Science.gov

Sample records for coronavirus rna synthesis

  1. Continuous and Discontinuous RNA Synthesis in Coronaviruses.

    PubMed

    Sola, Isabel; Almazán, Fernando; Zúñiga, Sonia; Enjuanes, Luis

    2015-11-01

    Replication of the coronavirus genome requires continuous RNA synthesis, whereas transcription is a discontinuous process unique among RNA viruses. Transcription includes a template switch during the synthesis of subgenomic negative-strand RNAs to add a copy of the leader sequence. Coronavirus transcription is regulated by multiple factors, including the extent of base-pairing between transcription-regulating sequences of positive and negative polarity, viral and cell protein-RNA binding, and high-order RNA-RNA interactions. Coronavirus RNA synthesis is performed by a replication-transcription complex that includes viral and cell proteins that recognize cis-acting RNA elements mainly located in the highly structured 5' and 3' untranslated regions. In addition to many viral nonstructural proteins, the presence of cell nuclear proteins and the viral nucleocapsid protein increases virus amplification efficacy. Coronavirus RNA synthesis is connected with the formation of double-membrane vesicles and convoluted membranes. Coronaviruses encode proofreading machinery, unique in the RNA virus world, to ensure the maintenance of their large genome size.

  2. Insights into RNA synthesis, capping, and proofreading mechanisms of SARS-coronavirus.

    PubMed

    Sevajol, Marion; Subissi, Lorenzo; Decroly, Etienne; Canard, Bruno; Imbert, Isabelle

    2014-12-19

    The successive emergence of highly pathogenic coronaviruses (CoVs) such as the Severe Acute Respiratory Syndrome (SARS-CoV) in 2003 and the Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in 2012 has stimulated a number of studies on the molecular biology. This research has provided significant new insight into functions and activities of the replication/transcription multi-protein complex. The latter directs both continuous and discontinuous RNA synthesis to replicate and transcribe the large coronavirus genome made of a single-stranded, positive-sense RNA of ∼30 kb. In this review, we summarize our current understanding of SARS-CoV enzymes involved in RNA biochemistry, such as the in vitro characterization of a highly active and processive RNA polymerase complex which can associate with methyltransferase and 3'-5' exoribonuclease activities involved in RNA capping, and RNA proofreading, respectively. The recent discoveries reveal fascinating RNA-synthesizing machinery, highlighting the unique position of coronaviruses in the RNA virus world.

  3. Targeting membrane-bound viral RNA synthesis reveals potent inhibition of diverse coronaviruses including the middle East respiratory syndrome virus.

    PubMed

    Lundin, Anna; Dijkman, Ronald; Bergström, Tomas; Kann, Nina; Adamiak, Beata; Hannoun, Charles; Kindler, Eveline; Jónsdóttir, Hulda R; Muth, Doreen; Kint, Joeri; Forlenza, Maria; Müller, Marcel A; Drosten, Christian; Thiel, Volker; Trybala, Edward

    2014-05-01

    Coronaviruses raise serious concerns as emerging zoonotic viruses without specific antiviral drugs available. Here we screened a collection of 16671 diverse compounds for anti-human coronavirus 229E activity and identified an inhibitor, designated K22, that specifically targets membrane-bound coronaviral RNA synthesis. K22 exerts most potent antiviral activity after virus entry during an early step of the viral life cycle. Specifically, the formation of double membrane vesicles (DMVs), a hallmark of coronavirus replication, was greatly impaired upon K22 treatment accompanied by near-complete inhibition of viral RNA synthesis. K22-resistant viruses contained substitutions in non-structural protein 6 (nsp6), a membrane-spanning integral component of the viral replication complex implicated in DMV formation, corroborating that K22 targets membrane bound viral RNA synthesis. Besides K22 resistance, the nsp6 mutants induced a reduced number of DMVs, displayed decreased specific infectivity, while RNA synthesis was not affected. Importantly, K22 inhibits a broad range of coronaviruses, including Middle East respiratory syndrome coronavirus (MERS-CoV), and efficient inhibition was achieved in primary human epithelia cultures representing the entry port of human coronavirus infection. Collectively, this study proposes an evolutionary conserved step in the life cycle of positive-stranded RNA viruses, the recruitment of cellular membranes for viral replication, as vulnerable and, most importantly, druggable target for antiviral intervention. We expect this mode of action to serve as a paradigm for the development of potent antiviral drugs to combat many animal and human virus infections.

  4. Coronavirus cis-Acting RNA Elements.

    PubMed

    Madhugiri, R; Fricke, M; Marz, M; Ziebuhr, J

    2016-01-01

    Coronaviruses have exceptionally large RNA genomes of approximately 30 kilobases. Genome replication and transcription is mediated by a multisubunit protein complex comprised of more than a dozen virus-encoded proteins. The protein complex is thought to bind specific cis-acting RNA elements primarily located in the 5'- and 3'-terminal genome regions and upstream of the open reading frames located in the 3'-proximal one-third of the genome. Here, we review our current understanding of coronavirus cis-acting RNA elements, focusing on elements required for genome replication and packaging. Recent bioinformatic, biochemical, and genetic studies suggest a previously unknown level of conservation of cis-acting RNA structures among different coronavirus genera and, in some cases, even beyond genus boundaries. Also, there is increasing evidence to suggest that individual cis-acting elements may be part of higher-order RNA structures involving long-range and dynamic RNA-RNA interactions between RNA structural elements separated by thousands of nucleotides in the viral genome. We discuss the structural and functional features of these cis-acting RNA elements and their specific functions in coronavirus RNA synthesis.

  5. [Coronaviruses].

    PubMed

    Taguchi, Fumihiro

    2011-12-01

    Coronaviruses contain positive-stranded RNA with ca. 30 kb as a genome, which is wrapped by the envelope, and constitute Nidovirales together with Arteriviridae. The feature of viruses in Nidovirales is the unique structure of the mRNA set, called 3' co-terminal nested set. Coronaviruses have several to more than 10 different species of subgenomic mRNA and generally only the OFR located in the 5' end of each mRNA is translated. The 5' 20 kb of the coronavirus genome or mRNA-1 consists of two ORFs, 1a and 1b, between that there is a unique RNA structure called pseudoknot. From mRNA-1, 1a as well as 1a+1b are translated; the latter 1a+1b results from the translation due to ribosomal frame-shifting facilitated by the pseudoknot structure. From those two proteins, totally 16 proteins are produced as a result of auto-cleavage by the proteases included in la protein. Those proteins exhibit different functions, such as RNA-dependent RNA polymerase, helicase, proteases and proteins that regulate cellular functions, mRNAs smaller than mRNA-2 translate in general the structural proteins, nucleocapsid (N) protein, spike (S) protein, integrated membrane (M) protein and envelope (E) proteins. Those proteins assemble to the vesicles located from ER to Golgi (ER Golgi intermediate compartment) and virions bud into the vesicles. Those virions are released from infected cells via exocytosis.

  6. Molecular mechanisms of coronavirus RNA capping and methylation.

    PubMed

    Chen, Yu; Guo, Deyin

    2016-02-01

    The 5'-cap structures of eukaryotic mRNAs are important for RNA stability, pre-mRNA splicing, mRNA export, and protein translation. Many viruses have evolved mechanisms for generating their own cap structures with methylation at the N7 position of the capped guanine and the ribose 2'-Oposition of the first nucleotide, which help viral RNAs escape recognition by the host innate immune system. The RNA genomes of coronavirus were identified to have 5'-caps in the early 1980s. However, for decades the RNA capping mechanisms of coronaviruses remained unknown. Since 2003, the outbreak of severe acute respiratory syndrome coronavirus has drawn increased attention and stimulated numerous studies on the molecular virology of coronaviruses. Here, we review the current understanding of the mechanisms adopted by coronaviruses to produce the 5'-cap structure and methylation modification of viral genomic RNAs.

  7. Viral and Cellular mRNA Translation in Coronavirus-Infected Cells

    PubMed Central

    Nakagawa, K.; Lokugamage, K.G.; Makino, S.

    2017-01-01

    Coronaviruses have large positive-strand RNA genomes that are 5′ capped and 3′ polyadenylated. The 5′-terminal two-thirds of the genome contain two open reading frames (ORFs), 1a and 1b, that together make up the viral replicase gene and encode two large polyproteins that are processed by viral proteases into 15–16 nonstructural proteins, most of them being involved in viral RNA synthesis. ORFs located in the 3′-terminal one-third of the genome encode structural and accessory proteins and are expressed from a set of 5′ leader-containing subgenomic mRNAs that are synthesized by a process called discontinuous transcription. Coronavirus protein synthesis not only involves cap-dependent translation mechanisms but also employs regulatory mechanisms, such as ribosomal frameshifting. Coronavirus replication is known to affect cellular translation, involving activation of stress-induced signaling pathways, and employing viral proteins that affect cellular mRNA translation and RNA stability. This chapter describes our current understanding of the mechanisms involved in coronavirus mRNA translation and changes in host mRNA translation observed in coronavirus-infected cells. PMID:27712623

  8. Viral and Cellular mRNA Translation in Coronavirus-Infected Cells.

    PubMed

    Nakagawa, K; Lokugamage, K G; Makino, S

    2016-01-01

    Coronaviruses have large positive-strand RNA genomes that are 5' capped and 3' polyadenylated. The 5'-terminal two-thirds of the genome contain two open reading frames (ORFs), 1a and 1b, that together make up the viral replicase gene and encode two large polyproteins that are processed by viral proteases into 15-16 nonstructural proteins, most of them being involved in viral RNA synthesis. ORFs located in the 3'-terminal one-third of the genome encode structural and accessory proteins and are expressed from a set of 5' leader-containing subgenomic mRNAs that are synthesized by a process called discontinuous transcription. Coronavirus protein synthesis not only involves cap-dependent translation mechanisms but also employs regulatory mechanisms, such as ribosomal frameshifting. Coronavirus replication is known to affect cellular translation, involving activation of stress-induced signaling pathways, and employing viral proteins that affect cellular mRNA translation and RNA stability. This chapter describes our current understanding of the mechanisms involved in coronavirus mRNA translation and changes in host mRNA translation observed in coronavirus-infected cells.

  9. Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication.

    PubMed

    Kindler, Eveline; Gil-Cruz, Cristina; Spanier, Julia; Li, Yize; Wilhelm, Jochen; Rabouw, Huib H; Züst, Roland; Hwang, Mihyun; V'kovski, Philip; Stalder, Hanspeter; Marti, Sabrina; Habjan, Matthias; Cervantes-Barragan, Luisa; Elliot, Ruth; Karl, Nadja; Gaughan, Christina; van Kuppeveld, Frank J M; Silverman, Robert H; Keller, Markus; Ludewig, Burkhard; Bergmann, Cornelia C; Ziebuhr, John; Weiss, Susan R; Kalinke, Ulrich; Thiel, Volker

    2017-02-01

    Coronaviruses are of veterinary and medical importance and include highly pathogenic zoonotic viruses, such as SARS-CoV and MERS-CoV. They are known to efficiently evade early innate immune responses, manifesting in almost negligible expression of type-I interferons (IFN-I). This evasion strategy suggests an evolutionary conserved viral function that has evolved to prevent RNA-based sensing of infection in vertebrate hosts. Here we show that the coronavirus endonuclease (EndoU) activity is key to prevent early induction of double-stranded RNA (dsRNA) host cell responses. Replication of EndoU-deficient coronaviruses is greatly attenuated in vivo and severely restricted in primary cells even during the early phase of the infection. In macrophages we found immediate induction of IFN-I expression and RNase L-mediated breakdown of ribosomal RNA. Accordingly, EndoU-deficient viruses can retain replication only in cells that are deficient in IFN-I expression or sensing, and in cells lacking both RNase L and PKR. Collectively our results demonstrate that the coronavirus EndoU efficiently prevents simultaneous activation of host cell dsRNA sensors, such as Mda5, OAS and PKR. The localization of the EndoU activity at the site of viral RNA synthesis-within the replicase complex-suggests that coronaviruses have evolved a viral RNA decay pathway to evade early innate and intrinsic antiviral host cell responses.

  10. RNA-RNA and RNA-protein interactions in coronavirus replication and transcription

    PubMed Central

    Sola, Isabel; Mateos-Gomez, Pedro A; Almazan, Fernando; Zuñiga, Sonia

    2011-01-01

    Coronavirus (CoV) RNA synthesis includes the replication of the viral genome, and the transcription of sgRNAs by a discontinuous mechanism. Both processes are regulated by RNA sequences such as the 5′ and 3′ untranslated regions (UTRs), and the transcription regulating sequences (TRSs) of the leader (TRS-L) and those preceding each gene (TRS-Bs). These distant RNA regulatory sequences interact with each other directly and probably through protein-RNA and protein-protein interactions involving viral and cellular proteins.1 By analogy to other plus-stranded RNA viruses, such as polioviruses, in which translation and replication switch involves a cellular factor (PCBP) and a viral protein (3CD),2 it is conceivable that in CoVs the switch between replication and transcription is also associated with the binding of proteins that are specifically recruited by the replication or transcription complexes. Complexes between RNA motifs such as TRS-L and the TRS-Bs located along the CoV genome are probably formed previously to the transcription start, and most likely promote template-switch of the nascent minus RNA to the TRS-L region.3 Many cellular proteins interacting with regulatory CoV RNA sequences4 are members of the heterogeneous nuclear ribonucleoprotein (hnRNP) family of RNA-binding proteins, involved in mRNA processing and transport, which shuttle between the nucleus and the cytoplasm. In the context of CoV RNA synthesis, these cellular ribonucleoproteins might also participate in RNA-protein complexes to bring into physical proximity TRS-L and distant TRS-B, as proposed for CoV discontinuous transcription.5–7 In this review, we summarize RNA-RNA and RNA-protein interactions that represent modest examples of complex quaternary RNA-protein structures required for the fine-tuning of virus replication. Design of chemically defined replication and transcription systems will help to clarify the nature and activity of these structures. PMID:21378501

  11. The RNA polymerase activity of SARS-coronavirus nsp12 is primer dependent

    PubMed Central

    te Velthuis, Aartjan J. W.; Arnold, Jamie J.; Cameron, Craig E.; van den Worm, Sjoerd H. E.; Snijder, Eric J.

    2010-01-01

    An RNA-dependent RNA polymerase (RdRp) is the central catalytic subunit of the RNA-synthesizing machinery of all positive-strand RNA viruses. Usually, RdRp domains are readily identifiable by comparative sequence analysis, but biochemical confirmation and characterization can be hampered by intrinsic protein properties and technical complications. It is presumed that replication and transcription of the ∼30-kb severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) RNA genome are catalyzed by an RdRp domain in the C-terminal part of nonstructural protein 12 (nsp12), one of 16 replicase subunits. However, thus far full-length nsp12 has proven refractory to expression in bacterial systems, which has hindered both the biochemical characterization of coronavirus RNA synthesis and RdRp-targeted antiviral drug design. Here, we describe a combined strategy involving bacterial expression of an nsp12 fusion protein and its in vivo cleavage to generate and purify stable SARS-CoV nsp12 (106 kDa) with a natural N-terminus and C-terminal hexahistidine tag. This recombinant protein possesses robust in vitro RdRp activity, as well as a significant DNA-dependent activity that may facilitate future inhibitor studies. The SARS-CoV nsp12 is primer dependent on both homo- and heteropolymeric templates, supporting the likeliness of a close enzymatic collaboration with the intriguing RNA primase activity that was recently proposed for coronavirus nsp8. PMID:19875418

  12. Manipulation of the coronavirus genome using targeted RNA recombination with interspecies chimeric coronaviruses.

    PubMed

    de Haan, Cornelis A M; Haijema, Bert Jan; Masters, Paul S; Rottier, Peter J M

    2008-01-01

    Targeted RNA recombination has proven to be a powerful tool for the genetic engineering of the coronavirus genome, particularly in its 3' part. Here we describe procedures for the generation of recombinant and mutant mouse hepatitis virus and feline infectious peritonitis virus. Key to the two-step method is the efficient selection of recombinant viruses based on host cell switching. The first step consists of the preparation---using this selection principle--of an interspecies chimeric coronavirus. In this virus the ectodomain of the spike glycoprotein is replaced by that of a coronavirus with a different species tropism. In the second step this chimeric virus is used as the recipient for recombination with synthetic donor RNA carrying the original spike gene. Recombinant viruses are then isolated on the basis of their regained natural (e.g., murine or feline) cell tropism. Additional mutations created in the donor RNA can be co-incorporated into the recombinant virus in order to generate mutant viruses.

  13. Specific interaction between coronavirus leader RNA and nucleocapsid protein

    SciTech Connect

    Stohlman, S.A.; Baric, R.S.; Nelson, G.N.; Soe, L.H.; Welter, L.M.; Deans, R.J.

    1988-11-01

    Northwestern blot analysis in the presence of competitor RNA was used to examine the interaction between the mouse hepatitis virus (MHV) nucleocapsid protein (N) and virus-specific RNAs. The authors accompanying article demonstrates that anti-N monoclonal antibodies immunoprecipitated all seven MHV-specific RNAs as well as the small leader-containing RNAs from infected cells. In this article the authors report that a Northwestern blotting protocol using radiolabeled viral RNAs in the presence of host cell competitor RNA can be used to demonstrate a high-affinity interaction between the MHV N protein and the virus-specific RNAs. Further, RNA probes prepared by in vitro transcription were used to define the sequences that participate in such high-affinity binding. A specific interaction occurs between the N protein and sequences contained with the leader RNA which is conserved at the 5' end of all MHV RNAs. They have further defined the binding sites to the area of nucleotides 56 to 65 at the 3' end of the leader RNA and suggest that this interaction may play an important role in the discontinuous nonprocessive RNA transcriptional process unique to coronaviruses.

  14. RNA dimerization plays a role in ribosomal frameshifting of the SARS coronavirus.

    PubMed

    Ishimaru, Daniella; Plant, Ewan P; Sims, Amy C; Yount, Boyd L; Roth, Braden M; Eldho, Nadukkudy V; Pérez-Alvarado, Gabriela C; Armbruster, David W; Baric, Ralph S; Dinman, Jonathan D; Taylor, Deborah R; Hennig, Mirko

    2013-02-01

    Messenger RNA encoded signals that are involved in programmed -1 ribosomal frameshifting (-1 PRF) are typically two-stemmed hairpin (H)-type pseudoknots (pks). We previously described an unusual three-stemmed pseudoknot from the severe acute respiratory syndrome (SARS) coronavirus (CoV) that stimulated -1 PRF. The conserved existence of a third stem-loop suggested an important hitherto unknown function. Here we present new information describing structure and function of the third stem of the SARS pseudoknot. We uncovered RNA dimerization through a palindromic sequence embedded in the SARS-CoV Stem 3. Further in vitro analysis revealed that SARS-CoV RNA dimers assemble through 'kissing' loop-loop interactions. We also show that loop-loop kissing complex formation becomes more efficient at physiological temperature and in the presence of magnesium. When the palindromic sequence was mutated, in vitro RNA dimerization was abolished, and frameshifting was reduced from 15 to 5.7%. Furthermore, the inability to dimerize caused by the silent codon change in Stem 3 of SARS-CoV changed the viral growth kinetics and affected the levels of genomic and subgenomic RNA in infected cells. These results suggest that the homodimeric RNA complex formed by the SARS pseudoknot occurs in the cellular environment and that loop-loop kissing interactions involving Stem 3 modulate -1 PRF and play a role in subgenomic and full-length RNA synthesis.

  15. Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication

    PubMed Central

    Kindler, Eveline; Gil-Cruz, Cristina; Spanier, Julia; Li, Yize; Wilhelm, Jochen; Rabouw, Huib H.; Züst, Roland; Marti, Sabrina; Habjan, Matthias; Cervantes-Barragan, Luisa; Elliot, Ruth; Karl, Nadja; Gaughan, Christina; Silverman, Robert H.; Keller, Markus; Ludewig, Burkhard; Bergmann, Cornelia C.; Ziebuhr, John; Kalinke, Ulrich

    2017-01-01

    Coronaviruses are of veterinary and medical importance and include highly pathogenic zoonotic viruses, such as SARS-CoV and MERS-CoV. They are known to efficiently evade early innate immune responses, manifesting in almost negligible expression of type-I interferons (IFN-I). This evasion strategy suggests an evolutionary conserved viral function that has evolved to prevent RNA-based sensing of infection in vertebrate hosts. Here we show that the coronavirus endonuclease (EndoU) activity is key to prevent early induction of double-stranded RNA (dsRNA) host cell responses. Replication of EndoU-deficient coronaviruses is greatly attenuated in vivo and severely restricted in primary cells even during the early phase of the infection. In macrophages we found immediate induction of IFN-I expression and RNase L-mediated breakdown of ribosomal RNA. Accordingly, EndoU-deficient viruses can retain replication only in cells that are deficient in IFN-I expression or sensing, and in cells lacking both RNase L and PKR. Collectively our results demonstrate that the coronavirus EndoU efficiently prevents simultaneous activation of host cell dsRNA sensors, such as Mda5, OAS and PKR. The localization of the EndoU activity at the site of viral RNA synthesis–within the replicase complex—suggests that coronaviruses have evolved a viral RNA decay pathway to evade early innate and intrinsic antiviral host cell responses. PMID:28158275

  16. High-Resolution Analysis of Coronavirus Gene Expression by RNA Sequencing and Ribosome Profiling

    PubMed Central

    Jones, Joshua D.; Chung, Betty Y.-W.; Siddell, Stuart G.; Brierley, Ian

    2016-01-01

    Members of the family Coronaviridae have the largest genomes of all RNA viruses, typically in the region of 30 kilobases. Several coronaviruses, such as Severe acute respiratory syndrome-related coronavirus (SARS-CoV) and Middle East respiratory syndrome-related coronavirus (MERS-CoV), are of medical importance, with high mortality rates and, in the case of SARS-CoV, significant pandemic potential. Other coronaviruses, such as Porcine epidemic diarrhea virus and Avian coronavirus, are important livestock pathogens. Ribosome profiling is a technique which exploits the capacity of the translating ribosome to protect around 30 nucleotides of mRNA from ribonuclease digestion. Ribosome-protected mRNA fragments are purified, subjected to deep sequencing and mapped back to the transcriptome to give a global “snap-shot” of translation. Parallel RNA sequencing allows normalization by transcript abundance. Here we apply ribosome profiling to cells infected with Murine coronavirus, mouse hepatitis virus, strain A59 (MHV-A59), a model coronavirus in the same genus as SARS-CoV and MERS-CoV. The data obtained allowed us to study the kinetics of virus transcription and translation with exquisite precision. We studied the timecourse of positive and negative-sense genomic and subgenomic viral RNA production and the relative translation efficiencies of the different virus ORFs. Virus mRNAs were not found to be translated more efficiently than host mRNAs; rather, virus translation dominates host translation at later time points due to high levels of virus transcripts. Triplet phasing of the profiling data allowed precise determination of translated reading frames and revealed several translated short open reading frames upstream of, or embedded within, known virus protein-coding regions. Ribosome pause sites were identified in the virus replicase polyprotein pp1a ORF and investigated experimentally. Contrary to expectations, ribosomes were not found to pause at the ribosomal

  17. The Nucleocapsid Protein of Coronaviruses Acts as a Viral Suppressor of RNA Silencing in Mammalian Cells.

    PubMed

    Cui, Lei; Wang, Haiying; Ji, Yanxi; Yang, Jie; Xu, Shan; Huang, Xingyu; Wang, Zidao; Qin, Lei; Tien, Po; Zhou, Xi; Guo, Deyin; Chen, Yu

    2015-09-01

    RNA interference (RNAi) is a process of eukaryotic posttranscriptional gene silencing that functions in antiviral immunity in plants, nematodes, and insects. However, recent studies provided strong supports that RNAi also plays a role in antiviral mechanism in mammalian cells. To combat RNAi-mediated antiviral responses, many viruses encode viral suppressors of RNA silencing (VSR) to facilitate their replication. VSRs have been widely studied for plant and insect viruses, but only a few have been defined for mammalian viruses currently. We identified a novel VSR from coronaviruses, a group of medically important mammalian viruses including Severe acute respiratory syndrome coronavirus (SARS-CoV), and showed that the nucleocapsid protein (N protein) of coronaviruses suppresses RNAi triggered by either short hairpin RNAs or small interfering RNAs in mammalian cells. Mouse hepatitis virus (MHV) is closely related to SARS-CoV in the family Coronaviridae and was used as a coronavirus replication model. The replication of MHV increased when the N proteins were expressed in trans, while knockdown of Dicer1 or Ago2 transcripts facilitated the MHV replication in mammalian cells. These results support the hypothesis that RNAi is a part of the antiviral immunity responses in mammalian cells. IMPORTANCE RNAi has been well known to play important antiviral roles from plants to invertebrates. However, recent studies provided strong supports that RNAi is also involved in antiviral response in mammalian cells. An important indication for RNAi-mediated antiviral activity in mammals is the fact that a number of mammalian viruses encode potent suppressors of RNA silencing. Our results demonstrate that coronavirus N protein could function as a VSR through its double-stranded RNA binding activity. Mutational analysis of N protein allowed us to find out the critical residues for the VSR activity. Using the MHV-A59 as the coronavirus replication model, we showed that ectopic expression

  18. Group 2 coronaviruses prevent immediate early interferon induction by protection of viral RNA from host cell recognition

    SciTech Connect

    Versteeg, Gijs A.; Bredenbeek, Peter J.; Worm, Sjoerd H.E. van den; Spaan, Willy J.M. . E-mail: w.j.m.spaan@lumc.nl

    2007-04-25

    Many viruses encode antagonists to prevent interferon (IFN) induction. Infection of fibroblasts with the murine hepatitis coronavirus (MHV) and SARS-coronavirus (SARS-CoV) did not result in nuclear translocation of interferon-regulatory factor 3 (IRF3), a key transcription factor involved in IFN induction, and induction of IFN mRNA transcription. Furthermore, MHV and SARS-CoV infection could not prevent IFN induction by poly (I:C) or Sendai virus, suggesting that these CoVs do not inactivate IRF3-mediated transcription regulation, but apparently prevent detection of replicative RNA by cellular sensory molecules. Our data indicate that shielding of viral RNA to host cell sensors might be the main general mechanism for coronaviruses to prevent IFN induction.

  19. Coronavirus diversity, phylogeny and interspecies jumping.

    PubMed

    Woo, Patrick C Y; Lau, Susanna K P; Huang, Yi; Yuen, Kwok-Yung

    2009-10-01

    The SARS epidemic has boosted interest in research on coronavirus biodiversity and genomics. Before 2003, there were only 10 coronaviruses with complete genomes available. After the SARS epidemic, up to December 2008, there was an addition of 16 coronaviruses with complete genomes sequenced. These include two human coronaviruses (human coronavirus NL63 and human coronavirus HKU1), 10 other mammalian coronaviruses [bat SARS coronavirus, bat coronavirus (bat-CoV) HKU2, bat-CoV HKU4, bat-CoV HKU5, bat-CoV HKU8, bat-CoV HKU9, bat-CoV 512/2005, bat-CoV 1A, equine coronavirus, and beluga whale coronavirus] and four avian coronaviruses (turkey coronavirus, bulbul coronavirus HKU11, thrush coronavirus HKU12, and munia coronavirus HKU13). Two novel subgroups in group 2 coronavirus (groups 2c and 2d) and two novel subgroups in group 3 coronavirus (groups 3b and 3c) have been proposed. The diversity of coronaviruses is a result of the infidelity of RNA-dependent RNA polymerase, high frequency of homologous RNA recombination, and the large genomes of coronaviruses. Among all hosts, the diversity of coronaviruses is most evidenced in bats and birds, which may be a result of their species diversity, ability to fly, environmental pressures, and habits of roosting and flocking. The present evidence supports that bat coronaviruses are the gene pools of group 1 and 2 coronaviruses, whereas bird coronaviruses are the gene pools of group 3 coronaviruses. With the increasing number of coronaviruses, more and more closely related coronaviruses from distantly related animals have been observed, which were results of recent interspecies jumping and may be the cause of disastrous outbreaks of zoonotic diseases.

  20. Detection of ascitic feline coronavirus RNA from cats with clinically suspected feline infectious peritonitis.

    PubMed

    Soma, Takehisa; Wada, Makoto; Taharaguchi, Satoshi; Tajima, Tomoko

    2013-10-01

    Ascitic feline coronavirus (FCoV) RNA was examined in 854 cats with suspected feline infectious peritonitis (FIP) by RT-PCR. The positivity was significantly higher in purebreds (62.2%) than in crossbreds (34.8%) (P<0.0001). Among purebreds, the positivities in the Norwegian forest cat (92.3%) and Scottish fold (77.6%) were significantly higher than the average of purebreds (P=0.0274 and 0.0251, respectively). The positivity was significantly higher in males (51.5%) than in females (35.7%) (P<0.0001), whereas no gender difference has generally been noted in FCoV antibody prevalence, indicating that FIP more frequently develops in males among FCoV-infected cats. Genotyping was performed for 377 gene-positive specimens. Type I (83.3%) was far more predominantly detected than type II (10.6%) (P<0.0001), similar to previous serological and genetic surveys.

  1. A facile inhibitor screening of SARS coronavirus N protein using nanoparticle-based RNA oligonucleotide.

    PubMed

    Roh, Changhyun

    2012-01-01

    Hundreds of million people worldwide have been infected with severe acute respiratory syndrome (SARS), and the rate of global death from SARS has remarkably increased. Hence, the development of efficient drug treatments for the biological effects of SARS is highly needed. We have previously shown that quantum dots (QDs)-conjugated RNA oligonucleotide is sensitive to the specific recognition of the SARS-associated coronavirus (SARS-CoV) nucleocapsid (N) protein. In this study, we found that a designed biochip could analyze inhibitors of the SARS-CoV N protein using nanoparticle-based RNA oligonucleotide. Among the polyphenolic compounds examined, (-)-catechin gallate and (-)-gallocatechin gallate demonstrated a remarkable inhibition activity on SARS-CoV N protein. (-)-catechin gallate and (-)-gallocatechin gallate attenuated the binding affinity in a concentrated manner as evidenced by QDs-conjugated RNA oligonucleotide on a designed biochip. At a concentration of 0.05 μg mL(-1), (-)-catechin gallate and (-)-gallocatechin gallate showed more than 40% inhibition activity on a nanoparticle-based RNA oligonucleotide biochip system.

  2. Synthesis and processing of structural and intracellular proteins of two enteric coronaviruses

    SciTech Connect

    Sardinia, L.M.

    1985-01-01

    The synthesis and processing of virus-specific proteins of two economically important enteric coronaviruses, bovine enteric coronavirus (BCV) and transmissible gastroenteritis virus (TGEV), were studied at the molecular level. To determine the time of appearance of virus-specific proteins, virus-infected cells were labeled with /sup 35/S-methionine at various times during infection, immunoprecipitated with specific hyperimmune ascitic fluid, and analyzed by SDS-polyacrylamide gel electrophoresis. The peak of BCV protein synthesis was found to be at 12 hours postinfection (hpi). The appearance of all virus-specific protein was coordinated. In contrast, the peak of TGEV protein synthesis was at 8 hpi, but the nucleocapsid proteins was present as early as 4 hpi. Virus-infected cells were treated with tunicamycin to ascertain the types of glycosidic linkages of the glycoproteins. The peplomer proteins of both viruses were sensitive to inhibition by tunicamycin indicating that they possessed N-linked carbohydrates. The matrix protein of TGEV was similarly affected. The matrix protein of BCV, however, was resistant to tunicamycin treatment and, therefore, has O-linked carbohydrates. Only the nucleocapsid protein of both viruses is phosphorylated as detected by radiolabeling with /sup 32/P-orthophosphate. Pulse-chase studies and comparison of intracellular and virion proteins were done to detect precursor-product relationships.

  3. Genomic characterization of severe acute respiratory syndrome-related coronavirus in European bats and classification of coronaviruses based on partial RNA-dependent RNA polymerase gene sequences.

    PubMed

    Drexler, Jan Felix; Gloza-Rausch, Florian; Glende, Jörg; Corman, Victor Max; Muth, Doreen; Goettsche, Matthias; Seebens, Antje; Niedrig, Matthias; Pfefferle, Susanne; Yordanov, Stoian; Zhelyazkov, Lyubomir; Hermanns, Uwe; Vallo, Peter; Lukashev, Alexander; Müller, Marcel Alexander; Deng, Hongkui; Herrler, Georg; Drosten, Christian

    2010-11-01

    Bats may host emerging viruses, including coronaviruses (CoV). We conducted an evaluation of CoV in rhinolophid and vespertilionid bat species common in Europe. Rhinolophids carried severe acute respiratory syndrome (SARS)-related CoV at high frequencies and concentrations (26% of animals are positive; up to 2.4×10(8) copies per gram of feces), as well as two Alphacoronavirus clades, one novel and one related to the HKU2 clade. All three clades present in Miniopterus bats in China (HKU7, HKU8, and 1A related) were also present in European Miniopterus bats. An additional novel Alphacoronavirus clade (bat CoV [BtCoV]/BNM98-30) was detected in Nyctalus leisleri. A CoV grouping criterion was developed by comparing amino acid identities across an 816-bp fragment of the RNA-dependent RNA polymerases (RdRp) of all accepted mammalian CoV species (RdRp-based grouping units [RGU]). Criteria for defining separate RGU in mammalian CoV were a >4.8% amino acid distance for alphacoronaviruses and a >6.3% distance for betacoronaviruses. All the above-mentioned novel clades represented independent RGU. Strict associations between CoV RGU and host bat genera were confirmed for six independent RGU represented simultaneously in China and Europe. A SARS-related virus (BtCoV/BM48-31/Bulgaria/2008) from a Rhinolophus blasii (Rhi bla) bat was fully sequenced. It is predicted that proteins 3b and 6 were highly divergent from those proteins in all known SARS-related CoV. Open reading frame 8 (ORF8) was surprisingly absent. Surface expression of spike and staining with sera of SARS survivors suggested low antigenic overlap with SARS CoV. However, the receptor binding domain of SARS CoV showed higher similarity with that of BtCoV/BM48-31/Bulgaria/2008 than with that of any Chinese bat-borne CoV. Critical spike domains 472 and 487 were identical and similar, respectively. This study underlines the importance of assessments of the zoonotic potential of widely distributed bat-borne CoV.

  4. Bovine coronavirus nonstructural protein 1 (p28) is an RNA binding protein that binds terminal genomic cis-replication elements.

    PubMed

    Gustin, Kortney M; Guan, Bo-Jhih; Dziduszko, Agnieszka; Brian, David A

    2009-06-01

    Nonstructural protein 1 (nsp1), a 28-kDa protein in the bovine coronavirus (BCoV) and closely related mouse hepatitis coronavirus, is the first protein cleaved from the open reading frame 1 (ORF 1) polyprotein product of genome translation. Recently, a 30-nucleotide (nt) cis-replication stem-loop VI (SLVI) has been mapped at nt 101 to 130 within a 288-nt 5'-terminal segment of the 738-nt nsp1 cistron in a BCoV defective interfering (DI) RNA. Since a similar nsp1 coding region appears in all characterized groups 1 and 2 coronavirus DI RNAs and must be translated in cis for BCoV DI RNA replication, we hypothesized that nsp1 might regulate ORF 1 expression by binding this intra-nsp1 cistronic element. Here, we (i) establish by mutation analysis that the 72-nt intracistronic SLV immediately upstream of SLVI is also a DI RNA cis-replication signal, (ii) show by gel shift and UV-cross-linking analyses that cellular proteins of approximately 60 and 100 kDa, but not viral proteins, bind SLV and SLVI, (SLV-VI) and (iii) demonstrate by gel shift analysis that nsp1 purified from Escherichia coli does not bind SLV-VI but does bind three 5' untranslated region (UTR)- and one 3' UTR-located cis-replication SLs. Notably, nsp1 specifically binds SLIII and its flanking sequences in the 5' UTR with approximately 2.5 muM affinity. Additionally, under conditions enabling expression of nsp1 from DI RNA-encoded subgenomic mRNA, DI RNA levels were greatly reduced, but there was only a slight transient reduction in viral RNA levels. These results together indicate that nsp1 is an RNA-binding protein that may function to regulate viral genome translation or replication but not by binding SLV-VI within its own coding region.

  5. Flavivirus RNA Synthesis in vitro

    PubMed Central

    Padmanabhan, Radhakrishnan; Takhampunya, Ratree; Teramoto, Tadahisa; Choi, Kyung H.

    2015-01-01

    Summary Establishment of in vitro systems to study mechanisms of RNA synthesis for positive strand RNA viruses have been very useful in the past and have shed light on the composition of protein and RNA components, optimum conditions, the nature of the products formed, cis-acting RNA elements and trans-acting protein factors required for efficient synthesis. In this review, we summarize our current understanding regarding the requirements for flavivirus RNA synthesis in vitro. We describe details of reaction conditions, the specificity of template used by either the multi-component membrane-bound viral replicase complex or by purified, recombinant RNA-dependent RNA polymerase. We also discuss future perspectives to extend the boundaries of our knowledge. PMID:26272247

  6. Coronavirus Infections

    MedlinePlus

    Coronaviruses are common viruses that most people get some time in their life. They are common throughout the world, and they can infect people and animals. Several different coronaviruses can infect people ...

  7. Catalysis and prebiotic RNA synthesis

    NASA Technical Reports Server (NTRS)

    Ferris, James P.

    1993-01-01

    The essential role of catalysis for the origins of life is discussed. The status of the prebiotic synthesis of 2',5'- and 3'5'-linked oligomers of RNA is reviewed. Examples of the role of metal ion and mineral catalysis in RNA oligomer formation are discussed.

  8. Human coronavirus 229E nonstructural protein 13: characterization of duplex-unwinding, nucleoside triphosphatase, and RNA 5'-triphosphatase activities.

    PubMed

    Ivanov, Konstantin A; Ziebuhr, John

    2004-07-01

    The human coronavirus 229E (HCoV-229E) replicase gene-encoded nonstructural protein 13 (nsp13) contains an N-terminal zinc-binding domain and a C-terminal superfamily 1 helicase domain. A histidine-tagged form of nsp13, which was expressed in insect cells and purified, is reported to unwind efficiently both partial-duplex RNA and DNA of up to several hundred base pairs. Characterization of the nsp13-associated nucleoside triphosphatase (NTPase) activities revealed that all natural ribonucleotides and nucleotides are substrates of nsp13, with ATP, dATP, and GTP being hydrolyzed most efficiently. Using the NTPase active site, HCoV-229E nsp13 also mediates RNA 5'-triphosphatase activity, which may be involved in the capping of viral RNAs.

  9. Tagetitoxin inhibits chloroplast RNA synthesis

    SciTech Connect

    Mathews, D.E.; Durbin, R.D.

    1987-04-01

    Tagetitoxin is a non-host specific phytotoxin which inhibits chloroplast development. Chloroplast encoded gene products as well as their transcripts are conspicuously depleted in toxin-treated tissue. Intact chloroplasts from 8-9 day old peas were incubated for 60 min. in the presence of tagetitoxin. This treatment reduced RNA synthesis but did not affect protein synthesis as measured by the incorporation of radiolabeled uridine or methionine, respectively. Tagetitoxin also inhibited chloroplast RNA synthesis in vitro. Total UTP incorporation was reduced 50% by 0.5..mu..M tagetitoxin in transcriptionally active chloroplast extracts containing 5mg/ml protein. In vitro transcription with purified E. coli RNA polymerase was also inhibited by tagetitoxin, yet wheat germ RNA polymerase II and several bacteriophage RNA polymerase enzymes were unaffected. Recent evidence suggests that RNA polymerase from chloroplasts and prokaryotes may share extensive homology. In light of this evidence and the authors own data, they propose that tagetitoxin directly inhibits chloroplast RNA polymerase.

  10. Genotyping bovine coronaviruses.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bovine coronaviruses (BoCV) are enveloped, single-stranded, positive-sense RNA viruses of the Coronaviridae family. Infection is associated with enteritis and pneumonia in calves and Winter Dysentery in adult cattle. Strains, isolated more than 50 years ago, are used in vaccines and as laboratory ...

  11. Combination siRNA therapy against feline coronavirus can delay the emergence of antiviral resistance in vitro.

    PubMed

    McDonagh, Phillip; Sheehy, Paul A; Norris, Jacqueline M

    2015-03-23

    Virulent biotypes of feline coronavirus (FCoV), commonly referred to as feline infectious peritonitis virus (FIPV), can result in the development of feline infectious peritonitis (FIP), a typically fatal immune mediated disease for which there is currently no effective antiviral treatment. We previously reported the successful in vitro inhibition of FIPV replication by synthetic siRNA mediated RNA interference (RNAi) in an immortalised cell line (McDonagh et al., 2011). A major challenge facing the development of any antiviral strategy is that of resistance, a problem which is particularly acute for RNAi based therapeutics due to the exquisite sequence specificity of the targeting mechanism. The development of resistance during treatment can be minimised using combination therapy to raise the genetic barrier or using highly potent compounds which result in a more rapid and pronounced reduction in the viral replication rate, thereby reducing the formation of mutant, and potentially resistant viruses. This study investigated the efficacy of combination siRNA therapy and its ability to delay or prevent viral escape. Virus serially passaged through cells treated with a single or dual siRNAs rapidly acquired resistance, with mutations identified in the siRNA target sites. Combination therapy with three siRNA prevented viral escape over the course of five passages. To identify more potent silencing molecules we also compared the efficacy, in terms of potency and duration of action, of canonical versus Dicer-substrate siRNAs for two previously identified effective viral motifs. Dicer-substrate siRNAs showed equivalent or better potency than canonical siRNAs for the target sites investigated, and may be a more appropriate molecule for in vivo use. Combined, these data inform the potential therapeutic application of antiviral RNAi against FIPV.

  12. Generation of coronavirus spike deletion variants by high-frequency recombination at regions of predicted RNA secondary structure.

    PubMed Central

    Rowe, C L; Fleming, J O; Nathan, M J; Sgro, J Y; Palmenberg, A C; Baker, S C

    1997-01-01

    Coronavirus RNA evolves in the central nervous systems (CNS) of mice during persistent infection. This evolution can be monitored by detection of a viral quasispecies of spike deletion variants (SDVs) (C. L. Rowe, S. C. Baker, M. J. Nathan, and J. O. Fleming, J. Virol. 71:2959-2969, 1997). We and others have found that the deletions cluster in the region from 1,200 to 1,800 nucleotides from the 5' end of the spike gene sequence, termed the "hypervariable" region. To address how SDVs might arise, we generated the predicted folding structures of the positive- and negative-strand senses of the entire 4,139-nt spike RNA sequence. We found that a prominent, isolated stem-loop structure is coincident with the hypervariable region in each structure. To determine if this predicted stem-loop is a "hot spot" for RNA recombination, we assessed whether this region of the spike is more frequently deleted than three other selected regions of the spike sequence in a population of viral sequences isolated from the CNS of acutely and persistently infected mice. Using differential colony hybridization of cloned spike reverse transcription-PCR products, we detected SDVs in which the hot spot was deleted but did not detect SDVs in which other regions of the spike sequence were exclusively deleted. Furthermore, sequence analysis and mapping of the crossover sites of 25 distinct patterns of SDVs showed that the majority of crossover sites clustered to two regions at the base of the isolated stem-loop, which we designated as high-frequency recombination sites 1 and 2. Interestingly, the majority of the left and right crossover sites of the SDVs were directly across from or proximal to one another, suggesting that these SDVs are likely generated by intramolecular recombination. Overall, our results are consistent with there being an important role for the spike RNA secondary structure as a contributing factor in the generation of SDVs during persistent infection. PMID:9223514

  13. Homology-Based Identification of a Mutation in the Coronavirus RNA-Dependent RNA Polymerase That Confers Resistance to Multiple Mutagens

    PubMed Central

    Sexton, Nicole R.; Smith, Everett Clinton; Blanc, Hervé; Vignuzzi, Marco; Peersen, Olve B.

    2016-01-01

    ABSTRACT Positive-sense RNA viruses encode RNA-dependent RNA polymerases (RdRps) essential for genomic replication. With the exception of the large nidoviruses, such as coronaviruses (CoVs), RNA viruses lack proofreading and thus are dependent on RdRps to control nucleotide selectivity and fidelity. CoVs encode a proofreading exonuclease in nonstructural protein 14 (nsp14-ExoN), which confers a greater-than-10-fold increase in fidelity compared to other RNA viruses. It is unknown to what extent the CoV polymerase (nsp12-RdRp) participates in replication fidelity. We sought to determine whether homology modeling could identify putative determinants of nucleotide selectivity and fidelity in CoV RdRps. We modeled the CoV murine hepatitis virus (MHV) nsp12-RdRp structure and superimposed it on solved picornaviral RdRp structures. Fidelity-altering mutations previously identified in coxsackie virus B3 (CVB3) were mapped onto the nsp12-RdRp model structure and then engineered into the MHV genome with [nsp14-ExoN(+)] or without [nsp14-ExoN(−)] ExoN activity. Using this method, we identified two mutations conferring resistance to the mutagen 5-fluorouracil (5-FU): nsp12-M611F and nsp12-V553I. For nsp12-V553I, we also demonstrate resistance to the mutagen 5-azacytidine (5-AZC) and decreased accumulation of mutations. Resistance to 5-FU, and a decreased number of genomic mutations, was effectively masked by nsp14-ExoN proofreading activity. These results indicate that nsp12-RdRp likely functions in fidelity regulation and that, despite low sequence conservation, some determinants of RdRp nucleotide selectivity are conserved across RNA viruses. The results also indicate that, with regard to nucleotide selectivity, nsp14-ExoN is epistatic to nsp12-RdRp, consistent with its proposed role in a multiprotein replicase-proofreading complex. IMPORTANCE RNA viruses have evolutionarily fine-tuned replication fidelity to balance requirements for genetic stability and diversity

  14. Detection of group 1 coronaviruses in bats in North America

    USGS Publications Warehouse

    Dominguez, S.R.; O'Shea, T.J.; Oko, L.M.; Holmes, K.V.

    2007-01-01

    The epidemic of severe acute respiratory syndrome (SARS) was caused by a newly emerged coronavirus (SARS-CoV). Bats of several species in southern People's Republic of China harbor SARS-like CoVs and may be reservoir hosts for them. To determine whether bats in North America also harbor coronaviruses, we used reverse transcription-PCR to detect coronavirus RNA in bats. We found coronavirus RNA in 6 of 28 fecal specimens from bats of 2 of 7 species tested. The prevalence of viral RNA shedding was high: 17% in Eptesicus fuscus and 50% in Myotis occultus. Sequence analysis of a 440-bp amplicon in gene 1b showed that these Rocky Mountain bat coronaviruses formed 3 clusters in phylogenetic group 1 that were distinct from group 1 coronaviruses of Asian bats. Because of the potential for bat coronaviruses to cause disease in humans and animals, further surveillance and characterization of bat coronaviruses in North America are needed.

  15. Middle East respiratory syndrome coronavirus (MERS-CoV) RNA and neutralising antibodies in milk collected according to local customs from dromedary camels, Qatar, April 2014.

    PubMed

    Reusken, C B; Farag, E A; Jonges, M; Godeke, G J; El-Sayed, A M; Pas, S D; Raj, V S; Mohran, K A; Moussa, H A; Ghobashy, H; Alhajri, F; Ibrahim, A K; Bosch, B J; Pasha, S K; Al-Romaihi, H E; Al-Thani, M; Al-Marri, S A; AlHajri, M M; Haagmans, B L; Koopmans, M P

    2014-06-12

    Antibodies to Middle East respiratory syndrome coronavirus (MERS-CoV) were detected in serum and milk collected according to local customs from 33 camels in Qatar, April 2014. At one location, evidence for active virus shedding in nasal secretions and/or faeces was observed for 7/12 camels; viral RNA was detected in milk of five of these seven camels. The presence of MERS-CoV RNA in milk of camels actively shedding the virus warrants measures to prevent putative food-borne transmission of MERS-CoV.

  16. About Coronavirus

    MedlinePlus

    ... to moderate upper-respiratory tract illnesses, like the common cold. Coronaviruses are named for the crown-like spikes ... to moderate upper-respiratory tract illnesses, like the common cold, that last for a short amount of time. ...

  17. Coronaviruses: an overview of their replication and pathogenesis.

    PubMed

    Fehr, Anthony R; Perlman, Stanley

    2015-01-01

    Coronaviruses (CoVs), enveloped positive-sense RNA viruses, are characterized by club-like spikes that project from their surface, an unusually large RNA genome, and a unique replication strategy. Coronaviruses cause a variety of diseases in mammals and birds ranging from enteritis in cows and pigs and upper respiratory disease in chickens to potentially lethal human respiratory infections. Here we provide a brief introduction to coronaviruses discussing their replication and pathogenicity, and current prevention and treatment strategies. We also discuss the outbreaks of the highly pathogenic Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and the recently identified Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV).

  18. Coronaviruses: An Overview of Their Replication and Pathogenesis

    PubMed Central

    Fehr, Anthony R.; Perlman, Stanley

    2015-01-01

    Coronaviruses (CoVs), enveloped positive-sense RNA viruses, are characterized by club-like spikes that project from their surface, an unusually large RNA genome, and a unique replication strategy. Coronaviruses cause a variety of diseases in mammals and birds ranging from enteritis in cows and pigs and upper respiratory disease chickens to potentially lethal human respiratory infections. Here we provide a brief introduction to coronaviruses discussing their replication and pathogenicity, and current prevention and treatment strategies. We will also discuss the outbreaks of the highly pathogenic Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and the recently identified Middle Eastern Respiratory Syndrome Coronavirus (MERS-CoV). PMID:25720466

  19. Design, synthesis and evaluation of a series of acyclic fleximer nucleoside analogues with anti-coronavirus activity.

    PubMed

    Peters, Hannah L; Jochmans, Dirk; de Wilde, Adriaan H; Posthuma, Clara C; Snijder, Eric J; Neyts, Johan; Seley-Radtke, Katherine L

    2015-08-01

    A series of doubly flexible nucleoside analogues were designed based on the acyclic sugar scaffold of acyclovir and the flex-base moiety found in the fleximers. The target compounds were evaluated for their antiviral potential and found to inhibit several coronaviruses. Significantly, compound 2 displayed selective antiviral activity (CC50 >3× EC50) towards human coronavirus (HCoV)-NL63 and Middle East respiratory syndrome-coronavirus, but not severe acute respiratory syndrome-coronavirus. In the case of HCoV-NL63 the activity was highly promising with an EC50 <10 μM and a CC50 >100 μM. As such, these doubly flexible nucleoside analogues are viewed as a novel new class of drug candidates with potential for potent inhibition of coronaviruses.

  20. Crystal structure-based exploration of the important role of Arg106 in the RNA-binding domain of human coronavirus OC43 nucleocapsid protein

    PubMed Central

    Chen, I-Jung; Yuann, Jeu-Ming P.; Chang, Yu-Ming; Lin, Shing-Yen; Zhao, Jincun; Perlman, Stanley; Shen, Yo-Yu; Huang, Tai-Huang; Hou, Ming-Hon

    2013-01-01

    Human coronavirus OC43 (HCoV-OC43) is a causative agent of the common cold. The nucleocapsid (N) protein, which is a major structural protein of CoVs, binds to the viral RNA genome to form the virion core and results in the formation of the ribonucleoprotein (RNP) complex. We have solved the crystal structure of the N-terminal domain of HCoV-OC43 N protein (N-NTD) (residues 58 to 195) to a resolution of 2.0Å. The HCoV-OC43 N-NTD is a single domain protein composed of a five-stranded β-sheet core and a long extended loop, similar to that observed in the structures of N-NTDs from other coronaviruses. The positively charged loop of the HCoV-OC43 N-NTD contains a structurally well-conserved positively charged residue, R106. To assess the role of R106 in RNA binding, we undertook a series of site-directed mutagenesis experiments and docking simulations to characterize the interaction between R106 and RNA. The results show that R106 plays an important role in the interaction between the N protein and RNA. In addition, we showed that, in cells transfected with plasmids that encoded the mutant (R106A) N protein and infected with virus, the level of the matrix protein gene was decreased by 7-fold compared to cells that were transfected with the wild-type N protein. This finding suggests that R106, by enhancing binding of the N protein to viral RNA plays a critical role in the viral replication. The results also indicate that the strength of N protein/RNA interactions is critical for HCoV-OC43 replication. PMID:23501675

  1. The polypyrimidine tract-binding protein affects coronavirus RNA accumulation levels and relocalizes viral RNAs to novel cytoplasmic domains different from replication-transcription sites.

    PubMed

    Sola, Isabel; Galán, Carmen; Mateos-Gómez, Pedro A; Palacio, Lorena; Zúñiga, Sonia; Cruz, Jazmina L; Almazán, Fernando; Enjuanes, Luis

    2011-05-01

    The coronavirus (CoV) discontinuous transcription mechanism is driven by long-distance RNA-RNA interactions between transcription-regulating sequences (TRSs) located at the 5' terminal leader (TRS-L) and also preceding each mRNA-coding sequence (TRS-B). The contribution of host cell proteins to CoV transcription needs additional information. Polypyrimidine tract-binding protein (PTB) was reproducibly identified in association with positive-sense RNAs of transmissible gastroenteritis coronavirus (TGEV) TRS-L and TRS-B by affinity chromatography and mass spectrometry. A temporal regulation of PTB cytoplasmic levels was observed during infection, with a significant increase from 7 to 16 h postinfection being inversely associated with a decrease in viral replication and transcription. Silencing the expression of PTB with small interfering RNA in two cell lines (Huh7 and HEK 293T) led to a significant increase of up to 4-fold in mRNA levels and virus titer, indicating a negative effect of PTB on CoV RNA accumulation. During CoV infection, PTB relocalized from the nucleus to novel cytoplasmic structures different from replication-transcription sites in which stress granule markers T-cell intracellular antigen-1 (TIA-1) and TIA-1-related protein (TIAR) colocalized. PTB was detected in these modified stress granules in TGEV-infected swine testis cells but not in stress granules induced by oxidative stress. Furthermore, viral genomic and subgenomic RNAs were detected in association with PTB and TIAR. These cytoplasmic ribonucleoprotein complexes might be involved in posttranscriptional regulation of virus gene expression.

  2. More and More Coronaviruses: Human Coronavirus HKU1.

    PubMed

    Woo, Patrick C Y; Lau, Susanna K P; Yip, Cyril C Y; Huang, Yi; Yuen, Kwok-Yung

    2009-06-01

    After human coronaviruses OC43, 229E and NL63, human coronavirus HKU1 (HCoV-HKU1) is the fourth human coronavirus discovered. HCoV-HKU1 is a group 2a coronavirus that is still not cultivable. The G + C contents of HCoV-HKU1 genomes are 32%, the lowest among all known coronaviruses with complete genome sequences available. Among all coronaviruses, HCoV-HKU1 shows the most extreme codon usage bias, attributed most importantly to severe cytosine deamination. All HCoV-HKU1 genomes contain unique tandem copies of a 30-base acidic tandem repeat of unknown function at the N-terminus of nsp3 inside the acidic domain upstream of papain-like protease 1. Three genotypes, A, B and C, of HCoV-HKU1 and homologous recombination among their genomes, are observed. The incidence of HCoV-HKU1 infections is the highest in winter. Similar to other human coronaviruses, HCoV-HKU1 infections have been reported globally, with a median (range) incidence of 0.9 (0 - 4.4) %. HCoV-HKU1 is associated with both upper and lower respiratory tract infections that are mostly self-limiting. The most common method for diagnosing HCoV-HKU1 infection is RT-PCR or real-time RT-PCR using RNA extracted from respiratory tract samples such as nasopharyngeal aspirates (NPA). Both the pol and nucleocapsid genes have been used as the targets for amplification. Monoclonal antibodies have been generated for direct antigen detection in NPA. For antibody detection, Escherichia coli BL21 and baculovirus-expressed recombinant nucleocapsid of HCoV-HKU1 have been used for IgG and IgM detection in sera of patients and normal individuals, using Western blot and enzyme-linked immunoassay.

  3. Comprehensive detection and identification of seven animal coronaviruses and human respiratory coronavirus 229E with a microarray hybridization assay.

    PubMed

    Chen, Qin; Li, Jian; Deng, Zhirui; Xiong, Wei; Wang, Quan; Hu, Yong-Qiang

    2010-01-01

    Based on microarray hybridization, a diagnostic test for coronavirus infection was developed using eight coronavirus strains: canine coronavirus (CCoV), feline infectious peritonitis virus (FIPV), feline coronavirus (FCoV), bovine coronavirus (BCoV), porcine respiratory coronavirus (PRCoV), turkey enteritis coronavirus (TCoV), transmissible gastroenteritis virus (TGEV), and human respiratory coronavirus (HRCoV). Up to 104 cDNA clones of eight viruses were obtained by reverse transcription PCR with different pairs of primers designed for each virus and a pair of universal primers designed for the RNA polymerase gene of coronavirus. Total RNAs extracted from virus were reverse transcribed, followed by multi-PCR amplification and labeled with Cy3-dCTP. All labeled cDNAs and prepared gene chips were subjected to specific hybridization. The results showed that extensive cross-reaction existed between CCoV, FCoV, FIPV, TGEV and PRCoV, while there was no cross-reaction between BCoV, TCoV and HRCoV. The ultimate specific gene chip was developed with DNA fragments reamplified from the chosen recombinant plasmids without cross-reaction between different coronaviruses. The hybridization results showed that this gene chip could specifically identify and distinguish the eight coronaviruses and the sensitivity of the chip may be 1,000x more sensitive than PCR, indicating that it can be used for the diagnosis of eight coronavirus infections at the same time.

  4. Prebiotic RNA Synthesis by Montmorillonite Catalysis

    NASA Astrophysics Data System (ADS)

    Jheeta, Sohan; Joshi, Prakash C.

    2014-08-01

    This review summarizes our recent findings on the role of mineral salts in prebiotic RNA synthesis, which is catalyzed by montmorillonite clay minerals. The clay minerals not only catalyze the synthesis of RNA but also facilitate homochiral selection. Preliminary data of these findings have been presented at the "Horizontal Gene Transfer and the Last Universal Common Ancestor (LUCA)" conference at the Open University, Milton Keynes, UK, 5-6 September 2013. The objective of this meeting was to recognize the significance of RNA in LUCA. We believe that the prebiotic RNA synthesis from its monomers must have been a simple process. As a first step, it may have required activation of the 5'-end of the mononucleotide with a leaving group, e.g., imidazole in our model reaction (Figure 1). Wide ranges of activating groups are produced from HCN under plausible prebiotic Earth conditions. The final step is clay mineral catalysis in the presence of mineral salts to facilitate selective production of functional RNA. Both the clay minerals and mineral salts would have been abundant on early Earth. We have demonstrated that while montmorillonite (pH 7) produced only dimers from its monomers in water, addition of sodium chloride (1 M) enhanced the chain length multifold, as detected by HPLC. The effect of monovalent cations on RNA synthesis was of the following order: Li+ > Na+ > K+. A similar effect was observed with the anions, enhancing catalysis in the following order: Cl- > Br- > I-. The montmorillonite-catalyzed RNA synthesis was not affected by hydrophobic or hydrophilic interactions. We thus show that prebiotic synthesis of RNA from its monomers was a simple process requiring only clay minerals and a small amount of salt.

  5. Prebiotic RNA Synthesis by Montmorillonite Catalysis

    PubMed Central

    Jheeta, Sohan; Joshi, Prakash C.

    2014-01-01

    This review summarizes our recent findings on the role of mineral salts in prebiotic RNA synthesis, which is catalyzed by montmorillonite clay minerals. The clay minerals not only catalyze the synthesis of RNA but also facilitate homochiral selection. Preliminary data of these findings have been presented at the “Horizontal Gene Transfer and the Last Universal Common Ancestor (LUCA)” conference at the Open University, Milton Keynes, UK, 5–6 September 2013. The objective of this meeting was to recognize the significance of RNA in LUCA. We believe that the prebiotic RNA synthesis from its monomers must have been a simple process. As a first step, it may have required activation of the 5'-end of the mononucleotide with a leaving group, e.g., imidazole in our model reaction (Figure 1). Wide ranges of activating groups are produced from HCN under plausible prebiotic Earth conditions. The final step is clay mineral catalysis in the presence of mineral salts to facilitate selective production of functional RNA. Both the clay minerals and mineral salts would have been abundant on early Earth. We have demonstrated that while montmorillonite (pH 7) produced only dimers from its monomers in water, addition of sodium chloride (1 M) enhanced the chain length multifold, as detected by HPLC. The effect of monovalent cations on RNA synthesis was of the following order: Li+ > Na+ > K+. A similar effect was observed with the anions, enhancing catalysis in the following order: Cl− > Br− > I−. The montmorillonite-catalyzed RNA synthesis was not affected by hydrophobic or hydrophilic interactions. We thus show that prebiotic synthesis of RNA from its monomers was a simple process requiring only clay minerals and a small amount of salt. PMID:25370375

  6. The RNA synthesis machinery of negative-stranded RNA viruses

    SciTech Connect

    Ortín, Juan; Martín-Benito, Jaime

    2015-05-15

    The group of Negative-Stranded RNA Viruses (NSVs) includes many human pathogens, like the influenza, measles, mumps, respiratory syncytial or Ebola viruses, which produce frequent epidemics of disease and occasional, high mortality outbreaks by transmission from animal reservoirs. The genome of NSVs consists of one to several single-stranded, negative-polarity RNA molecules that are always assembled into mega Dalton-sized complexes by association to many nucleoprotein monomers. These RNA-protein complexes or ribonucleoproteins function as templates for transcription and replication by action of the viral RNA polymerase and accessory proteins. Here we review our knowledge on these large RNA-synthesis machines, including the structure of their components, the interactions among them and their enzymatic activities, and we discuss models showing how they perform the virus transcription and replication programmes. - Highlights: • Overall organisation of NSV RNA synthesis machines. • Structure and function of the ribonucleoprotein components: Atomic structure of the RNA polymerase complex. • Commonalities and differences between segmented- and non-segmented NSVs. • Transcription versus replication programmes.

  7. Sensitive detection of SARS coronavirus RNA by a novel asymmetric multiplex nested RT-PCR amplification coupled with oligonucleotide microarray hybridization.

    PubMed

    Zhang, Zhi-wei; Zhou, Yi-ming; Zhang, Yan; Guo, Yong; Tao, Sheng-ce; Li, Ze; Zhang, Qiong; Cheng, Jing

    2005-01-01

    We have developed a sensitive method for the detection of specific genes simultaneously. First, DNA was amplified by a novel asymmetric multiplex PCR with universal primer(s). Second, the 6-carboxytetramethylrhodamine (TAMRA)-labeled PCR products were hybridized specifically with oligonucleotide microarrays. Finally, matched duplexes were detected by using a laser-induced fluorescence scanner. The usefulness of this method was illustrated by analyzing severe acute respiratory syndrome (SARS) coronavirus RNA. The detection limit was 10(0) copies/microL. The results of the asymmetric multiplex nested reverse transcription-PCR were in agreement with the results of the microarray hybridization; no hybridization signal was lost as happened with applicons from symmetric amplifications. This reliable method can be used to the identification of other microorganisms, screening of genetic diseases, and other applications.

  8. Dissection of Amino-Terminal Functional Domains of Murine Coronavirus Nonstructural Protein 3

    PubMed Central

    Hurst-Hess, Kelley R.; Kuo, Lili

    2015-01-01

    ABSTRACT Coronaviruses, the largest RNA viruses, have a complex program of RNA synthesis that entails genome replication and transcription of subgenomic mRNAs. RNA synthesis by the prototype coronavirus mouse hepatitis virus (MHV) is carried out by a replicase-transcriptase composed of 16 nonstructural protein (nsp) subunits. Among these, nsp3 is the largest and the first to be inserted into the endoplasmic reticulum. nsp3 comprises multiple structural domains, including two papain-like proteases (PLPs) and a highly conserved ADP-ribose-1″-phosphatase (ADRP) macrodomain. We have previously shown that the ubiquitin-like domain at the amino terminus of nsp3 is essential and participates in a critical interaction with the viral nucleocapsid protein early in infection. In the current study, we exploited atypical expression schemes to uncouple PLP1 from the processing of nsp1 and nsp2 in order to investigate the requirements of nsp3 domains for viral RNA synthesis. In the first strategy, a mutant was created in which replicase polyprotein translation initiated with nsp3, thereby establishing that complete elimination of nsp1 and nsp2 does not abolish MHV viability. In the second strategy, a picornavirus autoprocessing element was used to separate a truncated nsp1 from nsp3. This provided a platform for further dissection of amino-terminal domains of nsp3. From this, we found that catalytic mutation of PLP1 or complete deletion of PLP1 and the adjacent ADRP domain was tolerated by the virus. These results showed that neither the PLP1 domain nor the ADRP domain of nsp3 provides integral activities essential for coronavirus genomic or subgenomic RNA synthesis. IMPORTANCE The largest component of the coronavirus replicase-transcriptase complex, nsp3, contains multiple modules, many of which do not have clearly defined functions in genome replication or transcription. These domains may play direct roles in RNA synthesis, or they may have evolved for other purposes, such as

  9. Epigenetic Landscape during Coronavirus Infection

    PubMed Central

    Schäfer, Alexandra; Baric, Ralph S.

    2017-01-01

    Coronaviruses (CoV) comprise a large group of emerging human and animal pathogens, including the highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) strains. The molecular mechanisms regulating emerging coronavirus pathogenesis are complex and include virus–host interactions associated with entry, replication, egress and innate immune control. Epigenetics research investigates the genetic and non-genetic factors that regulate phenotypic variation, usually caused by external and environmental factors that alter host expression patterns and performance without any change in the underlying genotype. Epigenetic modifications, such as histone modifications, DNA methylation, chromatin remodeling, and non-coding RNAs, function as important regulators that remodel host chromatin, altering host expression patterns and networks in a highly flexible manner. For most of the past two and a half decades, research has focused on the molecular mechanisms by which RNA viruses antagonize the signaling and sensing components that regulate induction of the host innate immune and antiviral defense programs upon infection. More recently, a growing body of evidence supports the hypothesis that viruses, even lytic RNA viruses that replicate in the cytoplasm, have developed intricate, highly evolved, and well-coordinated processes that are designed to regulate the host epigenome, and control host innate immune antiviral defense processes, thereby promoting robust virus replication and pathogenesis. In this article, we discuss the strategies that are used to evaluate the mechanisms by which viruses regulate the host epigenome, especially focusing on highly pathogenic respiratory RNA virus infections as a model. By combining measures of epigenome reorganization with RNA and proteomic datasets, we articulate a spatial-temporal data integration approach to identify regulatory genomic clusters and regions that

  10. Epigenetic Landscape during Coronavirus Infection.

    PubMed

    Schäfer, Alexandra; Baric, Ralph S

    2017-02-15

    Coronaviruses (CoV) comprise a large group of emerging human and animal pathogens, including the highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) strains. The molecular mechanisms regulating emerging coronavirus pathogenesis are complex and include virus-host interactions associated with entry, replication, egress and innate immune control. Epigenetics research investigates the genetic and non-genetic factors that regulate phenotypic variation, usually caused by external and environmental factors that alter host expression patterns and performance without any change in the underlying genotype. Epigenetic modifications, such as histone modifications, DNA methylation, chromatin remodeling, and non-coding RNAs, function as important regulators that remodel host chromatin, altering host expression patterns and networks in a highly flexible manner. For most of the past two and a half decades, research has focused on the molecular mechanisms by which RNA viruses antagonize the signaling and sensing components that regulate induction of the host innate immune and antiviral defense programs upon infection. More recently, a growing body of evidence supports the hypothesis that viruses, even lytic RNA viruses that replicate in the cytoplasm, have developed intricate, highly evolved, and well-coordinated processes that are designed to regulate the host epigenome, and control host innate immune antiviral defense processes, thereby promoting robust virus replication and pathogenesis. In this article, we discuss the strategies that are used to evaluate the mechanisms by which viruses regulate the host epigenome, especially focusing on highly pathogenic respiratory RNA virus infections as a model. By combining measures of epigenome reorganization with RNA and proteomic datasets, we articulate a spatial-temporal data integration approach to identify regulatory genomic clusters and regions that

  11. Interactions of Rodent Coronaviruses with Cellular Receptors

    DTIC Science & Technology

    2016-05-08

    isolated, the MHV-JHM and MHV-A59 strains have been used extensively in research on the biology of coronaviruses and the pathogenesis of virus- induced...research has grown in the past four years. New biochemical techniques and the better understanding of the biology of the cell made possible the...O. (1987). Coronavirus: A jumping RNA transcription. Cold Spring Harbor Symposia on Quantative Biology 42, 359-365. Lapps, W., Hogue, B. G., and

  12. Bovine coronavirus associated syndromes.

    PubMed

    Boileau, Mélanie J; Kapil, Sanjay

    2010-03-01

    Bovine coronaviruses, like other animal coronaviruses, have a predilection for intestinal and respiratory tracts. The viruses responsible for enteric and respiratory symptoms are closely related antigenically and genetically. Only 4 bovine coronavirus isolates have been completely sequenced and thus, the information about the genetics of the virus is still limited. This article reviews the clinical syndromes associated with bovine coronavirus, including pneumonia in calves and adult cattle, calf diarrhea, and winter dysentery; diagnostic methods; prevention using vaccination; and treatment, with adjunctive immunotherapy.

  13. Coronavirus genotype diversity and prevalence of infection in wild carnivores in the Serengeti National Park, Tanzania.

    PubMed

    Goller, Katja V; Fickel, Jörns; Hofer, Heribert; Beier, Sandra; East, Marion L

    2013-04-01

    Knowledge of coronaviruses in wild carnivores is limited. This report describes coronavirus genetic diversity, species specificity and infection prevalence in three wild African carnivores. Coronavirus RNA was recovered from fresh feces from spotted hyena and silver-backed jackal, but not bat-eared fox. Analysis of sequences of membrane (M) and spike (S) gene fragments revealed strains in the genus Alphacoronavirus, including three distinct strains in hyenas and one distinct strain in a jackal. Coronavirus RNA prevalence was higher in feces from younger (17 %) than older (3 %) hyenas, highlighting the importance of young animals for coronavirus transmission in wild carnivores.

  14. Synthesis, crystal structure, structure-activity relationships, and antiviral activity of a potent SARS coronavirus 3CL protease inhibitor.

    PubMed

    Yang, Syaulan; Chen, Shu-Jen; Hsu, Min-Feng; Wu, Jen-Dar; Tseng, Chien-Te K; Liu, Yu-Fan; Chen, Hua-Chien; Kuo, Chun-Wei; Wu, Chi-Shen; Chang, Li-Wen; Chen, Wen-Chang; Liao, Shao-Ying; Chang, Teng-Yuan; Hung, Hsin-Hui; Shr, Hui-Lin; Liu, Cheng-Yuan; Huang, Yu-An; Chang, Ling-Yin; Hsu, Jen-Chi; Peters, Clarence J; Wang, Andrew H-J; Hsu, Ming-Chu

    2006-08-10

    A potent SARS coronavirus (CoV) 3CL protease inhibitor (TG-0205221, Ki = 53 nM) has been developed. TG-0205221 showed remarkable activity against SARS CoV and human coronavirus (HCoV) 229E replications by reducing the viral titer by 4.7 log (at 5 microM) for SARS CoV and 5.2 log (at 1.25 microM) for HCoV 229E. The crystal structure of TG-0205221 (resolution = 1.93 A) has revealed a unique binding mode comprising a covalent bond, hydrogen bonds, and numerous hydrophobic interactions. Structural comparisons between TG-0205221 and a natural peptide substrate were also discussed. This information may be applied toward the design of other 3CL protease inhibitors.

  15. Synthesis of RNA oligomers on heterogeneous templates

    NASA Technical Reports Server (NTRS)

    Ertem, G.; Ferris, J. P.

    1996-01-01

    The concept of an RNA world in the chemical origin of life is appealing, as nucleic acids are capable of both information storage and acting as templates that catalyse the synthesis of complementary molecules. Template-directed synthesis has been demonstrated for homogeneous oligonucleotides that, like natural nucleic acids, have 3',5' linkages between the nucleotide monomers. But it seems likely that prebiotic routes to RNA-like molecules would have produced heterogeneous molecules with various kinds of phosphodiester linkages and both linear and cyclic nucleotide chains. Here we show that such heterogeneity need be no obstacle to the templating of complementary molecules. Specifically, we show that heterogeneous oligocytidylates, formed by the montmorillonite clay-catalysed condensation of actuated monomers, can serve as templates for the synthesis of oligoguanylates. Furthermore, we show that oligocytidylates that are exclusively 2',5'-linked can also direct synthesis of oligoguanylates. Such heterogeneous templating reactions could have increased the diversity of the pool of protonucleic acids from which life ultimately emerged.

  16. The structure and functions of coronavirus genomic 3' and 5' ends.

    PubMed

    Yang, Dong; Leibowitz, Julian L

    2015-08-03

    Coronaviruses (CoVs) are an important cause of illness in humans and animals. Most human coronaviruses commonly cause relatively mild respiratory illnesses; however two zoonotic coronaviruses, SARS-CoV and MERS-CoV, can cause severe illness and death. Investigations over the past 35 years have illuminated many aspects of coronavirus replication. The focus of this review is the functional analysis of conserved RNA secondary structures in the 5' and 3' of the betacoronavirus genomes. The 5' 350 nucleotides folds into a set of RNA secondary structures which are well conserved, and reverse genetic studies indicate that these structures play an important role in the discontinuous synthesis of subgenomic RNAs in the betacoronaviruses. These cis-acting elements extend 3' of the 5'UTR into ORF1a. The 3'UTR is similarly conserved and contains all of the cis-acting sequences necessary for viral replication. Two competing conformations near the 5' end of the 3'UTR have been shown to make up a potential molecular switch. There is some evidence that an association between the 3' and 5'UTRs is necessary for subgenomic RNA synthesis, but the basis for this association is not yet clear. A number of host RNA proteins have been shown to bind to the 5' and 3' cis-acting regions, but the significance of these in viral replication is not clear. Two viral proteins have been identified as binding to the 5' cis-acting region, nsp1 and N protein. A genetic interaction between nsp8 and nsp9 and the region of the 3'UTR that contains the putative molecular switch suggests that these two proteins bind to this region.

  17. Analytical and Clinical Validation of Six Commercial Middle East Respiratory Syndrome Coronavirus RNA Detection Kits Based on Real-Time Reverse-Transcription PCR

    PubMed Central

    Ko, Young Jin; Seong, Moon-Woo; Kim, Jae-Seok; Shin, Bo-Moon; Sung, Heungsup

    2016-01-01

    Background During the 2015 outbreak of Middle East Respiratory Syndrome coronavirus (MERS-CoV), six different commercial MERS-CoV RNA detection kits based on real-time reverse-transcription polymerase chain reaction (rRT-PCR) were available in Korea. We performed analytical and clinical validations of these kits. Methods PowerChek (Kogene Biotech, Korea), DiaPlexQ (SolGent, Korea), Anyplex (Seegene, Korea), AccuPower (Bioneer, Korea), LightMix (Roche Molecular Diagnostics, Switzerland), and UltraFast kits (Nanobiosys, Korea) were evaluated. Limits of detection (LOD) with 95% probability values were estimated by testing 16 replicates of upstream of the envelope gene (upE) and open reading frame 1a (ORF1a) RNA transcripts. Specificity was estimated by using 28 nasopharyngeal swabs that were positive for other respiratory viruses. Clinical sensitivity was evaluated by using 18 lower respiratory specimens. The sensitivity test panel and the high inhibition panel were composed of nine specimens each, including eight and six specimens that were positive for MERS-CoV, respectively. Results The LODs for upE ranged from 21.88 to 263.03 copies/reaction, and those for ORF1a ranged from 6.92 to 128.82 copies/reaction. No cross-reactivity with other respiratory viruses was found. All six kits correctly identified 8 of 8 (100%) positive clinical specimens. Based on results from the high inhibition panel, PowerChek and AccuPower were the least sensitive to the presence of PCR inhibition. Conclusions The overall sensitivity and specificity of all six assay systems were sufficient for diagnosing MERS-CoV infection. However, the analytical sensitivity and detection ability in specimens with PCR inhibition could be improved with the use of appropriate internal controls. PMID:27374710

  18. Detection of subgenomic mRNA of feline coronavirus by real-time polymerase chain reaction based on primer-probe energy transfer (P-sg-QPCR).

    PubMed

    Hornyák, Akos; Bálint, Adám; Farsang, Attila; Balka, Gyula; Hakhverdyan, Mikhayil; Rasmussen, Thomas Bruun; Blomberg, Jonas; Belák, Sándor

    2012-05-01

    Feline infectious peritonitis is one of the most severe devastating diseases of the Felidae. Upon the appearance of clinical signs, a cure for the infected animal is impossible. Therefore rapid and proper diagnosis for both the presence of the causative agent, feline coronavirus (FCoV) and the manifestation of feline infectious peritonitis is of paramount importance. In the present work, a novel real-time RT-PCR method is described which is able to detect FCoV and to determine simultaneously the quantity of the viral RNA. The new assay combines the M gene subgenomic messenger RNA (sg-mRNA) detection and the quantitation of the genome copies of FCoV. In order to detect the broadest spectrum of potential FCoV variants and to achieve the most accurate results in the detection ability the new assay is applying the primer-probe energy transfer (PriProET) principle. This technology was chosen since PriProET is very robust to tolerate the nucleotide substitutions in the target area. Therefore, this technology provides a very broad-range system, which is able to detect simultaneously many variants of the virus(es) even if the target genomic regions show large scale of variations. The detection specificity of the new assay was proven by positive amplification from a set of nine different FCoV strains and negative from the tested non-coronaviral targets. Examination of faecal samples of healthy young cats, organ samples of perished animals, which suffered from feline infectious peritonitis, and cat leukocytes from uncertain clinical cases were also subjected to the assay. The sensitivity of the P-sg-QPCR method was high, since as few as 10 genome copies of FCoV were detected. The quantitative sg-mRNA detection method revealed more than 10-50,000 times increase of the M gene sg-mRNA in organ materials of feline infectious peritonitis cases, compared to those of the enteric FCoV variants present in the faeces of normal, healthy cats. These results indicate the applicability of

  19. Coronavirus infection of spotted hyenas in the Serengeti ecosystem.

    PubMed

    East, Marion L; Moestl, Karin; Benetka, Viviane; Pitra, Christian; Höner, Oliver P; Wachter, Bettina; Hofer, Heribert

    2004-08-19

    Sera from 38 free-ranging spotted hyenas (Crocuta crocuta) in the Serengeti ecosystem, Tanzania, were screened for exposure to coronavirus of antigenic group 1. An immunofluorescence assay indicated high levels of exposure to coronavirus among Serengeti hyenas: 95% when considering sera with titer levels of > or = 1:10 and 74% when considering sera with titer levels of > or = 1:40. Cubs had generally lower mean titer levels than adults. Exposure among Serengeti hyenas to coronavirus was also confirmed by a serum neutralisation assay and an ELISA. Application of RT-PCR to 27 fecal samples revealed viral RNA in three samples (11%). All three positive fecal samples were from the 15 juvenile animals (<24 months of age) sampled, and none from the 12 adults sampled. No viral RNA was detected in tissue samples (lymph node, intestine, lung) from 11 individuals. Sequencing of two amplified products from the S protein gene of a positive sample revealed the presence of coronavirus specific RNA with a sequence homology to canine coronavirus of 76 and 78% and to feline coronavirus type II of 80 and 84%, respectively. Estimation of the phylogenetic relationship among coronavirus isolates indicated considerable divergence of the hyena variant from those in European, American and Japanese domestic cats and dogs. From long-term observations of several hundred known individuals, the only clinical sign in hyenas consistent with those described for coronavirus infections in dogs and cats was diarrhea. There was no evidence that coronavirus infection in hyenas caused clinical signs similar to feline infectious peritonitis in domestic cats or was a direct cause of mortality in hyenas. To our knowledge, this is the first report of coronavirus infection in Hyaenidae.

