritis. Additionally, smoking is an important modifiable risk factor for the development of cardiovascular disease such as coronary artery disease, stable angina, acute coronary syndromes, sudden death, stroke, peripheral vascular disease, congestive heart failure, erectile dysfunction and aortic aneurysms via initiation and progression of atherosclerosis. A variety of studies has proved that cigarette smoking induces oxidative stress, vascular inflammation, platelet coagulation, vascular dysfunction and impairs serum lipid pro-file in both current and chronic smokers, active and passive smokers and results in detrimental effects on the cardiovascular system. The aim of this review is to depict the physical and biochemical properties of cigarette smoke and, furthermore, elucidate the main pathophysiological mechanisms of cigarette-induced atherosclerosis and overview the new therapeutic approaches for smoking cessation and augmentation of cardiovascular health.

  8. Coronary hemodynamic regulation by nitric oxide in experimental animals: recent advances.

    PubMed

    Toda, Noboru; Toda, Hiroshi

    2011-09-30

    Nitric oxide (NO) formed via endothelial NO synthase (eNOS) plays crucial roles in the regulation of coronary blood flow through vasodilatation and decreased vascular resistance and in the inhibition of platelet aggregation and adhesion, leading to the prevention of coronary circulatory failure, thrombosis, and atherosclerosis. NO restrains myocardial oxygen consumption, when coronary perfusion is restricted. Endothelial function is impaired by pathogenic factors including smoking, excess salt intake, obesity, aging, hypercholesterolemia, hyperglycemia, and hypertension. The mechanisms involved in endothelial dysfunction are reduced NOS expression and activity, decreased NO bioavailability, and increased production of oxygen radicals and endogenous NOS inhibitors. NADPH oxidase, xanthine oxidase, and NOS uncoupling are involved in increased superoxide generation. Plasma levels of asymmetric dimethylarginine, the endogenous NOS inhibitor, are increased by an impairment of enzymatic degradation by dimethylarginine dimethylaminohydrolase and alanine-glyoxylate aminotransferase 2. Impairment of coronary arteriolar dilatation induced by perivascular nitrergic nerve activation is involved in decreased coronary blood flow. NO derived from nNOS singly or in combination with eNOS protects against serious myocardial injury through ischemic insults. Ischemia-induced iNOS upregulation contributes to myocardial contractile dysfunction. Preventive and therapeutic measures, such as improvement of life-style and treatment with therapeutic agents, to eliminate pathogenic factors for endothelial dysfunction or nNOS-derived NO deprivation would be quite important for the prophylaxis and minimizing the development of coronary artery disease. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Potential advantages of treatment of transplanted saphenous vein aorto-coronary artery bypass grafts with beta irradiation to prevent graft occlusion.

    PubMed

    Smith, R G

    1997-01-01

    Intimal proliferation or Neointimal hyperplasia (NIH) is a vascular lesion that often arises in arteries after balloon angioplasty or other vessel wall injuries. FIH is a vascular lesion that develops in autologous saphenous vein grafts (SVG) after transplantation into the aorto-coronary circulation or the peripheral vascular circulation. FIH shares elements of smooth muscle migration, proliferation and fibrous tissue deposition in common with nibrointimal proliferation (NIH). Either NIH of a coronary artery or FIH of a SVG obstruct the vascular lumen and result in myocardial dysfunction. Local radiotherapy has been used for several decades to reduce the post-operative recurrence of the fibrovascular proliferations of pterygia and keloids. Similarly, in animal and human experiments, endovascular radiotherapy has been shown to reduce arterial smooth muscle proliferation. Consideration of the similarities of vascular smooth muscle cell proliferation in NIH and FIH leads one to suggest that endovascular beta irradiation can reduce FIH as well as it reduces NIH. The goal of such treatment is to achieve a clinically significant decrease in the morbidity and mortality resulting from SVG occlusions. The potential for large reduction of the consequences of SVG occlusion, the very large number of patients at risk, and the simplicity of the proposed intervention encourages prompt scientific evaluation of this technique.

  10. Short- and long-term black tea consumption reverses endothelial dysfunction in patients with coronary artery disease.

    PubMed

    Duffy, S J; Keaney , J F; Holbrook, M; Gokce, N; Swerdloff, P L; Frei, B; Vita, J A

    2001-07-10

    Epidemiological studies suggest that tea consumption decreases cardiovascular risk, but the mechanisms of benefit remain undefined. Endothelial dysfunction has been associated with coronary artery disease and increased oxidative stress. Some antioxidants have been shown to reverse endothelial dysfunction, and tea contains antioxidant flavonoids. Methods and Results-- To test the hypothesis that tea consumption will reverse endothelial dysfunction, we randomized 66 patients with proven coronary artery disease to consume black tea and water in a crossover design. Short-term effects were examined 2 hours after consumption of 450 mL tea or water. Long-term effects were examined after consumption of 900 mL tea or water daily for 4 weeks. Vasomotor function of the brachial artery was examined at baseline and after each intervention with vascular ultrasound. Fifty patients completed the protocol and had technically suitable ultrasound measurements. Both short- and long-term tea consumption improved endothelium- dependent flow-mediated dilation of the brachial artery, whereas consumption of water had no effect (P<0.001 by repeated-measures ANOVA). Tea consumption had no effect on endothelium-independent nitroglycerin-induced dilation. An equivalent oral dose of caffeine (200 mg) had no short-term effect on flow-mediated dilation. Plasma flavonoids increased after short- and long-term tea consumption. Short- and long-term black tea consumption reverses endothelial vasomotor dysfunction in patients with coronary artery disease. This finding may partly explain the association between tea intake and decreased cardiovascular disease events.

  11. Electron spin resonance characterization of vascular xanthine and NAD(P)H oxidase activity in patients with coronary artery disease: relation to endothelium-dependent vasodilation.

    PubMed

    Spiekermann, Stephan; Landmesser, Ulf; Dikalov, Sergey; Bredt, Martin; Gamez, Graciela; Tatge, Helma; Reepschläger, Nina; Hornig, Burkhard; Drexler, Helmut; Harrison, David G

    2003-03-18

    Increased inactivation of nitric oxide by superoxide (O2*-) contributes to endothelial dysfunction in patients with coronary disease (CAD). We therefore characterized the vascular activities of xanthine oxidase and NAD(P)H oxidase, 2 major O2*--producing enzyme systems, and their relationship with flow-dependent, endothelium-mediated vasodilation (FDD) in patients with CAD. Xanthine- and NAD(P)H-mediated O*.- formation was determined in coronary arteries from 10 patients with CAD and 10 controls by using electron spin resonance spectroscopy. Furthermore, activity of endothelium-bound xanthine oxidase in vivo and FDD of the radial artery were determined in 21 patients with CAD and 10 controls. FDD was measured before and after infusion of the antioxidant vitamin C (25 mg/min i.a.) to determine the portion of FDD inhibited by radicals. In coronary arteries from patients with CAD, xanthine- and NAD(P)H-mediated O2*- formation was increased compared with controls (xanthine: 12+/-2 versus 7+/-1 nmol O2*-/ microg protein; NADH: 11+/-1 versus 7+/-1 nmol O2*-/ microg protein; and NADPH: 12+/-2 versus 9+/-1 nmol O2*-/ microg protein; each P<0.05). Endothelium-bound xanthine oxidase activity was increased by >200% in patients with CAD (25+/-4 versus 9+/-1 nmol O2*-/ microL plasma per min; P<0.05) and correlated inversely with FDD (r=-0.55; P<0.05) and positively with the effect of vitamin C on FDD (r=0.54; P<0.05). The present study represents the first electron spin resonance measurements of xanthine and NAD(P)H oxidase activity in human coronary arteries and supports the concept that increased activities of both enzymes contribute to increased vascular oxidant stress in patients with CAD. Furthermore, the present study suggests that increased xanthine oxidase activity contributes to endothelial dysfunction in patients with CAD and may thereby promote the atherosclerotic process.

  12. Cyclophilin A in cardiovascular homeostasis and diseases.

    PubMed

    Satoh, Kimio

    2015-01-01

    Vascular homeostasis is regulated by complex interactions between many vascular cell components, including endothelial cells, vascular smooth muscle cells (VSMCs), adventitial inflammatory cells, and autonomic nervous system. The balance between oxidant and antioxidant systems determines intracellular redox status, and their imbalance can cause oxidative stress. Excessive oxidative stress is one of the important stimuli that induce cellular damage and dysregulation of vascular cell components, leading to vascular diseases through multiple pathways. Cyclophilin A (CyPA) is one of the causative proteins that mediate oxidative stress-induced cardiovascular dysfunction. CyPA was initially discovered as the intracellular receptor of the immunosuppressive drug cyclosporine 30 years ago. However, recent studies have established that CyPA is secreted from vascular cell components, such as endothelial cells and VSMCs. Extracellular CyPA augments the development of cardiovascular diseases. CyPA secretion is regulated by Rho-kinase, which contributes to the pathogenesis of vasospasm, arteriosclerosis, ischemia/reperfusion injury, hypertension, pulmonary hypertension, and heart failure. We recently reported that plasma CyPA levels are significantly higher in patients with coronary artery disease, which is associated with increased numbers of stenotic coronary arteries and the need for coronary intervention in such patients. Furthermore, we showed that the vascular erythropoietin (Epo)/Epo receptor system plays an important role in production of nitric oxide and maintenance of vascular redox state and homeostasis, with a potential mechanistic link to the Rho-kinase-CyPA pathway. In this article, I review the data on the protective role of the vascular Epo/Epo receptor system and discuss the roles of the CyPA/Rho-kinase system in cardiovascular diseases.

  13. Silencing Of Circular RNA-ZNF609 Ameliorates Vascular Endothelial Dysfunction.

    PubMed

    Liu, Chang; Yao, Mu-Di; Li, Chao-Peng; Shan, Kun; Yang, Hong; Wang, Jia-Jian; Liu, Ban; Li, Xiu-Miao; Yao, Jin; Jiang, Qin; Yan, Biao

    2017-01-01

    Vascular dysfunction is a hallmark of ischemic, cancer, and inflammatory diseases, contributing to disease progression. Circular RNAs (circRNAs) are endogenous non-coding RNAs, which have been reported to be abnormally expressed in many human diseases. In this study, we used retinal vasculature to determine the role of circular RNA in vascular dysfunction. We revealed that cZNF609 was significantly up-regulated upon high glucose and hypoxia stress in vivo and in vitro . cZNF609 silencing decreased retinal vessel loss and suppressed pathological angiogenesis in vivo . cZNF609 silencing increased endothelial cell migration and tube formation, and protected endothelial cell against oxidative stress and hypoxia stress in vitro . By contrast, transgenic overexpression of cZNF609 showed an opposite effects. cZNF609 acted as an endogenous miR-615-5p sponge to sequester and inhibit miR-615-5p activity, which led to increased MEF2A expression. MEF2A overexpression could rescue cZNF609 silencing-mediated effects on endothelial cell migration, tube formation, and apoptosis. Moreover, dysregulated cZNF609 expression was detected in the clinical samples of the patients with diabetes, hypertension, and coronary artery disease. Intervention of cZNF609 expression is promising therapy for vascular dysfunction.

  14. Vascular Reactivity Profile of Novel KCa3.1-Selective Positive-Gating Modulators in the Coronary Vascular Bed

    PubMed Central

    Oliván-Viguera, Aida; Valero, Marta Sofía; Pinilla, Estéfano; Amor, Sara; García-Villalón, Ángel Luis; Coleman, Nichole; Laría, Celia; Calvín-Tienza, Víctor; García-Otín, Ángel-Luis; Fernández-Fernández, José M.; Murillo, Ma Divina; Gálvez, José A.; Díaz-de-Villegas, María D.; Badorrey, Ramón; Simonsen, Ulf; Rivera, Luis; Wulff, Heike; Köhler, Ralf

    2017-01-01

    Opening of intermediate-conductance calcium-activated potassium channels (KCa3.1) produces membrane hyperpolarization in the vascular endothelium. Here, we studied the ability of two new KCa3.1-selective positive-gating modulators, SKA-111 and SKA-121, to (1) evoke porcine endothelial cell KCa3.1 membrane hyperpolarization, (2) induce endothelium-dependent and, particularly, endothelium-derived hyperpolarization (EDH)-type relaxation in porcine coronary arteries (PCA) and (3) influence coronary artery tone in isolated rat hearts. In whole-cell patch-clamp experiments on endothelial cells of PCA (PCAEC), KCa currents evoked by bradykinin (BK) were potentiated ≈7-fold by either SKA-111 or SKA-121 (both at 1 μM) and were blocked by a KCa3.1 blocker, TRAM-34. In membrane potential measurements, SKA-111 and SKA-121 augmented bradykinin-induced hyperpolarization. Isometric tension measurements in large- and small-calibre PCA showed that SKA-111 and SKA-121 potentiated endothelium-dependent relaxation with intact NO synthesis and EDH-type relaxation to BK by ≈2-fold. Potentiation of the BK response was prevented by KCa3.1 inhibition. In Langendorff-perfused rat hearts, SKA-111 potentiated coronary vasodilation elicited by BK. In conclusion, our data show that positive-gating modulation of KCa3.1 channels improves BK-induced membrane hyperpolarization and endothelium-dependent relaxation in small and large PCA as well as in the coronary circulation of rats. Positive-gating modulators of KCa3.1 could be therapeutically useful to improve coronary blood flow and counteract impaired coronary endothelial dysfunction in cardiovascular disease. PMID:26821335

  15. Local coronary wall eccentricity and endothelial function are closely related in patients with atherosclerotic coronary artery disease.

    PubMed

    Hays, Allison G; Iantorno, Micaela; Schär, Michael; Mukherjee, Monica; Stuber, Matthias; Gerstenblith, Gary; Weiss, Robert G

    2017-07-06

    Coronary endothelial function (CEF) in patients with coronary artery disease (CAD) varies among coronary segments in a given patient. Because both coronary vessel wall eccentricity and coronary endothelial dysfunction are predictors of adverse outcomes, we hypothesized that local coronary endothelial dysfunction is associated with local coronary artery eccentricity. We used 3 T coronary CMR to measure CEF as changes in coronary cross-sectional area (CSA) and coronary blood flow (CBF) during isometric handgrip exercise (IHE), a known endothelial-dependent stressor, in 29 patients with known CAD and 16 healthy subjects. Black-blood MRI quantified mean coronary wall thickness (CWT) and coronary eccentricity index (EI) and CEF was determined in the same segments. IHE-induced changes in CSA and CBF in healthy subjects (10.6 ± 6.6% and 38.3 ± 29%, respectively) were greater than in CAD patients 1.3 ± 7.7% and 6.5 ± 19.6%, respectively, p < 0.001 vs. healthy for both measures), as expected. Mean CWT and EI in healthy subjects (1.1 ± 0.3 mm 1.9 ± 0.5, respectively) were less than those in CAD patients (1.6 ± 0.4 mm, p < 0.0001; and 2.6 ± 0.6, p = 0.006 vs. healthy). In CAD patients, we observed a significant inverse relationship between stress-induced %CSA change and both EI (r = -0.60, p = 0.0002), and CWT (r = -0.54, p = 0.001). Coronary EI was independently and significantly related to %CSA change with IHE even after controlling for mean CWT (adjusted r = -0.69, p = 0.0001). For every unit increase in EI, coronary CSA during IHE is expected to change by -6.7 ± 9.4% (95% confidence interval: -10.3 to -3.0, p = 0.001). There is a significant inverse and independent relationship between coronary endothelial macrovascular function and the degree of local coronary wall eccentricity in CAD patients. Thus anatomic and physiologic indicators of high-risk coronary vascular pathology are closely related. The noninvasive identification of coronary eccentricity and its relationship with underlying coronary endothelial function, a marker of vascular health, may be useful in identifying high-risk patients and culprit lesions.

  16. Endothelium dysfunction markers in patients with diabetic retinopathy.

    PubMed

    Siemianowicz, Krzysztof; Francuz, Tomasz; Gminski, Jan; Telega, Alicja; Syzdól, Marcin

    2005-03-01

    Diabetes mellitus leads to endothelium dysfunction and an accelerated progression of atherosclerosis. Vascular complications of diabetes mellitus can affect not only large and medium arteries resulting in coronary heart disease and peripheral arteries diseases, but also small vessels leading to retinopathy and nephropathy. Intercellular adhesion molecule-1 (ICAM-1), vascular adhesion molecule-1 (VCAM-1), E-selectin and von Willebrand factor (vWF) are considered as markers of endothelium dysfunction. The aim of our study was to evaluate plasma levels of ICAM-1, VCAM-1, E-selectin and vWF in patients with type 2 diabetes mellitus receiving insulin therapy and who had diabetic non-proliferative retinopathy, proliferative retinopathy, or did not develop diabetic retinopathy. There were no statistically significant differences between studied groups in any of evaluated endothelium dysfunction markers. There was no statistically significant correlation between measured parameters and a period of diabetic history. None of the studied markers presented a significant correlation with a period of insulin treatment.

  17. Vascular Reactivity Profile of Novel KCa 3.1-Selective Positive-Gating Modulators in the Coronary Vascular Bed.

    PubMed

    Oliván-Viguera, Aida; Valero, Marta Sofía; Pinilla, Estéfano; Amor, Sara; García-Villalón, Ángel Luis; Coleman, Nichole; Laría, Celia; Calvín-Tienza, Víctor; García-Otín, Ángel-Luis; Fernández-Fernández, José M; Murillo, M Divina; Gálvez, José A; Díaz-de-Villegas, María D; Badorrey, Ramón; Simonsen, Ulf; Rivera, Luis; Wulff, Heike; Köhler, Ralf

    2016-08-01

    Opening of intermediate-conductance calcium-activated potassium channels (KC a 3.1) produces membrane hyperpolarization in the vascular endothelium. Here, we studied the ability of two new KC a 3.1-selective positive-gating modulators, SKA-111 and SKA-121, to (1) evoke porcine endothelial cell KC a 3.1 membrane hyperpolarization, (2) induce endothelium-dependent and, particularly, endothelium-derived hyperpolarization (EDH)-type relaxation in porcine coronary arteries (PCA) and (3) influence coronary artery tone in isolated rat hearts. In whole-cell patch-clamp experiments on endothelial cells of PCA (PCAEC), KC a currents evoked by bradykinin (BK) were potentiated ≈7-fold by either SKA-111 or SKA-121 (both at 1 μM) and were blocked by a KC a 3.1 blocker, TRAM-34. In membrane potential measurements, SKA-111 and SKA-121 augmented bradykinin-induced hyperpolarization. Isometric tension measurements in large- and small-calibre PCA showed that SKA-111 and SKA-121 potentiated endothelium-dependent relaxation with intact NO synthesis and EDH-type relaxation to BK by ≈2-fold. Potentiation of the BK response was prevented by KC a 3.1 inhibition. In Langendorff-perfused rat hearts, SKA-111 potentiated coronary vasodilation elicited by BK. In conclusion, our data show that positive-gating modulation of KC a 3.1 channels improves BK-induced membrane hyperpolarization and endothelium-dependent relaxation in small and large PCA as well as in the coronary circulation of rats. Positive-gating modulators of KC a 3.1 could be therapeutically useful to improve coronary blood flow and counteract impaired coronary endothelial dysfunction in cardiovascular disease. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  18. Effects of noise on vascular function, oxidative stress, and inflammation: mechanistic insight from studies in mice

    PubMed Central

    Münzel, Thomas; Daiber, Andreas; Steven, Sebastian; Tran, Lan P.; Ullmann, Elisabeth; Kossmann, Sabine; Schmidt, Frank P.; Oelze, Matthias; Xia, Ning; Li, Huige; Pinto, Antonio; Wild, Philipp; Pies, Kai; Schmidt, Erwin R.; Rapp, Steffen; Kröller-Schön, Swenja

    2017-01-01

    Abstract Aims Epidemiological studies indicate that traffic noise increases the incidence of coronary artery disease, hypertension and stroke. The underlying mechanisms remain largely unknown. Field studies with nighttime noise exposure demonstrate that aircraft noise leads to vascular dysfunction, which is markedly improved by vitamin C, suggesting a key role of oxidative stress in causing this phenomenon. Methods and results We developed a novel animal model to study the vascular consequences of aircraft noise exposure. Peak sound levels of 85 and mean sound level of 72 dBA applied by loudspeakers for 4 days caused an increase in systolic blood pressure, plasma noradrenaline and angiotensin II levels and induced endothelial dysfunction. Noise increased eNOS expression but reduced vascular NO levels because of eNOS uncoupling. Noise increased circulating levels of nitrotyrosine, interleukine-6 and vascular expression of the NADPH oxidase subunit Nox2, nitrotyrosine-positive proteins and of endothelin-1. FACS analysis demonstrated an increase in infiltrated natural killer-cells and neutrophils into the vasculature. Equal mean sound pressure levels of white noise for 4 days did not induce these changes. Comparative Illumina sequencing of transcriptomes of aortic tissues from aircraft noise-treated animals displayed significant changes of genes in part responsible for the regulation of vascular function, vascular remodelling, and cell death. Conclusion We established a novel and unique aircraft noise stress model with increased blood pressure and vascular dysfunction associated with oxidative stress. This animal model enables future studies of molecular mechanisms, mitigation strategies, and pharmacological interventions to protect from noise-induced vascular damage. PMID:28329261

  19. Ruthenium Complex Improves the Endothelial Function in Aortic Rings From Hypertensive Rats

    PubMed Central

    Vatanabe, Izabela Pereira; Rodrigues, Carla Nascimento dos Santos; Buzinari, Tereza Cristina; de Moraes, Thiago Francisco; da Silva, Roberto Santana; Rodrigues, Gerson Jhonatan

    2017-01-01

    Background The endothelium is a monolayer of cells that extends on the vascular inner surface, responsible for the modulation of vascular tone. By means of the release of nitric oxide (NO), the endothelium has an important protective function against cardiovascular diseases. Objective Verify if cis- [Ru(bpy)2(NO2)(NO)](PF6)2 (BPY) improves endothelial function and the sensibility of conductance (aorta) and resistance (coronary) to vascular relaxation induced by BPY. Methods Normotensive (2K) and hypertensive (2K-1C) Wistar rats were used. For vascular reactivity study, thoracic aortas were isolated, rings with intact endothelium were incubated with: BPY(0.01 to10 µM) and concentration effect curves to acetylcholine were performed. In addition, cumulative concentration curves were performed to BPY (1.0 nM to 0.1 µM) in aortic and coronary rings, with intact and denuded endothelium. Results In aorta from 2K-1C animals, the treatment with BPY 0.1µM increased the potency of acetylcholine-induced relaxation and it was able to revert the endothelial dysfunction. The presence of the endothelium did not modify the effect of BPY in inducing the relaxation in aortas from 2K and 2K-1C rats. In coronary, the endothelium potentiated the vasodilator effect of BPY in vessels from 2K and 2K-1C rats. Conclusion Our results suggest that 0.1 µM of BPY is able to normalize the relaxation endothelium dependent in hypertensive rats, and the compound BPY induces relaxation in aortic from normotensive and hypertensive rats with the same potency. The endothelium potentiate the relaxation effect induced by BPY in coronary from normotensive and hypertensive rats, with lower effect on coronary from hypertensive rats. PMID:28678930

  20. Vascular extracellular vesicles in comorbidities of heart failure with preserved ejection fraction in men and women: The hidden players. A mini review.

    PubMed

    Gohar, Aisha; de Kleijn, Dominique P V; Hoes, Arno W; Rutten, Frans H; Hilfiker-Kleiner, Denise; Ferdinandy, Péter; Sluijter, Joost P G; den Ruijter, Hester M

    2018-05-25

    Left ventricular diastolic dysfunction, the main feature of heart failure with preserved ejection fraction (HFpEF), is thought to be primarily caused by comorbidities affecting the endothelial function of the coronary microvasculature. Circulating extracellular vesicles, released by the endothelium have been postulated to reflect endothelial damage. Therefore, we reviewed the role of extracellular vesicles, in particularly endothelium microparticles, in these comorbidities, including obesity and hypertension, to identify if they may be potential markers of the endothelial dysfunction underlying left ventricular diastolic dysfunction and HFpEF. Copyright © 2017. Published by Elsevier Inc.

  1. Vascular dysfunctions following spinal cord injury

    PubMed Central

    Popa, F; Grigorean, VT; Onose, G; Sandu, AM; Popescu, M; Burnei, G; Strambu, V; Sinescu, C

    2010-01-01

    The aim of this article is to analyze the vascular dysfunctions occurring after spinal cord injury (SCI). Vascular dysfunctions are common complications of SCI. Cardiovascular disturbances are the leading causes of morbidity and mortality in both acute and chronic stages of SCI. Neuroanatomy and physiology of autonomic nervous system, sympathetic and parasympathetic, is reviewed. SCI implies disruption of descendent pathways from central centers to spinal sympathetic neurons, originating in intermediolateral nuclei of T1–L2 cord segments. Loss of supraspinal control over sympathetic nervous system results in reduced overall sympathetic activity below the level of injury and unopposed parasympathetic outflow through intact vagal nerve. SCI associates significant vascular dysfunction. Spinal shock occurs during the acute phase following SCI and it is a transitory suspension of function and reflexes below the level of the injury. Neurogenic shock, part of spinal shock, consists of severe arterial hypotension and bradycardia. Autonomic dysreflexia appears during the chronic phase, after spinal shock resolution, and it is a life–threatening syndrome of massive imbalanced reflex sympathetic discharge occurring in patients with SCI above the splanchnic sympathetic outflow (T5–T6). Arterial hypotension with orthostatic hypotension occurs in both acute and chronic phases. The etiology is multifactorial. We described a few factors influencing the orthostatic hypotension occurrence in SCI: sympathetic nervous system dysfunction, low plasma catecholamine levels, rennin–angiotensin–aldosterone activity, peripheral alpha–adrenoceptor hyperresponsiveness, impaired function of baroreceptors, hyponatremia and low plasmatic volume, cardiovascular deconditioning, morphologic changes in sympathetic neurons, plasticity within spinal circuits, and motor deficit leading to loss of skeletal muscle pumping activity. Additional associated cardiovascular concerns in SCI, such as deep vein thrombosis and long–term risk for coronary heart disease and systemic atherosclerosis are also described. Proper prophylaxis, including non–pharmacologic and pharmacological strategies, diminishes the occurrence of the vascular dysfunction following SCI. Each vascular disturbance requires a specific treatment. PMID:20945818

  2. The angiotensin receptor blocker losartan reduces coronary arteriole remodeling in type 2 diabetic mice

    PubMed Central

    Husarek, Kathryn E.; Katz, Paige S.; Trask, Aaron J.; Galantowicz, Maarten L.; Cismowski, Mary J.; Lucchesi, Pamela A.

    2017-01-01

    Cardiovascular complications are a leading cause of morbidity and mortality in type 2 diabetes mellitus (T2DM) and are associated with alterations of blood vessel structure and function. Although endothelial dysfunction and aortic stiffness have been documented, little is known about the effects of T2DM on coronary microvascular structural remodeling. The renin–angiotensin–aldosterone system plays an important role in large artery stiffness and mesenteric vessel remodeling in hypertension and T2DM. The goal of this study was to determine whether the blockade of AT1R signaling dictates vascular smooth muscle growth that partially underlies coronary arteriole remodeling in T2DM. Control and db/db mice were given AT1R blocker losartan via drinking water for 4 weeks. Using pressure myography, we found that coronary arterioles from 16-week db/db mice undergo inward hypertrophic remodeling due to increased wall thickness and wall-to-lumen ratio with a decreased lumen diameter. This remodeling was accompanied by decreased elastic modulus (decreased stiffness). Losartan treatment decreased wall thickness, wall-to-lumen ratio, and coronary arteriole cell number in db/db mice. Losartan treatment did not affect incremental elastic modulus. However, losartan improved coronary flow reserve. Our data suggest that Ang II–AT1R signaling mediates, at least in part, coronary arteriole inward hypertrophic remodeling in T2DM without affecting vascular mechanics, further suggesting that targeting the coronary microvasculature in T2DM may help reduce cardiac ischemic events. PMID:26133668

  3. Coronary artery endothelial dysfunction is present in HIV positive individuals without significant coronary artery disease

    PubMed Central

    IANTORNO, Micaela; SCHÄR, Michael; SOLEIMANIFARD, Sahar; BROWN, Todd T.; MOORE, Richard; BARDITCH-CROVO, Patricia; STUBER, Matthias; LAI, Shenghan; GERSTENBLITH, Gary; WEISS, Robert G.; HAYS, Allison G.

    2017-01-01

    Objective HIV+ individuals experience an increased burden of coronary artery disease (CAD) not adequately accounted for by traditional CAD risk factors. Coronary endothelial function (CEF), a barometer of vascular health, is depressed early in atherosclerosis and predicts future events but has not been studied in HIV+ individuals. We tested whether CEF is impaired in HIV+ subjects without CAD as compared to an HIV- population matched for cardiac risk factors. Design/Methods In this observational study, CEF was measured noninvasively by quantifying isometric handgrip exercise (IHE)-induced changes in coronary vasoreactivity with MRI in 18 participants with HIV but no CAD (HIV+CAD-, based on prior imaging), 36 age- and cardiac risk factor-matched healthy participants with neither HIV nor CAD (HIV-CAD-), 41 subjects with no HIV but with known CAD (HIV-CAD+) and 17 subjects with both HIV and CAD (HIV+CAD+). Results CEF was significantly depressed in HIV+CAD- subjects as compared to that of risk-factor-matched HIV-CAD- subjects (p<0.0001), and was depressed to the level of that in HIV- participants with established CAD. Mean IL-6 levels were higher in HIV+ participants (p<0.0001), and inversely related to CEF in the HIV+ subjects (p=0.007). Conclusions Marked coronary endothelial dysfunction is present in HIV+ subjects without significant CAD and is as severe as that in clinical CAD patients. Furthermore, endothelial dysfunction appears inversely related to the degree of inflammation in HIV+ subjects, as measured by IL-6. CEF testing in HIV+ patients may be useful for assessing cardiovascular risk and testing new CAD treatment strategies, including those targeting inflammation. PMID:28353539

  4. Role of homocysteinylation of ACE in endothelial dysfunction of arteries

    PubMed Central

    Huang, An; Pinto, John T.; Froogh, Ghezal; Kandhi, Sharath; Qin, Jun; Wolin, Michael S.; Hintze, Thomas H.

    2014-01-01

    The direct impact of de novo synthesis of homocysteine (Hcy) and its reactive metabolites, Hcy-S-S-Hcy and Hcy thiolactone (HCTL), on vascular function has not been fully elucidated. We hypothesized that Hcy synthesized within endothelial cells affects activity of angiotensin-converting enzyme (ACE) by direct homocysteinylation of its amino- and/or sulfhydryl moieties. This covalent modification enhances ACE reactivity toward angiotensin II (ANG II)-NADPH oxidase-superoxide-dependent endothelial dysfunction. Mesenteric and coronary arteries isolated from normal rats were incubated for 3 days with or without exogenous methionine (Met, 0.1–0.3 mM), a precursor to Hcy. Incubation of arteries in Met-free media resulted in time-dependent decreases in vascular Hcy formation. By contrast, vessels incubated with Met produced Hcy in a dose-dependent manner. There was a notably greater de novo synthesis of Hcy from endothelial than from smooth muscle cells. Enhanced levels of Hcy production significantly impaired shear stress-induced dilation and release of nitric oxide, events that are associated with elevated production of vascular superoxide. Each of these processes was attenuated by ANG II type I receptor blocker or ACE and NADPH oxidase inhibitors. In addition, in vitro exposure of purified ACE to Hcy-S-S-Hcy/HCTL resulted in formation of homocysteinylated ACE and an enhanced ACE activity. The enhanced ACE activity was confirmed in isolated coronary and mesenteric arteries that had been exposed directly to Hcy-S-S-Hcy/HCTL or after Met incubation. In conclusion, vasculature-derived Hcy initiates endothelial dysfunction that, in part, may be mediated by ANG II-dependent activation of NADPH oxidase in association with homocysteinylation of ACE. PMID:25416191

  5. Pathology of Human Coronary and Carotid Artery Atherosclerosis and Vascular Calcification in Diabetes Mellitus.

    PubMed

    Yahagi, Kazuyuki; Kolodgie, Frank D; Lutter, Christoph; Mori, Hiroyoshi; Romero, Maria E; Finn, Aloke V; Virmani, Renu

    2017-02-01

    The continuing increase in the prevalence of diabetes mellitus in the general population is predicted to result in a higher incidence of cardiovascular disease. Although the mechanisms of diabetes mellitus-associated progression of atherosclerosis are not fully understood, at clinical and pathological levels, there is an appreciation of increased disease burden and higher levels of arterial calcification in these subjects. Plaques within the coronary arteries of patients with diabetes mellitus generally exhibit larger necrotic cores and significantly greater inflammation consisting mainly of macrophages and T lymphocytes relative to patients without diabetes mellitus. Moreover, there is a higher incidence of healed plaque ruptures and positive remodeling in hearts from subjects with type 1 diabetes mellitus and type 2 diabetes mellitus, suggesting a more active atherogenic process. Lesion calcification in the coronary, carotid, and other arterial beds is also more extensive. Although the role of coronary artery calcification in identifying cardiovascular disease and predicting its outcome is undeniable, our understanding of how key hormonal and physiological alterations associated with diabetes mellitus such as insulin resistance and hyperglycemia influence the process of vascular calcification continues to grow. Important drivers of atherosclerotic calcification in diabetes mellitus include oxidative stress, endothelial dysfunction, alterations in mineral metabolism, increased inflammatory cytokine production, and release of osteoprogenitor cells from the marrow into the circulation. Our review will focus on the pathophysiology of type 1 diabetes mellitus- and type 2 diabetes mellitus-associated vascular disease with particular focus on coronary and carotid atherosclerotic calcification. © 2016 American Heart Association, Inc.

  6. The angiotensin receptor blocker losartan reduces coronary arteriole remodeling in type 2 diabetic mice.

    PubMed

    Husarek, Kathryn E; Katz, Paige S; Trask, Aaron J; Galantowicz, Maarten L; Cismowski, Mary J; Lucchesi, Pamela A

    2016-01-01

    Cardiovascular complications are a leading cause of morbidity and mortality in type 2 diabetes mellitus (T2DM) and are associated with alterations of blood vessel structure and function. Although endothelial dysfunction and aortic stiffness have been documented, little is known about the effects of T2DM on coronary microvascular structural remodeling. The renin-angiotensin-aldosterone system plays an important role in large artery stiffness and mesenteric vessel remodeling in hypertension and T2DM. The goal of this study was to determine whether the blockade of AT1R signaling dictates vascular smooth muscle growth that partially underlies coronary arteriole remodeling in T2DM. Control and db/db mice were given AT1R blocker losartan via drinking water for 4 weeks. Using pressure myography, we found that coronary arterioles from 16-week db/db mice undergo inward hypertrophic remodeling due to increased wall thickness and wall-to-lumen ratio with a decreased lumen diameter. This remodeling was accompanied by decreased elastic modulus (decreased stiffness). Losartan treatment decreased wall thickness, wall-to-lumen ratio, and coronary arteriole cell number in db/db mice. Losartan treatment did not affect incremental elastic modulus. However, losartan improved coronary flow reserve. Our data suggest that Ang II-AT1R signaling mediates, at least in part, coronary arteriole inward hypertrophic remodeling in T2DM without affecting vascular mechanics, further suggesting that targeting the coronary microvasculature in T2DM may help reduce cardiac ischemic events. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Cholesterol Metabolism in CKD

    PubMed Central

    Reiss, Allison B.; Voloshyna, Iryna; DeLeon, Joshua; Miyawaki, Nobuyuki; Mattana, Joseph

    2015-01-01

    Patients with chronic kidney disease (CKD) have a substantial risk of developing coronary artery disease. Traditional cardiovascular disease (CVD) risk factors such as hypertension and hyperlipidemia do not adequately explain the high prevalence of CVD in CKD. Both CVD and CKD are inflammatory states and inflammation adversely impacts lipid balance. Dyslipidemia in CKD is characterized by elevated triglycerides and high density lipoprotein that is both decreased and dysfunctional. This dysfunctional high density lipoprotein becomes pro-inflammatory and loses its atheroprotective ability to promote cholesterol efflux from cells, including lipid-overloaded macrophages in the arterial wall. Elevated triglycerides result primarily from defective clearance. The weak association between low density lipoprotein cholesterol level and coronary risk in CKD has led to controversy over the usefulness of statin therapy. This review examines disrupted cholesterol transport in CKD, presenting both clinical and pre-clinical evidence of the impact of the uremic environment on vascular lipid accumulation. Preventative and treatment strategies are explored. PMID:26337134

  8. History of vasomotor symptoms, extent of coronary artery disease, and clinical outcomes after acute coronary syndrome in postmenopausal women.

    PubMed

    Ferri, Luca A; Morici, Nuccia; Bassanelli, Giorgio; Franco, Nicoletta; Misuraca, Leonardo; Lenatti, Laura; Jacono, Emilia Lo; Leuzzi, Chiara; Corrada, Elena; Aranzulla, Tiziana C; Colombo, Delia; Cagnacci, Angelo; Prati, Francesco; Savonitto, Stefano

    2018-06-01

    Vasomotor symptoms (VMS) during menopausal transition have been linked to a higher burden of cardiovascular risk factors, subclinical vascular disease, and subsequent vascular events. We aim to investigate the association of VMS with the extent of coronary disease and their prognostic role after an acute coronary syndrome. The Ladies Acute Coronary Syndrome study enrolled consecutive women with an acute coronary syndrome undergoing coronary angiography. A menopause questionnaire was administered during admission. Angiographic data underwent corelab analysis. Six out of 10 enrolling centers participated in 1-year follow-up. Outcome data included the composite endpoint of all-cause mortality, recurrent myocardial infarction, stroke, and rehospitalization for cardiovascular causes within 1 year. Of the 415 women with available angiographic corelab analysis, 373 (90%) had complete 1-year follow-up. Among them, 202 women had had VMS during menopausal transition. These women had the same mean age at menopause as those without VMS (50 years in both groups), but were younger at presentation (median age 71 vs 76 years; P < 0.001), despite a more favorable cardiovascular risk profile (chronic kidney dysfunction 4.5% vs 15.9%; P = 0.001; prior cerebrovascular disease 4.5 vs 12.2%; P = 0.018). Extent of coronary disease at angiography was similar between groups (mean Gensini score 49 vs 51; P = 0.6; mean SYNTAX score 14 vs 16; P = 0.3). Overall cardiovascular events at 1 year did not differ between groups (19% vs 22%; P = 0.5). In postmenopausal women with an acute coronary syndrome, a history of VMS was associated with younger age at presentation, despite a lower vascular disease burden and similar angiographically defined coronary disease as compared with women without VMS. No difference could be found in terms of overall clinical outcomes. These results should be interpreted cautiously as all analyses were unadjusted and did not account for risk factor differences between women with and without a history of VMS.

  9. Left atrial enlargement increases the risk of major adverse cardiac events independent of coronary vasodilator capacity.

    PubMed

    Koh, Angela S; Murthy, Venkatesh L; Sitek, Arkadiusz; Gayed, Peter; Bruyere, John; Wu, Justina; Di Carli, Marcelo F; Dorbala, Sharmila

    2015-09-01

    Longstanding uncontrolled atherogenic risk factors may contribute to left atrial (LA) hypertension, LA enlargement (LAE) and coronary vascular dysfunction. Together they may better identify risk of major adverse cardiac events (MACE). The aim of this study was to test the hypothesis that chronic LA hypertension as assessed by LAE modifies the relationship between coronary vascular function and MACE. In 508 unselected subjects with a normal clinical (82)Rb PET/CT, ejection fraction ≥40 %, no prior coronary artery disease, valve disease or atrial fibrillation, LAE was determined based on LA volumes estimated from the hybrid perfusion and CT transmission scan images and indexed to body surface area. Absolute myocardial blood flow and global coronary flow reserve (CFR) were calculated. Subjects were systematically followed-up for the primary end-point - MACE - a composite of all-cause death, myocardial infarction, hospitalization for heart failure, stroke, coronary artery disease progression or revascularization. During a median follow-up of 862 days, 65 of the subjects experienced a composite event. Compared with subjects with normal LA size, subjects with LAE showed significantly lower CFR (2.25 ± 0.83 vs. 1.95 ± 0.80, p = 0.01). LAE independently and incrementally predicted MACE even after accounting for clinical risk factors, medication use, stress left ventricular ejection fraction, stress left ventricular end-diastolic volume index and CFR (chi-squared statistic increased from 30.9 to 48.3; p = 0.001). Among subjects with normal CFR, those with LAE had significantly worse event-free survival (risk adjusted HR 5.4, 95 % CI 2.3 - 12.8, p < 0.0001). LAE and reduced CFR are related but distinct cardiovascular adaptations to atherogenic risk factors. LAE is a risk marker for MACE independent of clinical factors and left ventricular volumes; individuals with LAE may be at risk of MACE despite normal coronary vascular function.

  10. Heterogeneity in Kv7 channel function in the cerebral and coronary circulation.

    PubMed

    Lee, Sewon; Yang, Yan; Tanner, Miles A; Li, Min; Hill, Michael A

    2015-02-01

    Kv7 channels are considered important regulators of vascular smooth muscle contractility. The present study aimed to examine the hypotheses that (i) Kv7 channels are present in mouse cerebral and coronary arteries and regulate vascular reactivity and (ii) regional differences exist in the activity of these channels. PCR confirmed that basilar, Circle of Willis and LAD arteries express predominantly Kv7.1 and 7.4. Western blot analysis, however, showed greater Kv7.4 protein levels in the cerebral vessels. Relaxation to the Kv7 channel activator, retigabine (1-50 μM) was significantly greater in the basilar artery compared to the LAD artery. Similarly, the Kv7 channel inhibitor, linopirdine (10 μM) caused a stronger contraction of the basilar artery. Furthermore, pre-incubation with linopirdine reduced forskolin (cAMP activator)-induced vasorelaxation in basilar while not altering forskolin-induced vasorelaxation of the LAD, suggesting that Kv7 channels play a more prominent role in the cerebral than in the coronary circulation. Consistent with the vessel data, whole cell Kv7 currents in cerebral VSMCs were potentiated by retigabine and inhibited by linopirdine, while these responses were blunted in coronary VSMCs. This study provides evidence that mouse Kv7 channels may contribute differently to regulating the functional properties of cerebral and coronary arteries. Such heterogeneity has important implications for developing novel therapeutics for cardiovascular dysfunction. © 2014 John Wiley & Sons Ltd.

  11. Heterogeneity in Kv7 channel function in the Cerebral and Coronary Circulation

    PubMed Central

    Tanner, Miles A.; Li, Min; Hill, Michael A.

    2014-01-01

    Kv7 channels are considered important regulators of vascular smooth muscle contractility. The present study examined the hypotheses that 1. Kv7 channels are present in mouse cerebral and coronary arteries and regulate vascular reactivity, and 2. regional differences exist in the activity of these channels. PCR confirmed that basilar, Circle of Willis and left anterior descending (LAD) arteries express predominantly Kv7.1 and 7.4. Western blot analysis, however, showed greater Kv7.4 protein levels in the cerebral vessels. Relaxation to the Kv7 channel activator, retigabine (1-50μM) was significantly greater in basilar compared to LAD. Similarly, the Kv7 channel inhibitor, linopirdine (10μM) caused stronger contraction of the basilar artery. Furthermore, pre-incubation with linopirdine reduced forskolin (cAMP activator)-induced vasorelaxation in basilar while not altering forskolin-induced vasorelaxation of the LAD, suggesting that Kv7 channels play a more prominent role in the cerebral than coronary circulation. Consistent with the vessel data, whole cell Kv7 currents in cerebral VSMCs were potentiated by retigabine and inhibited by linopirdine, while these responses were blunted in coronary VSMCs. This study provides evidence that mouse Kv7 channels may contribute differently to regulating the functional properties of cerebral and coronary arteries. Such heterogeneity has important implications for developing novel therapeutics for cardiovascular dysfunction. PMID:25476662

  12. O-GlcNAcase overexpression reverses coronary endothelial cell dysfunction in type 1 diabetic mice.

    PubMed

    Makino, Ayako; Dai, Anzhi; Han, Ying; Youssef, Katia D; Wang, Weihua; Donthamsetty, Reshma; Scott, Brian T; Wang, Hong; Dillmann, Wolfgang H

    2015-11-01

    Cardiovascular disease is the primary cause of morbidity and mortality in diabetes, and endothelial dysfunction is commonly seen in these patients. Increased O-linked N-acetylglucosamine (O-GlcNAc) protein modification is one of the central pathogenic features of diabetes. Modification of proteins by O-GlcNAc (O-GlcNAcylation) is regulated by two key enzymes: β-N-acetylglucosaminidase [O-GlcNAcase (OGA)], which catalyzes the reduction of protein O-GlcNAcylation, and O-GlcNAc transferase (OGT), which induces O-GlcNAcylation. However, it is not known whether reducing O-GlcNAcylation can improve endothelial dysfunction in diabetes. To examine the effect of endothelium-specific OGA overexpression on protein O-GlcNAcylation and coronary endothelial function in diabetic mice, we generated tetracycline-inducible, endothelium-specific OGA transgenic mice, and induced OGA by doxycycline administration in streptozotocin-induced type 1 diabetic mice. OGA protein expression was significantly decreased in mouse coronary endothelial cells (MCECs) isolated from diabetic mice compared with control MCECs, whereas OGT protein level was markedly increased. The level of protein O-GlcNAcylation was increased in diabetic compared with control mice, and OGA overexpression significantly decreased the level of protein O-GlcNAcylation in MCECs from diabetic mice. Capillary density in the left ventricle and endothelium-dependent relaxation in coronary arteries were significantly decreased in diabetes, while OGA overexpression increased capillary density to the control level and restored endothelium-dependent relaxation without changing endothelium-independent relaxation. We found that connexin 40 could be the potential target of O-GlcNAcylation that regulates the endothelial functions in diabetes. These data suggest that OGA overexpression in endothelial cells improves endothelial function and may have a beneficial effect on coronary vascular complications in diabetes. Copyright © 2015 the American Physiological Society.

  13. Coronary Microvascular Dysfunction is Related to Abnormalities in Myocardial Structure and Function in Cardiac Amyloidosis

    PubMed Central

    Dorbala, Sharmila; Vangala, Divya; Bruyere, John; Quarta, Christina; Kruger, Jenna; Padera, Robert; Foster, Courtney; Hanley, Michael; Di Carli, Marcelo F.; Falk, Rodney

    2014-01-01

    Objectives We sought to test the hypothesis that coronary microvascular function is impaired in subjects with cardiac amyloidosis. Background Effort angina is common in subjects with cardiac amyloidosis even in the absence of epicardial coronary artery disease (CAD). Methods Thirty one subjects were prospectively enrolled in this study including 21 subjects with definite cardiac amyloidosis without epicardial CAD and 10 subjects with hypertensive left ventricular hypertrophy (LVH). All subjects underwent rest and vasodilator stress N-13 ammonia positron emission tomography and 2D echocardiography. Global LV myocardial blood flow (MBF) was quantified at rest and during peak hyperemia, and coronary flow reserve (CFR) was computed (peak stress MBF / rest MBF) adjusting for rest rate pressure product. Results Compared to the LVH group, the amyloid group showed lower rest MBF (0.59 ± 0.15 vs. 0.88 ± 0.23 ml/g/min, P = 0.004), stress MBF (0.85 ± 0.29 vs. 1.85 ± 0.45 vs. ml/min/g, P < 0.0001), CFR (1.19 ± 0.38 vs. 2.23 ± 0.88, P < 0.0001), and higher minimal coronary vascular resistance (111 ± 40 vs. 70 ± 19 mm Hg/mL/g/min, P = 0.004). Of note, almost all amyloid subjects (> 95%) demonstrated significantly reduced peak stress MBF (< 1.3 mL/g/min). In multivariable linear regression analyses, a diagnosis of amyloidosis, increased LV mass and age were the only independent predictors of impaired coronary vasodilator function. Conclusions Coronary microvascular dysfunction is highly prevalent in subjects with cardiac amyloidosis even in the absence of epicardial CAD, and may explain their anginal symptoms. Further study is required to understand whether specific therapy directed at amyloidosis may improve coronary vasomotion in amyloidosis. PMID:25023822

  14. The chromogranin A peptide vasostatin-I inhibits gap formation and signal transduction mediated by inflammatory agents in cultured bovine pulmonary and coronary arterial endothelial cells.

    PubMed

    Blois, Anna; Srebro, Boleslaw; Mandalà, Maurizio; Corti, Angelo; Helle, Karen B; Serck-Hanssen, Guldborg

    2006-07-15

    The proinflammatory agent tumour necrosis factor alpha (TNFalpha) is one of several agents causing vascular leakage. The N-terminal domain of CgA, vasostatin-I (CgA1-76), has recently been reported to inhibit TNFalpha induced gap formation in human umbilical venous endothelial cells. Here we report on the effect of recombinant human CgA1-78, vasostatin-I, on TNFalpha induced gap formation in two model systems of vascular leakage in arterial endothelial cells of bovine pulmonary (BPAEC) and coronary (BCAEC) origin. Vasostatin-I inhibited the TNFalpha induced gap formation in both models, being inactive in the unstimulated cells. The phosphorylation of p38MAP kinase in TNFalpha activated BPAEC was markedly attenuated in the presence of vasostatin-I and the inhibitory effect corresponded to that of the specific p38MAPK inhibitor SB203580. Vasostatin-I also inhibited the phosphorylation of p38MAPK induced by both thrombin and pertussis toxin in these cells. The results demonstrate that vasostatin-I has inhibitory effects on TNFalpha-induced disruption of confluent layers of cultured pulmonary and coronary arterial endothelial cells. This suggests that vasostatin-I may affect endothelial barrier dysfunction also in arterial vascular beds. Furthermore, the inhibitory activity of vasostatin-I may be associated with the p38MAPK signalling cascade via a pertussis toxin sensitive, presumably Galphai coupled mechanism.

  15. Plasma concentration of serotonin is a novel biomarker for coronary microvascular dysfunction in patients with suspected angina and unobstructive coronary arteries.

    PubMed

    Odaka, Yuji; Takahashi, Jun; Tsuburaya, Ryuji; Nishimiya, Kensuke; Hao, Kiyotaka; Matsumoto, Yasuharu; Ito, Kenta; Sakata, Yasuhiko; Miyata, Satoshi; Manita, Daisuke; Hirowatari, Yuji; Shimokawa, Hiroaki

    2017-02-14

    Although the importance of coronary microvascular dysfunction (CMD) has been emerging, reliable biomarkers for CMD remain to be developed. We examined the potential usefulness of plasma concentration of serotonin to diagnose CMD in patients with suspected angina and unobstructive coronary arteries. We enrolled 198 consecutive patients (M/F 116/82, 60.2 ± 13.3 years old) who underwent acetylcholine provocation test and measured plasma serotonin concentration. Coronary microvascular dysfunction was defined as myocardial lactate production without or prior to the occurrence of epicardial coronary spasm during acetylcholine provocation test. Although no statistical difference in plasma concentration of serotonin [median (inter-quartile range) nmol/L] was noted between the vasospastic angina (VSA) and non-VSA groups [6.8 (3.8, 10.9) vs. 5.1 (3.7, 8.4), P = 0.135], it was significantly higher in patients with CMD compared with those without it [7.7 (4.5, 14.2) vs. 5.6 (3.7, 9.3), P = 0.008]. Among the four groups classified according to the presence or absence of VSA and CMD, serotonin concentration was highest in the VSA with CMD group. Importantly, there was a positive correlation between plasma serotonin concentration and baseline thrombolysis in myocardial infarction frame count (P = 0.001), a marker of coronary vascular resistance. The classification and regression trees analysis showed that plasma serotonin concentration of 9.55 nmol/L was the first discriminator to stratify the risk for the presence of CMD. In multivariable analysis, serotonin concentration greater than the cut-off value had the largest odds ratio in the prediction of CMD [odds ratio (95% confidence interval) 2.63 (1.28-5.49), P = 0.009]. Plasma concentration of serotonin may be a novel biomarker for CMD in patients with angina and unobstructive coronary arteries. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For Permissions, please email: journals.permissions@oup.com.

  16. Erectile dysfunction and coronary atherothrombosis in diabetic patients: pathophysiology, clinical features and treatment.

    PubMed

    Gazzaruso, Carmine

    2006-03-01

    The current review reports recent data available in the literature on the prevalence of erectile dysfunction and the association of erectile dysfunction with overt and silent coronary artery disease in patients with diabetes mellitus. The mechanisms by which erectile dysfunction is associated with coronary artery disease and potential clinical implications of this association have been extensively analysed. In particular, the role of endothelial dysfunction in the pathophysiology of erectile dysfunction and the potential clinical usefulness of erectile dysfunction to identify diabetic patients with silent coronary artery disease have been outlined. Finally, recent guidelines on the treatment of erectile dysfunction with phosphodiesterase-5 inhibitors in diabetic patients with and without coronary artery disease have been reported and discussed.

  17. Downregulation of BK Channel Function and Protein Expression in Coronary Arteriolar Smooth Muscle Cells of Type 2 Diabetic Patients.

    PubMed

    Lu, Tong; Chai, Qiang; Jiao, Guoqing; Wang, Xiao-Li; Sun, Xiaojing; Furuseth, Jonathan D; Stulak, John M; Daly, Richard C; Greason, Kevin L; Cha, Yong-Mei; Lee, Hon-Chi

    2018-05-30

    Type 2 diabetes (T2D) is strongly associated with cardiovascular morbidity and mortality in patients. Vascular large conductance Ca2+-activated potassium (BK) channels, composed of four pore-forming α subunits (BK-α) and four regulatory β1 subunits (BK-β1), are densely expressed in coronary arterial smooth muscle cells (SMCs) and play an important role in regulating vascular tone and myocardial perfusion. However, the role of BK channels in coronary microvascular dysfunction of human subjects with diabetes is unclear. In this study, we examined BK channel function and protein expression, and BK channel-mediated vasodilation in freshly isolated coronary arterioles from T2D patients. Atrial tissues were obtained from 25 patients with T2D and 16 matched non-diabetic subjects during cardiopulmonary bypass procedure. Microvessel videomicroscopy and immunoblot analysis were performed in freshly dissected coronary arterioles and inside-out single BK channel currents was recorded in enzymatically isolated coronary arteriolar SMCs. We found that BK channel sensitivity to physiological Ca2+ concentration and voltage was downregulated in the coronary arteriolar SMCs of diabetic patients, compared with non-diabetic controls. BK channel kinetics analysis revealed that there was significant shortening of the mean open time and prolongation of the mean closed time in diabetic patients, resulting in a remarkable reduction of the channel open probability. Functional studies showed that BK channel activation by dehydrosoyasaponin-1 was diminished and that BK channel-mediated vasodilation in response to shear stress was impaired in diabetic coronary arterioles. Immunoblot experiments confirmed that the protein expressions of BK-α and BK-β1 subunits were significantly downregulated, but the ratio of BK-α/BK-β1 was unchanged in the coronary arterioles of T2D patients. Our results demonstrated for the first time that BK channel function and BK channel-mediated vasodilation were abnormal in the coronary microvasculature of diabetic patients, due to decreased protein expression and altered intrinsic properties of BK channels.

  18. Characterization of Cardiovascular Alterations Induced by Different Chronic Cisplatin Treatments

    PubMed Central

    Herradón, Esperanza; González, Cristina; Uranga, José A.; Abalo, Raquel; Martín, Ma I.; López-Miranda, Visitacion

    2017-01-01

    In the last years, many clinical studies have revealed that some cisplatin-treated cancer survivors have a significantly increased risk of cardiovascular events, being cisplatin-induced cardiovascular toxicity an increasing concern. The aim of the present work was to evaluate the cardiovascular alterations induced by different chronic cisplatin treatments, and to identify some of the mechanisms involved. Direct blood pressure, basal cardiac (left ventricle and coronary arteries) and vascular (aortic and mesenteric) functions were evaluated in chronic (5 weeks) saline- or cisplatin-treated male Wistar rats. Three different doses of cisplatin were tested (1, 2, and 3 mg/kg/week). Alterations in cardiac and vascular tissues were also investigated by immunohistochemistry, Western Blot, and or quantitative RT-PCR analysis. Cisplatin treatment provoked a significant modification of arterial blood pressure, heart rate, and basal cardiac function at the maximum dose tested. However, vascular endothelial dysfunction occurred at lower doses. The expression of collagen fibers and conexin-43 were increased in cardiac tissue in cisplatin-treated rats with doses of 2 and 3 mg/kg/week. The expression of endothelial nitric oxide synthase was also modified in cardiac and vascular tissues after cisplatin treatment. In conclusion, chronic cisplatin treatment provokes cardiac and vascular toxicity in a dose-dependent manner. Besides, vascular endothelial dysfunction occurs at lower doses than cardiac and systemic cardiovascular toxicity. Moreover, some structural changes in cardiac and vascular tissues are also patent even before any systemic cardiovascular alterations. PMID:28533750

  19. Characterization of Cardiovascular Alterations Induced by Different Chronic Cisplatin Treatments.

    PubMed

    Herradón, Esperanza; González, Cristina; Uranga, José A; Abalo, Raquel; Martín, Ma I; López-Miranda, Visitacion

    2017-01-01

    In the last years, many clinical studies have revealed that some cisplatin-treated cancer survivors have a significantly increased risk of cardiovascular events, being cisplatin-induced cardiovascular toxicity an increasing concern. The aim of the present work was to evaluate the cardiovascular alterations induced by different chronic cisplatin treatments, and to identify some of the mechanisms involved. Direct blood pressure, basal cardiac (left ventricle and coronary arteries) and vascular (aortic and mesenteric) functions were evaluated in chronic (5 weeks) saline- or cisplatin-treated male Wistar rats. Three different doses of cisplatin were tested (1, 2, and 3 mg/kg/week). Alterations in cardiac and vascular tissues were also investigated by immunohistochemistry, Western Blot, and or quantitative RT-PCR analysis. Cisplatin treatment provoked a significant modification of arterial blood pressure, heart rate, and basal cardiac function at the maximum dose tested. However, vascular endothelial dysfunction occurred at lower doses. The expression of collagen fibers and conexin-43 were increased in cardiac tissue in cisplatin-treated rats with doses of 2 and 3 mg/kg/week. The expression of endothelial nitric oxide synthase was also modified in cardiac and vascular tissues after cisplatin treatment. In conclusion, chronic cisplatin treatment provokes cardiac and vascular toxicity in a dose-dependent manner. Besides, vascular endothelial dysfunction occurs at lower doses than cardiac and systemic cardiovascular toxicity. Moreover, some structural changes in cardiac and vascular tissues are also patent even before any systemic cardiovascular alterations.

  20. Impact of competitive flow on wall shear stress in coronary surgery: computational fluid dynamics of a LIMA-LAD model.

    PubMed

    Nordgaard, Håvard; Swillens, Abigail; Nordhaug, Dag; Kirkeby-Garstad, Idar; Van Loo, Denis; Vitale, Nicola; Segers, Patrick; Haaverstad, Rune; Lovstakken, Lasse

    2010-12-01

    Competitive flow from native coronary vessels is considered a major factor in the failure of coronary bypass grafts. However, the pathophysiological effects are not fully understood. Low and oscillatory wall shear stress (WSS) is known to induce endothelial dysfunction and vascular disease, like atherosclerosis and intimal hyperplasia. The aim was to investigate the impact of competitive flow on WSS in mammary artery bypass grafts. Using computational fluid dynamics, WSS was calculated in a left internal mammary artery (LIMA) graft to the left anterior descending artery in a three-dimensional in vivo porcine coronary artery bypass graft model. The following conditions were investigated: high competitive flow (non-significant coronary lesion), partial competitive flow (significant coronary lesion), and no competitive flow (totally occluded coronary vessel). Time-averaged WSS of LIMA at high, partial, and no competitive flow were 0.3-0.6, 0.6-3.0, and 0.9-3.0 Pa, respectively. Further, oscillatory WSS quantified as the oscillatory shear index (OSI) ranged from (maximum OSI = 0.5 equals zero net WSS) 0.15 to 0.35, <0.05, and <0.05, respectively. Thus, high competitive flow resulted in substantial oscillatory and low WSS. Moderate competitive flow resulted in WSS and OSI similar to the no competitive flow condition. Graft flow is highly dependent on the degree of competitive flow. High competitive flow was found to produce unfavourable WSS consistent with endothelial dysfunction and subsequent graft narrowing and failure. Partial competitive flow, however, may be better tolerated as it was found to be similar to the ideal condition of no competitive flow.

  1. The ASSURE ROT Registry: Bioresorbable Vascular Scaffold Following Rotablation for Complex Coronary Lesions

    ClinicalTrials.gov

    2015-02-05

    Cardiovascular Diseases; Coronary Artery Disease; Myocardial Ischemia; Coronary Disease; Coronary Restenosis; Heart Diseases; Coronary Stenosis; Arteriosclerosis; Arterial Occlusive Diseases; Vascular Diseases

  2. ABSORB: Postmarketing Surveillance Registry to Monitor the Everolimus-eluting Bioresorbable Vascular Scaffold in Patients With Coronary Artery Disease

    ClinicalTrials.gov

    2016-12-08

    Cardiovascular Diseases; Coronary Artery Disease; Myocardial Ischemia; Coronary Disease; Coronary Restenosis; Heart Diseases; Coronary Stenosis; Arteriosclerosis; Arterial Occlusive Diseases; Vascular Diseases

  3. Role of oxidative stress in multiparity-induced endothelial dysfunction.

    PubMed

    Tawfik, Huda E; Cena, Jonathan; Schulz, Richard; Kaufman, Susan

    2008-10-01

    Multiparity is associated with increased risk of cardiovascular disease. We tested whether multiparity induces oxidative stress in rat vascular tissue. Coronary arteries and thoracic aorta were isolated from multiparous and age-matched virgin rats. Relaxation to ACh and sodium nitroprusside (SNP) was measured by wire myography. We also tested the effect of the superoxide dismutase mimetic MnTE2PyP (30 microM), the NADPH oxidase inhibitor apocynin (10 microM), and the peroxynitrite scavenger FeTPPs (10 microM) on ACh-mediated relaxation in coronary arteries. Vascular superoxide anion was measured using the luminol derivative L-012 and nitric oxide (NO) generation by the Griess reaction. Multiparity reduced maximal response and sensitivity to ACh in coronary arteries [maximal relaxation (E(max)): multiparous 49+/-3% vs. virgins 95%+/-3%; EC(50): multiparous 135+/-1 nM vs. virgins 60+/-1 nM], and in aortic rings (E(max): multiparous 38+/-3% vs. virgins 79+/-4%; EC(50): multiparous 160+/-2 nM vs. virgins 90+/-3 nM). Coronary arteries from the two groups relaxed similarly to SNP. Superoxide anions formation was significantly higher in both coronary arteries (2.8-fold increase) and aorta (4.1-fold increase) from multiparous rats compared with virgins. In multiparous rats, incubation with MnTE2PyP, apocynin, and FeTPPs improved maximal relaxation to ACh (MnTE2PyP: 74+/-5%; vehicle: 41+/-5%; apocynin: 73+/-3% vs. vehicle: 41+/-3%; FeTPPs: 72+/-3% vs. vehicle: 46+/-3%) and increased sensitivity (EC(50): MnTE2PyP: 61+/-0.5 nM vs. vehicle: 91+/-1 nM; apocynin: 45+/-3 nM vs. vehicle: 91+/-6 nM; FeTPP: 131 +/- 2 nM vs. vehicle: 185+/-1 nM). Multiparity also reduced total nitrate/nitrite levels (multiparous: 2.5+/-2 micromol/mg protein vs. virgins: 7+/-1 micromol/mg protein) and endothelial nitric oxide synthase protein levels (multiparous: 0.53+/-0.1 protein/actin vs. virgins: 1.0+/-0.14 protein/actin). These data suggest that multiparity induces endothelial dysfunction through decreased NO bioavailability and increased reactive oxygen species formation.

  4. Notch3 deficiency impairs coronary microvascular maturation and reduces cardiac recovery after myocardial ischemia.

    PubMed

    Tao, Yong-Kang; Zeng, Heng; Zhang, Guo-Qiang; Chen, Sean T; Xie, Xue-Jiao; He, Xiaochen; Wang, Shuo; Wen, Hongyan; Chen, Jian-Xiong

    2017-06-01

    Vascular maturation plays an important role in wound repair post-myocardial infarction (MI). The Notch3 is critical for pericyte recruitment and vascular maturation during embryonic development. This study is to test whether Notch3 deficiency impairs vascular maturation and blunts cardiac functional recovery post-MI. Wild type (WT) and Notch3 knockout (Notch3KO) mice were subjected to MI by the ligation of left anterior descending coronary artery (LAD). Cardiac function and coronary blood flow reserve (CFR) were measured by echocardiography. The expression of angiogenic growth factor, pericyte/capillary coverage and arteriolar formation were analyzed. Loss of Notch3 in mice resulted in a significant reduction of pericytes and small arterioles. Notch3 KO mice had impaired pericyte/capillary coverage and CFR compared to WT mice. Notch3 KO mice were more prone to ischemic injury with larger infarcted size and higher rates of mortality. The expression of CXCR-4 and VEGF/Ang-1 was significantly decreased in Notch3 KO mice. Notch3 KO mice also had few NG2 + /Sca1 + and NG2 + /c-kit + progenitor cells in the ischemic area and exhibited worse cardiac function recovery at 2weeks after MI. These were accompanied by a significant reduction of pericyte/capillary coverage and arteriolar maturation. Furthermore, Notch3 KO mice subjected to MI had increased intracellular adhesion molecule-2 (ICAM-2) expression and CD11b + macrophage infiltration into ischemic areas compared to that of WT mice. Notch3 mutation impairs recovery of cardiac function post-MI by the mechanisms involving the pre-existing coronary microvascular dysfunction conditions, and impairment of pericyte/progenitor cell recruitment and microvascular maturation. Copyright © 2016. Published by Elsevier B.V.

  5. Should the patient with coronary artery disease use sildenafil?

    PubMed

    Cheitlin, Melvin D

    2003-01-01

    Since the etiology of erectile dysfunction is frequently related to endothelial dysfunction, a problem in common with much vascular disease, erectile dysfunction disproportionately affects patients with cardiovascular disease. With the development of phosphodiesterase 5 inhibitors, the first of which was sildenafil (Viagra), an effective oral medication became available. The question of safety of these drugs, especially in patients with latent or overt coronary artery disease, is of concern. Sildenafil relaxes smooth muscle and therefore lowers systolic and diastolic blood pressure slightly. With organic nitrates, the drop in blood pressure is potentiated, at times dangerously, thereby making it contraindicated to take nitrates within 24 hours of using sildenafil. In double-blind, placebo-controlled trials, there was no difference between sildenafil subjects and control patients in the incidence of myocardial infarction, cardiovascular, and total deaths. Coronary disease patients with stable angina, controlled on medications, were included in the trials. Therefore, sildenafil, as a drug, is safe in such patients. With a patient with coronary artery disease suddenly engaging in the physical exercise associated with sexual intercourse, there is the danger of increased risk of precipitating myocardial infarction or death. The cardiovascular metabolic cost of sexual activity is reviewed and appears to be approximately at the level of 3-5 metabolic equivalents of exercise. Sexual activity occurs within 2 hours of the onset of an acute myocardial infarction in <1.0% of patients. Although sexual intercourse is estimated to increase the risk of myocardial infarction by a factor of 2x, there is still only a very small increase in risk, a risk acceptable to patients who feel their quality of life will be markedly improved by their ability to engage in sexual activity.

  6. Sarcoplasmic reticulum-mitochondria communication in cardiovascular pathophysiology.

    PubMed

    Lopez-Crisosto, Camila; Pennanen, Christian; Vasquez-Trincado, Cesar; Morales, Pablo E; Bravo-Sagua, Roberto; Quest, Andrew F G; Chiong, Mario; Lavandero, Sergio

    2017-06-01

    Repetitive, calcium-mediated contractile activity renders cardiomyocytes critically dependent on a sustained energy supply and adequate calcium buffering, both of which are provided by mitochondria. Moreover, in vascular smooth muscle cells, mitochondrial metabolism modulates cell growth and proliferation, whereas cytosolic calcium levels regulate the arterial vascular tone. Physical and functional communication between mitochondria and sarco/endoplasmic reticulum and balanced mitochondrial dynamics seem to have a critical role for optimal calcium transfer to mitochondria, which is crucial in calcium homeostasis and mitochondrial metabolism in both types of muscle cells. Moreover, mitochondrial dysfunction has been associated with myocardial damage and dysregulation of vascular smooth muscle proliferation. Therefore, sarco/endoplasmic reticulum-mitochondria coupling and mitochondrial dynamics are now viewed as relevant factors in the pathogenesis of cardiac and vascular diseases, including coronary artery disease, heart failure, and pulmonary arterial hypertension. In this Review, we summarize the evidence related to the role of sarco/endoplasmic reticulum-mitochondria communication in cardiac and vascular muscle physiology, with a focus on how perturbations contribute to the pathogenesis of cardiovascular disorders.

  7. Ezetimibe in Combination With Statins Ameliorates Endothelial Dysfunction in Coronary Arteries After Stenting: The CuVIC Trial (Effect of Cholesterol Absorption Inhibitor Usage on Target Vessel Dysfunction After Coronary Stenting), a Multicenter Randomized Controlled Trial.

    PubMed

    Takase, Susumu; Matoba, Tetsuya; Nakashiro, Soichi; Mukai, Yasushi; Inoue, Shujiro; Oi, Keiji; Higo, Taiki; Katsuki, Shunsuke; Takemoto, Masao; Suematsu, Nobuhiro; Eshima, Kenichi; Miyata, Kenji; Yamamoto, Mitsutaka; Usui, Makoto; Sadamatsu, Kenji; Satoh, Shinji; Kadokami, Toshiaki; Hironaga, Kiyoshi; Ichi, Ikuyo; Todaka, Koji; Kishimoto, Junji; Egashira, Kensuke; Sunagawa, Kenji

    2017-02-01

    We sought to investigate whether treatment with ezetimibe in combination with statins improves coronary endothelial function in target vessels in coronary artery disease patients after coronary stenting. We conducted a multicenter, prospective, randomized, open-label, blinded-end point trial among 11 cardiovascular treatment centers. From 2011 to 2013, 260 coronary artery disease patients who underwent coronary stenting were randomly allocated to 2 arms (statin monotherapy, S versus ezetimibe [10 mg/d]+statin combinational therapy, E+S). We defined target vessel dysfunction as the primary composite outcome, which comprised target vessel failure during treatment and at the 6- to 8-month follow-up coronary angiography and coronary endothelial dysfunction determined via intracoronary acetylcholine testing performed in cases without target vessel failure at the follow-up coronary angiography. Coadministration of ezetimibe with statins further lowered low-density lipoprotein cholesterol levels (83±23 mg/dL in S versus 67±23 mg/dL in E+S; P<0.0001), with significant decreases in oxidized low-density lipoprotein and oxysterol levels. Among patients without target vessel failure, 46 out of 89 patients (52%) in the S arm and 34 out of 96 patients (35%) in the E+S arm were found to have coronary endothelial dysfunction (P=0.0256), and the incidence of target vessel dysfunction at follow-up was significantly decreased in the E+S arm (69/112 (62%) in S versus 47/109 (43%) in E+S; P=0.0059). A post hoc analysis of post-treatment low-density lipoprotein cholesterol-matched subgroups revealed that the incidence of both target vessel dysfunction and coronary endothelial dysfunction significantly decreased in the E+S arm, with significant reductions in oxysterol levels. The CuVIC trial (Effect of Cholesterol Absorption Inhibitor Usage on Target Vessel Dysfunction after Coronary Stenting) has shown that ezetimibe with statins, compared with statin monotherapy, improves functional prognoses, ameliorating endothelial dysfunction in stented coronary arteries, and was associated with larger decreases in oxysterol levels. © 2016 American Heart Association, Inc.

  8. Polymeric stent materials dysregulate macrophage and endothelial cell functions: implications for coronary artery stent

    PubMed Central

    Wang, Xintong; Zachman, Angela L.; Chun, Young Wook; Shen, Fang-Wen; Hwang, Yu-Shik; Sung, Hak-Joon

    2014-01-01

    Background Biodegradable polymers have been applied as bulk or coating materials for coronary artery stents. The degradation of polymers, however, could induce endothelial dysfunction and aggravate neointimal formation. Here we use polymeric microparticles to simulate and demonstrate the effects of degraded stent materials on phagocytic activity, cell death and dysfunction of macrophages and endothelial cells. Methods Microparticles made of low molecular weight polyesters were incubated with human macrophages and coronary artery endothelial cells (ECs). Microparticle-induced phagocytosis, cytotoxicity, apoptosis, cytokine release and surface marker expression were determined by immunostaining or ELISA. Elastase expression was analyzed by ELISA and the elastase-mediated polymer degradation was assessed by mass spectrometry. Results We demonstrated poly(D,L-lactic acid) (PLLA) and polycaprolactone (PCL) microparticles induced cytotoxicity in macrophages and ECs, partially through cell apoptosis. The particle treatment alleviated EC phagocytosis, as opposed to macrophages, but enhanced the expression of vascular cell adhesion molecule-1 (VCAM) along with decreased nitric oxide production, indicating ECs were activated and lost their capacity to maintain homeostasis. The activation of both cell types induced release of elastase or elastase-like protease, which further accelerated polymer degradation. Conclusions This study revealed that low molecule weight PLLA and PCL microparticles increased cytotoxicity and dysregulated endothelial cell function, which in turn enhanced elastase release and polymer degradation. These indicate polymer or polymer-coated stents impose a risk of endothelial dysfunction after deployment which can potentially lead to delayed endothelialization, neointimal hyperplasia and late thrombosis. PMID:24820736

  9. Cardiovascular dysfunction in obesity and new diagnostic imaging techniques: the role of noninvasive image methods.

    PubMed

    Barbosa, José Augusto A; Rodrigues, Alexandre B; Mota, Cleonice Carvalho C; Barbosa, Márcia M; Simões e Silva, Ana C

    2011-01-01

    Obesity is a major public health problem affecting adults and children in both developed and developing countries. This condition often leads to metabolic syndrome, which increases the risk of cardiovascular disease. A large number of studies have been carried out to understand the pathogenesis of cardiovascular dysfunction in obese patients. Endothelial dysfunction plays a key role in the progression of atherosclerosis and the development of coronary artery disease, hypertension and congestive heart failure. Noninvasive methods in the field of cardiovascular imaging, such as measuring intima-media thickness, flow-mediated dilatation, tissue Doppler, and strain, and strain rate, constitute new tools for the early detection of cardiac and vascular dysfunction. These techniques will certainly enable a better evaluation of initial cardiovascular injury and allow the correct, timely management of obese patients. The present review summarizes the main aspects of cardiovascular dysfunction in obesity and discusses the application of recent noninvasive imaging methods for the early detection of cardiovascular alterations.

  10. Coronary microvascular dysfunction equivalent to left main coronary artery disease.

    PubMed

    Panç, Cafer; Kocaağa, Mehmet; Erdoğan, Onur; Sarıkaya, Remzi; Umman, Sabahattin

    2017-04-01

    Coronary microvascular dysfunction, also known as cardiac syndrome X, is a clinical syndrome presenting with typical angina and evidence of myocardial ischemia in the absence of flow-limiting stenosis on coronary angiography. Of patients undergoing coronary angiography due to suspected myocardial ischemia, 50% are found to have normal or near-normal coronary arteries. Described in this case report is a patient who developed hypotension and ST segment depressions during treadmill exercise test. Left main coronary artery or multivessel disease was suspected. Coronary angiography was normal, but coronary flow reserve measurement revealed severe microvascular dysfunction.

  11. Arterial ageing: from endothelial dysfunction to vascular calcification.

    PubMed

    Tesauro, M; Mauriello, A; Rovella, V; Annicchiarico-Petruzzelli, M; Cardillo, C; Melino, G; Di Daniele, N

    2017-05-01

    Complex structural and functional changes occur in the arterial system with advancing age. The aged artery is characterized by changes in microRNA expression patterns, autophagy, smooth muscle cell migration and proliferation, and arterial calcification with progressively increased mechanical vessel rigidity and stiffness. With age the vascular smooth muscle cells modify their phenotype from contractile to 'synthetic' determining the development of intimal thickening as early as the second decade of life as an adaptive response to forces acting on the arterial wall. The increased permeability observed in intimal thickening could represent the substrate on which low-level atherosclerotic stimuli can promote the development of advanced atherosclerotic lesions. In elderly patients the atherosclerotic plaques tend to be larger with increased vascular stenosis. In these plaques there is a progressive accumulation of both lipids and collagen and a decrease of inflammation. Similarly the plaques from elderly patients show more calcification as compared with those from younger patients. The coronary artery calcium score is a well-established marker of adverse cardiovascular outcomes. The presence of diffuse calcification in a severely stenotic segment probably induces changes in mechanical properties and shear stress of the arterial wall favouring the rupture of a vulnerable lesion in a less stenotic adjacent segment. Oxidative stress and inflammation appear to be the two primary pathological mechanisms of ageing-related endothelial dysfunction even in the absence of clinical disease. Arterial ageing is no longer considered an inexorable process. Only a better understanding of the link between ageing and vascular dysfunction can lead to significant advances in both preventative and therapeutic treatments with the aim that in the future vascular ageing may be halted or even reversed. © 2017 The Association for the Publication of the Journal of Internal Medicine.

  12. Growth Hormone-Releasing Peptide Ghrelin Inhibits Homocysteine-Induced Endothelial Dysfunction in Porcine Coronary Arteries and Human Endothelial Cells

    PubMed Central

    Hedayati, Nasim; Annambhotla, Suman; Jiang, Jun; Wang, Xinwen; Chai, Hong; Lin, Peter H.; Yao, Qizhi; Chen, Changyi

    2009-01-01

    Objective Ghrelin, a novel growth-hormone releasing peptide, is implicated to play a protective role in cardiovascular tissues. However, it is not clear whether ghrelin protects vascular tissues from injury secondary to risk factors such as homocysteine (Hcy). The purpose of this study was to investigate the effect and potential mechanisms of ghrelin on Hcy-induced endothelial dysfunction. Methods Porcine coronary artery rings were incubated for 24 hours with ghrelin (100 ng/mL), Hcy (50 μM), or ghrelin plus Hcy. Endothelial vasomotor function was evaluated using the myograph tension model. The response to thromboxane A2 analog U466419, bradykinin, and sodium nitroprusside (SNP) was analyzed. Endothelial nitric oxide synthase (eNOS) expression was determined using real time PCR and immunohistochemistry staining, and superoxide anion production by lucigenin-enhanced chemiluminescence analysis. Human coronary artery endothelial cells (HCAECs) were treated with different concentrations of Hcy, ghrelin, and/or anti-ghrelin receptor (GHS-R1a) antibody for 24 hours, eNOS protein levels were determined by western blot analysis. Results Maximal contraction with U466419 and endothelium-independent vasorelaxation with SNP were not different among the four groups. However, endothelium-dependent vasorelaxation with bradykinin (10-6M) was significantly reduced by 34% with Hcy compared with controls (P<0.05). Addition of ghrelin to Hcy had a protective effect, with 61.6% relaxation, similar to controls (64.7%). Hcy significantly reduced eNOS expression, while ghrelin co-treatment effectively restored eNOS expression to the control levels. Superoxide anion levels, which were increased by 100% with Hcy, returned to control levels with ghrelin co-treatment. Ghrelin also effectively blocked Hcy-induced decrease of eNOS protein levels in HCAECs in a concentration dependent manner. Anti-ghrelin receptor antibody effectively inhibited ghrelin’s effect. Conclusions Ghrelin has a protective effect in the porcine coronary artery by blocking Hcy-induced endothelial dysfunction, improving eNOS expression, and reducing oxidative stress. Ghrelin also shows protective effect on HCACEs from Hcy-induced decrease in eNOS protein levels. Ghrelin’s effect is receptor-dependent. Thus, ghrelin administration may have beneficial effects in the treatment of vascular disease in hyperhomocysteinemic patients. PMID:19028051

  13. Cardiac contractile dysfunction during mild coronary flow reductions is due to an altered calcium-pressure relationship in rat hearts.

    PubMed Central

    Figueredo, V M; Brandes, R; Weiner, M W; Massie, B M; Camacho, S A

    1992-01-01

    Coronary artery stenosis or occlusion results in reduced coronary flow and myocardial contractile depression. At severe flow reductions, increased inorganic phosphate (Pi) and intracellular acidosis clearly play a role in contractile depression. However, during milder flow reductions the mechanism(s) underlying contractile depression are less clear. Previous perfused heart studies demonstrated no change of Pi or pH during mild flow reductions, suggesting that changes of intravascular pressure (garden hose effect) may be the mediator of this contractile depression. Others have reported conflicting results regarding another possible mediator of contractility, the cytosolic free calcium (Cai). To examine the respective roles of Cai, Pi, pH, and vascular pressure in regulating contractility during mild flow reductions, Indo-1 calcium fluorescence and 31P magnetic resonance spectroscopy measurements were performed on Langendorff-perfused rat hearts. Cai and diastolic calcium levels did not change during flow reductions to 50% of control. Pi demonstrated a close relationship with developed pressure and significantly increased from 2.5 +/- 0.3 to 4.2 +/- 0.4 mumol/g dry weight during a 25% flow reduction. pH was unchanged until a 50% flow reduction. Increasing vascular pressure to superphysiological levels resulted in further increases of developed pressure, with no change in Cai. These findings are consistent with the hypothesis that during mild coronary flow reductions, contractile depression is mediated by an altered relationship between Cai and pressure, rather than by decreased Cai. Furthermore, increased Pi and decreased intravascular pressure may be responsible for this altered calcium-pressure relationship during mild coronary flow reductions. PMID:1430205

  14. Anti-oxidative and anti-inflammatory vasoprotective effects of caloric restriction in aging: role of circulating factors and SIRT1

    PubMed Central

    Csiszar, Anna; Labinskyy, Nazar; Jimenez, Rosario; Pinto, John T.; Ballabh, Praveen; Losonczy, Gyorgy; Pearson, Kevin J.; de Cabo, Rafael; Ungvari, Zoltan

    2009-01-01

    Endothelial-dysfunction, oxidative stress and inflammation are associated with vascular aging and promote the development of cardiovascular-disease. Caloric restriction (CR) mitigates conditions associated with aging, but its effects on vascular dysfunction during aging remain poorly defined. To determine whether CR exerts vasoprotective effects in aging, aortas of ad libitum (AL) fed young and aged and CR-aged F344 rats were compared. Aging in AL-rats was associated with impaired acetylcholine-induced relaxation, vascular oxidative stress and increased NF-κB-activity. Lifelong CR significantly improved endothelial function, attenuated vascular ROS production, inhibited NF-κB activity and down-regulated inflammatory genes. To elucidate the role of circulating factors in mediation of the vasoprotective effects of CR, we determined whether sera obtained from CR-animals can confer anti-oxidant and anti-inflammatory effects in cultured coronary-arterial endothelial cells (CAECs), mimicking the effects of CR. In CAECs cultured in the presence of AL-serum TNFα elicited oxidative-stress, NF-κB-activation and inflammatory gene expression. By contrast, treatment of CAECs with CR-serum attenuated TNFα-induced ROS generation and prevented NF-κB-activation and induction of inflammatory genes. siRNA-knockdown of SIRT1 mitigated the anti-oxidant and anti-inflammatory effects of CR-serum. CR exerts anti-oxidant and anti-inflammatory vascular effects, which are likely mediated by circulating factors, in part, via a SIRT1-dependent pathway. PMID:19549533

  15. Reactive Oxygen Species Signaling Facilitates FOXO-3a/FBXO-Dependent Vascular BK Channel β1 Subunit Degradation in Diabetic Mice

    PubMed Central

    Lu, Tong; Chai, Qiang; Yu, Ling; d’Uscio, Livius V.; Katusic, Zvonimir S.; He, Tongrong; Lee, Hon-Chi

    2012-01-01

    Activity of the vascular large conductance Ca2+-activated K+ (BK) channel is tightly regulated by its accessory β1 subunit (BK-β1). Downregulation of BK-β1 expression in diabetic vessels is associated with upregulation of the forkhead box O subfamily transcription factor-3a (FOXO-3a)–dependent F-box–only protein (FBXO) expression. However, the upstream signaling regulating this process is unclear. Overproduction of reactive oxygen species (ROS) is a common finding in diabetic vasculopathy. We hypothesized that ROS signaling cascade facilitates the FOXO-3a/FBXO-mediated BK-β1 degradation and leads to diabetic BK channel dysfunction. Using cellular biology, patch clamp, and videomicroscopy techniques, we found that reduced BK-β1 expression in streptozotocin (STZ)-induced diabetic mouse arteries and in human coronary smooth muscle cells (SMCs) cultured with high glucose was attributable to an increase in protein kinase C (PKC)-β and NADPH oxidase expressions and accompanied by attenuation of Akt phosphorylation and augmentation of atrogin-1 expression. Treatment with ruboxistaurin (a PKCβ inhibitor) or with GW501516 (a peroxisome proliferator–activated receptor δ activator) reduced atrogin-1 expression and restored BK channel-mediated coronary vasodilation in diabetic mice. Our results suggested that oxidative stress inhibited Akt signaling and facilitated the FOXO-3a/FBXO-dependent BK-β1 degradation in diabetic vessels. Suppression of the FOXO-3a/FBXO pathway prevented vascular BK-β1 degradation and protected coronary function in diabetes. PMID:22586590

  16. eNOS uncoupling in cardiovascular diseases--the role of oxidative stress and inflammation.

    PubMed

    Karbach, Susanne; Wenzel, Philip; Waisman, Ari; Munzel, Thomas; Daiber, Andreas

    2014-01-01

    Many cardiovascular diseases and drug-induced complications are associated with - or even based on - an imbalance between the formation of reactive oxygen and nitrogen species (RONS) and antioxidant enzymes catalyzing the break-down of these harmful oxidants. According to the "kindling radical" hypothesis, the formation of RONS may trigger in certain conditions the activation of additional sources of RONS. According to recent reports, vascular dysfunction in general and cardiovascular complications such as hypertension, atherosclerosis and coronary artery diseases may be connected to inflammatory processes. The present review is focusing on the uncoupling of endothelial nitric oxide synthase (eNOS) by different mechanisms involving so-called "redox switches". The oxidative depletion of tetrahydrobiopterin (BH4), oxidative disruption of the dimeric eNOS complex, S-glutathionylation and adverse phosphorylation as well as RONS-triggered increases in levels of asymmetric dimethylarginine (ADMA) will be discussed. But also new concepts of eNOS uncoupling and state of the art detection of this process will be described. Another part of this review article will address pharmaceutical interventions preventing or reversing eNOS uncoupling and thereby normalize vascular function in a given disease setting. We finally turn our attention to the inflammatory mechanisms that are also involved in the development of endothelial dysfunction and cardiovascular disease. Inflammatory cell and cytokine profiles as well as their interactions, which are among the kindling mechanisms for the development of vascular dysfunction will be discussed on the basis of the current literature.

  17. Microvascular and mitochondrial dysfunction in the female F1 generation after gestational TiO2 nanoparticle exposure

    PubMed Central

    Stapleton, Phoebe A.; Nichols, Cody E.; Yi, Jinghai; McBride, Carroll R.; Minarchick, Valerie C.; Shepherd, Danielle L.; Hollander, John M.; Nurkiewicz, Timothy R.

    2016-01-01

    Due to the ongoing evolution of nanotechnology, there is a growing need to assess the toxicological outcomes in under-studied populations in order to properly consider the potential of engineered nanomaterials (ENM) and fully enhance their safety. Recently, we and others have explored the vascular consequences associated with gestational nanomaterial exposure, reporting microvascular dysfunction within the uterine circulation of pregnant dams and the tail artery of fetal pups. It has been proposed (via work derived by the Barker Hypothesis) that mitochondrial dysfunction and subsequent oxidative stress mechanisms as a possible link between a hostile gestational environment and adult disease. Therefore, in this study, we exposed pregnant Sprague-Dawley rats to nanosized titanium dioxide aerosols after implantation (gestational day 6). Pups were delivered, and the progeny grew into adulthood. Microvascular reactivity, mitochondrial respiration and hydrogen peroxide production of the coronary and uterine circulations of the female offspring were evaluated. While there were no significant differences within the maternal or litter characteristics, endothelium-dependent dilation and active mechanotransduction in both coronary and uterine arterioles were significantly impaired. In addition, there was a significant reduction in maximal mitochondrial respiration (state 3) in the left ventricle and uterus. These studies demonstrate microvascular dysfunction and coincide with mitochondrial inefficiencies in both the cardiac and uterine tissues, which may represent initial evidence that prenatal ENM exposure produces microvascular impairments that persist throughout multiple developmental stages. PMID:25475392

  18. ATM Heterozygosity and the Development of Radiation-Induced Erectile Dysfunction and Urinary Morbidity Following Radiotherapy for Prostate Cancer

    DTIC Science & Technology

    2005-02-01

    such as diabetes or collagen vascular diseases. However, there exists an important subset of patients with no clear explanation for excessive post...Reformed smoker 9(24) Tic 25 (68) Diabetes 3 (8) T2a 8 (22) Pretreatment American Urologic T2b 4(11) Association urinary function score Good (0-7) 28 (76...No 18 No 1 197 43 37 IVS22-6T>G No 22 No 3 210 29 Abbreviations: CAD = coronary artery disease; DM = diabetes mellitus; RTOG = Radiation Therapy

  19. Pyridostigmine prevents peripheral vascular endothelial dysfunction in rats with myocardial infarction.

    PubMed

    Qin, Fangfang; Lu, Yi; He, Xi; Zhao, Ming; Bi, Xueyuan; Yu, Xiaojiang; Liu, Jinjun; Zang, Weijin

    2014-03-01

    1. Myocardial infarction (MI) is characterized by the withdrawal of vagal activity and increased sympathetic activity. We have shown previously that pyridostigmine (PYR), an acetylcholinesterase inhibitor, was able to improve vagal activity and ameliorate cardiac dysfunction following MI. However, the effect of PYR on endothelial dysfunction in peripheral arteries after MI remains unclear. 2. In the present study, MI was induced by coronary artery ligation in adult Sprague-Dawley rats. Rats were treated intragastrically with saline or PYR (approximately 31 mg/kg per day) for 2 weeks, at which time haemodynamic and parasympathetic parameters and the vascular reactivity of isolated mesenteric arteries were measured and the ultrastructure of the endothelium evaluated. 3. Compared with the MI group, PYR not only improved cardiac function, vagal nerve activity and endothelial impairment, but also reduced intravascular superoxide anion and malondialdehyde. In addition, in the PYR-treated MI group, nitric oxide (NO) bioavailability was increased and attenuated endothelium-dependent relaxations were improved, whereas restored vasodilator responses were inhibited by N(G)-nitro-L-arginine methyl ester. 4. Based on our results, PYR is able to attenuate the impairment of peripheral endothelial function and maintain endothelial ultrastructural integrity in MI rats by inhibiting reactive oxygen species production, enhancing NO bioavailability and improving vagal activity. © 2014 Wiley Publishing Asia Pty Ltd.

  20. Abnormalities of capillary microarchitecture in a rat model of coronary ischemic congestive heart failure

    PubMed Central

    Chen, Jiqiu; Yaniz-Galende, Elisa; Kagan, Heather J.; Liang, Lifan; Hekmaty, Saboor; Giannarelli, Chiara

    2015-01-01

    The aim of the present study is to explore the role of capillary disorder in coronary ischemic congestive heart failure (CHF). CHF was induced in rats by aortic banding plus ischemia-reperfusion followed by aortic debanding. Coronary arteries were perfused with plastic polymer containing fluorescent dye. Multiple fluorescent images of casted heart sections and scanning electric microscope of coronary vessels were obtained to characterize changes in the heart. Cardiac function was assessed by echocardiography and in vivo hemodynamics. Stenosis was found in all levels of the coronary arteries in CHF. Coronary vasculature volume and capillary density in remote myocardium were significantly increased in CHF compared with control. This occurred largely in microvessels with a diameter of ≤3 μm. Capillaries in CHF had a tortuous structure, while normal capillaries were linear. Capillaries in CHF had inconsistent diameters, with assortments of narrowed and bulged segments. Their surfaces appeared rough, potentially indicating endothelial dysfunction in CHF. Segments of main capillaries between bifurcations were significantly shorter in length in CHF than in control. Transiently increasing preload by injecting 50 μl of 30% NaCl demonstrated that the CHF heart had lower functional reserve; this may be associated with congestion in coronary microcirculation. Ischemic coronary vascular disorder is not limited to the main coronary arteries, as it occurs in arterioles and capillaries. Capillary disorder in CHF included stenosis, deformed structure, proliferation, and roughened surfaces. This disorder in the coronary artery architecture may contribute to the reduction in myocyte contractility in the setting of heart failure. PMID:25659485

  1. Endothelium-dependent Hyperpolarization-mediated Vasodilatation Compensates Nitric Oxide-mediated Endothelial Dysfunction during Ischemia in Diabetes-induced Canine Coronary Collateral Microcirculation in Vivo.

    PubMed

    Yada, Toyotaka; Shimokawa, Hiroaki; Tachibana, Hiroyuki

    2018-04-17

    It has been previously demonstrated that endothelial caveolin-1 plays crucial roles to produce an endothelium-derived hyperpolarizing factor in mouse mesenteric arteries. We examined whether this mechanism is involved in the endothelium-derived hyperpolarizing-mediated responses to compensate reduced NO-mediated responses in diabetes mellitus during coronary occlusion in dogs in vivo. Canine subepicardial collateral coronary small arteries (≥100 μm) and arterioles (<100 μm) were observed by an intravital microscope. Experiments were performed during occlusion of the left anterior descending coronary artery (90 min) under the following conditions (n=6 each); (i) control, (ii) diabetes mellitus, and (iii) diabetes mellitus+L-NMMA+K C a channel blockade. Vascular and myocardial levels of caveolin-1, eNOS and caspase-3 were measured by ELISA. Caveolin-1 levels in the ischemic area were greater in coronary microvessels than in conduit arteries in the control group. NO-mediated coronary vasodilatations of small arteries to bradykinin did not increase in diabetes mellitus associated with decreased eNOS phosphorylation at Ser1177 compared with baseline of controls, and were restored by compensation of endothelium-derived hyperpolarizing, and were suppressed by K C a channel blockade. NO-mediated vasodilatations of small coronary arteries during coronary occlusion are impaired in diabetes mellitus and are compensated by endothelium-derived hyperpolarizing of arterioles in dogs in vivo. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  2. Coronary responses to endothelin-1 and acetylcholine during partial coronary ischaemia and reperfusion in anaesthetized goats.

    PubMed

    Martínez, Maria Angeles; Fernández, Nuria; Monge, Luis; García-Villalón, Angel Luis; Sanz, Elena; Diéguez, Godofredo

    2002-08-01

    To examine coronary reactivity to acetylcholine and endothelin-1 (ET-1) during partial ischaemia and reperfusion, flow in the left circumflex coronary artery was measured electromagnetically, and coronary partial ischaemia was induced by stenosis of this artery in anaesthetized goats. In eight animals not treated with N(G)-nitro-l-arginine methyl ester (l-NAME), coronary stenosis reduced coronary flow by 45%, mean arterial pressure by 16% and coronary vascular conductance by 34%. During this ischaemia, coronary vasodilatation to acetylcholine (0.003-0.1 microg) and sodium nitroprusside (SNP; 1-10 microg) was markedly reduced, and coronary vasoconstriction to ET-1 (0.01-0.3 nmol) was attenuated. After 30 min of reperfusion, coronary flow, mean arterial pressure and coronary vascular conductance remained decreased, and the effects of acetylcholine, SNP and ET-1 were as in control animals. In six goats treated with N(G)-nitro-l-arginine methyl ester, coronary stenosis reduced coronary flow by 26% and coronary vascular conductance by 24%, but did not affect mean arterial pressure. During this ischaemia, coronary vasodilatation to acetylcholine and SNP was also markedly reduced, but vasoconstriction to ET-1 was unaffected. After 30 min of reperfusion, coronary flow and coronary vascular conductance remained decreased and mean arterial pressure was normal; in addition, the effects of acetylcholine were lower, those of SNP were similar and those of ET-1 were higher than in control animals. Therefore partial ischaemia reduces the coronary vasodilator reserve and blunts coronary vasoconstriction to ET-1, and reperfusion does not alter the endothelium-dependent and -independent coronary vasodilatation or vasoconstriction to ET-1.

