DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathew, D; Tanny, S; Parsai, E
2015-06-15
Purpose: The current small field dosimetry formalism utilizes quality correction factors to compensate for the difference in detector response relative to dose deposited in water. The correction factors are defined on a machine-specific basis for each beam quality and detector combination. Some research has suggested that the correction factors may only be weakly dependent on machine-to-machine variations, allowing for determinations of class-specific correction factors for various accelerator models. This research examines the differences in small field correction factors for three detectors across two Varian Truebeam accelerators to determine the correction factor dependence on machine-specific characteristics. Methods: Output factors were measuredmore » on two Varian Truebeam accelerators for equivalently tuned 6 MV and 6 FFF beams. Measurements were obtained using a commercial plastic scintillation detector (PSD), two ion chambers, and a diode detector. Measurements were made at a depth of 10 cm with an SSD of 100 cm for jaw-defined field sizes ranging from 3×3 cm{sup 2} to 0.6×0.6 cm{sup 2}, normalized to values at 5×5cm{sup 2}. Correction factors for each field on each machine were calculated as the ratio of the detector response to the PSD response. Percent change of correction factors for the chambers are presented relative to the primary machine. Results: The Exradin A26 demonstrates a difference of 9% for 6×6mm{sup 2} fields in both the 6FFF and 6MV beams. The A16 chamber demonstrates a 5%, and 3% difference in 6FFF and 6MV fields at the same field size respectively. The Edge diode exhibits less than 1.5% difference across both evaluated energies. Field sizes larger than 1.4×1.4cm2 demonstrated less than 1% difference for all detectors. Conclusion: Preliminary results suggest that class-specific correction may not be appropriate for micro-ionization chamber. For diode systems, the correction factor was substantially similar and may be useful for class-specific reference conditions.« less
NASA Astrophysics Data System (ADS)
Talamo, Alberto; Gohar, Y.; Cao, Y.; Zhong, Z.; Kiyavitskaya, H.; Bournos, V.; Fokov, Y.; Routkovskaya, C.
2012-03-01
In subcritical assemblies, the Bell and Glasstone spatial correction factor is used to correct the measured reactivity from different detector positions. In addition to the measuring position, several other parameters affect the correction factor: the detector material, the detector size, and the energy-angle distribution of source neutrons. The effective multiplication factor calculated by computer codes in criticality mode slightly differs from the average value obtained from the measurements in the different experimental channels of the subcritical assembly, which are corrected by the Bell and Glasstone spatial correction factor. Generally, this difference is due to (1) neutron counting errors; (2) geometrical imperfections, which are not simulated in the calculational model, and (3) quantities and distributions of material impurities, which are missing from the material definitions. This work examines these issues and it focuses on the detector choice and the calculation methodologies. The work investigated the YALINA Booster subcritical assembly of Belarus, which has been operated with three different fuel enrichments in the fast zone either: high (90%) and medium (36%), medium (36%), or low (21%) enriched uranium fuel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calderon, E; Siergiej, D
2014-06-01
Purpose: Output factor determination for small fields (less than 20 mm) presents significant challenges due to ion chamber volume averaging and diode over-response. Measured output factor values between detectors are known to have large deviations as field sizes are decreased. No set standard to resolve this difference in measurement exists. We observed differences between measured output factors of up to 14% using two different detectors. Published Monte Carlo derived correction factors were used to address this challenge and decrease the output factor deviation between detectors. Methods: Output factors for Elekta's linac-based stereotactic cone system were measured using the EDGE detectormore » (Sun Nuclear) and the A16 ion chamber (Standard Imaging). Measurements conditions were 100 cm SSD (source to surface distance) and 1.5 cm depth. Output factors were first normalized to a 10.4 cm × 10.4 cm field size using a daisy-chaining technique to minimize the dependence of field size on detector response. An equation expressing the relation between published Monte Carlo correction factors as a function of field size for each detector was derived. The measured output factors were then multiplied by the calculated correction factors. EBT3 gafchromic film dosimetry was used to independently validate the corrected output factors. Results: Without correction, the deviation in output factors between the EDGE and A16 detectors ranged from 1.3 to 14.8%, depending on cone size. After applying the calculated correction factors, this deviation fell to 0 to 3.4%. Output factors determined with film agree within 3.5% of the corrected output factors. Conclusion: We present a practical approach to applying published Monte Carlo derived correction factors to measured small field output factors for the EDGE and A16 detectors. Using this method, we were able to decrease the percent deviation between both detectors from 14.8% to 3.4% agreement.« less
Can small field diode correction factors be applied universally?
Liu, Paul Z Y; Suchowerska, Natalka; McKenzie, David R
2014-09-01
Diode detectors are commonly used in dosimetry, but have been reported to over-respond in small fields. Diode correction factors have been reported in the literature. The purpose of this study is to determine whether correction factors for a given diode type can be universally applied over a range of irradiation conditions including beams of different qualities. A mathematical relation of diode over-response as a function of the field size was developed using previously published experimental data in which diodes were compared to an air core scintillation dosimeter. Correction factors calculated from the mathematical relation were then compared those available in the literature. The mathematical relation established between diode over-response and the field size was found to predict the measured diode correction factors for fields between 5 and 30 mm in width. The average deviation between measured and predicted over-response was 0.32% for IBA SFD and PTW Type E diodes. Diode over-response was found to be not strongly dependent on the type of linac, the method of collimation or the measurement depth. The mathematical relation was found to agree with published diode correction factors derived from Monte Carlo simulations and measurements, indicating that correction factors are robust in their transportability between different radiation beams. Copyright © 2014. Published by Elsevier Ireland Ltd.
Wegener, Sonja; Sauer, Otto A
2018-02-01
Different detector properties will heavily affect the results of off-axis measurements outside of radiation fields, where a different energy spectrum is encountered. While a diode detector would show a high spatial resolution, it contains high atomic number elements, which lead to perturbations and energy-dependent response. An ionization chamber, on the other hand, has a much smaller energy dependence, but shows dose averaging over its larger active volume. We suggest a way to obtain spatial energy response corrections of a detector independent of its volume effect for profiles of arbitrary fields by using a combination of two detectors. Measurements were performed at an Elekta Versa HD accelerator equipped with an Agility MLC. Dose profiles of fields between 10 × 4 cm² and 0.6 × 0.6 cm² were recorded several times, first with different small-field detectors (unshielded diode 60012 and stereotactic field detector SFD, microDiamond, EDGE, and PinPoint 31006) and then with a larger volume ionization chamber Semiflex 31010 for different photon beam qualities of 6, 10, and 18 MV. Correction factors for the small-field detectors were obtained from the readings of the respective detector and the ionization chamber using a convolution method. Selected profiles were also recorded on film to enable a comparison. After applying the correction factors to the profiles measured with different detectors, agreement between the detectors and with profiles measured on EBT3 film was improved considerably. Differences in the full width half maximum obtained with the detectors and the film typically decreased by a factor of two. Off-axis correction factors outside of a 10 × 1 cm² field ranged from about 1.3 for the EDGE diode about 10 mm from the field edge to 0.7 for the PinPoint 31006 25 mm from the field edge. The microDiamond required corrections comparable in size to the Si-diodes and even exceeded the values in the tail region of the field. The SFD was found to require the smallest correction. The corrections typically became larger for higher energies and for smaller field sizes. With a combination of two detectors, experimentally derived correction factors can be obtained. Application of those factors leads to improved agreement between the measured profiles and those recorded on EBT3 film. The results also complement so far only Monte Carlo-simulated values for the off-axis response of different detectors. © 2017 American Association of Physicists in Medicine.
HIV Stigma in Prisons and Jails: Results from a Staff Survey
Dembo, Richard; Copenhaver, Michael; Hiller, Matthew; Swan, Holly; Garcia, Carmen Albizu; O’Connell, Daniel; Oser, Carrie; Pearson, Frank; Pankow, Jennifer
2015-01-01
With numerous HIV service gaps in prisons and jails, there has been little research on HIV stigma attitudes among correctional staff. Such attitudes may undermine HIV services for inmates at risk of or infected with HIV. This HIV stigma attitudes survey among 218 correctional staff in 32 US facilities (1) provides an overview of staff’s stigma attitudes, (2) reports psychometric analyses of domains in Earnshaw and Chaudoir’s HIV Stigma Framework (HSF), and (3) explores differences in stigma attitudes among different staff types. Overall, correctional and medical staff expressed non stigmatizing attitudes toward people living with HIV/AIDS, but perceived that stigma and discrimination exist in others. Factor analyses revealed a three factor structure capturing two mechanisms of the HSF (prejudice, discrimination). Few factor score differences were found by staff type or setting. Implications for correctional HIV services and future research on HIV stigma attitudes are discussed. PMID:26036464
HIV Stigma in Prisons and Jails: Results from a Staff Survey.
Belenko, Steven; Dembo, Richard; Copenhaver, Michael; Hiller, Matthew; Swan, Holly; Albizu Garcia, Carmen; O'Connell, Daniel; Oser, Carrie; Pearson, Frank; Pankow, Jennifer
2016-01-01
With numerous HIV service gaps in prisons and jails, there has been little research on HIV stigma attitudes among correctional staff. Such attitudes may undermine HIV services for inmates at risk of or infected with HIV. This HIV stigma attitudes survey among 218 correctional staff in 32 US facilities (1) provides an overview of staff's stigma attitudes, (2) reports psychometric analyses of domains in Earnshaw and Chaudoir's HIV Stigma Framework (HSF), and (3) explores differences in stigma attitudes among different staff types. Overall, correctional and medical staff expressed non stigmatizing attitudes toward people living with HIV/AIDS, but perceived that stigma and discrimination exist in others. Factor analyses revealed a three factor structure capturing two mechanisms of the HSF (prejudice, discrimination). Few factor score differences were found by staff type or setting. Implications for correctional HIV services and future research on HIV stigma attitudes are discussed.
NASA Astrophysics Data System (ADS)
Smitha, P. S.; Narasimhan, B.; Sudheer, K. P.; Annamalai, H.