  20. Nidovirus RNA polymerases: Complex enzymes handling exceptional RNA genomes.

    PubMed

    Posthuma, Clara C; Te Velthuis, Aartjan J W; Snijder, Eric J

    2017-02-06

    Coronaviruses and arteriviruses are distantly related human and animal pathogens that belong to the order Nidovirales. Nidoviruses are characterized by their polycistronic plus-stranded RNA genome, the production of subgenomic mRNAs and the conservation of a specific array of replicase domains, including key RNA-synthesizing enzymes. Coronaviruses (26-34 kilobases) have the largest known RNA genomes and their replication presumably requires a processive RNA-dependent RNA polymerase (RdRp) and enzymatic functions that suppress the consequences of the typically high error rate of viral RdRps. The arteriviruses have significantly smaller genomes and form an intriguing package with the coronaviruses to analyse viral RdRp evolution and function. The RdRp domain of nidoviruses resides in a cleavage product of the replicase polyprotein named non-structural protein (nsp) 12 in coronaviruses and nsp9 in arteriviruses. In all nidoviruses, the C-terminal RdRp domain is linked to a conserved N-terminal domain, which has been coined NiRAN (nidovirus RdRp-associated nucleotidyl transferase). Although no structural information is available, the functional characterization of the nidovirus RdRp and the larger enzyme complex of which it is part, has progressed significantly over the past decade. In coronaviruses several smaller, non-enzymatic nsps were characterized that direct RdRp function, while a 3'-to-5' exoribonuclease activity in nsp14 was implicated in fidelity. In arteriviruses, the nsp1 subunit was found to maintain the balance between genome replication and subgenomic mRNA production. Understanding RdRp behaviour and interactions during RNA synthesis and subsequent processing will be key to rationalising the evolutionary success of nidoviruses and the development of antiviral strategies.

  1. Translating Ribosomes Inhibit Poliovirus Negative-Strand RNA Synthesis

    PubMed Central

    Barton, David J.; Morasco, B. Joan; Flanegan, James B.

    1999-01-01

    Poliovirus has a single-stranded RNA genome of positive polarity that serves two essential functions at the start of the viral replication cycle in infected cells. First, it is translated to synthesize viral proteins and, second, it is copied by the viral polymerase to synthesize negative-strand RNA. We investigated these two reactions by using HeLa S10 in vitro translation-RNA replication reactions. Preinitiation RNA replication complexes were isolated from these reactions and then used to measure the sequential synthesis of negative- and positive-strand RNAs in the presence of different protein synthesis inhibitors. Puromycin was found to stimulate RNA replication overall. In contrast, RNA replication was inhibited by diphtheria toxin, cycloheximide, anisomycin, and ricin A chain. Dose-response experiments showed that precisely the same concentration of a specific drug was required to inhibit protein synthesis and to either stimulate or inhibit RNA replication. This suggested that the ability of these drugs to affect RNA replication was linked to their ability to alter the normal clearance of translating ribosomes from the input viral RNA. Consistent with this idea was the finding that the protein synthesis inhibitors had no measurable effect on positive-strand synthesis in normal RNA replication complexes. In marked contrast, negative-strand synthesis was stimulated by puromycin and was inhibited by cycloheximide. Puromycin causes polypeptide chain termination and induces the dissociation of polyribosomes from mRNA. Cycloheximide and other inhibitors of polypeptide chain elongation “freeze” ribosomes on mRNA and prevent the normal clearance of ribosomes from viral RNA templates. Therefore, it appears that the poliovirus polymerase was not able to dislodge translating ribosomes from viral RNA templates and mediate the switch from translation to negative-strand synthesis. Instead, the initiation of negative-strand synthesis appears to be coordinately regulated

  2. Drug targets for rational design against emerging coronaviruses.

    PubMed

    Zhao, Qi; Weber, Erin; Yang, Haitao

    2013-04-01

    The recent, fatal outbreak of the novel coronavirus strain in the Middle East highlights the real threat posed by this unique virus family. Neither pharmaceutical cures nor preventive vaccines are clinically available to fight against coronavirus associated syndromes, not to mention a lack of symptom soothing drugs. Development of treatment options is complicated by the unpredictable, recurring instances of cross-species viral transmission. The vastly distributing virus reservoir and the rapid rate of host-species exchange of coronavirus demands wide spectrum potency in an ideal therapeutic. Through summarizing the available information and progress in coronavirus research, this review provides a systematic assessment of the potential wide-spectrum features on the most popular drug targets including viral proteases, spike protein, RNA polymerases and editing enzymes as well as host-virus interaction pathways associated with coronaviruses.

  3. Extraordinary GU-rich single-strand RNA identified from SARS coronavirus contributes an excessive innate immune response.

    PubMed

    Li, Yan; Chen, Ming; Cao, Hongwei; Zhu, Yuanfeng; Zheng, Jiang; Zhou, Hong

    2013-02-01

    A dangerous cytokine storm occurs in the SARS involving in immune disorder, but many aspects of the pathogenetic mechanism remain obscure since its outbreak. To deeply reveal the interaction of host and SARS-CoV, based on the basic structural feature of pathogen-associated molecular pattern, we created a new bioinformatics method for searching potential pathogenic molecules and identified a set of SARS-CoV specific GU-rich ssRNA fragments with a high-density distribution in the genome. In vitro experiments, the result showed the representative SARS-CoV ssRNAs had powerful immunostimulatory activities to induce considerable level of pro-inflammatory cytokine TNF-a, IL-6 and IL-12 release via the TLR7 and TLR8, almost 2-fold higher than the strong stimulatory ssRNA40 that was found previously from other virus. Moreover, SARS-CoV ssRNA was able to cause acute lung injury in mice with a high mortality rate in vivo experiment. It suggests that SARS-CoV specific GU-rich ssRNA plays a very important role in the cytokine storm associated with a dysregulation of the innate immunity. This study not only presents new evidence about the immunopathologic damage caused by overactive inflammation during the SARS-CoV infection, but also provides a useful clue for a new therapeutic strategy.

  4. Role of RNA and Protein Synthesis in Abscission

    PubMed Central

    Abeles, F. B.

    1968-01-01

    The cell separation aspect of abscission is thought to involve the action of specific cell wall degrading enzymes. Enzymes represent synthesis which in turn is preceded by the synthesis of specific RNA molecules, and it follows that inhibition of either of these processes would also block abscission. Since abscission is a localized phenomenon usually involving 2 or 3 cell layers, RNA and protein synthesis should also be localized. Manipulations of plant material which either accelerate or retard abscission may be due to the regulation of RNA and protein synthesis. This paper is a review of literature concerned with these and related questions. Images PMID:16657020

  5. Synthesis and Characterization of a Native, Oligomeric Form of Recombinant Severe Acute Respiratory Syndrome Coronavirus Spike Glycoprotein

    PubMed Central

    Song, Hyun Chul; Seo, Mi-Young; Stadler, Konrad; Yoo, Byoung J.; Choo, Qui-Lim; Coates, Stephen R.; Uematsu, Yasushi; Harada, Takashi; Greer, Catherine E.; Polo, John M.; Pileri, Piero; Eickmann, Markus; Rappuoli, Rino; Abrignani, Sergio; Houghton, Michael; Han, Jang H.

    2004-01-01

    We have expressed and characterized the severe acute respiratory syndrome coronavirus (SARS-CoV) spike protein in cDNA-transfected mammalian cells. The full-length spike protein (S) was newly synthesized as an endoglycosidase H (endo H)-sensitive glycoprotein (gp170) that is further modified into an endo H-resistant glycoprotein (gp180) in the Golgi apparatus. No substantial proteolytic cleavage of S was observed, suggesting that S is not processed into head (S1) and stalk (S2) domains as observed for certain other coronaviruses. While the expressed full-length S glycoprotein was exclusively cell associated, a truncation of S by excluding the C-terminal transmembrane and cytoplasmic tail domains resulted in the expression of an endoplasmic reticulum-localized glycoprotein (gp160) as well as a Golgi-specific form (gp170) which was ultimately secreted into the cell culture medium. Chemical cross-linking, thermal denaturation, and size fractionation analyses suggested that the full-length S glycoprotein of SARS-CoV forms a higher order structure of ∼500 kDa, which is consistent with it being an S homotrimer. The latter was also observed in purified virions. The intracellular form of the C-terminally truncated S protein (but not the secreted form) also forms trimers, but with much less efficiency than full-length S. Deglycosylation of the full-length homotrimer with peptide N-glycosidase-F under native conditions abolished recognition of the protein by virus-neutralizing antisera raised against purified virions, suggesting the importance of the carbohydrate in the correct folding of the S protein. These data should aid in the design of recombinant vaccine antigens to prevent the spread of this emerging pathogen. PMID:15367599

  6. 2-Selenouridine triphosphate synthesis and Se-RNA transcription.

    PubMed

    Sun, Huiyan; Jiang, Sibo; Caton-Williams, Julianne; Liu, Hehua; Huang, Zhen

    2013-09-01

    2-Selenouridine ((Se)U) is one of the naturally occurring modifications of Se-tRNAs ((Se)U-RNA) at the wobble position of the anticodon loop. Its role in the RNA-RNA interaction, especially during the mRNA decoding, is elusive. To assist the research exploration, herein we report the enzymatic synthesis of the (Se)U-RNA via 2-selenouridine triphosphate ((Se)UTP) synthesis and RNA transcription. Moreover, we have demonstrated that the synthesized (Se)UTP is stable and recognizable by T7 RNA polymerase. Under the optimized conditions, the transcription yield of (Se)U-RNA can reach up to 85% of the corresponding native RNA. Furthermore, the transcribed (Se)U-hammerhead ribozyme has the similar activity as the corresponding native, which suggests usefulness of (Se)U-RNAs in function and structure studies of noncoding RNAs, including the Se-tRNAs.

  7. Aminoacyl-RNA synthesis catalyzed by an RNA.

    PubMed

    Illangasekare, M; Sanchez, G; Nickles, T; Yarus, M

    1995-02-03

    An RNA has been selected that rapidly aminoacylates its 2'(3') terminus when provided with phenylalanyl-adenosine monophosphate. That is, the RNA accelerates the same aminoacyl group transfer catalyzed by protein aminoacyl-transfer RNA synthetases. The best characterized RNA reaction requires both Mg2+ and Ca2+. These results confirm a necessary prediction of the RNA world hypothesis and represent efficient RNA reaction (> or = 10(5) times accelerated) at a carbonyl carbon, exemplifying a little explored type of RNA catalysis.

  8. Specific mRNA destabilization in Dictyostelium discoideum requires RNA synthesis.

    PubMed Central

    Amara, J F; Lodish, H F

    1987-01-01

    We tested the effects of inhibitors of protein and RNA synthesis on the disaggregation-mediated destabilization of prespore mRNAs in Dictyostelium discoideum. Incubating disaggregated cells with daunomycin to inhibit RNA synthesis prevented the loss of prespore mRNAs, whereas the inhibitor decreased or did not affect levels of the common mRNAs CZ22 and actin. Protein synthesis inhibitors varied in their effects. Cycloheximide, which inhibited protein synthesis almost completely, prevented the loss of the prespore mRNAs, but puromycin, which inhibited protein synthesis less well, did not. These results indicate that the process of specific mRNA destabilization requires the synthesis of RNA and possibly of protein. Images PMID:3437899

  9. Archaeal aminoacyl-tRNA synthesis: diversity replaces dogma.

    PubMed Central

    Tumbula, D; Vothknecht, U C; Kim, H S; Ibba, M; Min, B; Li, T; Pelaschier, J; Stathopoulos, C; Becker, H; Söll, D

    1999-01-01

    Accurate aminoacyl-tRNA synthesis is essential for faithful translation of the genetic code and consequently has been intensively studied for over three decades. Until recently, the study of aminoacyl-tRNA synthesis in archaea had received little attention. However, as in so many areas of molecular biology, the advent of archaeal genome sequencing has now drawn researchers to this field. Investigations with archaea have already led to the discovery of novel pathways and enzymes for the synthesis of numerous aminoacyl-tRNAs. The most surprising of these findings has been a transamidation pathway for the synthesis of asparaginyl-tRNA and a novel lysyl-tRNA synthetase. In addition, seryl- and phenylalanyl-tRNA synthetases that are only marginally related to known examples outside the archaea have been characterized, and the mechanism of cysteinyl-tRNA formation in Methanococcus jannaschii and Methanobacterium thermoautotrophicum is still unknown. These results have revealed completely unexpected levels of complexity and diversity, questioning the notion that aminoacyl-tRNA synthesis is one of the most conserved functions in gene expression. It has now become clear that the distribution of the various mechanisms of aminoacyl-tRNA synthesis in extant organisms has been determined by numerous gene transfer events, indicating that, while the process of protein biosynthesis is orthologous, its constituents are not. PMID:10430557

  10. RNA synthesis in the thymus of the immunologically mature mouse

    PubMed Central

    Patt, D. J.; Cohen, E. P.

    1974-01-01

    RNA synthesis was investigated in the thymus glands of adult immunized mice. After the intraperitoneal injection of mice with sheep red blood cells (SRBC), the net synthesis of RNA in the gland increased. A small but consistent amount of the RNA synthesized was distinguished by RNA:DNA hybridizations from that found in the glands of mice not injected with antigen. The RNA formed after immunization did not appear by hybridization to be specific for different antigens since the species of RNA formed in the glands of mice injected with SRBC was indistinguishable from RNA formed in the thymuses of mice injected with chicken red blood cells. RNA synthesized in the thymus glands of mice pharmacologically `stressed' by the injections of hydrocortisone, however, was distinguishable from that formed in the glands of mice injected with antigen. PMID:4854183

  11. Synthesis of RNA using 2'-O-DTM protection.

    PubMed

    Semenyuk, Andrey; Földesi, Andras; Johansson, Tommy; Estmer-Nilsson, Camilla; Blomgren, Peter; Brännvall, Mathias; Kirsebom, Leif A; Kwiatkowski, Marek

    2006-09-27

    tert-Butyldithiomethyl (DTM), a novel hydroxyl protecting group, cleavable under reductive conditions, was developed and applied for the protection of 2'-OH during solid-phase RNA synthesis. This function is compatible with all standard protecting groups used in oligonucleotide synthesis, and allows for fast and high-yield synthesis of RNA. Oligonucleotides containing the 2'-O-DTM groups can be easily deprotected under the mildest possible aqueous and homogeneous conditions. The preserved 5'-O-DMTr function can be used for high-throughput cartridge RNA purification.

  12. RNA-catalysed synthesis of complementary-strand RNA

    NASA Astrophysics Data System (ADS)

    Doudna, Jennifer A.; Szostak, Jack W.

    1989-06-01

    The Tetrahymena ribozyme can splice together multiple oligonucleotides aligned on a template strand to yield a fully complementary product strand. This reaction demonstrates the feasibility of RNA-catalysed RNA replications.

  13. De Novo Initiation of RNA Synthesis by the RNA-Dependent RNA Polymerase (NS5B) of Hepatitis C Virus

    PubMed Central

    Luo, Guangxiang; Hamatake, Robert K.; Mathis, Danielle M.; Racela, Jason; Rigat, Karen L.; Lemm, Julie; Colonno, Richard J.

    2000-01-01

    Hepatitis C virus (HCV) NS5B protein possesses an RNA-dependent RNA polymerase (RdRp) activity, a major function responsible for replication of the viral RNA genome. To further characterize the RdRp activity, NS5B proteins were expressed from recombinant baculoviruses, purified to near homogeneity, and examined for their ability to synthesize RNA in vitro. As a result, a highly active NS5B RdRp (1b-42), which contains an 18-amino acid C-terminal truncation resulting from a newly created stop codon, was identified among a number of independent isolates. The RdRp activity of the truncated NS5B is comparable to the activity of the full-length protein and is 20 times higher in the presence of Mn2+ than in the presence of Mg2+. When a 384-nucleotide RNA was used as the template, two major RNA products were synthesized by 1b-42. One is a complementary RNA identical in size to the input RNA template (monomer), while the other is a hairpin dimer RNA synthesized by a “copy-back” mechanism. Substantial evidence derived from several experiments demonstrated that the RNA monomer was synthesized through de novo initiation by NS5B rather than by a terminal transferase activity. Synthesis of the RNA monomer requires all four ribonucleotides. The RNA monomer product was verified to be the result of de novo RNA synthesis, as two expected RNA products were generated from monomer RNA by RNase H digestion. In addition, modification of the RNA template by the addition of the chain terminator cordycepin at the 3′ end did not affect synthesis of the RNA monomer but eliminated synthesis of the self-priming hairpin dimer RNA. Moreover, synthesis of RNA on poly(C) and poly(U) homopolymer templates by 1b-42 NS5B did not require the oligonucleotide primer at high concentrations (≥50 μM) of GTP and ATP, further supporting a de novo initiation mechanism. These findings suggest that HCV NS5B is able to initiate RNA synthesis de novo. PMID:10623748

  14. Characterization of the Role of Hexamer AGUAAA and Poly(A) Tail in Coronavirus Polyadenylation

    PubMed Central

    Peng, Yu-Hui; Lin, Ching-Houng; Lin, Chao-Nan; Lo, Chen-Yu; Tsai, Tsung-Lin; Wu, Hung-Yi

    2016-01-01

    Similar to eukaryotic mRNA, the positive-strand coronavirus genome of ~30 kilobases is 5’-capped and 3’-polyadenylated. It has been demonstrated that the length of the coronaviral poly(A) tail is not static but regulated during infection; however, little is known regarding the factors involved in coronaviral polyadenylation and its regulation. Here, we show that during infection, the level of coronavirus poly(A) tail lengthening depends on the initial length upon infection and that the minimum length to initiate lengthening may lie between 5 and 9 nucleotides. By mutagenesis analysis, it was found that (i) the hexamer AGUAAA and poly(A) tail are two important elements responsible for synthesis of the coronavirus poly(A) tail and may function in concert to accomplish polyadenylation and (ii) the function of the hexamer AGUAAA in coronaviral polyadenylation is position dependent. Based on these findings, we propose a process for how the coronaviral poly(A) tail is synthesized and undergoes variation. Our results provide the first genetic evidence to gain insight into coronaviral polyadenylation. PMID:27760233

  15. The severe acute respiratory syndrome-coronavirus replicative protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world

    PubMed Central

    Egloff, Marie-Pierre; Ferron, François; Campanacci, Valérie; Longhi, Sonia; Rancurel, Corinne; Dutartre, Hélène; Snijder, Eric J.; Gorbalenya, Alexander E.; Cambillau, Christian; Canard, Bruno

    2004-01-01

    The recently identified etiological agent of the severe acute respiratory syndrome (SARS) belongs to Coronaviridae (CoV), a family of viruses replicating by a poorly understood mechanism. Here, we report the crystal structure at 2.7-Å resolution of nsp9, a hitherto uncharacterized subunit of the SARS-CoV replicative polyproteins. We show that SARS-CoV nsp9 is a single-stranded RNA-binding protein displaying a previously unreported, oligosaccharide/oligonucleotide fold-like fold. The presence of this type of protein has not been detected in the replicative complexes of RNA viruses, and its presence may reflect the unique and complex CoV viral replication/transcription machinery. PMID:15007178

  16. The nucleocapsid protein gene of bovine coronavirus is bicistronic.

    PubMed Central

    Senanayake, S D; Hofmann, M A; Maki, J L; Brian, D A

    1992-01-01

    For animal RNA viruses that replicate through an RNA intermediate, reported examples of bicistronic mRNAs with overlapping open reading frames in which one cistron is contained entirely within another have been made only for those with negative-strand or double-stranded genomes. In this report, we demonstrate for the positive-strand bovine coronavirus that an overlapping open reading frame potentially encoding a 23-kDa protein (names the I [for internal open reading frame] protein) and lying entirely within the gene for the 49-kDa nucleocapsid phosphoprotein is expressed during virus replication from a single species of unedited mRNA. The I protein was specifically immunoprecipitated from virus-infected cells with an I-specific antipeptide serum and was shown to be membrane associated. Many features of I protein synthesis conform to the leaky ribosomal scanning model for regulation of translation. This, to our knowledge, is the first example of a bicistronic mRNA for a cytoplasmically replicating, positive-strand animal RNA virus in which one cistron entirely overlaps another. Images PMID:1501275

  17. Coronavirus Attachment and Replication

    DTIC Science & Technology

    1988-03-28

    synthesis during RNA replication of vesicular stomatitis virus. J. Virol. 49:303-309. Pedersen, N.C. 1976a. Feline infectious peritonitis: Something old...receptors on intestinal brush border membranes from normal host species were developed for canine (CCV), feline (FIPV), porcine (TGEV), human (HCV...gastroenteritis receptor on pig BBMs ...... ................. ... 114 Feline infectious peritonitis virus receptor on cat BBMs ... .............. 117 Human

  18. Regulation of Stress Responses and Translational Control by Coronavirus

    PubMed Central

    Fung, To Sing; Liao, Ying; Liu, Ding Xiang

    2016-01-01

    Similar to other viruses, coronavirus infection triggers cellular stress responses in infected host cells. The close association of coronavirus replication with the endoplasmic reticulum (ER) results in the ER stress responses, which impose a challenge to the viruses. Viruses, in turn, have come up with various mechanisms to block or subvert these responses. One of the ER stress responses is inhibition of the global protein synthesis to reduce the amount of unfolded proteins inside the ER lumen. Viruses have evolved the capacity to overcome the protein translation shutoff to ensure viral protein production. Here, we review the strategies exploited by coronavirus to modulate cellular stress response pathways. The involvement of coronavirus-induced stress responses and translational control in viral pathogenesis will also be briefly discussed. PMID:27384577

  19. RNA Synthesis by in Vitro Selected Ribozymes for Recreating an RNA World

    PubMed Central

    Martin, Lyssa L.; Unrau, Peter J.; Müller, Ulrich F.

    2015-01-01

    The RNA world hypothesis states that during an early stage of life, RNA molecules functioned as genome and as the only genome-encoded catalyst. This hypothesis is supported by several lines of evidence, one of which is the in vitro selection of catalytic RNAs (ribozymes) in the laboratory for a wide range of reactions that might have been used by RNA world organisms. This review focuses on three types of ribozymes that could have been involved in the synthesis of RNA, the core activity in the self-replication of RNA world organisms. These ribozyme classes catalyze nucleoside synthesis, triphosphorylation, and the polymerization of nucleoside triphosphates. The strengths and weaknesses regarding each ribozyme’s possible function in a self-replicating RNA network are described, together with the obstacles that need to be overcome before an RNA world organism can be generated in the laboratory. PMID:25610978

  20. Coupling of double-stranded RNA synthesis and siRNA generation in fission yeast RNAi.

    PubMed

    Colmenares, Serafin U; Buker, Shane M; Buhler, Marc; Dlakić, Mensur; Moazed, Danesh

    2007-08-03

    The fission yeast centromeric repeats are transcribed and ultimately processed into small interfering RNAs (siRNAs) that are required for heterochromatin formation. siRNA generation requires dsRNA synthesis by the RNA-directed RNA polymerase complex (RDRC) and processing by the Dicer ribonuclease. Here we show that Dcr1, the fission yeast Dicer, is physically associated with RDRC. Dcr1 generates siRNAs in an ATP-dependent manner that requires its conserved N-terminal helicase domain. Furthermore, C-terminal truncations of Dcr1 that abolish its interaction with RDRC, but can generate siRNA in vitro, abolish siRNA generation and heterochromatic gene silencing in vivo. Finally, reconstitution experiments show that the association of Dcr1 with RDRC strongly stimulates the dsRNA synthesis activity of RDRC. Our results suggest that heterochromatic dsRNA synthesis and siRNA generation are physically coupled processes. This coupling has implications for cis-restriction of siRNA-mediated heterochromatin assembly and for mechanisms that give rise to siRNA strand polarity.

  1. Antiviral Drugs Specific for Coronaviruses in Preclinical Development

    PubMed Central

    Adedeji, Adeyemi O.; Sarafianos, Stefan G.

    2014-01-01

    Coronaviruses are positive stranded RNA viruses that cause respiratory, enteric and central nervous system diseases in many species, including humans. Until recently, the relatively low burden of disease in humans caused by few of these viruses impeded the development of coronavirus specific therapeutics. However, the emergence of severe acute respiratory syndrome coronavirus (SARS-CoV), and more recently, Middle East respiratory syndrome coronavirus (MERS-CoV), has impelled the development of such drugs. This review focuses on some newly identified SARS-CoV inhibitors, with known mechanisms of action and their potential to inhibit the novel MERS-CoV. The clinical development of optimized versions of such compounds could be beneficial for the treatment and control of SARS-CoV, the current MERS-CoV and other future SARS-like epidemics. PMID:24997250

  2. Extensive coronavirus-induced membrane rearrangements are not a determinant of pathogenicity

    PubMed Central

    Maier, Helena J.; Neuman, Benjamin W.; Bickerton, Erica; Keep, Sarah M.; Alrashedi, Hasan; Hall, Ross; Britton, Paul

    2016-01-01

    Positive-strand RNA (+RNA) viruses rearrange cellular membranes during replication, possibly in order to concentrate and arrange viral replication machinery for efficient viral RNA synthesis. Our previous work showed that in addition to the conserved coronavirus double membrane vesicles (DMVs), Beau-R, an apathogenic strain of avian Gammacoronavirus infectious bronchitis virus (IBV), induces regions of ER that are zippered together and tethered open-necked double membrane spherules that resemble replication organelles induced by other +RNA viruses. Here we compared structures induced by Beau-R with the pathogenic lab strain M41 to determine whether membrane rearrangements are strain dependent. Interestingly, M41 was found to have a low spherule phenotype. We then compared a panel of pathogenic, mild and attenuated IBV strains in ex vivo tracheal organ culture (TOC). Although the low spherule phenotype of M41 was conserved in TOCs, each of the other tested IBV strains produced DMVs, zippered ER and spherules. Furthermore, there was a significant correlation for the presence of DMVs with spherules, suggesting that these structures are spatially and temporally linked. Our data indicate that virus induced membrane rearrangements are fundamentally linked to the viral replicative machinery. However, coronavirus replicative apparatus clearly has the plasticity to function in different structural contexts. PMID:27255716

  3. [Advances in recently identified coronaviruses].

    PubMed

    Geng, He-Yuan; Tan, Wen-Jie

    2013-01-01

    Coronaviruses are a large family of viruses which include viruses that cause the common cold and severe acute respiratory syndrome (SARS) in humans and other diseases in animals. There are considerable genetic diversities within coronaviruses due to their wide rang hosts and their special gene replication and transcription mechanisms. During this process, gene recombinations often occur, resulting in novel subtype or coronavirus emerge constantly. Of note are SARS-like-CoVs and novel HCoV-EMC identified in 2012. This minireview summarized major advances of recently identified coronaviruses, focusing on the genome structures and interspecies jumping mechanism of coronavirus.

  4. [The first steps of chlorophyll synthesis: RNA involvement and regulation

    SciTech Connect

    Soell, D.

    1992-01-01

    Glu-tRNA[sup Glu] is synthesized from glutamate and tRNA[sup Glu] by glutamyl-tRNA synthetase (GluRS). Recent work has demonstrated that Glu-tRNA[sup Glu] has dual functions and is a precursor for protein and 5-aminolevulinate (ALA) synthesis. Current data does not provide compelling evidence for the notion that GluRS is regulated by chlorophyll precursors or in concert with the other enzymes of ALA synthesis. We have redefined the C5-pathway as a two-step route to ALA starting with Glu-tRNA[sup Glu]. Only two enzymes, Glu-tRNA reductase (GluTR) and GSA-2,1-amino-mutase (GSA-AM), are specifically involved in ALA synthesis. We have purified these enzymatic activities from Chlamydomonas and demonstrated that the two purified proteins in the presence of their cofactors NADPH and pyridoxal phosphate are sufficient for the in vitro Glu-tRNA [yields] ALA conversion. We have cloned the genes encoding GluTR. The sequences of the GluTR proteins deduced from these genes share highly conserved regions with those of bacterial origin. We havealso cloned and analyzed the gene encoding GSA-AM from Arabidopsis. As in Salmonella typhimurium, there are indications of the existence of an additional pathway for ALA formation in E. coli. To shed light on the recognition of the single tRNA[sup Glu] by the chloroplast enzymes GluTR, GluRS we characterized a chlorophyll-deficient mutant of Euglena having tRNA[sup Glu] with a point mutation in the T[Psi]C-loop. The altered tRNA supports protein but not ALA synthesis.

  5. Total RNA-seq to identify pharmacological effects on specific stages of mRNA synthesis.

    PubMed

    Boswell, Sarah A; Snavely, Andrew; Landry, Heather M; Churchman, L Stirling; Gray, Jesse M; Springer, Michael

    2017-03-06

    Pharmacological perturbation is a powerful tool for understanding mRNA synthesis, but identification of the specific steps of this multi-step process that are targeted by small molecules remains challenging. Here we applied strand-specific total RNA sequencing (RNA-seq) to identify and distinguish specific pharmacological effects on transcription and pre-mRNA processing in human cells. We found unexpectedly that the natural product isoginkgetin, previously described as a splicing inhibitor, inhibits transcription elongation. Compared to well-characterized elongation inhibitors that target CDK9, isoginkgetin caused RNA polymerase accumulation within a broader promoter-proximal band, indicating that elongation inhibition by isoginkgetin occurs after release from promoter-proximal pause. RNA-seq distinguished isoginkgetin and CDK9 inhibitors from topoisomerase I inhibition, which alters elongation across gene bodies. We were able to detect these and other specific defects in mRNA synthesis at low sequencing depth using simple metagene-based metrics. These metrics now enable total-RNA-seq-based screening for high-throughput identification of pharmacological effects on individual stages of mRNA synthesis.

  6. The 5' nontranslated region of potato virus X RNA affects both genomic and subgenomic RNA synthesis.

    PubMed Central

    Kim, K H; Hemenway, C

    1996-01-01

    A tobacco protoplast system was developed to analyze cis-acting sequences required for potato virus X (PVX) replication. Protoplasts inoculated with transcripts derived from a PVX cDNA clone or from clones containing mutations in their 5' nontranslated regions (NTRs) were assayed for RNA production by S1 nuclease protection assays. A time course of plus- and minus-strand-RNA accumulation indicated that both minus- and plus-strand PVX RNAs were detectable at 0.5 h postinoculation. Although minus-strand RNAs accumulated more rapidly than plus-strand RNAs, maximum levels of plus-strand RNAs were 40- to 80-fold higher. On the basis of these data, time points were chosen for determination of RNA levels in protoplasts inoculated with PVX clones containing deletions or an insertion in their 5' NTRs. Deletions of more than 12 nucleotides from the 5' end, internal deletions, and one insertion in the 5' NTR resulted in substantially decreased levels of plus-strand-RNA production. In contrast, all modified transcripts were functional for minus-strand-RNA synthesis, suggesting that elements in the 5' NTR were not essential for minus-strand-RNA synthesis. Further analysis of the 5' NTR deletion mutants indicated that all mutations that decreased genomic plus-strand-RNA synthesis also decreased synthesis of the two major subgenomic RNAs. These data indicate that cis-acting elements from different regions of the 5' NTR are required for plus-strand-RNA synthesis and that this process may be linked to synthesis of subgenomic RNAs. PMID:8764066

  7. Prevalence of canine coronavirus (CCoV) in dog in Japan: detection of CCoV RNA and retrospective serological analysis

    PubMed Central

    TAKANO, Tomomi; YAMASHITA, Saya; MURATA-OHKUBO, Michiko; SATOH, Kumi; DOKI, Tomoyoshi; HOHDATSU, Tsutomu

    2015-01-01

    We collected rectal swabs from dogs in Japan during 2011 to 2014, and canine coronavirus (CCoV) nucleocapsid gene was detected by RT-PCR. The relationship between CCoV infection and the manifestation of diarrhea symptoms was investigated, and a correlation was noted (df=1, χ2=8.90, P<0.005). The types of CCoV detected in samples from CCoV-infected dogs were CCoV-I in 88.9% and CCoV-II in 7.4%, respectively. We retrospectively investigated the seroprevalence of CCoV-I in dogs in Japan during 1998 to 2006. The sera were tested with a neutralizing antibody test. In the absence of CCoV-I laboratory strain, we used feline coronavirus (FCoV)-I that shares high sequence homology in the S protein with CCoV-I. 77.7% of the sera were positive for neutralizing anti-FCoV-I antibodies. PMID:26460314

  8. Alphavirus RNA synthesis and non-structural protein functions.

    PubMed

    Rupp, Jonathan C; Sokoloski, Kevin J; Gebhart, Natasha N; Hardy, Richard W

    2015-09-01

    The members of the genus Alphavirus are positive-sense RNA viruses, which are predominantly transmitted to vertebrates by a mosquito vector. Alphavirus disease in humans can be severely debilitating, and depending on the particular viral species, infection may result in encephalitis and possibly death. In recent years, alphaviruses have received significant attention from public health authorities as a consequence of the dramatic emergence of chikungunya virus in the Indian Ocean islands and the Caribbean. Currently, no safe, approved or effective vaccine or antiviral intervention exists for human alphavirus infection. The molecular biology of alphavirus RNA synthesis has been well studied in a few species of the genus and represents a general target for antiviral drug development. This review describes what is currently understood about the regulation of alphavirus RNA synthesis, the roles of the viral non-structural proteins in this process and the functions of cis-acting RNA elements in replication, and points to open questions within the field.

  9. Poliovirus RNA synthesis in vitro: structural elements and antibody inhibition

    SciTech Connect

    Semler, B.L.; Hanecak, R.; Dorner, L.F.; Anderson, C.W.; Wimmer, E.

    1983-01-01

    The poliovirus RNA polymerase complex has been analyzed by immunoautoradiography using antibody probes derived from purified replicase (P3) region viral polypeptides. Antibody preparations made against the polio RNA polymerase, P3-4b, detected a previously unreported cellular protein that copurifies with the RNA polymerase. An IgG fraction purified from rabbit antiserum to polypeptide P3-2, a precursor fo the RNA polymerase, specifically inhibits poliovirus RNA synthesis in vitro. The authors have also immunoprecipitated a 60,000-dalton protein (P3-4a) with antiserum to protein P3-4b and have determined the precise genomic map position of this protein by automated Edman degradation. Protein P3-4a originates by cleavage of the RNA polymerase precursor at a glutamine-glucine amino acid pair not previously reported to be a viral cleavage site.

  10. Design and synthesis of a series of serine derivatives as small molecule inhibitors of the SARS coronavirus 3CL protease.

    PubMed

    Konno, Hiroyuki; Wakabayashi, Masaki; Takanuma, Daiki; Saito, Yota; Akaji, Kenichi

    2016-03-15

    Synthesis of serine derivatives having the essential functional groups for the inhibitor of SARS 3CL protease and evaluation of their inhibitory activities using SARS 3CL R188I mutant protease are described. The lead compounds, functionalized serine derivatives, were designed based on the tetrapeptide aldehyde and Bai's cinnamoly inhibitor, and additionally performed with simulation on GOLD softwear. Structure activity relationship studies of the candidate compounds were given reasonable inhibitors ent-3 and ent-7k against SARS 3CL R188I mutant protease. These inhibitors showed protease selectivity and no cytotoxicity.

  11. RNA synthesis and purification for structural studies.

    PubMed

    Ahmed, Yasar Luqman; Ficner, Ralf

    2014-01-01

    RNAs play pivotal roles in the cell, ranging from catalysis (e.g., RNase P), acting as adaptor molecule (tRNA) to regulation (e.g., riboswitches). Precise understanding of its three-dimensional structures has given unprecedented insight into the molecular basis for all of these processes. Nevertheless, structural studies on RNA are still limited by the very special nature of this polymer. The most common methods for the determination of 3D RNA structures are NMR and X-ray crystallography. Both methods have their own set of requirements and give different amounts of information about the target RNA. For structural studies, the major bottleneck is usually obtaining large amounts of highly pure and homogeneously folded RNA. Especially for X-ray crystallography it can be necessary to screen a large number of variants to obtain well-ordered single crystals. In this mini-review we give an overview about strategies for the design, in vitro production, and purification of RNA for structural studies.

  12. Guanosine tetraphosphate as a global regulator of bacterial RNA synthesis: a model involving RNA polymerase pausing and queuing.

    PubMed

    Bremer, H; Ehrenberg, M

    1995-05-17

    A recently reported comparison of stable RNA (rRNA, tRNA) and mRNA synthesis rates in ppGpp-synthesizing and ppGpp-deficient (delta relA delta spoT) bacteria has suggested that ppGpp inhibits transcription initiation from stable RNA promoters, as well as synthesis of (bulk) mRNA. Inhibition of stable RNA synthesis occurs mainly during slow growth of bacteria when cytoplasmic levels of ppGpp are high. In contrast, inhibition of mRNA occurs mainly during fast growth when ppGpp levels are low, and it is associated with a partial inactivation of RNA polymerase. To explain these observations it has been proposed that ppGpp causes transcriptional pausing and queuing during the synthesis of mRNA. Polymerase queuing requires high rates of transcription initiation in addition to polymerase pausing, and therefore high concentrations of free RNA polymerase. These conditions are found in fast growing bacteria. Furthermore, the RNA polymerase queues lead to a promoter blocking when RNA polymerase molecules stack up from the pause site back to the (mRNA) promoter. This occurs most frequently at pause sites close to the promoter. Blocking of mRNA promoters diverts RNA polymerase to stable RNA promoters. In this manner ppGpp could indirectly stimulate synthesis of stable RNA at high growth rates. In the present work a mathematical analysis, based on the theory of queuing, is presented and applied to the global control of transcription in bacteria. This model predicts the in vivo distribution of RNA polymerase over stable RNA and mRNA genes for both ppGpp-synthesizing and ppGpp-deficient bacteria in response to different environmental conditions. It also shows how small changes in basal ppGpp concentrations can produce large changes in the rate of stable RNA synthesis.

  13. Synthesis of Geranyl-2-Thiouridine-Modified RNA.

    PubMed

    Wang, Rui; Haruehanroengra, Phensinee; Sheng, Jia

    2017-03-02

    This unit describes the chemical synthesis of the S-geranyl-2-thiouridine (ges(2) U) phosphoramidite and its incorporation into RNA oligonucleotides through solid-phase synthesis. Starting from the 2-thiouracil nucleobase and the protected ribose, the 2-thiouridine is synthesized and the geranyl functionality is introduced into the 2-thio position by using geranyl bromide as the geranylating reagent before the conversion of this modified nucleoside into a phosphoramidite building block. The modified phosphoramidite is used to make the geranyl-RNA oligonucleotides with a solid-phase DNA synthesizer. These RNA strands are then purified by ion-exchange HPLC before further structural and functional studies, such as base pairing and enzyme recognition, can be done. © 2017 by John Wiley & Sons, Inc.

  14. RNA.

    ERIC Educational Resources Information Center

    Darnell, James E., Jr.

    1985-01-01

    Ribonucleic acid (RNA) converts genetic information into protein and usually must be processed to serve its function. RNA types, chemical structure, protein synthesis, translation, manufacture, and processing are discussed. Concludes that the first genes might have been spliced RNA and that humans might be closer than bacteria to primitive…

  15. Design, synthesis and crystallographic analysis of nitrile-based broad-spectrum peptidomimetic inhibitors for coronavirus 3C-like proteases.

    PubMed

    Chuck, Chi-Pang; Chen, Chao; Ke, Zhihai; Wan, David Chi-Cheong; Chow, Hak-Fun; Wong, Kam-Bo

    2013-01-01

    Coronaviral infection is associated with up to 5% of respiratory tract diseases. The 3C-like protease (3CL(pro)) of coronaviruses is required for proteolytic processing of polyproteins and viral replication, and is a promising target for the development of drugs against coronaviral infection. We designed and synthesized four nitrile-based peptidomimetic inhibitors with different N-terminal protective groups and different peptide length, and examined their inhibitory effect on the in-vitro enzymatic activity of 3CL(pro) of severe-acute-respiratory-syndrome-coronavirus. The IC(50) values of the inhibitors were in the range of 4.6-49 μM, demonstrating that the nitrile warhead can effectively inactivate the 3CL(pro) autocleavage process. The best inhibitor, Cbz-AVLQ-CN with an N-terminal carbobenzyloxy group, was ~10x more potent than the other inhibitors tested. Crystal structures of the enzyme-inhibitor complexes showed that the nitrile warhead inhibits 3CL(pro) by forming a covalent bond with the catalytic Cys145 residue, while the AVLQ peptide forms a number of favourable interactions with the S1-S4 substrate-binding pockets. We have further showed that the peptidomimetic inhibitor, Cbz-AVLQ-CN, has broad-spectrum inhibition against 3CL(pro) from human coronavirus strains 229E, NL63, OC43, HKU1, and infectious bronchitis virus, with IC(50) values ranging from 1.3 to 3.7 μM, but no detectable inhibition against caspase-3. In summary, we have shown that the nitrile-based peptidomimetic inhibitors are effective against 3CL(pro), and they inhibit 3CL(pro) from a broad range of coronaviruses. Our results provide further insights into the future design of drugs that could serve as a first line defence against coronaviral infection.

  16. Genetic modulation of RNA metabolism in Drosophilia. I. Increased rate of ribosomal RNA synthesis.

    PubMed

    Clark, S H; Strausbaugh, L D; Kiefer, B I

    1977-08-01

    It has been suggested that a particular Y chromosome which is rDNA-deficient (YbbSuVar-5) may be associated with an increased utilization of rDNA template in adult testes (Shermoen and Kiefer 1975). To extend the observations on this chromosome, experiments were designed to determine if the chromosome has an effect on rRNA synthesis in bobbed adults and on classic bobbed phenotypes (shortened and thinner scutellar bristles and delayed development). Specific activity measurements were made on rRNA extracted from adult males of the genotypes car bb/YbbSuVar-5, which are rDNA-deficient to the same extent, and from Samarkand+ isogenic (Sam+ iso), which is a wild-type stock. The resulting data demonstrated that the presence of the YbbSuVar-5 chromosome increases the rate of ribosomal RNA synthesis in adult flies. In addition, it was found that the presence of this particular Y chromosome restores wild-type bristle phenotype and development time. Appropriate genetic crosses indicate that the observed effects (increased rRNA synthesis, restoration of wild-type phenotype) are a function of this particular Y chromosome, and are not due to autosomal factors. The results of these experiments suggest that the rate of rRNA accumulation is under genetic control.

  17. Mechanisms of coronavirus cell entry mediated by the viral spike protein.

    PubMed

    Belouzard, Sandrine; Millet, Jean K; Licitra, Beth N; Whittaker, Gary R

    2012-06-01

    Coronaviruses are enveloped positive-stranded RNA viruses that replicate in the cytoplasm. To deliver their nucleocapsid into the host cell, they rely on the fusion of their envelope with the host cell membrane. The spike glycoprotein (S) mediates virus entry and is a primary determinant of cell tropism and pathogenesis. It is classified as a class I fusion protein, and is responsible for binding to the receptor on the host cell as well as mediating the fusion of host and viral membranes-A process driven by major conformational changes of the S protein. This review discusses coronavirus entry mechanisms focusing on the different triggers used by coronaviruses to initiate the conformational change of the S protein: receptor binding, low pH exposure and proteolytic activation. We also highlight commonalities between coronavirus S proteins and other class I viral fusion proteins, as well as distinctive features that confer distinct tropism, pathogenicity and host interspecies transmission characteristics to coronaviruses.

  18. Evolution of Protein Synthesis from an RNA World

    PubMed Central

    Noller, Harry F.

    2012-01-01

    SUMMARY Because of the molecular complexity of the ribosome and protein synthesis, it is a challenge to imagine how translation could have evolved from a primitive RNA World. Two specific suggestions are made here to help to address this, involving separate evolution of the peptidyl transferase and decoding functions. First, it is proposed that translation originally arose not to synthesize functional proteins, but to provide simple (perhaps random) peptides that bound to RNA, increasing its available structure space, and therefore its functional capabilities. Second, it is proposed that the decoding site of the ribosome evolved from a mechanism for duplication of RNA. This process involved homodimeric “duplicator RNAs,” resembling the anticodon arms of tRNAs, which directed ligation of trinucleotides in response to an RNA template. PMID:20610545

  19. Visual detection of turkey coronavirus RNA in tissues and feces by reverse-transcription loop-mediated isothermal amplification (RT-LAMP) with hydroxynaphthol blue dye.

    PubMed

    Cardoso, Tereza C; Ferrari, Heitor F; Bregano, Lívia C; Silva-Frade, Camila; Rosa, Ana Carolina G; Andrade, Alexandre L

    2010-12-01

    A sensitive reverse-transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed for the rapid visual detection of turkey coronavirus (TCoV) infection. The reaction is performed in one step in a single tube at 65 °C for 45 min, with hydroxynaphthol blue (HNB) dye added prior to amplification. The detection limit of the RT-LAMP assay was approximately 10(2) EID(50/50 μl) TCoV genome, and no cross-reaction with other avian viruses was observed. The assay was evaluated further in tissue suspensions prepared from the ileum and ileum-caecal junctions of infected turkey embryos; 100% of these samples were positive in the RT-LAMP assay. All individual feces samples collected in the field were considered positive by both conventional RT-PCR and RT-LAMP. In conclusion, RT-LAMP with HNB dye was shown to be a sensitive, simple assay for the rapid diagnosis of TCoV infection, either directly from feces or in association with virus isolation methods.

  20. RNA Synthesis in Whole Cells and Protoplasts of Centaurea

    PubMed Central

    Kulikowski, Robert R.; Mascarenhas, Joseph P.

    1978-01-01

    Protoplasts enzymically isolated from suspension cultures of Centaurea cyanus L. incorporate radioactive precursors into RNA with kinetics similar to that of whole cells. There are differences, however, in several other aspects of RNA metabolism. The proportion of total RNA that contains poly(A) sequences (25 to 30%) is similar in both freshly isolated protoplasts and whole cells after a 20-minute pulse with [3H]adenosine. After a 4-hour pulse, however, poly(A)-containing RNA makes up 30% of the total RNA in protoplasts whereas it drops to 8% in whole cells. There appears to be a faulty processing of ribosomal precursor into the mature ribosomal species, as the precursor seems to accumulate to higher levels relative to the mature 18S and 25S rRNAs in protoplasts as compared to whole cells. Additional differences are seen in the size distributions of poly(A)-containing RNA, although the length of the poly(A) segment is similar in both protoplasts and whole cells. Within 24 hours protoplasts appear to have resumed a pattern of RNA synthesis similar to that of whole cells. PMID:16660339

  1. A Case for the Ancient Origin of Coronaviruses

    PubMed Central

    Chu, Daniel K. W.; Peiris, Joseph S. M.; Kosakovsky Pond, Sergei L.

    2013-01-01

    Coronaviruses are found in a diverse array of bat and bird species, which are believed to act as natural hosts. Molecular clock dating analyses of coronaviruses suggest that the most recent common ancestor of these viruses existed around 10,000 years ago. This relatively young age is in sharp contrast to the ancient evolutionary history of their putative natural hosts, which began diversifying tens of millions of years ago. Here, we attempted to resolve this discrepancy by applying more realistic evolutionary models that have previously revealed the ancient evolutionary history of other RNA viruses. By explicitly modeling variation in the strength of natural selection over time and thereby improving the modeling of substitution saturation, we found that the time to the most recent ancestor common for all coronaviruses is likely far greater (millions of years) than the previously inferred range. PMID:23596293

  2. Semisynthetic tRNA complement mediates in vitro protein synthesis.

    PubMed

    Cui, Zhenling; Stein, Viktor; Tnimov, Zakir; Mureev, Sergey; Alexandrov, Kirill

    2015-04-08

    Genetic code expansion is a key objective of synthetic biology and protein engineering. Most efforts in this direction are focused on reassigning termination or decoding quadruplet codons. While the redundancy of genetic code provides a large number of potentially reassignable codons, their utility is diminished by the inevitable interaction with cognate aminoacyl-tRNAs. To address this problem, we sought to establish an in vitro protein synthesis system with a simplified synthetic tRNA complement, thereby orthogonalizing some of the sense codons. This quantitative in vitro peptide synthesis assay allowed us to analyze the ability of synthetic tRNAs to decode all of 61 sense codons. We observed that, with the exception of isoacceptors for Asn, Glu, and Ile, the majority of 48 synthetic Escherichia coli tRNAs could support protein translation in the cell-free system. We purified to homogeneity functional Asn, Glu, and Ile tRNAs from the native E. coli tRNA mixture, and by combining them with synthetic tRNAs, we formulated a semisynthetic tRNA complement for all 20 amino acids. We further demonstrated that this tRNA complement could restore the protein translation activity of tRNA-depleted E. coli lysate to a level comparable to that of total native tRNA. To confirm that the developed system could efficiently synthesize long polypeptides, we expressed three different sequences coding for superfolder GFP. This novel semisynthetic translation system is a powerful tool for tRNA engineering and potentially enables the reassignment of at least 9 sense codons coding for Ser, Arg, Leu, Pro, Thr, and Gly.

  3. The Roles of RNA in the Synthesis of Protein

    PubMed Central

    Moore, Peter B.; Steitz, Thomas A.

    2011-01-01

    The crystal structures of ribosomes that have been obtained since 2000 have transformed our understanding of protein synthesis. In addition to proving that RNA is responsible for catalyzing peptide bond formation, these structures have provided important insights into the mechanistic details of how the ribosome functions. This review emphasizes what has been learned about the mechanism of peptide bond formation, the antibiotics that inhibit ribosome function, and the fidelity of decoding. PMID:21068149

  4. Mutation of Host Δ9 Fatty Acid Desaturase Inhibits Brome Mosaic Virus RNA Replication between Template Recognition and RNA Synthesis

    PubMed Central

    Lee, Wai-Ming; Ishikawa, Masayuki; Ahlquist, Paul

    2001-01-01

    All positive-strand RNA viruses assemble their RNA replication complexes on intracellular membranes. Brome mosaic virus (BMV) replicates its RNA in endoplasmic reticulum (ER)-associated complexes in plant cells and the yeast Saccharomyces cerevisiae. BMV encodes RNA replication factors 1a, with domains implicated in RNA capping and helicase functions, and 2a, with a central polymerase-like domain. Factor 1a interacts independently with the ER membrane, viral RNA templates, and factor 2a to form RNA replication complexes on the perinuclear ER. We show that BMV RNA replication is severely inhibited by a mutation in OLE1, an essential yeast chromosomal gene encoding Δ9 fatty acid desaturase, an integral ER membrane protein and the first enzyme in unsaturated fatty acid synthesis. OLE1 deletion and medium supplementation show that BMV RNA replication requires unsaturated fatty acids, not the Ole1 protein, and that viral RNA replication is much more sensitive than yeast growth to reduced unsaturated fatty acid levels. In ole1 mutant yeast, 1a still becomes membrane associated, recruits 2a to the membrane, and recognizes and stabilizes viral RNA templates normally. However, RNA replication is blocked prior to initiation of negative-strand RNA synthesis. The results show that viral RNA synthesis is highly sensitive to lipid composition and suggest that proper membrane fluidity or plasticity is essential for an early step in RNA replication. The strong unsaturated fatty acid dependence also demonstrates that modulating fatty acid balance can be an effective antiviral strategy. PMID:11160714

  5. Facile synthesis of a 3-deazaadenosine phosphoramidite for RNA solid-phase synthesis

    PubMed Central

    2016-01-01

    Access to 3-deazaadenosine (c3A) building blocks for RNA solid-phase synthesis represents a severe bottleneck in modern RNA research, in particular for atomic mutagenesis experiments to explore mechanistic aspects of ribozyme catalysis. Here, we report the 5-step synthesis of a c3A phosphoramidite from cost-affordable starting materials. The key reaction is a silyl-Hilbert–Johnson nucleosidation using unprotected 6-amino-3-deazapurine and benzoyl-protected 1-O-acetylribose. The novel path is superior to previously described syntheses in terms of efficacy and ease of laboratory handling. PMID:28144324

  6. Alphavirus RNA synthesis and non-structural protein functions

    PubMed Central

    Rupp, Jonathan C.; Sokoloski, Kevin J.; Gebhart, Natasha N.

    2015-01-01

    The members of the genus Alphavirus are positive-sense RNA viruses, which are predominantly transmitted to vertebrates by a mosquito vector. Alphavirus disease in humans can be severely debilitating, and depending on the particular viral species, infection may result in encephalitis and possibly death. In recent years, alphaviruses have received significant attention from public health authorities as a consequence of the dramatic emergence of chikungunya virus in the Indian Ocean islands and the Caribbean. Currently, no safe, approved or effective vaccine or antiviral intervention exists for human alphavirus infection. The molecular biology of alphavirus RNA synthesis has been well studied in a few species of the genus and represents a general target for antiviral drug development. This review describes what is currently understood about the regulation of alphavirus RNA synthesis, the roles of the viral non-structural proteins in this process and the functions of cis-acting RNA elements in replication, and points to open questions within the field. PMID:26219641

  7. Role of the lipid rafts in the life cycle of canine coronavirus.

    PubMed

    Pratelli, Annamaria; Colao, Valeriana

    2015-02-01

    Coronaviruses are enveloped RNA viruses that have evolved complex relationships with their host cells, and modulate their lipid composition, lipid synthesis and signalling. Lipid rafts, enriched in sphingolipids, cholesterol and associated proteins, are special plasma membrane microdomains involved in several processes in viral infections. The extraction of cholesterol leads to disorganization of lipid microdomains and to dissociation of proteins bound to lipid rafts. Because cholesterol-rich microdomains appear to be a general feature of the entry mechanism of non-eneveloped viruses and of several coronaviruses, the purpose of this study was to analyse the contribution of lipids to the infectivity of canine coronavirus (CCoV). The CCoV life cycle is closely connected to plasma membrane cholesterol, from cell entry to viral particle production. The methyl-β-cyclodextrin (MβCD) was employed to remove cholesterol and to disrupt the lipid rafts. Cholesterol depletion from the cell membrane resulted in a dose-dependent reduction, but not abolishment, of virus infectivity, and at a concentration of 15 mM, the reduction in the infection rate was about 68 %. MβCD treatment was used to verify if cholesterol in the envelope was required for CCoV infection. This resulted in a dose-dependent inhibitory effect, and at a concentration of 9 mM MβCD, infectivity was reduced by about 73 %. Since viral entry would constitute a target for antiviral strategies, inhibitory molecules interacting with viral and/or cell membranes, or interfering with lipid metabolism, may have strong antiviral potential. It will be interesting in the future to analyse the membrane microdomains in the CCoV envelope.

  8. In Vitro Synthesis of Rous Sarcoma Virus-Specific RNA is Catalyzed by a DNA-Dependent RNA Polymerase

    PubMed Central

    Rymo, L.; Parsons, J. T.; Coffin, J. M.; Weissmann, C.

    1974-01-01

    Synthesis of Rous sarcoma virus RNA was examined in vitro with a new assay for radioactive virus-specific RNA. Nuclei from infected and uninfected cells were incubated with ribonucleoside [α-32P]triphosphates, Mn++, Mg++ and (NH4)2SO4. Incorporation into total and viral RNA proceeded with similar kinetics for up to 25 min at 37°. About 0.5% of the RNA synthesized by the infected system was scored as virus-specific, compared to 0.03% of the RNA from the uninfected system and 0.005% of the RNA synthesized by monkey kidney cell nuclei. Preincubation with DNase or actinomycin D completely suppressed total and virus-specific RNA synthesis. α-Amanitin, a specific inhibitor of eukaryotic RNA polymerase II, completely inhibited virus-specific RNA synthesis, while reducing total RNA synthesis by only 50%. We conclude that tumor virus-specific RNA is synthesized on a DNA template, most probably by the host's RNA polymerase II. PMID:4368801

  9. pp32 and APRIL are host cell-derived regulators of influenza virus RNA synthesis from cRNA

    PubMed Central

    Sugiyama, Kenji; Kawaguchi, Atsushi; Okuwaki, Mitsuru; Nagata, Kyosuke

    2015-01-01

    Replication of influenza viral genomic RNA (vRNA) is catalyzed by viral RNA-dependent RNA polymerase (vRdRP). Complementary RNA (cRNA) is first copied from vRNA, and progeny vRNAs are then amplified from the cRNA. Although vRdRP and viral RNA are minimal requirements, efficient cell-free replication could not be reproduced using only these viral factors. Using a biochemical complementation assay system, we found a novel activity in the nuclear extracts of uninfected cells, designated IREF-2, that allows robust unprimed vRNA synthesis from a cRNA template. IREF-2 was shown to consist of host-derived proteins, pp32 and APRIL. IREF-2 interacts with a free form of vRdRP and preferentially upregulates vRNA synthesis rather than cRNA synthesis. Knockdown experiments indicated that IREF-2 is involved in in vivo viral replication. On the basis of these results and those of previous studies, a plausible role(s) for IREF-2 during the initiation processes of vRNA replication is discussed. DOI: http://dx.doi.org/10.7554/eLife.08939.001 PMID:26512887

  10. From SARS coronavirus to novel animal and human coronaviruses.

    PubMed

    To, Kelvin K W; Hung, Ivan F N; Chan, Jasper F W; Yuen, Kwok-Yung

    2013-08-01

    In 2003, severe acute respiratory syndrome coronavirus (SARS-CoV) caused one of the most devastating epidemics known to the developed world. There were two important lessons from this epidemic. Firstly, coronaviruses, in addition to influenza viruses, can cause severe and rapidly spreading human infections. Secondly, bats can serve as the origin and natural animal reservoir of deadly human viruses. Since then, researchers around the world, especially those in Asia where SARS-CoV was first identified, have turned their focus to find novel coronaviruses infecting humans, bats, and other animals. Two human coronaviruses, HCoV-HKU1 and HCoV-NL63, were identified shortly after the SARS-CoV epidemic as common causes of human respiratory tract infections. In 2012, a novel human coronavirus, now called Middle East respiratory syndrome coronavirus (MERS-CoV), has emerged in the Middle East to cause fatal human infections in three continents. MERS-CoV human infection is similar to SARS-CoV in having a high fatality rate and the ability to spread from person to person which resulted in secondary cases among close contacts including healthcare workers without travel history to the Middle East. Both viruses also have close relationships with bat coronaviruses. New cases of MERS-CoV infection in humans continue to occur with the origins of the virus still unknown in many cases. A multifaceted approach is necessary to control this evolving MERS-CoV outbreak. Source identification requires detailed epidemiological studies of the infected patients and enhanced surveillance of MERS-CoV or similar coronaviruses in humans and animals. Early diagnosis of infected patients and appropriate infection control measures will limit the spread in hospitals, while social distancing strategies may be necessary to control the outbreak in communities if it remained uncontrolled as in the SARS epidemic.

  11. Coronaviruses lacking exoribonuclease activity are susceptible to lethal mutagenesis: evidence for proofreading and potential therapeutics.

    PubMed

    Smith, Everett Clinton; Blanc, Hervé; Surdel, Matthew C; Vignuzzi, Marco; Denison, Mark R

    2013-08-01

    No therapeutics or vaccines currently exist for human coronaviruses (HCoVs). The Severe Acute Respiratory Syndrome-associated coronavirus (SARS-CoV) epidemic in 2002-2003, and the recent emergence of Middle East Respiratory Syndrome coronavirus (MERS-CoV) in April 2012, emphasize the high probability of future zoonotic HCoV emergence causing severe and lethal human disease. Additionally, the resistance of SARS-CoV to ribavirin (RBV) demonstrates the need to define new targets for inhibition of CoV replication. CoVs express a 3'-to-5' exoribonuclease in nonstructural protein 14 (nsp14-ExoN) that is required for high-fidelity replication and is conserved across the CoV family. All genetic and biochemical data support the hypothesis that nsp14-ExoN has an RNA proofreading function. Thus, we hypothesized that ExoN is responsible for CoV resistance to RNA mutagens. We demonstrate that while wild-type (ExoN+) CoVs were resistant to RBV and 5-fluorouracil (5-FU), CoVs lacking ExoN activity (ExoN-) were up to 300-fold more sensitive. While the primary antiviral activity of RBV against CoVs was not mutagenesis, ExoN- CoVs treated with 5-FU demonstrated both enhanced sensitivity during multi-cycle replication, as well as decreased specific infectivity, consistent with 5-FU functioning as a mutagen. Comparison of full-genome next-generation sequencing of 5-FU treated SARS-CoV populations revealed a 16-fold increase in the number of mutations within the ExoN- population as compared to ExoN+. Ninety percent of these mutations represented A:G and U:C transitions, consistent with 5-FU incorporation during RNA synthesis. Together our results constitute direct evidence that CoV ExoN activity provides a critical proofreading function during virus replication. Furthermore, these studies identify ExoN as the first viral protein distinct from the RdRp that determines the sensitivity of RNA viruses to mutagens. Finally, our results show the importance of ExoN as a target for inhibition

  12. In vitro DNA dependent synthesis of globin RNA sequences from erythroleukemic cell chromatin.

    PubMed

    Reff, M E; Davidson, R L

    1979-01-01

    Murine erythroleukemic cells in culture accumulate cytoplasmic globin mRNA during differentiation induced by dimethyl sulfoxide (DMSO)1. Chromatin was prepared from DMSO induced erythroleukemic cells that were transcribing globin RNA in order to determine whether in vitro synthesis of globin RNA sequences was possible from chromatin. RNA was synthesized in vitro using 5-mercuriuridine triphosphate and exogenous Escheria coli RNA polymerase. Newly synthesized mercurated RNA was purified from endogenous chromatin associated RNA by affinity chromatography on a sepharose sulfhydryl column, and the globin RNA sequence content of the mercurated RNA was assayed by hybridization to cDNA globin. The synthesis of globin RNA sequences was shown to occur and to be sensitive to actinomycin and rifampicin and insensitive to alpha-amanitin. In contrast, synthesis of globin RNA sequence synthesis was not detected in significant amounts from chromatin prepared from uninduced erythroleukemic cells, nor from uninduced cell chromatin to which globin RNA was added prior to transcription. Isolated RNA:cDNA globin hybrids were shown to contain mercurated RNA by affinity chromatography. These results indicated that synthesis of globin RNA sequences from chromatin can be performed by E. coli RNA polymerase.

  13. Neotropical Bats from Costa Rica harbour Diverse Coronaviruses.

    PubMed

    Moreira-Soto, A; Taylor-Castillo, L; Vargas-Vargas, N; Rodríguez-Herrera, B; Jiménez, C; Corrales-Aguilar, E

    2015-11-01

    Bats are hosts of diverse coronaviruses (CoVs) known to potentially cross the host-species barrier. For analysing coronavirus diversity in a bat species-rich country, a total of 421 anal swabs/faecal samples from Costa Rican bats were screened for CoV RNA-dependent RNA polymerase (RdRp) gene sequences by a pancoronavirus PCR. Six families, 24 genera and 41 species of bats were analysed. The detection rate for CoV was 1%. Individuals (n = 4) from four different species of frugivorous (Artibeus jamaicensis, Carollia perspicillata and Carollia castanea) and nectivorous (Glossophaga soricina) bats were positive for coronavirus-derived nucleic acids. Analysis of 440 nt. RdRp sequences allocated all Costa Rican bat CoVs to the α-CoV group. Several CoVs sequences clustered near previously described CoVs from the same species of bat, but were phylogenetically distant from the human CoV sequences identified to date, suggesting no recent spillover events. The Glossophaga soricina CoV sequence is sufficiently dissimilar (26% homology to the closest known bat CoVs) to represent a unique coronavirus not clustering near other CoVs found in the same bat species so far, implying an even higher CoV diversity than previously suspected.

  14. Infectious Bronchitis Coronavirus Limits Interferon Production by Inducing a Host Shutoff That Requires Accessory Protein 5b

    PubMed Central

    Kint, Joeri; Langereis, Martijn A.; Maier, Helena J.; Britton, Paul; van Kuppeveld, Frank J.; Koumans, Joseph; Wiegertjes, Geert F.

    2016-01-01

    ABSTRACT During infection of their host cells, viruses often inhibit the production of host proteins, a process that is referred to as host shutoff. By doing this, viruses limit the production of antiviral proteins and increase production capacity for viral proteins. Coronaviruses from the genera Alphacoronavirus and Betacoronavirus, such as severe acute respiratory syndrome coronavirus (SARS-CoV), establish host shutoff via their nonstructural protein 1 (nsp1). The Gammacoronavirus and Deltacoronavirus genomes, however, do not encode nsp1, and it has been suggested that these viruses do not induce host shutoff. Here, we show that the Gammacoronavirus infectious bronchitis virus (IBV) does induce host shutoff, and we find that its accessory protein 5b is indispensable for this function. Importantly, we found that 5b-null viruses, unlike wild-type viruses, induce production of high concentrations of type I interferon protein in vitro, indicating that host shutoff by IBV plays an important role in antagonizing the host's innate immune response. Altogether, we demonstrate that 5b is a functional equivalent of nsp1, thereby answering the longstanding question of whether lack of nsp1 in gammacoronaviruses is compensated for by another viral protein. As such, our study is a significant step forward in the understanding of coronavirus biology and closes a gap in the understanding of some IBV virulence strategies. IMPORTANCE Many viruses inhibit protein synthesis by their host cell to enhance virus replication and to antagonize antiviral defense mechanisms. This process is referred to as host shutoff. We studied gene expression and protein synthesis in chicken cells infected with the important poultry pathogen infectious bronchitis virus (IBV). We show that IBV inhibits synthesis of host proteins, including that of type I interferon, a key component of the antiviral response. The IBV-induced host shutoff, however, does not require degradation of host RNA. Furthermore, we

  15. Development and Evaluation of Novel Real-Time Reverse Transcription-PCR Assays with Locked Nucleic Acid Probes Targeting Leader Sequences of Human-Pathogenic Coronaviruses.

    PubMed

    Chan, Jasper Fuk-Woo; Choi, Garnet Kwan-Yue; Tsang, Alan Ka-Lun; Tee, Kah-Meng; Lam, Ho-Yin; Yip, Cyril Chik-Yan; To, Kelvin Kai-Wang; Cheng, Vincent Chi-Chung; Yeung, Man-Lung; Lau, Susanna Kar-Pui; Woo, Patrick Chiu-Yat; Chan, Kwok-Hung; Tang, Bone Siu-Fai; Yuen, Kwok-Yung

    2015-08-01

    Based on findings in small RNA-sequencing (Seq) data analysis, we developed highly sensitive and specific real-time reverse transcription (RT)-PCR assays with locked nucleic acid probes targeting the abundantly expressed leader sequences of Middle East respiratory syndrome coronavirus (MERS-CoV) and other human coronaviruses. Analytical and clinical evaluations showed their noninferiority to a commercial multiplex PCR test for the detection of these coronaviruses.

  16. Detection of group 1 coronaviruses in bats using universal coronavirus reverse transcription polymerase chain reactions.

    PubMed

    Poon, Leo L M; Peiris, J S Malik

    2008-01-01

    The zoonotic transmission of SARS coronavirus from animals to humans revealed the potential impact of coronaviruses on mankind. This incident also triggered several surveillance programs to hunt for novel coronaviruses in human and wildlife populations. Using classical RT-PCR assays that target a highly conserved sequence among coronaviruses, we identified the first coronaviruses in bats. These assays and the cloning and sequencing of the PCR products are described in this chapter. Using the same approach in our subsequent studies, we further detected several novel coronaviruses in bats. These findings highlighted the fact that bats are important reservoirs for coronaviruses.

  17. Synthesis, base pairing and structure studies of geranylated RNA

    PubMed Central

    Wang, Rui; Vangaveti, Sweta; Ranganathan, Srivathsan V.; Basanta-Sanchez, Maria; Haruehanroengra, Phensinee; Chen, Alan; Sheng, Jia

    2016-01-01

    Natural RNAs utilize extensive chemical modifications to diversify their structures and functions. 2-Thiouridine geranylation is a special hydrophobic tRNA modification that has been discovered very recently in several bacteria, such as Escherichia coli, Enterobacter aerogenes, Pseudomonas aeruginosa and Salmonella Typhimurium. The geranylated residues are located in the first anticodon position of tRNAs specific for lysine, glutamine and glutamic acid. This big hydrophobic terpene functional group affects the codon recognition patterns and reduces frameshifting errors during translation. We aimed to systematically study the structure, function and biosynthesis mechanism of this geranylation pathway, as well as answer the question of why nature uses such a hydrophobic modification in hydrophilic RNA systems. Recently, we have synthesized the deoxy-analog of S-geranyluridine and showed the geranylated T-G pair is much stronger than the geranylated T-A pair and other mismatched pairs in the B-form DNA duplex context, which is consistent with the observation that the geranylated tRNAGluUUC recognizes GAG more efficiently than GAA. In this manuscript we report the synthesis and base pairing specificity studies of geranylated RNA oligos. We also report extensive molecular simulation studies to explore the structural features of the geranyl group in the context of A-form RNA and its effect on codon–anticodon interaction during ribosome binding. PMID:27307604

  18. An intrinsically disordered peptide from Ebola virus VP35 controls viral RNA synthesis by modulating nucleoprotein-RNA interactions

    SciTech Connect

    Leung, Daisy  W.; Borek, Dominika; Luthra, Priya; Binning, Jennifer  M.; Anantpadma, Manu; Liu, Gai; Harvey, Ian B.; Su, Zhaoming; Endlich-Frazier, Ariel; Pan, Juanli; Shabman, Reed  S.; Chiu, Wah; Davey, Robert  A.; Otwinowski, Zbyszek; Basler, Christopher  F.; Amarasinghe, Gaya  K.

    2015-04-01

    During viral RNA synthesis, Ebola virus (EBOV) nucleoprotein (NP) alternates between an RNA-template-bound form and a template-free form to provide the viral polymerase access to the RNA template. In addition, newly synthesized NP must be prevented from indiscriminately binding to noncognate RNAs. Here, we investigate the molecular bases for these critical processes. We identify an intrinsically disordered peptide derived from EBOV VP35 (NPBP, residues 20–48) that binds NP with high affinity and specificity, inhibits NP oligomerization, and releases RNA from NP-RNA complexes in vitro. The structure of the NPBP/ΔNPNTD complex, solved to 3.7 Å resolution, reveals how NPBP peptide occludes a large surface area that is important for NP-NP and NP-RNA interactions and for viral RNA synthesis. Together, our results identify a highly conserved viral interface that is important for EBOV replication and can be targeted for therapeutic development.

  19. A Bat-Derived Putative Cross-Family Recombinant Coronavirus with a Reovirus Gene

    PubMed Central

    Shi, Yi; Ji, Wei; Jia, Hao; Zhou, Yongming; Wen, Honghua; Zhao, Honglan; Liu, Huaxing; Li, Hong; Wang, Qihui; Wu, Ying; Wang, Liang; Liu, Di; Liu, Guang; Yu, Hongjie; Holmes, Edward C.; Lu, Lin; Gao, George F.

    2016-01-01

    The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002 and Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012 has generated enormous interest in the biodiversity, genomics and cross-species transmission potential of coronaviruses, especially those from bats, the second most speciose order of mammals. Herein, we identified a novel coronavirus, provisionally designated Rousettus bat coronavirus GCCDC1 (Ro-BatCoV GCCDC1), in the rectal swab samples of Rousettus leschenaulti bats by using pan-coronavirus RT-PCR and next-generation sequencing. Although the virus is similar to Rousettus bat coronavirus HKU9 (Ro-BatCoV HKU9) in genome characteristics, it is sufficiently distinct to be classified as a new species according to the criteria defined by the International Committee of Taxonomy of Viruses (ICTV). More striking was that Ro-BatCoV GCCDC1 contained a unique gene integrated into the 3’-end of the genome that has no homologs in any known coronavirus, but which sequence and phylogeny analyses indicated most likely originated from the p10 gene of a bat orthoreovirus. Subgenomic mRNA and cellular-level observations demonstrated that the p10 gene is functional and induces the formation of cell syncytia. Therefore, here we report a putative heterologous inter-family recombination event between a single-stranded, positive-sense RNA virus and a double-stranded segmented RNA virus, providing insights into the fundamental mechanisms of viral evolution. PMID:27676249

  20. The RNA accordion model for template positioning by telomerase RNA during telomeric DNA synthesis

    PubMed Central

    Berman, Andrea J.; Akiyama, Benjamin M.; Stone, Michael D.; Cech, Thomas R.

    2011-01-01

    Telomerase is a ribonucleoprotein (RNP) enzyme that maintains the ends of linear eukaryotic chromosomes and whose activation is a hallmark of 90% of all cancers. This RNP minimally contains a reverse transcriptase protein subunit (TERT) that catalyzes telomeric DNA synthesis and an RNA subunit (TER) that has templating, architectural and protein-scaffolding roles. Telomerase is unique among polymerases in that it synthesizes multiple copies of the template on the 3′ end of a primer following a single binding event, a process known as repeat addition processivity (RAP). Using biochemical assays and single-molecule Förster resonance energy transfer (smFRET) experiments on Tetrahymena thermophila telomerase, we now directly demonstrate that TER contributes to template positioning within the active site and to the template translocation required for RAP. We propose that the single-stranded RNA elements flanking the template act as a molecular accordion, undergoing reciprocal extension and compaction during telomerase translocation. PMID:22101935

  1. Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter.

    PubMed

    Melton, D A; Krieg, P A; Rebagliati, M R; Maniatis, T; Zinn, K; Green, M R

    1984-09-25

    A simple and efficient method for synthesizing pure single stranded RNAs of virtually any structure is described. This in vitro transcription system is based on the unusually specific RNA synthesis by bacteriophage SP6 RNA polymerase which initiates transcription exclusively at an SP6 promoter. We have constructed convenient cloning vectors that contain an SP6 promoter immediately upstream from a polylinker sequence. Using these SP6 vectors, optimal conditions have been established for in vitro RNA synthesis. The advantages and uses of SP6 derived RNAs as probes for nucleic acid blot and solution hybridizations are demonstrated. We show that single stranded RNA probes of a high specific activity are easy to prepare and can significantly increase the sensitivity of nucleic acid hybridization methods. Furthermore, the SP6 transcription system can be used to prepare RNA substrates for studies on RNA processing (1,5,9) and translation (see accompanying paper).

  2. Origins of tmRNA: the missing link in the birth of protein synthesis?

    PubMed

    Macé, Kevin; Gillet, Reynald

    2016-09-30

    The RNA world hypothesis refers to the early period on earth in which RNA was central in assuring both genetic continuity and catalysis. The end of this era coincided with the development of the genetic code and protein synthesis, symbolized by the apparition of the first non-random messenger RNA (mRNA). Modern transfer-messenger RNA (tmRNA) is a unique hybrid molecule which has the properties of both mRNA and transfer RNA (tRNA). It acts as a key molecule during trans-translation, a major quality control pathway of modern bacterial protein synthesis. tmRNA shares many common characteristics with ancestral RNA. Here, we present a model in which proto-tmRNAs were the first molecules on earth to support non-random protein synthesis, explaining the emergence of early genetic code. In this way, proto-tmRNA could be the missing link between the first mRNA and tRNA molecules and modern ribosome-mediated protein synthesis.

  3. Origins of tmRNA: the missing link in the birth of protein synthesis?

    PubMed Central

    Macé, Kevin; Gillet, Reynald

    2016-01-01

    The RNA world hypothesis refers to the early period on earth in which RNA was central in assuring both genetic continuity and catalysis. The end of this era coincided with the development of the genetic code and protein synthesis, symbolized by the apparition of the first non-random messenger RNA (mRNA). Modern transfer-messenger RNA (tmRNA) is a unique hybrid molecule which has the properties of both mRNA and transfer RNA (tRNA). It acts as a key molecule during trans-translation, a major quality control pathway of modern bacterial protein synthesis. tmRNA shares many common characteristics with ancestral RNA. Here, we present a model in which proto-tmRNAs were the first molecules on earth to support non-random protein synthesis, explaining the emergence of early genetic code. In this way, proto-tmRNA could be the missing link between the first mRNA and tRNA molecules and modern ribosome-mediated protein synthesis. PMID:27484476

  4. Coexistence of multiple coronaviruses in several bat colonies in an abandoned mineshaft.

    PubMed

    Ge, Xing-Yi; Wang, Ning; Zhang, Wei; Hu, Ben; Li, Bei; Zhang, Yun-Zhi; Zhou, Ji-Hua; Luo, Chu-Ming; Yang, Xing-Lou; Wu, Li-Jun; Wang, Bo; Zhang, Yun; Li, Zong-Xiao; Shi, Zheng-Li

    2016-02-01

    Since the 2002-2003 severe acute respiratory syndrome (SARS) outbreak prompted a search for the natural reservoir of the SARS coronavirus, numerous alpha- and betacoronaviruses have been discovered in bats around the world. Bats are likely the natural reservoir of alpha- and betacoronaviruses, and due to the rich diversity and global distribution of bats, the number of bat coronaviruses will likely increase. We conducted a surveillance of coronaviruses in bats in an abandoned mineshaft in Mojiang County, Yunnan Province, China, from 2012-2013. Six bat species were frequently detected in the cave: Rhinolophus sinicus, Rhinolophus affinis, Hipposideros pomona, Miniopterus schreibersii, Miniopterus fuliginosus, and Miniopterus fuscus. By sequencing PCR products of the coronavirus RNA-dependent RNA polymerase gene (RdRp), we found a high frequency of infection by a diverse group of coronaviruses in different bat species in the mineshaft. Sequenced partial RdRp fragments had 80%-99% nucleic acid sequence identity with well-characterized Alphacoronavirus species, including BtCoV HKU2, BtCoV HKU8, and BtCoV1, and unassigned species BtCoV HKU7 and BtCoV HKU10. Additionally, the surveillance identified two unclassified betacoronaviruses, one new strain of SARS-like coronavirus, and one potentially new betacoronavirus species. Furthermore, coronavirus co-infection was detected in all six bat species, a phenomenon that fosters recombination and promotes the emergence of novel virus strains. Our findings highlight the importance of bats as natural reservoirs of coronaviruses and the potentially zoonotic source of viral pathogens.

  5. Progress in demonstrating homochiral selection in prebiotic RNA synthesis

    NASA Astrophysics Data System (ADS)

    Joshi, Prakash C.; Aldersley, Michael F.; Ferris, James P.

    2013-03-01

    The dual properties of RNA as an enzyme catalyst (ribozyme) and its ability to store genetic information suggest that early life could have been based on RNA. We have synthesized RNA oligomers up to 50-mer chain lengths by Na+-montmorillonite catalyzed reactions of 5‧-activated mononucleotides. For studying chiral selectivity, the reactions of racemic mixtures of D, L-ImpA and D, L-ImpU were carried out on Na+-montmorillonite. The dimer, trimer, tetramer and pentamer fractions (yields 43.3%, 14.5%, 5.8% and 3.0%, respectively) were investigated for homochiral selection. These products were collected via ion exchange HPLC, their terminal 5‧-phosphate was cleaved by alkaline phosphatase and further analyzed by reverse phase HPLC. Twelve linear and three cyclic dimers were isolated and characterized. The homochirality of dimers was 63.5 ± 0.8%. Out of the sixteen trimers isolated, ten were homochiral with an overall homochirality of 74.2 ± 1.6%. The tetramers and pentamers were separated into 24 and 20 isomers, respectively. Their co-elution with those formed in the binary reactions of D-ImpA with D-ImpU on Na+-montmorillonite revealed 92.7 ± 2.0% and 97.2 ± 0.5% homochirality, respectively. These results suggest that Na+-montmorillonite not only catalyzes the prebiotic synthesis of RNA but it also facilitates homochiral selection. Work is in progress to determine chiral selectivity in the reaction mixtures of activated nucleotides of racemic A, U, G and C on Na+-montmorillonite.

  6. RNA and protein synthesis in cultured human fibroblasts derived from donors of various ages.

    PubMed

    Chen, J J; Brot, N; Weissbach, H

    1980-07-01

    RNA synthesis in human fibroblasts from donors of various ages was studied in fibroblasts made permeable to nucleoside triphosphates with the nonionic detergent Nonidet P40. Cells from donors of 11 years and older showed a 30-40% decline in total RNA synthesis. The decrease in RNA synthesis was primarily due to a lowering of RNA polymerase II activity (alpha-amanitin sensitive). Studies on the incorporation of leucine into protein also showed a 30-40% decrease in cells from older donors.

  7. Heterologous viral RNA export elements improve expression of severe acute respiratory syndrome (SARS) coronavirus spike protein and protective efficacy of DNA vaccines against SARS.

    PubMed

    Callendret, Benoît; Lorin, Valérie; Charneau, Pierre; Marianneau, Philippe; Contamin, Hugues; Betton, Jean-Michel; van der Werf, Sylvie; Escriou, Nicolas

    2007-07-05

    The SARS-CoV spike glycoprotein (S) is the main target of the protective immune response in humans and animal models of SARS. Here, we demonstrated that efficient expression of S from the wild-type spike gene in cultured cells required the use of improved plasmid vectors containing donor and acceptor splice sites, as well as heterologous viral RNA export elements, such as the CTE of Mazon-Pfizer monkey virus or the PRE of Woodchuck hepatitis virus (WPRE). The presence of both splice sites and WPRE markedly improved the immunogenicity of S-based DNA vaccines against SARS. Upon immunization of mice with low doses (2 microg) of naked DNA, only intron and WPRE-containing vectors could induce neutralizing anti-S antibodies and provide protection against challenge with SARS-CoV. Our observations are likely to be useful for the construction of plasmid and viral vectors designed for optimal expression of intronless genes derived from cytoplasmic RNA viruses.

  8. Biochemical and Cytological Analyses of RNA Synthesis in Kinetin-treated Pea Root Parenchyma 1

    PubMed Central

    Shininger, Terry L.