  3. The role of noninvasive cardiovascular testing, applied clinical nutrition and nutritional supplements in the prevention and treatment of coronary heart disease.

    PubMed

    Houston, Mark

    2018-03-01

    Numerous clinical trials suggest that we have reached a limit in our ability to decrease the incidence of coronary heart disease (CHD) and cardiovascular disease (CVD) utilizing the traditional diagnostic evaluation, prevention and treatment strategies for the top five cardiovascular risk factors of hypertension, diabetes mellitus, dyslipidemia, obesity and smoking. About 80% of heart disease (heart attacks, angina, coronary heart disease and congestive heart failure) can be prevented by optimal nutrition, optimal exercise, optimal weight and body composition, mild alcohol intake and avoiding smoking. Statistics show that approximately 50% of patients continue to have CHD or myocardial infarction (MI) despite presently defined 'normal' levels of the five risk factors listed above. This is often referred to as the 'CHD gap'. Novel and more accurate definitions and evaluations of these top five risk factors are required, such as 24 h ambulatory blood pressure (ABM) results, advanced lipid profiles, redefined fasting and 2 h dysglycemia parameters, a focus on visceral obesity and body composition and the effects of adipokines on cardiovascular risk. There are numerous traumatic insults from the environment that damage the cardiovascular system but there are only three finite vascular endothelial responses, which are inflammation, oxidative stress and immune vascular dysfunction. In addition, the concept of translational cardiovascular medicine is mandatory in order to correlate the myriad of CHD risk factors to the presence or absence of functional or structural damage to the vascular system, preclinical and clinical CHD. This can be accomplished by utilizing advanced and updated CV risk scoring systems, new and redefined CV risk factors and biomarkers, micronutrient testing, cardiovascular genetics, nutrigenomics, metabolomics, genetic expression testing and noninvasive cardiovascular testing.

  4. The role of noninvasive cardiovascular testing, applied clinical nutrition and nutritional supplements in the prevention and treatment of coronary heart disease

    PubMed Central

    Houston, Mark

    2018-01-01

    Numerous clinical trials suggest that we have reached a limit in our ability to decrease the incidence of coronary heart disease (CHD) and cardiovascular disease (CVD) utilizing the traditional diagnostic evaluation, prevention and treatment strategies for the top five cardiovascular risk factors of hypertension, diabetes mellitus, dyslipidemia, obesity and smoking. About 80% of heart disease (heart attacks, angina, coronary heart disease and congestive heart failure) can be prevented by optimal nutrition, optimal exercise, optimal weight and body composition, mild alcohol intake and avoiding smoking. Statistics show that approximately 50% of patients continue to have CHD or myocardial infarction (MI) despite presently defined ‘normal’ levels of the five risk factors listed above. This is often referred to as the ‘CHD gap’. Novel and more accurate definitions and evaluations of these top five risk factors are required, such as 24 h ambulatory blood pressure (ABM) results, advanced lipid profiles, redefined fasting and 2 h dysglycemia parameters, a focus on visceral obesity and body composition and the effects of adipokines on cardiovascular risk. There are numerous traumatic insults from the environment that damage the cardiovascular system but there are only three finite vascular endothelial responses, which are inflammation, oxidative stress and immune vascular dysfunction. In addition, the concept of translational cardiovascular medicine is mandatory in order to correlate the myriad of CHD risk factors to the presence or absence of functional or structural damage to the vascular system, preclinical and clinical CHD. This can be accomplished by utilizing advanced and updated CV risk scoring systems, new and redefined CV risk factors and biomarkers, micronutrient testing, cardiovascular genetics, nutrigenomics, metabolomics, genetic expression testing and noninvasive cardiovascular testing. PMID:29316855

  5. Protective effect of N-acetylcysteine against oxygen radical-mediated coronary artery injury.

    PubMed

    Rodrigues, A J; Evora, P R B; Schaff, H V

    2004-08-01

    The present study investigated the protective effect of N-acetylcysteine (NAC) against oxygen radical-mediated coronary artery injury. Vascular contraction and relaxation were determined in canine coronary arteries immersed in Kreb's solution (95% O2-5% CO2), incubated or not with NAC (10 mM), and exposed to free radicals (FR) generated by xanthine oxidase (100 mU/ml) plus xanthine (0.1 mM). Rings not exposed to FR or NAC were used as controls. The arteries were contracted with 2.5 microM prostaglandin F2alpha. Subsequently, concentration-response curves for acetylcholine, calcium ionophore and sodium fluoride were obtained in the presence of 20 microM indomethacin. Concentration-response curves for bradykinin, calcium ionophore, sodium nitroprusside, and pinacidil were obtained in the presence of indomethacin plus Nomega-nitro-L-arginine (0.2 mM). The oxidative stress reduced the vascular contraction of arteries not exposed to NAC (3.93 +/- 3.42 g), compared to control (8.56 +/- 3.16 g) and to NAC group (9.07 +/- 4.0 g). Additionally, in arteries not exposed to NAC the endothelium-dependent nitric oxide (NO)-dependent relaxation promoted by acetylcholine (1 nM to 10 microM) was also reduced (maximal relaxation of 52.1 +/- 43.2%), compared to control (100%) and NAC group (97.0 +/- 4.3%), as well as the NO/cyclooxygenase-independent receptor-dependent relaxation provoked by bradykinin (1 nM to 10 microM; maximal relaxation of 20.0 +/- 21.2%), compared to control (100%) and NAC group (70.8 +/- 20.0%). The endothelium-independent relaxation elicited by sodium nitroprusside (1 nM to 1 microM) and pinacidil (1 nM to 10 microM) was not affected. In conclusion, the vascular dysfunction caused by the oxidative stress, expressed as reduction of the endothelium-dependent relaxation and of the vascular smooth muscle contraction, was prevented by NAC.

  6. A plant-based diet, atherogenesis, and coronary artery disease prevention.

    PubMed

    Tuso, Phillip; Stoll, Scott R; Li, William W

    2015-01-01

    A plant-based diet is increasingly becoming recognized as a healthier alternative to a diet laden with meat. Atherosclerosis associated with high dietary intake of meat, fat, and carbohydrates remains the leading cause of mortality in the US. This condition results from progressive damage to the endothelial cells lining the vascular system, including the heart, leading to endothelial dysfunction. In addition to genetic factors associated with endothelial dysfunction, many dietary and other lifestyle factors, such as tobacco use, high meat and fat intake, and oxidative stress, are implicated in atherogenesis. Polyphenols derived from dietary plant intake have protective effects on vascular endothelial cells, possibly as antioxidants that prevent the oxidation of low-density lipoprotein. Recently, metabolites of L-carnitine, such as trimethylamine-N-oxide, that result from ingestion of red meat have been identified as a potential predictive marker of coronary artery disease (CAD). Metabolism of L-carnitine by the intestinal microbiome is associated with atherosclerosis in omnivores but not in vegetarians, supporting CAD benefits of a plant-based diet. Trimethylamine-N-oxide may cause atherosclerosis via macrophage activation. We suggest that a shift toward a plant-based diet may confer protective effects against atherosclerotic CAD by increasing endothelial protective factors in the circulation while reducing factors that are injurious to endothelial cells. The relative ratio of protective factors to injurious endothelial exposure may be a novel approach to assessing an objective dietary benefit from a plant-based diet. This review provides a mechanistic perspective of the evidence for protection by a plant-based diet against atherosclerotic CAD.

  7. EXCEL Clinical Trial

    ClinicalTrials.gov

    2018-03-01

    Chronic Coronary Occlusion; Unprotected Left Main Coronary Artery Disease; Stent Thrombosis; Vascular Disease; Myocardial Ischemia; Coronary Artery Stenosis; Coronary Disease; Coronary Artery Disease; Coronary Restenosis

  8. Coronary endothelial function and vascular smooth muscle proliferation are programmed by early-gestation dexamethasone exposure in sheep

    PubMed Central

    Volk, Kenneth A.; Roghair, Robert D.; Jung, Felicia; Scholz, Thomas D.; Lamb, Fred S.

    2010-01-01

    Exposure of the early-gestation ovine fetus to exogenous glucocorticoids induces changes in postnatal cardiovascular physiology. We sought to characterize coronary artery vascular function in this model by elucidating the contribution of nitric oxide and reactive oxygen species to altered coronary vascular reactivity and examining the proliferative potential of coronary artery vascular smooth muscle cells. Dexamethasone (dex, 0.28 mg·kg−1·day−1 for 48 h) was administered to pregnant ewes at 27–28-day gestation (term 145 days). Coronary arteries were isolated from 1- to 2-wk-old dex-exposed offspring and aged-matched controls. Compared with controls, coronary arteries from dex-exposed lambs demonstrated enhanced vasoconstriction to endothelin-1 and ACh that was abolished by endothelial removal or preincubation with the nitric oxide synthase inhibitor l-NNA, membrane-permeable superoxide dismutase + catalase, or apamin + charybdotoxin, but not indomethacin. The rate of coronary vascular smooth muscle cell (VSMC) proliferation was also significantly greater in dex-exposed lambs. Protein levels of the proliferating cell nuclear antigen were increased and α-smooth muscle actin decreased in dex-exposed coronary VSMC, consistent with a proliferative state. Finally, expression of the NADPH oxidase Nox 4, but not Nox 1, mRNA was also decreased in coronary VSMC from dex-exposed lambs. These findings suggest an important interaction exists between early-gestation glucocorticoid exposure and reactive oxygen species that is associated with alterations in endothelial function and coronary VSMC proliferation. These changes in coronary physiology are consistent with those associated with the development of atherosclerosis and may provide an important link between an adverse intrauterine environment and increased risk for coronary artery disease. PMID:20335378

  9. Prediabetes: Beyond the Borderline.

    PubMed

    Wilson, Mara Lynn

    2017-12-01

    Prediabetes is a complex multifactorial metabolic disorder that extends beyond glucose control. Current studies have found that microvascular disease (neuropathy, nephropathy, and retinopathy), macrovascular disease (stroke, coronary artery disease, and peripheral vascular disease), periodontal disease, cognitive dysfunction, blood pressure changes, obstructive sleep apnea, low testosterone level, fatty liver disease, and cancer are some of conditions that are present with the onset of glycemic dysregulation. The presence of prediabetes increases the risk of developing type 2 diabetes 3-fold to 10-fold. The identification and treatment of prediabetes are imperative to prevent or delay the progression to type 2 diabetes. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Age-related changes in endothelial function and blood flow regulation.

    PubMed

    Toda, Noboru

    2012-02-01

    Vascular endothelial dysfunction is regarded as a primary phenotypic expression of normal human aging. This senescence-induced disorder is the likely culprit underlying the increased cardiovascular and metabolic disease risks associated with aging. The rate of this age-dependent deterioration is largely influenced by the poor-quality lifestyle choice, such as smoking, sedentary daily life, chronic alcohol ingestion, high salt intake, unbalanced diet, and mental stress; and it is accelerated by cardiovascular and metabolic diseases. Although minimizing these detrimental factors is the best course of action, nonetheless chronological age steadily impairs endothelial function through reduced endothelial nitric oxide synthase (eNOS) expression/action, accelerated nitric oxide (NO) degradation, increased phosphodiesterase activity, inhibition of NOS activity by endogenous NOS inhibitors, increased production of reactive oxygen species, inflammatory reactions, decreased endothelial progenitor cell number and function, and impaired telomerase activity or telomere shortening. Endothelial dysfunction in regional vasculatures results in cerebral hypoperfusion triggering cognitive dysfunction and Alzheimer's disease, coronary artery insufficiency, penile erectile dysfunction, and circulatory failures in other organs and tissues. Possible prophylactic measures to minimize age-related endothelial dysfunction are also summarized in this review. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Is everything clear about Tako-tsubo syndrome?

    PubMed

    Petrov, Ivo S; Tokmakova, Mariya P; Marchov, Daniel N; Kichukov, Kostadin N

    2011-01-01

    Tako-tsubo syndrome is a novel cardio-vascular disease affecting predominantly postmenopausal women exposed to unexpected strong emotional or physical stress, in the absence of significant coronary heart disease. It is characterized by acute onset of severe chest pain and/or acute left ventricular failure, ECG-changes, typical left ventricular angiographic findings, good prognosis and positive resolution of the morphological and clinical manifestations. First described in 1990 in Japan by Sato, Tako-tsubo cardiomyopathy is characterized by transient contractile abnormalities of the left ventricle, causing typical left ventricular apical ballooning at end-systole with concomitant compensatory basal hyperkinesia. There are also atypical forms, presenting with left ventricular systolic dysfunction which affects the mid-portions of the left ventricle. The etiology of the disease still remains unclear. Many theories have been put forward about the potential underlying pathophysiological mechanisms that may trigger this syndrome among which are the theory of catecholamine excess, the theory of multivessel coronary vasospasm, the ischemic theory, and the theory of microvascular dysfunction and dynamic left ventricular gradient induced by elevated circulating catecholamine levels. Adequate management of Tako-tsubo syndrome demands immediate preparation for coronary angiography. Once the diagnosis is made, treatment is primarily symptomatic and includes monitoring for complications. Patients with Tako-tsubo syndrome most frequently develop acute LV failure, pulmonary edema, rhythm and conductive disturbances and apical thrombosis. Treatment is symptomatic and includes administration of diuretics, vasodilators and mechanical support of circulation with intra-aortic balloon counterpulsation.

  12. Exercise Training Prevents Coronary Endothelial Dysfunction in Type 2 Diabetic Mice.

    PubMed

    Lee, Sewon; Park, Yoonjung; Zhang, Cuihua

    2011-10-01

    Type 2 diabetes (T2D) is a leading risk factor for cardiovascular diseases including atherosclerosis and coronary heart disease. Exercise training (ET) is thought to have a beneficial effect on these disorders, but the basis for this effect is not fully understood. Because endothelial dysfunction plays a key role in the pathological events leading to cardiovascular complications in T2D, we hypothesized that the effects of ET will be evidenced by improvements in coronary endothelial function. To test this hypothesis, we assessed the effects of ET on vascular function of diabetic (db/db, Lepr(db)) mice by evaluating endothelial function of isolated coronary arterioles of wild-type (WT) and db/db mice with/without ET. Although dilation of vessels to the endothelial-independent vasodilator, sodium nitroprusside was not different between db/db and WT, dilation to the endothelial-dependent agonist, acetylcholine (ACh), was impaired in db/db compared to WT mice. Vasodilation to ACh was restored in db/db with ET and insulin sensitivity was improved in the db/db after ET. Exercise did not change body weight of db/db, but superoxide dismutase (SOD1 and SOD2) and phosphorylated- eNOS protein (Ser1177) expression in heart tissue was up-regulated whereas tumor necrosis factor-alpha (TNF-α) protein level was decreased by ET. Serum level of interleukin-6 (IL-6) was higher in db/db mice but ET decreased IL-6. This suggests that ET may improve endothelial function by increasing nitric oxide bioavailability as well as decreasing chronic inflammation. We suggest this connection may be the basis for the benefit of ET in T2D.

  13. [Angina pectoris and coronary insufficiency with a normal coronary angiogram: pathophysiological principles, diagnosis and therapeutic consequences].

    PubMed

    Strauer, B E

    1988-01-01

    The clinical syndrome "coronary insufficience at normal coronary arteriogram" is found in approximately 10-20% of patients with exercise-induced coronary insufficience. In most of these cases disturbances of coronary microcirculation are present. They can appear in vascular diseases (arterial hypertension, systemic immunopathies, immune complex vasculitis, etc.), in rheological diseases (paraproteinemia, hyperlipoproteinemia, polyglobulia, etc.), and in disturbances of transport and diffusion of oxygen (carbon monoxide intoxication, methemoglobinemia, hyperlipoproteinemia). The clinical diagnosis is based on usual diagnostic programs (electrocardiogram, exercise electrocardiogram, responsiveness to nitroglycerin, etc.), as well as on newer, functionally orientated diagnostic procedures (determinations of coronary blood flow and of coronary vascular reserve, production of lactate, serological findings, histology and immune histology of peripheral arteries, measurements of viscosities in both plasma and blood, etc.). Many clinically relevant disturbances in coronary microcirculation can thus be detected and treated on a rational basis by the management of the internal main disease, that is, by the treatment of the vascular, rheological, and metabolic disorders. Persistent angina pectoris in the presence of normal coronary arteriogram represents no termination of coronary diagnostics, but moreover implies the clinical task for using diagnostic possibilities to enable functional and therapeutical assessment of coronary microcirculation.

  14. [Experimental evaluation of the role of the coronary sinus pressure in the regulation of coronary return volume via the coronary sinus. Surgical considerations in atrio-pulmonary diversion procedures].

    PubMed

    Fantidis, P; Fernández Ruiz, M A; Madero Jarabo, R; Moreno Granados, F; Cordovilla Zurdo, G; Sanz Galeote, E

    1990-11-01

    In order to find out the validity of the vascular waterfall mechanism in coronary venous circulation, the role of coronary sinus pressure in the regulation of coronary return volume via the coronary sinus is studied in healthy animals. An experimental model of pressure regulation in the coronary sinus was prepared, and aortic pressure, EKG and the cardiac output (measured by thermodilution) were recorded. The return volume via the coronary sinus was measured at coronary sinus pressure of 10 or less, 15, 20, and 25 mmHg or more, for a total of 36 determinations. Increased coronary sinus pressure did not produce significant changes in aortic pressure, heart rate, cardiac index or coronary return volume via coronary sinus. When coronary sinus pressure was 25 mmHg or more, there was a significant decline in the average of coronary return volume via coronary sinus. Nevertheless, stepwise variant regression showed that the coronary sinus pressure per se does not condition the volume of coronary return via the coronary sinus. Our results suggest that in the healthy animals, the vascular waterfall mechanism in coronary venous circulation is not valid. Our results suggest that in the correction of congenital cardiac malformations using atriopulmonary anastomosis procedures, employing techniques that ensure coronary sinus drainage into the left atrium, in order to avoid the hemodynamic repercussions attributable to the vascular waterfall mechanism, is not justified.

  15. Reactive oxygen species' role in endothelial dysfunction by electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Wassall, Cynthia D.

    The endothelium is a single layer of cells lining the arteries and is involved in many physiological reactions which are responsible for vascular tone. Free radicals are important participants in these chemical reactions in the endothelium. Here we quantify free radicals, ex vivo, in biological tissue with continuous wave electron paramagnetic resonance (EPR). In all of the experiments in this thesis, we use a novel EPR spin trapping technique that has been developed for tissue segments. EPR spin trapping is often considered the 'gold standard' in reactive oxygen species (ROS) detection because of its sensitivity and non-invasive nature. In all experiments, tissue was placed in physiological saline solution with 190-mM PBN (N-tert -butyl-α-phenylnitrone), 10% by volume dimethyl-sulphoxide (DMSO) for cryopreservation, and incubated in the dark for between 30 minutes up to 2 hours at 37°C while gently being stirred. Tissue and supernatant were then loaded into a syringe and frozen at -80°C until EPR analysis. In our experiments, the EPR spectra were normalized with respect to tissue volume. Conducting experiments at liquid nitrogen temperature leads to some experimental advantages. The freezing of the spin adducts renders them stable over a longer period, which allows ample time to analyze tissue samples for ROS. The dielectric constant of ice is greatly reduced over its liquid counterpart; this property of water enables larger sample volumes to be inserted into the EPR cavity without overloading it and leads to enhanced signal detection. Due to Maxwell-Boltzmann statistics, the population difference goes up as the temperature goes down, so this phenomenon enhances the signal intensity as well. With the 'gold standard' assertion in mind, we investigated whether slicing tissue to assay ROS that is commonly used in fluorescence experiments will show more free radical generation than tissue of a similar volume that remains unsliced. Sliced tissue exhibited a 76% increase in ROS generation; this implies that higher ROS concentrations in sliced tissue indicate extraneous ROS generation not associated with the ROS stimulus of interest. We also investigated the role of ROS in chronic flow overload (CFO). Elevation of shear stress that increases production of vascular ROS has not been well investigated. We hypothesize that CFO increases ROS production mediated in part by NADPH oxidase, which leads to endothelial dysfunction. ROS production increased threefold in response to CFO. The endothelium dependent vasorelaxation was compromised in the CFO group. Treatment with apocynin significantly reduced ROS production in the vessel wall, preserved endothelial function, and inhibited expressions of p22/p47phox and NOX2/NOX4. The present data implicate NADPH oxidase produced ROS and eNOS uncoupling in endothelial dysfunction at 1 wk of CFO. In further work, a swine right ventricular hypertrophy (RVH) model induced by pulmonary artery (PA) banding was used to study right coronary artery (RCA) endothelial function and ROS level. Endothelial function was compromised in RCA of RVH as attributed to insufficient endothelial nitric oxide synthase cofactor tetrahydrobiopterin. In conclusion, stretch due to outward remodeling of RCA during RVH (at constant wall shear stress), similar to vessel stretch in hypertension, appears to induce ROS elevation, endothelial dysfunction, and an increase in basal tone. Finally, although hypertension-induced vascular stiffness and dysfunction are well established in patients and animal models, we hypothesize that stretch or distension due to hypertension and outward expansion is the cause of endothelial dysfunction mediated by angiotensin II type 1 (AT1) receptor in coronary arteries. The expression and activation of AT1 receptor and the production of ROS were up regulated and endothelial function deteriorated in the RCA. The acute inhibition of AT1 receptor and NADPH oxidase partially restored the endothelial function. Stretch or distension activates the AT1 receptor which mediates ROS production; this collectively leads to endothelial dysfunction in coronary arteries.

  16. Obesity and risk of vascular disease: importance of endothelium-dependent vasoconstriction

    PubMed Central

    Barton, Matthias; Baretella, Oliver; Meyer, Matthias R

    2012-01-01

    Obesity has become a serious global health issue affecting both adults and children. Recent devolopments in world demographics and declining health status of the world's population indicate that the prevalence of obesity will continue to increase in the next decades. As a disease, obesity has deleterious effects on metabolic homeostasis, and affects numerous organ systems including heart, kidney and the vascular system. Thus, obesity is now regarded as an independent risk factor for atherosclerosis-related diseases such as coronary artery disease, myocardial infarction and stroke. In the arterial system, endothelial cells are both the source and target of factors contributing to atherosclerosis. Endothelial vasoactive factors regulate vascular homeostasis under physiological conditions and maintain basal vascular tone. Obesity results in an imbalance between endothelium-derived vasoactive factors favouring vasoconstriction, cell growth and inflammatory activation. Abnormal regulation of these factors due to endothelial cell dysfunction is both a consequence and a cause of vascular disease processes. Finally, because of the similarities of the vascular pathomechanisms activated, obesity can be considered to cause accelerated, ‘premature’ vascular aging. Here, we will review some of the pathomechanisms involved in obesity-related activation of endothelium-dependent vasoconstriction, the clinical relevance of obesity-associated vascular risk, and therapeutic interventions using ‘endothelial therapy’ aiming at maintaining or restoring vascular endothelial health. LINKED ARTICLES This article is part of a themed section on Fat and Vascular Responsiveness. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-3 PMID:21557734

  17. Noncardiogenic Pulmonary Edema as a Result of Urosepsis

    DTIC Science & Technology

    2010-03-01

    cause could be aortic stenosis , which may require surgery to correct, or it could be coronary artery disease, which can be treated through a variety...systolic dysfunction. Left ventricular dysfunction can occur due to many processes such as aortic or mitral valve dysfunction, coronary artery disease

  18. Design and rationale of the AngioSeal versus the Radial approach In acute coronary SyndromE (ARISE) trial: a randomized comparison of a vascular closure device versus the radial approach to prevent vascular access site complications in non-ST-segment elevation acute coronary syndrome patients.

    PubMed

    de Andrade, Pedro Beraldo; E Mattos, Luiz Alberto Piva; Tebet, Marden André; Rinaldi, Fábio Salerno; Esteves, Vinícius Cardozo; Nogueira, Ederlon Ferreira; França, João Ítalo Dias; de Andrade, Mônica Vieira Athanazio; Barbosa, Robson Alves; Labrunie, André; Abizaid, Alexandre Antônio Cunha; Sousa, Amanda Guerra de Moraes Rego

    2013-12-18

    Arterial access is a major site of bleeding complications after invasive coronary procedures. Among strategies to decrease vascular complications, the radial approach is an established one. Vascular closure devices provide more comfort to patients and decrease hemostasis and need for bed rest. However, the inconsistency of data proving their safety limits their routine adoption as a strategy to prevent vascular complications, requiring evidence through adequately designed randomized trials. The aim of this study is to compare the radial versus femoral approach using a vascular closure device for the incidence of arterial puncture site vascular complications among non-ST-segment elevation acute coronary syndrome patients submitted to an early invasive strategy. ARISE is a national, multicenter, non-inferiority randomized clinical trial. Two hundred patients with non-ST-segment elevation acute coronary syndrome will be randomized to either radial or femoral access using a vascular closure device. The primary outcome is the occurrence of vascular complications at an arterial puncture site 30 days after the procedure, including major bleeding, retroperitoneal hematoma, compartment syndrome, hematoma ≥ 5 cm, pseudoaneurysm, arterio-venous fistula, infection, limb ischemia, arterial occlusion, adjacent nerve injury or the need for vascular surgical repair. Enrollment was initiated in September 2012, and until October 2013 91 patients were included. The inclusion phase is expected to last until the second half of 2014. The ARISE trial will help define the role of a vascular closure device as a bleeding avoidance strategy in patients with NSTEACS. ClinicalTrials.gov identifier: NCT01653587.

  19. Association of vascular fluoride uptake with vascular calcification and coronary artery disease.

    PubMed

    Li, Yuxin; Berenji, Gholam R; Shaba, Wisam F; Tafti, Bashir; Yevdayev, Ella; Dadparvar, Simin

    2012-01-01

    The feasibility of a fluoride positron emission tomography/computed tomography (PET/CT) scan for imaging atherosclerosis has not been well documented. The purpose of this study was to assess fluoride uptake of vascular calcification in various major arteries, including coronary arteries. We retrospectively reviewed the imaging data and cardiovascular history of 61 patients who received whole-body sodium [¹⁸F]fluoride PET/CT studies at our institution from 2009 to 2010. Fluoride uptake and calcification in major arteries, including coronary arteries, were analyzed by both visual assessment and standardized uptake value measurement. Fluoride uptake in vascular walls was demonstrated in 361 sites of 54 (96%) patients, whereas calcification was observed in 317 sites of 49 (88%) patients. Significant correlation between fluoride uptake and calcification was observed in most of the arterial walls, except in those of the abdominal aorta. Fluoride uptake in coronary arteries was demonstrated in 28 (46%) patients and coronary calcifications were observed in 34 (56%) patients. There was significant correlation between history of cardiovascular events and presence of fluoride uptake in coronary arteries. The coronary fluoride uptake value in patients with cardiovascular events was significantly higher than in patients without cardiovascular events. sodium [¹⁸F]fluoride PET/CT might be useful in the evaluation of the atherosclerotic process in major arteries, including coronary arteries. An increased fluoride uptake in coronary arteries may be associated with an increased cardiovascular risk.

  20. Coronary Arteries

    MedlinePlus

    ... its own vascular system, called coronary circulation. The aorta (the main blood supplier to the body) branches ... blood to the rest of the body. Tags: aorta , arteries , blood , coronary arteries , coronary artery , coronary artery ...

  1. Profilin-1 Is Expressed in Human Atherosclerotic Plaques and Induces Atherogenic Effects on Vascular Smooth Muscle Cells

    PubMed Central

    Caglayan, Evren; Romeo, Giulio R.; Kappert, Kai; Odenthal, Margarete; Südkamp, Michael; Body, Simon C.; Shernan, Stanton K.; Hackbusch, Daniel; Vantler, Marius; Kazlauskas, Andrius; Rosenkranz, Stephan

    2010-01-01

    Background Profilin-1 is an ubiquitous actin binding protein. Under pathological conditions such as diabetes, profilin-1 levels are increased in the vascular endothelium. We recently demonstrated that profilin-1 overexpression triggers indicators of endothelial dysfunction downstream of LDL signaling, and that attenuated expression of profilin-1 confers protection from atherosclerosis in vivo. Methodology Here we monitored profilin-1 expression in human atherosclerotic plaques by immunofluorescent staining. The effects of recombinant profilin-1 on atherogenic signaling pathways and cellular responses such as DNA synthesis (BrdU-incorporation) and chemotaxis (modified Boyden-chamber) were evaluated in cultured rat aortic and human coronary vascular smooth muscle cells (VSMCs). Furthermore, the correlation between profilin-1 serum levels and the degree of atherosclerosis was assessed in humans. Principal Findings In coronary arteries from patients with coronary heart disease, we found markedly enhanced profilin expression in atherosclerotic plaques compared to the normal vessel wall. Stimulation of rat aortic and human coronary VSMCs with recombinant profilin-1 (10−6 M) in vitro led to activation of intracellular signaling cascades such as phosphorylation of Erk1/2, p70S6 kinase and PI3K/Akt within 10 minutes. Furthermore, profilin-1 concentration-dependently induced DNA-synthesis and migration of both rat and human VSMCs, respectively. Inhibition of PI3K (Wortmannin, LY294002) or Src-family kinases (SU6656, PP2), but not PLCγ (U73122), completely abolished profilin-induced cell cycle progression, whereas PI3K inhibition partially reduced the chemotactic response. Finally, we found that profilin-1 serum levels were significantly elevated in patients with severe atherosclerosis in humans (p<0.001 vs. no atherosclerosis or control group). Conclusions Profilin-1 expression is significantly enhanced in human atherosclerotic plaques compared to the normal vessel wall, and the serum levels of profilin-1 correlate with the degree of atherosclerosis in humans. The atherogenic effects exerted by profilin-1 on VSMCs suggest an auto-/paracrine role within the plaque. These data indicate that profilin-1 might critically contribute to atherogenesis and may represent a novel therapeutic target. PMID:21049052

  2. Cardiovascular remodeling induced by passive smoking.

    PubMed

    Minicucci, Marcos F; Azevedo, Paula S; Paiva, Sergio A R; Zornoff, Leonardo A M

    2009-12-01

    Coronary heart disease (CHD) is the most common cause of death in many developed countries. The major risk factors for CHD are smoking, high blood pressure, diabetes, high cholesterol levels, and lack of physical activity. Importantly, passive smoke also increases the risk for CHD. The mechanisms involved in the effects of passive smoke in CHD are complex and include endothelial dysfunction, lipoprotein modification, increased inflammation and platelet activation. Recently, several studies have shown that exposure to tobacco smoke can result in cardiac remodeling and compromised cardiac function. Potential mechanisms for these alterations are neurohumoral activation, oxidative stress, and MAPK activation. Although the vascular effects of cigarette smoke exposure are well known, the effects of tobacco smoking on the heart have received less attention. Therefore, this review will focus on the recent findings as to the effects of passive smoking in acute and chronic phases of vascular and cardiac remodeling.

  3. Stable ischemic heart disease in women: current perspectives.

    PubMed

    Samad, Fatima; Agarwal, Anushree; Samad, Zainab

    2017-01-01

    Cardiovascular disease is the leading cause of death in women accounting for 1 in every 4 female deaths. Pathophysiology of ischemic heart disease in women includes epicardial coronary artery, endothelial dysfunction, coronary vasospasm, plaque erosion and spontaneous coronary artery dissection. Angina is the most common presentation of stable ischemic heart disease (SIHD) in women. Risk factors for SIHD include traditional risks such as older age, obesity (body mass index [BMI] >25 kg/m 2 ), smoking, hypertension, dyslipidemia, cerebrovascular and peripheral vascular disease, sedentary lifestyle, family history of premature coronary artery disease, metabolic syndrome and diabetes mellitus, and nontraditional risk factors, such as gestational diabetes, insulin resistance/polycystic ovarian disease, pregnancy-induced hypertension, pre-eclampsia, eclampsia, menopause, mental stress and autoimmune diseases. Diagnostic testing can be used effectively to risk stratify women. Guidelines-directed medical therapy including aspirin, statins, beta-blocker therapy, calcium channel blockers and ranolazine should be instituted for symptom and ischemia management. Despite robust evidence regarding the adverse outcomes seen in women with ischemic heart disease, knowledge gaps exist in several areas. Future research needs to be directed toward a greater understanding of the role of nontraditional risk factors for SIHD in women, gaining deeper insights into the sex differences in therapeutic effects and formulating a sex-specific algorithm for the management of SIHD in women.

  4. Telmisartan enhances mitochondrial activity and alters cellular functions in human coronary artery endothelial cells via AMP-activated protein kinase pathway.

    PubMed

    Kurokawa, Hirofumi; Sugiyama, Seigo; Nozaki, Toshimitsu; Sugamura, Koichi; Toyama, Kensuke; Matsubara, Junichi; Fujisue, Koichiro; Ohba, Keisuke; Maeda, Hirofumi; Konishi, Masaaki; Akiyama, Eiichi; Sumida, Hitoshi; Izumiya, Yasuhiro; Yasuda, Osamu; Kim-Mitsuyama, Shokei; Ogawa, Hisao

    2015-04-01

    Mitochondrial dysfunction plays an important role in cellular senescence and impaired function of vascular endothelium, resulted in cardiovascular diseases. Telmisartan is a unique angiotensin II type I receptor blocker that has been shown to prevent cardiovascular events in high risk patients. AMP-activated protein kinase (AMPK) plays a critical role in mitochondrial biogenesis and endothelial function. This study assessed whether telmisartan enhances mitochondrial function and alters cellular functions via AMPK in human coronary artery endothelial cells (HCAECs). In cultured HCAECs, telmisartan significantly enhanced mitochondrial activity assessed by mitochondrial reductase activity and intracellular ATP production and increased the expression of mitochondria related genes. Telmisartan prevented cellular senescence and exhibited the anti-apoptotic and pro-angiogenic properties. The expression of genes related anti-oxidant and pro-angiogenic properties were increased by telmisartan. Telmisartan increased endothelial NO synthase and AMPK phosphorylation. Peroxisome proliferator-activated receptor gamma signaling was not involved in telmisartan-induced improvement of mitochondrial function. All of these effects were abolished by inhibition of AMPK. Telmisartan enhanced mitochondrial activity and exhibited anti-senescence effects and improving endothelial function through AMPK in HCAECs. Telmisartan could provide beneficial effects on vascular diseases via enhancement of mitochondrial activity and modulating endothelial function through AMPK activation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Theoretical models for coronary vascular biomechanics: Progress & challenges

    PubMed Central

    Waters, Sarah L.; Alastruey, Jordi; Beard, Daniel A.; Bovendeerd, Peter H.M.; Davies, Peter F.; Jayaraman, Girija; Jensen, Oliver E.; Lee, Jack; Parker, Kim H.; Popel, Aleksander S.; Secomb, Timothy W.; Siebes, Maria; Sherwin, Spencer J.; Shipley, Rebecca J.; Smith, Nicolas P.; van de Vosse, Frans N.

    2013-01-01

    A key aim of the cardiac Physiome Project is to develop theoretical models to simulate the functional behaviour of the heart under physiological and pathophysiological conditions. Heart function is critically dependent on the delivery of an adequate blood supply to the myocardium via the coronary vasculature. Key to this critical function of the coronary vasculature is system dynamics that emerge via the interactions of the numerous constituent components at a range of spatial and temporal scales. Here, we focus on several components for which theoretical approaches can be applied, including vascular structure and mechanics, blood flow and mass transport, flow regulation, angiogenesis and vascular remodelling, and vascular cellular mechanics. For each component, we summarise the current state of the art in model development, and discuss areas requiring further research. We highlight the major challenges associated with integrating the component models to develop a computational tool that can ultimately be used to simulate the responses of the coronary vascular system to changing demands and to diseases and therapies. PMID:21040741

  6. Pomegranate Extract Enhances Endothelium-Dependent Coronary Relaxation in Isolated Perfused Hearts from Spontaneously Hypertensive Ovariectomized Rats

    PubMed Central

    Delgado, Nathalie T. B.; Rouver, Wender do N.; Freitas-Lima, Leandro C.; de Paula, Tiago D.-C.; Duarte, Andressa; Silva, Josiane F.; Lemos, Virgínia S.; Santos, Alexandre M. C.; Mauad, Helder; Santos, Roger L.; Moysés, Margareth R.

    2017-01-01

    Decline in estrogen levels promotes endothelial dysfunction and, consequently, the most prevalent cardiovascular diseases in menopausal women. The use of natural therapies such as pomegranate can change these results. Pomegranate [Punica granatum L. (Punicaceae)] is widely used as a phytotherapeutic agent worldwide, including in Brazil. We hypothesized that treatment with pomegranate hydroalcoholic extract (PHE) would improve coronary vascular reactivity and cardiovascular parameters. At the beginning of treatment, spontaneously hypertensive female rats were divided into Sham and ovariectomized (OVX) groups, which received pomegranate extract (PHE) (250 mg/kg) or filtered water (V) for 30 days by gavage. Systolic blood pressure was measured by tail plethysmography. After euthanasia, the heart was removed and coronary vascular reactivity was assessed by Langendorff retrograde perfusion technique. A dose-response curve for bradykinin was performed, followed by L-NAME inhibition. The protein expression of p-eNOS Ser1177, p-eNOS Thr495, total eNOS, p-AKT Ser473, total AKT, SOD-2, and catalase was quantified by Western blotting. The detection of coronary superoxide was performed using the protocol of dihydroethidium (DHE) staining Plasma nitrite measurement was analyzed by Griess method. Systolic blood pressure increased in both Sham-V and OVX-V groups, whereas it was reduced after treatment in Sham-PHE and OVX-PHE groups. The baseline coronary perfusion pressure was reduced in the Sham-PHE group. The relaxation was significantly higher in the treated group, and L-NAME attenuated the relaxation in all groups. The treatment has not changed p-eNOS (Ser1177), total eNOS, p-AKT (Ser473) and total AKT in any groups. However, in Sham and OVX group the treatment reduced the p-eNOS (Thr495) and SOD-2. The ovariectomy promoted an increasing in the superoxide anion levels and the treatment was able to prevent this elevation and reducing oxidative stress. Moreover, the treatment prevented the decreasing in plasmatic nitrite. We observed a reduction in total cholesterol and LDL in the Sham-PHE group. The treatment with PHE enhances the endothelium-dependent coronary relaxation and improves cardiovascular parameters, which suggests a therapeutic role of PHE. PMID:28101057

  7. Treatment of Angina Pectoris Associated with Coronary Microvascular Dysfunction.

    PubMed

    Ong, Peter; Athanasiadis, Anastasios; Sechtem, Udo

    2016-08-01

    Treatment of angina pectoris associated with coronary microvascular dysfunction is challenging as the underlying mechanisms are often diverse and overlapping. Patients with type 1 coronary microvascular dysfunction (i.e. absence of epicardial coronary artery disease and myocardial disease) should receive strict control of their cardiovascular risk factors and thus receive statins and ACE-inhibitors in most cases. Antianginal medication consists of ß-blockers and/or calcium channel blockers. Second line drugs are ranolazine and nicorandil with limited evidence. Despite individually titrated combinations of these drugs up to 30 % of patients have refractory angina. Rho-kinase inhibitors and endothelin-receptor antagonists represent potential drugs that may prove useful in these patients in the future.

  8. Associations of Omega-3 Fatty Acid Supplement Use With Cardiovascular Disease Risks: Meta-analysis of 10 Trials Involving 77 917 Individuals.

    PubMed

    Aung, Theingi; Halsey, Jim; Kromhout, Daan; Gerstein, Hertzel C; Marchioli, Roberto; Tavazzi, Luigi; Geleijnse, Johanna M; Rauch, Bernhard; Ness, Andrew; Galan, Pilar; Chew, Emily Y; Bosch, Jackie; Collins, Rory; Lewington, Sarah; Armitage, Jane; Clarke, Robert

    2018-03-01

    Current guidelines advocate the use of marine-derived omega-3 fatty acids supplements for the prevention of coronary heart disease and major vascular events in people with prior coronary heart disease, but large trials of omega-3 fatty acids have produced conflicting results. To conduct a meta-analysis of all large trials assessing the associations of omega-3 fatty acid supplements with the risk of fatal and nonfatal coronary heart disease and major vascular events in the full study population and prespecified subgroups. This meta-analysis included randomized trials that involved at least 500 participants and a treatment duration of at least 1 year and that assessed associations of omega-3 fatty acids with the risk of vascular events. Aggregated study-level data were obtained from 10 large randomized clinical trials. Rate ratios for each trial were synthesized using observed minus expected statistics and variances. Summary rate ratios were estimated by a fixed-effects meta-analysis using 95% confidence intervals for major diseases and 99% confidence intervals for all subgroups. The main outcomes included fatal coronary heart disease, nonfatal myocardial infarction, stroke, major vascular events, and all-cause mortality, as well as major vascular events in study population subgroups. Of the 77 917 high-risk individuals participating in the 10 trials, 47 803 (61.4%) were men, and the mean age at entry was 64.0 years; the trials lasted a mean of 4.4 years. The associations of treatment with outcomes were assessed on 6273 coronary heart disease events (2695 coronary heart disease deaths and 2276 nonfatal myocardial infarctions) and 12 001 major vascular events. Randomization to omega-3 fatty acid supplementation (eicosapentaenoic acid dose range, 226-1800 mg/d) had no significant associations with coronary heart disease death (rate ratio [RR], 0.93; 99% CI, 0.83-1.03; P = .05), nonfatal myocardial infarction (RR, 0.97; 99% CI, 0.87-1.08; P = .43) or any coronary heart disease events (RR, 0.96; 95% CI, 0.90-1.01; P = .12). Neither did randomization to omega-3 fatty acid supplementation have any significant associations with major vascular events (RR, 0.97; 95% CI, 0.93-1.01; P = .10), overall or in any subgroups, including subgroups composed of persons with prior coronary heart disease, diabetes, lipid levels greater than a given cutoff level, or statin use. This meta-analysis demonstrated that omega-3 fatty acids had no significant association with fatal or nonfatal coronary heart disease or any major vascular events. It provides no support for current recommendations for the use of such supplements in people with a history of coronary heart disease.

  9. Review of gestational diabetes mellitus effects on vascular structure and function.

    PubMed

    Jensen, Louise A; Chik, Constance L; Ryan, Edmond A

    2016-05-01

    Vascular dysfunction has been described in women with a history of gestational diabetes mellitus. Furthermore, previous gestational diabetes mellitus increases the risk of developing Type 2 diabetes mellitus, a risk factor for cardiovascular disease. Factors contributing to vascular changes remain uncertain. The aim of this review was to summarize vascular structure and function changes found to occur in women with previous gestational diabetes mellitus and to identify factors that contribute to vascular dysfunction. A systematic search of electronic databases yielded 15 publications from 1998 to March 2014 that met the inclusion criteria. Our review confirmed that previous gestational diabetes mellitus contributes to vascular dysfunction, and the most consistent risk factor associated with previous gestational diabetes mellitus and vascular dysfunction was elevated body mass index. Heterogeneity existed across studies in determining the relationship of glycaemic levels and insulin resistance to vascular dysfunction. © The Author(s) 2016.

  10. The apolipoprotein B/A1 ratio is associated with reactive oxygen metabolites and endothelial dysfunction in statin-treated patients with coronary artery disease.

    PubMed

    Emoto, Takuo; Sawada, Takahiro; Morimoto, Natsumi; Tenjin, Takako; Wakimoto, Taku; Ikeda, Fumie; Sato, Chiaki; Terashita, Daisuke; Mizoguchi, Taiji; Mizuguchi, Takao; Okamoto, Hiroshi; Matsuo, Yosuke; Kim, Sushi-Ku; Takarada, Akira; Yokoyama, Mitsuhiro

    2013-01-01

    The prognostic significance of the apolipoprotein B/A1 (ApoB/A1) ratio in statintreated patients with coronary artery disease (CAD) is unknown. We aimed to evaluate the association of the ApoB/A1 ratio with oxidative stress and endothelial dysfunction in these patients. We enrolled 62 consecutive statin-treated patients who underwent percutaneous coronary intervention (PCI). Their lipid profiles, diacron-reactive oxygen metabolites (d-ROMs), as a marker of oxidative stress, flow-mediated dilatation (FMD), as a marker of vascular endothelial function, and C-reactive protein (CRP) levels, as a marker of inflammation, were measured. Our study population comprised 44 men and 18 women (mean age, 70.5 ± 2.5 years). The ApoB/A1 ratio was positively correlated with the results of the d-ROMs test (p=0.004, r=0.36) and CRP level (p=0.02, r=0.30) and negatively correlated with the %FMD (p=0.005, r=-0.40). A multivariate logistic regression analysis showed that the most powerful predictive factor for the d-ROMs was the ApoB/A1 ratio (p=0.026). We therefore divided patients into two groups according to the cutoff point reported by the INTERHEART study: a low ApoB/A1 ratio (<0.641, n=26) and a high ApoB/A1 ratio (>0.641, n=36). The patients with a high ApoB/A1 ratio had higher levels of d-ROMs and CRP, and tended to have a lower %FMD. The ApoB/A1 ratio was associated with the d-ROMs, a marker of oxidative stress, endothelial dysfunction and inflammation, and could be useful as a residual atherosclerotic risk marker to help prevent CAD in statin-treated patients.

  11. Atherosclerosis as a disease of failed endogenous repair

    PubMed Central

    Zenovich, Andrey G.; Taylor, Doris A.

    2009-01-01

    As coronary artery disease (CAD) continues to be the primary cause of mortality, a more in-depth understanding of pathophysiology and novel treatments are being sought. The past two decades have established inflammation as a driving force behind CAD – from endothelial dysfunction to heart failure. Recent advances in stem/progenitor cell biology have led to initial applications of progenitor cells in CAD continuum and have revealed that atherosclerosis is, at least in part, a disease of failed endogenous vascular repair. Several key progenitor cell populations including endothelial progenitor cells (AC133+/CD34+ population), vascular progenitors (CD31+/CD45low population), KDR+ cells and other bone marrow subtypes are mobilized for vascular repair. However, age and risk factors negatively impact these cells even prior to clinical CAD. Sex-based differences in progenitor cell capacity for repair have emerged as a new research focus that may offer mechanistic insights into clinical CAD discrepancies between men and women. Quantifying injury and cell-based repair and better defining their interactions should enable us to halt or even prevent CAD by enhancing the repair side of the repair/injury equation. PMID:18508460

  12. Microvascular responsiveness in obesity: implications for therapeutic intervention

    PubMed Central

    Bagi, Zsolt; Feher, Attila; Cassuto, James

    2012-01-01

    Obesity has detrimental effects on the microcirculation. Functional changes in microvascular responsiveness may increase the risk of developing cardiovascular complications in obese patients. Emerging evidence indicates that selective therapeutic targeting of the microvessels may prevent life-threatening obesity-related vascular complications, such as ischaemic heart disease, heart failure and hypertension. It is also plausible that alterations in adipose tissue microcirculation contribute to the development of obesity. Therefore, targeting adipose tissue arterioles could represent a novel approach to reducing obesity. This review aims to examine recent studies that have been focused on vasomotor dysfunction of resistance arteries in obese humans and animal models of obesity. Particularly, findings in coronary resistance arteries are contrasted to those obtained in other vascular beds. We provide examples of therapeutic attempts, such as use of statins, ACE inhibitors and insulin sensitizers to prevent obesity-related microvascular complications. We further identify some of the important challenges and opportunities going forward. LINKED ARTICLES This article is part of a themed section on Fat and Vascular Responsiveness. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-3 PMID:21797844

  13. Obesity and risk of vascular disease: importance of endothelium-dependent vasoconstriction.

    PubMed

    Barton, Matthias; Baretella, Oliver; Meyer, Matthias R

    2012-02-01

    Obesity has become a serious global health issue affecting both adults and children. Recent devolopments in world demographics and declining health status of the world's population indicate that the prevalence of obesity will continue to increase in the next decades. As a disease, obesity has deleterious effects on metabolic homeostasis, and affects numerous organ systems including heart, kidney and the vascular system. Thus, obesity is now regarded as an independent risk factor for atherosclerosis-related diseases such as coronary artery disease, myocardial infarction and stroke. In the arterial system, endothelial cells are both the source and target of factors contributing to atherosclerosis. Endothelial vasoactive factors regulate vascular homeostasis under physiological conditions and maintain basal vascular tone. Obesity results in an imbalance between endothelium-derived vasoactive factors favouring vasoconstriction, cell growth and inflammatory activation. Abnormal regulation of these factors due to endothelial cell dysfunction is both a consequence and a cause of vascular disease processes. Finally, because of the similarities of the vascular pathomechanisms activated, obesity can be considered to cause accelerated, 'premature' vascular aging. Here, we will review some of the pathomechanisms involved in obesity-related activation of endothelium-dependent vasoconstriction, the clinical relevance of obesity-associated vascular risk, and therapeutic interventions using 'endothelial therapy' aiming at maintaining or restoring vascular endothelial health. This article is part of a themed section on Fat and Vascular Responsiveness. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-3. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  14. Early changes in coronary artery wall structure detected by microcomputed tomography in experimental hypercholesterolemia.

    PubMed

    Zhu, Xiang-Yang; Bentley, Michael D; Chade, Alejandro R; Ritman, Erik L; Lerman, Amir; Lerman, Lilach O

    2007-09-01

    Changes in the structure of the artery wall commence shortly after exposure to cardiovascular risk factors, such as hypercholesterolemia (HC), but may be difficult to detect. The ability to study vascular wall structure could be helpful in evaluation of the factors that instigate atherosclerosis and its pathomechanisms. The present study tested the hypothesis that early morphological changes in coronary arteries of hypercholesterolemic (HC) pigs can be detected using the novel X-ray contrast agent OsO(4) and three-dimensional micro-computed tomography (CT). Two groups of pigs were studied after they were fed a normal or an HC (2% cholesterol) diet for 12 wk. Hearts were harvested, coronary arteries were injected with 1% OsO(4) solution, and cardiac samples (6-mum-thick) were scanned by micro-CT. Layers of the epicardial coronary artery wall, early lesions, and perivascular OsO(4) accumulation were determined. Leakage of OsO(4) from myocardial microvessels was used to assess vascular permeability, which was correlated with immunoreactivity of vascular endothelial growth factor in corresponding histological cross sections. OsO(4) enhanced the visualization of coronary artery wall layers and facilitated detection of early lesions in HC in longitudinal tomographic sections of vascular segments. Increased density of perivascular OsO(4) in HC was correlated with increased vascular endothelial growth factor expression and suggested increased microvascular permeability. The use of OsO(4) as a contrast agent in micro-CT allows three-dimensional visualization of coronary artery wall structure, early lesion formation, and changes in vascular permeability. Therefore, this technique can be a useful tool in atherosclerosis research.

  15. History of erectile dysfunction as a predictor of poor physical performance after an acute myocardial infarction.

    PubMed

    Compostella, Leonida; Compostella, Caterina; Truong, Li Van Stella; Russo, Nicola; Setzu, Tiziana; Iliceto, Sabino; Bellotto, Fabio

    2017-03-01

    Background Erectile dysfunction may predict future cardiovascular events and indicate the severity of coronary artery disease in middle-aged men. The aim of this study was to evaluate whether erectile dysfunction (expression of generalized macro- and micro-vascular pathology) could predict reduced effort tolerance in patients after an acute myocardial infarction. Patients and methods One hundred and thirty-nine male patients (60 ± 12 years old), admitted to intensive cardiac rehabilitation 13 days after a complicated acute myocardial infarction, were evaluated for history of erectile dysfunction using the International Index of Erectile Function questionnaire. Their physical performance was assessed by means of two six-minute walk tests (performed two weeks apart) and by a symptom limited cardiopulmonary exercise test (CPET). Results Patients with erectile dysfunction (57% of cases) demonstrated poorer physical performance, significantly correlated to the degree of erectile dysfunction. After cardiac rehabilitation, they walked shorter distances at the final six-minute walk test (490 ± 119 vs. 564 ± 94 m; p < 0.001); at CPET they sustained lower workload (79 ± 28 vs. 109 ± 34 W; p < 0.001) and reached lower oxygen uptake at peak effort (18 ± 5 vs. 21 ± 5 ml/kg per min; p = 0.003) and at anaerobic threshold (13 ± 3 vs.16 ± 4 ml/kg per min; p = 0.001). The positive predictive value of presence of erectile dysfunction was 0.71 for low peak oxygen uptake (<20 ml/kg per min) and 0.69 for reduced effort capacity (W-max <100 W). Conclusions As indicators of generalized underlying vascular pathology, presence and degree of erectile dysfunction may predict the severity of deterioration of effort tolerance in post-acute myocardial infarction patients. In the attempt to reduce the possibly associated long-term risk, an optimization of type, intensity and duration of cardiac rehabilitation should be considered.

  16. Endothelial dysfunction in metabolic and vascular disorders.

    PubMed

    Polovina, Marija M; Potpara, Tatjana S

    2014-03-01

    Vascular endothelium has important regulatory functions in the cardiovascular system and a pivotal role in the maintenance of vascular health and metabolic homeostasis. It has long been recognized that endothelial dysfunction participates in the pathogenesis of atherosclerosis from early, preclinical lesions to advanced, thrombotic complications. In addition, endothelial dysfunction has been recently implicated in the development of insulin resistance and type 2 diabetes mellitus (T2DM). Considering that states of insulin resistance (eg, metabolic syndrome, impaired fasting glucose, impaired glucose tolerance, and T2DM) represent the most prevalent metabolic disorders and risk factors for atherosclerosis, it is of considerable scientific and clinical interest that both metabolic and vascular disorders have endothelial dysfunction as a common background. Importantly, endothelial dysfunction has been associated with adverse outcomes in patients with established cardiovascular disease, and a growing body of evidence indicates that endothelial dysfunction also imparts adverse prognosis in states of insulin resistance. In this review, we discuss the association of insulin resistance and T2DM with endothelial dysfunction and vascular disease, with a focus on the underlying mechanisms and prognostic implications of the endothelial dysfunction in metabolic and vascular disorders. We also address current therapeutic strategies for the improvement of endothelial dysfunction.

  17. Testosterone and phosphodiesterase type-5 inhibitors: new strategy for preventing endothelial damage in internal and sexual medicine?

    PubMed Central

    Aversa, Antonio; Bruzziches, Roberto; Francomano, Davide; Natali, Marco; Lenzi, Andrea

    2009-01-01

    Normal vascular endothelium is essential for the synthesis and release of substances affecting vascular tone (e.g. nitric oxide; NO), cell adhesion (e.g. endothelins, interleukins), and the homeostasis of clotting and fibrinolysis (e.g. plasminogen inhibitors, von Willebrand factor). The degeneration of endothelial integrity promotes adverse events (AEs) leading to increased atherogenesis and to the development of vascular systemic and penile end-organ disease. Testosterone (T) is an important player in the regulation of vascular tone through non-genomic actions exerted via blockade of extracellular-calcium entry or activation of potassium channels; also, adequate T concentrations are paramount for the regulation of phosphodiesterase type-5 (PDE5) expression and finally, for the actions exerted by hydrogen sulphide, a gas involved in the alternative pathway controlling vasodilator responses in penile tissue. It is known that an age-related decline of serum T is reported in approximately 20 to 30% of men whereas T deficiency is reported in up to 50% of men with metabolic syndrome or diabetes. A number of laboratory and human studies have shown the combination of T and other treatments for erectile dysfunction (ED), such as PDE5 inhibitors, to be more beneficial in patients with ED and hypogonadism, who fail monotherapy for sexual disturbances. The aim of this review is to show evidence on the role of T and PDE5 inhibitors, alone or in combination, as potential boosters of endothelial function in internal medicine diseases associated with reduced T or NO bioavailability, i.e. metabolic syndrome, obesity, diabetes, coronary artery disease, hyperhomocysteinemia, that share common risk factors with ED. Furthermore, the possibility of such a strategy to prevent endothelial dysfunction in men at increased cardiovascular risk is discussed. PMID:21789066

  18. Effects of the dual TP receptor antagonist and thromboxane synthase inhibitor EV-077 on human endothelial and vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petri, Marcelo H.; Tellier, Céline; Michiels, Carine

    2013-11-15

    Highlights: •EV-077 reduced TNF-α induced inflammation in endothelial cells. •The thromboxane mimetic U69915 enhanced vascular smooth muscle cell proliferation. •EV-077 inhibited smooth muscle cell proliferation. -- Abstract: The prothrombotic mediator thromboxane A{sub 2} is derived from arachidonic acid metabolism through the cyclooxygenase and thromboxane synthase pathways, and transduces its effect through the thromboxane prostanoid (TP) receptor. The aim of this study was to determine the effect of the TP receptor antagonist and thromboxane synthase inhibitor EV-077 on inflammatory markers in human umbilical vein endothelial cells and on human coronary artery smooth muscle cell proliferation. To this end, mRNA levels ofmore » different proinflammatory mediators were studied by real time quantitative PCR, supernatants were analyzed by enzyme immune assay, and cell proliferation was assessed using WST-1. EV-077 significantly decreased mRNA levels of ICAM-1 and PTX3 after TNFα incubation, whereas concentrations of 6-keto PGF1α in supernatants of endothelial cells incubated with TNFα were significantly increased after EV-077 treatment. Although U46619 did not alter coronary artery smooth muscle cell proliferation, this thromboxane mimetic enhanced the proliferation induced by serum, insulin and growth factors, which was significantly inhibited by EV-077. In conclusion, EV-077 inhibited TNFα-induced endothelial inflammation and reduced the enhancement of smooth muscle cell proliferation induced by a thromboxane mimetic, supporting that the thromboxane pathway may be associated with early atherosclerosis in terms of endothelial dysfunction and vascular hypertrophy.« less

  19. Associations of Omega-3 Fatty Acid Supplement Use With Cardiovascular Disease Risks

    PubMed Central

    Aung, Theingi; Halsey, Jim; Kromhout, Daan; Gerstein, Hertzel C.; Marchioli, Roberto; Tavazzi, Luigi; Geleijnse, Johanna M.; Rauch, Bernhard; Ness, Andrew; Galan, Pilar; Chew, Emily Y.; Bosch, Jackie; Collins, Rory; Lewington, Sarah; Armitage, Jane

    2018-01-01

    Importance Current guidelines advocate the use of marine-derived omega-3 fatty acids supplements for the prevention of coronary heart disease and major vascular events in people with prior coronary heart disease, but large trials of omega-3 fatty acids have produced conflicting results. Objective To conduct a meta-analysis of all large trials assessing the associations of omega-3 fatty acid supplements with the risk of fatal and nonfatal coronary heart disease and major vascular events in the full study population and prespecified subgroups. Data Sources and Study Selection This meta-analysis included randomized trials that involved at least 500 participants and a treatment duration of at least 1 year and that assessed associations of omega-3 fatty acids with the risk of vascular events. Data Extraction and Synthesis Aggregated study-level data were obtained from 10 large randomized clinical trials. Rate ratios for each trial were synthesized using observed minus expected statistics and variances. Summary rate ratios were estimated by a fixed-effects meta-analysis using 95% confidence intervals for major diseases and 99% confidence intervals for all subgroups. Main Outcomes and Measures The main outcomes included fatal coronary heart disease, nonfatal myocardial infarction, stroke, major vascular events, and all-cause mortality, as well as major vascular events in study population subgroups. Results Of the 77 917 high-risk individuals participating in the 10 trials, 47 803 (61.4%) were men, and the mean age at entry was 64.0 years; the trials lasted a mean of 4.4 years. The associations of treatment with outcomes were assessed on 6273 coronary heart disease events (2695 coronary heart disease deaths and 2276 nonfatal myocardial infarctions) and 12 001 major vascular events. Randomization to omega-3 fatty acid supplementation (eicosapentaenoic acid dose range, 226-1800 mg/d) had no significant associations with coronary heart disease death (rate ratio [RR], 0.93; 99% CI, 0.83-1.03; P = .05), nonfatal myocardial infarction (RR, 0.97; 99% CI, 0.87-1.08; P = .43) or any coronary heart disease events (RR, 0.96; 95% CI, 0.90-1.01; P = .12). Neither did randomization to omega-3 fatty acid supplementation have any significant associations with major vascular events (RR, 0.97; 95% CI, 0.93-1.01; P = .10), overall or in any subgroups, including subgroups composed of persons with prior coronary heart disease, diabetes, lipid levels greater than a given cutoff level, or statin use. Conclusions and Relevance This meta-analysis demonstrated that omega-3 fatty acids had no significant association with fatal or nonfatal coronary heart disease or any major vascular events. It provides no support for current recommendations for the use of such supplements in people with a history of coronary heart disease. PMID:29387889

  20. Regulation of Coronary Blood Flow in Health and Ischemic Heart Disease

    PubMed Central

    Duncker, Dirk J.; Koller, Akos; Merkus, Daphne; Canty, John M.

    2018-01-01

    The major factors determining myocardial perfusion and oxygen delivery have been elucidated over the past several decades, and this knowledge has been incorporated into the management of patients with ischemic heart disease (IHD). The basic understanding of the fluid mechanical behavior of coronary stenoses has also been translated to the cardiac catheterization laboratory where measurements of coronary pressure distal to a stenosis and coronary flow are routinely obtained. However, the role of perturbations in coronary microvascular structure and function, due to myocardial hypertrophy or coronary microvascular dysfunction, in IHD is becoming increasingly recognized. Future studies should therefore be aimed at further improving our understanding of the integrated coronary microvascular mechanisms that control coronary blood flow, and of the underlying causes and mechanisms of coronary microvascular dysfunction. This knowledge will be essential to further improve the treatment of patients with IHD. PMID:25475073

  1. Role of Lipid Peroxidation-Derived α, β-Unsaturated Aldehydes in Vascular Dysfunction

    PubMed Central

    Lee, Seung Eun; Park, Yong Seek

    2013-01-01

    Vascular diseases are the most prominent cause of death, and inflammation and vascular dysfunction are key initiators of the pathophysiology of vascular disease. Lipid peroxidation products, such as acrolein and other α, β-unsaturated aldehydes, have been implicated as mediators of inflammation and vascular dysfunction. α, β-Unsaturated aldehydes are toxic because of their high reactivity with nucleophiles and their ability to form protein and DNA adducts without prior metabolic activation. This strong reactivity leads to electrophilic stress that disrupts normal cellular function. Furthermore, α, β-unsaturated aldehydes are reported to cause endothelial dysfunction by induction of oxidative stress, redox-sensitive mechanisms, and inflammatory changes such as induction of cyclooxygenase-2 and cytokines. This review provides an overview of the effects of lipid peroxidation products, α, β-unsaturated aldehydes, on inflammation and vascular dysfunction. PMID:23819013

  2. X-ray intravital microscopy for functional imaging in rat hearts using synchrotron radiation coronary microangiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Umetani, K.; Fukushima, K.

    2013-03-15

    An X-ray intravital microscopy technique was developed to enable in vivo visualization of the coronary, cerebral, and pulmonary arteries in rats without exposure of organs and with spatial resolution in the micrometer range and temporal resolution in the millisecond range. We have refined the system continually in terms of the spatial resolution and exposure time. X-rays transmitted through an object are detected by an X-ray direct-conversion type detector, which incorporates an X-ray SATICON pickup tube. The spatial resolution has been improved to 6 {mu}m, yielding sharp images of small arteries. The exposure time has been shortened to around 2 msmore » using a new rotating-disk X-ray shutter, enabling imaging of beating rat hearts. Quantitative evaluations of the X-ray intravital microscopy technique were extracted from measurements of the smallest-detectable vessel size and detection of the vessel function. The smallest-diameter vessel viewed for measurements is determined primarily by the concentration of iodinated contrast material. The iodine concentration depends on the injection technique. We used ex vivo rat hearts under Langendorff perfusion for accurate evaluation. After the contrast agent is injected into the origin of the aorta in an isolated perfused rat heart, the contrast agent is delivered directly into the coronary arteries with minimum dilution. The vascular internal diameter response of coronary arterial circulation is analyzed to evaluate the vessel function. Small blood vessels of more than about 50 {mu}m diameters were visualized clearly at heart rates of around 300 beats/min. Vasodilation compared to the control was observed quantitatively using drug manipulation. Furthermore, the apparent increase in the number of small vessels with diameters of less than about 50 {mu}m was observed after the vasoactive agents increased the diameters of invisible small blood vessels to visible sizes. This technique is expected to offer the potential for direct investigation of mechanisms of vascular dysfunctions.« less

  3. [Heart rate as a therapeutic target after acute coronary syndrome and in chronic coronary heart disease].

    PubMed

    Ambrosetti, Marco; Scardina, Giuseppe; Favretto, Giuseppe; Temporelli, Pier Luigi; Faggiano, Pompilio Massimo; Greco, Cesare; Pedretti, Roberto Franco

    2017-03-01

    For patients with stable coronary artery disease (SCAD), either after hospitalization for acute cardiac events or in the chronic phase, comprehensive treatment programs should be devoted to: (i) reducing mortality and major adverse cardiovascular events, (ii) reducing the ischemic burden and related symptoms, and (iii) increasing exercise capacity and quality of life.Heart rate (HR) has demonstrated to have prognostic value and patients beyond the limit of 70 bpm display increased risk of all the above adverse outcomes, even after adjustment for parameters such as the extension of myocardial infarction and the presence of heart failure. It is well known that a sustained HR elevation may contribute to the pathogenesis of SCAD, being the likelihood of developing ischemia, plaque instability, trigger for arrhythmias, increased vascular oxidative stress, and endothelial dysfunction the mechanisms resulting in this effect. Moreover, high HR could promote chronotropic incompetence, leading to functional disability and reduced quality of life.Despite the strong relationship between HR and prognosis, there is heterogeneity among current guidelines in considering HR as a formal therapeutic target for secondary prevention in SCAD, as far as the cut-off limit. This expert opinion document considered major trials and observational registries in the modern treatment era with beta-blockers and ivabradine, suggesting that an adequate HR control could represent a target for (i), (ii), and (iii) therapeutic goals in SCAD patients with systolic dysfunction (with major evidence for reduced left ventricular ejection fraction <40%), and a target for (ii) and (iii) goals in SCAD patients with preserved left ventricular ejection fraction. The defined cut-off limit is 70 bpm. To date, there is room for improvement of HR control, since in contemporary SCAD patients HR values <70 bpm are present in less than half of cases, even in the vulnerable phase after an acute coronary syndrome.

  4. Long-term spironolactone treatment reduces coronary TRPC expression, vasoconstriction, and atherosclerosis in metabolic syndrome pigs.

    PubMed

    Li, Wennan; Chen, Xingjuan; Riley, Ashley M; Hiett, S Christopher; Temm, Constance J; Beli, Eleni; Long, Xin; Chakraborty, Saikat; Alloosh, Mouhamad; White, Fletcher A; Grant, Maria B; Sturek, Michael; Obukhov, Alexander G

    2017-09-01

    Coronary transient receptor potential canonical (TRPC) channel expression is elevated in metabolic syndrome (MetS). However, differential contribution of TRPCs to coronary pathology in MetS is not fully elucidated. We investigated the roles of TRPC1 and TRPC6 isoforms in coronary arteries of MetS pigs and determined whether long-term treatment with a mineralocorticoid receptor inhibitor, spironolactone, attenuates coronary TRPC expression and associated dysfunctions. MetS coronary arteries exhibited significant atherosclerosis, endothelial dysfunction, and increased histamine-induced contractions. Immunohistochemical studies revealed that TRPC6 immunostaining was significantly greater in the medial layer of MetS pig coronary arteries compared to that in Lean pigs, whereas little TRPC6 immunostaining was found in atheromas. Conversely, TRPC1 immunostaining was weak in the medial layer but strong in MetS atheromas, where it was predominantly localized to macrophages. Spironolactone treatment significantly decreased coronary TRPC expression and dysfunctions in MetS pigs. In vivo targeted delivery of the dominant-negative (DN)-TRPC6 cDNA to the coronary wall reduced histamine-induced calcium transients in the MetS coronary artery medial layer, implying a role for TRPC6 in mediating calcium influx in MetS coronary smooth muscles. Monocyte adhesion was increased in Lean pig coronary arteries cultured in the presence of aldosterone; and spironolactone antagonized this effect, suggesting that coronary mineralocorticoid receptor activation may regulate macrophage infiltration. TRPC1 expression in atheroma macrophages was associated with advanced atherosclerosis, whereas medial TRPC6 upregulation correlated with increased histamine-induced calcium transients and coronary contractility. We propose that long-term spironolactone treatment may be a therapeutic strategy to decrease TRPC expression and coronary pathology associated with MetS.

  5. The Effects of Endurance Exercise Training on the Coronary Vascular Responsiveness to Intracoronary Acetylcholine in Swine

    DTIC Science & Technology

    1993-04-09

    systems. The mechanisms of sympathet ic innervation involve a-adrenergic-mediated coronary vascular smooth muscle contraction, and (1- adrenergic-mediated...may cause muscarinic-mediated relaxation or contraction of vascular smooth muscle , depending on the animal species and presence of endothelial...both cardiac muscle layers receive equal flows over a cardiac cycle, regardless of the differences from systo lic compression (Buckberg and Kattus

  6. Effects of the dual TP receptor antagonist and thromboxane synthase inhibitor EV-077 on human endothelial and vascular smooth muscle cells.

    PubMed

    Petri, Marcelo H; Tellier, Céline; Michiels, Carine; Ellertsen, Ingvill; Dogné, Jean-Michel; Bäck, Magnus

    2013-11-15

    The prothrombotic mediator thromboxane A2 is derived from arachidonic acid metabolism through the cyclooxygenase and thromboxane synthase pathways, and transduces its effect through the thromboxane prostanoid (TP) receptor. The aim of this study was to determine the effect of the TP receptor antagonist and thromboxane synthase inhibitor EV-077 on inflammatory markers in human umbilical vein endothelial cells and on human coronary artery smooth muscle cell proliferation. To this end, mRNA levels of different proinflammatory mediators were studied by real time quantitative PCR, supernatants were analyzed by enzyme immune assay, and cell proliferation was assessed using WST-1. EV-077 significantly decreased mRNA levels of ICAM-1 and PTX3 after TNFα incubation, whereas concentrations of 6-keto PGF1α in supernatants of endothelial cells incubated with TNFα were significantly increased after EV-077 treatment. Although U46619 did not alter coronary artery smooth muscle cell proliferation, this thromboxane mimetic enhanced the proliferation induced by serum, insulin and growth factors, which was significantly inhibited by EV-077. In conclusion, EV-077 inhibited TNFα-induced endothelial inflammation and reduced the enhancement of smooth muscle cell proliferation induced by a thromboxane mimetic, supporting that the thromboxane pathway may be associated with early atherosclerosis in terms of endothelial dysfunction and vascular hypertrophy. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  7. The ACE-DD genotype is associated with endothelial dysfunction in postmenopausal women.

    PubMed

    Méthot, Julie; Hamelin, Bettina A; Arsenault, Marie; Bogaty, Peter; Plante, Sylvain; Poirier, Paul

    2006-01-01

    To evaluate the effects of the angiotensin-converting enzyme (ACE) insertion/deletion (I/D), the angiotensinogen M235T and the angiotensin II type 1 receptor A1166C polymorphisms, and hormone therapy used on endothelial function in postmenopausal women without manifestation of coronary artery disease. Sixty-four postmenopausal women (42 hormone therapy users and 22 hormone therapy nonusers) without clinical manifestation of coronary artery disease were evaluated using external vascular ultrasonography to measure endothelium-dependent (hyperemic response, flow-mediated dilatation) and -independent (nitroglycerin) dilatation. Genotypes were determined by polymerase chain reaction amplification. Women with the ACE-DD genotype displayed a lower flow-mediated dilatation compared to those with the ACE-II genotype (8.4% +/- 3.9% vs 12.6% +/- 5.4%, P = 0.04). Endothelial function was not associated with the angiotensinogen M235T and anglotensin II type 1 receptor A1166C polymorphisms. ACE polymorphism seems to modulate endothelial function among postmenopausal women without hormone therapy (8.2% +/- 5.1% vs 18.4% +/- 5.9% for the DD and the II genotype, respectively, P = 0.02). However, in hormone therapy users, flow-mediated dilatation was similar according to the ACE genotypes. Our findings suggest that ACE-I/D polymorphism is related to endothelial dysfunction in postmenopausal women. Furthermore, a potential interaction between estrogen users and ACE polymorphism on endothelial function may be present.

  8. Inhibitory Effect of a French Maritime Pine Bark Extract-Based Nutritional Supplement on TNF-α-Induced Inflammation and Oxidative Stress in Human Coronary Artery Endothelial Cells

    PubMed Central

    McGrath, Kristine C. Y.; Li, Xiao-Hong; McRobb, Lucinda S.; Heather, Alison K.

    2015-01-01

    Oxidative stress and inflammation, leading to endothelial dysfunction, contribute to the pathogenesis of atherosclerosis. The popularity of natural product supplements has increased in recent years, especially those with purported anti-inflammatory and/or antioxidant effects. The efficacy and mechanism of many of these products are not yet well understood. In this study, we tested the antioxidant and anti-inflammatory effects of a supplement, HIPER Health Supplement (HIPER), on cytokine-induced inflammation and oxidative stress in human coronary artery endothelial cells (HCAECs). HIPER is a mixture of French maritime pine bark extract (PBE), honey, aloe vera, and papaya extract. Treatment for 24 hours with HIPER reduced TNF-α-induced reactive oxygen species (ROS) generation that was associated with decreased NADPH oxidase 4 and increased superoxide dismutase-1 expression. HIPER inhibited TNF-α induced monocyte adhesion to HCAECs that was in keeping with decreased expression of vascular cell adhesion molecule-1 and intercellular cell adhesion molecule-1 and decreased nuclear factor-kappa B (NF-κB) activation. Further investigation of mechanism showed HIPER reduced TNF-α induced IκBα and p38 and MEK1/2 MAP kinases phosphorylation. Our findings show that HIPER has potent inhibitory effects on HCAECs inflammatory and oxidative stress responses that may protect against endothelial dysfunction that underlies early atherosclerotic lesion formation. PMID:26664450

  9. Automatic coronary artery segmentation based on multi-domains remapping and quantile regression in angiographies.

    PubMed

    Li, Zhixun; Zhang, Yingtao; Gong, Huiling; Li, Weimin; Tang, Xianglong

    2016-12-01

    Coronary artery disease has become the most dangerous diseases to human life. And coronary artery segmentation is the basis of computer aided diagnosis and analysis. Existing segmentation methods are difficult to handle the complex vascular texture due to the projective nature in conventional coronary angiography. Due to large amount of data and complex vascular shapes, any manual annotation has become increasingly unrealistic. A fully automatic segmentation method is necessary in clinic practice. In this work, we study a method based on reliable boundaries via multi-domains remapping and robust discrepancy correction via distance balance and quantile regression for automatic coronary artery segmentation of angiography images. The proposed method can not only segment overlapping vascular structures robustly, but also achieve good performance in low contrast regions. The effectiveness of our approach is demonstrated on a variety of coronary blood vessels compared with the existing methods. The overall segmentation performances si, fnvf, fvpf and tpvf were 95.135%, 3.733%, 6.113%, 96.268%, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Fractal analysis of the ischemic transition region in chronic ischemic heart disease using magnetic resonance imaging.

    PubMed

    Michallek, Florian; Dewey, Marc

    2017-04-01

    To introduce a novel hypothesis and method to characterise pathomechanisms underlying myocardial ischemia in chronic ischemic heart disease by local fractal analysis (FA) of the ischemic myocardial transition region in perfusion imaging. Vascular mechanisms to compensate ischemia are regulated at various vascular scales with their superimposed perfusion pattern being hypothetically self-similar. Dedicated FA software ("FraktalWandler") has been developed. Fractal dimensions during first-pass (FD first-pass ) and recirculation (FD recirculation ) are hypothesised to indicate the predominating pathomechanism and ischemic severity, respectively. Twenty-six patients with evidence of myocardial ischemia in 108 ischemic myocardial segments on magnetic resonance imaging (MRI) were analysed. The 40th and 60th percentiles of FD first-pass were used for pathomechanical classification, assigning lesions with FD first-pass  ≤ 2.335 to predominating coronary microvascular dysfunction (CMD) and ≥2.387 to predominating coronary artery disease (CAD). Optimal classification point in ROC analysis was FD first-pass  = 2.358. FD recirculation correlated moderately with per cent diameter stenosis in invasive coronary angiography in lesions classified CAD (r = 0.472, p = 0.001) but not CMD (r = 0.082, p = 0.600). The ischemic transition region may provide information on pathomechanical composition and severity of myocardial ischemia. FA of this region is feasible and may improve diagnosis compared to traditional noninvasive myocardial perfusion analysis. • A novel hypothesis and method is introduced to pathophysiologically characterise myocardial ischemia. • The ischemic transition region appears a meaningful diagnostic target in perfusion imaging. • Fractal analysis may characterise pathomechanical composition and severity of myocardial ischemia.

  11. Selective endothelin ETA and dual ET(A)/ET(B) receptor blockade improve endothelium-dependent vasodilatation in patients with type 2 diabetes and coronary artery disease.

    PubMed

    Rafnsson, Arnar; Shemyakin, Alexey; Pernow, John

    2014-11-24

    Endothelin-1 contributes to endothelial dysfunction in patients with atherosclerosis and type 2 diabetes. In healthy arteries the ETA receptor mediates the main part of the vasoconstriction induced by endothelin-1 whilst the ETB receptor mediates vasodilatation. The ETB receptor expression is upregulated on vascular smooth muscle cells in atherosclerosis and may contribute to the increased vasoconstrictor tone and endothelial dysfunction observed in this condition. Due to these opposing effects of the ETB receptor it remains unclear whether ETB blockade together with ETA blockade may be detrimental or beneficial. The aim was therefore to compare the effects of selective ETA and dual ETA/ETB blockade on endothelial function in patients with type 2 diabetes and coronary artery disease. Forearm endothelium-dependent and endothelium-independent vasodilatation was assessed by venous occlusion plethysmography in 12 patients before and after selective ETA or dual ETA/ETB receptor blockade. Dual ETA/ETB receptor blockade increased baseline forearm blood flow by 30±14% (P<0.01) whereas selective ETA blockade did not (14±8%). Both selective ETA blockade and dual ETA/ETB blockade significantly improved endothelium-dependent vasodilatation. The improvement did not differ between the two treatments. There was also an increase in endothelium-independent vasodilatation with both treatments. Dual ETA/ETB blockade did not significantly increase microvascular flow but improved transcutaneous pO2. Both selective ETA and dual ETA/ETB improve endothelium-dependent vasodilatation in patients with type 2 diabetes and coronary artery disease. ETB blockade increases basal blood flow but does not additionally improve endothelium-dependent vasodilatation. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Neurological Complications Comparing Endoscopically vs. Open Harvest of the Radial Artery

    ClinicalTrials.gov

    2016-07-05

    Complications Due to Coronary Artery Bypass Graft; Coronary Artery Disease; Myocardial Ischemia; Coronary Disease; Heart Diseases; Cardiovascular Diseases; Arteriosclerosis; Arterial Occlusive Diseases; Vascular Diseases

  13. Effects of cranberry juice consumption on vascular function in patients with coronary artery disease

    USDA-ARS?s Scientific Manuscript database

    Cranberry juice contains polyphenolic compounds that could improve endothelial function and reduce cardiovascular disease risk. The objective was to examine the effects of cranberry juice on vascular function in subjects with coronary artery disease. We completed an acute pilot study with no placebo...

  14. Clinical Features, Diagnosis, and Management of Patients With Anderson-Fabry Cardiomyopathy.

    PubMed

    Yogasundaram, Haran; Kim, Daniel; Oudit, Omar; Thompson, Richard B; Weidemann, Frank; Oudit, Gavin Y

    2017-07-01

    Anderson-Fabry disease (AFD) is an X-linked recessive, multisystem disease of lysosomal storage. A mutation in the gene encoding the hydrolase enzyme α-galactosidase A results in its deficiency, or complete absence of activity. Subsequent progressive intracellular accumulation of glycosphingolipids, predominantly globotriaosylceramide, in various tissues, results in progressive organ dysfunction and failure, most commonly affecting the kidneys, nervous system, skin, eyes, vascular endothelium, and the heart. Cardiac involvement in AFD represents a leading cause of morbidity and mortality. Globotriaosylceramide accumulation affects cardiomyocytes, smooth muscle cells, vascular endothelial cells, and fibroblasts leading to various pathologies including valvular regurgitation, conduction disease and arrhythmias, coronary microvascular dysfunction, and right and left ventricular hypertrophy (LVH) leading to early diastolic dysfunction and late-stage systolic impairment. Diagnosis is on the basis of decreased plasma α-galactosidase activity in men and positive genetic testing in women. Contemporary large-scale screening studies have revealed a prevalence of 1%-5% in patients with unexplained LVH in multiple cohorts. Cardiac magnetic resonance imaging, with its unique tissue characterization capabilities, is the most important imaging modality to assess for cardiomyopathy in patients with AFD. Enzyme replacement therapy is indicated in AFD patients with significant organ involvement, and has been shown to clear sphingolipids from endothelial cells in other organs, as well as to reduce left ventricular mass as early as 6 months after starting treatment. There is increasing evidence that enzyme replacement therapy might be more effective if given at earlier stages of disease, before the development of LVH and myocardial fibrosis. Copyright © 2017 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  15. Aerobic exercise reduces oxidative stress and improves vascular changes of small mesenteric and coronary arteries in hypertension

    PubMed Central

    Roque, Fernanda R; Briones, Ana M; García-Redondo, Ana B; Galán, María; Martínez-Revelles, Sonia; Avendaño, Maria S; Cachofeiro, Victoria; Fernandes, Tiago; Vassallo, Dalton V; Oliveira, Edilamar M; Salaices, Mercedes

    2013-01-01

    Background and Purpose Regular physical activity is an effective non-pharmacological therapy for prevention and control of hypertension. We investigated the effects of aerobic exercise training in vascular remodelling and in the mechanical and functional alterations of coronary and small mesenteric arteries from spontaneously hypertensive rats (SHR). Experimental Approach Normotensive Wistar Kyoto (WKY), SHR and SHR trained on a treadmill for 12 weeks were used to evaluate vascular structural, mechanical and functional properties. Key Results Exercise did not affect lumen diameter, wall thickness and wall/lumen ratio but reduced vascular stiffness of coronary and mesenteric arteries from SHR. Exercise also reduced collagen deposition and normalized altered internal elastic lamina organization and expression of MMP-9 in mesenteric arteries from SHR. Exercise did not affect contractile responses of coronary arteries but improved the endothelium-dependent relaxation in SHR. In mesenteric arteries, training normalized the increased contractile responses induced by U46619 and by high concentrations of acetylcholine. In vessels from SHR, exercise normalized the effects of the NADPH oxidase inhibitor apocynin and the NOS inhibitor l-NAME in vasodilator or vasoconstrictor responses, normalized the increased O2− production and the reduced Cu/Zn superoxide dismutase expression and increased NO production. Conclusions and Implications Exercise training of SHR improves endothelial function and vascular stiffness in coronary and small mesenteric arteries. This might be related to the concomitant decrease of oxidative stress and increase of NO bioavailability. Such effects demonstrate the beneficial effects of exercise on the vascular system and could contribute to a reduction in blood pressure. PMID:22994554

  16. Aerobic exercise reduces oxidative stress and improves vascular changes of small mesenteric and coronary arteries in hypertension.

    PubMed

    Roque, Fernanda R; Briones, Ana M; García-Redondo, Ana B; Galán, María; Martínez-Revelles, Sonia; Avendaño, Maria S; Cachofeiro, Victoria; Fernandes, Tiago; Vassallo, Dalton V; Oliveira, Edilamar M; Salaices, Mercedes

    2013-02-01

    Regular physical activity is an effective non-pharmacological therapy for prevention and control of hypertension. We investigated the effects of aerobic exercise training in vascular remodelling and in the mechanical and functional alterations of coronary and small mesenteric arteries from spontaneously hypertensive rats (SHR). Normotensive Wistar Kyoto (WKY), SHR and SHR trained on a treadmill for 12 weeks were used to evaluate vascular structural, mechanical and functional properties. Exercise did not affect lumen diameter, wall thickness and wall/lumen ratio but reduced vascular stiffness of coronary and mesenteric arteries from SHR. Exercise also reduced collagen deposition and normalized altered internal elastic lamina organization and expression of MMP-9 in mesenteric arteries from SHR. Exercise did not affect contractile responses of coronary arteries but improved the endothelium-dependent relaxation in SHR. In mesenteric arteries, training normalized the increased contractile responses induced by U46619 and by high concentrations of acetylcholine. In vessels from SHR, exercise normalized the effects of the NADPH oxidase inhibitor apocynin and the NOS inhibitor l-NAME in vasodilator or vasoconstrictor responses, normalized the increased O(2) (-) production and the reduced Cu/Zn superoxide dismutase expression and increased NO production. Exercise training of SHR improves endothelial function and vascular stiffness in coronary and small mesenteric arteries. This might be related to the concomitant decrease of oxidative stress and increase of NO bioavailability. Such effects demonstrate the beneficial effects of exercise on the vascular system and could contribute to a reduction in blood pressure. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  17. Polymer-Based Therapeutics: Nanoassemblies and Nanoparticles for Management of Atherosclerosis

    PubMed Central

    Lewis, Daniel R.; Kamisoglu, Kubra; York, Adam; Moghe, Prabhas V.

    2012-01-01

    Coronary arterial disease, one of the leading causes of adult mortality, is triggered by atherosclerosis. A disease with complex etiology, atherosclerosis results from the progressive long-term combination of atherogenesis, the accumulation of modified lipoproteins within blood vessel walls, along with vascular and systemic inflammatory processes. The management of atherosclerosis is challenged by the localized flare-up of several multipronged signaling interactions between activated monocytes, atherogenic macrophages and inflamed or dysfunctional endothelial cells. A new generation of approaches is now emerging founded on multifocal, targeted therapies that seek to reverse or ameliorate the athero-inflammatory cascade within the vascular intima. This article reviews the various classes and primary examples of bioactive configurations of nanoscale assemblies. Of specific interest are polymer-based or polymer-lipid micellar assemblies designed as multimodal receptor-targeted blockers or drug carriers whose activity can be tuned by variations in polymer hydrophobicity, charge, and architecture. Also reviewed are emerging reports on multifunctional nanoassemblies and nanoparticles for improved circulation and enhanced targeting to athero-inflammatory lesions and atherosclerotic plaques. PMID:21523920

  18. KV7 channels contribute to paracrine, but not metabolic or ischemic, regulation of coronary vascular reactivity in swine

    PubMed Central

    Goodwill, Adam G.; Fu, Lijuan; Noblet, Jillian N.; Casalini, Eli D.; Berwick, Zachary C.; Kassab, Ghassan S.; Tune, Johnathan D.

    2016-01-01

    Hydrogen peroxide (H2O2) and voltage-dependent K+ (KV) channels play key roles in regulating coronary blood flow in response to metabolic, ischemic, and paracrine stimuli. The KV channels responsible have not been identified, but KV7 channels are possible candidates. Existing data regarding KV7 channel function in the coronary circulation (limited to ex vivo assessments) are mixed. Thus we examined the hypothesis that KV7 channels are present in cells of the coronary vascular wall and regulate vasodilation in swine. We performed a variety of molecular, biochemical, and functional (in vivo and ex vivo) studies. Coronary arteries expressed KCNQ genes (quantitative PCR) and KV7.4 protein (Western blot). Immunostaining demonstrated KV7.4 expression in conduit and resistance vessels, perhaps most prominently in the endothelial and adventitial layers. Flupirtine, a KV7 opener, relaxed coronary artery rings, and this was attenuated by linopirdine, a KV7 blocker. Endothelial denudation inhibited the flupirtine-induced and linopirdine-sensitive relaxation of coronary artery rings. Moreover, linopirdine diminished bradykinin-induced endothelial-dependent relaxation of coronary artery rings. There was no effect of intracoronary flupirtine or linopirdine on coronary blood flow at the resting heart rate in vivo. Linopirdine had no effect on coronary vasodilation in vivo elicited by ischemia, H2O2, or tachycardia. However, bradykinin increased coronary blood flow in vivo, and this was attenuated by linopirdine. These data indicate that KV7 channels are expressed in some coronary cell type(s) and influence endothelial function. Other physiological functions of coronary vascular KV7 channels remain unclear, but they do appear to contribute to endothelium-dependent responses to paracrine stimuli. PMID:26825518

  19. KV7 channels contribute to paracrine, but not metabolic or ischemic, regulation of coronary vascular reactivity in swine.

    PubMed

    Goodwill, Adam G; Fu, Lijuan; Noblet, Jillian N; Casalini, Eli D; Sassoon, Daniel; Berwick, Zachary C; Kassab, Ghassan S; Tune, Johnathan D; Dick, Gregory M

    2016-03-15

    Hydrogen peroxide (H2O2) and voltage-dependent K(+) (KV) channels play key roles in regulating coronary blood flow in response to metabolic, ischemic, and paracrine stimuli. The KV channels responsible have not been identified, but KV7 channels are possible candidates. Existing data regarding KV7 channel function in the coronary circulation (limited to ex vivo assessments) are mixed. Thus we examined the hypothesis that KV7 channels are present in cells of the coronary vascular wall and regulate vasodilation in swine. We performed a variety of molecular, biochemical, and functional (in vivo and ex vivo) studies. Coronary arteries expressed KCNQ genes (quantitative PCR) and KV7.4 protein (Western blot). Immunostaining demonstrated KV7.4 expression in conduit and resistance vessels, perhaps most prominently in the endothelial and adventitial layers. Flupirtine, a KV7 opener, relaxed coronary artery rings, and this was attenuated by linopirdine, a KV7 blocker. Endothelial denudation inhibited the flupirtine-induced and linopirdine-sensitive relaxation of coronary artery rings. Moreover, linopirdine diminished bradykinin-induced endothelial-dependent relaxation of coronary artery rings. There was no effect of intracoronary flupirtine or linopirdine on coronary blood flow at the resting heart rate in vivo. Linopirdine had no effect on coronary vasodilation in vivo elicited by ischemia, H2O2, or tachycardia. However, bradykinin increased coronary blood flow in vivo, and this was attenuated by linopirdine. These data indicate that KV7 channels are expressed in some coronary cell type(s) and influence endothelial function. Other physiological functions of coronary vascular KV7 channels remain unclear, but they do appear to contribute to endothelium-dependent responses to paracrine stimuli. Copyright © 2016 the American Physiological Society.

  20. Uric acid levels are associated with endothelial dysfunction and severity of coronary atherosclerosis during a first episode of acute coronary syndrome.

    PubMed

    Gaubert, Mélanie; Marlinge, Marion; Alessandrini, Marine; Laine, Marc; Bonello, Laurent; Fromonot, Julien; Cautela, Jennifer; Thuny, Franck; Barraud, Jeremie; Mottola, Giovanna; Rossi, Pascal; Fenouillet, Emmanuel; Ruf, Jean; Guieu, Régis; Paganelli, Franck

    2018-06-01

    The role of serum uric acid in coronary artery disease has been extensively investigated. It was suggested that serum uric acid level (SUA) is an independent predictor of endothelial dysfunction and related to coronary artery lesions. However, the relationship between SUA and severity of coronary atherosclerosis evaluated via endothelial dysfunction using peripheral arterial tone (PAT) and the reactive hyperhemia index (RHI) has not been investigated during a first episode of acute coronary syndrome (ACS). The aim of our study was to address this point. We prospectively enrolled 80 patients with a first episode of ACS in a single-center observational study. All patients underwent coronary angiography, evaluation of endothelial function via the RHI, and SUA measurement. The severity of the coronary artery lesion was assessed angiographically, and patients were classified in three groups based on the extent of disease and Gensini and SYNTAX scores. Endothelial function was considered abnormal if RHI < 1.67. We identified a linear correlation between SUA and RHI (R 2  = 0.66 P < 0.001). In multivariable analyses, SUA remained associated with RHI, even after adjustment for traditional cardiovascular risk factors and renal function. SUA was associated with severity of coronary artery disease. SUA is associated with severity of coronary atherosclerosis in patients with asymptomatic hyperuricemia. This inexpensive, readily measured biological parameter may be useful to monitor ACS patients.

  1. Cognitive patterns in relation to biomarkers of cerebrovascular disease and vascular risk factors.

    PubMed

    Miralbell, Júlia; López-Cancio, Elena; López-Oloriz, Jorge; Arenillas, Juan Francisco; Barrios, Maite; Soriano-Raya, Juan José; Galán, Amparo; Cáceres, Cynthia; Alzamora, Maite; Pera, Guillem; Toran, Pere; Dávalos, Antoni; Mataró, Maria

    2013-01-01

    Risk factors for vascular cognitive impairment (VCI) are the same as traditional risk factors for cerebrovascular disease (CVD). Early identification of subjects at higher risk of VCI is important for the development of effective preventive strategies. In addition to traditional vascular risk factors (VRF), circulating biomarkers have emerged as potential tools for early diagnoses, as they could provide in vivo measures of the underlying pathophysiology. While VRF have been consistently linked to a VCI profile (i.e., deficits in executive functions and processing speed), the cognitive correlates of CVD biomarkers remain unclear. In this population-based study, the aim was to study and compare cognitive patterns in relation to VRF and circulating biomarkers of CVD. The Barcelona-AsIA Neuropsychology Study included 747 subjects older than 50, without a prior history of stroke or coronary disease and with a moderate to high vascular risk (mean age, 66 years; 34.1% women). Three cognitive domains were derived from factoral analysis: visuospatial skills/speed, verbal memory and verbal fluency. Multiple linear regression was used to assess relationships between cognitive performance (multiple domains) and a panel of circulating biomarkers, including indicators of inflammation, C-reactive protein (CRP) and resistin, endothelial dysfunction, asymmetric dimethylarginine (ADMA), thrombosis, plasminogen activator inhibitor 1 (PAI-1), as well as traditional VRF, metabolic syndrome and insulin resistance (homeostatic model assessment for insulin resistance index). Analyses were adjusted for age, gender, years of education and depressive symptoms. Traditional VRF were related to lower performance in verbal fluency, insulin resistance accounted for lower performance in visuospatial skills/speed and the metabolic syndrome predicted lower performance in both cognitive domains. From the biomarkers of CVD, CRP was negatively related to verbal fluency performance and increasing ADMA levels were associated with lower performance in verbal memory. Resistin and PAI-1 did not relate to cognitive function performance. Vascular risk factors, and markers of inflammation and endothelial dysfunction predicted lower performance in several cognitive domains. Specifically, cognitive functions associated with CRP are typically affected in VCI and overlap those related to VRF. ADMA indicated a dissociation in the cognitive profile involving verbal memory. These findings suggest that inflammation and endothelial dysfunction might play a role in the predementia cognitive impairment stages. Copyright © 2013 S. Karger AG, Basel.

  2. Leptin receptors are expressed in coronary arteries, and hyperleptinemia causes significant coronary endothelial dysfunction.