2018-01-01
Regional climate models (RCMs) are used to downscale the coarse resolution General Circulation Model (GCM) outputs to a finer resolution for hydrological impact studies. However, RCM outputs often deviate from the observed climatological data, and therefore need bias correction before they are used for hydrological simulations. While there are a number of methods for bias correction, most of them use monthly statistics to derive correction factors, which may cause errors in the rainfall magnitude when applied on a daily scale. This study proposes a sliding window based daily correction factor derivations that help build reliable daily rainfall data from climate models. The procedure is applied to five existing bias correction methods, and is tested on six watersheds in different climatic zones of India for assessing the effectiveness of the corrected rainfall and the consequent hydrological simulations. The bias correction was performed on rainfall data downscaled using Conformal Cubic Atmospheric Model (CCAM) to 0.5° × 0.5° from two different CMIP5 models (CNRM-CM5.0, GFDL-CM3.0). The India Meteorological Department (IMD) gridded (0.25° × 0.25°) observed rainfall data was considered to test the effectiveness of the proposed bias correction method. The quantile-quantile (Q-Q) plots and Nash Sutcliffe efficiency (NSE) were employed for evaluation of different methods of bias correction. The analysis suggested that the proposed method effectively corrects the daily bias in rainfall as compared to using monthly factors. The methods such as local intensity scaling, modified power transformation and distribution mapping, which adjusted the wet day frequencies, performed superior compared to the other methods, which did not consider adjustment of wet day frequencies. The distribution mapping method with daily correction factors was able to replicate the daily rainfall pattern of observed data with NSE value above 0.81 over most parts of India. Hydrological simulations forced using the bias corrected rainfall (distribution mapping and modified power transformation methods that used the proposed daily correction factors) was similar to those simulated by the IMD rainfall. The results demonstrate that the methods and the time scales used for bias correction of RCM rainfall data have a larger impact on the accuracy of the daily rainfall and consequently the simulated streamflow. The analysis suggests that the distribution mapping with daily correction factors can be preferred for adjusting RCM rainfall data irrespective of seasons or climate zones for realistic simulation of streamflow.
Monte Carlo calculated correction factors for diodes and ion chambers in small photon fields.
Czarnecki, D; Zink, K
2013-04-21
The application of small photon fields in modern radiotherapy requires the determination of total scatter factors Scp or field factors Ω(f(clin), f(msr))(Q(clin), Q(msr)) with high precision. Both quantities require the knowledge of the field-size-dependent and detector-dependent correction factor k(f(clin), f(msr))(Q(clin), Q(msr)). The aim of this study is the determination of the correction factor k(f(clin), f(msr))(Q(clin), Q(msr)) for different types of detectors in a clinical 6 MV photon beam of a Siemens KD linear accelerator. The EGSnrc Monte Carlo code was used to calculate the dose to water and the dose to different detectors to determine the field factor as well as the mentioned correction factor for different small square field sizes. Besides this, the mean water to air stopping power ratio as well as the ratio of the mean energy absorption coefficients for the relevant materials was calculated for different small field sizes. As the beam source, a Monte Carlo based model of a Siemens KD linear accelerator was used. The results show that in the case of ionization chambers the detector volume has the largest impact on the correction factor k(f(clin), f(msr))(Q(clin), Q(msr)); this perturbation may contribute up to 50% to the correction factor. Field-dependent changes in stopping-power ratios are negligible. The magnitude of k(f(clin), f(msr))(Q(clin), Q(msr)) is of the order of 1.2 at a field size of 1 × 1 cm(2) for the large volume ion chamber PTW31010 and is still in the range of 1.05-1.07 for the PinPoint chambers PTW31014 and PTW31016. For the diode detectors included in this study (PTW60016, PTW 60017), the correction factor deviates no more than 2% from unity in field sizes between 10 × 10 and 1 × 1 cm(2), but below this field size there is a steep decrease of k(f(clin), f(msr))(Q(clin), Q(msr)) below unity, i.e. a strong overestimation of dose. Besides the field size and detector dependence, the results reveal a clear dependence of the correction factor on the accelerator geometry for field sizes below 1 × 1 cm(2), i.e. on the beam spot size of the primary electrons hitting the target. This effect is especially pronounced for the ionization chambers. In conclusion, comparing all detectors, the unshielded diode PTW60017 is highly recommended for small field dosimetry, since its correction factor k(f(clin), f(msr))(Q(clin), Q(msr)) is closest to unity in small fields and mainly independent of the electron beam spot size.
Determination of correction factors in beta radiation beams using Monte Carlo method.
Polo, Ivón Oramas; Santos, William de Souza; Caldas, Linda V E
2018-06-15
The absorbed dose rate is the main characterization quantity for beta radiation. The extrapolation chamber is considered the primary standard instrument. To determine absorbed dose rates in beta radiation beams, it is necessary to establish several correction factors. In this work, the correction factors for the backscatter due to the collecting electrode and to the guard ring, and the correction factor for Bremsstrahlung in beta secondary standard radiation beams are presented. For this purpose, the Monte Carlo method was applied. The results obtained are considered acceptable, and they agree within the uncertainties. The differences between the backscatter factors determined by the Monte Carlo method and those of the ISO standard were 0.6%, 0.9% and 2.04% for 90 Sr/ 90 Y, 85 Kr and 147 Pm sources respectively. The differences between the Bremsstrahlung factors determined by the Monte Carlo method and those of the ISO were 0.25%, 0.6% and 1% for 90 Sr/ 90 Y, 85 Kr and 147 Pm sources respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.
Daraktchieva, Z
2017-06-01
Indoor radon concentrations generally vary with season. Radon gas enters buildings from beneath due to a small air pressure difference between the inside of a house and outdoors. This underpressure which draws soil gas including radon into the house depends on the difference between the indoor and outdoor temperatures. The variation in a typical house in UK showed that the mean indoor radon concentration reaches a maximum in January and a minimum in July. Sine functions were used to model the indoor radon data and monthly average outdoor temperatures, covering the period between 2005 and 2014. The analysis showed a strong negative correlation between the modelled indoor radon data and outdoor temperature. This correlation was used to calculate new correction factors that could be used for estimation of annual radon concentration in UK homes. The comparison between the results obtained with the new correction factors and the previously published correction factors showed that the new correction factors perform consistently better on the selected data sets. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Timing Calibration in PET Using a Time Alignment Probe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moses, William W.; Thompson, Christopher J.
2006-05-05
We evaluate the Scanwell Time Alignment Probe for performing the timing calibration for the LBNL Prostate-Specific PET Camera. We calibrate the time delay correction factors for each detector module in the camera using two methods--using the Time Alignment Probe (which measures the time difference between the probe and each detector module) and using the conventional method (which measures the timing difference between all module-module combinations in the camera). These correction factors, which are quantized in 2 ns steps, are compared on a module-by-module basis. The values are in excellent agreement--of the 80 correction factors, 62 agree exactly, 17 differ bymore » 1 step, and 1 differs by 2 steps. We also measure on-time and off-time counting rates when the two sets of calibration factors are loaded into the camera and find that they agree within statistical error. We conclude that the performance using the Time Alignment Probe and conventional methods are equivalent.« less
The Additional Secondary Phase Correction System for AIS Signals
Wang, Xiaoye; Zhang, Shufang; Sun, Xiaowen
2017-01-01
This paper looks at the development and implementation of the additional secondary phase factor (ASF) real-time correction system for the Automatic Identification System (AIS) signal. A large number of test data were collected using the developed ASF correction system and the propagation characteristics of the AIS signal that transmits at sea and the ASF real-time correction algorithm of the AIS signal were analyzed and verified. Accounting for the different hardware of the receivers in the land-based positioning system and the variation of the actual environmental factors, the ASF correction system corrects original measurements of positioning receivers in real time and provides corrected positioning accuracy within 10 m. PMID:28362330
Liu, Rong; Zhou, Jiawei; Zhao, Haoxin; Dai, Yun; Zhang, Yudong; Tang, Yong; Zhou, Yifeng
2014-01-01
This study aimed to explore the neural development status of the visual system of children (around 8 years old) using contrast sensitivity. We achieved this by eliminating the influence of higher order aberrations (HOAs) with adaptive optics correction. We measured HOAs, modulation transfer functions (MTFs) and contrast sensitivity functions (CSFs) of six children and five adults with both corrected and uncorrected HOAs. We found that when HOAs were corrected, children and adults both showed improvements in MTF and CSF. However, the CSF of children was still lower than the adult level, indicating the difference in contrast sensitivity between groups cannot be explained by differences in optical factors. Further study showed that the difference between the groups also could not be explained by differences in non-visual factors. With these results we concluded that the neural systems underlying vision in children of around 8 years old are still immature in contrast sensitivity. PMID:24732728
Manotaya, Saknan; Zitzler, Juergen; Li, Xiaotian; Wibowo, Noroyono; Pham, Thi Mai; Kang, Myung Seo; Lee, Chien-Nan
2015-08-01
To assess differences between first trimester trisomy 21 screening markers free beta chain of the human chorionic gonadotrophin (βhCG) and pregnancy-associated plasma protein A (PAPP-A) in pregnant women of six different Asian countries (China, Indonesia, Korea, Taiwan, Thailand, and Vietnam) and compare serum levels with those in women of European countries. Median and multiple of median (MoM) values of free βhCG and PAPP-A were determined in more than 3000 pregnant women from the Asian countries during their first trimester of pregnancy. Differences in MoM values between a European reference group from a previous multicenter evaluation and the Asian population were evaluated. Two different types of population correction factors for T21 risk estimation were assessed. An at least 10% difference of median MoMs between European and Asian PAPP-A values was found to be statistically significant (p < 0.0001). The specificity of the screening did not show a big difference in individual countries, when using the country-specific correction factor compared with the overall Asian correction factor (<1.4%). The use of a correction factor is recommended based on the differences in European and Asian MoM values. Developing country-specific medians in larger study populations can help identify clinical relevant differences and give the opportunity to explore a more accurate risk calculation. © 2015 John Wiley & Sons, Ltd.