    1980-01-01

    Excised cortical parenchyma from the pea root (cv. Little Marvel) responds to kinetin/auxin treatment with an increased rate of RNA synthesis well before reinitiating DNA synthesis. Few cells synthesize RNA in the 1st hour of culture. In the presence of kinetin/auxin, the nuclear labeling index increases 2.5-fold as compared to control cultures. The RNA synthesis response has an apparent lag period of 2-4 hours as shown by double label ([3H]adenosine/[14C]adenosine) experiments. Qualitatively, the RNA synthesized at 4-6 hours sediments between 18S and 5S. The RNA synthesized at 14-16 hours and 24-26 hours is primarily ribosomal RNA when kinetin is present. In the absence of kinetin, no clear pattern of RNA synthesis emerges. The data are interpreted to mean that kinetin treatment elicits RNA synthesis in a small proportion of the population initially and this may involve messenger-like RNA. Later, more cells synthesize RNA and this is primarily rRNA. Images PMID:16661292

  9. A MicroRNA Precursor Surveillance System in Quality Control of MicroRNA Synthesis

    PubMed Central

    Liu, Xuhang; Zheng, Qi; Vrettos, Nicholas; Maragkakis, Manolis; Alexiou, Panagiotis; Gregory, Brian D.; Mourelatos, Zissimos

    2014-01-01

    Summary MicroRNAs (miRNAs) are essential for regulation of gene expression. Though numerous miRNAs have been identified by high throughput sequencing, few precursor miRNAs (pre-miRNAs) are experimentally validated. Here we report a strategy for constructing high-throughput sequencing libraries enriched for full-length pre-miRNAs. We find widespread and extensive uridylation of Argonaute bound pre-miRNAs, which is primarily catalyzed by two terminal uridylyltransferases: TUT7 and TUT4. Uridylation by TUT7/4 not only polishes pre-miRNA 3′ ends, but also facilitates their degradation by the exosome, preventing clogging of Ago with defective species. We show that the exosome exploits distinct substrate preferences of DIS3 and RRP6, its two catalytic subunits, to distinguish productive from defective pre-miRNAs. Furthermore, we identify a positive feedback loop formed by the exosome and TUT7/4 in triggering uridylation and degradation of Ago-bound pre-miRNAs. Our study reveals a pre-miRNA surveillance system that comprises TUT7, TUT4 and the exosome in quality control of miRNA synthesis. PMID:25175028

  10. The mechanism of montmorillonite catalysis in RNA synthesis

    NASA Astrophysics Data System (ADS)

    Joshi, Prakash

    The formation of complex prebiotic molecules on the early Earth is likely to have involved a component of mineral catalysis. Amongst the variety of clay minerals that have been investigated by us for their ability to catalyze the formation of RNA oligomers is montmorillonite. These are 2:1 layer silicates that have a wide range of chemical compositions [(Na,Ca)0.33(Al,Fe,Mg)2(Si,Al)4O10(OH)2.nH2O]. They are commonly produced by the weathering of silicic volcanic ashes to form Bentonite. Once formed, montmorillonites gradually transform to Illites at a modest pressure and temperature. Of the many samples of montmorillonite that we have experimentally examined, a selected subset has been observed to be catalytic for RNA synthesis (Joshi et. al., 2009; Aldersley et al., 2011). Those that have been observed to be excellent catalysts come from a restricted range of elemental compositions. The recent identification of phyllosilicates including montmorillonite on Mars (Bishop et al., 2008) raises the possibility that such processes may have taken place there too. The extent of catalysis depended not only upon the magnitude of the negative charge on the montmorillonite lattice and the number of cations associated with it, but also on the pH at which the reaction is promoted. The isotherm and catalysis studies were extended to provide binding information and catalytic outcomes over a wide pH range. When cations in raw montmorillonite are completely replaced by sodium ions, the resulting Na+-montmorillonite does not catalyze oligomer formation because the ions saturate the interlayer between the platelets of montmorillonite, which blocks the binding of the activated monomers. Acid washed montmorillonite titrated to pH 6-8 with alkali metal ions, serves as the model catalyst for this RNA synthesis (Aldersley et. al., 2011). The optimal binding occurred in the region of maximal oligomer formation. X-ray diffraction studies revealed changes in layer separations of

  11. Surveillance of Bat Coronaviruses in Kenya Identifies Relatives of Human Coronaviruses NL63 and 229E and Their Recombination History.

    PubMed

    Tao, Ying; Shi, Mang; Chommanard, Christina; Queen, Krista; Zhang, Jing; Markotter, Wanda; Kuzmin, Ivan V; Holmes, Edward C; Tong, Suxiang

    2017-03-01

    Bats harbor a large diversity of coronaviruses (CoVs), several of which are related to zoonotic pathogens that cause severe disease in humans. Our screening of bat samples collected in Kenya from 2007 to 2010 not only detected RNA from several novel CoVs but, more significantly, identified sequences that were closely related to human CoVs NL63 and 229E, suggesting that these two human viruses originate from bats. We also demonstrated that human CoV NL63 is a recombinant between NL63-like viruses circulating in Triaenops bats and 229E-like viruses circulating in Hipposideros bats, with the breakpoint located near 5' and 3' ends of the spike (S) protein gene. In addition, two further interspecies recombination events involving the S gene were identified, suggesting that this region may represent a recombination "hot spot" in CoV genomes. Finally, using a combination of phylogenetic and distance-based approaches, we showed that the genetic diversity of bat CoVs is primarily structured by host species and subsequently by geographic distances.IMPORTANCE Understanding the driving forces of cross-species virus transmission is central to understanding the nature of disease emergence. Previous studies have demonstrated that bats are the ultimate reservoir hosts for a number of coronaviruses (CoVs), including ancestors of severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory syndrome coronavirus (MERS-CoV), and human CoV 229E (HCoV-229E). However, the evolutionary pathways of bat CoVs remain elusive. We provide evidence for natural recombination between distantly related African bat coronaviruses associated with Triaenops afer and Hipposideros sp. bats that resulted in a NL63-like virus, an ancestor of the human pathogen HCoV-NL63. These results suggest that interspecies recombination may play an important role in CoV evolution and the emergence of novel CoVs with zoonotic potential.

  12. Pre-mRNA Processing Factor Prp18 Is a Stimulatory Factor of Influenza Virus RNA Synthesis and Possesses Nucleoprotein Chaperone Activity.

    PubMed

    Minakuchi, M; Sugiyama, K; Kato, Y; Naito, T; Okuwaki, M; Kawaguchi, A; Nagata, K

    2017-02-01

    The genome of influenza virus (viral RNA [vRNA]) is associated with the nucleoprotein (NP) and viral RNA-dependent RNA polymerases and forms helical viral ribonucleoprotein (vRNP) complexes. The NP-vRNA complex is the biologically active template for RNA synthesis by the viral polymerase. Previously, we identified human pre-mRNA processing factor 18 (Prp18) as a stimulatory factor for viral RNA synthesis using a Saccharomyces cerevisiae replicon system and a single-gene deletion library of Saccharomyces cerevisiae (T. Naito, Y. Kiyasu, K. Sugiyama, A. Kimura, R. Nakano, A. Matsukage, and K. Nagata, Proc Natl Acad Sci USA, 104:18235-18240, 2007, https://doi.org/10.1073/pnas.0705856104). In infected Prp18 knockdown (KD) cells, the synthesis of vRNA, cRNA, and viral mRNAs was reduced. Prp18 was found to stimulate in vitro viral RNA synthesis through its interaction with NP. Analyses using in vitro RNA synthesis reactions revealed that Prp18 dissociates newly synthesized RNA from the template after the early elongation step to stimulate the elongation reaction. We found that Prp18 functions as a chaperone for NP to facilitate the formation of NP-RNA complexes. Based on these results, it is suggested that Prp18 accelerates influenza virus RNA synthesis as an NP chaperone for the processive elongation reaction.

  13. Identification of SARS-like coronaviruses in horseshoe bats (Rhinolophus hipposideros) in Slovenia.

    PubMed

    Rihtaric, Danijela; Hostnik, Peter; Steyer, Andrej; Grom, Joze; Toplak, Ivan

    2010-04-01

    Bats have been identified as a natural reservoir for an increasing number of emerging zoonotic viruses, such as Hendra virus, Nipah virus, Ebola virus, Marburg virus, rabies and other lyssaviruses. Recently, a large number of viruses closely related to members of the genus Coronavirus have been associated with severe acute respiratory syndrome (SARS) and detected in bat species. In this study, samples were collected from 106 live bats of seven different bat species from 27 different locations in Slovenia. Coronaviruses were detected by RT-PCR in 14 out of 36 horseshoe bat (Rhinolophus hipposideros) fecal samples, with 38.8% virus prevalence. Sequence analysis of a 405-nucleotide region of the highly conserved RNA polymerase gene (pol) showed that all coronaviruses detected in this study are genetically closely related, with 99.5-100% nucleotide identity, and belong to group 2 of the coronaviruses. The most closely related virus sequence in GenBank was SARS bat isolate Rp3/2004 (DQ071615) within the SARS-like CoV cluster, sharing 85% nucleotide identity and 95.6% amino acid identity. The potential risk of a new group of bat coronaviruses as a reservoir for human infections is highly suspected, and further molecular epidemiologic studies of these bat coronaviruses are needed.

  14. Interacting RNA polymerase motors on a DNA track: Effects of traffic congestion and intrinsic noise on RNA synthesis

    NASA Astrophysics Data System (ADS)

    Tripathi, Tripti; Chowdhury, Debashish

    2008-01-01

    RNA polymerase (RNAP) is an enzyme that synthesizes a messenger RNA (mRNA) strand which is complementary to a single-stranded DNA template. From the perspective of physicists, an RNAP is a molecular motor that utilizes chemical energy input to move along the track formed by DNA. In many circumstances, which are described in this paper, a large number of RNAPs move simultaneously along the same track; we refer to such collective movements of the RNAPs as RNAP traffic. Here we develop a theoretical model for RNAP traffic by incorporating the steric interactions between RNAPs as well as the mechanochemical cycle of individual RNAPs during the elongation of the mRNA. By a combination of analytical and numerical techniques, we calculate the rates of mRNA synthesis and the average density profile of the RNAPs on the DNA track. We also introduce, and compute, two different measures of fluctuations in the synthesis of RNA. Analyzing these fluctuations, we show how the level of intrinsic noise in mRNA synthesis depends on the concentrations of the RNAPs as well as on those of some of the reactants and the products of the enzymatic reactions catalyzed by RNAP. We suggest appropriate experimental systems and techniques for testing our theoretical predictions.

  15. Interacting RNA polymerase motors on a DNA track: effects of traffic congestion and intrinsic noise on RNA synthesis.

    PubMed

    Tripathi, Tripti; Chowdhury, Debashish

    2008-01-01

    RNA polymerase (RNAP) is an enzyme that synthesizes a messenger RNA (mRNA) strand which is complementary to a single-stranded DNA template. From the perspective of physicists, an RNAP is a molecular motor that utilizes chemical energy input to move along the track formed by DNA. In many circumstances, which are described in this paper, a large number of RNAPs move simultaneously along the same track; we refer to such collective movements of the RNAPs as RNAP traffic. Here we develop a theoretical model for RNAP traffic by incorporating the steric interactions between RNAPs as well as the mechanochemical cycle of individual RNAPs during the elongation of the mRNA. By a combination of analytical and numerical techniques, we calculate the rates of mRNA synthesis and the average density profile of the RNAPs on the DNA track. We also introduce, and compute, two different measures of fluctuations in the synthesis of RNA. Analyzing these fluctuations, we show how the level of intrinsic noise in mRNA synthesis depends on the concentrations of the RNAPs as well as on those of some of the reactants and the products of the enzymatic reactions catalyzed by RNAP. We suggest appropriate experimental systems and techniques for testing our theoretical predictions.

  16. Biochemical Characterization of Middle East Respiratory Syndrome Coronavirus Helicase

    PubMed Central

    Lazarus, Hilary

    2016-01-01

    ABSTRACT Middle East respiratory syndrome coronavirus (MERS-CoV) helicase is a superfamily 1 helicase containing seven conserved motifs. We have cloned, expressed, and purified a Strep-fused recombinant MERS-CoV nonstructural protein 13 (M-nsp13) helicase. Characterization of its biochemical properties showed that it unwound DNA and RNA similarly to severe acute respiratory syndrome CoV nsp13 (S-nsp13) helicase. We showed that M-nsp13 unwound in a 5′-to-3′ direction and efficiently unwound the partially duplex RNA substrates with a long loading strand relative to those of the RNA substrates with a short or no loading strand. Moreover, the Km of ATP for M-nsp13 is inversely proportional to the length of the 5′ loading strand of the partially duplex RNA substrates. Finally, we also showed that the rate of unwinding (ku) of M-nsp13 is directly proportional to the length of the 5′ loading strand of the partially duplex RNA substrate. These results provide insights that enhance our understanding of the biochemical properties of M-nsp13. IMPORTANCE Coronaviruses are known to cause a wide range of diseases in humans and animals. Middle East respiratory syndrome coronavirus (MERS-CoV) is a novel coronavirus discovered in 2012 and is responsible for acute respiratory syndrome in humans in the Middle East, Europe, North Africa, and the United States of America. Helicases are motor proteins that catalyze the processive separation of double-stranded nucleic acids into two single-stranded nucleic acids by utilizing the energy derived from ATP hydrolysis. MERS-CoV helicase is one of the most important viral replication enzymes of this coronavirus. Herein, we report the first bacterial expression, enzyme purification, and biochemical characterization of MERS-CoV helicase. The knowledge obtained from this study might be used to identify an inhibitor of MERS-CoV replication, and the helicase might be used as a therapeutic target. PMID:27631026

  17. Animal models for SARS and MERS coronaviruses

    PubMed Central

    Gretebeck, Lisa M; Subbarao, Kanta

    2015-01-01

    The emergence of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) and Middle East Respiratory Syndrome coronavirus (MERS-CoV), two strains of animal coronaviruses that crossed the species barrier to infect and cause severe respiratory infections in humans within the last 12 years, have taught us that coronaviruses represent a global threat that does not recognize international borders. We can expect to see other novel coronaviruses emerge in the future. An ideal animal model should reflect the clinical signs, viral replication and pathology seen in humans. In this review, we present factors to consider in establishing an animal model for the study of novel coronaviruses and compare the different animal models that have been employed to study SARS-CoV and MERS-CoV. PMID:26184451

  18. Animal models for SARS and MERS coronaviruses.

    PubMed

    Gretebeck, Lisa M; Subbarao, Kanta

    2015-08-01

    The emergence of Severe Acute Respiratory Syndrome coronavirus (SARS-CoV) and Middle East Respiratory Syndrome coronavirus (MERS-CoV), two strains of animal coronaviruses that crossed the species barrier to infect and cause severe respiratory infections in humans within the last 12 years, have taught us that coronaviruses represent a global threat that does not recognize international borders. We can expect to see other novel coronaviruses emerge in the future. An ideal animal model should reflect the clinical signs, viral replication and pathology seen in humans. In this review, we present factors to consider in establishing an animal model for the study of novel coronaviruses and compare the different animal models that have been employed to study SARS-CoV and MERS-CoV.

  19. Solid-phase synthesis of branched oligoribonucleotides related to messenger RNA splicing intermediates.

    PubMed Central

    Damha, M J; Ganeshan, K; Hudson, R H; Zabarylo, S V

    1992-01-01

    The chemical synthesis of oligoribonucleotides containing vicinal (2'-5')- and (3'-5')-phosphodiester linkages is described. The solid-phase method, based on silyl-phosphoramidite chemistry, was applied to the synthesis of a series of branched RNA [(Xp)nA2' (pN)n3'(pN)n] related to the splicing intermediates derived from Saccharomyces cerevisiae rp51a pre-messenger RNA. The branched oligonucleotides have been thoroughly characterized by nucleoside and branched nucleotide composition analysis. Branched oligoribonucleotides will be useful in the study of messenger RNA splicing and in determining the biological role of RNA 'lariats' and 'forks' in vivo. Images PMID:1480476

  20. Coronavirus Gene 7 Counteracts Host Defenses and Modulates Virus Virulence

    PubMed Central

    Cruz, Jazmina L. G.; Sola, Isabel; Becares, Martina; Alberca, Berta; Plana, Joan; Enjuanes, Luis; Zuñiga, Sonia

    2011-01-01

    Transmissible gastroenteritis virus (TGEV) genome contains three accessory genes: 3a, 3b and 7. Gene 7 is only present in members of coronavirus genus a1, and encodes a hydrophobic protein of 78 aa. To study gene 7 function, a recombinant TGEV virus lacking gene 7 was engineered (rTGEV-Δ7). Both the mutant and the parental (rTGEV-wt) viruses showed the same growth and viral RNA accumulation kinetics in tissue cultures. Nevertheless, cells infected with rTGEV-Δ7 virus showed an increased cytopathic effect caused by an enhanced apoptosis mediated by caspase activation. Macromolecular synthesis analysis showed that rTGEV-Δ7 virus infection led to host translational shut-off and increased cellular RNA degradation compared with rTGEV-wt infection. An increase of eukaryotic translation initiation factor 2 (eIF2α) phosphorylation and an enhanced nuclease, most likely RNase L, activity were observed in rTGEV-Δ7 virus infected cells. These results suggested that the removal of gene 7 promoted an intensified dsRNA-activated host antiviral response. In protein 7 a conserved sequence motif that potentially mediates binding to protein phosphatase 1 catalytic subunit (PP1c), a key regulator of the cell antiviral defenses, was identified. We postulated that TGEV protein 7 may counteract host antiviral response by its association with PP1c. In fact, pull-down assays demonstrated the interaction between TGEV protein 7, but not a protein 7 mutant lacking PP1c binding motif, with PP1. Moreover, the interaction between protein 7 and PP1 was required, during the infection, for eIF2α dephosphorylation and inhibition of cell RNA degradation. Inoculation of newborn piglets with rTGEV-Δ7 and rTGEV-wt viruses showed that rTGEV-Δ7 virus presented accelerated growth kinetics and pathology compared with the parental virus. Overall, the results indicated that gene 7 counteracted host cell defenses, and modified TGEV persistence increasing TGEV survival. Therefore, the acquisition of

  1. DNA and RNA Synthesis in Animal Cells in Culture--Methods for Use in Schools

    ERIC Educational Resources Information Center

    Godsell, P. M.; Balls, M.

    1973-01-01

    Describes the experimental procedures used for detecting DNA and RNA synthesis in xenopus cells by autoradiography. The method described is suitable for senior high school laboratory classes or biology projects, if supervised by a teacher qualified to handle radioisotopes. (JR)

  2. An intrinsically disordered peptide from Ebola virus VP35 controls viral RNA synthesis by modulating nucleoprotein-RNA interactions

    DOE PAGES

    Leung, Daisy  W.; Borek, Dominika; Luthra, Priya; ...

    2015-04-01

    During viral RNA synthesis, Ebola virus (EBOV) nucleoprotein (NP) alternates between an RNA-template-bound form and a template-free form to provide the viral polymerase access to the RNA template. In addition, newly synthesized NP must be prevented from indiscriminately binding to noncognate RNAs. Here, we investigate the molecular bases for these critical processes. We identify an intrinsically disordered peptide derived from EBOV VP35 (NPBP, residues 20–48) that binds NP with high affinity and specificity, inhibits NP oligomerization, and releases RNA from NP-RNA complexes in vitro. The structure of the NPBP/ΔNPNTD complex, solved to 3.7 Å resolution, reveals how NPBP peptide occludesmore » a large surface area that is important for NP-NP and NP-RNA interactions and for viral RNA synthesis. Together, our results identify a highly conserved viral interface that is important for EBOV replication and can be targeted for therapeutic development.« less

  3. On-chip synthesis of RNA aptamer microarrays for multiplexed protein biosensing with SPR imaging measurements.

    PubMed

    Chen, Yulin; Nakamoto, Kohei; Niwa, Osamu; Corn, Robert M

    2012-06-05

    Microarrays of RNA aptamers are fabricated in a one-step, multiplexed enzymatic synthesis on gold thin films in a microfluidic format and then employed in the detection of protein biomarkers with surface plasmon resonance imaging (SPRI) measurements. Single-stranded RNA (ssRNA) oligonucleotides are transcribed on-chip from double-stranded DNA (dsDNA) templates attached to microarray elements (denoted as generator elements) by the surface transcription reaction of T7 RNA polymerase. As they are synthesized, the ssRNA oligonucleotides diffuse in the microfluidic channel and are quickly captured by hybridization adsorption onto adjacent single-stranded DNA (ssDNA) microarray elements (denoted as detector elements) that contain a sequence complementary to 5'-end of the ssRNA. The RNA aptamers attached to these detector elements are subsequently used in SPRI measurements for the bioaffinity detection of protein biomarkers. The microfluidic generator-detector element format permits the simultaneous fabrication of multiple ssRNA oligonucleotides with different capture sequences that can hybridize simultaneously to distinct detector elements and thus create a multiplexed aptamer microarray. In an initial set of demonstration experiments, SPRI measurements are used to monitor the bioaffinity adsorption of human thrombin (hTh) and vascular endothelial growth factor (VEGF) proteins onto RNA aptamer microarrays fabricated in situ with this on-chip RNA polymerase synthesis methodology. Additional SPRI measurements of the hydrolysis and desorption of the surface-bound ssRNA aptamers with a surface RNase H are used to verify the capture of ssRNA with RNA-DNA surface hybridization onto the detector elements. The on-chip RNA synthesis described here is an elegant, one-step multiplexed methodology for the rapid and contamination-free fabrication of RNA aptamer microarrays for protein biosensing with SPRI.

  4. A Model for the Origin of Protein Synthesis as Coreplicational Scanning of Nascent RNA

    NASA Astrophysics Data System (ADS)

    Yakhnin, Alexander V.

    2007-12-01

    The origin of protein synthesis is one of the major riddles of molecular biology. It was proposed a decade ago that the ribosomal RNA evolved from an earlier RNA-replisome (a ribozyme fulfilling RNA replication) while transfer RNA (tRNA) evolved from a genomic replication origin. Applying these hypotheses, I suggest that protein synthesis arose for the purpose of segregating copy and template RNA during replication through the conventional formation of a complementary strand. Nascent RNA was scanned in 5' to 3' direction following the progress of replication. The base pairing of several tRNA-like molecules with nascent RNA released the replication intermediates trapped in duplex. Synthesis of random peptides evolved to fuel the turnover of tRNAs. Then the combination of replication-coupled peptide formation and the independent development of amino acid-specific tRNA aminoacylation resulted in template-based protein synthesis. Therefore, the positioning of tRNAs adjacent to each other developed for the purpose of replication rather than peptide synthesis. This hypothesis does not include either selection for useful peptides or specific recognition of amino acids at the initial evolution of translation. It does, however, explain a number of features of modern translation apparatus, such as the relative flexibility of genetic code, the number of proteins shared by the transcription and translation machines, the universal participation of an RNA subunit in co-translational protein secretion, ‘unscheduled translation’, and factor-independent translocation. Assistance of original ribosomes in keeping apart the nascent transcript from its template is still widely explored by modern bacteria and perhaps by other domains of life.

  5. Accessory proteins of SARS-CoV and other coronaviruses.

    PubMed

    Liu, Ding Xiang; Fung, To Sing; Chong, Kelvin Kian-Long; Shukla, Aditi; Hilgenfeld, Rolf

    2014-09-01

    The huge RNA genome of SARS coronavirus comprises a number of open reading frames that code for a total of eight accessory proteins. Although none of these are essential for virus replication, some appear to have a role in virus pathogenesis. Notably, some SARS-CoV accessory proteins have been shown to modulate the interferon signaling pathways and the production of pro-inflammatory cytokines. The structural information on these proteins is also limited, with only two (p7a and p9b) having their structures determined by X-ray crystallography. This review makes an attempt to summarize the published knowledge on SARS-CoV accessory proteins, with an emphasis on their involvement in virus-host interaction. The accessory proteins of other coronaviruses are also briefly discussed. This paper forms part of a series of invited articles in Antiviral Research on "From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses" (see Introduction by Hilgenfeld and Peiris (2013)).

  6. A Recombinant Collagen-mRNA Platform for Controllable Protein Synthesis.

    PubMed

    Sun, Liping; Xiong, Yunjing; Bashan, Anat; Zimmerman, Ella; Shulman Daube, Shirley; Peleg, Yoav; Albeck, Shira; Unger, Tamar; Yonath, Hagith; Krupkin, Miri; Matzov, Donna; Yonath, Ada

    2015-07-06

    We have developed a collagen-mRNA platform for controllable protein production that is intended to be less prone to the problems associated with commonly used mRNA therapy as well as with collagen skin-healing procedures. A collagen mimic was constructed according to a recombinant method and was used as scaffold for translating mRNA chains into proteins. Cysteines were genetically inserted into the collagen chain at positions allowing efficient ribosome translation activity while minimizing mRNA misfolding and degradation. Enhanced green fluorescence protein (eGFP) mRNA bound to collagen was successfully translated by cell-free Escherichia coli ribosomes. This system enabled an accurate control of specific protein synthesis by monitoring expression time and level. Luciferase-mRNA was also translated on collagen scaffold by eukaryotic cell extracts. Thus we have demonstrated the feasibility of controllable protein synthesis on collagen scaffolds by ribosomal machinery.

  7. The parable of the caveman and the Ferrari: protein synthesis and the RNA world.

    PubMed

    Noller, Harry F

    2017-03-19

    The basic steps of protein synthesis are carried out by the ribosome, a very large and complex ribonucleoprotein particle. In keeping with its proposed emergence from an RNA world, all three of its core mechanisms-aminoacyl-tRNA selection, catalysis of peptide bond formation and coupled translocation of mRNA and tRNA-are embodied in the properties of ribosomal RNA, while its proteins play a supportive role.This article is part of the themed issue 'Perspectives on the ribosome'.

  8. Towards a Coronavirus-Based HIV Multigene Vaccine

    PubMed Central

    Eriksson, Klara K.; Makia, Divine; Maier, Reinhard; Ludewig, Burkhard; Thiel, Volker

    2006-01-01

    Human immunodeficiency virus (HIV) infection represents one of the major health threats in the developing world. The costly treatment of infected individuals with multiple highly efficient anti-HIV drugs is only affordable in industrialized countries. Thus, an efficient vaccination strategy is required to prevent the further spread of the infection. The molecular biology of coronaviruses and particular features of the human coronavirus 229E (HCoV 229E) indicate that HCoV 229E-based vaccine vectors can become a new class of highly efficient vaccines. First, the receptor of HCoV 229E, human aminopeptidase N (hAPN or CD13) is expressed mainly on human dendritic cells (DCs) and macrophages indicating that targeting of HCoV 229E-based vectors to professional antigen presenting cells can be achieved by receptor-mediated transduction. Second, HCoV 229E structural genes can be replaced by multiple transcriptional units encoding various antigens. These virus-like particles (VLPs) containing HCoV 229E-based vector RNA have the ability to transduce human DCs and to mediate heterologous gene expression in these cells. Finally, coronavirus infections are associated with mainly respiratory and enteric diseases, and natural transmission of coronaviruses occurs via mucosal surfaces. In humans, HCoV 229E causes common cold by infecting the upper respiratory tract. HCoV 229E infections are mainly encountered in children and re-infection occurs frequently in adults. It is thus most likely that pre-existing immunity against HCoV 229E will not significantly impact on the vaccination efficiency if HCoV 229E-based vectors are used in humans. PMID:17162377

  9. Coronaviruses in poultry and other birds.

    PubMed

    Cavanagh, Dave

    2005-12-01

    The number of avian species in which coronaviruses have been detected has doubled in the past couple of years. While the coronaviruses in these species have all been in coronavirus Group 3, as for the better known coronaviruses of the domestic fowl (infectious bronchitis virus [IBV], in Gallus gallus), turkey (Meleagris gallopavo) and pheasant (Phasianus colchicus), there is experimental evidence to suggest that birds are not limited to infection with Group 3 coronaviruses. In China coronaviruses have been isolated from peafowl (Pavo), guinea fowl (Numida meleagris; also isolated in Brazil), partridge (Alectoris) and also from a non-gallinaceous bird, the teal (Anas), all of which were being reared in the vicinity of domestic fowl. These viruses were closely related in genome organization and in gene sequences to IBV. Indeed, gene sequencing and experimental infection of chickens indicated that the peafowl isolate was the H120 IB vaccine strain, while the teal isolate was possibly a field strain of a nephropathogenic IBV. Thus the host range of IBV does extend beyond the chicken. Most recently, Group 3 coronaviruses have been detected in greylag goose (Anser anser), mallard duck (Anas platyrhynchos) and pigeon (Columbia livia). It is clear from the partial genome sequencing of these viruses that they are not IBV, as they have two additional small genes near the 3' end of the genome. Twenty years ago a coronavirus was isolated after inoculation of mice with tissue from the coastal shearwater (Puffinus puffinus). While it is not certain whether the virus was actually from the shearwater or from the mice, recent experiments have shown that bovine coronavirus (a Group 2 coronavirus) can infect and also cause enteric disease in turkeys. Experiments with some Group 1 coronaviruses (all from mammals, to date) have shown that they are not limited to replicating or causing disease in a single host. SARS-coronavirus has a wide host range. Clearly there is the potential for

  10. Gold-nanobeacons for real-time monitoring of RNA synthesis.

    PubMed

    Rosa, João; Conde, João; de la Fuente, Jesus M; Lima, João C; Baptista, Pedro V

    2012-01-01

    Measuring RNA synthesis and, when required, the level of inhibition, is crucial towards the development of practical strategies to evaluate silencing efficiency of gene silencing approaches. We developed a direct method to follow RNA synthesis in real time based on gold nanoparticles (AuNPs) functionalized with a fluorophore labeled hairpin-DNA, i.e. gold-nanobeacon (Au-nanobeacon). Under hairpin configuration, proximity to gold nanoparticles leads to fluorescence quenching; hybridization to a complementary target restores fluorescence emission due to the Au-nanobeacons' conformational reorganization that causes the fluorophore and the AuNP to part from each other, yielding a quantitative response. With this reporter Au-nanobeacon we were able to measure the rate of in vitro RNA synthesis (~10.3 fmol of RNA per minute). Then, we designed a second Au-nanobeacon targeting the promoter sequence (inhibitor) so as to inhibit transcription whilst simultaneously monitor the number of promoters being silenced. Using the two Au-nanobeacons in the same reaction mixture, we are capable of quantitatively assess in real time the synthesis of RNA and the level of inhibition. The biosensor concept can easily be extended and adapted to situations when real-time quantitative assessment of RNA synthesis and determination of the level of inhibition are required. In fact, this biosensor may assist the in vitro evaluation of silencing potential of a given sequence to be later used for in vivo gene silencing.

  11. The role of the priming loop in Influenza A virus RNA synthesis

    PubMed Central

    te Velthuis, Aartjan J.W.; Robb, Nicole C.; Kapanidis, Achillefs N.; Fodor, Ervin

    2016-01-01

    RNA-dependent RNA polymerases (RdRps) are used by RNA viruses to replicate and transcribe their RNA genomes1. They adopt a closed, right-handed fold with conserved subdomains called palm, fingers, and thumb1,2. Conserved RdRp motifs A-F coordinate the viral RNA template, NTPs, and magnesium ions to facilitate nucleotide condensation1. For the initiation of RNA synthesis, most RdRps use either a primer-dependent or de novo mechanism3. The Influenza A virus RdRp in contrast, uses a capped RNA oligonucleotide to initiate transcription, and a combination of terminal and internal de novo initiation for replication4. To understand how the Influenza A virus RdRp coordinates these processes, we analysed the function of a thumb subdomain β-hairpin using initiation, elongation, and single-molecule FRET assays. Our data shows that this β-hairpin is essential for terminal initiation during replication, but auxiliary for internal initiation and transcription. Analysis of individual residues in the tip of the β-hairpin shows that PB1 proline 651 is critical for efficient RNA synthesis in vitro and in cell culture. Overall, this work advances our understanding of Influenza A virus RNA synthesis and identifies the initiation platform of viral replication. PMID:27274864

  12. Reformation of nucleolus-like bodies in the absence of postmitotic RNA synthesis.

    PubMed

    Stevens, A R; Prescott, D M

    1971-03-01

    The dependence of nucleolar reformation on RNA synthesis that resumes in late anaphase or early telophase has been investigated in synchronously dividing Amoeba proteus. RNA synthesis was completely inhibited throughout all stages of mitosis and the early hours of interphase with high concentrations of actinomycin D. In such cells, nucleolus-like bodies that bind azure B and pyronin were apparent in the reformed nuclei. The bodies appear as dense, fibrous masses with loosely associated, finely fibrillar material. There are no characteristic granular regions in the reformed structures. It is suggested that the bodies probably represent mainly nucleolar protein and residual RNA which can bring about the reorganization of nucleoli in the absence of postmitotic RNA synthesis.

  13. Purified coronavirus spike protein nanoparticles induce coronavirus neutralizing antibodies in mice.

    PubMed

    Coleman, Christopher M; Liu, Ye V; Mu, Haiyan; Taylor, Justin K; Massare, Michael; Flyer, David C; Glenn, Gregory M; Smith, Gale E; Frieman, Matthew B

    2014-05-30

    Development of vaccination strategies for emerging pathogens are particularly challenging because of the sudden nature of their emergence and the long process needed for traditional vaccine development. Therefore, there is a need for development of a rapid method of vaccine development that can respond to emerging pathogens in a short time frame. The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) in 2003 and Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in late 2012 demonstrate the importance of coronaviruses as emerging pathogens. The spike glycoproteins of coronaviruses reside on the surface of the virion and are responsible for virus entry. The spike glycoprotein is the major immunodominant antigen of coronaviruses and has proven to be an excellent target for vaccine designs that seek to block coronavirus entry and promote antibody targeting of infected cells. Vaccination strategies for coronaviruses have involved live attenuated virus, recombinant viruses, non-replicative virus-like particles expressing coronavirus proteins or DNA plasmids expressing coronavirus genes. None of these strategies has progressed to an approved human coronavirus vaccine in the ten years since SARS-CoV emerged. Here we describe a novel method for generating MERS-CoV and SARS-CoV full-length spike nanoparticles, which in combination with adjuvants are able to produce high titer antibodies in mice.

  14. Control of rRNA Synthesis in Escherichia coli: a Systems Biology Approach†

    PubMed Central

    Dennis, Patrick P.; Ehrenberg, Mans; Bremer, Hans

    2004-01-01

    The first part of this review contains an overview of the various contributions and models relating to the control of rRNA synthesis reported over the last 45 years. The second part describes a systems biology approach to identify the factors and effectors that control the interactions between RNA polymerase and rRNA (rrn) promoters of Escherichia coli bacteria during exponential growth in different media. This analysis is based on measurements of absolute rrn promoter activities as transcripts per minute per promoter in bacterial strains either deficient or proficient in the synthesis of the factor Fis and/or the effector ppGpp. These absolute promoter activities are evaluated in terms of rrn promoter strength (Vmax/Km) and free RNA polymerase concentrations. Three major conclusions emerge from this evaluation. First, the rrn promoters are not saturated with RNA polymerase. As a consequence, changes in the concentration of free RNA polymerase contribute to changes in rrn promoter activities. Second, rrn P2 promoter strength is not specifically regulated during exponential growth at different rates; its activity changes only when the concentration of free RNA polymerase changes. Third, the effector ppGpp reduces the strength of the rrn P1 promoter both directly and indirectly by reducing synthesis of the stimulating factor Fis. This control of rrn P1 promoter strength forms part of a larger feedback loop that adjusts the synthesis of ribosomes to the availability of amino acids via amino acid-dependent control of ppGpp accumulation. PMID:15590778

  15. Genomic Analysis and Surveillance of the Coronavirus Dominant in Ducks in China

    PubMed Central

    Liu, Shuo; Hou, Guang-Yu; Jiang, Wen-Ming; Wang, Su-Chun; Li, Jin-Ping; Yu, Jian-Min; Chen, Ji-Ming

    2015-01-01

    The genetic diversity, evolution, distribution, and taxonomy of some coronaviruses dominant in birds other than chickens remain enigmatic. In this study we sequenced the genome of a newly identified coronavirus dominant in ducks (DdCoV), and performed a large-scale surveillance of coronaviruses in chickens and ducks using a conserved RT-PCR assay. The viral genome harbors a tandem repeat which is rare in vertebrate RNA viruses. The repeat is homologous to some proteins of various cellular organisms, but its origin remains unknown. Many substitutions, insertions, deletions, and some frameshifts and recombination events have occurred in the genome of the DdCoV, as compared with the coronavirus dominant in chickens (CdCoV). The distances between DdCoV and CdCoV are large enough to separate them into different species within the genus Gammacoronavirus. Our surveillance demonstrated that DdCoVs and CdCoVs belong to different lineages and occupy different ecological niches, further supporting that they should be classified into different species. Our surveillance also demonstrated that DdCoVs and CdCoVs are prevalent in live poultry markets in some regions of China. In conclusion, this study shed novel insight into the genetic diversity, evolution, distribution, and taxonomy of the coronaviruses circulating in chickens and ducks. PMID:26053682

  16. Stability of bovine coronavirus on lettuce surfaces under household refrigeration conditions.

    PubMed

    Mullis, Lisa; Saif, Linda J; Zhang, Yongbin; Zhang, Xuming; Azevedo, Marli S P

    2012-05-01

    Fecal suspensions with an aerosol route of transmission were responsible for a cluster of severe acute respiratory syndrome (SARS) cases in 2003 in Hong Kong. Based on that event, the World Health Organization recommended that research be implemented to define modes of transmission of SARS coronavirus through sewage, feces, food and water. Environmental studies have shown that animal coronaviruses remain infectious in water and sewage for up to a year depending on the temperature and humidity. In this study, we examined coronavirus stability on lettuce surfaces. A cell culture adapted bovine coronavirus, diluted in growth media or in bovine fecal suspensions to simulate fecal contamination was used to spike romaine lettuce. qRT-PCR detected viral RNA copy number ranging from 6.6 × 10⁴ to 1.7 × 10⁶ throughout the experimental period of 30 days. Whereas infectious viruses were detected for at least 14 days, the amount of infectious virus varied, depending upon the diluent used for spiking the lettuce. UV and confocal microscopic observation indicated attachment of residual labeled virions to the lettuce surface after the elution procedure, suggesting that rates of inactivation or detection of the virus may be underestimated. Thus, it is possible that contaminated vegetables may be potential vehicles for coronavirus zoonotic transmission to humans.

  17. Structure of the C-terminal domain of nsp4 from feline coronavirus

    SciTech Connect

    Manolaridis, Ioannis; Wojdyla, Justyna A.; Panjikar, Santosh; Berglind, Hanna; Nordlund, Pär; Coutard, Bruno; Tucker, Paul A.

    2009-08-01

    The structure of the cytosolic C-terminal domain of nonstructural protein 4 from feline coronavirus has been determined and analyzed. Coronaviruses are a family of positive-stranded RNA viruses that includes important pathogens of humans and other animals. The large coronavirus genome (26–31 kb) encodes 15–16 nonstructural proteins (nsps) that are derived from two replicase polyproteins by autoproteolytic processing. The nsps assemble into the viral replication–transcription complex and nsp3, nsp4 and nsp6 are believed to anchor this enzyme complex to modified intracellular membranes. The largest part of the coronavirus nsp4 subunit is hydrophobic and is predicted to be embedded in the membranes. In this report, a conserved C-terminal domain (∼100 amino-acid residues) has been delineated that is predicted to face the cytoplasm and has been isolated as a soluble domain using library-based construct screening. A prototypical crystal structure at 2.8 Å resolution was obtained using nsp4 from feline coronavirus. Unmodified and SeMet-substituted proteins were crystallized under similar conditions, resulting in tetragonal crystals that belonged to space group P4{sub 3}. The phase problem was initially solved by single isomorphous replacement with anomalous scattering (SIRAS), followed by molecular replacement using a SIRAS-derived composite model. The structure consists of a single domain with a predominantly α-helical content displaying a unique fold that could be engaged in protein–protein interactions.

  18. Genomic Analysis and Surveillance of the Coronavirus Dominant in Ducks in China.

    PubMed

    Zhuang, Qing-Ye; Wang, Kai-Cheng; Liu, Shuo; Hou, Guang-Yu; Jiang, Wen-Ming; Wang, Su-Chun; Li, Jin-Ping; Yu, Jian-Min; Chen, Ji-Ming

    2015-01-01

    The genetic diversity, evolution, distribution, and taxonomy of some coronaviruses dominant in birds other than chickens remain enigmatic. In this study we sequenced the genome of a newly identified coronavirus dominant in ducks (DdCoV), and performed a large-scale surveillance of coronaviruses in chickens and ducks using a conserved RT-PCR assay. The viral genome harbors a tandem repeat which is rare in vertebrate RNA viruses. The repeat is homologous to some proteins of various cellular organisms, but its origin remains unknown. Many substitutions, insertions, deletions, and some frameshifts and recombination events have occurred in the genome of the DdCoV, as compared with the coronavirus dominant in chickens (CdCoV). The distances between DdCoV and CdCoV are large enough to separate them into different species within the genus Gammacoronavirus. Our surveillance demonstrated that DdCoVs and CdCoVs belong to different lineages and occupy different ecological niches, further supporting that they should be classified into different species. Our surveillance also demonstrated that DdCoVs and CdCoVs are prevalent in live poultry markets in some regions of China. In conclusion, this study shed novel insight into the genetic diversity, evolution, distribution, and taxonomy of the coronaviruses circulating in chickens and ducks.

  19. RNA Primer Extension Hinders DNA Synthesis by Escherichia coli Mutagenic DNA Polymerase IV

    PubMed Central

    Tashjian, Tommy F.; Lin, Ida; Belt, Verena; Cafarelli, Tiziana M.; Godoy, Veronica G.

    2017-01-01

    In Escherichia coli the highly conserved DNA damage regulated dinB gene encodes DNA Polymerase IV (DinB), an error prone specialized DNA polymerase with a central role in stress-induced mutagenesis. Since DinB is the DNA polymerase with the highest intracellular concentrations upon induction of the SOS response, further regulation must exist to maintain genomic stability. Remarkably, we find that DinB DNA synthesis is inherently poor when using an RNA primer compared to a DNA primer, while high fidelity DNA polymerases are known to have no primer preference. Moreover, we show that the poor DNA synthesis from an RNA primer is conserved in DNA polymerase Kappa, the human DinB homolog. The activity of DinB is modulated by interactions with several other proteins, one of which is the equally evolutionarily conserved recombinase RecA. This interaction is known to positively affect DinB’s fidelity on damaged templates. We find that upon interaction with RecA, DinB shows a significant reduction in DNA synthesis when using an RNA primer. Furthermore, with DinB or DinB:RecA a robust pause, sequence and lesion independent, occurs only when RNA is used as a primer. The robust pause is likely to result in abortive DNA synthesis when RNA is the primer. These data suggest a novel mechanism to prevent DinB synthesis when it is not needed despite its high concentrations, thus protecting genome stability. PMID:28298904

  20. RNA Primer Extension Hinders DNA Synthesis by Escherichia coli Mutagenic DNA Polymerase IV.

    PubMed

    Tashjian, Tommy F; Lin, Ida; Belt, Verena; Cafarelli, Tiziana M; Godoy, Veronica G

    2017-01-01

    In Escherichia coli the highly conserved DNA damage regulated dinB gene encodes DNA Polymerase IV (DinB), an error prone specialized DNA polymerase with a central role in stress-induced mutagenesis. Since DinB is the DNA polymerase with the highest intracellular concentrations upon induction of the SOS response, further regulation must exist to maintain genomic stability. Remarkably, we find that DinB DNA synthesis is inherently poor when using an RNA primer compared to a DNA primer, while high fidelity DNA polymerases are known to have no primer preference. Moreover, we show that the poor DNA synthesis from an RNA primer is conserved in DNA polymerase Kappa, the human DinB homolog. The activity of DinB is modulated by interactions with several other proteins, one of which is the equally evolutionarily conserved recombinase RecA. This interaction is known to positively affect DinB's fidelity on damaged templates. We find that upon interaction with RecA, DinB shows a significant reduction in DNA synthesis when using an RNA primer. Furthermore, with DinB or DinB:RecA a robust pause, sequence and lesion independent, occurs only when RNA is used as a primer. The robust pause is likely to result in abortive DNA synthesis when RNA is the primer. These data suggest a novel mechanism to prevent DinB synthesis when it is not needed despite its high concentrations, thus protecting genome stability.

  1. [The first steps of chlorophyll synthesis: RNA involvement and regulation]. Progress report, January 1990--June 1992

    SciTech Connect

    Soell, D.

    1992-12-31

    Glu-tRNA{sup Glu} is synthesized from glutamate and tRNA{sup Glu} by glutamyl-tRNA synthetase (GluRS). Recent work has demonstrated that Glu-tRNA{sup Glu} has dual functions and is a precursor for protein and 5-aminolevulinate (ALA) synthesis. Current data does not provide compelling evidence for the notion that GluRS is regulated by chlorophyll precursors or in concert with the other enzymes of ALA synthesis. We have redefined the C5-pathway as a two-step route to ALA starting with Glu-tRNA{sup Glu}. Only two enzymes, Glu-tRNA reductase (GluTR) and GSA-2,1-amino-mutase (GSA-AM), are specifically involved in ALA synthesis. We have purified these enzymatic activities from Chlamydomonas and demonstrated that the two purified proteins in the presence of their cofactors NADPH and pyridoxal phosphate are sufficient for the in vitro Glu-tRNA {yields} ALA conversion. We have cloned the genes encoding GluTR. The sequences of the GluTR proteins deduced from these genes share highly conserved regions with those of bacterial origin. We havealso cloned and analyzed the gene encoding GSA-AM from Arabidopsis. As in Salmonella typhimurium, there are indications of the existence of an additional pathway for ALA formation in E. coli. To shed light on the recognition of the single tRNA{sup Glu} by the chloroplast enzymes GluTR, GluRS we characterized a chlorophyll-deficient mutant of Euglena having tRNA{sup Glu} with a point mutation in the T{Psi}C-loop. The altered tRNA supports protein but not ALA synthesis.

  2. Rotavirus Replication: Plus-Sense Templates for Double-Stranded RNA Synthesis Are Made in Viroplasms

    PubMed Central

    Silvestri, Lynn S.; Taraporewala, Zenobia F.; Patton, John T.

    2004-01-01

    Rotavirus plus-strand RNAs not only direct protein synthesis but also serve as templates for the synthesis of the segmented double-stranded RNA (dsRNA) genome. In this study, we identified short-interfering RNAs (siRNAs) for viral genes 5, 8, and 9 that suppressed the expression of NSP1, a nonessential protein; NSP2, a component of viral replication factories (viroplasms); and VP7, an outer capsid protein, respectively. The loss of NSP2 expression inhibited viroplasm formation, genome replication, virion assembly, and synthesis of the other viral proteins. In contrast, the loss of VP7 expression had no effect on genome replication; instead, it inhibited only outer-capsid morphogenesis. Similarly, neither genome replication nor any other event of the viral life cycle was affected by the loss of NSP1. The data indicate that plus-strand RNAs templating dsRNA synthesis within viroplasms are not susceptible to siRNA-induced RNase degradation. In contrast, plus-strand RNAs templating protein synthesis in the cytosol are susceptible to degradation and thus are not the likely source of plus-strand RNAs for dsRNA synthesis in viroplasms. Indeed, immunofluorescence analysis of bromouridine (BrU)-labeled RNA made in infected cells provided evidence that plus-strand RNAs are synthesized within viroplasms. Furthermore, transfection of BrU-labeled viral plus-strand RNA into infected cells suggested that plus-strand RNAs introduced into the cytosol do not localize to viroplasms. From these results, we propose that plus-strand RNAs synthesized within viroplasms are the primary source of templates for genome replication and that trafficking pathways do not exist within the cytosol that transport plus-strand RNAs to viroplasms. The lack of such pathways confounds the development of reverse genetics systems for rotavirus. PMID:15220450

  3. Overview of methods in RNA nanotechnology: synthesis, purification, and characterization of RNA nanoparticles.

    PubMed

    Haque, Farzin; Guo, Peixuan

    2015-01-01

    RNA nanotechnology encompasses the use of RNA as a construction material to build homogeneous nanostructures by bottom-up self-assembly with defined size, structure, and stoichiometry; this pioneering concept demonstrated in 1998 (Guo et al., Molecular Cell 2:149-155, 1998; featured in Cell) has emerged as a new field that also involves materials engineering and synthetic structural biology (Guo, Nature Nanotechnology 5:833-842, 2010). The field of RNA nanotechnology has skyrocketed over the last few years, as evidenced by the burst of publications in prominent journals on RNA nanostructures and their applications in nanomedicine and nanotechnology. Rapid advances in RNA chemistry, RNA biophysics, and RNA biology have created new opportunities for translating basic science into clinical practice. RNA nanotechnology holds considerable promise in this regard. Increased evidence also suggests that substantial part of the 98.5 % of human genome (Lander et al. Nature 409:860-921, 2001) that used to be called "junk DNA" actually codes for noncoding RNA. As we understand more on how RNA structures are related to function, we can fabricate synthetic RNA nanoparticles for the diagnosis and treatment of diseases. This chapter provides a brief overview of the field regarding the design, construction, purification, and characterization of RNA nanoparticles for diverse applications in nanotechnology and nanomedicince.

  4. Synthesis of capped RNA using a DMT group as a purification handle.

    PubMed

    Veliath, Elizabeth; Gaffney, Barbara L; Jones, Roger A

    2014-01-01

    We report a new method for synthesis of capped RNA or 2'-OMe RNA that uses a N(2-)4,4'-dimethoxytrityl (DMT) group as a lipophilic purification handle to allow convenient isolation and purification of the capped RNA. The DMT group is easily removed under mild conditions without degradation of the cap. We have used this approach to prepare capped 10- and 20-mers. This method is compatible with the many condensation reactions that have been reported for preparation of capped RNA or cap analogues.

  5. Novel phenotype of RNA synthesis expressed by vesicular stomatitis virus isolated from persistent infection.

    PubMed Central

    Frey, T K; Youngner, J S

    1982-01-01

    Vesicular stomatitis virus (VSV) stocks isolated from two persistently infected mouse L-cell lines (designated VSV-PI stocks) express an altered phenotype of RNA synthesis. This phenotype is different from the RNA synthesis phenotype expressed by the viruses used to initiate the persistently infected lines, wild-type VSV and VSV ts-0-23 (a group III, ts-, RNA+ mutant). At 34 and 37 degrees C in L cells productively infected with VSV-PI stocks derived from the two cell lines, transcription of virus mRNA was significantly reduced, whereas replication of the 40S genomic RNA species was enhanced compared with wild-type VSV or ts-0-23. At 34 and 37 degrees C, both VSV-PI stocks replicated with equal or greater efficiency than wild-type VSV; 37 degrees C was the temperature at which the persistently infected cultures were maintained. At 40 degrees C, both VSV-PI stocks were temperature sensitive, and clonal VSV-PI isolates from both cell lines belong to complementation group I (RNA-). Standard ts- mutants (derived by mutagenesis of wild-type VSV) belonging to RNA- complementation groups I, II, and IV do not express the VSV-PI RNA synthesis phenotype at the permissive temperature, making this phenotype distinctive to persistent infection. Since the two VSV-PI populations from persistently infected cell lines initiated with different viruses both evolved this unique phenotype of RNA synthesis, the expression of this phenotype may play an important role in the maintenance of persistence. Images PMID:6292483

  6. Severe Acute Respiratory Syndrome-Coronavirus Papain-Like Novel Protease Inhibitors: Design, Synthesis, Protein-Ligand X-ray Structure and Biological Evaluation

    SciTech Connect

    Ghosh, Arun K.; Takayama, Jun; Rao, Kalapala Venkateswar; Ratia, Kiira; Chaudhuri, Rima; Mulhearn, Debbie C.; Lee, Hyun; Nichols, Daniel B.; Baliji, Surendranath; Baker, Susan C.; Johnson, Michael E.; Mesecar, Andrew D.

    2012-02-21

    The design, synthesis, X-ray crystal structure, molecular modeling, and biological evaluation of a series of new generation SARS-CoV PLpro inhibitors are described. A new lead compound 3 (6577871) was identified via high-throughput screening of a diverse chemical library. Subsequently, we carried out lead optimization and structure-activity studies to provide a series of improved inhibitors that show potent PLpro inhibition and antiviral activity against SARS-CoV infected Vero E6 cells. Interestingly, the (S)-Me inhibitor 15h (enzyme IC{sub 50} = 0.56 {mu}M; antiviral EC{sub 50} = 9.1 {mu}M) and the corresponding (R)-Me 15g (IC{sub 50} = 0.32 {mu}M; antiviral EC{sub 50} = 9.1 {mu}M) are the most potent compounds in this series, with nearly equivalent enzymatic inhibition and antiviral activity. A protein-ligand X-ray structure of 15g-bound SARS-CoV PLpro and a corresponding model of 15h docked to PLpro provide intriguing molecular insight into the ligand-binding site interactions.

  7. Reliable semi-synthesis of hydrolysis-resistant 3'-peptidyl-tRNA conjugates containing genuine tRNA modifications.

    PubMed

    Graber, Dagmar; Moroder, Holger; Steger, Jessica; Trappl, Krista; Polacek, Norbert; Micura, Ronald

    2010-10-01

    The 3'-peptidyl-tRNA conjugates that possess a hydrolysis-resistant ribose-3'-amide linkage instead of the natural ester linkage would represent valuable substrates for ribosomal studies. Up to date, access to these derivatives is severely limited. Here, we present a novel approach for the reliable synthesis of non-hydrolyzable 3'-peptidyl-tRNAs that contain all the respective genuine nucleoside modifications. In short, the approach is based on tRNAs from natural sources that are site-specifically cleaved within the TΨC loop by using DNA enzymes to obtain defined tRNA 5'-fragments carrying the modifications. After dephosphorylation of the 2',3'-cyclophosphate moieties from these fragments, they are ligated to the respective 3'-peptidylamino-tRNA termini that were prepared following the lines of a recently reported solid-phase synthesis. By this novel concept, non-hydrolyzable 3'-peptidyl-tRNA conjugates possessing all natural nucleoside modifications are accessible in highly efficient manner.

  8. RT-PCR detection of avian coronaviruses of galliform birds (chicken, turkey, pheasant) and in a parrot.

    PubMed

    Culver, Francesca Anne; Britton, Paul; Cavanagh, Dave

    2008-01-01

    Of the many primer combinations that we have investigated for the detection of avian coronaviruses, two have worked better than any of the others: they worked with the largest number of strains/samples of a given coronavirus and the most species of avian coronavirus, and they also produced the most sensitive detection tests. The primer combinations were: oligonucleotide pair 2Bp/4Bm, which is in a region of gene 1 that is moderately conserved among all species of coronavirus (1); and UTR11-/UTR41+, which are in a highly conserved part of the 3' untranslated region of avian coronaviruses related to infectious bronchitis virus (2). The gene 1 primer pair enabled the detection of a new coronavirus in a green-checked Amazon parrot (Amazon viridigenalis Cassin). In this chapter we describe the use of these oligonucleotides in a one-step (single-tube) RT-PCR, and describe the procedure that we used to extract RNA from turkey feces.

  9. A fast click-slow release strategy towards the HPLC-free synthesis of RNA.

    PubMed

    Agustin, E; Asare Okai, P N; Khan, I; Miller, M R; Wang, R; Sheng, J; Royzen, M

    2016-01-25

    A general strategy for purification of oligonucleotides synthesized by solid phase synthesis is described. It is based on a recently developed concept involving a bio-orthogonal inverse electron demand Diels-Alder reaction between trans-cyclooctene and tetrazine, termed 'click-to-release'. The strategy has been applied towards the synthesis and purification of a model hairpin RNA strand, as well as a 34 nt long aptamer.

  10. Coronavirus Spike Protein and Tropism Changes.

    PubMed

    Hulswit, R J G; de Haan, C A M; Bosch, B-J

    2016-01-01

    Coronaviruses (CoVs) have a remarkable potential to change tropism. This is particularly illustrated over the last 15 years by the emergence of two zoonotic CoVs, the severe acute respiratory syndrome (SARS)- and Middle East respiratory syndrome (MERS)-CoV. Due to their inherent genetic variability, it is inevitable that new cross-species transmission events of these enveloped, positive-stranded RNA viruses will occur. Research into these medical and veterinary important pathogens-sparked by the SARS and MERS outbreaks-revealed important principles of inter- and intraspecies tropism changes. The primary determinant of CoV tropism is the viral spike (S) entry protein. Trimers of the S glycoproteins on the virion surface accommodate binding to a cell surface receptor and fusion of the viral and cellular membrane. Recently, high-resolution structures of two CoV S proteins have been elucidated by single-particle cryo-electron microscopy. Using this new structural insight, we review the changes in the S protein that relate to changes in virus tropism. Different concepts underlie these tropism changes at the cellular, tissue, and host species level, including the promiscuity or adaptability of S proteins to orthologous receptors, alterations in the proteolytic cleavage activation as well as changes in the S protein metastability. A thorough understanding of the key role of the S protein in CoV entry is critical to further our understanding of virus cross-species transmission and pathogenesis and for development of intervention strategies.

  11. Influenza virus RNA polymerase: insights into the mechanisms of viral RNA synthesis

    PubMed Central

    te Velthuis, Aartjan J.W.; Fodor, Ervin

    2016-01-01

    The genome of influenza viruses consists of multiple segments of single stranded negative-sense RNA. Each of these segments is bound by the heterotrimeric viral RNA-dependent RNA polymerase and multiple copies of nucleoprotein, forming viral ribonucleoprotein (vRNP) complexes. It is in the context of these vRNPs that the viral RNA polymerase carries out transcription of viral genes and replication of the viral RNA genome. In this Review, we discuss our current knowledge of the structure of the influenza virus RNA polymerase, how it carries out transcription and replication, and how its activities are modulated by viral and host factors. Furthermore, we discuss how advances in our understanding of polymerase function could help identifying new antiviral targets. PMID:27396566

  12. Inhibition of RNA synthesis by bradykinin involves both the B1 and B2 receptor subtypes.

    PubMed

    Yau, L; Pinsk, M; Zahradka, P

    1996-04-01

    The efficacy of angiotensin converting enzyme inhibitors in the treatment of heart disease is due in part to the accumulation of bradykinin (BK). Since BK can exert its effect by influencing cell proliferation, we chose to study the effect of BK on the growth of A10 vascular smooth muscle cells. Ligand binding studies to determine which BK receptor subtypes are present on A10 cells showed that both B1 and B2 receptors were present in approximately equal numbers. Examination of RNA synthesis demonstrated that BK inhibits uridine incorporation in a dose-dependent manner. This decrease in RNA synthesis was blocked by both B1 and B2 receptor antagonists, as well as by addition of indomethacin, a cyclooxygenase inhibitor. The latter result suggested that prostaglandins mediate the biological actions of BK. Consequently, we examined the direct effect of two prostaglandins, PGE2 and PGI2 (prostacyclin), on A10 cells. PGE2 caused a decrease in RNA synthesis, thus mimicking the effect of BK, while PGI2 did not. Therefore, the inhibition of RNA synthesis in A10 vascular smooth muscle cells by BK requires both B1 and B2 receptor subtypes and this action of BK is apparently mediated by de novo synthesis of prostaglandins.

  13. Role of the C terminus of Lassa virus L protein in viral mRNA synthesis.

    PubMed

    Lehmann, Maria; Pahlmann, Meike; Jérôme, Hanna; Busch, Carola; Lelke, Michaela; Günther, Stephan

    2014-08-01

    The N terminus of arenavirus L protein contains an endonuclease presumably involved in "cap snatching." Here, we employed the Lassa virus replicon system to map other L protein sites that might be involved in this mechanism. Residues Phe-1979, Arg-2018, Phe-2071, Asp-2106, Trp-2173, Tyr-2179, Arg-2200, and Arg-2204 were important for viral mRNA synthesis but dispensable for genome replication. Thus, the C terminus of L protein is involved in the mRNA synthesis process, potentially by mediating cap binding.

  14. Reformation of functional liver polyribosomes from ribosome monomers in the absence of RNA synthesis.

    PubMed

    Stewart, G A; Farber, E

    1967-07-07

    The administration to rats of the ethyl analog of methionine, ethionine, results in the rapid decrease in the hepatic concentration of adenosine triphosphate followed by an extensive disaggregation of polysomes to ribosome monomers and a concomitant inhibition of protein synthesis. These effects are readily reversed by the injection of methionine or precursors of adenine nucleotides such as adenine. The reformation of liver polyribosomes in such animals following the administration of adenine plus methionine was found to occur under conditions in which new RNA synthesis was markedly inhibited. Free messenger RNA without attached ribosomes must be capable of remaining functionally active in the liver cytoplasm for many hours.

  15. Synthesis of 5-Hydroxymethylcytidine- and 5-Hydroxymethyl-uridine-Modified RNA

    PubMed Central

    Riml, Christian; Micura, Ronald

    2016-01-01

    We report on the syntheses of 5-hydroxymethyl-uridine [5hm(rU)] and -cytidine [5hm(rC)] phosphoramidites and their incorporation into RNA by solid-phase synthesis. Deprotection of the oligonucleotides is accomplished in a straightforward manner using standard conditions, confirming the appropriateness of the acetyl protection used for the pseudobenzylic alcohol moieties. The approach provides robust access to 5hm(rC/U)-modified RNAs that await applications in pull-down experiments to identify potential modification enzymes. They will also serve as synthetic probes for the development of high-throughput-sequencing methods in native RNAs. 1Introduction2Protection Strategies Reported for the Synthesis of 5hm(dC)-Modified DNA3Synthesis of 5-Hydroxymethylpyrimidine-Modified RNA3.1Synthesis of 5hm(rC) Phosphoramidite3.2Synthesis of 5hm(rU) Phosphoramidite3.3Synthesis of 5hm(rC)- and 5hm(rU)-Modified RNA4Conclusions PMID:27413246

  16. MicroRNA and AU-rich element regulation of prostaglandin synthesis

    PubMed Central

    Moore, Ashleigh E.; Young, Lisa E.

    2012-01-01

    Many liness of evidence demonstrate that prostaglandins play an important role in cancer, and enhanced synthesis of prostaglandin E2 (PGE2) is often observed in various human malignancies often associated with poor prognosis. PGE2 synthesis is initiated with the release of arachidonic acid by phospholipase enzymes, where it is then converted into the intermediate prostaglandin prostaglandin H2 (PGH2) by members of the cyclooxygenase family. The synthesis of PGE2 from PGH2 is facilitated by three different PGE synthases, and functional PGE2 can promote tumor growth by binding to four EP receptors to activate signaling pathways that control cell proliferation, migration, apoptosis, and angiogenesis. An integral method of controlling gene expression is by posttranscriptional mechanisms that regulate mRNA stability and protein translation. Messenger RNA regulatory elements typically reside within the 3′ untranslated region (3′UTR) of the transcript and play a critical role in targeting specific mRNAs for posttranscriptional regulation through micro-RNA (miRNA) binding and adenylate- and uridylate-rich element RNA-binding proteins. In this review, we highlight the current advances in our understanding of the impact these RNA sequence elements have upon regulating PGE2 levels. We also identify various RNA sequence elements consistently observed within the 3′UTRs of the genes involved in the PGE2 pathway, indicating these binding sites for miRNAs and RNA-binding proteins to be central regulators of PGE2 synthesis and function. These findings may provide a rationale for the development of new therapeutic approaches to control tumor growth and metastasis promoted by elevated PGE2 levels. PMID:22005950

  17. Isolation and characterization of a novel Betacoronavirus subgroup A coronavirus, rabbit coronavirus HKU14, from domestic rabbits.

    PubMed

    Lau, Susanna K P; Woo, Patrick C Y; Yip, Cyril C Y; Fan, Rachel Y Y; Huang, Yi; Wang, Ming; Guo, Rongtong; Lam, Carol S F; Tsang, Alan K L; Lai, Kenneth K Y; Chan, Kwok-Hung; Che, Xiao-Yan; Zheng, Bo-Jian; Yuen, Kwok-Yung

    2012-05-01

    We describe the isolation and characterization of a novel Betacoronavirus subgroup A coronavirus, rabbit coronavirus HKU14 (RbCoV HKU14), from domestic rabbits. The virus was detected in 11 (8.1%) of 136 rabbit fecal samples by reverse transcriptase PCR (RT-PCR), with a viral load of up to 10(8) copies/ml. RbCoV HKU14 was able to replicate in HRT-18G and RK13 cells with cytopathic effects. Northern blotting confirmed the production of subgenomic mRNAs coding for the HE, S, NS5a, E, M, and N proteins. Subgenomic mRNA analysis revealed a transcription regulatory sequence, 5'-UCUAAAC-3'. Phylogenetic analysis showed that RbCoV HKU14 formed a distinct branch among Betacoronavirus subgroup A coronaviruses, being most closely related to but separate from the species Betacoronavirus 1. A comparison of the conserved replicase domains showed that RbCoV HKU14 possessed <90% amino acid identities to most members of Betacoronavirus 1 in ADP-ribose 1″-phosphatase (ADRP) and nidoviral uridylate-specific endoribonuclease (NendoU), indicating that RbCoV HKU14 should represent a separate species. RbCoV HKU14 also possessed genomic features distinct from those of other Betacoronavirus subgroup A coronaviruses, including a unique NS2a region with a variable number of small open reading frames (ORFs). Recombination analysis revealed possible recombination events during the evolution of RbCoV HKU14 and members of Betacoronavirus 1, which may have occurred during cross-species transmission. Molecular clock analysis using RNA-dependent RNA polymerase (RdRp) genes dated the most recent common ancestor of RbCoV HKU14 to around 2002, suggesting that this virus has emerged relatively recently. Antibody against RbCoV was detected in 20 (67%) of 30 rabbit sera tested by an N-protein-based Western blot assay, whereas neutralizing antibody was detected in 1 of these 20 rabbits.

  18. AlkB homolog 3-mediated tRNA demethylation promotes protein synthesis in cancer cells

    PubMed Central

    Ueda, Yuko; Ooshio, Ikumi; Fusamae, Yasuyuki; Kitae, Kaori; Kawaguchi, Megumi; Jingushi, Kentaro; Hase, Hiroaki; Harada, Kazuo; Hirata, Kazumasa; Tsujikawa, Kazutake

    2017-01-01

    The mammalian AlkB homolog (ALKBH) family of proteins possess a 2-oxoglutarate- and Fe(II)-dependent oxygenase domain. A similar domain in the Escherichia coli AlkB protein catalyzes the oxidative demethylation of 1-methyladenine (1-meA) and 3-methylcytosine (3-meC) in both DNA and RNA. AlkB homolog 3 (ALKBH3) was also shown to demethylate 1-meA and 3-meC (induced in single-stranded DNA and RNA by a methylating agent) to reverse the methylation damage and retain the integrity of the DNA/RNA. We previously reported the high expression of ALKBH3 in clinical tumor specimens and its involvement in tumor progression. In this study, we found that ALKBH3 effectively demethylated 1-meA and 3-meC within endogenously methylated RNA. Moreover, using highly purified recombinant ALKBH3, we identified N6-methyladenine (N6-meA) in mammalian transfer RNA (tRNA) as a novel ALKBH3 substrate. An in vitro translation assay showed that ALKBH3-demethylated tRNA significantly enhanced protein translation efficiency. In addition, ALKBH3 knockdown in human cancer cells impaired cellular proliferation and suppressed the nascent protein synthesis that is usually accompanied by accumulation of the methylated RNAs. Thus, our data highlight a novel role for ALKBH3 in tumor progression via RNA demethylation and subsequent protein synthesis promotion. PMID:28205560

  19. The SARS coronavirus nucleocapsid protein--forms and functions.

    PubMed

    Chang, Chung-ke; Hou, Ming-Hon; Chang, Chi-Fon; Hsiao, Chwan-Deng; Huang, Tai-huang

    2014-03-01

    The nucleocapsid phosphoprotein of the severe acute respiratory syndrome coronavirus (SARS-CoV N protein) packages the viral genome into a helical ribonucleocapsid (RNP) and plays a fundamental role during viral self-assembly. It is a protein with multifarious activities. In this article we will review our current understanding of the N protein structure and its interaction with nucleic acid. Highlights of the progresses include uncovering the modular organization, determining the structures of the structural domains, realizing the roles of protein disorder in protein-protein and protein-nucleic acid interactions, and visualizing the ribonucleoprotein (RNP) structure inside the virions. It was also demonstrated that N-protein binds to nucleic acid at multiple sites with a coupled-allostery manner. We propose a SARS-CoV RNP model that conforms to existing data and bears resemblance to the existing RNP structures of RNA viruses. The model highlights the critical role of modular organization and intrinsic disorder of the N protein in the formation and functions of the dynamic RNP capsid in RNA viruses. This paper forms part of a symposium in Antiviral Research on "From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses."

  20. Reduced secreted mu mRNA synthesis in selective IgM deficiency of Bloom's syndrome.

    PubMed Central

    Kondo, N; Ozawa, T; Kato, Y; Motoyoshi, F; Kasahara, K; Kameyama, T; Orii, T

    1992-01-01

    Serum IgM concentrations were low although serum IgG and IgA concentrations were normal in both our patients with Bloom's syndrome. Although the percentages of surface IgM-bearing cells were not reduced, the numbers of IgM-secreting cells were markedly reduced. The membrane-bound mu (microns) and secreted mu (microseconds) mRNAs are produced from transcripts of a single immunoglobulin mu gene by alternative RNA processing pathways. The control of microseconds mRNA synthesis depends on the addition of poly(A) to microseconds C-terminal segment. In both patients, mu mRNA was well detected but microseconds C-terminal mRNA was scarcely detected, suggesting that microns mRNA was well transcribed but microseconds mRNA was not. There was, at least, no mutation or deletion in the microseconds C-terminal coding sequence, the RNA splice site (GG/TAAAC) at the 5' end of microseconds C-terminal segment and the AATAAA poly(A) signal sequence in both patients. Our results suggest that selective IgM deficiency in Bloom's syndrome is due to an abnormality in the maturation of surface IgM-bearing B cells into IgM-secreting cells and a failure of microseconds mRNA synthesis. Moreover, reduced microseconds mRNA synthesis may be due to the defect on developmental regulation of the site at which poly(A) is added to transcripts of the mu gene. Images Fig. 2 PMID:1563106

  1. HTCC: Broad Range Inhibitor of Coronavirus Entry

    PubMed Central

    Milewska, Aleksandra; Kaminski, Kamil; Ciejka, Justyna; Kosowicz, Katarzyna; Zeglen, Slawomir; Wojarski, Jacek; Nowakowska, Maria; Szczubiałka, Krzysztof; Pyrc, Krzysztof

    2016-01-01

    To date, six human coronaviruses have been known, all of which are associated with respiratory infections in humans. With the exception of the highly pathogenic SARS and MERS coronaviruses, human coronaviruses (HCoV-NL63, HCoV-OC43, HCoV-229E, and HCoV-HKU1) circulate worldwide and typically cause the common cold. In most cases, infection with these viruses does not lead to severe disease, although acute infections in infants, the elderly, and immunocompromised patients may progress to severe disease requiring hospitalization. Importantly, no drugs against human coronaviruses exist, and only supportive therapy is available. Previously, we proposed the cationically modified chitosan, N-(2-hydroxypropyl)-3-trimethylammonium chitosan chloride (HTCC), and its hydrophobically-modified derivative (HM-HTCC) as potent inhibitors of the coronavirus HCoV-NL63. Here, we show that HTCC inhibits interaction of a virus with its receptor and thus blocks the entry. Further, we demonstrate that HTCC polymers with different degrees of substitution act as effective inhibitors of all low-pathogenic human coronaviruses. PMID:27249425

  2. Crystallization and preliminary X-ray diffraction analysis of Nsp15 from SARS coronavirus

    SciTech Connect

    Ricagno, Stéfano; Coutard, Bruno; Grisel, Sacha; Brémond, Nicolas; Dalle, Karen; Tocque, Fabienne; Campanacci, Valérie; Lichière, Julie; Lantez, Violaine; Debarnot, Claire; Cambillau, Christian; Canard, Bruno; Egloff, Marie-Pierre

    2006-04-01

    Crystals of Nsp15 from the aetiological agent of SARS have been grown at room temperature. Crystals have cubic symmetry and diffract to a maximum resolution of 2.7 Å. The non-structural protein Nsp15 from the aetiological agent of SARS (severe acute respiratory syndrome) has recently been characterized as a uridine-specific endoribonuclease. This enzyme plays an essential role in viral replication and transcription since a mutation in the related H229E human coronavirus nsp15 gene can abolish viral RNA synthesis. SARS full-length Nsp15 (346 amino acids) has been cloned and expressed in Escherichia coli with an N-terminal hexahistidine tag and has been purified to homogeneity. The protein was subsequently crystallized using PEG 8000 or 10 000 as precipitants. Small cubic crystals of the apoenzyme were obtained from 100 nl nanodrops. They belong to space group P4{sub 1}32 or P4{sub 3}32, with unit-cell parameters a = b = c = 166.8 Å. Diffraction data were collected to a maximum resolution of 2.7 Å.

  3. Requirements for Assembly of Poliovirus Replication Complexes and Negative-Strand RNA Synthesis

    PubMed Central

    Teterina, Natalya L.; Egger, Denise; Bienz, Kurt; Brown, David M.; Semler, Bert L.; Ehrenfeld, Ellie

    2001-01-01

    HeLa cells were transfected with several plasmids that encoded all poliovirus (PV) nonstructural proteins. Viral RNAs were transcribed by T7 RNA polymerase expressed from recombinant vaccinia virus. All plasmids produced similar amounts of viral proteins that were processed identically; however, RNAs were designed either to serve as templates for replication or to contain mutations predicted to prevent RNA replication. The mutations included substitution of the entire PV 5′ noncoding region (NCR) with the encephalomyocarditis virus (EMCV) internal ribosomal entry site, thereby deleting the 5′-terminal cloverleaf-like structure, or insertion of three nucleotides in the 3Dpol coding sequence. Production of viral proteins was sufficient to induce the characteristic reorganization of intracellular membranes into heterogeneous-sized vesicles, independent of RNA replication. The vesicles were stably associated with viral RNA only when RNA replication could occur. Nonreplicating RNAs localized to distinct, nonoverlapping regions in the cell, excluded from the viral protein-membrane complexes. The absence of accumulation of positive-strand RNA from both mutated RNAs in transfected cells was documented. In addition, no minus-strand RNA was produced from the EMCV chimeric template RNA in vitro. These data show that the 5′-terminal sequences of PV RNA are essential for initiation of minus-strand RNA synthesis at its 3′ end. PMID:11264373

  4. Role of the 3′ tRNA-Like Structure in Tobacco Mosaic Virus Minus-Strand RNA Synthesis by the Viral RNA-Dependent RNA Polymerase In Vitro

    PubMed Central

    Osman, T. A. M.; Hemenway, C. L.; Buck, K. W.

    2000-01-01

    A template-dependent RNA polymerase has been used to determine the sequence elements in the 3′ untranslated region of tobacco mosaic virus RNA that are required for promotion of minus-strand RNA synthesis and binding to the RNA polymerase in vitro. Regions which were important for minus-strand synthesis were domain D1, which is equivalent to a tRNA acceptor arm; domain D2, which is similar to a tRNA anticodon arm; an upstream domain, D3; and a central core, C, which connects domains D1, D2, and D3 and determines their relative orientations. Mutational analysis of the 3′-terminal 4 nucleotides of domain D1 indicated the importance of the 3′-terminal CA sequence for minus-strand synthesis, with the sequence CCCA or GGCA giving the highest transcriptional efficiency. Several double-helical regions, but not their sequences, which are essential for forming pseudoknot and/or stem-loop structures in domains D1, D2, and D3 and the central core, C, were shown to be required for high template efficiency. Also important were a bulge sequence in the D2 stem-loop and, to a lesser extent, a loop sequence in a hairpin structure in domain D1. The sequence of the 3′ untranslated region upstream of domain D3 was not required for minus-strand synthesis. Template-RNA polymerase binding competition experiments showed that the highest-affinity RNA polymerase binding element region lay within a region comprising domain D2 and the central core, C, but domains D1 and D3 also bound to the RNA polymerase with lower affinity. PMID:11090166

  5. The relationship of severe acute respiratory syndrome coronavirus with avian and other coronaviruses.

    PubMed

    Jackwood, Mark W

    2006-09-01

    In February 2003, a severe acute respiratory syndrome coronavirus (SARS-CoV) emerged in humans in Guangdong Province, China, and caused an epidemic that had severe impact on public health, travel, and economic trade. Coronaviruses are worldwide in distribution, highly infectious, and extremely difficult to control because they have extensive genetic diversity, a short generation time, and a high mutation rate. They can cause respiratory, enteric, and in some cases hepatic and neurological diseases in a wide variety of animals and humans. An enormous, previously unrecognized reservoir of coronaviruses exists among animals. Because coronaviruses have been shown, both experimentally and in nature, to undergo genetic mutations and recombination at a rate similar to that of influenza viruses, it is not surprising that zoonosis and host switching that leads to epidemic diseases have occurred among coronaviruses. Analysis of coronavirus genomic sequence data indicates that SARS-CoV emerged from an animal reservoir. Scientists examining coronavirus isolates from a variety of animals in and around Guangdong Province reported that SARS-CoV has similarities with many different coronaviruses including avian coronaviruses and SARS-CoV-like viruses from a variety of mammals found in live-animal markets. Although a SARS-like coronavirus isolated from a bat is thought to be the progenitor of SARS-CoV, a lack of genomic sequences for the animal coronaviruses has prevented elucidation of the true origin of SARS-CoV. Sequence analysis of SARS-CoV shows that the 5' polymerase gene has a mammalian ancestry; whereas the 3' end structural genes (excluding the spike glycoprotein) have an avian origin. Spike glycoprotein, the host cell attachment viral surface protein, was shown to be a mosaic of feline coronavirus and avian coronavirus sequences resulting from a recombination event. Based on phylogenetic analysis designed to elucidate evolutionary links among viruses, SARS-CoV is believed

  6. In vitro synthesis of vertebrate U1 snRNA.

    PubMed Central

    Lund, E; Dahlberg, J E

    1989-01-01

    We have developed a DNA-dependent in vitro transcription system for vertebrate snRNA genes. By isolating the nuclei (germinal vesicles, GVs) of Xenopus laevis oocytes under oil to maintain the in vivo composition of their internal milieu, we are able to prepare nuclei that retain their ability to synthesize snRNAs efficiently. Homogenates of these GVs synthesize correctly initiated and terminated U1 snRNA using exogenous X.laevis U1 genes as templates. The templates may be either injected into the nucleus prior to its isolation or added to the nuclear homogenate. Images PMID:2714253

  7. Human coronavirus NL63, France.

    PubMed

    Vabret, Astrid; Mourez, Thomas; Dina, Julia; van der Hoek, Lia; Gouarin, Stéphanie; Petitjean, Joëlle; Brouard, Jacques; Freymuth, François

    2005-08-01

    The human coronavirus NL63 (HCoV-NL63) was first identified in The Netherlands, and its circulation in France has not been investigated. We studied HCoV-NL63 infection in hospitalized children diagnosed with respiratory tract infections. From November 2002 to April 2003, we evaluated 300 respiratory specimens for HCoV-NL63. Of the 300 samples, 28 (9.3%) were positive for HCoV-NL63. The highest prevalence was found in February (18%). The main symptoms were fever (61%), rhinitis (39%), bronchiolitis (39%), digestive problems (33%), otitis (28%), pharyngitis (22%), and conjunctivitis (17%). A fragment of the spike protein gene was sequenced to determine the variety of circulating HCoV-NL63. Phylogenetic analysis indicated that strains with different genetic markers cocirculate in France.

  8. Transfer RNA-mediated regulation of ribosome dynamics during protein synthesis.

    PubMed

    Fei, Jingyi; Richard, Arianne C; Bronson, Jonathan E; Gonzalez, Ruben L

    2011-08-21

    Translocation of tRNAs through the ribosome during protein synthesis involves large-scale structural rearrangement of the ribosome and ribosome-bound tRNAs that is accompanied by extensive and dynamic remodeling of tRNA-ribosome interactions. How the rearrangement of individual tRNA-ribosome interactions influences tRNA movement during translocation, however, remains largely unknown. To address this question, we used single-molecule FRET to characterize the dynamics of ribosomal pretranslocation (PRE) complex analogs carrying either wild-type or systematically mutagenized tRNAs. Our data reveal how specific tRNA-ribosome interactions regulate the rate of PRE complex rearrangement into a critical, on-pathway translocation intermediate and how these interactions control the stability of the resulting configuration. Notably, our results suggest that the conformational flexibility of the tRNA molecule has a crucial role in directing the structural dynamics of the PRE complex during translocation.