    PubMed

    Knudson, Jarrod D; Dincer, U Deniz; Zhang, Cuihua; Swafford, Albert N; Koshida, Ryoji; Picchi, Andrea; Focardi, Marta; Dick, Gregory M; Tune, Johnathan D

    2005-07-01

    Obesity is associated with marked increases in plasma leptin concentration, and hyperleptinemia is an independent risk factor for coronary artery disease. As a result, the purpose of this investigation was to test the following hypotheses: 1) leptin receptors are expressed in coronary endothelial cells; and 2) hyperleptinemia induces coronary endothelial dysfunction. RT-PCR analysis revealed that the leptin receptor gene is expressed in canine coronary arteries and human coronary endothelium. Furthermore, immunocytochemistry demonstrated that the long-form leptin receptor protein (ObRb) is present in human coronary endothelium. The functional effects of leptin were determined using pressurized coronary arterioles (<130 microm) isolated from Wistar rats, Zucker rats, and mongrel dogs. Leptin induced pharmacological vasodilation that was abolished by denudation and the nitric oxide synthase inhibitor N(omega)-nitro-l-arginine methyl ester and was absent in obese Zucker rats. Intracoronary leptin dose-response experiments were conducted in anesthetized dogs. Normal and obese concentrations of leptin (0.1-3.0 microg/min ic) did not significantly change coronary blood flow or myocardial oxygen consumption; however, obese concentrations of leptin significantly attenuated the dilation to graded intracoronary doses of acetylcholine (0.3-30.0 microg/min). Additional experiments were performed in canine coronary rings, and relaxation to acetylcholine (6.25 nmol/l-6.25 micromol/l) was significantly attenuated by obese concentrations of leptin (625 pmol/l) but not by physiological concentrations of leptin (250 pmol/l). The major findings of this investigation were as follows: 1) the ObRb is present in coronary arteries and coupled to pharmacological, nitric oxide-dependent vasodilation; and 2) hyperleptinemia produces significant coronary endothelial dysfunction.

  3. Impaired digital reactive hyperemia and the risk of restenosis after primary coronary intervention in patients with acute coronary syndrome.

    PubMed

    Yamamoto, Masaya; Hara, Hisao; Moroi, Masao; Ito, Shingo; Nakamura, Masato; Sugi, Kaoru

    2014-01-01

    Reactive hyperemia peripheral arterial tonometry (RH-PAT) can be used to noninvasively assess the vascular function with respect to the digital microcirculation. Abnormalities are associated with coronary endothelial dysfunction. We therefore investigated whether impaired digital reactive hyperemia is associated with restenosis after percutaneous coronary intervention (PCI) in patients with acute coronary syndrome (ACS). This study included 86 patients with ACS who underwent successful primary PCI of native vessels for de novo lesions. The reactive hyperemia index (RHI) was calculated using RH-PAT at three weeks and eight months after ACS. The RHI was defined as the ratio of the digital pulse volume during reactive hyperemia to that observed at baseline. Restenosis was defined as diameter stenosis of ≥ 50% in the in-segment area based on the findings of quantitative coronary angiography performed at eight months. Restenosis was detected in 17 patients (20%). There were no differences in the RHI at three weeks between the patients with and without restenosis (1.70 vs. 1.87; p=0.13); however, the RHI values at eight months were significantly attenuated in the patients with restenosis versus those without (1.75 vs. 2.12; p=0.03). A univariate logistic regression analysis showed that the eight-month RHI (<2, obtained from a receiver operating characteristic analysis) was a significant risk factor for restenosis (odds ratio: 4.23, 95% confidence interval: 1.25 to 14.28, p=0.02). Impairment of the digital hyperemic response at eight months is associated with restenosis after primary intervention in patients with ACS, suggesting the potential of RH-PAT as a noninvasive test for identifying patients with a high risk of restenosis.

  4. Saxagliptin Prevents Increased Coronary Vascular Stiffness in Aortic-Banded Mini Swine.

    PubMed

    Fleenor, Bradley S; Ouyang, An; Olver, T Dylan; Hiemstra, Jessica A; Cobb, Melissa S; Minervini, Gianmaria; Emter, Craig A

    2018-06-11

    Increased peripheral conduit artery stiffness has been shown in patients with heart failure (HF) with preserved ejection fraction. However, it is unknown whether this phenomenon extends to the coronary vasculature. HF with preserved ejection fraction may be driven, in part, by coronary inflammation, and inhibition of the enzyme DPP-4 (dipeptidyl-peptidase 4) reduces inflammation and oxidative stress. The purpose of this study was to determine the effect of saxagliptin-a DPP-4 inhibitor-on coronary stiffness in aortic-banded mini swine. We hypothesized saxagliptin would prevent increased coronary artery stiffness in a translational swine model with cardiac features of HF with preserved ejection fraction by inhibiting perivascular adipose tissue inflammation. Yucatan mini swine were divided into 3 groups: control, aortic-banded untreated HF, and aortic-banded saxagliptin-treated HF. Ex vivo mechanical testing was performed on the left circumflex and right coronary arteries, and advanced glycation end product, NF-κB (nuclear factor-κB), and nitrotyrosine levels were measured. An increase in the coronary elastic modulus of HF animals was associated with increased vascular advanced glycation end products, NF-κB, and nitrotyrosine levels compared with control and prevented by saxagliptin treatment. Aortas from healthy mice were treated with media from swine perivascular adipose tissue culture to assess its role on vascular stiffening. Conditioned media from HF and saxagliptin-treated HF animals increased mouse aortic stiffness; however, only perivascular adipose tissue from the HF group showed increased advanced glycation end products and NF-κB levels. In conclusion, our data show increased coronary conduit vascular stiffness was prevented by saxagliptin and associated with decreased advanced glycation end products, NF-κB, and nitrotyrosine levels in a swine model with potential relevance to HF with preserved ejection fraction. © 2018 American Heart Association, Inc.

  5. Pericyte function in the physiological central nervous system.

    PubMed

    Muramatsu, Rieko; Yamashita, Toshihide

    2014-01-01

    Damage to the central nervous system (CNS) leads to disruption of the vascular network, causing vascular dysfunction. Vascular dysfunction is the major event in the pathogenesis of CNS diseases and is closely associated with the severity of neuronal dysfunction. The suppression of vascular dysfunction has been considered a promising avenue to limit damage to the CNS, leading to efforts to clarify the cellular and molecular basis of vascular homeostasis maintenance. A reduction of trophic support and oxygen delivery due to circulatory insufficiency has long been regarded as a major cause of vascular damage. Moreover, recent studies provide a new perspective on the importance of the structural stability of blood vessels in CNS diseases. This updated article discusses emerging information on the key role of vascular integrity in CNS diseases, specially focusing on pericyte function. Copyright © 2014 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  6. Platelet and endothelial activity in comorbid major depression and coronary artery disease patients treated with citalopram: the Canadian Cardiac Randomized Evaluation of Antidepressant and Psychotherapy Efficacy Trial (CREATE) biomarker sub-study.

    PubMed

    van Zyl, Louis T; Lespérance, Francois; Frasure-Smith, Nancy; Malinin, Alex I; Atar, Dan; Laliberté, Marc-André; Serebruany, Victor L

    2009-01-01

    Major depression is an independent risk factor for increased morbidity and mortality in patients with coronary artery disease (CAD). Increased platelet activity and vascular endothelial dysfunction are possible pathways through which depression may increase cardiovascular risk. Citalopram exhibits strong selective inhibition of human platelet activation, but little is known about its effects on vascular endothelium. We assessed whether treatment of depressed CAD patients with citalopram alters platelet/endothelial biomarkers. The study was performed within the framework of the CREATE trial. We assessed the effect of citalopram on P-selectin, beta-thromboglobulin (betaTG), soluble intercellular cell adhesion molecule-1 (sICAM-1), and total nitric oxide (tNO). Plasma samples were obtained at baseline and week 12 from subjects randomized to citalopram 20-40 mg daily (n = 36), or placebo (n = 21). Anticoagulants, aspirin, and clopidogrel were permitted. Treatment with citalopram was associated with greater increase in tNO over 12 weeks compared to placebo (P = 0.005). There were no differences for the other biomarkers such as P-selectin (P = 0.70), betaTG (P = 0.46) and ICAM (P = 0.59). Treatment with citalopram for 12 weeks in depressed CAD patients is associated with enhanced production of nitric oxide despite the co-administration of commonly prescribed anti-platelet regimens including aspirin and clopidogrel. Clinical implications of these findings are unclear, but improved endothelial function is implied by the increased NO production, suggesting that citalopram may be of particular benefit for patients with comorbid depression and vascular disease including CAD, stroke, peripheral artery disease, and diabetes.

  7. Hypothyroidism Is Associated With Coronary Endothelial Dysfunction in Women

    PubMed Central

    Sara, Jaskanwal D; Zhang, Ming; Gharib, Hossein; Lerman, Lilach O; Lerman, Amir

    2015-01-01

    Background Hypothyroidism is associated with an increased risk of coronary artery disease, beyond that which can be explained by its association with conventional cardiovascular risk factors. Coronary endothelial dysfunction precedes atherosclerosis, has been linked to adverse cardiovascular events, and may account for some of the increased risk in patients with hypothyroidism. The aim of this study was to determine whether there is an association between epicardial and microvascular coronary endothelial dysfunction and hypothyroidism. Methods and Results In 1388 patients (mean age 50.5 [12.3] years, 34% male) presenting with stable chest pain to Mayo Clinic, Rochester, MN for diagnostic coronary angiography, and who were found to have nonobstructive coronary artery disease (<40% stenosis), we invasively assessed coronary artery endothelial-dependent microvascular and epicardial function by evaluating changes in coronary blood flow (% Δ CBF Ach) and diameter (% Δ CAD Ach), respectively, in response to intracoronary infusions of acetylcholine. Patients were divided into 2 groups: hypothyroidism, defined as a documented history of hypothyroidism or a thyroid-stimulating hormone (TSH) >10.0 mU/mL, n=188, and euthyroidism, defined as an absence of a history of hypothyroidism in the clinical record and/or 0.3

  8. SGLT2 inhibition via dapagliflozin improves generalized vascular dysfunction and alters the gut microbiota in type 2 diabetic mice.

    PubMed

    Lee, Dustin M; Battson, Micah L; Jarrell, Dillon K; Hou, Shuofei; Ecton, Kayl E; Weir, Tiffany L; Gentile, Christopher L

    2018-04-27

    Type 2 diabetes (T2D) is associated with generalized vascular dysfunction characterized by increases in large artery stiffness, endothelial dysfunction, and vascular smooth muscle dysfunction. Sodium glucose cotransporter 2 inhibitors (SGLT2i) represent the most recently approved class of oral medications for the treatment of T2D, and have been shown to reduce cardiovascular and overall mortality. Although it is currently unclear how SGLT2i decrease cardiovascular risk, an improvement in vascular function is one potential mechanism. The aim of the current study was to examine if dapagliflozin, a widely prescribed STLT2i, improves generalized vascular dysfunction in type 2 diabetic mice. In light of several studies demonstrating a bi-directional relation between orally ingested medications and the gut microbiota, a secondary aim was to determine the effects of dapagliflozin on the gut microbiota. Male diabetic mice (Db, n = 24) and control littermates (Con; n = 23) were randomized to receive either a standard diet or a standard diet containing dapagliflozin (60 mg dapagliflozin/kg diet; 0.006%) for 8 weeks. Arterial stiffness was assessed by aortic pulse wave velocity; endothelial function and vascular smooth muscle dysfunction were assessed by dilatory responses to acetylcholine and sodium nitroprusside, respectively. Compared to untreated diabetic mice, diabetic mice treated with dapagliflozin displayed significantly lower arterial stiffness (Db = 469 cm/s vs. Db + dapa = 435 cm/s, p < 0.05), and improvements in endothelial dysfunction (area under the curve [AUC] Db = 57.2 vs. Db + dapa = 117.0, p < 0.05) and vascular smooth muscle dysfunction (AUC, Db = 201.7 vs. Db + dapa = 285.5, p < 0.05). These vascular improvements were accompanied by reductions in hyperglycemia and circulating markers of inflammation. The microbiota of Db and Con mice were distinctly different, and dapagliflozin treatment was associated with minor alterations in gut microbiota composition, particularly in Db mice, although these effects did not conclusively mediate the improvements in vascular function. Dapagliflozin treatment improves arterial stiffness, endothelial dysfunction and vascular smooth muscle dysfunction, and subtly alters microbiota composition in type 2 diabetic mice. Collectively, the improvements in generalized vascular function may represent an important mechanism underlying the cardiovascular benefits of SGLT2i treatment.

  9. Organic Nitrate Therapy, Nitrate Tolerance, and Nitrate-Induced Endothelial Dysfunction: Emphasis on Redox Biology and Oxidative Stress.

    PubMed

    Daiber, Andreas; Münzel, Thomas

    2015-10-10

    Organic nitrates, such as nitroglycerin (GTN), isosorbide-5-mononitrate and isosorbide dinitrate, and pentaerithrityl tetranitrate (PETN), when given acutely, have potent vasodilator effects improving symptoms in patients with acute and chronic congestive heart failure, stable coronary artery disease, acute coronary syndromes, or arterial hypertension. The mechanisms underlying vasodilation include the release of •NO or a related compound in response to intracellular bioactivation (for GTN, the mitochondrial aldehyde dehydrogenase [ALDH-2]) and activation of the enzyme, soluble guanylyl cyclase. Increasing cyclic guanosine-3',-5'-monophosphate (cGMP) levels lead to an activation of the cGMP-dependent kinase I, thereby causing the relaxation of the vascular smooth muscle by decreasing intracellular calcium concentrations. The hemodynamic and anti-ischemic effects of organic nitrates are rapidly lost upon long-term (low-dose) administration due to the rapid development of tolerance and endothelial dysfunction, which is in most cases linked to increased intracellular oxidative stress. Enzymatic sources of reactive oxygen species under nitrate therapy include mitochondria, NADPH oxidases, and an uncoupled •NO synthase. Acute high-dose challenges with organic nitrates cause a similar loss of potency (tachyphylaxis), but with distinct pathomechanism. The differences among organic nitrates are highlighted regarding their potency to induce oxidative stress and subsequent tolerance and endothelial dysfunction. We also address pleiotropic effects of organic nitrates, for example, their capacity to stimulate antioxidant pathways like those demonstrated for PETN, all of which may prevent adverse effects in response to long-term therapy. Based on these considerations, we will discuss and present some preclinical data on how the nitrate of the future should be designed.

  10. Organic Nitrate Therapy, Nitrate Tolerance, and Nitrate-Induced Endothelial Dysfunction: Emphasis on Redox Biology and Oxidative Stress

    PubMed Central

    2015-01-01

    Abstract Organic nitrates, such as nitroglycerin (GTN), isosorbide-5-mononitrate and isosorbide dinitrate, and pentaerithrityl tetranitrate (PETN), when given acutely, have potent vasodilator effects improving symptoms in patients with acute and chronic congestive heart failure, stable coronary artery disease, acute coronary syndromes, or arterial hypertension. The mechanisms underlying vasodilation include the release of •NO or a related compound in response to intracellular bioactivation (for GTN, the mitochondrial aldehyde dehydrogenase [ALDH-2]) and activation of the enzyme, soluble guanylyl cyclase. Increasing cyclic guanosine-3′,-5′-monophosphate (cGMP) levels lead to an activation of the cGMP-dependent kinase I, thereby causing the relaxation of the vascular smooth muscle by decreasing intracellular calcium concentrations. The hemodynamic and anti-ischemic effects of organic nitrates are rapidly lost upon long-term (low-dose) administration due to the rapid development of tolerance and endothelial dysfunction, which is in most cases linked to increased intracellular oxidative stress. Enzymatic sources of reactive oxygen species under nitrate therapy include mitochondria, NADPH oxidases, and an uncoupled •NO synthase. Acute high-dose challenges with organic nitrates cause a similar loss of potency (tachyphylaxis), but with distinct pathomechanism. The differences among organic nitrates are highlighted regarding their potency to induce oxidative stress and subsequent tolerance and endothelial dysfunction. We also address pleiotropic effects of organic nitrates, for example, their capacity to stimulate antioxidant pathways like those demonstrated for PETN, all of which may prevent adverse effects in response to long-term therapy. Based on these considerations, we will discuss and present some preclinical data on how the nitrate of the future should be designed. Antioxid. Redox Signal. 23, 899–942. PMID:26261901

  11. Acute tamponade alters subendo- and subepicardial pressure-flow relations differently during vasodilation.

    PubMed

    Kingma, J G; Martin, J; Rouleau, J R

    1994-07-01

    Instantaneous diastolic left coronary artery pressure-flow relations (PFR) shift during acute tamponade as pressure surrounding the heart increases. Coronary pressure at zero flow (Pf = 0) on the linear portion of the PFR is the weighted mean of the different myocardial waterfall pressures, the distribution of which varies across the left ventricular wall during diastole. However, instantaneous PFR measured in large epicardial coronary arteries cannot be used to estimate Pf = 0 in the different myocardial tissue layers. During coronary vasodilatation in a capacitance-free model, myocardial PFR differs from subendocardium to subepicardium. Therefore, we studied the effects of acute tamponade during maximal pharmacology induced coronary vasodilatation on myocardial PFR in in situ anesthetized dogs. Tamponade reduced cardiac output, aortic pressure, and coronary blood flow. Results demonstrate that different mechanisms influence distribution of myocardial blood flow during tamponade. Subepicardial vascular resistance is unchanged and the extrapolated Pf = 0 is increased, thereby shifting PFR to a higher intercept on the pressure axis. Subendocardial vascular resistance is increased while the extrapolated Pf = 0 remains unchanged. Results indicate that in the setting of acute tamponade with coronary vasodilatation different mechanisms regulate the distribution of myocardial blood flow: in the subepicardium only outflow pressure increases, whereas in the subendocardium only vascular resistance increases.

  12. The role of urotensin II and atherosclerotic risk factors in patients with slow coronary flow

    PubMed Central

    Şatıroğlu, Ömer; Emre Durakoğlugil, Murtaza; Çetin, Mustafa; Çiçek, Yüksel; Erdoğan, Turan; Duman, Hakan

    2016-01-01

    Background Slow coronary flow (SCF) is an angiographic finding characterized with delayed opacification of epicardial coronary arteries without obstructive coronary disease. Urotensin II (UII) is an important vascular peptide, which has an important role in hypertension, coronary artery disease, and vascular remodeling in addition to potent vasoconstrictor effect. Objectives We investigated UII levels, hypertension, and other atherosclerotic risk factors in patients with SCF, a variety of coronary artery disease. Methods We enrolled 14 patients with SCF and 29 subjects with normal coronary arteries without SCF. We compared the UII levels and the atherosclerotic risk factors between patients with SCF and control subjects with normal coronary flow. Results UII concentrations were significantly higher in patients with SCF compared to controls (711.0 ± 19.4 vs. 701.5 ± 27.2 ng/mL, p = 0.006). We detected a positive correlation between SCF and age (r = 0.476, p = 0.001), BMI (r = 0.404, p = .002), UII concentrations (r = 0.422, p = 0.006), and hypertension (r = 0.594, p = 0.001). Conclusion We identified increased UII levels in patients with SCF. We think that UII concentrations may be informative on SCF pathogenesis due to relationship with inflammation, atherosclerosis, and vascular remodeling. PMID:28180005

  13. Large-scale Metabolomic Analysis Reveals Potential Biomarkers for Early Stage Coronary Atherosclerosis.

    PubMed

    Gao, Xueqin; Ke, Chaofu; Liu, Haixia; Liu, Wei; Li, Kang; Yu, Bo; Sun, Meng

    2017-09-18

    Coronary atherosclerosis (CAS) is the pathogenesis of coronary heart disease, which is a prevalent and chronic life-threatening disease. Initially, this disease is not always detected until a patient presents with seriously vascular occlusion. Therefore, new biomarkers for appropriate and timely diagnosis of early CAS is needed for screening to initiate therapy on time. In this study, we used an untargeted metabolomics approach to identify potential biomarkers that could enable highly sensitive and specific CAS detection. Score plots from partial least-squares discriminant analysis clearly separated early-stage CAS patients from controls. Meanwhile, the levels of 24 metabolites increased greatly and those of 18 metabolites decreased markedly in early CAS patients compared with the controls, which suggested significant metabolic dysfunction in phospholipid, sphingolipid, and fatty acid metabolism in the patients. Furthermore, binary logistic regression showed that nine metabolites could be used as a combinatorial biomarker to distinguish early-stage CAS patients from controls. The panel of nine metabolites was then tested with an independent cohort of samples, which also yielded satisfactory diagnostic accuracy (AUC = 0.890). In conclusion, our findings provide insight into the pathological mechanism of early-stage CAS and also supply a combinatorial biomarker to aid clinical diagnosis of early-stage CAS.

  14. Endothelial dysfunction in patients with coronary atherosclerosis.

    PubMed

    Chapidze, L; Kapanadze, S; Dolidze, N; Bakhutashvili, Z; Latsabidze, N

    2007-01-01

    It is well known that endothelial dysfunction as a nontraditional risk factor is an important early event in the pathogenesis of coronary atherosclerosis, contributing to plaque initiation and progression. In order to assess endothelial function plasma nitric oxide (NO) concentrations were determined. A total of 157 patients (119 men and 38 women, mean age 57+/-5,4 years) with coronary atherosclerosis were enrolled in the research. The study was cross-sectional in design. Most of the patients (n=127) had undergone myocardial revascularization procedures. There was statistically significant difference in mean values of plasma nitric oxide levels between patients with coronary atherosclerosis and healthy subjects (11,1+/-2,52 mkmol/L and 22,3+/-3,27 mkmol/L, respectively. p<0,01). Among all 157 patients only 17% had normal NO concentrations. In 59% cases low and in 24% cases high nitric oxide levels were found. Extent of coronary artery disease was associated with severity of endothelial dysfunction. The patients with three-vessel disease had the lowest mean plasma NO concentration. There was statistically significant negative correlation between mean plasma NO level and extent of coronary artery disease. Measurement of plasma nitric oxide concentration will give useful information for cardiologists, modification of abnormal levels of this parameter may delay progression of aggressive atherosclerotic process and thus, may prevent recurrent coronary events in patients with coronary atherosclerosis.

  15. Sustained contraction and endothelial dysfunction induced by reactive oxygen species in porcine coronary artery.

    PubMed

    Ishihara, Yasuhiro; Sekine, Masaya; Hatano, Ai; Shimamoto, Norio

    2008-09-01

    A combination of purine and xanthine oxidase (XOD) dose-dependently elicited sustained contraction of porcine coronary arterial rings and resulted in increased concentrations of superoxide anions and hydrogen peroxide. These contractile responses appeared, with a delay, after the application of purine and XOD, used as a reactive oxygen species (ROS)-generating system. Coronary arteries precontracted with prostaglandin F(2alpha) failed to relax in response to substance P after exposing the arterial preparation to this ROS-generating system. The contractile response of the coronary artery to the ROS-generating system was almost completely inhibited by catalase (130 U/ml), and was partially inhibited by superoxide dismutase (60 U/ml), or mannitol (30 mM). A voltage-dependent L-type Ca(2+) channel antagonist, nicardipine, had no effect on contraction. Dysfunction of endothelial cells was completely prevented by catalase, but not by superoxide dismutase or mannitol. These results suggest that superoxide anions, hydrogen peroxide and hydroxyl radicals might be involved in eliciting sustained, delayed-onset coronary artery contraction, which is not related to L-type Ca(2+) channels. They also suggest that hydrogen peroxide might play a major role in endothelial dysfunction of the porcine coronary artery.

  16. Decrease in coronary vascular volume in systole augments cardiac contraction.

    PubMed

    Willemsen, M J; Duncker, D J; Krams, R; Dijkman, M A; Lamberts, R R; Sipkema, P; Westerhof, N

    2001-08-01

    Coronary arterial inflow is impeded and venous outflow is increased as a result of the decrease in coronary vascular volume due to cardiac contraction. We evaluated whether cardiac contraction is influenced by interfering with the changes of the coronary vascular volume over the heart cycle. Length-tension relationships were determined in Tyrode-perfused rat papillary muscle and when coronary vascular volume changes were partly inhibited by filling it with congealed gelatin or perfusing it with a high viscosity dextran buffer. Also, myocyte thickening during contraction was reduced by placing a silicon tube around the muscle. Increasing perfusion pressure from 8 to 80 cmH2O, increased developed tension by approximately 40%. When compared with the low perfusion state, developed tension of the gelatin-filled vasculature was reduced to 43 +/- 6% at the muscle length where the muscle generates the largest developed tension (n = 5, means +/- SE). Dextran reduced developed tension to 73 +/- 6% (n = 6). The silicon tube, in low perfusion state, reduced the developed tension to 83 +/- 7% (n = 4) of control. Time-control and oxygen-lowering experiments show that the findings are based on mechanical effects. Thus interventions to prevent myocyte thickening reduce developed tension. We hypothesize that when myocyte thickening is prevented, intracellular pressure increases and counteracts the force produced by the contractile apparatus. We conclude that emptying of the coronary vasculature serves a physiological purpose by facilitating cardiomyocyte thickening thereby augmenting force development.

  17. Inhibition of coronary blood flow by a vascular waterfall mechanism.

    PubMed

    Downey, J M; Kirk, E S

    1975-06-01

    The mechanism whereby systole inhibits coronary blood flow was examined. A branch of the left coronary artery was maximally dilated with an adenosine infusion, and the pressure-flow relationship was obtained for beating and arrested states. The pressure-flow curve for the arrested state was shifted toward higher pressures and in the range of pressures above peak ventricular pressure was linear and parallel to that for the arrested state. Below this range the curve for the beating state converged toward that for the arrested state and was convex to the pressure axis. These results were compared with a model of the coronary vasculature that consisted of numerous parallel channels, each responding to local intramyocardial pressure by forming vascular waterfalls. When intramyocardial pressure in the model was assigned values from zero at the epicardium to peak ventricular pressure at the endocardium, pressure-flow curves similar to the experimental ones resulted. Thus, we conclude that systole inhibits coronary perfusion by the formation of vascular waterfalls and that the intramyocardial pressures responsible for this inhibition do not significantly exceed peak ventricular pressure.

  18. Scaling laws of coronary circulation in health and disease.

    PubMed

    Huo, Yunlong; Kassab, Ghassan S

    2016-08-16

    The heterogeneity and complexity of coronary vasculature (structure) and myocardial flow (function) have fractal-like characteristics and can be described by scaling laws with remarkable simplicity. In contrast with allometric (interspecific) scaling law, intraspecific scaling laws describe the design rules of vascular trees within a species. This paper provides an overview of intraspecific scaling laws of vascular trees and the physiological and clinical implications thereof. The significance and shortcomings of these scaling laws are discussed in relation to diffuse coronary artery disease, Glagov's positive remodeling in early stages of coronary atherosclerosis, treatment guidelines of complex bifurcation lesions, and for estimation of outlet resistance values for computation of blood flow in epicardial coronary arteries. Finally, we summarize the highlights of scaling relations and suggest some future directions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Friable but treatable: coronary artery dissections in Ehlers-Danlos syndrome.

    PubMed

    Zago, Alexandre C; Matte, Bruno S

    2013-01-01

    Vascular Ehlers-Danlos syndrome is a rare connective tissue disorder associated with arterial dissection or rupture. Percutaneous coronary intervention (PCI) is often critical in patients with this syndrome because their coronary arteries are prone to dissection, enhancing the risk of stent borders dissection when conventional stent deployment pressures are used. Coronary artery bypass graft (CABG) treatment for these patients may also raise concerns because the left internal mammary artery is probably friable. Therefore, coronary artery revascularization in vascular Ehlers-Danlos syndrome either using PCI or CABG is challenging due to the arteries friability. A small number of cases have been published describing the friability of the vessels and associated complications; nevertheless, the optimum treatment remains unclear. We report the case of a 54-year-old woman treated successfully with PCI and CABG in two different acute coronary syndrome episodes, in which specific technical issues related to both procedures were decisive. Copyright © 2011 Wiley Periodicals, Inc.

  20. Inactivation of Endothelial Small/Intermediate Conductance of Calcium-Activated Potassium Channels Contributes to Coronary Arteriolar Dysfunction in Diabetic Patients.

    PubMed

    Liu, Yuhong; Xie, An; Singh, Arun K; Ehsan, Afshin; Choudhary, Gaurav; Dudley, Samuel; Sellke, Frank W; Feng, Jun

    2015-08-24

    Diabetes is associated with coronary arteriolar endothelial dysfunction. We investigated the role of the small/intermediate (SK(Ca)/IK(Ca)) conductance of calcium-activated potassium channels in diabetes-related endothelial dysfunction. Coronary arterioles (80 to 150 μm in diameter) were dissected from discarded right atrial tissues of diabetic (glycosylated hemoglobin = 9.6±0.25) and nondiabetic patients (glycosylated hemoglobin 5.4±0.12) during coronary artery bypass graft surgery (n=8/group). In-vitro relaxation response of precontracted arterioles was examined in the presence of the selective SK(Ca)/IK(Ca) activator NS309 and other vasodilatory agents. The channel density and membrane potential of diabetic and nondiabetic endothelial cells was measured by using the whole cell patch-clamp technique. The protein expression and distribution of the SK(Ca)/IK(Ca) in the human myocardium and coronary arterioles was examined by Western blotting and immunohistochemistry. Our results indicate that diabetes significantly reduced the coronary arteriolar response to the SK(Ca)/IK(Ca) activator NS309 compared to the respective responses of nondiabetic vessels (P<0.05 versus nondiabetes). The relaxation response of diabetic arterioles to NS309 was prevented by denudation of endothelium (P=0.001 versus endothelium-intact). Diabetes significantly decreased endothelial SK(Ca)/IK(Ca) currents and hyperpolarization induced by the SK(Ca)/IK(Ca) activator NS309 as compared with that of nondiabetics. There were no significant differences in the expression and distribution of SK(Ca)/IK(Ca) proteins in the coronary microvessels. Diabetes is associated with inactivation of endothelial SK(Ca)/IK(Ca) channels, which may contribute to endothelial dysfunction in diabetic patients. © 2015 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  1. Flow in the left anterior descending coronary artery in patients with migraine headache.

    PubMed

    Aslan, Gamze; Sade, Leyla Elif; Yetis, Begum; Bozbas, Huseyin; Eroglu, Serpil; Pirat, Bahar; Can, Ufuk; Muderrisoglu, Haldun

    2013-11-15

    Migraine is a common neurovascular disorder characterized by attacks of severe headache, autonomic and neurologic symptoms. Migraine can affect many systems in the body, yet its effects on cardiovascular system are unclear. We hypothesized that migraine and coronary microvascular angina may be manifestations of a common systemic microvascular dysfunction and clinically associated. Forty patients with migraine and 35 healthy volunteers were included into the study. Using transthoracic Doppler echocardiography, coronary flow was visualized in the middle or distal part of the left anterior descending artery. Coronary diastolic peak flow velocities were measured with pulse wave Doppler at baseline and after dipyridamole infusion (0.56 mg/kg/4 min). Coronary flow reserve of <2 was considered normal. In addition, thorough 2-dimensional and Doppler echocardiographic examinations were also performed. Fifty-two women and 23 men were included. Coronary flow reserve was significantly lesser in the migraine group than in the control group (1.99 ± 0.3 vs 2.90 ± 0.5, p <0.05). In addition, mitral annular velocities were lower and the ratio of early mitral inflow velocity to early mitral annular velocity (E/E' lateral and E/E' septal) was higher in migraineurs than in the control group (p <0.05 for all), indicating diastolic function abnormalities in the migraine group. In conclusion, these findings suggest that there is an association between coronary microvascular dysfunction and migraine independently of the metabolic state of the patients. A common pathophysiologic pathway of impaired endothelial vasodilatation, vasomotor dysfunction, and increased systemic inflammatory factors may play a role in these 2 clinical conditions and could be the underlying cause of subclinical systolic and diastolic left ventricular dysfunction in migraineurs. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Chemokine guided angiogenesis directs coronary vasculature formation in zebrafish

    PubMed Central

    Harrison, Michael R.M.; Bussmann, Jeroen; Huang, Ying; Zhao, Long; Osorio, Arthela; Burns, C. Geoffrey; Burns, Caroline E.; Sucov, Henry M.; Siekmann, Arndt F.; Lien, Ching-Ling

    2015-01-01

    SUMMARY Interruption of coronary blood supply severely impairs heart function with often-fatal consequences for heart disease patients. However the formation and maturation of these coronary vessels is not fully understood. Here we provide a detailed analysis of coronary vessel development in zebrafish. We observe that coronary vessels form in zebrafish by angiogenic sprouting of arterial cells derived from the endocardium at the atrioventricular canal. Endothelial cells express the CXC-motif chemokine receptor Cxcr4a and migrate to vascularize the ventricle under the guidance of the myocardium-expressed ligand Cxcl12b. cxcr4a mutant zebrafish fail to form a vascular network, whereas ectopic expression of Cxcl12b ligand induces coronary vessel formation. Importantly, cxcr4a mutant zebrafish fail to undergo heart regeneration following injury. Our results suggest that chemokine-signaling has an essential role in coronary vessel formation by directing migration of endocardium-derived endothelial cells. Poorly developed vasculature in cxcr4a mutants likely underlies decreased regenerative potential in adults. PMID:26017769

  3. Soluble receptor for advanced glycation end products mitigates vascular dysfunction in spontaneously hypertensive rats.

    PubMed

    Liu, Yu; Yu, Manli; Zhang, Le; Cao, Qingxin; Song, Ying; Liu, Yuxiu; Gong, Jianbin

    2016-08-01

    Vascular dysfunction including vascular remodeling and endothelial dysfunction in hypertension often results in poor clinical outcomes and increased risk of vascular accidents. We investigate the effect of treatment with soluble receptor for advanced glycation end products (sRAGE) on vascular dysfunction in spontaneously hypertensive rats (SHR). Firstly, the aortic AGE/RAGE pathway was investigated in SHR. Secondly, SHR received intraperitoneal injections of sRAGE daily for 4 weeks. Effect of sRAGE against vascular dysfunction in SHR and underlying mechanism was investigated. SHR aortas exhibited enhanced activity of aldose reductase, reduced activity of glyoxalase 1, accumulation of methylglyoxal and AGE, and upregulated expression of RAGE. Treatment of SHR with sRAGE had no significant effect on blood pressure, but alleviated aortic hypertrophy and endothelial dysfunction. In vitro, treatment with sRAGE reversed the effect of incubation with AGE on proliferation of smooth muscle cells and endothelial function. Treatment of SHR with sRAGE abated oxidative stress, suppressed inflammation and NF-κB activation, improved the balance between Ang II and Ang-(1-7) through reducing angiotensin-converting enzyme (ACE) activity and enhancing ACE2 expression, and upregulated peroxisome proliferator-activated receptor gamma (PPAR-γ) expression in aortas. In conclusion, treatment with sRAGE alleviated vascular adverse remodeling in SHR, possibly via suppression of oxidative stress and inflammation, improvement in RAS balance, and activation of PPAR-γ pathway.

  4. Genetic framework for GATA factor function in vascular biology.

    PubMed

    Linnemann, Amelia K; O'Geen, Henriette; Keles, Sunduz; Farnham, Peggy J; Bresnick, Emery H

    2011-08-16

    Vascular endothelial dysfunction underlies the genesis and progression of numerous diseases. Although the GATA transcription factor GATA-2 is expressed in endothelial cells and is implicated in coronary heart disease, it has been studied predominantly as a master regulator of hematopoiesis. Because many questions regarding GATA-2 function in the vascular biology realm remain unanswered, we used ChIP sequencing and loss-of-function strategies to define the GATA-2-instigated genetic network in human endothelial cells. In contrast to erythroid cells, GATA-2 occupied a unique target gene ensemble consisting of genes encoding key determinants of endothelial cell identity and inflammation. GATA-2-occupied sites characteristically contained motifs that bind activator protein-1 (AP-1), a pivotal regulator of inflammatory genes. GATA-2 frequently occupied the same chromatin sites as c-JUN and c-FOS, heterodimeric components of AP-1. Although all three components were required for maximal AP-1 target gene expression, GATA-2 was not required for AP-1 chromatin occupancy. GATA-2 conferred maximal phosphorylation of chromatin-bound c-JUN at Ser-73, which stimulates AP-1-dependent transactivation, in a chromosomal context-dependent manner. This work establishes a link between a GATA factor and inflammatory genes, mechanistic insights underlying GATA-2-AP-1 cooperativity and a rigorous genetic framework for understanding GATA-2 function in normal and pathophysiological vascular states.

  5. Pomegranate peel extract attenuates oxidative stress by decreasing coronary angiotensin-converting enzyme (ACE) activity in hypertensive female rats.

    PubMed

    Dos Santos, Roger L; Dellacqua, Lais O; Delgado, Nathalie T B; Rouver, Wender N; Podratz, Priscila L; Lima, Leandro C F; Piccin, Mariela P C; Meyrelles, Silvana S; Mauad, Helder; Graceli, Jones B; Moyses, Margareth R

    2016-01-01

    Based on the antioxidant properties of pomegranate, this study was designed to investigate the effects of pomegranate peel extract on damage associated with hypertension and aging in a spontaneously hypertensive rat (SHR) model. The influence of pomegranate consumption was examined on systolic blood pressure (SBP), angiotensin-converting enzyme (ACE) coronary activity, oxidative stress, and vascular morphology. Four- or 28-wk-old SHR model rats were treated for 30 d, with terminal experimental animal age being 8 and 32 wk, respectively, with either pomegranate extract (SHR-PG) or filtered water (SHR). Data showed significant reduction in SBP and coronary ACE activity in both age groups. The levels of superoxide anion, a measure of oxidative stress, were significantly lower in animals in the SHR-PG group compared to SHR alone. Coronary morphology demonstrated total increases in vascular wall areas were in the SHR group, and pomegranate peel extract diminished this effect. Pomegranate peel extract consumption conferred protection against hypertension in the SHR model. This finding was demonstrated by marked reduction in coronary ACE activity, oxidative stress, and vascular remodelling. In addition, treatment was able to reduce SBP in both groups. Evidence indicates that the use of pomegranate peel extract may prove beneficial in alleviating coronary heart disease.

  6. Endothelial dysfunction, abnormal vascular structure and lower urinary tract symptoms in men and women.

    PubMed

    Matsui, Shogo; Kajikawa, Masato; Maruhashi, Tatsuya; Iwamoto, Yumiko; Oda, Nozomu; Kishimoto, Shinji; Hashimoto, Haruki; Hidaka, Takayuki; Kihara, Yasuki; Chayama, Kazuaki; Hida, Eisuke; Goto, Chikara; Aibara, Yoshiki; Nakashima, Ayumu; Yusoff, Farina Mohamad; Noma, Kensuke; Kuwahara, Yoshitaka; Matsubara, Akio; Higashi, Yukihito

    2018-06-15

    Lower urinary tract symptoms (LUTS) is not only common symptoms in elderly men and women but also risk of future cardiovascular events. The purpose of this study was to evaluate the relationships of vascular function and structure with LUTS in men and women. We investigated flow-mediated vasodilation (FMD) and nitroglycerine-induced vasodilation (NID) as vascular function, brachial-ankle pulse wave velocity (baPWV) as vascular structure, and LUTS assessed by International Prostate Symptom Score (IPSS) in 287 men and 147 women. IPSS was significantly correlated with traditional cardiovascular risk factors, Framingham risk score, FMD, NID and baPWV. Moderate to severe LUTS was associated with the prevalence of coronary heart disease in men but not in women. In men, FMD and NID were significantly lower in the moderate to severe LUTS group than in the none to mild LUTS group (2.1 ± 2.0% vs. 4.0 ± 3.0% and 9.3 ± 6.1% vs. 12.8 ± 6.6%, P < 0.001, respectively). baPWV was significantly higher in the moderate to severe LUTS group than in the none to mild LUTS group (1722 ± 386 cm/s vs. 1509 ± 309 cm/s, P < 0.001). In multivariate analysis, FMD was independently associated with a decrease in the odds ratio of moderate to severe LUTS in men (OR: 0.83, 95% CI, 0.72-0.95; P = 0.008) but not in women. NID and baPWV were not independently associated with moderate to severe LUTS either in men or women. These findings suggest that endothelial dysfunction is associated with LUTS in men. LUTS in men may be useful for a predictor of cardiovascular events. URL for Clinical Trial: http://UMIN; Registration Number for Clinical Trial: UMIN000003409. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. A practical method to rapidly dissolve metallic stents.

    PubMed

    Bradshaw, Scott H; Kennedy, Lloyd; Dexter, David F; Veinot, John P

    2009-01-01

    Metallic stents are commonly used in many clinical applications including peripheral vascular disease intervention, biliary obstruction, endovascular repair of aneurysms, and percutaneous coronary interventions. In the examination of vascular stent placement, it is important to determine if the stent is open or has become obstructed. This is increasingly important in the era of drug-eluting stent usage in coronary arteries. We describe a practical, rapid and cost-effective method to dissolve most metallic stents leaving the vascular and luminal tissues intact. This practical method may replace the laborious and expensive plastic embedding methods currently utilized.

  8. CES1 Carriers in the PAPI Study

    ClinicalTrials.gov

    2018-04-10

    Heart Diseases; Coronary Disease; Coronary Artery Disease; Cardiovascular Diseases; Myocardial Ischemia; Artery Occlusion; Aspirin Sensitivity; Clopidogrel, Poor Metabolism of; Platelet Dysfunction; Platelet Thrombus

  9. Hypothyroidism Is Associated With Coronary Endothelial Dysfunction in Women.

    PubMed

    Sara, Jaskanwal D; Zhang, Ming; Gharib, Hossein; Lerman, Lilach O; Lerman, Amir

    2015-07-29

    Hypothyroidism is associated with an increased risk of coronary artery disease, beyond that which can be explained by its association with conventional cardiovascular risk factors. Coronary endothelial dysfunction precedes atherosclerosis, has been linked to adverse cardiovascular events, and may account for some of the increased risk in patients with hypothyroidism. The aim of this study was to determine whether there is an association between epicardial and microvascular coronary endothelial dysfunction and hypothyroidism. In 1388 patients (mean age 50.5 [12.3] years, 34% male) presenting with stable chest pain to Mayo Clinic, Rochester, MN for diagnostic coronary angiography, and who were found to have nonobstructive coronary artery disease (<40% stenosis), we invasively assessed coronary artery endothelial-dependent microvascular and epicardial function by evaluating changes in coronary blood flow (% Δ CBF Ach) and diameter (% Δ CAD Ach), respectively, in response to intracoronary infusions of acetylcholine. Patients were divided into 2 groups: hypothyroidism, defined as a documented history of hypothyroidism or a thyroid-stimulating hormone (TSH) >10.0 mU/mL, n=188, and euthyroidism, defined as an absence of a history of hypothyroidism in the clinical record and/or 0.3

  10. Activation of the NLRP3 inflammasome induces vascular dysfunction in obese OLETF rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Penghao; Xie, Qihai; Wei, Tong

    Objective: Obesity-induced vascular dysfunction is related to chronic low-grade systemic inflammation. Recent studies indicate that NLRP3, a multiprotein complex formed by NOD-like receptor (NLR) family members, is a key component mediating internal sterile inflammation, but the role in obesity-related vascular dysfunction is largely unknown. In the present study, we investigate whether NLRP3 activation is involved in vascular inflammation in obese Otsuka Long-Evans Tokushima Fatty rats (OLETF). Methods and results: Male OLETF with their control Long-Evans Tokushima Otsuka rats (LETO) were studied at 3 and 12 months of age. Aortic relaxation in response to acetylcholine decreased gradually with age in bothmore » strains, with early and persistent endothelium dysfunction in obese OLETF compared with age-matched LETO controls. These changes are associated with parallel changes of aortic endothelial nitric oxide synthase (eNOS) content, macrophage accumulation and intimal thickening. NLRP3 increased in OLETF rats compared to LETO. Consistent with inflammasome activation, the conversion of procaspase-1 to cleaved and activated forms as well as IL-1β markedly increased in OLETF rats. Additionally, we observed increased expression of dynamin-related protein-1 (Drp1) and decreased fusion-relative protein optic atropy-1(OPA1). Altered mitochondrial dynamics was associated with elevated oxidative stress level in OLETF aortas. Conclusions: These results demonstrate that obesity seems to accelerate endothelial dysfunction in OLETFs via the activation of NLRP3 and mitochondrial dysfunction. - Highlights: • NLRP3 is involved in obesity-induced vascular dysfunction. • Impaired mitochondrial dynamics may have been linked to mitochondrial defect and inflammasome activation. • Obesity seems to accelerate vascular dysfunction via NLRP3 activation and mitochondrial dysfunction.« less

  11. Analysis of vascular endothelial dysfunction genes and related pathways in obesity through systematic bioinformatics.

    PubMed

    Zhang, Hui; Wang, Jing; Sun, Ling; Xu, Qiuqin; Hou, Miao; Ding, Yueyue; Huang, Jie; Chen, Ye; Cao, Lei; Zhang, Jianmin; Qian, Weiguo; Lv, Haitao

    2015-01-01

    Obesity has become an increasingly serious health problem and popular research topic. It is associated with many diseases, especially cardiovascular disease (CVD)-related endothelial dysfunction. This study analyzed genes related to endothelial dysfunction and obesity and then summarized their most significant signaling pathways. Genes related to vascular endothelial dysfunction and obesity were extracted from a PubMed database, and analyzed by STRING, DAVID, and Gene-Go Meta-Core software. 142 genes associated with obesity were found to play a role in endothelial dysfunction in PubMed. A significant pathway (Angiotensin system maturation in protein folding and maturation) associated with obesity and endothelial dysfunction was explored. The genes and the pathway explored may play an important role in obesity. Further studies about preventing vascular endothelial dysfunction obesity should be conducted through targeting these loci and pathways.

  12. Optical Coherence Tomography and Stent Boost Imaging Guided Bioresorbable Vascular Scaffold Overlapping for Coronary Chronic Total Occlusion Lesion

    PubMed Central

    Li, Hu; Choi, Cheol Ung; Oh, Dong Joo

    2017-01-01

    We report herein the optical coherence tomography (OCT) and stent boost imaging guided bioresorbable vascular scaffold (BVS) implantation for right coronary artery (RCA) chronic total occlusion (CTO) lesion. The gold standard for evaluating BVS expansion after percutaneous coronary intervention is OCT. However, stent boost imaging is a new technique that improves fluoroscopy-based assessments of stent overlapping, and the present case shows clinical usefulness of OCT and stent boost imaging guided ‘overlapping’ BVS implantation via antegrade approach for a typical RCA CTO lesion. PMID:28792157

  13. Interaction of intraluminal tissue and coronary sinus lead stabilized with stent placement.

    PubMed

    Balázs, Tibor; Merkely, Béla; Bognár, Eszter; Zima, Endre

    2013-04-01

    The aim of our investigation was to examine the intraluminal interaction of the vascular tissue and the implanted coronary sinus lead stabilized with stent on two human hearts removed before transplantation. The coronary sinus lumen was sectioned under operational microscope and opened carefully. The leads and stents were found separately positioned beside each other completely covered by an intact intimal tissue layer. No sign of occluding proliferative tissue was observed. Stent fixation technique and extraction of the CS lead in our cases did not have any particular damaging effect on the vascular system. © 2012 Wiley Periodicals, Inc.

  14. Peripheral vascular dysfunction in migraine: a review

    PubMed Central

    2013-01-01

    Numerous studies have indicated an increased risk of vascular disease among migraineurs. Alterations in endothelial and arterial function, which predispose to atherosclerosis and cardiovascular diseases, have been suggested as an important link between migraine and vascular disease. However, the available evidence is inconsistent. We aimed to review and summarize the published evidence about the peripheral vascular dysfunction of migraineurs. We systematically searched in BIOSIS, the Cochrane database, Embase, Google scholar, ISI Web of Science, and Medline to identify articles, published up to April 2013, evaluating the endothelial and arterial function of migraineurs. Several lines of evidence for vascular dysfunction were reported in migraineurs. Findings regarding endothelial function are particularly controversial since studies variously indicated the presence of endothelial dysfunction in migraineurs, the absence of any difference in endothelial function between migraineurs and non-migraineurs, and even an enhanced endothelial function in migraineurs. Reports on arterial function are more consistent and suggest that functional properties of large arteries are altered in migraineurs. Peripheral vascular function, particularly arterial function, is a promising non-invasive indicator of the vascular health of subjects with migraine. However, further targeted research is needed to understand whether altered arterial function explains the increased risk of vascular disease among patients with migraine. PMID:24083826

  15. Medical expert system for assessment of coronary heart disease destabilization based on the analysis of the level of soluble vascular adhesion molecules

    NASA Astrophysics Data System (ADS)

    Serkova, Valentina K.; Pavlov, Sergey V.; Romanava, Valentina A.; Monastyrskiy, Yuriy I.; Ziepko, Sergey M.; Kuzminova, Nanaliya V.; Wójcik, Waldemar; DzierŻak, RóŻa; Kalizhanova, Aliya; Kashaganova, Gulzhan

    2017-08-01

    Theoretical and practical substantiation of the possibility of the using the level of soluble vascular adhesion molecules (sVCAM) is performed. Expert system for the assessment of coronary heart disease (CHD) destabilization on the base of the analysis of soluble vascular adhesion molecules level is developed. Correlation between the increase of VCAM level and C-reactive protein (CRP) in patients with different variants of CHD progression is established. Association of chronic nonspecific vascular inflammation activation and CHD destabilization is shown. The expedience of parallel determination of sVCAM and CRP levels for diagnostics of CHD destabilization and forecast elaboration is noted.

  16. Exercise restores coronary vascular function independent of myogenic tone or hyperglycemic status in db/db mice.

    PubMed

    Moien-Afshari, Farzad; Ghosh, Sanjoy; Elmi, Shahrzad; Khazaei, Majid; Rahman, Mohammad M; Sallam, Nada; Laher, Ismail

    2008-10-01

    Regulation of coronary function in diabetic hearts is an important component in preventing ischemic cardiac events but remains poorly studied. Exercise is recommended in the management of diabetes, but its effects on diabetic coronary function are relatively unknown. We investigated coronary artery myogenic tone and endothelial function, essential elements in maintaining vascular fluid dynamics in the myocardium. We hypothesized that exercise reduces pressure-induced myogenic constriction of coronary arteries while improving endothelial function in db/db mice, a model of type 2 diabetes. We used pressurized mouse coronary arteries isolated from hearts of control and db/db mice that were sedentary or exercised for 1 h/day on a motorized exercise-wheel system (set at 5.2 m/day, 5 days/wk). Exercise caused a approximately 10% weight loss in db/db mice and decreased whole body oxidative stress, as measured by plasma 8-isoprostane levels, but failed to improve hyperglycemia or plasma insulin levels. Exercise did not alter myogenic regulation of arterial diameter stimulated by increased transmural pressure, nor did it alter smooth muscle responses to U-46619 (a thromboxane agonist) or sodium nitroprusside (an endothelium-independent dilator). Moderate levels of exercise restored ACh-simulated, endothelium-dependent coronary artery vasodilation in db/db mice and increased expression of Mn SOD and decreased nitrotyrosine levels in hearts of db/db mice. We conclude that the vascular benefits of moderate levels of exercise were independent of changes in myogenic tone or hyperglycemic status and primarily involved increased nitric oxide bioavailability in the coronary microcirculation.

  17. Cross-talk between cardiac muscle and coronary vasculature.

    PubMed

    Westerhof, Nico; Boer, Christa; Lamberts, Regis R; Sipkema, Pieter

    2006-10-01

    The cardiac muscle and the coronary vasculature are in close proximity to each other, and a two-way interaction, called cross-talk, exists. Here we focus on the mechanical aspects of cross-talk including the role of the extracellular matrix. Cardiac muscle affects the coronary vasculature. In diastole, the effect of the cardiac muscle on the coronary vasculature depends on the (changes in) muscle length but appears to be small. In systole, coronary artery inflow is impeded, or even reversed, and venous outflow is augmented. These systolic effects are explained by two mechanisms. The waterfall model and the intramyocardial pump model are based on an intramyocardial pressure, assumed to be proportional to ventricular pressure. They explain the global effects of contraction on coronary flow and the effects of contraction in the layers of the heart wall. The varying elastance model, the muscle shortening and thickening model, and the vascular deformation model are based on direct contact between muscles and vessels. They predict global effects as well as differences on flow in layers and flow heterogeneity due to contraction. The relative contributions of these two mechanisms depend on the wall layer (epi- or endocardial) and type of contraction (isovolumic or shortening). Intramyocardial pressure results from (local) muscle contraction and to what extent the interstitial cavity contracts isovolumically. This explains why small arterioles and venules do not collapse in systole. Coronary vasculature affects the cardiac muscle. In diastole, at physiological ventricular volumes, an increase in coronary perfusion pressure increases ventricular stiffness, but the effect is small. In systole, there are two mechanisms by which coronary perfusion affects cardiac contractility. Increased perfusion pressure increases microvascular volume, thereby opening stretch-activated ion channels, resulting in an increased intracellular Ca2+ transient, which is followed by an increase in Ca2+ sensitivity and higher muscle contractility (Gregg effect). Thickening of the shortening cardiac muscle takes place at the expense of the vascular volume, which causes build-up of intracellular pressure. The intracellular pressure counteracts the tension generated by the contractile apparatus, leading to lower net force. Therefore, cardiac muscle contraction is augmented when vascular emptying is facilitated. During autoregulation, the microvasculature is protected against volume changes, and the Gregg effect is negligible. However, the effect is present in the right ventricle, as well as in pathological conditions with ineffective autoregulation. The beneficial effect of vascular emptying may be reduced in the presence of a stenosis. Thus cardiac contraction affects vascular diameters thereby reducing coronary inflow and enhancing venous outflow. Emptying of the vasculature, however, enhances muscle contraction. The extracellular matrix exerts its effect mainly on cardiac properties rather than on the cross-talk between cardiac muscle and coronary circulation.

  18. Novel Paradigms for Dialysis Vascular Access: Downstream Vascular Biology–Is There a Final Common Pathway?

    PubMed Central

    2013-01-01

    Summary Vascular access dysfunction is a major cause of morbidity and mortality in hemodialysis patients. The most common cause of vascular access dysfunction is venous stenosis from neointimal hyperplasia within the perianastomotic region of an arteriovenous fistula and at the graft-vein anastomosis of an arteriovenous graft. There have been few, if any, effective treatments for vascular access dysfunction because of the limited understanding of the pathophysiology of venous neointimal hyperplasia formation. This review will (1) describe the histopathologic features of hemodialysis access stenosis; (2) discuss novel concepts in the pathogenesis of neointimal hyperplasia development, focusing on downstream vascular biology; (3) highlight future novel therapies for treating downstream biology; and (4) discuss future research areas to improve our understanding of downstream biology and neointimal hyperplasia development. PMID:23990166

  19. Depletion of NADP(H) due to CD38 activation triggers endothelial dysfunction in the postischemic heart.

    PubMed

    Reyes, Levy A; Boslett, James; Varadharaj, Saradhadevi; De Pascali, Francesco; Hemann, Craig; Druhan, Lawrence J; Ambrosio, Giuseppe; El-Mahdy, Mohamed; Zweier, Jay L

    2015-09-15

    In the postischemic heart, coronary vasodilation is impaired due to loss of endothelial nitric oxide synthase (eNOS) function. Although the eNOS cofactor tetrahydrobiopterin (BH4) is depleted, its repletion only partially restores eNOS-mediated coronary vasodilation, indicating that other critical factors trigger endothelial dysfunction. Therefore, studies were performed to characterize the unidentified factor(s) that trigger endothelial dysfunction in the postischemic heart. We observed that depletion of the eNOS substrate NADPH occurs in the postischemic heart with near total depletion from the endothelium, triggering impaired eNOS function and limiting BH4 rescue through NADPH-dependent salvage pathways. In isolated rat hearts subjected to 30 min of ischemia and reperfusion (I/R), depletion of the NADP(H) pool occurred and was most marked in the endothelium, with >85% depletion. Repletion of NADPH after I/R increased NOS-dependent coronary flow well above that with BH4 alone. With combined NADPH and BH4 repletion, full restoration of NOS-dependent coronary flow occurred. Profound endothelial NADPH depletion was identified to be due to marked activation of the NAD(P)ase-activity of CD38 and could be prevented by inhibition or specific knockdown of this protein. Depletion of the NADPH precursor, NADP(+), coincided with formation of 2'-phospho-ADP ribose, a CD38-derived signaling molecule. Inhibition of CD38 prevented NADP(H) depletion and preserved endothelium-dependent relaxation and NO generation with increased recovery of contractile function and decreased infarction in the postischemic heart. Thus, CD38 activation is an important cause of postischemic endothelial dysfunction and presents a novel therapeutic target for prevention of this dysfunction in unstable coronary syndromes.

  20. Beneficial effects of intracoronary nicorandil on microvascular dysfunction after primary percutaneous coronary intervention: demonstration of its superiority to nitroglycerin in a cross-over study.

    PubMed

    Ito, Noritoshi; Nanto, Shinsuke; Doi, Yasuji; Kurozumi, Yuma; Natsukawa, Tomoaki; Shibata, Hiroyuki; Morita, Masaya; Kawata, Atsushi; Tsuruoka, Ayumu; Sawano, Hirotaka; Okada, Ken-ichiro; Sakata, Yasuhiko; Kai, Tatsuro; Hayashi, Toru

    2013-08-01

    In patients undergoing primary percutaneous coronary intervention (PCI) for the treatment of ST-segment elevation myocardial infarction (STEMI), coronary microvascular dysfunction is associated with poor prognosis. Coronary microvascular resistance is predominantly regulated by ATP-sensitive potassium (KATP) channels. The aim of this study was to clarify whether nicorandil, a hybrid KATP channel opener and nitric oxide donor, may be a good candidate for improving microvascular dysfunction even when administered after primary PCI. We compared the beneficial effects of nicorandil and nitroglycerin on microvascular function in 60 consecutive patients with STEMI. After primary PCI, all patients received single intracoronary administrations of nitroglycerin (250 μg) and nicorandil (2 mg) in a randomized order; 30 received nicorandil first, while the other 30 received nitroglycerin first. Microvascular dysfunction was evaluated with the index of microcirculatory resistance (IMR), defined as the distal coronary pressure multiplied by the hyperemic mean transit time. As a first administration, nicorandil decreased IMR significantly more than did nitroglycerin (median [interquartile ranges]: 10.8[5.2-20.7] U vs. 2.1[1.0-6.0] U, p=0.0002).As a second administration, nicorandil further decreased IMR, while nitroglycerin did not (median [interquartile ranges]: 6.0[1.3-12.7] U vs. -1.4[-2.6 to 1.3] U, p<0.0001). The IMR after the second administration was significantly associated with myocardial blush grade, angiographic TIMI frame count after the procedure, and peak creatine kinase level. Intracoronary nicorandil reduced microvascular dysfunction after primary PCI more effectively than did nitroglycerin in patients with STEMI, probably via its KATP channel-opening effect.

  1. Vitamin D deficiency, coronary artery disease, and endothelial dysfunction: observations from a coronary angiographic study in Indian patients.

    PubMed

    Syal, Sanjeev Kumar; Kapoor, Aditya; Bhatia, Eesh; Sinha, Archana; Kumar, Sudeep; Tewari, Satyendra; Garg, Naveen; Goel, Pravin K

    2012-08-01

    Vitamin D deficiency has been linked to an increased risk of coronary artery disease (CAD) and cardiovascular (CV) death. Endothelial dysfunction plays an important role in pathogenesis of CAD and vitamin D deficiency is postulated to promote endothelial dysfunction. Despite rising trends of CAD in Asians, only limited data are available on the relationship between vitamin D, CAD, and endothelial dysfunction. In a study of 100 patients undergoing coronary angiography, mean 25(OH)D level was 14.8 ± 9.1 ng/mL; vitamin D deficiency was present in 80% and only 7% had optimal 25(OH)D levels. Nearly one-third (36%) were severely deficient, with 25(OH)D levels <10 ng/mL. Those with vitamin D deficiency had significantly higher prevalence of double- or triple-vessel CAD (53% vs 38%), diffuse CAD (56% vs 34%), and higher number of coronary vessels involved as compared to those with higher 25(OH)D levels. Those with lower 25(OH)D levels had significantly lower brachial artery flow-mediated dilation (FMD; 4.57% vs 10.68%: P<.001) and significantly higher prevalence of impaired FMD (values <4.5%; 50.6% vs 7%; P<.002). A graded relationship between 25(OH)D levels and FMD was observed; impaired FMD was noted in 62.2%, 38.6%, and 13.3% in those with 25(OH)D levels <10 ng/mL, 10-20 ng/mL, and >20 ng/mL, respectively. Indian patients with angiographically documented CAD frequently have vitamin D deficiency. Patients with lower 25(OH)D levels had higher prevalence of double- or triple-vessel CAD and diffuse CAD. Endothelial dysfunction as assessed by brachial artery FMD was also more frequently observed in those with low 25(OH)D levels.

  2. Shift work and vascular events: systematic review and meta-analysis.

    PubMed

    Vyas, Manav V; Garg, Amit X; Iansavichus, Arthur V; Costella, John; Donner, Allan; Laugsand, Lars E; Janszky, Imre; Mrkobrada, Marko; Parraga, Grace; Hackam, Daniel G

    2012-07-26

    To synthesise the association of shift work with major vascular events as reported in the literature. Systematic searches of major bibliographic databases, contact with experts in the field, and review of reference lists of primary articles, review papers, and guidelines. Observational studies that reported risk ratios for vascular morbidity, vascular mortality, or all cause mortality in relation to shift work were included; control groups could be non-shift ("day") workers or the general population. Study quality was assessed with the Downs and Black scale for observational studies. The three primary outcomes were myocardial infarction, ischaemic stroke, and any coronary event. Heterogeneity was measured with the I(2) statistic and computed random effects models. 34 studies in 2,011,935 people were identified. Shift work was associated with myocardial infarction (risk ratio 1.23, 95% confidence interval 1.15 to 1.31; I(2)=0) and ischaemic stroke (1.05, 1.01 to 1.09; I(2)=0). Coronary events were also increased (risk ratio 1.24, 1.10 to 1.39), albeit with significant heterogeneity across studies (I(2)=85%). Pooled risk ratios were significant for both unadjusted analyses and analyses adjusted for risk factors. All shift work schedules with the exception of evening shifts were associated with a statistically higher risk of coronary events. Shift work was not associated with increased rates of mortality (whether vascular cause specific or overall). Presence or absence of adjustment for smoking and socioeconomic status was not a source of heterogeneity in the primary studies. 6598 myocardial infarctions, 17,359 coronary events, and 1854 ischaemic strokes occurred. On the basis of the Canadian prevalence of shift work of 32.8%, the population attributable risks related to shift work were 7.0% for myocardial infarction, 7.3% for all coronary events, and 1.6% for ischaemic stroke. Shift work is associated with vascular events, which may have implications for public policy and occupational medicine.

  3. Optimisation of coronary vascular territorial 3D echocardiographic strain imaging using computed tomography: a feasibility study using image fusion.

    PubMed

    de Knegt, Martina Chantal; Fuchs, A; Weeke, P; Møgelvang, R; Hassager, C; Kofoed, K F

    2016-12-01

    Current echocardiographic assessments of coronary vascular territories use the 17-segment model and are based on general assumptions of coronary vascular distribution. Fusion of 3D echocardiography (3DE) with multidetector computed tomography (MDCT) derived coronary anatomy may provide a more accurate assessment of left ventricular (LV) territorial function. We aimed to test the feasibility of MDCT and 3DE fusion and to compare territorial longitudinal strain (LS) using the 17-segment model and a MDCT-guided vascular model. 28 patients underwent 320-slice MDCT and transthoracic 3DE on the same day followed by invasive coronary angiography. MDCT (Aquilion ONE, ViSION Edition, Toshiba Medical Systems) and 3DE apical full-volume images (Artida, Toshiba Medical Systems) were fused offline using a dedicated workstation (prototype fusion software, Toshiba Medical Systems). 3DE/MDCT image alignment was assessed by 3 readers using a 4-point scale. Territorial LS was assessed using the 17-segment model and the MDCT-guided vascular model in territories supplied by significantly stenotic and non-significantly stenotic vessels. Successful 3DE/MDCT image alignment was obtained in 86 and 93 % of cases for reader one, and reader two and three, respectively. Fair agreement on the quality of automatic image alignment (intra-class correlation = 0.40) and the success of manual image alignment (Fleiss' Kappa = 0.40) among the readers was found. In territories supplied by non-significantly stenotic left circumflex arteries, LS was significantly higher in the MDCT-guided vascular model compared to the 17-segment model: -15.00 ± 7.17 (mean ± standard deviation) versus -11.87 ± 4.09 (p < 0.05). Fusion of MDCT and 3DE is feasible and provides physiologically meaningful displays of myocardial function.

  4. High Prevalence of Cardiovascular Disease in End-Stage Kidney Disease Patients Ongoing Hemodialysis in Peru: Why Should We Care About It?

    PubMed

    Bravo-Jaimes, Katia; Whittembury, Alvaro; Santivañez, Vilma

    2015-01-01

    Purpose. To determine clinical, biochemical, and pharmacological characteristics as well as cardiovascular disease prevalence and its associated factors among end-stage kidney disease patients receiving hemodialysis in the main hemodialysis center in Lima, Peru. Methods. This cross-sectional study included 103 patients. Clinical charts were reviewed and an echocardiogram was performed to determine prevalence of cardiovascular disease, defined as the presence of systolic/diastolic dysfunction, coronary heart disease, ventricular dysrhythmias, cerebrovascular disease, and/or peripheral vascular disease. Associations between cardiovascular disease and clinical, biochemical, and dialysis factors were sought using prevalence ratio. A robust Poisson regression model was used to quantify possible associations. Results. Cardiovascular disease prevalence was 81.6%, mainly due to diastolic dysfunction. It was significantly associated with age older than 50 years, metabolic syndrome, C-reactive protein levels, effective blood flow ≤ 300 mL/min, severe anemia, and absence of mild anemia. However, in the regression analysis only age older than 50 years, effective blood flow ≤ 300 mL/min, and absence of mild anemia were associated. Conclusions. Cardiovascular disease prevalence is high in patients receiving hemodialysis in the main center in Lima. Diastolic dysfunction, age, specific hemoglobin levels, and effective blood flow may play an important role.

  5. Molecular intravascular imaging approaches for atherosclerosis.

    PubMed

    Press, Marcella Calfon; Jaffer, Farouc A

    2014-10-01

    Coronary artery disease (CAD) is an inflammatory process that results in buildup of atherosclerosis, typically lipid-rich plaque in the arterial wall. Progressive narrowing of the vessel wall and subsequent plaque rupture can lead to myocardial infarction and death. Recent advances in intravascular fluorescence imaging techniques have provided exciting coronary artery-targeted platforms to further characterize the molecular changes that occur within the vascular wall as a result of atherosclerosis and following coronary stent-induced vascular injury. This review will summarize exciting recent developments in catheter-based imaging of coronary arterial-sized vessels; focusing on two-dimensional near-infrared fluorescence imaging (NIRF) molecular imaging technology as an approach to specifically identify inflammation and fibrin directly within coronary artery-sized vessels. Intravascular NIRF is anticipated to provide new insights into the in vivo biology underlying high-risk plaques, as well as high-risks stents prone to stent restenosis or stent thrombosis.

  6. Center for Innovative Minimally Invasive Therapy

    DTIC Science & Technology

    1999-11-01

    discrete layers within the image. In vivo OCT image of a stent deployed in a swine coronary artery. Shadowing of the metallic stent is seen as areas of...Task 3: Vascular Stent -Grafts Specific Aim 1: Develop novel procedures for the treatment of aneurysms and vascular trauma using percutaneous...applied to coronary anastomoses in chronic studies. One particularly interesting application may be as an external stent to maintain or increase the

  7. Nighttime aircraft noise impairs endothelial function and increases blood pressure in patients with or at high risk for coronary artery disease.

    PubMed

    Schmidt, Frank; Kolle, Kristoffer; Kreuder, Katharina; Schnorbus, Boris; Wild, Philip; Hechtner, Marlene; Binder, Harald; Gori, Tommaso; Münzel, Thomas

    2015-01-01

    Epidemiological studies suggest the existence of a relationship between aircraft noise exposure and increased risk for myocardial infarction and stroke. Patients with established coronary artery disease and endothelial dysfunction are known to have more future cardiovascular events. We therefore tested the effects of nocturnal aircraft noise on endothelial function in patients with or at high risk for coronary artery disease. 60 Patients (50p 1-3 vessels disease; 10p with a high Framingham Score of 23%) were exposed in random and blinded order to aircraft noise and no noise conditions. Noise was simulated in the patients' bedroom and consisted of 60 events during one night. Polygraphy was recorded during study nights, endothelial function (flow-mediated dilation of the brachial artery), questionnaires and blood sampling were performed on the morning after each study night. The mean sound pressure levels L eq(3) measured were 46.9 ± 2.0 dB(A) in the Noise 60 nights and 39.2 ± 3.1 dB(A) in the control nights. Subjective sleep quality was markedly reduced by noise from 5.8 ± 2.0 to 3.7 ± 2.2 (p < 0.001). FMD was significantly reduced (from 9.6 ± 4.3 to 7.9 ± 3.7%; p < 0.001) and systolic blood pressure was increased (from 129.5 ± 16.5 to 133.6 ± 17.9 mmHg; p = 0.030) by noise. The adverse vascular effects of noise were independent from sleep quality and self-reported noise sensitivity. Nighttime aircraft noise markedly impairs endothelial function in patients with or at risk for cardiovascular disease. These vascular effects appear to be independent from annoyance and attitude towards noise and may explain in part the cardiovascular side effects of nighttime aircraft noise.

  8. Influence of myocardial oxygen demand on the coronary vascular response to arterial blood gas changes in humans.

    PubMed

    Vermeulen, Tyler Dennis; Boulet, Lindsey M; Stembridge, Mike; Williams, Alexandra Mackenzie; Anholm, James D; Subedi, Prajan; Gasho, Chris; Ainslie, Philip N; Feigl, Eric O; Foster, Glen Edward

    2018-03-30

    It remains unclear if the human coronary vasculature is inherently sensitive to changes in arterial PO 2 and PCO 2 or if coronary vascular responses are the result of concomitant increases in myocardial O 2 consumption/demand (MVO 2 ). We hypothesized that the coronary vascular response to PO 2 and PCO 2 would be attenuated in healthy men when MVO 2 was attenuated with β 1 -adrenergic receptor blockade. Healthy men (n=11; age: 25 {plus minus} 1 years) received intravenous esmolol (β 1 -adrenergic receptor antagonist) or volume-matched saline in a double-blind, randomized, crossover study, and were exposed to poikilocapnic hypoxia, isocapnic hypoxia, and hypercapnic hypoxia. Measurements made at baseline and following 5-min of steady state at each gas manipulation included left anterior descending coronary blood velocity (LAD V ; Doppler echocardiography), heart rate and arterial blood pressure. LAD V values at the end of each hypoxic condition were compared between esmolol and placebo. Rate pressure product (RPP) and left-ventricular mechanical energy (ME LV ) were calculated as indices of MVO 2 . All gas manipulations augmented RPP, ME LV , and LAD V but only RPP and ME LV were attenuated (4-18%) following β 1 -adrenergic receptor blockade (P<0.05). Despite attenuated RPP and MELV responses, β 1 -adrenergic receptor blockade did not attenuate the mean LADV vasodilatory response when compared to placebo during poikilocapnic hypoxia (29.4{plus minus}2.2 vs. 27.3{plus minus}1.6 cm/s) and isocapnic hypoxia (29.5{plus minus}1.5 vs. 30.3{plus minus}2.2 cm/s). Hypercapnic hypoxia elicited a feed-forward coronary dilation that was blocked by β 1 -adrenergic receptor blockade. These results indicate a direct influence of arterial PO 2 on coronary vascular regulation that is independent of MVO 2 .

  9. Erectile Dysfunction Precedes Coronary Artery Endothelial Dysfunction in Rats Fed a High-Fat, High-Sucrose, Western Pattern Diet

    PubMed Central

    La Favor, Justin D.; Anderson, Ethan J.; Hickner, Robert C.; Wingard, Christopher J.

    2016-01-01

    Introduction It is suggested that erectile dysfunction (ED) may be an early risk factor for cardiovascular disease. Aim The goal of this study was to determine whether development of ED precedes the onset of coronary artery endothelial dysfunction in response to a Western diet (WD), thereby establishing whether the WD differentially impacts the endothelium in a time-dependent manner. Additionally, a goal was to determine if diet-induced ED is reversible with intracavernosal sepiapterin treatment. Methods Male Sprague-Dawley rats were fed a WD for 4, 8, or 12 weeks, or a control diet for 8 weeks. Erectile function was evaluated by measuring the mean arterial pressure (MAP) and intracavernosal pressure (ICP) in response to electrical field stimulation of the cavernosal nerve near the major pelvic ganglion, in the absence and presence of sepiapterin. Coronary artery endothelial function was evaluated ex vivo with cumulative doses of acetylcholine (ACh) applied to segments of the left anterior descending coronary artery preconstricted with serotonin. Main Outcome Measures Erectile function was assessed as the ICP response to electrical field stimulation (EFS), normalized to MAP. Coronary artery endothelial function was assessed as the effective concentration producing 50% of a maximal response (EC50) of the ACh response. Results The ICP/MAP response to EFS was significantly attenuated following both 8 and 12 weeks of the WD compared with the control diet (P < 0.05). Sepiapterin treatment augmented the ICP/MAP response in all WD groups (P < 0.05). The coronary artery EC50 of the ACh response was not different from control following 4 or 8 weeks but was significantly elevated following 12 weeks of the WD (P < 0.01). Conclusions These data suggest that erectile function is reduced prior to coronary artery endothelial function in response to the WD. Improvement of erectile function with sepiapterin in WD rats indicates that nitric oxide synthase uncoupling is a key mechanism in diet-induced ED. PMID:23170997

  10. Combining novel technologies with improved logistics to reduce hemodialysis vascular access dysfunction.

    PubMed

    Roy-Chaudhury, P; Lee, T; Duncan, H; El-Khatib, M

    2009-01-01

    Hemodialysis (HD) vascular access dysfunction is currently a huge clinical problem for which there are no effective therapies. There are, however, a number of promising technologies that are currently at the experimental or clinical trial stage. We believe that the application of these novel technologies in combination with better clinical protocols for vascular access care could significantly reduce the current problems associated with HD vascular access.

  11. Comparison of endothelial function of coronary artery bypass grafts in diabetic and nondiabetic patients: Which graft offers the best?

    PubMed Central

    Gür, Demet Özkaramanlı; Gür, Özcan; Gürkan, Selami; Cömez, Selcem; Gönültaş, Aylin; Yılmaz, Murat

    2016-01-01

    Objective: Diabetes associated endothelial dysfunction, which determines both long and short term graft patency, is not uniform in all coronary artery bypass surgery (CABG) grafts. Herein this study, we aimed to investigate the degree of endothelial dysfunction in diabetic radial artery (RA), internal mammarian artery (IMA) and saphenous vein (SV) grafts in vitro tissue bath system. Methods: This is a prospective experimental study. Fifteen diabetic and 15 non-diabetic patients were included to the study. A total number of 96 graft samples were collected; 16 graft samples for each graft type from both diabetic and non-diabetic patients. Arterial grafts were harvested with pedicles and SV grafts were harvested by ‘no touch’ technique. Vasodilatation response of vascular rings to carbachol, which induces nitric oxide (NO) mediated vasodilatation, was designated as the measure of endothelial function. Results: The IMA grafts had the most prominent NO mediated vasodilatation in both diabetic and non-diabetic patients, concluding a better preserved endothelial function than SV and RA. The ‘no-touch’ SV and RA grafts had similar vasodilatation responses in non-diabetic patients. In diabetic patients, on the other hand, RA grafts exhibited the least vasodilatation response (ie. worst endothelial function), even less vasodilatation than ‘no touch’ SV grafts (p<0.0001). Conclusion: Deteriorated function of RA grafts in diabetic patients, even worse than SV grafts made evident by this study, encourages the use of ‘no touch’ technique as the method of SV harvesting and more meticulous imaging of RA before its use as a graft in diabetic patients. PMID:26301347

  12. Circular Noncoding RNA HIPK3 Mediates Retinal Vascular Dysfunction in Diabetes Mellitus.

    PubMed

    Shan, Kun; Liu, Chang; Liu, Bai-Hui; Chen, Xue; Dong, Rui; Liu, Xin; Zhang, Yang-Yang; Liu, Ban; Zhang, Shu-Jie; Wang, Jia-Jian; Zhang, Sheng-Hai; Wu, Ji-Hong; Zhao, Chen; Yan, Biao

    2017-10-24

    The vascular complications of diabetes mellitus are the major causes of morbidity and mortality among people with diabetes. Circular RNAs are a class of endogenous noncoding RNAs that regulate gene expression in eukaryotes. In this study, we investigated the role of circular RNA in retinal vascular dysfunction induced by diabetes mellitus. Quantitative polymerase chain reactions, Sanger sequencing, and Northern blots were conducted to detect circular HIPK3 (circHIPK3) expression pattern on diabetes mellitus-related stresses. MTT (3-[4,5-dimethythiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assays, EdU (5-ethynyl-2'-deoxyuridine) incorporation assays, Transwell migration assays, and Matrigel assays were conducted to detect the role of circHIPK3 in retinal endothelial cell function in vitro. Retinal trypsin digestion, vascular permeability assays, and ELISA assays were conducted to detect the role of circHIPK3 in retinal vascular dysfunction in vivo. Bioinformatics analysis, luciferase activity assays, RNA pull-down assays, and in vitro studies were conducted to reveal the mechanism of circHIPK3-mediated retinal vascular dysfunction. circHIPK3 expression was significantly upregulated in diabetic retinas and retinal endothelial cells following stressors related to diabetes mellitus. circHIPK3 silencing or overexpressing circHIPK3 changed retinal endothelial cell viability, proliferation, migration, and tube formation in vitro. circHIPK3 silencing in vivo alleviated retinal vascular dysfunction, as shown by decreased retinal acellular capillaries, vascular leakage, and inflammation. circHIPK3 acted as an endogenous miR-30a-3p sponge to sequester and inhibit miR-30a-3p activity, which led to increased vascular endothelial growth factor-C, FZD4, and WNT2 expression. Ectopic expression of miR-30a-3p mimicked the effect of circHIPK3 silencing on vascular endothelial phenotypes in vivo and in vitro. The circular RNA circHIPK3 plays a role in diabetic retinopathy by blocking miR-30a function, leading to increased endothelial proliferation and vascular dysfunction. These data suggest that circular RNA is a potential target to control diabetic proliferative retinopathy. © 2017 American Heart Association, Inc.

  13. Diabetic dyslipidemia and exercise alter the plasma low-density lipoproteome in Yucatan pigs

    PubMed Central

    Richardson, Matthew R.; Lai, Xianyin; Dixon, Joseph L.; Sturek, Michael; Witzmann, Frank A.

    2010-01-01

    Although low-density lipoprotein (LDL) plays a predominant role in atherogenesis, the low-density lipoproteome has not been fully characterized. Moreover, alterations from a Western diet, diabetes, and physical inactivity on this proteome have yet to be determined. Accordingly, relative quantification was determined in LDL proteins from male Yucatan diabetic dyslipidemic (DD) swine in the early stages of atherosclerosis compared to healthy control (C) and non-diabetic hyperlipidemic (H) swine. Importantly, coronary vascular dysfunction was prevented by aerobic exercise training in these animals (DDX) without altering total LDL concentration. Using 2-DE, Western blot, label-free quantitative MS, and selected reaction monitoring, alterations in the abundance of apolipoproteins A-I, B, C-III, D, E, and J and noncovalently associated proteins were determined in LDL isolated using fast protein liquid chromatography. At least 28 unique proteins, many of which were novel, were identified with high confidence. An apolipoprotein E isoform demonstrated stronger correlation to disease (percent of coronary artery segments with intimal thickening) than some traditional risk factors (total cholesterol, LDL cholesterol, and LDL/HDL cholesterol). Taken together, this work identifies new possible biomarkers, potential therapeutic targets for atherosclerosis, and generates new hypotheses regarding the role of LDL in atherogenesis. PMID:19402046

  14. Uric acid is associated with inflammation, coronary microvascular dysfunction, and adverse outcomes in postmenopausal women

    PubMed Central

    Prasad, Megha; Matteson, Eric L.; Herrmann, Joerg; Gulati, Rajiv; Rihal, Charanjit S.; Lerman, Lilach O.; Lerman, Amir

    2016-01-01

    Uric acid is a risk factor for coronary artery disease (CAD) in postmenopausal women but the association with inflammation and coronary microvascular endothelial dysfunction (CED) is not well-defined. The aim of this study was to determine the relationship of serum uric acid (SUA), inflammatory markers and CED. In this prospective cohort study, serum uric acid, hsCRP levels, and neutrophil count were measured in 229 postmenopausal women who underwent diagnostic catheterization, were found to have no obstructive CAD and underwent coronary microvascular function testing, to measure coronary blood flow (CBF) response to intracoronary acetylcholine. The average age was 58 years (IQR 52, 66) years. Hypertension was present in 48%, type 2 diabetes mellitus in 5.6%, and hyperlipidemia in 61.8%. CED was diagnosed in 59% of postmenopausal women. Mean uric acid level was 4.7 ± 1.3 mg/dL. Postmenopausal women with CED had significantly higher SUA compared to patients without CED (4.9 ± 1.3 vs. 4.4 ± 1.3 mg/dL; p=0.02). There was a significant correlation between SUA and % change in CBF to acetylcholine (p=0.009), and this correlation persisted in multivariable analysis. SUA levels were significantly associated with increased neutrophil count (p=0.02) and hsCRP levels (p=0.006) among patients with CED, but not those without CED. Serum uric acid is associated with coronary microvascular endothelial dysfunction in postmenopausal women and may be related to inflammation. These findings link serum uric acid levels to early coronary atherosclerosis in postmenopausal women. PMID:27993955

  15. Contribution of KV1.5 Channel to H2O2-Induced Human Arteriolar Dilation and its Modulation by Coronary Artery Disease

    PubMed Central

    Nishijima, Yoshinori; Cao, Sheng; Chabowski, Dawid S.; Korishettar, Ankush; Ge, Alyce; Zheng, Xiaodong; Sparapani, Rodney; Gutterman, David D.; Zhang, David X.

    2016-01-01

    Rationale Hydrogen peroxide (H2O2) regulates vascular tone in the human microcirculation under physiological and pathophysiological conditions. It dilates arterioles by activating BKCa channels in subjects with coronary artery disease (CAD), but its mechanisms of action in subjects without CAD (non-CAD) as compared to those with CAD remain unknown. Objective We hypothesize that H2O2-elicited dilation involves different K+ channels in non-CAD versus CAD, resulting in an altered capacity for vasodilation during disease. Methods and Results H2O2 induced endothelium-independent vasodilation in non-CAD adipose arterioles, which was reduced by paxilline, a BKCa channel blocker, and by 4-AP, a KV channel blocker. Assays of mRNA transcripts, protein expression and subcellular localization revealed that KV1.5 is the major KV1 channel expressed in vascular smooth muscle cells (VSMCs) and is abundantly localized on the plasma membrane. The selective KV1.5 blocker DPO-1 and the KV1.3/1.5 blocker Psora-4 reduced H2O2-elicited dilation to a similar extent as 4-AP, but the selective KV1.3 blocker PAP-1 was without effect. In arterioles from CAD subjects, H2O2-induced dilation was significantly reduced and this dilation was inhibited by paxilline but not by 4-AP, DPO-1 or Psora-4. KV1.5 cell membrane localization and DPO-1-sensitive K+ currents were markedly reduced in isolated VSMCs from CAD arterioles, although mRNA or total cellular protein expression were largely unchanged. Conclusions In human arterioles, H2O2-induced dilation is impaired in CAD, which is associated with a transition from a combined BKCa- and KV (KV1.5)-mediated vasodilation toward a BKCa-predominant mechanism of dilation. Loss of KV1.5 vasomotor function may play an important role in microvascular dysfunction in CAD or other vascular diseases. PMID:27872049

  16. [HDL-C/apoA-I]: A multivessel cardiometabolic risk marker in women with T2DM.

    PubMed

    Hermans, Michel P; Valensi, Paul; Ahn, Sylvie A; Rousseau, Michel F

    2018-01-01

    Although women have higher high-density lipoprotein cholesterol (HDL-C) than have men, their HDL particles are also prone to become small, dense, and dysfunctional in case of type 2 diabetes mellitus (T2DM). To assess the vascular risk related to HDLs of different sizes/densities without direct measurement, we adjusted HDL-C to its main apolipoprotein (apoA-I) as [HDL-C/apoA-I]. This ratio estimates HDL sizes and provides indices as to their number, cholesterol load, and density. We stratified 280 Caucasian T2DM women according to [HDL-C/apoA-I] quartiles (Q) to determine how they are segregated according to cardiometabolic risk, β-cell function, glycaemic control, and vascular complications. Five parameters were derived from combined determination of HDL-C and apoA-I: HDL size, HDL number, cholesterol load per particle (pP), apoA-I pP, and HDL density. An adverse cardiometabolic profile characterized QI and QII patients whose HDLs were denser and depleted in apoA-I, whereas QIII patients had HDLs with characteristics closer to those of controls. QIV patients had HDLs of supernormal size/composition and a more favourable phenotype in terms of fat distribution; insulin sensitivity (64% vs 41%), metabolic syndrome, and β-cell function (32% vs 23%); exogenous insulin (44 vs 89 U·d -1 ); and glycaemic control (glycated haemoglobin, 56 vs 61 mmol·mol -1 ), associated with lower prevalence of microvascular/macrovascular complications: all-cause microangiopathy 47% vs 61%; retinopathy 22% vs 34%; all-cause macroangiopathy 19% vs 31%; and coronary artery disease 6% vs 24% (P < .05). [HDL-C/apoA-I] can stratify T2DM women according to metabolic phenotype, macrovascular and coronary damage, β-cell function, microangiopathic risk, and retinopathy. This ratio is a versatile and readily available marker of cardiometabolic status and vascular complications in T2DM women. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Roles of vascular and metabolic components in cognitive dysfunction of Alzheimer disease: short- and long-term modification by non-genetic risk factors.

    PubMed

    Sato, Naoyuki; Morishita, Ryuichi

    2013-11-05

    It is well known that a specific set of genetic and non-genetic risk factors contributes to the onset of Alzheimer disease (AD). Non-genetic risk factors include diabetes, hypertension in mid-life, and probably dyslipidemia in mid-life. This review focuses on the vascular and metabolic components of non-genetic risk factors. The mechanisms whereby non-genetic risk factors modify cognitive dysfunction are divided into four components, short- and long-term effects of vascular and metabolic factors. These consist of (1) compromised vascular reactivity, (2) vascular lesions, (3) hypo/hyperglycemia, and (4) exacerbated AD histopathological features, respectively. Vascular factors compromise cerebrovascular reactivity in response to neuronal activity and also cause irreversible vascular lesions. On the other hand, representative short-term effects of metabolic factors on cognitive dysfunction occur due to hypoglycemia or hyperglycemia. Non-genetic risk factors also modify the pathological manifestations of AD in the long-term. Therefore, vascular and metabolic factors contribute to aggravation of cognitive dysfunction in AD through short-term and long-term effects. β-amyloid could be involved in both vascular and metabolic components. It might be beneficial to support treatment in AD patients by appropriate therapeutic management of non-genetic risk factors, considering the contributions of these four elements to the manifestation of cognitive dysfunction in individual patients, though all components are not always present. It should be clarified how these four components interact with each other. To answer this question, a clinical prospective study that follows up clinical features with respect to these four components: (1) functional MRI or SPECT for cerebrovascular reactivity, (2) MRI for ischemic lesions and atrophy, (3) clinical episodes of hypoglycemia and hyperglycemia, (4) amyloid-PET and tau-PET for pathological features of AD, would be required.

  18. C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis.

    PubMed

    Kaptoge, Stephen; Di Angelantonio, Emanuele; Lowe, Gordon; Pepys, Mark B; Thompson, Simon G; Collins, Rory; Danesh, John

    2010-01-09

    Associations of C-reactive protein (CRP) concentration with risk of major diseases can best be assessed by long-term prospective follow-up of large numbers of people. We assessed the associations of CRP concentration with risk of vascular and non-vascular outcomes under different circumstances. We meta-analysed individual records of 160 309 people without a history of vascular disease (ie, 1.31 million person-years at risk, 27 769 fatal or non-fatal disease outcomes) from 54 long-term prospective studies. Within-study regression analyses were adjusted for within-person variation in risk factor levels. Log(e) CRP concentration was linearly associated with several conventional risk factors and inflammatory markers, and nearly log-linearly with the risk of ischaemic vascular disease and non-vascular mortality. Risk ratios (RRs) for coronary heart disease per 1-SD higher log(e) CRP concentration (three-fold higher) were 1.63 (95% CI 1.51-1.76) when initially adjusted for age and sex only, and 1.37 (1.27-1.48) when adjusted further for conventional risk factors; 1.44 (1.32-1.57) and 1.27 (1.15-1.40) for ischaemic stroke; 1.71 (1.53-1.91) and 1.55 (1.37-1.76) for vascular mortality; and 1.55 (1.41-1.69) and 1.54 (1.40-1.68) for non-vascular mortality. RRs were largely unchanged after exclusion of smokers or initial follow-up. After further adjustment for fibrinogen, the corresponding RRs were 1.23 (1.07-1.42) for coronary heart disease; 1.32 (1.18-1.49) for ischaemic stroke; 1.34 (1.18-1.52) for vascular mortality; and 1.34 (1.20-1.50) for non-vascular mortality. CRP concentration has continuous associations with the risk of coronary heart disease, ischaemic stroke, vascular mortality, and death from several cancers and lung disease that are each of broadly similar size. The relevance of CRP to such a range of disorders is unclear. Associations with ischaemic vascular disease depend considerably on conventional risk factors and other markers of inflammation. British Heart Foundation, UK Medical Research Council, BUPA Foundation, and GlaxoSmithKline. Copyright 2010 Elsevier Ltd. All rights reserved.

  19. Vascular endothelial overexpression of human CYP2J2 (Tie2-CYP2J2 Tr) modulates cardiac oxylipin profiles and enhances coronary reactive hyperemia in mice

    PubMed Central

    Hanif, Ahmad; Edin, Matthew L.; Zeldin, Darryl C.; Morisseau, Christophe; Falck, John R.

    2017-01-01

    Arachidonic acid is metabolized to epoxyeicosatrienoic acids (EETs) by cytochrome (CYP) P450 epoxygenases, and to ω-terminal hydroxyeicosatetraenoic acids (HETEs) by ω-hydroxylases. EETs and HETEs often have opposite biologic effects; EETs are vasodilatory and protect against ischemia/reperfusion injury, while ω-terminal HETEs are vasoconstrictive and cause vascular dysfunction. Other oxylipins, such as epoxyoctadecaenoic acids (EpOMEs), hydroxyoctadecadienoic acids (HODEs), and prostanoids also have varied vascular effects. Post-ischemic vasodilation in the heart, known as coronary reactive hyperemia (CRH), protects against potential damage to the heart muscle caused by ischemia. The relationship among CRH response to ischemia, in mice with altered levels of CYP2J epoxygenases has not yet been investigated. Therefore, we evaluated the effect of endothelial overexpression of the human cytochrome P450 epoxygenase CYP2J2 in mice (Tie2-CYP2J2 Tr) on oxylipin profiles and CRH. Additionally, we evaluated the effect of pharmacologic inhibition of CYP-epoxygenases and inhibition of ω-hydroxylases on CRH. We hypothesized that CRH would be enhanced in isolated mouse hearts with vascular endothelial overexpression of human CYP2J2 through modulation of oxylipin profiles. Similarly, we expected that inhibition of CYP-epoxygenases would reduce CRH, whereas inhibition of ω-hydroxylases would enhance CRH. Compared to WT mice, Tie2-CYP2J2 Tr mice had enhanced CRH, including repayment volume, repayment duration, and repayment/debt ratio (P < 0.05). Similarly, inhibition of ω-hydroxylases increased repayment volume and repayment duration, in Tie2-CYP2J2 Tr compared to WT mice (P < 0.05). Endothelial overexpression of CYP2J2 significantly changed oxylipin profiles, including increased EETs (P < 0.05), increased EpOMEs (P < 0.05), and decreased 8-iso-PGF2α (P < 0.05). Inhibition of CYP epoxygenases with MS-PPOH attenuated CRH (P < 0.05). Ischemia caused a decrease in mid-chain HETEs (5-, 11-, 12-, 15-HETEs P < 0.05) and HODEs (P < 0.05). These data demonstrate that vascular endothelial overexpression of CYP2J2, through changing the oxylipin profiles, enhances CRH. Inhibition of CYP epoxygenases decreases CRH, whereas inhibition of ω-hydroxylases enhances CRH. PMID:28328948

  20. Constitutional rho-kinase regulates atrioventricular nodal conduction and ventricular repolarization of the canine heart.

    PubMed

    Sugiyama, Atsushi; Takahara, Akira; Yatomi, Yutaka; Satoh, Yoshioki; Nakamura, Yuji; Hashimoto, Keitaro

    2003-06-01

    Given the limited information, physiological roles of Rho-kinase in the cardiac conduction system and ventricular repolarization process were assessed in comparison with those in the coronary vascular tone. A specific Rho-kinase inhibitor Y-27632 was administered to the nutrient coronary artery of the canine isolated, blood-perfused atrioventricular node preparation under the monitoring of the ventricular monophasic action potentials. Administration of Y-27632 moderately suppressed the atrioventricular nodal conduction, slightly but significantly accelerated the repolarization process, and potently increased the coronary blood flow, whereas it hardly affected the intraventricular conduction. The estimated concentrations of Y-27632 causing the currently observed effects were enough to inhibit Rho-kinase. These results suggest that constitutional Rho-kinase functions to moderately facilitate the atrioventricular nodal conduction, slightly delay ventricular repolarization process, and significantly increase the coronary vascular tone.

  1. Vascular oxidative stress: a key factor in the development of hypertension associated with ethanol consumption.

    PubMed

    Ceron, Carla S; Marchi, Katia C; Muniz, Jaqueline J; Tirapelli, Carlos R

    2014-01-01

    The observation that the excessive consumption of ethyl alcohol (ethanol) is associated with high blood pressure is nearing its centennial mark. Mechanisms linking ethanol consumption and hypertension are complex and not fully understood. It is established that chronic ethanol consumption leads to hypertension and that this process is a multimediated event involving increased sympathetic activity, stimulation of the renin-angiotensin-aldosterone system with a subsequent increase in vascular oxidative stress and endothelial dysfunction. Under physiological conditions, reactive oxygen species (ROS) play an important role as a signaling molecule in the control of vascular tone and endothelial function. Increased ROS bioavailability is associated with important processes underlying vascular injury in cardiovascular disease such as endothelial dysfunction, vascular remodeling, and inflammation. Studies focusing on molecular mechanisms showed a link between overproduction of ROS in the vasculature and ethanol-induced hypertension. Of the ROS generated in vascular cells, superoxide anion (O2(-)) and hydrogen peroxide (H2O2) appear to be especially important. Ethanol-mediated generation of O2(-) and H2O2 in vascular tissues is associated with elevations in intracellular calcium ([Ca(2+)]i), reduced nitric oxide (NO) bioavailability, endothelial dysfunction and vasoconstriction. O2(-) can also act as a vascular signaling molecule regulating signaling pathways that lead to vascular contraction. Thus, through increased generation of ROS and activation of redox-sensitive pathways, ethanol induces vascular dysfunction, a response that might contribute to the hypertension associated with ethanol consumption. The present article reviews the role of ROS in vascular (patho)biology of ethanol.