SU-F-T-67: Correction Factors for Monitor Unit Verification of Clinical Electron Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haywood, J
Purpose: Monitor units calculated by electron Monte Carlo treatment planning systems are often higher than TG-71 hand calculations for a majority of patients. Here I’ve calculated tables of geometry and heterogeneity correction factors for correcting electron hand calculations. Method: A flat water phantom with spherical volumes having radii ranging from 3 to 15 cm was created. The spheres were centered with respect to the flat water phantom, and all shapes shared a surface at 100 cm SSD. D{sub max} dose at 100 cm SSD was calculated for each cone and energy on the flat phantom and for the spherical volumesmore » in the absence of the flat phantom. The ratio of dose in the sphere to dose in the flat phantom defined the geometrical correction factor. The heterogeneity factors were then calculated from the unrestricted collisional stopping power for tissues encountered in electron beam treatments. These factors were then used in patient second check calculations. Patient curvature was estimated by the largest sphere that aligns to the patient contour, and appropriate tissue density was read from the physical properties provided by the CT. The resulting MU were compared to those calculated by the treatment planning system and TG-71 hand calculations. Results: The geometry and heterogeneity correction factors range from ∼(0.8–1.0) and ∼(0.9–1.01) respectively for the energies and cones presented. Percent differences for TG-71 hand calculations drop from ∼(3–14)% to ∼(0–2)%. Conclusion: Monitor units calculated with the correction factors typically decrease the percent difference to under actionable levels, < 5%. While these correction factors work for a majority of patients, there are some patient anatomies that do not fit the assumptions made. Using these factors in hand calculations is a first step in bringing the verification monitor units into agreement with the treatment planning system MU.« less
Proton and neutron electromagnetic form factors and uncertainties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Zhihong; Arrington, John; Hill, Richard J.
We determine the nucleon electromagnetic form factors and their uncertainties from world electron scattering data. The analysis incorporates two-photon exchange corrections, constraints on the low-Q 2 and high-Q 2 behavior, and additional uncertainties to account for tensions between different data sets and uncertainties in radiative corrections.
Proton and neutron electromagnetic form factors and uncertainties
Ye, Zhihong; Arrington, John; Hill, Richard J.; ...
2017-12-06
We determine the nucleon electromagnetic form factors and their uncertainties from world electron scattering data. The analysis incorporates two-photon exchange corrections, constraints on the low-Q 2 and high-Q 2 behavior, and additional uncertainties to account for tensions between different data sets and uncertainties in radiative corrections.
The photon fluence non-uniformity correction for air kerma near Cs-137 brachytherapy sources.
Rodríguez, M L; deAlmeida, C E
2004-05-07
The use of brachytherapy sources in radiation oncology requires their proper calibration to guarantee the correctness of the dose delivered to the treatment volume of a patient. One of the elements to take into account in the dose calculation formalism is the non-uniformity of the photon fluence due to the beam divergence that causes a steep dose gradient near the source. The correction factors for this phenomenon have been usually evaluated by the two theories available, both of which were conceived only for point sources. This work presents the Monte Carlo assessment of the non-uniformity correction factors for a Cs-137 linear source and a Farmer-type ionization chamber. The results have clearly demonstrated that for linear sources there are some important differences among the values obtained from different calculation models, especially at short distances from the source. The use of experimental values for each specific source geometry is recommended in order to assess the non-uniformity factors for linear sources in clinical situations that require special dose calculations or when the correctness of treatment planning software is verified during the acceptance tests.
Palmans, H; Al-Sulaiti, L; Andreo, P; Shipley, D; Lühr, A; Bassler, N; Martinkovič, J; Dobrovodský, J; Rossomme, S; Thomas, R A S; Kacperek, A
2013-05-21
The conversion of absorbed dose-to-graphite in a graphite phantom to absorbed dose-to-water in a water phantom is performed by water to graphite stopping power ratios. If, however, the charged particle fluence is not equal at equivalent depths in graphite and water, a fluence correction factor, kfl, is required as well. This is particularly relevant to the derivation of absorbed dose-to-water, the quantity of interest in radiotherapy, from a measurement of absorbed dose-to-graphite obtained with a graphite calorimeter. In this work, fluence correction factors for the conversion from dose-to-graphite in a graphite phantom to dose-to-water in a water phantom for 60 MeV mono-energetic protons were calculated using an analytical model and five different Monte Carlo codes (Geant4, FLUKA, MCNPX, SHIELD-HIT and McPTRAN.MEDIA). In general the fluence correction factors are found to be close to unity and the analytical and Monte Carlo codes give consistent values when considering the differences in secondary particle transport. When considering only protons the fluence correction factors are unity at the surface and increase with depth by 0.5% to 1.5% depending on the code. When the fluence of all charged particles is considered, the fluence correction factor is about 0.5% lower than unity at shallow depths predominantly due to the contributions from alpha particles and increases to values above unity near the Bragg peak. Fluence correction factors directly derived from the fluence distributions differential in energy at equivalent depths in water and graphite can be described by kfl = 0.9964 + 0.0024·zw-eq with a relative standard uncertainty of 0.2%. Fluence correction factors derived from a ratio of calculated doses at equivalent depths in water and graphite can be described by kfl = 0.9947 + 0.0024·zw-eq with a relative standard uncertainty of 0.3%. These results are of direct relevance to graphite calorimetry in low-energy protons but given that the fluence correction factor is almost solely influenced by non-elastic nuclear interactions the results are also relevant for plastic phantoms that consist of carbon, oxygen and hydrogen atoms as well as for soft tissues.
NASA Astrophysics Data System (ADS)
Doherty, W.; Lightfoot, P. C.; Ames, D. E.
2014-08-01
The effects of polynomial interpolation and internal standardization drift corrections on the inter-measurement dispersion (statistical) of isotope ratios measured with a multi-collector plasma mass spectrometer were investigated using the (analyte, internal standard) isotope systems of (Ni, Cu), (Cu, Ni), (Zn, Cu), (Zn, Ga), (Sm, Eu), (Hf, Re) and (Pb, Tl). The performance of five different correction factors was compared using a (statistical) range based merit function ωm which measures the accuracy and inter-measurement range of the instrument calibration. The frequency distribution of optimal correction factors over two hundred data sets uniformly favored three particular correction factors while the remaining two correction factors accounted for a small but still significant contribution to the reduction of the inter-measurement dispersion. Application of the merit function is demonstrated using the detection of Cu and Ni isotopic fractionation in laboratory and geologic-scale chemical reactor systems. Solvent extraction (diphenylthiocarbazone (Cu, Pb) and dimethylglyoxime (Ni) was used to either isotopically fractionate the metal during extraction using the method of competition or to isolate the Cu and Ni from the sample (sulfides and associated silicates). In the best case, differences in isotopic composition of ± 3 in the fifth significant figure could be routinely and reliably detected for Cu65/63 and Ni61/62. One of the internal standardization drift correction factors uses a least squares estimator to obtain a linear functional relationship between the measured analyte and internal standard isotope ratios. Graphical analysis demonstrates that the points on these graphs are defined by highly non-linear parametric curves and not two linearly correlated quantities which is the usual interpretation of these graphs. The success of this particular internal standardization correction factor was found in some cases to be due to a fortuitous, scale dependent, parametric curve effect.
Intercalibration of research survey vessels on Lake Erie
Tyson, J.T.; Johnson, T.B.; Knight, C.T.; Bur, M.T.
2006-01-01
Fish abundance indices obtained from annual research trawl surveys are an integral part of fisheries stock assessment and management in the Great Lakes. It is difficult, however, to administer trawl surveys using a single vessel-gear combination owing to the large size of these systems, the jurisdictional boundaries that bisect the Great Lakes, and changes in vessels as a result of fleet replacement. When trawl surveys are administered by multiple vessel-gear combinations, systematic error may be introduced in combining catch-per-unit-effort (CPUE) data across vessels. This bias is associated with relative differences in catchability among vessel-gear combinations. In Lake Erie, five different research vessels conduct seasonal trawl surveys in the western half of the lake. To eliminate this systematic bias, the Lake Erie agencies conducted a side-by-side trawling experiment in 2003 to develop correction factors for CPUE data associated with different vessel-gear combinations. Correcting for systematic bias in CPUE data should lead to more accurate and comparable estimates of species density and biomass. We estimated correction factors for the 10 most commonly collected species age-groups for each vessel during the experiment. Most of the correction factors (70%) ranged from 0.5 to 2.0, indicating that the systematic bias associated with different vessel-gear combinations was not large. Differences in CPUE were most evident for vessels using different sampling gears, although significant differences also existed for vessels using the same gears. These results suggest that standardizing gear is important for multiple-vessel surveys, but there will still be significant differences in catchability stemming from the vessel effects and agencies must correct for this. With standardized estimates of CPUE, the Lake Erie agencies will have the ability to directly compare and combine time series for species abundance. ?? Copyright by the American Fisheries Society 2006.
NASA Astrophysics Data System (ADS)
Stisen, S.; Højberg, A. L.; Troldborg, L.; Refsgaard, J. C.; Christensen, B. S. B.; Olsen, M.; Henriksen, H. J.
2012-11-01
Precipitation gauge catch correction is often given very little attention in hydrological modelling compared to model parameter calibration. This is critical because significant precipitation biases often make the calibration exercise pointless, especially when supposedly physically-based models are in play. This study addresses the general importance of appropriate precipitation catch correction through a detailed modelling exercise. An existing precipitation gauge catch correction method addressing solid and liquid precipitation is applied, both as national mean monthly correction factors based on a historic 30 yr record and as gridded daily correction factors based on local daily observations of wind speed and temperature. The two methods, named the historic mean monthly (HMM) and the time-space variable (TSV) correction, resulted in different winter precipitation rates for the period 1990-2010. The resulting precipitation datasets were evaluated through the comprehensive Danish National Water Resources model (DK-Model), revealing major differences in both model performance and optimised model parameter sets. Simulated stream discharge is improved significantly when introducing the TSV correction, whereas the simulated hydraulic heads and multi-annual water balances performed similarly due to recalibration adjusting model parameters to compensate for input biases. The resulting optimised model parameters are much more physically plausible for the model based on the TSV correction of precipitation. A proxy-basin test where calibrated DK-Model parameters were transferred to another region without site specific calibration showed better performance for parameter values based on the TSV correction. Similarly, the performances of the TSV correction method were superior when considering two single years with a much dryer and a much wetter winter, respectively, as compared to the winters in the calibration period (differential split-sample tests). We conclude that TSV precipitation correction should be carried out for studies requiring a sound dynamic description of hydrological processes, and it is of particular importance when using hydrological models to make predictions for future climates when the snow/rain composition will differ from the past climate. This conclusion is expected to be applicable for mid to high latitudes, especially in coastal climates where winter precipitation types (solid/liquid) fluctuate significantly, causing climatological mean correction factors to be inadequate.