  9. The “Speedy” Synthesis of Atom-Specific 15N Imino/Amido-Labeled RNA

    PubMed Central

    Kreutz, Christoph; Micura, Ronald

    2016-01-01

    Although numerous reports on the synthesis of atom-specific 15N-labeled nucleosides exist, fast and facile access to the corresponding phosphoramidites for RNA solid-phase synthesis is still lacking. This situation represents a severe bottleneck for NMR spectroscopic investigations on functional RNAs. Here, we present optimized procedures to speed up the synthesis of 15N(1) adenosine and 15N(1) guanosine amidites, which are the much needed counterparts of the more straightforward-to-achieve 15N(3) uridine and 15N(3) cytidine amidites in order to tap full potential of 1H/15N/15N-COSY experiments for directly monitoring individual Watson–Crick base pairs in RNA. Demonstrated for two preQ1 riboswitch systems, we exemplify a versatile concept for individual base-pair labeling in the analysis of conformationally flexible RNAs when competing structures and conformational dynamics are encountered. PMID:26237536

  10. Role of RNA Synthesis in the Estrogen Induction of a Specific Uterine Protein*

    PubMed Central

    DeAngelo, Anthony B.; Gorski, Jack

    1970-01-01

    The rate of amino acid incorporation into a specific uterine protein (induced protein band) isolated by gel electrophoresis has been shown to be markedly stimulated within an hour after estrogen administration. Injection of actinomycin D (8 mg/kg) prior to estrogen blocks the synthesis of induced protein. The accumulation of the product of the actinomycin D-sensitive step (induced protein band RNA) is significant 15 minutes after estrogen, and its synthesis would appear to be initiated as soon as the estrogen-receptor complex reaches the nucleus. Blocking protein synthesis with puromycin or cycloheximide did not affect the accumulation of induced protein band RNA, indicating that this is one of the earliest macromolecular synthetic events to occur after estrogen administration. PMID:5269235

  11. Rubella virus capsid protein modulation of viral genomic and subgenomic RNA synthesis

    SciTech Connect

    Tzeng, W.-P.; Frey, Teryl K. . E-mail: tfrey@gsu.edu

    2005-07-05

    The ratio of the subgenomic (SG) to genome RNA synthesized by rubella virus (RUB) replicons expressing the green fluorescent protein reporter gene (RUBrep/GFP) is substantially higher than the ratio of these species synthesized by RUB (4.3 for RUBrep/GFP vs. 1.3-1.4 for RUB). It was hypothesized that this modulation of the viral RNA synthesis was by one of the virus structural protein genes and it was found that introduction of the capsid (C) protein gene into the replicons as an in-frame fusion with GFP resulted in an increase of genomic RNA production (reducing the SG/genome RNA ratio), confirming the hypothesis and showing that the C gene was the moiety responsible for the modulation effect. The N-terminal one-third of the C gene was required for the effect of be exhibited. A similar phenomenon was not observed with the replicons of Sindbis virus, a related Alphavirus. Interestingly, modulation was not observed when RUBrep/GFP was co-transfected with either other RUBrep or plasmid constructs expressing the C gene, demonstrating that modulation could occur only when the C gene was provided in cis. Mutations that prevented translation of the C protein failed to modulate RNA synthesis, indicating that the C protein was the moiety responsible for modulation; consistent with this conclusion, modulation of RNA synthesis was maintained when synonymous codon mutations were introduced at the 5' end of the C gene that changed the C gene sequence without altering the amino acid sequence of the C protein. These results indicate that C protein translated in proximity of viral replication complexes, possibly from newly synthesized SG RNA, participate in regulating the replication of viral RNA.

  12. Codon-specific and general inhibition of protein synthesis by the tRNA-sequestering minigenes.

    PubMed

    Delgado-Olivares, Luis; Zamora-Romo, Efraín; Guarneros, Gabriel; Hernandez-Sanchez, Javier

    2006-07-01

    The expression of minigenes in bacteria inhibits protein synthesis and cell growth. Presumably, the translating ribosomes, harboring the peptides as peptidyl-tRNAs, pause at the last sense codon of the minigene directed mRNAs. Eventually, the peptidyl-tRNAs drop off and, under limiting activity of peptidyl-tRNA hydrolase, accumulate in the cells reducing the concentration of specific aminoacylable tRNA. Therefore, the extent of inhibition is associated with the rate of starvation for a specific tRNA. Here, we used minigenes harboring various last sense codons that sequester specific tRNAs with different efficiency, to inhibit the translation of reporter genes containing, or not, these codons. A prompt inhibition of the protein synthesis directed by genes containing the codons starved for their cognate tRNA (hungry codons) was observed. However, a non-specific in vitro inhibition of protein synthesis, irrespective of the codon composition of the gene, was also evident. The degree of inhibition correlated directly with the number of hungry codons in the gene. Furthermore, a tRNA(Arg4)-sequestering minigene promoted the production of an incomplete beta-galactosidase polypeptide interrupted, during bacterial polypeptide chain elongation at sites where AGA codons were inserted in the lacZ gene suggesting ribosome pausing at the hungry codons.

  13. Akt activation enhances ribosomal RNA synthesis through casein kinase II and TIF-IA.

    PubMed

    Nguyen, Le Xuan Truong; Mitchell, Beverly S

    2013-12-17

    Transcription initiation factor I (TIF-IA) plays an essential role in regulating ribosomal RNA (rRNA) synthesis by tethering RNA polymerase I (Pol I) to the rDNA promoter. We have found that activated Akt enhances rRNA synthesis through the phosphorylation of casein kinase IIα (CK2α) on a threonine residue near its N terminus. CK2 in turn phosphorylates TIF-IA, thereby increasing rDNA transcription. Activated Akt also stabilizes TIF-IA, induces its translocation to the nucleolus, and enhances its interaction with Pol I. Treatment with AZD8055, an inhibitor of both Akt and mammalian target of rapamycin phosphorylation, but not with rapamycin, disrupts Akt-mediated TIF-IA stability, translocation, and activity. These data support a model in which activated Akt enhances rRNA synthesis both by preventing TIF-IA degradation and phosphorylating CK2α, which in turn phosphorylates TIF-IA. This model provides an explanation for the ability of activated Akt to promote cell proliferation and, potentially, transformation.

  14. In Planta Recognition of a Double-Stranded RNA Synthesis Protein Complex by a Potexviral RNA Silencing Suppressor[C][W][OPEN

    PubMed Central

    Okano, Yukari; Senshu, Hiroko; Hashimoto, Masayoshi; Neriya, Yutaro; Netsu, Osamu; Minato, Nami; Yoshida, Tetsuya; Maejima, Kensaku; Oshima, Kenro; Komatsu, Ken; Yamaji, Yasuyuki; Namba, Shigetou

    2014-01-01

    RNA silencing plays an important antiviral role in plants and invertebrates. To counteract antiviral RNA silencing, most plant viruses have evolved viral suppressors of RNA silencing (VSRs). TRIPLE GENE BLOCK PROTEIN1 (TGBp1) of potexviruses is a well-characterized VSR, but the detailed mechanism by which it suppresses RNA silencing remains unclear. We demonstrate that transgenic expression of TGBp1 of plantago asiatica mosaic virus (PlAMV) induced developmental abnormalities in Arabidopsis thaliana similar to those observed in mutants of SUPPRESSOR OF GENE SILENCING3 (SGS3) and RNA-DEPENDENT RNA POLYMERASE6 (RDR6) required for the trans-acting small interfering RNA synthesis pathway. PlAMV-TGBp1 inhibits SGS3/RDR6-dependent double-stranded RNA synthesis in the trans-acting small interfering RNA pathway. TGBp1 interacts with SGS3 and RDR6 and coaggregates with SGS3/RDR6 bodies, which are normally dispersed in the cytoplasm. In addition, TGBp1 forms homooligomers, whose formation coincides with TGBp1 aggregation with SGS3/RDR6 bodies. These results reveal the detailed molecular function of TGBp1 as a VSR and shed new light on the SGS3/RDR6-dependent double-stranded RNA synthesis pathway as another general target of VSRs. PMID:24879427

  15. Catalytic RNA and synthesis of the peptide bond

    NASA Technical Reports Server (NTRS)

    Usher, D. A.; Kozlowski, M.; Zou, X.

    1991-01-01

    We are studying whether the L-19 IVS ribozyme from Tetrahymena thermophila can catalyze the formation of the peptide bond when it is supplied with synthetic aminoacyl oligonucleotides. If this reaction works, it could give us some insight into the mechanism of peptide bond formation and the origin of coded protein synthesis. Two short oligoribonucleotides, CCCCC and a protected form of CCCCU were prepared; the former was made by the controlled hydrolysis of Poly(C), and the later by multistep chemical synthesis from the protected monomers. The homopentamer was then aminocylated using C-14 labelled Boc-protected glycine imidazolide. This aminoacylated oligo-nucleotide has now been shown to enter the active site of the L-19 IVS, and aminoacyl transfer, and peptide bond formation reactions are being sought. Our synthesis of CCCCU made us aware of the inadequacy of many of the 2'- hydroxyl protecting groups that are in use today and we therefore designed a new 2'- protecting group that is presently being tested.

  16. Evolutionary Relationships between Bat Coronaviruses and Their Hosts

    PubMed Central

    Cui, Jie; Han, Naijian; Streicker, Daniel; Li, Gang; Tang, Xianchun; Shi, Zhengli; Hu, Zhihong; Zhao, Guoping; Fontanet, Arnaud; Guan, Yi; Wang, Linfa; Jones, Gareth; Field, Hume E.

    2007-01-01

    Recent studies have suggested that bats are the natural reservoir of a range of coronaviruses (CoVs), and that rhinolophid bats harbor viruses closely related to the severe acute respiratory syndrome (SARS) CoV, which caused an outbreak of respiratory illness in humans during 2002–2003. We examined the evolutionary relationships between bat CoVs and their hosts by using sequence data of the virus RNA-dependent RNA polymerase gene and the bat cytochrome b gene. Phylogenetic analyses showed multiple incongruent associations between the phylogenies of rhinolophid bats and their CoVs, which suggested that host shifts have occurred in the recent evolutionary history of this group. These shifts may be due to either virus biologic traits or host behavioral traits. This finding has implications for the emergence of SARS and for the potential future emergence of SARS-CoVs or related viruses. PMID:18258002

  17. Surveillance of avian coronaviruses in wild bird populations of Korea.

    PubMed

    Kim, Hye-Ryoung; Oem, Jae-Ku

    2014-10-01

    We examined the role of wild birds in the epidemiology of avian coronaviruses by studying oropharyngeal swabs from 32 wild bird species. The 14 avian coronaviruses detected belonged to the gamma-coronaviruses and shared high nucleotide sequence identity with some previously identified strains in wild waterfowl, but not with infectious bronchitis viruses.

  18. Regulation of Viral RNA Synthesis by the V Protein of Parainfluenza Virus 5

    PubMed Central

    Yang, Yang; Zengel, James; Sun, Minghao; Sleeman, Katrina; Timani, Khalid Amine; Aligo, Jason; Rota, Paul

    2015-01-01

    ABSTRACT Paramyxoviruses include many important animal and human pathogens. The genome of parainfluenza virus 5 (PIV5), a prototypical paramyxovirus, encodes a V protein that inhibits viral RNA synthesis. In this work, the mechanism of inhibition was investigated. Using mutational analysis and a minigenome system, we identified regions in the N and C termini of the V protein that inhibit viral RNA synthesis: one at the very N terminus of V and the second at the C terminus of V. Furthermore, we determined that residues L16 and I17 are critical for the inhibitory function of the N-terminal region of the V protein. Both regions interact with the nucleocapsid protein (NP), an essential component of the viral RNA genome complex (RNP). Mutations at L16 and I17 abolished the interaction between NP and the N-terminal domain of V. This suggests that the interaction between NP and the N-terminal domain plays a critical role in V inhibition of viral RNA synthesis by the N-terminal domain. Both the N- and C-terminal regions inhibited viral RNA replication. The C terminus inhibited viral RNA transcription, while the N-terminal domain enhanced viral RNA transcription, suggesting that the two domains affect viral RNA through different mechanisms. Interestingly, V also inhibited the synthesis of the RNA of other paramyxoviruses, such as Nipah virus (NiV), human parainfluenza virus 3 (HPIV3), measles virus (MeV), mumps virus (MuV), and respiratory syncytial virus (RSV). This suggests that a common host factor may be involved in the replication of these paramyxoviruses. IMPORTANCE We identified two regions of the V protein that interact with NP and determined that one of these regions enhances viral RNA transcription via its interaction with NP. Our data suggest that a common host factor may be involved in the regulation of paramyxovirus replication and could be a target for broad antiviral drug development. Understanding the regulation of paramyxovirus replication will enable the

  19. Structure of the C-terminal domain of nsp4 from feline coronavirus

    PubMed Central

    Manolaridis, Ioannis; Wojdyla, Justyna A.; Panjikar, Santosh; Snijder, Eric J.; Gorbalenya, Alexander E.; Berglind, Hanna; Nordlund, Pär; Coutard, Bruno; Tucker, Paul A.

    2009-01-01

    Coronaviruses are a family of positive-stranded RNA viruses that includes important pathogens of humans and other animals. The large coronavirus genome (26–31 kb) encodes 15–16 nonstructural proteins (nsps) that are derived from two replicase polyproteins by autoproteolytic processing. The nsps assemble into the viral replication–transcription complex and nsp3, nsp4 and nsp6 are believed to anchor this enzyme complex to modified intracellular membranes. The largest part of the coronavirus nsp4 subunit is hydrophobic and is predicted to be embedded in the membranes. In this report, a conserved C-terminal domain (∼100 amino-acid residues) has been delineated that is predicted to face the cytoplasm and has been isolated as a soluble domain using library-based construct screening. A prototypical crystal structure at 2.8 Å resolution was obtained using nsp4 from feline coronavirus. Unmodified and SeMet-substituted proteins were crystallized under similar conditions, resulting in tetragonal crystals that belonged to space group P43. The phase problem was initially solved by single isomorphous replacement with anomalous scattering (SIRAS), followed by molecular replacement using a SIRAS-derived composite model. The structure consists of a single domain with a predominantly α-helical content displaying a unique fold that could be engaged in protein–protein interactions. PMID:19622868

  20. Development of Broad-Spectrum Halomethyl Ketone Inhibitors Against Coronavirus Main Protease 3CL(pro)

    SciTech Connect

    Bacha,U.; Barilla, J.; Gabelli, S.; Kiso, Y.; Amzel, L.; Freire, E.

    2008-01-01

    Coronaviruses comprise a large group of RNA viruses with diverse host specificity. The emergence of highly pathogenic strains like the SARS coronavirus (SARS-CoV), and the discovery of two new coronaviruses, NL-63 and HKU1, corroborates the high rate of mutation and recombination that have enabled them to cross species barriers and infect novel hosts. For that reason, the development of broad-spectrum antivirals that are effective against several members of this family is highly desirable. This goal can be accomplished by designing inhibitors against a target, such as the main protease 3CLpro (Mpro), which is highly conserved among all coronaviruses. Here 3CLpro derived from the SARS-CoV was used as the primary target to identify a new class of inhibitors containing a halomethyl ketone warhead. The compounds are highly potent against SARS 3CLpro with Ki's as low as 300 nm. The crystal structure of the complex of one of the compounds with 3CLpro indicates that this inhibitor forms a thioether linkage between the halomethyl carbon of the warhead and the catalytic Cys 145. Furthermore, Structure Activity Relationship (SAR) studies of these compounds have led to the identification of a pharmacophore that accurately defines the essential molecular features required for the high affinity.

  1. Discovery, diversity and evolution of novel coronaviruses sampled from rodents in China.

    PubMed

    Wang, Wen; Lin, Xian-Dan; Guo, Wen-Ping; Zhou, Run-Hong; Wang, Miao-Ruo; Wang, Cai-Qiao; Ge, Shuang; Mei, Sheng-Hua; Li, Ming-Hui; Shi, Mang; Holmes, Edward C; Zhang, Yong-Zhen

    2015-01-01

    Although rodents are important reservoirs for RNA viruses, to date only one species of rodent coronavirus (CoV) has been identified. Herein, we describe a new CoV, denoted Lucheng Rn rat coronavirus (LRNV), and novel variants of two Betacoronavirus species termed Longquan Aa mouse coronavirus (LAMV) and Longquan Rl rat coronavirus (LRLV), that were identified in a survey of 1465 rodents sampled in China during 2011-2013. Phylogenetic analysis revealed that LAMV and LRLV fell into lineage A of the genus Betacoronavirus, which included CoVs discovered in humans and domestic and wild animals. In contrast, LRNV harbored by Rattus norvegicus formed a distinct lineage within the genus Alphacoronavirus in the 3CL(pro), RdRp, and Hel gene trees, but formed a more divergent lineage in the N and S gene trees, indicative of a recombinant origin. Additional recombination events were identified in LRLV. Together, these data suggest that rodents may carry additional unrecognized CoVs.

  2. Potent inhibition of feline coronaviruses with peptidyl compounds targeting coronavirus 3C-like protease.

    PubMed

    Kim, Yunjeong; Mandadapu, Sivakoteswara Rao; Groutas, William C; Chang, Kyeong-Ok

    2013-02-01

    Feline coronavirus infection is common among domestic and exotic felid species and usually associated with mild or asymptomatic enteritis; however, feline infectious peritonitis (FIP) is a fatal disease of cats that is caused by systemic infection with a feline infectious peritonitis virus (FIPV), a variant of feline enteric coronavirus (FECV). Currently, there is no specific treatment approved for FIP despite the importance of FIP as the leading infectious cause of death in young cats. During the replication process, coronavirus produces viral polyproteins that are processed into mature proteins by viral proteases, the main protease (3C-like [3CL] protease) and the papain-like protease. Since the cleavages of viral polyproteins are an essential step for virus replication, blockage of viral protease is an attractive target for therapeutic intervention. Previously, we reported the generation of broad-spectrum peptidyl inhibitors against viruses that possess a 3C or 3CL protease. In this study, we further evaluated the antiviral effects of the peptidyl inhibitors against feline coronaviruses, and investigated the interaction between our protease inhibitor and a cathepsin B inhibitor, an entry blocker, against a feline coronavirus in cell culture. Herein we report that our compounds behave as reversible, competitive inhibitors of 3CL protease, potently inhibited the replication of feline coronaviruses (EC(50) in a nanomolar range) and, furthermore, combination of cathepsin B and 3CL protease inhibitors led to a strong synergistic interaction against feline coronaviruses in a cell culture system.

  3. RNA synthesis and turnover in the molluscan nervous system studied by Click-iT method.

    PubMed

    Ierusalimsky, Victor N; Balaban, Pavel M

    2016-02-15

    RNA synthesis can be detected by means of the in vivo incorporation of 5-ethynyluridine (EU) in newly-synthesized RNA with the relatively simple Click-iT method. We used this method to study the RNA synthesis in the CNS tissue of adult and juvenile terrestrial snails Helix lucorum L. Temporally, first labeled neurons were detected in the adult CNS after 4-h of isolated CNS incubation in EU solution, while 12-h of incubation led to extensive labeling of most CNS neurons. The EU labeling was present as the nuclear and nucleolar staining. The cytoplasm staining was observed after 2-3 days of CNS washout following the EU exposure for 16 h. In juvenile CNS, the first staining reaction was apparent as the staining of apical region in the procerebral lobe of cerebral ganglia after 1h of CNS incubation in EU, while the maximum pattern of staining was obtained after 4h of CNS incubation. Thus, age-related differences in RNA synthesis are present. Activation of neurons elicited by serotonin and caffeine applications noticeably increased the intensity of staining. EU readily penetrates into the bodies of juvenile snails immersed in the EU solution. When the intact juvenile animals were immersed in the EU solution for 1h, the procerebrum staining, similar to the one detected in the incubated juvenile CNS, was observed.

  4. Pathogenic characteristics of persistent feline enteric coronavirus infection in cats.

    PubMed

    Vogel, Liesbeth; Van der Lubben, Mariken; te Lintelo, Eddie G; Bekker, Cornelis P J; Geerts, Tamara; Schuijff, Leontine S; Grinwis, Guy C M; Egberink, Herman F; Rottier, Peter J M

    2010-01-01

    Feline coronaviruses (FCoV) comprise two biotypes: feline enteric coronaviruses (FECV) and feline infectious peritonitis viruses (FIPV). FECV is associated with asymptomatic persistent enteric infections, while FIPV causes feline infectious peritonitis (FIP), a usually fatal systemic disease in domestic cats and some wild Felidae. FIPV arises from FECV by mutation. FCoV also occur in two serotypes, I and II, of which the serotype I viruses are by far the most prevalent in the field. Yet, most of our knowledge about FCoV infections relates to serotype II viruses, particularly about the FIPV, mainly because type I viruses grow poorly in cell culture. Hence, the aim of the present work was the detailed study of the epidemiologically most relevant viruses, the avirulent serotype I viruses. Kittens were inoculated oronasally with different doses of two independent FECV field strains, UCD and RM. Persistent infection could be reproducibly established. The patterns of clinical symptoms, faecal virus shedding and seroconversion were monitored for up to 10 weeks revealing subtle but reproducible differences between the two viruses. Faecal virus, i.e. genomic RNA, was detected during persistent FECV infection only in the large intestine, downstream of the appendix, and could occasionally be observed also in the blood. The implications of our results, particularly our insights into the persistently infected state, are discussed.

  5. AKAP3 synthesis is mediated by RNA binding proteins and PKA signaling during mouse spermiogenesis.

    PubMed

    Xu, Kaibiao; Yang, Lele; Zhao, Danyun; Wu, Yaoyao; Qi, Huayu

    2014-06-01

    Mammalian spermatogenesis is regulated by coordinated gene expression in a spatiotemporal manner. The spatiotemporal regulation of major sperm proteins plays important roles during normal development of the male gamete, of which the underlying molecular mechanisms are poorly understood. A-kinase anchoring protein 3 (AKAP3) is one of the major components of the fibrous sheath of the sperm tail that is formed during spermiogenesis. In the present study, we analyzed the expression of sperm-specific Akap3 and the potential regulatory factors of its protein synthesis during mouse spermiogenesis. Results showed that the transcription of Akap3 precedes its protein synthesis by about 2 wk. Nascent AKAP3 was found to form protein complex with PKA and RNA binding proteins (RBPs), including PIWIL1, PABPC1, and NONO, as revealed by coimmunoprecipitation and protein mass spectrometry. RNA electrophoretic gel mobility shift assay showed that these RBPs bind sperm-specific mRNAs, of which proteins are synthesized during the elongating stage of spermiogenesis. Biochemical and cell biological experiments demonstrated that PIWIL1, PABPC1, and NONO interact with each other and colocalize in spermatids' RNA granule, the chromatoid body. In addition, NONO was found in extracytoplasmic granules in round spermatids, whereas PIWIL1 and PABPC1 were diffusely localized in cytoplasm of elongating spermatids, indicating their participation at different steps of mRNA metabolism during spermatogenesis. Interestingly, type I PKA subunits colocalize with PIWIL1 and PABPC1 in the cytoplasm of elongating spermatids and cosediment with the RBPs in polysomal fractions on sucrose gradients. Further biochemical analyses revealed that activation of PKA positively regulates AKAP3 protein synthesis without changing its mRNA level in elongating spermatids. Taken together, these results indicate that PKA signaling directly participates in the regulation of protein translation in postmeiotic male germ cells

  6. An efficient ribosomal frame-shifting signal in the polymerase-encoding region of the coronavirus IBV.

    PubMed Central

    Brierley, I; Boursnell, M E; Binns, M M; Bilimoria, B; Blok, V C; Brown, T D; Inglis, S C

    1987-01-01

    The polymerase-encoding region of the genomic RNA of the coronavirus infectious bronchitis virus (IBV) contains two very large, briefly overlapping open reading frames (ORF), F1 and F2, and it has been suggested on the basis of sequence analysis that expression of the downstream ORF, F2, might be mediated through ribosomal frame-shifting. To examine this possibility a cDNA fragment containing the F1/F2 overlap region was cloned within a marker gene and placed under the control of the bacteriophage SP6 promoter in a recombinant plasmid. Messenger RNA transcribed from this plasmid, when translated in cell-free systems, specified the synthesis of polypeptides whose size was entirely consistent with the products predicted by an efficient ribosomal frame-shifting event within the overlap region. The nature of the products was confirmed by their reactivity with antisera raised against defined portions of the flanking marker gene. This is the first non-retroviral example of ribosomal frame-shifting in higher eukaryotes. Images Fig. 4. Fig. 6. PMID:3428275

  7. RNA and protein synthesis is required for Ancylostoma caninum larval activation.

    PubMed

    Dryanovski, Dilyan I; Dowling, Camille; Gelmedin, Verena; Hawdon, John M

    2011-06-30

    The developmentally arrested infective larva of hookworms encounters a host-specific signal during invasion that initiates the resumption of suspended developmental pathways. The resumption of development during infection is analogous to recovery from the facultative arrested dauer stage in the free-living nematode Caenorhabditis elegans. Infective larvae of the canine hookworm Ancylostoma caninum resume feeding and secrete molecules important for infection when exposed to a host mimicking signal in vitro. This activation process is a model for the initial steps of the infective process. Dauer recovery requires protein synthesis, but not RNA synthesis in C. elegans. To determine the role of RNA and protein synthesis in hookworm infection, inhibitors of RNA and protein synthesis were tested for their effect on feeding and secretion by A. caninum infective larvae. The RNA synthesis inhibitors α-amanitin and actinomycin D inhibit feeding dose-dependently, with IC(50) values of 30 and 8 μM, respectively. The protein synthesis inhibitors puromycin (IC(50)=110 μM), cycloheximide (IC(50)=50 μM), and anisomycin (IC(50)=200 μM) also displayed dose-dependent inhibition of larval feeding. Significant inhibition of feeding by α-amanitin and anisomycin occurred when the inhibitors were added before 12h of the activation process, but not if the inhibitors were added after 12h. None of the RNA or protein synthesis inhibitors prevented secretion of the activation-associated protein ASP-1, despite nearly complete inhibition of feeding. The results indicate that unlike dauer recovery in C. elegans, de novo gene expression is required for hookworm larval activation, and the critical genes are expressed within 12h of exposure to activating stimuli. However, secretion of infection-associated proteins is independent of gene expression, indicating that the proteins are pre-synthesized and stored for rapid release during the initial stages of infection. The genes that are inhibited

  8. Switchable Protecting Strategy for Solid Phase Synthesis of DNA and RNA Interacting Nucleopeptides.

    PubMed

    Mercurio, Maria Emilia; Tomassi, Stefano; Gaglione, Maria; Russo, Rosita; Chambery, Angela; Lama, Stefania; Stiuso, Paola; Cosconati, Sandro; Novellino, Ettore; Di Maro, Salvatore; Messere, Anna

    2016-12-02

    Nucleopeptides are promising nucleic acid mimetics in which the peptide backbone bears nucleobases. They can recognize DNA and RNA targets modulating their biological functions. To date, the lack of an effective strategy for the synthesis of nucleopeptides prevents their evaluation for biological and biomedical applications. Herein, we describe an unprecedented approach that enables the synthesis of cationic both homo and heterosequence nucleopeptides wholly on solid support with high yield and purity. Spectroscopic studies indicate advantageous properties of the nucleopeptides in terms of binding, thermodynamic stability and sequence specific recognition. Biostability assay and laser scanning confocal microscopy analyses reveal that the nucleopeptides feature acceptable serum stability and ability to cross the cell membrane.

  9. Synthesis of folate-functionalized RAFT polymers for targeted siRNA delivery.

    PubMed

    Benoit, Danielle S W; Srinivasan, Selvi; Shubin, Andrew D; Stayton, Patrick S

    2011-07-11

    Receptor-mediated, cell-specific delivery of siRNA enables silencing of target genes in specific tissues, opening the door to powerful therapeutic options for a multitude of diseases. However, the development of delivery systems capable of targeted and effective siRNA delivery typically requires multiple steps and the use of sophisticated, orthogonal chemistries. Previously, we developed diblock copolymers consisting of dimethaminoethyl methacrylate-b-dimethylaminoethyl methacrylate-co-butyl methacrylate-co-propylacrylic acid as potent siRNA delivery systems that protect siRNA from enzymatic degradation and enable its cytosolic delivery through pH-responsive, endosomolytic behavior. (1, 2) These architectures were polymerized using a living radical polymerization method, specifically reversible addition-fragmentation chain transfer (RAFT) polymerization, which employs a chain transfer agent (CTA) to modulate the rate of reaction, resulting in polymers with low polydispersity and telechelic chain ends reflecting the chemistry of the CTA. Here we describe the straightforward, facile synthesis of a folate receptor-targeted diblock copolymer siRNA delivery system because the folate receptor is an attractive target for tumor-selective therapies as a result of its overexpression in a number of cancers. Specifically, we detail the de novo synthesis of a folate-functionalized CTA, use the folate-CTA for controlled polymerizations of diblock copolymers, and demonstrate efficient, specific cellular folate receptor interaction and in vitro gene knockdown using the folate-functionalized polymer.

  10. Bioinformatics and functional analyses of coronavirus nonstructural proteins involved in the formation of replicative organelles.

    PubMed

    Neuman, Benjamin W

    2016-11-01

    Replication of eukaryotic positive-stranded RNA viruses is usually linked to the presence of membrane-associated replicative organelles. The purpose of this review is to discuss the function of proteins responsible for formation of the coronavirus replicative organelle. This will be done by identifying domains that are conserved across the order Nidovirales, and by summarizing what is known about function and structure at the level of protein domains.

  11. Heat shock represses rRNA synthesis by inactivation of TIF-IA and lncRNA-dependent changes in nucleosome positioning

    PubMed Central

    Zhao, Zhongliang; Dammert, Marcel A.; Hoppe, Sven; Bierhoff, Holger; Grummt, Ingrid

    2016-01-01

    Attenuation of ribosome biogenesis in suboptimal growth environments is crucial for cellular homeostasis and genetic integrity. Here, we show that shutdown of rRNA synthesis in response to elevated temperature is brought about by mechanisms that target both the RNA polymerase I (Pol I) transcription machinery and the epigenetic signature of the rDNA promoter. Upon heat shock, the basal transcription factor TIF-IA is inactivated by inhibition of CK2-dependent phosphorylations at Ser170/172. Attenuation of pre-rRNA synthesis in response to heat stress is accompanied by upregulation of PAPAS, a long non-coding RNA (lncRNA) that is transcribed in antisense orientation to pre-rRNA. PAPAS interacts with CHD4, the adenosine triphosphatase subunit of NuRD, leading to deacetylation of histones and movement of the promoter-bound nucleosome into a position that is refractory to transcription initiation. The results exemplify how stress-induced inactivation of TIF-IA and lncRNA-dependent changes of chromatin structure ensure repression of rRNA synthesis in response to thermo-stress. PMID:27257073

  12. Detection of feline coronavirus using microcantilever sensors

    NASA Astrophysics Data System (ADS)

    Velanki, Sreepriya; Ji, Hai-Feng

    2006-11-01

    This work demonstrated the feasibility of detecting severe acute respiratory syndrome associated coronavirus (SARS-CoV) using microcantilever technology by showing that the feline coronavirus (FIP) type I virus can be detected by a microcantilever modified by feline coronavirus (FIP) type I anti-viral antiserum. A microcantilever modified by FIP type I anti-viral antiserum was developed for the detection of FIP type I virus. When the FIP type I virus positive sample is injected into the fluid cell where the microcantilever is held, the microcantilever bends upon the recognition of the FIP type I virus by the antiserum on the surface of the microcantilever. A negative control sample that does not contain FIP type I virus did not cause any bending of the microcantilever. The detection limit of the sensor was 0.1 µg ml-1 when the assay time was <1 h.

  13. Protein, RNA, and DNA synthesis in cultures of skin fibroblasts from healthy subjects and patients with rheumatic diseases

    SciTech Connect

    Abakumova, O.Y.; Kutsenko, N.G.; Panasyuk, A.F.

    1985-07-01

    To study the mechanism of the lasting disturbance of fibroblast function, protein, RNA and DNA synthesis was investigated in skin fibroblasts from patients with rheumatoid arthritis (RA) and systemic scleroderma (SS). The labeled precursors used to analyze synthesis of protein, RNA, and DNA were /sup 14/C-protein hydrolysate, (/sup 14/C)uridine, and (/sup 14/C) thymidine. Stimulation was determined by measuring incorporation of (/sup 14/C)proline into fibroblast proteins. During analysis of stability of fast-labeled RNA tests were carried out to discover whether all measurable radioactivity belonged to RNA molecules.

  14. Feline and canine coronaviruses: common genetic and pathobiological features.

    PubMed

    Le Poder, Sophie

    2011-01-01

    A new human coronavirus responsible for severe acute respiratory syndrome (SARS) was identified in 2003, which raised concern about coronaviruses as agents of serious infectious disease. Nevertheless, coronaviruses have been known for about 50 years to be major agents of respiratory, enteric, or systemic infections of domestic and companion animals. Feline and canine coronaviruses are widespread among dog and cat populations, sometimes leading to the fatal diseases known as feline infectious peritonitis (FIP) and pantropic canine coronavirus infection in cats and dogs, respectively. In this paper, different aspects of the genetics, host cell tropism, and pathogenesis of the feline and canine coronaviruses (FCoV and CCoV) will be discussed, with a view to illustrating how study of FCoVs and CCoVs can improve our general understanding of the pathobiology of coronaviruses.

  15. RNA synthesis in whole cells and protoplasts of centaurea: a comparison.

    PubMed

    Kulikowski, R R; Mascarenhas, J P

    1978-04-01

    Protoplasts enzymically isolated from suspension cultures of Centaurea cyanus L. incorporate radioactive precursors into RNA with kinetics similar to that of whole cells. There are differences, however, in several other aspects of RNA metabolism. The proportion of total RNA that contains poly(A) sequences (25 to 30%) is similar in both freshly isolated protoplasts and whole cells after a 20-minute pulse with [(3)H]adenosine. After a 4-hour pulse, however, poly(A)-containing RNA makes up 30% of the total RNA in protoplasts whereas it drops to 8% in whole cells. There appears to be a faulty processing of ribosomal precursor into the mature ribosomal species, as the precursor seems to accumulate to higher levels relative to the mature 18S and 25S rRNAs in protoplasts as compared to whole cells. Additional differences are seen in the size distributions of poly(A)-containing RNA, although the length of the poly(A) segment is similar in both protoplasts and whole cells. Within 24 hours protoplasts appear to have resumed a pattern of RNA synthesis similar to that of whole cells.

  16. Coronavirus avian infectious bronchitis virus.

    PubMed

    Cavanagh, Dave

    2007-01-01

    Infectious bronchitis virus (IBV), the coronavirus of the chicken (Gallus gallus), is one of the foremost causes of economic loss within the poultry industry, affecting the performance of both meat-type and egg-laying birds. The virus replicates not only in the epithelium of upper and lower respiratory tract tissues, but also in many tissues along the alimentary tract and elsewhere e.g. kidney, oviduct and testes. It can be detected in both respiratory and faecal material. There is increasing evidence that IBV can infect species of bird other than the chicken. Interestingly breeds of chicken vary with respect to the severity of infection with IBV, which may be related to the immune response. Probably the major reason for the high profile of IBV is the existence of a very large number of serotypes. Both live and inactivated IB vaccines are used extensively, the latter requiring priming by the former. Their effectiveness is diminished by poor cross-protection. The nature of the protective immune response to IBV is poorly understood. What is known is that the surface spike protein, indeed the amino-terminal S1 half, is sufficient to induce good protective immunity. There is increasing evidence that only a few amino acid differences amongst S proteins are sufficient to have a detrimental impact on cross-protection. Experimental vector IB vaccines and genetically manipulated IBVs--with heterologous spike protein genes--have produced promising results, including in the context of in ovo vaccination.

  17. DNA polymerase-α regulates type I interferon activation through cytosolic RNA:DNA synthesis

    PubMed Central

    Starokadomskyy, Petro; Gemelli, Terry; Rios, Jonathan J.; Xing, Chao; Wang, Richard C.; Li, Haiying; Pokatayev, Vladislav; Dozmorov, Igor; Khan, Shaheen; Miyata, Naoteru; Fraile, Guadalupe; Raj, Prithvi; Xu, Zhe; Xu, Zigang; Ma, Lin; Lin, Zhimiao; Wang, Huijun; Yang, Yong; Ben-Amitai, Dan; Orenstein, Naama; Mussaffi, Huda; Baselga, Eulalia; Tadini, Gianluca; Grunebaum, Eyal; Sarajlija, Adrijan; Krzewski, Konrad; Wakeland, Edward K.; Yan, Nan; de la Morena, Maria Teresa; Zinn, Andrew R.; Burstein, Ezra

    2016-01-01

    Aberrant nucleic acids generated during viral replication are the main trigger for antiviral immunity, and mutations disrupting nucleic acid metabolism can lead to autoinflammatory disorders. Here we investigated the etiology of X-linked reticulate pigmentary disorder (XLPDR), a primary immunodeficiency with autoinflammatory features. We discovered that XLPDR is caused by an intronic mutation that disrupts expression of POLA1, the gene encoding the catalytic subunit of DNA polymerase-α. Unexpectedly, POLA1 deficiency results in increased type I interferon production. This enzyme is necessary for RNA:DNA primer synthesis during DNA replication and strikingly, POLA1 is also required for the synthesis of cytosolic RNA:DNA, which directly modulates interferon activation. Altogether, this work identified POLA1 as a critical regulator of the type I interferon response. PMID:27019227

  18. Inhibition of human coronavirus NL63 infection at early stages of the replication cycle.

    PubMed

    Pyrc, Krzysztof; Bosch, Berend Jan; Berkhout, Ben; Jebbink, Maarten F; Dijkman, Ronald; Rottier, Peter; van der Hoek, Lia

    2006-06-01

    Human coronavirus NL63 (HCoV-NL63), a recently discovered member of the Coronaviridae family, has spread worldwide and is associated with acute respiratory illness in young children and elderly and immunocompromised persons. Further analysis of HCoV-NL63 pathogenicity seems warranted, in particular because the virus uses the same cellular receptor as severe acute respiratory syndrome-associated coronavirus. As there is currently no HCoV-NL63-specific and effective vaccine or drug therapy available, we evaluated several existing antiviral drugs and new synthetic compounds as inhibitors of HCoV-NL63, targeting multiple stages of the replication cycle. Of the 28 compounds that we tested, 6 potently inhibited HCoV-NL63 at early steps of the replication cycle. Intravenous immunoglobulins, heptad repeat 2 peptide, small interfering RNA1 (siRNA1), siRNA2, beta-D-N(4)-hydroxycytidine, and 6-azauridine showed 50% inhibitory concentrations of 125 microg/ml, 2 microM, 5 nM, 3 nM, 400 nM, and 32 nM, respectively, and low 50% cytotoxicity concentrations (>10 mg/ml, >40 microM, >200 nM, >200 nM, >100 microM, and 80 microM, respectively). These agents may be investigated further for the treatment of coronavirus infections.

  19. Osteoblast fibronectin mRNA, protein synthesis, and matrix are unchanged after exposure to microgravity

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.; Gilbertson, V.

    1999-01-01

    The well-defined osteoblast line, MC3T3-E1 was used to examine fibronectin (FN) mRNA levels, protein synthesis, and extracellular FN matrix accumulation after growth activation in spaceflight. These osteoblasts produce FN extracellular matrix (ECM) known to regulate adhesion, differentiation, and function in adherent cells. Changes in bone ECM and osteoblast cell shape occur in spaceflight. To determine whether altered FN matrix is a factor in causing these changes in spaceflight, quiescent osteoblasts were launched into microgravity and were then sera activated with and without a 1-gravity field. Synthesis of FN mRNA, protein, and matrix were measured after activation in microgravity. FN mRNA synthesis is significantly reduced in microgravity (0-G) when compared to ground (GR) osteoblasts flown in a centrifuge simulating earth's gravity (1-G) field 2.5 h after activation. However, 27.5 h after activation there were no significant differences in mRNA synthesis. A small but significant reduction of FN protein was found in the 0-G samples 2.5 h after activation. Total FN protein 27.5 h after activation showed no significant difference between any of the gravity conditions, however, there was a fourfold increase in absolute amount of protein synthesized during the incubation. Using immunofluorescence, we found no significant differences in the amount or in the orientation of the FN matrix after 27.5 h in microgravity. These results demonstrate that FN is made by sera-activated osteoblasts even during exposure to microgravity. These data also suggest that after a total period of 43 h of spaceflight FN transcription, translation, or altered matrix assembly is not responsible for the altered cell shape or altered matrix formation of osteoblasts.

  20. Comparison of lentiviruses pseudotyped with S proteins from coronaviruses and cell tropisms of porcine coronaviruses.

    PubMed

    Wang, Jingjing; Deng, Feng; Ye, Gang; Dong, Wanyu; Zheng, Anjun; He, Qigai; Peng, Guiqing

    2016-02-01

    The surface glycoproteins of coronaviruses play an important role in receptor binding and cell entry. Different coronaviruses interact with their specific receptors to enter host cells. Lentiviruses pseudotyped with their spike proteins (S) were compared to analyze the entry efficiency of various coronaviruses. Our results indicated that S proteins from different coronaviruses displayed varied abilities to mediate pseudotyped virus infection. Furthermore, the cell tropisms of porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV) have been characterized by live and pseudotyped viruses. Both live and pseudoviruses could infected Vero- CCL-81 (monkey kidney), Huh-7 (human liver), and PK-15 (pig kidney) cells efficiently. CCL94 (cat kidney) cells could be infected efficiently by TGEV but not PEDV. Overall, our study provides new insights into the mechanisms of viral entry and forms a basis for antiviral drug screening.

  1. Enteral glutamine stimulates protein synthesis and decreases ubiquitin mRNA level in human gut mucosa.

    PubMed

    Coëffier, Moïse; Claeyssens, Sophie; Hecketsweiler, Bernadette; Lavoinne, Alain; Ducrotté, Philippe; Déchelotte, Pierre

    2003-08-01

    Effects of glutamine on whole body and intestinal protein synthesis and on intestinal proteolysis were assessed in humans. Two groups of healthy volunteers received in a random order enteral glutamine (0.8 mmol.kg body wt(-1)x h(-1)) compared either to saline or isonitrogenous amino acids. Intravenous [2H5]phenylalanine and [13C]leucine were simultaneously infused. After gas chromatography-mass spectrometry analysis, whole body protein turnover was estimated from traced plasma amino acid fluxes and the fractional synthesis rate (FSR) of gut mucosal protein was calculated from protein and intracellular phenylalanine and leucine enrichments in duodenal biopsies. mRNA levels for ubiquitin, cathepsin D, and m-calpain were analyzed in biopsies by RT-PCR. Glutamine significantly increased mucosal protein FSR compared with saline. Glutamine and amino acids had similar effects on FSR. The mRNA level for ubiquitin was significantly decreased after glutamine infusion compared with saline and amino acids, whereas cathepsin D and m-calpain mRNA levels were not affected. Enteral glutamine stimulates mucosal protein synthesis and may attenuate ubiquitin-dependent proteolysis and thus improve protein balance in human gut.

  2. Cytochalasin releases mRNA from the cytoskeletal framework and inhibits protein synthesis.

    PubMed Central

    Ornelles, D A; Fey, E G; Penman, S

    1986-01-01

    Cytochalasin D was shown to be a reversible inhibitor of protein synthesis in HeLa cells. The inhibition was detectable at drug levels typically used to perturb cell structure and increased in a dose-dependent manner. The drug also released mRNA from the cytoskeletal framework in direct proportion to the inhibition of protein synthesis. The released mRNA was unaltered in its translatability as measured in vitro but was no longer translated in the cytochalasin-treated HeLa cells. The residual protein synthesis occurred on polyribosomes that were reduced in amount but displayed a normal sedimentation distribution. The results support the hypothesis that mRNA binding to the cytoskeletal framework is necessary although not sufficient for translation. Analysis of the cytoskeletal framework, which binds the polyribosomes, revealed no alterations in composition or amount of protein as a result of treatment with cytochalasin D. Electron microscopy with embedment-free sections shows the framework in great detail. The micrographs revealed the profound reorganization effected by the drug but did not indicate substantial disaggregation of the cytoskeletal elements. Images PMID:3785175

  3. Analyses of Coronavirus Assembly Interactions with Interspecies Membrane and Nucleocapsid Protein Chimeras

    PubMed Central

    Kuo, Lili; Hurst-Hess, Kelley R.; Koetzner, Cheri A.

    2016-01-01

    ABSTRACT The coronavirus membrane (M) protein is the central actor in virion morphogenesis. M organizes the components of the viral membrane, and interactions of M with itself and with the nucleocapsid (N) protein drive virus assembly and budding. In order to further define M-M and M-N interactions, we constructed mutants of the model coronavirus mouse hepatitis virus (MHV) in which all or part of the M protein was replaced by its phylogenetically divergent counterpart from severe acute respiratory syndrome coronavirus (SARS-CoV). We were able to obtain viable chimeras containing the entire SARS-CoV M protein as well as mutants with intramolecular substitutions that partitioned M protein at the boundaries between the ectodomain, transmembrane domains, or endodomain. Our results show that the carboxy-terminal domain of N protein, N3, is necessary and sufficient for interaction with M protein. However, despite some previous genetic and biochemical evidence that mapped interactions with N to the carboxy terminus of M, it was not possible to define a short linear region of M protein sufficient for assembly with N. Thus, interactions with N protein likely involve multiple linearly discontiguous regions of the M endodomain. The SARS-CoV M chimera exhibited a conditional growth defect that was partially suppressed by mutations in the envelope (E) protein. Moreover, virions of the M chimera were markedly deficient in spike (S) protein incorporation. These findings suggest that the interactions of M protein with both E and S protein are more complex than previously thought. IMPORTANCE The assembly of coronavirus virions entails concerted interactions among the viral structural proteins and the RNA genome. One strategy to study this process is through construction of interspecies chimeras that preserve or disrupt particular inter- or intramolecular associations. In this work, we replaced the membrane (M) protein of the model coronavirus mouse hepatitis virus with its

  4. Poliovirus 5′-Terminal Cloverleaf RNA Is Required in cis for VPg Uridylylation and the Initiation of Negative-Strand RNA Synthesis

    PubMed Central

    Lyons, Traci; Murray, Kenneth E.; Roberts, Allan W.; Barton, David J.

    2001-01-01

    Chimeric poliovirus RNAs, possessing the 5′ nontranslated region (NTR) of hepatitis C virus in place of the 5′ NTR of poliovirus, were used to examine the role of the poliovirus 5′ NTR in viral replication. The chimeric viral RNAs were incubated in cell-free reaction mixtures capable of supporting the sequential translation and replication of poliovirus RNA. Using preinitiation RNA replication complexes formed in these reactions, we demonstrated that the 3′ NTR of poliovirus RNA was insufficient, by itself, to recruit the viral replication proteins required for negative-strand RNA synthesis. The 5′-terminal cloverleaf of poliovirus RNA was required in cis to form functional preinitiation RNA replication complexes capable of uridylylating VPg and initiating the synthesis of negative-strand RNA. These results are consistent with a model in which the 5′-terminal cloverleaf and 3′ NTRs of poliovirus RNA interact via temporally dynamic ribonucleoprotein complexes to coordinately mediate and regulate the sequential translation and replication of poliovirus RNA. PMID:11602711

  5. The Ebola Virus VP30-NP Interaction Is a Regulator of Viral RNA Synthesis

    PubMed Central

    Kirchdoerfer, Robert N.; Moyer, Crystal L.; Abelson, Dafna M.; Saphire, Erica Ollmann

    2016-01-01

    Filoviruses are capable of causing deadly hemorrhagic fevers. All nonsegmented negative-sense RNA-virus nucleocapsids are composed of a nucleoprotein (NP), a phosphoprotein (VP35) and a polymerase (L). However, the VP30 RNA-synthesis co-factor is unique to the filoviruses. The assembly, structure, and function of the filovirus RNA replication complex remain unclear. Here, we have characterized the interactions of Ebola, Sudan and Marburg virus VP30 with NP using in vitro biochemistry, structural biology and cell-based mini-replicon assays. We have found that the VP30 C-terminal domain interacts with a short peptide in the C-terminal region of NP. Further, we have solved crystal structures of the VP30-NP complex for both Ebola and Marburg viruses. These structures reveal that a conserved, proline-rich NP peptide binds a shallow hydrophobic cleft on the VP30 C-terminal domain. Structure-guided Ebola virus VP30 mutants have altered affinities for the NP peptide. Correlation of these VP30-NP affinities with the activity for each of these mutants in a cell-based mini-replicon assay suggests that the VP30-NP interaction plays both essential and inhibitory roles in Ebola virus RNA synthesis. PMID:27755595

  6. Analysis of global RNA synthesis at the single cell level following hypoxia.

    PubMed

    Biddlestone, John; Druker, Jimena; Shmakova, Alena; Ferguson, Gus; Swedlow, Jason R; Rocha, Sonia

    2014-05-13

    Hypoxia or lowering of the oxygen availability is involved in many physiological and pathological processes. At the molecular level, cells initiate a particular transcriptional program in order to mount an appropriate and coordinated cellular response. The cell possesses several oxygen sensor enzymes that require molecular oxygen as cofactor for their activity. These range from prolyl-hydroxylases to histone demethylases. The majority of studies analyzing cellular responses to hypoxia are based on cellular populations and average studies, and as such single cell analysis of hypoxic cells are seldom performed. Here we describe a method of analysis of global RNA synthesis at the single cell level in hypoxia by using Click-iT RNA imaging kits in an oxygen controlled workstation, followed by microscopy analysis and quantification.  Using cancer cells exposed to hypoxia for different lengths of time, RNA is labeled and measured in each cell. This analysis allows the visualization of temporal and cell-to-cell changes in global RNA synthesis following hypoxic stress.

  7. Synthesis and tau RNA binding evaluation of ametantrone-containing ligands.

    PubMed

    Artigas, Gerard; Marchán, Vicente

    2015-02-20

    We describe the synthesis and characterization of ametantrone-containing RNA ligands based on the derivatization of this intercalator with two neamine moieties (Amt-Nea,Nea) or with one azaquinolone heterocycle and one neamine (Amt-Nea,Azq) as well as its combination with guanidinoneamine (Amt-NeaG4). Biophysical studies revealed that guanidinylation of the parent ligand (Amt-Nea) had a positive effect on the binding of the resulting compound for Tau pre-mRNA target as well as on the stabilization upon complexation of some of the mutated RNA sequences associated with the development of tauopathies. Further studies by NMR revealed the existence of a preferred binding site in the stem-loop structure, in which ametantrone intercalates in the characteristic bulged region. Regarding doubly-functionalized ligands, binding affinity and stabilizing ability of Amt-Nea,Nea were similar to those of the guanidinylated ligand, but the two aminoglycoside fragments seem to interfere with its accommodation in a single binding site. However, Amt-Nea,Azq binds at the bulged region in a similar way than Amt-NeaG4. Overall, these results provide new insights on fine-tuning RNA binding properties of ametantrone by single or double derivatization with other RNA recognition motifs, which could help in the future design of new ligands with improved selectivity for disease-causing RNA molecules.

  8. The prebiotic synthesis of modified purines and their potential role in the RNA world

    NASA Technical Reports Server (NTRS)

    Levy, M.; Miller, S. L.; Bada, J. L. (Principal Investigator)

    1999-01-01

    Modified purines are found in all organisms in the tRNA, rRNA, and even DNA, raising the possibility of an early role for these compounds in the evolution of life. These include N6-methyladenine, 1-methyladenine, N6,N6-dimethyladenine, 1-methylhypoxanthine, 1-methylguanine, and N2-methylguanine. We find that these bases as well as a number of nonbiological modified purines can be synthesized from adenine and guanine by the simple reaction of an amine or an amino group with adenine and guanine under the concentrated conditions of the drying-lagoon or drying-beach model of prebiotic synthesis with yields as high as 50%. These compounds are therefore as prebiotic as adenine and guanine and could have played an important role in the RNA world by providing additional functional groups in ribozymes, especially for the construction of hydrophobic binding pockets.

  9. Mechanism of Concerted RNA-DNA Primer Synthesis by the Human Primosome.

    PubMed

    Baranovskiy, Andrey G; Babayeva, Nigar D; Zhang, Yinbo; Gu, Jianyou; Suwa, Yoshiaki; Pavlov, Youri I; Tahirov, Tahir H

    2016-05-06

    The human primosome, a 340-kilodalton complex of primase and DNA polymerase α (Polα), synthesizes chimeric RNA-DNA primers to be extended by replicative DNA polymerases δ and ϵ. The intricate mechanism of concerted primer synthesis by two catalytic centers was an enigma for over three decades. Here we report the crystal structures of two key complexes, the human primosome and the C-terminal domain of the primase large subunit (p58C) with bound DNA/RNA duplex. These structures, along with analysis of primase/polymerase activities, provide a plausible mechanism for all transactions of the primosome including initiation, elongation, accurate counting of RNA primer length, primer transfer to Polα, and concerted autoregulation of alternate activation/inhibition of the catalytic centers. Our findings reveal a central role of p58C in the coordinated actions of two catalytic domains in the primosome and ultimately could impact the design of anticancer drugs.

  10. Differential Effects of Actinomycin D and Cordycepin in Lettuce Seed Germination and RNA Synthesis 1

    PubMed Central

    Tao, Kar-Ling; Khan, Anwar A.

    1976-01-01

    Intact lettuce seed germination was inhibited by cordycepin but not by actinomycin D; however, when seeds were clipped at the cotyledonary end, actinomycin D partially inhibited germination. Uptake studies with intact seeds using 3H-actinomycin D showed that it was unable to reach the embryo prior to radical protrusion. 3H-Cordycepin uptake studies using intact seeds showed that cordycepin was able to reach the embryo during the first 3 hours of incubation and at subsequent times. The pericarp and endosperm offered resistance to penetration of cordycepin into the embryo. In contrast to actinomycin D, cordycepin markedly inhibited 3H-uridine incorporation into RNA of intact seeds during the first 10 and 12 hours of incubation. About 60% of 3H-adenosine incorporation into poly A-RNA was inhibited by cordycepin during 12 hours of incubation, whereas actinomycin D had little effect. RNA synthesis appears to be essential for seed germination. PMID:16659763

  11. Regiospecific solid-phase synthesis of branched oligoribonucleotides that mimic intronic lariat RNA intermediates.

    PubMed

    Katolik, Adam; Johnsson, Richard; Montemayor, Eric; Lackey, Jeremy G; Hart, P John; Damha, Masad J

    2014-02-07

    We have developed new solid phase methods for the synthesis of branched RNAs that mimic intronic lariat RNA intermediates. These methods produce branched oligoribonucleotide sequences of arbitrary length, base composition, and regiochemistry at the branchpoint junction. The methods utilize branching monomers that allow for the growth of each branch regioselectively from any of the hydroxyl positions (5′, 3′, or 2′) at the branch-point junction. The integrity and branchpoint connectivity of the synthetic products have been confirmed by HPLC and MS analysis, and cleavage of the 2′,5′ linkage by recombinant debranching enzyme. Nonhydrolyzable branched RNA analogues containing arabinose instead of ribose at the branchpoint junction were shown to inhibit debranching activity and, hence, represent “decoys” for sequestering RNA binding proteins thought to drive amyotrophic lateral sclerosis (ALS).

  12. In vitro synthesis of thymosin beta 4 encoded by rat spleen mRNA.

    PubMed Central

    Filipowicz, A W; Horecker, B L

    1983-01-01

    Thymosin beta 4, containing 43 amino acids and acetylated at the NH2 terminus, is synthesized in vitro in a rabbit reticulocyte lysate or in a yeast protein-synthesis system in the presence of mRNA from rat spleen. The product formed was identified as beta 4 by immunoprecipitation by a specific anti-beta 4 antiserum, comigration with authentic beta 4 in NaDodSO4/polyacrylamide gel electrophoresis and in HPLC, and identity of peptide fragments. The immunoprecipitable product generated in the wheat germ protein-synthesizing system emerged slightly ahead of beta 4 in HPLC and appeared to lack the NH2-terminal acetyl group. There was no evidence for formation of a larger polypeptide precursor of beta 4 in any of the three systems used. In sucrose density gradient centrifugation, the mRNA coding for beta 4 was recovered in the 7-8S mRNA fraction. Images PMID:6572941

  13. Coronaviruses in bats from Mexico.

    PubMed

    Anthony, S J; Ojeda-Flores, R; Rico-Chávez, O; Navarrete-Macias, I; Zambrana-Torrelio, C M; Rostal, M K; Epstein, J H; Tipps, T; Liang, E; Sanchez-Leon, M; Sotomayor-Bonilla, J; Aguirre, A A; Ávila-Flores, R; Medellín, R A; Goldstein, T; Suzán, G; Daszak, P; Lipkin, W I

    2013-05-01

    Bats are reservoirs for a wide range of human pathogens including Nipah, Hendra, rabies, Ebola, Marburg and severe acute respiratory syndrome coronavirus (CoV). The recent implication of a novel beta (β)-CoV as the cause of fatal respiratory disease in the Middle East emphasizes the importance of surveillance for CoVs that have potential to move from bats into the human population. In a screen of 606 bats from 42 different species in Campeche, Chiapas and Mexico City we identified 13 distinct CoVs. Nine were alpha (α)-CoVs; four were β-CoVs. Twelve were novel. Analyses of these viruses in the context of their hosts and ecological habitat indicated that host species is a strong selective driver in CoV evolution, even in allopatric populations separated by significant geographical distance; and that a single species/genus of bat can contain multiple CoVs. A β-CoV with 96.5 % amino acid identity to the β-CoV associated with human disease in the Middle East was found in a Nyctinomops laticaudatus bat, suggesting that efforts to identify the viral reservoir should include surveillance of the bat families Molossidae/Vespertilionidae, or the closely related Nycteridae/Emballonuridae. While it is important to investigate unknown viral diversity in bats, it is also important to remember that the majority of viruses they carry will not pose any clinical risk, and bats should not be stigmatized ubiquitously as significant threats to public health.

  14. Gene activity during germination of spores of the fern, Onoclea sensibilis: RNA and protein synthesis and the role of stored mRNA

    NASA Technical Reports Server (NTRS)

    Raghavan, V.

    1991-01-01

    Pattern of 3H-uridine incorporation into RNA of spores of Onoclea sensibilis imbibed in complete darkness (non-germinating conditions) and induced to germinate in red light was followed by oligo-dT cellulose chromatography, gel electrophoresis coupled with fluorography and autoradiography. In dark-imbibed spores, RNA synthesis was initiated about 24 h after sowing, with most of the label accumulating in the high mol. wt. poly(A) -RNA fraction. There was no incorporation of the label into poly(A) +RNA until 48 h after sowing. In contrast, photo-induced spores began to synthesize all fractions of RNA within 12 h after sowing and by 24 h, incorporation of 3H-uridine into RNA of irradiated spores was nearly 70-fold higher than that into dark-imbibed spores. Protein synthesis, as monitored by 3H-arginine incorporation into the acid-insoluble fraction and by autoradiography, was initiated in spores within 1-2 h after sowing under both conditions. Autoradiographic experiments also showed that onset of protein synthesis in the cytoplasm of the germinating spore is independent of the transport of newly synthesized nuclear RNA. One-dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis of 35S-methionine-labelled proteins revealed a good correspondence between proteins synthesized in a cell-free translation system directed by poly(A) +RNA of dormant spores and those synthesized in vivo by dark-imbibed and photo-induced spores. These results indicate that stored mRNAs of O. sensibilis spores are functionally competent and provide templates for the synthesis of proteins during dark-imbibition and germination.

  15. Full genome analysis of a novel type II feline coronavirus NTU156.

    PubMed

    Lin, Chao-Nan; Chang, Ruey-Yi; Su, Bi-Ling; Chueh, Ling-Ling

    2013-04-01

    Infections by type II feline coronaviruses (FCoVs) have been shown to be significantly correlated with fatal feline infectious peritonitis (FIP). Despite nearly six decades having passed since its first emergence, different studies have shown that type II FCoV represents only a small portion of the total FCoV seropositivity in cats; hence, there is very limited knowledge of the evolution of type II FCoV. To elucidate the correlation between viral emergence and FIP, a local isolate (NTU156) that was derived from a FIP cat was analyzed along with other worldwide strains. Containing an in-frame deletion of 442 nucleotides in open reading frame 3c, the complete genome size of NTU156 (28,897 nucleotides) appears to be the smallest among the known type II feline coronaviruses. Bootscan analysis revealed that NTU156 evolved from two crossover events between type I FCoV and canine coronavirus, with recombination sites located in the RNA-dependent RNA polymerase and M genes. With an exchange of nearly one-third of the genome with other members of alphacoronaviruses, the new emerging virus could gain new antigenicity, posing a threat to cats that either have been infected with a type I virus before or never have been infected with FCoV.

  16. Reverse transcription recombinase polymerase amplification assay for the detection of middle East respiratory syndrome coronavirus.

    PubMed

    Abd El Wahed, Ahmed; Patel, Pranav; Heidenreich, Doris; Hufert, Frank T; Weidmann, Manfred

    2013-12-12

    The emergence of Middle East Respiratory Syndrome Coronavirus (MERS-CoV) in the eastern Mediterranean and imported cases to Europe has alerted public health authorities. Currently, detection of MERS-CoV in patient samples is done by real-time RT-PCR. Samples collected from suspected cases are sent to highly-equipped centralized laboratories for screening. A rapid point-of-care test is needed to allow more widespread mobile detection of the virus directly from patient material. In this study, we describe the development of a reverse transcription isothermal Recombinase Polymerase Amplification (RT-RPA) assay for the identification of MERS-CoV. A partial nucleocapsid gene RNA molecular standard of MERS-coronavirus was used to determine the assay sensitivity. The isothermal (42°C) MERS-CoV RT-RPA was as sensitive as real-time RT-PCR (10 RNA molecules), rapid (3-7 minutes) and mobile (using tubescanner weighing 1kg). The MERS-CoV RT-RPA showed cross-detection neither of any of the RNAs of several coronaviruses and respiratory viruses affecting humans nor of the human genome. The developed isothermal real-time RT-RPA is ideal for rapid mobile molecular MERS-CoV monitoring in acute patients and may also facilitate the search for the animal reservoir of MERS-CoV.

  17. [Visual Detection of Human Coronavirus NL63 by Reverse Transcription Loop-Mediated Isothermal Amplification].

    PubMed

    Geng, Heyuan; Wang, Shengqiang; Xie, Xiaoqian; Xiao, Yu; Zhang, Ting; Tan, Wenjie; Su, Chuan

    2016-01-01

    A simple and sensitive assay for rapid detection of human coronavirus NL63 (HCoV-NL63) was developed by colorimetic reverse transcription loop-mediated isothermal amplification (RT-LAMP). The method employed six specially designed primers that recognized eight distinct regions of the HCoV-NL63 nucleocapsid protein gene for amplification of target sequences under isothermal conditions at 63 degrees C for 1 h Amplification of RT-LAMP was monitored by addition of calcein before amplification. A positive reaction was confirmed by change from light-brown to yellow-green under visual detection. Specificity of the RT-LAMP assay was validated by cross-reaction with different human coronaviruses, norovirus, influenza A virus, and influenza B virus. Sensitivity was evaluated by serial dilution of HCoV-NL63 RNA from 1.6 x 10(9) to 1.6 x 10(1) per reaction. The RT-LAMP assay could achieve 1,600 RNA copies per reaction with high specificity. Hence, our colorimetric RT-LAMP assay could be used for rapid detection of human coronavirus NL63.

  18. IFITM Proteins Inhibit Entry Driven by the MERS-Coronavirus Spike Protein: Evidence for Cholesterol-Independent Mechanisms

    PubMed Central

    Wrensch, Florian; Winkler, Michael; Pöhlmann, Stefan

    2014-01-01

    The interferon-inducible transmembrane (IFITM) proteins 1, 2 and 3 inhibit the host cell entry of several enveloped viruses, potentially by promoting the accumulation of cholesterol in endosomal compartments. IFITM3 is essential for control of influenza virus infection in mice and humans. In contrast, the role of IFITM proteins in coronavirus infection is less well defined. Employing a retroviral vector system for analysis of coronavirus entry, we investigated the susceptibility of human-adapted and emerging coronaviruses to inhibition by IFITM proteins. We found that entry of the recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV) is sensitive to inhibition by IFITM proteins. In 293T cells, IFITM-mediated inhibition of cellular entry of the emerging MERS- and SARS-CoV was less efficient than blockade of entry of the globally circulating human coronaviruses 229E and NL63. Similar differences were not observed in A549 cells, suggesting that cellular context and/or IFITM expression levels can impact inhibition efficiency. The differential IFITM-sensitivity of coronaviruses observed in 293T cells afforded the opportunity to investigate whether efficiency of entry inhibition by IFITMs and endosomal cholesterol accumulation correlate. No such correlation was observed. Furthermore, entry mediated by the influenza virus hemagglutinin was robustly inhibited by IFITM3 but was insensitive to accumulation of endosomal cholesterol, indicating that modulation of cholesterol synthesis/transport did not account for the antiviral activity of IFITM3. Collectively, these results show that the emerging MERS-CoV is a target of the antiviral activity of IFITM proteins and demonstrate that mechanisms other than accumulation of endosomal cholesterol can contribute to viral entry inhibition by IFITMs. PMID:25256397

  19. Existence of two forms of rat liver arginyl-tRNA synthetase suggests channeling of aminoacyl-tRNA for protein synthesis.

    PubMed Central

    Sivaram, P; Deutscher, M P

    1990-01-01

    Arginyl-tRNA synthetase (arginine-tRNA ligase, EC 6.1.1.19) is found in extracts of mammalian cells both as a free protein (Mr = 60,000) and as a component (Mr approximately 72,000) of the high molecular weight aminoacyl-tRNA synthetase complex (Mr greater than 10(6). Several pieces of evidence indicate that the low molecular weight free form is not a proteolytic degradation product of the complex-bound enzyme but that it preexists in vivo: (i) the endogenous free form differs in size from the active proteolytic fragment generated in vitro, (ii) conditions expected to increase or decrease the amount of proteolysis do not alter the ratio of the two forms of the enzyme, and (iii) the free form contains an NH2-terminal methionine residue. A model is presented that provides a rationale for the existence of two forms of arginyl-tRNA synthetase in cells. In this model the complexed enzyme supplies arginyl-tRNA for protein synthesis, whereas the free enzyme provides arginyl-tRNA for the NH2-terminal arginine modification of proteins by arginyl-tRNA:protein arginyltransferase. This latter process targets certain proteins for removal by the ubiquitin-dependent protein degradation pathway. The necessity for an additional pool of arginyl-tRNA for the modification reaction leads to the conclusion that the arginyl-tRNA destined for protein synthesis (and/or protein modification) is channeled and unavailable for other processes. Other evidence supporting channeling in protein synthesis is discussed. Images PMID:2187187

  20. RNA synthesis in the ultrastructural and biochemical components of the nucleolus of Chinese hamster ovary cells

    PubMed Central

    1975-01-01

    A correlated autoradiographic and biochemical study of RNA synthesis in the nucleoli of chinese hamster ovary cells has been made. Quantitative analysis of the labeling indicates that the fibrillar ribonucleoprotein (RNP) component is labeled faster than 80S RNP and 45S RNA molecules, but approaches simultaneously a steady-state 3H to 14C ratio or grains/mum2 after 30 min of [3H]uridine incorporation. On the other hand, the 55S RNP, the 36S + 32S RNA, and the granular RNP components have the same kinetic of labeling with [3H]uridine. These results suggest that the fibrillar and granular RNP components of the nucleolus are the ultrastructural substratum of, respectively, the 80S RNP (45S RNA) and 55S RNP (36S + 32S RNA). The possibility that precursors to 80S RNP exist also in the fibrillar region of the nucleolus is strongly suggested by the rapid labeling of the fibrils on the autoradiographs. PMID:1171872

  1. Total chemical synthesis of a 77-nucleotide-long RNA sequence having methionine-acceptance activity.

    PubMed Central

    Ogilvie, K K; Usman, N; Nicoghosian, K; Cedergren, R J

    1988-01-01

    Chemical synthesis is described of a 77-nucleotide-long RNA molecule that has the sequence of an Escherichia coli Ado-47-containing tRNA(fMet) species in which the modified nucleosides have been substituted by their unmodified parent nucleosides. The sequence was assembled on a solid-phase, controlled-pore glass support in a stepwise manner with an automated DNA synthesizer. The ribonucleotide building blocks used were fully protected 5'-monomethoxytrityl-2'-silyl-3'-N,N-diisopropylaminophosphoram idites. p-Nitro-phenylethyl groups were used to protect the O6 of guanine residues. The fully deprotected tRNA analogue was characterized by polyacrylamide gel electrophoresis (sizing), terminal nucleotide analysis, sequencing, and total enzyme degradation, all of which indicated that the sequence was correct and contained only 3-5 linkages. The 77-mer was then assayed for amino acid acceptor activity by using E. coli methionyl-tRNA synthetase. The results indicated that the synthetic product, lacking modified bases, is a substrate for the enzyme and has an amino acid acceptance 11% of that of the major native species, tRNA(fMet) containing 7-methylguanosine at position 47. Images PMID:3413059

  2. Transfer RNA-mediated regulation of ribosome dynamics during protein synthesis

    PubMed Central

    Fei, Jingyi; Richard, Arianne C.; Bronson, Jonathan E.; Gonzalez, & Ruben L.

    2011-01-01

    Translocation of transfer RNAs (tRNAs) through the ribosome during protein synthesis involves large-scale structural rearrangements of the ribosome and the ribosome-bound tRNAs that are accompanied by extensive and dynamic remodeling of tRNA-ribosome interactions. The contributions that rearranging individual tRNA-ribosome interactions make to directing tRNA movements during translocation, however, remain largely unknown. To address this question, we have used single-molecule fluorescence resonance energy transfer to characterize the dynamics of ribosomal pre-translocation (PRE) complex analogs carrying either wild-type or systematically mutagenized tRNAs. Our data reveal how specific tRNA-ribosome interactions regulate the rate with which the PRE complex rearranges into a critical, on-pathway translocation intermediate and how these interactions control the stability of the resulting configuration. More interestingly, our results suggest that the conformational flexibility of the tRNA molecule itself plays a crucial role in directing the structural dynamics of the PRE complex during translocation. PMID:21857664

  3. Positive-strand RNA viruses stimulate host phosphatidylcholine synthesis at viral replication sites

    PubMed Central

    Zhang, Jiantao; Zhang, Zhenlu; Chukkapalli, Vineela; Nchoutmboube, Jules A.; Li, Jianhui; Randall, Glenn; Belov, George A.; Wang, Xiaofeng

    2016-01-01

    All positive-strand RNA viruses reorganize host intracellular membranes to assemble their viral replication complexes (VRCs); however, how these viruses modulate host lipid metabolism to accommodate such membrane proliferation and rearrangements is not well defined. We show that a significantly increased phosphatidylcholine (PC) content is associated with brome mosaic virus (BMV) replication in both natural host barley and alternate host yeast based on a lipidomic analysis. Enhanced PC levels are primarily associated with the perinuclear ER membrane, where BMV replication takes place. More specifically, BMV replication protein 1a interacts with and recruits Cho2p (choline requiring 2), a host enzyme involved in PC synthesis, to the site of viral replication. These results suggest that PC synthesized at the site of VRC assembly, not the transport of existing PC, is responsible for the enhanced accumulation. Blocking PC synthesis by deleting the CHO2 gene resulted in VRCs with wider diameters than those in wild-type cells; however, BMV replication was significantly inhibited, highlighting the critical role of PC in VRC formation and viral replication. We further show that enhanced PC levels also accumulate at the replication sites of hepatitis C virus and poliovirus, revealing a conserved feature among a group of positive-strand RNA viruses. Our work also highlights a potential broad-spectrum antiviral strategy that would disrupt PC synthesis at the sites of viral replication but would not alter cellular processes. PMID:26858414

  4. In low protein diets, microRNA-19b regulates urea synthesis by targeting SIRT5

    PubMed Central

    Sun, Rui-Ping; Xi, Qian-Yun; Sun, Jia-Jie; Cheng, Xiao; Zhu, Yan-Ling; Ye, Ding-Ze; Chen, Ting; Wei, Li-Min; Ye, Rui-Song; Jiang, Qing-Yan; Zhang, Yong-Liang

    2016-01-01

    Ammonia detoxification, which takes place via the hepatic urea cycle, is essential for nitrogen homeostasis and physiological well-being. It has been reported that a reduction in dietary protein reduces urea nitrogen. MicroRNAs (miRNAs) are major regulatory non-coding RNAs that have significant effects on several metabolic pathways; however, little is known on whether miRNAs regulate hepatic urea synthesis. The objective of this study was to assess the miRNA expression profile in a low protein diet and identify miRNAs involved in the regulation of the hepatic urea cycle using a porcine model. Weaned 28-days old piglets were fed a corn-soybean normal protein diet (NP) or a corn-soybean low protein diet (LP) for 30 d. Hepatic and blood samples were collected, and the miRNA expression profile was assessed by sequencing and qRT-PCR. Furthermore, we evaluated the possible role of miR-19b in urea synthesis regulation. There were 25 differentially expressed miRNAs between the NP and LP groups. Six of these miRNAs were predicted to be involved in urea cycle metabolism. MiR-19b negatively regulated urea synthesis by targeting SIRT5, which is a positive regulator of CPS1, the rate limiting enzyme in the urea cycle. Our study presented a novel explanation of ureagenesis regulation by miRNAs. PMID:27686746

  5. Coronavirus entry and release in polarized epithelial cells: a review.

    PubMed

    Cong, Yingying; Ren, Xiaofeng

    2014-09-01

    Most coronaviruses cause respiratory or intestinal infections in their animal or human host. Hence, their interaction with polarized epithelial cells plays a critical role in the onset and outcome of infection. In this paper, we review the knowledge regarding the entry and release of coronaviruses, with particular emphasis on the severe acute respiratory syndrome and Middle East respiratory syndrome coronaviruses. As these viruses approach the epithelial surfaces from the apical side, it is not surprising that coronavirus cell receptors are exposed primarily on the apical domain of polarized epithelial cells. With respect to release, all possibilities appear to occur. Thus, most coronaviruses exit through the apical surface, several through the basolateral one, although the Middle East respiratory syndrome coronavirus appears to use both sides. These observations help us understand the local or systematic spread of the infection within its host as well as the spread of the virus within the host population.

  6. A 3′-end structure in RNA2 of a crinivirus is essential for viral RNA synthesis and contributes to replication-associated translation activity

    PubMed Central

    Mongkolsiriwattana, Chawin; Zhou, Jaclyn S.; Ng, James C. K.

    2016-01-01

    The terminal ends in the genome of RNA viruses contain features that regulate viral replication and/or translation. We have identified a Y-shaped structure (YSS) in the 3′ terminal regions of the bipartite genome of Lettuce chlorosis virus (LCV), a member in the genus Crinivirus (family Closteroviridae). The YSS is the first in this family of viruses to be determined using Selective 2′-Hydroxyl Acylation Analyzed by Primer Extension (SHAPE). Using luciferase constructs/replicons, in vivo and in vitro assays showed that the 5′ and YSS-containing 3′ terminal regions of LCV RNA1 supported translation activity. In contrast, similar regions from LCV RNA2, including those upstream of the YSS, did not. LCV RNA2 mutants with nucleotide deletions or replacements that affected the YSS were replication deficient. In addition, the YSS of LCV RNA1 and RNA2 were interchangeable without affecting viral RNA synthesis. Translation and significant replication were observed for specific LCV RNA2 replicons only in the presence of LCV RNA1, but both processes were impaired when the YSS and/or its upstream region were incomplete or altered. These results are evidence that the YSS is essential to the viral replication machinery, and contributes to replication enhancement and replication-associated translation activity in the RNA2 replicons. PMID:27694962

  7. Meteorites and the RNA World: A Thermodynamic Model of Nucleobase Synthesis within Planetesimals

    NASA Astrophysics Data System (ADS)

    Pearce, Ben K. D.; Pudritz, Ralph E.

    2016-11-01

    The possible meteorite parent body origin of Earth's pregenetic nucleobases is substantiated by the guanine (G), adenine (A), and uracil (U) measured in various meteorites. Cytosine (C) and thymine (T), however, are absent in meteorites, making the emergence of an RNA and later RNA/DNA/protein world problematic. We investigated the meteorite parent body (planetesimal) origin of all nucleobases by computationally modeling 18 reactions that potentially contribute to nucleobase formation in such environments. Out of this list, we identified the two most important reactions for each nucleobase and found that these involve small molecules such as HCN, CO, NH3, and water that ultimately arise from the protoplanetary disks in which planetesimals are built. The primary result of this study is that cytosine is unlikely to persist within meteorite parent bodies due to aqueous deamination. Thymine has a thermodynamically favorable reaction pathway from uracil, formaldehyde, and formic acid but likely did not persist within planetesimals containing H2O2 due to an oxidation reaction with this molecule. Finally, while Fischer-Tropsch (FT) synthesis is found to be the dominant source of nucleobases within our model planetesimal, non-catalytic (NC) synthesis may still be significant under certain chemical conditions (e.g., within CR2 parent bodies). We discuss several major consequences of our results for the origin of the RNA world.

  8. LKB1 promotes cell survival by modulating TIF-IA-mediated pre-ribosomal RNA synthesis under uridine downregulated conditions.

    PubMed

    Liu, Fakeng; Jin, Rui; Liu, Xiuju; Huang, Henry; Wilkinson, Scott C; Zhong, Diansheng; Khuri, Fadlo R; Fu, Haian; Marcus, Adam; He, Yulong; Zhou, Wei

    2016-01-19

    We analyzed the mechanism underlying 5-aminoimidazole-4-carboxamide riboside (AICAR) mediated apoptosis in LKB1-null non-small cell lung cancer (NSCLC) cells. Metabolic profile analysis revealed depletion of the intracellular pyrimidine pool after AICAR treatment, but uridine was the only nucleotide precursor capable of rescuing this apoptosis, suggesting the involvement of RNA metabolism. Because half of RNA transcription in cancer is for pre-ribosomal RNA (rRNA) synthesis, which is suppressed by over 90% after AICAR treatment, we evaluated the role of TIF-IA-mediated rRNA synthesis. While the depletion of TIF-IA by RNAi alone promoted apoptosis in LKB1-null cells, the overexpression of a wild-type or a S636A TIF-IA mutant, but not a S636D mutant, attenuated AICAR-induced apoptosis. In LKB1-null H157 cells, pre-rRNA synthesis was not suppressed by AICAR when wild-type LKB1 was present, and cellular fractionation analysis indicated that TIF-IA quickly accumulated in the nucleus in the presence of a wild-type LKB1 but not a kinase-dead mutant. Furthermore, ectopic expression of LKB1 was capable of attenuating AICAR-induced death in AMPK-null cells. Because LKB1 promotes cell survival by modulating TIF-IA-mediated pre-rRNA synthesis, this discovery suggested that targeted depletion of uridine related metabolites may be exploited in the clinic to eliminate LKB1-null cancer cells.