  2. Construction of topological structure of 3D coronary vessels for analysis of catheter navigation in interventional cardiology simulation

    NASA Astrophysics Data System (ADS)

    Wang, Yaoping; Chui, Cheekong K.; Cai, Yiyu; Mak, KoonHou

    1998-06-01

    This study presents an approach to build a 3D vascular system of coronary for the development of a virtual cardiology simulator. The 3D model of the coronary arterial tree is reconstructed from the geometric information segmented from the Visible Human data set for physical analysis of catheterization. The process of segmentation is guided by a 3D topologic hierarchy structure of coronary vessels which is obtained from a mechanical model by using Coordinate Measuring Machine (CMM) probing. This mechanical professional model includes all major coronary arterials ranging from right coronary artery to atrioventricular branch and from left main trunk to left anterior descending branch. All those branches are considered as the main operating sites for cardiology catheterization. Along with the primary arterial vasculature and accompanying secondary and tertiary networks obtained from a previous work, a more complete vascular structure can then be built for the simulation of catheterization. A novel method has been developed for real time Finite Element Analysis of catheter navigation based on this featured vasculature of vessels.

  3. Endothelial deletion of Ino80 disrupts coronary angiogenesis and causes congenital heart disease.

    PubMed

    Rhee, Siyeon; Chung, Jae I; King, Devin A; D'amato, Gaetano; Paik, David T; Duan, Anna; Chang, Andrew; Nagelberg, Danielle; Sharma, Bikram; Jeong, Youngtae; Diehn, Maximilian; Wu, Joseph C; Morrison, Ashby J; Red-Horse, Kristy

    2018-01-25

    During development, the formation of a mature, well-functioning heart requires transformation of the ventricular wall from a loose trabecular network into a dense compact myocardium at mid-gestation. Failure to compact is associated in humans with congenital diseases such as left ventricular non-compaction (LVNC). The mechanisms regulating myocardial compaction are however still poorly understood. Here, we show that deletion of the Ino80 chromatin remodeler in vascular endothelial cells prevents ventricular compaction in the developing mouse heart. This correlates with defective coronary vascularization, and specific deletion of Ino80 in the two major coronary progenitor tissues-sinus venosus and endocardium-causes intermediate phenotypes. In vitro, endothelial cells promote myocardial expansion independently of blood flow in an Ino80-dependent manner. Ino80 deletion increases the expression of E2F-activated genes and endothelial cell S-phase occupancy. Thus, Ino80 is essential for coronary angiogenesis and allows coronary vessels to support proper compaction of the heart wall.

  4. Acute Heart Failure Triggered by Coronary Spasm With Transient Left Ventricular Dysfunction.

    PubMed

    Adachi, Yusuke; Sakakura, Kenichi; Ibe, Tatsuro; Yoshida, Nanae; Wada, Hiroshi; Fujita, Hideo; Momomura, Shin-Ichi

    2017-04-06

    Coronary spasm is abnormal contraction of an epicardial coronary artery resulting in myocardial ischemia. Coronary spasm induces not only depressed myocardial contractility, but also incomplete myocardial relaxation, which leads to elevated ventricular filling pressure. We herein report the case of a 55-year-old woman who had repeated acute heart failure caused by coronary spasm. Acetylcholine provocation test with simultaneous right heart catheterization was useful for the diagnosis of elevated ventricular filling pressure as well as coronary artery spasm. We should add coronary spasm to a differential diagnosis for repeated acute heart failure.

  5. Intraspecific scaling laws of vascular trees.

    PubMed

    Huo, Yunlong; Kassab, Ghassan S

    2012-01-07

    A fundamental physics-based derivation of intraspecific scaling laws of vascular trees has not been previously realized. Here, we provide such a theoretical derivation for the volume-diameter and flow-length scaling laws of intraspecific vascular trees. In conjunction with the minimum energy hypothesis, this formulation also results in diameter-length, flow-diameter and flow-volume scaling laws. The intraspecific scaling predicts the volume-diameter power relation with a theoretical exponent of 3, which is validated by the experimental measurements for the three major coronary arterial trees in swine (where a least-squares fit of these measurements has exponents of 2.96, 3 and 2.98 for the left anterior descending artery, left circumflex artery and right coronary artery trees, respectively). This scaling law as well as others agrees very well with the measured morphometric data of vascular trees in various other organs and species. This study is fundamental to the understanding of morphological and haemodynamic features in a biological vascular tree and has implications for vascular disease.

  6. Rationale and design of a randomised clinical trial comparing vascular closure device and manual compression to achieve haemostasis after diagnostic coronary angiography: the Instrumental Sealing of ARterial puncture site - CLOSURE device versus manual compression (ISAR-CLOSURE) trial.

    PubMed

    Xhepa, Erion; Byrne, Robert A; Schulz, Stefanie; Helde, Sandra; Gewalt, Senta; Cassese, Salvatore; Linhardt, Maryam; Ibrahim, Tareq; Mehilli, Julinda; Hoppe, Katharina; Grupp, Katharina; Kufner, Sebastian; Böttiger, Corinna; Hoppmann, Petra; Burgdorf, Christof; Fusaro, Massimiliano; Ott, Ilka; Schneider, Simon; Hengstenberg, Christian; Schunkert, Heribert; Laugwitz, Karl-Ludwig; Kastrati, Adnan

    2014-06-01

    Vascular closure devices (VCD) have been introduced into clinical practice with the aim of increasing the procedural efficiency and clinical safety of coronary angiography. However, clinical studies comparing VCD and manual compression have yielded mixed results, and large randomised clinical trials comparing the two strategies are missing. Moreover, comparative efficacy studies between different VCD in routine clinical use are lacking. The Instrumental Sealing of ARterial puncture site - CLOSURE device versus manual compression (ISAR-CLOSURE) trial is a prospective, randomised clinical trial designed to compare the outcomes associated with the use of VCD or manual compression to achieve femoral haemostasis. The test hypothesis is that femoral haemostasis after coronary angiography achieved using VCD is not inferior to manual compression in terms of access-site-related vascular complications. Patients undergoing coronary angiography via the common femoral artery will be randomised in a 1:1:1 fashion to receive FemoSeal VCD, EXOSEAL VCD or manual compression. The primary endpoint is the incidence of the composite of arterial access-related complications (haematoma ≥5 cm, pseudoaneurysm, arteriovenous fistula, access-site-related bleeding, acute ipsilateral leg ischaemia, the need for vascular surgical/interventional treatment or documented local infection) at 30 days after randomisation. According to power calculations based on non-inferiority hypothesis testing, enrolment of 4,500 patients is planned. The trial is registered at www.clinicaltrials.gov (study identifier: NCT01389375). The safety of VCD as compared to manual compression in patients undergoing transfemoral coronary angiography remains an issue of clinical equipoise. The aim of the ISAR-CLOSURE trial is to assess whether femoral haemostasis achieved through the use of VCD is non-inferior to manual compression in terms of access-site-related vascular complications.

  7. Telmisartan protects against diabetic vascular complications in a mouse model of obesity and type 2 diabetes, partially through peroxisome proliferator activated receptor-{gamma}-dependent activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toyama, Kensuke; Nakamura, Taishi; Kataoka, Keiichiro

    2011-07-08

    Highlights: {yields} Telmisartan, an angiotensin receptor blocker, acts as a partial PPAR{gamma} agonist. {yields} The protective effects of telmisartan against diabetic vascular injury were associated with attenuation of vascular NF{kappa}B activation and TNF {alpha}. {yields} PPAR{gamma} activity of telmisartan was involved in the normalization of vascular PPAR{gamma} downregulation in diabetic mice. {yields} We provided the first evidence indicating that PPAR{gamma} activity of telmisartan contributed to the protective effects of telmisartan against diabetic vascular complication. -- Abstract: Experimental and clinical data support the notion that peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) activation is associated with anti-atherosclerosis as well as anti-diabetic effect. Telmisartan,more » an angiotensin receptor blocker (ARB), acts as a partial PPAR{gamma} agonist. We hypothesized that telmisartan protects against diabetic vascular complications, through PPAR{gamma} activation. We compared the effects of telmisartan, telmisartan combined with GW9662 (a PPAR{gamma} antagonist), and losartan with no PPAR{gamma} activity on vascular injury in obese type 2 diabetic db/db mice. Compared to losartan, telmisartan significantly ameliorated vascular endothelial dysfunction, downregulation of phospho-eNOS, and coronary arterial remodeling in db/db mice. More vascular protective effects of telmisartan than losartan were associated with greater anti-inflammatory effects of telmisartan, as shown by attenuation of vascular nuclear factor kappa B (NF{kappa}B) activation and tumor necrosis factor {alpha}. Coadministration of GW9662 with telmisartan abolished the above mentioned greater protective effects of telmisartan against vascular injury than losartan in db/db mice. Thus, PPAR{gamma} activity appears to be involved in the vascular protective effects of telmisartan in db/db mice. Moreover, telmisartan, but not losartan, prevented the downregulation of vascular PPAR{gamma} in db/db mice and this effect of telmisartan was cancelled by the coadministration of GW9662. Our data provided the first evidence indicating that PPAR{gamma} activity of telmisartan contributed to the protective effects of telmisartan against diabetic vascular complication. PPAR{gamma} activity of telmisartan was involved in the normalization of vascular PPAR{gamma} downregulation in diabetic mice. Thus, telmisartan seems to exert vascular protective effects in hypertensive patients with diabetes.« less

  8. Off-pump coronary artery bypass surgery in severe left ventricular dysfunction.

    PubMed

    Azarfarin, Rasoul; Pourafkari, Leili; Parvizi, Rezayat; Alizadehasl, Azin; Mahmoodian, Roghaiyeh

    2010-02-01

    Our aim was to examine hospital outcomes of coronary artery bypass surgery in patients with and without left ventricular dysfunction, with regard to the surgical technique (off- or on-pump). Between March 2007 and March 2008, 689 consecutive patients underwent isolated first-time coronary artery bypass; 127 had ejection fractions < or = 30% (group 1) and 562 had ejection fractions >30% (group 2). Data of preoperative risk profiles and hospital outcomes were collected prospectively. Off-pump operations were performed in 49 (38.6%) patients in group 1 and 196 (34.9%) in group 2. The incidences of infectious, neurologic, and cardiac complications postoperatively were significantly higher in group 1. In multivariate analysis, preoperative ejection fraction < or = 30% was found to be an independent risk factor for postoperative complications and hospital mortality. The subgroup of patients undergoing off-pump surgery in both groups had a significantly lower rate of total complications than those undergoing conventional on-pump operations, but no significant difference in mortality was observed between those undergoing off-pump or conventional surgery in either group. Off-pump surgery helped to limit the increased morbidity rate after coronary bypass in patients with ventricular dysfunction.

  9. Marginal donors: can older donor hearts tolerate prolonged cold ischemic storage?

    PubMed

    Korkmaz, Sevil; Bährle-Szabó, Susanne; Loganathan, Sivakkanan; Li, Shiliang; Karck, Matthias; Szabó, Gábor

    2013-10-01

    Both advanced donor age and prolonged ischemic time are significant risk factors for the 1-year mortality. However, its functional consequences have not been fully evaluated in the early-phase after transplantation; even early graft dysfunction is the main determinant of long-term outcome following transplantation. We evaluated in vivo left-ventricular (LV) cardiac and coronary vascular function of old-donor grafts after short and prolonged cold ischemic times in rats 1 h after heart transplantation. The hearts were excised from young donor (3-month-old) or old donor (18-month-old) rats, stored in cold preservation solution for either 1 or 8 h, and heterotopically transplanted. After 1 h of ischemic period, in the old-donor group, LV pressure, maximum pressure development (dP/dt max), time constant of LV pressure decay (τ), LV end-diastolic pressure and coronary blood flow did not differ compared with young donors. However, endothelium-dependent vasodilatation to acetylcholine resulted in a significantly lower response of coronary blood flow in the old-donor group (33 ± 4 vs. 51 ± 15 %, p < 0.05). After 8 h preservation, two of the old-donor hearts showed no mechanical activity upon reperfusion. LV pressure (55 ± 6 vs. 72 ± 5 mmHg, p < 0.05), dP/dt max (899 ± 221 vs. 1530 ± 217 mmHg/s, p < 0.05), coronary blood flow and response to acetylcholine were significantly reduced and τ was increased in the old-donor group in comparison to young controls. During the early-phase after transplantation, the ischemic tolerance of older-donor hearts is reduced after prolonged preservation time and the endothelium is more vulnerable to ischemia/reperfusion.

  10. The prognostic impact of in-hospital worsening of renal function in patients with acute coronary syndrome.

    PubMed

    AlFaleh, Hussam F; Alsuwaida, Abdulkareem O; Ullah, Anhar; Hersi, Ahmad; AlHabib, Khalid F; AlNemer, Khalid; AlSaif, Shukri; Taraben, Amir; Kashour, Tarek; Balghith, Mohammed A; Ahmed, Waqar H

    2013-08-10

    Renal impairment is strongly linked to adverse cardiovascular (CV) events. Baseline renal dysfunction is a strong predictor of CV mortality and morbidity in patients admitted with acute coronary syndrome (ACS). However, the prognostic importance of worsening renal function (WRF) in these patients is not well characterized. ACS patients enrolled in the SPACE (Saudi Project for Assessment of Coronary Events) registry who had baseline and pre-discharge serum creatinine data available were eligible for this study. WRF was defined as a 25% reduction from admission estimated glomerular filtration rate (eGFR) within 7 days of hospitalization. Baseline demographics, clinical presentation, therapies, and in-hospital outcomes were compared. Of the 3583 ACS patients, WRF occurred in 225 patients (6.3%), who were older, had more cardiovascular risk factors, were more likely to be female, have past vascular disease, and presented with more non-ST-segment elevation myocardial infarction than patients without WRF (39.5% vs. 32.8%; p=0.042). WRF was associated with an increased risk of in-hospital death, heart failure, cardiogenic shock, and stroke. After adjusting for potential confounders, WRF was an independent predictor of in-hospital death (adjusted odd ratio 28.02, 95% CI 13.2-60.28, p<0.0001). WRF was more predictive of mortality than baseline eGFR. These results indicate that WRF is a powerful predictor for in-hospital mortality and CV complications in ACS patients. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. Additional diagnostic value of systolic dysfunction induced by dipyridamole stress cardiac magnetic resonance used in detecting coronary artery disease.

    PubMed

    Husser, Oliver; Bodí, Vicente; Sanchís, Juan; Mainar, Luis; Núñez, Julio; López-Lereu, María P; Monmeneu, José V; Ruiz, Vicente; Rumiz, Eva; Moratal, David; Chorro, Francisco J; Llácer, Angel

    2009-04-01

    Dipyridamole stress perfusion cardiovascular magnetic resonance (CMR) is used to detect coronary artery disease (CAD). However, few data are available on the diagnostic value of the systolic dysfunction induced by dipyridamole. This study investigated whether the induction of systolic dysfunction supplements the diagnostic information provided by perfusion imaging in the detection of CAD. Overall, 166 patients underwent dipyridamole CMR and quantitative coronary angiography, with CAD being defined as a stenosis > or =70%. Systolic dysfunction at rest, systolic dysfunction with dipyridamole, induced systolic dysfunction, and stress first-pass perfussion deficit (PD) and delayed enhancement were quantified. In the multivariate analysis, PD (hazard ratio [HR]=1.6; 95% confidence interval [CI], 1.33-1.91;P< .0001) and induced systolic dysfunction (OR=1.8; 95% CI, 1.18-2.28; P< .007) were independently associated with CAD and had a sensitivity and specificity of 92% and 62% and 43% and 96%, respectively. Patients were categorized as having no ischemia (Group 1), PD but no induced systolic dysfunction (Group 2), or induced systolic dysfunction irrespective of PD (Group 3). In Group 3, the prevalence of CAD was higher than in Group 1 or 2 (96% vs. 22% and 79%, respectively; P=.001) and the risk of CAD was two-fold higher than in Group 2 (OR=2.34; 95% CI, 1.07-5.13; P=.034). Compared with Group 2, more hypoperfused segments were observed in Group 3 (6.2+/-2.6 vs. 7.4+/-3.4; P=.044), and more diseased vessels (1.4+/-1.0 vs. 1.8+/-0.9; P=.036). Adding induced systolic dysfunction to perfusion and clinical data improved the multivariate model's C-statistic for predicting CAD (0.81 vs. 0.87; P=.02). Combining induced systolic dysfunction with perfusion imaging increases the diagnostic accuracy of detecting CAD and enables patients with severe ischemia and a high probability of CAD to be identified.

  12. Loss of the Endothelial Glycocalyx Links Albuminuria and Vascular Dysfunction

    PubMed Central

    Ferguson, Joanne K.; Burford, James L.; Gevorgyan, Haykanush; Nakano, Daisuke; Harper, Steven J.; Bates, David O.; Peti-Peterdi, Janos

    2012-01-01

    Patients with albuminuria and CKD frequently have vascular dysfunction but the underlying mechanisms remain unclear. Because the endothelial surface layer, a meshwork of surface-bound and loosely adherent glycosaminoglycans and proteoglycans, modulates vascular function, its loss could contribute to both renal and systemic vascular dysfunction in proteinuric CKD. Using Munich-Wistar-Fromter (MWF) rats as a model of spontaneous albuminuric CKD, multiphoton fluorescence imaging and single-vessel physiology measurements revealed that old MWF rats exhibited widespread loss of the endothelial surface layer in parallel with defects in microvascular permeability to both water and albumin, in both continuous mesenteric microvessels and fenestrated glomerular microvessels. In contrast to young MWF rats, enzymatic disruption of the endothelial surface layer in old MWF rats resulted in neither additional loss of the layer nor additional changes in permeability. Intravenous injection of wheat germ agglutinin lectin and its adsorption onto the endothelial surface layer significantly improved glomerular albumin permeability. Taken together, these results suggest that widespread loss of the endothelial surface layer links albuminuric kidney disease with systemic vascular dysfunction, providing a potential therapeutic target for proteinuric kidney disease. PMID:22797190

  13. Pulmonary vascular and right ventricular dysfunction in adult critical care: current and emerging options for management: a systematic literature review.

    PubMed

    Price, Laura C; Wort, Stephen J; Finney, Simon J; Marino, Philip S; Brett, Stephen J

    2010-01-01

    Pulmonary vascular dysfunction, pulmonary hypertension (PH), and resulting right ventricular (RV) failure occur in many critical illnesses and may be associated with a worse prognosis. PH and RV failure may be difficult to manage: principles include maintenance of appropriate RV preload, augmentation of RV function, and reduction of RV afterload by lowering pulmonary vascular resistance (PVR). We therefore provide a detailed update on the management of PH and RV failure in adult critical care. A systematic review was performed, based on a search of the literature from 1980 to 2010, by using prespecified search terms. Relevant studies were subjected to analysis based on the GRADE method. Clinical studies of intensive care management of pulmonary vascular dysfunction were identified, describing volume therapy, vasopressors, sympathetic inotropes, inodilators, levosimendan, pulmonary vasodilators, and mechanical devices. The following GRADE recommendations (evidence level) are made in patients with pulmonary vascular dysfunction: 1) A weak recommendation (very-low-quality evidence) is made that close monitoring of the RV is advised as volume loading may worsen RV performance; 2) A weak recommendation (low-quality evidence) is made that low-dose norepinephrine is an effective pressor in these patients; and that 3) low-dose vasopressin may be useful to manage patients with resistant vasodilatory shock. 4) A weak recommendation (low-moderate quality evidence) is made that low-dose dobutamine improves RV function in pulmonary vascular dysfunction. 5) A strong recommendation (moderate-quality evidence) is made that phosphodiesterase type III inhibitors reduce PVR and improve RV function, although hypotension is frequent. 6) A weak recommendation (low-quality evidence) is made that levosimendan may be useful for short-term improvements in RV performance. 7) A strong recommendation (moderate-quality evidence) is made that pulmonary vasodilators reduce PVR and improve RV function, notably in pulmonary vascular dysfunction after cardiac surgery, and that the side-effect profile is reduced by using inhaled rather than systemic agents. 8) A weak recommendation (very-low-quality evidence) is made that mechanical therapies may be useful rescue therapies in some settings of pulmonary vascular dysfunction awaiting definitive therapy. This systematic review highlights that although some recommendations can be made to guide the critical care management of pulmonary vascular and right ventricular dysfunction, within the limitations of this review and the GRADE methodology, the quality of the evidence base is generally low, and further high-quality research is needed.

  14. Coronary Heart Disease Preoperative Gesture Interactive Diagnostic System Based on Augmented Reality.

    PubMed

    Zou, Yi-Bo; Chen, Yi-Min; Gao, Ming-Ke; Liu, Quan; Jiang, Si-Yu; Lu, Jia-Hui; Huang, Chen; Li, Ze-Yu; Zhang, Dian-Hua

    2017-08-01

    Coronary heart disease preoperative diagnosis plays an important role in the treatment of vascular interventional surgery. Actually, most doctors are used to diagnosing the position of the vascular stenosis and then empirically estimating vascular stenosis by selective coronary angiography images instead of using mouse, keyboard and computer during preoperative diagnosis. The invasive diagnostic modality is short of intuitive and natural interaction and the results are not accurate enough. Aiming at above problems, the coronary heart disease preoperative gesture interactive diagnostic system based on Augmented Reality is proposed. The system uses Leap Motion Controller to capture hand gesture video sequences and extract the features which that are the position and orientation vector of the gesture motion trajectory and the change of the hand shape. The training planet is determined by K-means algorithm and then the effect of gesture training is improved by multi-features and multi-observation sequences for gesture training. The reusability of gesture is improved by establishing the state transition model. The algorithm efficiency is improved by gesture prejudgment which is used by threshold discriminating before recognition. The integrity of the trajectory is preserved and the gesture motion space is extended by employing space rotation transformation of gesture manipulation plane. Ultimately, the gesture recognition based on SRT-HMM is realized. The diagnosis and measurement of the vascular stenosis are intuitively and naturally realized by operating and measuring the coronary artery model with augmented reality and gesture interaction techniques. All of the gesture recognition experiments show the distinguish ability and generalization ability of the algorithm and gesture interaction experiments prove the availability and reliability of the system.

  15. Reversal of diabetic vasculopathy in a rat model of type 1 diabetes by opiorphin-related peptides

    PubMed Central

    Calenda, Giulia; Tong, Yuehong; Kanika, Nirmala D.; Tar, Moses T.; Suadicani, Sylvia O.; Zhang, Xinhua; Melman, Arnold; Rougeot, Catherine

    2011-01-01

    Diabetes results in a myriad of vascular complications, often referred to as diabetic vasculopathy, which encompasses both microvascular [erectile dysfunction (ED), retinopathy, neuropathy, and nephropathy] and macrovascular complications (hypertension, coronary heart disease, and myocardial infarction). In diabetic animals and patients with ED, there is decreased opiorphin or opiorphin-related gene expression in corporal tissue. Both opiorphin and the rat homologous peptide sialorphin are found circulating in the plasma. In the present study, we investigated if diabetes induced changes in plasma sialorphin levels and if changes in these levels could modulate the biochemistry and physiology of vascular smooth muscle. We show that circulating sialorphin levels are reduced in a rat model of type I diabetes. Intracorporal injection of plasmids expressing sialorphin into diabetic rats restores sialorphin levels to those seen in the blood of nondiabetic animals and results in both improved erectile function and blood pressure. Sialorphin modulated the ability of C-type natriuretic peptide to relax both corporal and aortic smooth muscle strips and of bradykinin to regulate intracellular calcium levels in both corporal and aortic smooth muscle cells. We have previously shown that expression of genes encoding opiorphins is increased when erectile function is improved. Our findings thus suggest that by affecting circulating levels of opiorphin-related peptides, proper erectile function is not only an indicator but also a modulator of overall vascular health of a man. PMID:21784987

  16. Reversal of diabetic vasculopathy in a rat model of type 1 diabetes by opiorphin-related peptides.

    PubMed

    Calenda, Giulia; Tong, Yuehong; Kanika, Nirmala D; Tar, Moses T; Suadicani, Sylvia O; Zhang, Xinhua; Melman, Arnold; Rougeot, Catherine; Davies, Kelvin P

    2011-10-01

    Diabetes results in a myriad of vascular complications, often referred to as diabetic vasculopathy, which encompasses both microvascular [erectile dysfunction (ED), retinopathy, neuropathy, and nephropathy] and macrovascular complications (hypertension, coronary heart disease, and myocardial infarction). In diabetic animals and patients with ED, there is decreased opiorphin or opiorphin-related gene expression in corporal tissue. Both opiorphin and the rat homologous peptide sialorphin are found circulating in the plasma. In the present study, we investigated if diabetes induced changes in plasma sialorphin levels and if changes in these levels could modulate the biochemistry and physiology of vascular smooth muscle. We show that circulating sialorphin levels are reduced in a rat model of type I diabetes. Intracorporal injection of plasmids expressing sialorphin into diabetic rats restores sialorphin levels to those seen in the blood of nondiabetic animals and results in both improved erectile function and blood pressure. Sialorphin modulated the ability of C-type natriuretic peptide to relax both corporal and aortic smooth muscle strips and of bradykinin to regulate intracellular calcium levels in both corporal and aortic smooth muscle cells. We have previously shown that expression of genes encoding opiorphins is increased when erectile function is improved. Our findings thus suggest that by affecting circulating levels of opiorphin-related peptides, proper erectile function is not only an indicator but also a modulator of overall vascular health of a man.

  17. Human microvascular dysfunction and apoptotic injury induced by AL amyloidosis light chain proteins.

    PubMed

    Migrino, Raymond Q; Truran, Seth; Gutterman, David D; Franco, Daniel A; Bright, Megan; Schlundt, Brittany; Timmons, Mitchell; Motta, Angelica; Phillips, Shane A; Hari, Parameswaran

    2011-12-01

    Light chain amyloidosis (AL) involves overproduction of amyloidogenic light chain proteins (LC) leading to heart failure, yet the mechanisms underlying tissue toxicity remain unknown. We hypothesized that LC induces endothelial dysfunction in non-AL human microvasculature and apoptotic injury in human coronary artery endothelial cells (HCAECs). Adipose arterioles (n = 34, 50 ± 3 yr) and atrial coronary arterioles (n = 19, 68 ± 2 yr) from non-AL subjects were cannulated. Adipose arteriole dilator responses to acetylcholine/papaverine were measured at baseline and 1 h exposure to LC (20 μg/ml) from biopsy-proven AL subjects (57 ± 11 yr) without and with antioxidant cotreatment. Coronary arteriole dilation to bradykinin/papaverine was measured post-LC exposure. HCAECs were exposed to 1 or 24 h of LC. LC reduced dilation to acetylcholine (10(-4) M: 41.6 ± 7 vs. 85.8 ± 2.2% control, P < 0.001) and papaverine (81.4 ± 4.6 vs. 94.8 ± 1.3% control, P < 0.01) in adipose arterioles and to bradykinin (10(-6) M: 68.6 ± 6.2 vs. 90.9 ± 1.6% control, P < 0.001) but not papaverine in coronary arterioles. There was an increase in superoxide and peroxynitrite in arterioles treated with LC. Adipose arteriole dilation was restored by cotreatment with polyethylene glycol-superoxide dismutase and tetrahydrobiopterin but only partially restored by mitoquinone (mitochondria-targeted antioxidant) and gp91ds-tat (NADPH oxidase inhibitor). HCAECs exposed to LC showed reduced NO and increased superoxide, peroxynitrite, annexin-V, and propidium iodide compared with control. Brief exposure to physiological amounts of LC induced endothelial dysfunction in human adipose and coronary arterioles and increased apoptotic injury in coronary artery endothelial cells likely as a result of oxidative stress, reduced NO bioavailability, and peroxynitrite production. Microvascular dysfunction and injury is a novel mechanism underlying AL pathobiology and is a potential target for therapy.

  18. Adipokine CTRP6 improves PPARγ activation to alleviate angiotensin II-induced hypertension and vascular endothelial dysfunction in spontaneously hypertensive rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chi, Liyi; Departments of Cardiology, The 451st Hospital of People's Liberation Army; Hu, Xiaojing

    Angiotensin II (AngII) is the most important component of angiotensin, which has been regarded as a major contributor to the incidence of hypertension and vascular endothelial dysfunction. The adipocytokine C1q/TNF-related protein 6 (CTRP6) was recently reported to have multiple protective effects on cardiac and cardiovascular function. However, the exact role of CTRP6 in the progression of AngII induced hypertension and vascular endothelial function remains unclear. Here, we showed that serum CTRP6 content was significantly downregulated in SHRs, accompanied by a marked increase in arterial systolic pressure and serum AngII, CRP and ET-1 content. Then, pcDNA3.1-mediated CTRP6 delivery or CTRP6 siRNAmore » was injected into SHRs. CTRP6 overexpression caused a significant decrease in AngII expression and AngII-mediated hypertension and vascular endothelial inflammation. In contrast, CTRP6 knockdown had the opposite effect to CTRP6 overexpression. Moreover, we found that CTRP6 positively regulated the activation of the ERK1/2 signaling pathway and the expression of peroxisome proliferator-activated receptor γ (PPARγ), a recently proven negative regulator of AngII, in the brain and vascular endothelium of SHRs. Finally, CTRP6 was overexpressed in endothelial cells, and caused a significant increase in PPARγ activation and suppression in AngII-mediated vascular endothelial dysfunction and apoptosis. The effect of that could be rescued by the ERK inhibitor PD98059. In contrast, silencing CTRP6 suppressed PPARγ activation and exacerbated AngII-mediated vascular endothelial dysfunction and apoptosis. In conclusion, CTRP6 improves PPARγ activation and alleviates AngII-induced hypertension and vascular endothelial dysfunction. - Highlights: • Serum CTRP6 was significantly decreased in spontaneously hypertensive rats (SHRs). • CTRP6 positively regulated the activation of the ERK1/2 signaling pathway. • CTRP6 negatively regulates PPARγ mediated Angiotensin II (AngII) expression. • CTRP6 alleviates AngII-induced hypertension and vascular endothelial dysfunction.« less

  19. Coronary microvascular dysfunction and diastolic load correlate with cardiac troponin T release measured by a highly sensitive assay in patients with nonischemic heart failure.

    PubMed

    Takashio, Seiji; Yamamuro, Megumi; Izumiya, Yasuhiro; Sugiyama, Seigo; Kojima, Sunao; Yamamoto, Eiichiro; Tsujita, Kenichi; Tanaka, Tomoko; Tayama, Shinji; Kaikita, Koichi; Hokimoto, Seiji; Ogawa, Hisao

    2013-08-13

    This study investigated factors associated with cardiac troponin T (cTnT) release from failing myocardium. Persistent and modest elevation of serum cTnT is frequently observed in heart failure (HF) patients free of coronary artery disease, although the mechanisms underlying this finding remain unclear. We evaluated serum cTnT levels in the aortic root (Ao) and coronary sinus (CS) using a highly sensitive assay in 90 nonischemic HF patients and 47 non-HF patients. Transcardiac cTnT and plasma B-type natriuretic peptide (BNP) release were described as the differences between CS and Ao cTnT levels [ΔcTnT (CS-Ao)] and BNP levels [ΔBNP (CS-Ao)], respectively. Coronary flow reserve (CFR) was measured in 68 HF patients using an intracoronary Doppler guidewire. ΔcTnT (CS-Ao) levels were available in 76 HF patients and 28 non-HF patients (84% vs. 60%; p = 0.001), and higher in HF patients than non-HF patients (p < 0.001). Among HF patients, log[ΔcTnT (CS-Ao)] correlated with log[ΔBNP (CS-Ao)] (r = 0.368, p = 0.001), pulmonary capillary wedge pressure (r = 0.253, p = 0.03) and left ventricular end-diastolic pressure (LVEDP) (r = 0.321, p = 0.005). Multivariate regression analysis identified LVEDP as an independent parameter that correlated with ΔcTnT (CS-Ao). ΔcTnT (CS-Ao) levels were available in 58 HF patients who were evaluated for CFR. Coronary microvascular dysfunction, diagnosed by CFR <2.0, was observed in 18 HF patients. ΔcTnT (CS-Ao) was higher in patients with coronary microvascular dysfunction (4.8 [2.0 to 8.1] ng/l) than those without (2.0 [1.2 to 4.6] ng/l; p = 0.04). cTnT release from failing myocardium correlated with diastolic load and coronary microvascular dysfunction in nonischemic HF patients. Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  20. Advances in atheroma imaging in the carotid.

    PubMed

    Gillard, Jonathan H

    2007-01-01

    Atherosclerosis affects all vascular beds, including the coronary, carotid, intracerebral, peripheral and aortic vascular beds, and is responsible for tremendous morbidity and mortality, with the most serious outcomes being myocardial infarction, stroke and death. Historically the effects of vascular narrowing and associated thrombosis have been key indicators of disease in the coronary and carotid territories, with degrees of vascular stenosis being of profound importance in carotid surgery trials. Our improving understanding of the biology of atheromatous lesions and the development of alternative therapeutic agents which can initiate actual plaque regression have created a need to attempt to image plaque itself, with the carotid artery being an achievable target. This article reviews current strategies for assessing carotid atherosclerotic disease, particularly with reference to identifying plaque components and risk of rupture, the so-called vulnerable plaque. Copyright 2007 S. Karger AG, Basel.

  1. Growth Hormone (GH) and Cardiovascular System

    PubMed Central

    Díaz, Oscar; Devesa, Pablo

    2018-01-01

    This review describes the positive effects of growth hormone (GH) on the cardiovascular system. We analyze why the vascular endothelium is a real internal secretion gland, whose inflammation is the first step for developing atherosclerosis, as well as the mechanisms by which GH acts on vessels improving oxidative stress imbalance and endothelial dysfunction. We also report how GH acts on coronary arterial disease and heart failure, and on peripheral arterial disease, inducing a neovascularization process that finally increases flow in ischemic tissues. We include some preliminary data from a trial in which GH or placebo is given to elderly people suffering from critical limb ischemia, showing some of the benefits of the hormone on plasma markers of inflammation, and the safety of GH administration during short periods of time, even in diabetic patients. We also analyze how Klotho is strongly related to GH, inducing, after being released from the damaged vascular endothelium, the pituitary secretion of GH, most likely to repair the injury in the ischemic tissues. We also show how GH can help during wound healing by increasing the blood flow and some neurotrophic and growth factors. In summary, we postulate that short-term GH administration could be useful to treat cardiovascular diseases. PMID:29346331

  2. Proposed Pathophysiologic Framework to Explain Some ...

    EPA Pesticide Factsheets

    The paper proposes a pathophysiologic framework to explain the well-established epidemiological association between exposure to ambient air particle pollution and premature cardiovascular mortality, and offers insights into public health solutions that extend beyond regularory environmental protections to actions that can be taken by individuals, public health officials, healthcare professionals, city and regional planners, local and state governmental officials and all those who possess the capacity to improve cardiovascular health within the popula­tion.The foundation of the framework rests on the contribution of traditional cardiovascular risk factors acting alone and in concert with long-term exposures to air pollutants to create a conditional susceptibility for clinical vascular events, such as myocardial ischemia and infarction; stroke and lethal ventricular arrhythmias. The conceprual framework focuses on the fact that short-term exposures to ambient air particulate matter (PM) are associated with vascular thrombosis (acute coronary syndrome. stroke, deep venous thrombosis. and pulmonary embolism ) and electrical dysfunction (ventricular arrhythmia); and that individuals having prevalent heart disease are at greatest risk. Moreover, exposure is concomitant with changes in autonomic nervous system balance, systemic in­flammation, and prothrombotic/anti-thrombotic and profibrinolytic-antifibrinolytic balance.Thus, a comprehensive solution to the problem o

  3. Endothelial safety of radiological contrast media: why being concerned.

    PubMed

    Scoditti, Egeria; Massaro, Marika; Montinari, Maria Rosa

    2013-01-01

    Iodinated radiocontrast media have been the most widely used pharmaceuticals for intravascular administration in diagnostic and interventional angiographic procedures. Although they are regarded as relatively safe drugs and vascular biocompatibility of contrast media has been progressively improved, severe adverse reactions may occur, among which acute nephropathy is one of the most clinically significant complications after intravascular administration of contrast media and a powerful predictor of poor early and long-term outcomes. Since radiocontrast media are given through the arterial or the venous circulation in vascular procedures, morphological and functional changes of the microvascular and macrovascular endothelial cells substantially contribute to the pathogenesis of organ-specific and systemic adverse reactions of contrast media. Endothelial toxicity of contrast media seems to be the result of both direct proapoptotic effects and morphological derangements, as well as endothelial dysfunction and induction of inflammation, oxidative stress, thrombosis, and altered vasomotor balance, with predominant vasoconstrictive response in atherosclerotic coronary arteries and kidney microcirculation. Further understanding of pathogenetic mechanisms underlying contrast media-induced adverse reactions in cellular targets, including endothelial cells, will hopefully lead to the development of novel preventive strategies appropriately curbing the pathogenesis of contrast media vasotoxicity. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Nanomedicine Meets microRNA: Current Advances in RNA-Based Nanotherapies for Atherosclerosis.

    PubMed

    Gadde, Suresh; Rayner, Katey J

    2016-09-01

    Cardiovascular disease (CVD) accounts for almost half of all deaths worldwide and has now surpassed infectious disease as the leading cause of death and disability in developing countries. At present, therapies such as low-density lipoprotein-lowering statins and antihypertensive drugs have begun to bend the morality curve for coronary artery disease (CAD); yet, as we come to appreciate the more complex pathophysiological processes in the vessel wall, there is an opportunity to fine-tune therapies to more directly target mechanisms that drive CAD. MicroRNAs (miRNAs) have been identified that control vascular cell homeostasis,(1-3) lipoprotein metabolism,(4-9) and inflammatory cell function.(10) Despite the importance of these miRNAs in driving atherosclerosis and vascular dysfunction, therapeutic modulation of miRNAs in a cell- and context-specific manner has been a challenge. In this review, we summarize the emergence of miRNA-based therapies as an approach to treat CAD by specifically targeting the pathways leading to the disease. We focus on the latest development of nanoparticles (NPs) as a means to specifically target the vessel wall and what the future of these nanomedicines may hold for the treatment of CAD. © 2016 American Heart Association, Inc.

  5. Tetrahydrobiopterin Improves Endothelial Function in Cardiovascular Disease: A Systematic Review

    PubMed Central

    Wang, Qiongying; Yang, Mina; Xu, Han; Yu, Jing

    2014-01-01

    Background. Tetrahydrobiopterin (BH4) is a cofactor of nitric oxide synthase (NOS). Nitric oxide (NO) bioavailability is reduced during the early stage of vascular diseases, such as coronary artery disease, hypercholesterolemia, hypertension, and diabetic vasculopathy, and even throughout the entire progression of atherosclerosis. Methods. A literature search was performed using electronic databases (up to January 31, 2014), including MEDLINE, EMBASE, and Cochrane Central Register of Controlled Trials (CENTRAL), using an established strategy. Results. Fourteen articles were selected with a total of 370 patients. Ten of the fourteen studies showed a significant improvement in the endothelial dysfunction of various cardiovascular disease groups with BH4 supplementation compared with the control groups or placebos. Three studies showed no positive outcome, and one study showed that low-dose BH4 had no effect but that high-dose BH4 did have a significantly different result. Conclusions. This review concludes that supplementation with BH4 and/or augmentation of the endogenous levels of BH4 will be a novel approach to improve the endothelial dysfunction observed in various cardiovascular diseases. BH4 might be considered to be a new therapeutic agent to prevent the initiation and progression of cardiovascular disease. PMID:25548592

  6. Pseudo-acute myocardial infarction due to transient apical ventricular dysfunction syndrome (Takotsubo syndrome).

    PubMed

    Maciel, Bruno Araújo; Cidrão, Alan Alves de Lima; Sousa, Italo Bruno Dos Santos; Ferreira, José Adailson da Silva; Messias Neto, Valdevino Pedro

    2013-03-01

    Takotsubo syndrome is characterized by predominantly medial-apical transient left ventricular dysfunction, which is typically triggered by physical or emotional stress. The present article reports the case of a 61-year-old female patient presenting with dizziness, excessive sweating, and sudden state of ill feeling following an episode involving intense emotional stress. The physical examination and electrocardiogram were normal upon admission, but the troponin I and creatine kinase-MB concentrations were increased. Acute myocardial infarction without ST segment elevation was suspected, and coronary angiography was immediately performed, which showed severe diffuse left ventricular hypokinesia, medial-apical systolic ballooning, and a lack of significant coronary injury. The patient was referred to the intensive care unit and was successfully treated with supportive therapy. As this case shows, Takotsubo syndrome might simulate the clinical manifestations of acute myocardial infarction, and coronary angiography is necessary to distinguish between both myocardial infarction and myocardial infarction in the acute stage. The present patient progressed with spontaneous resolution of the ventricular dysfunction without any sequelae.

  7. Cardiovascular Disease in Patients with End-Stage Renal Disease on Hemodialysis

    PubMed Central

    Aoki, Jiro; Ikari, Yuji

    2017-01-01

    Cardiovascular disease is a major concern for patients with end-stage renal disease (ESRD), especially those on hemodialysis. ESRD patients with coronary artery disease often do not have symptoms or present with atypical symptoms. Coronary lesions in ESRD patients are characterized by increased media thickness, infiltration and activation of macrophages, and marked calcification. Several studies showed worsened clinical outcomes after coronary revascularization, which were dependent on the severity of renal dysfunction. ESRD patients on hemodialysis have the most severe renal dysfunction; thus, the clinical outcomes are worse in these patients than in those with other types of renal dysfunction. Medications for primary or secondary cardiovascular prevention are also insufficient in ESRD patients. Efficacy of drug-eluting stents is inferior in ESRD patients, compared to the excellent outcomes observed in patients with normal renal function. Unsatisfactory outcomes with trials targeting cardiovascular disease in patients with ESRD emphasize a large potential to improve outcomes. Thus, optimal strategies for diagnosis, prevention, and management of cardiovascular disease should be modified in ESRD patients. PMID:29515692

  8. Pseudo-acute myocardial infarction due to transient apical ventricular dysfunction syndrome (Takotsubo syndrome)

    PubMed Central

    Maciel, Bruno Araújo; Cidrão, Alan Alves de Lima; Sousa, Ítalo Bruno dos Santos; Ferreira, José Adailson da Silva; Messias Neto, Valdevino Pedro

    2013-01-01

    Takotsubo syndrome is characterized by predominantly medial-apical transient left ventricular dysfunction, which is typically triggered by physical or emotional stress. The present article reports the case of a 61-year-old female patient presenting with dizziness, excessive sweating, and sudden state of ill feeling following an episode involving intense emotional stress. The physical examination and electrocardiogram were normal upon admission, but the troponin I and creatine kinase-MB concentrations were increased. Acute myocardial infarction without ST segment elevation was suspected, and coronary angiography was immediately performed, which showed severe diffuse left ventricular hypokinesia, medial-apical systolic ballooning, and a lack of significant coronary injury. The patient was referred to the intensive care unit and was successfully treated with supportive therapy. As this case shows, Takotsubo syndrome might simulate the clinical manifestations of acute myocardial infarction, and coronary angiography is necessary to distinguish between both myocardial infarction and myocardial infarction in the acute stage. The present patient progressed with spontaneous resolution of the ventricular dysfunction without any sequelae. PMID:23887762

  9. A case-control analysis on the association between erectile dysfunction and sudden sensorineural hearing loss in Taiwan.

    PubMed

    Keller, Joseph J; Chen, Yi-Kuang; Lin, Herng-Ching

    2012-05-01

    Although the cause of sudden sensorineural hearing loss (SSNHL) is yet to be elucidated, many theories have been proposed regarding potentially contributory etiologies. One increasingly well-supported theory purports an underlying vascular pathomechanism. If this is the case, SSNHL may also associate with conditions comorbid with vascular diseases, such as erectile dysfunction (ED). However, no studies to date have investigated the association between ED and SSNHL. This study set out to estimate a putative association between ED and having been previously diagnosed with SSNHL using a population-based dataset with a case-control design. This study used administrative claim data from the Taiwan National Health Insurance program. We identified 4,504 patients with ED as the study group and randomly selected 22,520 patients as the comparison group. Conditional logistic regression was used to examine the association between ED and having previously received a diagnosis of SSNHL. The prevalence and risk of SSNHL between cases and controls were calculated. Of the sampled patients, 41 (0.15%) had been diagnosed with SSNHL before the index date; 22 (0.49% of the cases) were from the study group and 19 (0.08% of controls) were from the control group. Conditional logistic regression analysis revealed that after adjusting for the patient's monthly income, geographic location, hypertension, diabetes, hyperlipidemia, coronary heart disease, obesity, and alcohol abuse/alcohol dependence syndrome status, patients with ED were more likely than controls to have been diagnosed with SSNHL before the index date (odds ratio = 6.06, 95% confidence interval = 3.25-11.29). There was an association between ED and prior SSNHL. The results of this study add to the evidence supporting an underlying vascular pathomechanism regarding the development of SSNHL and highlight a need for clinicians dealing with SSNHL patients to be alert to the development of ED. © 2012 International Society for Sexual Medicine.

  10. Coronary artery disease detection - limitations of stress testing in left ventricular dysfunction

    PubMed Central

    Bomb, Ritin; Kumar, Senthil; Chockalingam, Anand

    2017-01-01

    Incidental diagnosis of left ventricular systolic dysfunction (LVD) is common in clinical practice. The prevalence of asymptomatic LVD (Ejection Fraction, EF < 50%) is 6.0% in men and 0.8% in women and is twice as common as symptomatic LVD. The timely and definitive exclusion of an ischemic etiology is central to optimizing care and reducing mortality in LVD. Advances in cardiovascular imaging provide many options for imaging of patients with left ventricular dysfunction. Clinician experience, patient endurance, imaging modality characteristics, cost and safety determine the choice of testing. In this review, we have compared the diagnostic utility of established tests - nuclear and echocardiographic stress testing with newer techniques like coronary computerized tomography and cardiac magnetic resonance imaging and highlight their inherent limitations in patients with underlying left ventricular dysfunction. PMID:28515848

  11. mTOR drives cerebral blood flow and memory deficits in LDLR-/- mice modeling atherosclerosis and vascular cognitive impairment.

    PubMed

    Jahrling, Jordan B; Lin, Ai-Ling; DeRosa, Nicholas; Hussong, Stacy A; Van Skike, Candice E; Girotti, Milena; Javors, Martin; Zhao, Qingwei; Maslin, Leigh Ann; Asmis, Reto; Galvan, Veronica

    2018-01-01

    We recently showed that mTOR attenuation blocks progression and abrogates established cognitive deficits in Alzheimer's disease (AD) mouse models. These outcomes were associated with the restoration of cerebral blood flow (CBF) and brain vascular density (BVD) resulting from relief of mTOR inhibition of NO release. Recent reports suggested a role of mTOR in atherosclerosis. Because mTOR drives aging and vascular dysfunction is a universal feature of aging, we hypothesized that mTOR may contribute to brain vascular and cognitive dysfunction associated with atherosclerosis. We measured CBF, BVD, cognitive function, markers of inflammation, and parameters of cardiovascular disease in LDLR -/- mice fed maintenance or high-fat diet ± rapamycin. Cardiovascular pathologies were proportional to severity of brain vascular dysfunction. Aortic atheromas were reduced, CBF and BVD were restored, and cognitive dysfunction was attenuated potentially through reduction in systemic and brain inflammation following chronic mTOR attenuation. Our studies suggest that mTOR regulates vascular integrity and function and that mTOR attenuation may restore neurovascular function and cardiovascular health. Together with our previous studies in AD models, our data suggest mTOR-driven vascular damage may be a mechanism shared by age-associated neurological diseases. Therefore, mTOR attenuation may have promise for treatment of cognitive impairment in atherosclerosis.

  12. Predictors of contemporary coronary artery bypass grafting outcomes.

    PubMed

    Weisel, Richard D; Nussmeier, Nancy; Newman, Mark F; Pearl, Ronald G; Wechsler, Andrew S; Ambrosio, Giuseppe; Pitt, Bertram; Clare, Robert M; Pieper, Karen S; Mongero, Linda; Reece, Tammy L; Yau, Terrence M; Fremes, Stephen; Menasché, Philippe; Lira, Armando; Harrington, Robert A; Ferguson, T Bruce

    2014-12-01

    The study objective was to identify the predictors of outcomes in a contemporary cohort of patients from the Reduction in cardiovascular Events by acaDesine in patients undergoing CABG (RED-CABG) trial. Despite the increasing risk profile of patients who undergo coronary artery bypass grafting, morbidity and mortality have remained low, and identification of the current predictors of adverse outcomes may permit new treatments to further improve outcomes. The RED-CABG trial was a multicenter, randomized, double-blind, placebo-controlled study that determined that acadesine did not reduce adverse events in moderately high-risk patients undergoing nonemergency coronary artery bypass grafting. The primary efficacy end point was a composite of all-cause death, nonfatal stroke, or the need for mechanical support for severe left ventricular dysfunction through postoperative day 28. Logistic regression modeling with stepwise variable selection identified which prespecified baseline characteristics were associated with the primary outcome. A second logistic model included intraoperative variables as potential covariates. The 4 independent preoperative risk factors predictive of the composite end point were (1) a history of heart failure (odds ratio, 2.9); (2) increasing age (odds ratio, 1.033 per decade); (3) a history of peripheral vascular disease (odds ratio, 1.6); and (4) receiving aspirin before coronary artery bypass grafting (odds ratio, 0.5), which was protective. The duration of the cardiopulmonary bypass (odds ratio, 1.8) was the only intraoperative variable that contributed to adverse outcomes. Patients who had heart failure and preserved systolic function had a similar high risk of adverse outcomes as those with low ejection fractions, and new approaches may mitigate this risk. Recognition of patients with excessive atherosclerotic burden may permit perioperative interventions to improve their outcomes. The contemporary risks of coronary artery bypass grafting have changed, and their identification may permit new methods to improve outcomes. Copyright © 2014 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  13. Acute EGCG supplementation reverses endothelial dysfunction in patients with coronary artery disease.

    PubMed

    Widlansky, Michael E; Hamburg, Naomi M; Anter, Elad; Holbrook, Monika; Kahn, David F; Elliott, James G; Keaney, John F; Vita, Joseph A

    2007-04-01

    Epidemiological studies demonstrate an inverse relation between dietary flavonoid intake and cardiovascular risk. Recent studies with flavonoid-containing beverages suggest that the benefits of these nutrients may relate, in part, to improved endothelial function. We hypothesized that dietary supplementation with epigallocatechin gallate (EGCG), a major catechin in tea, would improve endothelial function in humans. We examined the effects of EGCG on endothelial function in a double blind, placebo-controlled, crossover design study. We measured brachial artery flow-mediated dilation by vascular ultrasound at six time points: prior to treatment with EGCG or placebo, two hours after an initial dose of EGCG (300 mg) or placebo, and after two weeks of treatment with EGCG (150 mg twice daily) or placebo. The order of treatments (EGCG or placebo) was randomized and there was a one-week washout period between treatments. A total of 42 subjects completed the study, and brachial artery flow-mediated dilation improved from 7.1 +/- 4.1 to 8.6 +/- 4.7% two hours after the first dose of 300 mg of EGCG (P = 0.01), but was similar to baseline (7.8 +/- 4.2%, P = 0.12) after two weeks of treatment with the final measurements made approximately 14 hours after the last dose. Placebo treatment had no significant effect, and there were no changes in reactive hyperemia or the response to sublingual nitroglycerin. The changes in vascular function paralleled plasma EGCG concentrations, which increased from 2.6 +/- 10.9 to 92.8 +/- 78.7 ng/ml after acute EGCG (P < 0.001), but were unchanged from baseline after two weeks of treatment (3.4 +/- 13.1 ng/ml). EGCG acutely improves endothelial function in humans with coronary artery disease, and may account for a portion of the beneficial effects of flavonoid-rich food on endothelial function.

  14. Klotho modulates FGF23-mediated NO synthesis and oxidative stress in human coronary artery endothelial cells.

    PubMed

    Richter, Beatrice; Haller, Jacqueline; Haffner, Dieter; Leifheit-Nestler, Maren

    2016-09-01

    Chronic kidney disease (CKD) is a state of Klotho deficiency and excess of the phosphaturic hormone fibroblast growth factor 23 (FGF23). Both dysregulations were shown to be associated with endothelial dysfunction in humans, but direct vascular effects of FGF23 remain largely elusive. In vitro experiments were performed to assess the effects of FGF23 (10 ng/mL) in relation to its co-receptor Klotho on nitric oxide (NO) synthesis and reactive oxygen species (ROS) formation and detoxification in human coronary artery endothelial cells (HCAEC). Membrane-bound Klotho is expressed in HCAEC, and FGF23 increases the expression of the Klotho shedding protease ADAM17, and consequently the secretion of soluble Klotho. FGF23 activates FGF receptor 1 and stimulates NO release via Akt-dependent activation of endothelial NO synthase (eNOS). Both FGF receptor (FGFR)-dependent ROS formation via activation of NADPH oxidase 2 (Nox2) as well as ROS degradation via superoxide dismutase 2 (SOD2) and catalase (CAT) is stimulated by FGF23. Pre-incubation with a Klotho inhibitor blunts the FGF23-stimulated Akt-eNOS activation and NO synthesis, and decreases ROS degradation by blocking SOD2 and CAT enzymes, whereas FGF23-stimulated ROS synthesis via Nox2 is unaffected, resulting in low NO bioavailability and increased oxidative stress. Our data indicate that in the presence of Klotho, FGF23 induces NO release in HCAEC and its stimulating effects on ROS production are counterbalanced by increased ROS degradation. In states of Klotho deficiency, e.g., CKD, FGF23-mediated NO synthesis is blunted and ROS formation overrules ROS degradation. Thus, FGF23 excess may primarily promote oxidative stress and thus endothelial dysfunction.

  15. [VIABILITY OF MYOCAROIUM AS RISK FACTOR FOR MORTALITY IN EARLY AND LATE PERIOD AFTER BYPASS SURGERY OF CORONARY ARTERIES IN PATIENTS WITH CORONARY HEART DISEASE AND SEVERE LEFT VENTRICULAR DYSFUNCTION].

    PubMed

    Todurov, B M; Zelenchuk, V; Kuzmich, I M; Ivanyuk, N B; Nikolaichuk, M V

    2015-06-01

    In coronary heart disease and low ejection fraction of the left ventricle (LV) in patients after coronary artery bypass surgery tend mortality and complication rate higher than preserved LV systolic function. Significant preoperative predictors of early mortality and remote in these patients, and the incidence of complications in the early postoperative period were reveald.

  16. Dark chocolate improves coronary vasomotion and reduces platelet reactivity.

    PubMed

    Flammer, Andreas J; Hermann, Frank; Sudano, Isabella; Spieker, Lukas; Hermann, Matthias; Cooper, Karen A; Serafini, Mauro; Lüscher, Thomas F; Ruschitzka, Frank; Noll, Georg; Corti, Roberto

    2007-11-20

    Dark chocolate has potent antioxidant properties. Coronary atherosclerosis is promoted by impaired endothelial function and increased platelet activation. Traditional risk factors, high oxidative stress, and reduced antioxidant defenses play a crucial role in the pathogenesis of atherosclerosis, particularly in transplanted hearts. Thus, flavonoid-rich dark chocolate holds the potential to have a beneficial impact on graft atherosclerosis. We assessed the effect of flavonoid-rich dark chocolate compared with cocoa-free control chocolate on coronary vascular and platelet function in 22 heart transplant recipients in a double-blind, randomized study. Coronary vasomotion was assessed with quantitative coronary angiography and cold pressor testing before and 2 hours after ingestion of 40 g of dark (70% cocoa) chocolate or control chocolate, respectively. Two hours after ingestion of flavonoid-rich dark chocolate, coronary artery diameter was increased significantly (from 2.36+/-0.51 to 2.51+/-0.59 mm, P<0.01), whereas it remained unchanged after control chocolate. Endothelium-dependent coronary vasomotion improved significantly after dark chocolate (4.5+/-11.4% versus -4.3+/-11.7% in the placebo group, P=0.01). Platelet adhesion decreased from 4.9+/-1.1% to 3.8+/-0.8% (P=0.04) in the dark chocolate group but remained unchanged in the control group. Dark chocolate induces coronary vasodilation, improves coronary vascular function, and decreases platelet adhesion 2 hours after consumption. These immediate beneficial effects were paralleled by a significant reduction of serum oxidative stress and were positively correlated with changes in serum epicatechin concentration.

  17. Comparison of five-year outcomes of coronary artery bypass grafting versus percutaneous coronary intervention in patients with left ventricular ejection fractions≤50% versus >50% (from the CREDO-Kyoto PCI/CABG Registry Cohort-2).

    PubMed

    Marui, Akira; Kimura, Takeshi; Nishiwaki, Noboru; Mitsudo, Kazuaki; Komiya, Tatsuhiko; Hanyu, Michiya; Shiomi, Hiroki; Tanaka, Shiro; Sakata, Ryuzo

    2014-10-01

    Coronary heart disease is a major risk factor for left ventricular (LV) systolic dysfunction. However, limited data are available regarding long-term benefits of percutaneous coronary intervention (PCI) in the era of drug-eluting stent or coronary artery bypass grafting (CABG) in patients with LV systolic dysfunction with severe coronary artery disease. We identified 3,584 patients with 3-vessel and/or left main disease of 15,939 patients undergoing first myocardial revascularization enrolled in the CREDO-Kyoto PCI/CABG Registry Cohort-2. Of them, 2,676 patients had preserved LV systolic function, defined as an LV ejection fraction (LVEF) of >50% and 908 had impaired LV systolic function (LVEF≤50%). In patients with preserved LV function, 5-year outcomes were not different between PCI and CABG regarding propensity score-adjusted risk of all-cause and cardiac deaths. In contrast, in patients with impaired LV systolic function, the risks of all-cause and cardiac deaths after PCI were significantly greater than those after CABG (hazard ratio 1.49, 95% confidence interval 1.04 to 2.14, p=0.03 and hazard ratio 2.39, 95% confidence interval 1.43 to 3.98, p<0.01). In both patients with moderate (35%

  18. The interleukin-1 receptor antagonist anakinra improves endothelial dysfunction in streptozotocin-induced diabetic rats.

    PubMed

    Vallejo, Susana; Palacios, Erika; Romacho, Tania; Villalobos, Laura; Peiró, Concepción; Sánchez-Ferrer, Carlos F

    2014-12-18

    Endothelial dysfunction is a crucial early phenomenon in vascular diseases linked to diabetes mellitus and associated to enhanced oxidative stress. There is increasing evidence about the role for pro-inflammatory cytokines, like interleukin-1β (IL-1β), in developing diabetic vasculopathy. We aimed to determine the possible involvement of this cytokine in the development of diabetic endothelial dysfunction, analysing whether anakinra, an antagonist of IL-1 receptors, could reduce this endothelial alteration by interfering with pro-oxidant and pro-inflammatory pathways into the vascular wall. In control and two weeks evolution streptozotocin-induced diabetic rats, either untreated or receiving anakinra, vascular reactivity and NADPH oxidase activity were measured, respectively, in isolated rings and homogenates from mesenteric microvessels, while nuclear factor (NF)-κB activation was determined in aortas. Plasma levels of IL-1β and tumor necrosis factor (TNF)-α were measured by ELISA. In isolated mesenteric microvessels from control rats, two hours incubation with IL-1β (1 to 10 ng/mL) produced a concentration-dependent impairment of endothelium-dependent relaxations, which were mediated by enhanced NADPH oxidase activity via IL-1 receptors. In diabetic rats treated with anakinra (100 or 160 mg/Kg/day for 3 or 7 days before sacrifice) a partial improvement of diabetic endothelial dysfunction occurred, together with a reduction of vascular NADPH oxidase and NF-κB activation. Endothelial dysfunction in diabetic animals was also associated to higher activities of the pro-inflammatory enzymes cyclooxygenase (COX) and the inducible isoform of nitric oxide synthase (iNOS), which were markedly reduced after anakinra treatment. Circulating IL-1β and TNF-α levels did not change in diabetic rats, but they were lowered by anakinra treatment. In this short-term model of type 1 diabetes, endothelial dysfunction is associated to an IL-1 receptor-mediated activation of vascular NADPH oxidase and NF-κB, as well as to vascular inflammation. Moreover, endothelial dysfunction, vascular oxidative stress and inflammation were reduced after anakinra treatment. Whether this mechanism can be extrapolated to a chronic situation or whether it may apply to diabetic patients remain to be established. However, it may provide new insights to further investigate the therapeutic use of IL-1 receptor antagonists to obtain vascular benefits in patients with diabetes mellitus and/or atherosclerosis.

  19. ADVANCE: Study to Evaluate Cinacalcet Plus Low Dose Vitamin D on Vascular Calcification in Subjects With Chronic Kidney Disease Receiving Hemodialysis

    ClinicalTrials.gov

    2014-07-14

    Chronic Kidney Disease; End Stage Renal Disease; Coronary Artery Calcification; Vascular Calcification; Calcification; Cardiovascular Disease; Chronic Renal Failure; Hyperparathyroidism; Kidney Disease; Nephrology; Secondary Hyperparathyroidism

  20. A single-centre report on the characteristics of Tako-tsubo syndrome.

    PubMed

    Teh, Andrew W; New, Gishel; Cooke, Jennifer

    2010-02-01

    Tako-tsubo cardiomyopathy is an increasingly recognised phenomenon characterised by chest pain, ECG abnormalities, cardiac biomarker elevation and transient left ventricular dysfunction without significant coronary artery obstruction. To report the clinical and echocardiographic characteristics from a large single-centre Australian series of patients with Tako-tsubo syndrome. We prospectively collected data on 23 consecutive patients presenting between November 2005 and November 2007. Baseline demographics, ECG, echocardiography and coronary angiography were performed on nearly all patients. All patients presented with chest pain; 87% were female. Various stressors were noted and cardiac Troponin-T was elevated in 91% of patients. All patients had non-obstructive coronary disease at angiography. 19/23 patients had initial and subsequent echocardiography. Mean ejection fraction was 50% at baseline and 64% at follow-up (p<0.0001). Right ventricular dysfunction was present in eight, dynamic left ventricular outflow tract obstruction in two, diastolic dysfunction in seven and two patients had the mid-cavity variant. This large prospective single-centre Australian series of Tako-tsubo syndrome is in concert with previous published series. Complete recovery of left ventricular function on echocardiographic follow-up was typical. Although its pathogenesis remains unclear, early distinction from acute coronary syndromes is important and the prognosis is reassuringly good. Crown Copyright (c) 2009. Published by Elsevier B.V. All rights reserved.

  1. Impact of a pure reduction in heart rate for the treatment of left ventricular dysfunction: clinical benefits of ivabradine in the BEAUTIFUL trial.

    PubMed

    Danchin, Nicolas

    2009-01-01

    Ivabradine is an I(f) current inhibitor, that has documented antianginal efficacy. The BEAUTIFUL trial tested ivabradine against placebo in a large population of 10,917 patients in sinus rhythm, with coronary artery disease and left ventricular dysfunction, defined as left ventricular ejection fraction < or =35%. Overall, there was no impact of ivabradine on the primary end-point of the trial (cardiovascular mortality, hospitalisation for myocardial infarction, new onset or worsening heart failure). In the placebo arm of the trial, baseline heart rate > or = 70 bpm was associated with an increased risk of cardiovascular mortality, myocardial infarction, heart failure and coronary revascularisation. In the subgroup of patients with a baseline heart rate > or =70 bpm, treatment with ivabradine resulted in a significant, 36% reduction in the risk of myocardial infarction and a 20% reduction in the need for coronary revascularisation. Ivabradine was well tolerated, with an increased rate of treatment discontinuation, mainly due to bradycardia, compared with placebo. Because of its safety and efficacy to control angina, ivabradine should be considered first-line antianginal treatment in coronary artery disease patients with left ventricular dysfunction and increased heart rate, already receiving beta-blocker therapy or in whom these medications are not tolerated.

  2. Myeloperoxidase amplified high glucose-induced endothelial dysfunction in vasculature: Role of NADPH oxidase and hypochlorous acid.

    PubMed

    Tian, Rong; Ding, Yun; Peng, Yi-Yuan; Lu, Naihao

    2017-03-11

    Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-derived reactive oxygen species (ROS) such as superoxide and hydrogen peroxide (H 2 O 2 ), have emerged as important molecules in the pathogenesis of diabetic endothelial dysfunction. Additionally, neutrophils-derived myeloperoxidase (MPO) and MPO-catalyzed hypochlorous acid (HOCl) play important roles in the vascular injury. However, it is unknown whether MPO can use vascular-derived ROS to induce diabetic endothelial dysfunction. In the present study, we demonstrated that NADPH oxidase was the main source of ROS formation in high glucose-cultured human umbilical vein endothelial cells (HUVECs), and played a critical role in high glucose-induced endothelial dysfunction such as cell apoptosis, loss of cell viability and reduction of nitric oxide (NO). However, the addition of MPO could amplify the high glucose-induced endothelial dysfunction which was inhibited by the presence of apocynin (NADPH oxidase inhibitor), catalase (H 2 O 2 scavenger), or methionine (HOCl scavenger), demonstrating the contribution of NADPH oxidase-H 2 O 2 -MPO-HOCl pathway in the MPO/high glucose-induced vascular injury. In high glucose-incubated rat aortas, MPO also exacerbated the NADPH oxidase-induced impairment of endothelium-dependent relaxation. Consistent with these in vitro data, in diabetic rat aortas, both MPO expresion and NADPH oxidase activity were increased while the endothelial function was simultaneously impaired. The results suggested that vascular-bound MPO could amplify high glucose-induced vascular injury in diabetes. MPO-NADPH oxidase-HOCl may represent an important pathogenic pathway in diabetic vascular diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Cohort profile of BIOMArCS: the BIOMarker study to identify the Acute risk of a Coronary Syndrome—a prospective multicentre biomarker study conducted in the Netherlands

    PubMed Central

    Oemrawsingh, Rohit M; Akkerhuis, K Martijn; Umans, Victor A; Kietselaer, Bas; Schotborgh, Carl; Ronner, Eelko; Lenderink, Timo; Liem, Anho; Haitsma, David; van der Harst, Pim; Asselbergs, Folkert W; Maas, Arthur; Oude Ophuis, Anton J; Ilmer, Ben; Dijkgraaf, Rene; de Winter, Robbert-Jan; The, S Hong Kie; Wardeh, Alexander J; Hermans, Walter; Cramer, Etienne; van Schaik, Ron H; Hoefer, Imo E; Doevendans, Pieter A; Simoons, Maarten L; Boersma, Eric

    2016-01-01

    Purpose Progression of stable coronary artery disease (CAD) towards acute coronary syndrome (ACS) is a dynamic and heterogeneous process with many intertwined constituents, in which a plaque destabilising sequence could lead to ACS within short time frames. Current CAD risk assessment models, however, are not designed to identify increased vulnerability for the occurrence of coronary events within a precise, short time frame at the individual patient level. The BIOMarker study to identify the Acute risk of a Coronary Syndrome (BIOMArCS) was designed to evaluate whether repeated measurements of multiple biomarkers can predict such ‘vulnerable periods’. Participants BIOMArCS is a multicentre, prospective, observational study of 844 patients presenting with ACS, either with or without ST-elevation and at least one additional cardiovascular risk factor. Methods and analysis We hypothesised that patterns of circulating biomarkers that reflect the various pathophysiological components of CAD, such as distorted lipid metabolism, vascular inflammation, endothelial dysfunction, increased thrombogenicity and ischaemia, diverge in the days to weeks before a coronary event. Divergent biomarker patterns, identified by serial biomarker measurements during 1-year follow-up might then indicate ‘vulnerable periods’ during which patients with CAD are at high short-term risk of developing an ACS. Venepuncture was performed every fortnight during the first half-year and monthly thereafter. As prespecified, patient enrolment was terminated after the primary end point of cardiovascular death or hospital admission for non-fatal ACS had occurred in 50 patients. A case–cohort design will explore differences in temporal patterns of circulating biomarkers prior to the repeat ACS. Future plans and dissemination Follow-up and event adjudication have been completed. Prespecified biomarker analyses are currently being performed and dissemination through peer-reviewed publications and conference presentations is expected from the third quarter of 2016. Should identification of a ‘vulnerable period’ prove to be feasible, then future research could focus on event reduction through pharmacological or mechanical intervention during such periods of high risk for ACS. Trial registration number NTR1698 and NTR1106. PMID:28011810

  4. Myocardial infarction with Moyamoya disease and pituitary gigantism in a young female patient.

    PubMed

    Ahn, Y K; Jeong, M H; Bom, H S; Park, J C; Kim, J K; Chung, D J; Chung, M Y; Cho, J G; Kang, J C

    1999-08-01

    Myocardial infarction is very rare in young female patients with systemic vascular disorders. Moyamoya disease is a cerebrovascular disease associated with an abnormal vascular network. This report presents a 19-year-old female patient who suffered from chest pain and exertional dyspnea for 2 months prior to admission. She had a history of Moyamoya disease and pituitary gigantism since childhood. Her ejection fraction on echocardiogram was 20% and a perfusion defect with partial reversibility in the anterior wall was demonstrated on stress single photon emission computed tomography (SPECT). Diagnostic coronary angiogram revealed critical stenosis in the middle left anterior descending artery, which was treated by coronary stenting. Her subjective symptoms were relieved and the perfusion defect seen on SPECT decreased after coronary intervention.

  5. Correlation of C-Reactive Protein and Cardiac Enzymes with Angiographic Severity of Coronary Artery Disease in Pakistani Patients with Acute Coronary Syndrome.

    PubMed

    Saleem, Ayesha; Ali, Azmat

    2017-02-01

    To determine the correlation of C-reactive protein (CRP) levels with the severity of coronary stenosis on angiography and the association of cardiac enzymes with the degree of stenosis in acute coronary syndrome (ACS) patients. Secondly, to compare association of angiographic severity of vascular stenosis with CRP in patients with ST segment elevation myocardial infarction (STEMI) and non-STEMI / Unstable angina (UA). Prospective, descriptive study. Khan Research Laboratories (KRL) Hospital, from October 2014 to March 2015. CRP was measured on diagnosis of ACS in 70 patients. Cardiac enzymes were measured 6 hours after the onset of chest pain. Angiographic scoring for degree of stenosis and number of culprit vessels was done. Two groups consisting of patients with STEMI (group 1) and with NSTEMI/UA (group 2) were made. No correlation was found between CRP levels and angiographic stenosis in patients with ACS (r=0.162, p>0.05). No association was found between eosinophil count and severity of stenosis (p=0.88). Rise of cardiac enzymes and degree of coronary stenosis showed a positive correlation (p <0.001). There was significant difference in the means of coronary artery stenosis scores between the two groups (Gensini score of groups 1 and 2: 35.9 ±4 and 14 ±8, respectively) p<0.001, but there was no significant difference in CRP levels. CRP is a marker of inflammation in ACS rather than a risk factor for determining the severity of vascular stenosis. Rise in cardiac enzymes still grade high in predicting severity of vascular stenosis than eosinophil count or CRP levels.

  6. Selective Angiography Using the Radiofrequency Catheter: An Alternative Technique for Mapping and Ablation in the Aortic Cusps.

    PubMed

    Roca-Luque, Ivo; Rivas, Nuria; Francisco, Jaume; Perez, Jordi; Acosta, Gabriel; Oristrell, Gerard; Terricabres, Maria; Garcia-Dorado, David; Moya, Angel

    2017-01-01

    Ablation in aortic cusps could be necessary in up to 15% of the patients, especially in para-Hisian atrial tachycardia and ventricular arrhythmias arising from outflow tracts. Risk of coronary damage has led to recommendation of systematic coronary angiography (CA) during the procedure. Other image tests as intravascular (ICE) or transesophageal echocardiography (TEE) have been proposed. Both methods have limitations: additional vascular access for ICE and need for additional CA in some patients in case of TEE. We describe an alternative method to assess relation of catheter tip and coronary ostia during ablation in aortic cusps without additional vascular accesses by performing selective angiography with the ablation catheter. We prospectively evaluated 12 consecutive patients (69.3 ± 8.5, 6 female) who underwent ablation in right (1), left (5), and noncoronary cusps (6). We performed angiography through the ablation cooled tip radiofrequency catheter at the ablation site. Ablation was effective in 91.6% of the patients (3 patients needed additional ablation out of coronary cusps: pulmonary cusp, right ventricular outflow tract (RVOT), and coronary sinus and 1 patient underwent a second procedure because recurrence). No complications occurred neither during procedure nor follow-up (6.2 ± 3.8 months). No technical problems occurred with the ablation catheter after contrast injection. Selective angiography through a cooled-tip radiofrequency ablation catheter is feasible to assess relation of coronary ostia and ablation site when ablation in aortic cusps. It allows continuous real-time assessment of this relation, avoids the need for additional vascular accesses and no complications occurred in our series. © 2016 Wiley Periodicals, Inc.

  7. Coronary effects of diadenosine tetraphosphate resemble those of adenosine in anesthetized pigs: involvement of ATP-sensitive potassium channels.

    PubMed

    Nakae, I; Takahashi, M; Takaoka, A; Liu, Q; Matsumoto, T; Amano, M; Sekine, A; Nakajima, H; Kinoshita, M

    1996-07-01

    Diadenosine tetraphosphate (Ap4A) is an adenine nucleotide with vasodilatory properties. We examined the effects of Ap4A on coronary circulation in comparison with those of adenosine, its metabolite, in anesthetized pigs. Left atrial (LA) infusion of Ap4A at increasing doses of 100, 200, and 300 micrograms/kg/min increased coronary blood flow (CBF) and decreased systemic blood pressure (BP) and coronary vascular resistance (CVR). Ap4A had no effect on large epicardial coronary artery diameter (CoD). Likewise, LA infusion of adenosine at doses of 150 and 300 micrograms/kg/min increased CBF and decreased BP and coronary vascular resistance (CVR) but did not affect CoD. Therefore, the vasodilatory effects of Ap4A and adenosine were predominant in small coronary resistance vessels and negligible in large coronary arteries. Pretreatment with glibenclamide (2 mg/kg, intravenously, i.v.), a specific blocker of ATP-sensitive potassium channels (KATP), attenuated alterations of CBF, BP, and CVR induced by Ap4A and by adenosine. In contrast, treatment with cromakalim (0.5 microgram/kg/min i.v.), an activator of KATP, enhanced the coronary effects of Ap4A and adenosine. Therefore, the opening of KATP in the pig coronary circulation is involved in the in vivo vasodilatory effects of Ap4A and adenosine. Treatment with 8-phenyltheophylline (8-PT, 4 mg/kg i.v.), an adenosine receptor antagonist, suppressed CBF increases induced by Ap4A (20 micrograms/kg/min, intracoronarily, i.c.) and adenosine (5 micrograms/kg/min i.c.) by 68 and 90%, respectively. These findings suggest that the in vivo coronary effects of Ap4A are largely caused by the opening of KATP through rapid degradation to adenosine to activate adenosine receptors.

  8. Plasma level of cyclophilin A is increased in patients with type 2 diabetes mellitus and suggests presence of vascular disease.

    PubMed

    Ramachandran, Surya; Venugopal, Anila; Kutty, V Raman; A, Vinitha; G, Divya; Chitrasree, V; Mullassari, Ajit; Pratapchandran, N S; Santosh, K R; Pillai, M Radhakrishna; Kartha, C C

    2014-02-07

    Cyclophilin A, an immunophilin is secreted from human monocytes activated by high glucose. Given its role as an inflammatory mediator of vascular tissue damage associated with inflammation and oxidative stress, we examined plasma levels of cyclophilin A in normal healthy volunteers and patients with type 2 diabetes (DM), with or without coronary artery disease (CAD). Study subjects comprised of 212 patients with DM and CAD,101 patients with diabetes, 122 patients with CAD and 121 normal healthy volunteers. Diabetes was assessed by HbA1c levels while coronary artery disease was established by a positive treadmill test and/or coronary angiography. Plasma cyclophilin A was measured using a cyclophilin A ELISA Kit. Relationship of plasma cyclophilin A levels with blood markers of type 2 diabetes, blood lipid levels and medication for diabetes and coronary artery disease were also explored. Plasma Cyclophilin levels were higher in diabetes patients with or without CAD compared to normal subjects (P < 0.001). Age, fasting blood sugar levels and HbA1C levels were positively associated with increased plasma cyclophilin. Patients using metformin had reduced levels of plasma cyclophilin (p < 0.001).Serum levels of total cholesterol, LDL cholesterol and triglycerides had no significant association with plasma cyclophilin levels. In patients with increased serum CRP levels, plasma cyclophilin A was also elevated (p = 0.016). Prevalence odds for DM, DM + CAD and CAD are higher in those with high cyclophilin values, compared to those with lower values, after adjusting for age and sex, indicating strong association of high cyclophilin values with diabetes and vascular disease. Our study demonstrates that patients with type 2 diabetes have higher circulating levels of cyclophilin A than the normal population. Plasma cyclophilin levels were increased in patients with diabetes and coronary artery disease suggesting a role of this protein in accelerating vascular disease in type 2 diabetes. Considering the evidence that Cyclophilin A is an inflammatory mediator in atherogenesis, the mechanistic role of cyclophilin A in diabetic vascular disease progression deserves detailed investigation.

  9. Plasma level of cyclophilin A is increased in patients with type 2 diabetes mellitus and suggests presence of vascular disease

    PubMed Central

    2014-01-01

    Aims/hypothesis Cyclophilin A, an immunophilin is secreted from human monocytes activated by high glucose. Given its role as an inflammatory mediator of vascular tissue damage associated with inflammation and oxidative stress, we examined plasma levels of cyclophilin A in normal healthy volunteers and patients with type 2 diabetes (DM), with or without coronary artery disease (CAD). Methods Study subjects comprised of 212 patients with DM and CAD,101 patients with diabetes, 122 patients with CAD and 121 normal healthy volunteers. Diabetes was assessed by HbA1c levels while coronary artery disease was established by a positive treadmill test and/or coronary angiography. Plasma cyclophilin A was measured using a cyclophilin A ELISA Kit. Relationship of plasma cyclophilin A levels with blood markers of type 2 diabetes, blood lipid levels and medication for diabetes and coronary artery disease were also explored. Results Plasma Cyclophilin levels were higher in diabetes patients with or without CAD compared to normal subjects (P < 0.001). Age, fasting blood sugar levels and HbA1C levels were positively associated with increased plasma cyclophilin. Patients using metformin had reduced levels of plasma cyclophilin (p < 0.001).Serum levels of total cholesterol, LDL cholesterol and triglycerides had no significant association with plasma cyclophilin levels. In patients with increased serum CRP levels, plasma cyclophilin A was also elevated (p = 0.016). Prevalence odds for DM, DM + CAD and CAD are higher in those with high cyclophilin values, compared to those with lower values, after adjusting for age and sex, indicating strong association of high cyclophilin values with diabetes and vascular disease. Conclusions/interpretations Our study demonstrates that patients with type 2 diabetes have higher circulating levels of cyclophilin A than the normal population. Plasma cyclophilin levels were increased in patients with diabetes and coronary artery disease suggesting a role of this protein in accelerating vascular disease in type 2 diabetes. Considering the evidence that Cyclophilin A is an inflammatory mediator in atherogenesis, the mechanistic role of cyclophilin A in diabetic vascular disease progression deserves detailed investigation. PMID:24502618

  10. Non-Acute Coronary Syndrome Anginal Chest Pain

    PubMed Central

    Agarwal, Megha; Mehta, Puja K.; Merz, C. Noel Bairey

    2010-01-01

    Anginal chest pain is one of the most common complaints in the outpatient setting. While much of the focus has been on identifying obstructive atherosclerotic coronary artery disease (CAD) as the cause of anginal chest pain, it is clear that microvascular coronary dysfunction (MCD) can also cause anginal chest pain as a manifestation of ischemic heart disease (IHD), and carries an increased cardiovascular risk. Epicardial coronary vasospasm, aortic stenosis, left ventricular hypertrophy, congenital coronary anomalies, mitral valve prolapse and abnormal cardiac nociception can also present as angina of cardiac origin. For non-acute coronary syndrome (ACS) stable chest pain, exercise treadmill testing (ETT) remains the primary tool for diagnosis of ischemia and cardiac risk stratification; however, in certain subsets of patients, such as women, ETT has a lower sensitivity and specificity for identifying obstructive CAD. When combined with an imaging modality, such as nuclear perfusion or echocardiography testing, the sensitivity and specificity of stress testing for detection of obstructive CAD improves significantly. Advancements in stress cardiac magnetic resonance imaging (MRI) enables detection of perfusion abnormalities in a specific coronary artery territory, as well as subendocardial ischemia associated with MCD. Coronary computed tomography angiography (CCTA) enables visual assessment of obstructive CAD, albeit with a higher radiation dose. Invasive coronary angiography (CA) remains the gold standard for diagnosis and treatment of obstructive lesions that cause medically refractory stable angina. Furthermore, in patients with normal coronary angiograms, the addition of coronary reactivity testing (CRT) can help diagnose endothelial dependent and independent microvascular dysfunction. Life-style modification and pharmacologic intervention remains the cornerstone of therapy to reduce morbidity and mortality in patients with stable angina. This review focuses on the pathophysiology, diagnosis, and treatment of stable, non-ACS anginal chest pain. PMID:20380951

  11. Myocardial Viability and Impact of Surgical Ventricular Reconstruction on Outcomes of Patients with Severe Left Ventricular Dysfunction Undergoing Coronary Artery Bypass Surgery: Results of the Surgical Treatment for Ischemic Heart Failure (STICH) Trial

    PubMed Central

    Holly, Thomas A.; Bonow, Robert O.; Arnold, J. Malcolm O.; Oh, Jae K.; Varadarajan, Padmini; Pohost, Gerald M.; Haddad, Haissam; Jones, Robert H.; Velazquez, Eric J.; Birkenfeld, Bozena; Asch, Federico M.; Malinowski, Marcin; Barretto, Rodrigo; Kalil, Renato A.K.; Berman, Daniel S.; Sun, Jie-Lena; Lee, Kerry L.; Panza, Julio A.

    2014-01-01

    Objective In the Surgical Treatment for Ischemic Heart Failure (STICH) trial, surgical ventricular reconstruction plus coronary artery bypass surgery was not associated with a reduction in the rate of death or cardiac hospitalization compared to bypass alone. We hypothesized that the absence of viable myocardium identifies patients with coronary artery disease and left ventricular dysfunction who have a greater benefit with coronary artery bypass graft surgery and surgical ventricular reconstruction compared to bypass alone. Methods Myocardial viability was assessed by single photon computed tomography in 267 of the 1,000 patients randomized to bypass or bypass plus surgical ventricular reconstruction in STICH. Myocardial viability was assessed on a per patient basis as well as regionally based on pre-specified criteria. Results At 3 years, there was no difference in mortality or the combined outcome of death or cardiac hospitalization between those with and those without viability, and there was no significant interaction between the type of surgery and global viability status with respect to mortality or death plus cardiac hospitalization. Furthermore, there was no difference in mortality or death plus cardiac hospitalization between those with and without anterior wall or apical scar, and no significant interaction between the presence of scar in these regions and the type of surgery with respect to mortality. Conclusion In patients with coronary artery disease and severe regional left ventricular dysfunction, assessment of myocardial viability does not identify patients who will derive a mortality benefit from adding surgical ventricular reconstruction to coronary artery bypass graft surgery. PMID:25152476

  12. Treatment of Angina and Microvascular Coronary Dysfunction

    PubMed Central

    Samim, Arang; Nugent, Lynn; Mehta, Puja K.; Shufelt, Chrisandra; Merz, C. Noel Bairey

    2014-01-01

    Opinion statement Microvascular coronary dysfunction (MCD) is an increasingly recognized cause of cardiac ischemia and angina, more commonly diagnosed in women. Patients with MCD present with the triad of persistent chest pain, ischemic changes on stress testing, and no obstructive coronary artery disease (CAD) on cardiac catheterization. Data from National Heart, Lung and Blood Institute (NHLBI)-sponsored Women’s Ischemia Syndrome Evaluation (WISE) study has shown that the diagnosis of MCD is not benign, with a 2.5% annual risk of adverse cardiac events including myocardial infarction, stroke, congestive heart failure, or death. The gold standard diagnostic test for MCD is an invasive coronary reactivity test (CRT), which uses acetylcholine, adenosine, and nitroglycerin to test the endothelial dependent and independent, microvascular and macrovascular coronary function. The CRT allows for diagnostic and treatment options as well as further risk stratifying patients for future cardiovascular events. Treatment of angina and MCD should be aimed at ischemia disease management to reduce risk of adverse cardiac events, ameliorating symptoms to improve quality of life, and to decrease the morbidity from unnecessary and repeated cardiac catheterization in patients with open coronary arteries. A comprehensive treatment approach aimed at risk factor managment, including lifestyle counseling regarding smoking cessation, nutrition and physical activity should be initiated. Current pharmacotherapy for MCD can include the treatment of microvascular endothelial dysfunction (statins, angiotensin-converting enzyme inhibitor, low dose aspirin), as well as treatment for angina and myocardial ischemia (beta blockers, calcium channel blockers, nitrates, ranolazine). Additional symptom management techniques can include tri-cyclic medication, enhanced external counterpulsation, autogenic training, and spinal cord stimulation. While our current therapies are effective in the treatment of angina and MCD, large randomized outcome trials are needed to optimize strategies to improve morbidity and mortality. PMID:20842559

  13. Uridine Adenosine Tetraphosphate-Induced Coronary Relaxation Is Blunted in Swine With Pressure Overload: A Role for Vasoconstrictor Prostanoids

    PubMed Central

    Zhou, Zhichao; Lankhuizen, Inge M.; van Beusekom, Heleen M.; Cheng, Caroline; Duncker, Dirk J.; Merkus, Daphne

    2018-01-01

    Plasma levels of the vasoactive substance uridine adenosine tetraphosphate (Up4A) are elevated in hypertensive patients and Up4A-induced vascular contraction is exacerbated in various arteries isolated from hypertensive animals, suggesting a potential role of Up4A in development of hypertension. We previously demonstrated that Up4A produced potent and partially endothelium-dependent relaxation in the porcine coronary microvasculature. Since pressure-overload is accompanied by structural abnormalities in the coronary microvasculature as well as by endothelial dysfunction, we hypothesized that pressure-overload blunts the coronary vasodilator response to Up4A, and that the involvement of purinergic receptors and endothelium-derived factors is altered. The effects of Up4A were investigated using wire-myography in isolated coronary small arteries from Sham-operated swine and swine with prolonged (8 weeks) pressure overload of the left ventricle induced by aortic banding (AoB). Expression of purinergic receptors and endothelium-derived factors was assessed in isolated coronary small arteries using real-time PCR. Up4A (10-9 to 10-5 M) failed to produce contraction in isolated coronary small arteries from either Sham or AoB swine, but produced relaxation in preconstricted arteries, which was significantly blunted in AoB compared to Sham. Blockade of purinergic P1, and P2 receptors attenuated Up4A-induced coronary relaxation more, while the effect of P2X1-blockade was similar and the effects of A2A- and P2Y1-blockade were reduced in AoB as compared to Sham. mRNA expression of neither A1, A2, A3, nor P2X1, P2X7, P2Y1, P2Y2, nor P2Y6-receptors was altered in AoB as compared to Sham, while P2Y12 expression was higher in AoB. eNOS inhibition attenuated Up4A-induced coronary relaxation in both Sham and AoB. Additional blockade of cyclooxygenase enhanced Up4A-induced coronary relaxation in AoB but not Sham swine, suggesting the involvement of vasoconstrictor prostanoids. In endothelium-denuded coronary small arteries from normal swine, thromboxane synthase (TxS) inhibition enhanced relaxation to Up4A compared to endothelium-intact arteries, to a similar extent as P2Y12 inhibition, while the combination inhibition of P2Y12 and TxS had no additional effect. In conclusion, Up4A-induced coronary relaxation is blunted in swine with AoB, which appears to be due to the production of a vasoconstrictor prostanoid, likely thromboxane A2. PMID:29632487

  14. Uridine Adenosine Tetraphosphate-Induced Coronary Relaxation Is Blunted in Swine With Pressure Overload: A Role for Vasoconstrictor Prostanoids.

    PubMed

    Zhou, Zhichao; Lankhuizen, Inge M; van Beusekom, Heleen M; Cheng, Caroline; Duncker, Dirk J; Merkus, Daphne

    2018-01-01

    Plasma levels of the vasoactive substance uridine adenosine tetraphosphate (Up 4 A) are elevated in hypertensive patients and Up 4 A-induced vascular contraction is exacerbated in various arteries isolated from hypertensive animals, suggesting a potential role of Up 4 A in development of hypertension. We previously demonstrated that Up 4 A produced potent and partially endothelium-dependent relaxation in the porcine coronary microvasculature. Since pressure-overload is accompanied by structural abnormalities in the coronary microvasculature as well as by endothelial dysfunction, we hypothesized that pressure-overload blunts the coronary vasodilator response to Up 4 A, and that the involvement of purinergic receptors and endothelium-derived factors is altered. The effects of Up 4 A were investigated using wire-myography in isolated coronary small arteries from Sham-operated swine and swine with prolonged (8 weeks) pressure overload of the left ventricle induced by aortic banding (AoB). Expression of purinergic receptors and endothelium-derived factors was assessed in isolated coronary small arteries using real-time PCR. Up 4 A (10 -9 to 10 -5 M) failed to produce contraction in isolated coronary small arteries from either Sham or AoB swine, but produced relaxation in preconstricted arteries, which was significantly blunted in AoB compared to Sham. Blockade of purinergic P1, and P2 receptors attenuated Up 4 A-induced coronary relaxation more, while the effect of P2X 1 -blockade was similar and the effects of A 2A - and P2Y 1 -blockade were reduced in AoB as compared to Sham. mRNA expression of neither A1, A2, A3, nor P2X 1 , P2X 7 , P2Y 1 , P2Y 2 , nor P2Y 6 -receptors was altered in AoB as compared to Sham, while P2Y 12 expression was higher in AoB. eNOS inhibition attenuated Up 4 A-induced coronary relaxation in both Sham and AoB. Additional blockade of cyclooxygenase enhanced Up 4 A-induced coronary relaxation in AoB but not Sham swine, suggesting the involvement of vasoconstrictor prostanoids. In endothelium-denuded coronary small arteries from normal swine, thromboxane synthase (TxS) inhibition enhanced relaxation to Up 4 A compared to endothelium-intact arteries, to a similar extent as P2Y 12 inhibition, while the combination inhibition of P2Y 12 and TxS had no additional effect. In conclusion, Up 4 A-induced coronary relaxation is blunted in swine with AoB, which appears to be due to the production of a vasoconstrictor prostanoid, likely thromboxane A 2 .

  15. GPER inhibits diabetes-mediated RhoA activation to prevent vascular endothelial dysfunction.

    PubMed

    Li, Zilin; Cheng, Liang; Liang, Hongliang; Duan, Weixun; Hu, Jing; Zhi, Weiwei; Yang, Jinbao; Liu, Zhenhua; Zhao, Minggao; Liu, Jincheng

    2016-02-01

    The effect of estrogen receptors on diabetes-induced vascular dysfunction is critical, but ambiguous. Individuals with diabetic vascular disease may require estrogen receptor-specific targeted therapy in the future. The G protein-coupled estrogen receptor (GPER) has beneficial effects on vascular function. However, its fundamental mechanisms are unclear. The RhoA/Rho-kinase pathway contributes to diabetic vascular complications, whereas estrogen can suppress Rho-kinase function. Thus, we assumed that GPER inhibits diabetes-mediated RhoA activation to prevent vascular dysfunction. We further investigated the underlying mechanisms involved in this process. Vascular endothelial cells and ex vivo cultured ovariectomized (OVX) C57BL/6 mouse aortae were treated with high glucose (HG) alone or in combination with GPER agonist (G1). G1 treatment was also administered to OVX db/db mice for 8 weeks. An ex-vivo isovolumic myograph was used to analyze the endothelium-dependent vasodilation and endothelium-independent contraction of mouse aortae. Apoptosis, oxidative stress, and inflammation were attenuated in G1-pretreated vascular endothelial cells. G1 significantly decreased the phosphorylation of inhibitory endothelial nitric oxide (NO) synthase residue threonine 495 (eNOS Thr495), inhibited RhoA expression, and increased NO production. Additionally, G1 rescued the impaired endothelium-dependent relaxation and inhibited RhoA activation in the thoracic aorta of OVX db/db mice and ex-vivo cultured OVX C57BL/6 mouse aortae treated with HG. Estrogens acting via GPER could protect vascular endothelium, and GPER activation might elicit ERα-independent effect to inhibit RhoA/Rho-kinase pathway. Additionally, GPER activation might reduce vascular smooth muscle contraction by inhibiting RhoA activation. Thus, the results of the present study suggest a new therapeutic paradigm for end-stage vascular dysfunction by inhibiting RhoA/Rho-kinase pathway via GPER activation. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. Computational fluid dynamics tools can be used to predict the progression of coronary artery disease

    NASA Astrophysics Data System (ADS)

    Coşkun, A. Ümit; Chen, Caixia; Stone, Peter H.; Feldman, Charles L.

    2006-03-01

    Atherosclerosis is focal and individual plaques evolve in an independent manner. The endothelium regulates arterial behavior by responding to its local shear stress. In vitro studies indicate that low endothelial shear stress (ESS) upregulates the genetic and molecular responses leading to the initiation and progression of atherosclerosis and promotes inflammation and formation of other features characteristic of vulnerable plaque. Physiologic ESS is vasculoprotective and fosters quiescence of the endothelium and vascular wall. High ESS promotes platelet aggregation. ESS and vascular wall morphology along the course of human coronary arteries can now be characterized in vivo, and may predict the focal areas in which atherosclerosis progression occurs. Rapidly evolving methodologies are able to characterize the arterial wall and the local hemodynamic factors likely responsible for progression of coronary disease in man. These new diagnostic modalities allow for identification of plaque progression. Accurate identification of arterial segments at high-risk for progression may permit pre-emptive intervention strategies to avoid adverse coronary events.

  17. Curcumin and folic acid abrogated methotrexate induced vascular endothelial dysfunction.

    PubMed

    Sankrityayan, Himanshu; Majumdar, Anuradha S

    2016-01-01

    Methotrexate, an antifolate drug widely used in rheumatoid arthritis, psoriasis, and cancer, is known to cause vascular endothelial dysfunction by causing hyperhomocysteinemia, direct injury to endothelium or by increasing the oxidative stress (raising levels of 7,8-dihydrobiopterin). Curcumin is a naturally occurring polyphenol with strong antioxidant and anti-inflammatory action and therapeutic spectra similar to that of methotrexate. This study was performed to evaluate the effects of curcumin on methotrexate induced vascular endothelial dysfunction and also compare its effect with that produced by folic acid (0.072 μg·g(-1)·day(-1), p.o., 2 weeks) per se and in combination. Male Wistar rats were exposed to methotrexate (0.35 mg·kg(-1)·day(-1), i.p.) for 2 weeks to induce endothelial dysfunction. Methotrexate exposure led to shedding of endothelium, decreased vascular reactivity, increased oxidative stress, decreased serum nitrite levels, and increase in aortic collagen deposition. Curcumin (200 mg·kg(-1)·day(-1) and 400 mg·kg(-1)·day(-1), p.o.) for 4 weeks prevented the increase in oxidative stress, decrease in serum nitrite, aortic collagen deposition, and also vascular reactivity. The effects were comparable with those produced by folic acid therapy. The study shows that curcumin, when concomitantly administered with methotrexate, abrogated its vascular side effects by preventing an increase in oxidative stress and abating any reduction in physiological nitric oxide levels.