NASA Astrophysics Data System (ADS)
Kokka, Alexander; Pulli, Tomi; Poikonen, Tuomas; Askola, Janne; Ikonen, Erkki
2017-08-01
This paper presents a fisheye camera method for determining spatial non-uniformity corrections in luminous flux measurements with integrating spheres. Using a fisheye camera installed into a port of an integrating sphere, the relative angular intensity distribution of the lamp under test is determined. This angular distribution is used for calculating the spatial non-uniformity correction for the lamp when combined with the spatial responsivity data of the sphere. The method was validated by comparing it to a traditional goniophotometric approach when determining spatial correction factors for 13 LED lamps with different angular spreads. The deviations between the spatial correction factors obtained using the two methods ranged from -0.15 % to 0.15%. The mean magnitude of the deviations was 0.06%. For a typical LED lamp, the expanded uncertainty (k = 2 ) for the spatial non-uniformity correction factor was evaluated to be 0.28%. The fisheye camera method removes the need for goniophotometric measurements in determining spatial non-uniformity corrections, thus resulting in considerable system simplification. Generally, no permanent modifications to existing integrating spheres are required.
Song, Guohua; Zhou, Xixi; Yu, Lei
2015-05-01
The intersection is one of the biggest emission points for buses and also the high exposure site for people. Several traffic performance indexes have been developed and widely used for intersection evaluations. However, few studies have focused on the relationship between these indexes and emissions at intersections. This paper intends to propose a model that relates emissions to the two commonly used measures of effectiveness (i.e. delay time and number of stops) by using bus activity data and emission data at intersections. First, with a large number of field instantaneous emission data and corresponding activity data collected by the Portable Emission Measurement System (PEMS), emission rates are derived for different vehicle specific power (VSP) bins. Then, 2002 sets of trajectory data, an equivalent of about 140,000 sets of second-by-second activity data, are obtained from Global Position Systems (GPSs)-equipped diesel buses in Beijing. The delay and the emission factors of each trajectory are estimated. Then, by using baseline emission factors for two types of intersections, e.g. the Arterial @ Arterial Intersection and the Arterial @ Collector, delay correction factors are calculated for the two types of intersections at different congestion levels. Finally, delay correction models are established for adjusting emission factors for each type of intersections and different numbers of stops. A comparative analysis between estimated and field emission factors demonstrates that the delay correction model is reliable. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Gimenez-Alventosa, V.; Gimenez, V.; Ballester, F.; Vijande, J.; Andreo, P.
2018-06-01
Treatment of small skin lesions using HDR brachytherapy applicators is a widely used technique. The shielded applicators currently available in clinical practice are based on a tungsten-alloy cup that collimates the source-emitted radiation into a small region, hence protecting nearby tissues. The goal of this manuscript is to evaluate the correction factors required for dose measurements with a plane-parallel ionization chamber typically used in clinical brachytherapy for the ‘Valencia’ and ‘large field Valencia’ shielded applicators. Monte Carlo simulations have been performed using the PENELOPE-2014 system to determine the absorbed dose deposited in a water phantom and in the chamber active volume with a Type A uncertainty of the order of 0.1%. The average energies of the photon spectra arriving at the surface of the water phantom differ by approximately 10%, being 384 keV for the ‘Valencia’ and 343 keV for the ‘large field Valencia’. The ionization chamber correction factors have been obtained for both applicators using three methods, their values depending on the applicator being considered. Using a depth-independent global chamber perturbation correction factor and no shift of the effective point of measurement yields depth-dose differences of up to 1% for the ‘Valencia’ applicator. Calculations using a depth-dependent global perturbation factor, or a shift of the effective point of measurement combined with a constant partial perturbation factor, result in differences of about 0.1% for both applicators. The results emphasize the relevance of carrying out detailed Monte Carlo studies for each shielded brachytherapy applicator and ionization chamber.
The perturbation correction factors for cylindrical ionization chambers in high-energy photon beams.
Yoshiyama, Fumiaki; Araki, Fujio; Ono, Takeshi
2010-07-01
In this study, we calculated perturbation correction factors for cylindrical ionization chambers in high-energy photon beams by using Monte Carlo simulations. We modeled four Farmer-type cylindrical chambers with the EGSnrc/Cavity code and calculated the cavity or electron fluence correction factor, P (cav), the displacement correction factor, P (dis), the wall correction factor, P (wall), the stem correction factor, P (stem), the central electrode correction factor, P (cel), and the overall perturbation correction factor, P (Q). The calculated P (dis) values for PTW30010/30013 chambers were 0.9967 +/- 0.0017, 0.9983 +/- 0.0019, and 0.9980 +/- 0.0019, respectively, for (60)Co, 4 MV, and 10 MV photon beams. The value for a (60)Co beam was about 1.0% higher than the 0.988 value recommended by the IAEA TRS-398 protocol. The P (dis) values had a substantial discrepancy compared to those of IAEA TRS-398 and AAPM TG-51 at all photon energies. The P (wall) values were from 0.9994 +/- 0.0020 to 1.0031 +/- 0.0020 for PTW30010 and from 0.9961 +/- 0.0018 to 0.9991 +/- 0.0017 for PTW30011/30012, in the range of (60)Co-10 MV. The P (wall) values for PTW30011/30012 were around 0.3% lower than those of the IAEA TRS-398. Also, the chamber response with and without a 1 mm PMMA water-proofing sleeve agreed within their combined uncertainty. The calculated P (stem) values ranged from 0.9945 +/- 0.0014 to 0.9965 +/- 0.0014, but they are not considered in current dosimetry protocols. The values were no significant difference on beam qualities. P (cel) for a 1 mm aluminum electrode agreed within 0.3% with that of IAEA TRS-398. The overall perturbation factors agreed within 0.4% with those for IAEA TRS-398.
NASA Astrophysics Data System (ADS)
Malys, Brian J.; Piotrowski, Michelle L.; Owens, Kevin G.
2018-02-01
Frustrated by worse than expected error for both peak area and time-of-flight (TOF) in matrix assisted laser desorption ionization (MALDI) experiments using samples prepared by electrospray deposition, it was finally determined that there was a correlation between sample location on the target plate and the measured TOF/peak area. Variations in both TOF and peak area were found to be due to small differences in the initial position of ions formed in the source region of the TOF mass spectrometer. These differences arise largely from misalignment of the instrument sample stage, with a smaller contribution arising from the non-ideal shape of the target plates used. By physically measuring the target plates used and comparing TOF data collected from three different instruments, an estimate of the magnitude and direction of the sample stage misalignment was determined for each of the instruments. A correction method was developed to correct the TOFs and peak areas obtained for a given combination of target plate and instrument. Two correction factors are determined, one by initially collecting spectra from each sample position used and another by using spectra from a single position for each set of samples on a target plate. For TOF and mass values, use of the correction factor reduced the error by a factor of 4, with the relative standard deviation (RSD) of the corrected masses being reduced to 12-24 ppm. For the peak areas, the RSD was reduced from 28% to 16% for samples deposited twice onto two target plates over two days.
NASA Astrophysics Data System (ADS)
Malys, Brian J.; Piotrowski, Michelle L.; Owens, Kevin G.
2017-12-01
Frustrated by worse than expected error for both peak area and time-of-flight (TOF) in matrix assisted laser desorption ionization (MALDI) experiments using samples prepared by electrospray deposition, it was finally determined that there was a correlation between sample location on the target plate and the measured TOF/peak area. Variations in both TOF and peak area were found to be due to small differences in the initial position of ions formed in the source region of the TOF mass spectrometer. These differences arise largely from misalignment of the instrument sample stage, with a smaller contribution arising from the non-ideal shape of the target plates used. By physically measuring the target plates used and comparing TOF data collected from three different instruments, an estimate of the magnitude and direction of the sample stage misalignment was determined for each of the instruments. A correction method was developed to correct the TOFs and peak areas obtained for a given combination of target plate and instrument. Two correction factors are determined, one by initially collecting spectra from each sample position used and another by using spectra from a single position for each set of samples on a target plate. For TOF and mass values, use of the correction factor reduced the error by a factor of 4, with the relative standard deviation (RSD) of the corrected masses being reduced to 12-24 ppm. For the peak areas, the RSD was reduced from 28% to 16% for samples deposited twice onto two target plates over two days. [Figure not available: see fulltext.
Rowlands, Derek J
2012-01-01
The QT interval on the electrocardiogram is an increasingly important measurement, especially in relation to drug action and interaction. The QT interval varies inversely as the heart rate and numerous rate correction formulae have been proposed. It is difficult to compare the effect of applying different formulae at different heart rates and for different measured QT intervals. A simple graphical display of the results from different formulae is proposed. This display is dependent on the concept of the absolute correction factor. This graphical presentation is useful (a) in comparing the effect of the application of different formulae and (b) in directly reading the correction produced by any individual formula. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lárraga-Gutiérrez, José Manuel
2015-08-01
Recently, Alfonso et al proposed a new formalism for the dosimetry of small and non-standard fields. The proposed new formalism is strongly based on the calculation of detector-specific beam correction factors by Monte Carlo simulation methods, which accounts for the difference in the response of the detector between the small and the machine specific reference field. The correct calculation of the detector-specific beam correction factors demands an accurate knowledge of the linear accelerator, detector geometry and composition materials. The present work shows that the field factors in water may be determined experimentally using the daisy chain correction method down to a field size of 1 cm × 1 cm for a specific set of detectors. The detectors studied were: three mini-ionization chambers (PTW-31014, PTW-31006, IBA-CC01), three silicon-based diodes (PTW-60018, IBA-SFD and IBA-PFD) and one synthetic diamond detector (PTW-60019). Monte Carlo simulations and experimental measurements were performed for a 6 MV photon beam at 10 cm depth in water with a source-to-axis distance of 100 cm. The results show that the differences between the experimental and Monte Carlo calculated field factors are less than 0.5%—with the exception of the IBA-PFD—for field sizes between 1.5 cm × 1.5 cm and 5 cm × 5 cm. For the 1 cm × 1 cm field size, the differences are within 2%. By using the daisy chain correction method, it is possible to determine measured field factors in water. The results suggest that the daisy chain correction method is not suitable for measurements performed with the IBA-PFD detector. The latter is due to the presence of tungsten powder in the detector encapsulation material. The use of Monte Carlo calculated k{{Q\\text{clin}},{{Q}\\text{msr}}}{{f\\text{clin}},{{f}\\text{msr}}} is encouraged for field sizes less than or equal to 1 cm × 1 cm for the dosimeters used in this work.