  9. The relation of RNA synthesis to chondroitin sulphate biosynthesis in cultured bovine cartilage.

    PubMed Central

    McQuillan, D J; Handley, C J; Robinson, H C; Ng, K; Tzaicos, C

    1986-01-01

    Addition of actinomycin D (or cordycepin, an alternative inhibitor of RNA synthesis) to cartilage cultures resulted in a first-order decrease in the rate of incorporation of [35S]sulphate into proteoglycan (half-life = 7.5 +/- 1.1 h). Addition of 1.0 mM-benzyl beta-D-xyloside relieved the initial inhibition of glycosaminoglycan synthesis induced by actinomycin D; however, after a lag of about 10 h the rate of xyloside-initiated glycosaminoglycan synthesis also decreased with apparent first-order kinetics (half-life = 7.1 +/- 1.8 h), which paralleled the decrease in the rate of core-protein-initiated glycosaminoglycan synthesis. The hydrodynamic size of the proteoglycans formed in the presence of actinomycin D remained essentially constant (Kav. 0.21-0.23), whereas the constituent glycosaminoglycan chains were larger than those formed by control cultures, which suggested that the core protein was substituted with fewer but larger glycosaminoglycan chains. Proteoglycans formed in the presence of beta-D-xyloside were significantly smaller (Kav. approximately 0.33) than those synthesized by control cultures, and were further diminished in size after exposure of cultures to actinomycin D. Glycosaminoglycan chains synthesized by these same cultures on to both core-protein and xyloside acceptors were also smaller than those of control cultures. The decrease in synthesis observed after exposure to actinomycin D was not reflected by any significant decrease in the activities of several glycosyltransferases involved in chondroitin sulphate synthesis (galactosyltransferase-I, galactosyltransferase-II, N-acetylgalactosaminyltransferase and glucuronosyltransferase-II). PMID:2427073

  10. Receptor recognition mechanisms of coronaviruses: a decade of structural studies.

    PubMed

    Li, Fang

    2015-02-01

    Receptor recognition by viruses is the first and essential step of viral infections of host cells. It is an important determinant of viral host range and cross-species infection and a primary target for antiviral intervention. Coronaviruses recognize a variety of host receptors, infect many hosts, and are health threats to humans and animals. The receptor-binding S1 subunit of coronavirus spike proteins contains two distinctive domains, the N-terminal domain (S1-NTD) and the C-terminal domain (S1-CTD), both of which can function as receptor-binding domains (RBDs). S1-NTDs and S1-CTDs from three major coronavirus genera recognize at least four protein receptors and three sugar receptors and demonstrate a complex receptor recognition pattern. For example, highly similar coronavirus S1-CTDs within the same genus can recognize different receptors, whereas very different coronavirus S1-CTDs from different genera can recognize the same receptor. Moreover, coronavirus S1-NTDs can recognize either protein or sugar receptors. Structural studies in the past decade have elucidated many of the puzzles associated with coronavirus-receptor interactions. This article reviews the latest knowledge on the receptor recognition mechanisms of coronaviruses and discusses how coronaviruses have evolved their complex receptor recognition pattern. It also summarizes important principles that govern receptor recognition by viruses in general.

  11. Wild animal surveillance for coronavirus HKU1 and potential variants of other coronaviruses.

    PubMed

    Yuen, K Y; Lau, S K P; Woo, P C Y

    2012-02-01

    1. Although CoV-HKU1 was not identified in any of the studied animals, a coronavirus closely related to SARS-CoV (bat-SARS-CoV) was identified in 23 (19%) of 118 wild Chinese horseshoe bats by reverse transcriptase polymerase chain reaction (RT-PCR). 2. Complete genome sequencing and phylogenetic analysis showed that bat-SARS-CoV formed a distinct cluster with SARS-CoV as group 2b coronaviruses, distantly related to known group 2 coronaviruses. 3. Most differences between the bat-SARS-CoV and SARS-CoV genomes were observed in the spike gene. The presence of a29-bp insertion in ORF 8 of bat-SARS-CoV genome, not in most human SARS-CoV genomes, suggests that it has a common ancestor with civet SARS-CoV. 4. Antibody against recombinant bat-SARS-CoV nucleocapsid protein was detected in 84% of Chinese horseshoe bats using an enzyme immunoassay.Neutralising antibody to human SARS-CoV was also detected in those with lower viral loads.5. This study also revealed a previously unknown diversity of coronaviruses in bats, which are important natural reservoir for coronaviruses including SARS-CoV-like viruses.

  12. Understanding bat SARS-like coronaviruses for the preparation of future coronavirus outbreaks - Implications for coronavirus vaccine development.

    PubMed

    Ng, Oi-Wing; Tan, Yee-Joo

    2017-01-02

    The severe acute respiratory syndrome coronavirus (SARS-CoV) first emerged in 2003, causing the SARS epidemic which resulted in a 10% fatality rate. The advancements in metagenomic techniques have allowed the identification of SARS-like coronaviruses (SL-CoVs) sequences that share high homology to the human SARS-CoV epidemic strains from wildlife bats, presenting concrete evidence that bats are the origin and natural reservoir of SARS-CoV. The application of reverse genetics further enabled that characterization of these bat CoVs and the prediction of their potential to cause disease in humans. The knowledge gained from such studies is valuable in the surveillance and preparation of a possible future outbreak caused by a spill-over of these bat SL-CoVs.

  13. Coronavirus genome: prediction of putative functional domains in the non-structural polyprotein by comparative amino acid sequence analysis.

    PubMed Central

    Gorbalenya, A E; Koonin, E V; Donchenko, A P; Blinov, V M

    1989-01-01

    Amino acid sequences of 2 giant non-structural polyproteins (F1 and F2) of infectious bronchitis virus (IBV), a member of Coronaviridae, were compared, by computer-assisted methods, to sequences of a number of other positive strand RNA viral and cellular proteins. By this approach, juxtaposed putative RNA-dependent RNA polymerase, nucleic acid binding ("finger"-like) and RNA helicase domains were identified in F2. Together, these domains might constitute the core of the protein complex involved in the primer-dependent transcription, replication and recombination of coronaviruses. In F1, two cysteine protease-like domains and a growth factor-like one were revealed. One of the putative proteases of IBV is similar to 3C proteases of picornaviruses and related enzymes of como- nepo- and potyviruses. Search of IBV F1 and F2 sequences for sites similar to those cleaved by the latter proteases and intercomparison of the surrounding sequence stretches revealed 13 dipeptides Q/S(G) which are probably cleaved by the coronavirus 3C-like protease. Based on these observations, a partial tentative scheme for the functional organization and expression strategy of the non-structural polyproteins of IBV was proposed. It implies that, despite the general similarity to other positive strand RNA viruses, and particularly to potyviruses, coronaviruses possess a number of unique structural and functional features. PMID:2526320

  14. Temporal aspects of DNA and RNA synthesis during human immunodeficiency virus infection: evidence for differential gene expression.

    PubMed Central

    Kim, S Y; Byrn, R; Groopman, J; Baltimore, D

    1989-01-01

    The kinetics of retroviral DNA and RNA synthesis are parameters vital to understanding viral growth, especially for human immunodeficiency virus (HIV), which encodes several of its own regulatory genes. We have established a single-cycle growth condition for HIV in H9 cells, a human CD4+ lymphocyte line. The full-length viral linear DNA is first detectable by 4 h postinfection. During a one-step growth of HIV, amounts of viral DNA gradually increase until 8 to 12 h postinfection and then decrease. The copy number of unintegrated viral DNA is not extraordinarily high even at its peak. Most strikingly, there is a temporal program of RNA accumulation: the earliest RNA is greatly enriched in the 2-kilobase subgenomic mRNA species, while the level of 9.2-kilobase RNA which is both genomic RNA and mRNA remains low until after 24 h of infection. Virus production begins at about 24 h postinfection. Thus, viral DNA synthesis is as rapid as for other retroviruses, but viral RNA synthesis involves temporal alteration in the species that accumulate, presumably as a consequence of viral regulatory genes. Images PMID:2760980

  15. Sequences more than 500 base pairs upstream of the human U3 small nuclear RNA gene stimulate the synthesis of U3 RNA in frog oocytes

    SciTech Connect

    Suh, D.; Reddy, R. ); Wright, D. )

    1991-06-04

    Small nuclear RNA (snRNA) genes contain strong promoters capable of initiating transcription once every 4 s. Studies on the human U1 snRNA gene, carried out in other laboratories, showed that sequences within 400 bp of the 5' flanking region are sufficient for maximal levels of transcription both in vivo and in frog oocytes (reviewed in Dahlberg and Lund (1988)). The authors studied the expression of a human U3 snRNA gene by injecting 5' deletion mutants into frog oocytes. The results show that sequences more than 500 bp upstream of the U3 snRNA gene have a 2-3-fold stimulatory effect on the U3 snRNA synthesis. These results indicate that the human U3 snRNA gene is different from human U1 snRNA gene in containing regulatory elements more than 500 bp upstream. The U3 snRNA gene upstream sequences contain an AluI homologous sequence in the {minus}1,200 region; these AluI sequences were transcribed in vitro and in frog oocytes but were not detectable in Hela cells.

  16. Synthesis of acetylene-substituted probes with benzene-phosphate backbones for RNA labeling.

    PubMed

    Kitamura, Yoshiaki; Ueno, Yoshihito; Kitade, Yukio

    2014-06-24

    Conversion of dimethyl 5-aminoisophthalate into the iodoarene via the corresponding diazonium intermediate, followed by Sonogashira coupling with trimethylsilylacetylene afford the alkynylarene, which is reduced with LiAlH4 to give 5-ethynyl-1,3-benzenedimethanol (B(E)). One hydroxyl group is protected with a 4,4'-dimethoxytrityl (DMTr) group and subsequently another hydroxyl group is phosphitylated to produce the phosphoramidite. The mono-DMTr compound is also modified to afford the corresponding succinate, which is then reacted with controlled pore glass (CPG) to provide the solid support. Either the phosphoramidite or the solid support is employed in solid-phase synthesis of RNA containing B(E). RNA oligomers bearing B(E) rapidly react with 4-fluorobenzylazide to produce the cycloaddition products in good to excellent yield.

  17. [Development and comparison of real-time and conventional RT-PCR assay for detection of human coronavirus NL63 and HKU1].

    PubMed

    Lu, Rou-jian; Zhang, Ling-lin; Tan, Wen-jie; Zhou, Wei-min; Wang, Zhong; Peng, Kun; Ruan, Li

    2008-07-01

    We designed specific primers and fluorescence-labeled probes to develop real-time and conventional RT-PCR assays for detection of human coronavirus NL63 or HKU1. Subsequently, experiments were undertaken to assess diagnostic criteria such as specificity, sensitivity and reproducibility. The detection limit of the real-time RT-PCR assays was 10 RNA copies per reaction mixture. No cross-reactivity was observed between RNA samples derived from designed HCoV and other HCoV or human metapneumovirus. A total of 158 nasopharyngeal swab specimens collected from adult patients with acute respiratory tract infection in Beijing were screened for the presence of human coronavirus NL63 and HKU1 by using real-time RT-PCR and conventional RT-PCR method. The fluorescence quantitative RT-PCR method detected six specimens positive for human coronavirus NL63, five specimens positive for human coronavirus HKU1; and conventional RT-PCR method detected three HCoV-NL63 positive and three HCoV-HKU1 positive, respectively. The convention RT-PCR products of positive samples were obtained and sequence analysis confirmed the reliability of the above methods. In summary, the real-time RT-PCR assay for HCoV- NL63 or HKU1 was more sensitive than conventional RT-PCR and with less time (less than 4 hours) for completion. It may be suitable for molecular epidemiological surveillance and clinical diagnosis for human coronavirus NL63 and HKU1.

  18. Significance of mineral salts in prebiotic RNA synthesis catalyzed by montmorillonite.

    PubMed

    Joshi, Prakash C; Aldersley, Michael F

    2013-06-01

    The montmorillonite-catalyzed reactions of the 5'-phosphorimidazolide of adenosine used as a model generated RNA type oligomers. These reactions were found to be dependent on the presence of mineral salts. Whereas montmorillonite (pH 7) produced only dimers and traces of trimer in water, addition of sodium chloride (0.1-2.0 M) enhanced the chain length of oligomers to 10-mers as detected by HPLC. Maximum catalytic activity was observed with sodium chloride at a concentration between 0.8 and 1.2 M. This concentration of sodium chloride resembled its abundance in the ancient oceans (0.9-1.2 M). Magnesium chloride produced a similar effect but its joint action with sodium chloride did not produce any difference in the oligomer chain length. Therefore, Mg(2+) was not deemed necessary for generating longer oligomers. The effect of monovalent cations upon RNA chain length was: Li(+) > Na(+) > K(+). A similar effect was observed with the anions with enhanced oligomer length in the following order: Cl(-) > Br(-) > I(-). Thus, the smaller ions facilitated the formation of the longest oligomers. Inorganic salts that tend to salt out organic compounds from water and salts which show salt-in effects had no influence on the oligomerization process indicating that the montmorillonite-catalyzed RNA synthesis is not affected by either of these hydrophobic or hydrophilic interactions. A 2.3-fold decrease in the yield of cyclic dimer was observed upon increasing the sodium chloride concentration from 0.2 to 2.0 M. Inhibition of cyclic dimer formation is vital for increasing the yield of linear dimers and longer oligomers. In summary, sodium chloride is likely to have played an essential role in any clay mineral-catalyzed prebiotic RNA synthesis.

  19. Catalytic effects of Murchison material: prebiotic synthesis and degradation of RNA precursors.

    PubMed

    Saladino, Raffaele; Crestini, Claudia; Cossetti, Cristina; Di Mauro, Ernesto; Deamer, David

    2011-10-01

    Mineral components of the Murchison meteorite were investigated in terms of potential catalytic effects on synthetic and hydrolytic reactions related to ribonucleic acid. We found that the mineral surfaces catalyzed condensation reactions of formamide to form carboxylic acids, amino acids, nucleobases and sugar precursors. These results suggest that formamide condensation reactions in the parent bodies of carbonaceous meteorites could give rise to multiple organic compounds thought to be required for the emergence of life. Previous studies have demonstrated similar catalytic effects for mineral assemblies likely to have been present in the early Earth environment. The minerals had little or no effect in promoting hydrolysis of RNA (24mer of polyadenylic acid) at 80°C over a pH range from 4.2 to 9.3. RNA was most stable in the neutral pH range, with a half-life ~5 h, but at higher and lower pH ranges the half-life decreased to ~1 h. These results suggest that if RNA was somehow incorporated into a primitive form of RNA-based thermophilic life, either it must be protected from random hydrolytic events, or the rate of synthesis must exceed the rate of hydrolysis.

  20. Human Coronaviruses: Insights into Environmental Resistance and Its Influence on the Development of New Antiseptic Strategies

    PubMed Central

    Geller, Chloé; Varbanov, Mihayl; Duval, Raphaël E.

    2012-01-01

    The Coronaviridae family, an enveloped RNA virus family, and, more particularly, human coronaviruses (HCoV), were historically known to be responsible for a large portion of common colds and other upper respiratory tract infections. HCoV are now known to be involved in more serious respiratory diseases, i.e. bronchitis, bronchiolitis or pneumonia, especially in young children and neonates, elderly people and immunosuppressed patients. They have also been involved in nosocomial viral infections. In 2002–2003, the outbreak of severe acute respiratory syndrome (SARS), due to a newly discovered coronavirus, the SARS-associated coronavirus (SARS-CoV); led to a new awareness of the medical importance of the Coronaviridae family. This pathogen, responsible for an emerging disease in humans, with high risk of fatal outcome; underline the pressing need for new approaches to the management of the infection, and primarily to its prevention. Another interesting feature of coronaviruses is their potential environmental resistance, despite the accepted fragility of enveloped viruses. Indeed, several studies have described the ability of HCoVs (i.e. HCoV 229E, HCoV OC43 (also known as betacoronavirus 1), NL63, HKU1 or SARS-CoV) to survive in different environmental conditions (e.g. temperature and humidity), on different supports found in hospital settings such as aluminum, sterile sponges or latex surgical gloves or in biological fluids. Finally, taking into account the persisting lack of specific antiviral treatments (there is, in fact, no specific treatment available to fight coronaviruses infections), the Coronaviridae specificities (i.e. pathogenicity, potential environmental resistance) make them a challenging model for the development of efficient means of prevention, as an adapted antisepsis-disinfection, to prevent the environmental spread of such infective agents. This review will summarize current knowledge on the capacity of human coronaviruses to survive in the

  1. Human coronaviruses: insights into environmental resistance and its influence on the development of new antiseptic strategies.

    PubMed

    Geller, Chloé; Varbanov, Mihayl; Duval, Raphaël E

    2012-11-12

    The Coronaviridae family, an enveloped RNA virus family, and, more particularly, human coronaviruses (HCoV), were historically known to be responsible for a large portion of common colds and other upper respiratory tract infections. HCoV are now known to be involved in more serious respiratory diseases, i.e. bronchitis, bronchiolitis or pneumonia, especially in young children and neonates, elderly people and immunosuppressed patients. They have also been involved in nosocomial viral infections. In 2002-2003, the outbreak of severe acute respiratory syndrome (SARS), due to a newly discovered coronavirus, the SARS-associated coronavirus (SARS-CoV); led to a new awareness of the medical importance of the Coronaviridae family. This pathogen, responsible for an emerging disease in humans, with high risk of fatal outcome; underline the pressing need for new approaches to the management of the infection, and primarily to its prevention. Another interesting feature of coronaviruses is their potential environmental resistance, despite the accepted fragility of enveloped viruses. Indeed, several studies have described the ability of HCoVs (i.e. HCoV 229E, HCoV OC43 (also known as betacoronavirus 1), NL63, HKU1 or SARS-CoV) to survive in different environmental conditions (e.g. temperature and humidity), on different supports found in hospital settings such as aluminum, sterile sponges or latex surgical gloves or in biological fluids. Finally, taking into account the persisting lack of specific antiviral treatments (there is, in fact, no specific treatment available to fight coronaviruses infections), the Coronaviridae specificities (i.e. pathogenicity, potential environmental resistance) make them a challenging model for the development of efficient means of prevention, as an adapted antisepsis-disinfection, to prevent the environmental spread of such infective agents. This review will summarize current knowledge on the capacity of human coronaviruses to survive in the

  2. A functional heat shock protein 90 chaperone is essential for efficient flock house virus RNA polymerase synthesis in Drosophila cells.

    PubMed

    Castorena, Kathryn M; Weeks, Spencer A; Stapleford, Kenneth A; Cadwallader, Amy M; Miller, David J

    2007-08-01

    The molecular chaperone heat shock protein 90 (Hsp90) is involved in multiple cellular processes including protein maturation, complex assembly and disassembly, and intracellular transport. We have recently shown that a disruption of Hsp90 activity in cultured Drosophila melanogaster cells suppresses Flock House virus (FHV) replication and the accumulation of protein A, the FHV RNA-dependent RNA polymerase. In the present study, we investigated whether the defect in FHV RNA polymerase accumulation induced by Hsp90 suppression was secondary to an effect on protein A synthesis, degradation, or intracellular membrane association. Treatment with the Hsp90-specific inhibitor geldanamycin selectively reduced FHV RNA polymerase synthesis by 80% in Drosophila S2 cells stably transfected with an inducible protein A expression plasmid. The suppressive effect of geldanamycin on protein A synthesis was not attenuated by proteasome inhibition, nor was it sensitive to changes in either the mRNA untranslated regions or protein A intracellular membrane localization. Furthermore, geldanamycin did not promote premature protein A degradation, nor did it alter the extremely rapid kinetics of protein A membrane association. These results identify a novel role for Hsp90 in facilitating viral RNA polymerase synthesis in Drosophila cells and suggest that FHV subverts normal cellular pathways to assemble functional replication complexes.

  3. The SARS-like coronaviruses: the role of bats and evolutionary relationships with SARS coronavirus.

    PubMed

    Balboni, Andrea; Battilani, Mara; Prosperi, Santino

    2012-01-01

    Bats represent an order of great evolutionary success, with elevated geographical diffusion and species diversity. This order harbors viruses of high variability which have a great possibility of acquiring the capacity of infecting other animals,including humans. Bats are the natural reservoir for several viruses genetically closely related to the SARScoronavirus which is the etiological agent of severe acute respiratory syndrome (SARS), a human epidemic which emerged in China in 2002-2003. In the last few years, it has been discovered that the association between coronaviruses and bats is a worldwide phenomenon, and it has been hypothesised that all mammalian coronaviruses were derived from ancestral viruses residing in bats. This review analyzes the role of bats as a reservoir of zoonotic viruses focusing more extensively on SARS-related coronaviruses and taking into account the role of African and European strains in the evolutionary history of these viruses.

  4. Methyldeficient mammalian 4S RNA: evidence for L-ethionine-induced inhibition of N6-dimethyladenosine synthesis in rat liver tRNA

    PubMed Central

    Wildenauer, Dieter; Gross, Hans J.

    1974-01-01

    The nucleotide composition of 4s RNA from livers of rats fed with a diet containing 0.3% D-ethionine was found to be identical with that from untreated animals. In contrast, one single modified nucleotide was absent in 4s RNA from livers of rats fed with a 0.3% L-ethionine diet. The minor nucleo=tide was also absent in liver 4s RNA from rats fed with a 0.3% L-ethionine diet followed by ten days of normal food. It was identified after dephosphorylation by ultraviolet absorption spectra, cochromatography with authentic material and mass spectra as N6-dimethyladenosine. It is concluded that S-adenosylethionine, the primary product of L-ethionine in the liver, causes strong and selective inhibition of the specific RNA-methylase responsible for adenosine to N6-dimethyl=adenosine methylation in rat liver 4s RNA. Compared to the strong inhibition of N6-dimethyladenosine formation described here, L-ethionine-dependent ethylation of liver 4s RNA is far less efficient. The quantitation of l-methyladenosine, ribothymidine and 3′-terminal adenosine in this 4s RNA as well as its aminoacid acceptor activity is typical for tRNA; hence it may be concluded that N6-dimethyladenosine is a component of rat liver tRNA. This may demonstrate the first evidence for the existence of specifically methyl-deficient mammalian tRNA. A possible correlation between the activity of L-ethionine as a liver carcinogen and its ability to induce the formation of methyl-deficient tRNA by selectively inhibiting the synthesis of N6-dimethyladenosine on the tRNA level in the same organ is discussed. PMID:4414662

  5. NUCLEOLAR AND NUCLEAR RNA SYNTHESIS DURING THE CELL LIFE CYCLE IN MONKEY AND PIG KIDNEY CELLS IN VITRO

    PubMed Central

    Showacre, Jane L.; Cooper, W. G.; Prescott, D. M.

    1967-01-01

    The incorporation of 5-3H-uridine and 5-3H-cytidine into nucleolar and nonnucleolar RNA in the nucleus of monkey and pig kidney cells was measured in vitro during the cell life cycle. Time-lapse cinematographic records were made of cells during asynchronous exponential proliferation, in order to identify the temporal position of individual cells in relation to the preceding mitosis. Immediately following cinematography, cells were labeled with uridine-3H and cytidine-3H for a short period, fixed, and analyzed by radioautography. Since the data permit correlation of the rate of RNA labeling with the position of a cell within the cycle, curves could be constructed describing the rate of RNA synthesis over the average cell cycle. RNA synthesis was absent in early telophase, and rose very abruptly in rate in late telophase and in very early G1 in both the nucleus and the reconstituting nucleolus. Thereafter, through the G1 and S periods the rate of nuclear RNA synthesis rose gradually. When we used a 10-min pulse, there was no detectable change in the rate for nucleolar RNA labeling in monkey kidney cells during G1 or S. When we used a 30-min labeling time, the rate of nucleolar RNA labeling rose gradually in pig kidney cells. With increasing time after mitosis, the data became more variable, which may, in part, be related to the variation in generation times for individual cells. PMID:6039371

  6. Targeting of arenavirus RNA synthesis by a carboxamide-derivatized aromatic disulfide with virucidal activity.

    PubMed

    Sepúlveda, Claudia S; García, Cybele C; Levingston Macleod, Jesica M; López, Nora; Damonte, Elsa B

    2013-01-01

    Several arenaviruses can cause severe hemorrhagic fever (HF) in humans, representing a public health threat in endemic areas of Africa and South America. The present study characterizes the potent virucidal activity of the carboxamide-derivatized aromatic disulfide NSC4492, an antiretroviral zinc finger-reactive compound, against Junín virus (JUNV), the causative agent of Argentine HF. The compound was able to inactivate JUNV in a time and temperature-dependent manner, producing more than 99 % reduction in virus titer upon incubation with virions at 37 °C for 90 min. The ability of NSC4492-treated JUNV to go through different steps of the multiplication cycle was then evaluated. Inactivated virions were able to bind and enter into the host cell with similar efficiency as control infectious particles. In contrast, treatment with NSC4492 impaired the capacity of JUNV to drive viral RNA synthesis, as measured by quantitative RT-PCR, and blocked viral protein expression, as determined by indirect immunofluorescence. These results suggest that the disulfide NSC4492 targets on the arenavirus replication complex leading to impairment in viral RNA synthesis. Additionally, analysis of VLP produced in NSC4492-treated cells expressing JUNV matrix Z protein revealed that the compound may interact with Z resulting in an altered aggregation behavior of this protein, but without affecting its intrinsic self-budding properties. The potential perspectives of NSC4492 as an inactivating vaccinal compound for pathogenic arenaviruses are discussed.

  7. Cell cycle specific distribution of killin: evidence for negative regulation of both DNA and RNA synthesis.

    PubMed

    Qiao, Man; Luo, Dan; Kuang, Yi; Feng, Haiyan; Luo, Guangping; Liang, Peng

    2015-01-01

    p53 tumor-suppressor gene is a master transcription factor which controls cell cycle progression and apoptosis. killin was discovered as one of the p53 target genes implicated in S-phase control coupled to cell death. Due to its extreme proximity to pten tumor-suppressor gene on human chromosome 10, changes in epigenetic modification of killin have also been linked to Cowden syndrome as well as other human cancers. Previous studies revealed that Killin is a high-affinity DNA-binding protein with preference to single-stranded DNA, and it inhibits DNA synthesis in vitro and in vivo. Here, co-localization studies of RFP-Killin with either GFP-PCNA or endogenous single-stranded DNA binding protein RPA during S-phase show that Killin always adopts a mutually exclusive punctuated nuclear expression pattern with the 2 accessory proteins in DNA replication. In contrast, when cells are not in S-phase, RFP-Killin largely congregates in the nucleolus where rRNA transcription normally occurs. Both of these cell cycle specific localization patterns of RFP-Killin are stable under high salt condition, consistent with Killin being tightly associated with nucleic acids within cell nuclei. Together, these cell biological results provide a molecular basis for Killin in competitively inhibiting the formation of DNA replication forks during S-phase, as well as potentially negatively regulate RNA synthesis during other cell cycle phases.

  8. Targeting of Arenavirus RNA Synthesis by a Carboxamide-Derivatized Aromatic Disulfide with Virucidal Activity

    PubMed Central

    Sepúlveda, Claudia S.; García, Cybele C.; Levingston Macleod, Jesica M.

    2013-01-01

    Several arenaviruses can cause severe hemorrhagic fever (HF) in humans, representing a public health threat in endemic areas of Africa and South America. The present study characterizes the potent virucidal activity of the carboxamide-derivatized aromatic disulfide NSC4492, an antiretroviral zinc finger-reactive compound, against Junín virus (JUNV), the causative agent of Argentine HF. The compound was able to inactivate JUNV in a time and temperature-dependent manner, producing more than 99 % reduction in virus titer upon incubation with virions at 37°C for 90 min. The ability of NSC4492-treated JUNV to go through different steps of the multiplication cycle was then evaluated. Inactivated virions were able to bind and enter into the host cell with similar efficiency as control infectious particles. In contrast, treatment with NSC4492 impaired the capacity of JUNV to drive viral RNA synthesis, as measured by quantitative RT-PCR, and blocked viral protein expression, as determined by indirect immunofluorescence. These results suggest that the disulfide NSC4492 targets on the arenavirus replication complex leading to impairment in viral RNA synthesis. Additionally, analysis of VLP produced in NSC4492-treated cells expressing JUNV matrix Z protein revealed that the compound may interact with Z resulting in an altered aggregation behavior of this protein, but without affecting its intrinsic self-budding properties. The potential perspectives of NSC4492 as an inactivating vaccinal compound for pathogenic arenaviruses are discussed. PMID:24278404

  9. Cdk7 mediates RPB1-driven mRNA synthesis in Toxoplasma gondii

    PubMed Central

    Deshmukh, Abhijit S.; Mitra, Pallabi; Maruthi, Mulaka

    2016-01-01

    Cyclin-dependent kinase 7 in conjunction with CyclinH and Mat1 activates cell cycle CDKs and is a part of the general transcription factor TFIIH. Role of Cdk7 is well characterized in model eukaryotes however its relevance in protozoan parasites has not been investigated. This important regulator of key processes warrants closer examination particularly in this parasite given its unique cell cycle progression and flexible mode of replication. We report functional characterization of TgCdk7 and its partners TgCyclinH and TgMat1. Recombinant Cdk7 displays kinase activity upon binding its cyclin partner and this activity is further enhanced in presence of Mat1. The activated kinase phosphorylates C-terminal domain of TgRPB1 suggesting its role in parasite transcription. Therefore, the function of Cdk7 in CTD phosphorylation and RPB1 mediated transcription was investigated using Cdk7 inhibitor. Unphosphorylated CTD binds promoter DNA while phosphorylation by Cdk7 triggers its dissociation from DNA with implications for transcription initiation. Inhibition of Cdk7 in the parasite led to strong reduction in Serine 5 phosphorylation of TgRPB1-CTD at the promoters of constitutively expressed actin1 and sag1 genes with concomitant reduction of both nascent RNA synthesis and 5′-capped transcripts. Therefore, we provide compelling evidence for crucial role of TgCdk7 kinase activity in mRNA synthesis. PMID:27759017

  10. Membrane synthesis, specific lipid requirements, and localized lipid composition changes associated with a positive-strand RNA virus RNA replication protein.

    PubMed

    Lee, Wai-Ming; Ahlquist, Paul

    2003-12-01

    Multifunctional RNA replication protein 1a of brome mosaic virus (BMV), a positive-strand RNA virus, localizes to the cytoplasmic face of endoplasmic reticulum (ER) membranes and induces ER lumenal spherules in which viral RNA synthesis occurs. We previously showed that BMV RNA replication in yeast is severely inhibited prior to negative-strand RNA synthesis by a single-amino-acid substitution in the ole1w allele of yeast Delta9 fatty acid (FA) desaturase, which converts saturated FAs (SFAs) to unsaturated FAs (UFAs). Here we further define the relationships between 1a, membrane lipid composition, and RNA synthesis. We show that 1a expression increases total membrane lipids in wild-type (wt) yeast by 25 to 33%, consistent with recent results indicating that the numerous 1a-induced spherules are enveloped by invaginations of the outer ER membrane. 1a did not alter total membrane lipid composition in wt or ole1w yeast, but the ole1w mutation selectively depleted 18-carbon, monounsaturated (18:1) FA chains and increased 16:0 SFA chains, reducing the UFA-to-SFA ratio from approximately 2.5 to approximately 1.5. Thus, ole1w inhibition of RNA replication was correlated with decreased levels of UFA, membrane fluidity, and plasticity. The ole1w mutation did not alter 1a-induced membrane synthesis, 1a localization to the perinuclear ER, or colocalization of BMV 2a polymerase, nor did it block spherule formation. Moreover, BMV RNA replication templates were still recovered from cell lysates in a 1a-induced, 1a- and membrane-associated, and nuclease-resistant but detergent-susceptible state consistent with spherules. However, unlike nearby ER membranes, the membranes surrounding spherules in ole1w cells were not distinctively stained with osmium tetroxide, which interacts specifically with UFA double bonds. Thus, in ole1w cells, spherule-associated membranes were locally depleted in UFAs. This localized UFA depletion helps to explain why BMV RNA replication is more sensitive

  11. Biological and genetic analysis of a bovine-like coronavirus isolated from water buffalo (Bubalus bubalis) calves.

    PubMed

    Decaro, Nicola; Martella, Vito; Elia, Gabriella; Campolo, Marco; Mari, Viviana; Desario, Costantina; Lucente, Maria Stella; Lorusso, Alessio; Greco, Grazia; Corrente, Marialaura; Tempesta, Maria; Buonavoglia, Canio

    2008-01-05

    We describe the isolation, biological and genetic characterization of a host-range variant of bovine coronavirus (BCoV) detected in water buffalo (Bubalus bubalis). By conventional and real-time RT-PCR assays, the virus was demonstrated in the intestinal contents of two 20-day-old buffalo calves dead of a severe form of enteritis and in the feces of additional 17 buffalo calves with diarrhea. Virus isolation, hemagglutination and receptor-destroying enzyme activity showed that the buffalo coronavirus (BuCoV) is closely related to BCoV but possesses some different biological properties. Sequence and phylogenetic analyses of the 3' end (9.6 kb) of the BuCoV RNA revealed a genomic organization typical of group 2 coronaviruses. Moreover, the genetic distance between BuCoV and BCoV was proven to be the same or even higher than the distance between other ruminant coronaviruses and BCoV. In conclusion, our data support the existence of a host-range variant of BCoV associated with enteritis in buffaloes.

  12. Novel avian coronavirus and fulminating disease in guinea fowl, France.

    PubMed

    Liais, Etienne; Croville, Guillaume; Mariette, Jérôme; Delverdier, Maxence; Lucas, Marie-Noëlle; Klopp, Christophe; Lluch, Jérôme; Donnadieu, Cécile; Guy, James S; Corrand, Léni; Ducatez, Mariette F; Guérin, Jean-Luc

    2014-01-01

    For decades, French guinea fowl have been affected by fulminating enteritis of unclear origin. By using metagenomics, we identified a novel avian gammacoronavirus associated with this disease that is distantly related to turkey coronaviruses. Fatal respiratory diseases in humans have recently been caused by coronaviruses of animal origin.

  13. Genetic characterization of coronaviruses from domestic ferrets, Japan.

    PubMed

    Terada, Yutaka; Minami, Shohei; Noguchi, Keita; Mahmoud, Hassan Y A H; Shimoda, Hiroshi; Mochizuki, Masami; Une, Yumi; Maeda, Ken

    2014-02-01

    We detected ferret coronaviruses in 44 (55.7%) of 79 pet ferrets tested in Japan and classified the viruses into 2 genotypes on the basis of genotype-specific PCR. Our results show that 2 ferret coronaviruses that cause feline infectious peritonitis-like disease and epizootic catarrhal enteritis are enzootic among ferrets in Japan.

  14. Protease Inhibitors Targeting Coronavirus and Filovirus Entry

    PubMed Central

    Zhou, Yanchen; Vedantham, Punitha; Lu, Kai; Agudelo, Juliet; Carrion, Ricardo; Nunneley, Jerritt W.; Barnard, Dale; Pöhlmann, Stefan; McKerrow, James H.; Renslo, Adam R.; Simmons, Graham

    2016-01-01

    In order to gain entry into cells, diverse viruses, including Ebola virus, SARS-coronavirus and the emerging MERS-coronavirus, depend on activation of their envelope glycoproteins by host cell proteases. The respective enzymes are thus excellent targets for antiviral intervention. In cell culture, activation of Ebola virus, as well as SARS- and MERS-coronavirus can be accomplished by the endosomal cysteine proteases, cathepsin L (CTSL) and cathepsin B (CTSB). In addition, SARS- and MERS-coronavirus can use serine proteases localized at the cell surface, for their activation. However, it is currently unclear which protease(s) facilitate viral spread in the infected host. We report here that the cysteine protease inhibitor K11777, ((2S)-N-[(1E,3S)-1-(benzenesulfonyl)-5-phenylpent-1-en-3-yl]-2-{[(E)-4-methylpiperazine-1-carbonyl]amino}-3-phenylpropanamide) and closely-related vinylsulfones act as broad-spectrum antivirals by targeting cathepsin-mediated cell entry. K11777 is already in advanced stages of development for a number of parasitic diseases, such as Chagas disease, and has proven to be safe and effective in a range of animal models. K11777 inhibition of SARS-CoV and Ebola virus entry was observed in the sub-nanomolar range. In order to assess, whether cysteine or serine proteases promote viral spread in the host, we compared the antiviral activity of an optimized K11777-derivative with that of camostat, an inhibitor of TMPRSS2 and related serine proteases. Employing a pathogenic animal model of SARS-CoV infection, we demonstrated that viral spread and pathogenesis of SARS-CoV is driven by serine rather than cysteine proteases and can be effectively prevented by camostat. Camostat has been clinically used to treat chronic pancreatitis, and thus represents an exciting potential therapeutic for respiratory coronavirus infections. Our results indicate that camostat, or similar serine protease inhibitors, might be an effective option for treatment of SARS and

  15. [Protein and RNA synthesis in larvae of the yellow mealworm beetle (Tenebrio molitor) during cooling and cold acclimatization].

    PubMed

    Gulevskiĭ, A K; Riazantsev, V V; Grishchenkova, E A; Relina, L I

    1996-01-01

    Functioning of protein-synthesis system freeze-avoiding larvae of Tenebrio molitor. (Tenebrinidae family) has been investigated at temperature lowering to 6-8 degrees. It has been shown that mealworms maintain the protein and RNA biosynthesis under cold acclimation (6-8 degrees C). Judging by the angle of inclination of Arrenius of plot reorganization of protein synthesis system takes place in the temperature range 0-10 degrees C. Biosynthesis of proteins at the room and low temperatures is inhibited by cycloheximide while biosynthesis of RNA--by alpha-amanitine.

  16. Elimination and utilization of oxidized guanine nucleotides in the synthesis of RNA and its precursors.

    PubMed

    Sekiguchi, Takeshi; Ito, Riyoko; Hayakawa, Hiroshi; Sekiguchi, Mutsuo

    2013-03-22

    Reactive oxygen species are produced as side products of oxygen utilization and can lead to the oxidation of nucleic acids and their precursor nucleotides. Among the various oxidized bases, 8-oxo-7,8-dihydroguanine seems to be the most critical during the transfer of genetic information because it can pair with both cytosine and adenine. During the de novo synthesis of guanine nucleotides, GMP is formed first, and it is converted to GDP by guanylate kinase. This enzyme hardly acts on an oxidized form of GMP (8-oxo-GMP) formed by the oxidation of GMP or by the cleavage of 8-oxo-GDP and 8-oxo-GTP by MutT protein. Although the formation of 8-oxo-GDP from 8-oxo-GMP is thus prevented, 8-oxo-GDP itself may be produced by the oxidation of GDP by reactive oxygen species. The 8-oxo-GDP thus formed can be converted to 8-oxo-GTP because nucleoside-diphosphate kinase and adenylate kinase, both of which catalyze the conversion of GDP to GTP, do not discriminate 8-oxo-GDP from normal GDP. The 8-oxo-GTP produced in this way and by the oxidation of GTP can be used for RNA synthesis. This misincorporation is prevented by MutT protein, which has the potential to cleave 8-oxo-GTP as well as 8-oxo-GDP to 8-oxo-GMP. When (14)C-labeled 8-oxo-GTP was applied to CaCl2-permeabilized cells of a mutT(-) mutant strain, it could be incorporated into RNA at 4% of the rate for GTP. Escherichia coli cells appear to possess mechanisms to prevent misincorporation of 8-oxo-7,8-dihydroguanine into RNA.

  17. Biodiversity impact of host interferon-stimulated-gene-product 15 on the coronavirus Papain-like protease deISGylase functions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coronaviruses are single-stranded, positive sense RNA viruses whose members have severe impact on human health and cause significant economic hardships. Some pertinent examples include severe acute and Middle East respiratory syndromes (SARS-CoV; MERS-CoV), porcine epidemic diarrhea virus (PEDV), an...

  18. Development of animal models against emerging coronaviruses: From SARS to MERS coronavirus.

    PubMed

    Sutton, Troy C; Subbarao, Kanta

    2015-05-01

    Two novel coronaviruses have emerged to cause severe disease in humans. While bats may be the primary reservoir for both viruses, SARS coronavirus (SARS-CoV) likely crossed into humans from civets in China, and MERS coronavirus (MERS-CoV) has been transmitted from camels in the Middle East. Unlike SARS-CoV that resolved within a year, continued introductions of MERS-CoV present an on-going public health threat. Animal models are needed to evaluate countermeasures against emerging viruses. With SARS-CoV, several animal species were permissive to infection. In contrast, most laboratory animals are refractory or only semi-permissive to infection with MERS-CoV. This host-range restriction is largely determined by sequence heterogeneity in the MERS-CoV receptor. We describe animal models developed to study coronaviruses, with a focus on host-range restriction at the level of the viral receptor and discuss approaches to consider in developing a model to evaluate countermeasures against MERS-CoV.

  19. An RNA sequence of hundreds of nucleotides at the 5' end of poliovirus RNA is involved in allowing viral protein synthesis.

    PubMed Central

    Trono, D; Andino, R; Baltimore, D

    1988-01-01

    Twenty-one mutations were engineered in the 5' noncoding region of poliovirus type 1 RNA, using an infectious cDNA copy of the viral genome. RNA was made from these constructs and used to transfect HeLa cells. Viable virus was recovered from 12 of these transfection experiments, including six strains with a recognizable phenotype, mapping in four different regions. One mutant of each site was studied in more detail. Mutant 5NC-11, having a 4-base insertion at nucleotide 70, was dramatically deficient in RNA synthesis, suggesting that the far 5' end of the genome is primarily involved in one or more steps of RNA replication. Mutants 5NC-13, 5NC-114, and 5NC-116, mapping at nucleotides 224, 270, and 392, respectively, showed a similar behavior; they made very little viral protein, they did not inhibit host cell translation, and they synthesized a significant amount of viral RNA, although with some delay compared with wild type. These three mutants were efficiently complemented by all other poliovirus mutants tested, except those with lesions in protein 2A. Our results imply that these three mutants map in a region (region P) primarily involved in viral protein synthesis and that their inability to shut off host cell translation is secondary to a quantitative defect in protein 2A. The exact function of region P is still to be determined, but our data supports the hypothesis of a single functional module allowing viral protein synthesis and extending over several hundred nucleotides. Images PMID:2836612

  20. LKB1 promotes cell survival by modulating TIF-IA-mediated pre-ribosomal RNA synthesis under uridine downregulated conditions

    PubMed Central

    Liu, Xiuju; Huang, Henry; Wilkinson, Scott C.; Zhong, Diansheng; Khuri, Fadlo R.; Fu, Haian; Marcus, Adam; He, Yulong; Zhou, Wei

    2016-01-01

    We analyzed the mechanism underlying 5-aminoimidazole-4-carboxamide riboside (AICAR) mediated apoptosis in LKB1-null non-small cell lung cancer (NSCLC) cells. Metabolic profile analysis revealed depletion of the intracellular pyrimidine pool after AICAR treatment, but uridine was the only nucleotide precursor capable of rescuing this apoptosis, suggesting the involvement of RNA metabolism. Because half of RNA transcription in cancer is for pre-ribosomal RNA (rRNA) synthesis, which is suppressed by over 90% after AICAR treatment, we evaluated the role of TIF-IA-mediated rRNA synthesis. While the depletion of TIF-IA by RNAi alone promoted apoptosis in LKB1-null cells, the overexpression of a wild-type or a S636A TIF-IA mutant, but not a S636D mutant, attenuated AICAR-induced apoptosis. In LKB1-null H157 cells, pre-rRNA synthesis was not suppressed by AICAR when wild-type LKB1 was present, and cellular fractionation analysis indicated that TIF-IA quickly accumulated in the nucleus in the presence of a wild-type LKB1 but not a kinase-dead mutant. Furthermore, ectopic expression of LKB1 was capable of attenuating AICAR-induced death in AMPK-null cells. Because LKB1 promotes cell survival by modulating TIF-IA-mediated pre-rRNA synthesis, this discovery suggested that targeted depletion of uridine related metabolites may be exploited in the clinic to eliminate LKB1-null cancer cells. PMID:26506235

  1. The Yeast Mitochondrial RNA Polymerase and Transcription Factor Complex Catalyzes Efficient Priming of DNA Synthesis on Single-stranded DNA.

    PubMed

    Ramachandran, Aparna; Nandakumar, Divya; Deshpande, Aishwarya P; Lucas, Thomas P; R-Bhojappa, Ramanagouda; Tang, Guo-Qing; Raney, Kevin; Yin, Y Whitney; Patel, Smita S

    2016-08-05

    Primases use single-stranded (ss) DNAs as templates to synthesize short oligoribonucleotide primers that initiate lagging strand DNA synthesis or reprime DNA synthesis after replication fork collapse, but the origin of this activity in the mitochondria remains unclear. Herein, we show that the Saccharomyces cerevisiae mitochondrial RNA polymerase (Rpo41) and its transcription factor (Mtf1) is an efficient primase that initiates DNA synthesis on ssDNA coated with the yeast mitochondrial ssDNA-binding protein, Rim1. Both Rpo41 and Rpo41-Mtf1 can synthesize short and long RNAs on ssDNA template and prime DNA synthesis by the yeast mitochondrial DNA polymerase Mip1. However, the ssDNA-binding protein Rim1 severely inhibits the RNA synthesis activity of Rpo41, but not the Rpo41-Mtf1 complex, which continues to prime DNA synthesis efficiently in the presence of Rim1. We show that RNAs as short as 10-12 nt serve as primers for DNA synthesis. Characterization of the RNA-DNA products shows that Rpo41 and Rpo41-Mtf1 have slightly different priming specificity. However, both prefer to initiate with ATP from short priming sequences such as 3'-TCC, TTC, and TTT, and the consensus sequence is 3'-Pu(Py)2-3 Based on our studies, we propose that Rpo41-Mtf1 is an attractive candidate for serving as the primase to initiate lagging strand DNA synthesis during normal replication and/or to restart stalled replication from downstream ssDNA.

  2. Erythromycin, carbomycin, and spiramycin inhibit protein synthesis by stimulating the dissociation of peptidyl-tRNA from ribosomes.

    PubMed

    Menninger, J R; Otto, D P

    1982-05-01

    In mutant Escherichia coli with temperature-sensitive peptidyl-tRNA hydrolase (aminoacyl-tRNA hydrolase; EC 3.1.1.29), peptidyl-tRNA accumulates at the nonpermissive temperature (40 degrees C), and the cells die. These consequences of high temperature were enhanced if the cells were first treated with erythromycin, carbomycin, or spiramycin at doses sufficient to inhibit protein synthesis in wild-type cells but not sufficient to kill either mutant or wild-type cells at the permissive temperature (30 degrees C). Since peptidyl-tRNA hydrolase in he mutant cells is inactivated rapidly and irreversibly at 40 degrees C, the enhanced accumulation of peptidyl-tRNA and killing were the result of enhanced dissociation, stimulated by the antibiotics, of peptidyl-tRNA from ribosomes. The implications of these findings for inhibition of cell growth and protein synthesis are discussed. Certain alternative interpretations are shown to be inconsistent with the relevant data. Previous conflicting observations on the effects of macrolide antibiotics are explained in terms of our observations. We conclude that erythromycin, carbomycin, and spiramycin (and probably all macrolides) have as a primary mechanism of action the stimulation of dissociation of peptidyl-tRNA from ribosomes, probably during translocation.

  3. Serum concentration and increased temperature alter Mayaro virus RNA and protein synthesis in Aedes albopictus (mosquito)-infected cells.

    PubMed

    Motta, M C; Fournier, M V; Carvalho, M G

    1995-01-01

    We have previously shown the inhibition of Mayaro virus multiplication in Aedes albopictus-infected cells maintained at a supraoptimal temperature for growth (37 degrees C) and a stimulation of virus production in response to high serum concentrations in the incubation medium. In the present study, we addressed the question of how the effect of continuous heat stress and high serum concentration soon after infection interfere with virus macromolecule synthesis. Cells maintained at 28 degrees C in the presence of 2% serum synthesized a viral genomic RNA of 12 kb and a subgenomic RNA of 5.2 kb 6 h postinfection. Analysis of the protein profile showed the presence of the viral nucleocapsid protein of 34 kDa (P34). However, if infected cells were maintained at 37 degrees C, a smear starting immediately below the 5.2-kb RNA was noticed and the viral P34 was not detected by SDS-PAGE. Addition of 10% serum to the growth medium of infected cells maintained at 37 degrees C results in a viral RNA profile and protein synthesis similar to those observed in cultures kept at 28 degrees C, i.e., the smear was not observed and the P34 protein was detected. The results suggest that the inhibition of virus multiplication by temperature may be related to the inhibition of viral nonstructural protein synthesis early during infection. The presence of high serum levels in the incubation medium protects macromolecule synthesis against heat stress.

  4. De Novo mRNA Synthesis Is Required for Both Consolidation and Reconsolidation of Fear Memories in the Amygdala

    ERIC Educational Resources Information Center

    Duvarci, Sevil; Nader, Karim; LeDoux, Joseph E.

    2008-01-01

    Memory consolidation is the process by which newly learned information is stabilized into long-term memory (LTM). Considerable evidence indicates that retrieval of a consolidated memory returns it to a labile state that requires it to be restabilized. Consolidation of new fear memories has been shown to require de novo RNA and protein synthesis in…

  5. Reliable semi-synthesis of hydrolysis-resistant 3′-peptidyl-tRNA conjugates containing genuine tRNA modifications

    PubMed Central

    Graber, Dagmar; Moroder, Holger; Steger, Jessica; Trappl, Krista; Polacek, Norbert; Micura, Ronald

    2010-01-01

    The 3′-peptidyl-tRNA conjugates that possess a hydrolysis-resistant ribose-3′-amide linkage instead of the natural ester linkage would represent valuable substrates for ribosomal studies. Up to date, access to these derivatives is severely limited. Here, we present a novel approach for the reliable synthesis of non-hydrolyzable 3′-peptidyl-tRNAs that contain all the respective genuine nucleoside modifications. In short, the approach is based on tRNAs from natural sources that are site-specifically cleaved within the TΨC loop by using DNA enzymes to obtain defined tRNA 5′-fragments carrying the modifications. After dephosphorylation of the 2′,3′-cyclophosphate moieties from these fragments, they are ligated to the respective 3′-peptidylamino-tRNA termini that were prepared following the lines of a recently reported solid-phase synthesis. By this novel concept, non-hydrolyzable 3′-peptidyl-tRNA conjugates possessing all natural nucleoside modifications are accessible in highly efficient manner. PMID:20525967

  6. Editing of the Sendai virus P/C mRNA by G insertion occurs during mRNA synthesis via a virus-encoded activity.

    PubMed Central

    Vidal, S; Curran, J; Kolakofsky, D

    1990-01-01

    Two forms of the Sendai virus P/C mRNA have been predicted: one an exact copy of the viral genome, and the other with a single G insertion within a run of three G's. We directly cloned the mRNA or portions of it containing the insertion site and screened the resulting colonies with oligonucleotides that could distinguish the presence of three or four G's at this position. We found that 31% of the mRNAs did in fact contain the predicted insertion, whereas the viral genomes contained no heterogeneity at this position. A smaller fraction (7%) of the mRNA contained two to eight G's inserted at this position. The insertions also took place during RNA synthesis in vitro with purified virions but were not detected when the mRNA was expressed in vivo via a vaccinia virus recombinant. When the Sendai virus- and vaccinia virus-derived P/C mRNAs were coexpressed in the same cells under conditions in which each could be distinguished, those from the Sendai genome were altered as before, but those from the vaccinia virus genome remained unaltered. The activity that alters the mRNA is therefore likely to be coded for by the virus and cannot function in trans. Images PMID:1688384

  7. Serine Metabolism Supports the Methionine Cycle and DNA/RNA Methylation through De Novo ATP Synthesis in Cancer Cells

    PubMed Central

    Maddocks, Oliver D.K.; Labuschagne, Christiaan F.; Adams, Peter D.; Vousden, Karen H.

    2016-01-01

    Summary Crosstalk between cellular metabolism and the epigenome regulates epigenetic and metabolic homeostasis and normal cell behavior. Changes in cancer cell metabolism can directly impact epigenetic regulation and promote transformation. Here we analyzed the contribution of methionine and serine metabolism to methylation of DNA and RNA. Serine can contribute to this pathway by providing one-carbon units to regenerate methionine from homocysteine. While we observed this contribution under methionine-depleted conditions, unexpectedly, we found that serine supported the methionine cycle in the presence and absence of methionine through de novo ATP synthesis. Serine starvation increased the methionine/S-adenosyl methionine ratio, decreasing the transfer of methyl groups to DNA and RNA. While serine starvation dramatically decreased ATP levels, this was accompanied by lower AMP and did not activate AMPK. This work highlights the difference between ATP turnover and new ATP synthesis and defines a vital function of nucleotide synthesis beyond making nucleic acids. PMID:26774282

  8. Coronavirus Infection and Diversity in Bats in the Australasian Region.

    PubMed

    Smith, C S; de Jong, C E; Meers, J; Henning, J; Wang, L- F; Field, H E

    2016-03-01

    Following the SARS outbreak, extensive surveillance was undertaken globally to detect and identify coronavirus diversity in bats. This study sought to identify the diversity and prevalence of coronaviruses in bats in the Australasian region. We identified four different genotypes of coronavirus, three of which (an alphacoronavirus and two betacoronaviruses) are potentially new species, having less than 90% nucleotide sequence identity with the most closely related described viruses. We did not detect any SARS-like betacoronaviruses, despite targeting rhinolophid bats, the putative natural host taxa. Our findings support the virus-host co-evolution hypothesis, with the detection of Miniopterus bat coronavirus HKU8 (previously reported in Miniopterus species in China, Hong Kong and Bulgaria) in Australian Miniopterus species. Similarly, we detected a novel betacoronavirus genotype from Pteropus alecto which is most closely related to Bat coronavirus HKU9 identified in other pteropodid bats in China, Kenya and the Philippines. We also detected possible cross-species transmission of bat coronaviruses, and the apparent enteric tropism of these viruses. Thus, our findings are consistent with a scenario wherein the current diversity and host specificity of coronaviruses reflects co-evolution with the occasional host shift.

  9. Respiratory disease associated with bovine coronavirus infection in cattle herds in Southern Italy.

    PubMed

    Decaro, Nicola; Campolo, Marco; Desario, Costantina; Cirone, Francesco; D'Abramo, Maria; Lorusso, Eleonora; Greco, Grazia; Mari, Viviana; Colaianni, Maria Loredana; Elia, Gabriella; Martella, Vito; Buonavoglia, Canio

    2008-01-01

    Four outbreaks of bovine respiratory disease (BRD) associated with bovine coronavirus (BCoV) infection in Italian cattle herds were reported. In 3 outbreaks, BRD was observed only in 2-3-month-old feedlot calves, whereas in the remaining outbreak, lactating cows, heifers, and calves were simultaneously affected. By using reverse transcription polymerase chain reaction (RT-PCR), BCoV RNA was detected in all outbreaks without evidence of concurrent viral pathogens (i.e., bovine respiratory syncytial virus, bovine herpesvirus type 1, bovine viral diarrhea virus, bovine parainfluenza virus). Common bacteria of cattle were recovered only from 2 outbreaks of BRD: Staphylococcus spp. and Proteus mirabilis (outbreak 1) and Mannheimia haemolytica (outbreak 4). A recently established real-time RT-PCR assay showed that viral RNA loads in nasal secretions ranged between 3.10 x 10(2) and 7.50 x 10(7) RNA copies/microl of template. Bovine coronavirus was isolated from respiratory specimens from all outbreaks except outbreak 1, in which real-time RT-PCR found very low viral titers in nasal swabs.

  10. Characterization of a novel betacoronavirus related to middle East respiratory syndrome coronavirus in European hedgehogs.

    PubMed

    Corman, Victor Max; Kallies, René; Philipps, Heike; Göpner, Gertraude; Müller, Marcel Alexander; Eckerle, Isabella; Brünink, Sebastian; Drosten, Christian; Drexler, Jan Felix

    2014-01-01

    Bats are known to host viruses closely related to important human coronaviruses (HCoVs), such as HCoV-229E, severe-acute respiratory syndrome coronavirus (SARS-CoV), and Middle East respiratory syndrome CoV (MERS-CoV). As RNA viruses may coevolve with their hosts, we sought to investigate the closest sister taxon to bats, the Eulipotyphla, and screened European hedgehogs (Erinaceus europaeus) from Germany for CoV by nested reverse transcriptase PCR. A novel betacoronavirus species in a phylogenetic sister relationship to MERS-CoV and clade c bat CoVs was detected and characterized on the whole-genome level. A total of 58.9% of hedgehog fecal specimens were positive for the novel CoV (EriCoV) at 7.9 log10 mean RNA copies per ml. EriCoV RNA concentrations were higher in the intestine than in other solid organs, blood, or urine. Detailed analyses of the full hedgehog intestine showed the highest EriCoV concentrations in lower gastrointestinal tract specimens, compatible with viral replication in the lower intestine and fecal-oral transmission. Thirteen of 27 (48.2%) hedgehog sera contained non-neutralizing antibodies against MERS-CoV. The animal origins of this betacoronavirus clade that includes MERS-CoV may thus include both bat and nonbat hosts.

  11. Primary and secondary siRNA synthesis triggered by RNAs from food bacteria in the ciliate Paramecium tetraurelia

    PubMed Central

    Carradec, Quentin; Götz, Ulrike; Arnaiz, Olivier; Pouch, Juliette; Simon, Martin; Meyer, Eric; Marker, Simone

    2015-01-01

    In various organisms, an efficient RNAi response can be triggered by feeding cells with bacteria producing double-stranded RNA (dsRNA) against an endogenous gene. However, the detailed mechanisms and natural functions of this pathway are not well understood in most cases. Here, we studied siRNA biogenesis from exogenous RNA and its genetic overlap with endogenous RNAi in the ciliate Paramecium tetraurelia by high-throughput sequencing. Using wild-type and mutant strains deficient for dsRNA feeding we found that high levels of primary siRNAs of both strands are processed from the ingested dsRNA trigger by the Dicer Dcr1, the RNA-dependent RNA polymerases Rdr1 and Rdr2 and other factors. We further show that this induces the synthesis of secondary siRNAs spreading along the entire endogenous mRNA, demonstrating the occurrence of both 3′-to-5′ and 5′-to-3′ transitivity for the first time in the SAR clade of eukaryotes (Stramenopiles, Alveolates, Rhizaria). Secondary siRNAs depend on Rdr2 and show a strong antisense bias; they are produced at much lower levels than primary siRNAs and hardly contribute to RNAi efficiency. We further provide evidence that the Paramecium RNAi machinery also processes single-stranded RNAs from its bacterial food, broadening the possible natural functions of exogenously induced RNAi in this organism. PMID:25593325

  12. Primary and secondary siRNA synthesis triggered by RNAs from food bacteria in the ciliate Paramecium tetraurelia.

    PubMed

    Carradec, Quentin; Götz, Ulrike; Arnaiz, Olivier; Pouch, Juliette; Simon, Martin; Meyer, Eric; Marker, Simone

    2015-02-18

    In various organisms, an efficient RNAi response can be triggered by feeding cells with bacteria producing double-stranded RNA (dsRNA) against an endogenous gene. However, the detailed mechanisms and natural functions of this pathway are not well understood in most cases. Here, we studied siRNA biogenesis from exogenous RNA and its genetic overlap with endogenous RNAi in the ciliate Paramecium tetraurelia by high-throughput sequencing. Using wild-type and mutant strains deficient for dsRNA feeding we found that high levels of primary siRNAs of both strands are processed from the ingested dsRNA trigger by the Dicer Dcr1, the RNA-dependent RNA polymerases Rdr1 and Rdr2 and other factors. We further show that this induces the synthesis of secondary siRNAs spreading along the entire endogenous mRNA, demonstrating the occurrence of both 3'-to-5' and 5'-to-3' transitivity for the first time in the SAR clade of eukaryotes (Stramenopiles, Alveolates, Rhizaria). Secondary siRNAs depend on Rdr2 and show a strong antisense bias; they are produced at much lower levels than primary siRNAs and hardly contribute to RNAi efficiency. We further provide evidence that the Paramecium RNAi machinery also processes single-stranded RNAs from its bacterial food, broadening the possible natural functions of exogenously induced RNAi in this organism.

  13. Early gene expression in bacteriophage T7. I. In vivo synthesis, inactivation, and translational utilization of early mRNA's.

    PubMed Central

    Hercules, K; Jovanovich, S; Sauerbrier, W

    1976-01-01

    In vivo decay rates for the individual T7 early mRNA species were determined. The physical half-lives, measured at 37 C, range from 1.1 min for gene 0.7 RNA to 4.5 min for gene 0.3 RNA. Physical half-lives, as observed after rifampin inhibition of RNA synthesis and polyacylamide electrophoresis of RNAs, are approximately 30% longer than functional half-lives, as observed by 14C-labeled amino acid uptake into individual T7 early proteins. The different RNA species are synthesized at grossly different rates, 0.3 RNA at four times the rate of 1.0 RNA, 0.7 RNA at twice the rate, and 1.1 and 1.3 RNAs at about the same or a slightly lower rate than 1.0 RNA. Rho-factor-mediated termination of transcription behind genes 0.3, 0.7, and perhaps behind 1.0 is inferred from these data. The in vivo translational utilization of the individual T7 early-message species was found to vary by not more than a factor of 2. Images PMID:1255850

  14. Discovery of seven novel Mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus.

    PubMed

    Woo, Patrick C Y; Lau, Susanna K P; Lam, Carol S F; Lau, Candy C Y; Tsang, Alan K L; Lau, John H N; Bai, Ru; Teng, Jade L L; Tsang, Chris C C; Wang, Ming; Zheng, Bo-Jian; Chan, Kwok-Hung; Yuen, Kwok-Yung

    2012-04-01

    Recently, we reported the discovery of three novel coronaviruses, bulbul coronavirus HKU11, thrush coronavirus HKU12, and munia coronavirus HKU13, which were identified as representatives of a novel genus, Deltacoronavirus, in the subfamily Coronavirinae. In this territory-wide molecular epidemiology study involving 3,137 mammals and 3,298 birds, we discovered seven additional novel deltacoronaviruses in pigs and birds, which we named porcine coronavirus HKU15, white-eye coronavirus HKU16, sparrow coronavirus HKU17, magpie robin coronavirus HKU18, night heron coronavirus HKU19, wigeon coronavirus HKU20, and common moorhen coronavirus HKU21. Complete genome sequencing and comparative genome analysis showed that the avian and mammalian deltacoronaviruses have similar genome characteristics and structures. They all have relatively small genomes (25.421 to 26.674 kb), the smallest among all coronaviruses. They all have a single papain-like protease domain in the nsp3 gene; an accessory gene, NS6 open reading frame (ORF), located between the M and N genes; and a variable number of accessory genes (up to four) downstream of the N gene. Moreover, they all have the same putative transcription regulatory sequence of ACACCA. Molecular clock analysis showed that the most recent common ancestor of all coronaviruses was estimated at approximately 8100 BC, and those of Alphacoronavirus, Betacoronavirus, Gammacoronavirus, and Deltacoronavirus were at approximately 2400 BC, 3300 BC, 2800 BC, and 3000 BC, respectively. From our studies, it appears that bats and birds, the warm blooded flying vertebrates, are ideal hosts for the coronavirus gene source, bats for Alphacoronavirus and Betacoronavirus and birds for Gammacoronavirus and Deltacoronavirus, to fuel coronavirus evolution and dissemination.

  15. Alternative bases in the RNA world: the prebiotic synthesis of urazole and its ribosides

    NASA Technical Reports Server (NTRS)

    Kolb, V. M.; Dworkin, J. P.; Miller, S. L.

    1994-01-01

    Urazole is a five-membered heterocyclic compound which is isosteric with uracil's hydrogen-bonding segment. Urazole reacts spontaneoulsy with ribose (and other aldoses) to give a mixture of four ribosides: alpha and beta pyranosides and furanosides. This reaction occurs in aqueous solution at mild temperatures. Thermodynamic and kinetic parameters for the reaction of urazole with ribose were determined. In contrast, uracil is completely unreactive with ribose under these conditions. Urazole's unusual reactivity is ascribed to the hydrazine portion of the molecule. Urazole can be synthesized from biuret and hydrazine under prebiotic conditions. The prebiotic synthesis of guanazole, which is isosteric in part to diaminopyrimidine and cytosine, is accomplished from dicyandiamide and hydrazine. Kinetic parameters for both prebiotic reactions were measured. Urazole and guanazole are transparent in the UV, which would be a favorable property in the absence of an ozone layer on the early Earth. Urazole makes hydrogen bonds with adenine in DMSO similar to those of uracil, as established by H NMR. All of these properties make urazole an attractive potential precursor to uracil and guanazole a potential precursor to cytosine in the RNA or pre-RNA world.

  16. Clay catalyzed RNA synthesis under Martian conditions: Application for Mars return samples.

    PubMed

    Joshi, Prakash C; Dubey, Krishna; Aldersley, Michael F; Sausville, Meaghen

    2015-06-26

    Catalysis by montmorillonites clay minerals is regarded as a feasible mechanism for the abiotic production and polymerization of key biomolecules on early Earth. We have investigated a montmorillonite-catalyzed reaction of the 5'-phosphorimidazolide of nucleosides as a model to probe prebiotic synthesis of RNA-type oligomers. Here we show that this model is specific for the generation of RNA oligomers despite deoxy-mononucleotides adsorbing equally well onto the montmorillonite catalytic surfaces. Optimum catalytic activity was observed over a range of pH (6-9) and salinity (1 ± 0.2 M NaCl). When the weathering steps of early Earth that generated catalytic montmorillonite were modified to meet Martian soil conditions, the catalytic activity remained intact without altering the surface layer charge. Additionally, the formation of oligomers up to tetramer was detected using as little as 0.1 mg of Na⁺-montmorillonite, suggesting that the catalytic activity of a Martian clay return sample can be investigated with sub-milligram scale samples.

  17. Progress in demonstrating total homochiral selection in montmorillonite-catalyzed RNA synthesis.

    PubMed

    Joshi, Prakash C; Aldersley, Michael F; Ferris, James P

    2011-10-07

    The Na(+)-montmorillonite-catalyzed reactions of 5'-phosphorimidazolides of nucleosides generates RNA oligomers. The question arises as to how chiral selectivity was introduced into this biopolymer from a simple chemical system. We have demonstrated homochiral selection in quaternary reactions of a racemic mixture of D,L-ImpA and D,L-ImpU on Na(+)-montmorillonite. The dimer, trimer, tetramer and pentamer fractions were investigated for homochiral selection. The products were collected via ion exchange HPLC and their terminal 5'-phosphate was cleaved by alkaline phosphatase. These fractions were analyzed by reverse phase HPLC for the identification of homochiral and heterochiral isomers. Encouraged by favorable homochiral excesses of dimer (63.5 ± 0.8%) and trimer (74.3 ± 1.7%), the study was extended to the analysis of higher oligomers. The tetramer and pentamer of the quaternary reaction were separated into 26 and 22 isomers, respectively, on a reverse phase column. Their co-elution with those formed in the binary reactions of d-ImpA and D-ImpU on Na(+)-montmorillonite revealed 92.7 ± 2.0% and 97.2 ± 0.5% homochirality of the tetramer and pentamer, respectively. These results suggest that Na(+)-montmorillonite not only catalyzes the prebiotic synthesis of RNA but it also facilitates homochiral selection.

  18. Synthesis and evaluation of fluorescent cap analogues for mRNA labelling

    PubMed Central

    Ziemniak, Marcin; Szabelski, Mariusz; Lukaszewicz, Maciej; Nowicka, Anna; Darzynkiewicz, Edward; Rhoads, Robert E.; Wieczorek, Zbigniew; Jemielity, Jacek

    2013-01-01

    We describe the synthesis and properties of five dinucleotide fluorescent cap analogues labelled at the ribose of the 7-methylguanosine moiety with either anthraniloyl (Ant) or N-methylanthraniloyl (Mant), which have been designed for the preparation of fluorescent mRNAs via transcription in vitro. Two of the analogues bear a methylene modification in the triphosphate bridge, providing resistance against either the Dcp2 or DcpS decapping enzymes. All these compounds were prepared by ZnCl2-mediated coupling of a nucleotide P-imidazolide with a fluorescently labelled mononucleotide. To evaluate the utility of these compounds for studying interactions with cap-binding proteins and cap-related cellular processes, both biological and spectroscopic features of those compounds were determined. The results indicate acceptable quantum yields of fluorescence, pH independence, environmental sensitivity, and photostability. The cap analogues are incorporated by RNA polymerase into mRNA transcripts that are efficiently translated in vitro. Transcripts containing fluorescent caps but unmodified in the triphosphate chain are hydrolysed by Dcp2 whereas those containing a α-β methylene modification are resistant. Model studies exploiting sensitivity of Mant to changes of local environment demonstrated utility of the synthesized compounds for studying cap-related proteins. PMID:24273643

  19. Identification and sequence of the initiation site for rat 45S ribosomal RNA synthesis.

    PubMed Central

    Harrington, C A; Chikaraishi, D M

    1983-01-01

    The transcription initiation site for rat 45S precursor ribosomal RNA synthesis was determined by nuclease protection mapping with two single-strand endonucleases. S1 and mung bean, and one single-strand exonuclease, ExoVII. These experiments were performed with end-labeled ribosomal DNA from double-stranded pBR322 recombinants and from single-stranded M13 recombinants. Results from experiments using both kinds of DNA and all three enzymes showed that the 5' end of 45S RNA mapped to a unique site 125 bases upstream from the Hind III site in the ribosomal DNA gene. The DNA surrounding this site (designated +1) was sequenced from -281 to +641. The entire sequence of this region shows extensive homology to the comparable region of mouse. This includes three stretches of T residues in the non-coding strand between +300 and +630. Two sets of direct repeats adjacent to these T-rich regions are observed. Comparison of the mouse and human ribosomal DNA transcription initiation sites with the rat sequence reported in this paper demonstrates a conserved sequence at +2 to +16, CTGACACGCTGTCCT. This suggests that this region may be important for the initiation of transcription on mammalian ribosomal DNAs. Images PMID:6304628

  20. Open reading frames 1a and 1b of the porcine reproductive and respiratory syndrome virus (PRRSV) collaboratively initiate viral minus-strand RNA synthesis.

    PubMed

    Tang, Yan-Dong; Fang, Qiong-Qiong; Liu, Ji-Ting; Wang, Tong-Yun; Wang, Yu; Tao, Ye; Liu, Yong-Gang; Cai, Xue-Hui

    2016-09-02

    The porcine reproductive and respiratory syndrome virus (PRRSV) causes a persistent threat to the swine industry, especially when highly pathogenic PRRSV (HP-PRRSV) emerges. Previous studies have indicated that PRRSV RNA synthesis was correlated with HP-PRRSV virulence. PRRSV RNA synthesis includes genomic RNA and sub-genomic mRNA, and these processes require minus-strand RNA as a template. However, the mechanisms involved in PRRSV minus-strand RNA synthesis are not fully understood. A mini-genome system can be used to assess viral replication mechanisms and to evaluate the effects of potential antiviral drugs on viral replicase activities. In this study, we developed a mini-genome system that uses firefly luciferase as a reporter. Based on this system, we found that PRRSV RNA-dependent RNA polymerase nsp9 alone failed to activate virus minus-strand RNA synthesis. We also demonstrated that combinations of open reading frames 1a (ORF1a) and ORF1b are necessary for viral minus-strand RNA synthesis.

  1. Avian Coronavirus in Wild Aquatic Birds▿†‡

    PubMed Central

    Chu, Daniel K. W.; Leung, Connie Y. H.; Gilbert, Martin; Joyner, Priscilla H.; Ng, Erica M.; Tse, Tsemay M.; Guan, Yi; Peiris, Joseph S. M.; Poon, Leo L. M.

    2011-01-01

    We detected a high prevalence (12.5%) of novel avian coronaviruses in aquatic wild birds. Phylogenetic analyses of these coronaviruses suggest that there is a diversity of gammacoronaviruses and deltacoronaviruses circulating in birds. Gammacoronaviruses were found predominantly in Anseriformes birds, whereas deltacoronaviruses could be detected in Ciconiiformes, Pelecaniformes, and Anseriformes birds in this study. We observed that there are frequent interspecies transmissions of gammacoronaviruses between duck species. In contrast, deltacoronaviruses may have more stringent host specificities. Our analysis of these avian viral and host mitochondrial DNA sequences also suggests that some, but not all, coronaviruses may have coevolved with birds from the same order. PMID:21957308

  2. Identification and survey of a novel avian coronavirus in ducks.

    PubMed

    Chen, Gui-Qian; Zhuang, Qing-Ye; Wang, Kai-Cheng; Liu, Shuo; Shao, Jian-Zhong; Jiang, Wen-Ming; Hou, Guang-Yu; Li, Jin-Ping; Yu, Jian-Min; Li, Yi-Ping; Chen, Ji-Ming

    2013-01-01

    The rapid discovery of novel viruses using next generation sequencing (NGS) technologies including DNA-Seq and RNA-Seq, has greatly expanded our understanding of viral diversity in recent years. The timely identification of novel viruses using NGS technologies is also important for us to control emerging infectious diseases caused by novel viruses. In this study, we identified a novel duck coronavirus (CoV), distinct with chicken infectious bronchitis virus (IBV), using RNA-Seq. The novel duck-specific CoV was a potential novel species within the genus Gammacoronavirus, as indicated by sequences of three regions in the viral 1b gene. We also performed a survey of CoVs in domestic fowls in China using reverse-transcription polymerase chain reaction (RT-PCR), targeting the viral nucleocapsid (N) gene. A total of 102 CoV positives were identified through the survey. Phylogenetic analysis of the viral N sequences suggested that CoVs in domestic fowls have diverged into several region-specific or host-specific clades or subclades in the world, and IBVs can infect ducks, geese and pigeons, although they mainly circulate in chickens. Moreover, this study provided novel data supporting the notion that some host-specific CoVs other than IBVs circulate in ducks, geese and pigeons, and indicated that the novel duck-specific CoV identified through RNA-Seq in this study is genetically closer to some CoVs circulating in wild water fowls. Taken together, this study shed new insight into the diversity, distribution, evolution and control of avian CoVs.

  3. Identification and Survey of a Novel Avian Coronavirus in Ducks

    PubMed Central

    Chen, Gui-Qian; Zhuang, Qing-Ye; Wang, Kai-Cheng; Liu, Shuo; Shao, Jian-Zhong; Jiang, Wen-Ming; Hou, Guang-Yu; Li, Jin-Ping; Yu, Jian-Min; Li, Yi-Ping; Chen, Ji-Ming

    2013-01-01

    The rapid discovery of novel viruses using next generation sequencing (NGS) technologies including DNA-Seq and RNA-Seq, has greatly expanded our understanding of viral diversity in recent years. The timely identification of novel viruses using NGS technologies is also important for us to control emerging infectious diseases caused by novel viruses. In this study, we identified a novel duck coronavirus (CoV), distinct with chicken infectious bronchitis virus (IBV), using RNA-Seq. The novel duck-specific CoV was a potential novel species within the genus Gammacoronavirus, as indicated by sequences of three regions in the viral 1b gene. We also performed a survey of CoVs in domestic fowls in China using reverse-transcription polymerase chain reaction (RT-PCR), targeting the viral nucleocapsid (N) gene. A total of 102 CoV positives were identified through the survey. Phylogenetic analysis of the viral N sequences suggested that CoVs in domestic fowls have diverged into several region-specific or host-specific clades or subclades in the world, and IBVs can infect ducks, geese and pigeons, although they mainly circulate in chickens. Moreover, this study provided novel data supporting the notion that some host-specific CoVs other than IBVs circulate in ducks, geese and pigeons, and indicated that the novel duck-specific CoV identified through RNA-Seq in this study is genetically closer to some CoVs circulating in wild water fowls. Taken together, this study shed new insight into the diversity, distribution, evolution and control of avian CoVs. PMID:24023656

  4. Initiation of poliovirus plus-strand RNA synthesis in a membrane complex of infected HeLa cells

    SciTech Connect

    Takeda, N.; Kuhn, R.J.; Yang, C.F.; Takegami, T.; Wimmer, E.

    1986-10-01

    An in vitro poliovirus RNA-synthesizing system derived from a crude membrance fraction of infected HeLa cells was used to analyze the mechanism of initiation of poliovirus plus-strand RNA synthesis. This system contains an activity that synthesizes the nucleotidyl proteins VPg-pU and VPg-pUpU. These molecules represent the 5'-terminal structure of nascent RNA molecules and of virion RNA. The membranous replication complex is also capable of synthesizing mucleotidyl proteins containing nine or more of the poliovirus 5'-proximal nucleotides as assayed by the formation of the RNase T/sub 1/-resistant oligonucleotide VPg-pUUAAAACAGp or by fingerprint analysis of the in vitro-synthesized /sup 32/P-RNA. Incubation of preformed VPg-pUpU with unlabeled nucleoside triphosphates resulted in the formation of VPg-pUUAAAACAGp. This reaction, which appeared to be an elongation of VPg-pUpU, was stimulated by the addition of a soluble fraction (S-10) obtained from uninfected HeLa cells. Preformed VPg-pU could be chased into VPg-pUpU in the presence of UTP. The data are consistent with a model that VPg-pU can function as a primer for poliovirus plus-strand RNA synthesis in the membranous replication complex and that the elongation reaction may be stimulated by a host cellular factor.

  5. Reversal of the Progression of Fatal Coronavirus Infection in Cats by a Broad-Spectrum Coronavirus Protease Inhibitor

    PubMed Central

    Kim, Yunjeong; Liu, Hongwei; Galasiti Kankanamalage, Anushka C.; Weerasekara, Sahani; Hua, Duy H.; Groutas, William C.; Chang, Kyeong-Ok; Pedersen, Niels C.

    2016-01-01

    Coronaviruses infect animals and humans causing a wide range of diseases. The diversity of coronaviruses in many mammalian species is contributed by relatively high mutation and recombination rates during replication. This dynamic nature of coronaviruses may facilitate cross-species transmission and shifts in tissue or cell tropism in a host, resulting in substantial change in virulence. Feline enteric coronavirus (FECV) causes inapparent or mild enteritis in cats, but a highly fatal disease, called feline infectious peritonitis (FIP), can arise through mutation of FECV to FIP virus (FIPV). The pathogenesis of FIP is intimately associated with immune responses and involves depletion of T cells, features shared by some other coronaviruses like Severe Acute Respiratory Syndrome Coronavirus. The increasing risks of highly virulent coronavirus infections in humans or animals call for effective antiviral drugs, but no such measures are yet available. Previously, we have reported the inhibitors that target 3C-like protease (3CLpro) with broad-spectrum activity against important human and animal coronaviruses. Here, we evaluated the therapeutic efficacy of our 3CLpro inhibitor in laboratory cats with FIP. Experimental FIP is 100% fatal once certain clinical and laboratory signs become apparent. We found that antiviral treatment led to full recovery of cats when treatment was started at a stage of disease that would be otherwise fatal if left untreated. Antiviral treatment was associated with a rapid improvement in fever, ascites, lymphopenia and gross signs of illness and cats returned to normal health within 20 days or less of treatment. Significant reduction in viral titers was also observed in cats. These results indicate that continuous virus replication is required for progression of immune-mediated inflammatory disease of FIP. These findings may provide important insights into devising therapeutic strategies and selection of antiviral compounds for further

  6. Reversal of the Progression of Fatal Coronavirus Infection in Cats by a Broad-Spectrum Coronavirus Protease Inhibitor.

    PubMed

    Kim, Yunjeong; Liu, Hongwei; Galasiti Kankanamalage, Anushka C; Weerasekara, Sahani; Hua, Duy H; Groutas, William C; Chang, Kyeong-Ok; Pedersen, Niels C

    2016-03-01

    Coronaviruses infect animals and humans causing a wide range of diseases. The diversity of coronaviruses in many mammalian species is contributed by relatively high mutation and recombination rates during replication. This dynamic nature of coronaviruses may facilitate cross-species transmission and shifts in tissue or cell tropism in a host, resulting in substantial change in virulence. Feline enteric coronavirus (FECV) causes inapparent or mild enteritis in cats, but a highly fatal disease, called feline infectious peritonitis (FIP), can arise through mutation of FECV to FIP virus (FIPV). The pathogenesis of FIP is intimately associated with immune responses and involves depletion of T cells, features shared by some other coronaviruses like Severe Acute Respiratory Syndrome Coronavirus. The increasing risks of highly virulent coronavirus infections in humans or animals call for effective antiviral drugs, but no such measures are yet available. Previously, we have reported the inhibitors that target 3C-like protease (3CLpro) with broad-spectrum activity against important human and animal coronaviruses. Here, we evaluated the therapeutic efficacy of our 3CLpro inhibitor in laboratory cats with FIP. Experimental FIP is 100% fatal once certain clinical and laboratory signs become apparent. We found that antiviral treatment led to full recovery of cats when treatment was started at a stage of disease that would be otherwise fatal if left untreated. Antiviral treatment was associated with a rapid improvement in fever, ascites, lymphopenia and gross signs of illness and cats returned to normal health within 20 days or less of treatment. Significant reduction in viral titers was also observed in cats. These results indicate that continuous virus replication is required for progression of immune-mediated inflammatory disease of FIP. These findings may provide important insights into devising therapeutic strategies and selection of antiviral compounds for further

  7. Feline Coronaviruses: Pathogenesis of Feline Infectious Peritonitis.

    PubMed

    Tekes, G; Thiel, H-J

    2016-01-01

    Feline infectious peritonitis (FIP) belongs to the few animal virus diseases in which, in the course of a generally harmless persistent infection, a virus acquires a small number of mutations that fundamentally change its pathogenicity, invariably resulting in a fatal outcome. The causative agent of this deadly disease, feline infectious peritonitis virus (FIPV), arises from feline enteric coronavirus (FECV). The review summarizes our current knowledge of the genome and proteome of feline coronaviruses (FCoVs), focusing on the viral surface (spike) protein S and the five accessory proteins. We also review the current classification of FCoVs into distinct serotypes and biotypes, cellular receptors of FCoVs and their presumed role in viral virulence, and discuss other aspects of FIPV-induced pathogenesis. Our current knowledge of genetic differences between FECVs and FIPVs has been mainly based on comparative sequence analyses that revealed "discriminatory" mutations that are present in FIPVs but not in FECVs. Most of these mutations result in amino acid substitutions in the S protein and these may have a critical role in the switch from FECV to FIPV. In most cases, the precise roles of these mutations in the molecular pathogenesis of FIP have not been tested experimentally in the natural host, mainly due to the lack of suitable experimental tools including genetically engineered virus mutants. We discuss the recent progress in the development of FCoV reverse genetics systems suitable to generate recombinant field viruses containing appropriate mutations for in vivo studies.