  18. A comparison of hybrid coronary revascularization and off-pump coronary revascularization.

    PubMed

    Umakanthan, Ramanan; Leacche, Marzia; Gallion, Anna H; Byrne, John G

    2013-04-01

    Minimally invasive approaches to treat vascular disease have been accruing significant popularity over the last several decades. Due to progressive advances in technology, a variety of techniques are being now utilized in the field of cardiovascular surgery. The objectives of minimally invasive techniques are to curtail operative trauma and minimize perioperative morbidity without decreasing the quality of the treatment. The standard surgical approach for the treatment of coronary artery disease has traditionally been coronary artery bypass grafting surgery via median sternotomy. Off-pump coronary artery bypass grafting surgery offers a less invasive alternative and enables coronary revascularization to be performed without cardiopulmonary bypass. Hybrid coronary revascularization offers an even less invasive option in which minimally invasive direct coronary artery bypass can be combined with percutaneous coronary intervention. In this article, the authors review a recent publication comparing hybrid coronary revascularization and off-pump coronary artery bypass grafting surgery.

  19. Differential sensitivities of pulmonary and coronary arteries to hemoglobin-based oxygen carriers and nitrovasodilators: study in a bovine ex vivo model of vascular strips.

    PubMed

    Fonseca, Vera; Avizinis, Jessica; Moon-Massat, Paula; Freilich, Daniel; Kim, Hae Won; Hai, Chi-Ming

    2010-01-01

    Vasoconstriction is a major adverse effect of first and second generation hemoglobin-based oxygen carriers (HBOCs) that hinders their development as blood substitute. However, intravenous infusion of HBOC-201 (second generation) to patients induces significant pulmonary hypertension without significant coronary vasoconstriction. We compared contractile responses of isolated bovine pulmonary and coronary arterial strips to HBOC-201 and HBOC-205LL.LT.MW600 (third generation), polymerized bovine hemoglobins of different molecular weight, and their attenuation by nitroglycerin, sodium nitroprusside (SNP), and sodium nitrite. Pulmonary arteries developed negligible basal tone, but exhibited HBOC-dependent amplification of phenylephrine-induced contractions. In contrast, coronary arteries developed significant basal tone, and exhibited HBOC-dependent constant force increment to serotonin-induced contractions. Therefore, relative to basal tone, HBOC-induced contractions were greater in pulmonary than coronary arteries. Furthermore, HBOC-205LL.LT.MW600 appeared to be less vasoactive than HBOC-201. Unexpectedly, pulmonary and coronary arteries exhibited differential sensitivities to nitrovasodilators in parallel with their differential sensitivities to HBOC. However, SNP and sodium nitrite induced significant methemoglobin formation from HBOC, whereas nitroglycerin did not. These results suggest that phenotypic differences between pulmonary and coronary vascular smooth muscle cells could explain the differential hypertensive effects of HBOC on pulmonary and coronary circulation in patients. Among the three nitrovasodilators investigated, nitroglycerin appears to be the most promising candidate for attenuating HBOC-induced pulmonary hypertension in older HBOCs.

  20. Evaluation of coronary microvascular function in patients with end-stage renal disease, and renal allograft recipients.

    PubMed

    Bozbas, Huseyin; Pirat, Bahar; Demirtas, Saadet; Simşek, Vahide; Yildirir, Aylin; Sade, Elif; Sayin, Burak; Sezer, Siren; Karakayali, Hamdi; Muderrisoglu, Haldun

    2009-02-01

    Approximately half of all deaths in patients with end-stage renal disease (ESRD) are due to cardiovascular diseases. Although renal transplant improves survival and quality of life in these patients, cardiovascular events significantly affect survival. We sought to evaluate coronary flow reserve (CFR), an indicator of coronary microvascular function, in patients with ESRD and in patients with a functioning kidney graft. Eighty-six patients (30 with ESRD, 30 with a functioning renal allograft, and 26 controls) free of coronary artery disease or diabetes mellitus were included. Transthoracic Doppler echocardiography was used to measure coronary peak flow velocities at baseline and after dipyridamole infusion. CFR was calculated as the ratio of hyperemic to baseline diastolic peak flow velocities and was compared among the groups. The mean age of the study population was 36.1+/-7.3 years. No between-group differences were found regarding age, sex, or prevalences of traditional coronary risk factors other than hypertension. Compared with the renal transplant and control groups, the ESRD group had significantly lower mean CFR values. On multivariate regression analysis, serum levels of creatinine, age, and diastolic dysfunction were independent predictors of CFR. CFR is impaired in patients with ESRD suggesting that coronary microvascular dysfunction, an early finding of atherosclerosis, is evident in these patients. Although associated with a decreased CFR compared with controls, renal transplant on the other hand seems to have a favorable effect on coronary microvascular function.

  1. Structural remodeling of coronary resistance arteries: effects of age and exercise training

    PubMed Central

    Hanna, Mina A.; Taylor, Curtis R.; Chen, Bei; La, Hae-Sun; Maraj, Joshua J.; Kilar, Cody R.; Behnke, Bradley J.; Delp, Michael D.

    2014-01-01

    Age is known to induce remodeling and stiffening of large-conduit arteries; however, little is known of the effects of age on remodeling and mechanical properties of coronary resistance arteries. We employed a rat model of aging to investigate whether 1) age increases wall thickness and stiffness of coronary resistance arteries, and 2) exercise training reverses putative age-induced increases in wall thickness and stiffness of coronary resistance arteries. Young (4 mo) and old (21 mo) Fischer 344 rats remained sedentary or underwent 10 wk of treadmill exercise training. Coronary resistance arteries were isolated for determination of wall-to-lumen ratio, effective elastic modulus, and active and passive responses to changes in intraluminal pressure. Elastin and collagen content of the vascular wall were assessed histologically. Wall-to-lumen ratio increased with age, but this increase was reversed by exercise training. In contrast, age reduced stiffness, and exercise training increased stiffness in coronary resistance arteries from old rats. Myogenic responsiveness was reduced with age and restored by exercise training. Collagen-to-elastin ratio (C/E) of the wall did not change with age and was reduced with exercise training in arteries from old rats. Thus age induces hypertrophic remodeling of the vessel wall and reduces the stiffness and myogenic function of coronary resistance arteries. Exercise training reduces wall-to-lumen ratio, increases wall stiffness, and restores myogenic function in aged coronary resistance arteries. The restorative effect of exercise training on myogenic function of coronary resistance arteries may be due to both changes in vascular smooth muscle phenotype and expression of extracellular matrix proteins. PMID:25059239

  2. GPER modulates tone and coronary vascular reactivity in male and female rats.

    PubMed

    Debortoli, Angelina Rafaela; Rouver, Wender do Nascimento; Delgado, Nathalie Tristão Banhos; Mengal, Vinicius; Claudio, Erick Roberto Gonçalves; Pernomian, Laena; Bendhack, Lusiane Maria; Moysés, Margareth Ribeiro; Santos, Roger Lyrio Dos

    2017-08-01

    Compared with age-matched men, premenopausal women are largely protected from coronary artery disease, a difference that is lost after menopause. The effects of oestrogens are mediated by the activation of nuclear receptors (ERα and ERβ) and by the G protein-coupled oestrogen receptor (GPER). This study aims to evaluate the potential role of GPER in coronary circulation in female and male rats. The baseline coronary perfusion pressure (CPP) and the concentration-response curve with a GPER agonist (G-1) were evaluated in isolated hearts before and after the blockade of GPER. GPER, superoxide dismutase (SOD-2), catalase and gp91phox protein expression were assessed by Western blotting. Superoxide production was evaluated ' in situ ' via dihydroethidium fluorescence (DHE). GPER blockade significantly increased the CPP in both groups, demonstrating the modulation of coronary tone by GPER. G-1 causes relaxation of the coronary bed in a concentration-dependent manner and was significantly higher in female rats. No differences were detected in GPER, SOD-2 and catalase protein expression. However, gp91phox expression and DHE fluorescence were higher in male rats, indicating elevated superoxide production. Therefore, GPER plays an important role in modulating coronary tone and reactivity in female and male rats. The observed differences in vascular reactivity may be related to the higher superoxide production in male rats. These findings help to elucidate the role of GPER-modulating coronary circulation, providing new information to develop a potential therapeutic target for the treatment of coronary heart disease. © 2017 Society for Endocrinology.

  3. Left Atrial Myxoma Hypervascularized from the Right Coronary Artery: An Interesting Cath Lab Finding.

    PubMed

    Oliveira, Marcos Danillo Peixoto; Tamazato, Adriano Ossuna; de Fazzio, Fernando Roberto; Kajita, Luiz J; Ribeiro, Expedito E; Lemos, Pedro Alves

    2016-01-01

    Primary cardiac tumors are rare and approximately half of them are atrial myxomas. They rarely remain asymptomatic, especially if large. The imaging of a myxoma by contrast dye during coronary angiography is an infrequent sign, which clarifies the vascular supply of the tumor. We report herein an interesting and rare case of a left atrial myxoma hypervascularized from the right coronary artery.

  4. The adenosine A2A receptor — Myocardial protectant and coronary target in endotoxemia

    PubMed Central

    Reichelt, Melissa E.; Ashton, Kevin J.; Tan, Xing Lin; Mustafa, S. Jamal; Ledent, Catherine; Delbridge, Lea M.D.; Hofmann, Polly A.; Headrick, John P.; Morrison, R. Ray

    2013-01-01

    Background Cardiac injury and dysfunction are contributors to disease progression and mortality in sepsis. This study evaluated the cardiovascular role of intrinsic A2A adenosine receptor (A2AAR) activity during lipopolysaccharide (LPS)-induced inflammation. Methods We assessed the impact of 24 h of LPS challenge (20 mg/kg, IP) on cardiac injury, coronary function and inflammatory mediator levels in Wild-Type (WT) mice and mice lacking functional A2AARs (A2AAR KO). Results Cardiac injury was evident in LPS-treated WTs, with ∼7-fold elevation in serum cardiac troponin I (cTnI), and significant ventricular and coronary dysfunction. Absence of A2AARs increased LPS-provoked cTnI release at 24 h by 3-fold without additional demise of contraction function. Importantly, A2AAR deletion per se emulated detrimental effects of LPS on coronary function, and LPS was without effect in coronary vessels lacking A2AARs. Effects of A2AAR KO were independent of major shifts in circulating C-reactive protein (CRP) and haptoglobin. Cytokine responses were largely insensitive to A2AAR deletion; substantial LPS-induced elevations (up to 100-fold) in IFN-γ and IL-10 were unaltered in A2AAR KO mice, as were levels of IL-4 and TNF-α. However, late elevations in IL-2 and IL-5 were differentially modulated by A2AAR KO (IL-2 reduced, IL-5 increased). Data demonstrate that in the context of LPS-triggered cardiac and coronary injury, A2AAR activity protects myocardial viability without modifying contractile dysfunction, and selectively modulates cytokine (IL-2, IL-5) release. A2AARs also appear to be targeted by LPS in the coronary vasculature. Conclusions These experimental data suggest that preservation of A2AAR functionality might provide therapeutic benefit in human sepsis. PMID:22192288

  5. Vascular rarefaction mediates whitening of brown fat in obesity

    PubMed Central

    Shimizu, Ippei; Aprahamian, Tamar; Kikuchi, Ryosuke; Shimizu, Ayako; Papanicolaou, Kyriakos N.; MacLauchlan, Susan; Maruyama, Sonomi; Walsh, Kenneth

    2014-01-01

    Brown adipose tissue (BAT) is a highly vascularized organ with abundant mitochondria that produce heat through uncoupled respiration. Obesity is associated with a reduction of BAT function; however, it is unknown how obesity promotes dysfunctional BAT. Here, using a murine model of diet-induced obesity, we determined that obesity causes capillary rarefaction and functional hypoxia in BAT, leading to a BAT “whitening” phenotype that is characterized by mitochondrial dysfunction, lipid droplet accumulation, and decreased expression of Vegfa. Targeted deletion of Vegfa in adipose tissue of nonobese mice resulted in BAT whitening, supporting a role for decreased vascularity in obesity-associated BAT. Conversely, introduction of VEGF-A specifically into BAT of obese mice restored vascularity, ameliorated brown adipocyte dysfunction, and improved insulin sensitivity. The capillary rarefaction in BAT that was brought about by obesity or Vegfa ablation diminished β-adrenergic signaling, increased mitochondrial ROS production, and promoted mitophagy. These data indicate that overnutrition leads to the development of a hypoxic state in BAT, causing it to whiten through mitochondrial dysfunction and loss. Furthermore, these results link obesity-associated BAT whitening to impaired systemic glucose metabolism. PMID:24713652

  6. Endothelial dysfunction and amyloid-β-induced neurovascular alterations

    PubMed Central

    Koizumi, Kenzo; Wang, Gang; Park, Laibaik

    2015-01-01

    Alzheimer's disease (AD) and cerebrovascular diseases share common vascular risk factors that have disastrous effects on cerebrovascular regulation. Endothelial cells, lining inner walls of cerebral blood vessels, form a dynamic interface between the blood and the brain and are critical for the maintenance of neurovascular homeostasis. Accordingly, injury in endothelial cells is regarded as one of the earliest symptoms of impaired vasoregulatory mechanisms. Extracellular buildup of amyloid-β (Aβ) is a central pathogenic factor in AD. Aβ exerts potent detrimental effects on cerebral blood vessels and impairs endothelial structure and function. Recent evidence implicates vascular oxidative stress and activation of the nonselective cationic channel transient receptor potential melastatin (TRPM)-2 on endothelial cells in the mechanisms of Aβ-induced neurovascular dysfunction. Thus, Aβ triggers opening of TRPM2 channels in endothelial cells leading to intracellular Ca2+ overload and vasomotor dysfunction. The cerebrovascular dysfunction may contribute to AD pathogenesis by reducing the cerebral blood supply, leading to increased susceptibility to vascular insufficiency, and by promoting Aβ accumulation. The recent realization that vascular factors contribute to AD pathobiology suggests new targets for the prevention and treatment of this devastating disease. PMID:26328781

  7. The Whitening of Brown Fat and Its Implications for Weight Management in Obesity.

    PubMed

    Shimizu, Ippei; Walsh, Kenneth

    2015-06-01

    Systemic inflammation resulting from dysfunction of white adipose tissue (WAT) accelerates the pathologies of diabetes and cardiovascular diseases. In contrast to WAT, brown adipose tissue (BAT) is abundant in mitochondria that produce heat by uncoupling respiratory chain process of ATP synthesis. Besides BAT's role in thermogenesis, accumulating evidence has shown that it is involved in regulating systemic metabolism. Studies have analyzed the "browning" processes of WAT as a means to combat obesity, whereas few studies have focused on the impact and molecular mechanisms that contribute to obesity-linked BAT dysfunction--a process that is associated with the "whitening" of this tissue. Compared to WAT, a dense vascular network is required to support the high energy consumption of BAT. Recently, vascular rarefaction was shown to be a significant causal factor in the whitening of BAT in mouse models. Vascular insufficiency leads to mitochondrial dysfunction and loss in BAT and contributes to systemic insulin resistance. These data suggest that BAT "whitening," resulting from vascular dysfunction, can impact obesity and obesity-linked diseases. Conversely, agents that promote BAT function could have utility in the treatment of these conditions.

  8. Inpatient Coronary Angiography and Revascularisation following Non-ST-Elevation Acute Coronary Syndrome in Patients with Renal Impairment: A Cohort Study Using the Myocardial Ischaemia National Audit Project

    PubMed Central

    Shaw, Catriona; Nitsch, Dorothea; Steenkamp, Retha; Junghans, Cornelia; Shah, Sapna; O’Donoghue, Donal; Fogarty, Damian; Weston, Clive; Sharpe, Claire C.

    2014-01-01

    Background International guidelines support an early invasive management strategy (including early coronary angiography and revascularisation) for non-ST-elevation acute coronary syndrome (NSTE-ACS) in patients with renal impairment. However, evidence from outside the UK suggests that this approach is underutilised. We aimed to describe practice within the NHS, and to determine whether the severity of renal dysfunction influenced the provision of angiography and modified the association between early revascularisation and survival. Methods We performed a cohort study, using multivariable logistic regression and propensity score analyses, of data from the Myocardial Ischaemia National Audit Project for patients presenting with NSTE-ACS to English or Welsh hospitals between 2008 and 2010. Findings Of 35 881 patients diagnosed with NSTE-ACS, eGFR of <60 ml/minute/1.73 m2 was present in 15 680 (43.7%). There was a stepwise decline in the odds of undergoing inpatient angiography with worsening renal dysfunction. Compared with an eGFR>90 ml/minute/1.73 m2, patients with an eGFR between 45–59 ml/minute/1.73 m2 were 33% less likely to undergo angiography (adjusted OR 0.67, 95% CI 0.55–0.81); those with an eGFR<30/minute/1.73 m2 had a 64% reduction in odds of undergoing angiography (adjusted OR 0.36, 95%CI 0.29–0.43). Of 16 646 patients who had inpatient coronary angiography, 58.5% underwent inpatient revascularisation. After adjusting for co-variables, inpatient revascularisation was associated with approximately a 30% reduction in death within 1 year compared with those managed medically after coronary angiography (adjusted OR 0.66, 95%CI 0.57–0.77), with no evidence of modification by renal function (p interaction = 0.744). Interpretation Early revascularisation may offer a similar survival benefit in patients with and without renal dysfunction, yet renal impairment is an important determinant of the provision of coronary angiography following NSTE-ACS. A randomised controlled trial is needed to evaluate the efficacy of an early invasive approach in patients with severe renal dysfunction to ensure that all patients who may benefit are offered this treatment option. PMID:24937680

  9. Calcium intake is not associated with increased coronary artery calcification: The Framingham Study

    USDA-ARS?s Scientific Manuscript database

    Adequate calcium intake is known to protect the skeleton. However, studies that have reported adverse effects of calcium supplementation on vascular events have raised widespread concern. We assessed the association between calcium intake (from diet and supplements) and coronary artery calcification...

  10. Everolimus-Eluting Bioresorbable Scaffolds for Coronary Artery Disease.

    PubMed

    Ellis, Stephen G; Kereiakes, Dean J; Metzger, D Christopher; Caputo, Ronald P; Rizik, David G; Teirstein, Paul S; Litt, Marc R; Kini, Annapoorna; Kabour, Ameer; Marx, Steven O; Popma, Jeffrey J; McGreevy, Robert; Zhang, Zhen; Simonton, Charles; Stone, Gregg W

    2015-11-12

    In patients with coronary artery disease who receive metallic drug-eluting coronary stents, adverse events such as late target-lesion failure may be related in part to the persistent presence of the metallic stent frame in the coronary-vessel wall. Bioresorbable vascular scaffolds have been developed to attempt to improve long-term outcomes. In this large, multicenter, randomized trial, 2008 patients with stable or unstable angina were randomly assigned in a 2:1 ratio to receive an everolimus-eluting bioresorbable vascular (Absorb) scaffold (1322 patients) or an everolimus-eluting cobalt-chromium (Xience) stent (686 patients). The primary end point, which was tested for both noninferiority (margin, 4.5 percentage points for the risk difference) and superiority, was target-lesion failure (cardiac death, target-vessel myocardial infarction, or ischemia-driven target-lesion revascularization) at 1 year. Target-lesion failure at 1 year occurred in 7.8% of patients in the Absorb group and in 6.1% of patients in the Xience group (difference, 1.7 percentage points; 95% confidence interval, -0.5 to 3.9; P=0.007 for noninferiority and P=0.16 for superiority). There was no significant difference between the Absorb group and the Xience group in rates of cardiac death (0.6% and 0.1%, respectively; P=0.29), target-vessel myocardial infarction (6.0% and 4.6%, respectively; P=0.18), or ischemia-driven target-lesion revascularization (3.0% and 2.5%, respectively; P=0.50). Device thrombosis within 1 year occurred in 1.5% of patients in the Absorb group and in 0.7% of patients in the Xience group (P=0.13). In this large-scale, randomized trial, treatment of noncomplex obstructive coronary artery disease with an everolimus-eluting bioresorbable vascular scaffold, as compared with an everolimus-eluting cobalt-chromium stent, was within the prespecified margin for noninferiority with respect to target-lesion failure at 1 year. (Funded by Abbott Vascular; ABSORB III ClinicalTrials.gov number, NCT01751906.).

  11. Newborn lamb coronary artery reactivity is programmed by early gestation dexamethasone before the onset of systemic hypertension

    PubMed Central

    Roghair, Robert D.; Segar, Jeffrey L.; Sharma, Ram V.; Zimmerman, Matthew C.; Jagadeesha, D. K.; Segar, Emily M.; Scholz, Thomas D.; Lamb, Fred S.

    2009-01-01

    Exposure of the early gestation ovine fetus to exogenous glucocorticoids induces organ-specific alterations in postnatal cardiovascular physiology. To determine whether early gestation corticosteroid exposure alters coronary reactivity before the development of systemic hypertension, dexamethasone (0.28 mg·kg−1 · day−1) was administered to pregnant ewes by intravenous infusion over 48 h beginning at 27 days gestation (term, 145 days). Vascular responsiveness was assessed in endothelium-intact coronary arteries isolated from 1-wk-old steroid-exposed and age-matched control lambs (N = 6). Calcium imaging was performed in fura 2-loaded primary cultures of vascular smooth muscle cells (VSMC) from the harvested coronary arteries. Early gestation steroid exposure did not significantly alter mean arterial blood pressure or coronary reactivity to KCl, thromboxane A2 mimetic U-46619, or ANG II. Steroid exposure significantly increased coronary artery vasoconstriction to acetylcholine and endothelin-1. Vasodilatation to adenosine, but not nitroprusside or forskolin, was significantly attenuated following early gestation steroid exposure. Endothelin-1 or U-46619 stimulation resulted in a comparable increase in intracellular calcium concentration ([Ca2+]i) in coronary VSMC isolated from either dexamethasone-treated or control animals. However, the ANG II- or KCl-mediated increase in [Ca2+]i in control VSMC was significantly attenuated in VSMC harvested from dexamethasone-treated lambs. Coronary expression of muscle voltage-gated l-type calcium channel α-1 subunit protein was not significantly altered by steroid exposure, whereas endothelial nitric oxide synthase expression was attenuated. These findings demonstrate that early gestation glucocorticoid exposure elicits primary alterations in coronary responsiveness before the development of systemic hypertension. Glucocorticoid-induced alterations in coronary physiology may provide a mechanistic link between an adverse intrauterine environment and later cardiovascular disease. PMID:15961529

  12. The inhibition of inducible nitric oxide synthase and oxidative stress by agmatine attenuates vascular dysfunction in rat acute endotoxemic model.

    PubMed

    El-Awady, Mohammed S; Nader, Manar A; Sharawy, Maha H

    2017-10-01

    Vascular dysfunction leading to hypotension is a major complication in patients with septic shock. Inducible nitric oxide synthase (iNOS) together with oxidative stress play an important role in development of vascular dysfunction in sepsis. Searching for an endogenous, safe and yet effective remedy was the chief goal for this study. The current study investigated the effect of agmatine (AGM), an endogenous metabolite of l-arginine, on sepsis-induced vascular dysfunction induced by lipopolysaccharides (LPS) in rats. AGM pretreatment (10mg/kg, i.v.) 1h before LPS (5mg/kg, i.v.) prevented the LPS-induced mortality and elevations in serum creatine kinase-MB isoenzyme (CK-MB) activity, lactate dehydrogenase (LDH) activity, C-reactive protein (CRP) level and total nitrite/nitrate (NOx) level after 24h from LPS injection. The elevation in aortic lipid peroxidation illustrated by increased malondialdehyde (MDA) content and the decrease in aortic glutathione (GSH) and superoxide dismutase (SOD) were also ameliorated by AGM. Additionally, AGM prevented LPS-induced elevation in mRNA expression of iNOS, while endothelial NOS (eNOS) mRNA was not affected. Furthermore AGM prevented the impaired aortic contraction to KCl and phenylephrine (PE) and endothelium-dependent relaxation to acetylcholine (ACh) without affecting endothelium-independent relaxation to sodium nitroprusside (SNP). AGM may represent a potential endogenous therapeutic candidate for sepsis-induced vascular dysfunction through its inhibiting effect on iNOS expression and oxidative stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Down-regulation of vascular PPAR-γ contributes to endothelial dysfunction in high-fat diet-induced obese mice exposed to chronic intermittent hypoxia.

    PubMed

    Zhang, Yanan; Zhang, Chunlian; Li, Haiou; Hou, Jingdong

    2017-10-14

    Obstructive sleep apnea (OSA), characterized by chronic intermittent hypoxia (CIH), is associated with endothelial dysfunction. The prevalence of OSA is linked to an epidemic of obesity. CIH has recently been reported to cause endothelial dysfunction in diet-induced obese animals by exaggerating oxidative stress and inflammation, but the underlying mechanism remains unclear. PPAR-γ, a ligand-inducible transcription factor that exerts anti-oxidant and anti-inflammatory effects, is down-regulated in the peripheral tissues in diet-induce obesity. We tested the hypothesis that down-regulation of vascular PPAR-γ in diet-induced obesity enhances inflammation and oxidative stress in response to CIH, resulting in endothelial dysfunction. Male C57BL/6 mice were fed either a high-fat diet (HFD) or a low-fat diet (LFD) and simultaneously exposed to CIH or intermittent air for 6 weeks. An additional HFD group received a combination of CIH and PPAR-γ agonist pioglitazone for 6 weeks. Endothelial-dependent vasodilation was impaired only in HFD group exposed to CIH, compared with other groups, but was restored by concomitant pioglitazone treatment. Molecular studies revealed that vascular PPAR-γ expression and activity were reduced in HFD groups, compared with LFD groups, but were reversed by pioglitazone treatment. In addition, CIH elevated vascular expression of NADPH oxidase 4 and dihydroethidium fluorescence, and increased expression of proinflammatory cytokines TNF-α and IL-1β in both LFD and HFD groups, but these increases was significantly greater in HFD group, along with decreased vascular eNOS activity. Pioglitazone treatment of HFD group prevented CIH-induced changes in above molecular markers. The results suggest that HFD-induced obesity down-regulates vascular PPAR-γ, which results in exaggerated oxidative stress and inflammation in response to CIH, contributing to endothelial dysfunction. This finding may provide new insights into the mechanisms by which OSA induces endothelial dysfunction and other cardiovascular disease in patients with obesity. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Oxidative stress is not associated with vascular dysfunction in a model of alloxan-induced diabetic rats.

    PubMed

    Capellini, Verena Kise; Baldo, Caroline Floreoto; Celotto, Andréa Carla; Batalhão, Marcelo Eduardo; Cárnio, Evelin Capellari; Rodrigues, Alfredo José; Evora, Paulo Roberto Barbosa

    2010-08-01

    To verify if an experimental model of alloxan-diabetic rats promotes oxidative stress, reduces nitric oxide bioavailability and causes vascular dysfunction, and to evaluate the effect of N-acetylcysteine (NAC) on these parameters. Alloxan-diabetic rats were treated or not with NAC for four weeks. Plasmatic levels of malondialdehyde (MDA) and nitrite/nitrate (NOx), the endothelial and inducible nitric oxide synthase (eNOS and iNOS) immunostaining and the vascular reactivity of aorta were compared among diabetic (D), treated diabetic (TD) and control (C) rats. MDA levels increased in D and TD. NOx levels did not differ among groups. Endothelial eNOS immunostaining reduced and adventitial iNOS increased in D and TD. The responsiveness of rings to acetylcholine, sodium nitroprusside, and phenylephrine did not differ among groups. NAC had no effect on the evaluated parameters and this experimental model did not promote vascular dysfunction despite the development of oxidative stress.

  15. Endothelial function is associated with myocardial diastolic function in women with systemic lupus erythematosus.

    PubMed

    Chin, Calvin W L; Chin, Chee-Yang; Ng, Marie X R; Le, Thu-Thao; Huang, Fei-Qiong; Fong, Kok-Yong; Thumboo, Julian; Tan, Ru-San

    2014-09-01

    Endothelial dysfunction is associated with traditional and systemic lupus erythematosus (SLE)-specific risk factors, and early data suggest reversibility of endothelial dysfunction with therapy. The clinical relevance of endothelial function assessment has been limited by the lack of studies, demonstrating its prognostic significance and impact on early myocardial function. Therefore, we aimed to determine the association between endothelial and myocardial diastolic function in SLE women. Women with SLE and no coronary artery disease were prospectively recruited and underwent radionuclide myocardial perfusion imaging (MPI) (Jetstream, Philips, the Netherlands) to exclude subclinical myocardial ischemia. Cardiac and vascular functions were assessed in all patients (Alpha 10, Aloka, Tokyo). Diastolic function was assessed using pulse wave early (E) and late mitral blood inflow and myocardial tissue Doppler (mean of medial and lateral annulus e') velocities. Endothelial function was measured using brachial artery flow-mediated vasodilatation (FMD%). Univariate and multivariate linear regressions were used to assess the association between FMD% and myocardial diastolic function, adjusting for potential confounders. Thirty-eight patients without detectable myocardial ischemia on MPI were studied (mean age 44 ± 10 years; mean disease duration 14 ± 6 years). About 61 % of patients had normal diastolic function (E/e' ≤ 8), and 5 % of patients had definite diastolic dysfunction with E/e' > 13 (mean 7.1 ± 2.9). FMD% was associated with E/e' (regression coefficient β = -0.35; 95 % CI -0.62 to -0.08; p = 0.01) independent of systolic blood pressure, age, and SLICC/ACR Damage Index.

  16. Value of doppler ultrasonography in the study of hemodialysis peripheral vascular access dysfunction.

    PubMed

    Moreno Sánchez, T; Martín Hervás, C; Sola Martínez, E; Moreno Rodríguez, F

    2014-01-01

    The main objectives of this study were to evaluate the sensitivity and specificity of duplex Doppler ultrasonography in the study of hemodialysis peripheral vascular access dysfunction and to analyze the resistance index and flow in the afferent artery. We prospectively studied 178 patients with 178 peripheral vascular accesses that were dysfunctional in at least three consecutive hemodialysis sessions. Patients underwent duplex Doppler ultrasonography and clinical and laboratory follow-up for three months (provided angiography findings were negative). We calculated the sensitivity, specificity, predictive values, and coefficients of probability. We studied the morphology of the afferent artery, the arteriovenous anastomosis, and the efferent vein, and we measured the resistance index and the flow of the afferent artery, the diameter of the anastomosis, and the flow and peak systolic velocity in the efferent vein. The final sample consisted of 159 patients. The sensitivity, specificity, positive and negative predictive values, and positive and negative coefficients of probability were 0,98 (95% CI: 0,88-1.00), 0,74 (95% CI: 0,66-0,81), 0,96, 0,82, 3.7, and 0,03, respectively. The resistance index was less than 0,5 in 78.5% of the peripheral vascular accesses with normal function and greater than 0,5 in 86.1% of the dysfunctional peripheral vascular accesses. We found aneurysms in 19 of the native peripheral vascular accesses and pseudoaneurysms in 7 of the prosthetic grafts. Inverted flow was seen in 57 peripheral vascular accesses. Duplex Doppler ultrasonography is an efficacious method for detecting and characterizing stenosis and thrombosis in peripheral vascular accesses, and it provides information about the morphology and hemodynamics. Copyright © 2012 SERAM. Published by Elsevier Espana. All rights reserved.

  17. Targeting vascular (endothelial) dysfunction

    PubMed Central

    Steven, Sebastian; Weber, Alina; Shuvaev, Vladimir V.; Muzykantov, Vladimir R.; Laher, Ismail; Li, Huige; Lamas, Santiago

    2016-01-01

    Abstract Cardiovascular diseases are major contributors to global deaths and disability‐adjusted life years, with hypertension a significant risk factor for all causes of death. The endothelium that lines the inner wall of the vasculature regulates essential haemostatic functions, such as vascular tone, circulation of blood cells, inflammation and platelet activity. Endothelial dysfunction is an early predictor of atherosclerosis and future cardiovascular events. We review the prognostic value of obtaining measurements of endothelial function, the clinical techniques for its determination, the mechanisms leading to endothelial dysfunction and the therapeutic treatment of endothelial dysfunction. Since vascular oxidative stress and inflammation are major determinants of endothelial function, we have also addressed current antioxidant and anti‐inflammatory therapies. In the light of recent data that dispute the prognostic value of endothelial function in healthy human cohorts, we also discuss alternative diagnostic parameters such as vascular stiffness index and intima/media thickness ratio. We also suggest that assessing vascular function, including that of smooth muscle and even perivascular adipose tissue, may be an appropriate parameter for clinical investigations. Linked Articles This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc PMID:27187006

  18. Monocrotaline-Induced Pulmonary Hypertension Involves Downregulation of Antiaging Protein Klotho and eNOS Activity.

    PubMed

    Varshney, Rohan; Ali, Quaisar; Wu, Chengxiang; Sun, Zhongjie

    2016-11-01

    The objective of this study is to investigate whether stem cell delivery of secreted Klotho (SKL), an aging-suppressor protein, attenuates monocrotaline-induced pulmonary vascular dysfunction and remodeling. Overexpression of SKL in mesenchymal stem cells (MSCs) was achieved by transfecting MSCs with lentiviral vectors expressing SKL-green fluorescent protein (GFP). Four groups of rats were treated with monocrotaline, whereas an additional group was given saline (control). Three days later, 4 monocrotaline-treated groups received intravenous delivery of nontransfected MSCs, MSC-GFP, MSC-SKL-GFP, and PBS, respectively. Ex vivo vascular relaxing responses to acetylcholine were diminished in small pulmonary arteries (PAs) in monocrotaline-treated rats, indicating pulmonary vascular endothelial dysfunction. Interestingly, delivery of MSCs overexpressing SKL (MSC-SKL-GFP) abolished monocrotaline-induced pulmonary vascular endothelial dysfunction and PA remodeling. Monocrotaline significantly increased right ventricular systolic blood pressure, which was attenuated significantly by MSC-SKL-GFP, indicating improved PA hypertension. MSC-SKL-GFP also attenuated right ventricular hypertrophy. Nontransfected MSCs slightly, but not significantly, improved PA hypertension and pulmonary vascular endothelial dysfunction. MSC-SKL-GFP attenuated monocrotaline-induced inflammation, as evidenced by decreased macrophage infiltration around PAs. MSC-SKL-GFP increased SKL levels, which rescued the downregulation of SIRT1 (Sirtuin 1) expression and endothelial NO synthase (eNOS) phosphorylation in the lungs of monocrotaline-treated rats. In cultured endothelial cells, SKL abolished monocrotaline-induced downregulation of eNOS activity and NO levels and enhanced cell viability. Therefore, stem cell delivery of SKL is an effective therapeutic strategy for pulmonary vascular endothelial dysfunction and PA remodeling. SKL attenuates monocrotaline-induced PA remodeling and PA smooth muscle cell proliferation, likely by reducing inflammation and restoring SIRT1 levels and eNOS activity. © 2016 American Heart Association, Inc.

  19. The influence of nitroglycerin on the proliferation of endothelial progenitor cells from peripheral blood of patients with coronary artery disease.

    PubMed

    Wang, Xin; Zeng, Caiyu; Gong, Huiping; He, Hong; Wang, Mengxin; Hu, Qin; Yang, Falin

    2014-10-01

    Endothelial progenitor cells (EPCs) are associated with vascular repairing and progression of atherosclerotic lesion. It may lead to coronary artery disease (CAD) if circulating EPCs lose their function. Continuous nitroglycerin (NTG) therapy causes increased vascular oxidative stress and endothelial dysfunction. The aim of this study was to investigate the effects of NTG on the proliferation of human peripheral blood-derived EPCs. EPC cultures, collected from 60 CAD patients and cultured for 7-12 days, were treated with different concentrations of NTG (0.0, 0.3, 1.0, 2.0, 7.5, 15.0, and 20.0 mg/l) for 72 h, respectively. The cell counts and proliferative activities of EPC; the levels of vascular endothelial growth factor-A (VEGF-A), nitric oxide (NO) and peroxynitrite (ONOO(-)) in culture medium; and the level of reactive oxygen species (ROS) in adherent cells were measured. Compared with control (0.0 mg/l NTG), the cell number and proliferative activities of EPCs were increased when treated with 1.0 mg/l NTG and reached maximum level when NTG concentration was 7.5 mg/l. However, there was a significant reduction when treated with higher doses of NTG (≥15.0 mg/l). Meanwhile, VEGF-A expression reached its maximal expression with 7.5 mg/l NTG, but gradually declined by incubation with higher doses of NTG. There was a linear relationship between NO level and NTG concentration, but no changes of ONOO(-) and ROS levels were found when EPCs were incubated with 0.3-7.5 mg/l NTG. However, ONOO(-) and ROS levels were significantly increased when incubated with 15 and 20 mg/l NTG. Our data demonstrated that moderate dose of NTG may stimulate the proliferative activities of EPCs isolated from CAD patients. © The Author 2014. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  20. Presence of cardiovascular structural changes in essential hypertensive patients with coronary microvascular disease and effects of long-term treatment.

    PubMed

    Virdis, A; Ghiadoni, L; Lucarini, A; Di Legge, V; Taddei, S; Salvetti, A

    1996-04-01

    In asymptomatic essential hypertensive patients with angiographically normal coronary arteries and without left ventricular hypertrophy, dipyridamole-induced ischemic-like ST segment depression may be a marker of coronary microvascular disease. In this study we evaluated, first, whether this cardiac abnormality is linked to structural or functional vascular abnormalities, and second, the effect of antihypertensive treatment by 12-month administration of the angiotensin converting enzyme (ACE) inhibitor captopril (50 mg twice a day orally). In essential hypertensives with dipypridamole echocardiography stress test (DET) (DET+, n = 8) and without (DET-, n = 8) ST segment depression greater than 0.1 mV during intravenous dipyridamole infusion (0.84 mg/kg over 10 min), we studied the forearm blood flow (FBF, venous plethysmography, mL/100) modifications induced by intrabrachial acetylcholine (Ach) (0.15, 0.45, 1.5, 4.5, 15 micrograms/100 mL/min x 5 min each), an endothelium-dependent vasodilator, and by sodium nitroprusside (SNP) (1, 2, 4 micrograms/100 mL/min x 5 min each), a smooth muscle cell relaxant compound. Minimal forearm vascular resistances (MFVR), an index of arteriolar structural changes, were also calculated. Both Ach and SNP caused greater vasodilation in DET- as compared to DET+ while MFVRs were lower in DET- compared to DET+. After treatment, both DET+ and DET- patients showed a significant and similar reduction in blood pressure and left ventricular mass index, while vasodilation to acetylcholine and sodium nitroprusside was increased only in the DET+ group. In addition, forearm minimal vascular resistances were significantly reduced only in DET+ patients, who showed disappearance of dipyridamole-induced ischemic-like ST segment depression. In conclusion, these data confirm that essential hypertensive patients with microvascular coronary disease are characterized by the presence of structural changes in the forearm vascular bed. Our results also indicate that both cardiac and forearm vascular abnormalities can be reversed by antihypertensive treatment with an ACE inhibitor.

  1. Left ventricular function abnormalities as a manifestation of silent myocardial ischemia.

    PubMed

    Lambert, C R; Conti, C R; Pepine, C J

    1986-11-01

    A large body of evidence exists indicating that left ventricular dysfunction is a common occurrence in patients with severe coronary artery disease and represents silent or asymptomatic myocardial ischemia. Such dysfunction probably occurs early in the time course of every ischemic episode in patients with coronary artery disease whether symptoms are eventually manifested or not. The pathophysiology of silent versus symptomatic left ventricular dysfunction due to ischemia appears to be identical. Silent ischemia-related left ventricular dysfunction can be documented during spontaneous or stress-induced perturbations in the myocardial oxygen supply/demand ratio. It also may be detected by nitroglycerin-induced improvement in ventricular function or by salutary changes in wall motion following revascularization. Silent left ventricular dysfunction is a very early occurrence during ischemia and precedes electrocardiographic abnormalities. In this light, its existence should always be kept in mind when dealing with patients with ischemic heart disease. It can be hypothesized that because silent ischemia appears to be identical to ischemia with symptoms in a pathophysiologic sense, prognosis and treatment in both cases should be the same.

  2. Contributions of dysglycemia, obesity and insulin resistance to impaired endothelium-dependent vasodilation in humans

    PubMed Central

    Han, KA; Patel, Y; Lteif, AA; Chisholm, R; Mather, KJ

    2011-01-01

    Background Individual effects of hyperglycemia and obesity to impair vascular health are recognized. However, the relative contributions of dysglycemia versus other obesity-related traits to vascular dysfunction have not been systematically evaluated. Methods We undertook a cross-sectional evaluation of factors contributing to vascular function in 271 consecutive subjects, categorized as non-obese normal glucose tolerant (n=115), non-obese dysglycemic (n=32), obese normal glucose tolerant (n=57), obese dysglycemic (n=38), or type 2 diabetic (n=29). Vascular function was measured invasively as leg blood flow responses to methacholine chloride, an endothelium-dependent vasodilator. Categorical and continuous analyses were used to assess the contributions of hyperglycemia to vascular dysfunction. Results Even among normoglycemic subjects, obese subjects had impaired vascular function compared to non-obese subjects (p=0.004). Vascular function was also impaired in non-obese dysglycemic subjects (p=0.04 versus non-obese normoglycemic subjects), to a level comparable to normoglycemic obese subjects. Within obese subject groups, gradations of dysglycemia including the presence of diabetes were not associated with further worsening of these vascular responses beyond the effect of obesity alone (p=NS comparing all obese groups, p<0.001 versus lean normoglycemic subjects). In univariate and multivariable modeling analyses we found that effects of glycemia were less powerful than effects of insulin resistance and obesity on vascular dysfunction. Conclusions Dysglycemia contributes to impaired vascular function in non-obese subjects, but obesity and insulin resistance are more important determinants of vascular function in obese and diabetic subjects. PMID:21309061

  3. Molecular mechanisms of maternal vascular dysfunction in preeclampsia.

    PubMed

    Goulopoulou, Styliani; Davidge, Sandra T

    2015-02-01

    In preeclampsia, as a heterogeneous syndrome, multiple pathways have been proposed for both the causal as well as the perpetuating factors leading to maternal vascular dysfunction. Postulated mechanisms include imbalance in the bioavailability and activity of endothelium-derived contracting and relaxing factors and oxidative stress. Studies have shown that placenta-derived factors [antiangiogenic factors, microparticles (MPs), cell-free nucleic acids] are released into the maternal circulation and act on the vascular wall to modify the secretory capacity of endothelial cells and alter the responsiveness of vascular smooth muscle cells to constricting and relaxing stimuli. These molecules signal their deleterious effects on the maternal vascular wall via pathways that provide the molecular basis for novel and effective therapeutic interventions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Erectile dysfunction in patients with cardiovascular disease

    PubMed Central

    Ophuis, A.J.M. Oude; Nijeholt, A.A.B. Lycklama à

    2006-01-01

    Erectile dysfunction is a highly prevalent disease, especially in cardiovascular-compromised men. Many of the well-established risk factors for cardiovascular disease are also risk factors for erectile dysfunction. A correlation between erectile dysfunction and endothelial dysfunction is well established. It is postulated that erectile dysfunction with an arteriovascular aetiology can predate and be an indicator of potential coronary artery disease. In this paper we will attempt to increase awareness among cardiologists for the predictive value of erectile dysfunction for future cardiovascular disease in order to optimise cardiovascular risk management. The treatment of erectile dysfunction and cardiovascular interactions is also discussed in detail. ImagesFigure 1AFigure 1B PMID:25696612

  5. Noninvasive Imaging of the Coronary Vasculature Using Ultrafast Ultrasound.

    PubMed

    Maresca, David; Correia, Mafalda; Villemain, Olivier; Bizé, Alain; Sambin, Lucien; Tanter, Mickael; Ghaleh, Bijan; Pernot, Mathieu

    2017-08-11

    The aim of this study was to investigate the potential of coronary ultrafast Doppler angiography (CUDA), a novel vascular imaging technique based on ultrafast ultrasound, to image noninvasively with high sensitivity the intramyocardial coronary vasculature and quantify the coronary blood flow dynamics. Noninvasive coronary imaging techniques are currently limited to the observation of the epicardial coronary arteries. However, many studies have highlighted the importance of the coronary microcirculation and microvascular disease. CUDA was performed in vivo in open-chest procedures in 9 swine. Ultrafast plane-wave imaging at 2,000 frames/s was combined to an adaptive spatiotemporal filtering to achieve ultrahigh-sensitive imaging of the coronary blood flows. Quantification of the flow change was performed during hyperemia after a 30-s left anterior descending (LAD) artery occlusion followed by reperfusion and was compared to gold standard measurements provided by a flowmeter probe placed at a proximal location on the LAD (n = 5). Coronary flow reserve was assessed during intravenous perfusion of adenosine. Vascular damages were evaluated during a second set of experiments in which the LAD was occluded for 90 min, followed by 150 min of reperfusion to induce myocardial infarction (n = 3). Finally, the transthoracic feasibility of CUDA was assessed on 2 adult and 2 pediatric volunteers. Ultrahigh-sensitive cine loops of venous and arterial intramyocardial blood flows were obtained within 1 cardiac cycle. Quantification of the coronary flow changes during hyperemia was in good agreement with gold standard measurements (r 2  = 0.89), as well as the assessment of coronary flow reserve (2.35 ± 0.65 vs. 2.28 ± 0.84; p = NS). On the infarcted animals, CUDA images revealed the presence of strong hyperemia and the appearance of abnormal coronary vessel structures in the reperfused LAD territory. Finally, the feasibility of transthoracic coronary vasculature imaging was shown on 4 human volunteers. Ultrafast Doppler imaging can map the coronary vasculature with high sensitivity and quantify intramural coronary blood flow changes. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  6. Vascular calcification abrogates the nicorandil mediated cardio-protection in ischemia reperfusion injury of rat heart.

    PubMed

    Ravindran, Sriram; Murali, Jeyashri; Amirthalingam, Sunil Kumar; Gopalakrishnan, Senthilkumar; Kurian, Gino A

    2017-02-01

    The present study was aimed to determine the efficacy of nicorandil in treating cardiac reperfusion injury with an underlying co-morbidity of vascular calcification (VC). Adenine diet was used to induce VC in Wistar rat and the heart was isolated to induce global ischemia reperfusion (IR) by Langendorff method, with and without the nicorandil (7.5mg/kg) pre-treatment and compared with those fed on normal diet. The adenine-treated rats displayed abnormal ECG changes and altered mitochondrial integrity compared to a normal rat heart. These hearts, when subjected to IR increased the infarct size, cardiac injury (measured by lactate dehydrogenase and creatine kinase activity in the coronary perfusate) and significantly altered the hemodynamics compared to the normal perfused heart. Nicorandil pretreatment in rat fed on normal diet enhanced the hemodynamics significantly (P<0.05) along with a substantial reduction in the mitochondrial dysfunction (measured by high ADP to oxygen consumption ratio, respiratory control ratio, enzyme activities and less swelling behavior) when subjected to IR. However, this cardio-protective effect of nicorandil was absent in rat heart with underlying calcification. Our results suggest that, the protective effect of nicorandil, a known mitochondrial ATP linked K + channel opener, against myocardial reperfusion injury was confined to normal rat heart. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Step down Vascular Calcification Analysis using State-of-the-Art Nanoanalysis Techniques

    PubMed Central

    Curtze, Sven C.; Kratz, Marita; Steinert, Marian; Vogt, Sebastian

    2016-01-01

    New insights into the architecture and formation mechanisms of calcific lesions down to the nanoscale open a better understanding of atherosclerosis and its pathogenesis. Scanning electron – and atomic force microscope based nano-analytical characterization techniques were adapted to the assessment of an ex-vivo calcified coronary artery. Human atherosclerotic tissue and bone tissue reside a typical chemistry of Magnesium and Sodium rich Calcium phosphates, identified as whitlockite and Calcium apatite, respectively. Despite the obvious similarities in both chemistry and crystallography, there are also clear differences between calcified vascular tissue and bone such as the highly oriented growth in bone, revealing meso-crystal character, as opposed to the anisotropic character of calcified vascular lesions. While the grain size in vascular calcified plaques is in the range of nanometers, the grain size in bone appears larger. Spherical calcific particles present in both the coronary artery wall and embedded in plaques reveal concentric layers with variations in both organic content and degree of hydration. PMID:26980376

  8. Step down Vascular Calcification Analysis using State-of-the-Art Nanoanalysis Techniques.

    PubMed

    Curtze, Sven C; Kratz, Marita; Steinert, Marian; Vogt, Sebastian

    2016-03-16

    New insights into the architecture and formation mechanisms of calcific lesions down to the nanoscale open a better understanding of atherosclerosis and its pathogenesis. Scanning electron - and atomic force microscope based nano-analytical characterization techniques were adapted to the assessment of an ex-vivo calcified coronary artery. Human atherosclerotic tissue and bone tissue reside a typical chemistry of Magnesium and Sodium rich Calcium phosphates, identified as whitlockite and Calcium apatite, respectively. Despite the obvious similarities in both chemistry and crystallography, there are also clear differences between calcified vascular tissue and bone such as the highly oriented growth in bone, revealing meso-crystal character, as opposed to the anisotropic character of calcified vascular lesions. While the grain size in vascular calcified plaques is in the range of nanometers, the grain size in bone appears larger. Spherical calcific particles present in both the coronary artery wall and embedded in plaques reveal concentric layers with variations in both organic content and degree of hydration.

  9. Haemorrhoids are associated with erectile dysfunction: a population-based study.

    PubMed

    Keller, J J; Lin, H-C

    2012-12-01

    Haemorrhoids are associated with regional vascular abnormalities and rectal pain, which are hypothesized to increase the risk of erectile dysfunction (ED); however, few studies have investigated the association between ED and haemorrhoids. This case-control study aimed to estimate the association between haemorrhoids and ED by using a population-based data in Taiwan. We identified 6,310 patients with ED as cases and randomly selected 31,550 controls. Conditional logistic regression was performed to compute the odds ratio (OR) for having been previously diagnosed with haemorrhoids between cases and controls. The results show that haemorrhoids were found to be present among 1,572 (24.9%) cases and 4,491 (14.20%) controls. The OR for prior haemorrhoids among cases was 1.90 (95% CI = 1.78-2.03) when compared with controls after adjusting for monthly income, geographical location, hypertension, diabetes, coronary heart disease, hyperlipidemia, obesity and alcohol abuse/alcohol dependence syndrome. Younger cases demonstrated a higher risk for prior haemorrhoids when compared with controls. In particular, the adjusted OR among cases <30 years old was 3.71 (95% CI = 2.74-5.02) when compared with controls. We concluded that there was an association between ED and a prior diagnosis of haemorrhoids. © 2012 The Authors. International Journal of Andrology © 2012 European Academy of Andrology.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, R.N.

    One hundred and fifty patients with coronary artery disease (CAD), 14 (9.3%) of whom had coexisting peripheral vascular disease, underwent bilateral internal mammary arteriography to study the incidence and extent of atherosclerosis in these vessels. Significant atherosclerosis of the internal mammary arteries (IMAs) was present in three patients (2%), of whom one had coexisting peripheral vascular disease. Lesions in the IMAs were found either proximally, close to the origin or distally, around the terminal bifurcation. Six of the 14 patients with peripheral vascular disease (4% of total subjects) had significant atherosclerosis of the brachiocephalic arteries. Atherosclerotic involvement of the IMAmore » is very unusual and rarely interferes with the use of these vessels for coronary bypass. More common, however, is atherosclerosis of the subclavian arteries, a contraindication for IMA grafting if the lesion is proximal to the IMA origin.« less

  11. Association between plantar fascia vascularity and morphology and foot dysfunction in individuals with chronic plantar fasciitis.

    PubMed

    Chen, Hongying; Ho, Hok-Ming; Ying, Michael; Fu, Siu Ngor

    2013-10-01

    Single-cohort laboratory-based study. To identify whether plantar fascia vascularity and thickness are associated with foot pain and dysfunction in individuals with chronic plantar fasciitis. Background Altered plantar fascia vascularity and thickening of the fascia have been identified in individuals with chronic plantar fasciitis. Thirty-eight patients with chronic unilateral plantar fasciitis and 21 controls participated in this study. Proximal plantar fascia vascularization and thickness were assessed using ultrasound imaging, and pain and foot dysfunction were quantified with a visual analog scale and the Chinese version of the Foot Function Index, respectively. Paired t tests were used to assess the side-to-side differences in fascia thickness and vascularity index (VI) in the control and patient groups, and an unpaired t test was used to make comparisons with the patient group. Multiple regression analysis was performed to identify whether the VI and fascia thickness were associated with pain and foot dysfunction. There were significantly higher VI (mean ± SD, 2.4% ± 1.4%) and fascia thickness (5.0 ± 1.3 mm) values in the affected feet when compared with the unaffected feet in the patient group (VI, 1.4% ± 0.5%; fascia thickness, 3.3 ± 0.7 mm) and with the dominant side of the controls (VI, 1.6% ± 0.4%; fascia thickness, 2.9 ± 0.6 mm). After accounting for age, gender, body mass index, and duration of symptoms, the VI explained 13% and 33% of the variance in pain scores measured with a visual analog scale and the pain subscale of the Foot Function Index, respectively; the VI and fascia thickness explained 42% of the variance in the Foot Function Index. Individuals with unilateral chronic plantar fasciitis demonstrated significantly greater vascularity and thickened fascia on the affected side compared to the unaffected side and also to healthy controls. Fascia vascularity was associated independently with self-perceived pain, and both fascia vascularity and thickness were associated with foot dysfunction in patients with chronic plantar fasciitis. Public trials registry: Current Controlled Trials, ISRCTN49594569.

  12. [Non-pharmacologic therapy of age-related macular degeneration, based on the etiopathogenesis of the disease].

    PubMed

    Fischer, Tamás

    2015-07-12

    It has a great therapeutic significance that the disorder of the vascular endothelium, which supplies the affected ocular structures, plays a major role in the development of age-related macular degeneration. Chronic inflammation is closely linked to diseases associated with endothelial dysfuncition and age-related macular degeneration is accompanied by a general inflammatory response. The vascular wall including those in chorioids may be activated by several repeated and/or prolonged mechanical, physical, chemical, microbiological, immunologic and genetic factors causing a protracted host defence response with a consequent vascular damage, which leads to age-related macular degeneration. Based on this concept, age-related macular degeneration is a local manifestation of the systemic vascular disease. This recognition should have therapeutic implications because restoration of endothelial dysfunction can stabilize the condition of chronic vascular disease including age-related macular degeneration, as well. Restoration of endothelial dysfunction by non-pharmacological or pharmacological interventions may prevent the development or improve endothelial dysfunction resulting in prevention or improvement of age-related macular degeneration. Non-pharmacological interventions which may have beneficial effect in endothelial dysfunction include (1) smoking cessation; (2) reduction of increased body weight; (3) adequate physical activity; (4) appropriate diet (a) proper dose of flavonoids, polyphenols and kurcumin; (b) omega-3 long-chain polyunsaturated fatty acids: docosahexaenoic acid and eicosapentaenoic acid; (c) carotenoids, lutein and zeaxanthins), (d) management of dietary glycemic index, (e) caloric restriction, and (5) elimination of stressful lifestyle. Non-pharmacological interventions should be preferable even if medicaments are also used for the treatment of endothelial dysfunction.

  13. Relation between digital peripheral arterial tonometry and brachial artery ultrasound measures of vascular function in patients with coronary artery disease and in healthy volunteers.

    PubMed

    Lee, Craig R; Bass, Almasa; Ellis, Kyle; Tran, Bryant; Steele, Savanna; Caughey, Melissa; Stouffer, George A; Hinderliter, Alan L

    2012-03-01

    Digital peripheral arterial tonometry (PAT) is an emerging, noninvasive method to assess vascular function. The physiology underlying this phenotype, however, remains unclear. Therefore, we evaluated the relation between digital PAT and established brachial artery ultrasound measures of vascular function under basal conditions and after reactive hyperemia. Using a cross-sectional study design, digital PAT and brachial artery ultrasonography with pulsed wave Doppler were simultaneously completed at baseline and after reactive hyperemia in both those with established coronary artery disease (n = 99) and healthy volunteers with low cardiovascular disease risk (n = 40). Under basal conditions, the digital pulse volume amplitude demonstrated a significant positive correlation with the brachial artery velocity-time integral that was independent of the arterial diameter, in both the healthy volunteer (r(s) = 0.64, p <0.001) and coronary artery disease (r(s) = 0.63, p <0.001) cohorts. Similar positive relations were observed with the baseline brachial artery blood flow velocity and blood flow. In contrast, no relation between the reactive hyperemia-evoked digital PAT ratio and either brachial artery flow-mediated dilation or shear stress was observed in either cohort (p = NS). In conclusion, these findings demonstrate that the digital PAT measures of vascular function more closely reflect basal blood flow in the brachial artery than reactive hyperemia-induced changes in the arterial diameter or flow velocity, and the presence of vascular disease does not modify the physiology underlying the digital PAT phenotype. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Vascular plugs - A key companion to Interventionists - 'Just Plug it'.

    PubMed

    Ramakrishnan, Sivasubramanian

    2015-01-01

    Vascular plugs are ideally suited to close extra-cardiac, high flowing vascular communications. The family of vascular plugs has expanded. Vascular plugs in general have a lower profile and the newer variants can be delivered even through a diagnostic catheter. These features make them versatile and easy to use. The Amplatzer vascular plugs are also used for closing intracardiac defects including coronary arterio-venous fistula and paravalvular leakage in an off-label fashion. In this review, the features of currently available vascular plugs are reviewed along with tips and tricks of using them in the cardiac catheterization laboratory. Copyright © 2015. Published by Elsevier B.V.

  15. Beneficial effects of apple peel polyphenols on vascular endothelial dysfunction and liver injury in high choline-fed mice.

    PubMed

    Jia, Mengfan; Ren, Daoyuan; Nie, Yan; Yang, Xingbin

    2017-03-22

    This study was designed to investigate the preventive effects of Red Fuji apple peel polyphenolic extract (APP) on vascular endothelial dysfunction and liver injury in mice fed a high choline diet. The mice were fed 3% dietary choline in drinking water for 8 weeks and displayed vascular dysfunction and liver damage (p < 0.01). The administration of APP at 600 and 900 mg per kg bw significantly elevated serum NO, HDL and 6-Keto-PGF1a levels and lowered serum TC, TG, LDL, ET-1 and TXB2 levels in the HC-fed mice. Besides, APP also caused the reduction of AST, ALT activities and MDA, CRP, TNF-α levels, and increased the hepatic GSH-Px and SOD activities of the HC-fed mice. Furthermore, the histopathology of the liver by conventional H&E and oil red O staining confirmed the liver steatosis induced by a choline diet and the hepatoprotective effect of APP. The experiment results indicated that the polyphenolic extract from apple peel might be regarded as a preventive and therapeutic product for the amelioration of HC diet-induced vascular dysfunction and hepatic injury.

  16. Double Guiding Catheters for Complex Percutaneous Coronary Intervention

    PubMed Central

    Chou, Shing-Hsien; Lin, Chia-Pin; Lin, Yen-Chen; Kuo, Chi-Tai; Lin, Ming-Shyan; Chang, Chi-Jen

    2012-01-01

    A large-lumen guiding catheter is often used for complex percutaneous coronary intervention—particularly when a final kissing-balloon or 2-stent technique is required. However, catheter insertion is sometimes restricted by diseased vascular access sites or a tortuous vascular route. We report 2 cases in which a unique double guiding catheter technique was used to create a lumen of sufficient size for complex percutaneous coronary intervention. In each patient, two 6F guiding catheters were used concurrently to engage the ostium of 1 target vessel. In 1 patient, these catheters were used for the delivery of 2 balloons to complete kissing-balloon dilation after single-stent placement. In the other patient, the catheters were used to deliver 2 stents sequentially to their respective target lesions. The stents were then deployed simultaneously as kissing stents, followed by high-pressure kissing-balloon postdilation. PMID:22412243

  17. Experimental and clinical study of EHF treatment of vascular-vestibular dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mal`tsev, A.E.; Abakarov, A.T.; Istomin, V.S.

    1994-07-01

    The authors present the results of a study of the effectiveness of EHF radiation on the cerebral hemodynamics, bioelectrical activity of the cerebral cortex, and functional state of the vestibular analyzer in chronic studies of cats using a model of vascular-vestibular dysfunction. The clinical part of the work reflects the results of studies of the functional state of cerebral blood circulation and the vestibular analyzer during the EHF treatment of angiovertebrogenic vestibular dysfunction in a background of initial manifestations of cerebral blood supply deficiency (angiodistonic variant).

  18. Association between circulating vitamin K1 and coronary calcium progression in community-dwelling adults: the Multi-Ethnic Study of Atherosclerosis

    USDA-ARS?s Scientific Manuscript database

    While animal studies found vitamin K treatment reduced vascular calcification, human data are limited. Using a case-cohort design, we determined the association between vitamin K status and coronary artery calcium (CAC) progression in the Multi-ethnic Study of Atherosclerosis. Serum phylloquinone (v...

  19. Nutrition in the prevention of Coronary Heart Disease and the management of lipoprotein disorders

    USDA-ARS?s Scientific Manuscript database

    Cardiovascular disease (CVD) is comprised of coronary heart disease (CHD), stroke, and peripheral vascular disease (PVD). CVD is caused by progressive narrowing and blockage of arteries supplying the heart, brain, and other tissues and organs. CVD is the leading cause of death and disability in our ...

  20. Uncertainty Quantification in Multi-Scale Coronary Simulations Using Multi-resolution Expansion

    NASA Astrophysics Data System (ADS)

    Tran, Justin; Schiavazzi, Daniele; Ramachandra, Abhay; Kahn, Andrew; Marsden, Alison

    2016-11-01

    Computational simulations of coronary flow can provide non-invasive information on hemodynamics that can aid in surgical planning and research on disease propagation. In this study, patient-specific geometries of the aorta and coronary arteries are constructed from CT imaging data and finite element flow simulations are carried out using the open source software SimVascular. Lumped parameter networks (LPN), consisting of circuit representations of vascular hemodynamics and coronary physiology, are used as coupled boundary conditions for the solver. The outputs of these simulations depend on a set of clinically-derived input parameters that define the geometry and boundary conditions, however their values are subjected to uncertainty. We quantify the effects of uncertainty from two sources: uncertainty in the material properties of the vessel wall and uncertainty in the lumped parameter models whose values are estimated by assimilating patient-specific clinical and literature data. We use a generalized multi-resolution chaos approach to propagate the uncertainty. The advantages of this approach lies in its ability to support inputs sampled from arbitrary distributions and its built-in adaptivity that efficiently approximates stochastic responses characterized by steep gradients.

  1. Loss of Akt1 leads to severe atherosclerosis and occlusive coronary artery disease

    PubMed Central

    Fernández-Hernando, Carlos; Ackah, Eric; Yu, Jun; Suárez, Yajaira; Murata, Takahisa; Iwakiri, Yasuko; Prendergast, Jay; Miao, Robert Q.; Birnbaum, Morris J.; Sessa, William C.

    2013-01-01

    SUMMARY The Akt signaling pathway controls several cellular functions in the cardiovascular system; however, its role in atherogenesis is unknown. Here we show that the genetic ablation of Akt1 on an apolipoprotein E knockout background (ApoE−/−Akt1−/−) increases aortic lesion expansion and promotes coronary atherosclerosis. Mechanistically, lesion formation is due to enhanced expression of pro-inflammatory genes and endothelial cell and macrophage apoptosis. Bone marrow transfer experiments suggest that macrophages from ApoE−/−Akt1−/− donors were not sufficient to worsen atherogenesis when transferred to ApoE−/− recipients suggesting that lesion expansion in the ApoE−/− Akt1−/ strain may be of vascular origin. In the vessel wall, the loss of Akt1 increases inflammatory mediators and reduces eNOS phosphorylation suggesting that Akt1 exerts vascular protection against atherogenesis. The presence of coronary lesions in ApoE−/−/Akt1−/− mice provides a new model for studying the mechanisms of acute coronary syndrome in humans. PMID:18054314

  2. Endothelial microparticles and vascular parameters in subjects with and without arterial hypertension and coronary artery disease.

    PubMed

    Sansone, Roberto; Baaken, Maximilian; Horn, Patrick; Schuler, Dominik; Westenfeld, Ralf; Amabile, Nicolas; Kelm, Malte; Heiss, Christian

    2018-08-01

    Endothelial microparticles (EMPs) are markers of endothelial injury and activation. The role of EMPs in arterial hypertension is not well understood and EMPs are increased both in arterial hypertension and coronary artery disease (CAD). The data presented here show EMPs as defined by CD31 + /41 - , CD62e + , and CD144 + surface markers and vascular hemodynamic parameters including office and central blood pressure, heart rate, aortic augmentation index, pulse wave velocity, flow-mediated dilation, nitroglycerin-mediated dilation, brachial artery diameter, hyperemic wall shear stress, and laser Doppler perfusion of the cutaneous microcirculation of normotensives and hypertensives with and without CAD.

  3. Recapitulation of developmental mechanisms to revascularize the ischemic heart

    PubMed Central

    Dubé, Karina N.; Thomas, Tonia M.; Munshaw, Sonali; Rohling, Mala; Riley, Paul R.

    2017-01-01

    Restoring blood flow after myocardial infarction (MI) is essential for survival of existing and newly regenerated tissue. Endogenous vascular repair processes are deployed following injury but are poorly understood. We sought to determine whether developmental mechanisms of coronary vessel formation are intrinsically reactivated in the adult mouse after MI. Using pulse-chase genetic lineage tracing, we establish that de novo vessel formation constitutes a substantial component of the neovascular response, with apparent cellular contributions from the endocardium and coronary sinus. The adult heart reverts to its former hypertrabeculated state and repeats the process of compaction, which may facilitate endocardium-derived neovascularization. The capacity for angiogenic sprouting of the coronary sinus vein, the adult derivative of the sinus venosus, may also reflect its embryonic origin. The quiescent epicardium is reactivated and, while direct cellular contribution to new vessels is minimal, it supports the directional expansion of the neovessel network toward the infarcted myocardium. Thymosin β4, a peptide with roles in vascular development, was required for endocardial compaction, epicardial vessel expansion, and smooth muscle cell recruitment. Insight into pathways that regulate endogenous vascular repair, drawing on comparisons with development, may reveal novel targets for therapeutically enhancing neovascularization. PMID:29202457

  4. Metabolic Abnormalities and Viral Replication is Associated with Biomarkers of Vascular Dysfunction in HIV-Infected Children

    PubMed Central

    Miller, Tracie L.; Borkowsky, William; DiMeglio, Linda A.; Dooley, Laurie; Geffner, Mitchell E.; Hazra, Rohan; McFarland, Elizabeth J.; Mendez, Armando J.; Patel, Kunjal; Siberry, George K.; Van Dyke, Russell B.; Worrell, Carol J.; Jacobson, Denise L.

    2011-01-01

    Objectives Human immunodeficiency virus (HIV)-infected children may be at risk for premature cardiovascular disease. We compared levels of biomarkers of vascular dysfunction among HIV-infected children with and without hyperlipidemia to HIV-exposed, uninfected children (HEU) enrolled in the Pediatric HIV/AIDS Cohort Study (PHACS), and determined factors associated with these biomarkers. Design Prospective cohort study Methods Biomarkers of inflammation (C-reactive protein (CRP), interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP1)); coagulant dysfunction (fibrinogen and P-selectin); endothelial dysfunction (soluble intracellular cell adhesion molecule-1 (sICAM), soluble vascular cell adhesion molecule-1 (sVCAM), and E-selectin); and metabolic dysfunction (adiponectin) were measured in 226 HIV-infected and 140 HEU children. Anthropometry, body composition, lipids, glucose, insulin, HIV disease severity, and antiretroviral therapy were recorded. Results The median ages were 12.3 y (HIV-infected) and 10.1 y (HEU). Body mass index (BMI) Z-scores, waist and hip circumference, and percent body fat were lower among HIV-infected. Total and non-HDL cholesterol and triglycerides were higher in HIV-infected children. HIV-infected children had higher MCP-1, fibrinogen, sICAM, and sVCAM levels. In multivariable analyses in the HIV-infected children alone, BMI z-score was associated with higher CRP and fibrinogen, but lower MCP-1 and sVCAM. Unfavorable lipid profiles were positively associated with IL6, MCP1, fibrinogen, and P- and E-selectin, whereas increased HIV viral load was associated with markers of inflammation (MCP1 and CRP) and endothelial dysfunction (sICAM and sVCAM). Conclusions HIV-infected children have higher levels of biomarkers of vascular dysfunction than do HEU children. Risk factors associated with higher biomarkers include unfavorable lipid levels and active HIV replication. PMID:22136114

  5. Predicting long-term survival after coronary artery bypass graft surgery.

    PubMed

    Karim, Md N; Reid, Christopher M; Huq, Molla; Brilleman, Samuel L; Cochrane, Andrew; Tran, Lavinia; Billah, Baki

    2018-02-01

    To develop a model for predicting long-term survival following coronary artery bypass graft surgery. This study included 46 573 patients from the Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZCTS) registry, who underwent isolated coronary artery bypass graft surgery between 2001 and 2014. Data were randomly split into development (23 282) and validation (23 291) samples. Cox regression models were fitted separately, using the important preoperative variables, for 4 'time intervals' (31-90 days, 91-365 days, 1-3 years and >3 years), with optimal predictors selected using the bootstrap bagging technique. Model performance was assessed both in validation data and in combined data (development and validation samples). Coefficients of all 4 final models were estimated on the combined data adjusting for hospital-level clustering. The Kaplan-Meier mortality rates estimated in the sample were 1.7% at 90 days, 2.8% at 1 year, 4.4% at 2 years and 6.1% at 3 years. Age, peripheral vascular disease, respiratory disease, reduced ejection fraction, renal dysfunction, arrhythmia, diabetes, hypercholesterolaemia, cerebrovascular disease, hypertension, congestive heart failure, steroid use and smoking were included in all 4 models. However, their magnitude of effect varied across the time intervals. Harrell's C-statistics was 0.83, 0.78, 0.75 and 0.74 for 31-90 days, 91-365 days, 1-3 years and >3 years models, respectively. Models showed excellent discrimination and calibration in validation data. Models were developed for predicting long-term survival at 4 time intervals after isolated coronary artery bypass graft surgery. These models can be used in conjunction with the existing 30-day mortality prediction model. © The Author 2017. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  6. The biophysical properties of the aorta are altered following Kawasaki disease.

    PubMed

    Vaujois, Laurence; Dallaire, Frédéric; Maurice, Roch L; Fournier, Anne; Houde, Christine; Thérien, Johanne; Cartwright, Daniel; Dahdah, Nagib

    2013-12-01

    The long-term sequelae of Kawasaki disease (KD) are based on the coronary complications. Because KD causes generalized vasculitis, with documented aneurysms in the femoral, iliac, renal, axillary, and brachial arteries, the aim of this study was to assess the biophysical properties of the aorta (BPA) after KD. The BPA are biometric measurements representing vascular structural and dynamic changes in response to cardiac work. Anthropometric and echocardiographic measurements of the aorta in a series of patients with KD were compared with those of healthy subjects. The BPA were calculated noninvasively by extrapolating previously validated equations that were conceived for invasive measurements. Because BPA vary with body habitus, control subjects were used to normalize BPA parameters for height to compute BPA Z-score equations. Between June 2007 and February 2010, BPA were recorded in 57 patients with KD >1 year after the onset of the disease, 45 without and 12 with coronary artery sequelae. The mean intervals between the acute onset of KD and enrollment were 10.0 ± 5.0 and 5.8 ± 4.5 years for patients with and without coronary artery sequelae, respectively (P = .008). Patients with KD with coronary artery sequelae had significantly altered Z scores of aortic diameter modulation, Peterson's elastic modulus, and β stiffness index (P = .001-.016). Patients with KD without coronary artery sequelae also exhibited altered elasticity, stiffness, and pulse-wave velocity (P = .001-.026). Altered BPA after KD are detectible despite apparent resolution of acute vasculitis. Future directions toward determining multilevel and multilayer vascular impact, including vascular autonomous homeostasis, require thorough investigation. Copyright © 2013 American Society of Echocardiography. Published by Mosby, Inc. All rights reserved.

  7. Regulation of coronary blood flow during exercise.

    PubMed

    Duncker, Dirk J; Bache, Robert J

    2008-07-01

    Exercise is the most important physiological stimulus for increased myocardial oxygen demand. The requirement of exercising muscle for increased blood flow necessitates an increase in cardiac output that results in increases in the three main determinants of myocardial oxygen demand: heart rate, myocardial contractility, and ventricular work. The approximately sixfold increase in oxygen demands of the left ventricle during heavy exercise is met principally by augmenting coronary blood flow (~5-fold), as hemoglobin concentration and oxygen extraction (which is already 70-80% at rest) increase only modestly in most species. In contrast, in the right ventricle, oxygen extraction is lower at rest and increases substantially during exercise, similar to skeletal muscle, suggesting fundamental differences in blood flow regulation between these two cardiac chambers. The increase in heart rate also increases the relative time spent in systole, thereby increasing the net extravascular compressive forces acting on the microvasculature within the wall of the left ventricle, in particular in its subendocardial layers. Hence, appropriate adjustment of coronary vascular resistance is critical for the cardiac response to exercise. Coronary resistance vessel tone results from the culmination of myriad vasodilator and vasoconstrictors influences, including neurohormones and endothelial and myocardial factors. Unraveling of the integrative mechanisms controlling coronary vasodilation in response to exercise has been difficult, in part due to the redundancies in coronary vasomotor control and differences between animal species. Exercise training is associated with adaptations in the coronary microvasculature including increased arteriolar densities and/or diameters, which provide a morphometric basis for the observed increase in peak coronary blood flow rates in exercise-trained animals. In larger animals trained by treadmill exercise, the formation of new capillaries maintains capillary density at a level commensurate with the degree of exercise-induced physiological myocardial hypertrophy. Nevertheless, training alters the distribution of coronary vascular resistance so that more capillaries are recruited, resulting in an increase in the permeability-surface area product without a change in capillary numerical density. Maintenance of alpha- and ss-adrenergic tone in the presence of lower circulating catecholamine levels appears to be due to increased receptor responsiveness to adrenergic stimulation. Exercise training also alters local control of coronary resistance vessels. Thus arterioles exhibit increased myogenic tone, likely due to a calcium-dependent protein kinase C signaling-mediated alteration in voltage-gated calcium channel activity in response to stretch. Conversely, training augments endothelium-dependent vasodilation throughout the coronary microcirculation. This enhanced responsiveness appears to result principally from an increased expression of nitric oxide (NO) synthase. Finally, physical conditioning decreases extravascular compressive forces at rest and at comparable levels of exercise, mainly because of a decrease in heart rate. Impedance to coronary inflow due to an epicardial coronary artery stenosis results in marked redistribution of myocardial blood flow during exercise away from the subendocardium towards the subepicardium. However, in contrast to the traditional view that myocardial ischemia causes maximal microvascular dilation, more recent studies have shown that the coronary microvessels retain some degree of vasodilator reserve during exercise-induced ischemia and remain responsive to vasoconstrictor stimuli. These observations have required reassessment of the principal sites of resistance to blood flow in the microcirculation. A significant fraction of resistance is located in small arteries that are outside the metabolic control of the myocardium but are sensitive to shear and nitrovasodilators. The coronary collateral system embodies a dynamic network of interarterial vessels that can undergo both long- and short-term adjustments that can modulate blood flow to the dependent myocardium. Long-term adjustments including recruitment and growth of collateral vessels in response to arterial occlusion are time dependent and determine the maximum blood flow rates available to the collateral-dependent vascular bed during exercise. Rapid short-term adjustments result from active vasomotor activity of the collateral vessels. Mature coronary collateral vessels are responsive to vasodilators such as nitroglycerin and atrial natriuretic peptide, and to vasoconstrictors such as vasopressin, angiotensin II, and the platelet products serotonin and thromboxane A(2). During exercise, ss-adrenergic activity and endothelium-derived NO and prostanoids exert vasodilator influences on coronary collateral vessels. Importantly, alterations in collateral vasomotor tone, e.g., by exogenous vasopressin, inhibition of endogenous NO or prostanoid production, or increasing local adenosine production can modify collateral conductance, thereby influencing the blood supply to the dependent myocardium. In addition, vasomotor activity in the resistance vessels of the collateral perfused vascular bed can influence the volume and distribution of blood flow within the collateral zone. Finally, there is evidence that vasomotor control of resistance vessels in the normally perfused regions of collateralized hearts is altered, indicating that the vascular adaptations in hearts with a flow-limiting coronary obstruction occur at a global as well as a regional level. Exercise training does not stimulate growth of coronary collateral vessels in the normal heart. However, if exercise produces ischemia, which would be absent or minimal under resting conditions, there is evidence that collateral growth can be enhanced. In addition to ischemia, the pressure gradient between vascular beds, which is a determinant of the flow rate and therefore the shear stress on the collateral vessel endothelium, may also be important in stimulating growth of collateral vessels.

  8. Aspiration thrombectomy and intracoronary tirofiban via GuideLiner® catheter for a thrombosed aneurysmal vessel.

    PubMed

    Fry, James; Naqvi, Ali; Bahia, Amit; Seto, Arnold

    2017-03-01

    A 52-year-old Asian male with no traditional risk factors for coronary artery disease presented with acute coronary syndrome. Coronary angiography showed complete thrombotic occlusion of the left circumflex with a large thrombus burden in the setting of diffuse aneurysmal enlargement of the coronary arteries consistent with antecedent Kawasaki disease. Manual thrombectomy with adjunctive intracoronary tirofiban was performed utilizing the GuideLiner catheter ® (Vascular Solutions, Inc., MN, USA). Stent implantation was deferred. Follow-up imaging 48 h later showed preserved coronary flow and decreased thrombus burden. The GuideLiner catheter, a monorail guiding device, served a novel role in thrombus aspiration and intracoronary medication delivery.

  9. Preventive effect of pretreatment with intravenous nicorandil on contrast-induced nephropathy in patients with renal dysfunction undergoing coronary angiography (PRINCIPLE Study).

    PubMed

    Ko, Young-Guk; Lee, Byoung-Kwon; Kang, Woong Chol; Moon, Jae-Youn; Cho, Yun Hyeong; Choi, Seong Hun; Hong, Myeong-Ki; Jang, Yangsoo; Kim, Jong-Youn; Min, Pil-Ki; Kwon, Hyuck-Moon

    2013-07-01

    To investigate the effect of pretreatment with intravenous nicorandil on the incidence of contrast-induced nephropathy (CIN) in patients with renal dysfunction undergoing coronary angiography. This randomized controlled multicenter study enrolled a total of 166 patients (nicorandil n=81; control n=85) with an estimated glomerular filtration rate <60 mL/min. Nicorandil 12 mg dissolved in 100 mL of 0.9% saline was administered intravenously for 30 minutes just prior to coronary angiography in the nicorandil group. The same volume of only saline was given to the control group. The primary endpoint was the incidence of CIN, defined as >0.5 mg/dL increase or >25% rise in serum creatinine (SCr) concentration within 48 hours of contrast exposure compared to baseline. The final analysis included 149 patients (nicorandil n=73; control n=76). The baseline characteristics and the total volume of the used contrast (Iodixanol, 125.6±69.1 mL vs. 126.9±74.6 mL, p=0.916) were similar between the two groups. The incidence of CIN also did not differ between the nicorandil and control groups (6.8% vs. 6.6%, p=0.794). There was no difference between the two groups in the relative change in SCr from baseline to peak level within 48 hours after coronary angiography (-1.58±24.07% vs. 0.96±17.49%, p=0.464), although the nicorandil group showed less absolute change in SCr than the control group (-0.01±0.43 mg/mL vs. 0.02±0.31 mg/mL, p=0.005). Prophylactic intravenous infusion of nicorandil did not decrease the incidence of CIN in patients with renal dysfunction undergoing coronary angiography.

  10. Implementation of a dedicated cardiovascular and stroke unit in a crowded emergency department of a tertiary public hospital in Brazil: effect on mortality rates.

    PubMed

    Nasi, Luiz A; Ferreira-Da-Silva, Andre L; Martins, Sheila C O; Furtado, Mariana V; Almeida, Andrea G; Brondani, Rosane; Wirth, Letícia; Kluck, Marisa; Polanczyk, Carisi A

    2014-01-01

    Emergency department (ED) care for acute vascular diseases faces the challenge of overcrowding. A vascular unit is a specialized, protocol-oriented unit in the ED with a team trained to manage acute vascular disorders, including stroke, coronary syndromes, pulmonary embolism (PE), and aortic diseases. The objective was to compare case fatality rates for selected cardiovascular conditions before and after the implementation of a vascular unit. Patients with the selected diagnoses admitted to the ED in two different time periods, 2002 through 2005 (before unit opening) and 2007 to 2010 (after vascular unit opening), were identified by ICD-10 codes, and their electronic records were reviewed. Case fatality rates were calculated and compared for both time periods. The period prior to unit implementation (2002 through 2005) included 4,164 patients, and the vascular unit period (2007 to 2010) included 6,280 patients. Overall, the case fatality rate for acute vascular conditions decreased from 9% to 7.3% with vascular unit implementation (p = 0.002). The in-hospital mortality rates for acute coronary syndrome (ACS) dropped from 6% to 3.8% (p = 0.003), and for acute PE dropped from 32.1% to 10.8% (p < 0.001). The stroke case-fatality rate did not decrease despite improvements in the quality of stroke health care indicators. The vascular unit strategy has the potential to reduce overall mortality for most acute vascular conditions. © 2013 by the Society for Academic Emergency Medicine.

  11. Flow-mediated Dilation: Can New Approaches Provide Greater Mechanistic Insight into Vascular Dysfunction in Preeclampsia and Other Diseases?

    PubMed Central

    Weissgerber, Tracey L.

    2015-01-01

    Endothelial dysfunction is a key feature of preeclampsia, and may contribute to increased cardiovascular disease risk years after pregnancy. Flow-mediated dilation (FMD) is a non-invasive endothelial function test that predicts cardiovascular event risk. New protocols allow researchers to measure three components of the FMD response: FMD, low flow-mediated constriction and the shear stimulus. This review encourages researchers to think beyond “low FMD” by examining how these three components may provide additional insights into the mechanisms and location of vascular dysfunction. The review then examines what FMD studies reveal about vascular dysfunction in preeclampsia, while highlighting opportunities to gain greater mechanistic insight from new protocols. Studies using traditional protocols show that FMD is low in mid-pregnancy prior to preeclampsia, at diagnosis, and for three years post-partum. However, FMD returns to normal by ten years post-partum. Studies using new protocols are needed to gain more mechanistic insight. PMID:25182159

  12. Flow-mediated dilation: can new approaches provide greater mechanistic insight into vascular dysfunction in preeclampsia and other diseases?

    PubMed

    Weissgerber, Tracey L

    2014-11-01

    Endothelial dysfunction is a key feature of preeclampsia and may contribute to increased cardiovascular disease risk years after pregnancy. Flow-mediated dilation (FMD) is a non-invasive endothelial function test that predicts cardiovascular event risk. New protocols allow researchers to measure three components of the FMD response: FMD, low flow-mediated constriction, and shear stimulus. This review encourages researchers to think beyond "low FMD" by examining how these three components may provide additional insights into the mechanisms and location of vascular dysfunction. The review then examines what FMD studies reveal about vascular dysfunction in preeclampsia while highlighting opportunities to gain greater mechanistic insight from new protocols. Studies using traditional protocols show that FMD is low in mid-pregnancy prior to preeclampsia, at diagnosis, and for 3 years post-partum. However, FMD returns to normal by 10 years post-partum. Studies using new protocols are needed to gain more mechanistic insight.

  13. 1-year clinical outcomes of diabetic patients treated with everolimus-eluting bioresorbable vascular scaffolds: a pooled analysis of the ABSORB and the SPIRIT trials.

    PubMed

    Muramatsu, Takashi; Onuma, Yoshinobu; van Geuns, Robert-Jan; Chevalier, Bernard; Patel, Tejas M; Seth, Ashok; Diletti, Roberto; García-García, Hector M; Dorange, Cécile C; Veldhof, Susan; Cheong, Wai-Fung; Ozaki, Yukio; Whitbourn, Robert; Bartorelli, Antonio; Stone, Gregg W; Abizaid, Alexandre; Serruys, Patrick W

    2014-05-01

    The aim of this study was to evaluate 1-year clinical outcomes of diabetic patients treated with the Absorb bioresorbable vascular scaffold (BVS). Clinical outcomes of diabetic patients after BVS implantation have been unreported. This study included 101 patients in the ABSORB Cohort B trial and the first consecutive 450 patients with 1 year of follow-up in the ABSORB EXTEND trial. A total of 136 diabetic patients were compared with 415 nondiabetic patients. In addition, 882 diabetic patients treated with everolimus-eluting metal stents (EES) in pooled data from the SPIRIT trials (SPIRIT FIRST [Clinical Trial of the Abbott Vascular XIENCE V Everolimus Eluting Coronary Stent System], SPIRIT II [A Clinical Evaluation of the XIENCE V Everolimus Eluting Coronary Stent System], SPIRIT III [Clinical Trial of the XIENCE V Everolimus Eluting Coronary Stent System (EECSS)], SPIRIT IV Clinical Trial [Clinical Evaluation of the XIENCE V Everolimus Eluting Coronary Stent System]) were used for the comparison by applying propensity score matching. The primary endpoint was a device-oriented composite endpoint (DoCE), including cardiac death, target vessel myocardial infarction, and target lesion revascularization at 1-year follow-up. The cumulative incidence of DoCE did not differ between diabetic and nondiabetic patients treated with the BVS (3.7% vs. 5.1%, p = 0.64). Diabetic patients treated with the BVS had a similar incidence of the DoCE compared with diabetic patients treated with EES in the matched study group (3.9% for the BVS vs. 6.4% for EES, p = 0.38). There were no differences in the incidence of definite or probable scaffold/stent thrombosis (0.7% for both diabetic and nondiabetic patients with the BVS; 1.0% for diabetic patients with the BVS vs. 1.7% for diabetic patients with EES in the matched study group). In the present analyses, diabetic patients treated with the BVS showed similar rates of DoCEs compared with nondiabetic patients treated with the BVS and diabetic patients treated with EES at 1-year follow-up. (ABSORB Clinical Investigation, Cohort B; NCT00856856; ABSORB EXTEND Clinical Investigation; NCT01023789; Clinical Trial of the Abbott Vascular XIENCE V Everolimus Eluting Coronary Stent System [SPIRIT FIRST]; NCT00180453; A Clinical Evaluation of the XIENCE V Everolimus Eluting Coronary Stent System [SPIRIT II]; NCT00180310; Clinical Trial of the XIENCE V Everolimus Eluting Coronary Stent System [EECSS] [SPIRIT III]; NCT00180479; Clinical Evaluation of the XIENCE V Everolimus Eluting Coronary Stent System [SPIRIT IV Clinical Trial]; NCT00307047). Copyright © 2014 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  14. Di-peptidyl peptidase-4 inhibitor sitagliptin protects vascular function in metabolic syndrome: possible role of epigenetic regulation.

    PubMed

    Cicek, Figen Amber; Amber, Cicek Figen; Tokcaer-Keskin, Zeynep; Zeynep, Tokcaer-Keskin; Ozcinar, Evren; Evren, Ozcinar; Bozkus, Yosuf; Yusuf, Bozkus; Akcali, Kamil Can; Can, Akcali Kamil; Turan, Belma; Belma, Turan

    2014-08-01

    Metabolic syndrome (MetS) is a complex medical disorder characterized by insulin resistance, hypertension, and high risk of coronary disease and stroke. Microvascular rarefaction and endothelial dysfunction have also been linked with MetS, and recent evidence from clinical studies supports the efficacy of incretin-based antidiabetic therapies for vascular protection in diabetes. Previous studies pointed out the importance of dipeptidyl peptidase-4 (DPP-4) inhibition in endothelial cells due to getting protection against metabolic pathologies. We therefore aimed to investigate the acute effects of a DPP-4 inhibitor, sitagliptin, on vascular function in rats with high-sucrose diet-induced MetS. In order to elucidate the mechanisms implicated in the effects of DPP-4 inhibition, we tested the involvement of NO pathway and epigenetic regulation in the MetS. Acute use of sitagliptin protects the vascular function in the rats with MetS in part due to NO pathway via restoring the depressed aortic relaxation responses mediated by receptors. Application of sitagliptin enhanced the depressed phosphorylation levels of both the endothelial NO synthase and the apoptotic status of protein kinase B, known as Akt, in endothelium-intact thoracic aorta from rats with MetS. One-hour application of sitagliptin on aortic rings from rats with MetS also induced remarkable histon posttranslational modifications such as increased expression of H3K27Me3, but not of H3K27Me2, resulting in an accumulation of the H3K27Me3. Our findings suggest that, in addition to its well-known hypoglycemic action, sitagliptin may also have beneficial effects on hyperglycemia-induced vascular changes in an endotheium-dependent manner. These present results with sitagliptin aside from the glycaemic control, may demonstrate its important role in the treatment of patients with MetS.

  15. The current role of vascular stents.

    PubMed

    Busquet, J

    1993-09-01

    The limitations of percutaneous balloon angioplasty have favoured the development and the use of vascular endoprostheses or stents. These thin-walled metal devices maintain after expansion, an optimal and constant diameter for the vascular lumen. Restenosis, dissection, abrupt closure, residual stenosis or re-opened total occlusion represent appropriate indications for stenting. A large experience with non-coronary application of stents is currently available in iliac, femoro-popliteal and renal arteries, aorta, large veins.

  16. Biomimicry, vascular restenosis and coronary stents.

    PubMed

    Schwartz, R S; van der Giessen, W J; Holmes, D R

    1998-01-01

    Biomimicry is in its earliest stages and is being considered in the realm of tissue engineering. If arterial implants are to limit neointimal thickening, purely passive structures cannot succeed. Bioactivity must be present, either by pharmacologic intervention or by fabricating a 'living stent' that contains active cellular material. As tissue engineering evolves, useful solutions will emerge from applying this knowledge directly to vascular biologic problems resulting from angioplasty, stenting, and vascular prosthesis research.

  17. Effects of diabetes and hypertension on structure and distensibilty of human small coronary arteries.

    PubMed

    Lynch, Fiona M; Izzard, Ashley S; Austin, Clare; Prendergast, Brian; Keenan, Daniel; Malik, Rayaz A; Heagerty, Anthony M

    2012-02-01

    Previous studies have demonstrated that hypertension and diabetes induce significant structural remodelling of resistance arteries from various vascular beds. The hypothesis of this study is that structural alterations of small coronary arteries may occur during hypertension and diabetes. This study is the first to compare human coronary small resistance artery structure from normotensive and hypertensive patients, with and without diabetes undergoing coronary arterial bypass graft surgery. Small arteries were dissected from the atrial appendage removed from nondiabetic normotensive patients, nondiabetic hypertension and diabetic normotensive patients and hypertensive diabetic patients. Arteries were mounted in a pressure myograph and lumen diameter and wall thickness were measured across the pressure range of 3-100 mmHg to assess vessel structure and distensibility. There were no significant differences in the lumen diameter, wall thickness, wall-to-lumen ratio and cross-sectional area of arteries in all groups. Arteries from nondiabetic patients with hypertension demonstrated decreased distensibility compared with nondiabetic normotensive patients. There is no difference in distensibility between vessels from diabetic hypertensive patients and either diabetic or nondiabetic normotensive patients. Neither diabetes nor hypertension appears to have influenced arterial structure which may indicate that successful treatment of hypertension is associated with normal vascular structure in coronary small arteries.

  18. Microcephalic osteodysplastic primordial dwarfism type II (MOPD II) with multiple vascular complications misdiagnosed as Dubowitz syndrome.

    PubMed

    Dieks, Jana-Katharina; Baumer, Alessandra; Wilichowski, Ekkehard; Rauch, Anita; Sigler, Matthias

    2014-09-01

    To date, the genetic basis of Dubowitz syndrome (short stature, microcephaly, facial abnormalities, eczema) is unknown and vascular complications are not known to be associated with this syndrome. In microcephalic osteodysplastic primordial dwarfism type II (MOPD II; disproportionate short statue, microcephaly, facial abnormalities), however, cerebral aneurysms and other vascular abnormalities are frequent complications. MOPD II is a genetic disorder caused by mutations in the pericentrin (PCNT) gene (21q22). We report on a patient who came to our attention as a 22-year-old with subarachnoid bleeding due to a ruptured cranial aneurysm. Until then, the patient was thought and published to have Dubowitz syndrome; previously, he was treated with coronary bypass surgery for extensive coronary angiopathy. Consecutive genetic testing revealed MOPD II. After clinical stabilization, the patient was discharged to a specialized rehabilitation center where he died due to re-rupture of a cranial aneurysm. In patients with short stature-especially when clinical features are accompanied by vascular complications-MOPD II should be considered as a differential diagnosis leading to consecutive genetic testing. After detection of mutations in the PCNT gene, a full vascular status including cerebral imaging and cardiac evaluation needs to be determined in order to analyze vascular abnormalities and initiate prophylactic treatment.

  19. Testosterone Replacement Therapy Prevents Alterations of Coronary Vascular Reactivity Caused by Hormone Deficiency Induced by Castration

    PubMed Central

    Rouver, Wender Nascimento; Delgado, Nathalie Tristão Banhos; Menezes, Jussara Bezerra; Santos, Roger Lyrio; Moyses, Margareth Ribeiro

    2015-01-01

    The present study aimed to determine the effects of chronic treatment with different doses of testosterone on endothelium–dependent coronary vascular reactivity in male rats. Adult male rats were divided into four experimental groups: control (SHAM), castrated (CAST), castrated and immediately treated subcutaneously with a physiological dose (0.5 mg/kg/day, PHYSIO group) or supraphysiological dose (2.5 mg/kg/day, SUPRA group) of testosterone for 15 days. Systolic blood pressure (SBP) was assessed at the end of treatment through tail plethysmography. After euthanasia, the heart was removed and coronary vascular reactivity was assessed using the Langendorff retrograde perfusion technique. A dose–response curve for bradykinin (BK) was constructed, followed by inhibition with 100 μM L-NAME, 2.8 μM indomethacin (INDO), L-NAME + INDO, or L-NAME + INDO + 0.75 μM clotrimazole (CLOT). We observed significant endothelium–dependent, BK–induced coronary vasodilation, which was abolished in the castrated group and restored in the PHYSIO and SUPRA groups. Furthermore, castration modulated the lipid and hormonal profiles and decreased body weight, and testosterone therapy restored all of these parameters. Our results revealed an increase in SBP in the SUPRA group. In addition, our data led us to conclude that physiological concentrations of testosterone may play a beneficial role in the cardiovascular system by maintaining an environment that is favourable for the activity of an endothelium–dependent vasodilator without increasing SBP. PMID:26322637

  20. Shaker-related voltage-gated K+ channel expression and vasomotor function in human coronary resistance arteries.

    PubMed

    Nishijima, Yoshinori; Korishettar, Ankush; Chabowski, Dawid S; Cao, Sheng; Zheng, Xiaodong; Gutterman, David D; Zhang, David X

    2018-01-01

    K V channels are important regulators of vascular tone, but the identity of specific K V channels involved and their regulation in disease remain less well understood. We determined the expression of K V 1 channel subunits and their role in cAMP-mediated dilation in coronary resistance arteries from subjects with and without CAD. HCAs from patients with and without CAD were assessed for mRNA and protein expression of K V 1 channel subunits with molecular techniques and for vasodilator response with isolated arterial myography. Assays of mRNA transcripts, membrane protein expression, and vascular cell-specific localization revealed abundant expression of K V 1.5 in vascular smooth muscle cells of non-CAD HCAs. Isoproterenol and forskolin, two distinct cAMP-mediated vasodilators, induced potent dilation of non-CAD arterioles, which was inhibited by both the general K V blocker 4-AP and the selective K V 1.5 blocker DPO-1. The cAMP-mediated dilation was reduced in CAD and was accompanied by a loss of or reduced contribution of 4-AP-sensitive K V channels. K V 1.5, as a major 4-AP-sensitive K V 1 channel expressed in coronary VSMCs, mediates cAMP-mediated dilation in non-CAD arterioles. The cAMP-mediated dilation is reduced in CAD coronary arterioles, which is associated with impaired 4-AP-sensitive K V channel function. © 2017 John Wiley & Sons Ltd.