Power considerations for λ inflation factor in meta-analyses of genome-wide association studies.
Georgiopoulos, Georgios; Evangelou, Evangelos
2016-05-19
The genomic control (GC) approach is extensively used to effectively control false positive signals due to population stratification in genome-wide association studies (GWAS). However, GC affects the statistical power of GWAS. The loss of power depends on the magnitude of the inflation factor (λ) that is used for GC. We simulated meta-analyses of different GWAS. Minor allele frequency (MAF) ranged from 0·001 to 0·5 and λ was sampled from two scenarios: (i) random scenario (empirically-derived distribution of real λ values) and (ii) selected scenario from simulation parameter modification. Adjustment for λ was considered under single correction (within study corrected standard errors) and double correction (additional λ corrected summary estimate). MAF was a pivotal determinant of observed power. In random λ scenario, double correction induced a symmetric power reduction in comparison to single correction. For MAF 1·2 and MAF >5%. Our results provide a quick but detailed index for power considerations of future meta-analyses of GWAS that enables a more flexible design from early steps based on the number of studies accumulated in different groups and the λ values observed in the single studies.
NASA Technical Reports Server (NTRS)
Breininger, David R.; Schmalzer, Paul A.; Hinkle, C. Ross
1991-01-01
One hundred twelve plots were established in coastal scrub and slash pine flatwoods habitats on the John F. Kennedy Space Center (KSC) to evaluate relationships between the number of burrows and gopher tortoise (Gopherus polyphemus) density. All burrows were located within these plots and were classified according to tortoise activity. Depending on season, bucket trapping, a stick method, a gopher tortoise pulling device, and a camera system were used to estimate tortoise occupancy. Correction factors (% of burrows occupied) were calculated by season and habitat type. Our data suggest that less than 20% of the active and inactive burrows combined were occupied during seasons when gopher tortoises were active. Correction factors were higher in poorly-drained areas and lower in well-drained areas during the winter, when gopher tortoise activity was low. Correction factors differed from studies elsewhere, indicating that population estimates require correction factors specific to the site and season to accurately estimate population size.
A Novel Simple Phantom for Verifying the Dose of Radiation Therapy
Lee, J. H.; Chang, L. T.; Shiau, A. C.; Chen, C. W.; Liao, Y. J.; Li, W. J.; Lee, M. S.; Hsu, S. M.
2015-01-01
A standard protocol of dosimetric measurements is used by the organizations responsible for verifying that the doses delivered in radiation-therapy institutions are within authorized limits. This study evaluated a self-designed simple auditing phantom for use in verifying the dose of radiation therapy; the phantom design, dose audit system, and clinical tests are described. Thermoluminescent dosimeters (TLDs) were used as postal dosimeters, and mailable phantoms were produced for use in postal audits. Correction factors are important for converting TLD readout values from phantoms into the absorbed dose in water. The phantom scatter correction factor was used to quantify the difference in the scattered dose between a solid water phantom and homemade phantoms; its value ranged from 1.084 to 1.031. The energy-dependence correction factor was used to compare the TLD readout of the unit dose irradiated by audit beam energies with 60Co in the solid water phantom; its value was 0.99 to 1.01. The setup-condition factor was used to correct for differences in dose-output calibration conditions. Clinical tests of the device calibrating the dose output revealed that the dose deviation was within 3%. Therefore, our homemade phantoms and dosimetric system can be applied for accurately verifying the doses applied in radiation-therapy institutions. PMID:25883980
Tsao, Jui-Jung; Tseng, Wen-Ta; Wang, Chaochang
2017-04-01
Feedback is regarded as a way to foster students' motivation and to ensure linguistic accuracy. However, mixed findings are reported in the research on written corrective feedback because of its multifaceted nature and its correlations with learners' individual differences. It is necessary, therefore, to conduct further research on corrective feedback from the student's perspective and to examine how individual differences in terms of factors such as writing anxiety and motivation predict learners' self-evaluative judgments of both teacher-corrected and peer-corrected feedback. For this study, 158 Taiwanese college sophomores participated in a survey that comprised three questionnaires. Results demonstrated that intrinsic motivation and different types of writing anxiety predicted English as foreign language learners' evaluative judgments of teacher and peer feedback. The findings have implications for English-writing instruction.
Titus, L. J.; Nunes, Filomena M.
2014-03-12
Here, the effects of non-local potentials have historically been approximately included by applying a correction factor to the solution of the corresponding equation for the local equivalent interaction. This is usually referred to as the Perey correction factor. In this work we investigate the validity of the Perey correction factor for single-channel bound and scattering states, as well as in transfer (p, d) cross sections. Method: We solve the scattering and bound state equations for non-local interactions of the Perey-Buck type, through an iterative method. Using the distorted wave Born approximation, we construct the T-matrix for (p,d) on 17O, 41Ca,more » 49Ca, 127Sn, 133Sn, and 209Pb at 20 and 50 MeV. As a result, we found that for bound states, the Perey corrected wave function resulting from the local equation agreed well with that from the non-local equation in the interior region, but discrepancies were found in the surface and peripheral regions. Overall, the Perey correction factor was adequate for scattering states, with the exception of a few partial waves corresponding to the grazing impact parameters. These differences proved to be important for transfer reactions. In conclusion, the Perey correction factor does offer an improvement over taking a direct local equivalent solution. However, if the desired accuracy is to be better than 10%, the exact solution of the non-local equation should be pursued.« less
Dosimetry for Small and Nonstandard Fields
NASA Astrophysics Data System (ADS)
Junell, Stephanie L.
The proposed small and non-standard field dosimetry protocol from the joint International Atomic Energy Agency (IAEA) and American Association of Physicist in Medicine working group introduces new reference field conditions for ionization chamber based reference dosimetry. Absorbed dose beam quality conversion factors (kQ factors) corresponding to this formalism were determined for three different models of ionization chambers: a Farmer-type ionization chamber, a thimble ionization chamber, and a small volume ionization chamber. Beam quality correction factor measurements were made in a specially developed cylindrical polymethyl methacrylate (PMMA) phantom and a water phantom using thermoluminescent dosimeters (TLDs) and alanine dosimeters to determine dose to water. The TLD system for absorbed dose to water determination in high energy photon and electron beams was fully characterized as part of this dissertation. The behavior of the beam quality correction factor was observed as it transfers the calibration coefficient from the University of Wisconsin Accredited Dosimetry Calibration Laboratory (UWADCL) 60Co reference beam to the small field calibration conditions of the small field formalism. TLD-determined beam quality correction factors for the calibration conditions investigated ranged from 0.97 to 1.30 and had associated standard deviations from 1% to 3%. The alanine-determined beam quality correction factors ranged from 0.996 to 1.293. Volume averaging effects were observed with the Farmer-type ionization chamber in the small static field conditions. The proposed small and non-standard field dosimetry protocols new composite-field reference condition demonstrated its potential to reduce or remove ionization chamber volume dependancies, but the measured beam quality correction factors were not equal to the standard CoP's kQ, indicating a change in beam quality in the small and non-standard field dosimetry protocols new composite-field reference condition relative to the standard broad beam reference conditions. The TLD- and alanine-determined beam quality correction factors in the composite-field reference conditions were approximately 3% greater and differed by more than one standard deviation from the published TG-51 kQ values for all three chambers.
NASA Astrophysics Data System (ADS)
Song, Hyeong Yong; Salehiyan, Reza; Li, Xiaolei; Lee, Seung Hak; Hyun, Kyu
2017-11-01
In this study, the effects of cone-plate (C/P) and parallel-plate (P/P) geometries were investigated on the rheological properties of various complex fluids, e.g. single-phase (polymer melts and solutions) and multiphase systems (polymer blend and nanocomposite, and suspension). Small amplitude oscillatory shear (SAOS) tests were carried out to compare linear rheological responses while nonlinear responses were compared using large amplitude oscillatory shear (LAOS) tests at different frequencies. Moreover, Fourier-transform (FT)-rheology method was used to analyze the nonlinear responses under LAOS flow. Experimental results were compared with predictions obtained by single-point correction and shear rate correction. For all systems, SAOS data measured by C/P and P/P coincide with each other, but results showed discordance between C/P and P/P measurements in the nonlinear regime. For all systems except xanthan gum solutions, first-harmonic moduli were corrected using a single horizontal shift factor, whereas FT rheology-based nonlinear parameters ( I 3/1, I 5/1, Q 3, and Q 5) were corrected using vertical shift factors that are well predicted by single-point correction. Xanthan gum solutions exhibited anomalous corrections. Their first-harmonic Fourier moduli were superposed using a horizontal shift factor predicted by shear rate correction applicable to highly shear thinning fluids. The distinguished corrections were observed for FT rheology-based nonlinear parameters. I 3/1 and I 5/1 were superposed by horizontal shifts, while the other systems displayed vertical shifts of I 3/1 and I 5/1. Q 3 and Q 5 of xanthan gum solutions were corrected using both horizontal and vertical shift factors. In particular, the obtained vertical shift factors for Q 3 and Q 5 were twice as large as predictions made by single-point correction. Such larger values are rationalized by the definitions of Q 3 and Q 5. These results highlight the significance of horizontal shift corrections in nonlinear oscillatory shear data.