  8. Rapid inactivation of SARS-like coronaviruses.

    SciTech Connect

    Kapil, Sanjay; Oberst, R. D.; Bieker, Jill Marie; Tucker, Mark David; Souza, Caroline Ann; Williams, Cecelia Victoria

    2004-03-01

    Chemical disinfection and inactivation of viruses is largely understudied, but is very important especially in the case of highly infectious viruses. The purpose of this LDRD was to determine the efficacy of the Sandia National Laboratories developed decontamination formulations against Bovine Coronavirus (BCV) as a surrogate for the coronavirus that causes Severe Acute Respiratory Syndrome (SARS) in humans. The outbreak of SARS in late 2002 resulted from a highly infectious virus that was able to survive and remain infectious for extended periods. For this study, preliminary testing with Escherichia coli MS-2 (MS-2) and Escherichia coli T4 (T4) bacteriophages was conducted to develop virucidal methodology for verifying the inactivation after treatment with the test formulations following AOAC germicidal methodologies. After the determination of various experimental parameters (i.e. exposure, concentration) of the formulations, final testing was conducted on BCV. All experiments were conducted with various organic challenges (horse serum, bovine feces, compost) for results that more accurately represent field use condition. The MS-2 and T4 were slightly more resistant than BCV and required a 2 minute exposure while BCV was completely inactivated after a 1 minute exposure. These results were also consistent for the testing conducted in the presence of the various organic challenges indicating that the test formulations are highly effective for real world application.

  9. Rapid identification of emerging pathogens: coronavirus.

    PubMed

    Sampath, Rangarajan; Hofstadler, Steven A; Blyn, Lawrence B; Eshoo, Mark W; Hall, Thomas A; Massire, Christian; Levene, Harold M; Hannis, James C; Harrell, Patina M; Neuman, Benjamin; Buchmeier, Michael J; Jiang, Yun; Ranken, Raymond; Drader, Jared J; Samant, Vivek; Griffey, Richard H; McNeil, John A; Crooke, Stanley T; Ecker, David J

    2005-03-01

    We describe a new approach for infectious disease surveillance that facilitates rapid identification of known and emerging pathogens. The process uses broad-range polymerase chain reaction (PCR) to amplify nucleic acid targets from large groupings of organisms, electrospray ionization mass spectrometry for accurate mass measurements of PCR products, and base composition signature analysis to identify organisms in a sample. We demonstrate this principle by using 14 isolates of 9 diverse Coronavirus spp., including the severe acute respiratory syndrome-associated coronavirus (SARS-CoV). We show that this method could identify and distinguish between SARS and other known CoV, including the human CoV 229E and OC43, individually and in a mixture of all 3 human viruses. The sensitivity of detection, measured by using titered SARS-CoV spiked into human serum, was approximate, equals1 PFU/mL. This approach, applicable to the surveillance of bacterial, viral, fungal, or protozoal pathogens, is capable of automated analysis of >900 PCR reactions per day.

  10. Rapid Identification of Emerging Pathogens: Coronavirus

    PubMed Central

    Hofstadler, Steven A.; Blyn, Lawrence B.; Eshoo, Mark W.; Hall, Thomas A.; Massire, Christian; Levene, Harold M.; Hannis, James C.; Harrell, Patina M.; Neuman, Benjamin; Buchmeier, Michael J.; Jiang, Yun; Ranken, Raymond; Drader, Jared J.; Samant, Vivek; Griffey, Richard H.; McNeil, John A.; Crooke, Stanley T.; Ecker, David J.

    2005-01-01

    We describe a new approach for infectious disease surveillance that facilitates rapid identification of known and emerging pathogens. The process uses broad-range polymerase chain reaction (PCR) to amplify nucleic acid targets from large groupings of organisms, electrospray ionization mass spectrometry for accurate mass measurements of PCR products, and base composition signature analysis to identify organisms in a sample. We demonstrate this principle by using 14 isolates of 9 diverse Coronavirus spp., including the severe acute respiratory syndrome–associated coronavirus (SARS-CoV). We show that this method could identify and distinguish between SARS and other known CoV, including the human CoV 229E and OC43, individually and in a mixture of all 3 human viruses. The sensitivity of detection, measured by using titered SARS-CoV spiked into human serum, was ≈1 PFU/mL. This approach, applicable to the surveillance of bacterial, viral, fungal, or protozoal pathogens, is capable of automated analysis of >900 PCR reactions per day. PMID:15757550

  11. Comprehensive detection and identification of human coronaviruses, including the SARS-associated coronavirus, with a single RT-PCR assay.

    PubMed

    Adachi, D; Johnson, G; Draker, R; Ayers, M; Mazzulli, T; Talbot, P J; Tellier, R

    2004-12-01

    The SARS-associated human coronavirus (SARS-HCoV) is a newly described, emerging virus conclusively established as the etiologic agent of the severe acute respiratory syndrome (SARS). This study presents a single-tube RT-PCR assay that can detect with high analytical sensitivity the SARS-HCoV, as well as several other coronaviruses including other known human respiratory coronaviruses (HCoV-OC43 and HCoV-229E). Species identification is provided by sequencing the amplicon, although a rapid screening test by restriction enzyme analysis has proved to be very useful for the analysis of samples obtained during the SARS outbreak in Toronto, Canada.

  12. M-phase-specific protein kinase from mitotic sea urchin eggs: cyclic activation depends on protein synthesis and phosphorylation but does not require DNA or RNA synthesis.

    PubMed

    Arion, D; Meijer, L

    1989-08-01

    Histone H1 kinase (H1K) undergoes a transient activation at each early M phase of both meiotic and mitotic cell cycles. The mechanisms underlying the transient activation of this protein kinase were investigated in mitotic sea urchin eggs. Translocation of active H1K from particulate to soluble fraction does not seem to be responsible for this activation. H1K activation cannot be accounted for by the transient disappearance of a putative H1K inhibitor present in soluble fractions of homogenates. Aphidicolin, an inhibitor of DNA synthesis, and actinomycin D, an inhibitor of RNA synthesis, do not impede the transient appearance of H1K activity. H1K activation therefore does not require DNA or RNA synthesis. Fertilization triggers a rise in intracellular pH responsible for the increase of protein synthesis. H1K activation is highly dependent on the intracellular pH. Ammonia triggers an increase of intracellular pH and stimulates protein synthesis and H1K activation. Acetate lowers the intracellular pH, decreases protein synthesis, and blocks H1K activation. Protein synthesis is an absolute requirement for H1K activation as demonstrated by their identical sensitivities to emetine concentration and to time of emetine addition. About 60 min after fertilization, H1K activation and cleavage become independent of protein synthesis. The concentration of p34, a homolog of the yeast cdc2 gene product which has been recently shown to be a subunit of H1K, does not vary during the cell cycle and remains constant in emetine-treated cells. H1K activation thus requires the synthesis of either a p34 postranslational modifying enzyme or another subunit. Finally, phosphatase inhibitors and ATP slow down in the in vitro inactivation rate of H1K. These results suggest that a subunit or an activator of H1K is stored as an mRNA in the egg before mitosis and that full activation of H1K requires a phosphorylation.

  13. Design, Synthesis, and Properties of Phosphoramidate 2',5'-Linked Branched RNA: Toward the Rational Design of Inhibitors of the RNA Lariat Debranching Enzyme.

    PubMed

    Tago, Nobuhiro; Katolik, Adam; Clark, Nathaniel E; Montemayor, Eric J; Seio, Kohji; Sekine, Mitsuo; Hart, P John; Damha, Masad J

    2015-10-16

    Two RNA fragments linked by means of a 2',5' phosphodiester bridge (2' hydroxyl of one fragment connected to the 5' hydroxyl of the other) constitute a class of nucleic acids known as 2'-5' branched RNAs (bRNAs). In this report we show that bRNA analogues containing 2'-5' phosphoramidate linkages (bN-RNAs) inhibit the lariat debranching enzyme, a 2',5'-phosphodiesterase that has recently been implicated in neurodegenerative diseases associated with aging. bN-RNAs were efficiently generated using automated solid-phase synthesis and suitably protected branchpoint building blocks. Two orthogonally removable groups, namely the 4-monomethoxytrityl (MMTr) group and the fluorenylmethyl-oxycarbonyl (Fmoc) groups, were evaluated as protecting groups of the 2' amino functionality. The 2'-N-Fmoc methodology was found to successfully produce bN-RNAs on solid-phase oligonucleotide synthesis. The synthesized bN-RNAs resisted hydrolysis by the lariat debranching enzyme (Dbr1) and, in addition, were shown to attenuate the Dbr1-mediated hydrolysis of native bRNA.

  14. Dual Mechanisms of Translation Initiation of the Full-Length HIV-1 mRNA Contribute to Gag Synthesis

    PubMed Central

    Rivero, Matias; Cohen, Éric A.; Lopez-Lastra, Marcelo; Mouland, Andrew J.

    2013-01-01

    The precursor group-specific antigen (pr55Gag) is central to HIV-1 assembly. Its expression alone is sufficient to assemble into virus-like particles. It also selects the genomic RNA for encapsidation and is involved in several important virus-host interactions for viral assembly and restriction, making its synthesis essential for aspects of viral replication. Here, we show that the initiation of translation of the HIV-1 genomic RNA is mediated through both a cap-dependent and an internal ribosome entry site (IRES)-mediated mechanisms. In support of this notion, pr55Gag synthesis was maintained at 70% when cap-dependent translation initiation was blocked by the expression of eIF4G- and PABP targeting viral proteases in two in vitro systems and in HIV-1-expressing cells directly infected with poliovirus. While our data reveal that IRES-dependent translation of the viral genomic RNA ensures pr55Gag expression, the synthesis of other HIV-1 proteins, including that of pr160Gag/Pol, Vpr and Tat is suppressed early during progressive poliovirus infection. The data presented herein implies that the unspliced HIV-1 genomic RNA utilizes both cap-dependent and IRES-dependent translation initiation to supply pr55Gag for virus assembly and production. PMID:23861855

  15. Site-Specific Cleavage of Ribosomal RNA in Escherichia coli-Based Cell-Free Protein Synthesis Systems

    PubMed Central

    Failmezger, Jurek; Nitschel, Robert; Sánchez-Kopper, Andrés; Kraml, Michael; Siemann-Herzberg, Martin

    2016-01-01

    Cell-free protein synthesis, which mimics the biological protein production system, allows rapid expression of proteins without the need to maintain a viable cell. Nevertheless, cell-free protein expression relies on active in vivo translation machinery including ribosomes and translation factors. Here, we examined the integrity of the protein synthesis machinery, namely the functionality of ribosomes, during (i) the cell-free extract preparation and (ii) the performance of in vitro protein synthesis by analyzing crucial components involved in translation. Monitoring the 16S rRNA, 23S rRNA, elongation factors and ribosomal protein S1, we show that processing of a cell-free extract results in no substantial alteration of the translation machinery. Moreover, we reveal that the 16S rRNA is specifically cleaved at helix 44 during in vitro translation reactions, resulting in the removal of the anti-Shine-Dalgarno sequence. These defective ribosomes accumulate in the cell-free system. We demonstrate that the specific cleavage of the 16S rRNA is triggered by the decreased concentrations of Mg2+. In addition, we provide evidence that helix 44 of the 30S ribosomal subunit serves as a point-of-entry for ribosome degradation in Escherichia coli. Our results suggest that Mg2+ homeostasis is fundamental to preserving functional ribosomes in cell-free protein synthesis systems, which is of major importance for cell-free protein synthesis at preparative scale, in order to create highly efficient technical in vitro systems. PMID:27992588

  16. Induction of human spermine oxidase SMO(PAOh1) is regulated at the levels of new mRNA synthesis, mRNA stabilization and newly synthesized protein.

    PubMed

    Wang, Yanlin; Hacker, Amy; Murray-Stewart, Tracy; Fleischer, Jennifer G; Woster, Patrick M; Casero, Robert A

    2005-03-15

    The oxidation of polyamines induced by antitumour polyamine analogues has been associated with tumour response to specific agents. The human spermine oxidase, SMO(PAOh1), is one enzyme that may play a direct role in the cellular response to the antitumour polyamine analogues. In the present study, the induction of SMO(PAOh1) enzyme activity by CPENSpm [N1-ethyl-N11-(cyclopropyl)methyl-4,8,diazaundecane] is demonstrated to be a result of newly synthesized mRNA and protein. Inhibition of new RNA synthesis by actinomycin D inhibits both the appearance of SMO(PAOh1) mRNA and enzyme activity. Similarly, inhibition of newly synthesized protein with cycloheximide prevents analogue-induced enzyme activity. Half-life determinations indicate that stabilization of SMO(PAOh1) protein does not play a significant role in analogue-induced activity. However, half-life experiments using actinomycin D indicate that CPENSpm treatment not only increases mRNA expression, but also leads to a significant increase in mRNA half-life (17.1 and 8.8 h for CPENSpm-treated cells and control respectively). Using reporter constructs encompassing the SMO(PAOh1) promoter region, a 30-90% increase in transcription is observed after exposure to CPENSpm. The present results are consistent with the hypothesis that analogue-induced expression of SMO(PAOh1) is a result of increased transcription and stabilization of SMO(PAOh1) mRNA, leading to increased protein production and enzyme activity. These data indicate that the major level of control of SMO(PAOh1) expression in response to polyamine analogues exposure is at the level of mRNA.

  17. Hyaluronan tetrasaccharides stimulate ceramide production through upregulated mRNA expression of ceramide synthesis-associated enzymes.

    PubMed

    Kage, Madoka; Tokudome, Yoshihiro

    2016-03-01

    It has been reported that hyaluronan has different physiological functions as suggested by variation in molecular weight. In addition, it has also been reported that CD44, the major hyaluronan receptor, was demonstrated to induce keratinocyte differentiation and lipid synthesis of cholesterol. We focus attention on the hyaluronan tetrasaccharides (HA4) which is the smallest unit of hyaluronan. We previously reported that HA4 induced keratinocyte differentiation and that CD44 may be involved. For the purpose of clarifying the influence of HA4 on ceramide synthesis, we evaluated both of these factors in keratinocytes in vitro and in vivo. The mRNA expression of ceramide synthesis-associated enzymes and intracellular ceramide content were evaluated after HA4 treatment in normal human epidermal keratinocytes. In addition, the ceramide increasing effect of HA4 on skin in UVA-irradiated hairless mice was assessed by water content of stratum corneum (SC) and transepidermal water loss (TEWL) methods. The mRNA expression of ceramide synthesis-associated enzymes and intracellular ceramide content after HA4 treatment were increased compared with the control. Furthermore, HA4 treatment increased water content of SC and decreased TEWL. These findings suggest that HA4 affected ceramide synthesis and is involved in the improvement of UV-induced skin damage.

  18. Coronavirus 229E-related pneumonia in immunocompromised patients.

    PubMed

    Pene, Frédéric; Merlat, Annabelle; Vabret, Astrid; Rozenberg, Flore; Buzyn, Agnès; Dreyfus, François; Cariou, Alain; Freymuth, François; Lebon, Pierre

    2003-10-01

    Coronaviruses strains 229E and OC43 have been associated with various respiratory illnesses ranging from the self-resolving common cold to severe pneumonia. Although chronic underlying conditions are major determinants of severe respiratory virus infections, few data about coronavirus-related pneumonia in immunocompromised patients are available. Here we report 2 well-documented cases of pneumonia related to coronavirus 229E, each with a different clinical presentation. Diagnosis was made on the basis of viral culture and electron microscopy findings that exhibited typical crown-like particles and through amplification of the viral genome by reverse transcriptase-polymerase chain reaction. On the basis of this report, coronaviruses should be considered as potential causative microorganisms of pneumonia in immunocompromised patients.

  19. A decade after SARS: strategies for controlling emerging coronaviruses.

    PubMed

    Graham, Rachel L; Donaldson, Eric F; Baric, Ralph S

    2013-12-01

    Two novel coronaviruses have emerged in humans in the twenty-first century: severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), both of which cause acute respiratory distress syndrome (ARDS) and are associated with high mortality rates. There are no clinically approved vaccines or antiviral drugs available for either of these infections; thus, the development of effective therapeutic and preventive strategies that can be readily applied to new emergent strains is a research priority. In this Review, we describe the emergence and identification of novel human coronaviruses over the past 10 years, discuss their key biological features, including tropism and receptor use, and summarize approaches for developing broadly effective vaccines.

  20. Human coronavirus NL63, a new respiratory virus.

    PubMed

    van der Hoek, Lia; Pyrc, Krzysztof; Berkhout, Ben

    2006-09-01

    From the mid-1960s onwards, it was believed that only two human coronavirus species infect humans: HCoV-229E and HCoV-OC43. Then, in 2003, a novel member of the coronavirus family was introduced into the human population: SARS-CoV, causing an aggressive lung disease. Fortunately, this virus was soon expelled from the human population, but it quickly became clear that the human coronavirus group contains more members then previously assumed, with HCoV-NL63 identified in 2004. Despite its recent discovery, ample results from HCoV-NL63 research have been described. We present an overview of the publications on this novel coronavirus.

  1. Effect of heat shock on the synthesis of low molecular weight RNAs in drosophilia: accumulation of a novel form of 5S RNA.

    PubMed

    Rubin, G M; Hogness, D S

    1975-10-01

    The synthesis and stability of low molecular weight RNAs following heat shock in Drosophilia melanogaster cell cultures have been examined. When cultures are raised from 25 degrees C to 37 degrees C, the synthesis of tRNA and at least two other low molecular weight RNAs continues at the 25 degree C rate. 5.8S ribosomal RNA and most of the low molecular weight nuclear RNAs are not synthesized. The synthesis of 5S ribosomal RNA is greatly reduced. A large amount of an RNA of about 135 nucleotides in length accumulates at 37 degrees C. Nucleotide sequence analysis reveals that this RNA is a novel form of 5S RNA with approximately 15 additional nucleotides at its 3' end.

  2. Structure of Main Protease from Human Coronavirus NL63: Insights for Wide Spectrum Anti-Coronavirus Drug Design

    PubMed Central

    Wang, Fenghua; Chen, Cheng; Tan, Wenjie; Yang, Kailin; Yang, Haitao

    2016-01-01

    First identified in The Netherlands in 2004, human coronavirus NL63 (HCoV-NL63) was found to cause worldwide infections. Patients infected by HCoV-NL63 are typically young children with upper and lower respiratory tract infection, presenting with symptoms including croup, bronchiolitis, and pneumonia. Unfortunately, there are currently no effective antiviral therapy to contain HCoV-NL63 infection. CoV genomes encode an integral viral component, main protease (Mpro), which is essential for viral replication through proteolytic processing of RNA replicase machinery. Due to the sequence and structural conservation among all CoVs, Mpro has been recognized as an attractive molecular target for rational anti-CoV drug design. Here we present the crystal structure of HCoV-NL63 Mpro in complex with a Michael acceptor inhibitor N3. Structural analysis, consistent with biochemical inhibition results, reveals the molecular mechanism of enzyme inhibition at the highly conservative substrate-recognition pocket. We show such molecular target remains unchanged across 30 clinical isolates of HCoV-NL63 strains. Through comparative study with Mpros from other human CoVs (including the deadly SARS-CoV and MERS-CoV) and their related zoonotic CoVs, our structure of HCoV-NL63 Mpro provides critical insight into rational development of wide spectrum antiviral therapeutics to treat infections caused by human CoVs. PMID:26948040

  3. The Conserved Coronavirus Macrodomain Promotes Virulence and Suppresses the Innate Immune Response during Severe Acute Respiratory Syndrome Coronavirus Infection

    PubMed Central

    Fehr, Anthony R.; Channappanavar, Rudragouda; Jankevicius, Gytis; Fett, Craig; Zhao, Jincun; Athmer, Jeremiah; Meyerholz, David K.; Ahel, Ivan

    2016-01-01

    ABSTRACT ADP-ribosylation is a common posttranslational modification that may have antiviral properties and impact innate immunity. To regulate this activity, macrodomain proteins enzymatically remove covalently attached ADP-ribose from protein targets. All members of the Coronavirinae, a subfamily of positive-sense RNA viruses, contain a highly conserved macrodomain within nonstructural protein 3 (nsp3). However, its function or targets during infection remain unknown. We identified several macrodomain mutations that greatly reduced nsp3’s de-ADP-ribosylation activity in vitro. Next, we created recombinant severe acute respiratory syndrome coronavirus (SARS-CoV) strains with these mutations. These mutations led to virus attenuation and a modest reduction of viral loads in infected mice, despite normal replication in cell culture. Further, macrodomain mutant virus elicited an early, enhanced interferon (IFN), interferon-stimulated gene (ISG), and proinflammatory cytokine response in mice and in a human bronchial epithelial cell line. Using a coinfection assay, we found that inclusion of mutant virus in the inoculum protected mice from an otherwise lethal SARS-CoV infection without reducing virus loads, indicating that the changes in innate immune response were physiologically significant. In conclusion, we have established a novel function for the SARS-CoV macrodomain that implicates ADP-ribose in the regulation of the innate immune response and helps to demonstrate why this domain is conserved in CoVs. PMID:27965448

  4. Structure of Main Protease from Human Coronavirus NL63: Insights for Wide Spectrum Anti-Coronavirus Drug Design.

    PubMed

    Wang, Fenghua; Chen, Cheng; Tan, Wenjie; Yang, Kailin; Yang, Haitao

    2016-03-07

    First identified in The Netherlands in 2004, human coronavirus NL63 (HCoV-NL63) was found to cause worldwide infections. Patients infected by HCoV-NL63 are typically young children with upper and lower respiratory tract infection, presenting with symptoms including croup, bronchiolitis, and pneumonia. Unfortunately, there are currently no effective antiviral therapy to contain HCoV-NL63 infection. CoV genomes encode an integral viral component, main protease (M(pro)), which is essential for viral replication through proteolytic processing of RNA replicase machinery. Due to the sequence and structural conservation among all CoVs, M(pro) has been recognized as an attractive molecular target for rational anti-CoV drug design. Here we present the crystal structure of HCoV-NL63 M(pro) in complex with a Michael acceptor inhibitor N3. Structural analysis, consistent with biochemical inhibition results, reveals the molecular mechanism of enzyme inhibition at the highly conservative substrate-recognition pocket. We show such molecular target remains unchanged across 30 clinical isolates of HCoV-NL63 strains. Through comparative study with M(pro)s from other human CoVs (including the deadly SARS-CoV and MERS-CoV) and their related zoonotic CoVs, our structure of HCoV-NL63 M(pro) provides critical insight into rational development of wide spectrum antiviral therapeutics to treat infections caused by human CoVs.

  5. Insectivorous bats carry host specific astroviruses and coronaviruses across different regions in Germany.

    PubMed

    Fischer, Kerstin; Zeus, Veronika; Kwasnitschka, Linda; Kerth, Gerald; Haase, Martin; Groschup, Martin H; Balkema-Buschmann, Anne

    2016-01-01

    Recently several infectious agents with a zoonotic potential have been detected in different bat species. However, there is still a lack of knowledge on the transmission dynamics within and between bat species, as well as from bats to other mammals. To better understand these processes, it is important to compare the phylogenetic relationships between different agents to that of their respective hosts. In this study, we analysed more than 950 urine, faeces and oral swab samples collected from 653 bats from mainly four species (Myotis nattereri, Myotis bechsteinii, Myotis daubentonii, and Plecotus auritus) for the presence of coronavirus, paramyxovirus and astrovirus related nucleic acids located in three different regions of Germany. Using hemi-nested reverse transcriptase (RT)-PCR amplification of fragments within the highly conserved regions of the respective RNA dependent RNA polymerase (RdRp) genes, we detected astrovirus sequences at an overall detection rate of 25.8% of the analysed animals, with a maximum of 65% in local populations. The detection rates for coronaviruses and paramyxoviruses were distinctly lower, ranging between 1.4% and 3.1%. Interestingly, the sequence similarities in samples collected from the same bat species in different geographical areas were distinctly larger than the sequence similarities between samples from different species sampled at the same location. This indicates that host specificity may be more important than host ecology for the presence of certain viruses in bats.

  6. Survey of feline leukemia virus and feline coronaviruses in captive neotropical wild felids from Southern Brazil.

    PubMed

    Guimaraes, Ana M S; Brandão, Paulo E; de Moraes, Wanderlei; Cubas, Zalmir S; Santos, Leonilda C; Villarreal, Laura Y B; Robes, Rogério R; Coelho, Fabiana M; Resende, Mauricio; Santos, Renata C F; Oliveira, Rosangela C; Yamaguti, Mauricio; Marques, Lucas M; Neto, Renata L; Buzinhani, Melissa; Marques, Regina; Messick, Joanne B; Biondo, Alexander W; Timenetsky, Jorge

    2009-06-01

    A total of 57 captive neotropical felids (one Leopardus geoffroyi, 14 Leopardus pardalis, 17 Leopardus wiedii, 22 Leopardus tigrinus, and three Puma yagouaroundi) from the Itaipu Binacional Wildlife Research Center (Refúgio Bela Vista, Southern Brazil) were anesthetized for blood collection. Feces samples were available for 44 animals, including one L. geoffroyi, eight L. pardalis, 14 L. wiedii, 20 L. tigrinus, and one P. yagouaroundi. Total DNA and RNA were extracted from blood and feces, respectively, using commercial kits. Blood DNA samples were evaluated by polymerase chain reaction (PCR) for feline leukemia virus (FeLV) proviral DNA, whereas reverse transcriptase-PCR was run on fecal samples for detection of coronavirus RNA. None of the samples were positive for coronaviruses. A male L. pardalis and a female L. tigrinus were positive for FeLV proviral DNA, and identities of PCR products were confirmed by sequencing. This is the first evidence of FeLV proviral DNA in these species in Southern Brazil.

  7. Newly identified phosphorylation site in the vesicular stomatitis virus P protein is required for viral RNA synthesis.

    PubMed

    Mondal, Arindam; Victor, Ken G; Pudupakam, R S; Lyons, Charles E; Wertz, Gail W

    2014-02-01

    The vesicular stomatitis virus (VSV) RNA-dependent RNA polymerase consists of two viral proteins; the large (L) protein is the main catalytic subunit, and the phosphoprotein (P) is an essential cofactor for polymerase function. The P protein interacts with the L protein and the N-RNA template, thus connecting the polymerase to the template. P protein also binds to free N protein to maintain it in a soluble, encapsidation-competent form. Previously, five sites of phosphorylation were identified on the P protein and these sites were reported to be differentially important for mRNA synthesis or genomic replication. The previous studies were carried out by biochemical analysis of portions of the authentic viral P protein or by analysis of bacterium-expressed, exogenously phosphorylated P protein by mutagenesis. However, there has been no systematic biochemical search for phosphorylation sites on authentic, virus-expressed P protein. In this study, we analyzed the P protein isolated from VSV-infected cells for sites of phosphorylation by mass spectrometry. We report the identification of Tyr14 as a previously unidentified phosphorylation site of VSV P and show that it is essential for viral transcription and replication. However, our mass spectral analysis failed to observe the phosphorylation of previously reported C-terminal residues Ser226 and Ser227 and mutagenic analyses did not demonstrate a role for these sites in RNA synthesis.

  8. Diagnosis and treatment of sideroblastic anemias: from defective heme synthesis to abnormal RNA splicing.

    PubMed

    Cazzola, Mario; Malcovati, Luca

    2015-01-01

    The sideroblastic anemias are a heterogeneous group of inherited and acquired disorders characterized by the presence of ring sideroblasts in the bone marrow. X-linked sideroblastic anemia (XLSA) is caused by germline mutations in ALAS2. Hemizygous males have a hypochromic microcytic anemia, which is generally mild to moderate and is caused by defective heme synthesis and ineffective erythropoiesis. XLSA is a typical iron-loading anemia; although most patients are responsive to pyridoxine, treatment of iron overload is also important in the management of these patients. Autosomal recessive sideroblastic anemia attributable to mutations in SLC25A38, a member of the mitochondrial carrier family, is a severe disease: patients present in infancy with microcytic anemia, which soon becomes transfusion dependent. Conservative therapy includes regular red cell transfusion and iron chelation, whereas allogenic stem cell transplantation represents the only curative treatment. Refractory anemia with ring sideroblasts (RARS) is a myelodysplastic syndrome characterized mainly by anemia attributable to ineffective erythropoiesis. The clinical course of RARS is generally indolent, but there is a tendency to worsening of anemia over time, so that most patients become transfusion dependent in the long run. More than 90% of these patients carry somatic mutations in SF3B1, a gene encoding a core component of the RNA splicing machinery. These mutations cause misrecognition of 3' splice sites in downstream genes, resulting in truncated gene products and/or decreased expression attributable to nonsense-mediated RNA decay; this explains the multifactorial pathogenesis of RARS. Variants of RARS include refractory cytopenia with multilineage dysplasia and ring sideroblasts, and RARS associated with marked thrombocytosis; these variants involve additional genetic lesions. Inhibitors of molecules of the transforming growth factor-β superfamily have been shown recently to target ineffective

  9. Nonenzymatic synthesis of RNA and DNA oligomers on hexitol nucleic acid templates: the importance of the A structure

    NASA Technical Reports Server (NTRS)

    Kozlov, I. A.; Politis, P. K.; Van Aerschot, A.; Busson, R.; Herdewijn, P.; Orgel, L. E.; Bada, J. L. (Principal Investigator); Dolan, M. (Principal Investigator)

    1999-01-01

    Hexitol nucleic acid (HNA) is an analogue of DNA containing the standard nucleoside bases, but with a phosphorylated 1,5-anhydrohexitol backbone. HNA oligomers form duplexes having the nucleic acid A structure with complementary DNA or RNA oligomers. The HNA decacytidylate oligomer is an efficient template for the oligomerization of the 5'-phosphoroimidazolides of guanosine or deoxyguanosine. Comparison of the oligomerization efficiencies on HNA, RNA, and DNA decacytidylate templates under various conditions suggests strongly that only nucleic acid double helices with the A structure support efficient template-directed synthesis when 5'-phosphoroimidazolides of nucleosides are used as substrates.

  10. Synthesis of native-like crosslinked duplex RNA and study of its properties.

    PubMed

    Onizuka, Kazumitsu; Hazemi, Madoka E; Thomas, Justin M; Monteleone, Leanna R; Yamada, Ken; Imoto, Shuhei; Beal, Peter A; Nagatsugi, Fumi

    2017-04-01

    A variety of enzymes have been found to interact with double-stranded RNA (dsRNA) in order to carry out its functions. We have endeavored to prepare the covalently crosslinked native-like duplex RNA, which could be useful for biochemical studies and RNA nanotechnology. In this study, the interstrand covalently linked duplex RNA was formed by a crosslinking reaction between vinylpurine (VP) and the target cytosine or uracil in RNA. We measured melting temperatures and CD spectra to identify the properties of the VP crosslinked duplex RNA. The crosslinking formation increased the thermodynamic stability without disturbing the natural conformation of dsRNA. In addition, a competitive binding experiment with the duplex RNA binding enzyme, ADAR2, showed the crosslinked dsRNA bound the protein with nearly the same binding affinity as the natural dsRNA, confirming that it has finely preserved the natural traits of duplex RNA.

  11. Broad-Spectrum Antivirals against 3C or 3C-Like Proteases of Picornaviruses, Noroviruses, and Coronaviruses

    PubMed Central

    Kim, Yunjeong; Lovell, Scott; Tiew, Kok-Chuan; Mandadapu, Sivakoteswara Rao; Alliston, Kevin R.; Battaile, Kevin P.; Groutas, William C.

    2012-01-01

    Phylogenetic analysis has demonstrated that some positive-sense RNA viruses can be classified into the picornavirus-like supercluster, which includes picornaviruses, caliciviruses, and coronaviruses. These viruses possess 3C or 3C-like proteases (3Cpro or 3CLpro, respectively), which contain a typical chymotrypsin-like fold and a catalytic triad (or dyad) with a Cys residue as a nucleophile. The conserved key sites of 3Cpro or 3CLpro may serve as attractive targets for the design of broad-spectrum antivirals for multiple viruses in the supercluster. We previously reported the structure-based design and synthesis of potent protease inhibitors of Norwalk virus (NV), a member of the Caliciviridae family. We report herein the broad-spectrum antiviral activities of three compounds possessing a common dipeptidyl residue with different warheads, i.e., an aldehyde (GC373), a bisulfite adduct (GC376), and an α-ketoamide (GC375), against viruses that belong to the supercluster. All compounds were highly effective against the majority of tested viruses, with half-maximal inhibitory concentrations in the high nanomolar or low micromolar range in enzyme- and/or cell-based assays and with high therapeutic indices. We also report the high-resolution X-ray cocrystal structures of NV 3CLpro-, poliovirus 3Cpro-, and transmissible gastroenteritis virus 3CLpro- GC376 inhibitor complexes, which show the compound covalently bound to a nucleophilic Cys residue in the catalytic site of the corresponding protease. We conclude that these compounds have the potential to be developed as antiviral therapeutics aimed at a single virus or multiple viruses in the picornavirus-like supercluster by targeting 3Cpro or 3CLpro. PMID:22915796

  12. Regulation of mRNA abundance in activated T lymphocytes: identification of mRNA species affected by the inhibition of protein synthesis.

    PubMed Central

    Coleclough, C; Kuhn, L; Lefkovits, I

    1990-01-01

    Inhibition of protein synthesis has often been observed to increase the concentration of mRNAs that encode proteins associated with the regulation of cell division. As two-dimensional gel electrophoresis permits the simultaneous monitoring of individual elements in large populations of gene products, we have used this technique to assess the effect of cycloheximide treatment on the mRNA complement of activated mouse T cells in an objective fashion. Two-dimensional gels of proteins generated by cell-free translation of mRNA from T-cell blasts display about 400 spots; only 5 of these are reproducibly enhanced by cycloheximide treatment and about 4 are diminished. The cDNA cloning vector lambda jac allows analysis of large arrays of molecular clones by cell-free expression, and we have used it in a sibling selection scheme to isolate a clone of one of the prominently induced mRNA species, which we refer to as chx1. chx1 mRNA concentration is increased by cycloheximide treatment of activated B cells, as well as T cells, and it is rapidly and transiently induced, in a cycloheximide-enhanced manner, upon serum stimulation of resting 3T3 fibroblastoid cells. The chx1 protein is hydrophilic, is slightly basic, and has patches of homology with the Jun-D gene product. The chx1 gene is remarkable in its lack of detectable introns and of strong bias against CpG dinucleotides. Images PMID:2308934

  13. The role of 23S ribosomal RNA residue A2451 in peptide bond synthesis revealed by atomic mutagenesis.

    PubMed

    Lang, Kathrin; Erlacher, Matthias; Wilson, Daniel N; Micura, Ronald; Polacek, Norbert

    2008-05-01

    Peptide bond formation is a fundamental reaction in biology, catalyzed by the ribosomal peptidyl-transferase ribozyme. Although all active-site 23S ribosomal RNA nucleotides are universally conserved, atomic mutagenesis suggests that these nucleobases do not carry functional groups directly involved in peptide bond formation. Instead, a single ribose 2'-hydroxyl group at A2451 was identified to be of pivotal importance. Here, we altered the chemical characteristics by replacing its 2'-hydroxyl with selected functional groups and demonstrate that hydrogen donor capability is essential for transpeptidation. We propose that the A2451-2'-hydroxyl directly hydrogen bonds to the P-site tRNA-A76 ribose. This promotes an effective A76 ribose C2'-endo conformation to support amide synthesis via a proton shuttle mechanism. Simultaneously, the direct interaction of A2451 with A76 renders the intramolecular transesterification of the peptide from the 3'- to 2'-oxygen unfeasible, thus promoting effective peptide bond synthesis.

  14. RNA Crystallization

    NASA Technical Reports Server (NTRS)

    Golden, Barbara L.; Kundrot, Craig E.

    2003-01-01

    RNA molecules may be crystallized using variations of the methods developed for protein crystallography. As the technology has become available to syntheisize and purify RNA molecules in the quantities and with the quality that is required for crystallography, the field of RNA structure has exploded. The first consideration when crystallizing an RNA is the sequence, which may be varied in a rational way to enhance crystallizability or prevent formation of alternate structures. Once a sequence has been designed, the RNA may be synthesized chemically by solid-state synthesis, or it may be produced enzymatically using RNA polymerase and an appropriate DNA template. Purification of milligram quantities of RNA can be accomplished by HPLC or gel electrophoresis. As with proteins, crystallization of RNA is usually accomplished by vapor diffusion techniques. There are several considerations that are either unique to RNA crystallization or more important for RNA crystallization. Techniques for design, synthesis, purification, and crystallization of RNAs will be reviewed here.

  15. Epidemiology, Genetic Recombination, and Pathogenesis of Coronaviruses.

    PubMed

    Su, Shuo; Wong, Gary; Shi, Weifeng; Liu, Jun; Lai, Alexander C K; Zhou, Jiyong; Liu, Wenjun; Bi, Yuhai; Gao, George F

    2016-06-01

    Human coronaviruses (HCoVs) were first described in the 1960s for patients with the common cold. Since then, more HCoVs have been discovered, including those that cause severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS), two pathogens that, upon infection, can cause fatal respiratory disease in humans. It was recently discovered that dromedary camels in Saudi Arabia harbor three different HCoV species, including a dominant MERS HCoV lineage that was responsible for the outbreaks in the Middle East and South Korea during 2015. In this review we aim to compare and contrast the different HCoVs with regard to epidemiology and pathogenesis, in addition to the virus evolution and recombination events which have, on occasion, resulted in outbreaks amongst humans.

  16. Human coronavirus NL63 infection in Canada.

    PubMed

    Bastien, Nathalie; Anderson, Kelly; Hart, Laura; Van Caeseele, Paul; Brandt, Ken; Milley, Doug; Hatchette, Todd; Weiss, Elise C; Li, Yan

    2005-02-15

    The isolation of human coronavirus NL63 (HCoV-NL63) in The Netherlands raised questions about its contribution to respiratory illness. In this study, a total of 525 respiratory specimens, collected in Canada primarily during the winter months of 2001-2002, were tested for HCoV-NL63; 19 tested positive for HCoV-NL63, demonstrating virus activity during January-March 2002. Patients with HCoV-NL63 were 1 month-100 years old (median age, 37 years). The main clinical presentations were fever (15/19), sore throat (5/19), and cough (9/19), and 4 patients were hospitalized. These results provide evidence for the worldwide distribution of HCoV-NL63.

  17. Stability of infectious human coronavirus NL63.

    PubMed

    Florek, Dominik; Burmistrz, Michal; Potempa, Jan; Pyrc, Krzysztof

    2014-09-01

    The human coronavirus NL63 was identified in 2004 and subsequent studies showed its worldwide distribution. Infection with this pathogen is associated with upper and lower respiratory tract diseases of mild to moderate severity. Furthermore, HCoV-NL63 is the main cause of croup in children. Within this study an optimal protocol for freeze-drying that allows safe and effective preservation of HCoV-NL63 infectious material was developed. Lyophilized virus preparations can be stored either at ambient temperature or at +4°C. In the latter case samples may be stored for at least two months. Surprisingly, conducted analysis showed that HCoV-NL63 virions are exquisitely stable in liquid media and can be stored also without preservatives at ambient temperature for up to 14 days.

  18. tRNA synthase suppression activates de novo cysteine synthesis to compensate for cystine and glutathione deprivation during ferroptosis.

    PubMed

    Shimada, Kenichi; Stockwell, Brent R

    2016-03-01

    Glutathione is a major endogenous reducing agent in cells, and cysteine is a limiting factor in glutathione synthesis. Cysteine is obtained by uptake or biosynthesis, and mammalian cells often rely on either one or the other pathway. Because of the scarcity of glutathione, blockade of cysteine uptake causes oxidative cell death known as ferroptosis. A new study suggests that tRNA synthetase suppression activates the endogenous biosynthesis of cysteine, compensates such cysteine loss, and thus makes cells resistant to ferroptosis.

  19. Inhibition of viral RNA synthesis in canine distemper virus infection by proanthocyanidin A2.

    PubMed

    Gallina, Laura; Dal Pozzo, Fabiana; Galligioni, Viola; Bombardelli, Ezio; Scagliarini, Alessandra

    2011-12-01

    Canine distemper virus (CDV) is a contagious and multisystemic viral disease that affects domestic and wild canines as well as other terrestrial and aquatic carnivores. The disease in dogs is often fatal and no specific antiviral therapy is currently available. In this study, we evaluated the in vitro antiviral activity against CDV of proanthocyanidin A2 (PA2), a phenolic dimer belonging to the class of condensed tannins present in plants. Our results showed that PA2 exerted in vitro antiviral activity against CDV with a higher selectivity index compared to ribavirin, included in our study for the previously tested anti-CDV activity. The time of addition assay led us to observe that PA2 was able to decrease the viral RNA synthesis and to reduce progeny virus liberation, at different times post infection suggesting multiple mechanisms of action including inhibition of viral replicative complex and modulation of the redox milieu. These data suggest that PA2, isolated from the bark of Aesculus hippocastanum, has potential usefulness as an anti-CDV compound inhibiting viral replication.

  20. RNA synthesis is associated with multiple TBP-chromatin binding events

    PubMed Central

    Zaidi, Hussain A.; Auble, David T.; Bekiranov, Stefan

    2017-01-01

    Competition ChIP is an experimental method that allows transcription factor (TF) chromatin turnover dynamics to be measured across a genome. We develop and apply a physical model of TF-chromatin competitive binding using chemical reaction rate theory and are able to derive the physical half-life or residence time for TATA-binding protein (TBP) across the yeast genome from competition ChIP data. Using our physical modeling approach where we explicitly include the induction profile of the competitor in the model, we are able to estimate yeast TBP-chromatin residence times as short as 1.3 minutes, demonstrating that competition ChIP is a relatively high temporal-resolution approach. Strikingly, we find a median value of ~5 TBP-chromatin binding events associated with the synthesis of one RNA molecule across Pol II genes, suggesting multiple rounds of pre-initiation complex assembly and disassembly before productive elongation of Pol II is achieved at most genes in the yeast genome. PMID:28051102

  1. [New coronavirus infection: new challenges, new legacies].

    PubMed

    Cabrera-Gaytán, David Alejandro; Vargas-Valerio, Alfredo; Grajales-Muñiz, Concepción

    2014-01-01

    Introducción: emergió una nueva enfermedad por coronavirus. Su historia natural y sus determinantes todavía se están investigando. Se carece de una publicación que estudie todos los casos identificados en el mundo, por lo que el objetivo de este artículo estriba en describir los casos y defunciones por el nuevo coronavirus. Métodos: se revisaron las publicaciones en línea de la Organización Mundial de la Salud, del Centro Europeo para el Control y Prevención de Enfermedades y de la Eurosurveillance. Se realizó un análisis descriptivo de los casos, se calcularon los límites para proporciones con un alfa del 0.05 por prueba de Wilson y una prueba t de Student para diferencia de medias. Resultados: son 17 casos confirmados y 11 defunciones en varios países de Asia y Europa; predominaron los pacientes masculinos. La tasa de letalidad fue de 64.70 %; los que fallecieron se hospitalizaron cinco días después de los primeros síntomas. Se carece de publicaciones que describan la historia natural de la enfermedad; sin embargo, lo descrito en las publicaciones de Europa coincide con los resultados de este estudio. Conclusión: es necesario continuar con la vigilancia epidemiológica y la realización de nuevos estudios para evaluar el impacto de esta enfermedad en la salud pública internacional.

  2. Pulmonary surfactant synthesis in miRNA-26a-1/miRNA-26a-2 double knockout mice generated using the CRISPR/Cas9 system

    PubMed Central

    Zhang, Ying-Hui; Wu, Li-Zhi; Liang, Hong-Lu; Yang, Yang; Qiu, Jie; Kan, Qing; Zhu, Wen; Ma, Cheng-Ling; Zhou, Xiao-Yu

    2017-01-01

    Pulmonary surfactant (PS), which is synthesized by type II alveolar epithelial cells (AECIIs), maintains alveolar integrity by reducing surface tension. Many premature neonates who lack adequate PS are predisposed to developing respiratory distress syndrome (RDS), one of the leading causes of neonatal morbidity and mortality. PS synthesis is influenced and regulated by various factors, including microRNAs. Previous in vitro studies have shown that PS synthesis is regulated by miR-26a in fetal rat AECIIs. This study aimed to investigate the role of miR-26a in PS synthesis in vivo. To obtain a miR-26a-1/miR-26a-2 double knockout mouse model, we used the clustered regularly interspaced short palindromic repeat/CRISPR-associated protein 9 (CRISPR/Cas9) system, an important genome editing technology. Real-time PCR was performed to determine the miR-26a levels in various organs, as well as the mRNA levels of surfactant-associated proteins. Moreover, AECIIs and surfactant-associated proteins in lung tissues were analyzed by hematoxylin-eosin staining and immunohistochemistry. Homozygous offspring of miR-26a-1/miR-26a-2 double knockout mice generated using the CRISPR/Cas9 system were successfully obtained, and PS synthesis and the number of AECIIs were significantly increased in the miR-26a knockout mice. These results indicate that miR-26a plays an important role in PS synthesis in AECIIs. PMID:28337265

  3. Discovery of Novel Oral Protein Synthesis Inhibitors of Mycobacterium tuberculosis That Target Leucyl-tRNA Synthetase

    PubMed Central

    Palencia, Andrés; Li, Xianfeng; Bu, Wei; Choi, Wai; Ding, Charles Z.; Easom, Eric E.; Feng, Lisa; Hernandez, Vincent; Houston, Paul; Liu, Liang; Meewan, Maliwan; Mohan, Manisha; Rock, Fernando L.; Sexton, Holly; Zhang, Suoming; Zhou, Yasheen; Wan, Baojie; Wang, Yuehong; Franzblau, Scott G.; Woolhiser, Lisa; Gruppo, Veronica; Lenaerts, Anne J.; O'Malley, Theresa; Parish, Tanya; Cooper, Christopher B.; Waters, M. Gerard; Ma, Zhenkun; Ioerger, Thomas R.; Sacchettini, James C.; Rullas, Joaquín; Angulo-Barturen, Iñigo; Pérez-Herrán, Esther; Mendoza, Alfonso; Barros, David; Cusack, Stephen; Plattner, Jacob J.

    2016-01-01

    The recent development and spread of extensively drug-resistant and totally drug-resistant resistant (TDR) strains of Mycobacterium tuberculosis highlight the need for new antitubercular drugs. Protein synthesis inhibitors have played an important role in the treatment of tuberculosis (TB) starting with the inclusion of streptomycin in the first combination therapies. Although parenteral aminoglycosides are a key component of therapy for multidrug-resistant TB, the oxazolidinone linezolid is the only orally available protein synthesis inhibitor that is effective against TB. Here, we show that small-molecule inhibitors of aminoacyl-tRNA synthetases (AARSs), which are known to be excellent antibacterial protein synthesis targets, are orally bioavailable and effective against M. tuberculosis in TB mouse infection models. We applied the oxaborole tRNA-trapping (OBORT) mechanism, which was first developed to target fungal cytoplasmic leucyl-tRNA synthetase (LeuRS), to M. tuberculosis LeuRS. X-ray crystallography was used to guide the design of LeuRS inhibitors that have good biochemical potency and excellent whole-cell activity against M. tuberculosis. Importantly, their good oral bioavailability translates into in vivo efficacy in both the acute and chronic mouse models of TB with potency comparable to that of the frontline drug isoniazid. PMID:27503647

  4. In vivo effects of the Epstein-Barr virus small RNA EBER-1 on protein synthesis and cell growth regulation.

    PubMed

    Laing, Kenneth G; Elia, Androulla; Jeffrey, Ian; Matys, Volker; Tilleray, Vivienne J; Souberbielle, Bernard; Clemens, Michael J

    2002-06-05

    Recent studies have suggested a role for the Epstein-Barr virus-encoded RNA EBER-1 in malignant transformation. EBER-1 inhibits the activity of the protein kinase PKR, an inhibitor of protein synthesis with tumour suppressor properties. In human 293 cells and murine embryonic fibroblasts, transient expression of EBER-1 promoted total protein synthesis and enhanced the expression of cotransfected reporter genes. However reporter gene expression was stimulated equally well in cells from control and PKR knockout mice. NIH 3T3 cells stably expressing EBER-1 exhibited a greatly increased frequency of colony formation in soft agar, and protein synthesis in these cells was relatively resistant to inhibition by the calcium ionophore A23187. Nevertheless clones containing a high concentration of EBER-1 were not invariably tumourigenic. We conclude that EBER-1 can enhance protein synthesis by a PKR-independent mechanism and that, although this RNA may contribute to the oncogenic potential of Epstein-Barr virus, its expression is not always sufficient for malignant transformation.

  5. Liquid-Phase Synthesis of 2′-Methyl-RNA on a Homostar Support through Organic-Solvent Nanofiltration

    PubMed Central

    Gaffney, Piers R J; Kim, Jeong F; Valtcheva, Irina B; Williams, Glynn D; Anson, Mike S; Buswell, Andrew M; Livingston, Andrew G

    2015-01-01

    Due to the discovery of RNAi, oligonucleotides (oligos) have re-emerged as a major pharmaceutical target that may soon be required in ton quantities. However, it is questionable whether solid-phase oligo synthesis (SPOS) methods can provide a scalable synthesis. Liquid-phase oligo synthesis (LPOS) is intrinsically scalable and amenable to standard industrial batch synthesis techniques. However, most reported LPOS strategies rely upon at least one precipitation per chain extension cycle to separate the growing oligonucleotide from reaction debris. Precipitation can be difficult to develop and control on an industrial scale and, because many precipitations would be required to prepare a therapeutic oligonucleotide, we contend that this approach is not viable for large-scale industrial preparation. We are developing an LPOS synthetic strategy for 2′-methyl RNA phosphorothioate that is more amenable to standard batch production techniques, using organic solvent nanofiltration (OSN) as the critical scalable separation technology. We report the first LPOS-OSN preparation of a 2′-Me RNA phosphorothioate 9-mer, using commercial phosphoramidite monomers, and monitoring all reactions by HPLC, 31P NMR spectroscopy and MS. PMID:26012874

  6. Liquid-Phase Synthesis of 2'-Methyl-RNA on a Homostar Support through Organic-Solvent Nanofiltration.

    PubMed

    Gaffney, Piers R J; Kim, Jeong F; Valtcheva, Irina B; Williams, Glynn D; Anson, Mike S; Buswell, Andrew M; Livingston, Andrew G

    2015-06-22

    Due to the discovery of RNAi, oligonucleotides (oligos) have re-emerged as a major pharmaceutical target that may soon be required in ton quantities. However, it is questionable whether solid-phase oligo synthesis (SPOS) methods can provide a scalable synthesis. Liquid-phase oligo synthesis (LPOS) is intrinsically scalable and amenable to standard industrial batch synthesis techniques. However, most reported LPOS strategies rely upon at least one precipitation per chain extension cycle to separate the growing oligonucleotide from reaction debris. Precipitation can be difficult to develop and control on an industrial scale and, because many precipitations would be required to prepare a therapeutic oligonucleotide, we contend that this approach is not viable for large-scale industrial preparation. We are developing an LPOS synthetic strategy for 2'-methyl RNA phosphorothioate that is more amenable to standard batch production techniques, using organic solvent nanofiltration (OSN) as the critical scalable separation technology. We report the first LPOS-OSN preparation of a 2'-Me RNA phosphorothioate 9-mer, using commercial phosphoramidite monomers, and monitoring all reactions by HPLC, (31)P NMR spectroscopy and MS.

  7. Coronavirus-like Particles in the Feces of a Cat with Diarrhea

    PubMed Central

    Dea, S.; Roy, R. S.; Elazhary, M. A. S. Y.

    1982-01-01

    Coronavirus-like particles were visualized in the feces of a young domestic shorthair female cat with diarrhea. On the surface projections, these particles could be distinguished from the enteric coronavirus-like particles of human, dog, cattle and monkey origin. They appeared morphologically similar to a feline enteric coronavirus recently described by other authors. A precipitin antigen was detected in the cat feces by counterimmunoelectroosmophoresis using a rabbit antibovine coronavirus serum. ImagesFigure 1.Figure 2. PMID:17422139

  8. Genetically diverse coronaviruses in captive bird populations in a Brazilian zoological park.

    PubMed

    Cardoso, Tereza C; Teixeira, Maria Cecília B; Gomes, Deriane E; Jerez, Antônio José

    2011-02-01

    This study aimed to investigate the occurrence of coronaviruses (CoVs) in captive birds placed inside a zoological park in Brazil. The role of captive birds in the epidemiology of CoVs in the tropics is poorly understood. A total of 25 (n=25) different species were tested for viral RNA using individual fecal samples collected from healthy birds. Reverse transcription-polymerase chain reaction targeting the 3' untranslated region was used to detect CoV RNA, and positive samples were submitted for sequence analysis. The phylogenetic search revealed nine mutations in the black shouldered peafowl (Pavus cristatus) CoV sequence, which clustered separately from samples previously described in England. This is the first report on the detection of the CoV genome in captive birds in Brazil.

  9. Monitor RNA synthesis in live cell nuclei by using two-photon excited fluorescence lifetime imaging microscopy

    NASA Astrophysics Data System (ADS)

    Peng, Xiao; Lin, Danying; Wang, Yan; Qi, Jing; Yan, Wei; Qu, Junle

    2015-03-01

    Probing of local molecular environment in cells is of significant value in creating a fundamental understanding of cellular processes and molecular profiles of diseases, as well as studying drug cell interactions. In order to investigate the dynamically changing in subcellular environment during RNA synthesis, we applied two-photon excited fluorescence lifetime imaging microscopy (FLIM) method to monitor the green fluorescent protein (GFP) fused nuclear protein ASF/SF2. The fluorescence lifetime of fluorophore is known to be in inverse correlation with a local refractive index, and thus fluorescence lifetimes of GFP fusions provide real-time information of the molecular environment of ASF/SF2- GFP. The FLIM results showed continuous and significant fluctuations of fluorescence lifetimes of the fluorescent protein fusions in live HeLa cells under physiological conditions. The fluctuations of fluorescence lifetime values indicated the variations of activities of RNA polymerases. Moreover, treatment with pharmacological drugs inhibiting RNA polymerase activities led to irreversible decreases of fluorescence lifetime values. In summary, our study of FLIM imaging of GFP fusion proteins has provided a sensitive and real-time method to investigate RNA synthesis in live cell nuclei.

  10. Protein synthesis. Rqc2p and 60S ribosomal subunits mediate mRNA-independent elongation of nascent chains.

    PubMed

    Shen, Peter S; Park, Joseph; Qin, Yidan; Li, Xueming; Parsawar, Krishna; Larson, Matthew H; Cox, James; Cheng, Yifan; Lambowitz, Alan M; Weissman, Jonathan S; Brandman, Onn; Frost, Adam

    2015-01-02

    In Eukarya, stalled translation induces 40S dissociation and recruitment of the ribosome quality control complex (RQC) to the 60S subunit, which mediates nascent chain degradation. Here we report cryo-electron microscopy structures revealing that the RQC components Rqc2p (YPL009C/Tae2) and Ltn1p (YMR247C/Rkr1) bind to the 60S subunit at sites exposed after 40S dissociation, placing the Ltn1p RING (Really Interesting New Gene) domain near the exit channel and Rqc2p over the P-site transfer RNA (tRNA). We further demonstrate that Rqc2p recruits alanine- and threonine-charged tRNA to the A site and directs the elongation of nascent chains independently of mRNA or 40S subunits. Our work uncovers an unexpected mechanism of protein synthesis, in which a protein--not an mRNA--determines tRNA recruitment and the tagging of nascent chains with carboxy-terminal Ala and Thr extensions ("CAT tails").

  11. Structural and Functional Analyses of the Severe Acute Respiratory Syndrome Coronavirus Endoribonuclease Nsp15

    SciTech Connect

    Bhardwaj, Kanchan; Palaninathan, Satheesh; Alcantara, Joanna Maria Ortiz; Yi, Lillian Li; Guarino, Linda; Sacchettini, James C.; Kao, C. Cheng

    2008-03-31

    The severe acute respiratory syndrome (SARS) coronavirus encodes several RNA-processing enzymes that are unusual for RNA viruses, including Nsp15 (nonstructural protein 15), a hexameric endoribonuclease that preferentially cleaves 3' of uridines. We solved the structure of a catalytically inactive mutant version of Nsp15, which was crystallized as a hexamer. The structure contains unreported flexibility in the active site of each subunit. Substitutions in the active site residues serine 293 and proline 343 allowed Nsp15 to cleave at cytidylate, whereas mutation of leucine 345 rendered Nsp15 able to cleave at purines as well as pyrimidines. Mutations that targeted the residues involved in subunit interactions generally resulted in the formation of catalytically inactive monomers. The RNA-binding residues were mapped by a method linking reversible cross-linking, RNA affinity purification, and peptide fingerprinting. Alanine substitution of several residues in the RNA-contacting portion of Nsp15 did not affect hexamer formation but decreased the affinity of RNA binding and reduced endonuclease activity. This suggests a model for Nsp15 hexamer interaction with RNA.

  12. mTOR-dependent activation of the transcription factor TIF-IA links rRNA synthesis to nutrient availability.

    PubMed

    Mayer, Christine; Zhao, Jian; Yuan, Xuejun; Grummt, Ingrid

    2004-02-15

    In cycling cells, transcription of ribosomal RNA genes by RNA polymerase I (Pol I) is tightly coordinated with cell growth. Here, we show that the mammalian target of rapamycin (mTOR) regulates Pol I transcription by modulating the activity of TIF-IA, a regulatory factor that senses nutrient and growth-factor availability. Inhibition of mTOR signaling by rapamycin inactivates TIF-IA and impairs transcription-initiation complex formation. Moreover, rapamycin treatment leads to translocation of TIF-IA into the cytoplasm. Rapamycin-mediated inactivation of TIF-IA is caused by hypophosphorylation of Se 44 (S44) and hyperphosphorylation of Se 199 (S199). Phosphorylation at these sites affects TIF-IA activity in opposite ways, for example, phosphorylation of S44 activates and S199 inactivates TIF-IA. The results identify a new target formTOR-signaling pathways and elucidate the molecular mechanism underlying mTOR-dependent regulation of RNA synthesis.

  13. Synthesis of a bifunctional cytidine derivative and its conjugation to RNA for in vitro selection of a cytidine deaminase ribozyme

    PubMed Central

    Rublack, Nico

    2014-01-01

    Summary Over the past 20 years, the generation of functional RNAs by in vitro selection has become a standard technique. Apart from aptamers for simple binding of defined ligands, also RNAs for catalysis of chemical reactions have been selected. In the latter case, a key step often is the conjugation of one of the two reactants to the library, requiring suitable strategies for terminal or internal RNA functionalization. With the aim of selecting a ribozyme for deamination of cytidine, we have set up a selection scheme involving the attachment of the cytidine acting as deamination substrate to the 3'-terminus of the RNAs in the library, and library immobilization. Here, we report the synthesis of a bifunctional cytidine derivative suitable for conjugation to RNA and linkage of the conjugated library to a streptavidine-coated surface. Successful conjugation of the cytidine derivative to the 3'-terminus of a model RNA is demonstrated. PMID:25246949

  14. Identification of Aminopeptidase N as a Cellular Receptor for Human Coronavirus-229E

    DTIC Science & Technology

    1992-05-12

    feline enteric coronav irus feline infectious peritonitis virus hUman adult intestine hUman aminopeptidase N human aminopeptidase with 39 amino...virions (Almeida and Tyrrell, 1967). The eventual isolation of several other morphologically similar appearing animal viruses including feline ...coronavirus (TCV), rat coronavirus (RCV), cat feline infectious peritonitis virus (FIPV), and the hUman coronaviruses. These include the slow, patchy

  15. In Situ Tagged nsp15 Reveals Interactions with Coronavirus Replication/Transcription Complex-Associated Proteins

    PubMed Central

    Athmer, Jeremiah; Fehr, Anthony R.; Grunewald, Matthew; Smith, Everett Clinton; Denison, Mark R.

    2017-01-01

    ABSTRACT Coronavirus (CoV) replication and transcription are carried out in close proximity to restructured endoplasmic reticulum (ER) membranes in replication/transcription complexes (RTC). Many of the CoV nonstructural proteins (nsps) are required for RTC function; however, not all of their functions are known. nsp15 contains an endoribonuclease domain that is conserved in the CoV family. While the enzymatic activity and crystal structure of nsp15 are well defined, its role in replication remains elusive. nsp15 localizes to sites of RNA replication, but whether it acts independently or requires additional interactions for its function remains unknown. To begin to address these questions, we created an in situ tagged form of nsp15 using the prototypic CoV, mouse hepatitis virus (MHV). In MHV, nsp15 contains the genomic RNA packaging signal (P/S), a 95-bp RNA stem-loop structure that is not required for viral replication or nsp15 function. Utilizing this knowledge, we constructed an internal hemagglutinin (HA) tag that replaced the P/S. We found that nsp15-HA was localized to discrete perinuclear puncta and strongly colocalized with nsp8 and nsp12, both well-defined members of the RTC, but not the membrane (M) protein, involved in virus assembly. Finally, we found that nsp15 interacted with RTC-associated proteins nsp8 and nsp12 during infection, and this interaction was RNA independent. From this, we conclude that nsp15 localizes and interacts with CoV proteins in the RTC, suggesting it plays a direct or indirect role in virus replication. Furthermore, the use of in situ epitope tags could be used to determine novel nsp-nsp interactions in coronaviruses. PMID:28143984

  16. The Smaug RNA-Binding Protein Is Essential for microRNA Synthesis During the Drosophila Maternal-to-Zygotic Transition

    PubMed Central

    Luo, Hua; Li, Xiao; Claycomb, Julie M.; Lipshitz, Howard D.

    2016-01-01

    Metazoan embryos undergo a maternal-to-zygotic transition (MZT) during which maternal gene products are eliminated and the zygotic genome becomes transcriptionally active. During this process, RNA-binding proteins (RBPs) and the microRNA-induced silencing complex (miRISC) target maternal mRNAs for degradation. In Drosophila, the Smaug (SMG), Brain tumor (BRAT), and Pumilio (PUM) RBPs bind to and direct the degradation of largely distinct subsets of maternal mRNAs. SMG has also been shown to be required for zygotic synthesis of mRNAs and several members of the miR-309 family of microRNAs (miRNAs) during the MZT. Here, we have carried out global analysis of small RNAs both in wild-type and in smg mutants. Our results show that 85% of all miRNA species encoded by the genome are present during the MZT. Whereas loss of SMG has no detectable effect on Piwi-interacting RNAs (piRNAs) or small interfering RNAs (siRNAs), zygotic production of more than 70 species of miRNAs fails or is delayed in smg mutants. SMG is also required for the synthesis and stability of a key miRISC component, Argonaute 1 (AGO1), but plays no role in accumulation of the Argonaute family proteins associated with piRNAs or siRNAs. In smg mutants, maternal mRNAs that are predicted targets of the SMG-dependent zygotic miRNAs fail to be cleared. BRAT and PUM share target mRNAs with these miRNAs but not with SMG itself. We hypothesize that SMG controls the MZT, not only through direct targeting of a subset of maternal mRNAs for degradation but, indirectly, through production and function of miRNAs and miRISC, which act together with BRAT and/or PUM to control clearance of a distinct subset of maternal mRNAs. PMID:27591754

  17. Emergence of pathogenic coronaviruses in cats by homologous recombination between feline and canine coronaviruses.

    PubMed

    Terada, Yutaka; Matsui, Nobutaka; Noguchi, Keita; Kuwata, Ryusei; Shimoda, Hiroshi; Soma, Takehisa; Mochizuki, Masami; Maeda, Ken

    2014-01-01

    Type II feline coronavirus (FCoV) emerged via double recombination between type I FCoV and type II canine coronavirus (CCoV). In this study, two type I FCoVs, three type II FCoVs and ten type II CCoVs were genetically compared. The results showed that three Japanese type II FCoVs, M91-267, KUK-H/L and Tokyo/cat/130627, also emerged by homologous recombination between type I FCoV and type II CCoV and their parent viruses were genetically different from one another. In addition, the 3'-terminal recombination sites of M91-267, KUK-H/L and Tokyo/cat/130627 were different from one another within the genes encoding membrane and spike proteins, and the 5'-terminal recombination sites were also located at different regions of ORF1. These results indicate that at least three Japanese type II FCoVs emerged independently. Sera from a cat experimentally infected with type I FCoV was unable to neutralize type II CCoV infection, indicating that cats persistently infected with type I FCoV may be superinfected with type II CCoV. Our previous study reported that few Japanese cats have antibody against type II FCoV. All of these observations suggest that type II FCoV emerged inside the cat body and is unable to readily spread among cats, indicating that these recombination events for emergence of pathogenic coronaviruses occur frequently.

  18. The ns12.9 Accessory Protein of Human Coronavirus OC43 Is a Viroporin Involved in Virion Morphogenesis and Pathogenesis

    PubMed Central

    Zhang, Ronghua; Wang, Kai; Ping, Xianqiang; Yu, Wenjing

    2015-01-01

    ABSTRACT An accessory gene between the S and E gene loci is contained in all coronaviruses (CoVs), and its function has been studied in some coronaviruses. This gene locus in human coronavirus OC43 (HCoV-OC43) encodes the ns12.9 accessory protein; however, its function during viral infection remains unknown. Here, we engineered a recombinant mutant virus lacking the ns12.9 protein (HCoV-OC43-Δns12.9) to characterize the contributions of ns12.9 in HCoV-OC43 replication. The ns12.9 accessory protein is a transmembrane protein and forms ion channels in both Xenopus oocytes and yeast through homo-oligomerization, suggesting that ns12.9 is a newly recognized viroporin. HCoV-OC43-Δns12.9 presented at least 10-fold reduction of viral titer in vitro and in vivo. Intriguingly, exogenous ns12.9 and heterologous viroporins with ion channel activity could compensate for the production of HCoV-OC43-Δns12.9, indicating that the ion channel activity of ns12.9 plays a significant role in the production of infectious virions. Systematic dissection of single-cycle replication revealed that ns12.9 protein had no measurable effect on virus entry, subgenomic mRNA (sgmRNA) synthesis, and protein expression. Further characterization revealed that HCoV-OC43-Δns12.9 was less efficient in virion morphogenesis than recombinant wild-type virus (HCoV-OC43-WT). Moreover, reduced viral replication, inflammatory response, and virulence in HCoV-OC43-Δns12.9-infected mice were observed compared to the levels for HCoV-OC43-WT-infected mice. Taken together, our results demonstrated that the ns12.9 accessory protein functions as a viroporin and is involved in virion morphogenesis and the pathogenesis of HCoV-OC43 infection. IMPORTANCE HCoV-OC43 was isolated in the 1960s and is a major agent of the common cold. The functions of HCoV-OC43 structural proteins have been well studied, but few studies have focused on its accessory proteins. In the present study, we demonstrated that the ns12.9 protein

  19. Understanding Human Coronavirus HCoV-NL63.

    PubMed

    Abdul-Rasool, Sahar; Fielding, Burtram C

    2010-05-25

    Even though coronavirus infection of humans is not normally associated with severe diseases, the identification of the coronavirus responsible for the outbreak of severe acute respiratory syndrome showed that highly pathogenic coronaviruses can enter the human population. Shortly thereafter, in Holland in 2004, another novel human coronavirus (HCoV-NL63) was isolated from a seven-month old infant suffering from respiratory symptoms. This virus has subsequently been identified in various countries, indicating a worldwide distribution. HCoV-NL63 has been shown to infect mainly children and the immunocommpromised, who presented with either mild upper respiratory symptoms (cough, fever and rhinorrhoea) or more serious lower respiratory tract involvement such as bronchiolitis and croup, which was observed mainly in younger children. In fact, HCoV-NL63 is the aetiological agent for up to 10% of all respiratory diseases. This review summarizes recent findings of human coronavirus HCoV-NL63 infections, including isolation and identification, phylogeny and taxonomy, genome structure and transcriptional regulation, transmission and pathogenesis, and detection and diagnosis.

  20. Discovery of an essential nucleotidylating activity associated with a newly delineated conserved domain in the RNA polymerase-containing protein of all nidoviruses

    PubMed Central

    Lehmann, Kathleen C.; Gulyaeva, Anastasia; Zevenhoven-Dobbe, Jessika C.; Janssen, George M. C.; Ruben, Mark; Overkleeft, Hermen S.; van Veelen, Peter A.; Samborskiy, Dmitry V.; Kravchenko, Alexander A.; Leontovich, Andrey M.; Sidorov, Igor A.; Snijder, Eric J.; Posthuma, Clara C.; Gorbalenya, Alexander E.

    2015-01-01

    RNA viruses encode an RNA-dependent RNA polymerase (RdRp) that catalyzes the synthesis of their RNA(s). In the case of positive-stranded RNA viruses belonging to the order Nidovirales, the RdRp resides in a replicase subunit that is unusually large. Bioinformatics analysis of this non-structural protein has now revealed a nidoviral signature domain (genetic marker) that is N-terminally adjacent to the RdRp and has no apparent homologs elsewhere. Based on its conservation profile, this domain is proposed to have nucleotidylation activity. We used recombinant non-structural protein 9 of the arterivirus equine arteritis virus (EAV) and different biochemical assays, including irreversible labeling with a GTP analog followed by a proteomics analysis, to demonstrate the manganese-dependent covalent binding of guanosine and uridine phosphates to a lysine/histidine residue. Most likely this was the invariant lysine of the newly identified domain, named nidovirus RdRp-associated nucleotidyltransferase (NiRAN), whose substitution with alanine severely diminished the described binding. Furthermore, this mutation crippled EAV and prevented the replication of severe acute respiratory syndrome coronavirus (SARS-CoV) in cell culture, indicating that NiRAN is essential for nidoviruses. Potential functions supported by NiRAN may include nucleic acid ligation, mRNA capping and protein-primed RNA synthesis, possibilities that remain to be explored in future studies. PMID:26304538

  1. Failure of RNA synthesis to recover after UV irradiation: an early defect in cells from individuals with Cockayne's syndrome and xeroderma pigmentosum

    SciTech Connect

    Mayne, L.V.; Lehmann, A.R.

    1982-04-01

    Previous work has shown that in cells from the ultraviolet-sensitive genetic disorder, Cockayne's syndrome, DNA synthesis fails to recover after ultraviolet irradiation, despite the fact that these cells have no detectable defect in either excision or daughter-strand repair pathways. We now show that Cockayne cells, as well as cells from a number of patients with xeroderma pigmentosum, are sensitive to the lethal effects of UV irradiation in stationary phase under conditions in which no DNA is synthesized after irradiation. Furthermore, in normal and defective human fibroblasts, RNA synthesis is depressed after UV irradiation. In normal (dividing) cells, RNA synthesis recovers very rapidly, but this recovery does not occur in Cockayne cells, and it is reduced or absent in xeroderma pigmentosum cells from different complementation groups. Qualitatively, similar results are obtained with cells in stationary phase. The recovery of RNA synthesis in the various defective cell strains is not correlated with the overall extent of excision repair, but there is some correlation between recovery of RNA synthesis and cell survival after ultraviolet irradiation. These results implicate recovery of RNA synthesis as an important early response to ultraviolet irradiation.

  2. Development of a SARS Coronavirus Vaccine from Recombinant Spike Protein Plus Delta Inulin Adjuvant.

    PubMed

    McPherson, Clifton; Chubet, Richard; Holtz, Kathy; Honda-Okubo, Yoshikazu; Barnard, Dale; Cox, Manon; Petrovsky, Nikolai

    2016-01-01

    Given periodic outbreaks of fatal human infections caused by coronaviruses, development of an optimal coronavirus vaccine platform capable of rapid production is an ongoing priority. This chapter describes the use of an insect cell expression system for rapid production of a recombinant vaccine against severe acute respiratory syndrome coronavirus (SARS). Detailed methods are presented for expression, purification, and release testing of SARS recombinant spike protein antigen, followed by adjuvant formulation and animal testing. The methods herein described for rapid development of a highly protective SARS vaccine are equally suited to rapid development of vaccines against other fatal human coronavirus infections, e.g., the MERS coronavirus.

  3. Coronaviruses: emerging and re-emerging pathogens in humans and animals.

    PubMed

    Lau, Susanna K P; Chan, Jasper F W

    2015-12-22

    The severe acute respiratory syndrome coronavirus (SARS-CoV) and recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV) epidemics have proven the ability of coronaviruses to cross species barrier and emerge rapidly in humans. Other coronaviruses such as porcine epidemic diarrhea virus (PEDV) are also known to cause major disease epidemics in animals with huge economic loss. This special issue in Virology Journal aims to highlight the advances and key discoveries in the animal origin, viral evolution, epidemiology, diagnostics and pathogenesis of the emerging and re-emerging coronaviruses in both humans and animals.

  4. Synthesis and properties of 4′-ThioDNA: unexpected RNA-like behavior of 4′-ThioDNA

    PubMed Central

    Inoue, Naonori; Minakawa, Noriaki; Matsuda, Akira

    2006-01-01

    The synthesis and properties of fully modified 4′-thioDNAs, oligonucleotides consisting of 2′-deoxy-4′-thionucleosides, were examined. In addition to the known literature properties (preferable hybridization with RNA and resistance to endonuclease hydrolysis), we also observed higher resistance of 4′-thioDNA to 3′-exonuclease cleavage. Furthermore, we found that fully modified 4′-thioDNAs behaved like RNA molecules in their hybridization properties and structural aspect, at least in the case of the 4′-thioDNA duplex. This observation was confirmed by experiments using groove binders, in which a 4′-thioDNA duplex interacts with an RNA major groove binder, lividomycin A, but not with DNA groove binders, to give an increase in its thermal stability. Since a 4′-thioDNA duplex competitively inhibited the hydrolysis of an RNA duplex by RNase V1, it was not only the physical properties but also this biological data suggested that a 4′-thioDNA duplex has an RNA-like structure. PMID:16855286

  5. The enhanced rate of transcription of methyl mercury-exposed DNA by RNA polymerase is not sufficient to explain the stimulatory effect of methyl mercury on RNA synthesis in isolated nuclei.

    PubMed

    Frenkel, G D; Ducote, J

    1987-10-01

    Previous work demonstrated two stimulatory effects of methyl mercury on nucleic acid synthesis: (1) in isolated nuclei, methyl mercury stimulates RNA synthesis which is catalyzed by RNA polymerase II [Frenkel and Randles, J. Biol. Chem. 257, 6275-6279 (1982)]. (2) Brief exposure of purified DNA to methyl mercury increases the rate of its transcription by purified RNA polymerase II [Frenkel, Cain, and Chao, Biochem. Biophys. Res. Commun. 127, 849-856 (1985)]. The latter effect was considered as a possible mechanism of the former. Two lines of evidence are presented here which demonstrate that the latter effect is not a sufficient explanation for the former. (1) Mercuric perchlorate has been found to increase the rate of DNA transcription by purified polymerase and the template properties of the mercuric perchlorate-exposed DNA have been found to resemble those of methyl mercury-exposed DNA. Nevertheless, mercuric perchlorate has been shown not to stimulate RNA synthesis in isolated HeLa nuclei. (2) In isolated nuclei of the B50 rat neuroblastoma cell line, RNA synthesis has been found to be stimulated only minimally by methyl mercury. Nevertheless, RNA polymerase II purified from the B50 cells has been found to transcribe methyl mercury-exposed DNA at a higher rate than unexposed control DNA.

  6. Photolithographic Synthesis of High-Density DNA and RNA Arrays on Flexible, Transparent, and Easily Subdivided Plastic Substrates.

    PubMed

    Holden, Matthew T; Carter, Matthew C D; Wu, Cheng-Hsien; Wolfer, Jamison; Codner, Eric; Sussman, Michael R; Lynn, David M; Smith, Lloyd M

    2015-11-17

    The photolithographic fabrication of high-density DNA and RNA arrays on flexible and transparent plastic substrates is reported. The substrates are thin sheets of poly(ethylene terephthalate) (PET) coated with cross-linked polymer multilayers that present hydroxyl groups suitable for conventional phosphoramidite-based nucleic acid synthesis. We demonstrate that by modifying array synthesis procedures to accommodate the physical and chemical properties of these materials, it is possible to synthesize plastic-backed oligonucleotide arrays with feature sizes as small as 14 μm × 14 μm and feature densities in excess of 125 000/cm(2), similar to specifications attainable using rigid substrates such as glass or glassy carbon. These plastic-backed arrays are tolerant to a wide range of hybridization temperatures, and improved synthetic procedures are described that enable the fabrication of arrays with sequences up to 50 nucleotides in length. These arrays hybridize with S/N ratios comparable to those fabricated on otherwise identical arrays prepared on glass or glassy carbon. This platform supports the enzymatic synthesis of RNA arrays and proof-of-concept experiments are presented showing that the arrays can be readily subdivided into smaller arrays (or "millichips") using common laboratory-scale laser cutting tools. These results expand the utility of oligonucleotide arrays fabricated on plastic substrates and open the door to new applications for these important bioanalytical tools.

  7. Effects of Inhibitors of RNA and Protein Synthesis on Aspartate Transcarbamylase Activity in Etiolated Plant Tissue 1

    PubMed Central

    Johnson, Lowell B.; Niblett, Charles L.; Lee, Richard F.

    1976-01-01

    Aspartate transcarbamylase (ATCase) activity declines in etiolated cowpea (Vigna unguiculata L. Walp.) and soybean (Glycine max L. Merr.) hypocotyls between 3 and 11 days after planting. Treating cow-pea hypocotyls with cycloheximide (CH), actinomycin D (AMD), 6-methyl purine (6-MP), or cordycepin increases ATCase activity up to 740, 350, 465, and 305%, respectively, over water-treated controls 48 to 72 hours after treatment. In contrast erythromycin had no effect, and d-threo-chloramphenicol (CHL) reduced ATCase activity nearly 40%. CH, AMD, and CHL, whose effects were further characterized, each markedly reduced total RNA synthesis and protein synthesis. Respiration was stimulated by CH and AMD and reduced by CHL. In soybean, CHL-treated tissues and water-treated controls had comparable ATCase activities 48 hours after treatment, while AMD, 6-MP, and CH treatments reduced activities 29, 37, and 78%, respectively. The results suggest that the level of ATCase activity in etiolated cowpea hypocotyls is regulated by a mechanism or mechanisms that are interfered with by inhibition of RNA and protein synthesis. Possibly the mechanism is absent from etiolated soybean hypocotyls. PMID:16659653

  8. Na/K-ATPase signaling regulates collagen synthesis through microRNA-29b-3p in cardiac fibroblasts.

    PubMed

    Drummond, Christopher A; Hill, Michael C; Shi, Huilin; Fan, Xiaoming; Xie, Jeffrey X; Haller, Steven T; Kennedy, David J; Liu, Jiang; Garrett, Michael R; Xie, Zijian; Cooper, Christopher J; Shapiro, Joseph I; Tian, Jiang

    2016-03-01

    Chronic kidney disease (CKD) is accompanied by cardiac fibrosis, hypertrophy, and dysfunction, which are commonly referred to as uremic cardiomyopathy. Our previous studies found that Na/K-ATPase ligands or 5/6th partial nephrectomy (PNx) induces cardiac fibrosis in rats and mice. The current study used in vitro and in vivo models to explore novel roles for microRNA in this mechanism of cardiac fibrosis formation. To accomplish this, we performed microRNA profiling with RT-qPCR based arrays on cardiac tissue from rats subjected to marinobufagenin (MBG) infusion or PNx. The analysis showed that a series of fibrosis-related microRNAs were dysregulated. Among the dysregulated microRNAs, microRNA (miR)-29b-3p, which directly targets mRNA of collagen, was consistently reduced in both PNx and MBG-infused animals. In vitro experiments demonstrated that treatment of primary cultures of adult rat cardiac fibroblasts with Na/K-ATPase ligands induced significant increases in the fibrosis marker, collagen protein, and mRNA expression compared with controls, whereas miR-29b-3p expression decreased >50%. Transfection of miR-29b-3p mimics into cardiac fibroblasts inhibited cardiotonic steroids-induced collagen synthesis. Moreover, a specific Na/K-ATPase signaling antagonist, pNaKtide, prevented ouabain-induced increases in collagen synthesis and decreases in miR-29b-3p expression in these cells. In conclusion, these data are the first to indicate that signaling through Na/K-ATPase regulates miRNAs and specifically, miR-29b-3p expression both in vivo and in vitro. Additionally, these data indicate that miR-29b-3p expression plays an important role in the formation of cardiac fibrosis in CKD.