  1. Tyrosine phosphorylation of platelet derived growth factor β receptors in coronary artery lesions: implications for vascular remodelling after directional coronary atherectomy and unstable angina pectoris

    PubMed Central

    Abe, J; Deguchi, J; Takuwa, Y; Hara, K; Ikari, Y; Tamura, T; Ohno, M; Kurokawa, K

    1998-01-01

    Background—Growth factors such as platelet derived growth factor (PDGF) have been postulated to be important mediators of neointimal proliferation observed in atherosclerotic plaques and restenotic lesions following coronary interventions. Binding of PDGF to its receptor results in intrinsic receptor tyrosine kinase activation and subsequent cellular migration, proliferation, and vascular contraction.
Aims—To investigate whether the concentration of PDGF β receptor tyrosine phosphorylation obtained from directional coronary atherectomy (DCA) samples correlate with atherosclerotic plaque burden, the ability of diseased vessels to remodel, coronary risk factors, and clinical events.
Methods—DCA samples from 59 patients and 15 non-atherosclerotic left internal thoracic arteries (LITA) were analysed for PDGF β receptor tyrosine phosphorylation content by receptor immunoprecipitation and antiphosphotyrosine western blot. The amount of PDGF β receptor phosphorylation was analysed in relation to angiographic follow up data and clinical variables.
Results—PDGF β receptor tyrosine phosphorylation in the 59 DCA samples was greater than in the 15 non-atherosclerotic LITA (mean (SD) 0.84 (0.67) v 0.17 (0.08) over a control standard, p < 0.0001). As evaluated by stepwise regression analysis, incorporation of both PDGF β receptor tyrosine phosphorylation and immediate gain correlated strongly (adjusted r2 = 0.579) with late loss, although PDGF β receptor tyramine phosphorylation alone correlated poorly with late loss. Multivariate regression analysis of coronary risk factors and clinical events revealed unstable angina as the most significant correlate of PDGF β receptor tyrosine phosphorylation (F value 20.009, p < 0.0001).
Conclusions—PDGF β receptor tyrosine phosphorylation in atherosclerotic lesions is increased compared with non-atherosclerotic arterial tissues. The association of PDGF β receptor tyrosine phosphorylation with immediate gain strongly correlates with vascular remodelling. PDGF β receptor tyrosine phosphorylation correlates with unstable angina pectoris.

 Keywords: PDGF receptors;  atherosclerosis;  directional coronary atherectomy;  restenosis PMID:9616351

  2. Structure and vascularization of the ventricular myocardium in Holocephali: their evolutionary significance

    PubMed Central

    Durán, Ana C; López-Unzu, Miguel A; Rodríguez, Cristina; Fernández, Borja; Lorenzale, Miguel; Linares, Andrea; Salmerón, Francisca; Sans-Coma, Valentín

    2015-01-01

    It was generally assumed that the ventricle of the primitive vertebrate heart was composed of trabeculated, or spongy, myocardium, supplied by oxygen-poor luminal blood. In addition, it was presumed that the mixed ventricular myocardium, consisting of a compacta and a spongiosa, and its supply through coronary arteries appeared several times throughout fish evolution. Recent work has suggested, however, that a fully vascularized, mixed myocardium may be the primitive condition in gnathostomes. The present study of the heart ventricles of four holocephalan species aimed to clarify this controversy. Our observations showed that the ventricular myocardium of Chimaera monstrosa and Harriotta raleighana consists of a very thin compacta overlying a widespread spongiosa. The ventricle of Hydrolagus affinis is composed exclusively of trabeculated myocardium. In these three species there is a well-developed coronary artery system. The main coronary artery trunks run along the outflow tract, giving off subepicardial ventricular arteries. The trabeculae of the spongiosa are irrigated by branches of the subepicardial arteries and by penetrating arterial vessels arising directly from the main coronary trunks at the level of the conoventricular junction. The ventricle of Rhinochimaera atlantica has only spongy myocardium supplied by luminal blood. Small coronary arterial vessels are present in the subepicardium, but they do not enter the myocardial trabeculae. The present findings show for the first time that in a wild living vertebrate species, specifically H. affinis, an extensive coronary artery system supplying the whole cardiac ventricle exists in the absence of a well-developed compact ventricular myocardium. This is consistent with the notion derived from experimental work that myocardial cell proliferation and coronary vascular growth rely on distinct developmental programs. Our observations, together with data in the literature on elasmobranchs, support the view that the mixed ventricular myocardium is primitive for chondrichthyans. The reduction or even lack of compacta in holocephali has to be regarded as a derived anatomical trait. Our findings also fit in with the view that the mixed myocardium was the primitive condition in gnathostomes, and that the absence of compact ventricular myocardium in different actinopterygian groups is the result of a repeated loss of such type of cardiac muscle during fish evolution. PMID:25994124

  3. Structure and vascularization of the ventricular myocardium in Holocephali: their evolutionary significance.

    PubMed

    Durán, Ana C; López-Unzu, Miguel A; Rodríguez, Cristina; Fernández, Borja; Lorenzale, Miguel; Linares, Andrea; Salmerón, Francisca; Sans-Coma, Valentín

    2015-06-01

    It was generally assumed that the ventricle of the primitive vertebrate heart was composed of trabeculated, or spongy, myocardium, supplied by oxygen-poor luminal blood. In addition, it was presumed that the mixed ventricular myocardium, consisting of a compacta and a spongiosa, and its supply through coronary arteries appeared several times throughout fish evolution. Recent work has suggested, however, that a fully vascularized, mixed myocardium may be the primitive condition in gnathostomes. The present study of the heart ventricles of four holocephalan species aimed to clarify this controversy. Our observations showed that the ventricular myocardium of Chimaera monstrosa and Harriotta raleighana consists of a very thin compacta overlying a widespread spongiosa. The ventricle of Hydrolagus affinis is composed exclusively of trabeculated myocardium. In these three species there is a well-developed coronary artery system. The main coronary artery trunks run along the outflow tract, giving off subepicardial ventricular arteries. The trabeculae of the spongiosa are irrigated by branches of the subepicardial arteries and by penetrating arterial vessels arising directly from the main coronary trunks at the level of the conoventricular junction. The ventricle of Rhinochimaera atlantica has only spongy myocardium supplied by luminal blood. Small coronary arterial vessels are present in the subepicardium, but they do not enter the myocardial trabeculae. The present findings show for the first time that in a wild living vertebrate species, specifically H. affinis, an extensive coronary artery system supplying the whole cardiac ventricle exists in the absence of a well-developed compact ventricular myocardium. This is consistent with the notion derived from experimental work that myocardial cell proliferation and coronary vascular growth rely on distinct developmental programs. Our observations, together with data in the literature on elasmobranchs, support the view that the mixed ventricular myocardium is primitive for chondrichthyans. The reduction or even lack of compacta in holocephali has to be regarded as a derived anatomical trait. Our findings also fit in with the view that the mixed myocardium was the primitive condition in gnathostomes, and that the absence of compact ventricular myocardium in different actinopterygian groups is the result of a repeated loss of such type of cardiac muscle during fish evolution. © 2015 Anatomical Society.

  4. Four-year polymer biocompatibility and vascular healing profile of a novel ultrahigh molecular weight amorphous PLLA bioresorbable vascular scaffold: an OCT study in healthy porcine coronary arteries.

    PubMed

    Vahl, Torsten P; Gasior, Pawel; Gongora, Carlos A; Ramzipoor, Kamal; Lee, Chang; Cheng, Yanping; McGregor, Jenn; Shibuya, Masahiko; Estrada, Edward A; Conditt, Gerard B; Kaluza, Greg L; Granada, Juan F

    2016-12-20

    The vascular healing profile of polymers used in bioresorbable vascular scaffolds (BRS) has not been fully characterised in the absence of antiproliferative drugs. In this study, we aimed to compare the polymer biocompatibility profile and vascular healing response of a novel ultrahigh molecular weight amorphous PLLA BRS (FORTITUDE®; Amaranth Medical, Mountain View, CA, USA) against bare metal stent (BMS) controls in porcine coronary arteries. Following device implantation, optical coherence tomography (OCT) evaluation was performed at 0 and 28 days, and at one, two, three and four years. A second group of animals underwent histomorphometric evaluation at 28 and 90 days. At four years, both lumen (BRS 13.19±1.50 mm2 vs. BMS 7.69±2.41 mm2) and scaffold areas (BRS 15.62±1.95 mm2 vs. BMS 8.65±2.37 mm2) were significantly greater for BRS than BMS controls. The degree of neointimal proliferation was comparable between groups. Histology up to 90 days showed comparable healing and inflammation profiles for both devices. At four years, the novel PLLA BRS elicited a vascular healing response comparable to BMS in healthy pigs. Expansive vascular remodelling was evident only in the BRS group, a biological phenomenon that appears to be independent of the presence of antiproliferative drugs.

  5. Diagnosis and treatment of vascular damage in dementia.

    PubMed

    Biessels, Geert Jan

    2016-05-01

    This paper provides an overview of cognitive impairment due to vascular brain damage, which is referred to as vascular cognitive impairment (VCI). Over the past decades, we have seen marked progress in detecting VCI, both through maturation of diagnostic concepts and through advances in brain imaging, especially MRI. Yet in daily practice, it is often challenging to establish the diagnosis, particularly in patients where there is no evident temporal relation between a cerebrovascular event and cognitive dysfunction. Because vascular damage is such a common cause of cognitive dysfunction, it provides an obvious target for treatment. In patients whose cognitive dysfunction follows directly after a stroke, the etiological classification of this stroke will direct treatment. In many patients however, VCI develops due to so-called "silent vascular damage," without evident cerebrovascular events. In these patients, small vessel diseases (SVDs) are the most common cause. Yet no SVD-specific treatments currently exist, which is due to incomplete understanding of the pathophysiology. This review addresses developments in this field. It offers a framework to translate diagnostic criteria to daily practice, addresses treatment, and highlights some future perspectives. This article is part of a Special Issue entitled: Vascular Contributions to Cognitive Impairment and Dementia, edited by M. Paul Murphy, Roderick A. Corriveau, and Donna M. Wilcock. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Clinical significance of noninvasive coronary flow reserve assessment in patients with ischemic heart disease.

    PubMed

    Taqueti, Viviany R; Di Carli, Marcelo F

    2016-11-01

    The importance of physiologic assessments in ischemic heart disease is well recognized. Coronary flow reserve (CFR) is a novel physiologic imaging biomarker that complements both anatomic and semiquantitative perfusion assessments of coronary artery disease (CAD) severity. Beyond this, assessment of CFR may provide clinical insights useful for refining diagnosis, prognosis, and eventually, management of patients along the full range of ischemic heart disease phenotypes, from multivessel obstructive CAD to diffuse coronary microvascular dysfunction. We begin by defining the concept of noninvasive CFR, specifically focusing on quantification of blood flow using PET, for which robust observational data exist. Next, we describe the continuum of cardiovascular risk by CFR values in patients across the anatomic spectrum of CAD, including those with diabetes, chronic kidney disease, and nonobstructive CAD and coronary microvascular dysfunction. Finally, we summarize the impact of CFR on prognosis, with a focus on future directions for management strategies and potential novel therapies, particularly in patients with very low CFR and less obstructive CAD. This latter phenotype may provide a critical link to understanding hidden biological risk of ischemic heart disease in vulnerable populations, including women and patients with heart failure with preserved ejection fraction, metabolic syndrome, cardio-oncologic complications, and inflammatory-related disease.

  7. [The age-related macular degeneration as a vascular disease/part of systemic vasculopathy: contributions to its pathogenesis].

    PubMed

    Fischer, Tamás

    2015-03-01

    The wall of blood vessels including those in choroids may be harmed by several repeated and/or prolonged mechanical, physical, chemical, microbiological, immunologic, and genetic impacts (risk factors), which may trigger a protracted response, the so-called host defense response. As a consequence, pathological changes resulting in vascular injury (e. g. atherosclerosis, age-related macular degeneration) may be evolved. Risk factors can also act directly on the endothelium through an increased production of reactive oxygen species promoting an endothelial activation, which leads to endothelial dysfunction, the onset of vascular disease. Thus, endothelial dysfunction is a link between the harmful stimulus and vascular injury; any kind of harmful stimuli may trigger the defensive chain that results in inflammation that may lead to vascular injury. It has been shown that even early age-related macular degeneration is associated with the presence of diffuse arterial disease and patients with early age-related macular degeneration demonstrate signs of systemic and retinal vascular alterations. Chronic inflammation, a feature of AMD, is tightly linked to diseases associated with ED: AMD is accompanied by a general inflammatory response, in the form of complement system activation, similar to that observed in degenerative vascular diseases such as atherosclerosis. All these facts indicate that age-related macular degeneration may be a vascular disease (or part of a systemic vasculopathy). This recognition could have therapeutic implications because restoration of endothelial dysfunction may prevent the development or improve vascular disease resulting in prevention or improvement of age-related macular degeneration as well.

  8. Cocoa, Blood Pressure, and Vascular Function

    PubMed Central

    Ludovici, Valeria; Barthelmes, Jens; Nägele, Matthias P.; Enseleit, Frank; Ferri, Claudio; Flammer, Andreas J.; Ruschitzka, Frank; Sudano, Isabella

    2017-01-01

    Cardiovascular disease (CVD) represents the most common cause of death worldwide. The consumption of natural polyphenol-rich foods, and cocoa in particular, has been related to a reduced risk of CVD, including coronary heart disease and stroke. Intervention studies strongly suggest that cocoa exerts a beneficial impact on cardiovascular health, through the reduction of blood pressure (BP), improvement of vascular function, modulation of lipid and glucose metabolism, and reduction of platelet aggregation. These potentially beneficial effects have been shown in healthy subjects as well as in patients with risk factors (arterial hypertension, diabetes, and smoking) or established CVD (coronary heart disease or heart failure). Several potential mechanisms are supposed to be responsible for the positive effect of cocoa; among them activation of nitric oxide (NO) synthase, increased bioavailability of NO as well as antioxidant, and anti-inflammatory properties. It is the aim of this review to summarize the findings of cocoa and chocolate on BP and vascular function. PMID:28824916

  9. Significant differences between vascular and nonvascular surgeons in the perioperative management of antiplatelet therapies in patients with coronary stents.

    PubMed

    Kilic, Arman; Sultan, Ibrahim S; Arnaoutakis, George J; Black, James H; Reifsnyder, Thomas

    2015-04-01

    An increasing number of patients undergoing noncardiac surgery have coronary stents. Although guidelines regarding perioperative management of antiplatelet therapies in this patient population exist, practice patterns remain incompletely understood. This study evaluated these practice patterns, with particular attention to differences in management between vascular and nonvascular surgeons. A link to a 16-question survey was displayed in the American College of Surgeons (ACS) electronic newsletter NewsScope, which is posted on the ACS Web site. Questions were focused on perioperative management of antiplatelets (aspirin, clopidogrel) for bare-metal (BMS; placed within 2 months) and drug-eluting stents (DES; placed within the past year) during low- and high-risk bleeding procedures, assuming a patient with no other confounding medical issues. Primary stratification was by surgeon specialty. A total of 244 surgical providers responded to the survey, of which 40 (17%) were vascular surgeons. The majority of respondents were attending surgeons in practice for at least 10 years (79%, n = 190). A significantly higher percentage of vascular versus nonvascular surgeons would not stop aspirin preoperatively in low bleeding risk procedures (BMS: 90% vs. 54%, P = 0.001; DES: 88% vs. 58%, P = 0.009). A higher percentage of vascular surgeons would not stop aspirin preoperatively in high bleeding risk procedures as well (BMS: 70% vs. 28%, P < 0.001; DES: 78% vs. 32%, P < 0.001). Most vascular surgeons would not stop clopidogrel in a low-risk BMS patient (53% vs. 21% of nonvascular surgeons, P = 0.001). Similar findings with clopidogrel were observed in low- (would not stop: 65% vascular versus 30% nonvascular, P < 0.001) and high-risk DES patients (would not stop: 30% vascular versus 8% nonvascular, P = 0.001). The same trends were observed in resuming antiplatelets in the postoperative period. The majority of respondents were not familiar with professional guidelines regarding perioperative antiplatelet management (52%, n = 128), with no differences between vascular and nonvascular surgeons (45% vs. 54%, P = 0.30). This national survey demonstrates significant variation in perioperative antiplatelet management in patients with coronary stents, with marked differences between vascular and nonvascular surgeons. More effective communication of existing guidelines or the development of new specialty-specific professional guidelines appears prudent in reducing this variability in practice. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Overexpression of hexokinase 2 reduces mitochondrial calcium overload in coronary endothelial cells of type 2 diabetic mice.

    PubMed

    Pan, Minglin; Han, Ying; Basu, Aninda; Dai, Anzhi; Si, Rui; Willson, Conor; Balistrieri, Angela; Scott, Brian T; Makino, Ayako

    2018-03-07

    Coronary microvascular rarefaction due to endothelial cell (EC) dysfunction is one of the causes of increased morbidity and mortality in diabetes. Coronary ECs in diabetes are more apoptotic due partly to mitochondrial calcium overload. This study was designed to investigate the role of hexokinase 2 (HK2, an endogenous inhibitor of voltage-dependent anion channel) in coronary endothelial dysfunction in type 2 diabetes. We used mouse coronary ECs (MCECs) isolated from type 2 diabetic mice and human coronary ECs (HCECs) from type 2 diabetic patients to examine protein levels and mitochondrial functions. ECs were more apoptotic and capillary density was lower in the left ventricle of diabetic mice than the control. MCECs from diabetic mice exhibited significant increase in mitochondrial Ca 2+ concentration ([Ca 2+ ] mito ) compared to the control. Among several regulatory proteins for [Ca 2+ ] mito , HK1 and HK2 were significantly lower in MCECs from diabetic mice than control MCECs. We also found that the level of HK2 ubiquitination was higher in MCECs from diabetic mice than in control MCECs. In line with the data from MCECs, HCECs from diabetic patients showed lower HK2 protein levels than HCECs from non-diabetic patients. High-glucose treatment, but not high-fat treatment, significantly decreased HK2 protein levels in the MCEC. HK2 overexpression in MCECs of diabetic mice not only lowered the level of [Ca 2+ ] mito , but also reduced mitochondrial ROS production toward the level seen in control MCECs. These data suggest that HK2 is a potential therapeutic target for coronary microvascular disease in diabetes by restoring mitochondrial function in coronary ECs.

  11. Inhibition of Vascular c-Jun N-Terminal Kinase 2 Improves Obesity-Induced Endothelial Dysfunction After Roux-en-Y Gastric Bypass.

    PubMed

    Doytcheva, Petia; Bächler, Thomas; Tarasco, Erika; Marzolla, Vincenzo; Engeli, Michael; Pellegrini, Giovanni; Stivala, Simona; Rohrer, Lucia; Tona, Francesco; Camici, Giovanni G; Vanhoutte, Paul M; Matter, Christian M; Lutz, Thomas A; Lüscher, Thomas F; Osto, Elena

    2017-11-14

    Roux-en-Y gastric bypass (RYGB) reduces obesity-associated comorbidities and cardiovascular mortality. RYGB improves endothelial dysfunction, reducing c-Jun N-terminal kinase (JNK) vascular phosphorylation. JNK activation links obesity with insulin resistance and endothelial dysfunction. Herein, we examined whether JNK1 or JNK2 mediates obesity-induced endothelial dysfunction and if pharmacological JNK inhibition can mimic RYGB vascular benefits. After 7 weeks of a high-fat high-cholesterol diet, obese rats underwent RYGB or sham surgery; sham-operated ad libitum-fed rats received, for 8 days, either the control peptide D-TAT or the JNK peptide inhibitor D-JNKi-1 (20 mg/kg per day subcutaneous). JNK peptide inhibitor D-JNKi-1 treatment improved endothelial vasorelaxation in response to insulin and glucagon-like peptide-1, as observed after RYGB. Obesity increased aortic phosphorylation of JNK2, but not of JNK1. RYGB and JNK peptide inhibitor D-JNKi-1 treatment blunted aortic JNK2 phosphorylation via activation of glucagon-like peptide-1-mediated signaling. The inhibitory phosphorylation of insulin receptor substrate-1 was reduced, whereas the protein kinase B/endothelial NO synthase pathway was increased and oxidative stress was decreased, resulting in improved vascular NO bioavailability. Decreased aortic JNK2 phosphorylation after RYGB rapidly improves obesity-induced endothelial dysfunction. Pharmacological JNK inhibition mimics the endothelial protective effects of RYGB. These findings highlight the therapeutic potential of novel strategies targeting vascular JNK2 against the severe cardiovascular disease associated with obesity. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  12. [Pharmacological therapy of age-related macular degeneration based on etiopathogenesis].

    PubMed

    Fischer, Tamás

    2015-11-15

    It is of great therapeutic significance that disordered function of the vascular endothelium which supply the affected ocular structures plays a major role in the pathogenesis and development of age-related macular degeneration. Chronic inflammation is closely linked to diseases associated with endothelial dysfunction, and age-related macular degeneration is accompanied by a general inflammatory response. According to current concept, age-related macular degeneration is a local manifestation of systemic vascular disease. This recognition could have therapeutic implications because restoration of endothelial dysfunction can restabilize the condition of chronic vascular disease including age-related macular degeneration as well. Restoration of endothelial dysfunction by pharmaacological or non pharmacological interventions may prevent the development or improve endothelial dysfunction, which result in prevention or improvement of age related macular degeneration as well. Medicines including inhibitors of the renin-angiotensin system (converting enzyme inhibitors, angiotensin-receptor blockers and renin inhibitors), statins, acetylsalicylic acid, trimetazidin, third generation beta-blockers, peroxisome proliferator-activated receptor gamma agonists, folate, vitamin D, melatonin, advanced glycation end-product crosslink breaker alagebrium, endothelin-receptor antagonist bosentan, coenzyme Q10; "causal" antioxidant vitamins, N-acetyl-cysteine, resveratrol, L-arginine, serotonin receptor agonists, tumor necrosis factor-alpha blockers, specific inhibitor of the complement alternative pathway, curcumin and doxycyclin all have beneficial effects on endothelial dysfunction. Restoration of endothelial dysfunction can restabilize chronic vascular disease including age-related macular degeneration as well. Considering that the human vascular system is consubstantial, medicines listed above should be given to patients (1) who have no macular degeneration but have risk factors for the disease and are older than 50 years; (2) who have been diagnosed with unilateral age-related macular degeneration in order to prevent damage of the contralateral eye; (3) who have bilateral age-related macular degeneration in order to avert deterioration and in the hope of a potential improvement. However, randomised prospective clinical trials are still needed to elucidate the potential role of these drug treatments in the prevention and treatment of age-related macular degeneration.

  13. Effect of cardiovascular prevention strategies on incident coronary disease hospitalisation rates in Spain; an ecological time series analysis.

    PubMed

    Medrano, María José; Alcalde-Cabero, Enrique; Ortíz, Cristina; Galán, Iñaki

    2014-02-17

    To assess the overall population impact of primary prevention strategies (promotion of healthy lifestyles, prevention of smoking and use of vascular risk drug therapy) of coronary disease in Spain. Ecological time series analysis, 1982-2009. All public and private hospitals in Spain. General population. Incident coronary disease hospitalisation as derived from official hospital discharge data. Annual hospitalisation rates were modelled according to nationwide use of statins, antihypertensive, antidiabetic and antiplatelet drugs, and prevalences of smoking, obesity and overweight. Additive generalised models and mixed Poisson regression models were used for the purpose, taking year as the random-effect variable and adjusting for age, sex, prevalence of vascular risk factors and the number of hospital beds in intensive and coronary care units. Across 28 years and 671.5 million person-years of observation, there were 2 986 834 hospitalisations due to coronary disease; of these, 1 441 980 (48.28%) were classified as incident. Hospitalisation rates increased from 1982 to 1996, with an inflection point in 1997 and a subsequent 52% decrease until 2009. Prevalences of smoking, obesity, overweight and use of vascular risk drug therapy were significantly associated with hospitalisation rates (p<0.001): incidence rates ratios (95% CI) for the fourth versus the first quartile were 1.46 (1.42 to 1.50), 1.80 (1.78 to 1.83), 1.58 (1.55 to 1.60) and 0.57 (0.51 to 0.63), respectively. These variables accounted for 92% of interannual variability. After decades of continuous rises, hospitalisation due to incident ischaemic heart disease has been cut by half, an achievement associated with the decline in smoking and the increase in vascular risk drug therapy. These results indicate that these two primary prevention strategies have been effective at a population level, thanks to an appropriate balance between financial and health goals, something that should be left intact despite the current economic crisis. Future strategies ought to lay special stress on excessive body weight prevention.

  14. Cohort profile of BIOMArCS: the BIOMarker study to identify the Acute risk of a Coronary Syndrome-a prospective multicentre biomarker study conducted in the Netherlands.

    PubMed

    Oemrawsingh, Rohit M; Akkerhuis, K Martijn; Umans, Victor A; Kietselaer, Bas; Schotborgh, Carl; Ronner, Eelko; Lenderink, Timo; Liem, Anho; Haitsma, David; van der Harst, Pim; Asselbergs, Folkert W; Maas, Arthur; Oude Ophuis, Anton J; Ilmer, Ben; Dijkgraaf, Rene; de Winter, Robbert-Jan; The, S Hong Kie; Wardeh, Alexander J; Hermans, Walter; Cramer, Etienne; van Schaik, Ron H; Hoefer, Imo E; Doevendans, Pieter A; Simoons, Maarten L; Boersma, Eric

    2016-12-23

    Progression of stable coronary artery disease (CAD) towards acute coronary syndrome (ACS) is a dynamic and heterogeneous process with many intertwined constituents, in which a plaque destabilising sequence could lead to ACS within short time frames. Current CAD risk assessment models, however, are not designed to identify increased vulnerability for the occurrence of coronary events within a precise, short time frame at the individual patient level. The BIOMarker study to identify the Acute risk of a Coronary Syndrome (BIOMArCS) was designed to evaluate whether repeated measurements of multiple biomarkers can predict such 'vulnerable periods'. BIOMArCS is a multicentre, prospective, observational study of 844 patients presenting with ACS, either with or without ST-elevation and at least one additional cardiovascular risk factor. We hypothesised that patterns of circulating biomarkers that reflect the various pathophysiological components of CAD, such as distorted lipid metabolism, vascular inflammation, endothelial dysfunction, increased thrombogenicity and ischaemia, diverge in the days to weeks before a coronary event. Divergent biomarker patterns, identified by serial biomarker measurements during 1-year follow-up might then indicate 'vulnerable periods' during which patients with CAD are at high short-term risk of developing an ACS. Venepuncture was performed every fortnight during the first half-year and monthly thereafter. As prespecified, patient enrolment was terminated after the primary end point of cardiovascular death or hospital admission for non-fatal ACS had occurred in 50 patients. A case-cohort design will explore differences in temporal patterns of circulating biomarkers prior to the repeat ACS. Follow-up and event adjudication have been completed. Prespecified biomarker analyses are currently being performed and dissemination through peer-reviewed publications and conference presentations is expected from the third quarter of 2016. Should identification of a 'vulnerable period' prove to be feasible, then future research could focus on event reduction through pharmacological or mechanical intervention during such periods of high risk for ACS. NTR1698 and NTR1106. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  15. Stromal Vascular Fraction Transplantation as an Alternative Therapy for Ischemic Heart Failure: Anti-inflammatory Role

    PubMed Central

    2011-01-01

    Background The aims of this study were: (1) to show the feasibility of using adipose-derived stromal vascular fraction (SVF) as an alternative to bone marrow mono nuclear cell (BM-MNC) for cell transplantation into chronic ischemic myocardium; and (2) to explore underlying mechanisms with focus on anti-inflammation role of engrafted SVF and BM-MNC post chronic myocardial infarction (MI) against left ventricular (LV) remodelling and cardiac dysfunction. Methods Four weeks after left anterior descending coronary artery ligation, 32 Male Lewis rats with moderate MI were divided into 3 groups. SVF group (n = 12) had SVF cell transplantation (6 × 106 cells). BM-MNC group (n = 12) received BM-MNCs (6 × 106) and the control (n = 10) had culture medium. At 4 weeks, after the final echocardiography, histological sections were stained with Styrus red and immunohistochemical staining was performed for α-smooth muscle actin, von Willebrand factor, CD3, CD8 and CD20. Results At 4 weeks, in SVF and BM-MNC groups, LV diastolic dimension and LV systolic dimension were smaller and fractional shortening was increased in echocardiography, compared to control group. Histology revealed highest vascular density, CD3+ and CD20+ cells in SVF transplanted group. SVF transplantation decreased myocardial mRNA expression of inflammatory cytokines TNF-α, IL-6, MMP-1, TIMP-1 and inhibited collagen deposition. Conclusions Transplantation of adipose derived SVF cells might be a useful therapeutic option for angiogenesis in chronic ischemic heart disease. Anti-inflammation role for SVF and BM transplantation might partly benefit for the cardioprotective effect for chronic ischemic myocardium. PMID:21453457

  16. Stunning and Right Ventricular Dysfunction Is Induced by Coronary Balloon Occlusion and Rapid Pacing in Humans: Insights From Right Ventricular Conductance Catheter Studies.

    PubMed

    Axell, Richard G; Giblett, Joel P; White, Paul A; Klein, Andrew; Hampton-Til, James; O'Sullivan, Michael; Braganza, Denise; Davies, William R; West, Nick E J; Densem, Cameron G; Hoole, Stephen P

    2017-06-06

    We sought to determine whether right ventricular stunning could be detected after supply (during coronary balloon occlusion [BO]) and supply/demand ischemia (induced by rapid pacing [RP] during transcatheter aortic valve replacement) in humans. Ten subjects with single-vessel right coronary artery disease undergoing percutaneous coronary intervention with normal ventricular function were studied in the BO group. Ten subjects undergoing transfemoral transcatheter aortic valve replacement were studied in the RP group. In both, a conductance catheter was placed into the right ventricle, and pressure volume loops were recorded at baseline and for intervals over 15 minutes after a low-pressure BO for 1 minute or a cumulative duration of RP for up to 1 minute. Ischemia-induced diastolic dysfunction was seen 1 minute after RP (end-diastolic pressure [mm Hg]: 8.1±4.2 versus 12.1±4.1, P <0.001) and BO (end-diastolic pressure [mm Hg]: 8.1 ± 4.0 versus 8.7±4.0, P =0.03). Impairment of systolic and diastolic function after BO remained at 15-minutes recovery (ejection fraction [%]: 55.7±9.0 versus 47.8±6.3, P <0.01; end-diastolic pressure [mm Hg]: 8.1±4.0 versus 9.2±3.9, P <0.01). Persistent diastolic dysfunction was also evident in the RP group at 15-minutes recovery (end-diastolic pressure [mm Hg]: 8.1±4.1 versus 9.9±4.4, P =0.03) and there was also sustained impairment of load-independent indices of systolic function at 15 minutes after RP (end-systolic elastance and ventriculo-arterial coupling [mm Hg/mL]: 1.25±0.31 versus 0.85±0.43, P <0.01). RP and right coronary artery balloon occlusion both cause ischemic right ventricular dysfunction with stunning observed later during the procedure. This may have intraoperative implications in patients without right ventricular functional reserve. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  17. Coronary Artery Formation Is Driven by Localized Expression of R-spondin3.

    PubMed

    Da Silva, Fabio; Rocha, Ana Sofia; Motamedi, Fariba Jian; Massa, Filippo; Basboga, Cem; Morrison, Harris; Wagner, Kay Dietrich; Schedl, Andreas

    2017-08-22

    Coronary arteries are essential to support the heart with oxygen, and coronary heart disease is one of the leading causes of death worldwide. The coronary arteries form at highly stereotyped locations and are derived from the primitive vascular plexus of the heart. How coronary arteries are remodeled and the signaling molecules that govern this process are poorly understood. Here, we have identified the Wnt-signaling modulator Rspo3 as a crucial regulator of coronary artery formation in the developing heart. Rspo3 is specifically expressed around the coronary stems at critical time points in their development. Temporal ablation of Rspo3 at E11.5 leads to decreased β-catenin signaling and a reduction in arterial-specific proliferation. As a result, the coronary stems are defective and the arterial tree does not form properly. These results identify a mechanism through which localized expression of RSPO3 induces proliferation of the coronary arteries at their stems and permits their formation. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  18. Absence of Akt1 reduces vascular smooth muscle cell migration and survival and induces features of plaque vulnerability and cardiac dysfunction during atherosclerosis

    PubMed Central

    Fernández-Hernando, Carlos; József, Levente; Jenkins, Deborah; Lorenzo, Annarita Di; Sessa, William C.

    2009-01-01

    Objective Deletion of Akt1 leads to severe atherosclerosis and occlusive coronary artery disease. VSMC are an important component of atherosclerotic plaques, responsible for promoting plaque stability in advanced lesions. Fibrous caps of unstable plaques contain less collagen and ECM components and fewer VSMCs than caps from stable lesions. Here, we investigated the role of Akt1 in VSMC proliferation, migration and oxidative stress-induce apoptosis. In addition, we also characterized the atherosclerotic plaque morphology and cardiac function in an atherosclerosis-prone mouse model deficient in Akt1. Methods and Results Absence of Akt1 reduces VSMC proliferation and migration. Mechanistically, the proliferation and migratory phenotype found in Akt1 null VSMCs was linked to reduced Rac-1 activity and MMP-2 secretion. Serum starvation and stress-induced apoptosis was enhanced in Akt1 null VSMCs as determined by flow cytometry using Annexin V/PI staining. Immunohistochemical analysis of atherosclerotic plaques from Akt1−/−ApoE−/− mice showed a dramatic increase in plaque vulnerability characteristics such as enlarged necrotic core and reduced fibrous cap and collagen content. Finally, we show evidences of myocardial infarcts and cardiac dysfunction in Akt1−/−ApoE−/− mice analyzed by immunohistochemistry and echocardiography respectively. Conclusion Akt1 is essential for VSMC proliferation, migration and protection against oxidative stress-induce apoptosis. Absence of Akt1 induces features of plaque vulnerability and cardiac dysfunction in a mouse model of atherosclerosis. PMID:19762778

  19. [Analysis of vascular complications of IABP therapy in open-heart surgery patients 1999-2004].

    PubMed

    Kovács, Endre; Becker, Dávid; Daróczi, László; Gálfy, Ildikó; Hüttl, Tivadar; Laczkó, Agnes; Paukovits, Tamas; Vargha, Péter; Szabolcs, Zoltán

    2006-04-01

    Intraaortic balloon pump (IABP) is being used in cardiac surgery in an increased ratio. IABP therapy involves considerable risk, mainly vascular complications, postoperative bleeding and infection can represent danger. Between 1999 and 2004 out of 4443 open heart surgery operations we have performed intraaortic balloon pump treatment in case of 75 patients. The mean age was 64 years, 23 patients had diabetes mellitus, 47 patients had hypertension, 20 patients had peripheral vascular disease as well. We performed IABP therapy most frequently during isolated coronary bypass operations (42 cases), but also combined operations (implantation of valve prosthesis + coronary bypass) represent a significant part (implantation of aortic valve prosthesis + CABG: 5 cases, implantation of mitral valve prosthesis + CABG: 8 cases). Vascular complications occurred in 10 cases--13.3%--out of 75 patients, including 7 fatal ones. Three cases are due to the IABP treatment itself: Crush syndrome was developed leading to the loss of the patient. Applying the multiple logistic regression model we have examined the effect of the following factors on the occurrence of vascular complications: gender, age, body surface, accompanying diseases (hypertension, diabetes, peripheral vascular disease), the method and timing of insertion. Peripheral vascular disease (p < 0.005) and hypertension (p = 0.01) represent independent risk factors regarding the occurrence of complications. Having performed chi-square test we have not identified significant correlations between mortality and vascular complications. In case of prevailing peripheral vascular disease, the application of alternative insertion techniques--via the ascending aorta, the axillary artery--are recommended.

  20. Oscillation of Angiogenesis and Vascular Dropout in Progressive Human Vascular Disease. [Vascular Pattern as Useful Read-Out of Complex Molecular Signaling

    NASA Technical Reports Server (NTRS)

    Parsons-Wingerter, Patricia

    2010-01-01

    When analyzed by VESsel GENeration Analysis (VESGEN) software, vascular patterns provide useful integrative read-outs of complex, interacting molecular signaling pathways. Using VESGEN, we recently discovered and published our innovative, surprising findings that angiogenesis oscillated with vascular dropout throughout progression of diabetic retinopathy, a blinding vascular disease. Our findings provide a potential paradigm shift in the current prevailing view on progression and treatment of this disease, and a new early-stage window of regenerative therapeutic opportunities. The findings also suggest that angiogenesis may oscillate with vascular disease in a homeostatic-like manner during early stages of other inflammatory progressive diseases such as cancer and coronary vascular disease.

  1. Lipoprotein(a) levels predict adverse vascular events after acute myocardial infarction.

    PubMed

    Mitsuda, Takayuki; Uemura, Yusuke; Ishii, Hideki; Takemoto, Kenji; Uchikawa, Tomohiro; Koyasu, Masayoshi; Ishikawa, Shinji; Miura, Ayako; Imai, Ryo; Iwamiya, Satoshi; Ozaki, Yuta; Kato, Tomohiro; Shibata, Rei; Watarai, Masato; Murohara, Toyoaki

    2016-12-01

    Lipoprotein(a) [Lp(a)], which is genetically determined, has been reported as an independent risk factor for atherosclerotic vascular disease. However, the prognostic value of Lp(a) for secondary vascular events in patients after coronary artery disease has not been fully elucidated. This 3-year observational study included a total of 176 patients with ST-elevated myocardial infarction (STEMI), whose Lp(a) levels were measured within 24 h after primary percutaneous coronary intervention. We divided enrolled patients into two groups according to Lp(a) level and investigated the association between Lp(a) and the incidence of major adverse cardiac and cerebrovascular events (MACCE). A Kaplan-Meier analysis demonstrated that patients with higher Lp(a) levels had a higher incidence of MACCE than those with lower Lp(a) levels (log-rank P = 0.034). A multivariate Cox regression analysis revealed that Lp(a) levels were independently correlated with the occurrence of MACCE after adjusting for other classical risk factors of atherosclerotic vascular diseases (hazard ratio 1.030, 95 % confidence interval: 1.011-1.048, P = 0.002). In receiver-operating curve analysis, the cutoff value to maximize the predictive power of Lp(a) was 19.0 mg/dl (area under the curve = 0.674, sensitivity 69.2 %, specificity 62.0 %). Evaluation of Lp(a) in addition to the established coronary risk factors improved their predictive value for the occurrence of MACCE. In conclusion, Lp(a) levels at admission independently predict secondary vascular events in patients with STEMI. Lp(a) might provide useful information for the development of secondary prevention strategies in patients with myocardial infarction.

  2. Acute EGCG Supplementation Reverses Endothelial Dysfunction in Patients with Coronary Artery Disease

    PubMed Central

    Widlansky, Michael E.; Hamburg, Naomi M.; Anter, Elad; Holbrook, Monika; Kahn, David F.; Elliott, James G.; Keaney, John F.; Vita, Joseph A.

    2013-01-01

    Background Epidemiological studies demonstrate an inverse relation between dietary flavonoid intake and cardiovascular risk. Recent studies with flavonoid-containing beverages suggest that the benefits of these nutrients may relate, in part, to improved endothelial function. Objective We hypothesized that dietary supplementation with epigallocatechin gallate (EGCG), a major catechin in tea, would improve endothelial function in humans. Design We examined the effects of EGCG on endothelial function in a double blind, placebo-controlled, crossover design study. We measured brachial artery flow-mediated dilation by vascular ultrasound at six time points: prior to treatment with EGCG or placebo, two hours after an initial dose of EGCG (300 mg) or placebo, and after two weeks of treatment with EGCG (150 mg twice daily) or placebo. The order of treatments (EGCG or placebo) was randomized and there was a one-week washout period between treatments. Results A total of 42 subjects were enrolled, and brachial artery flow-mediated dilation improved from 7.1±4.1 to 8.6±4.7% two hours after the first dose of 300mg of EGCG (P=0.01), but was similar to baseline (7.8±4.2%, P=0.12) after two weeks of treatment with the final measurements made approximately 14 hours after the last dose. Placebo treatment had no significant effect, and there were no changes in reactive hyperemia or the response to sublingual nitroglycerin. The changes in vascular function paralleled plasma EGCG concentrations, which increased from 2.6±10.9 to 92.8±78.7 ng/ml after acute EGCG (P<0.001), but were unchanged from baseline after two weeks of treatment (3.4±13.1 ng/ml). Conclusion EGCG acutely improves endothelial function in humans with coronary artery disease, and may account for a portion of the beneficial effects of flavonoid-rich food on endothelial function. PMID:17536120

  3. Coronary Exercise Hyperemia Is Impaired in Patients with Peripheral Arterial Disease.

    PubMed

    Ross, Amanda J; Gao, Zhaohui; Luck, Jonathan Carter; Blaha, Cheryl A; Cauffman, Aimee E; Aziz, Faisal; Radtka, John F; Proctor, David N; Leuenberger, Urs A; Sinoway, Lawrence I; Muller, Matthew D

    2017-01-01

    Peripheral arterial disease (PAD) is an atherosclerotic vascular disease that affects over 200 million people worldwide. The hallmark of PAD is ischemic leg pain and this condition is also associated with an augmented blood pressure response to exercise, impaired vascular function, and high risk of myocardial infarction and cardiovascular mortality. In this study, we tested the hypothesis that coronary exercise hyperemia is impaired in PAD. Twelve patients with PAD and no overt coronary disease (65 ± 2 years, 7 men) and 15 healthy control subjects (64 ± 2 years, 9 men) performed supine plantar flexion exercise (30 contractions/min, increasing workload). A subset of subjects (n = 7 PAD, n = 8 healthy) also performed isometric handgrip exercise (40% of maximum voluntary contraction to fatigue). Coronary blood velocity in the left anterior descending artery was measured by transthoracic Doppler echocardiography; blood pressure and heart rate were monitored continuously. Coronary blood velocity responses to 4 min of plantar flexion exercise (PAD: Δ2.4 ± 1.2, healthy: Δ6.0 ± 1.6 cm/sec, P = 0.039) and isometric handgrip exercise (PAD: Δ8.3 ± 4.2, healthy: Δ16.9 ± 3.6, P = 0.033) were attenuated in PAD patients. These data indicate that coronary exercise hyperemia is impaired in PAD, which may predispose these patients to myocardial ischemia. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Electronegative Low-density Lipoprotein Increases Coronary Artery Disease Risk in Uremia Patients on Maintenance Hemodialysis

    PubMed Central

    Chang, Chiz-Tzung; Wang, Guei-Jane; Kuo, Chin-Chi; Hsieh, Ju-Yi; Lee, An-Sean; Chang, Chia-Ming; Wang, Chun-Cheng; Shen, Ming-Yi; Huang, Chiu-Ching; Sawamura, Tatsuya; Yang, Chao-Yuh; Stancel, Nicole; Chen, Chu-Huang

    2016-01-01

    Abstract Electronegative low-density lipoprotein (LDL) is a recognized factor in the pathogenesis of coronary artery disease (CAD) in the general population, but its role in the development of CAD in uremia patients is unknown. L5 is the most electronegative subfraction of LDL isolated from human plasma. In this study, we examined the distribution of L5 (L5%) and its association with CAD risk in uremia patients. The LDL of 39 uremia patients on maintenance hemodialysis and 21 healthy controls was separated into 5 subfractions, L1–L5, with increasing electronegativity. We compared the distribution and composition of plasma L5 between uremia patients and controls, examined the association between plasma L5% and CAD risk in uremia patients, and studied the effects of L5 from uremia patients on endothelial function. Compared to controls, uremia patients had significantly increased L5% (P < 0.001) and L5 that was rich in apolipoprotein C3 and triglycerides. L5% was significantly higher in uremia patients with CAD (n = 10) than in those without CAD (n = 29) (P < 0.05). Independent of other major CAD risk factors, the adjusted odds ratio for CAD was 1.88 per percent increase in plasma L5% (95% CI, 1.01–3.53), with a near-linear dose–response relationship. Compared with controls, uremia patients had decreased flow-mediated vascular dilatation. In ex vivo studies with preconstricted rat thoracic aortic rings, L5 from uremia patients inhibited acetylcholine-induced relaxation. In cultured human endothelial cells, L5 inhibited endothelial nitric oxide synthase activation and induced endothelial dysfunction. Our findings suggest that elevated plasma L5% may induce endothelial dysfunction and play an important role in the increased risk of CAD in uremia patients. PMID:26765403

  5. Exercise considerations in coronary artery disease, peripheral vascular disease, and diabetes mellitus.

    PubMed

    Armen, Joseph; Smith, Bryan W

    2003-01-01

    Physical inactivity is a risk factor for cardiovascular disease. Regular aerobic and resistance training increases exercise capacity and plays a role both in the primary and secondary prevention of cardiovascular disease. Patients with coronary artery disease, peripheral vascular disease, or diabetes mellitus must be considered individually when prescribing exercise because their clinical status can vary greatly. In addition, a majority of these patients have multiple comorbid disorders such as renal, neurologic, and retinal disease that may affect their ability to exercise safely. Therefore, a preparticipation medical evaluation is required. An exercise prescription should be tailored to each person's unique set of circumstances and reflect an effort to maximize the anticipated benefits while minimizing the risks.

  6. Chronic total occlusion successfully treated with a bioresorbable everolimus-eluting vascular scaffold

    PubMed Central

    Mattesini, Alessio; Dall'Ara, Gianni; Mario, Carlo Di

    2014-01-01

    Fully bioresorbable vascular scaffolds (BVS) are a new approach to the percutaneous treatment of coronary artery disease. The BVS have not yet been fully tested in complex lesions, including chronic total occlusion (CTO). We report a CTO case successfully treated with a second-generation bioabsorbable drug-eluting scaffold. PMID:25061461

  7. Regulation of Coronary Blood Flow

    PubMed Central

    Goodwill, Adam G.; Dick, Gregory M.; Kiel, Alexander M.; Tune, Johnathan D.

    2018-01-01

    The heart is uniquely responsible for providing its own blood supply through the coronary circulation. Regulation of coronary blood flow is quite complex and, after over 100 years of dedicated research, is understood to be dictated through multiple mechanisms that include extravascular compressive forces (tissue pressure), coronary perfusion pressure, myogenic, local metabolic, endothelial as well as neural and hormonal influences. While each of these determinants can have profound influence over myocardial perfusion, largely through effects on end-effector ion channels, these mechanisms collectively modulate coronary vascular resistance and act to ensure that the myocardial requirements for oxygen and substrates are adequately provided by the coronary circulation. The purpose of this series of Comprehensive Physiology is to highlight current knowledge regarding the physiologic regulation of coronary blood flow, with emphasis on functional anatomy and the interplay between the physical and biological determinants of myocardial oxygen delivery. PMID:28333376

  8. Effects of homocysteine-lowering with folic acid plus vitamin B12 vs placebo on mortality and major morbidity in myocardial infarction survivors: a randomized trial.

    PubMed

    Armitage, Jane M; Bowman, Louise; Clarke, Robert J; Wallendszus, Karl; Bulbulia, Richard; Rahimi, Kazem; Haynes, Richard; Parish, Sarah; Sleight, Peter; Peto, Richard; Collins, Rory

    2010-06-23

    Blood homocysteine levels are positively associated with cardiovascular disease, but it is uncertain whether the association is causal. To assess the effects of reducing homocysteine levels with folic acid and vitamin B(12) on vascular and nonvascular outcomes. Double-blind randomized controlled trial of 12,064 survivors of myocardial infarction in secondary care hospitals in the United Kingdom between 1998 and 2008. 2 mg folic acid plus 1 mg vitamin B(12) daily vs matching placebo. First major vascular event, defined as major coronary event (coronary death, myocardial infarction, or coronary revascularization), fatal or nonfatal stroke, or noncoronary revascularization. Allocation to the study vitamins reduced homocysteine by a mean of 3.8 micromol/L (28%). During 6.7 years of follow-up, major vascular events occurred in 1537 of 6033 participants (25.5%) allocated folic acid plus vitamin B(12) vs 1493 of 6031 participants (24.8%) allocated placebo (risk ratio [RR], 1.04; 95% confidence interval [CI], 0.97-1.12; P = .28). There were no apparent effects on major coronary events (vitamins, 1229 [20.4%], vs placebo, 1185 [19.6%]; RR, 1.05; 95% CI, 0.97-1.13), stroke (vitamins, 269 [4.5%], vs placebo, 265 [4.4%]; RR, 1.02; 95% CI, 0.86-1.21), or noncoronary revascularizations (vitamins, 178 [3.0%], vs placebo, 152 [2.5%]; RR, 1.18; 95% CI, 0.95-1.46). Nor were there significant differences in the numbers of deaths attributed to vascular causes (vitamins, 578 [9.6%], vs placebo, 559 [9.3%]) or nonvascular causes (vitamins, 405 [6.7%], vs placebo, 392 [6.5%]) or in the incidence of any cancer (vitamins, 678 [11.2%], vs placebo, 639 [10.6%]). Substantial long-term reductions in blood homocysteine levels with folic acid and vitamin B(12) supplementation did not have beneficial effects on vascular outcomes but were also not associated with adverse effects on cancer incidence. isrctn.org Identifier: ISRCTN74348595.

  9. Pannus-related prosthetic valve dysfunction. Case report

    PubMed Central

    MOLDOVAN, MARIA-SÎNZIANA; BEDELEANU, DANIELA; KOVACS, EMESE; CIUMĂRNEAN, LORENA; MOLNAR, ADRIAN

    2016-01-01

    Pannus-related prosthetic valve dysfunction, a complication of mechanical prosthetic valve replacement, is rare, with a slowly progressive evolution, but it can be acute, severe, requiring surgical reintervention. We present the case of a patient with a mechanical single disc aortic prosthesis, with moderate prosthesis-patient mismatch, minor pannus found on previous ultrasound examinations, who presented to our service with angina pain with a duration of 1 hour, subsequently interpreted as non-ST segment elevation myocardial infarction (NSTEMI) syndrome. Coronarography showed normal epicardial coronary arteries, an ample movement of the prosthetic disc, without evidence of coronary thromboembolism, and Gated Single-Photon Emission Computerized Tomography (SPECT) with Technetium (Tc)-99m detected no perfusion defects. Transthoracic echocardiography (TTE) evidenced a dysfunctional prosthesis due to a subvalvular mass; transesophageal echocardiography (TOE) showed the interference of this mass, with a pannus appearance, with the closure of the prosthetic disc. Under conditions of repeated angina episodes, under anticoagulant treatment, surgery was performed, with the intraoperative confirmation of pannus and its removal. Postoperative evolution was favorable. This case reflects the diagnostic and therapeutic management problems of pannus-related prosthetic valve dysfunction. PMID:27004041

  10. Pannus-related prosthetic valve dysfunction. Case report.

    PubMed

    Moldovan, Maria-Sînziana; Bedeleanu, Daniela; Kovacs, Emese; Ciumărnean, Lorena; Molnar, Adrian

    2016-01-01

    Pannus-related prosthetic valve dysfunction, a complication of mechanical prosthetic valve replacement, is rare, with a slowly progressive evolution, but it can be acute, severe, requiring surgical reintervention. We present the case of a patient with a mechanical single disc aortic prosthesis, with moderate prosthesis-patient mismatch, minor pannus found on previous ultrasound examinations, who presented to our service with angina pain with a duration of 1 hour, subsequently interpreted as non-ST segment elevation myocardial infarction (NSTEMI) syndrome. Coronarography showed normal epicardial coronary arteries, an ample movement of the prosthetic disc, without evidence of coronary thromboembolism, and Gated Single-Photon Emission Computerized Tomography (SPECT) with Technetium (Tc)-99m detected no perfusion defects. Transthoracic echocardiography (TTE) evidenced a dysfunctional prosthesis due to a subvalvular mass; transesophageal echocardiography (TOE) showed the interference of this mass, with a pannus appearance, with the closure of the prosthetic disc. Under conditions of repeated angina episodes, under anticoagulant treatment, surgery was performed, with the intraoperative confirmation of pannus and its removal. Postoperative evolution was favorable. This case reflects the diagnostic and therapeutic management problems of pannus-related prosthetic valve dysfunction.

  11. Amiodarone. Haemodynamic profile during intravenous administration and effect on pacing-induced ischaemia in man.

    PubMed

    Remme, W J; van Hoogenhuyze, D C; Kruyssen, D A; Krauss, X H; Storm, C J

    1985-03-01

    The haemodynamic changes during intravenous amiodarone administration in laboratory animals and human studies are reviewed and compared with the results from our investigations. While the results of previous human studies have been rather variable, our investigations suggest that the cardiovascular changes following intravenous amiodarone include an early and usually short reduction of systemic and coronary vascular resistance, which may be partially due to the vasodilating properties of the solvent, polysorbate 80. As a result, a decrease in afterload and cardiac work and increases in cardiac output and coronary blood flow occur. Contrary to the observations in the animal experiments, heart rate increases in man, presumably as a result of the relatively greater fall in afterload which occurs. However, in spite of this increase in heart rate, contractility is reduced at the end of amiodarone administration and remains depressed after the infusion, resulting in a significant increase in left ventricular filling pressure. Neither myocardial oxygen demand nor consumption change during amiodarone administration. Although the intrinsic negative inotropic effects of amiodarone warrant a cautious approach in patients with left ventricular dysfunction, worsening of heart failure or the occurrence of myocardial ischaemia has been reported in only very few cases so far. In contrast, the drug was demonstrated to protect against pacing-induced myocardial ischaemia, in patients with both normal and depressed left ventricular function. These anti-ischaemic properties of amiodarone were investigated in a second study using a double pacing stress test protocol. Overall myocardial oxygen consumption did not change during pacing after amiodarone, but it clearly reduced (regional) myocardial ischaemia, as demonstrated by a reduction of ST-segment changes and anginal pain, and in particular by the absence of myocardial lactate production during pacing after amiodarone. These anti-ischaemic properties are mainly based on a reduction of myocardial oxygen demand, rather than on an improvement in coronary flow. It is concluded then, that amiodarone has significant haemodynamic effects as manifested by an early reduction in vascular resistance and a late negative inotropic effect. Although vasodilatation of short duration caused by its solvent, polysorbate 80, also occurs, the overall cardiovascular changes are caused by the direct, intrinsic haemodynamic effects of amiodarone alone. The important anti-ischaemic properties of amiodarone appear to result primarily from these cardiovascular actions and the inherent reduction in myocardial oxygen demand.

  12. Angeli's Salt, a nitroxyl anion donor, reverses endothelin-1 mediated vascular dysfunction in murine aorta.

    PubMed

    Wynne, Brandi M; Labazi, Hicham; Carneiro, Zidonia N; Tostes, Rita C; Webb, R Clinton

    2017-11-05

    Nitroglycerin (Gtn) is a treatment for cardiovascular patients due to its vasodilatory actions, but induces tolerance when given chronically. A proposed mechanism is the superoxide (O 2 - )-oxidative stress hypothesis, which suggests that Gtn increases O 2 - production. Nitric oxide (NO) exists in three different redox states; the protonated, reduced state, nitroxyl anion (HNO) is an emerging candidate in vascular regulation. HNO is resistant to scavenging and of particular interest in conditions where high levels of reactive oxygen species (ROS) exist. We hypothesize that treatment with Gtn will exacerbate endothelin 1 (ET-1) induced vascular dysfunction via an increase in ROS, while treatment with Angeli's Salt (AS), an HNO donor, will not. Aorta from mice were isolated and divided into four groups: vehicle, ET-1 [0.1μM, 1μM], ET-1+Gtn [Gtn 1μM] and ET-1+AS [AS 1μM]. Concentration response curves (CRCs) to acetylcholine (ACh) and phenylephrine (Phe) were performed. Aorta incubated with ET-1 (for 20-22h) exhibited a decreased relaxation response to ACh and an increase in Phe-mediated contraction. Aorta incubated with AS exhibited a reversal in ET-1 induced vascular and endothelial dysfunction. ET-1 increased ROS in aortic vascular smooth muscle cells (VSMCs), visualized by dihydroethidium (DHE) staining. AS incubated reduced this ROS generation, yet maintained with Gtn treatment. These data suggest that aorta incubated with the HNO donor, AS, can reverse ET-1 mediated vascular dysfunction, which may be through a decrease or prevention of ROS generation. We propose that HNO may be vasoprotective and that HNO donors studied as a therapeutic option where other organic nitrates are contraindicative. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Dietary sodium restriction reverses vascular endothelial dysfunction in middle-aged/older adults with moderately elevated systolic blood pressure

    PubMed Central

    Jablonski, Kristen L.; Racine, Matthew L.; Geolfos, Candace J.; Gates, Phillip E.; Chonchol, Michel; McQueen, Matthew B.; Seals, Douglas R.

    2013-01-01

    Objectives We determined the efficacy of dietary sodium restriction (DSR) for improving vascular endothelial dysfunction in middle-aged/older adults with moderately elevated systolic blood pressure (SBP; 130–159 mmHg) and the associated physiological mechanisms. Background Vascular endothelial dysfunction develops with advancing age and elevated SBP, contributing to increased cardiovascular risk. DSR lowers BP, but its effect on vascular endothelial function and mechanisms involved are unknown. Methods Seventeen subjects (11M/6F; 62±7 yrs, mean±S.D.) completed a randomized, crossover study of 4 weeks of both low and normal sodium intake. Vascular endothelial function (endothelium-dependent dilation; EDD), nitric oxide (NO)/tetrahydrobiopterin (BH4) bioavailability and oxidative stress-associated mechanisms were assessed following each condition. Results Urinary sodium excretion was reduced by ~50% (to 70±30 mmol/day), and conduit (brachial artery flow-mediated dilation [FMDBA]) and resistance (forearm blood flow responses to acetylcholine [FBFACh]) artery EDD were 68% and 42% (peak FBFACh) higher following the low sodium diet (p<0.005). Low sodium markedly enhanced NO- mediated EDD (greater ΔFBFACh with endothelial NO synthase [eNOS] inhibition) without changing eNOS expression/activation (Ser1177 phosphorylation), restored BH4 bioactivity (less ΔFMDBA with acute BH4), abolished tonic superoxide suppression of EDD (less ΔFMDBA and ΔFBFACh with ascorbic acid infusion), and increased circulating superoxide dismutase activity (p<0.05). These effects were independent of ΔSBP. Other subject characteristics/dietary factors and endothelium-independent dilation were unchanged. Conclusions DSR largely reverses both macro- and microvascular endothelial dysfunction by enhancing NO and BH4 bioavailability and reducing oxidative stress. Our findings support the emerging concept that DSR induces “vascular protection” beyond that attributable to its BP-lowering effects. PMID:23141486

  14. Fabp4-CreER lineage tracing reveals two distinctive coronary vascular populations.

    PubMed

    He, Lingjuan; Tian, Xueying; Zhang, Hui; Wythe, Joshua D; Zhou, Bin

    2014-11-01

    Over the last two decades, genetic lineage tracing has allowed for the elucidation of the cellular origins and fates during both embryogenesis and in pathological settings in adults. Recent lineage tracing studies using Apln-CreER tool indicated that a large number of post-natal coronary vessels do not form from pre-existing vessels. Instead, they form de novo after birth, which represents a coronary vascular population (CVP) distinct from the pre-existing one. Herein, we present new coronary vasculature lineage tracing results using a novel tool, Fabp4-CreER. Our results confirm the distinct existence of two unique CVPs. The 1(st) CVP, which is labelled by Fabp4-CreER, arises through angiogenic sprouting of pre-existing vessels established during early embryogenesis. The 2(nd) CVP is not labelled by Fabp4, suggesting that these vessels form de novo, rather than through expansion of the 1(st) CVP. These results support the de novo formation of vessels in the post-natal heart, which has implications for studies in cardiovascular disease and heart regeneration. © 2014 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  15. Aortic Stenosis and Vascular Calcifications in Alkaptonuria

    PubMed Central

    Hannoush, Hwaida; Introne, Wendy J.; Chen, Marcus Y.; Lee, Sook-Jin; O'Brien, Kevin; Suwannarat, Pim; Kayser, Michael A.; Gahl, William A.; Sachdev, Vandana

    2011-01-01

    Alkaptonuria is a rare metabolic disorder of tyrosine catabolism in which homogentisic acid (HGA) accumulates and is deposited throughout the spine, large joints, cardiovascular system, and various tissues throughout the body. In the cardiovascular system, pigment deposition has been described in the heart valves, endocardium, pericardium, aortic intima and coronary arteries. The prevalence of cardiovascular disease in patients with alkaptonuria varies in previous reports . We present a series of 76 consecutive adult patients with alkaptonuria who underwent transthoracic echocardiography between 2000 and 2009. A subgroup of 40 patients enrolled in a treatment study underwent non-contrast CT scans and these were assessed for vascular calcifications. Six of the 76 patients had aortic valve replacement. In the remaining 70 patients, 12 patients had aortic sclerosis and 7 patients had aortic stenosis. Unlike degenerative aortic valve disease, we found no correlation with standard cardiac risk factors. There was a modest association between the severity of aortic valve disease and joint involvement, however, we saw no correlation with urine HGA levels. Vascular calcifications were seen in the coronaries, cardiac valves, aortic root, descending aorta and iliac arteries. These findings suggest an important role for echocardiographic screening of alkaptonuria patients to detect valvular heart disease and cardiac CT to detect coronary artery calcifications. PMID:22100375

  16. Fluorocopolymer-coated nitinol self-expanding paclitaxel-eluting stent: pharmacokinetics and vascular biology responses in a porcine iliofemoral model.

    PubMed

    Hou, Dongming; Huibregtse, Barbara A; Eppihimer, Michael; Stoffregen, William; Kocur, Gordon; Hitzman, Cory; Stejskal, Elizabeth; Heil, John; Dawkins, Keith D

    2016-08-20

    Our aim was to evaluate arterial responses to paclitaxel and a novel fluorocopolymer-coated nitinol low-dose paclitaxel-eluting stent (FP-PES). Human smooth muscle cell (SMC) migration was assessed after exposure to paclitaxel in vitro. For pharmacokinetics and vascular response, FP-PES or bare metal stents (BMS) were implanted in porcine iliofemoral arteries. Paclitaxel significantly inhibited human coronary and femoral artery SMC migration at doses as low as 1 pM. Inhibition was significantly greater for femoral compared with coronary artery SMCs from 1 pM to 1 μM. Pharmacokinetics showed consistent paclitaxel release from FP-PES over the study duration. The peak arterial wall paclitaxel level was 3.7 ng/mg at 10 days, with levels decreasing to 50% of peak at 60 days and 10% at 180 days. Paclitaxel was not detected in blood or remote organs. Arteriogram and histomorphometry analyses showed FP-PES significantly inhibits neointimal proliferation versus BMS at 30 and 90 days. Re-endothelialisation scores were not different between groups. Paclitaxel affected femoral artery SMC migration at lower concentrations and to a greater degree than it did coronary artery SMCs. The novel FP-PES used in this preclinical study demonstrated a vascular healing response similar to BMS, while significantly inhibiting neointimal formation up to 90 days.

  17. Aortic stenosis and vascular calcifications in alkaptonuria.

    PubMed

    Hannoush, Hwaida; Introne, Wendy J; Chen, Marcus Y; Lee, Sook-Jin; O'Brien, Kevin; Suwannarat, Pim; Kayser, Michael A; Gahl, William A; Sachdev, Vandana

    2012-02-01

    Alkaptonuria is a rare metabolic disorder of tyrosine catabolism in which homogentisic acid (HGA) accumulates and is deposited throughout the spine, large joints, cardiovascular system, and various tissues throughout the body. In the cardiovascular system, pigment deposition has been described in the heart valves, endocardium, pericardium, aortic intima and coronary arteries. The prevalence of cardiovascular disease in patients with alkaptonuria varies in previous reports. We present a series of 76 consecutive adult patients with alkaptonuria who underwent transthoracic echocardiography between 2000 and 2009. A subgroup of 40 patients enrolled in a treatment study underwent non-contrast CT scans and these were assessed for vascular calcifications. Six of the 76 patients had aortic valve replacement. In the remaining 70 patients, 12 patients had aortic sclerosis and 7 patients had aortic stenosis. Unlike degenerative aortic valve disease, we found no correlation with standard cardiac risk factors. There was a modest association between the severity of aortic valve disease and joint involvement, however, we saw no correlation with urine HGA levels. Vascular calcifications were seen in the coronaries, cardiac valves, aortic root, descending aorta and iliac arteries. These findings suggest an important role for echocardiographic screening of alkaptonuria patients to detect valvular heart disease and cardiac CT to detect coronary artery calcifications. Published by Elsevier Inc.

  18. Effects of statin therapy on clinical outcomes after acute myocardial infarction in patients with advanced renal dysfunction: A propensity score-matched analysis.

    PubMed

    Kim, Jin Sug; Kim, Weon; Park, Ji Yoon; Woo, Jong Shin; Lee, Tae Won; Ihm, Chun Gyoo; Kim, Yang Gyun; Moon, Ju-Young; Lee, Sang Ho; Jeong, Myung Ho; Jeong, Kyung Hwan

    2017-01-01

    Lipid lowering therapy is widely used for the prevention of cardiovascular complications after acute myocardial infarction (AMI). However, some studies show that this benefit is uncertain in patients with renal dysfunction, and the role of statins is based on the severity of renal dysfunction. In this study, we investigated the impact of statin therapy on major adverse cardiac events (MACEs) and all-cause mortality in patients with advanced renal dysfunction undergoing percutaneous coronary intervention (PCI) after AMI. This study was based on the Korea Acute Myocardial Infarction Registry database. We included 861 patients with advanced renal dysfunction from among 33,205 patients who underwent PCI after AMI between November 2005 and July 2012. Patients were divided into two groups: a statin group (n = 537) and a no-statin group (n = 324). We investigated the 12-month MACEs (cardiac death, myocardial infarction, repeated PCI or coronary artery bypass grafting) and all-cause mortality of each group. Subsequently, a propensity score-matched analysis was performed. In the total population studied, no significant differences were observed between the two groups with respect to the rate of recurrent MI, repeated PCI, coronary artery bypass grafting (CABG), or all-cause mortality. However, the cardiac death rate was significantly lower in the statin group (p = 0.009). Propensity score-matched analysis yielded 274 pairs demonstrating, results similar to those obtained from the total population. However, there was no significant difference in the cardiac death rate in the propensity score-matched population (p = 0.103). Cox-regression analysis revealed only left ventricular ejection fraction to be an independent predictor of 12-month MACEs (Hazard ratio [HR] of 0.979, 95% confidence interval [CI], 0962-0.996, p = 0.018). Statin therapy was not significantly associated with a reduction in the 12-month MACEs or all-cause mortality in patients with advanced renal dysfunction undergoing PCI after AMI.

  19. Takotsubo Cardiomyopathy in the Setting of Tension Pneumothorax.

    PubMed

    Gale, Michael; Loarte, Pablo; Mirrer, Brooks; Mallet, Thierry; Salciccioli, Louis; Petrie, Alison; Cohen, Ronny

    2015-01-01

    Background. Takotsubo cardiomyopathy is defined as a transient left ventricular dysfunction, usually accompanied by electrocardiographic changes. The literature documents only two other cases of Takotsubo cardiomyopathy in the latter setting. Methods. A 78-year-old female presented to the ED with severe shortness of breath, hypertension, and tachycardia. On physical exam, heart sounds (S1 and S2) were regular and wheezing was noticed bilaterally. We found laboratory results with a WBC of 20.0 (103/μL), troponin of 16.52 ng/mL, CK-mb of 70.6%, and BNP of 177 pg/mL. The patient was intubated for acute hypoxemic respiratory failure. A chest X-ray revealed a large left-sided tension pneumothorax. Initial echocardiogram showed apical ballooning with a LVEF of 10-15%. A cardiac angiography revealed normal coronary arteries with no coronary disease. After supportive treatment, the patient's condition improved with a subsequent echocardiogram showing a LVEF of 60%. Conclusion. The patient was found to have Takotsubo cardiomyopathy in the setting of a tension pneumothorax. The exact mechanisms of ventricular dysfunction have not been clarified. However, multivessel coronary spasm or catecholamine cardiotoxicity has been suggested to have a causative role. We suggest that, in our patient, left ventricular dysfunction was induced by the latter mechanism related to the stress associated with acute pneumothorax.

  20. The BEAUTIFUL study: randomized trial of ivabradine in patients with stable coronary artery disease and left ventricular systolic dysfunction - baseline characteristics of the study population.

    PubMed

    Ferrari, R; Ford, I; Fox, K; Steg, P G; Tendera, M

    2008-01-01

    Ivabradine is a selective heart rate-lowering agent that acts by inhibiting the pacemaker current If in sinoatrial node cells. Patients with coronary artery disease and left ventricular dysfunction are at high risk of death and cardiac events, and the BEAUTIFUL study was designed to evaluate the effects of ivabradine on outcome in such patients receiving optimal medical therapy. This report describes the study population at baseline. BEAUTIFUL is an international, multicentre, randomized, double-blind trial to compare ivabradine with placebo in reducing mortality and cardiovascular events in patients with stable coronary artery disease and left ventricular systolic dysfunction (ejection fraction <40%). A total of 10,917 patients were randomized. At baseline, their mean age was 65 years, 83% were male, 98% Caucasian, 88% had previous myocardial infarction, 37% had diabetes, and 40% had metabolic syndrome. Mean ejection fraction was 32% and resting heart rate was 71.6 bpm. Concomitant medications included beta-blockers (87%), renin-angiotensin system agents (89%), antithrombotic agents (94%), and lipid-lowering agents (76%). Main results from BEAUTIFUL are expected in 2008, and should show whether ivabradine, on top of optimal medical treatment, reduces mortality and cardiovascular events in this population of high-risk patients. (c) 2007 S. Karger AG, Basel

  1. HIV-1, Reactive Oxygen Species and Vascular Complications

    PubMed Central

    Porter, Kristi M.; Sutliff, Roy L.

    2012-01-01

    Over 1 million people in the United States and 33 million individuals worldwide suffer from HIV/AIDS. Since its discovery, HIV/AIDS has been associated with an increased susceptibility to opportunistic infection due to immune dysfunction. Highly active antiretroviral therapies (HAART) restore immune function and, as a result, people infected with HIV-1 are living longer. This improved survival of HIV-1 patients has revealed a previously unrecognized risk of developing vascular complications, such as atherosclerosis and pulmonary hypertension. The mechanisms underlying these HIV-associated vascular disorders are poorly understood. However, HIV-induced elevations in reactive oxygen species, including superoxide and hydrogen peroxide, may contribute to vascular disease development and progression by altering cell function and redox-sensitive signaling pathways. In this review, we summarize the clinical and experimental evidence demonstrating HIV- and HIV antiretroviral therapy-induced alterations in reactive oxygen species (ROS) and how these effects likely contribute to vascular dysfunction and disease. PMID:22564529

  2. Vasculature on the clock: Circadian rhythm and vascular dysfunction.

    PubMed

    Crnko, Sandra; Cour, Martin; Van Laake, Linda W; Lecour, Sandrine

    2018-05-17

    The master mammalian circadian clock (i.e. central clock), located in the suprachiasmatic nucleus of the hypothalamus, orchestrates the synchronization of the daily behavioural and physiological rhythms to better adapt the organism to the external environment in an anticipatory manner. This central clock is entrained by a variety of signals, the best established being light and food. However, circadian cycles are not simply the consequences of these two cues but are generated by endogenous circadian clocks. Indeed, clock machinery is found in mainly all tissues and cell types, including cells of the vascular system such as endothelial cells, fibroblasts, smooth muscle cells and stem cells. This machinery physiologically contributes to modulate the daily vascular function, and its disturbance therefore plays a major role in the pathophysiology of vascular dysfunction. Therapies targeting the circadian rhythm may therefore be of benefit against vascular disease. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Mitochondria and Cardiovascular Aging

    PubMed Central

    Dai, Dao-Fu; Ungvari, Zoltan

    2013-01-01

    Old age is a major risk factor for cardiovascular diseases. Several lines of evidence in experimental animal models have indicated the central role of mitochondria both in lifespan determination and cardiovascular aging. In this article we review the evidence supporting the role of mitochondrial oxidative stress, mitochondrial damage and biogenesis as well as the crosstalk between mitochondria and cellular signaling in cardiac and vascular aging. Intrinsic cardiac aging in the murine model closely recapitulates age-related cardiac changes in humans (left ventricular hypertrophy, fibrosis and diastolic dysfunction), while the phenotype of vascular aging include endothelial dysfunction, reduced vascular elasticity and chronic vascular inflammation. Both cardiac and vascular aging involve neurohormonal signaling (e.g. renin-angiotensin, adrenergic, insulin-IGF1 signaling) and cell-autonomous mechanisms. The potential therapeutic strategies to improve mitochondrial function in aging and cardiovascular diseases are also discussed, with a focus on mitochondrial-targeted antioxidants, calorie restriction, calorie restriction mimetics and exercise training. PMID:22499901

  4. VKORC1 haplotypes are associated with arterial vascular diseases (stroke, coronary heart disease, and aortic dissection).

    PubMed

    Wang, Yibo; Zhang, Weili; Zhang, Yuhui; Yang, Yuejin; Sun, Lizhong; Hu, Shengshou; Chen, Jilin; Zhang, Channa; Zheng, Yi; Zhen, Yisong; Sun, Kai; Fu, Chunyan; Yang, Tao; Wang, Jianwei; Sun, Jing; Wu, Haiying; Glasgow, Wayne C; Hui, Rutai

    2006-03-28

    The haplotypes in the gene vitamin K epoxide reductase complex subunit 1 (VKORC1) have been found to affect warfarin dose response through effects on the formation of reduced-form vitamin K, a cofactor for gamma-carboxylation of vitamin K-dependent proteins, which is involved in the coagulation cascade and has a potential impact on atherosclerosis. We hypothesized that VKORC1-dependent effects on the coagulation cascade and atherosclerosis would contribute to susceptibility for vascular diseases. To test the hypothesis, we studied the association of polymorphisms of VKORC1 with stroke (1811 patients), coronary heart disease (740 patients), and aortic dissection (253 patients) compared with matched controls (n=1811, 740, and 416, respectively). Five common noncoding single-nucleotide polymorphisms of VKORC1 were identified in a natural haplotype block with strong linkage disequilibrium (D'>0.9, r2>0.9), then single-nucleotide polymorphism (SNP) +2255 in the block was selected for the association study. We found that the presence of the C allele of the +2255 locus conferred almost twice the risk of vascular disease (odds ratio [OR] 1.95, 95% confidence interval [CI] .58 to 2.41, P<0.001 for stroke; OR 1.72, 95% CI 1.24 to 2.38, P<0.01 for coronary heart disease; and OR 1.90, 95% CI 1.04 to 3.48, P<0.05 for aortic dissection). We also observed that subjects with the CC and CT genotypes had lower levels of undercarboxylated osteocalcin (a regulator for the bone), probably vascular calcification, and lower levels of protein induced in vitamin K absence or antagonism II (PIVKA-II, a des-gamma-carboxy prothrombin) than those with TT genotypes. The haplotype of VKORC1 may serve as a novel genetic marker for the risk of stroke, coronary heart disease, and aortic dissection.

  5. Glycolaldehyde-derived advanced glycation end products (glycol-AGEs)-induced vascular smooth muscle cell dysfunction is regulated by the AGES-receptor (RAGE) axis in endothelium.

    PubMed

    Nam, Mi-Hyun; Son, Won-Rak; Lee, Young Sik; Lee, Kwang-Won

    Advanced glycation end-products (AGEs) are involved in the development of vascular smooth muscle cell (VSMC) dysfunction and the progression of atherosclerosis. However, AGEs may indirectly affect VSMCs via AGEs-induced signal transduction between monocytes and human umbilical endothelial cells (HUVECs), rather than having a direct influence. This study was designed to elucidate the signaling pathway underlying AGEs-RAGE axis influence on VSMC dysfunction using a co-culture system with monocytes, HUVECs and VSMCs. AGEs stimulated production of reactive oxygen species and pro-inflammatory mediators such as tumor necrosis factor-α and interleukin-1β via extracellular-signal-regulated kinases phosphorylation and nuclear factor-κB activation in HUVECs. It was observed that AGEs-induced pro-inflammatory cytokines increase VSMC proliferation, inflammation and vascular remodeling in the co-culture system. This result implies that RAGE plays a role in AGEs-induced VSMC dysfunction. We suggest that the regulation of signal transduction via the AGEs-RAGE axis in the endothelium can be a therapeutic target for preventing atherosclerosis.

  6. Endothelial Dysfunction and Diabetes: Effects on Angiogenesis, Vascular Remodeling, and Wound Healing

    PubMed Central

    Kolluru, Gopi Krishna; Bir, Shyamal C.; Kevil, Christopher G.

    2012-01-01

    Diabetes mellitus (DM) is a chronic metabolic disorder characterized by inappropriate hyperglycemia due to lack of or resistance to insulin. Patients with DM are frequently afflicted with ischemic vascular disease or wound healing defect. It is well known that type 2 DM causes amplification of the atherosclerotic process, endothelial cell dysfunction, glycosylation of extracellular matrix proteins, and vascular denervation. These complications ultimately lead to impairment of neovascularization and diabetic wound healing. Therapeutic angiogenesis remains an attractive treatment modality for chronic ischemic disorders including PAD and/or diabetic wound healing. Many experimental studies have identified better approaches for diabetic cardiovascular complications, however, successful clinical translation has been limited possibly due to the narrow therapeutic targets of these agents or the lack of rigorous evaluation of pathology and therapeutic mechanisms in experimental models of disease. This paper discusses the current body of evidence identifying endothelial dysfunction and impaired angiogenesis during diabetes. PMID:22611498

  7. Effect of puberty on coronary arteries from female pigs.

    PubMed

    Chatrath, Ritu; Ronningen, Karen L; LaBreche, Peter; Severson, Sandra R; Jayachandran, Muthuvel; Bracamonte, Margarita P; Miller, Virginia M

    2003-10-01

    Vascular function changes following loss of ovarian hormones in women at menopause and in experimental animals following surgical ovariectomy. Little is known about changes in vascular function during hormonal transition from sexual immaturity (juvenile) to sexual maturity. Therefore, experiments were designed to determine effects of natural puberty on vascular function in female pigs. Tissue was studied from eight juvenile (2-3 mo) and eight adult (5-6 mo) female pigs. Plasma nitric oxide (NO) was measured, and mRNA for endothelium-derived NO synthase (eNOS) and eNOS protein were determined in aortic endothelial cells. Rings of coronary arteries were suspended for measurement of isometric force in organ chambers. Serum 17beta-estradiol levels were comparable in the two groups, whereas the arithmetic mean of progesterone levels was about two-thirds lower in adults compared with juvenile pigs. Plasma NO was significantly higher in juveniles compared with adults, but mRNA and protein for eNOS were comparable. In coronary arteries, an alpha2-adrenergic agonist caused greater endothelium-dependent relaxations in rings from juvenile compared with adult pigs. Relaxations to bradykinin were similar in arteries from both groups, but inhibition of NO reduced relaxations only in arteries from juvenile pigs. Relaxations from NO were greater in arteries from adult compared with juvenile female pigs. In conclusion, coronary arterial endothelial and smooth muscle responses are selectively modulated at puberty in female pigs. At maturity, plasma NO is reduced and sensitivity of the smooth muscle to exogenous NO is increased. Posttranscriptional regulation of eNOS protein may explain differences in NO bioavailability in juvenile pigs.

  8. Is there an additional benefit from coronary revascularization in diabetic patients with acute coronary syndromes or stable angina who are already on optimal medical treatment?

    PubMed Central

    Athyros, Vasilios G.; Gossios, Thomas D.; Tziomalos, Konstantinos; Florentin, Matilda; Karagiannis, Asterios

    2011-01-01

    Cardiovascular disease (CVD) is common in patients with diabetes mellitus (DM) and related clinical outcomes are worse compared with non-diabetics. The optimal treatment in diabetic patients with coronary heart disease (CHD) is currently not established. We searched MEDLINE (1975-2010) using the key terms diabetes mellitus, coronary heart disease, revascularization, coronary artery bypass, angioplasty, coronary intervention and medical treatment. Most studies comparing different revascularization procedures in patients with CHD favoured coronary artery bypass graft (CABG) surgery in patients with DM. However, most of this evidence comes from subgroup analyses. Recent evidence suggests that advanced percutaneous coronary intervention (PCI) techniques along with best medical treatment may be non-inferior and more cost-effective compared with CABG. Treatment of vascular risk factors is a key option in terms of improving CVD outcomes in diabetic patients with CHD. The choice between medical therapy and revascularization warrants further assessment. PMID:22328892

  9. Early risk of mortality after coronary artery revascularization in patients with left ventricular dysfunction and potential role of the wearable cardioverter defibrillator.

    PubMed

    Zishiri, Edwin T; Williams, Sarah; Cronin, Edmond M; Blackstone, Eugene H; Ellis, Stephen G; Roselli, Eric E; Smedira, Nicholas G; Gillinov, A Marc; Glad, Jo Ann; Tchou, Patrick J; Szymkiewicz, Steven J; Chung, Mina K

    2013-02-01

    Implantation of implantable cardioverter defibrillator for prevention of sudden cardiac death is deferred for 90 days after coronary revascularization, but mortality may be highest early after cardiac procedures in patients with ventricular dysfunction. We determined mortality risk in postrevascularization patients with left ventricular ejection fraction ≤35% and compared survival with those discharged with a wearable cardioverter defibrillator (WCD). Hospital survivors after surgical (coronary artery bypass graft surgery) or percutaneous (percutaneous coronary intervention [PCI]) revascularization with left ventricular ejection fraction ≤35% were included from Cleveland Clinic and national WCD registries. Kaplan-Meier, Cox proportional hazards, propensity score-matched survival, and hazard function analyses were performed. Early mortality hazard was higher among 4149 patients discharged without a defibrillator compared with 809 with WCDs (90-day mortality post-coronary artery bypass graft surgery 7% versus 3%, P=0.03; post-PCI 10% versus 2%, P<0.0001). WCD use was associated with adjusted lower risks of long-term mortality in the total cohort (39%, P<0.0001) and both post-coronary artery bypass graft surgery (38%, P=0.048) and post-PCI (57%, P<0.0001) cohorts (mean follow-up, 3.2 years). In propensity-matched analyses, WCD use remained associated with lower mortality (58% post-coronary artery bypass graft surgery, P=0.002; 67% post-PCI, P<0.0001). Mortality differences were not attributable solely to therapies for ventricular arrhythmia. Only 1.3% of the WCD group had a documented appropriate therapy. Patients with left ventricular ejection fraction ≤35% have higher early compared to late mortality after coronary revascularization, particularly after PCI. As early hazard seemed less marked in WCD users, prospective studies in this high-risk population are indicated to confirm whether WCD use as a bridge to left ventricular ejection fraction improvement or implantable cardioverter defibrillator implantation can improve outcomes after coronary revascularization.

  10. Aerobic exercise and other healthy lifestyle factors that influence vascular aging.

    PubMed

    Santos-Parker, Jessica R; LaRocca, Thomas J; Seals, Douglas R

    2014-12-01

    Cardiovascular diseases (CVDs) remain the leading cause of death in the United States and other modern societies. Advancing age is the major risk factor for CVD, primarily due to stiffening of the large elastic arteries and the development of vascular endothelial dysfunction. In contrast, regular aerobic exercise protects against the development of large elastic artery stiffness and vascular endothelial dysfunction with advancing age. Moreover, aerobic exercise interventions reduce arterial stiffness and restore vascular endothelial function in previously sedentary middle-aged/older adults. Aerobic exercise exerts its beneficial effects on arterial function by modulating structural proteins, reducing oxidative stress and inflammation, and restoring nitric oxide bioavailability. Aerobic exercise may also promote "resistance" against factors that reduce vascular function and increase CVD risk with age. Preventing excessive increases in abdominal adiposity, following healthy dietary practices, maintaining a low CVD risk factor profile, and, possibly, selective use of pharmaceuticals and nutraceuticals also play a major role in preserving vascular function with aging. Copyright © 2014 The American Physiological Society.

  11. Aerobic exercise and other healthy lifestyle factors that influence vascular aging

    PubMed Central

    Santos-Parker, Jessica R.; LaRocca, Thomas J.

    2014-01-01

    Cardiovascular diseases (CVDs) remain the leading cause of death in the United States and other modern societies. Advancing age is the major risk factor for CVD, primarily due to stiffening of the large elastic arteries and the development of vascular endothelial dysfunction. In contrast, regular aerobic exercise protects against the development of large elastic artery stiffness and vascular endothelial dysfunction with advancing age. Moreover, aerobic exercise interventions reduce arterial stiffness and restore vascular endothelial function in previously sedentary middle-aged/older adults. Aerobic exercise exerts its beneficial effects on arterial function by modulating structural proteins, reducing oxidative stress and inflammation, and restoring nitric oxide bioavailability. Aerobic exercise may also promote “resistance” against factors that reduce vascular function and increase CVD risk with age. Preventing excessive increases in abdominal adiposity, following healthy dietary practices, maintaining a low CVD risk factor profile, and, possibly, selective use of pharmaceuticals and nutraceuticals also play a major role in preserving vascular function with aging. PMID:25434012

  12. Secondary Coronary Artery Vasospasm Promotes Cardiomyopathy Progression

    PubMed Central

    Wheeler, Matthew T.; Korcarz, Claudia E.; Collins, Keith A.; Lapidos, Karen A.; Hack, Andrew A.; Lyons, Matthew R.; Zarnegar, Sara; Earley, Judy U.; Lang, Roberto M.; McNally, Elizabeth M.

    2004-01-01

    Genetic defects in the plasma membrane-associated sarcoglycan complex produce cardiomyopathy characterized by focal degeneration. The infarct-like pattern of cardiac degeneration has led to the hypothesis that coronary artery vasospasm underlies cardiomyopathy in this disorder. We evaluated the coronary vasculature of γ-sarcoglycan mutant mice and found microvascular filling defects consistent with arterial vasospasm. However, the vascular smooth muscle sarcoglycan complex was intact in the coronary arteries of γ-sarcoglycan hearts with perturbation of the sarcoglycan complex only within the adjacent myocytes. Thus, in this model, coronary artery vasospasm derives from a vascular smooth muscle-cell extrinsic process. To reduce this secondary vasospasm, we treated γ-sarcoglycan-deficient mice with the calcium channel antagonist verapamil. Verapamil treatment eliminated evidence of vasospasm and ameliorated histological and functional evidence of cardiomyopathic progression. Echocardiography of verapamil-treated, γ-sarcoglycan-null mice showed an improvement in left ventricular fractional shortening (44.3 ± 13.3% treated versus 37.4 ± 15.3% untreated), maximal velocity at the aortic outflow tract (114.9 ± 27.9 cm/second versus 92.8 ± 22.7 cm/second), and cardiac index (1.06 ± 0.30 ml/minute/g versus 0.67 ± 0.16 ml/minute/g, P < 0.05). These data indicate that secondary vasospasm contributes to the development of cardiomyopathy and is an important therapeutic target to limit cardiomyopathy progression. PMID:14982859

  13. Importance of angina in patients with coronary disease, heart failure, and left ventricular systolic dysfunction: insights from STICH.

    PubMed

    Jolicœur, E Marc; Dunning, Allison; Castelvecchio, Serenella; Dabrowski, Rafal; Waclawiw, Myron A; Petrie, Mark C; Stewart, Ralph; Jhund, Pardeep S; Desvigne-Nickens, Patrice; Panza, Julio A; Bonow, Robert O; Sun, Benjamin; San, Tan Ru; Al-Khalidi, Hussein R; Rouleau, Jean L; Velazquez, Eric J; Cleland, John G F

    2015-11-10

    Patients with left ventricular (LV) systolic dysfunction, coronary artery disease (CAD), and angina are often thought to have a worse prognosis and a greater prognostic benefit from coronary artery bypass graft (CABG) surgery than those without angina. This study investigated: 1) whether angina was associated with a worse prognosis; 2) whether angina identified patients who had a greater survival benefit from CABG; and 3) whether CABG improved angina in patients with LV systolic dysfunction and CAD. We performed an analysis of the STICH (Surgical Treatment for Ischemic Heart Failure) trial, in which 1,212 patients with an ejection fraction ≤35% and CAD were randomized to CABG or medical therapy. Multivariable Cox and logistic models were used to assess long-term clinical outcomes. At baseline, 770 patients (64%) reported angina. Among patients assigned to medical therapy, all-cause mortality was similar in patients with and without angina (hazard ratio [HR]: 1.05; 95% confidence interval [CI]: 0.79 to 1.38). The effect of CABG was similar whether the patient had angina (HR: 0.89; 95% CI: 0.71 to 1.13) or not (HR: 0.68; 95% CI: 0.50 to 0.94; p interaction = 0.14). Patients assigned to CABG were more likely to report improvement in angina than those assigned to medical therapy alone (odds ratio: 0.70; 95% CI: 0.55 to 0.90; p < 0.01). Angina does not predict all-cause mortality in medically treated patients with LV systolic dysfunction and CAD, nor does it identify patients who have a greater survival benefit from CABG. However, CABG does improve angina to a greater extent than medical therapy alone. (Comparison of Surgical and Medical Treatment for Congestive Heart Failure and Coronary Artery Disease [STICH]; NCT00023595). Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  14. mPGES-1 (Microsomal Prostaglandin E Synthase-1) Mediates Vascular Dysfunction in Hypertension Through Oxidative Stress.

    PubMed

    Avendaño, María S; García-Redondo, Ana B; Zalba, Guillermo; González-Amor, María; Aguado, Andrea; Martínez-Revelles, Sonia; Beltrán, Luis M; Camacho, Mercedes; Cachofeiro, Victoria; Alonso, María J; Salaices, Mercedes; Briones, Ana M

    2018-06-11

    mPGES-1 (microsomal prostaglandin E synthase-1), the downstream enzyme responsible for PGE 2 (prostaglandin E 2 ) synthesis in inflammatory conditions and oxidative stress are increased in vessels from hypertensive animals. We evaluated the role of mPGES-1-derived PGE 2 in the vascular dysfunction and remodeling in hypertension and the possible contribution of oxidative stress. We used human peripheral blood mononuclear cells from asymptomatic patients, arteries from untreated and Ang II (angiotensin II)-infused mPGES-1 -/- and mPGES-1 +/+ mice, and vascular smooth muscle cells exposed to PGE 2 In human cells, we found a positive correlation between mPGES-1 mRNA and carotid intima-media thickness ( r =0.637; P <0.001) and with NADPH oxidase-dependent superoxide production ( r =0.417; P <0.001). In Ang II-infused mice, mPGES-1 deletion prevented all of the following: (1) the augmented wall:lumen ratio, vascular stiffness, and altered elastin structure; (2) the increased gene expression of profibrotic and proinflammatory markers; (3) the increased vasoconstrictor responses and endothelial dysfunction; (4) the increased NADPH oxidase activity and the diminished mitochondrial membrane potential; and (5) the increased reactive oxygen species generation and reduced NO bioavailability. In vascular smooth muscle cells or aortic segments, PGE 2 increased NADPH oxidase expression and activity and reduced mitochondrial membrane potential, effects that were abolished by antagonists of the PGE 2 receptors (EP), EP1 and EP3, and by JNK (c-Jun N-terminal kinase) and ERK1/2 (extracellular-signal-regulated kinases 1/2) inhibition. Deletion of mPGES-1 augmented vascular production of PGI 2 suggesting rediversion of the accumulated PGH 2 substrate. In conclusion, mPGES-1-derived PGE 2 is involved in vascular remodeling, stiffness, and endothelial dysfunction in hypertension likely through an increase of oxidative stress produced by NADPH oxidase and mitochondria. © 2018 American Heart Association, Inc.

  15. Redox Signaling and Its Impact on Skeletal and Vascular Responses to Spaceflight

    NASA Technical Reports Server (NTRS)

    Tahimic, Candice; Globus, Ruth K.

    2018-01-01

    Spaceflight entails exposure to numerous environmental challenges with the potential to contribute to both musculoskeletal and vascular dysfunction. The purpose of this review is to describe current understanding of microgravity and radiation impacts on the mammalian skeleton and associated vasculature at the level of the whole organism. Recent experiments from spaceflight and groundbased models have provided fresh insights into how these environmental stresses influence mechanisms that are related to redox signaling, oxidative stress, and tissue dysfunction. Emerging mechanistic knowledge on cellular defenses to radiation and other environmental stressors, including microgravity, are useful for both screening and developing interventions against spaceflight-induced deficits in bone and vascular function.

  16. Predicting vascular complications in percutaneous coronary interventions.

    PubMed

    Piper, Winthrop D; Malenka, David J; Ryan, Thomas J; Shubrooks, Samuel J; O'Connor, Gerald T; Robb, John F; Farrell, Karen L; Corliss, Mary S; Hearne, Michael J; Kellett, Mirle A; Watkins, Matthew W; Bradley, William A; Hettleman, Bruce D; Silver, Theodore M; McGrath, Paul D; O'Mears, John R; Wennberg, David E

    2003-06-01

    Using a large, current, regional registry of percutaneous coronary interventions (PCI), we identified risk factors for postprocedure vascular complications and developed a scoring system to estimate individual patient risk. A vascular complication (access-site injury requiring treatment or bleeding requiring transfusion) is a potentially avoidable outcome of PCI. Data were collected on 18,137 consecutive patients undergoing PCI in northern New England from January 1997 to December 1999. Multivariate regression was used to identify characteristics associated with vascular complications and to develop a scoring system to predict risk. The rate of vascular complication was 2.98% (541 cases). Variables associated with increased risk in the multivariate analysis included age >or=70, odds ratio (OR) 2.7, female sex (OR 2.4), body surface area <1.6 m(2) (OR 1.9), history of congestive heart failure (OR 1.4), chronic obstructive pulmonary disease (OR 1.5), renal failure (OR 1.9), lower extremity vascular disease (OR 1.4), bleeding disorder (OR 1.68), emergent priority (OR 2.3), myocardial infarction (OR 1.7), shock (1.86), >or=1 type B2 (OR 1.32) or type C (OR 1.7) lesions, 3-vessel PCI (OR 1.5), use of thienopyridines (OR 1.4) or use of glycoprotein IIb/IIIa receptor inhibitors (OR 1.9). The model performed well in tests for significance, discrimination, and calibration. The scoring system captured 75% of actual vascular complications in its highest quintiles of predicted risk. Predicting the risk of post-PCI vascular complications is feasible. This information may be useful for clinical decision-making and institutional efforts at quality improvement.