NASA Astrophysics Data System (ADS)
Chen, Du-Xing; Pardo, Enric; Zhu, Yong-Hong; Xiang, Li-Xiong; Ding, Jia-Quan
2018-03-01
A technique is proposed for demagnetizing correction of the measured magnetization curve and hysteresis loop, i.e., the M∗ (Ha) curve, of a ferromagnetic cylinder into the true M (H) curve of the material, where Ha is the uniform applied field provided by a long solenoid and M∗ is the magnetization measured by a fluxmeter with the measuring coil surrounding the cylinder midplane. Different from ordinary demagnetizing correction by using a fixed demagnetizing factor, an (Ha,M∗) -dependent fluxmetric demagnetizing factor Nf (γ,χd) is used in this technique, where γ is the ratio of cylinder length to diameter, χd is the differential susceptibility on the corrected M (H) curve, and Nf (γ,χd) is approximated by accurately calculated Nf (γ, χ) of paramagnetic cylinders of the same γ and χ =χd . The validity of the technique is studied by comparing results for several samples of different lengths cut from the same cylinder. Such a demagnetizing correction is unambiguous but its success requires very high accuracy in the Nf determination and M∗ (Ha) measurements.
Beam quality corrections for parallel-plate ion chambers in electron reference dosimetry
NASA Astrophysics Data System (ADS)
Zink, K.; Wulff, J.
2012-04-01
Current dosimetry protocols (AAPM, IAEA, IPEM, DIN) recommend parallel-plate ionization chambers for dose measurements in clinical electron beams. This study presents detailed Monte Carlo simulations of beam quality correction factors for four different types of parallel-plate chambers: NACP-02, Markus, Advanced Markus and Roos. These chambers differ in constructive details which should have notable impact on the resulting perturbation corrections, hence on the beam quality corrections. The results reveal deviations to the recommended beam quality corrections given in the IAEA TRS-398 protocol in the range of 0%-2% depending on energy and chamber type. For well-guarded chambers, these deviations could be traced back to a non-unity and energy-dependent wall perturbation correction. In the case of the guardless Markus chamber, a nearly energy-independent beam quality correction is resulting as the effects of wall and cavity perturbation compensate each other. For this chamber, the deviations to the recommended values are the largest and may exceed 2%. From calculations of type-B uncertainties including effects due to uncertainties of the underlying cross-sectional data as well as uncertainties due to the chamber material composition and chamber geometry, the overall uncertainty of calculated beam quality correction factors was estimated to be <0.7%. Due to different chamber positioning recommendations given in the national and international dosimetry protocols, an additional uncertainty in the range of 0.2%-0.6% is present. According to the IAEA TRS-398 protocol, the uncertainty in clinical electron dosimetry using parallel-plate ion chambers is 1.7%. This study may help to reduce this uncertainty significantly.
49 CFR 325.75 - Ground surface correction factors. 1
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 5 2010-10-01 2010-10-01 false Ground surface correction factors. 1 325.75... MOTOR CARRIER NOISE EMISSION STANDARDS Correction Factors § 325.75 Ground surface correction factors. 1... account both the distance correction factors contained in § 325.73 and the ground surface correction...
49 CFR 325.75 - Ground surface correction factors. 1
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 5 2011-10-01 2011-10-01 false Ground surface correction factors. 1 325.75... MOTOR CARRIER NOISE EMISSION STANDARDS Correction Factors § 325.75 Ground surface correction factors. 1... account both the distance correction factors contained in § 325.73 and the ground surface correction...
NASA Astrophysics Data System (ADS)
Park, Kwangwoo; Bak, Jino; Park, Sungho; Choi, Wonhoon; Park, Suk Won
2016-02-01
A semiempirical method based on the averaging effect of the sensitive volumes of different air-filled ionization chambers (ICs) was employed to approximate the correction factors for beam quality produced from the difference in the sizes of the reference field and small fields. We measured the output factors using several cylindrical ICs and calculated the correction factors using a mathematical method similar to deconvolution; in the method, we modeled the variable and inhomogeneous energy fluence function within the chamber cavity. The parameters of the modeled function and the correction factors were determined by solving a developed system of equations as well as on the basis of the measurement data and the geometry of the chambers. Further, Monte Carlo (MC) computations were performed using the Monaco® treatment planning system to validate the proposed method. The determined correction factors (k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} ) were comparable to the values derived from the MC computations performed using Monaco®. For example, for a 6 MV photon beam and a field size of 1 × 1 cm2, k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} was calculated to be 1.125 for a PTW 31010 chamber and 1.022 for a PTW 31016 chamber. On the other hand, the k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} values determined from the MC computations were 1.121 and 1.031, respectively; the difference between the proposed method and the MC computation is less than 2%. In addition, we determined the k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} values for PTW 30013, PTW 31010, PTW 31016, IBA FC23-C, and IBA CC13 chambers as well. We devised a method for determining k{{Q\\text{msr}},Q}{{f\\text{smf}}, {{f}\\text{ref}}} from both the measurement of the output factors and model-based mathematical computation. The proposed method can be useful in case the MC simulation would not be applicable for the clinical settings.
Gu, Huidong; Liu, Guowen; Wang, Jian; Aubry, Anne-Françoise; Arnold, Mark E
2014-09-16
A simple procedure for selecting the correct weighting factors for linear and quadratic calibration curves with least-squares regression algorithm in bioanalytical LC-MS/MS assays is reported. The correct weighting factor is determined by the relationship between the standard deviation of instrument responses (σ) and the concentrations (x). The weighting factor of 1, 1/x, or 1/x(2) should be selected if, over the entire concentration range, σ is a constant, σ(2) is proportional to x, or σ is proportional to x, respectively. For the first time, we demonstrated with detailed scientific reasoning, solid historical data, and convincing justification that 1/x(2) should always be used as the weighting factor for all bioanalytical LC-MS/MS assays. The impacts of using incorrect weighting factors on curve stability, data quality, and assay performance were thoroughly investigated. It was found that the most stable curve could be obtained when the correct weighting factor was used, whereas other curves using incorrect weighting factors were unstable. It was also found that there was a very insignificant impact on the concentrations reported with calibration curves using incorrect weighting factors as the concentrations were always reported with the passing curves which actually overlapped with or were very close to the curves using the correct weighting factor. However, the use of incorrect weighting factors did impact the assay performance significantly. Finally, the difference between the weighting factors of 1/x(2) and 1/y(2) was discussed. All of the findings can be generalized and applied into other quantitative analysis techniques using calibration curves with weighted least-squares regression algorithm.
2006-06-01
Integrated Corrective Spectacles (OPTICS) concepts . The aim of the OPTICS project is to develop an integrated set of corrective eyewear inserts that...months, three different OPTICS concepts were designed, developed and delivered to DCIEM. An iterative design approach with user feedback was utilized...Each concept employed a different approach for meeting the aims of the device; Concept 0 utilized a Commercial Off the Shelf sports-style
McCullumsmith, Cheryl B; Clark, C Brendan; Perkins, Adam; Fife, Jessaka; Cropsey, Karen L
2013-01-01
Community corrections populations are a high-risk group who carry multiple suicide risk factors. To identify factors correlated with historical suicide attempts and ideation among African-American men, African-American women, White men, and White women in a community corrections population. Self-report data from 18,753 enrollees in community corrections were analyzed. Multinomial logistic regression analyses were conducted to determine associations between historical suicidal ideation and attempts among the four demographic groups. Participants with historical suicide attempts tended to be younger, White, female, be taking psychotropic medication, have a history of physical or sexual abuse, and meet criteria for dependence on alcohol, amphetamines, cocaine, opioids, or sedatives. Five variables were commonly associated with suicide attempts for all four race/gender groups: younger age, being on disability or retirement, taking psychotropic medication, history of sexual or physical abuse, and cocaine dependence. Other demographic variables had race or gender specificities as risk factors for suicide attempts. Participants had high rates of historical suicide attempts with unique correlates differentiating attempters from ideators among different racial and gender groups. Cocaine dependence was universal predictor of suicide attempts, while other substance dependencies show specific racial and gender profiles associated with suicide attempts.
NASA Astrophysics Data System (ADS)
Shah, N. S.; Vankar, H. P.; Rana, V. A.
2018-05-01
Static permittivity (ɛ0) and permittivity at optical frequency (ɛ∞) of the Benzaldehyde (BZ), Methanol (MeOH) and their binary mixtures were measured in the temperature range from 293.15 K to 323.15 K (in the interval of 10 K). From the ɛ0 and ɛ∞ other parameters such as effective Kirkwood correlation factor (geff), corrective Kirkwood correction factor (gf), Bruggman factor (fB), excess permittivity (ɛ0E ) and permittivity at optical frequency (ɛ∞E ) were evaluated.
ERIC Educational Resources Information Center
Horowitz-Kraus, Tzipi; Breznitz, Zvia
2011-01-01
Speed of processing (SOP) is a crucial factor in fluent reading and is measured using reading rate. This measure is commonly used to examine correct reading patterns, yet in the present study it is employed to determine whether differences in SOP exist for correct and incorrect reading. One of the characteristics of dyslexia is slow and inaccurate…
14 CFR 29.1043 - Cooling tests.
Code of Federal Regulations, 2012 CFR
2012-01-01
... be of the minimum grade approved for the engines, and the mixture settings must be those used in... factor (except cylinder barrels). Unless a more rational correction applies, temperatures of engine..., must be corrected by adding to them the difference between the maximum ambient atmospheric temperature...
14 CFR 29.1043 - Cooling tests.
Code of Federal Regulations, 2011 CFR
2011-01-01
... be of the minimum grade approved for the engines, and the mixture settings must be those used in... factor (except cylinder barrels). Unless a more rational correction applies, temperatures of engine..., must be corrected by adding to them the difference between the maximum ambient atmospheric temperature...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muir, B; McEwen, M; Belec, J
2016-06-15
Purpose: To investigate small field dosimetry measurements and associated uncertainties when conical applicators are used to shape treatment fields from two different accelerating systems. Methods: Output factor measurements are made in water in beams from the CyberKnife radiosurgery system, which uses conical applicators to shape fields from a (flattening filter-free) 6 MV beam, and in a 6 MV beam from the Elekta Precise linear accelerator (with flattening filter) with BrainLab external conical applicators fitted to shape the field. The measurements use various detectors: (i) an Exradin A16 ion chamber, (ii) two Exradin W1 plastic scintillation detectors, (iii) a Sun Nuclearmore » Edge diode, and (iv) two PTW microDiamond synthetic diamond detectors. Profiles are used for accurate detector positioning and to specify field size (FWHM). Output factor measurements are corrected with detector specific correction factors taken from the literature where available and/or from Monte Carlo simulations using the EGSnrc code system. Results: Differences in measurements of up to 1.7% are observed with a given detector type in the same beam (i.e., intra-detector variability). Corrected results from different detectors in the same beam (inter-detector differences) show deviations up to 3 %. Combining data for all detectors and comparing results from the two accelerators results in a 5.9% maximum difference for the smallest field sizes (FWHM=5.2–5.6 mm), well outside the combined uncertainties (∼1% for the smallest beams) and/or differences among detectors. This suggests that the FWHM of a measured profile is not a good specifier to compare results from different small fields with the same nominal energy. Conclusion: Large differences in results for both intra-detector variability and inter-detector differences suggest potentially high uncertainties in detector-specific correction factors. Differences between the results measured in circular fields from different accelerating systems provide insight into sources of variability in small field dosimetric measurements reported in the literature.« less
Improving satellite retrievals of NO2 in biomass burning regions
NASA Astrophysics Data System (ADS)
Bousserez, N.; Martin, R. V.; Lamsal, L. N.; Mao, J.; Cohen, R. C.; Anderson, B. E.