  9. Isolation and Characterization of Dromedary Camel Coronavirus UAE-HKU23 from Dromedaries of the Middle East: Minimal Serological Cross-Reactivity between MERS Coronavirus and Dromedary Camel Coronavirus UAE-HKU23.

    PubMed

    Woo, Patrick C Y; Lau, Susanna K P; Fan, Rachel Y Y; Lau, Candy C Y; Wong, Emily Y M; Joseph, Sunitha; Tsang, Alan K L; Wernery, Renate; Yip, Cyril C Y; Tsang, Chi-Ching; Wernery, Ulrich; Yuen, Kwok-Yung

    2016-05-07

    Recently, we reported the discovery of a dromedary camel coronavirus UAE-HKU23 (DcCoV UAE-HKU23) from dromedaries in the Middle East. In this study, DcCoV UAE-HKU23 was successfully isolated in two of the 14 dromedary fecal samples using HRT-18G cells, with cytopathic effects observed five days after inoculation. Northern blot analysis revealed at least seven distinct RNA species, corresponding to predicted subgenomic mRNAs and confirming the core sequence of transcription regulatory sequence motifs as 5'-UCUAAAC-3' as we predicted previously. Antibodies against DcCoV UAE-HKU23 were detected in 58 (98.3%) and 59 (100%) of the 59 dromedary sera by immunofluorescence and neutralization antibody tests, respectively. There was significant correlation between the antibody titers determined by immunofluorescence and neutralization assays (Pearson coefficient = 0.525, p < 0.0001). Immunization of mice using recombinant N proteins of DcCoV UAE-HKU23 and Middle East respiratory syndrome coronavirus (MERS-CoV), respectively, and heat-inactivated DcCoV UAE-HKU23 showed minimal cross-antigenicity between DcCoV UAE-HKU23 and MERS-CoV by Western blot and neutralization antibody assays. Codon usage and genetic distance analysis of RdRp, S and N genes showed that the 14 strains of DcCoV UAE-HKU23 formed a distinct cluster, separated from those of other closely related members of Betacoronavirus 1, including alpaca CoV, confirming that DcCoV UAE-HKU23 is a novel member of Betacoronavirus 1.

  10. Isolation and Characterization of Dromedary Camel Coronavirus UAE-HKU23 from Dromedaries of the Middle East: Minimal Serological Cross-Reactivity between MERS Coronavirus and Dromedary Camel Coronavirus UAE-HKU23

    PubMed Central

    Woo, Patrick C. Y.; Lau, Susanna K. P.; Fan, Rachel Y. Y.; Lau, Candy C. Y.; Wong, Emily Y. M.; Joseph, Sunitha; Tsang, Alan K. L.; Wernery, Renate; Yip, Cyril C. Y.; Tsang, Chi-Ching; Wernery, Ulrich; Yuen, Kwok-Yung

    2016-01-01

    Recently, we reported the discovery of a dromedary camel coronavirus UAE-HKU23 (DcCoV UAE-HKU23) from dromedaries in the Middle East. In this study, DcCoV UAE-HKU23 was successfully isolated in two of the 14 dromedary fecal samples using HRT-18G cells, with cytopathic effects observed five days after inoculation. Northern blot analysis revealed at least seven distinct RNA species, corresponding to predicted subgenomic mRNAs and confirming the core sequence of transcription regulatory sequence motifs as 5′-UCUAAAC-3′ as we predicted previously. Antibodies against DcCoV UAE-HKU23 were detected in 58 (98.3%) and 59 (100%) of the 59 dromedary sera by immunofluorescence and neutralization antibody tests, respectively. There was significant correlation between the antibody titers determined by immunofluorescence and neutralization assays (Pearson coefficient = 0.525, p < 0.0001). Immunization of mice using recombinant N proteins of DcCoV UAE-HKU23 and Middle East respiratory syndrome coronavirus (MERS-CoV), respectively, and heat-inactivated DcCoV UAE-HKU23 showed minimal cross-antigenicity between DcCoV UAE-HKU23 and MERS-CoV by Western blot and neutralization antibody assays. Codon usage and genetic distance analysis of RdRp, S and N genes showed that the 14 strains of DcCoV UAE-HKU23 formed a distinct cluster, separated from those of other closely related members of Betacoronavirus 1, including alpaca CoV, confirming that DcCoV UAE-HKU23 is a novel member of Betacoronavirus 1. PMID:27164099

  11. A molecular arms race between host innate antiviral response and emerging human coronaviruses.

    PubMed

    Wong, Lok-Yin Roy; Lui, Pak-Yin; Jin, Dong-Yan

    2016-02-01

    Coronaviruses have been closely related with mankind for thousands of years. Community-acquired human coronaviruses have long been recognized to cause common cold. However, zoonotic coronaviruses are now becoming more a global concern with the discovery of highly pathogenic severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronaviruses causing severe respiratory diseases. Infections by these emerging human coronaviruses are characterized by less robust interferon production. Treatment of patients with recombinant interferon regimen promises beneficial outcomes, suggesting that compromised interferon expression might contribute at least partially to the severity of disease. The mechanisms by which coronaviruses evade host innate antiviral response are under intense investigations. This review focuses on the fierce arms race between host innate antiviral immunity and emerging human coronaviruses. Particularly, the host pathogen recognition receptors and the signal transduction pathways to mount an effective antiviral response against SARS and MERS coronavirus infection are discussed. On the other hand, the counter-measures evolved by SARS and MERS coronaviruses to circumvent host defense are also dissected. With a better understanding of the dynamic interaction between host and coronaviruses, it is hoped that insights on the pathogenesis of newly-identified highly pathogenic human coronaviruses and new strategies in antiviral development can be derived.

  12. Receptor recognition and cross-species infections of SARS coronavirus.

    PubMed

    Li, Fang

    2013-10-01

    Receptor recognition is a major determinant of the host range, cross-species infections, and pathogenesis of the severe acute respiratory syndrome coronavirus (SARS-CoV). A defined receptor-binding domain (RBD) in the SARS-CoV spike protein specifically recognizes its host receptor, angiotensin-converting enzyme 2 (ACE2). This article reviews the latest knowledge about how RBDs from different SARS-CoV strains interact with ACE2 from several animal species. Detailed research on these RBD/ACE2 interactions has established important principles on host receptor adaptations, cross-species infections, and future evolution of SARS-CoV. These principles may apply to other emerging animal viruses, including the recently emerged Middle East respiratory syndrome coronavirus (MERS-CoV). This paper forms part of a series of invited articles in Antiviral Research on "From SARS to MERS: 10years of research on highly pathogenic human coronaviruses".

  13. Inferring the hosts of coronavirus using dual statistical models based on nucleotide composition.

    PubMed

    Tang, Qin; Song, Yulong; Shi, Mijuan; Cheng, Yingyin; Zhang, Wanting; Xia, Xiao-Qin

    2015-11-26

    Many coronaviruses are capable of interspecies transmission. Some of them have caused worldwide panic as emerging human pathogens in recent years, e.g., severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV). In order to assess their threat to humans, we explored to infer the potential hosts of coronaviruses using a dual-model approach based on nineteen parameters computed from spike genes of coronaviruses. Both the support vector machine (SVM) model and the Mahalanobis distance (MD) discriminant model achieved high accuracies in leave-one-out cross-validation of training data consisting of 730 representative coronaviruses (99.86% and 98.08% respectively). Predictions on 47 additional coronaviruses precisely conformed to conclusions or speculations by other researchers. Our approach is implemented as a web server that can be accessed at http://bioinfo.ihb.ac.cn/seq2hosts.

  14. The Synthesis and Study of Azole Carboxamide Nucleosides as Agents Active Against RNA Viruses.

    DTIC Science & Technology

    1986-09-15

    5012 62770A 62770A8,1. AH 355 11. TITLE (Include Security Classification) The Synthesis and Study of Azole Carboxamide Nucleosides as Agents Active...broad-spectrum antiviral agent has stimulated a great deal of effort toward the chemical synthesis of nucleosides of other azole heterocycles. During the...4 II. Chemistry and Discussion . . .. .. . 6 1. Synthesis of Certain 5’-Substituted Derivatives of Ribavirin and Tiazofurin . . .. . 6 2

  15. Genotyping coronaviruses associated with feline infectious peritonitis

    PubMed Central

    Lewis, Catherine S.; Porter, Emily; Matthews, David; Kipar, Anja; Tasker, Séverine; Helps, Christopher R.

    2015-01-01

    Feline coronavirus (FCoV) infections are endemic among cats worldwide. The majority of infections are asymptomatic or result in only mild enteric disease. However, approximately 5 % of cases develop feline infectious peritonitis (FIP), a systemic disease that is a frequent cause of death in young cats. In this study, we report the complete coding genome sequences of six FCoVs: three from faecal samples from healthy cats and three from tissue lesion samples from cats with confirmed FIP. The six samples were obtained over a period of 8 weeks at a single-site cat rescue and rehoming centre in the UK. We found amino acid differences located at 44 positions across an alignment of the six virus translatomes and, at 21 of these positions, the differences fully or partially discriminated between the genomes derived from the faecal samples and the genomes derived from the tissue lesion samples. In this study, two amino acid differences fully discriminated the two classes of genomes: these were both located in the S2 domain of the virus surface glycoprotein gene. We also identified deletions in the 3c protein ORF of genomes from two of the FIP samples. Our results support previous studies that implicate S protein mutations in the pathogenesis of FIP. PMID:25667330

  16. Genotyping coronaviruses associated with feline infectious peritonitis.

    PubMed

    Lewis, Catherine S; Porter, Emily; Matthews, David; Kipar, Anja; Tasker, Séverine; Helps, Christopher R; Siddell, Stuart G

    2015-06-01

    Feline coronavirus (FCoV) infections are endemic among cats worldwide. The majority of infections are asymptomatic or result in only mild enteric disease. However, approximately 5 % of cases develop feline infectious peritonitis (FIP), a systemic disease that is a frequent cause of death in young cats. In this study, we report the complete coding genome sequences of six FCoVs: three from faecal samples from healthy cats and three from tissue lesion samples from cats with confirmed FIP. The six samples were obtained over a period of 8 weeks at a single-site cat rescue and rehoming centre in the UK. We found amino acid differences located at 44 positions across an alignment of the six virus translatomes and, at 21 of these positions, the differences fully or partially discriminated between the genomes derived from the faecal samples and the genomes derived from the tissue lesion samples. In this study, two amino acid differences fully discriminated the two classes of genomes: these were both located in the S2 domain of the virus surface glycoprotein gene. We also identified deletions in the 3c protein ORF of genomes from two of the FIP samples. Our results support previous studies that implicate S protein mutations in the pathogenesis of FIP.

  17. Identification of cell lines permissive for human coronavirus NL63.

    PubMed

    Schildgen, Oliver; Jebbink, Maarten F; de Vries, Michel; Pyrc, Krzysztov; Dijkman, Ronald; Simon, Arne; Müller, Andreas; Kupfer, Bernd; van der Hoek, Lia

    2006-12-01

    Six cell lines routinely used in laboratories were tested for permissiveness to the infection with the newly identified human coronavirus NL63. Two monkey epithelial cell lines, LLC-MK2 and Vero-B4, showed a cytopathic effect (CPE) and clear viral replication, whereas no CPE or replication was observed in human lung fibroblasts MRC-5s. In Rhabdomyosarcoma cells, Madin-Darby-Canine-kidney cells and in an undefined monkey kidney cell line some replication was observed but massive exponential rise in virus yield lacked The results will lead to an improved routine diagnostic algorithm for the detection of the human coronavirus NL63.

  18. Initiation of RNA synthesis in vitro by vesicular stomatitis virus: single internal initiation in the presence of aurintricarboxylic acid and vanadyl ribonucleoside complexes.

    PubMed Central

    Talib, S; Hearst, J E

    1983-01-01

    In the presence of aurintricarboxylic acid (ATA) and vanadyl ribonucleoside complexes (VRC), we have isolated and characterized a small RNA, product of VSV in vitro transcription. This RNA is capped and lacks poly(A) at its 3'-end. Nucleotide sequence analysis revealed that this RNA corresponds to the 5'-terminal transcription product of the N-gene. The termination of the transcription occurs precisely at the 118th base from the 3'-end of the VSV genome. Analysis of the nucleotide sequence around this region reveals a potential secondary structure. Photoreaction of the VSV with 4'-substituted psoralen fails to inhibit the synthesis of the 68-mer RNA under conditions where full length mRNA synthesis is blocked, indicating that the psoralen binding site is located further into the N-gene. Since this RNA is the only in vitro transcription product synthesized under these conditions, the existence of two types of polymerase activities, one for the synthesis of leader RNA and one for mRNA, is suggested. Images PMID:6314272

  19. Synthesis and applications of selectively {sup 13}C-labeled RNA

    SciTech Connect

    SantaLucia, J. Jr.; Shen, L.X.; Lewis, H.; Cai, Z.; Tinoci, I. Jr.

    1994-12-01

    Spectral overlap is a substantial problem in NMR studies of RNA molecules >30 nucleotides. To overcome this difficulty, we synthesized selectively {sup 13}C-labeled RNAs and adapted several isotope-edited two- and three-dimensional NMR experiments originally developed for protein studies. We optimized protocols for synthesis of multi-gram quantities of CTP, UTp, ATP, and GTP using a combination of synthetic organic and enzymatic methods. Uracil is prepared in 40 to 50% yield from {sup 13}C-cyanide in two steps. Using acetyl- tribenzoyl-ribose and standard chemistry uracil is then attached to the sugar (90% yield). The tribenzoyl-uridine intermediate is converted into uridine or cytidine quantitatively, depending on the deblocking protocol. Labeled purines are synthesized using simple pyrimidine precursors and reacting with {sup 13}C-formic acid (80% yield). Purine nucleosides are then synthesized using uridine phosphorylase and purine nucleoside phosphorylase. The nucleosides were converted to NMPs by treatment with POC1{sub 3} in triethylphosphate. We converted NMPs to NTPs by standard enzymatic methods. Selectively labeled RNAs were synthesized by run-off transcription using {sup 13}C-labeled NTPs. Several different strategies help solve over-lap problems in larger RNAs. Isotope-edited two-dimensional NMR experiments such as {omega}1-1/2 X-filtered NOESY simplify NMR spectra by dividing the normal NOESY spectrum into two subspectra-one involving NOEs from protons bound to {sup 12}C and one from protons bound to {sup 13}C. For example, we labeled A and U residues of a 34-nucleotide pseudoknot, and the {sup 12}C subspectrum of the 1/2 X-filtered NOESY contained NOEs only from G and C residues (along with adenine 2H); the {sup 13}C subspectrum contained NOEs only from A and U residues. Each subspectrum has less overlap than the NOESY of an unlabeled sample; the editing strategy allows each resonance to be identified by residue type (A, C, G, or U).

  20. The multimerization state of retroviral RNA is modulated by ammonium ions and affects HIV-1 full-length cDNA synthesis in vitro.

    PubMed Central

    Weiss, S; Häusl, G; Famulok, M; König, B

    1993-01-01

    Genomic human immunodeficiency virus type 1 (HIV-1) RNA fragments containing the dimer linkage structure (DLS) can be dimerized and multimerized in the presence of NH4+ and in the absence of any other cation and any viral or cellular protein. This effect strongly supports the notion that dimerization and multimerization of genomic RNA occurs via purine-quartet formation in quadruple helical RNA structures. The efficiency of RNA dimerization and multimerization in the presence of ammonium ions is about 400 fold increased as compared to alkali metal ions such as potassium. Dimerized retroviral RNA representing a pseudodiploid genome could account for genetic recombination within the virion and during reverse transcription. Application of a novel South-Northern-Blotting procedure with biotinylated RNA and digoxigenin-labelled cDNA in vitro reveals that efficient human- and bovine tRNA(Lys3) primed full-length cDNA-synthesis only takes place with a predominantly monomerized RNA template. Dimerization and multimerization of the RNA significantly reduces full-length cDNA-synthesis. This suggests that monomerization of the dimerized RNA, effected by deionization in vitro, is essential for efficient retroviral reverse transcription in vivo. Images PMID:8177734

  1. Synthesis of globin mRNA in relation to the cell cycle during induced murine erythroleukemia differentiation.

    PubMed Central

    Gambari, R; Terada, M; Bank, A; Rifkind, R A; Marks, P A

    1978-01-01

    The relationship between the synthesis of globin mRNA and the phase of cell cycle was examined in synchronized murine erythroleukemia cells. Cells were synchronized with respect to the cell division cycle either by culture with 2 mM thymidine or 2 mM thymidine followed by 0.5 mM hydroxyurea, which caused cells to accumulate in late G1 or early S (referred to as G1/S boundary). Cells were induced to erythroid differentiation by culture with 280 mM dimethyl sulfoxide or 4 mM hexamethylene bisacetamide. These inducers do not alter the progression of cells from the G1/S boundary through S, G2, and M, but do cause prolongation of the subsequent G1 phase. Accumulation of newly synthesized globin mRNA is first detected when cells are in this G1 phase. PMID:278991

  2. Synthesis and photophysical characterisation of a fluorescent nucleoside analogue that signals the presence of an abasic site in RNA.

    PubMed

    Tanpure, Arun A; Srivatsan, Seergazhi G

    2012-11-05

    The synthesis and site-specific incorporation of an environment-sensitive fluorescent nucleoside analogue (2), based on a 5-(benzofuran-2-yl)pyrimidine core, into DNA oligonucleotides (ONs), and its photophysical properties within these ONs are described. Interestingly and unlike 2-aminopurine (a widely used nucleoside analogue probe), when incorporated into an ON and hybridised with a complementary ON, the emissive nucleoside 2 displays significantly higher emission intensity than the free nucleoside. Furthermore, photophysical characterisation shows that the fluorescence properties of the nucleoside analogue within ONs are significantly influenced by flanking bases, especially by guanosine. By utilising the responsiveness of the nucleoside to changes in base environment, a DNA ON reporter labelled with the emissive nucleoside 2 was constructed; this signalled the presence of an abasic site in a model depurinated sarcin/ricin RNA motif of a eukaryotic 28S rRNA.

  3. An Unconventional Acid-Labile Nucleobase Protection Concept for Guanosine Phosphoramidites in RNA Solid-Phase Synthesis.

    PubMed

    Jud, Lukas; Micura, Ronald

    2017-03-08

    We present an innovative O(6) -tert-butyl/N(2) -tert-butyloxycarbonyl protection concept for guanosine (G) phosphoramidites. This concept is advantageous for 2'-modified G building blocks because of very efficient synthetic access when compared with existing routes that usually employ O(6) -(4-nitrophenyl)ethyl/N(2) -acyl protection or that start from 2-aminoadenosine involving enzymatic transformation into guanosine later on in the synthetic path. The new phosphoramidites are fully compatible with 2'-O-tBDMS or TOM phosphoramidites in standard RNA solid-phase synthesis and deprotection, and provide excellent quality of tailored RNAs for the growing range of applications in RNA biophysics, biochemistry, and biology.

  4. The Maize Zmsmu2 Gene Encodes a Putative RNA-Splicing Factor That Affects Protein Synthesis and RNA Processing during Endosperm Development1[W][OA

    PubMed Central

    Chung, Taijoon; Kim, Cheol Soo; Nguyen, Hong N.; Meeley, Robert B.; Larkins, Brian A.

    2007-01-01

    We characterized two maize (Zea mays) mutants, zmsmu2-1 and zmsmu2-3, that result from insertion of a Mutator (Mu) transposable element in the first exon of a gene homologous to the nematode gene, smu-2, which is involved in RNA splicing. In addition to having a starchy endosperm with reduced levels of zein storage proteins, homozygous zmsmu2-1 mutants manifest a number of phenotypes, including defective meristem development. The zmsmu2 mutants have poor seedling viability and surviving plants are sterile. The gene encoding ZmSMU2 is expressed in the endosperm, embryo, and shoot apex, which explains the pleiotropic nature of the mutation. We found that proper expression of Zmsmu2 is required for efficient ribosomal RNA processing, ribosome biogenesis, and protein synthesis in developing endosperm. Based on the pleiotropic nature of the mutations and the known function of animal Zmsmu2 homologs, we propose a possible role for ZmSMU2 in the development of maize endosperm, as well as a mechanism by which misregulation of zmsmu2 causes the mutant phenotypes. PMID:17384163

  5. A specialized form of RNA polymerase I, essential for initiation and growth-dependent regulation of rRNA synthesis, is disrupted during transcription.

    PubMed Central

    Milkereit, P; Tschochner, H

    1998-01-01

    Only a small proportion (<2%) of RNA polymerase I (pol I) from whole-cell extracts appeared to be competent for specific initiation at the ribosomal gene promoter in a yeast reconstituted transcription system. Initiation-competent pol I molecules were found exclusively in salt-resistant complexes that contain the pol I-specific initiation factor Rrn3p. Levels of initiation-competent complexes in extracts were independent of total Rrn3p content and varied with the growth state of the cells. Although extracts from stationary phase cells contained substantial amounts of Rrn3p and pol I, they lacked the pol I-Rrn3p complex and were inactive in promoter-dependent transcription. Activity was restored by adding purified pol I-Rrn3p complex to extracts from stationary phase cells. The pol I-Rrn3p complex dissociated during transcription and lost its capacity for subsequent reinitiation in vitro, suggesting a stoichiometric rather than a catalytic activity in initiation. We propose that the formation and disruption of the pol I-Rrn3p complex reflects a molecular switch for regulating rRNA synthesis and its growth rate-dependent regulation. PMID:9649439

  6. A conserved RpoS-dependent small RNA controls the synthesis of major porin OmpD

    PubMed Central

    Fröhlich, Kathrin S.; Papenfort, Kai; Berger, Allison A.; Vogel, Jörg

    2012-01-01

    A remarkable feature of many small non-coding RNAs (sRNAs) of Escherichia coli and Salmonella is their accumulation in the stationary phase of bacterial growth. Several stress response regulators and sigma factors have been reported to direct the transcription of stationary phase-specific sRNAs, but a widely conserved sRNA gene that is controlled by the major stationary phase and stress sigma factor, σS (RpoS), has remained elusive. We have studied in Salmonella the conserved SdsR sRNA, previously known as RyeB, one of the most abundant stationary phase-specific sRNAs in E. coli. Alignments of the sdsR promoter region and genetic analysis strongly suggest that this sRNA gene is selectively transcribed by σS. We show that SdsR down-regulates the synthesis of the major Salmonella porin OmpD by Hfq-dependent base pairing; SdsR thus represents the fourth sRNA to regulate this major outer membrane porin. Similar to the InvR, MicC and RybB sRNAs, SdsR recognizes the ompD mRNA in the coding sequence, suggesting that this mRNA may be primarily targeted downstream of the start codon. The SdsR-binding site in ompD was localized by 3′-RACE, an experimental approach that promises to be of use in predicting other sRNA–target interactions in bacteria. PMID:22180532

  7. Rapid reformation of the thick chromosome fiber upon completion of RNA synthesis at the Balbiani ring genes in Chironomus tentans.

    PubMed

    Andersson, K; Mähr, R; Björkroth, B; Daneholt, B

    1982-01-01

    We have studied the ultrastructure of the Balbiani ring genes in Chironomus tentans during treatment with the RNA synthesis inhibitor DRB (5,6-dichloro-1-beta-D-ribofuranosyl-benzimidazole). This nucleoside analogue blocks transcription at or near the initiation site but does not interfere with the elongation and termination processes. In the ordinary active state the Balbiani ring genes display a 5 nm chromosome fiber, carrying densely distributed, growing ribonucleoprotein particles (Andersson et al., 1980). When the transcriptional activity declines, a 10 nm fiber can be observed between sparsely distributed RNA polymerases. Furthermore, after passage of the last RNA polymerase the 10 nm fiber can be seen as well as its gradual packing into a 25 nm thick fiber. Thus, the active chromosome fiber is rapidly packed into higher order structures when the fiber is not directly involved in transcription. The formation of the thick fiber does not require that the gene along its entire length is devoid of active RNA polymerases. The thick fiber can again be mobilized for transcription, since in reversion experiments the BR genes appear as ordinary active genes with an extended nucleofilament and densely packed nascent transcription products. The dynamic behaviour of the chromosome fiber during transcription is discussed as well as the packing and unpacking of a gene into higher order structures.

  8. Synthesis and preliminary investigations of the siRNA delivery potential of novel, single-chain rigid cationic carotenoid lipids.

    PubMed

    Pungente, Michael D; Jubeli, Emile; Øpstad, Christer L; Al-Kawaz, Mais; Barakat, Nour; Ibrahim, Tarek; Abdul Khalique, Nada; Raju, Liji; Jones, Rachel; Leopold, Philip L; Sliwka, Hans-Richard; Partali, Vassilia

    2012-03-16

    The success of nucleic acid delivery requires the development of safe and efficient delivery vectors that overcome cellular barriers for effective transport. Herein we describe the synthesis of a series of novel, single-chain rigid cationic carotenoid lipids and a study of their preliminary in vitro siRNA delivery effectiveness and cellular toxicity. The efficiency of siRNA delivery by the single-chain lipid series was compared with that of known cationic lipid vectors, 3β-[N-(N',N'-dimethylaminoethane)carbamoyl]-cholesterol (DC-Chol) and 1,2-dimyristoyl-sn-glyceryl-3-phosphoethanolamine (EPC) as positive controls. All cationic lipids (controls and single-chain lipids) were co-formulated into liposomes with the neutral co-lipid, 1,2-dioleolyl-sn-glycerol-3-phosphoethanolamine (DOPE). Cationic lipid-siRNA complexes of varying (+/-) molar charge ratios were formulated for delivery into HR5-CL11 cells. Of the five single-chain carotenoid lipids investigated, lipids 1, 2, 3 and 5 displayed significant knockdown efficiency with HR5-CL11 cells. In addition, lipid 1 exhibited the lowest levels of cytotoxicity with cell viability greater than 80% at all (+/-) molar charge ratios studied. This novel, single-chain rigid carotenoid-based cationic lipid represents a new class of transfection vector with excellent cell tolerance, accompanied with encouraging siRNA delivery efficiency.

  9. Middle East Respiratory Coronavirus Accessory Protein 4a Inhibits PKR-Mediated Antiviral Stress Responses

    PubMed Central

    Rabouw, Huib H.; Canton, Javier; Sola, Isabel; Enjuanes, Luis; Bredenbeek, Peter J.; Kikkert, Marjolein; de Groot, Raoul J.; van Kuppeveld, Frank J. M.

    2016-01-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe respiratory infections that can be life-threatening. To establish an infection and spread, MERS-CoV, like most other viruses, must navigate through an intricate network of antiviral host responses. Besides the well-known type I interferon (IFN-α/β) response, the protein kinase R (PKR)-mediated stress response is being recognized as an important innate response pathway. Upon detecting viral dsRNA, PKR phosphorylates eIF2α, leading to the inhibition of cellular and viral translation and the formation of stress granules (SGs), which are increasingly recognized as platforms for antiviral signaling pathways. It is unknown whether cellular infection by MERS-CoV activates the stress response pathway or whether the virus has evolved strategies to suppress this infection-limiting pathway. Here, we show that cellular infection with MERS-CoV does not lead to the formation of SGs. By transiently expressing the MERS-CoV accessory proteins individually, we identified a role of protein 4a (p4a) in preventing activation of the stress response pathway. Expression of MERS-CoV p4a impeded dsRNA-mediated PKR activation, thereby rescuing translation inhibition and preventing SG formation. In contrast, p4a failed to suppress stress response pathway activation that is independent of PKR and dsRNA. MERS-CoV p4a is a dsRNA binding protein. Mutation of the dsRNA binding motif in p4a disrupted its PKR antagonistic activity. By inserting p4a in a picornavirus lacking its natural PKR antagonist, we showed that p4a exerts PKR antagonistic activity also under infection conditions. However, a recombinant MERS-CoV deficient in p4a expression still suppressed SG formation, indicating the expression of at least one other stress response antagonist. This virus also suppressed the dsRNA-independent stress response pathway. Thus, MERS-CoV interferes with antiviral stress responses using at least two different mechanisms, with p4a

  10. Comparison of primary and secondary stimulation of male rats by estradiol in terms of prolactin synthesis and mRNA accumulation in the pituitary.

    PubMed

    Seo, H; Refetoff, S; Vassart, G; Brocas, H

    1979-02-01

    Male rats received acute or chronic primary or acute secondary stimulation with estradiol, and the effects on pituitary prolactin synthesis and its mRNA accumulation were examined. Prolactin synthesis was determined by the in vitro incorporation of [(3)H]leucine into prolactin over a period of 1 hr. Prolactin mRNA was measured both by cell-free translation in a nuclease-treated rabbit reticulocyte lysate and by hybridization to the complementary DNA. The latter two methods gave similar results under all experimental conditions. Acute primary stimulation with estradiol produced a significant increase in pituitary prolactin mRNA accumulation at 12 hr, which further increased by 2- to 3-fold over the next 48 hr. In contrast, no increase in prolactin synthesis was observed during the first 24 hr. Chronic stimulation with estradiol induced increases of both prolactin synthesis and prolactin mRNA that were quantitatively indistinguishable over the period of 1-4 weeks, reaching a plateau at 5-fold the basal values. By the 13th day after withdrawal of therapy both prolactin synthesis and mRNA had returned to the prestimulation levels. When the effects of estradiol on previously unexposed and estrogen withdrawn animals were compared, it was found that secondary stimulation not only produced a more rapid accumulation of the prolactin mRNA but also abolished the lag period of prolactin synthesis observed during the primary estrogen stimulation. These data demonstrate a lag in the endogenous translation of newly accumulated pituitary prolactin mRNA translatable in vitro after primary estrogen stimulation of male rats. The mechanism for the abolition of this lag during the secondary stimulation is now known.

  11. A comparison of RNA with DNA in template-directed synthesis

    NASA Technical Reports Server (NTRS)

    Zielinski, M.; Kozlov, I. A.; Orgel, L. E.; Bada, J. L. (Principal Investigator)

    2000-01-01

    Nonenzymatic template-directed copying of RNA sequences rich in cytidylic acid using nucleoside 5'-(2-methylimidazol-1-yl phosphates) as substrates is substantially more efficient than the copying of corresponding DNA sequences. However, many sequences cannot be copied, and the prospect of replication in this system is remote, even for RNA. Surprisingly, wobble-pairing leads to much more efficient incorporation of G opposite U on RNA templates than of G opposite T on DNA templates.

  12. The 3'-terminal consensus sequence of rotavirus mRNA is the minimal promoter of negative-strand RNA synthesis.

    PubMed Central

    Wentz, M J; Patton, J T; Ramig, R F

    1996-01-01

    We used an in vitro template-dependent replicase assay (D. Chen, C. Zeng, M. Wentz, M. Gorziglia, M. Estes, and R. Ramig. J. Virol. 68:7030-7039, 1994) to identify the cis-acting signals required for replication of a genome segment 9 template from the group A rotavirus strain OSU. The replicase phenotypes for a panel of templates with internal deletions or 3'-terminal truncations indicated that no essential replication signals were present within the open reading frame and that key elements were present in the 5' and 3' noncoding regions. Chimeric constructs containing portions of viral sequence ligated to a nonviral backbone were generated to further map the regions required for in vitro replication of segment 9. The data from these constructs showed that the 3'-terminal seven nucleotides of the segment 9 mRNA provided the minimum requirement for replication (minimal promoter). Analysis of additional chimeric templates demonstrated that sequences capable of enhancing replication from the minimal promoter were located immediately upstream of the minimal promoter and at the extreme 5' terminus of the template. Mutational analysis of the minimal promoter revealed that the 3'-terminal -CC residues are required for efficient replication. Comparison of the replication levels for templates with guanosines and uridines at nucleotides -4 to -6 from the 3' terminus compared with levels for templates containing neither of these residues at these positions indicated that either or both residues must be present in this region for efficient replication in vitro. PMID:8892905

  13. Changes in dihydrofolate reductase (DHFR) mRNA levels can account fully for changes in DHFR synthesis rates during terminal differentiation in a highly amplified myogenic cell line.

    PubMed Central

    Schmidt, E E; Merrill, G F

    1991-01-01

    Dihydrofolate reductase (DHFR) enzyme is preferentially synthesized in proliferative cells. A mouse muscle cell line resistant to 300 microM methotrexate was developed to investigate the molecular levels at which DHFR is down-regulated during myogenic withdrawal from the cell cycle. H- alpha R300T cells contained 540 copies of the endogenous DHFR gene and overexpressed DHFR mRNA and DHFR protein. Despite DHFR gene amplification, the cells remained diploid. As H- alpha R300T myoblasts withdrew from the cell cycle and committed to terminal differentiation, DHFR mRNA levels and DHFR synthesis rates decreased with closely matched kinetics. After 15 to 24 h, committed cells contained 5% the proliferative level of DHFR mRNA (80 molecules per committed cell) and synthesized DHFR protein at 6% the proliferative rate. At no point during the commitment process did the decrease in DHFR synthesis rate exceed the decrease in DHFR message. The decrease in DHFR mRNA levels during commitment was sufficient to account fully for the decrease in rates of DHFR synthesis. Furthermore, DHFR mRNA remained polysomal, and the average number of ribosomes per message remained constant (five to six ribosomes per DHFR mRNA). The constancy of polysome size, along with the uniform rate of DHFR synthesis per message, indicated that DHFR mRNA was efficiently translated in postreplicative cells. The results support a model wherein replication-dependent changes in DHFR synthesis rates are determined exclusively by changes in DHFR mRNA levels. Images PMID:2046674

  14. Development of loop-mediated isothermal amplification assay for detection of human coronavirus-NL63.

    PubMed

    Pyrc, Krzysztof; Milewska, Aleksandra; Potempa, Jan

    2011-07-01

    Human coronavirus NL63 was identified in 2004 in the Netherlands. Due to the high prevalence and world-wide distribution of this pathogen, it is essential to develop a sensitive and specific detection assay suitable for use in a routine diagnostic laboratory. Techniques based on PCR or real-time PCR are laborious and expensive. Detailed analysis of the HCoV-NL63 genome permitted the identification of a conserved nucleic acid sequential motif, which was sufficient for the design of a loop-mediated isothermal amplification (LAMP) assay. Evaluation of the method showed that the test is specific to HCoV-NL63 and that it does not cross-react with other respiratory viruses. The detection limit was found to be 1 copy of RNA template per reaction in cell culture supernatants and clinical specimens.

  15. Comparative analysis of complete genome sequences of three avian coronaviruses reveals a novel group 3c coronavirus.

    PubMed

    Woo, Patrick C Y; Lau, Susanna K P; Lam, Carol S F; Lai, Kenneth K Y; Huang, Yi; Lee, Paul; Luk, Geraldine S M; Dyrting, Kitman C; Chan, Kwok-Hung; Yuen, Kwok-Yung

    2009-01-01

    In this territory-wide molecular epidemiology study of coronaviruses (CoVs) in Hong Kong involving 1,541 dead wild birds, three novel CoVs were identified in three different bird families (bulbul CoV HKU11 [BuCoV HKU11], thrush CoV HKU12 [ThCoV HKU12], and munia CoV HKU13 [MuCoV HKU13]). Four complete genomes of the three novel CoVs were sequenced. Their genomes (26,396 to 26,552 bases) represent the smallest known CoV genomes. In phylogenetic trees constructed using chymotrypsin-like protease (3CL(pro)), RNA-dependent RNA polymerase (Pol), helicase, spike, and nucleocapsid proteins, BuCoV HKU11, ThCoV HKU12, and MuCoV HKU13 formed a cluster distantly related to infectious bronchitis virus and turkey CoV (group 3a CoVs). For helicase, spike, and nucleocapsid, they were also clustered with a CoV recently discovered in Asian leopard cats, for which the complete genome sequence was not available. The 3CL(pro), Pol, helicase, and nucleocapsid of the three CoVs possessed higher amino acid identities to those of group 3a CoVs than to those of group 1 and group 2 CoVs. Unique genomic features distinguishing them from other group 3 CoVs include a distinct transcription regulatory sequence and coding potential for small open reading frames. Based on these results, we propose a novel CoV subgroup, group 3c, to describe this distinct subgroup of CoVs under the group 3 CoVs. Avian CoVs are genetically more diverse than previously thought and may be closely related to some newly identified mammalian CoVs. Further studies would be important to delineate whether the Asian leopard cat CoV was a result of interspecies jumping from birds, a situation analogous to that of bat and civet severe acute respiratory syndrome CoVs.

  16. Efficacy of various disinfectants against SARS coronavirus.

    PubMed

    Rabenau, H F; Kampf, G; Cinatl, J; Doerr, H W

    2005-10-01

    The recent severe acute respiratory syndrome (SARS) epidemic in Asia and Northern America led to broad use of various types of disinfectant in order to control the public spread of the highly contagious virus. However, only limited data were available to demonstrate their efficacy against SARS coronavirus (SARS-CoV). We therefore investigated eight disinfectants for their activity against SARS-CoV according to prEN 14476. Four hand rubs were tested at 30s (Sterillium, based on 45% iso-propanol, 30% n-propanol and 0.2% mecetronium etilsulphate; Sterillium Rub, based on 80% ethanol; Sterillium Gel, based on 85% ethanol; Sterillium Virugard, based on 95% ethanol). Three surface disinfectants were investigated at 0.5% for 30 min and 60 min (Mikrobac forte, based on benzalkonium chloride and laurylamine; Kohrsolin FF, based on benzalkonium chloride, glutaraldehyde and didecyldimonium chloride; Dismozon pur, based on magnesium monoperphthalate), and one instrument disinfectant was investigated at 4% for 15 min, 3% for 30 min and 2% for 60 min [Korsolex basic, based on glutaraldehyde and (ethylenedioxy)dimethanol]. Three types of organic load were used: 0.3% albumin, 10% fetal calf serum, and 0.3% albumin with 0.3% sheep erythrocytes. Virus titres were determined by a quantitative test (endpoint titration) in 96-well microtitre plates. With all tested preparations, SARS-CoV was inactivated to below the limit of detection (reduction factor mostly > or =4), regardless of the type of organic load. In summary, SARS-CoV can be inactivated quite easily with many commonly used disinfectants.

  17. Utility of feline coronavirus antibody tests.

    PubMed

    Addie, Diane D; le Poder, Sophie; Burr, Paul; Decaro, Nicola; Graham, Elizabeth; Hofmann-Lehmann, Regina; Jarrett, Oswald; McDonald, Michael; Meli, Marina L

    2015-02-01

    Eight different tests for antibodies to feline coronavirus (FCoV) were evaluated for attributes that are important in situations in veterinary practice. We compared four indirect immunofluorescent antibody tests (IFAT), one enzyme-linked immunosorbent assay (ELISA) (FCoV Immunocomb; Biogal) and three rapid immunochromatographic (RIM) tests against a panel of samples designated by consensus as positive or negative. Specificity was 100% for all but the two IFATs based on transmissible gastroenteritis virus (TGEV), at 83.3% and 97.5%. The IFAT and ELISA tests were best for obtaining an antibody titre and for working in the presence of virus. The RIM tests were the best for obtaining a result quickly (10-15 mins); of these, the Speed F-Corona was the most sensitive, at 92.4%, followed by FASTest feline infectious peritonitis (FIP; 84.6%) and Anigen Rapid FCoV antibody test (64.1%). Sensitivity was 100% for the ELISA, one FCoV IFAT and one TGEV IFAT; and 98.2% for a second TGEV IFA and 96.1% for a second FCoV IFAT. All tests worked with effusions, even when only blood products were stipulated in the instruction manual. The ELISA and Anigen RIM tests were best for small quantities of sample. The most appropriate FCoV antibody test to use depends on the reason for testing: in excluding a diagnosis of FIP, sensitivity, specificity, small sample quantity, rapidity and ability to work in the presence of virus all matter. For FCoV screening, speed and sensitivity are important, and for FCoV elimination antibody titre is essential.

  18. Interpatient mutational spectrum of human coronavirus-OC43 revealed by illumina sequencing.

    PubMed

    Gorse, Geoffrey J; Patel, Gira B; Fan, Xiaofeng

    2017-02-12

    Human coronaviruses (HCoV) are RNA viruses that cause respiratory tract infections with viral replication of limited duration. The host and viral population heterogeneity could influence clinical phenotypes. Employing long RT-PCR with Illumina sequencing, we quantified the gene mutation load at 0.5% mutation frequency for the 4,529 bp-domain spanning the Spike gene (4,086 bp) of HCoV-OC43 in four upper respiratory clinical specimens obtained during acute illness. There were a total of 121 mutations for all four HCoV samples with the average number of mutations at 30.3 ± 10.2, which is significantly higher than that expected from the Illumina sequencing error rate. There were two mutation peaks, one at the 5' end and the other near position 1550 in the S1 subunit. Two coronavirus samples were genotype B and two were genotype D, clustering with HCoV-OC43 strain AY391777 in neighbor - joining tree phylogenetic analysis. Nonsynonymous mutations were 76.1 ± 14% of mutation load. Although lower than other RNA viruses such as hepatitis C virus, HCoV-OC43 did exhibit quasi-species. The rate of nonsynonymous mutations was higher in the HCoV-OC43 isolates than in hepatitis C virus genotype 1a isolates analyzed for comparison in this study. These characteristics of HCoV-OC43 may affect viral replication dynamics, receptor binding, antigenicity, evolution, transmission, and clinical illness. This article is protected by copyright. All rights reserved.

  19. Human coronavirus NL63: a clinically important virus?

    PubMed

    Fielding, Burtram C

    2011-02-01

    Respiratory tract infection is a leading cause of morbidity and mortality worldwide, especially among young children. Human coronaviruses (HCoVs) have only recently been shown to cause both lower and upper respiratory tract infections. To date, five coronaviruses (HCoV-229E, HCoV-OC43, SARS-CoV, HCoV-NL63 and HCoV HKU-1) that infect humans have been identified, four of which (HCoV-229E, HCoV-OC43, HCoV-NL63 and HCoV-HKU-1) circulate continuously in the human population. Human coronavirus NL63 (HCoV-NL63) was first isolated from the aspirate from a 7-month-old baby in early 2004. Infection with HCoV-NL63 has since been shown to be a common worldwide occurrence and has been associated with many clinical symptoms and diagnoses, including severe lower respiratory tract infection, croup and bronchiolitis. HCoV-NL63 causes disease in children, the elderly and the immunocompromised, and has been detected in 1.0-9.3% of respiratory tract infections in children. In this article, the current knowledge of human coronavirus HCoV-NL63, with special reference to the clinical features, prevalence and seasonal incidence, and coinfection with other respiratory viruses, will be discussed.

  20. Effect of coronavirus infection on reproductive performance of turkey hens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Turkey coronavirus (TCoV) infection causes enteritis in turkeys of varying ages with high mortality in young birds. In older birds, field evidence indicates possible involvement of TCoV in egg production drops in turkey hens. However, no experimental studies have been conducted to demonstrate TCoV...

  1. Cell-free synthesis of mouse mammary tumor virus Pr77 from virion and intracellular mRNA.

    PubMed Central

    Dahl, H H; Dickson, C

    1979-01-01

    Mouse mammary tumor virus (MuMTV) was purified from two cell lines (GR and Mm5MT/c1), and the genomic RNA was isolated and translated in vitro in cell-free systems derived from mouse L cells and rabbit reticulocytes. The major translation product in both systems was a protein with the molecular weight 77,000. Several other products were also detected, among them a 110,000-dalton and in minor amounts a 160,000-dalton protein. All three polypeptides were specifically immunoprecipitated by antiserum raised against the major core protein of MuMTV (p27), but they were not precipitated by antiserum against the virion glycoprotein gp52. Analysis of the in vitro products by tryptic peptide mapping established their relationship to the virion non-glycosylated structural proteins. The 77,000-dalton polypeptide was found to be similar, if not identical, to an analogous precursor isolated from MuMTV-producing cells. Peptide mapping of the 110,000-dalton protein shows that it contains all of the methionine-labeled peptides found in the 77,000-dalton protein plus some additional peptides. We conclude that the products synthesized in vitro from the genomic MuMTV RNA are related to the non-glycosylated virion structural proteins. Polyadenylic acid-containing RNA from MuMTV-producing cells also directed the synthesis of the 77,000-dalton polypeptide in the L-cell system. If this RNA preparation was first fractionated by sucrose gradient centrifugation the 77,000-dalton protein appeared to be synthesized from mRNA with a sedimentation coefficient between 25 and 35S. Images PMID:221668

  2. Inhibition of RNA and DNA synthesis in UV-irradiated normal human fibroblasts is correlated with pyrimidine (6-4) pyrimidone photoproduct formation.

    PubMed

    Petit Frère, C; Clingen, P H; Arlett, C F; Green, M H

    1996-07-05

    UV-irradiation of living cells results in an inhibition of RNA and DNA synthesis. The purpose of this study was to determine whether specific photoproducts or the total combined yield of lesions were responsible for these effects. Asynchronously dividing human fibroblasts from normal donors were irradiated with UVC (254 nm), broad spectrum UVB (290-320 + nm, Westinghouse FS20 lamp) or narrow spectrum UVB (310-315 nm, Philips TL01 lamp) at fluences which induce known yields of cyclobutane pyrimidine dimers, pyrimidine (6-4) pyrimidone photoproducts or Dewar isomers. DNA synthesis was approximately 3-4 times more sensitive to both UVC and UVB irradiation than RNA synthesis. The immediate inhibition of RNA and DNA synthesis was correlated with (6-4) rather than overall photoproduct formation suggesting that the (6-4) photoproduct is the mediator of these inhibitory effects. In support of this suggestion we found that photoreactivation of cells cultured from the marsupial, mouse Sminthopsis crassicaudata, resulted in removal of 70% of pyrimidine dimers from the overall genome, but had only a slight effect on the recovery of RNA synthesis.

  3. Human eosinophil activin A synthesis and mRNA stabilization are induced by the combination of IL-3 plus TNF

    PubMed Central

    Kelly, Elizabeth A.; Esnault, Stephane; Johnson, Sean H.; Liu, Lin Ying; Malter, James S.; Burnham, Mandy E.; Jarjour, Nizar N.

    2016-01-01

    Eosinophils contribute to immune regulation and wound healing/fibrosis in various diseases including asthma. Growing appreciation for the role of activin A in such processes led us to hypothesize that eosinophils are a source of this TGF-β superfamily member. TNFα (TNF) induces activin A by other cell types and is often present at the site of allergic inflammation along with the eosinophil activating common β (βc) chain-signaling cytokines (IL-5, IL-3, GM-CSF). Previously, we established that the combination of TNF plus a βc chain-signaling cytokine synergistically induces eosinophil synthesis of the remodeling enzyme MMP-9. Therefore, eosinophils were stimulated ex vivo by these cytokines and in vivo through an allergen-induced airway inflammatory response. In contrast to IL-5+TNF or GM-CSF+TNF, the combination of IL-3+TNF synergistically induced activin A synthesis and release by human blood eosinophils. IL-3+TNF enhanced activin A mRNA stability, which required sustained signaling of pathways downstream of p38 and ERK MAP kinases. In vivo, following segmental airway allergen challenge of subjects with mild allergic asthma, activin A mRNA was upregulated in airway eosinophils compared to circulating eosinophils, and ex vivo, circulating eosinophils tended to release activin A in response to IL-3+TNF. These data provide evidence that eosinophils release activin A and that this function is enhanced when eosinophils are present in an allergen-induced inflammatory environment. Moreover, these data provide the first evidence for post-transcriptional control of activin A mRNA. We propose that, an environment rich in IL-3+TNF will lead to eosinophil–derived activin A, which plays an important role in regulating inflammation and/or fibrosis. PMID:27001469

  4. Synthesis of RNA probes by the direct in vitro transcription of PCR-generated DNA templates.

    PubMed

    Urrutia, R; McNiven, M A; Kachar, B

    1993-05-01

    We describe a novel method for the generation of RNA probes based on the direct in vitro transcription of DNA templates amplified by polymerase chain reaction (PCR) using primers with sequence hybrids between the target gene and those of the T7 and T3 RNA polymerases promoters. This method circumvents the need for cloning and allows rapid generation of strand-specific RNA molecules that can be used for the identification of genes in hybridization experiments. We have successfully applied this method to the identification of DNA sequences by Southern blot analysis and library screening.

  5. SARS coronavirus, but not human coronavirus NL63, utilizes cathepsin L to infect ACE2-expressing cells.

    PubMed

    Huang, I-Chueh; Bosch, Berend Jan; Li, Fang; Li, Wenhui; Lee, Kyoung Hoa; Ghiran, Sorina; Vasilieva, Natalya; Dermody, Terence S; Harrison, Stephen C; Dormitzer, Philip R; Farzan, Michael; Rottier, Peter J M; Choe, Hyeryun

    2006-02-10

    Viruses require specific cellular receptors to infect their target cells. Angiotensin-converting enzyme 2 (ACE2) is a cellular receptor for two divergent coronaviruses, SARS coronavirus (SARS-CoV) and human coronavirus NL63 (HCoV-NL63). In addition to hostcell receptors, lysosomal cysteine proteases are required for productive infection by some viruses. Here we show that SARS-CoV, but not HCoV-NL63, utilizes the enzymatic activity of the cysteine protease cathepsin L to infect ACE2-expressing cells. Inhibitors of cathepsin L blocked infection by SARS-CoV and by a retrovirus pseudotyped with the SARS-CoV spike (S) protein but not infection by HCoV-NL63 or a retrovirus pseudotyped with the HCoV-NL63 S protein. Expression of exogenous cathepsin L substantially enhanced infection mediated by the SARS-CoV S protein and by filovirus GP proteins but not by the HCoV-NL63 S protein or the vesicular stomatitis virus G protein. Finally, an inhibitor of endosomal acidification had substantially less effect on infection mediated by the HCoV-NL63 S protein than on that mediated by the SARS-CoV S protein. Our data indicate that two coronaviruses that utilize a common receptor nonetheless enter cells through distinct mechanisms.

  6. The S proteins of human coronavirus NL63 and severe acute respiratory syndrome coronavirus bind overlapping regions of ACE2.

    PubMed

    Li, Wenhui; Sui, Jianhua; Huang, I-Chueh; Kuhn, Jens H; Radoshitzky, Sheli R; Marasco, Wayne A; Choe, Hyeryun; Farzan, Michael

    2007-10-25

    The cellular receptor for human coronavirus NL63 (HCoV-NL63), a group I coronavirus, is angiotensin-converting enzyme2 (ACE2). ACE2 is also the receptor for the SARS coronavirus (SARS-CoV), a group II coronavirus. Here we describe the ability of HCoV-NL63 to utilize a number of ACE2 variants previously characterized as SARS-CoV receptors. Several ACE2 variants that reduced SARS-CoV S-protein association similarly reduced that of HCoV-NL63, whereas alteration of a number of solvent-exposed ACE2 residues did not interfere with binding by either S protein. One notable exception is ACE2 residue 354, at the boundary of the SARS-CoV binding site, whose alteration markedly inhibited utilization by the HCoV-NL63 but not SARS-CoV S proteins. In addition, the SARS-CoV S-protein receptor-binding domain inhibited entry mediated by the HCoV-NL63 S protein. These studies indicate that HCoV-NL63, like SARS-CoV, associates region of human ACE2 that includes a key loop formed by beta-strands 4 and 5.

  7. Impairment of glycosaminoglycan synthesis in mucopolysaccharidosis type IIIA cells by using siRNA: a potential therapeutic approach for Sanfilippo disease.

    PubMed

    Dziedzic, Dariusz; Wegrzyn, Grzegorz; Jakóbkiewicz-Banecka, Joanna

    2010-02-01

    Mucopolysaccharidoses (MPS) are severe inherited metabolic disorders from the group of lysosomal storage diseases. They are caused by deficiency in the activity of enzymes involved in the degradation of glycosaminoglycans (GAGs) and resultant accumulation of these compounds in the cells of patients. Although enzyme replacement therapy has become available for some MPS types (MPS I, MPS II and MPS VI), this treatment is not efficient when neurological symptoms occur, especially in MPS III (Sanfilippo disease). Recent studies indicated that substrate reduction therapy (SRT) may be an effective option for the treatment of neurodegenerative lysosomal storage diseases, including MPS III. However, previous attempts to SRT for MPS III focused on the use of non-specific inhibitors of GAG synthesis. Thus, we aimed to use the small interfering RNA (siRNA) procedure to control expression of particular genes, whose products are involved in GAG synthesis. In this report we show that, in MPS IIIA fibroblasts, we were able to reduce mRNA levels of four genes, XYLT1, XYLT2, GALTI and GALTII, whose products are involved in GAG synthesis. This decrease in levels of transcripts corresponded to a decrease in levels of proteins encoded by them. Moreover, efficiency of GAG production in these fibroblasts was considerably reduced after treatment of the cells with siRNA. These results indicate that efficient reduction of GAG synthesis may be achieved by the use of siRNA.

  8. Alisporivir inhibits MERS- and SARS-coronavirus replication in cell culture, but not SARS-coronavirus infection in a mouse model.

    PubMed

    de Wilde, Adriaan H; Falzarano, Darryl; Zevenhoven-Dobbe, Jessika C; Beugeling, Corrine; Fett, Craig; Martellaro, Cynthia; Posthuma, Clara C; Feldmann, Heinz; Perlman, Stanley; Snijder, Eric J

    2017-01-15

    Currently, there is no registered treatment for infections with emerging zoonotic coronaviruses like SARS- and MERS-coronavirus. We here report that in cultured cells low-micromolar concentrations of alisporivir, a non-immunosuppressive cyclosporin A-analog, inhibit the replication of four different coronaviruses, including MERS- and SARS-coronavirus. Ribavirin was found to further potentiate the antiviral effect of alisporivir in these cell culture-based infection models, but this combination treatment was unable to improve the outcome of SARS-CoV infection in a mouse model. Nevertheless, our data provide a basis to further explore the potential of Cyp inhibitors as host-directed, broad-spectrum inhibitors of coronavirus replication.

  9. Synthesis of Sindbis virus complementary DNA by avian myeloblastosis virus RNA-directed DNA polymerase.

    PubMed

    Yuferov, V; Grandgenett, D P; Bondurant, M; Riggin, C; Tigges, M

    1978-07-24

    Sindbis virus 42 S RNA was efficiently transcribed into complementary DNA (CDNA) by avian myeloblastosis virus alphabeta DNA polymerase using oligo- (dT) or single-stranded calf thymus DNA as primers. Both of the Sindbis virus cDNA products were able to protect 60% of 125I-labeled Sindbis virus RNA, at near equal weight ratios, from RNAase A and T1 digestion. Using hybridization kinetics, the Crt 1/2 value for hybridization of the calf thymus-primed cDNA product with excess Sindbis RNA was determined to be 1.8 9 10-2 mol . s . 1-1. Thes data demonstrate that the Sindbis virus cDNA products are relatively uniform representations of Sindbis virus RNA sequences.

  10. An Assay of RNA Synthesis in Hepatic Nuclei from Control and Streptococcus pneumoniae-Infected Rats

    DTIC Science & Technology

    1982-02-22

    Scintisol. The were precipitated in 300 #l ice-cold 10% tri- percentage of total counts in the pellet and chloroacetic acid (TCA) (w/v) contained in...little contamination by other cell organdies. An in vitro system for the incorporation of 2-I14Cluridine- 5-triphosphate into ribonucleic acid (RNA... acid and amino acids (4-6) by the liver, and al- (RNA) production (12) prior to the increased tered carbohydrate (7), lipid (8-10), protein plasma

  11. A Massachusetts prototype like coronavirus isolated from wild peafowls is pathogenic to chickens.

    PubMed

    Sun, Lei; Zhang, Gui-Hong; Jiang, Jing-Wei; Fu, Jia-Dong; Ren, Tao; Cao, Wei-Sheng; Xin, Chao-An; Liao, Ming; Liu, Wen-Jun

    2007-12-01

    Coronavirus infection was investigated in apparently healthy wild peafowls in Guangdong province of China in 2003, while severe acute respiratory syndrome (SARS) broke out there. No SARS-like coronavirus had been isolated but a novel avian coronavirus strain, Peafowl/GD/KQ6/2003 (KQ6), was identified. Sequence analysis revealed that KQ6 was an avian coronavirus infectious bronchitis virus (IBV), a member of coronavirus in group 3. The genome sequence of KQ6 had extremely high degree of identity with that of a Massachusetts prototype IBV M41. KQ6 was pathogenic to chickens but non-pathogenic to peafowls under experimental conditions. Seventeen out of fifty-four (31.48%) peafowl serum samples were tested positive for specific antibodies against IBV. Present results indicate that the peafowl isolate KQ6 is a Massachusetts prototype like coronavirus strain which undergoes few genetic changes and peafowl might have acted as a natural reservoir of IBV for very long time.

  12. Regulation of elastin synthesis in developing sheep nuchal ligament by elastin mRNA levels

    SciTech Connect

    Davidson, J.M.; Smith, K.; Shibahara, S.; Tolstoshev, P.; Crystal, R.G.

    1982-01-01

    Levels of elastin production in explant culture of fetal sheep nuchal ligament and corresponding levels of translatable elastin mRNA were determined in parallel studies during a period of rapid growth of the embryo. The identity of the explant culture and cell-free proucts was confirmed by peptide mapping, immunoprecipitation, and the characteristic lack of histidine and methionine. Elastin production was quantitated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and radioimmune precipitation. The translation products could be labeled with methionine only when NH/sub 2/-terminally donated as f-Met-tRNA/sup Met//sub f/. Explant cultures showed a large rise in elastin production from 70 days after conception to 150 days after conception. Cell free translation of RNA demonstrated a parallel in elastin mRNA levels and in elastin mRNA per cell. It appears, therefore, that the marked emphasis the differentiating muchal ligament places on elastin production is modulated, at least in part, by the quantities of available elastin in mRNA.

  13. First complete genome sequence of European turkey coronavirus suggests complex recombination history related with US turkey and guinea fowl coronaviruses.

    PubMed

    Brown, P A; Touzain, F; Briand, F X; Gouilh, A M; Courtillon, C; Allée, C; Lemaitre, E; De Boisséson, C; Blanchard, Y; Eterradossi, N

    2016-01-01

    A full-length genome sequence of 27,739  nt was determined for the only known European turkey coronavirus (TCoV) isolate. In general, the order, number and size of ORFs were consistent with other gammacoronaviruses. Three points of recombination were predicted, one towards the end of 1a, a second in 1b just upstream of S and a third in 3b. Phylogenetic analysis of the four regions defined by these three points supported the previous notion that European and American viruses do indeed have different evolutionary pathways. Very close relationships were revealed between the European TCoV and the European guinea fowl coronavirus in all regions except one, and both were shown to be closely related to the European infectious bronchitis virus (IBV) Italy 2005. None of these regions of sequence grouped European and American TCoVs. The region of sequence containing the S gene was unique in grouping all turkey and guinea fowl coronaviruses together, separating them from IBVs. Interestingly the French guinea fowl virus was more closely related to the North American viruses. These data demonstrate that European turkey and guinea fowl coronaviruses share a common genetic backbone (most likely an ancestor of IBV Italy 2005) and suggest that this recombined in two separate events with different, yet related, unknown avian coronaviruses, acquiring their S-3a genes. The data also showed that the North American viruses do not share a common backbone with European turkey and guinea fowl viruses; however, they do share similar S-3a genes with guinea fowl virus.

  14. Effects of S-adenosylmethionine decarboxylase, polyamines, amino acids, and weak bases (amines and ammonia) on development and ribosomal RNA synthesis in Xenopus embryos.

    PubMed

    Shiokawa, Koichiro; Aso, Mai; Kondo, Takeshi; Takai, Jun-Ichi; Yoshida, Junki; Mishina, Takamichi; Fuchimukai, Kota; Ogasawara, Tsukasa; Kariya, Taro; Tashiro, Kosuke; Igarashi, Kazuei

    2010-02-01

    We have been studying control mechanisms of gene expression in early embryogenesis in a South African clawed toad Xenopus laevis, especially during the period of midblastula transition (MBT), or the transition from the phase of active cell division (cleavage stage) to the phase of extensive morphogenesis (post-blastular stages). We first found that ribosomal RNA synthesis is initiated shortly after MBT in Xenopus embryos and those weak bases, such as amines and ammonium ion, selectively inhibit the initiation and subsequent activation of rRNA synthesis. We then found that rapidly labeled heterogeneous mRNA-like RNA is synthesized in embryos at pre-MBT stage. We then performed cloning and expression studies of several genes, such as those for activin receptors, follistatin and aldolases, and then reached the studies of S-adenosylmethionine decarboxylase (SAMDC), a key enzyme in polyamine metabolism. Here, we cloned a Xenopus SAMDC cDNA and performed experiments to overexpress the in vitro-synthesized SAMDC mRNA in Xenopus early embryos, and found that the maternally preset program of apoptosis occurs in cleavage stage embryos, which is executed when embryos reach the stage of MBT. In the present article, we first summarize results on SAMDC and the maternal program of apoptosis, and then describe our studies on small-molecular-weight substances like polyamines, amino acids, and amines in Xenopus embryos. Finally, we summarize our studies on weak bases, especially on ammonium ion, as the specific inhibitor of ribosomal RNA synthesis in Xenopus embryonic cells.

  15. What do you mean by transcription rate?: the conceptual difference between nascent transcription rate and mRNA synthesis rate is essential for the proper understanding of transcriptomic analyses.

    PubMed

    Pérez-Ortín, José E; Medina, Daniel A; Chávez, Sebastián; Moreno, Joaquín

    2013-12-01

    mRNA synthesis in all organisms is performed by RNA polymerases, which work as nanomachines on DNA templates. The rate at which their product is made is an important parameter in gene expression. Transcription rate encompasses two related, yet different, concepts: the nascent transcription rate, which measures the in situ mRNA production by RNA polymerase, and the rate of synthesis of mature mRNA, which measures the contribution of transcription to the mRNA concentration. Both parameters are useful for molecular biologists, but they are not interchangeable and they are expressed in different units. It is important to distinguish when and where each one should be used. We propose that for functional genomics the use of nascent transcription rates should be restricted to the evaluation of the transcriptional process itself, whereas mature mRNA synthesis rates should be employed to address the transcriptional input to mRNA concentration balance leading to variation of gene expression.

  16. IGS Minisatellites Useful for Race Differentiation in Colletotrichum lentis and a Likely Site of Small RNA Synthesis Affecting Pathogenicity.

    PubMed

    Durkin, Jonathan; Bissett, John; Pahlavani, Mohammadhadi; Mooney, Brent; Buchwaldt, Lone

    2015-01-01

    Colletotrichum lentis is a fungal pathogen of lentil in Canada but rarely reported elsewhere. Two races, Ct0 and Ct1, have been identified using differential lines. Our objective was to develop a PCR-probe differentiating these races. Sequences of the translation elongation factor 1α (tef1α), RNA polymerase II subunit B2 (rpb2), ATP citrate lyase subunit A (acla), and internal transcribed spacer (ITS) regions were monomorphic, while the intergenic spacer (IGS) region showed length polymorphisms at two minisatellites of 23 and 39 nucleotides (nt). A PCR-probe (39F/R) amplifying the 39 nt minisatellite was developed which subsequently revealed 1-5 minisatellites with 1-12 repeats in C. lentis. The probe differentiated race Ct1 isolates having 7, 9 or 7+9 repeats from race Ct0 having primarily 2 or 4 repeats, occasionally 5, 6, or 8, but never 7 or 9 repeats. These isolates were collected between 1991 and 1999. In a 2012 survey isolates with 2 and 4 repeats increased from 34% to 67%, while isolated with 7 or 9 repeats decreased from 40 to 4%, likely because Ct1 resistant lentil varieties had been grown. The 39 nt repeat was identified in C. gloeosporioides, C. trifolii, Ascochyta lentis, Sclerotinia sclerotiorum and Botrytis cinerea. Thus, the 39F/R PCR probe is not species specific, but can differentiate isolates based on repeat number. The 23 nt minisatellite in C. lentis exists as three length variants with ten sequence variations differentiating race Ct0 having 14 or 19 repeats from race Ct1 having 17 repeats, except for one isolate. RNA-translation of 23 nt repeats forms hairpins and has the appropriate length to suggest that IGS could be a site of small RNA synthesis, a hypothesis that warrants further investigation. Small RNA from fungal plant pathogens able to silence genes either in the host or pathogen thereby aiding infection have been reported.

  17. Human Coronavirus-Associated Influenza-Like Illness in the Community Setting in Peru.

    PubMed

    Razuri, Hugo; Malecki, Monika; Tinoco, Yeny; Ortiz, Ernesto; Guezala, M Claudia; Romero, Candice; Estela, Abel; Breña, Patricia; Morales, Maria-Luisa; Reaves, Erik J; Gomez, Jorge; Uyeki, Timothy M; Widdowson, Marc-Alain; Azziz-Baumgartner, Eduardo; Bausch, Daniel G; Schildgen, Verena; Schildgen, Oliver; Montgomery, Joel M

    2015-11-01

    We present findings describing the epidemiology of non-severe acute respiratory syndrome human coronavirus-associated influenza-like illness from a population-based active follow-up study in four different regions of Peru. In 2010, the prevalence of infections by human coronaviruses 229E, OC43, NL63, or HKU1 was 6.4% in participants with influenza-like illness who tested negative for influenza viruses. Ten of 11 human coronavirus infections were identified in the fall-winter season. Human coronaviruses are present in different regions of Peru and are relatively frequently associated with influenza-like illness in Peru.

  18. Identification of a Novel Coronavirus from a Beluga Whale by Using a Panviral Microarray ▿ †

    PubMed Central

    Mihindukulasuriya, Kathie A.; Wu, Guang; St. Leger, Judy; Nordhausen, Robert W.; Wang, David

    2008-01-01

    The emergence of viruses such as severe acute respiratory syndrome coronavirus and Nipah virus has underscored the role of animal reservoirs in human disease and the need for reservoir surveillance. Here, we used a panviral DNA microarray to investigate the death of a captive beluga whale in an aquatic park. A highly divergent coronavirus, tentatively named coronavirus SW1, was identified in liver tissue from the deceased whale. Subsequently, the entire genome of SW1 was sequenced, yielding a genome of 31,686 nucleotides. Phylogenetic analysis revealed SW1 to be a novel virus distantly related to but most similar to group III coronaviruses. PMID:18353961

  19. Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor

    SciTech Connect

    Peng, Guiqing; Sun, Dawei; Rajashankar, Kanagalaghatta R.; Qian, Zhaohui; Holmes, Kathryn V.; Li, Fang

    2011-09-28

    Coronaviruses have evolved diverse mechanisms to recognize different receptors for their cross-species transmission and host-range expansion. Mouse hepatitis coronavirus (MHV) uses the N-terminal domain (NTD) of its spike protein as its receptor-binding domain. Here we present the crystal structure of MHV NTD complexed with its receptor murine carcinoembryonic antigen-related cell adhesion molecule 1a (mCEACAM1a). Unexpectedly, MHV NTD contains a core structure that has the same {beta}-sandwich fold as human galectins (S-lectins) and additional structural motifs that bind to the N-terminal Ig-like domain of mCEACAM1a. Despite its galectin fold, MHV NTD does not bind sugars, but instead binds mCEACAM1a through exclusive protein-protein interactions. Critical contacts at the interface have been confirmed by mutagenesis, providing a structural basis for viral and host specificities of coronavirus/CEACAM1 interactions. Sugar-binding assays reveal that galectin-like NTDs of some coronaviruses such as human coronavirus OC43 and bovine coronavirus bind sugars. Structural analysis and mutagenesis localize the sugar-binding site in coronavirus NTDs to be above the {beta}-sandwich core. We propose that coronavirus NTDs originated from a host galectin and retained sugar-binding functions in some contemporary coronaviruses, but evolved new structural features in MHV for mCEACAM1a binding.

  20. A screen of the NIH Clinical Collection small molecule library identifies potential anti-coronavirus drugs.

    PubMed

    Cao, Jianzhong; Forrest, J Craig; Zhang, Xuming

    2015-02-01

    With the recent emergence of Middle East Respiratory Syndrome coronavirus in humans and the outbreak of devastating porcine epidemic diarrhea coronavirus in swine, therapeutic intervention is urgently needed. However, anti-coronavirus drugs currently are not available. In an effort to assist rapid development of anti-coronavirus drugs, here we screened the NIH Clinical Collection in cell culture using a luciferase reporter-expressing recombinant murine coronavirus. Of the 727 compounds screened, 84 were found to have a significant anti-coronavirus effect. Further experiments revealed that 51 compounds blocked virus entry while 19 others inhibited viral replication. Additional validation studies with the top 3 inhibitors (hexachlorophene, nitazoxanide and homoharringtonine) demonstrated robust anti-coronavirus activities (a reduction of 6 to 8log10 in virus titer) with an IC50 ranging from 11nM to 1.2μM. Furthermore, homoharringtonine and hexachlorophene exhibited broad antiviral activity against diverse species of human and animal coronaviruses. Since the NIH Clinical Collection consists of compounds that have already been through clinical trials, these small molecule inhibitors have a great potential for rapid development as anti-coronavirus drugs.

  1. Human coronavirus NL63 associated with lower respiratory tract symptoms in early life.

    PubMed

    Kaiser, Laurent; Regamey, Nicolas; Roiha, Hanna; Deffernez, Christelle; Frey, Urs

    2005-11-01

    Coronavirus NL63 has been identified as a new member of the coronavirus genus, but its role as a cause of respiratory disease needs to be established. We studied the first episode of lower respiratory tract symptoms in a cohort of healthy neonates. NL63 was identified in 6 (7%) of 82 cases and was as frequent as other coronaviruses (9%). NL63 was recovered at the onset of symptoms and was cleared within 3 weeks in half of the cases. Our data suggests that coronavirus NL63 causes lower respiratory tract symptoms and is acquired in early life.

  2. Human Coronavirus-Associated Influenza-Like Illness in the Community Setting in Peru

    PubMed Central

    Razuri, Hugo; Malecki, Monika; Tinoco, Yeny; Ortiz, Ernesto; Guezala, M. Claudia; Romero, Candice; Estela, Abel; Breña, Patricia; Morales, Maria-Luisa; Reaves, Erik J.; Gomez, Jorge; Uyeki, Timothy M.; Widdowson, Marc-Alain; Azziz-Baumgartner, Eduardo; Bausch, Daniel G.; Schildgen, Verena; Schildgen, Oliver; Montgomery, Joel M.

    2015-01-01

    We present findings describing the epidemiology of non-severe acute respiratory syndrome human coronavirus-associated influenza-like illness from a population-based active follow-up study in four different regions of Peru. In 2010, the prevalence of infections by human coronaviruses 229E, OC43, NL63, or HKU1 was 6.4% in participants with influenza-like illness who tested negative for influenza viruses. Ten of 11 human coronavirus infections were identified in the fall–winter season. Human coronaviruses are present in different regions of Peru and are relatively frequently associated with influenza-like illness in Peru. PMID:26324726

  3. Disruption of promoter memory by synthesis of a long noncoding RNA

    PubMed Central

    Yu, Yaxin; Yarrington, Robert M.; Chuong, Edward B.; Elde, Nels C.

    2016-01-01

    The yeast HO endonuclease is expressed in late G1 in haploid mother cells to initiate mating-type interconversion. Cells can be arrested in G1 by nutrient deprivation or by pheromone exposure, but cells that resume cycling after nutrient deprivation or cyclin-dependent kinase (CDK) inactivation express HO in the first cell cycle, whereas HO is not expressed until the second cycle after release from pheromone arrest. Here, we show that transcription of a long noncoding RNA (lncRNA) mediates this differential response. The SBF and Mediator factors remain bound to the inactive promoter during arrest due to CDK inactivation, and these bound factors allow the cell to remember a transcriptional decision made before arrest. If the presence of mating pheromone indicates that this decision is no longer appropriate, a lncRNA originating at –2700 upstream of the HO gene is induced, and the transcription machinery displaces promoter-bound SBF, preventing HO transcription in the subsequent cell cycle. Further, we find that the displaced SBF is blocked from rebinding due to incorporation of its recognition sites within nucleosomes. Expressing the pHO-lncRNA in trans is ineffective, indicating that transcription in cis is required. Factor displacement during lncRNA transcription could be a general mechanism for regulating memory of previous events at promoters. PMID:27506791

  4. Feline coronavirus quantitative reverse transcriptase polymerase chain reaction on effusion samples in cats with and without feline infectious peritonitis.

    PubMed

    Longstaff, Louise; Porter, Emily; Crossley, Victoria J; Hayhow, Sophie E; Helps, Christopher R; Tasker, Séverine

    2017-02-01

    Objectives The aim of the study was to determine whether feline coronavirus (FCoV) RNA in effusion samples can be used as a diagnostic marker of feline infectious peritonitis (FIP); and in FCoV RNA-positive samples to examine amino acid codons in the FCoV spike protein at positions 1058 and 1060 where leucine and alanine, respectively, have been associated with systemic or virulent (FIP) FCoV infection. Methods Total RNA was extracted from effusion samples from 20 cats with confirmed FIP and 23 cats with other diseases. Feline coronavirus RNA was detected using a reverse transcriptase quantitative polymerase chain reaction assay (qRT-PCR), and positive samples underwent pyrosequencing of position 1058 with or without Sanger sequencing of position 1060 in the FCoV spike protein. Results Seventeen (85%) of the effusion samples from 20 cats with FIP were positive for FCoV RNA, whereas none of the 23 cats with other diseases were positive. Pyrosequencing of the 17 FCoV-positive samples showed that 11 (65%) of the cats had leucine and two (12%) had methionine at position 1058. Of the latter two samples with methionine, one had alanine at position 1060. Conclusions and relevance A positive FCoV qRT-PCR result on effusions appears specific for FIP and may be a useful diagnostic marker for FIP in cats with effusions. The majority of FCoVs contained amino acid changes previously associated with systemic spread or virulence (FIP) of the virus.

  5. Evaluation of 2'-hydroxyl protection in RNA-synthesis using the H-phosphonate approach.

    PubMed Central

    Rozners, E; Westman, E; Strömberg, R

    1994-01-01

    A number of different protecting groups were compared with respect to their usefulness for protection of 2'-hydroxyl functions during synthesis of oligoribonucleotides using the H-phosphonate approach. The comparison was between the t-butyldimethylsilyl (t-BDMSi), the o-chlorobenzoyl (o-CIBz), the tetrahydropyranyl (THP), the 1-(2-fluorophenyl)-4-methoxypiperidin-4-yl (Fpmp), the 1-(2-chloro-4-methylphenyl)-4-methoxypiperidin-4-yl (Ctmp), and the 1-(2-chloroethoxy)ethyl (Cee) protecting groups. All these groups were tested in synthesis of dodecamers, (Up)11U and (Up)11A, using 5'-O-(4-monomethoxytrityl) or (4,4'-dimethoxytrityl) uridine H-phosphonate building blocks carrying the respective 2'-protection. The performance of the t-BDMSi and o-CIBz derivatives were also compared in synthesis of (Up)19U. The most successful syntheses were clearly those where the t-butyldimethylsilyl group was used. The o-chlorobenzoyl group also gave satisfactory results but seems somewhat limited with respect to synthesis of longer oligomers. The results with all tested acetal derivatives (Fpmp, Ctmp, Cee, THP) were much less successful due to some accompanying cleavage of internucleotidic H-phosphonate functions during removal of 5'-O-protection (DMT). PMID:8127660

  6. Problem-Solving Test: RNA and Protein Synthesis in Bacteriophage-Infected "E. coli" Cells

    ERIC Educational Resources Information Center

    Szeberenyi, Jozsef

    2008-01-01

    The classic experiment presented in this problem-solving test was designed to identify the template molecules of translation by analyzing the synthesis of phage proteins in "Escherichia coli" cells infected with bacteriophage T4. The work described in this test led to one of the most seminal discoveries of early molecular biology: it dealt a…

  7. Inhibition of host protein synthesis by Sindbis virus: correlation with viral RNA replication and release of nuclear proteins to the cytoplasm.

    PubMed

    Sanz, Miguel A; García-Moreno, Manuel; Carrasco, Luis

    2015-04-01

    Infection of mammalian cells by Sindbis virus (SINV) profoundly blocks cellular mRNA translation. Experimental evidence points to viral non-structural proteins (nsPs), in particular nsP2, as the mediator of this inhibition. However, individual expression of nsP1, nsP2, nsP3 or nsP1-4 does not block cellular protein synthesis in BHK cells. Trans-complementation of a defective SINV replicon lacking most of the coding region for nsPs by the co-expression of nsP1-4 propitiates viral RNA replication at low levels, and inhibition of cellular translation is not observed. Exit of nuclear proteins including T-cell intracellular antigen and polypyrimidine tract-binding protein is clearly detected in SINV-infected cells, but not upon the expression of nsPs, even when the defective replicon was complemented. Analysis of a SINV variant with a point mutation in nsP2, exhibiting defects in the shut-off of host protein synthesis, indicates that both viral RNA replication and the release of nuclear proteins to the cytoplasm are greatly inhibited. Furthermore, nucleoside analogues that inhibit cellular and viral RNA synthesis impede the blockade of host mRNA translation, in addition to the release of nuclear proteins. Prevention of the shut-off of host mRNA translation by nucleoside analogues is not due to the inhibition of eIF2α phosphorylation, as this prevention is also observed in PKR(-/-) mouse embryonic fibroblasts that do not phosphorylate eIF2α after SINV infection. Collectively, our observations are consistent with the concept that for the inhibition of cellular protein synthesis to occur, viral RNA replication must take place at control levels, leading to the release of nuclear proteins to the cytoplasm.

  8. Synthesis and evaluation of degradable polyurea block copolymers as siRNA delivery agents.

    PubMed

    Cass, Peter; Knower, Warren; Hinton, Tracey; Shi, Shuning; Grusche, Felix; Tizard, Mark; Gunatillake, Pathiraja

    2013-09-01

    Chain extension by diisocyanate condensation provides a versatile and convenient means for preparing block copolymers. We have utilized this chemistry to prepare reducible multiblock polycations for siRNA delivery. This approach, an alternative to oxidative coupling, was suitable for preparing multiblock polycations with defined molecular weight and architecture. The polymer, PEG-b-multi-(polyhexylurea-co-oligo-L-lysine)-b-PEG, was capable of electrostatically condensing siRNA to form nano-sized polyplexes across a broad compositional range. We demonstrated that the polyplexes enter the cells via endocytosis and interact with the endosome membrane leading to destabilization and hence endosome escape. Another feature of these polymers is their multiple intra-chain disulfide linkages. This enables weakening of the polyplex via chain scission within the cytosol's reductive environment. In addition to the controlled preparation of the polymer, the polyplexes were capable of delivering siRNA in vitro to silence greater than 50% green fluorescent protein expression with negligible toxicity.

  9. The Chemical Synthesis of DNA/RNA: Our Gift to Science

    PubMed Central

    Caruthers, Marvin H.

    2013-01-01

    It is a great privilege to contribute to the Reflections essays. In my particular case, this essay has allowed me to weave some of my major scientific contributions into a tapestry held together by what I have learned from three colleagues (Robert Letsinger, Gobind Khorana, and George Rathmann) who molded my career at every important junction. To these individuals, I remain eternally grateful, as they always led by example and showed many of us how to break new ground in both science and biotechnology. Relative to my scientific career, I have focused primarily on two related areas. The first is methodologies we developed for chemically synthesizing DNA and RNA. Synthetic DNA and RNA continue to be an essential research tool for biologists, biochemists, and molecular biologists. The second is developing new approaches for solving important biological problems using synthetic DNA, RNA, and their analogs. PMID:23223445

  10. Aminoacyl-tRNA analogues; synthesis, purification and properties of 3'-anthraniloyl oligoribonucleotides.

    PubMed

    Nawrot, B; Sprinzl, M

    1998-04-01

    Reaction of isatoic anhydride with adenosine, adenosine 5'-phosphate, oligoribonucleotides or with the E. coli tRNAVal led to attachment of an anthraniloyl residue at 2'- or 3'-OH groups of 3'-terminal ribose residue. No protection of the 5'-hydroxyl group or internal 2'-hydroxyl groups is required for this specific reaction. Anthraniloyl-tRNA which is an analogue of aminoacyl-tRNA forms a ternary complex with EF-Tu*GTP. The anthraniloyl-residue is used as a fluorescent reporter group to monitor interactions with proteins.

  11. Abelson Kinase Inhibitors Are Potent Inhibitors of Severe Acute Respiratory Syndrome Coronavirus and Middle East Respiratory Syndrome Coronavirus Fusion

    PubMed Central

    Coleman, Christopher M.; Sisk, Jeanne M.; Mingo, Rebecca M.; Nelson, Elizabeth A.; White, Judith M.