  17. Vitamin K status and vascular calcification: evidence from observational and clinical studies.

    PubMed

    Shea, M Kyla; Holden, Rachel M

    2012-03-01

    Vascular calcification occurs when calcium accumulates in the intima (associated with atherosclerosis) and/or media layers of the vessel wall. Coronary artery calcification (CAC) reflects the calcium burden within the intima and media of the coronary arteries. In population-based studies, CAC independently predicts cardiovascular disease (CVD) and mortality. A preventive role for vitamin K in vascular calcification has been proposed based on its role in activating matrix Gla protein (MGP), a calcification inhibitor that is expressed in vascular tissue. Although animal and in vitro data support this role of vitamin K, overall data from human studies are inconsistent. The majority of population-based studies have relied on vitamin K intake to measure status. Phylloquinone is the primary dietary form of vitamin K and available supplementation trials, albeit limited, suggest phylloquinone supplementation is relevant to CAC. Yet observational studies have found higher dietary menaquinone, but not phylloquinone, to be associated with less calcification. Vascular calcification is highly prevalent in certain patient populations, especially in those with chronic kidney disease (CKD), and it is plausible vitamin K may contribute to reducing vascular calcification in patients at higher risk. Subclinical vitamin K deficiency has been reported in CKD patients, but studies linking vitamin K status to calcification outcomes in CKD are needed to clarify whether or not improving vitamin K status is associated with improved vascular health in CKD. This review summarizes the available evidence of vitamin K and vascular calcification in population-based studies and clinic-based studies, with a specific focus on CKD patients.

  18. Preintervention lesion remodelling affects operative mechanisms of balloon optimised directional coronary atherectomy procedures: a volumetric study with three dimensional intravascular ultrasound

    PubMed Central

    von Birgelen, C; Mintz, G; de Vrey, E A; Serruys, P; Kimura, T; Nobuyoshi, M; Popma, J; Leon, M; Erbel, R; de Feyter, P J

    2000-01-01

    AIMS—To classify atherosclerotic coronary lesions on the basis of adequate or inadequate compensatory vascular enlargement, and to examine changes in lumen, plaque, and vessel volumes during balloon optimised directional coronary atherectomy procedures in relation to the state of adaptive remodelling before the intervention.
DESIGN—29 lesion segments in 29 patients were examined with intravascular ultrasound before and after successful balloon optimised directional coronary atherectomy procedures, and a validated volumetric intravascular ultrasound analysis was performed off-line to assess the atherosclerotic lesion remodelling and changes in plaque and vessel volumes that occurred during the intervention. Based on the intravascular ultrasound data, lesions were classified according to whether there was inadequate (group I) or adequate (group II) compensatory enlargement.
RESULTS—There was no significant difference in patient and lesion characteristics between groups I and II (n = 10 and 19), including lesion length and details of the intervention. Quantitative coronary angiographic data were similar for both groups. However, plaque and vessel volumes were significantly smaller in group I than in II. In group I, 9 (4)% (mean (SD)) of the plaque volume was ablated, while in group II 16 (11)% was ablated (p = 0.01). This difference was reflected in a lower lumen volume gain in group I than in group II (46 (18) mm3 v 80 (49) mm3 (p < 0.02)).
CONCLUSIONS—Preintervention lesion remodelling has an impact on the operative mechanisms of balloon optimised directional coronary atherectomy procedures. Plaque ablation was found to be particularly low in lesions with inadequate compensatory vascular enlargement.


Keywords: intravascular ultrasound; ultrasonics; remodelling; coronary artery disease; atherectomy PMID:10648496

  19. The conical stent in coronary artery improves hemodynamics compared with the traditional cylindrical stent.

    PubMed

    Yu, Yi; Zhou, Yujie; Ma, Qian; Jia, Shuo; Wu, Sijing; Sun, Yan; Liu, Xiaoli; Zhao, Yingxin; Liu, Yuyang; Shi, Dongmei

    2017-01-15

    This study sought to explore the efficacy of the conical stent implantation in the coronary artery by comparing the effects of cylindrical and conical stents on wall shear stress (WSS) and velocity of flow and fractional flow reserve (FFR). The traditional cylindrical stent currently used in the percutaneous coronary intervention (PCI) has a consistent diameter, which does not match the physiological change of the coronary artery. On the contrary, as a new patent, the conical stent with tapering lumen is consistent with the physiological change of vascular diameter. However, the effect of the conical stent implantation on the coronary hemodynamics remains unclear. The coronary artery, artery stenosis and two stent models were established by Solidworks software. All models were imported into the computational fluid dynamics (CFD) software ANSYS ICEM-CFD to establish the fluid model. After the boundary conditions were set, CFD analysis was proceeded to compare the effects of two stent implantation on the change of WSS, velocity of flow and FFR. Hemodynamic indexes including FFR, blood flow velocity distribution (BVD) and WSS were improved by either the cylindrical or the conical stent implantation. However, after the conical stent implantation, the change of FFR seemed to be slower and more homogenous; the blood flow velocity was more appropriate without any obvious blood stagnation and direction changes; the WSS after the conical stent implantation was uniform from the proximal to distal side of the stent. Compared with the cylindrical stent, the conical stent implantation in the coronary artery can make the changes of vascular hemodynamic more closer to the physiological condition, which can reduce the incidence of intra-stent restenosis and thrombosis, thus making it more suitable for PCI therapy. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Enhanced p122RhoGAP/DLC-1 Expression Can Be a Cause of Coronary Spasm

    PubMed Central

    Kinjo, Takahiko; Tanaka, Makoto; Osanai, Tomohiro; Shibutani, Shuji; Narita, Ikuyo; Tanno, Tomohiro; Nishizaki, Kimitaka; Ichikawa, Hiroaki; Kimura, Yoshihiro; Ishida, Yuji; Yokota, Takashi; Shimada, Michiko; Homma, Yoshimi; Tomita, Hirofumi; Okumura, Ken

    2015-01-01

    Background We previously showed that phospholipase C (PLC)-δ1 activity was enhanced by 3-fold in patients with coronary spastic angina (CSA). We also reported that p122Rho GTPase-activating protein/deleted in liver cancer-1 (p122RhoGAP/DLC-1) protein, which was discovered as a PLC-δ1 stimulator, was upregulated in CSA patients. We tested the hypothesis that p122RhoGAP/DLC-1 overexpression causes coronary spasm. Methods and Results We generated transgenic (TG) mice with vascular smooth muscle (VSM)-specific overexpression of p122RhoGAP/DLC-1. The gene and protein expressions of p122RhoGAP/DLC-1 were markedly increased in the aorta of homozygous TG mice. Stronger staining with anti-p122RhoGAP/DLC-1 in the coronary artery was found in TG than in WT mice. PLC activities in the plasma membrane fraction and the whole cell were enhanced by 1.43 and 2.38 times, respectively, in cultured aortic vascular smooth muscle cells from homozygous TG compared with those from WT mice. Immediately after ergometrine injection, ST-segment elevation was observed in 1 of 7 WT (14%), 6 of 7 heterozygous TG (84%), and 7 of 7 homozygous TG mice (100%) (p<0.05, WT versus TGs). In the isolated Langendorff hearts, coronary perfusion pressure was increased after ergometrine in TG, but not in WT mice, despite of the similar response to prostaglandin F2α between TG and WT mice (n = 5). Focal narrowing of the coronary artery after ergometrine was documented only in TG mice. Conclusions VSM-specific overexpression of p122RhoGAP/DLC-1 enhanced coronary vasomotility after ergometrine injection in mice, which is relevant to human CSA. PMID:26624289

  1. 76 FR 47210 - Medical Devices; Availability of Safety and Effectiveness Summaries for Premarket Approval...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-04

    .......... Medtronic Vascular.... Valiant thoracic stent graft April 1, 2011. system. H100002 FDA-2011-M-0241... Scientific Corp ION paclitaxel-eluting coronary April 22, 2011. stent system (monorail and over- the-wire..., 2011. toric IOL. P040012 (S34) FDA-2011-M-0343. Abbott Vascular, Inc.. RX Acculink carotid stent system...

  2. Continuous cardiac troponin I release in Fabry disease.

    PubMed

    Feustel, Andreas; Hahn, Andreas; Schneider, Christian; Sieweke, Nicole; Franzen, Wolfgang; Gündüz, Dursun; Rolfs, Arndt; Tanislav, Christian

    2014-01-01

    Fabry disease (FD) is a rare lysosomal storage disorder also affecting the heart. The aims of this study were to determine the frequency of cardiac troponin I (cTNI) elevation, a sensitive parameter reflecting myocardial damage, in a smaller cohort of FD-patients, and to analyze whether persistent cTNI can be a suitable biomarker to assess cardiac dysfunction in FD. cTNI values were determined at least twice per year in 14 FD-patients (6 males and 8 females) regularly followed-up in our centre. The data were related to other parameters of heart function including cardiac magnetic resonance imaging (cMRI). Three patients (21%) without specific vascular risk factors other than FD had persistent cTNI-elevations (range 0.05-0.71 ng/ml, normal: <0.01). cMRI disclosed late gadolinium enhancement (LGE) in all three individuals with cTNI values ≥0.01, while none of the 11 patients with cTNI <0.01 showed a pathological enhancement (p<0.01). Two subjects with increased cTNI-values underwent coronary angiography, excluding relevant stenoses. A myocardial biopsy performed in one during this procedure demonstrated substantial accumulation of globotriaosylceramide (Gb3) in cardiomyocytes. Continuous cTNI elevation seems to occur in a substantial proportion of patients with FD. The high accordance with LGE, reflecting cardiac dysfunction, suggests that cTNI-elevation can be a useful laboratory parameter for assessing myocardial damage in FD.

  3. Hyperglycaemia in pregnant rats causes sex-related vascular dysfunction in adult offspring: role of cyclooxygenase-2.

    PubMed

    de Sá, Francine Gomes; de Queiroz, Diego Barbosa; Ramos-Alves, Fernanda Elizabethe; Santos-Rocha, Juliana; da Silva, Odair Alves; Moreira, Hicla Stefany; Leal, Geórgia Andrade; da Rocha, Marcelo Aurélio; Duarte, Gloria Pinto; Xavier, Fabiano Elias

    2017-08-01

    What is the central question of this study? Hyperglycaemia during pregnancy induces vascular dysfunction and hypertension in male offspring. Given that female offspring from other fetal programming models are protected from the effects of fetal insult, the present study investigated whether there are sex differences in blood pressure and vascular function in hyperglycaemia-programmed offspring. What is the main finding and its importance? We demonstrated that hyperglycaemia in pregnant rats induced vascular dysfunction and hypertension only in male offspring. We found sex differences in oxidative stress and cyclooxygenase-2-derived prostanoid production that might underlie the vascular dysfunction. These differences, particularly in resistance arteries, may in part explain the absence of hypertension in female offspring born to hyperglycaemic dams. Exposure to maternal hyperglycaemia induces hypertension and vascular dysfunction in adult male offspring. Given that female offspring from several fetal programming models are protected from the effects of fetal insult, in this study we analysed possible differences relative to sex in blood pressure and vascular function in hyperglycaemia-programmed offspring. Hyperglycaemia was induced on day 7 of gestation (streptozotocin, 50 mg kg -1 ). Blood pressure, acetylcholine and phenylephrine or noradrenaline responses were analysed in the aorta and mesenteric resistance arteries of 3-, 6- and 12-month-old male and female offspring. Thromboxane A 2 release was analysed with commercial kits and superoxide anion (O 2 - ) production by dihydroethidium-emitted fluorescence. Male but not female offspring of hyperglycaemic dams (O-DR) had higher blood pressure than control animals (O-CR). Contraction in response to phenylephrine increased and relaxation in response to acetylcholine decreased only in the aorta from 12-month-old male O-DR and not in age-matched O-CR. Contractile and vasodilator responses were preserved in both the aorta and mesenteric resistance arteries from female O-DR of all ages. Pre-incubation with tempol, superoxide dismutase, indomethacin, NS-398, furegrelate or SQ29548 decreased contraction in response to phenylephrine and potentiated relaxation in response to acetylcholine in 12-month-old male O-DR aorta. In this artery, thromboxane A 2 release and O 2 - generation were greater in O-DR than O-CR groups. In conclusion, exposure to hyperglycaemia in utero results in sex-specific and age-dependent hypertension. The fact that vascular function is preserved in female O-DR may in part explain the absence of hypertension in this group. In contrast, the peripheral artery dysfunction associated with increased cyclooxygenase-2-derived production of vasoconstrictor prostanoids could underlie the increased blood pressure in male O-DR. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  4. Can dysfunctional HDL explain high coronary artery disease risk in South Asians?

    PubMed

    Dodani, Sunita; Kaur, Rajwinderjit; Reddy, Srinavasa; Reed, Guy L; Navab, Mohammad; George, Varghese

    2008-09-16

    Coronary artery disease (CAD) is the leading cause of mortality and morbidity in United States, and South Asian immigrants (SAIs) have a higher risk for CAD compare to Caucasians. Traditional risk factors do not completely explain high risk, and some of the unknown risk factors need to be explored. We assessed dysfunctional pro-inflammatory high density lipoprotein (HDL) in SAIs and assessed its association with sub-clinical CAD using carotid intima-media thickness (IMT) as a surrogate marker for atherosclerosis. Cross-sectional study on SAIs aged 40-65 years. Sub-clinical CAD was measured using carotid intima media thickness (IMT) as a surrogate marker of atherosclerosis. Dysfunctional or pro-inflammatory HDL was determined by novel cell free assay and HDL inflammatory Index. Dysfunctional HDL was found in the 50% participants, with HDL-inflammatory index of >or=1.00, suggesting pro-inflammatory HDL (95% CI, 0.8772-1.4333). The prevalence of sub-clinical CAD using carotid IMT (>or=0.80 mm) was seen in 41.4% (95% CI, 0.2347-0.5933). On logistic regression analysis, positive carotid IMT was found to be associated with dysfunctional HDL after adjusting for age, family history of cardiovascular disease, and hypertension (p=0.030). The measurement of HDL level as well as functionality plays an important role in CAD risk assessment. Those SAIs with dysfunctional HDL and without known CAD can be a high risk group requiring treatment with lipid lowering drugs to reduce future risk of CAD. Further large studies are required to explore association of dysfunctional HDL with CAD and identify additional CAD risk caused by dysfunctional HDL.

  5. "Reversibility of Cardiovascular Injury With CPAP Use: Mechanisms Involved"

    ClinicalTrials.gov

    2015-09-29

    Sleep Apnea, Obstructive; Hypoxia; Hypercapnia; Sleep Disorders; Obesity; Hypertension; Coronary Artery Vasospasm; Right Ventricular Overload; Left Ventricular Function Systolic Dysfunction; Ventricular Hypertrophy

  6. Takotsubo cardiomyopathy in a patient with Addison disease: is apical ballooning always reversible?

    PubMed

    Barcin, Cem; Kursaklioglu, Hurkan; Kose, Sedat; Amasyali, Basri; Isik, Ersoy

    2010-01-07

    Takotsubo cardiomyopathy is characterized by acute ventricular dysfunction in the absence of coronary obstruction. Complete improvement of ventricular function is seen in the vast majority of the patients. We describe a 40-year-old woman with Addison disease who experienced Takotsubo cardiomyopathy but with persistent apical dysfunction during 5-month-follow up.

  7. Effect of Caffeic Acid Phenethyl Ester on Vascular Damage Caused by Consumption of High Fructose Corn Syrup in Rats

    PubMed Central

    Gun, Aburrahman; Bilgic, Sedat; Kocaman, Nevin; Ozan, Gonca

    2016-01-01

    Fructose corn syrup is cheap sweetener and prolongs the shelf life of products, but fructose intake causes hyperinsulinemia, hypertriglyceridemia, and hypertension. All of them are referred to as metabolic syndrome and they are risk factors for cardiovascular diseases. Hence, the harmful effects of increased fructose intake on health and their prevention should take greater consideration. Caffeic Acid Phenethyl Ester (CAPE) has beneficial effects on metabolic syndrome and vascular function which is important in the prevention of cardiovascular disease. However, there are no known studies about the effect of CAPE on fructose-induced vascular dysfunction. In this study, we examined the effect of CAPE on vascular dysfunction due to high fructose corn syrup (HFCS). HFCS (6 weeks, 30% fed with drinking water) caused vascular dysfunction, but treatment with CAPE (50 micromol/kg i.p. for the last two weeks) effectively restored this problem. Additionally, hypertension in HFCS-fed rats was also decreased in CAPE supplemented rats. CAPE supplements lowered HFCS consumption-induced raise in blood glucose, homocysteine, and cholesterol levels. The aorta tissue endothelial nitric oxide synthase (eNOS) production was decreased in rats given HFCS and in contrast CAPE supplementation efficiently increased its production. The presented results showed that HFCS-induced cardiovascular abnormalities could be prevented by CAPE treatment. PMID:27042260

  8. Alzheimer's disease, cerebrovascular dysfunction and the benefits of exercise: from vessels to neurons.

    PubMed

    Lange-Asschenfeldt, Christian; Kojda, Georg

    2008-06-01

    Exercise training promotes extensive cardiovascular changes and adaptive mechanisms in both the peripheral and cerebral vasculature, such as improved organ blood flow, induction of antioxidant pathways, and enhanced angiogenesis and vascular regeneration. Clinical studies have demonstrated a reduction of morbidity and mortality from cardiovascular disease among exercising individuals. However, evidence from recent large clinical trials also suggests a substantial reduction of dementia risk - particularly regarding Alzheimer's disease (AD) - with regular exercise. Enhanced neurogenesis and improved synaptic plasticity have been implicated in this beneficial effect. However, recent research has revealed that vascular and specifically endothelial dysfunction is essentially involved in the disease process and profoundly aggravates underlying neurodegeneration. Moreover, vascular risk factors (VRFs) are probably determinants of incidence and course of AD. In this review, we emphasize the interconnection between AD and VRFs and the impact of cerebrovascular and endothelial dysfunction on AD pathophysiology. Furthermore, we describe the molecular mechanisms of the beneficial effects of exercise on the vasculature such as activation of the vascular nitric oxide (NO)/endothelial NO synthase (eNOS) pathway, upregulation of antioxidant enzymes, and angiogenesis. Finally, recent prospective clinical studies dealing with the effect of exercise on the risk of incident AD are briefly reviewed. We conclude that, next to upholding neuronal plasticity, regular exercise may counteract AD pathophysiology by building a vascular reserve.

  9. Conditional Müllercell ablation causes independent neuronal and vascular pathologies in a novel transgenic model.

    PubMed

    Shen, Weiyong; Fruttiger, Marcus; Zhu, Ling; Chung, Sook H; Barnett, Nigel L; Kirk, Joshua K; Lee, SoRa; Coorey, Nathan J; Killingsworth, Murray; Sherman, Larry S; Gillies, Mark C

    2012-11-07

    Müller cells are the major glia of the retina that serve numerous functions essential to retinal homeostasis, yet the contribution of Müller glial dysfunction to retinal diseases remains largely unknown. We have developed a transgenic model using a portion of the regulatory region of the retinaldehyde binding protein 1 gene for conditional Müller cell ablation and the consequences of primary Müller cell dysfunction have been studied in adult mice. We found that selective ablation of Müller cells led to photoreceptor apoptosis, vascular telangiectasis, blood-retinal barrier breakdown and, later, intraretinal neovascularization. These changes were accompanied by impaired retinal function and an imbalance between vascular endothelial growth factor-A (VEGF-A) and pigment epithelium-derived factor. Intravitreal injection of ciliary neurotrophic factor inhibited photoreceptor injury but had no effect on the vasculopathy. Conversely, inhibition of VEGF-A activity attenuated vascular leak but did not protect photoreceptors. Our findings show that Müller glial deficiency may be an important upstream cause of retinal neuronal and vascular pathologies in retinal diseases. Combined neuroprotective and anti-angiogenic therapies may be required to treat Müller cell deficiency in retinal diseases and in other parts of the CNS associated with glial dysfunction.

  10. Conditional Müller cell ablation causes independent neuronal and vascular pathologies in a novel transgenic model

    PubMed Central

    Shen, Weiyong; Fruttiger, Marcus; Zhu, Ling; Chung, Sook H.; Barnett, Nigel L.; Kirk, Joshua K.; Lee, SoRa; Coorey, Nathan J.; Killingsworth, Murray; Sherman, Larry S.; Gillies, Mark C.

    2014-01-01

    Müller cells are the major glia of the retina that serve numerous functions essential to retinal homeostasis, yet the contribution of Müller glial dysfunction to retinal diseases remains largely unknown. We have developed a transgenic model using a portion of the regulatory region of the retinaldehyde binding protein 1 gene for conditional Müller cell ablation and the consequences of primary Müller cell dysfunction have been studied in adult mice. We found that selective ablation of Müller cells led to photoreceptor apoptosis, vascular telangiectasis, blood-retinal barrier breakdown and, later, intraretinal neovascularization. These changes were accompanied by impaired retinal function and an imbalance between vascular endothelial growth factor-A (VEGF-A) and pigment epithelium derived factor. Intravitreal injection of cilliary neurotrophic factor inhibited photoreceptor injury but had no effect on the vasculopathy. Conversely, inhibition of VEGF-A activity attenuated vascular leak but did not protect photoreceptors. Our findings show that Müller glial deficiency may be an important upstream cause of retinal neuronal and vascular pathologies in retinal diseases. Combined neuroprotective and anti-angiogenic therapies may be required to treat Müller cell deficiency in retinal diseases and in other parts of the central nervous system associated with glial dysfunction. PMID:23136411

  11. Effect of Caffeic Acid Phenethyl Ester on Vascular Damage Caused by Consumption of High Fructose Corn Syrup in Rats.

    PubMed

    Gun, Aburrahman; Ozer, Mehmet Kaya; Bilgic, Sedat; Kocaman, Nevin; Ozan, Gonca

    2016-01-01

    Fructose corn syrup is cheap sweetener and prolongs the shelf life of products, but fructose intake causes hyperinsulinemia, hypertriglyceridemia, and hypertension. All of them are referred to as metabolic syndrome and they are risk factors for cardiovascular diseases. Hence, the harmful effects of increased fructose intake on health and their prevention should take greater consideration. Caffeic Acid Phenethyl Ester (CAPE) has beneficial effects on metabolic syndrome and vascular function which is important in the prevention of cardiovascular disease. However, there are no known studies about the effect of CAPE on fructose-induced vascular dysfunction. In this study, we examined the effect of CAPE on vascular dysfunction due to high fructose corn syrup (HFCS). HFCS (6 weeks, 30% fed with drinking water) caused vascular dysfunction, but treatment with CAPE (50 micromol/kg i.p. for the last two weeks) effectively restored this problem. Additionally, hypertension in HFCS-fed rats was also decreased in CAPE supplemented rats. CAPE supplements lowered HFCS consumption-induced raise in blood glucose, homocysteine, and cholesterol levels. The aorta tissue endothelial nitric oxide synthase (eNOS) production was decreased in rats given HFCS and in contrast CAPE supplementation efficiently increased its production. The presented results showed that HFCS-induced cardiovascular abnormalities could be prevented by CAPE treatment.

  12. Role of reactive oxygen and nitrogen species in the vascular responses to inflammation

    PubMed Central

    Kvietys, Peter R.; Granger, D. Neil

    2012-01-01

    Inflammation is a complex and potentially life-threatening condition that involves the participation of a variety of chemical mediators, signaling pathways, and cell types. The microcirculation, which is critical for the initiation and perpetuation of an inflammatory response, exhibits several characteristic functional and structural changes in response to inflammation. These include vasomotor dysfunction (impaired vessel dilation and constriction), the adhesion and transendothelial migration of leukocytes, endothelial barrier dysfunction (increased vascular permeability), blood vessel proliferation (angiogenesis), and enhanced thrombus formation. These diverse responses of the microvasculature largely reflect the endothelial cell dysfunction that accompanies inflammation and the central role of these cells in modulating processes as varied as blood flow regulation, angiogenesis, and thrombogenesis. The importance of endothelial cells in inflammation-induced vascular dysfunction is also predicated on the ability of these cells to produce and respond to reactive oxygen and nitrogen species. Inflammation seems to upset the balance between nitric oxide and superoxide within (and surrounding) endothelial cells, which is necessary for normal vessel function. This review is focused on defining the molecular targets in the vessel wall that interact with reactive oxygen species and nitric oxide to produce the characteristic functional and structural changes that occur in response to inflammation. This analysis of the literature is consistent with the view that reactive oxygen and nitrogen species contribute significantly to the diverse vascular responses in inflammation and supports efforts that are directed at targeting these highly reactive species to maintain normal vascular health in pathological conditions that are associated with acute or chronic inflammation. PMID:22154653

  13. Impaired Flow-Mediated Dilation Before, During and After Preeclampsia: A Systematic Review and Meta-analysis

    PubMed Central

    Weissgerber, Tracey L.; Milic, Natasa M.; Milin-Lazovic, Jelena S.; Garovic, Vesna D.

    2015-01-01

    Endothelial dysfunction is believed to play a critical role in preeclampsia, however it is unclear whether this dysfunction precedes the pregnancy or is caused by early pathophysiological events. It is also unclear for how long vascular dysfunction may persist post-partum, and whether it represents a mechanism linking preeclampsia with future cardiovascular disease. Our objective was to determine whether women with preeclampsia have worse vascular function compared to women who did not have preeclampsia by performing systematic review and meta-analysis of studies that examined endothelial dysfunction using flow-mediated dilation (FMD). We included studies published before May 29, 2015 that examined FMD before, during and after preeclampsia. Differences in FMD between study groups were evaluated by standardized mean differences. Out of 610 abstracts identified through PubMED, EMBASE and Web of Science, 37 studies were eligible for the meta-analysis. When compared to women who did not have preeclampsia, women who had preeclampsia had lower FMD prior to the development of preeclampsia (~20–29 weeks gestation), at the time of preeclampsia, and for three years post-partum, with the estimated magnitude of the effect ranging between 0.5 and 3 standard deviations. Similar effects were observed when the analysis was limited to studies that excluded women with chronic hypertension, smokers, or both. Vascular dysfunction predates preeclampsia and may contribute to its pathogenesis. Future studies should address whether vascular changes that persist after preeclamptic pregnancies may represent a mechanistic link with the increased risk for future cardiovascular disease. PMID:26711737

  14. Excess coronary artery disease risk in South Asian immigrants: Can dysfunctional high-density lipoprotein explain increased risk?

    PubMed Central

    Dodani, Sunita

    2008-01-01

    Background: Coronary artery disease (CAD) is the leading cause of mortality and morbidity in the United States (US), and South Asian immigrants (SAIs) have a higher risk of CAD compared to Caucasians. Traditional risk factors may not completely explain high risk, and some of the unknown risk factors need to be explored. This short review is mainly focused on the possible role of dysfunctional high-density lipoprotein (HDL) in causing CAD and presents an overview of available literature on dysfunctional HDL. Discussion: The conventional risk factors, insulin resistance parameters, and metabolic syndrome, although important in predicting CAD risk, may not sufficiently predict risk in SAIs. HDL has antioxidant, antiinflammatory, and antithrombotic properties that contribute to its function as an antiatherogenic agent. Recent Caucasian studies have shown HDL is not only ineffective as an antioxidant but, paradoxically, appears to be prooxidant, and has been found to be associated with CAD. Several causes have been hypothesized for HDL to become dysfunctional, including Apo lipoprotein A-I (Apo A-I) polymorphisms. New risk factors and markers like dysfunctional HDL and genetic polymorphisms may be associated with CAD. Conclusions: More research is required in SAIs to explore associations with CAD and to enhance early detection and prevention of CAD in this high risk group. PMID:19183743

  15. Atherosclerosis and clonal hematopoyesis: A new risk factor.

    PubMed

    Páramo Fernández, José A

    Recent research has revealed that clonal hematopoyesis of indeterminate potential (CHIP) characterized by the acquisition of somatic mutations in hematopoietic stem cells, is not only a common age-related disorder and a premalignant condition, but it is also associated with the development of atherosclerotic vascular diseases. Mutations in DNMT3A, TET2 and ASXL1 were each individually associated with coronary heart disease, stroke and coronary calcification. Therefore, CHIP emerges as a new risk factor for atherosclerotic vascular pathologies and its detection may be relevant as a new therapeutic target in order to modify the natural course of the disease. Copyright © 2018 Sociedad Española de Arteriosclerosis. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Cardiopulmonary Rehabilitation, Exercise Training, and Preventive Cardiology: An Overview of a Decade of Research at the Ochsner Heart and Vascular Institute: Presented in part at Grand Rounds, Research Series, Ochsner Medical Institutions, May 17, 1999

    PubMed Central

    Lavie, Carl J.; Milani, Richard V.; Cassidy, Mark M.; Gilliland, Yvonne E.; Bernal, J. Alberto

    1999-01-01

    A decade of research from the Ochsner Heart and Vascular Institute's cardiopulmonary rehabilitation and exercise training programs demonstrates the benefits of this therapy on coronary risk factors, exercise capacity, cardiopulmonary parameters, behavioral characteristics, and quality of life in various subgroups of patients, including the elderly, women, obese patients, and groups with dyslipidemia and psychological distress, as well as in patients with congestive heart failure or severe lung disease. Substantial data from our program support the idea that cardiopulmonary rehabilitation and exercise training programs are underemphasized and underutilized for the secondary prevention of coronary artery disease. PMID:21845136

  17. Lack of Fibronectin Extra Domain A Alternative Splicing Exacerbates Endothelial Dysfunction in Diabetes

    PubMed Central

    Gortan Cappellari, Gianluca; Barazzoni, Rocco; Cattin, Luigi; Muro, Andrés F.; Zanetti, Michela

    2016-01-01

    Glucose-induced changes of artery anatomy and function account for diabetic vascular complications, which heavily impact disease morbidity and mortality. Since fibronectin containing extra domain A (EDA + FN) is increased in diabetic vessels and participates to vascular remodeling, we wanted to elucidate whether and how EDA + FN is implicated in diabetes-induced endothelial dysfunction using isometric-tension recording in a murine model of diabetes. In thoracic aortas of EDA−/−, EDA+/+ (constitutively lacking and expressing EDA + FN respectively), and of wild-type mice (EDAwt/wt), streptozotocin (STZ)-induced diabetes impaired endothelial vasodilation to acetylcholine, irrespective of genotype. However STZ + EDA−/− mice exhibited increased endothelial dysfunction compared with STZ + EDA+/+ and with STZ + EDAwt/wt. Analysis of the underlying mechanisms revealed that STZ + EDA−/− mice show increased oxidative stress as demonstrated by enhanced aortic superoxide anion, nitrotyrosine levels and expression of NADPH oxidase NOX4 and TGF-β1, the last two being reverted by treatment with the antioxidant n-acetylcysteine. In contrast, NOX1 expression and antioxidant potential were similar in aortas from the three genotypes. Interestingly, reduced eNOS expression in STZ + EDA+/+ vessels is counteracted by increased eNOS coupling and function. Although EDA + FN participates to vascular remodelling, these findings show that it plays a crucial role in limiting diabetic endothelial dysfunction by preventing vascular oxidative stress. PMID:27897258

  18. Hepatotoxicity and endothelial dysfunction induced by high choline diet and the protective effects of phloretin in mice.

    PubMed

    Ren, Daoyuan; Liu, Yafei; Zhao, Yan; Yang, Xingbin

    2016-08-01

    The involvement of choline and its metabolite trimethylamine-N-oxide (TMAO) in endothelial dysfunction and atherosclerosis has been repeatedly confirmed. Phloretin, a dihydrochalcone flavonoid usually present in apples, possesses a variety of biological activities including vascular nutrition. This study was designed to investigate whether phloretin could alleviate or prevent high choline-induced vascular endothelial dysfunction and liver injury in mice. Mice were provided with 3% high choline water and given phloretin orally daily for 10 weeks. The high choline-treated mice showed the significant dyslipidemia and hyperglycemia with the impaired liver and vascular endothelium (p < 0.01). Administration of phloretin at 200 and 400 mg/kg bw significantly reduced the choline-induced elevation of serum TC, TG, LDL-C, AST, ALT, ET-1 and TXA2 (p < 0.01), and markedly antagonized the choline-induced decrease of serum PGI2, HDL-C and NO levels. Furthermore, phloretin elevated hepatic SOD and GSH-Px activities and decreased hepatic MDA levels of the mice exposed to high choline water. Moreover, histopathological test with the H&E and Oil Red O staining of liver sections confirmed the high choline diet-caused liver steatosis and the hepatoprotective effect of phloretin. These findings suggest that high choline causes oxidative damage, and phloretin alleviate vascular endothelial dysfunction and liver injury. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Pulmonary arterial hypertension associated with chronic active Epstein-Barr virus infection.

    PubMed

    Fukuda, Yutaka; Momoi, Nobuo; Akaihata, Mitsuko; Nagasawa, Katsutoshi; Mitomo, Masaki; Aoyagi, Yoshimichi; Endoh, Kisei; Hosoya, Mitsuaki

    2015-08-01

    Chronic active Epstein-Barr virus (EBV) infection (CAEBV), characterized by persistent infectious mononucleosis-like symptoms, can lead to cardiovascular complications including coronary artery aneurysm or myocarditis. Here, we present the case of an 11-year-old boy with pulmonary arterial hypertension (PAH) and junctional ectopic tachycardia associated with CAEBV. The patient did not have any major symptoms attributed to CAEBV, such as fever, lymphadenopathy or splenomegaly when the PAH developed. Mild liver dysfunction was found at the first examination, and it persisted. Two years after the PAH symptoms appeared, CAEBV was evident, based on deteriorated liver function, hepatosplenomegaly, and coronary artery aneurysms. CAEBV should be considered as a cause of secondary PAH, particularly when liver dysfunction coexists. © 2015 Japan Pediatric Society.

  20. Right Ventricular Dysfunction Impairs Effort Tolerance Independent of Left Ventricular Function Among Patients Undergoing Exercise Stress Myocardial Perfusion Imaging.

    PubMed

    Kim, Jiwon; Di Franco, Antonino; Seoane, Tania; Srinivasan, Aparna; Kampaktsis, Polydoros N; Geevarghese, Alexi; Goldburg, Samantha R; Khan, Saadat A; Szulc, Massimiliano; Ratcliffe, Mark B; Levine, Robert A; Morgan, Ashley E; Maddula, Pooja; Rozenstrauch, Meenakshi; Shah, Tara; Devereux, Richard B; Weinsaft, Jonathan W

    2016-11-01

    Right ventricular (RV) and left ventricular (LV) function are closely linked due to a variety of factors, including common coronary blood supply. Altered LV perfusion holds the potential to affect the RV, but links between LV ischemia and RV performance, and independent impact of RV dysfunction on effort tolerance, are unknown. The population comprised 2051 patients who underwent exercise stress myocardial perfusion imaging and echo (5.5±7.9 days), among whom 6% had echo-evidenced RV dysfunction. Global summed stress scores were ≈3-fold higher among patients with RV dysfunction, attributable to increments in inducible and fixed LV perfusion defects (all P≤0.001). Regional inferior and lateral wall ischemia was greater among patients with RV dysfunction (both P<0.01), without difference in corresponding anterior defects (P=0.13). In multivariable analysis, inducible inferior and lateral wall perfusion defects increased the likelihood of RV dysfunction (both P<0.05) independent of LV function, fixed perfusion defects, and pulmonary artery pressure. Patients with RV dysfunction demonstrated lesser effort tolerance whether measured by exercise duration (6.7±2.8 versus 7.9±2.9 minutes; P<0.001) or peak treadmill stage (2.6±0.9 versus 3.1±1.0; P<0.001), paralleling results among patients with LV dysfunction (7.0±2.9 versus 8.0±2.9; P<0.001|2.7±1.0 versus 3.1±1.0; P<0.001 respectively). Exercise time decreased stepwise in relation to both RV and LV dysfunction (P<0.001) and was associated with each parameter independent of age or medication regimen. Among patients with known or suspected coronary artery disease, regional LV ischemia involving the inferior and lateral walls confers increased likelihood of RV dysfunction. RV dysfunction impairs exercise tolerance independent of LV dysfunction. © 2016 American Heart Association, Inc.

  1. Endothelial dysfunction in the regulation of portal hypertension

    PubMed Central

    Iwakiri, Yasuko

    2013-01-01

    Portal hypertension is caused by an increased intrahepatic resistance, a major consequence of cirrhosis. Endothelial dysfunction in liver sinusoidal endothelial cells (LSECs) decreases the production of vasodilators, such as nitric oxide (NO) and favors vasoconstriction. This contributes to an increased vascular resistance in the intrahepatic/sinusoidal microcirculation. Portal hypertension, once developed, causes endothelial cell (EC) dysfunction in the extrahepatic, i.e. splanchnic and systemic, circulation. Unlike LSEC dysfunction, EC dysfunction in the splanchnic and systemic circulation overproduces vasodilator molecules, leading to arterial vasodilatation. In addition, portal hypertension leads to the formation of portosystemic collateral vessels. Both arterial vasodilatation and portosystemic collateral vessel formation exacerbate portal hypertension by increasing the blood flow through the portal vein. Pathologic consequences, such as esophageal varices and ascites, result. While the sequence of pathological vascular events in cirrhosis and portal hypertension have been elucidated, the underlying cellular and molecular mechanisms causing EC dysfunctions are not yet fully understood. This review article summarizes the current cellular and molecular studies on EC dysfunctions found during the development of cirrhosis and portal hypertension with a focus on intra- and extrahepatic circulation. The article ends by discussing future directions of study for EC dysfunctions. PMID:21745318

  2. Effect of postprandial hyperglycaemia on coronary flow reserve in patients with impaired glucose tolerance and type 2 diabetes mellitus.

    PubMed

    Ikeda, Hiroyuki; Uzui, Hiroyasu; Morishita, Tetsuji; Fukuoka, Yoshitomo; Sato, Takehiko; Ishida, Kentaro; Kaseno, Kenichi; Arakawa, Kenichiro; Amaya, Naoki; Tama, Naoto; Shiomi, Yuichiro; Lee, Jong-Dae; Tada, Hiroshi

    2015-11-01

    This study investigated whether postprandial hyperglycaemia has an adverse effect on coronary microvascular function and left ventricular diastolic function. In all, 28 patients with type 2 diabetes mellitus with no significant stenosis in left anterior descending artery were enrolled. In all subjects, plasma 1,5-anhydroglucitol was measured, and coronary flow reserve in the left anterior descending artery was evaluated using a Doppler wire. Membrane type-1 matrix metalloproteinase expression on circulating peripheral blood mononuclear cells was measured by flow cytometry. Correlation analyses were performed for coronary flow reserve and 1,5-anhydroglucitol, other coronary risk factors, membrane type-1 matrix metalloproteinase and E/e'. Strong correlations were found only between 1,5-anhydroglucitol and coronary flow reserve and membrane type-1 matrix metalloproteinase. On multiple regression analysis, 1,5-anhydroglucitol remained an independent predictor of coronary flow reserve (β = 0.38, p = 0.048). Postprandial hyperglycaemia appears to have an adverse effect on coronary microvascular function, suggesting that improvement of postprandial hyperglycaemia may contribute to the improvement of coronary microvascular dysfunction. © The Author(s) 2015.

  3. Coronary artery bypass grafting in octogenarians: only when percutaneous coronary intervention is not feasible?

    PubMed

    Nicolini, Francesco

    2015-11-01

    The aim of this study was to review recent literature reporting the results of coronary revascularization by percutaneous coronary intervention (PCI) or coronary artery bypass grafting (CABG) in patients older than 80 years. The review of recent studies on octogenarians demonstrates a surgical CABG advantage in the case of patients with increasing baseline coronary risk, such as severe multivessel disease, chronic total occlusions, and left ventricular dysfunction. PCI seems to be more appropriate for less severe degree and distribution of coronary lesions, and for subgroups of patients with higher surgical risk, such as acute coronary syndromes, reoperations, malignancy, dementia, poor mobility, frailty, and serious comorbidities contraindicating extracorporeal circulation. It is not the case that CABG is indicated only when there are contraindications to PCI. CABG confers more benefit than PCI in patients with increasing baseline cardiac risk, in the absence of serious systemic diseases that can reasonably reduce their life expectancy.CABG and PCI, with proper selection, should be considered complementary rather than competitive procedures in the therapy of octogenarians affected by coronary artery disease.

  4. The Epidemiology of Vascular Injury in the Wars in Iraq and Afghanistan

    DTIC Science & Technology

    2011-06-01

    scale (AIS) and In- ternational Classification of Diseases , Ninth Revision (ICD-9) codes for vascular injury (arterial and venous) and vascular injury...denominator of significant wounding in the tabulation of rates. Nonbattle-related injuries (ie, disease nonbattle or DNBI) were not included in the...Coronary 2 0.13 Celiac 3 0.19 Superior mesenteric artery 13 0.83 Aorta 45 2.9 Vena cava (n = 21) Superior 5 0.32 Inferior 16 1.1 Iliac (n = 61) Iliac

  5. Coronary flow reserve/diastolic function relationship in angina-suffering patients with normal coronary angiography.

    PubMed

    Anchisi, Chiara; Marti, Giuliano; Bellacosa, Ilaria; Mary, David; Vacca, Giovanni; Marino, Paolo; Grossini, Elena

    2017-05-01

    Coronary blood flow and diastolic function are well known to interfere with each other through mechanical and metabolic mechanisms. We aimed to assess the relationship between coronary flow reserve (CFR) and diastolic dysfunction in patients suffering from angina but with normal coronary angiography. In 16 patients with chest pain and angiographically normal coronary arteries, CFR was measured using transthoracic echo-Doppler by inducing hyperemia through dipyridamole infusion. Diastolic function (E/A, deceleration time, isovolumetric relaxation time [IVRT], propagation velocity [Vp]) and left ventricular mass were evaluated by means of two-dimensional transthoracic echocardiography. The patients were initially divided into two groups on the grounds of CFR only (ACFR: altered CFR, n = 9; NACFR: unaltered CFR, n = 7). Thereafter they were divided into four groups on the grounds of CFR and diastolic function (NN: normal; AA: altered CFR/diastole; AN: altered CFR/normal diastole; NA: normal CFR/altered diastole). Most of the subjects were scheduled in AA (n = 8) or NA (n = 5) groups, which were taken into consideration for further analysis. Patients were not different regarding various risk factors. ACFR and AA patients were older with normal body weight in comparison with NACFR and NA patients (P < 0.05). In the AA group, CFR and diastolic variables were found to be related to each other. Diastolic dysfunction and reduced CFR were correlated in patients with concomitant alterations of those variables only. Because most risk factors were shared with patients with altered diastolic properties only, our findings could represent a direct relationship between altered CFR and diastole.

  6. Clinical application of laser treatment for cardiovascular surgery

    PubMed Central

    Okada, Masayoshi; Yoshida, Masato; Tsuji, Yoshihiko; Horii, Hiroyuki

    2011-01-01

    Background: Recently, several kinds of lasers have been widely employed in the field of medicine and surgery. However, laser applications are very rare in the field of cardiovascular surgery throughout the world. So, we have experimentally tried to use lasers in the field of cardiovascular surgery. There were three categories: 1) Transmyocardial laser revascularization (TMLR), 2) Laser vascular anastomosis, and 3) Laser angioplasty in the peripheral arterial diseases. By the way, surgery for ischemic heart disease has been widely performed in Japan. Especially coronary artery bypass grafting (CABG) for these patients has been done as a popular surgical method. Among these patients there are a few cases for whom CABG and percutaneous coronary intervention (PCI) could not be carried out, because of diffuse stenosis and small caliber of coronary arteries. Materials and methods of TMLR: A new method of tranasmyocardial revascularization by CO2 laser (output 100 W, irradiation time 0.2 sec) was experimentally performed to save severely ill patients. In this study, a feasibility of transmyocardial laser revascularization from left ventricular cavity through artificially created channels by laser was precisely evaluated. Results: In trials on dogs laser holes 0.2mm in diameter have been shown microscopically to be patent even 3 years after their creation, thus this procedure could be used as a new method of transmyocardial laser revascularization. Clinical application of TMLR: Subsequently, transmyocardial laser revascularization was employed in a 55-year-old male patient with severe angina pectoris who had undergone pericardiectomy 7 years before. He was completely recovered from severe chest pain. Conclusions of TMLR: This patient was the first successful case in the world with TMLR alone. This method might be done for the patients who percutaneous coronary intervention and coronary artery bypass grafting could be carried out. Laser vascular anastomosis: At present time, in vascular surgery there are some problems to keep long-term patency after anastomosis of the conventional suture method, especially for small-caliber vessels. Materials and methods of Laser vascular anastomosis: From these standpoints, a low energy CO2 laser was employed experimentally in vascular anastomosis for small-caliber vessels. Resullts of Laser vascular anastomosis: From preliminary experiments it could be concluded that the optimal laser output was 20–40 mW and irradiation time was 6–12 sec/mm for vascular anastomosis of small-caliber vessels in the extremities. And then, histologic findings and intensity of the laser anastomotic sites were investigated thereafter. Subseqently, good enough intensity and good healing of laser anastomotic sites as well as the conventional suture method could be observed. There were no statistic differences between laser and suture methods. A feasibility of laser anastomosis could be considered and clinical application could be recognized. Clinical applications of Laser vascular anastomosis: On February 21, 1985, arterio-venous laser anastomosis for the patient with renal failure was smoothly done and she could accept hemodialysis. Conclusions of Laser vascular anastomosis: This patient was the first clinical successful case in the world. Thereafter, Laser vascular anastomosis were in 111 patients with intermittent claudication, refractory crural ulcer, and coronary disorders. Thereafter, they are going well. Laser angioplasty: Laser angioplasty for peripheral arterial diseases. There are many methods to treat peripheral arterial diseases such as balloon method, atherectomy, laser technique and stenting graft in the field of endovascular treatment. Recent years, minimal invasive treatment should be employed even in the surgical treatment. However, there are different images between these methods. Materials and methods of Laser angioplasty: We have chosen to use laser for endovascular treatment for peripheral arterial diseases. We have tried to check between laser energy and vessel wall. Results of Laser angioplasty: Subsequently, it could be concluded that optimal conditions for laser angioplasty were 6 W in output and irradiation time was 5 sec. And with another method of feedback control system, temperature of metal tip probe was 200°C and irradiation time was 5 sec for each shot. And histological study and feasibility of angioscopic guidance could be done and clinical application was started. Until now, 115 patients were successfully treated with their life longevity. Conclusions of Laser angioplasty: Thus, laser applications were useful methods to treat a lot of patients with some ischemic problems. PMID:24155531

  7. Sleep-Disordered Breathing and Vascular Function in Patients With Chronic Mountain Sickness and Healthy High-Altitude Dwellers.

    PubMed

    Rexhaj, Emrush; Rimoldi, Stefano F; Pratali, Lorenza; Brenner, Roman; Andries, Daniela; Soria, Rodrigo; Salinas, Carlos; Villena, Mercedes; Romero, Catherine; Allemann, Yves; Lovis, Alban; Heinzer, Raphaël; Sartori, Claudio; Scherrer, Urs

    2016-04-01

    Chronic mountain sickness (CMS) is often associated with vascular dysfunction, but the underlying mechanism is unknown. Sleep-disordered breathing (SDB) frequently occurs at high altitude. At low altitude, SDB causes vascular dysfunction. Moreover, in SDB, transient elevations of right-sided cardiac pressure may cause right-to-left shunting in the presence of a patent foramen ovale (PFO) and, in turn, further aggravate hypoxemia and pulmonary hypertension. We speculated that SDB and nocturnal hypoxemia are more pronounced in patients with CMS compared with healthy high-altitude dwellers, and are related to vascular dysfunction. We performed overnight sleep recordings, and measured systemic and pulmonary artery pressure in 23 patients with CMS (mean ± SD age, 52.8 ± 9.8 y) and 12 healthy control subjects (47.8 ± 7.8 y) at 3,600 m. In a subgroup of 15 subjects with SDB, we assessed the presence of a PFO with transesophageal echocardiography. The major new findings were that in patients with CMS, (1) SDB and nocturnal hypoxemia was more severe (P < .01) than in control subjects (apnea-hypopnea index [AHI], 38.9 ± 25.5 vs 14.3 ± 7.8 number of events per hour [nb/h]; arterial oxygen saturation, 80.2% ± 3.6% vs 86.8% ± 1.7%, CMS vs control group), and (2) AHI was directly correlated with systemic blood pressure (r = 0.5216; P = .001) and pulmonary artery pressure (r = 0.4497; P = .024). PFO was associated with more severe SDB (AHI, 48.8 ± 24.7 vs 14.8 ± 7.3 nb/h; P = .013, PFO vs no PFO) and hypoxemia. SDB and nocturnal hypoxemia are more severe in patients with CMS than in control subjects and are associated with systemic and pulmonary vascular dysfunction. The presence of a PFO appeared to further aggravate SDB. Closure of the PFO may improve SDB, hypoxemia, and vascular dysfunction in patients with CMS. ClinicalTrials.gov; No.: NCT01182792; URL: www.clinicaltrials.gov. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  8. Increased expression of matrix metalloproteinase-1 in systemic vessels of preeclamptic women: a critical mediator of vascular dysfunction.

    PubMed

    Estrada-Gutierrez, Guadalupe; Cappello, Renato E; Mishra, Nikita; Romero, Roberto; Strauss, Jerome F; Walsh, Scott W

    2011-01-01

    This study was conducted to determine the following: (1) whether matrix metalloproteinase-1 (MMP-1) is increased in systemic vessels of preeclamptic women, (2) whether this increase might be mediated by neutrophils, and (3) whether MMP-1 could be responsible for vascular dysfunction. Omental arteries and plasma were collected from healthy pregnant and preeclamptic women. Omental arteries were evaluated for gene and protein expression of MMP-1, collagen type 1α, tissue inhibitor of metalloproteinase-1, and vascular reactivity to MMP-1. Gene and protein expression levels were also evaluated in human vascular smooth muscle cells (VSMCs) co-cultured with activated neutrophils, reactive oxygen species, or tumor necrosis factor α. Vessel expression of MMP-1 and circulating MMP-1 levels were increased in preeclamptic women, whereas vascular expression of collagen or tissue inhibitor of metalloproteinase-1 were down-regulated or unchanged. In cultured VSMCs, the imbalance in collagen-regulating genes of preeclamptic vessels was reproduced by treatment with neutrophils, tumor necrosis factor α, or reactive oxygen species. Chemotaxis studies with cultured cells revealed that MMP-1 promoted recruitment of neutrophils via vascular smooth muscle release of interleukin-8. Furthermore, MMP-1 induced vasoconstriction via protease-activated receptor-1, whose expression was significantly increased in omental arteries of preeclamptic women and in VSMCs co-cultured with neutrophils. Collectively, these findings disclose a novel role for MMP-1 as a mediator of vasoconstriction and vascular dysfunction in preeclampsia. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  9. Beta-1 vs. beta-2 adrenergic control of coronary blood flow during isometric handgrip exercise in humans.

    PubMed

    Maman, Stephan R; Vargas, Alvaro F; Ahmad, Tariq Ali; Miller, Amanda J; Gao, Zhaohui; Leuenberger, Urs A; Proctor, David N; Muller, Matthew D

    2017-08-01

    During exercise, β-adrenergic receptors are activated throughout the body. In healthy humans, the net effect of β-adrenergic stimulation is an increase in coronary blood flow. However, the role of vascular β1 vs. β2 receptors in coronary exercise hyperemia is not clear. In this study, we simultaneously measured noninvasive indexes of myocardial oxygen supply (i.e., blood velocity in the left anterior descending coronary artery; Doppler echocardiography) and demand [i.e., rate pressure product (RPP) = heart rate × systolic blood pressure) and tested the hypothesis that β1 blockade with esmolol improves coronary exercise hyperemia compared with nonselective β-blockade with propranolol. Eight healthy young men received intravenous infusions of esmolol, propranolol, and saline on three separate days in a single-blind, randomized, crossover design. During each infusion, subjects performed isometric handgrip exercise until fatigue. Blood pressure, heart rate, and coronary blood velocity (CBV) were measured continuously, and RPP was calculated. Changes in parameters from baseline were compared with paired t -tests. Esmolol (Δ = 3296 ± 1204) and propranolol (Δ = 2997 ± 699) caused similar reductions in peak RPP compared with saline (Δ = 5384 ± 1865). In support of our hypothesis, ΔCBV with esmolol was significantly greater than with propranolol (7.3 ± 2.4 vs. 4.5 ± 1.6 cm/s; P = 0.002). This effect was also evident when normalizing ΔCBV to ΔRPP. In summary, not only does selective β1 blockade reduce myocardial oxygen demand during exercise, but it also unveils β2-receptor-mediated coronary exercise hyperemia. NEW & NOTEWORTHY In this study, we evaluated the role of vascular β1 vs. β2 receptors in coronary exercise hyperemia in a single-blind, randomized, crossover study in healthy men. In response to isometric handgrip exercise, blood flow velocity in the left anterior descending coronary artery was significantly greater with esmolol compared with propranolol. These findings increase our understanding of the individual and combined roles of coronary β1 and β2 adrenergic receptors in humans. Copyright © 2017 the American Physiological Society.

  10. The endotoxin/toll-like receptor-4 axis mediates gut microvascular dysfunction associated with post-prandial lipidemia

    PubMed Central

    2013-01-01

    Background Postprandial lipidemia is important in the development of coronary artery disease (CAD). Consumption of a meal high in monounsaturated fat was correlated with acute impairment of endothelial function. However, the mechanisms underlying impaired endothelial function in the postprandial state have not yet been elucidated. The effects of polyunsaturated fat (corn oil) and monounsaturated fat (olive oil) on vascular dysfunction in intestinal postcapillary venules and arterioles were examined in wild-type (WT) mice, mice genetically deficient in TLR4 (TLR4-/-) and mice pre-treated with antibiotics by intravital microscopy which was performed 1.0, 1.5, 2.0, 2.5 hours after oil administration. After intravital microscopy, samples of jejunum were therefore collected to test TLR4, pNF-kB p65 and SIRT1 protein expression by western blotting. Results Our findings showed that feeding mono-unsaturated olive oil or polyunsaturated corn oil promoted leukocyte and platelet trafficking in the gut microvasculature, and impaired endothelium-dependent arteriolar vasodilator responses during postprandial lipidemia. The expression of TLR4, pNF-kB p65 was significantly increased in mice gavaged with olive oil at 2 h and was significantly reduced in mice gavaged for 7 days with antibiotics and in TLR4 knockout (TLR4-/-) mice. At the same time, SIRT1 protein expression is diminished by feeding olive oil for 2 h, a phenomenon that is attenuated in mice pre-treated with antibiotics and in TLR4-/- mice. Corn oil treated mice exhibited a pattern of response similar to olive oil. Conclusions Dietary oils may be negative regulators of SIRT1 which activate the innate immune response through the endotoxin/TLR4 axis. Our findings establish a link between innate immunity (i.e. the endotoxin/TLR4 axis) and epigenetic controls mediated by SIRT1 in the genesis of diet associated vascular stress. PMID:24219792

  11. Pulmonary Vascular Congestion: A Mechanism for Distal Lung Unit Dysfunction in Obesity.

    PubMed

    Oppenheimer, Beno W; Berger, Kenneth I; Ali, Saleem; Segal, Leopoldo N; Donnino, Robert; Katz, Stuart; Parikh, Manish; Goldring, Roberta M

    2016-01-01

    Obesity is characterized by increased systemic and pulmonary blood volumes (pulmonary vascular congestion). Concomitant abnormal alveolar membrane diffusion suggests subclinical interstitial edema. In this setting, functional abnormalities should encompass the entire distal lung including the airways. We hypothesize that in obesity: 1) pulmonary vascular congestion will affect the distal lung unit with concordant alveolar membrane and distal airway abnormalities; and 2) the degree of pulmonary congestion and membrane dysfunction will relate to the cardiac response. 54 non-smoking obese subjects underwent spirometry, impulse oscillometry (IOS), diffusion capacity (DLCO) with partition into membrane diffusion (DM) and capillary blood volume (VC), and cardiac MRI (n = 24). Alveolar-capillary membrane efficiency was assessed by calculation of DM/VC. Mean age was 45±12 years; mean BMI was 44.8±7 kg/m2. Vital capacity was 88±13% predicted with reduction in functional residual capacity (58±12% predicted). Despite normal DLCO (98±18% predicted), VC was elevated (135±31% predicted) while DM averaged 94±22% predicted. DM/VC varied from 0.4 to 1.4 with high values reflecting recruitment of alveolar membrane and low values indicating alveolar membrane dysfunction. The most abnormal IOS (R5 and X5) occurred in subjects with lowest DM/VC (r2 = 0.31, p<0.001; r2 = 0.34, p<0.001). Cardiac output and index (cardiac output / body surface area) were directly related to DM/VC (r2 = 0.41, p<0.001; r2 = 0.19, p = 0.03). Subjects with lower DM/VC demonstrated a cardiac output that remained in the normal range despite presence of obesity. Global dysfunction of the distal lung (alveolar membrane and distal airway) is associated with pulmonary vascular congestion and failure to achieve the high output state of obesity. Pulmonary vascular congestion and consequent fluid transudation and/or alterations in the structure of the alveolar capillary membrane may be considered often unrecognized causes of airway dysfunction in obesity.

  12. Inhibition of intimal thickening after vascular injury with a cocktail of vascular endothelial growth factor and cyclic Arg-Gly-Asp peptide.

    PubMed

    Li, Yue; McRobb, Lucinda S; Khachigian, Levon M

    2016-10-01

    Percutaneous coronary intervention is widely used for the treatment of coronary artery disease; however, significant challenges such as restenosis remain. Key to solving these problems is to inhibit smooth muscle cell activation while enhancing re-endothelialization. Early growth response-1 (Egr-1) is a transcription factor that regulates vascular smooth muscle cell (SMC) proliferation and migration through its control of an array of downstream genes. A "cocktail" of vascular endothelial growth factor (VEGF)-A, VEGF-D and cyclic RGD was tested for its ability to inhibit neointima formation and accelerate re-endothelialization following balloon injury to carotid arteries of rats. In vitro, the cocktail stimulated endothelial cell growth yet inhibited smooth muscle cell growth. In vivo, cocktail-treated injured arteries exhibited reduced intimal thickening by >50% (P<0.05). It increased both re-endothelialization and endothelial nitric oxide synthase (NOS) expression. Cocktail reduced Egr-1 expression, an effect blocked by the NOS inhibitor L-N(G)-nitroarginine methyl ester (L-NAME) that also prevented cocktail inhibition of neointima inhibition. This combination may potentially be useful for the treatment of restenosis with concomitant stimulation of revascularization. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. [The clinical manifestations and neurophysiological features of long-lasting paroxysmal vertigo:theanalysis of the original observations].

    PubMed

    Likhachev, S A; Mar'enko, I P

    2015-01-01

    The objective of the present study was to elucidate specific features of etiology and pathophysiology of recurring chronic vestibular dysfunction. It included 90 patients with this pathology of whom 24 (26.6%) presented with vascular compression of the vestibulocochlear nerve diagnosed by means of high-field MRI. This method revealed the high frequency of positionally-dependent vestibular dysfunction associated with neurovascular interactions. Analysis of the state of vestibular dysfunction during the attack-free periods demonstrated the signs of latent vestibular dysfunction in 20 (83.3%) patients. The results of the study provide additional information on the prevalence of vascular compression of the vestibulocochlear nerve in the patients presenting with recurrent chronic dizziness; moreover, they make it possible to evaluate the state of vestibular function and develop the new diagnostic criteria for vestibular paroxismia.

  14. Right Ventricular Perfusion: Physiology and Clinical Implications.

    PubMed

    Crystal, George J; Pagel, Paul S

    2018-01-01

    Regulation of blood flow to the right ventricle differs significantly from that to the left ventricle. The right ventricle develops a lower systolic pressure than the left ventricle, resulting in reduced extravascular compressive forces and myocardial oxygen demand. Right ventricular perfusion has eight major characteristics that distinguish it from left ventricular perfusion: (1) appreciable perfusion throughout the entire cardiac cycle; (2) reduced myocardial oxygen uptake, blood flow, and oxygen extraction; (3) an oxygen extraction reserve that can be recruited to at least partially offset a reduction in coronary blood flow; (4) less effective pressure-flow autoregulation; (5) the ability to downregulate its metabolic demand during coronary hypoperfusion and thereby maintain contractile function and energy stores; (6) a transmurally uniform reduction in myocardial perfusion in the presence of a hemodynamically significant epicardial coronary stenosis; (7) extensive collateral connections from the left coronary circulation; and (8) possible retrograde perfusion from the right ventricular cavity through the Thebesian veins. These differences promote the maintenance of right ventricular oxygen supply-demand balance and provide relative resistance to ischemia-induced contractile dysfunction and infarction, but they may be compromised during acute or chronic increases in right ventricle afterload resulting from pulmonary arterial hypertension. Contractile function of the thin-walled right ventricle is exquisitely sensitive to afterload. Acute increases in pulmonary arterial pressure reduce right ventricular stroke volume and, if sufficiently large and prolonged, result in right ventricular failure. Right ventricular ischemia plays a prominent role in these effects. The risk of right ventricular ischemia is also heightened during chronic elevations in right ventricular afterload because microvascular growth fails to match myocyte hypertrophy and because microvascular dysfunction is present. The right coronary circulation is more sensitive than the left to α-adrenergic-mediated constriction, which may contribute to its greater propensity for coronary vasospasm. This characteristic of the right coronary circulation may increase its vulnerability to coronary vasoconstriction and impaired right ventricular perfusion during administration of α-adrenergic receptor agonists.

  15. The role of nutrition and nutraceutical supplements in the treatment of hypertension

    PubMed Central

    Houston, Mark

    2014-01-01

    Vascular biology, endothelial and vascular smooth muscle and cardiac dysfunction play a primary role in the initiation and perpetuation of hypertension, cardiovascular disease and target organ damage. Nutrient-gene interactions and epigenetics are predominant factors in promoting beneficial or detrimental effects in cardiovascular health and hypertension. Macronutrients and micronutrients can prevent, control and treat hypertension through numerous mechanisms related to vascular biology. Oxidative stress, inflammation and autoimmune dysfunction initiate and propagate hypertension and cardiovascular disease. There is a role for the selected use of single and component nutraceutical supplements, vitamins, antioxidants and minerals in the treatment of hypertension based on scientifically controlled studies which complement optimal nutrition, coupled with other lifestyle modifications. PMID:24575172

  16. Redox Signaling and Its Impact on Skeletal and Vascular Responses to Spaceflight.

    PubMed

    Tahimic, Candice G T; Globus, Ruth K

    2017-10-16

    Spaceflight entails exposure to numerous environmental challenges with the potential to contribute to both musculoskeletal and vascular dysfunction. The purpose of this review is to describe current understanding of microgravity and radiation impacts on the mammalian skeleton and associated vasculature at the level of the whole organism. Recent experiments from spaceflight and ground-based models have provided fresh insights into how these environmental stresses influence mechanisms that are related to redox signaling, oxidative stress, and tissue dysfunction. Emerging mechanistic knowledge on cellular defenses to radiation and other environmental stressors, including microgravity, are useful for both screening and developing interventions against spaceflight-induced deficits in bone and vascular function.

  17. Review of the mechanisms and therapeutic avenues for retinal and choroidal vascular dysfunctions in retinopathy of prematurity.

    PubMed

    Rivera, José Carlos; Madaan, Ankush; Zhou, Tianwei Ellen; Chemtob, Sylvain

    2016-12-01

    Retinopathy of prematurity (ROP) is a multifactorial disease and the main cause of visual impairment and blindness in premature neonates. The inner retina has been considered the primary region affected in ROP, but choroidal vascular degeneration and progressive outer retinal dysfunctions have also been observed. This review focuses on observations regarding neurovascular dysfunctions in both the inner and outer immature retina, the mechanisms and the neuronal-derived factors implicated in the development of ROP, as well potential therapeutic avenues for this disorder. Alterations in the neurovascular integrity of the inner and outer retina contribute to the development of ROP. ©2016 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  18. A case of erectile dysfunction and risk factors for coronary artery disease.

    PubMed

    Kloner, R A

    2005-12-01

    The hypothetical case of a man with erectile dysfunction and multiple cardiovascular risk factors is presented to illustrate the use of the second Princeton Consensus Conference Guidelines. Methods to optimize efficacy of the phosphodiesterase inhibitors are described. The overall cardiovascular safety of the phosphodiesterase inhibitors and their interaction with organic nitrates and alpha blockers are discussed.

  19. You're Only as Old as Your Arteries: Translational Strategies for Preserving Vascular Endothelial Function with Aging

    PubMed Central

    Kaplon, Rachelle E.; Gioscia-Ryan, Rachel A.; LaRocca, Thomas J.

    2014-01-01

    Endothelial dysfunction develops with age and increases the risk of age-associated vascular disorders. Nitric oxide insufficiency, oxidative stress, and chronic low-grade inflammation, induced by upregulation of adverse cellular signaling processes and imbalances in stress resistance pathways, mediate endothelial dysfunction with aging. Healthy lifestyle behaviors preserve endothelial function with aging by inhibiting these mechanisms, and novel nutraceutical compounds that favorably modulate these pathways hold promise as a complementary approach for preserving endothelial health. PMID:24985329

  20. Inappropriate combination of warfarin and aspirin.

    PubMed

    Turan, Burak; Demir, Hakan; Mutlu, Ayhan; Daşlı, Tolga; Erkol, Ayhan; Erden, İsmail

    2016-03-01

    A combination of warfarin and aspirin is associated with increased bleeding compared with warfarin monotherapy. The aim of the study was to investigate the incidence and appropriateness of the combination of warfarin and aspirin in patients with atrial fibrillation (AF) or mechanical heart valve (MHV). This cross-sectional study included consecutive patients with AF or MHV on chronic warfarin therapy (>3 months) without acute coronary syndrome or have not undergone a revascularization procedure in the preceding year. Medical history, concomitant diseases, and treatment data were acquired through patient interviews and from hospital records. Three hundred and sixty patients (213 with AF, 147 with MHV) were included. In those with AF, a significantly higher warfarin-aspirin combination was observed with concomitant vascular disease (38.8% vs. 14.6%), diabetes (36.6% vs. 16.3%), statin therapy (40% vs. 16.9%), left ventricular systolic dysfunction (33.3% vs. 17.5%) (p<0.05 for all). The use of combination therapy was similar between different CHADS-VASc scores. In patients with MHV, higher combination therapy was observed in males (41% vs. 26.7% in females; p=0.070), concomitant vascular disease (47.8% vs. 29.8%; p=0.091), and AF (56.3% vs. 29.8%; p=0.033). Independent predictors of warfarin-aspirin combination were concomitant vascular disease, diabetes, and (younger) age in patients with AF and were concomitant AF and male sex in patients with MHV. Interestingly, the incidence of combination therapy was found to increase with a higher HAS-BLED score in both patients with AF and MHV (p<0.001). The combination of warfarin and aspirin was found to be prescribed to patients with AF mainly for the prevention of cardiovascular events, for which warfarin monotherapy usually suffices. On the other hand, co-treatment with aspirin appeared to be underused in patients with MHV.

  1. Association of vascular indices with novel circulating biomarkers as prognostic factors for cardiovascular complications in patients with type 2 diabetes mellitus.

    PubMed

    Naka, Katerina K; Papathanassiou, Katerina; Bechlioulis, Aris; Pappas, Konstantinos; Tigas, Stelios; Makriyiannis, Dimitrios; Antoniou, Sophia; Kazakos, Nikolaos; Margeli, Alexandra; Papassotiriou, Ioannis; Tsatsoulis, Agathocles; Michalis, Lampros K

    2018-03-01

    The pathophysiology of atherosclerosis in type 2 diabetes mellitus (T2DM) is multifactorial. The association of vascular indices with circulating biomarkers of inflammation and insulin resistance and their role in the long-term cardiovascular prognosis in T2DM patients were currently investigated. Patients with T2DM and poor glycemic control without known cardiovascular diseases (n=119) at baseline were enrolled and followed for about 9years. The end-point was the occurrence of any cardiovascular event (coronary heart disease, stroke, peripheral artery disease or cardiovascular death). Aortic pulse wave velocity (PWV), augmentation index (AIx), brachial flow-mediated dilation (FMD), hsCRP, Chitinase-3-like protein 1 (YKL-40), Neutrophil Gelatinase-Associated Lipocalin (NGAL), Fatty Acid Binding Protein (FABP-4) were assessed. Higher YKL-40 and NGAL were associated with higher PWV, while higher YKL-40 and FABP-4 were related to higher AIx (p<0.05 for all). In univariate Cox regression analysis, PWV>10m/s, YKL-40>78ng/ml and NGAL>42ng/ml were associated with cardiovascular events (p<0.05 for all). In multivariate analysis, after adjusting for classical risk factors and glycemic control, increased NGAL, YKL-40 and PWV and decreased FMD (i.e. ≤2.2%) (p<0.05 for all) were independently associated with cardiovascular events. In T2DM patients without established cardiovascular disease, novel indices of vascular inflammation (NGAL and YKL-40) were associated with subclinical atherosclerosis (arterial stiffness) but also with adverse clinical prognosis. Arterial stiffness and endothelial dysfunction were also independently related to adverse prognosis. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  2. Perivascular Adipose Tissue as a Relevant Fat Depot for Cardiovascular Risk in Obesity.

    PubMed

    Costa, Rafael M; Neves, Karla B; Tostes, Rita C; Lobato, Núbia S

    2018-01-01

    Obesity is associated with increased risk of premature death, morbidity, and mortality from several cardiovascular diseases (CVDs), including stroke, coronary heart disease (CHD), myocardial infarction, and congestive heart failure. However, this is not a straightforward relationship. Although several studies have substantiated that obesity confers an independent and additive risk of all-cause and cardiovascular death, there is significant variability in these associations, with some lean individuals developing diseases and others remaining healthy despite severe obesity, the so-called metabolically healthy obese. Part of this variability has been attributed to the heterogeneity in both the distribution of body fat and the intrinsic properties of adipose tissue depots, including developmental origin, adipogenic and proliferative capacity, glucose and lipid metabolism, hormonal control, thermogenic ability, and vascularization. In obesity, these depot-specific differences translate into specific fat distribution patterns, which are closely associated with differential cardiometabolic risks. The adventitial fat layer, also known as perivascular adipose tissue (PVAT), is of major importance. Similar to the visceral adipose tissue, PVAT has a pathophysiological role in CVDs. PVAT influences vascular homeostasis by releasing numerous vasoactive factors, cytokines, and adipokines, which can readily target the underlying smooth muscle cell layers, regulating the vascular tone, distribution of blood flow, as well as angiogenesis, inflammatory processes, and redox status. In this review, we summarize the current knowledge and discuss the role of PVAT within the scope of adipose tissue as a major contributing factor to obesity-associated cardiovascular risk. Relevant clinical studies documenting the relationship between PVAT dysfunction and CVD with a focus on potential mechanisms by which PVAT contributes to obesity-related CVDs are pointed out.

  3. Complications of transplantation. Part 1: renal transplants.

    PubMed

    Khaja, Minhaj S; Matsumoto, Alan H; Saad, Wael E

    2014-10-01

    Vascular complications after solid-organ transplantation are not uncommon and may lead to graft dysfunction and ultimately graft loss. A thorough understanding of the surgical anatomy, etiologies, and types of vascular complications, their presentation, and the options for management are important for managing these complex patients. This article reviews the basic surgical anatomy, vascular complications, and endovascular management options of vascular complications in patients with renal transplants.

  4. [Coronary disease extension determines mobilization of endothelial progenitor cells and cytokines after a first myocardial infarction with ST elevation].

    PubMed

    Jiménez-Navarro, Manuel F; González, Francisco Jesús; Caballero-Borrego, Juan; Marchal, Juan Antonio; Rodríguez-Losada, Noela; Carrillo, Esmeralda; García-Pinilla, José Manuel; Hernández-García, José M; Pérez-González, Rita; Ramírez, Gemma; Aránega, Antonia; de Teresa Galván, Eduardo

    2011-12-01

    Multivessel coronary disease is still a postinfarction prognostic marker despite new forms of reperfusion, such as primary angioplasty. The aim of this study was to determine the time sequence of various sets of endothelial progenitor cells and angiogenic cytokines (vascular endothelial growth factor, hepatocyte growth factor) according to the degree of extension of the postinfarction coronary disease. We studied the release kinetics in 32 patients admitted for a first myocardial infarction with ST elevation, grouped according to whether they had single or multivessel disease, and 26 controls. The patients had a higher number of endothelial progenitor cells and angiogenic cytokines than the controls at all 3 measurements (admission, day 3, and day 7) of the following subsets: CD34, CD34+CD133+, CD34+KDR+, and CD34+CD133+KDR+CD45+(weak); this latter was higher on day 7. The levels of these cell subsets were all higher in the patients with single-vessel disease and at all 3 measurements. The vascular endothelial growth factor levels were raised during the first week and the hepatocyte growth factor showed an early peak on admission for infarction. No significant differences were seen in the cytokines according to coronary disease extension. Although the release kinetics of different subsets of endothelial progenitor cells in patients with a first acute myocardial infarction with ST elevation was similar in those with single vessel disease to those with multivessel disease, the number of circulating endothelial progenitor cells was greater in the patients with single vessel disease. The vascular endothelial growth factor levels were raised during the first postinfarction week and the hepatocyte growth factor were higher on admission. Copyright © 2011 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.

  5. Metalloproteinase 2 and 9 Activity Increase in Epicardial Adipose Tissue of Patients with Coronary Artery Disease.

    PubMed

    Miksztowicz, Verónica; Morales, Celina; Barchuk, Magalí; López, Graciela; Póveda, Ricardo; Gelpi, Ricardo; Schreier, Laura; Rubio, Miguel; Berg, Gabriela

    2017-01-01

    Epicardial adipose tissue (EAT) is a visceral adipose tissue (AT) surrounding and infiltrating myocardium and coronary arteries. Increased EAT may represent a chronic inflammatory injury and a link with coronary artery disease (CAD). Metalloproteinases (MMPs) are involved in expansion of AT. To evaluate MMP-2 and -9 behaviour in EAT from CAD patients. In EAT and subcutaneous AT (SAT) from patients undergoing coronary artery bypass graft (CABG, n=26) or valve replacement (No CABG, n=18), MMP-2 and -9 activity and localization, inflammatory cells and vascular endothelial growth factor (VEGF) levels were determined. In EAT from CABG, MMP-2 and -9 activity was increased compared with No CABG (p=0.041 and p=0.027, respectively) and compared with SAT (p=0.005 and p=0.048, respectively). In CABG patients EAT showed higher infiltration of macrophages and T lymphocytes than SAT (p=0.01 and p=0.002, respectively). In No CABG patients no sign of cellular retention was observed in EAT or SAT. Vascular density was higher in EAT from CABG than No CABG (p=0.015) and it was directly correlated with MMP-2 (p=0.006) and MMP-9 (p=0.02). VEGF levels in EAT were directly associated with MMP-2 (p=0.016). In EAT from CABG patients the increase of MMP-2 and -9 activity and the presence of inflammatory cells would be partially responsible for extracellular matrix (ECM) remodeling and major vascular density necessary for EAT expansion. Improved knowledge of EAT behaviour may allow to identify new therapeutic targets for the treatment of CAD. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. MicroRNA-939 governs vascular integrity and angiogenesis through targeting γ-catenin in endothelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Shiqiang; Fang, Ming; Zhu, Qian

    Coronary collateral circulation (CCC) functions as a natural bypass in the event of coronary obstruction, which markedly improves prognosis in patients with coronary artery disease (CAD). MicroRNAs (miRNAs) have been implicated in multiple physiological and pathological processes, including angiogenesis involved in CCC growth. The roles that miRNA-939 (miR-939) plays in angiogenesis remain largely unknown. We conducted this study to explore the expression of miR-939 in CAD patients and its role in angiogenesis. For the first time, our results indicated that the expression of circulating miR-939 was down-regulated in patients with sufficient CCC compared with patients with poor CCC. Overexpression ofmore » miR-939 in primary human umbilical vein endothelial cells (HUVECs) significantly inhibited the proliferation, adhesion and tube formation, but promoted the migration of cells. In contrast, miR-939 knockdown exerted reverse effects. We further identified that γ-catenin was a novel target of miR-939 by translational repression, which could rescue the effects of miR-939 in HUVECs. In summary, this study revealed that the expression of circulating miR-939 was down-regulated in CAD patients with sufficient CCC. MiR-939 abolished vascular integrity and repressed angiogenesis through directly targeting γ-catenin. It provided a potential biomarker and a therapeutic target for CAD. - Highlights: • Circulating miR-939 is decreased in sufficient coronary collateral circulation. • MiR-939 abolishes vascular integrity in endothelial cells. • MiR-939 represses angiogenesis. • γ-catenin is a novel target of miR-939.« less

  7. Kv7 channels critically determine coronary artery reactivity: left-right differences and down-regulation by hyperglycaemia.

    PubMed

    Morales-Cano, Daniel; Moreno, Laura; Barreira, Bianca; Pandolfi, Rachele; Chamorro, Virginia; Jimenez, Rosario; Villamor, Eduardo; Duarte, Juan; Perez-Vizcaino, Francisco; Cogolludo, Angel

    2015-04-01

    Voltage-gated potassium channels encoded by KCNQ genes (Kv7 channels) are emerging as important regulators of vascular tone. In this study, we analysed the contribution of Kv7 channels to the vasodilation induced by hypoxia and the cyclic AMP pathway in the coronary circulation. We also assessed their regional distribution and possible impairment by diabetes. We examined the effects of Kv7 channel modulators on K+ currents and vascular reactivity in rat left and right coronary arteries (LCAs and RCAs, respectively). Currents from LCA were more sensitive to Kv7 channel inhibitors (XE991, linopirdine) and activators (flupirtine, retigabine) than those from RCA. Accordingly, LCAs were more sensitive than RCAs to the relaxation induced by Kv7 channel enhancers. Likewise, relaxation induced by the adenylyl cyclase activator forskolin and hypoxia, which were mediated through Kv7 channel activation, were greater in LCA than in RCA. KCNQ1 and KCNQ5 expression was markedly higher in LCA than in RCA. After incubation with high glucose (HG, 30 mmol/L), myocytes from LCA, but not from RCA, were more depolarized and showed reduced Kv7 currents. In HG-incubated LCA, the effects of Kv7 channel modulators and forskolin were diminished, and the expression of KCNQ1 and KCNQ5 was reduced. Finally, vascular responses induced by Kv7 channel modulators were impaired in LCA, but not in RCA, from type 1 diabetic rats. Our results reveal that the high expression and function of Kv7 channels in the LCA and their down-regulation by diabetes critically determine the sensitivity to key regulators of coronary tone. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  8. First-in-human experience using the Volcano VIBE-RX vascular imaging balloon catheter system (Volcano IVUS-guided Balloon Evaluation - New Zealand: VIBE-NZ Study).

    PubMed

    Watson, Timothy; El-Jack, Seifeddin; Stewart, James T; Ormiston, John

    2013-09-01

    Intravascular ultrasound (IVUS) is a proven and safe imaging modality used to guide percutaneous coronary intervention (PCI). The Volcano VIBE™ RX Vascular Imaging Balloon Catheter is a novel rapid exchange, 0.014" wire-compatible multi-lumen conventional balloon catheter modified with the addition of an IVUS transducer proximal to the balloon, delivered via a standard 6 Fr sheath. We sought to evaluate the safety, balloon performance, and image quality of the VIBE™ RX in patients scheduled for coronary intervention. Patients aged >21 and <85 years with single or multivessel coronary disease scheduled for PCI due to coronary ischaemic symptoms were included. Those with angiographic features that precluded the safe or informative use of the device were excluded. Twenty-nine patients having angiography because of ischaemic symptoms underwent 44 VIBE RX imaging runs, with balloon dilation in 20. Successful device deployment was achieved in all but one patient. All images were adequate and reproducible. One patient had a non-ST-elevation MI felt to be due to the complexity of the procedure rather than directly related to the VIBE™ RX. The study demonstrated the safety and effectiveness of the VIBE™ RX for its intended purpose with minimal failure rate and no directly related complications.

  9. The effect of the K+ agonist nicorandil on peripheral vascular resistance.

    PubMed

    Brodmann, Marianne; Lischnig, Ulrike; Lueger, Andreas; Stark, Gerhard; Pilger, Ernst

    2006-07-28

    The vasoactive effect of nicorandil on coronary arteries is well known. Nicorandil exerts its vasodilatory effect through a dual mechanism of action: involving on the one hand cyclic guanosine monophosphate (c GMP) as a nitrovasodilatator, and on the other hand, acting as a potassium channel opener. To address the question if nicorandil works in peripheral arteries, its effect on peripheral vascular resistance was evaluated in isolated perfused guinea pig hind limbs. A catheter was inserted via the distal aorta and common iliac artery. Perfusion pressure was monitored under constant perfusion with Tyrode's solution, therefore changes in perfusion pressure represent changes in vascular resistance. After stabilization precontraction of the peripheral vascular bed was achieved with noradrenaline 3 microM and nicorandil was added in concentrations of 1, 10 and 100 microM. The effect of nicorandil (1, 10 and 100 microM) was tested in the presence of L-NAME and glybenclamide. A significant reduction of vascular peripheral resistance was already achieved at a concentration of 1 microM nicorandil (30.3+/-6.1%, mean S.E.M., p < 0.001). At a concentration of 100 microM nicorandil the reduction of peripheral vascular resistance was 94.4+/-16.4%. Peripheral vascular resistance was less but nearly comparable reduced by nicorandil (100 microM) if the endothelial NO effect was inhibited by L-NAME (58.6+/-18.6%) or if the ATP-dependent potassium channels were blocked by glybenclamide (56.4+/-14.6%). In peripheral arteries the nitrovasodilator effect of nicorandil is nearly comparable to the potassium agonistic effect, and the concentration, which is necessary to reduce peripheral vascular resistance significantly, is comparable with dosages necessary for reduction of coronary resistance.

  10. Vascular cognitive impairment, a cardiovascular complication.

    PubMed

    Frances, Adiukwu; Sandra, Ofori; Lucy, Ugbomah

    2016-06-22

    Over the past two decades, the term vascular cognitive impairment (VCI) has been used to refer to a spectrum of cognitive decline characterized by executive dysfunction, associated with vascular pathology. With 30% of stroke survivors showing cognitive impairments, it is regarded as the most common cause of cognitive impairment. This is a narrative review of available literature citing sources from PubMed, MEDLINE and Google Scholar. VCI has a high prevalence both before and after a stroke and is associated with great economic and caregiver burden. Despite this, there is no standardized diagnostic criteria for VCI. Hypertension has been identified as a risk factor for VCI and causes changes in cerebral vessel structure and function predisposing to lacuna infarcts and small vessel haemorrhages in the frontostriatal loop leading to executive dysfunction and other cognitive impairments. Current trials have shown promising results in the use of antihypertensive medications in the management of VCI and prevention of disease progression to vascular dementia. Prevention of VCI is necessary in light of the looming dementia pandemic. All patients with cardiovascular risk factors would therefore benefit from cognitive screening with screening instruments sensitive to executive dysfunction as well as prompt and adequate control of hypertension.

  11. Vascular cognitive impairment, a cardiovascular complication

    PubMed Central

    Frances, Adiukwu; Sandra, Ofori; Lucy, Ugbomah

    2016-01-01

    Over the past two decades, the term vascular cognitive impairment (VCI) has been used to refer to a spectrum of cognitive decline characterized by executive dysfunction, associated with vascular pathology. With 30% of stroke survivors showing cognitive impairments, it is regarded as the most common cause of cognitive impairment. This is a narrative review of available literature citing sources from PubMed, MEDLINE and Google Scholar. VCI has a high prevalence both before and after a stroke and is associated with great economic and caregiver burden. Despite this, there is no standardized diagnostic criteria for VCI. Hypertension has been identified as a risk factor for VCI and causes changes in cerebral vessel structure and function predisposing to lacuna infarcts and small vessel haemorrhages in the frontostriatal loop leading to executive dysfunction and other cognitive impairments. Current trials have shown promising results in the use of antihypertensive medications in the management of VCI and prevention of disease progression to vascular dementia. Prevention of VCI is necessary in light of the looming dementia pandemic. All patients with cardiovascular risk factors would therefore benefit from cognitive screening with screening instruments sensitive to executive dysfunction as well as prompt and adequate control of hypertension. PMID:27354961

  12. Endothelial progenitor cells and rheumatic disease modifying therapy.

    PubMed

    Lo Gullo, Alberto; Aragona, Caterina Oriana; Michele, Scuruchi; Versace, Antonio Giovanni; Antonino, Saitta; Egidio, Imbalzano; Loddo, Saverio; Campo, Giuseppe Maurizio; Giuseppe, Mandraffino

    2018-05-26

    Rheumatic diseases are associated with accelerated atherosclerosis and with increased risk of cardiovascular morbidity and mortality. The mechanisms underlying the higher prevalence of cardiovascular disease are not completely clarified, but it is likely that a pivotal role is played by vascular inflammation and consequently to altered vascular endothelium homeostasis. Also, high prevalence of traditional risk factors, proatherogenic activation and endothelial dysfunction further contribute to vascular damage. Circulating endothelial progenitor cells (EPCs) can restore dysfunctional endothelium and protect against atherosclerotic vascular disease. However, abnormalities in number and function of these cells in patients with rheumatic condition have been extensively reported. During the last years, growing interest in the mechanisms of endothelial renewal and its potential as a therapy for CVD has been shown; in addition, pioneering studies show that EPC dysfunction might be improved with pharmacological strategies. However, how to restore EPC function, and whether achieving this aim may be effective in preventing cardiovascular complications in rheumatic disease, remain to be established. In this review we report an overview on the current stand of knowledge on the effect of pharmaceutical and lifestyle intervention in improving EPCs number and function in rheumatic disease. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. White matter damage and glymphatic dysfunction in a model of vascular dementia in rats with no prior vascular pathologies

    PubMed Central

    Venkat, Poornima; Chopp, Michael; Zacharek, Alex; Cui, Chengcheng; Zhang, Li; Li, Qingjiang; Lu, Mei; Zhang, Talan; Liu, Amy; Chen, Jieli

    2016-01-01

    We investigated cognitive function, axonal/white matter (WM) changes and glymphatic function of vascular dementia (VaD) using a multiple microinfarction (MMI) model in retired breeder (RB) rats. The MMI model induces significant (p<0.05) cognitive decline that worsens with age starting at 2 weeks, which persists until at least 6 weeks after MMI. RB rats subjected to MMI exhibit significant axonal/WM damage identified by decreased myelin thickness, oligodendrocyte progenitor cell numbers, axon density, synaptic protein expression in the cortex and striatum, cortical neuronal branching, and dendritic spine density in the cortex and hippocampus compared with age matched controls. MMI evokes significant dilation of perivascular spaces as well as water channel dysfunction indicated by decreased Aquaporin-4 (AQP-4) expression around blood vessels. MMI induced glymphatic dysfunction with delayed cerebrospinal fluid (CSF) penetration into the brain parenchyma via paravascular pathways as well as delayed waste clearance from the brain. The MMI model in RB rats decreases AQP-4 and induces glymphatic dysfunction which may play an important role in MMI induced axonal/WM damage and cognitive deficits. PMID:27940353

  14. White matter damage and glymphatic dysfunction in a model of vascular dementia in rats with no prior vascular pathologies.

    PubMed

    Venkat, Poornima; Chopp, Michael; Zacharek, Alex; Cui, Chengcheng; Zhang, Li; Li, Qingjiang; Lu, Mei; Zhang, Talan; Liu, Amy; Chen, Jieli

    2017-02-01

    We investigated cognitive function, axonal/white matter (WM) changes and glymphatic function of vascular dementia using a multiple microinfarction (MMI) model in retired breeder (RB) rats. The MMI model induces significant (p < 0.05) cognitive decline that worsens with age starting at 2 weeks, which persists until at least 6 weeks after MMI. RB rats subjected to MMI exhibit significant axonal/WM damage identified by decreased myelin thickness, oligodendrocyte progenitor cell numbers, axon density, synaptic protein expression in the cortex and striatum, cortical neuronal branching, and dendritic spine density in the cortex and hippocampus compared with age-matched controls. MMI evokes significant dilation of perivascular spaces as well as water channel dysfunction indicated by decreased Aquaporin-4 expression around blood vessels. MMI-induced glymphatic dysfunction with delayed cerebrospinal fluid penetration into the brain parenchyma via paravascular pathways as well as delayed waste clearance from the brain. The MMI model in RB rats decreases Aquaporin-4 and induces glymphatic dysfunction which may play an important role in MMI-induced axonal/WM damage and cognitive deficits. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. NADPH oxidase contributes to coronary endothelial dysfunction in the failing heart.

    PubMed

    Zhang, Ping; Hou, Mingxiao; Li, Yunfang; Xu, Xin; Barsoum, Michel; Chen, Yingjie; Bache, Robert J

    2009-03-01

    Increased reactive oxygen species (ROS) produced by the failing heart can react with nitric oxide (NO), thereby decreasing NO bioavailability. This study tested the hypothesis that increased ROS generation contributes to coronary endothelial dysfunction in the failing heart. Congestive heart failure (CHF) was produced in six dogs by ventricular pacing at 240 beats/min for 4 wk. Studies were performed at rest and during treadmill exercise under control conditions and after treatment with the NADPH oxidase inhibitor and antioxidant apocynin (4 mg/kg iv). Apocynin caused no significant changes in heart rate, aortic pressure, left ventricular (LV) systolic pressure, LV end-diastolic pressure, or maximum rate of LV pressure increase at rest or during exercise in normal or CHF dogs. Apocynin caused no change in coronary blood flow (CBF) in normal dogs but increased CBF at rest and during exercise in animals with CHF (P < 0.05). Intracoronary ACh caused dose-dependent increases of CBF that were blunted in CHF. Apocynin had no effect on the response to ACh in normal dogs but augmented the response to ACh in CHF dogs (P < 0.05). The oxidative stress markers nitrotyrosine and 4-hydroxy-2-nonenal were significantly greater in failing than in normal myocardium. Furthermore, coelenterazine chemiluminescence for O(2)(-) was more than twice normal in failing myocardium, and this difference was abolished by apocynin. Western blot analysis of myocardial lysates demonstrated that the p47(phox) and p22(phox) subunits of NADPH were significantly increased in the failing hearts, while real-time PCR demonstrated that Nox2 mRNA was significantly increased. The data indicate that increased ROS generation in the failing heart is associated with coronary endothelial dysfunction and suggest that NADPH oxidase may contribute to this abnormality.

  16. Differences in Blood Pressure and Vascular Responses Associated with Ambient Fine Particulate Matter Exposures Measured at the Personal Versus Community Level

    EPA Science Inventory

    Background Higher ambient fine particulate matter (PM2.5) levels can be associated with increased blood pressure and vascular dysfunction. Objectives To determine the differential effects on blood pressure and vascular function of daily changes in community ambient-...

  17. Long Noncoding RNA-GAS5: A Novel Regulator of Hypertension-Induced Vascular Remodeling.

    PubMed

    Wang, Yang-Ning-Zhi; Shan, Kun; Yao, Mu-Di; Yao, Jin; Wang, Jia-Jian; Li, Xiang; Liu, Ban; Zhang, Yang-Yang; Ji, Yong; Jiang, Qin; Yan, Biao

    2016-09-01

    Vascular remodeling is an important pathological feature of hypertension, leading to increased vascular resistance and reduced compliance. Endothelial cell (EC) and vascular smooth muscle cell (VSMC) dysfunction is involved in vascular remodeling. Long noncoding RNAs are potential regulators of EC and VSMC function. Herein, we determined whether long noncoding RNA-growth arrest-specific 5 (GAS5) is involved in hypertension-related vascular remodeling. We revealed that GAS5 knockdown aggravated hypertension-induced microvascular dysfunction as shown by increased retinal neovascularization and capillary leakage. GAS5 regulated the remodeling of arteries, including caudal arteries, carotid arteries, renal arteries, and thoracic arteries. GAS5 was mainly expressed in ECs and VSMCs, and its expression was significantly downregulated in hypertension. GAS5 knockdown affected endothelial activation, endothelial proliferation, VSMC phenotypic conversion, and EC-VSMC communication in vivo and in vitro. Mechanistically, GAS5 regulated EC and VSMC function through β-catenin signaling. This study identified GAS5 as a critical regulator in hypertension and demonstrated the potential of gene therapy and drug development for treating hypertension. © 2016 American Heart Association, Inc.

  18. Regulation of coronary blood flow. Effect of coronary artery stenosis.

    PubMed

    Duncker, D J; Merkus, D

    2004-12-01

    The consistently high level of myocardial oxygen extraction requires tight control of coronary blood flow, because an increase in myocardial oxygen demand, as occurs during exercise, cannot be obtained by a further increase in oxygen extraction. Consequently, adequate control of coronary vascular resistance is critical. Coronary resistance vessel tone is the result of a myriad of vasodilator and vasoconstrictor influences, which are exerted by the myocardium, endothelium and neurohumoral status. Unraveling of the integrative mechanisms controlling metabolic vasodilation has been difficult, more than likely due to the redundancy design of vasomotor control. In contrast to the traditional view that myocardial ischemia produced by a coronary artery stenosis causes maximal microvascular dilation, more recent studies have shown that the coronary microvessels retain some degree of vasodilator reserve during ischemia and remain responsive to vasoconstrictor stimuli. These observations raise the question of whether pharmacologic vasodilators acting at the microvascular level might be therapeutically useful. The critical property of effective vasodilator therapy requires selective dilation of small arteries, while avoiding coronary steal by not interfering with metabolic vasoregulation at the level of the arterioles.

  19. Acute coronary disease Athero-Inflammation: Therapeutic approach

    PubMed Central

    Altman, Raul

    2003-01-01

    Antithrombotic therapy is the cornerstone of the treatment of acute coronary syndromes, but there is now evidence which indicates that by blocking inflammation, thrombosis and thus, acute coronary events, could be lowered. The concept of athero-inflammation emerges as the meeting point of different morbidities; dyslipemia, diabetes, hypertension, obesity, immunity, infection, hyperhomocyteinemia, smoking, etc. usual named as risk factors. Thus, beside specific drugs, earliest treatment, in the stage of inflammation, using anti-inflammatory drugs, should be considered since in patients with increased risk of acute coronary process are likely to have many point of origen throughout the coronary arteries. There are a body of evidences for supporting the potential of anti-inflammatory therapy to the prevention of inflammation and atherosclerosis. COX-2 inhibition may decrease endothelial inflammation reducing monocytes infiltration improving vascular cells function, plaque stability and probably resulting in a decrease of coronary atherothrombotic events. Trials including large numbers of patients in prospective double-blind randomized studies worthwhile to confirm the efficacy of NSAID, mainly, COX-2 inhibitors, together with aspirin in the prevention of coronary events in patients with acute coronary disease. PMID:12904261

  20. Vascular disruption and blood–brain barrier dysfunction in intracerebral hemorrhage

    PubMed Central

    2014-01-01

    This article reviews current knowledge of the mechanisms underlying the initial hemorrhage and secondary blood–brain barrier (BBB) dysfunction in primary spontaneous intracerebral hemorrhage (ICH) in adults. Multiple etiologies are associated with ICH, for example, hypertension, Alzheimer’s disease, vascular malformations and coagulopathies (genetic or drug-induced). After the initial bleed, there can be continued bleeding over the first 24 hours, so-called hematoma expansion, which is associated with adverse outcomes. A number of clinical trials are focused on trying to limit such expansion. Significant progress has been made on the causes of BBB dysfunction after ICH at the molecular and cell signaling level. Blood components (e.g. thrombin, hemoglobin, iron) and the inflammatory response to those components play a large role in ICH-induced BBB dysfunction. There are current clinical trials of minimally invasive hematoma removal and iron chelation which may limit such dysfunction. Understanding the mechanisms underlying the initial hemorrhage and secondary BBB dysfunction in ICH is vital for developing methods to prevent and treat this devastating form of stroke. PMID:25120903

  1. Diabetes mellitus: The linkage between oxidative stress, inflammation, hypercoagulability and vascular complications.

    PubMed

    Domingueti, Caroline Pereira; Dusse, Luci Maria Sant'Ana; Carvalho, Maria das Graças; de Sousa, Lirlândia Pires; Gomes, Karina Braga; Fernandes, Ana Paula

    2016-01-01

    Vascular complications are the leading cause of morbidity and mortality among patients with type 1 and type 2 diabetes mellitus. These vascular abnormalities result of a chronic hyperglycemic state, which leads to an increase in oxidative stress and inflammatory responses. This review addresses the relationships among endothelial dysfunction, hypercoagulability and inflammation and their biomarkers in the development of vascular complications in type 1 and type 2 diabetes. Inflammation, endothelial dysfunction, and hypercoagulability are correlated to each other, playing an important role in the development of vascular complications in diabetic patients. Moreover, it has been observed that several endothelial, inflammatory and pro-coagulant biomarkers, such as VWF, IL-6, TNF-α, D-dimer and PAI-1, are increased in diabetic patients who have microvascular and macrovascular complications, including nephropathy or cardiovascular disease. It is promising the clinical and laboratory use of endothelial, inflammatory and pro-coagulant biomarkers for predicting the risk of cardiovascular and renal complications in diabetic patients and for monitoring these patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Dobutamine stress magnetic resonance imaging suffices for the demonstration of myocardial ischaemia and viability.