2010-12-01
The quality of space-based nitrogen dioxide (NO2) retrievals from solar backscatter depends on a priori knowledge of the NO2 profile shape as well as the effects of atmospheric scattering. These effects are characterized by the air mass factor (AMF) calculation. Calculation of the AMF combines a radiative transfer calculation together with a priori information about aerosols and about NO2 profiles (shape factors), which are usually taken from a chemical transport model. In this work we assess the impact of biomass burning emissions on the AMF using the LIDORT radiative transfer model and a GEOS-Chem simulation based on a daily fire emissions inventory (FLAMBE). We evaluate the GEOS-Chem aerosol optical properties and NO2 shape factors using in situ data from the ARCTAS summer 2008 (North America) and DABEX winter 2006 (western Africa) experiments. Sensitivity studies are conducted to assess the impact of biomass burning on the aerosols and the NO2 shape factors used in the AMF calculation. The mean aerosol correction over boreal fires is negligible (+3%), in contrast with a large reduction (-18%) over African savanna fires. The change in sign and magnitude over boreal forest and savanna fires appears to be driven by the shielding effects that arise from the greater biomass burning aerosol optical thickness (AOT) above the African biomass burning NO2. In agreement with previous work, the single scattering albedo (SSA) also affects the aerosol correction. We further investigated the effect of clouds on the aerosol correction. For a fixed AOT, the aerosol correction can increase from 20% to 50% when cloud fraction increases from 0 to 30%. Over both boreal and savanna fires, the greatest impact on the AMF is from the fire-induced change in the NO2 profile (shape factor correction), that decreases the AMF by 38% over the boreal fires and by 62% of the savanna fires. Combining the aerosol and shape factor corrections together results in small differences compared to the shape factor correction alone (without the aerosol correction), indicating that a shape factor-only correction is a good approximation of the total AMF correction associated with fire emissions. We use this result to define a measurement-based correction of the AMF based on the relationship between the slant column variability and the variability of the shape factor in the lower troposphere. This method may be generalized to other types of emission sources.
Consistency analysis and correction of ground-based radar observations using space-borne radar
NASA Astrophysics Data System (ADS)
Zhang, Shuai; Zhu, Yiqing; Wang, Zhenhui; Wang, Yadong
2018-04-01
The lack of an accurate determination of radar constant can introduce biases in ground-based radar (GR) reflectivity factor data, and lead to poor consistency of radar observations. The geometry-matching method was applied to carry out spatial matching of radar data from the Precipitation Radar (PR) on board the Tropical Rainfall Measuring Mission (TRMM) satellite to observations from a GR deployed at Nanjing, China, in their effective sampling volume, with 250 match-up cases obtained from January 2008 to October 2013. The consistency of the GR was evaluated with reference to the TRMM PR, whose stability is established. The results show that the below-bright-band-height data of the Nanjing radar can be split into three periods: Period I from January 2008 to March 2010, Period II from March 2010 to May 2013, and Period III from May 2013 to October 2013. There are distinct differences in overall reflectivity factor between the three periods, and the overall reflectivity factor in period II is smaller by a factor of over 3 dB than in periods I and III, although the overall reflectivity within each period remains relatively stable. Further investigation shows that in period II the difference between the GR and PR observations changed with echo intensity. A best-fit relation between the two radar reflectivity factors provides a linear correction that is applied to the reflectivity of the Nanjing radar, and which is effective in improving its consistency. Rain-gauge data were used to verify the correction, and the estimated precipitation based on the corrected GR reflectivity data was closer to the rain-gauge observations than that without correction.
NASA Astrophysics Data System (ADS)
Park, Sang Seo; Jung, Yeonjin; Lee, Yun Gon
2016-07-01
Radiative transfer model simulations were used to investigate the erythemal ultraviolet (EUV) correction factors by separating the UV-A and UV-B spectral ranges. The correction factor was defined as the ratio of EUV caused by changing the amounts and characteristics of the extinction and scattering materials. The EUV correction factors (CFEUV) for UV-A [CFEUV(A)] and UV-B [CFEUV(B)] were affected by changes in the total ozone, optical depths of aerosol and cloud, and the solar zenith angle. The differences between CFEUV(A) and CFEUV(B) were also estimated as a function of solar zenith angle, the optical depths of aerosol and cloud, and total ozone. The differences between CFEUV(A) and CFEUV(B) ranged from -5.0% to 25.0% for aerosols, and from -9.5% to 2.0% for clouds in all simulations for different solar zenith angles and optical depths of aerosol and cloud. The rate of decline of CFEUV per unit optical depth between UV-A and UV-B differed by up to 20% for the same aerosol and cloud conditions. For total ozone, the variation in CFEUV(A) was negligible compared with that in CFEUV(B) because of the effective spectral range of the ozone absorption band. In addition, the sensitivity of the CFEUVs due to changes in surface conditions (i.e., surface albedo and surface altitude) was also estimated by using the model in this study. For changes in surface albedo, the sensitivity of the CFEUVs was 2.9%-4.1% per 0.1 albedo change, depending on the amount of aerosols or clouds. For changes in surface altitude, the sensitivity of CFEUV(B) was twice that of CFEUV(A), because the Rayleigh optical depth increased significantly at shorter wavelengths.
Effect of Multiple Scattering on the Compton Recoil Current Generated in an EMP, Revisited
Farmer, William A.; Friedman, Alex
2015-06-18
Multiple scattering has historically been treated in EMP modeling through the obliquity factor. The validity of this approach is examined here. A simplified model problem, which correctly captures cyclotron motion, Doppler shifting due to the electron motion, and multiple scattering is first considered. The simplified problem is solved three ways: the obliquity factor, Monte-Carlo, and Fokker-Planck finite-difference. Because of the Doppler effect, skewness occurs in the distribution. It is demonstrated that the obliquity factor does not correctly capture this skewness, but the Monte-Carlo and Fokker-Planck finite-difference approaches do. Here, the obliquity factor and Fokker-Planck finite-difference approaches are then compared inmore » a fuller treatment, which includes the initial Klein-Nishina distribution of the electrons, and the momentum dependence of both drag and scattering. It is found that, in general, the obliquity factor is adequate for most situations. However, as the gamma energy increases and the Klein-Nishina becomes more peaked in the forward direction, skewness in the distribution causes greater disagreement between the obliquity factor and a more accurate model of multiple scattering.« less
Grimbergen, T W; van Dijk, E; de Vries, W
1998-11-01
A new method is described for the determination of x-ray quality dependent correction factors for free-air ionization chambers. The method is based on weighting correction factors for mono-energetic photons, which are calculated using the Monte Carlo method, with measured air kerma spectra. With this method, correction factors for electron loss, scatter inside the chamber and transmission through the diaphragm and front wall have been calculated for the NMi free-air chamber for medium-energy x-rays for a wide range of x-ray qualities in use at NMi. The newly obtained correction factors were compared with the values in use at present, which are based on interpolation of experimental data for a specific set of x-ray qualities. For x-ray qualities which are similar to this specific set, the agreement between the correction factors determined with the new method and those based on the experimental data is better than 0.1%, except for heavily filtered x-rays generated at 250 kV. For x-ray qualities dissimilar to the specific set, differences up to 0.4% exist, which can be explained by uncertainties in the interpolation procedure of the experimental data. Since the new method does not depend on experimental data for a specific set of x-ray qualities, the new method allows for a more flexible use of the free-air chamber as a primary standard for air kerma for any x-ray quality in the medium-energy x-ray range.
Tzetzis, George; Votsis, Evandros; Kourtessis, Thomas
2008-01-01
This experiment investigated the effects of three corrective feedback methods, using different combinations of correction, or error cues and positive feedback for learning two badminton skills with different difficulty (forehand clear - low difficulty, backhand clear - high difficulty). Outcome and self-confidence scores were used as dependent variables. The 48 participants were randomly assigned into four groups. Group A received correction cues and positive feedback. Group B received cues on errors of execution. Group C received positive feedback, correction cues and error cues. Group D was the control group. A pre, post and a retention test was conducted. A three way analysis of variance ANOVA (4 groups X 2 task difficulty X 3 measures) with repeated measures on the last factor revealed significant interactions for each depended variable. All the corrective feedback methods groups, increased their outcome scores over time for the easy skill, but only groups A and C for the difficult skill. Groups A and B had significantly better outcome scores than group C and the control group for the easy skill on the retention test. However, for the difficult skill, group C was better than groups A, B and D. The self confidence scores of groups A and C improved over time for the easy skill but not for group B and D. Again, for the difficult skill, only group C improved over time. Finally a regression analysis depicted that the improvement in performance predicted a proportion of the improvement in self confidence for both the easy and the difficult skill. It was concluded that when young athletes are taught skills of different difficulty, different type of instruction, might be more appropriate in order to improve outcome and self confidence. A more integrated approach on teaching will assist coaches or physical education teachers to be more efficient and effective. Key pointsThe type of the skill is a critical factor in determining the effectiveness of the feedback types.Different instructional methods of corrective feedback could have beneficial effects in the outcome and self-confidence of young athletesInstructions focusing on the correct cues or errors increase performance of easy skills.Positive feedback or correction cues increase self-confidence of easy skills but only the combination of error and correction cues increase self confidence and outcome scores of difficult skills. PMID:24149905
Underwater and Dive Station Work-Site Noise Surveys
2008-03-14
A) octave band noise measurements, dB (A) correction factors, dB ( A ) levels , MK-21 diving helmet attenuation correction factors, overall in-helmet...band noise measurements, dB (A) correction factors, dB ( A ) levels , MK-21 diving helmet attenuation correction factors, overall in-helmet dB (A...noise measurements, dB (A) correction factors, dB ( A ) levels , MK-21 diving helmet attenuation correction factors, overall in-helmet dB (A) level, and
Twining, Brian V.