    2016-01-01

    ABSTRACT The highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) cause significant morbidity and morality. There is currently no approved therapeutic for highly pathogenic coronaviruses, even as MERS-CoV is spreading throughout the Middle East. We previously screened a library of FDA-approved drugs for inhibitors of coronavirus replication in which we identified Abelson (Abl) kinase inhibitors, including the anticancer drug imatinib, as inhibitors of both SARS-CoV and MERS-CoV in vitro. Here we show that the anti-CoV activity of imatinib occurs at the early stages of infection, after internalization and endosomal trafficking, by inhibiting fusion of the virions at the endosomal membrane. We specifically identified the imatinib target, Abelson tyrosine-protein kinase 2 (Abl2), as required for efficient SARS-CoV and MERS-CoV replication in vitro. These data demonstrate that specific approved drugs can be characterized in vitro for their anticoronavirus activity and used to identify host proteins required for coronavirus replication. This type of study is an important step in the repurposing of approved drugs for treatment of emerging coronaviruses. IMPORTANCE Both SARS-CoV and MERS-CoV are zoonotic infections, with bats as the primary source. The 2003 SARS-CoV outbreak began in Guangdong Province in China and spread to humans via civet cats and raccoon dogs in the wet markets before spreading to 37 countries. The virus caused 8,096 confirmed cases of SARS and 774 deaths (a case fatality rate of ∼10%). The MERS-CoV outbreak began in Saudi Arabia and has spread to 27 countries. MERS-CoV is believed to have emerged from bats and passed into humans via camels. The ongoing outbreak of MERS-CoV has resulted in 1,791 cases of MERS and 640 deaths (a case fatality rate of 36%). The emergence of SARS-CoV and MERS-CoV provides evidence that coronaviruses are currently spreading from zoonotic

  12. Coronavirus virulence genes with main focus on SARS-CoV envelope gene.

    PubMed

    DeDiego, Marta L; Nieto-Torres, Jose L; Jimenez-Guardeño, Jose M; Regla-Nava, Jose A; Castaño-Rodriguez, Carlos; Fernandez-Delgado, Raul; Usera, Fernando; Enjuanes, Luis

    2014-12-19

    models and in humans. The modification or deletion of different motifs within E protein, including the transmembrane domain that harbors an ion channel activity, small sequences within the middle region of the carboxy-terminus of E protein, and its most carboxy-terminal end, which contains a PDZ domain-binding motif (PBM), is sufficient to attenuate the virus. Interestingly, a comprehensive collection of SARS-CoVs in which these motifs have been modified elicited full and long-term protection even in old mice, making those deletion mutants promising vaccine candidates. These data indicate that despite its small size, E protein drastically influences the replication of CoVs and their pathogenicity. Although E protein is not essential for CoV genome replication or subgenomic mRNA synthesis, it affects virus morphogenesis, budding, assembly, intracellular trafficking, and virulence. In fact, E protein is responsible in a significant proportion of the inflammasome activation and the associated inflammation elicited by SARS-CoV in the lung parenchyma. This exacerbated inflammation causes edema accumulation leading to acute respiratory distress syndrome (ARDS) and, frequently, to the death of infected animal models or human patients.

  13. Increased rDNA synthesis in germinated conidia of Neurospora crassa is caused by RNA primer molecules found in its culture medium

    SciTech Connect

    Dutta, S.K.; Beljanski, M.

    1984-01-01

    Purine rich small primer RNA molecules (10-15 nucleotides) were isolated from growth medium of germinated (3 hr sprout) conidia of N. crassa. These RNA-primer molecules strongly stimulated in vitro DNA synthesis in N. crassa 74A wild type, as well as in DNAs from mice spleen and lung, and quail testis. These increases of in vitro DNA synthesis was dependent on the concentration of these RNA primer molecules. In contrast, such molecules were not found in 1 or 10 hour sprouts, nor in the culture medium of mycelia (24 hr). These RNA-primer molecules could be hydrolyzed by T1 RNAse but not by pancreatic RNase. Dutta et al. reported increased (250) copies of rRNA genes in germinated conidia (3 hr sprouts) compared to 100 copies of rRNA genes in mycelial cells grown for 24 hours. These observations suggest excessive transcription of rDNAs in the germinated conidial cells which undergo cleavages by nucleates after 3-4 hours of cell growth. Some degradation products were excreted into the culture medium and acted as RNA-primers.

  14. Murine Coronavirus Delays Expression of a Subset of Interferon-Stimulated Genes▿

    PubMed Central

    Rose, Kristine M.; Elliott, Ruth; Martínez-Sobrido, Luis; García-Sastre, Adolfo; Weiss, Susan R.

    2010-01-01

    The importance of the type I interferon (IFN-I) system in limiting coronavirus replication and dissemination has been unequivocally demonstrated by rapid lethality following infection of mice lacking the alpha/beta IFN (IFN-α/β) receptor with mouse hepatitis virus (MHV), a murine coronavirus. Interestingly, MHV has a cell-type-dependent ability to resist the antiviral effects of IFN-α/β. In primary bone-marrow-derived macrophages and mouse embryonic fibroblasts, MHV replication was significantly reduced by the IFN-α/β-induced antiviral state, whereas IFN treatment of cell lines (L2 and 293T) has only minor effects on replication (K. M. Rose and S. R. Weiss, Viruses 1:689-712, 2009). Replication of other RNA viruses, including Theiler's murine encephalitis virus (TMEV), vesicular stomatitis virus (VSV), Sindbis virus, Newcastle disease virus (NDV), and Sendai virus (SeV), was significantly inhibited in L2 cells treated with IFN-α/β, and MHV had the ability to rescue only SeV replication. We present evidence that MHV infection can delay interferon-stimulated gene (ISG) induction mediated by both SeV and IFN-β but only when MHV infection precedes SeV or IFN-β exposure. Curiously, we observed no block in the well-defined IFN-β signaling pathway that leads to STAT1-STAT2 phosphorylation and translocation to the nucleus in cultures infected with MHV. This observation suggests that MHV must inhibit an alternative IFN-induced pathway that is essential for early induction of ISGs. The ability of MHV to delay SeV-mediated ISG production may partially involve limiting the ability of IFN regulatory factor 3 (IRF-3) to function as a transcription factor. Transcription from an IRF-3-responsive promoter was partially inhibited by MHV; however, IRF-3 was transported to the nucleus and bound DNA in MHV-infected cells superinfected with SeV. PMID:20357099

  15. Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner.

    PubMed

    Burkard, Christine; Verheije, Monique H; Wicht, Oliver; van Kasteren, Sander I; van Kuppeveld, Frank J; Haagmans, Bart L; Pelkmans, Lucas; Rottier, Peter J M; Bosch, Berend Jan; de Haan, Cornelis A M

    2014-11-01

    Enveloped viruses need to fuse with a host cell membrane in order to deliver their genome into the host cell. While some viruses fuse with the plasma membrane, many viruses are endocytosed prior to fusion. Specific cues in the endosomal microenvironment induce conformational changes in the viral fusion proteins leading to viral and host membrane fusion. In the present study we investigated the entry of coronaviruses (CoVs). Using siRNA gene silencing, we found that proteins known to be important for late endosomal maturation and endosome-lysosome fusion profoundly promote infection of cells with mouse hepatitis coronavirus (MHV). Using recombinant MHVs expressing reporter genes as well as a novel, replication-independent fusion assay we confirmed the importance of clathrin-mediated endocytosis and demonstrated that trafficking of MHV to lysosomes is required for fusion and productive entry to occur. Nevertheless, MHV was shown to be less sensitive to perturbation of endosomal pH than vesicular stomatitis virus and influenza A virus, which fuse in early and late endosomes, respectively. Our results indicate that entry of MHV depends on proteolytic processing of its fusion protein S by lysosomal proteases. Fusion of MHV was severely inhibited by a pan-lysosomal protease inhibitor, while trafficking of MHV to lysosomes and processing by lysosomal proteases was no longer required when a furin cleavage site was introduced in the S protein immediately upstream of the fusion peptide. Also entry of feline CoV was shown to depend on trafficking to lysosomes and processing by lysosomal proteases. In contrast, MERS-CoV, which contains a minimal furin cleavage site just upstream of the fusion peptide, was negatively affected by inhibition of furin, but not of lysosomal proteases. We conclude that a proteolytic cleavage site in the CoV S protein directly upstream of the fusion peptide is an essential determinant of the intracellular site of fusion.

  16. Real-Time Reverse Transcription-PCR Assay Panel for Middle East Respiratory Syndrome Coronavirus

    PubMed Central

    Lu, Xiaoyan; Whitaker, Brett; Sakthivel, Senthil Kumar K.; Kamili, Shifaq; Rose, Laura E.; Lowe, Luis; Mohareb, Emad; Elassal, Emad M.; Al-sanouri, Tarek; Haddadin, Aktham

    2014-01-01

    A new human coronavirus (CoV), subsequently named Middle East respiratory syndrome (MERS)-CoV, was first reported in Saudi Arabia in September 2012. In response, we developed two real-time reverse transcription-PCR (rRT-PCR) assays targeting the MERS-CoV nucleocapsid (N) gene and evaluated these assays as a panel with a previously published assay targeting the region upstream of the MERS-CoV envelope gene (upE) for the detection and confirmation of MERS-CoV infection. All assays detected ≤10 copies/reaction of quantified RNA transcripts, with a linear dynamic range of 8 log units and 1.3 × 10−3 50% tissue culture infective doses (TCID50)/ml of cultured MERS-CoV per reaction. All assays performed comparably with respiratory, serum, and stool specimens spiked with cultured virus. No false-positive amplifications were obtained with other human coronaviruses or common respiratory viral pathogens or with 336 diverse clinical specimens from non-MERS-CoV cases; specimens from two confirmed MERS-CoV cases were positive with all assay signatures. In June 2012, the U.S. Food and Drug Administration authorized emergency use of the rRT-PCR assay panel as an in vitro diagnostic test for MERS-CoV. A kit consisting of the three assay signatures and a positive control was assembled and distributed to public health laboratories in the United States and internationally to support MERS-CoV surveillance and public health responses. PMID:24153118

  17. Murine coronavirus delays expression of a subset of interferon-stimulated genes.

    PubMed

    Rose, Kristine M; Elliott, Ruth; Martínez-Sobrido, Luis; García-Sastre, Adolfo; Weiss, Susan R

    2010-06-01

    The importance of the type I interferon (IFN-I) system in limiting coronavirus replication and dissemination has been unequivocally demonstrated by rapid lethality following infection of mice lacking the alpha/beta IFN (IFN-alpha/beta) receptor with mouse hepatitis virus (MHV), a murine coronavirus. Interestingly, MHV has a cell-type-dependent ability to resist the antiviral effects of IFN-alpha/beta. In primary bone-marrow-derived macrophages and mouse embryonic fibroblasts, MHV replication was significantly reduced by the IFN-alpha/beta-induced antiviral state, whereas IFN treatment of cell lines (L2 and 293T) has only minor effects on replication (K. M. Rose and S. R. Weiss, Viruses 1:689-712, 2009). Replication of other RNA viruses, including Theiler's murine encephalitis virus (TMEV), vesicular stomatitis virus (VSV), Sindbis virus, Newcastle disease virus (NDV), and Sendai virus (SeV), was significantly inhibited in L2 cells treated with IFN-alpha/beta, and MHV had the ability to rescue only SeV replication. We present evidence that MHV infection can delay interferon-stimulated gene (ISG) induction mediated by both SeV and IFN-beta but only when MHV infection precedes SeV or IFN-beta exposure. Curiously, we observed no block in the well-defined IFN-beta signaling pathway that leads to STAT1-STAT2 phosphorylation and translocation to the nucleus in cultures infected with MHV. This observation suggests that MHV must inhibit an alternative IFN-induced pathway that is essential for early induction of ISGs. The ability of MHV to delay SeV-mediated ISG production may partially involve limiting the ability of IFN regulatory factor 3 (IRF-3) to function as a transcription factor. Transcription from an IRF-3-responsive promoter was partially inhibited by MHV; however, IRF-3 was transported to the nucleus and bound DNA in MHV-infected cells superinfected with SeV.

  18. Coronavirus Cell Entry Occurs through the Endo-/Lysosomal Pathway in a Proteolysis-Dependent Manner

    PubMed Central

    Burkard, Christine; Verheije, Monique H.; Wicht, Oliver; van Kasteren, Sander I.; van Kuppeveld, Frank J.; Haagmans, Bart L.; Pelkmans, Lucas; Rottier, Peter J. M.; Bosch, Berend Jan; de Haan, Cornelis A. M.

    2014-01-01

    Enveloped viruses need to fuse with a host cell membrane in order to deliver their genome into the host cell. While some viruses fuse with the plasma membrane, many viruses are endocytosed prior to fusion. Specific cues in the endosomal microenvironment induce conformational changes in the viral fusion proteins leading to viral and host membrane fusion. In the present study we investigated the entry of coronaviruses (CoVs). Using siRNA gene silencing, we found that proteins known to be important for late endosomal maturation and endosome-lysosome fusion profoundly promote infection of cells with mouse hepatitis coronavirus (MHV). Using recombinant MHVs expressing reporter genes as well as a novel, replication-independent fusion assay we confirmed the importance of clathrin-mediated endocytosis and demonstrated that trafficking of MHV to lysosomes is required for fusion and productive entry to occur. Nevertheless, MHV was shown to be less sensitive to perturbation of endosomal pH than vesicular stomatitis virus and influenza A virus, which fuse in early and late endosomes, respectively. Our results indicate that entry of MHV depends on proteolytic processing of its fusion protein S by lysosomal proteases. Fusion of MHV was severely inhibited by a pan-lysosomal protease inhibitor, while trafficking of MHV to lysosomes and processing by lysosomal proteases was no longer required when a furin cleavage site was introduced in the S protein immediately upstream of the fusion peptide. Also entry of feline CoV was shown to depend on trafficking to lysosomes and processing by lysosomal proteases. In contrast, MERS-CoV, which contains a minimal furin cleavage site just upstream of the fusion peptide, was negatively affected by inhibition of furin, but not of lysosomal proteases. We conclude that a proteolytic cleavage site in the CoV S protein directly upstream of the fusion peptide is an essential determinant of the intracellular site of fusion. PMID:25375324

  19. Homochiral Selectivity in RNA Synthesis: Montmorillonite-catalyzed Quaternary Reactions of D, L-Purine with D, L- Pyrimidine Nucleotides

    NASA Astrophysics Data System (ADS)

    Joshi, Prakash C.; Aldersley, Michael F.; Ferris, James P.

    2011-06-01

    Selective adsorption of D, L-ImpA with D, L-ImpU on the platelets of montmorillonite demonstrates an important reaction pathway for the origin of homochirality in RNA synthesis. Our earlier studies have shown that the individual reactions of D, L-ImpA or D, L-ImpU on montmorillonite catalyst produced oligomers which were only partially inhibited by the incorporation of both D- and L-enantiomers. Homochirality in these reactions was largely due to the formation of cyclic dimers that cannot elongate. We investigated the quaternary reactions of D, L-ImpA with D, L-ImpU on montmorillonite. The chain length of these oligomers increased from 9-mer to 11-mer as observed by HPLC, with a concominant increase in the yield of linear dimers and higher oligomers in the reactions involving D, L-ImpA with D, L-ImpU as compared to the similar reactions carried out with D-enantiomers only. The formation of cyclic dimers of U was completely inhibited in the quaternary reactions. The yield of cyclic dimers of A was reduced from 60% to 10% within the dimer fraction. 12 linear dimers and 3 cyclic dimers were isolated and characterized from the quaternary reaction. The homochirality and regioselectivity of dimers were 64.1% and 71.7%, respectively. Their sequence selectivity was shown by the formation of purine-pyrimidine (54-59%) linkages, followed by purine-purine (29-32%) linkages and pyrimidine-pyrimidine (9-13%) linkages. Of the 16 trimers detected, 10 were homochiral with an overall homochirality of 73-76%. In view of the greater homochirality, sequence- and regio- selectivity, the quaternary reactions on montmorillonite demonstrate an unexpectedly favorable route for the prebiotic synthesis of homochiral RNA compared with the separate reactions of enantiomeric activated mononucleotides.

  20. Light-regulated protein and mRNA synthesis in root caps of maize

    NASA Technical Reports Server (NTRS)

    Feldman, L. J.; Piechulla, B.; Sun, P. S.

    1988-01-01

    Illumination of maize roots initiates changes in mRNA levels and in the activities of proteins within the root cap. Using Northern analysis we showed a 5-6 fold increase in the levels of three specific mRNAs and a 14-fold increase in plastid mRNA. This increase is rapid, occurring within 30 minutes of illumination. With prolonged periods of darkness following illumination, messages return to levels observed in dark, control caps. For two species of mRNA illumination results in a reduction in message levels. Light-stimulated increases in the levels of specific mRNAs are proportionally greater than are increases in the activities of corresponding proteins. We suggest that the light-stimulated increase in protein activity in root caps may be preceded by and occur as a consequence of enhanced levels of mRNA. Our work suggests that photomorphogenesis in roots could involve changes in the levels of a wide variety of mRNAs within the root cap.

  1. Synthesis of an arrayed sgRNA library targeting the human genome

    PubMed Central

    Schmidt, Tobias; Schmid-Burgk, Jonathan L.; Hornung, Veit

    2015-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) in conjunction with CRISPR-associated proteins (Cas) can be employed to introduce double stand breaks into mammalian genomes at user-defined loci. The endonuclease activity of the Cas complex can be targeted to a specific genomic region using a single guide RNA (sgRNA). We developed a ligation-independent cloning (LIC) assembly method for efficient and bias-free generation of large sgRNA libraries. Using this system, we performed an iterative shotgun cloning approach to generate an arrayed sgRNA library that targets one critical exon of almost every protein-coding human gene. An orthogonal mixing and deconvolution approach was used to obtain 19,506 unique sequence-validated sgRNAs (91.4% coverage). As tested in HEK 293T cells, constructs of this library have a median genome editing activity of 54.6% and employing sgRNAs of this library to generate knockout cells was successful for 19 out of 19 genes tested. PMID:26446710

  2. Sulfonamide-bridged nucleic acid: synthesis, high RNA selective hybridization, and high nuclease resistance.

    PubMed

    Mitsuoka, Yasunori; Fujimura, Yuko; Waki, Reiko; Kugimiya, Akira; Yamamoto, Tsuyoshi; Hari, Yoshiyuki; Obika, Satoshi

    2014-11-07

    2'-N,4'-C-(N-methylamino)sulfonylmethylene-bridged thymidine (SuNA), which has a six-membered linkage including a sulfonamide moiety, was synthesized and introduced into oligonucleotides. The oligonucleotides containing SuNA exhibited excellent nuclease resistance, a high affinity toward single-stranded RNA, and a low affinity toward single-stranded DNA compared to the natural oligonucleotide.

  3. Do You Believe in ReincaRNAtion? Herpesviruses Reveal Connection between RNA Decay and Synthesis.

    PubMed

    Russo, Joseph; Wilusz, Jeffrey

    2015-08-12

    Many viruses degrade host mRNAs to reduce competition for proteins/ribosomes and promote viral gene expression. In this issue of Cell Host & Microbe, Abernathy et al. (2015) demonstrate that a herpesviral RNA endonuclease induces host transcriptional repression that is mediated through the decay factor Xrn1 and evaded by viral genes.

  4. Effect of insulin on human skeletal muscle mitochondrial ATP production, protein synthesis, and mRNA transcripts

    PubMed Central

    Stump, Craig S.; Short, Kevin R.; Bigelow, Maureen L.; Schimke, Jill M.; Nair, K. Sreekumaran

    2003-01-01

    Mitochondria are the primary site of skeletal muscle fuel metabolism and ATP production. Although insulin is a major regulator of fuel metabolism, its effect on mitochondrial ATP production is not known. Here we report increases in vastus lateralis muscle mitochondrial ATP production capacity (32–42%) in healthy humans (P < 0.01) i.v. infused with insulin (1.5 milliunits/kg of fat-free mass per min) while clamping glucose, amino acids, glucagon, and growth hormone. Increased ATP production occurred in association with increased mRNA levels from both mitochondrial (NADH dehydrogenase subunit IV) and nuclear [cytochrome c oxidase (COX) subunit IV] genes (164–180%) encoding mitochondrial proteins (P < 0.05). In addition, muscle mitochondrial protein synthesis, and COX and citrate synthase enzyme activities were increased by insulin (P < 0.05). Further studies demonstrated no effect of low to high insulin levels on muscle mitochondrial ATP production for people with type 2 diabetes mellitus, whereas matched nondiabetic controls increased 16–26% (P < 0.02) when four different substrate combinations were used. In conclusion, insulin stimulates mitochondrial oxidative phosphorylation in skeletal muscle along with synthesis of gene transcripts and mitochondrial protein in human subjects. Skeletal muscle of type 2 diabetic patients has a reduced capacity to increase ATP production with high insulin levels. PMID:12808136

  5. Effect of insulin on human skeletal muscle mitochondrial ATP production, protein synthesis, and mRNA transcripts

    NASA Astrophysics Data System (ADS)

    Stump, Craig S.; Short, Kevin R.; Bigelow, Maureen L.; Schimke, Jill M.; Sreekumaran Nair, K.

    2003-06-01

    Mitochondria are the primary site of skeletal muscle fuel metabolism and ATP production. Although insulin is a major regulator of fuel metabolism, its effect on mitochondrial ATP production is not known. Here we report increases in vastus lateralis muscle mitochondrial ATP production capacity (32-42%) in healthy humans (P < 0.01) i.v. infused with insulin (1.5 milliunits/kg of fat-free mass per min) while clamping glucose, amino acids, glucagon, and growth hormone. Increased ATP production occurred in association with increased mRNA levels from both mitochondrial (NADH dehydrogenase subunit IV) and nuclear [cytochrome c oxidase (COX) subunit IV] genes (164-180%) encoding mitochondrial proteins (P < 0.05). In addition, muscle mitochondrial protein synthesis, and COX and citrate synthase enzyme activities were increased by insulin (P < 0.05). Further studies demonstrated no effect of low to high insulin levels on muscle mitochondrial ATP production for people with type 2 diabetes mellitus, whereas matched nondiabetic controls increased 16-26% (P < 0.02) when four different substrate combinations were used. In conclusion, insulin stimulates mitochondrial oxidative phosphorylation in skeletal muscle along with synthesis of gene transcripts and mitochondrial protein in human subjects. Skeletal muscle of type 2 diabetic patients has a reduced capacity to increase ATP production with high insulin levels. cytochrome c oxidase | NADH dehydrogenase subunit IV | amino acids | citrate synthase

  6. Trafficking motifs in the SARS-coronavirus nucleocapsid protein

    SciTech Connect

    You, Jae-Hwan; Reed, Mark L.; Hiscox, Julian A. . E-mail: j.a.hiscox@leeds.ac.uk

    2007-07-13

    The severe acute respiratory syndrome-coronavirus nucleocapsid (N) protein is involved in virus replication and modulation of cell processes. In this latter respect control may in part be achieved through the sub-cellular localisation of the protein. N protein predominately localises in the cytoplasm (the site of virus replication and assembly) but also in the nucleus/nucleolus. Using a combination of live-cell and confocal microscopy coupled to mutagenesis we identified a cryptic nucleolar localisation signal in the central part of the N protein. In addition, based on structural comparison to the avian coronavirus N protein, a nuclear export signal was identified in the C-terminal region of the protein.

  7. Cold stress-induced protein Rbm3 binds 60S ribosomal subunits, alters microRNA levels, and enhances global protein synthesis.

    PubMed

    Dresios, John; Aschrafi, Armaz; Owens, Geoffrey C; Vanderklish, Peter W; Edelman, Gerald M; Mauro, Vincent P

    2005-02-08

    The expression of Rbm3, a glycine-rich RNA-binding protein, is enhanced under conditions of mild hypothermia, and Rbm3 has been postulated to facilitate protein synthesis at colder temperatures. To investigate this possibility, Rbm3 was overexpressed as a c-Myc fusion protein in mouse neuroblastoma N2a cells. Cells expressing this fusion protein showed a 3-fold increase in protein synthesis at both 37 degrees C and 32 degrees C compared with control cells. Although polysome profiles of cells expressing the fusion protein and control cells were similar, several differences were noted, suggesting that Rbm3 might enhance the association of 40S and 60S ribosomal subunits at 32 degrees C. Studies to assess a direct interaction of Rbm3 with ribosomes showed that a fraction of Rbm3 was associated with 60S ribosomal subunits in an RNA-independent manner. It appeared unlikely that this association could explain the global enhancement of protein synthesis, however, because cells expressing the Rbm3 fusion protein showed no substantial increase in the size of their monosome and polysome peaks, suggesting that similar numbers of mRNAs were being translated at approximately the same rates. In contrast, a complex that sedimented between the top of the gradient and 40S subunits was less abundant in cells expressing recombinant Rbm3. Further analysis showed that the RNA component of this fraction was microRNA. We discuss the possibility that Rbm3 expression alters global protein synthesis by affecting microRNA levels and suggest that both Rbm3 and microRNAs are part of a homeostatic mechanism that regulates global levels of protein synthesis under normal and cold-stress conditions.

  8. Interaction of amatoxins with plant cells and RNA polymerases II: selection of amanitin-resistant cell lines and synthesis of amanitin-based affinity ligands

    SciTech Connect

    Little, M.C.

    1984-01-01

    A series of experiments directed toward deriving basic information regarding plant RNA polymerase II is presented. The experiments described relate to the potential of isolating RNA polymerase II mutants in plants, using carrot cell cultures as models. Additionally, the synthesis of amanitin-based affinity ligands to immobilize isolated plant RNA polymerase II and associated transcriptional complexes is described. RNA polymerase II activities have been isolated from suspension cultures of carrot and compared to other plant RNA polymerases II with respect to subunit analysis and inhibition with ..cap alpha..-amanitin. RNA polymerase II purified by polymin P absorption, DE52, phosphocellulose, and RNA-agarose chromatography is shown to copurify with proteins of 175 (and 200), 135, 70, 43, 28, 22, and 17 kdaltons apparent molecular weights. Conditions for accurate determination of amanitin inhibition of the enzyme are established using /sup 3/H-amanitin and are presented for the first time for plant RNA polymerase II; RNA polymerase II from these cultures is shown to be inhibited by 50% at 3-5 nM by ..cap alpha..-amanitin, a value 10-50 times lower than previously reported.

  9. Codon-reading specificity of an unmodified form of Escherichia coli tRNA1Ser in cell-free protein synthesis.

    PubMed Central

    Takai, K; Takaku, H; Yokoyama, S

    1996-01-01

    Unmodified tRNA molecules are useful for many purposes in cell-free protein biosynthesis, but there is little information about how the lack of tRNA post-transcriptional modifications affects the coding specificity for synonymous codons. In the present study, we prepared an unmodified form of Escherichia coli tRNA1Ser, which originally has the cmo5UGA anticodon (cmo5U = uridine 5-oxyacetic acid) and recognizes the UCU, UCA and UCG codons. The codon specificity of the unmodified tRNA was tested in a cell-free protein synthesis directed by designed mRNAs under competition conditions with the parent tRNA1Ser. It was found that the unmodified tRNA with the UGA anti-codon recognizes the UCA codon nearly as efficiently as the modified tRNA. The unmodified tRNA recognized the UCU codon with low, but detectable efficiency, whereas no recognition of the UCC and UCG codons was detected. Therefore, the absence of modifications makes this tRNA more specific to the UCA codon by remarkably reducing the efficiencies of wobble reading of other synonymous codons, without a significant decrease in the UCA reading efficiency. PMID:8760870

  10. Broadly targeted multiprobe QPCR for detection of coronaviruses: Coronavirus is common among mallard ducks (Anas platyrhynchos).

    PubMed

    Muradrasoli, Shaman; Mohamed, Nahla; Hornyák, Akos; Fohlman, Jan; Olsen, Björn; Belák, Sándor; Blomberg, Jonas

    2009-08-01

    Coronaviruses (CoVs) can cause trivial or fatal disease in humans and in animals. Detection methods for a wide range of CoVs are needed, to understand viral evolution, host range, transmission and maintenance in reservoirs. A new concept, "Multiprobe QPCR", which uses a balanced mixture of competing discrete non- or moderately degenerated nuclease degradable (TaqMan) probes was employed. It provides a broadly targeted and rational single tube real-time reverse transcription PCR ("NQPCR") for the generic detection and discovery of CoV. Degenerate primers, previously published, and the new probes, were from a conserved stretch of open reading frame 1b, encoding the replicase. This multiprobe design reduced the degree of probe degeneration, which otherwise decreases the sensitivity, and allowed a preliminary classification of the amplified sequence directly from the QPCR trace. The split probe strategy allowed detection of down to 10 viral nucleic acid equivalents of CoV from all known CoV groups. Evaluation was with reference CoV strains, synthetic targets, human respiratory samples and avian fecal samples. Infectious-Bronchitis-Virus (IBV)-related variants were found in 7 of 35 sample pools, from 100 wild mallards (Anas platyrhynchos). Ducks may spread and harbour CoVs. NQPCR can detect a wide range of CoVs, as illustrated for humans and ducks.

  11. Inhibition of Protein Synthesis and Malaria Parasite Development by Drug Targeting of Methionyl-tRNA Synthetases

    PubMed Central

    Hussain, Tahir; Yogavel, Manickam

    2015-01-01

    Aminoacyl-tRNA synthetases (aaRSs) are housekeeping enzymes that couple cognate tRNAs with amino acids to transmit genomic information for protein translation. The Plasmodium falciparum nuclear genome encodes two P. falciparum methionyl-tRNA synthetases (PfMRS), termed PfMRScyt and PfMRSapi. Phylogenetic analyses revealed that the two proteins are of primitive origin and are related to heterokonts (PfMRScyt) or proteobacteria/primitive bacteria (PfMRSapi). We show that PfMRScyt localizes in parasite cytoplasm, while PfMRSapi localizes to apicoplasts in asexual stages of malaria parasites. Two known bacterial MRS inhibitors, REP3123 and REP8839, hampered Plasmodium growth very effectively in the early and late stages of parasite development. Small-molecule drug-like libraries were screened against modeled PfMRS structures, and several “hit” compounds showed significant effects on parasite growth. We then tested the effects of the hit compounds on protein translation by labeling nascent proteins with 35S-labeled cysteine and methionine. Three of the tested compounds reduced protein synthesis and also blocked parasite growth progression from the ring stage to the trophozoite stage. Drug docking studies suggested distinct modes of binding for the three compounds, compared with the enzyme product methionyl adenylate. Therefore, this study provides new targets (PfMRSs) and hit compounds that can be explored for development as antimalarial drugs. PMID:25583729

  12. Coronavirus phylogeny based on triplets of nucleic acids bases

    NASA Astrophysics Data System (ADS)

    Liao, Bo; Liu, Yanshu; Li, Renfa; Zhu, Wen

    2006-04-01

    We considered the fully overlapping triplets of nucleotide bases and proposed a 2D graphical representation of protein sequences consisting of 20 amino acids and a stop code. Based on this 2D graphical representation, we outlined a new approach to analyze the phylogenetic relationships of coronaviruses by constructing a covariance matrix. The evolutionary distances are obtained through measuring the differences among the two-dimensional curves.

  13. Pre-fusion structure of a human coronavirus spike protein.

    PubMed

    Kirchdoerfer, Robert N; Cottrell, Christopher A; Wang, Nianshuang; Pallesen, Jesper; Yassine, Hadi M; Turner, Hannah L; Corbett, Kizzmekia S; Graham, Barney S; McLellan, Jason S; Ward, Andrew B

    2016-03-03

    HKU1 is a human betacoronavirus that causes mild yet prevalent respiratory disease, and is related to the zoonotic SARS and MERS betacoronaviruses, which have high fatality rates and pandemic potential. Cell tropism and host range is determined in part by the coronavirus spike (S) protein, which binds cellular receptors and mediates membrane fusion. As the largest known class I fusion protein, its size and extensive glycosylation have hindered structural studies of the full ectodomain, thus preventing a molecular understanding of its function and limiting development of effective interventions. Here we present the 4.0 Å resolution structure of the trimeric HKU1 S protein determined using single-particle cryo-electron microscopy. In the pre-fusion conformation, the receptor-binding subunits, S1, rest above the fusion-mediating subunits, S2, preventing their conformational rearrangement. Surprisingly, the S1 C-terminal domains are interdigitated and form extensive quaternary interactions that occlude surfaces known in other coronaviruses to bind protein receptors. These features, along with the location of the two protease sites known to be important for coronavirus entry, provide a structural basis to support a model of membrane fusion mediated by progressive S protein destabilization through receptor binding and proteolytic cleavage. These studies should also serve as a foundation for the structure-based design of betacoronavirus vaccine immunogens.

  14. The nucleocapsid protein of human coronavirus NL63.

    PubMed

    Zuwała, Kaja; Golda, Anna; Kabala, Wojciech; Burmistrz, Michał; Zdzalik, Michal; Nowak, Paulina; Kedracka-Krok, Sylwia; Zarebski, Mirosław; Dobrucki, Jerzy; Florek, Dominik; Zeglen, Sławomir; Wojarski, Jacek; Potempa, Jan; Dubin, Grzegorz; Pyrc, Krzysztof

    2015-01-01

    Human coronavirus (HCoV) NL63 was first described in 2004 and is associated with respiratory tract disease of varying severity. At the genetic and structural level, HCoV-NL63 is similar to other members of the Coronavirinae subfamily, especially human coronavirus 229E (HCoV-229E). Detailed analysis, however, reveals several unique features of the pathogen. The coronaviral nucleocapsid protein is abundantly present in infected cells. It is a multi-domain, multi-functional protein important for viral replication and a number of cellular processes. The aim of the present study was to characterize the HCoV-NL63 nucleocapsid protein. Biochemical analyses revealed that the protein shares characteristics with homologous proteins encoded in other coronaviral genomes, with the N-terminal domain responsible for nucleic acid binding and the C-terminal domain involved in protein oligomerization. Surprisingly, analysis of the subcellular localization of the N protein of HCoV-NL63 revealed that, differently than homologous proteins from other coronaviral species except for SARS-CoV, it is not present in the nucleus of infected or transfected cells. Furthermore, no significant alteration in cell cycle progression in cells expressing the protein was observed. This is in stark contrast with results obtained for other coronaviruses, except for the SARS-CoV.

  15. Mechanisms of the initiation of protein synthesis: in reading frame binding of ribosomes to mRNA.

    PubMed

    Nakamoto, Tokumasa

    2011-02-01

    The various mechanisms proposed to describe the initiation of protein synthesis are reviewed with a focus on their initiation signals. A characteristic feature of the various mechanisms is that each one of them postulates a distinct initiation signal. The signals of the Shine-Dalgarno (SD), the scanning and the internal ribosome entry site (IRES) mechanisms are all located exclusively in the 5' leader sequence, whereas, the signal of the cumulative specificity (CS) mechanism includes the entire initiation site (IS). Computer analysis of known E. coli IS sequences showed signal characteristics in the entire model IS consisting of 47 bases, in segments of the 5' leader and of the protein-coding regions. The proposal that eukaryotic translation actually occurs in two steps is scrutinized. In a first step, initiation factors (eIF4F) interact with the cap of the mRNA, thereby enhancing the accessibility of the IS. In the second step, initiation is by the conserved prokaryotic mechanism in which the ribosomes bind directly to the mRNA without ribosomal scanning. This binding occurs by the proposed process of in reading frame binding of ribosomes to mRNA, which is consistent with the CS mechanism. The basic CS mechanism is able to account for the initiation of translation of leaderless mRNAs, as well as for that of canonical mRNAs. The SD, the scanning and the IRES mechanisms, on the other hand, are inconsistent with the initiation of translation of leaderless mRNAs. Based on these and other observations, it is deemed that the CS mechanism is the universal initiation mechanism.

  16. Inhibition of Bovine Viral Diarrhea Virus RNA Synthesis by Thiosemicarbazone Derived from 5,6-Dimethoxy-1-Indanone▿

    PubMed Central

    Castro, Eliana F.; Fabian, Lucas E.; Caputto, María E.; Gagey, Dolores; Finkielsztein, Liliana M.; Moltrasio, Graciela Y.; Moglioni, Albertina G.; Campos, Rodolfo H.; Cavallaro, Lucía V.

    2011-01-01

    In the present work, we described the activity of the thiosemicarbazone derived from 5,6-dimethoxy-1-indanone (TSC), which we previously characterized as a new compound that inhibits bovine viral diarrhea virus (BVDV) infection. We showed that TSC acts at a point of time that coincides with the onset of viral RNA synthesis and that it inhibits the activity of BVDV replication complexes (RCs). Moreover, we have selected five BVDV mutants that turned out to be highly resistant to TSC but still susceptible to ribavirin (RBV). Four of these resistant mutants carried an N264D mutation in the viral RNA-dependent RNA polymerase (RdRp). The remaining mutant showed an A392E mutation within the same protein. Some of these mutants replicated slower than the wild-type (wt) virus in the absence of TSC, whereas others showed a partial reversion to the wt phenotype over several passages in the absence of the compound. The docking of TSC in the crystal structure of the BVDV RdRp revealed a close contact between the indane ring of the compound and several residues within the fingers domain of the enzyme, some hydrophobic contacts, and hydrogen bonds with the thiosemicarbazone group. Finally, in the mutated RdRp from resistant BVDV, these interactions with TSC could not be achieved. Interestingly, TSC inhibited BVDV replication in cell culture synergistically with RBV. In conclusion, TSC emerges as a new nonnucleoside inhibitor of BVDV RdRp that is synergistic with RBV, a feature that turns it into a potential compound to be evaluated against hepatitis C virus (HCV). PMID:21430053

  17. Stimulation of Vesicular Stomatitis Virus in vitro RNA Synthesis by Microtubule-Associated Proteins

    NASA Astrophysics Data System (ADS)

    Hill, Virginia M.; Harmon, Shirley A.; Summers, Donald F.

    1986-08-01

    Microtubule-associated proteins purified from bovine brains stimulated the in vitro transcription and replication reactions of vesicular stomatitis virus. The products of these reactions were intact messenger or genome-sized RNA species. A preparation from HeLa cells containing tubulin and microtubule-associated proteins also stimulated vesicular stomatitis virus transcription in vitro. This observation is in accord with previous studies, which suggested that a host cell factor was involved with the function of the vesicular stomatitis virus RNA polymerase, and others that indicated that several animal viruses displayed an association with host cell cytoskeletal elements during their replication cycles. We show evidence in this report of a host cell protein that seems to have a functional role in interacting with the virion polymerase.

  18. Replication initiation and genome instability: a crossroads for DNA and RNA synthesis.

    PubMed

    Barlow, Jacqueline H; Nussenzweig, André

    2014-12-01

    Nuclear DNA replication requires the concerted action of hundreds of proteins to efficiently unwind and duplicate the entire genome while also retaining epigenetic regulatory information. Initiation of DNA replication is tightly regulated, rapidly firing thousands of origins once the conditions to promote rapid and faithful replication are in place, and defects in replication initiation lead to proliferation defects, genome instability, and a range of developmental abnormalities. Interestingly, DNA replication in metazoans initiates in actively transcribed DNA, meaning that replication initiation occurs in DNA that is co-occupied with tens of thousands of poised and active RNA polymerase complexes. Active transcription can induce genome instability, particularly during DNA replication, as RNA polymerases can induce torsional stress, formation of secondary structures, and act as a physical barrier to other enzymes involved in DNA metabolism. Here we discuss the challenges facing mammalian DNA replication, their impact on genome instability, and the development of cancer.

  19. Discovery and characterization of a novel class of pyrazolopyrimidinedione tRNA synthesis inhibitors.

    PubMed

    Montgomery, Justin I; Smith, James F; Tomaras, Andrew P; Zaniewski, Richard; McPherson, Craig J; McAllister, Laura A; Hartman-Neumann, Sandra; Arcari, Joel T; Lescoe, Marykay; Gutierrez, Jemy; Yuan, Ying; Limberakis, Chris; Miller, Alita A

    2015-06-01

    A high-throughput phenotypic screen for novel antibacterial agents led to the discovery of a novel pyrazolopyrimidinedione, PPD-1, with preferential activity against methicillin-resistant Staphylococcus aureus (MRSA). Resistance mapping revealed the likely target of inhibition to be lysyl tRNA synthetase (LysRS). Preliminary structure-activity relationship (SAR) studies led to an analog, PPD-2, which gained Gram-negative antibacterial activity at the expense of MRSA activity and resistance to this compound mapped to prolyl tRNA synthetase (ProRS). These targets of inhibition were confirmed in vitro, with PPD-1 showing IC₅₀s of 21.7 and 35 μM in purified LysRS and ProRS enzyme assays, and PPD-2, 151 and 0.04 μM, respectively. The highly attractive chemical properties of these compounds combined with intriguing preliminary SAR suggest that further exploration of this compelling novel series is warranted.

  20. RNA internal standard synthesis by nucleic acid sequence-based amplification for competitive quantitative amplification reactions.

    PubMed

    Lo, Wan-Yu; Baeumner, Antje J

    2007-02-15

    Nucleic acid sequence-based amplification (NASBA) reactions have been demonstrated to successfully synthesize new sequences based on deletion and insertion reactions. Two RNA internal standards were synthesized for use in competitive amplification reactions in which quantitative analysis can be achieved by coamplifying the internal standard with the wild type sample. The sequences were created in two consecutive NASBA reactions using the E. coli clpB mRNA sequence as model analyte. The primer sequences of the wild type sequence were maintained, and a 20-nt-long segment inside the amplicon region was exchanged for a new segment of similar GC content and melting temperature. The new RNA sequence was thus amplifiable using the wild type primers and detectable via a new inserted sequence. In the first reaction, the forwarding primer and an additional 20-nt-long sequence was deleted and replaced by a new 20-nt-long sequence. In the second reaction, a forwarding primer containing as 5' overhang sequence the wild type primer sequence was used. The presence of pure internal standard was verified using electrochemiluminescence and RNA lateral-flow biosensor analysis. Additional sequence deletion in order to shorten the internal standard amplicons and thus generate higher detection signals was found not to be required. Finally, a competitive NASBA reaction between one internal standard and the wild type sequence was carried out proving its functionality. This new rapid construction method via NASBA provides advantages over the traditional techniques since it requires no traditional cloning procedures, no thermocyclers, and can be completed in less than 4 h.

  1. TIF-IA: An oncogenic target of pre-ribosomal RNA synthesis.

    PubMed

    Jin, Rui; Zhou, Wei

    2016-12-01

    Cancer cells devote the majority of their energy consumption to ribosome biogenesis, and pre-ribosomal RNA transcription accounts for 30-50% of all transcriptional activity. This aberrantly elevated biological activity is an attractive target for cancer therapeutic intervention if approaches can be developed to circumvent the development of side effects in normal cells. TIF-IA is a transcription factor that connects RNA polymerase I with the UBF/SL-1 complex to initiate the transcription of pre-ribosomal RNA. Its function is conserved in eukaryotes from yeast to mammals, and its activity is promoted by the phosphorylation of various oncogenic kinases in cancer cells. The depletion of TIF-IA induces cell death in lung cancer cells and mouse embryonic fibroblasts but not in several other normal tissue types evaluated in knock-out studies. Furthermore, the nuclear accumulation of TIF-IA under UTP down-regulated conditions requires the activity of LKB1 kinase, and LKB1-inactivated cancer cells are susceptible to cell death under such stress conditions. Therefore, TIF-IA may be a unique target to suppress ribosome biogenesis without significantly impacting the survival of normal tissues.

  2. Design, Synthesis, and Structure–Activity Relationships of Pyridoquinazolinecarboxamides as RNA Polymerase I Inhibitors

    PubMed Central

    2015-01-01

    RNA polymerase I (Pol I) is a dedicated polymerase that transcribes the 45S ribosomal (r) RNA precursor. The 45S rRNA precursor is subsequently processed into the mature 5.8S, 18S, and 28S rRNAs and assembled into ribosomes in the nucleolus. Pol I activity is commonly deregulated in human cancers. On the basis of the discovery of lead molecule BMH-21, a series of pyridoquinazolinecarboxamides have been evaluated as inhibitors of Pol I and activators of the destruction of RPA194, the Pol I large catalytic subunit protein. Structure–activity relationships in assays of nucleolar stress and cell viability demonstrate key pharmacophores and their physicochemical properties required for potent activation of Pol I stress and cytotoxicity. This work identifies a set of bioactive compounds that potently cause RPA194 degradation that function in a tightly constrained chemical space. This work has yielded novel derivatives that contribute to the development of Pol I inhibitory cancer therapeutic strategies. PMID:24847734

  3. A toxic RNA catalyzes the in cellulo synthesis of its own inhibitor.

    PubMed

    Rzuczek, Suzanne G; Park, HaJeung; Disney, Matthew D

    2014-10-06

    Potent modulators of RNA function can be assembled in cellulo by using the cell as a reaction vessel and a disease-causing RNA as a catalyst. When designing small molecule effectors of function, a balance between permeability and potency must be struck. Low molecular weight compounds are more permeable whereas higher molecular weight compounds are more potent. The advantages of both types of compounds could be synergized if low molecular weight molecules could be transformed into potent, multivalent ligands by a reaction that is catalyzed by binding to a target in cells expressing a genetic defect. It was shown that this approach is indeed viable in cellulo. Small molecule modules with precisely positioned alkyne and azide moieties bind adjacent internal loops in r(CCUG)(exp), the causative agent of myotonic dystrophy type 2 (DM2), and are transformed into oligomeric, potent inhibitors of DM2 RNA dysfunction by a Huisgen 1,3-dipolar cycloaddition reaction, a variant of click chemistry.

  4. Activated levels of rRNA synthesis in fission yeast are driven by an intergenic rDNA region positioned over 2500 nucleotides upstream of the initiation site.

    PubMed Central

    Liu, Z; Zhao, A; Chen, L; Pape, L

    1997-01-01

    RNA polymerase I-catalyzed synthesis of the Schizosaccharomyces pombe approximately 37S pre-rRNAs was shown to be sensitive to regulatory sequences located several kilobases upstream of the initiation site for the rRNA gene. An in vitro transcription system for RNA polymerase I-catalyzed RNA synthesis was established that supports correct and activated transcription from templates bearing a full S. pombe rRNA gene promoter. A 780 bp region starting at -2560 significantly stimulates transcription of ac is-located rDNA promoter and competes with an rDNA promoter in trans, thus displaying some of the activities of rDNA transcriptional enhancers in vitro. Deletion of a 30 bp enhancer-homologous domain in this 780 bp far upstream region blocked its cis-stimulatory effect. The sequence of the S. pombe 3.5 kb intergenic spacer was determined and its organization differs from that of vertebrate, Drosophila, Acanthamoeba and plant intergenic rDNA spacers: it does not contain multiple, imperfect copies of the rRNA gene promoter nor repetitive elements of 140 bp, as are found in vertebrate rDNA enhancers. PMID:9016610

  5. Characterization and complete genome sequence of human coronavirus NL63 isolated in China.

    PubMed

    Geng, Heyuan; Cui, Lijin; Xie, Zhengde; Lu, Roujian; Zhao, Li; Tan, Wenjie

    2012-09-01

    Human coronavirus NL63 (HCoV-NL63) was first discovered in Amsterdam in 2004 and was identified as a new human respiratory coronavirus. We here report the first complete genome sequence of HCoV-NL63 strain CBJ 037 isolated in 2008 from a patient with bronchitis in Beijing, China.

  6. Detection of human coronavirus-NL63 in children in Japan.

    PubMed

    Suzuki, Akira; Okamoto, Michiko; Ohmi, Akira; Watanabe, Oshi; Miyabayashi, Shigeaki; Nishimura, Hidekazu

    2005-07-01

    Human coronavirus NL63 recently found in The Netherlands has been detected in Japan with a reverse transcription-polymerase chain reaction technique in clinical specimens from pediatric patients with respiratory symptoms. Of 419 specimens that were negative for common respiratory viruses, 5 were positive for human coronavirus NL63, and these specimens were all collected in the first 3 months of 2003.

  7. Host-pathogen interactions during coronavirus infection of primary alveolar epithelial cells

    PubMed Central

    Miura, Tanya A.; Holmes, Kathryn V.

    2009-01-01

    Viruses that infect the lung are a significant cause of morbidity and mortality in animals and humans worldwide. Coronaviruses are being associated increasingly with severe diseases in the lower respiratory tract. Alveolar epithelial cells are an important target for coronavirus infection in the lung, and infected cells can initiate innate immune responses to viral infection. In this overview, we describe in vitro models of highly differentiated alveolar epithelial cells that are currently being used to study the innate immune response to coronavirus infection. We have shown that rat coronavirus infection of rat alveolar type I epithelial cells in vitro induces expression of CXC chemokines, which may recruit and activate neutrophils. Although neutrophils are recruited early in infection in several coronavirus models including rat coronavirus. However, their role in viral clearance and/or immune-mediated tissue damage is not understood. Primary cultures of differentiated alveolar epithelial cells will be useful for identifying the interactions between coronaviruses and alveolar epithelial cells that influence the innate immune responses to infection in the lung. Understanding the molecular details of these interactions will be critical for the design of effective strategies to prevent and treat coronavirus infections in the lung. PMID:19638499

  8. Synthesis and characterization of a new photocrosslinking CTP analog and its use in photoaffinity labeling E. coli and T7 RNA polymerases.

    PubMed Central

    Hanna, M M; Zhang, Y; Reidling, J C; Thomas, M J; Jou, J

    1993-01-01

    A new photocrosslinking CTP analog that functioned as a substrate during transcription was synthesized and used to photoaffinity label E. coli and bacteriophage T7 RNA polymerases. This analog, 5-((4-azidophenacyl)thio) cytidine-5'-triphosphate (5-APAS-CTP) contains an aryl azide group approximately 10 A from the nucleotide base and specifically replaced CTP during synthesis of RNA by both polymerases. Analog was placed at the 3' end or internally within RNA. Both polymerases inefficiently incorporated two 5-APAS-CMP molecules sequentially, as was found for the related 5-APAS-UMP. Analog was placed at the 3' end of RNA in transcription complexes paused at the site of Q-modification of E. coli RNA polymerase, downstream of the lambda PR' promoter (+16), a pause that requires specific DNA sequences but no apparent RNA hairpin. Crosslinking was examined in the presence and absence of the NusA protein, which enhances the transcriptional pause at this site and is required for Q modification of the polymerase. Crosslinking of the 3' end of the RNA to NusA was not observed, consistent with our earlier results involving a NusA-enhanced pause site downstream from an RNA hairpin. Images PMID:7684833

  9. The intracellular cargo receptor ERGIC-53 is required for the production of infectious arenavirus, coronavirus, and filovirus particles.

    PubMed

    Klaus, Joseph P; Eisenhauer, Philip; Russo, Joanne; Mason, Anne B; Do, Danh; King, Benjamin; Taatjes, Douglas; Cornillez-Ty, Cromwell; Boyson, Jonathan E; Thali, Markus; Zheng, Chunlei; Liao, Lujian; Yates, John R; Zhang, Bin; Ballif, Bryan A; Botten, Jason W

    2013-11-13

    Arenaviruses and hantaviruses cause severe human disease. Little is known regarding host proteins required for their propagation. We identified human proteins that interact with the glycoproteins (GPs) of a prototypic arenavirus and hantavirus and show that the lectin endoplasmic reticulum (ER)-Golgi intermediate compartment 53 kDa protein (ERGIC-53), a cargo receptor required for glycoprotein trafficking within the early exocytic pathway, associates with arenavirus, hantavirus, coronavirus, orthomyxovirus, and filovirus GPs. ERGIC-53 binds to arenavirus GPs through a lectin-independent mechanism, traffics to arenavirus budding sites, and is incorporated into virions. ERGIC-53 is required for arenavirus, coronavirus, and filovirus propagation; in its absence, GP-containing virus particles form but are noninfectious, due in part to their inability to attach to host cells. Thus, we have identified a class of pathogen-derived ERGIC-53 ligands, a lectin-independent basis for their association with ERGIC-53, and a role for ERGIC-53 in the propagation of several highly pathogenic RNA virus families.

  10. Determinants of the rate of mRNA translocation in bacterial protein synthesis.

    PubMed

    Borg, Anneli; Ehrenberg, Måns

    2015-05-08

    Studying the kinetics of translocation of mRNA and tRNAs on the translating ribosome is technically difficult since the rate-limiting steps involve large conformational changes without covalent bond formation or disruption. Here, we have developed a unique assay system for precise estimation of the full translocation cycle time at any position in any type of open reading frame (ORF). Using a buffer system optimized for high accuracy of tRNA selection together with high concentration of elongation factor G, we obtained in vivo compatible translocation rates. We found that translocation was comparatively slow early in the ORF and faster further downstream of the initiation codon. The maximal translocation rate decreased from the in vivo compatible value of 30 s(-1) at 1 mM free Mg2+ concentration to the detrimentally low value of 1 s(-1) at 6 mM free Mg2+ concentration. Thus, high and in vivo compatible accuracy of codon translation, as well as high and in vivo compatible translocation rate, required a remarkably low Mg2+ concentration. Finally, we found that the rate of translocation deep inside an ORF was not significantly affected upon variation of the standard free energy of interaction between a 6-nt upstream Shine-Dalgarno (SD)-like sequence and the anti-SD sequence of 16S rRNA in a range of 0-6 kcal/mol. Based on these experiments, we discuss the optimal choice of Mg2+ concentration for maximal fitness of the living cell by taking its effects on the accuracy of translation, the peptide bond formation rate and the translocation rate into account.

  11. MicL, a new σE-dependent sRNA, combats envelope stress by repressing synthesis of Lpp, the major outer membrane lipoprotein

    PubMed Central

    Guo, Monica S.; Updegrove, Taylor B.; Gogol, Emily B.; Shabalina, Svetlana A.; Gross, Carol A.; Storz, Gisela

    2014-01-01

    In enteric bacteria, the transcription factor σE maintains membrane homeostasis by inducing synthesis of proteins involved in membrane repair and two small regulatory RNAs (sRNAs) that down-regulate synthesis of abundant membrane porins. Here, we describe the discovery of a third σE-dependent sRNA, MicL (mRNA-interfering complementary RNA regulator of Lpp), transcribed from a promoter located within the coding sequence of the cutC gene. MicL is synthesized as a 308-nucleotide (nt) primary transcript that is processed to an 80-nt form. Both forms possess features typical of Hfq-binding sRNAs but surprisingly target only a single mRNA, which encodes the outer membrane lipoprotein Lpp, the most abundant protein of the cell. We show that the copper sensitivity phenotype previously ascribed to inactivation of the cutC gene is actually derived from the loss of MicL and elevated Lpp levels. This observation raises the possibility that other phenotypes currently attributed to protein defects are due to deficiencies in unappreciated regulatory RNAs. We also report that σE activity is sensitive to Lpp abundance and that MicL and Lpp comprise a new σE regulatory loop that opposes membrane stress. Together MicA, RybB, and MicL allow σE to repress the synthesis of all abundant outer membrane proteins in response to stress. PMID:25030700

  12. Detection of rodent coronaviruses in tissues and cell cultures by using polymerase chain reaction.

    PubMed Central

    Homberger, F R; Smith, A L; Barthold, S W

    1991-01-01

    A polymerase chain reaction (PCR) method was developed for the detection of rodent coronaviruses in biological material by using reverse transcriptase and two primers which flanked an M gene sequence of 375 bp. PCR detected all of 11 different strains of mouse hepatitis virus (MHV) as well as rat sialodacryoadenitis virus but not bovine coronavirus or human coronavirus strains OC43 and 229E. The M gene sequences of bovine coronavirus and human coronavirus OC43 are homologous to that of MHV, but minor differences exist in the primer regions, preventing annealing of the primers. For detecting MHV-Y in tissue samples, PCR was faster than and at least as sensitive as either of the two bioassays (infant mouse bioassay and mouse antibody production test) currently used for MHV diagnostic purposes. Images PMID:1661745

  13. Monoclonal antibody capture enzyme-linked immunosorbent assay for detection of bovine enteric coronavirus.

    PubMed Central

    Crouch, C F; Raybould, T J; Acres, S D

    1984-01-01

    Monoclonal antibodies reactive with three different viral polypeptides were evaluated singly and in combination as the capture antibody(s) in an enzyme-linked immunosorbent assay system for the detection of bovine enteric coronavirus. Similar levels of sensitivity were found for all combinations tested. A sensitive, highly specific, and reproducible assay for the detection of bovine enteric coronavirus was developed, using a mixture of two of these monoclonal antibodies reactive with antigenic components either external or internal to the virion. These monoclonal antibodies were bound indirectly to 96-well plates via rabbit anti-mouse immunoglobulin. After sample application and incubation, virus was detected by using rabbit anti-coronavirus peroxidase conjugate followed by enzyme substrate and chromagen. Fecal samples from a single herd of cows were screened for the presence of coronavirus by this assay. Five percent of clinically normal cows were found to be shedding coronavirus. Images PMID:6325490

  14. Carcinoembryonic Antigen-Related Cell Adhesion Molecule 5 Is an Important Surface Attachment Factor That Facilitates Entry of Middle East Respiratory Syndrome Coronavirus

    PubMed Central

    Chan, Che-Man; Chu, Hin; Wang, Yixin; Wong, Bosco Ho-Yin; Zhao, Xiaoyu; Zhou, Jie; Yang, Dong; Leung, Sze Pui; Chan, Jasper Fuk-Woo; Yeung, Man-Lung; Yan, Jinghua; Lu, Guangwen; Gao, George Fu

    2016-01-01

    ABSTRACT The spike proteins of coronaviruses are capable of binding to a wide range of cellular targets, which contributes to the broad species tropism of coronaviruses. Previous reports have demonstrated that Middle East respiratory syndrome coronavirus (MERS-CoV) predominantly utilizes dipeptidyl peptidase 4 (DPP4) for cell entry. However, additional cellular binding targets of the MERS-CoV spike protein that may augment MERS-CoV infection have not been further explored. In the current study, using the virus overlay protein binding assay (VOPBA), we identified carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5) as a novel cell surface binding target of MERS-CoV. CEACAM5 coimmunoprecipitated with the spike protein of MERS-CoV in both overexpressed and endogenous settings. Disrupting the interaction between CEACAM5 and MERS-CoV spike with anti-CEACAM5 antibody, recombinant CEACAM5 protein, or small interfering RNA (siRNA) knockdown of CEACAM5 significantly inhibited the entry of MERS-CoV. Recombinant expression of CEACAM5 did not render nonpermissive baby hamster kidney (BHK21) cells susceptible to MERS-CoV infection. Instead, CEACAM5 overexpression significantly enhanced the attachment of MERS-CoV to the BHK21 cells. More importantly, the entry of MERS-CoV was increased when CEACAM5 was overexpressed in permissive cells, which suggested that CEACAM5 could facilitate MERS-CoV entry in conjunction with DPP4 despite not being able to support MERS-CoV entry independently. Taken together, the results of our study identified CEACAM5 as a novel cell surface binding target of MERS-CoV that facilitates MERS-CoV infection by augmenting the attachment of the virus to the host cell surface. IMPORTANCE Infection with the Middle East respiratory syndrome coronavirus (MERS-CoV) is associated with the highest mortality rate among all known human-pathogenic coronaviruses. Currently, there are no approved vaccines or therapeutics against MERS-CoV infection. The

  15. Characterization of tRNA-dependent peptide bond formation by MurM in the synthesis of Streptococcus pneumoniae peptidoglycan.

    PubMed

    Lloyd, Adrian J; Gilbey, Andrea M; Blewett, Anne M; De Pascale, Gianfranco; El Zoeiby, Ahmed; Levesque, Roger C; Catherwood, Anita C; Tomasz, Alexander; Bugg, Timothy D H; Roper, David I; Dowson, Christopher G

    2008-03-07

    MurM is an aminoacyl ligase that adds l-serine or l-alanine as the first amino acid of a dipeptide branch to the stem peptide lysine of the pneumococcal peptidoglycan. MurM activity is essential for clinical pneumococcal penicillin resistance. Analysis of peptidoglycan from the highly penicillin-resistant Streptococcus pneumoniae strain 159 revealed that in vivo and in vitro, in the presence of the appropriate acyl-tRNA, MurM(159) alanylated the peptidoglycan epsilon-amino group of the stem peptide lysine in preference to its serylation. However, in contrast, identical analyses of the penicillin-susceptible strain Pn16 revealed that MurM(Pn16) activity supported serylation more than alanylation both in vivo and in vitro. Interestingly, both MurM(Pn16) acylation activities were far lower than the alanylation activity of MurM(159). The resulting differing stem peptide structures of 159 and Pn16 were caused by the profoundly greater catalytic efficiency of MurM(159) compared with MurM(Pn16) bought about by sequence variation between these enzymes and, to a lesser extent, differences in the in vivo tRNA(Ala):tRNA(Ser) ratio in 159 and Pn16. Kinetic analysis revealed that MurM(159) acted during the lipid-linked stages of peptidoglycan synthesis, that the d-alanyl-d-alanine of the stem peptide and the lipid II N-acetylglucosaminyl group were not essential for substrate recognition, that epsilon-carboxylation of the lysine of the stem peptide was not tolerated, and that lipid II-alanine was a substrate, suggesting an evolutionary link to staphylococcal homologues of MurM such as FemA. Kinetic analysis also revealed that MurM recognized the acceptor stem and/or the TPsiC loop stem of the tRNA(Ala). It is anticipated that definition of the minimal structural features of MurM substrates will allow development of novel resistance inhibitors that will restore the efficacy of beta-lactams for treatment of pneumococcal infection.

  16. VHL negatively regulates SARS coronavirus replication by modulating nsp16 ubiquitination and stability.

    PubMed

    Yu, Xiao; Chen, Shuliang; Hou, Panpan; Wang, Min; Chen, Yu; Guo, Deyin

    2015-04-03

    Eukaryotic cellular and most viral RNAs carry a 5'-terminal cap structure, a 5'-5' triphosphate linkage between the 5' end of the RNA and a guanosine nucleotide (cap-0). SARS coronavirus (SARS-CoV) nonstructural protein nsp16 functions as a methyltransferase, to methylate mRNA cap-0 structure at the ribose 2'-O position of the first nucleotide to form cap-1 structures. However, whether there is interplay between nsp16 and host proteins was not yet clear. In this report, we identified several potential cellular nsp16-interacting proteins from a human thymus cDNA library by yeast two-hybrid screening. VHL, one of these proteins, was proven to interact with nsp16 both in vitro and in vivo. Further studies showed that VHL can inhibit SARS-CoV replication by regulating nsp16 ubiquitination and promoting its degradation. Our results have revealed the role of cellular VHL in the regulation of SARS-CoV replication.

  17. Absence of E protein arrests transmissible gastroenteritis coronavirus maturation in the secretory pathway

    SciTech Connect

    Ortego, Javier; Ceriani, Juan E.; Patino, Cristina; Plana, Juan; Enjuanes, Luis

    2007-11-25

    A recombinant transmissible gastroenteritis coronavirus (rTGEV) in which E gene was deleted (rTGEV-{delta}E) has been engineered. This deletion mutant only grows in cells expressing E protein (E{sup +} cells) indicating that E was an essential gene for TGEV replication. Electron microscopy studies of rTGEV-{delta}E infected BHK-pAPN-E{sup -} cells showed that only immature intracellular virions were assembled. These virions were non-infectious and not secreted to the extracellular medium in BHK-pAPN-E{sup -} cells. RNA and protein composition analysis by RNase-gold and immunoelectron microscopy showed that rTGEV-{delta}E virions contained RNA and also all the structural TGEV proteins, except the deleted E protein. Nevertheless, full virion maturation was blocked. Studies of the rTGEV-{delta}E subcellular localization by confocal and immunoelectron microscopy in infected E{sup -} cells showed that in the absence of E protein virus trafficking was arrested in the intermediate compartment. Therefore, the absence of E protein in TGEV resulted in two actions, a blockade of virus trafficking in the membranes of the secretory pathway, and prevention of full virus maturation.

  18. Alphacoronaviruses Detected in French Bats Are Phylogeographically Linked to Coronaviruses of European Bats.

    PubMed

    Goffard, Anne; Demanche, Christine; Arthur, Laurent; Pinçon, Claire; Michaux, Johan; Dubuisson, Jean

    2015-12-02

    Bats are a reservoir for a diverse range of viruses, including coronaviruses (CoVs). To determine the presence of CoVs in French bats, fecal samples were collected between July and August of 2014 from four bat species in seven different locations around the city of Bourges in France. We present for the first time the presence of alpha-CoVs in French Pipistrellus pipistrellus bat species with an estimated prevalence of 4.2%. Based on the analysis of a fragment of the RNA-dependent RNA polymerase (RdRp) gene, phylogenetic analyses show that alpha-CoVs sequences detected in French bats are closely related to other European bat alpha-CoVs. Phylogeographic analyses of RdRp sequences show that several CoVs strains circulate in European bats: (i) old strains detected that have probably diverged a long time ago and are detected in different bat subspecies; (ii) strains detected in Myotis and Pipistrellus bat species that have more recently diverged. Our findings support previous observations describing the complexity of the detected CoVs in bats worldwide.

  19. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry.

    PubMed

    Hofmann, Heike; Pyrc, Krzysztof; van der Hoek, Lia; Geier, Martina; Berkhout, Ben; Pöhlmann, Stefan

    2005-05-31

    Coronavirus (CoV) infection of humans is usually not associated with severe disease. However, discovery of the severe acute respiratory syndrome (SARS) CoV revealed that highly pathogenic human CoVs (HCoVs) can evolve. The identification and characterization of new HCoVs is, therefore, an important task. Recently, a HCoV termed NL63 was discovered in patients with respiratory tract illness. Here, cell tropism and receptor usage of HCoV-NL63 were analyzed. The NL63 spike (S) protein mediated infection of different target cells compared with the closely related 229E-S protein but facilitated entry into cells known to be permissive to SARS-CoV-S-driven infection. An analysis of receptor engagement revealed that NL63-S binds angiotensin-converting enzyme (ACE) 2, the receptor for SARS-CoV, and HCoV-NL63 uses ACE2 as a receptor for infection of target cells. Potent neutralizing activity directed against NL63- but not 229E-S protein was detected in virtually all sera from patients 8 years of age or older, suggesting that HCoV-NL63 infection of humans is common and usually acquired during childhood. Here, we show that SARS-CoV shares its receptor ACE2 with HCoV-NL63. Because the two viruses differ dramatically in their ability to induce disease, analysis of HCoV-NL63 might unravel pathogenicity factors in SARS-CoV. The frequent HCoV-NL63 infection of humans suggests that highly pathogenic variants have ample opportunity to evolve, underlining the need for vaccines against HCoVs.

  20. Fluctuations in protein synthesis from a single RNA template: Stochastic kinetics of ribosomes

    NASA Astrophysics Data System (ADS)

    Garai, Ashok; Chowdhury, Debashish; Ramakrishnan, T. V.

    2009-01-01

    Proteins are polymerized by cyclic machines called ribosomes, which use their messenger RNA (mRNA) track also as the corresponding template, and the process is called translation. We explore, in depth and detail, the stochastic nature of the translation. We compute various distributions associated with the translation process; one of them—namely, the dwell time distribution—has been measured in recent single-ribosome experiments. The form of the distribution, which fits best with our simulation data, is consistent with that extracted from the experimental data. For our computations, we use a model that captures both the mechanochemistry of each individual ribosome and their steric interactions. We also demonstrate the effects of the sequence inhomogeneities of real genes on the fluctuations and noise in translation. Finally, inspired by recent advances in the experimental techniques of manipulating single ribosomes, we make theoretical predictions on the force-velocity relation for individual ribosomes. In principle, all our predictions can be tested by carrying out in vitro experiments.

  1. From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses.

    PubMed

    Hilgenfeld, Rolf; Peiris, Malik

    2013-10-01

    This article introduces a series of invited papers in Antiviral Research marking the 10th anniversary of the outbreak of severe acute respiratory syndrome (SARS), caused by a novel coronavirus that emerged in southern China in late 2002. Until that time, coronaviruses had not been recognized as agents causing severe disease in humans, hence, the emergence of the SARS-CoV came as a complete surprise. Research during the past ten years has revealed the existence of a diverse pool of coronaviruses circulating among various bat species and other animals, suggesting that further introductions of highly pathogenic coronaviruses into the human population are not merely probable, but inevitable. The recent emergence of another coronavirus causing severe disease, Middle East respiratory syndrome (MERS), in humans, has made it clear that coronaviruses pose a major threat to human health, and that more research is urgently needed to elucidate their replication mechanisms, identify potential drug targets, and develop effective countermeasures. In this series, experts in many different aspects of coronavirus replication and disease will provide authoritative, up-to-date reviews of the following topics: - clinical management and infection control of SARS; - reservoir hosts of coronaviruses; - receptor recognition and cross-species transmission of SARS-CoV; - SARS-CoV evasion of innate immune responses; - structures and functions of individual coronaviral proteins; - anti-coronavirus drug discovery and development; and - the public health legacy of the SARS outbreak. Each article will be identified in the last line of its abstract as belonging to the series "From SARS to MERS: 10years of research on highly pathogenic human coronaviruses."

  2. Non-enzymatic template-directed synthesis on RNA random copolymers - Poly(C, U) templates

    NASA Technical Reports Server (NTRS)

    Joyce, G. F.; Inoue, T.; Orgel, L. E.

    1984-01-01

    Random copolymer templates containing cytosine and uracil in ratios of 3:1 and 1:1 are used to explore the optimum conditions for efficient synthesis of guanine and adenine-containing oligonucleotides. The experimental procedure is described, including the preparation of mononucleoside 5'-phospho-2-methylimidazolides and random copolymers, the template-directed oligomerization, the removal and reintroduction of mononucleotides in interrupted reactions, the determination of oligomerization efficiency, the alkaline and enzymatic hydrolysis of reaction products, and the column chromatography. Results are presented and discussed for the dependence of adenine incorporation on the formation of short oligo(G)s, optimization of incorporation efficiencies by adjusting monomer concentrations, the characterization of oligomeric product distribution, and the regiospecificity of adenine incorporation. The prebiotic significance of the results is assessed.

  3. Protein synthesis factors (RF1, RF2, RF3, RRF, and tmRNA) and peptidyl-tRNA hydrolase rescue stalled ribosomes at sense codons.

    PubMed

    Vivanco-Domínguez, Serafín; Bueno-Martínez, José; León-Avila, Gloria; Iwakura, Nobuhiro; Kaji, Akira; Kaji, Hideko; Guarneros, Gabriel

    2012-04-13

    During translation, ribosomes stall on mRNA when the aminoacyl-tRNA to be read is not readily available. The stalled ribosomes are deleterious to the cell and should be rescued to maintain its viability. To investigate the contribution of some of the cellular translation factors on ribosome rescuing, we provoked stalling at AGA codons in mutants that affected the factors and then analyzed the accumulation of oligopeptidyl (peptides of up to 6 amino acid residues, oligopep-)-tRNA or polypeptidyl (peptides of more than 300 amino acids in length, polypep-)-tRNA associated with ribosomes. Stalling was achieved by starvation for aminoacyl-tRNA(Arg4) upon induced expression of engineered lacZ (β-galactosidase) reporter gene harboring contiguous AGA codons close to the initiation codon or at internal codon positions together with minigene ATGAGATAA accompanied by reduced peptidyl-tRNA hydrolase (Pth). Our results showed accumulations of peptidyl-tRNA associated with ribosomes in mutants for release factors (RF1, RF2, and RF3), ribosome recycling factor (RRF), Pth, and transfer-messenger RNA (tmRNA), implying that each of these factors cooperate in rescuing stalled ribosomes. The role of these factors in ribosome releasing from the stalled complex may vary depending on the length of the peptide in the peptidyl-tRNA. RF3 and RRF rescue stalled ribosomes by "drop-off" of peptidyl-tRNA, while RF1, RF2 (in the absence of termination codon), or Pth may rescue by hydrolyzing the associated peptidyl-tRNA. This is followed by the disassembly of the ribosomal complex of tRNA and mRNA by RRF and elongation factor G.

  4. Skeletal muscle plasticity induced by seasonal acclimatization in carp involves differential expression of rRNA and molecules that epigenetically regulate its synthesis.

    PubMed

    Fuentes, Eduardo N; Zuloaga, Rodrigo; Nardocci, Gino; Fernandez de la Reguera, Catalina; Simonet, Nicolas; Fumeron, Robinson; Valdes, Juan Antonio; Molina, Alfredo; Alvarez, Marco

    2014-01-01

    Ribosomal biogenesis controls cellular growth in living organisms, with the rate-limiting step of this process being the transcription of ribosomal DNA (rDNA). Considering that epigenetic mechanisms allow an organism to respond to environmental changes, the expression in muscle of several molecules that regulate epigenetic rRNA synthesis, as well as rDNA transcription, were evaluated during the seasonal acclimatization of the carp. First, the nucleotide sequences encoding the components forming the NoRC (ttf-I, tip5) and eNoSC (sirt1, nml, suv39h1), two chromatin remodeling complexes that silence rRNA synthesis, as well as the sequence of ubf1, a key regulator of rDNA transcription, were obtained. Subsequently the transcriptional regulation of the aforementioned molecules, and other key molecules involved in rRNA synthesis (mh2a1, mh2a2, h2a.z, h2a.z.7, nuc, p80), was assessed. The carp sequences for TTF-I, TIP5, SIRT1, NML, SUV39H1, and UBF1 showed a high conservation of domains and key amino acids in comparison with other fish and higher vertebrates. The mRNA contents in muscle for ttf-I, tip5, sirt1, nml, suv39h1, mh2a1, mh2a.z, and nuc were up-regulated during winter in comparison with summer, whereas the mRNA levels of mh2a2, ubf1, and p80 were down-regulated. Also, the contents of molecules involved in processing the rRNA (snoRNAs) and pRNA, a stabilizer of NoRC complex, were analyzed, finding that these non-coding RNAs were not affected by seasonal acclimatization. These results suggest that variations in the expression of rRNA and the molecules that epigenetically regulate its synthesis are contributing to the muscle plasticity induced by seasonal acclimatization in carp.

  5. Using click chemistry to measure the effect of viral infection on host-cell RNA synthesis.

    PubMed

    Kalveram, Birte; Lihoradova, Olga; Indran, Sabarish V; Head, Jennifer A; Ikegami, Tetsuro

    2013-08-09

    Many RNA viruses have evolved the ability to inhibit host cell transcription as a means to circumvent cellular defenses. For the study of these viruses, it is therefore important to have a quick and reliable way of measuring transcriptional activity in infected cells. Traditionally, transcription has been measured either by incorporation of radioactive nucleosides such as (3)H-uridine followed by detection via autoradiography or scintillation counting, or incorporation of halogenated uridine analogs such as 5-bromouridine (BrU) followed by detection via immunostaining. The use of radioactive isotopes, however, requires specialized equipment and is not feasible in a number of laboratory settings, while the detection of BrU can be cumbersome and may suffer from low sensitivity. The recently developed click chemistry, which involves a copper-catalyzed triazole formation from an azide and an alkyne, now provides a rapid and highly sensitive alternative to these two methods. Click chemistry is a two step process in which nascent RNA is first labeled by incorporation of the uridine analog 5-ethynyluridine (EU), followed by detection of the label with a fluorescent azide. These azides are available as several different fluorophores, allowing for a wide range of options for visualization. This protocol describes a method to measure transcriptional suppression in cells infected with the Rift Valley fever virus (RVFV) strain MP-12 using click chemistry. Concurrently, expression of viral proteins in these cells is determined by classical intracellular immunostaining. Steps 1 through 4 detail a method to visualize transcriptional suppression via fluorescence microscopy, while steps 5 through 8 detail a method to quantify transcriptional suppression via flow cytometry. This protocol is easily adaptable for use with other viruses.

  6. Replication of Tobamovirus RNA.

    PubMed

    Ishibashi, Kazuhiro; Ishikawa, Masayuki

    2016-08-04

    Tobacco mosaic virus and other tobamoviruses have served as models for studying the mechanisms of viral RNA replication. In tobamoviruses, genomic RNA replication occurs via several steps: (a) synthesis of viral replication proteins by translation of the genomic RNA; (b) translation-coupled binding of the replication proteins to a 5'-terminal region of the genomic RNA; (c) recruitment of the genomic RNA by replication proteins onto membranes and formation of a complex with host proteins TOM1 and ARL8; (d) synthesis of complementary (negative-strand) RNA in the complex; and (e) synthesis of progeny genomic RNA. This article reviews current knowledge on tobamovirus RNA replication, particularly regarding how the genomic RNA is specifically selected as a replication template and how the replication proteins are activated. We also focus on the roles of the replication proteins in evading or suppressing host defense systems.

  7. Design, Synthesis, and Characterization of Novel Zwitterionic Lipids for Drug and siRNA Delivery Applications

    NASA Astrophysics Data System (ADS)

    Walsh, Colin L.

    Lipid-based nanoparticles have long been used to deliver biologically active molecules such as drugs, proteins, peptides, DNA, and siRNA in vivo. Liposomes and lipoplexes alter the biodistribution, pharmacokinetics, and cellular uptake of their encapsulated or associated cargo. This can increase drug efficacy while reducing toxicity, resulting in an increased therapeutic index and better clinical outcomes. Unlike small molecule drugs, which passively diffuse through lipid membranes, nucleic acids and proteins require an active, carrier mediated escape mechanism to reach their site of action. As such, the therapeutic application and drug properties dictate the required biophysical characteristics of the lipid nanoparticle. These carrier properties depend on the structure and biophysical characteristics of the lipids and other components used to formulate them. This dissertation presents a series of studies related to the development of novel synthetic lipids for use in drug delivery systems. First, we developed a novel class of zwitterionic lipids with head groups containing a cationic amine and anionic carboxylate and ester-linked oleic acid tails. These lipids exhibit structure-dependent, pH-responsive biophysical properties, and may be useful components for next-generation drug delivery systems. Second, we extended the idea of amine/carboxylate containing zwitterionic head groups and synthesized a series of acetate terminated diacyl lipids containing a quaternary amine. These lipids have an inverted headgroup orientation compared to naturally occurring zwitterionic lipids, and show interesting salt-dependent biophysical properties. Third, we synthesized and characterized a focused library of ionizable lysine-based lipids, which contain a lysine head group linked to a long-chain dialkylamine. A focused library was synthesized to determine the impact of hydrophobic fluidity, lipid net charge, and lipid pKa on the biophysical and siRNA transfection characteristics

  8. Animal models of Middle East Respiratory Syndrome coronavirus infection

    PubMed Central

    van Doremalen, Neeltje; Munster, Vincent J.

    2015-01-01

    The emergence of the Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012 marked the second time that a new, highly pathogenic coronavirus has emerged in the human population in the 21st century. In this review, we discuss the current state of knowledge of animal models of MERS-CoV infection. Commonly used laboratory animal species such as Syrian hamsters, mice and ferrets are not susceptible to MERS-CoV, due to differences in the MERS-CoV receptor dipeptyl peptidase 4 (DPP4). The initially developed animal models comprise two nonhuman primate species, the rhesus macaque and the common marmoset. Rhesus macaques develop a mild to moderate respiratory disease upon inoculation, reminiscent of milder MERS cases, whereas marmosets develop a moderate to severe respiratory disease, recapitulating the severe disease observed in some patients. Dromedary camels, considered to be the reservoir for MERS-CoV, develop a mild upper respiratory tract infection with abundant viral shedding. Although normal mice are not susceptible to MERS-CoV, expression of the human DPP4 (hDPP4) overcomes the lack of susceptibility. Transgenic hDPP4 mice develop severe and lethal respiratory disease upon inoculation with MERS-CoV. These hDPP4 transgenic mice are potentially the ideal first line animal model for efficacy testing of therapeutic and prophylactic countermeasures. Further characterization of identified countermeasures would ideally be performed in the common marmoset model, due to the more severe disease outcome. This article forms part of a symposium in Antiviral Research on “From SARS to MERS: research on highly pathogenic human coronaviruses.” PMID:26192750

  9. Evidence for an Ancestral Association of Human Coronavirus 229E with Bats

    PubMed Central

    Corman, Victor Max; Baldwin, Heather J.; Tateno, Adriana Fumie; Zerbinati, Rodrigo Melim; Annan, Augustina; Owusu, Michael; Nkrumah, Evans Ewald; Maganga, Gael Darren; Oppong, Samuel; Adu-Sarkodie, Yaw; Vallo, Peter; da Silva Filho, Luiz Vicente Ribeiro Ferreira; Leroy, Eric M.; Thiel, Volker; van der Hoek, Lia; Poon, Leo L. M.; Tschapka, Marco

    2015-01-01

    ABSTRACT We previously showed that close relatives of human coronavirus 229E