    PubMed

    Lamers, F P L; van Dijkman, P R M; Kuijpers, Th J A; van Herpen, G

    2003-02-01

    We report three patients in whom dobutamine stress magnetic imaging (DS-MRI) was essential in assessing myocardial ischaemia. Two patients were referred to the cardiologist because of chest pain. Patient A had typical exertional angina and a normal resting electrocardiogram (ECG). Patient B had typical exercise-induced angina and had recently experienced an attack of severe chest pain at rest for 15 minutes. The ECG showed a complete left bundle branch block (LBBB). Patient C was referred for heart failure of unknown origin. There were no symptoms of chest pain during rest or exercise. Echocardiography in this patient demonstrated global left ventricular (LV) dilatation, systolic dysfunction and a small dyskinetic segment in the inferior wall. In all these patients exercise stress testing had failed to demonstrate myocardial ischaemia. Patients A and C produced normal findings whereas in patient B the abnormal repolarisation due to pre-existent LBBB precluded a diagnosis of ischaemia. Breath-hold DS-MRI was performed to study LV wall motion and wall thickening at rest through increasing doses of dobutamine. A test was considered positive for myocardial ischaemia if wall motion abnormalities developed at high-dose levels of the drug (20 μg/kg/min or more with a maximum of 40 μg/kg/min) in previously normal vascular territories or worsened in a segment that was normal at baseline. Recovery of wall thickening in a previously hypokinetic or akinetic segment at a low dose of dobutamine (5-10 μg/kg/min) was taken as proof of viability. Patients A and B developed hypokinesia progressing into akinesia at high-dose dobutamine in the anteroseptal area of the LV indicative of ischaemia. These findings were corroborated by coronary angiography demonstrating severe coronary artery disease which led to coronary artery bypass grafting (CABG) in patient A and balloon angioplasty in patient B. In patient C global recovery of LV contractions during low-dose dobutamine was followed by hypokinesia in the inferoseptal area during high-dose dobutamine. This biphasic response indicates myocardial viability as well as ischaemia. CABG was carried out because of multiple stenoses in the left coronary artery. Post-operatively LV function normalised. DS-MRI is a valuable method for detecting myocardial ischaemia and viability in patients with suspected coronary artery, and can be applied in every hospital with MRI equipment at its disposal.

  3. SNARE-mediated rapid lysosome fusion in membrane raft clustering and dysfunction of bovine coronary arterial endothelium

    PubMed Central

    Han, Wei-Qing; Xia, Min; Zhang, Chun; Zhang, Fan; Xu, Ming; Li, Ning-Jun

    2011-01-01

    The present study attempted to evaluate whether soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) mediate lysosome fusion in response to death receptor activation and contribute to membrane raft (MR) clustering and consequent endothelial dysfunction in coronary arterial endothelial cells. By immunohistochemical analysis, vesicle-associated membrane proteins 2 (VAMP-2, vesicle-SNAREs) were found to be abundantly expressed in the endothelium of bovine coronary arteries. Direct lysosome fusion monitoring by N-(3-triethylammoniumpropyl)-4-[4-(dibutylamino)styryl]pyridinium dibromide (FM1-43) quenching demonstrated that the inhibition of VAMP-2 with tetanus toxin or specific small interfering ribonucleic acid (siRNA) almost completely blocked lysosome fusion to plasma membrane induced by Fas ligand (FasL), a well-known MR clustering stimulator. The involvement of SNAREs was further confirmed by an increased interaction of VAMP-2 with a target-SNARE protein syntaxin-4 after FasL stimulation in coimmunoprecipitation analysis. Also, the inhibition of VAMP-2 with tetanus toxin or VAMP-2 siRNA abolished FasL-induced MR clustering, its colocalization with a NADPH oxidase unit gp91phox, and increased superoxide production. Finally, FasL-induced impairment of endothelium-dependent vasodilation was reversed by the treatment of bovine coronary arteries with tetanus toxin or VAMP-2 siRNA. VAMP-2 is critical to lysosome fusion in MR clustering, and this VAMP-2-mediated lysosome-MR signalosomes contribute to redox regulation of coronary endothelial function. PMID:21926345

  4. Comparative effects of inhaled diesel exhaust and ambient fine particles on inflammation, atherosclerosis, and vascular dysfunction

    PubMed Central

    Quan, Chunli; Sun, Qinghua; Lippmann, Morton; Chen, Lung-Chi

    2011-01-01

    Ambient air PM2.5 (particulate matter less than 2.5 μm in diameter) has been associated with cardiovascular diseases (CVDs), but the underlying mechanisms affecting CVDs are unknown. The authors investigated whether subchronic inhalation of concentrated ambient PM2.5 (CAPs), whole diesel exhaust (WDE), or diesel exhaust gases (DEGs) led to exacerbation of atherosclerosis, pulmonary and systemic inflammation, and vascular dysfunction; and whether DEG interactions with CAPs alter cardiovascular effects. ApoE−/− mice were simultaneously exposed via inhalation for 5 hours/day, 4 days/week, for up to 5 months to one of five different exposure atmospheres: (1) filtered air (FA); (2) CAPs (105 μg/m3); (3) WDE (DEP = 436 μg/m3); (4) DEG (equivalent to gas levels in WDE group); and (5) CAPs+DEG (PM2.5: 113 μg/m3; with DEG equivalent to WDE group). After 3 and 5 months, lung lavage fluid and blood sera were analyzed, and atherosclerotic plaques were quantified by ultrasound imaging, hematoxylin and eosin (H&E stain), and en face Sudan IV stain. Vascular functions were assessed after 5 months of exposure. The authors showed that (1) subchronic CAPs, WDE, and DEG inhalations increased serum vascular cell adhesion molecule (VCAM)-1 levels and enhanced phenylephrine (PE)-induced vasoconstriction; (2) for plaque exacerbation, CAPs > WDE > DEG = FA, thus PM components (not present in WDE) were responsible for plaque development; (3) atherosclerosis can exacerbated through mechanistic pathways other than inflammation and vascular dysfunction; and (4) although there were no significant interactions between CAPs and DEG on plaque exacerbation, it is less clear whether the effects of CAPs on vasomotor dysfunction and pulmonary/systemic inflammation were enhanced by the DEG coexposure. PMID:20462391

  5. Circulating metabolites of strawberry mediate reductions in vascular inflammation and endothelial dysfunction in db/db mice.

    PubMed

    Petersen, Chrissa; Bharat, Divya; Cutler, Brett Ronald; Gholami, Samira; Denetso, Christopher; Mueller, Jennifer Ellen; Cho, Jae Min; Kim, Ji-Seok; Symons, J David; Anandh Babu, Pon Velayutham

    2018-07-15

    Cardiovascular disease is 2-4-fold more prevalent in patients with diabetes. Human studies support the cardiovascular benefits of strawberry consumption but the effects of strawberry on diabetic vasculature are unknown. We tested the hypothesis that dietary strawberry supplementation attenuates vascular inflammation and dysfunction in diabetic mice. Seven-week-old diabetic db/db mice that consumed standard diet (db/db) or diet supplemented with 2.35% freeze-dried strawberry (db/db + SB) for ten weeks were compared to non-diabetic control mice (db/+). Indices of vascular inflammation and dysfunction were measured. Endothelial cells (ECs) were isolated from the vasculature to determine the influence of strawberry on them. The effect of metabolites of strawberry on endothelial inflammation was determined by incubating mouse aortic ECs (MAECs) with ±5% serum, obtained from strawberry fed mice (metabolites serum) or standard diet fed mice (control serum) ± 25 mM glucose and 100 μM palmitate. db/db mice exhibited an increased monocyte binding to vessel, elevated blood pressure, and reduced endothelial-dependent vasorelaxation compared with db/+ mice but each defect was attenuated in db/db + SB mice. The elevation of inflammatory molecules, NOX2 and inhibitor-κB kinase observed in ECs from db/db vs. db/+ mice was suppressed in db/db + SB mice. Glucose and palmitate increased endothelial inflammation in MAECs but were normalized by co-incubation with metabolites serum. Dietary supplementation of strawberry attenuates indices of vascular inflammation and dysfunction in diabetic db/db mice. The effect of strawberry on vasculature is endothelial-dependent and possibly mediated through their circulating metabolites. Strawberry might complement conventional therapies to improve vascular complications in diabetics. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. SIRT1 inhibits NADPH oxidase activation and protects endothelial function in the rat aorta: implications for vascular aging.

    PubMed

    Zarzuelo, María José; López-Sepúlveda, Rocío; Sánchez, Manuel; Romero, Miguel; Gómez-Guzmán, Manuel; Ungvary, Zoltan; Pérez-Vizcaíno, Francisco; Jiménez, Rosario; Duarte, Juan

    2013-05-01

    Vascular aging is characterized by up-regulation of NADPH oxidase, oxidative stress and endothelial dysfunction. Previous studies demonstrate that the activity of the evolutionarily conserved NAD(+)-dependent deacetylase SIRT1 declines with age and that pharmacological activators of SIRT1 confer significant anti-aging cardiovascular effects. To determine whether dysregulation of SIRT1 promotes NADPH oxidase-dependent production of reactive oxygen species (ROS) and impairs endothelial function we assessed the effects of three structurally different inhibitors of SIRT1 (nicotinamide, sirtinol, EX527) in aorta segments isolated from young Wistar rats. Inhibition of SIRT1 induced endothelial dysfunction, as shown by the significantly reduced relaxation to the endothelium-dependent vasodilators acetylcholine and the calcium ionophore A23187. Endothelial dysfunction induced by SIRT1 inhibition was prevented by treatment of the vessels with the NADPH oxidase inhibitor apocynin or superoxide dismutase. Inhibition of SIRT1 significantly increased vascular superoxide production, enhanced NADPH oxidase activity, and mRNA expression of its subunits p22(phox) and NOX4, which were prevented by resveratrol. Peroxisome proliferator-activated receptor-α (PPARα) activation mimicked the effects of resveratrol while PPARα inhibition prevented the effects of this SIRT1 activator. SIRT1 co-precipitated with PPARα and nicotinamide increased the acetylation of the PPARα coactivator PGC-1α, which was suppressed by resveratrol. In conclusion, impaired activity of SIRT1 induces endothelial dysfunction and up-regulates NADPH oxidase-derived ROS production in the vascular wall, mimicking the vascular aging phenotype. Moreover, a new mechanism for controlling endothelial function after SIRT1 activation involves a decreased PGC-1α acetylation and the subsequent PPARα activation, resulting in both decreased NADPH oxidase-driven ROS production and NO inactivation. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Mitochondria-targeted antioxidant (MitoQ) ameliorates age-related arterial endothelial dysfunction in mice.

    PubMed

    Gioscia-Ryan, Rachel A; LaRocca, Thomas J; Sindler, Amy L; Zigler, Melanie C; Murphy, Michael P; Seals, Douglas R

    2014-06-15

    Age-related arterial endothelial dysfunction, a key antecedent of the development of cardiovascular disease (CVD), is largely caused by a reduction in nitric oxide (NO) bioavailability as a consequence of oxidative stress. Mitochondria are a major source and target of vascular oxidative stress when dysregulated. Mitochondrial dysregulation is associated with primary ageing, but its role in age-related endothelial dysfunction is unknown. Our aim was to determine the efficacy of a mitochondria-targeted antioxidant, MitoQ, in ameliorating vascular endothelial dysfunction in old mice. Ex vivo carotid artery endothelium-dependent dilation (EDD) to increasing doses of acetylcholine was impaired by ∼30% in old (∼27 months) compared with young (∼8 months) mice as a result of reduced NO bioavailability (P < 0.05). Acute (ex vivo) and chronic (4 weeks in drinking water) administration of MitoQ completely restored EDD in older mice by improving NO bioavailability. There were no effects of age or MitoQ on endothelium-independent dilation to sodium nitroprusside. The improvements in endothelial function with MitoQ supplementation were associated with the normalization of age-related increases in total and mitochondria-derived arterial superoxide production and oxidative stress (nitrotyrosine abundance), as well as with increases in markers of vascular mitochondrial health, including antioxidant status. MitoQ also reversed the age-related increase in endothelial susceptibility to acute mitochondrial damage (rotenone-induced impairment in EDD). Our results suggest that mitochondria-derived oxidative stress is an important mechanism underlying the development of endothelial dysfunction in primary ageing. Mitochondria-targeted antioxidants such as MitoQ represent a promising novel strategy for the preservation of vascular endothelial function with advancing age and the prevention of age-related CVD. © 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.

  8. Mitochondria-targeted antioxidant (MitoQ) ameliorates age-related arterial endothelial dysfunction in mice

    PubMed Central

    Gioscia-Ryan, Rachel A; LaRocca, Thomas J; Sindler, Amy L; Zigler, Melanie C; Murphy, Michael P; Seals, Douglas R

    2014-01-01

    Age-related arterial endothelial dysfunction, a key antecedent of the development of cardiovascular disease (CVD), is largely caused by a reduction in nitric oxide (NO) bioavailability as a consequence of oxidative stress. Mitochondria are a major source and target of vascular oxidative stress when dysregulated. Mitochondrial dysregulation is associated with primary ageing, but its role in age-related endothelial dysfunction is unknown. Our aim was to determine the efficacy of a mitochondria-targeted antioxidant, MitoQ, in ameliorating vascular endothelial dysfunction in old mice. Ex vivo carotid artery endothelium-dependent dilation (EDD) to increasing doses of acetylcholine was impaired by ∼30% in old (∼27 months) compared with young (∼8 months) mice as a result of reduced NO bioavailability (P < 0.05). Acute (ex vivo) and chronic (4 weeks in drinking water) administration of MitoQ completely restored EDD in older mice by improving NO bioavailability. There were no effects of age or MitoQ on endothelium-independent dilation to sodium nitroprusside. The improvements in endothelial function with MitoQ supplementation were associated with the normalization of age-related increases in total and mitochondria-derived arterial superoxide production and oxidative stress (nitrotyrosine abundance), as well as with increases in markers of vascular mitochondrial health, including antioxidant status. MitoQ also reversed the age-related increase in endothelial susceptibility to acute mitochondrial damage (rotenone-induced impairment in EDD). Our results suggest that mitochondria-derived oxidative stress is an important mechanism underlying the development of endothelial dysfunction in primary ageing. Mitochondria-targeted antioxidants such as MitoQ represent a promising novel strategy for the preservation of vascular endothelial function with advancing age and the prevention of age-related CVD. PMID:24665093

  9. Oxidative and inflammatory signals in obesity-associated vascular abnormalities.

    PubMed

    Reho, John J; Rahmouni, Kamal

    2017-07-15

    Obesity is associated with increased cardiovascular morbidity and mortality in part due to vascular abnormalities such as endothelial dysfunction and arterial stiffening. The hypertension and other health complications that arise from these vascular defects increase the risk of heart diseases and stroke. Prooxidant and proinflammatory signaling pathways as well as adipocyte-derived factors have emerged as critical mediators of obesity-associated vascular abnormalities. Designing treatments aimed specifically at improving the vascular dysfunction caused by obesity may provide an effective therapeutic approach to prevent the cardiovascular sequelae associated with excessive adiposity. In this review, we discuss the recent evidence supporting the role of oxidative stress and cytokines and inflammatory signals within the vasculature as well as the impact of the surrounding perivascular adipose tissue (PVAT) on the regulation of vascular function and arterial stiffening in obesity. In particular, we focus on the highly plastic nature of the vasculature in response to altered oxidant and inflammatory signaling and highlight how weight management can be an effective therapeutic approach to reduce the oxidative stress and inflammatory signaling and improve vascular function. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  10. Vascular dysfunction in preeclampsia.

    PubMed

    Brennan, Lesley J; Morton, Jude S; Davidge, Sandra T

    2014-01-01

    Preeclampsia is a complex disorder which affects an estimated 5% of all pregnancies worldwide. It is diagnosed by hypertension in the presence of proteinuria after the 20th week of pregnancy and is a prominent cause of maternal morbidity and mortality. As delivery is currently the only known treatment, preeclampsia is also a leading cause of preterm delivery. Preeclampsia is associated with maternal vascular dysfunction, leading to serious cardiovascular risk both during and following pregnancy. Endothelial dysfunction, resulting in increased peripheral resistance, is an integral part of the maternal syndrome. While the cause of preeclampsia remains unknown, placental ischemia resulting from aberrant placentation is a fundamental characteristic of the disorder. Poor placentation is believed to stimulate the release of a number of factors including pro- and antiangiogenic factors and inflammatory activators into the maternal systemic circulation. These factors are critical mediators of vascular function and impact the endothelium in distinctive ways, including enhanced endothelial oxidative stress. The mechanisms of action and the consequences on the maternal vasculature will be discussed in this review. © 2013 John Wiley & Sons Ltd.

  11. Invasion of vascular cells in vitro by Porphyromonas endodontalis.

    PubMed

    Dorn, B R; Harris, L J; Wujick, C T; Vertucci, F J; Progulske-Fox, A

    2002-04-01

    The objective of this study was to determine whether laboratory strains and clinical isolates of microorganisms associated with root canal infections can invade primary cultures of cardiovascular cells. Quantitative levels of bacterial invasion of human coronary artery endothelial cells (HCAEC) and coronary artery smooth muscle cells (CASMC) were measured using a standard antibiotic protection assay. Transmission electron microscopy was used to confirm and visualize internalization within the vascular cells. Of the laboratory and clinical strains tested, only P. endodontalis ATCC 35406 was invasive in an antibiotic protection assay using HCAEC and CASMC. Invasion of P. endodontalis ATCC 35406 was confirmed by transmission electron microscopy. Certain microorganisms associated with endodontic infections are invasive. If bacterial invasion of the vasculature contributes to the pathogenesis of cardiovascular disease, then microorganisms in the pulp chamber represent potential pathogens.

  12. Prevention of vascular dysfunction and arterial hypertension in mice generated by assisted reproductive technologies by addition of melatonin to culture media.

    PubMed

    Rexhaj, Emrush; Pireva, Agim; Paoloni-Giacobino, Ariane; Allemann, Yves; Cerny, David; Dessen, Pierre; Sartori, Claudio; Scherrer, Urs; Rimoldi, Stefano F

    2015-10-01

    Assisted reproductive technologies (ART) induce vascular dysfunction in humans and mice. In mice, ART-induced vascular dysfunction is related to epigenetic alteration of the endothelial nitric oxide synthase (eNOS) gene, resulting in decreased vascular eNOS expression and nitrite/nitrate synthesis. Melatonin is involved in epigenetic regulation, and its administration to sterile women improves the success rate of ART. We hypothesized that addition of melatonin to culture media may prevent ART-induced epigenetic and cardiovascular alterations in mice. We, therefore, assessed mesenteric-artery responses to acetylcholine and arterial blood pressure, together with DNA methylation of the eNOS gene promoter in vascular tissue and nitric oxide plasma concentration in 12-wk-old ART mice generated with and without addition of melatonin to culture media and in control mice. As expected, acetylcholine-induced mesenteric-artery dilation was impaired (P = 0.008 vs. control) and mean arterial blood pressure increased (109.5 ± 3.8 vs. 104.0 ± 4.7 mmHg, P = 0.002, ART vs. control) in ART compared with control mice. These alterations were associated with altered DNA methylation of the eNOS gene promoter (P < 0.001 vs. control) and decreased plasma nitric oxide concentration (10.1 ± 11.1 vs. 29.5 ± 8.0 μM) (P < 0.001 ART vs. control). Addition of melatonin (10(-6) M) to culture media prevented eNOS dysmethylation (P = 0.005, vs. ART + vehicle), normalized nitric oxide plasma concentration (23.1 ± 14.6 μM, P = 0.002 vs. ART + vehicle) and mesentery-artery responsiveness to acetylcholine (P < 0.008 vs. ART + vehicle), and prevented arterial hypertension (104.6 ± 3.4 mmHg, P < 0.003 vs. ART + vehicle). These findings provide proof of principle that modification of culture media prevents ART-induced vascular dysfunction. We speculate that this approach will also allow preventing ART-induced premature atherosclerosis in humans. Copyright © 2015 the American Physiological Society.

  13. A Radiation-Induced Hippocampal Vascular Injury Surrogate Marker Predicts Late Neurocognitive Dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farjam, Reza; Pramanik, Priyanka; Aryal, Madhava P.

    Purpose: We aimed to develop a hippocampal vascular injury surrogate marker for early prediction of late neurocognitive dysfunction in patients receiving brain radiation therapy (RT). Methods and Materials: Twenty-seven patients (17 males and 10 females, 31-80 years of age) were enrolled in an institutional review board-approved prospective longitudinal study. Patients received diagnoses of low-grade glioma or benign tumor and were treated by (3D) conformal or intensity-modulated RT with a median dose of 54 Gy (50.4-59.4 Gy in 1.8-Gy fractions). Six dynamic-contrast enhanced MRI scans were performed from pre-RT to 18-month post-RT, and quantified for vascular parameters related to blood-brain barrier permeability, K{sup trans},more » and the fraction of blood plasma volume, V{sub p}. The temporal changes in the means of hippocampal transfer constant K{sup trans} and V{sub p} after starting RT were modeled by integrating the dose effects with age, sex, hippocampal laterality, and presence of tumor or edema near a hippocampus. Finally, the early vascular dose response in hippocampi was correlated with neurocognitive dysfunction at 6 and 18 months post-RT. Results: The mean K{sup trans} Increased significantly from pre-RT to 1-month post-RT (P<.0004), which significantly depended on sex (P<.0007) and age (P<.00004), with the dose response more pronounced in older females. Also, the vascular dose response in the left hippocampus of females correlated significantly with changes in memory function at 6 (r=−0.95, P<.0006) and 18-months (r=−0.88, P<.02) post-RT. Conclusions: The early hippocampal vascular dose response could be a predictor of late neurocognitive dysfunction. A personalized hippocampus sparing strategy may be considered in the future.« less

  14. Curcumin supplementation ameliorated vascular dysfunction and improved antioxidant status in rats fed a high-sucrose, high-fat diet.

    PubMed

    Tsai, I-Jung; Chen, Chia-Wen; Tsai, Shin-Yu; Wang, Pei-Yuan; Owaga, Eddy; Hsieh, Rong-Hong

    2018-01-29

    Vascular endothelial dysfunction is a potential risk factor for cardiovascular disease. This study evaluated the effect of curcumin on factors associated with vascular dysfunction using rats fed a high-sucrose, high-fat (HSF) diet. The experiment included 2 animal feeding phases. In the first feeding phase, male Sprague-Dawley rats were randomly divided into 2 groups: the control group (n = 8) was fed a standard diet (AIN-93G) and the HSF group (n = 24) was fed an HSF diet for 8 weeks to induce obesity. In the second feeding phase, lasting 4 weeks, the HSF group was randomly divided into 3 subgroups: the O group (n = 8) continued feeding on the HSF diet, the OA group (n = 8) had the HSF diet replaced with AIN-93G, and the OC group (n = 8) was fed the HSF diet supplemented with curcumin (300 mg/kg body weight daily). After 8 weeks, the HSF diet significantly elevated levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), insulin, homeostatic model assessment insulin resistance (HOMA-IR), low-density lipoprotein cholesterol (LDL-C), homocysteine (Hcy), C-reactive protein (CRP), vascular cell adhesion molecule 1 (VCAM-1), and intercellular adhesion molecule 1 (ICAM-1) but significantly reduced levels of nitric oxide (NO) and high-density lipoprotein cholesterol (HDL-C). After dietary intervention, the OA and OC groups exhibited significantly lower levels of AST, ALT, HOMA-IR, cholesterol, LDL-C, Hcy, CRP, VCAM-1, and ICAM-1 and higher levels of NO and catalase (CAT) activity compared with the O group. Superoxide dismutase, CAT, and glutathione peroxidase activities were increased in the OA group, while CAT levels were enhanced in the OC group. In conclusion, this study showed that curcumin supplementation and diet modification can inhibit HSF diet-induced vascular dysfunction potentially by enhancing NO production and antioxidant enzyme activities, thereby suppressing inflammation and oxidative damage in the vascular endothelium.

  15. A Review of Neurogenic Stunned Myocardium

    PubMed Central

    Wongrakpanich, Supakanya; Agrawal, Akanksha; Yadlapati, Sujani; Kishlyansky, Marina; Figueredo, Vincent

    2017-01-01

    Neurologic stunned myocardium (NSM) is a phenomenon where neurologic events give rise to cardiac abnormalities. Neurologic events like stroke and seizures cause sympathetic storm and autonomic dysregulation that result in myocardial injury. The clinical presentation can involve troponin elevation, left ventricular dysfunction, and ECG changes. These findings are similar to Takotsubo cardiomyopathy and acute coronary syndrome. It is difficult to distinguish NSM from acute coronary syndrome based on clinical presentation alone. Because of this difficulty, a patient with NSM who is at high risk for coronary heart disease may undergo cardiac catheterization to rule out coronary artery disease. The objective of this review of literature is to enhance physician's awareness of NSM and its features to help tailor management according to the patient's clinical profile. PMID:28875040

  16. Copper Transporter ATP7A Protects Against Endothelial Dysfunction in Type 1 Diabetic Mice by Regulating Extracellular Superoxide Dismutase

    PubMed Central

    Sudhahar, Varadarajan; Urao, Norifumi; Oshikawa, Jin; McKinney, Ronald D.; Llanos, Roxana M.; Mercer, Julian F.B.; Ushio-Fukai, Masuko; Fukai, Tohru

    2013-01-01

    Oxidative stress and endothelial dysfunction contribute to vascular complication in diabetes. Extracellular superoxide dismutase (SOD3) is one of the key antioxidant enzymes that obtains copper via copper transporter ATP7A. SOD3 is secreted from vascular smooth muscles cells (VSMCs) and anchors at the endothelial surface. The role of SOD3 and ATP7A in endothelial dysfunction in type 1 diabetes mellitus (T1DM) is entirely unknown. Here we show that the specific activity of SOD3, but not SOD1, is decreased, which is associated with increased O2•− production in aortas of streptozotocin-induced and genetically induced Ins2Akita T1DM mice. Exogenous copper partially rescued SOD3 activity in isolated T1DM vessels. Functionally, acetylcholine-induced, endothelium-dependent relaxation is impaired in T1DM mesenteric arteries, which is rescued by SOD mimetic tempol or gene transfer of SOD3. Mechanistically, ATP7A expression in T1DM vessels is dramatically decreased whereas other copper transport proteins are not altered. T1DM-induced endothelial dysfunction and decrease of SOD3 activity are rescued in transgenic mice overexpressing ATP7A. Furthermore, SOD3-deficient T1DM mice or ATP7A mutant T1DM mice augment endothelial dysfunction and vascular O2•− production versus T1DM mice. These effects are in part due to hypoinsulinemia in T1DM mice, since insulin treatment, but not high glucose, increases ATP7A expression in VSMCs and restores SOD3 activity in the organoid culture of T1DM vessels. In summary, a decrease in ATP7A protein expression contributes to impaired SOD3 activity, resulting in O2•− overproduction and endothelial dysfunction in blood vessels of T1DM. Thus, restoring copper transporter function is an essential therapeutic approach for oxidant stress–dependent vascular and metabolic diseases. PMID:23884884

  17. Metabolic cardiac imaging in severe coronary disease: assessment of viability with iodine-123-iodophenylpentadecanoic acid and multicrystal gamma camera, and correlation with biopsy.

    PubMed

    Murray, G; Schad, N; Ladd, W; Allie, D; vander Zwagg, R; Avet, P; Rockett, J

    1992-07-01

    Fifteen patients with coronary disease and resting left ventricular ejection fractions of less than or equal to 0.35 underwent resting metabolic cardiac imaging utilizing 1 mCi [123I]iodophenylpentadecanoic acid (IPPA) intravenously and a multicrystal gamma camera. Parametric images of regional rates of IPPA clearance and accumulation were generated. Forty-two vascular territories (22 infarcted) were evaluated by metabolic imaging as well as transmural myocardial biopsy. Despite resting akinesis or dyskinesis in 20/22 (91%) infarcted territories, 16/22 (73%) of these territories were metabolically viable. Transmural myocardial biopsies in all patients (43 sites, 42 vascular territories) during coronary bypass surgery confirmed IPPA results in 39/43 patients (91%). When compared to biopsy, scan sensitivity for viability was 33/36 (92%) with a specificity of 6/7 (86%). Eighty percent of bypassed, infarcted but IPPA viable segments demonstrated improved regional systolic wall motion postoperatively as assessed by exercise radionuclide angiography. We conclude resting IPPA imaging identifies viable myocardium, thereby providing a safe, cost-effective technique for myocardial viability assessment.

  18. Cardiomyocyte-specific desmin rescue of desmin null cardiomyopathy excludes vascular involvement.

    PubMed

    Weisleder, Noah; Soumaka, Elisavet; Abbasi, Shahrzad; Taegtmeyer, Heinrich; Capetanaki, Yassemi

    2004-01-01

    Mice deficient in desmin, the muscle-specific member of the intermediate filament gene family, display defects in all muscle types and particularly in the myocardium. Desmin null hearts develop cardiomyocyte hypertrophy and dilated cardiomyopathy (DCM) characterized by extensive myocyte cell death, calcific fibrosis and multiple ultrastructural defects. Several lines of evidence suggest impaired vascular function in desmin null animals. To determine whether altered capillary function or an intrinsic cardiomyocyte defect is responsible for desmin null DCM, transgenic mice were generated to rescue desmin expression specifically to cardiomyocytes. Desmin rescue mice display a wild-type cardiac phenotype with no fibrosis or calcification in the myocardium and normalization of coronary flow. Cardiomyocyte ultrastructure is also restored to normal. Markers of hypertrophy upregulated in desmin null hearts return to wild-type levels in desmin rescue mice. Working hearts were perfused to assess coronary flow and cardiac power. Restoration of a wild-type cardiac phenotype in a desmin null background by expression of desmin specifically within cardiomyocyte indicates that defects in the desmin null heart are due to an intrinsic cardiomyocytes defect rather than compromised coronary circulation.

  19. Myeloperoxidase mediated HDL oxidation and HDL proteome changes do not contribute to dysfunctional HDL in Chinese subjects with coronary artery disease

    PubMed Central

    Yu, Haiyi; Li, Lei; He, Liyun; Gao, Wei; Liu, Xiaodan; Guo, Yanhong; Byun, Jaeman; Zhang, Jifeng; Chen, Y. Eugene

    2018-01-01

    High density lipoprotein (HDL) cholesterol levels and cholesterol efflux capacity (CEC) are inversely correlated with coronary artery disease (CAD) risk. Myeloperoxidase (MPO) derived oxidants and HDL proteome changes are implicated in HDL dysfunction in subjects with CAD in the United States; however, the effect of MPO on HDL function and HDL proteome in ethnic Chinese population is unknown. We recruited four matched ethnic Chinese groups (20 patients each): subjects with 1) low HDL levels (HDL levels in men <40mg/dL and women <50mg/dL) and non-CAD (identified by coronary angiography or cardiac CT angiography); 2) low HDL and CAD; 3) high HDL (men >50mg/dL; women >60mg/dL) with no CAD; and 4) high HDL with CAD. Serum cytokines, serum MPO levels, serum CEC, MPO-oxidized HDL tyrosine moieties, and HDL proteome were assessed by mass spectrometry individually in the four groups. The cytokines, MPO levels, and HDL proteome profiles were not significantly different between the four groups. As expected, CEC was depressed in the entire CAD group but more specifically in the CAD low-HDL group. HDL of CAD subjects had significantly higher 3-nitrotyrosine than non-CAD subjects, but the MPO-specific 3-chlorotyrosine was unchanged; CEC in the CAD low-HDL group did not correlate with either HDL 3-chlorotyrosine or 3-nitrotyrosine levels. Neither 3-chlorotyrosine, which is MPO-specific, nor 3-nitrotyrosine generated from MPO or other reactive nitrogen species was associated with CEC. MPO mediated oxidative stress and HDL proteome composition changes are not the primary cause HDL dysfunction in Chinese subjects with CAD. These studies highlight ethnic differences in HDL dysfunction between United States and Chinese cohorts raising possibility of unique pathways of HDL dysfunction in this cohort. PMID:29505607

  20. The effects of good glycaemic control on left ventricular and coronary endothelial functions in patients with poorly controlled Type 2 diabetes mellitus.

    PubMed

    Erdogan, Dogan; Akcay, Salaheddin; Yucel, Habil; Ersoy, I Hakkı; Icli, Atilla; Kutlucan, Ali; Arslan, Akif; Yener, Mahmut; Ozaydin, Mehmet; Tamer, M Numan

    2015-03-01

    Diabetics are at risk for developing overt heart failure and subclinical left ventricular (LV) dysfunction. Also, impaired coronary flow reserve (CFR) reflecting coronary microvascular dysfunction is common in diabetics. However, no substantial data regarding the effects of good glycaemic control on subclinical LV dysfunction and CFR are available. To investigate whether good glycaemic control had favourable effects on subclinical LV dysfunction and CFR. Prospective, open-label, follow-up study. Diabetics (n = 202) were classified based on baseline HbA1C levels: patients with good (group 1) (<7·0%) and poor glycaemic control (≥7·0%). All patients underwent echocardiographic examination at baseline evaluation, and it was repeated at months 6 and 12. Based on HbA1C levels obtained at month 6, the patients with poor glycaemic control were divided into two groups: achieved (group 2) and not achieved good glycaemic control (group 3). The groups were comparable with respect to diastolic function parameters including left atrium diameter, mitral E/A, Sm , Em /Am , E/E' and Tei index, and these parameters did not significantly change at follow-up in the groups. At baseline, CFR was slightly higher in group 1 than in group 2 and group 3, but it did not reach statistically significant level. At follow-up, CFR remained unchanged in group 1 (P = 0·58) and group 3 (P = 0·86), but increased in group 2 (P = 0·02: month 6 vs baseline and P = 0·004: month 12 vs baseline). Diabetics with poor and good glycaemic control were comparable with respect to echocardiographic parameters reflecting subclinical LV dysfunction, and good glycaemic control did not affect these parameters. However, good glycaemic control improved CFR. © 2014 John Wiley & Sons Ltd.

  1. The impact of pressure overload on coronary vascular changes following myocardial infarction in rats.

    PubMed

    Chen, Jiqiu; Petrov, Artiom; Yaniz-Galende, Elisa; Liang, Lifan; de Haas, Hans J; Narula, Jagat; Hajjar, Roger J

    2013-03-01

    This study investigates the impact of pressure overload on vascular changes after myocardial infarction (MI) in rats. To evaluate the effect of pressure overload, MI was induced in three groups: 1) left coronary artery ligation for 1 mo (MI-1m), 2) ischemia 30 min/reperfusion for 1 mo (I/R-1m), and 3) ischemia-reperfusion (I/R) was performed after pressure overload induced by aortic banding for 2 mo; 1 mo post-I/R, aortic constriction was released (Ab+I/R+DeAb). Heart function was assessed by echocardiography and in vivo hemodynamics. Resin casting and three-dimensional imaging with microcomputed tomography were used to characterize changes in coronary vasculature. TTC (triphenyltetrazohum chloride) staining and Masson's Trichrome were conducted in parallel experiments. In normal rats, MI induced by I/R and permanent occlusion was transmural or subendocardial. Occluded arterial branches vanished in MI-1m rats. A short residual tail was retained, distal to the occluded site in the ischemic area in I/R-1m hearts. Vascular pathological changes in transmural MI mostly occurred in ischemic areas and remote vasculature remained normal. In pressure overloaded rats, I/R injury induced a sub-MI in which ischemia was transmural, but myocardium in the involved area had survived. The ischemic arterial branches were preserved even though the capillaries were significantly diminished and the pathological changes were extended to remote areas, characterized by fibrosis, atrial thrombus, and pulmonary edema in the Ab+I/R+DeAb group. Pressure overload could increase vascular tolerance to I/R injury, but also trigger severe global ventricular fibrosis and results in atrial thrombus and pulmonary edema.

  2. [Pulse wave velocity of the leg minus that of the arm measured with a custom device correlates to the coronary calcium quantification].

    PubMed

    Rico Martín, S; de Nicolás Jiménez, J M; Moyano Calvente, S L; Mogollón Jiménez, M V; Vega Fernández, J; Calderón García, J F; Bacaicoa Lopez de Sabando, M A; Tardio, M; Sánchez Muñoz-Torrero, J F

    2016-05-01

    The pulse wave velocity (PWV) in the great arteries is an indicator of vascular risk. Our objective was to identify the PWV index between the arms and legs that best correlates with the coronary calcium quantification (CCQ) and to compare it with other methods. Eight-one patients without vascular disease underwent the following measurements: CCQ; carotid intima-media thickness (IMT); carotid-femoral PWV (cfPWV), using COMPLIOR; and PWV in the arms and legs, with our own device (abiPWV, ankle brachial index PWV). The difference in PWVs between the leg and arm (l-a PWV) measured with abiPWV was the index that best correlated with CCQ (r=0.401, P<.001). The correlation between IMT and CCQ and between CF-PWV and CCQ were r=0.366, P=.001; and r=0.385, P=.001, respectively. For a CCQ score higher than 100 as a marker of significant coronary arteriosclerosis, the areas under the curve for l-a PWV, IMT and cfPWV were 0.721 (P=.002), 0.758 (P<.001) and 0.636 (P=.058), respectively. For patients without vascular disease, the l-a PWV measured with abiPWV appears to be the index that best correlates with the CCQ. This association is comparable to that between IMT and CCQ and between cfPWV and CCQ. The abiPWV is an easy-to-use device that can help improve vascular risk stratification. Copyright © 2016 Elsevier España, S.L.U. y Sociedad Española de Medicina Interna (SEMI). All rights reserved.

  3. Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles.

    PubMed

    Jansen, Felix; Yang, Xiaoyan; Hoelscher, Marion; Cattelan, Arianna; Schmitz, Theresa; Proebsting, Sebastian; Wenzel, Daniela; Vosen, Sarah; Franklin, Bernardo S; Fleischmann, Bernd K; Nickenig, Georg; Werner, Nikos

    2013-10-29

    Repair of the endothelium after vascular injury is crucial for preserving endothelial integrity and preventing the development of vascular disease. The underlying mechanisms of endothelial cell repair are largely unknown. We sought to investigate whether endothelial microparticles (EMPs), released from apoptotic endothelial cells (ECs), influence EC repair. Systemic treatment of mice with EMPs after electric denudation of the endothelium accelerated reendothelialization in vivo. In vitro experiments revealed that EMP uptake in ECs promotes EC migration and proliferation, both critical steps in endothelial repair. To dissect the underlying mechanisms, Taqman microRNA array was performed, and microRNA (miR)-126 was identified as the predominantly expressed miR in EMPs. The following experiments demonstrated that miR-126 was transported into recipient human coronary artery endothelial cells by EMPs and functionally regulated the target protein sprouty-related, EVH1 domain-containing protein 1 (SPRED1). Knockdown of miR-126 in EMPs abrogated EMP-mediated effects on human coronary artery endothelial cell migration and proliferation in vitro and reendothelialization in vivo. Interestingly, after simulating diabetic conditions, EMPs derived from glucose-treated ECs contained significantly lower amounts of miR-126 and showed reduced endothelial repair capacity in vitro and in vivo. Finally, expression analysis of miR-126 in circulating microparticles from 176 patients with stable coronary artery disease with and without diabetes mellitus revealed a significantly reduced miR-126 expression in circulating microparticles from diabetic patients. Endothelial microparticles promote vascular endothelial repair by delivering functional miR-126 into recipient cells. In pathological hyperglycemic conditions, EMP-mediated miR-126-induced EC repair is altered.

  4. [Experimental study on vascular bundle implantation combined with cellular transplantation in treating rabbit femoral head necrosis].

    PubMed

    Chen, Shuang-Tao; Zhang, Wei-Ping; Liu, Chang-An; Wang, Jun-Jiang; Song, Heng-Yi; Chai, Zhi-wen

    2013-03-01

    To discuss the feasibility of vascular bundle implantation combined with allogeneic bone marrow stromal cells (BMSCs) transplantation in treating rabbit femoral head osteonecrosis and bone defect, in order to explore a new method for the treatment of femoral head necrosis. Thirty-six New Zealand rabbits were randomly divided into three groups,with 12 rabbits in each group. Bilateral femoral heads of the rabbits were studied in the experiment. The models were made by liquid nitrogen frozen, and the femoral heads were drilled to cause bone defect. Group A was the control group,group B was stem cells transplantaion group of allograft marrow stromal,and group C was stem cells transplantation group of allograft marrow stromal combined with vascular bundle implantation. Three rabbits of each group were sacrificed respectively at 2, 4, 8, 12 weeks after operation. All specimens of the femoral heads were sliced for HE staining. Furthermore ,vascular density and the percentage of new bone trabecula of femoral head coronary section in defect area were measured and analyzed statistically. In group C,new bone trabecula and original micrangium formed at the 2nd week after operation; new bone trabecula was lamellar and interlaced with abundant micrangium at the 8th week;at the 12th week,the broadened,coarsened bone trabecula lined up regularly,and the mature bone trabecula and new marrow were visible. At the 2nd week after operation,there was no statistical significance in the percentage of new bone trabecula of femoral head coronary section in defect area between group B and C. While at 4, 8, 12 week after operation, vascular density and the percentage of new bone trabecula of femoral head coronary section in defect area of group C was higher than that of group B. Allogeneic bone marrow stromal cells cultured in vivo can form new bone trabecula, and can be applied to allotransplant. Vascular bundle implanted into the bone defect area of femoral head necrosis could improve blood supply, and promote the formation of bone trabecula.

  5. Long-term effects of bariatric surgery on peripheral endothelial function and coronary microvascular function.

    PubMed

    Tarzia, Pierpaolo; Lanza, Gaetano A; Sestito, Alfonso; Villano, Angelo; Russo, Giulio; Figliozzi, Stefano; Lamendola, Priscilla; De Vita, Antonio; Crea, Filippo

    We previously demonstrated that bariatric surgery (BS) leads to a short-term significant improvement of endothelial function and coronary microvascular function. In this study we assessed whether BS maintains its beneficial effect at long-term follow up. We studied 19 morbidly obese patients (age 43±9years, 12 women) without any evidence of cardiovascular disease who underwent BS. Patients were studied before BS, at 3 months and at 4.0±1.5years follow up. Peripheral vascular function was assessed by flow-mediated dilation (FMD) and nitrate-mediated dilation (NMD), i.e., brachial artery diameter changes in response to post-ischemic forearm hyperhaemia and to nitroglycerin administration, respectively. Coronary microvascular function was assessed by measuring coronary blood flow (CBF) response to intravenous adenosine and to cold pressor test (CPT) in the left anterior descending coronary artery. Together with improvement of anthropometric and metabolic profile, at long-term follow-up patients showed a significant improvement of FMD (6.43±2.88 vs. 8.21±1.73%, p=0.018), and CBF response to both adenosine (1.73±0.48 vs. 2.58±0.54; p<0.01) and CPT (1.43±0.30 vs. 2.23±0.48; p<0.01), compared to basal values. No differences in vascular end-points were shown at 3-month and 4-year follow-up after BS. Our data show that, in morbidly obese patients, BS exerts beneficial and long lasting effects on peripheral endothelial function and on coronary microvascular dilator function. Copyright © 2016 Asia Oceania Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.

  6. Relationship Between Coronary Contrast-Flow Quantitative Flow Ratio and Myocardial Ischemia Assessed by SPECT MPI.

    PubMed

    Smit, Jeff M; Koning, Gerhard; van Rosendael, Alexander R; Dibbets-Schneider, Petra; Mertens, Bart J; Jukema, J Wouter; Delgado, Victoria; Reiber, Johan H C; Bax, Jeroen J; Scholte, Arthur J

    2017-10-01

    A new method has been developed to calculate fractional flow reserve (FFR) from invasive coronary angiography, the so-called "contrast-flow quantitative flow ratio (cQFR)". Recently, cQFR was compared to invasive FFR in intermediate coronary lesions showing an overall diagnostic accuracy of 85%. The purpose of this study was to investigate the relationship between cQFR and myocardial ischemia assessed by single-photon emission computed tomography myocardial perfusion imaging (SPECT MPI). Patients who underwent SPECT MPI and coronary angiography within 3 months were included. The cQFR computation was performed offline, using dedicated software. The cQFR computation was based on 3-dimensional quantitative coronary angiography (QCA) and computational fluid dynamics. The standard 17-segment model was used to determine the vascular territories. Myocardial ischemia was defined as a summed difference score ≥2 in a vascular territory. A cQFR of ≤0.80 was considered abnormal. Two hundred and twenty-four coronary arteries were analysed in 85 patients. Overall accuracy of cQFR to detect ischemia on SPECT MPI was 90%. In multivariable analysis, cQFR was independently associated with ischemia on SPECT MPI (OR per 0.01 decrease of cQFR: 1.10; 95% CI 1.04-1.18, p = 0.002), whereas clinical and QCA parameters were not. Furthermore, cQFR showed incremental value for the detection of ischemia compared to clinical and QCA parameters (global chi square 48.7 to 62.6; p <0.001). A good relationship between cQFR and SPECT MPI was found. cQFR was independently associated with ischemia on SPECT MPI and showed incremental value to detect ischemia compared to clinical and QCA parameters.

  7. Biophysical markers of the peripheral vasoconstriction response to pain in sickle cell disease

    PubMed Central

    Khaleel, Maha; Sunwoo, John; Shah, Payal; Detterich, Jon A.; Kato, Roberta M.; Thuptimdang, Wanwara; Meiselman, Herbert J.; Sposto, Richard; Tsao, Jennie; Wood, John C.; Zeltzer, Lonnie; Coates, Thomas D.; Khoo, Michael C. K.

    2017-01-01

    Painful vaso-occlusive crisis (VOC), a complication of sickle cell disease (SCD), occurs when sickled red blood cells obstruct flow in the microvasculature. We postulated that exaggerated sympathetically mediated vasoconstriction, endothelial dysfunction and the synergistic interaction between these two factors act together to reduce microvascular flow, promoting regional vaso-occlusions, setting the stage for VOC. We previously found that SCD subjects had stronger vasoconstriction response to pulses of heat-induced pain compared to controls but the relative degrees to which autonomic dysregulation, peripheral vascular dysfunction and their interaction are present in SCD remain unknown. In the present study, we employed a mathematical model to decompose the total vasoconstriction response to pain into: 1) the neurogenic component, 2) the vascular response to blood pressure, 3) respiratory coupling and 4) neurogenic-vascular interaction. The model allowed us to quantify the contribution of each component to the total vasoconstriction response. The most salient features of the components were extracted to represent biophysical markers of autonomic and vascular impairment in SCD and controls. These markers provide a means of phenotyping severity of disease in sickle-cell anemia that is based more on underlying physiology than on genotype. The marker of the vascular component (BMv) showed stronger contribution to vasoconstriction in SCD than controls (p = 0.0409), suggesting a dominant myogenic response in the SCD subjects as a consequence of endothelial dysfunction. The marker of neurogenic-vascular interaction (BMn-v) revealed that the interaction reinforced vasoconstriction in SCD but produced vasodilatory response in controls (p = 0.0167). This marked difference in BMn-v suggests that it is the most sensitive marker for quantifying combined alterations in autonomic and vascular function in SCD in response to heat-induced pain. PMID:28542469

  8. Azilsartan, an angiotensin II type 1 receptor blocker, restores endothelial function by reducing vascular inflammation and by increasing the phosphorylation ratio Ser(1177)/Thr(497) of endothelial nitric oxide synthase in diabetic mice.

    PubMed

    Matsumoto, Sachiko; Shimabukuro, Michio; Fukuda, Daiju; Soeki, Takeshi; Yamakawa, Ken; Masuzaki, Hiroaki; Sata, Masataka

    2014-01-31

    Azilsartan, an angiotensin II type 1 (AT1) receptor blocker (ARB), has a higher affinity for and slower dissociation from AT1 receptors and shows stronger inverse agonism compared to other ARBs. Possible benefits of azilsartan in diabetic vascular dysfunction have not been established. We measured vascular reactivity of aortic rings in male KKAy diabetic mice treated with vehicle, 0.005% azilsartan, or 0.005% candesartan cilexetil for 3 weeks. Expression of markers of inflammation and oxidative stress was measured using semiquantitative RT-PCR in the vascular wall, perivascular fat, and skeletal muscle. Phosphorylation of endothelial nitric oxide synthase (eNOS) at Ser1177 and Thr495 was measured using Western blotting, and the ratio of phosphorylation at Ser1177 to phosphorylation at Thr495 was used as a putative indicator of vascular eNOS activity. (1) Vascular endothelium-dependent relaxation with acetylcholine in KKAy mice was improved by azilsartan treatment compared to candesartan cilexetil; (2) the ratio of Ser1177/Thr495 phosphorylation of eNOS was impaired in KKAy and was effectively restored by azilsartan; (3) anomalies in the expression levels of monocyte chemotactic protein 1 (MCP1), F4/80, NAD(P)H oxidase (Nox) 2, and Nox4 of the aortic wall and in the expression of TNFα in the perivascular fat were strongly attenuated by azilsartan compared to candesartan cilexetil. These results provide evidence that azilsartan prevents endothelial dysfunction in diabetic mice, more potently than does candesartan cilexetil. Azilsartan's higher affinity for and slower dissociation from AT1 receptors may underlie its efficacy in diabetic vascular dysfunction via a dual effect on uncoupled eNOS and on Nox.

  9. Influence of a Multi-parametric Optimization Strategy for General Anesthesia on Postoperative Morbidity and Mortality

    ClinicalTrials.gov

    2017-11-20

    Coronary; Ischemic; Arrhythmias, Cardiac; Heart Failure; Peripheral Vascular Diseases; Dementia; Stroke; Pulmonary Disease, Chronic Obstructive; Respiratory Insufficiency; Alcoholism; Cancer; Diabetes; Renal Insufficiency

  10. Effect of agmatine on experimental vascular endothelial dysfunction.

    PubMed

    Nader, M A; Gamiel, N M; El-Kashef, H; Zaghloul, M S

    2016-05-01

    This study was designed to investigate the effect of agmatine sulfate (AG, CAS2482-00-0) in nicotine (NIC)-induced vascular endothelial dysfunction (VED) in rabbits. NIC was administered to produce VED in rabbits with or without AG for 6 weeks. Serum lipid profile, serum thiobarbituric acid reactive substances, reduced glutathione, superoxide dismutase generation, serum nitrite/nitrate, serum vascular cellular adhesion molecule-1 (VCAM-1), and aortic nuclear factor κB (NF-κB) levels were analyzed.Treatment with AG markedly improves lipid profile and prevented NIC-induced VED and oxidative stress. The mechanism of AG in improving NIC-induced VED may be due to the significant reduction in serum VCAM-1 levels and aortic NF-κB. Thus, it may be concluded that AG reduces the oxidative stress, nitric oxide production, VCAM-1 levels, and aortic NF-κB expression, thereby consequently improving the integrity of vascular endothelium. © The Author(s) 2015.

  11. Connecting the coronaries: How the coronary plexus develops and is functionalized

    PubMed Central

    Dyer, Laura; Pi, Xinchun; Patterson, Cam

    2015-01-01

    The establishment of the coronary circulation is one of the final critical steps during heart development. Despite decades of research, our understanding of how the coronary vasculature develops and connects to the aorta remains limited. This review serves two specific purposes: it addresses recent advances in understanding the origin of the coronary endothelium, and it then focuses on the last crucial step of coronary vasculature development, the connection of the coronary plexus to the aorta. The chick and quail animal models have yielded most of the information for how these connections form, starting with a fine network of vessels that penetrate the aorta and coalesce to form two distinct ostia. Studies in mouse and rat confirm that at least some of these steps are conserved in mammals, but gaps still exist in our understanding of mammalian coronary ostia formation. The signaling cues necessary to guide the coronary plexus to the aorta are also incompletely understood. Hypoxia-inducible transcription factor-1 and its downstream targets are among the few identified genes that promote the formation of the coronary stems. Together, this review summarizes our current knowledge of coronary vascular formation and highlights the significant gaps that remain. In addition, it highlights some of the coronary artery anomalies known to affect human health, demonstrating that even seemingly subtle defects arising from incorrect coronary plexus formation can result in significant health crises. PMID:25173872

  12. Cocaine-induced microvascular vasoconstriction but differential systemic haemodynamic responses in Yucatan versus Yorkshire varieties of swine.

    PubMed Central

    Miao, L.; Núñez, B. D.; Susulic, V.; Wheeler, S.; Carrozza, J. P.; Ross, J. N.; Morgan, J. P.

    1996-01-01

    1. Systemic and coronary haemodynamics were measured in 6 Yorkshire swine and 6 Yucatan miniature swine under isoflurane anaesthesia to investigate the influence of cocaine following its intravenous administration at 1, 3 and 7 mg kg-1. 2. Cocaine in Yorkshire swine decreased mean arterial pressure and rate pressure product (systolic pressure x heart rate), suggesting a cardiac depressant effect, whereas cocaine in Yucatan miniature swine increased these parameters, consistent with a hyperadrenergic state. 3. Cocaine in both Yorkshire swine and Yucatan miniature swine decreased coronary blood flow and coronary flow reserve, and increased coronary vascular resistance. 4. A modest generalized epicardial coronary artery constriction was observed by angiography, without evidence of focal spasm. 5. Our results confirm a marked vasoconstrictor effect of cocaine on the coronary arterial circulation, predominantly distal to the epicardial coronary arteries, but also indicate important differences in the systemic cardiovascular responses to the drug between two closely related strains of animals within the same species. Due to the similarities between the swine and human coronary arterial vasculature, we suggest that vasoconstriction in the coronary microcirculation may produce cardiac toxicity in man. PMID:8821549

  13. Off-pump coronary artery bypass surgery in selected patients is superior to the conventional approach for patients with severely depressed left ventricular function

    PubMed Central

    Caputti, Guido Marco; Palma, José Honório; Gaia, Diego Felipe; Buffolo, Enio

    2011-01-01

    OBJECTIVES: Patients with coronary artery disease and left ventricular dysfunction have high mortality when kept in clinical treatment. Coronary artery bypass grafting can improve survival and the quality of life. Recently, revascularization without cardiopulmonary bypass has been presented as a viable alternative. The aim of this study is to compare patients with left ventricular ejection fractions of less than 20% who underwent coronary artery bypass graft with or without cardiopulmonary bypass. METHODS: From January 2001 to December 2005, 217 nonrandomized, consecutive, and nonselected patients with an ejection fraction less than or equal to 20% underwent coronary artery bypass graft surgery with (112) or without (off-pump) (105) the use of cardiopulmonary bypass. We studied demographic, operative, and postoperative data. RESULTS: There were no demographic differences between groups. The outcome variables showed similar graft numbers in both groups. Mortality was 12.5% in the cardiopulmonary bypass group and 3.8% in the off-pump group. Postoperative complications were statistically different (cardiopulmonary bypass versus off-pump): total length of hospital stay (days)—11.3 vs. 7.2, length of ICU stay (days)—3.7 vs. 2.1, pulmonary complications—10.7% vs. 2.8%, intubation time (hours)—22 vs. 10, postoperative bleeding (mL)—654 vs. 440, acute renal failure—8.9% vs. 1.9% and left-ventricle ejection fraction before discharge—22% vs. 29%. CONCLUSION: Coronary artery bypass grafting without cardiopulmonary bypass in selected patients with severe left ventricular dysfunction is valid and safe and promotes less mortality and morbidity compared with conventional operations. PMID:22189729

  14. NATRIURETIC PEPTIDE SYSTEM GENE VARIANTS ARE ASSOCIATED WITH VENTRICULAR DYSFUNCTION AFTER CORONARY ARTERY BYPASS GRAFTING

    PubMed Central

    Fox, Amanda A.; Collard, Charles D.; Shernan, Stanton K.; Seidman, Christine E.; Seidman, Jonathan G.; Liu, Kuang-Yu; Muehlschlegel, Jochen D.; Perry, Tjorvi E.; Aranki, Sary F.; Lange, Christoph; Herman, Daniel S.; Meitinger, Thomas; Lichtner, Peter; Body, Simon C.

    2009-01-01

    Background Ventricular dysfunction (VnD) after primary coronary artery bypass grafting is associated with increased hospital stay and mortality. Natriuretic peptides have compensatory vasodilatory, natriuretic and paracrine influences on myocardial failure and ischemia. We hypothesized that natriuretic peptide system gene variants independently predict risk of VnD after primary coronary artery bypass grafting. Methods 1164 patients undergoing primary coronary artery bypass grafting with cardiopulmonary bypass at two institutions were prospectively enrolled. After prospectively defined exclusions, 697 Caucasian patients (76 with VnD) were analyzed. VnD was defined as need for ≥ 2 new inotropes and/or new mechanical ventricular support after coronary artery bypass grafting. 139 haplotype-tagging SNPs within 7 genes (NPPA; NPPB; NPPC; NPR1; NPR2; NPR3; CORIN) were genotyped. SNPs univariately associated with VnD were entered into logistic regression models adjusting for clinical covariates predictive of VnD. To control for multiple comparisons, permutation analyses were conducted for all SNP associations. Results After adjusting for clinical covariates and multiple comparisons within each gene, seven NPPA/NPPB SNPs (rs632793, rs6668352, rs549596, rs198388, rs198389, rs6676300, rs1009592) were associated with decreased risk of postoperative VnD (additive model; odds ratios 0.44–0.55; P = 0.010–0.036), and four NPR3 SNPs (rs700923, rs16890196, rs765199, rs700926) were associated with increased risk of postoperative VnD (recessive model; odds ratios 3.89–4.28; P = 0.007–0.034). Conclusions Genetic variation within the NPPA/NPPB and NPR3 genes is associated with risk of VnD after primary coronary artery bypass grafting. Knowledge of such genotypic predictors may result in better understanding of the molecular mechanisms underlying postoperative VnD. PMID:19326473

  15. [CARDIOREABILITATION PECULIARITIES AND CORRECTION OF VIOLATIONS OF SISTOLIC, DIASOLIC FUNCTION AND HEART RATE VARIABILITY IN PATIENTS WITH ACUTE CORONARY SYNDROME AND CORONARY ARTERY REVASCULARIZATION].

    PubMed

    Shved, M; Tsuglevych, L; Kyrychok, I; Levytska, L; Boiko, T; Kitsak, Ya

    2017-04-01

    In patients with acute coronary syndrome (ACS) who underwent coronary arteries revascularization, violations of hemodynamics, metabolism and heart rate variability often develop in the postoperative period, therefore, the goal of the study was to establish the features of disturbances and the effectiveness of correction of left ventricular systolic and diastolic dysfunction and heart rate variability in stages of cardiorehabilitation in patients with acute coronary syndrome who underwent coronary arteries revascularization. The experimental group included 40 patients with ACS in the postoperative period who underwent balloon angioplasty and stenting of the coronary arteries (25 patients with ST-segment elevation ACS and 15 patients without ST-segment elevation ACS). The age of examined patients was 37 to 74 years, an average of 52.6±6.7 years. The control group consisted of 20 patients, comparable in age and clinico-laboratory manifestations of ACS, who underwent drug treatment with direct anticoagulants, double antiplatelet therapy, β-blockers, ACE inhibitors and statins. Clinical efficacy of cardiorespiratory process in patients of both groups was assessed by the dynamics of general clinical symptoms and parameters of natriuretic propeptide, systolic and diastolic function of the left ventricle and heart rate variability. In the initial state, clinical and laboratory-instrumental signs of myocardial ischemia disappear in patients with ACS undergoing surgical revascularization of the coronary arteries, but clinical and subclinical manifestations of heart failure were diagnosed. The use of the accelerated program of cardiac rehabilitation already during the first month of studies leads to a decreasement of the signs of systolic and diastolic dysfunction, the level of NT-proBNP and improve in the variability of the heart rhythm wich significantly improves the life quality of patients with ACS. To monitor the effectiveness and safety of cardiac rehabilitation in patients with ACS who underwent coronary arteries revascularization, in addition to the generally accepted methods (determination of heart rate, blood pressure, a 6-minute test), it is advisable to diagnose the subclinical stage of heart failure by determining the level of NT-proBNP, Doppler echocardiogram, parameters of the left ventricular systolic and diastolic function and heart rate variability.

  16. A Revised Hemodynamic Theory of Age-Related Macular Degeneration

    PubMed Central

    Gelfand, Bradley D.; Ambati, Jayakrishna

    2016-01-01

    Age-related macular degeneration (AMD) afflicts one out of every 40 individuals worldwide, causing irreversible central blindness in millions. The transformation of various tissue layers within the macula in the retina has led to competing conceptual models of the molecular pathways, cell types, and tissues responsible for the onset and progression of AMD. A model that has persisted for over 6 decades is the hemodynamic, or vascular theory of AMD progression, which states that vascular dysfunction of the choroid underlies AMD pathogenesis. Here, we re-evaluate this hypothesis in light of recent advances on molecular, anatomic, and hemodynamic changes underlying choroidal dysfunction in AMD. We propose an updated, detailed model of hemodynamic dysfunction as a mechanism of AMD development and progression. PMID:27423265

  17. Retinal ganglion cells in diabetes

    PubMed Central

    Kern, Timothy S; Barber, Alistair J

    2008-01-01

    Diabetic retinopathy has long been recognized as a vascular disease that develops in most patients, and it was believed that the visual dysfunction that develops in some diabetics was due to the vascular lesions used to characterize the disease. It is becoming increasingly clear that neuronal cells of the retina also are affected by diabetes, resulting in dysfunction and even degeneration of some neuronal cells. Retinal ganglion cells (RGCs) are the best studied of the retinal neurons with respect to the effect of diabetes. Although investigations are providing new information about RGCs in diabetes, including therapies to inhibit the neurodegeneration, critical information about the function, anatomy and response properties of these cells is yet needed to understand the relationship between RGC changes and visual dysfunction in diabetes. PMID:18565995

  18. microRNAs as Pharmacological Targets in Endothelial Cell Function and Dysfunction

    PubMed Central

    Chamorro-Jorganes, Aránzazu; Araldi, Elisa; Suárez, Yajaira

    2013-01-01

    Endothelial cell dysfunction is a term which implies the dysregulation of normal endothelial cell functions, including impairment of the barrier functions, control of vascular tone, disturbance of proliferative, migratory and morphogenic capacities of endothelial cells, as well as control of leukocyte trafficking. MicroRNAs (miRNAs) are short non-coding RNAs that have emerged as critical regulators of gene expression acting predominantly at the post-transcriptional level. This review summarizes the latest insights in the identification of endothelial-specific miRNAs and their targets, as well as their roles in controlling endothelial cell functions in both autocrine and paracrine manner. In addition, we discuss the therapeutic potential for the treatment of endothelial cell dysfunction and associated vascular pathophysiological conditions. PMID:23603154

  19. [A unique case of secondary takotsubo syndrome].

    PubMed

    Arcari, Luca; Limite, Luca Rosario; Autore, Camillo; Volpe, Massimo; Musumeci, Maria Beatrice

    2018-04-01

    Takotsubo syndrome (TTS) is an acute cardiac syndrome characterized by transient systolic left ventricular dysfunction frequently preceded by stressful events. It typically affects postmenopausal women without angiographic evidence of obstructive coronary artery disease. We report here an uncommon occurrence of secondary TTS in a male with coronary artery disease after exogenous catecholamine administration and pacemaker implantation. This unexpected case suggests that, in such clinical scenario, a TTS diagnosis might be considered even in unsuspected individuals.

  20. Effects of cranberry juice consumption on vascular function in patients with coronary artery disease.

    PubMed

    Dohadwala, Mustali M; Holbrook, Monika; Hamburg, Naomi M; Shenouda, Sherene M; Chung, William B; Titas, Megan; Kluge, Matthew A; Wang, Na; Palmisano, Joseph; Milbury, Paul E; Blumberg, Jeffrey B; Vita, Joseph A

    2011-05-01

    Cranberry juice contains polyphenolic compounds that could improve endothelial function and reduce cardiovascular disease risk. The objective was to examine the effects of cranberry juice on vascular function in subjects with coronary artery disease. We completed an acute pilot study with no placebo (n = 15) and a chronic placebo-controlled crossover study (n = 44) that examined the effects of cranberry juice on vascular function in subjects with coronary artery disease. In the chronic crossover study, subjects with coronary heart disease consumed a research preparation of double-strength cranberry juice (54% juice, 835 mg total polyphenols, and 94 mg anthocyanins) or a matched placebo beverage (480 mL/d) for 4 wk each with a 2-wk rest period between beverages. Beverage order was randomly assigned, and participants refrained from consuming other flavonoid-containing beverages during the study. Vascular function was measured before and after each beverage, with follow-up testing ≥12 h after consumption of the last beverage. Mean (±SD) carotid-femoral pulse wave velocity, a measure of central aortic stiffness, decreased after cranberry juice (8.3 ± 2.3 to 7.8 ± 2.2 m/s) in contrast with an increase after placebo (8.0 ± 2.0 to 8.4 ± 2.8 m/s) (P = 0.003). Brachial artery flow-mediated dilation, digital pulse amplitude tonometry, blood pressure, and carotid-radial pulse wave velocity did not change. In the uncontrolled pilot study, we observed improved brachial artery flow-mediated dilation (7.7 ± 2.9% to 8.7 ± 3.1%, P = 0.01) and digital pulse amplitude tonometry ratio (0.10 ± 0.12 to 0.23 ± 0.16, P = 0.001) 4 h after consumption of a single 480-mL portion of cranberry juice. Chronic cranberry juice consumption reduced carotid femoral pulse wave velocity-a clinically relevant measure of arterial stiffness. The uncontrolled pilot study suggested an acute benefit; however, no chronic effect on measures of endothelial vasodilator function was found. This trial was registered at clinicaltrials.gov as NCT00553904.

  1. Effects of cranberry juice consumption on vascular function in patients with coronary artery disease123

    PubMed Central

    Dohadwala, Mustali M; Holbrook, Monika; Hamburg, Naomi M; Shenouda, Sherene M; Chung, William B; Titas, Megan; Kluge, Matthew A; Wang, Na; Palmisano, Joseph; Milbury, Paul E; Blumberg, Jeffrey B; Vita, Joseph A

    2011-01-01

    Background: Cranberry juice contains polyphenolic compounds that could improve endothelial function and reduce cardiovascular disease risk. Objective: The objective was to examine the effects of cranberry juice on vascular function in subjects with coronary artery disease. Design: We completed an acute pilot study with no placebo (n = 15) and a chronic placebo-controlled crossover study (n = 44) that examined the effects of cranberry juice on vascular function in subjects with coronary artery disease. Results: In the chronic crossover study, subjects with coronary heart disease consumed a research preparation of double-strength cranberry juice (54% juice, 835 mg total polyphenols, and 94 mg anthocyanins) or a matched placebo beverage (480 mL/d) for 4 wk each with a 2-wk rest period between beverages. Beverage order was randomly assigned, and participants refrained from consuming other flavonoid-containing beverages during the study. Vascular function was measured before and after each beverage, with follow-up testing ≥12 h after consumption of the last beverage. Mean (±SD) carotid-femoral pulse wave velocity, a measure of central aortic stiffness, decreased after cranberry juice (8.3 ± 2.3 to 7.8 ± 2.2 m/s) in contrast with an increase after placebo (8.0 ± 2.0 to 8.4 ± 2.8 m/s) (P = 0.003). Brachial artery flow-mediated dilation, digital pulse amplitude tonometry, blood pressure, and carotid-radial pulse wave velocity did not change. In the uncontrolled pilot study, we observed improved brachial artery flow-mediated dilation (7.7 ± 2.9% to 8.7 ± 3.1%, P = 0.01) and digital pulse amplitude tonometry ratio (0.10 ± 0.12 to 0.23 ± 0.16, P = 0.001) 4 h after consumption of a single 480-mL portion of cranberry juice. Conclusions: Chronic cranberry juice consumption reduced carotid femoral pulse wave velocity—a clinically relevant measure of arterial stiffness. The uncontrolled pilot study suggested an acute benefit; however, no chronic effect on measures of endothelial vasodilator function was found. This trial was registered at clinicaltrials.gov as NCT00553904. PMID:21411615

  2. Bioresorbable Scaffolds: Current Evidences in the Treatment of Coronary Artery Disease

    PubMed Central

    2016-01-01

    Percutaneous coronary revascularization strategies have gradually progressed over a period of last few decades. The advent of newer generation drug-eluting stents has significantly improved the outcomes of Percutaneous Coronary Intervention (PCI) by substantially reducing in-stent restenosis and stent thrombosis. However, vascular inflammation, restenosis, thrombosis, and neoatherosclerosis due to the permanent presence of a metallic foreign body within the artery limit their usage in complex Coronary Artery Disease (CAD). Bioresorbable Scaffolds (BRS) represent a novel approach in coronary stent technology. Complete resorption of the scaffold liberates the treated vessel from its cage and restores pulsatility, cyclical strain, physiological shear stress, and mechanotransduction. In this review article, we describe the advances in this rapidly evolving technology, present the evidence from the pre-clinical and clinical evaluation of these devices, and provide an overview of the ongoing clinical trials that were designed to examine the effectiveness of BRS in the clinical setting. PMID:27891384

  3. Impact of maternal dexamethasone on coronary PGE2 production and prostaglandin-dependent coronary reactivity

    PubMed Central

    Volk, Kenneth A.; Lamb, Fred S.; Segar, Jeffrey L.

    2012-01-01

    Intrauterine growth restriction is associated with increased fetal glucocorticoid exposure and an increased risk of adult coronary artery disease. Coronary arteries from sheep exposed to early gestation dexamethasone (Dex) have increased constriction to angiotensin II (ANG II). Prostaglandin E2 (PGE2) helps maintain coronary dilation, but PGE2 production is acutely decreased by Dex administration. We hypothesized early gestation Dex exposure impairs adult coronary PGE2 production with subsequent increases in coronary reactivity. Dex was administered to ewes at 27–28 days gestation (term 145 days). Coronary reactivity was assessed by wire myography in offspring at 4 mo of age (N = 5 to 7). Coronary smooth muscle cells were cultured and prostaglandin production was measured after 90 min incubation with radiolabeled arachidonate. Coronary myocytes from Dex-exposed lambs had a significant decrease in PGE2 production that was reversed with ANG II incubation. Dex-exposed coronary arteries had increased constriction to ANG II and attenuated dilatation to arachidonic acid, with the greatest difference seen after the endothelium was inactivated by rubbing. Preincubation with the cyclooxygenase (COX) inhibitor indomethacin altered control responses and recapitulated the heightened coronary tone seen following Dex exposure. We conclude that impaired coronary smooth muscle COX-mediated PGE2 production contributes to the coronary dysfunction elicited by early gestation Dex. Programmed inhibition of vasodilatory prostanoid production may link an adverse intrauterine environment with adult coronary artery disease. PMID:22832534

  4. Mechanics of blood supply to the heart: wave reflection effects in a right coronary artery.

    PubMed Central

    Zamir, M

    1998-01-01

    Mechanics of blood flow in the coronary circulation have in the past been based largely on models in which the detailed architecture of the coronary network is not included because of lack of data: properties of individual vessels do not appear individually in the model but are represented collectively by the elements of a single electric circuit. Recent data from the human heart make it possible, for the first time, to examine the dynamics of flow in the coronary network based on detailed, measured vascular architecture. In particular, admittance values along the full course of the right coronary artery are computed based on actual lengths and diameters of the many thousands of branches which make up the distribution system of this vessel. The results indicate that effects of wave reflections on this flow are far more significant than those generally suspected to occur in coronary blood flow and that they are actually the reverse of the well known wave reflection effects in the aorta. PMID:9523440

  5. Successful resuscitation of cardiac arrest caused by CO2 embolism with intra-aortic injection of epinephrine during off-pump coronary bypass surgery -a case report-.

    PubMed

    Lee, Choon Soo; Yoon, Yeo Sam; Shim, Jae-Kwang; Lim, Hyun Kyoung

    2013-12-01

    Although compressed gas (CO2) blowers have been used safely to aid accurate grafting during off-pump coronary bypass surgery, hemodynamic collapse due to gas embolism into the right coronary artery may occur. Supportive measures to facilitate gas clearance by increasing the coronary perfusion pressure have been reported to be successful in restoring hemodynamic stability. However, right ventricular dysfunction and atrioventricular nodal ischemia may hinder effective systemic delivery of the vasoactive medications, even when performing resuscitative measures such as direct cardiac massage. We herein report a case of cardiac arrest that was caused by a right coronary gas embolism and that could not be restored by cardiac resuscitation. When supportive measures fail, direct aortic injection of epinephrine to increase the coronary perfusion pressure can be attempted before initiating cardiopulmonary bypass, and this approach may be life-saving in situations that limit systemic drug delivery from the venous side despite the performance of direct cardiac massage.

  6. Successful resuscitation of cardiac arrest caused by CO2 embolism with intra-aortic injection of epinephrine during off-pump coronary bypass surgery -a case report-

    PubMed Central

    Lee, Choon Soo; Yoon, Yeo Sam; Shim, Jae-Kwang

    2013-01-01

    Although compressed gas (CO2) blowers have been used safely to aid accurate grafting during off-pump coronary bypass surgery, hemodynamic collapse due to gas embolism into the right coronary artery may occur. Supportive measures to facilitate gas clearance by increasing the coronary perfusion pressure have been reported to be successful in restoring hemodynamic stability. However, right ventricular dysfunction and atrioventricular nodal ischemia may hinder effective systemic delivery of the vasoactive medications, even when performing resuscitative measures such as direct cardiac massage. We herein report a case of cardiac arrest that was caused by a right coronary gas embolism and that could not be restored by cardiac resuscitation. When supportive measures fail, direct aortic injection of epinephrine to increase the coronary perfusion pressure can be attempted before initiating cardiopulmonary bypass, and this approach may be life-saving in situations that limit systemic drug delivery from the venous side despite the performance of direct cardiac massage. PMID:24427464

  7. CXCL4 Plasma Levels Are Not Associated with the Extent of Coronary Artery Disease or with Coronary Plaque Morphology

    PubMed Central

    Erbel, Christian; Korosoglou, Grigorios; Ler, Pearlyn; Akhavanpoor, Mohammadreza; Domschke, Gabriele; Linden, Fabian; Doesch, Andreas O.; Buss, Sebastian J.; Giannitsis, Evangelos; Katus, Hugo A.; Gleissner, Christian A.

    2015-01-01

    Background CXCL4 is a platelet chemokine released at micromolar concentrations upon platelet activation. CXCL4 has been shown to promote atherogenesis by various mechanisms. However, data on CXCL4 plasma levels in patients with coronary artery disease are largely inconclusive. Computed coronary artery angiography (CCTA) represents an excellent tool to quantify and characterize coronary atherosclerotic plaques. We hypothesized that increased CXCL4 plasma levels may be associated with features of plaque instability resulting in adverse cardiovascular events. Specifically, we sought to determine whether CXCL4 levels are correlated with specific features of coronary artery disease including (1) plaque volume, (2) calcium score, (3) degree of stenosis, or (4) vascular remodeling. Methods and Results CXCL4 plasma levels were measured by ELISA in 217 patients undergoing CCTA for suspected CAD (mean age 64.2 ± 9.4 years, 107 (49.3%) male). Mean CXCL4 plasma levels were 12.5 ± 4.6 ng/mL. There was no significant correlation between CXCL4 levels and any clinical or demographic parameters including cardiovascular risk factors. CXCL4 plasma levels did not differ between patient with or without coronary artery disease (CAD: 12.5 ± 4.5 ng/ml, no CAD: 12.5 ± 4.8 ng/ml). Neither univariate nor multivariate analysis showed an association between CXCL4 levels and plaque volume, total calcium score, degree of stenosis, or vascular remodeling. Subgroup analysis of patients with CAD as confirmed by CCTA did not show any association of CXCL4 levels with the extent of CAD. Conclusions While CXCL4 may be present and active within the arterial wall, local increase of CXCL4 may not translate into systemically elevated CXCL4 levels. Further studies will have to test whether CXCL4 may still represent a suitable therapeutic target in human atherosclerosis. PMID:26524462

  8. CXCL4 Plasma Levels Are Not Associated with the Extent of Coronary Artery Disease or with Coronary Plaque Morphology.

    PubMed

    Erbel, Christian; Korosoglou, Grigorios; Ler, Pearlyn; Akhavanpoor, Mohammadreza; Domschke, Gabriele; Linden, Fabian; Doesch, Andreas O; Buss, Sebastian J; Giannitsis, Evangelos; Katus, Hugo A; Gleissner, Christian A

    2015-01-01

    CXCL4 is a platelet chemokine released at micromolar concentrations upon platelet activation. CXCL4 has been shown to promote atherogenesis by various mechanisms. However, data on CXCL4 plasma levels in patients with coronary artery disease are largely inconclusive. Computed coronary artery angiography (CCTA) represents an excellent tool to quantify and characterize coronary atherosclerotic plaques. We hypothesized that increased CXCL4 plasma levels may be associated with features of plaque instability resulting in adverse cardiovascular events. Specifically, we sought to determine whether CXCL4 levels are correlated with specific features of coronary artery disease including (1) plaque volume, (2) calcium score, (3) degree of stenosis, or (4) vascular remodeling. CXCL4 plasma levels were measured by ELISA in 217 patients undergoing CCTA for suspected CAD (mean age 64.2 ± 9.4 years, 107 (49.3%) male). Mean CXCL4 plasma levels were 12.5 ± 4.6 ng/mL. There was no significant correlation between CXCL4 levels and any clinical or demographic parameters including cardiovascular risk factors. CXCL4 plasma levels did not differ between patient with or without coronary artery disease (CAD: 12.5 ± 4.5 ng/ml, no CAD: 12.5 ± 4.8 ng/ml). Neither univariate nor multivariate analysis showed an association between CXCL4 levels and plaque volume, total calcium score, degree of stenosis, or vascular remodeling. Subgroup analysis of patients with CAD as confirmed by CCTA did not show any association of CXCL4 levels with the extent of CAD. While CXCL4 may be present and active within the arterial wall, local increase of CXCL4 may not translate into systemically elevated CXCL4 levels. Further studies will have to test whether CXCL4 may still represent a suitable therapeutic target in human atherosclerosis.

  9. Morphological differences in coronary arteries following rotational atherectomy versus balloon angioplasty: ultrasound and angioscopic observations

    NASA Astrophysics Data System (ADS)

    Bass, Theodore A.; Gilmore, Paul S.; White, Christopher J.; Chami, Youssef G.; Kircher, Barbara J.; Conetta, Donald A.

    1993-09-01

    Percutaneous transluminal coronary rotational atherectomy (PTCRA) is an exciting new device to recannulate obstructed coronary arteries. This device works as a high speed `drill,' selectively cutting hard atherosclerotic plaque while preferentially sparing the softer, less diseased vascular luminal surface. At speeds as high as 200,000 rpm the plaque is pulverized into small particles easily handled by the circulatory system with no untoward clinical sequela. Balloon angioplasty does not remove atherosclerotic plaque. It dilates the vessel by mechanically stretching, compressing and splitting the plaque and vessel lining. We compare morphological and surface luminal characteristics of vessels post PTCRA to vessels post PTCA.

  10. Myocardial-specific R-spondin3 drives proliferation of the coronary stems primarily through the Leucine Rich Repeat G Protein coupled receptor LGR4.

    PubMed

    Da Silva, Fabio; Massa, Filippo; Motamedi, Fariba Jian; Vidal, Valerie; Rocha, Ana Sofia; Gregoire, Elodie P; Cai, Chen-Leng; Wagner, Kay Dietrich; Schedl, Andreas

    2018-05-31

    Coronary artery anomalies are common congenital disorders with serious consequences in adult life. Coronary circulation begins when the coronary stems form connections between the aorta and the developing vascular plexus. We recently identified the WNT signaling modulator R-spondin 3 (Rspo3), as a crucial regulator of coronary stem proliferation. Using expression analysis and tissue-specific deletion we now demonstrate that Rspo3 is primarily produced by cardiomyocytes. Moreover, we have employed CRISPR/Cas9 technology to generate novel Lgr4-null alleles that showed a significant decrease in coronary stem proliferation and thus phenocopied the coronary artery defects seen in Rspo3 mutants. Interestingly, Lgr4 mutants displayed slightly hypomorphic right ventricles, an observation also made after myocardial specific deletion of Rspo3. These results shed new light on the role of Rspo3 in heart development and demonstrate that LGR4 is the principal R-spondin 3 receptor in the heart. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. ALCAPA and massive pulmonary atelectasis: how a stent in the airway can be life-saving.

    PubMed

    Serio, Paola; Chiappa, Enrico; Fainardi, Valentina; Favilli, Silvia; Murzi, Bruno; Baggi, Roberto; Arcieri, Luigi; Leone, Roberto; Mirabile, Lorenzo

    2014-11-01

    Anomalous left coronary artery from pulmonary artery (ALCAPA) is a rare congenital anomaly in which left coronary artery arises from the pulmonary artery resulting in progressive myocardial ischemia and dysfunction of the left ventricle. We report a case of ALCAPA with severe cardiac and respiratory failure and huge heart dilation compressing the left main bronchus and preventing from an effective ventilation. Emergency bronchial stenting allowed to improve left lung atelectasis, reduce pulmonary hypertension, resume anterograde left coronary artery perfusion and stabilize cardiovascular conditions to undertake a successful surgical correction. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. [Myocardial ischemia in general medicine and the revolution of coronary stents].

    PubMed

    El-Mourad, M; Merveille, P; Preumont, N

    2014-09-01

    Since Gruentizg's first percutaneous transluminal ballon angioplasty in 1977 in Zurich, percuta. neous coronary intervention evolved significantly in order to overcome the numerous associated complications of each technique. Bare-metal stents (BMS) made their initial appearance followed by three generations of drug-eluting stents (DES). The use of bioabsorbable vascular scaffold stents (BVS) has become more frequent creating a temporary scaffold allowing healing of the endothelium within 2 years. In this article, we discuss the nomenclature of the main intravascular complications linked to percuta. neous coronary intervention such as stent thrombosis (ST), Instent restenosis (ISR), neoatherosclerosis, and stents evolution to overcome these complications. We will finally mention the new technologies of intracoronary imaging such as OCT (Optical Coherence Tomography) having an increasing vital role in percutaneous coronary intervention,

  13. Increase in parasympathetic tone by pyridostigmine prevents ventricular dysfunction during the onset of heart failure.

    PubMed

    Lataro, Renata M; Silva, Carlos A A; Fazan, Rubens; Rossi, Marcos A; Prado, Cibele M; Godinho, Rosely O; Salgado, Helio C

    2013-10-15

    Heart failure (HF) is characterized by elevated sympathetic activity and reduced parasympathetic control of the heart. Experimental evidence suggests that the increase in parasympathetic function can be a therapeutic alternative to slow HF evolution. The parasympathetic neurotransmission can be improved by acetylcholinesterase inhibition. We investigated the long-term (4 wk) effects of the acetylcholinesterase inhibitor pyridostigmine on sympathovagal balance, cardiac remodeling, and cardiac function in the onset of HF following myocardial infarction. Myocardial infarction was elicited in adult male Wistar rats. After 4 wk of pyridostigmine administration, per os, methylatropine and propranolol were used to evaluate the cardiac sympathovagal balance. The tachycardic response caused by methylatropine was considered to be the vagal tone, whereas the bradycardic response caused by propranolol was considered to be the sympathetic tone. In conscious HF rats, pyridostigmine reduced the basal heart rate, increased vagal, and reduced sympathetic control of heart rate. Pyridostigmine reduced the myocyte diameter and collagen density of the surviving left ventricle. Pyridostigmine also increased vascular endothelial growth factor protein in the left ventricle, suggesting myocardial angiogenesis. Cardiac function was assessed by means of the pressure-volume conductance catheter system. HF rats treated with pyridostigmine exhibited a higher stroke volume, ejection fraction, cardiac output, and contractility of the left ventricle. It was demonstrated that the long-term administration of pyridostigmine started right after coronary artery ligation augmented cardiac vagal and reduced sympathetic tone, attenuating cardiac remodeling and left ventricular dysfunction during the progression of HF in rats.

  14. Continuous Cardiac Troponin I Release in Fabry Disease

    PubMed Central

    Schneider, Christian; Sieweke, Nicole; Franzen, Wolfgang; Gündüz, Dursun; Rolfs, Arndt

    2014-01-01

    Background Fabry disease (FD) is a rare lysosomal storage disorder also affecting the heart. The aims of this study were to determine the frequency of cardiac troponin I (cTNI) elevation, a sensitive parameter reflecting myocardial damage, in a smaller cohort of FD-patients, and to analyze whether persistent cTNI can be a suitable biomarker to assess cardiac dysfunction in FD. Methods cTNI values were determined at least twice per year in 14 FD-patients (6 males and 8 females) regularly followed-up in our centre. The data were related to other parameters of heart function including cardiac magnetic resonance imaging (cMRI). Results Three patients (21%) without specific vascular risk factors other than FD had persistent cTNI-elevations (range 0.05–0.71 ng/ml, normal: <0.01). cMRI disclosed late gadolinium enhancement (LGE) in all three individuals with cTNI values ≥0.01, while none of the 11 patients with cTNI <0.01 showed a pathological enhancement (p<0.01). Two subjects with increased cTNI-values underwent coronary angiography, excluding relevant stenoses. A myocardial biopsy performed in one during this procedure demonstrated substantial accumulation of globotriaosylceramide (Gb3) in cardiomyocytes. Conclusion Continuous cTNI elevation seems to occur in a substantial proportion of patients with FD. The high accordance with LGE, reflecting cardiac dysfunction, suggests that cTNI-elevation can be a useful laboratory parameter for assessing myocardial damage in FD. PMID:24626231

  15. [THE INFLUENCE OF MONO- AND MULTIVASCULAR LESIONS OF CORONARY ARTERIES ON THE COURSE OF CORONARY HEART DISEASE IN PATIENTS WITH DIABETES MELLITUS TYPE 2].

    PubMed

    Sypalo, A; Kravchun, P; Kadykova, O

    2017-03-01

    The article assesses the influence of mono- and multivascular lesions of coronary arteries on the course of coronary heart disease at patients with diabetes mellitus type 2. For this purpose, a comprehensive survey of 75 patients with coronary heart disease and diabetes mellitus type 2 was arranged. Depending on the number of vascular lesions of the coronary arteries, according to the data of coronary arteries computer tomography, all patients were divided into two subgroups. The first subgroup included 27 patients with coronary heart disease and diabetes mellitus type 2 with monovascular lesions of coronary arteries. To the second subgroup were included 48 patients with coronary heart disease and diabetes mellitus type 2 with multivascular lesions of coronary arteries. During the analysis of carbohydrate metabolism in cases of coronary heart disease and diabetes mellitus type 2 the HOMA index increase by 25.40% and insulin level increase by 17.05% were revealed at patients with multivascular lesions of coronary arteries in comparison with patients with monovascular lesions of coronary arteries, respectively. The combination of coronary heart disease and diabetes mellitus type 2 with multivascular lesions of coronary arteries was associated with an increase of sortilin level (233,47±47,85 ng/l). A significant increase in triglycerides, lipoprotein cholesterol of very low density influences greatly on the progression of coronary atherosclerosis with lesions of greater number of coronary arteries at patients surveyed. At patients with coronary heart disease and diabetes mellitus type 2 with multivascular lesions of coronary arteries the left ventricle myocardial re-modeling occurred through the increase of left ventricle's size and cavity.

  16. What can we learn about treating heart failure from the heart's response to acute exercise? Focus on the coronary microcirculation.

    PubMed

    Heinonen, Ilkka; Sorop, Oana; de Beer, Vincent J; Duncker, Dirk J; Merkus, Daphne

    2015-10-15

    Coronary microvascular function and cardiac function are closely related in that proper cardiac function requires adequate oxygen delivery through the coronary microvasculature. Because of the close proximity of cardiomyocytes and coronary microvascular endothelium, cardiomyocytes not only communicate their metabolic needs to the coronary microvasculature, but endothelium-derived factors also directly modulate cardiac function. This review summarizes evidence that the myocardial oxygen balance is disturbed in the failing heart because of increased extravascular compressive forces and coronary microvascular dysfunction. The perturbations in myocardial oxygen balance are exaggerated during exercise and are due to alterations in neurohumoral influences, endothelial function, and oxidative stress. Although there is some evidence from animal studies that the myocardial oxygen balance can partly be restored by exercise training, it is largely unknown to what extent the beneficial effects of exercise training include improvements in endothelial function and/or oxidative stress in the coronary microvasculature and how these improvements are impacted by risk factors such as diabetes, obesity, and hypercholesterolemia. Copyright © 2015 the American Physiological Society.

  17. Lower urinary tract symptoms/benign prostatic hypertrophy and vascular function: Role of the nitric oxide-phosphodiesterase type 5-cyclic guanosine 3',5'-monophosphate pathway.

    PubMed

    Higashi, Yukihito

    2017-06-01

    It is well known that there is an association of lower urinary tract symptoms/benign prostatic hypertrophy with cardiovascular disease, suggesting that lower urinary tract symptoms/benign prostatic hypertrophy is a risk factor for cardiovascular events. Vascular function, including endothelial function and vascular smooth muscle function, is involved in the pathogenesis, maintenance and development of atherosclerosis, leading to cardiovascular events. Vascular dysfunction per se should also contribute to lower urinary tract symptoms/benign prostatic hypertrophy. Both lower urinary tract symptoms/benign prostatic hypertrophy and vascular dysfunction have cardiovascular risk factors, such as hypertension, dyslipidemia, diabetes mellitus, aging, obesity and smoking. Inactivation of the phosphodiesterase type 5-cyclic guanosine 3',5'-monophosphate-nitric oxide pathway causes lower urinary tract symptoms/benign prostatic hypertrophy through an enhancement of sympathetic nervous activity, endothelial dysfunction, increase in Rho-associated kinase activity and vasoconstriction, and decrease in blood flow of pelvic viscera. Both endogenous nitric oxide and exogenous nitric oxide act as vasodilators on vascular smooth muscle cells through an increase in the content of cyclic guanosine 3',5'-monophosphate, which is inactivated by phosphodiesterase type 5. In a clinical setting, phosphodiesterase type 5 inhibitors are widely used in patients with lower urinary tract symptoms/benign prostatic hypertrophy. Phosphodiesterase type 5 inhibitors might have beneficial effects on vascular function through not only inhibition of cyclic guanosine 3',5'-monophosphate degradation, but also increases in testosterone levels and nitric oxide bioavailability, increase in the number and improvement of the function of endothelial progenitor cells, and decrease in insulin resistance. In the present review, the relationships between lower urinary tract symptoms/benign prostatic hypertrophy, the phosphodiesterase type 5-nitric oxide-cyclic guanosine 3',5'-monophosphate pathway, vascular function and cardiovascular outcomes are examined. © 2017 The Japanese Urological Association.

  18. The Integrity bare-metal stent made by continuous sinusoid technology.

    PubMed

    Turco, Mark A

    2011-05-01

    The Integrity Coronary Stent System (Medtronic Vascular, CA, USA) is a low-profile, open-cell, cobalt-chromium-alloy advanced bare-metal iteration of the well-known Driver/Micro-Driver Coronary Stent System (Medtronic Vascular). The Integrity stent is made with a process called continuous sinusoid technology. This process allows stent construction via wrapping a single thin strand of wire around a mandrel in a sinusoid configuration, with laser fusion of adjacent crowns. The wire-forming process and fusion pattern provide the stent with a continuous preferential bending plane, intended to allow easier access to, and smoother tracking within, distal and tortuous vessels while radial strength is maintained. Continuous sinusoid technology represents innovation in the design of stent platforms and will provide a future stent platform for newer technology, including drug-eluting stent platforms, drug-filled stents and core wire stents.

  19. The vascular and neurogenic factors associated with erectile dysfunction in patients after pelvic fractures.

    PubMed

    Guan, Yong; Wendong, Sun; Zhao, Shengtian; Liu, Tongyan; Liu, Yuqiang; Zhang, Xiulin; Yuan, Mingzhen

    2015-01-01

    Erectile dysfunction (ED) is a common complication of pelvic fractures. To identify the vascular and neurogenic factors associated with ED, 120 patients admitted with ED after traumatic pelvic fracture between January 2009 and June 2013 were enrolled in this study. All patients answered the International Index of Erectile Function (IIEF-5) questionnaire. Nocturnal penile tumescence (NPT) testing confirmed the occurrence of ED in 96 (80%) patients on whom penile duplex ultrasound and neurophysiological testing were further performed. Of these ED patients 29 (30%) were demonstrated only with vascular abnormality, 41 (42.7%) were detected only with neural abnormality, 26 (27.1%) revealed mixed abnormalities. Of the 55 patients (29+26) with vascular problems, 7 patients (12.7%) with abnormal arterial response to intracavernous injection of Bimix (15mg papaverine and 1mg phentolamine), 31 (56.4%) with corporal veno-occlusive dysfunction and 17 (30.9%) had both problems. Of the 67 (41+26) patients with abnormal neurophysiological outcomes, 51 (76.1%) with abnormal bulbocavernosus re?ex (BCR), 20 (29.9%) with pathological pudendal nerve evoked potentials (PDEPs) and 25 (37.3%) with abnormal posterior tibial somatosensory nerve evoked potentials (PTSSEPs). Our observation indicated that neurogenic factors are important for the generation of ED in patients with pelvic fracture; venous impotence is more common than arteriogenic ED.

  20. Air Pollution-Induced Vascular Dysfunction: Potential Role of Endothelin-1 (ET-1) System

    PubMed Central

    Finch, Jordan; Conklin, Daniel J.

    2015-01-01

    Exposure to air pollution negatively impacts cardiovascular health. Studies show that increased exposure to a number of airborne pollutants increases the risk for cardiovascular disease progression, myocardial events, and cardiovascular mortality. A hypothesized mechanism linking air pollution and cardiovascular disease is the development of systemic inflammation and endothelium dysfunction, the latter of which can result from an imbalance of vasoactive factors within the vasculature. Endothelin-1 (ET-1) is a potent peptide vasoconstrictor that plays a significant role in regulating vascular homeostasis. It has been reported that the production and function of ET-1 and its receptors are upregulated in a number of disease states associated with endothelium dysfunction including hypertension and atherosclerosis. This mini-review surveys epidemiological and experimental air pollution studies focused on ET-1 dysregulation as a plausible mechanism underlying the development of cardiovascular disease. Although alterations in ET-1 system components are observed in some studies, there remains a need for future research to clarify whether these specific changes are compensatory or causally related to vascular injury and dysfunction. Moreover, further research may test the efficacy of selective ET-1 pharmacological interventions (e.g., ETA receptor inhibitors) to determine whether these treatments could impede the deleterious impact of air pollution exposure on cardiovascular health. PMID:26148452

Top