2016-11-29
The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, has maintained a water-level monitoring program at the Idaho National Laboratory (INL) since 1949. The purpose of the program is to systematically measure and report water-level data to assess the eastern Snake River Plain aquifer and long term changes in groundwater recharge, discharge, movement, and storage. Water-level data are commonly used to generate potentiometric maps and used to infer increases and (or) decreases in the regional groundwater system. Well deviation is one component of water-level data that is often overlooked and is the result of the well construction and the well not being plumb. Depending on measured slant angle, where well deviation generally increases linearly with increasing slant angle, well deviation can suggest artificial anomalies in the water table. To remove the effects of well deviation, the USGS INL Project Office applies a correction factor to water-level data when a well deviation survey indicates a change in the reference elevation of greater than or equal to 0.2 ft.Borehole well deviation survey data were considered for 177 wells completed within the eastern Snake River Plain aquifer, but not all wells had deviation survey data available. As of 2016, USGS INL Project Office database includes: 57 wells with gyroscopic survey data; 100 wells with magnetic deviation survey data; 11 wells with erroneous gyroscopic data that were excluded; and, 68 wells with no deviation survey data available. Of the 57 wells with gyroscopic deviation surveys, correction factors for 16 wells ranged from 0.20 to 6.07 ft and inclination angles (SANG) ranged from 1.6 to 16.0 degrees. Of the 100 wells with magnetic deviation surveys, a correction factor for 21 wells ranged from 0.20 to 5.78 ft and SANG ranged from 1.0 to 13.8 degrees, not including the wells that did not meet the correction factor criteria of greater than or equal to 0.20 ft.Forty-seven wells had gyroscopic and magnetic deviation survey data for the same well. Datasets for both survey types were compared for the same well to determine whether magnetic survey data were consistent with gyroscopic survey data. Of those 47 wells, 96 percent showed similar correction factor estimates (≤ 0.20 ft) for both magnetic and gyroscopic well deviation surveys. A linear comparison of correction factor estimates for both magnetic and gyroscopic deviation well surveys for all 47 wells indicate good linear correlation, represented by an r-squared of 0.88. The correction factor difference between the gyroscopic and magnetic surveys for 45 of 47 wells ranged from 0.00 to 0.18 ft, not including USGS 57 and USGS 125. Wells USGS 57 and USGS 125 show a correction factor difference of 2.16 and 0.36 ft, respectively; however, review of the data files suggest erroneous SANG data for both magnetic deviation well surveys. The difference in magnetic and gyroscopic well deviation SANG measurements, for all wells, ranged from 0.0 to 0.9 degrees. These data indicate good agreement between SANG data measured using the magnetic deviation survey methods and SANG data measured using gyroscopic deviation survey methods, even for surveys collected years apart.
DOT National Transportation Integrated Search
1985-05-01
The purpose of this report is to compare the differences in asphalt contents determined after correction of mix and extracted aggregate weights for moisture when drying with the standard oven and microwave oven. It is also intended to determine if th...
Martins, E W; Potiens, M P A
2012-07-01
This paper presents the establishment of a quality control program and correction factors for the geometry of the vials used for distribution of radiopharmaceutical and activimeters calibration. The radiopharmaceutical produced by IPEN 67Ga, 131I, 201Tl and 99mTc had been tested using two different vials. Results show a maximum variation of 22% for 201Tl, and the minimum variation was 2.98% for 131I. The correction factors must be incorporated in the routine calibration of the activimeters. Copyright © 2011 Elsevier Ltd. All rights reserved.
Fukata, Kyohei; Sugimoto, Satoru; Kurokawa, Chie; Saito, Akito; Inoue, Tatsuya; Sasai, Keisuke
2018-06-01
The difficulty of measuring output factor (OPF) in a small field has been frequently discussed in recent publications. This study is aimed to determine the OPF in a small field using 10-MV photon beam and stereotactic conical collimator (cone). The OPF was measured by two diode detectors (SFD, EDGE detector) and one micro-ion chamber (PinPoint 3D chamber) in a water phantom. A Monte Carlo simulation using simplified detector model was performed to obtain the correction factor for the detector measurements. About 12% OPF difference was observed in the measurement at the smallest field (7.5 mm diameter) for EDGE detector and PinPoint 3D chamber. By applying the Monte Carlo-based correction factor to the measurement, the maximum discrepancy among the three detectors was reduced to within 3%. The results indicate that determination of OPF in a small field should be carefully performed. Especially, detector choice and appropriate correction factor application are very important in this regard.
Optimized distortion correction technique for echo planar imaging.
Chen , N K; Wyrwicz, A M
2001-03-01
A new phase-shifted EPI pulse sequence is described that encodes EPI phase errors due to all off-resonance factors, including B(o) field inhomogeneity, eddy current effects, and gradient waveform imperfections. Combined with the previously proposed multichannel modulation postprocessing algorithm (Chen and Wyrwicz, MRM 1999;41:1206-1213), the encoded phase error information can be used to effectively remove geometric distortions in subsequent EPI scans. The proposed EPI distortion correction technique has been shown to be effective in removing distortions due to gradient waveform imperfections and phase gradient-induced eddy current effects. In addition, this new method retains advantages of the earlier method, such as simultaneous correction of different off-resonance factors without use of a complicated phase unwrapping procedure. The effectiveness of this technique is illustrated with EPI studies on phantoms and animal subjects. Implementation to different versions of EPI sequences is also described. Magn Reson Med 45:525-528, 2001. Copyright 2001 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackenzie, Alistair, E-mail: alistairmackenzie@nhs.net; Dance, David R.; Young, Kenneth C.
Purpose: The aim of this work is to create a model to predict the noise power spectra (NPS) for a range of mammographic radiographic factors. The noise model was necessary to degrade images acquired on one system to match the image quality of different systems for a range of beam qualities. Methods: Five detectors and x-ray systems [Hologic Selenia (ASEh), Carestream computed radiography CR900 (CRc), GE Essential (CSI), Carestream NIP (NIPc), and Siemens Inspiration (ASEs)] were characterized for this study. The signal transfer property was measured as the pixel value against absorbed energy per unit area (E) at a referencemore » beam quality of 28 kV, Mo/Mo or 29 kV, W/Rh with 45 mm polymethyl methacrylate (PMMA) at the tube head. The contributions of the three noise sources (electronic, quantum, and structure) to the NPS were calculated by fitting a quadratic at each spatial frequency of the NPS against E. A quantum noise correction factor which was dependent on beam quality was quantified using a set of images acquired over a range of radiographic factors with different thicknesses of PMMA. The noise model was tested for images acquired at 26 kV, Mo/Mo with 20 mm PMMA and 34 kV, Mo/Rh with 70 mm PMMA for three detectors (ASEh, CRc, and CSI) over a range of exposures. The NPS were modeled with and without the noise correction factor and compared with the measured NPS. A previous method for adapting an image to appear as if acquired on a different system was modified to allow the reference beam quality to be different from the beam quality of the image. The method was validated by adapting the ASEh flat field images with two thicknesses of PMMA (20 and 70 mm) to appear with the imaging characteristics of the CSI and CRc systems. Results: The quantum noise correction factor rises with higher beam qualities, except for CR systems at high spatial frequencies, where a flat response was found against mean photon energy. This is due to the dominance of secondary quantum noise in CR. The use of the quantum noise correction factor reduced the difference from the model to the real NPS to generally within 4%. The use of the quantum noise correction improved the conversion of ASEh image to CRc image but had no difference for the conversion to CSI images. Conclusions: A practical method for estimating the NPS at any dose and over a range of beam qualities for mammography has been demonstrated. The noise model was incorporated into a methodology for converting an image to appear as if acquired on a different detector. The method can now be extended to work for a wide range of beam qualities and can be applied to the conversion of mammograms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorriaux, J; Lee, J; ICTEAM Institute, Universite catholique de Louvain, Louvain-la-Neuve
2015-06-15
Purpose: The IAEA TRS-398 code of practice details the reference conditions for reference dosimetry of proton beams using ionization chambers and the required beam quality correction factors (kQ). Pencil beam scanning (PBS) requires multiple spots to reproduce the reference conditions. The objective is to demonstrate, using Monte Carlo (MC) calculations, that kQ factors for broad beams can be used for scanned beams under the same reference conditions with no significant additional uncertainty. We consider hereafter the general Alfonso formalism (Alfonso et al, 2008) for non-standard beam. Methods: To approach the reference conditions and the associated dose distributions, PBS must combinemore » many pencil beams with range modulation and shaping techniques different than those used in passive systems (broad beams). This might lead to a different energy spectrum at the measurement point. In order to evaluate the impact of these differences on kQ factors, ion chamber responses are computed with MC (Geant4 9.6) in a dedicated scanned pencil beam (Q-pcsr) producing a 10×10cm2 composite field with a flat dose distribution from 10 to 16 cm depth. Ion chamber responses are also computed by MC in a broad beam with quality Q-ds (double scattering). The dose distribution of Q -pcsr matches the dose distribution of Q-ds. k-(Q-pcsr,Q-ds) is computed for a 2×2×0.2cm{sup 3} idealized air cavity and a realistic plane-parallel ion chamber (IC). Results: Under reference conditions, quality correction factors for a scanned composite field versus a broad beam are the same for air cavity dose response, k-(Q-pcsr,Q-ds) =1.001±0.001 and for a Roos IC, k-(Q-pcsr,Q-ds) =0.999±0.005. Conclusion: Quality correction factors for ion chamber response in scanned and broad proton therapy beams are identical under reference conditions within the calculation uncertainties. The results indicate that quality correction factors published in IAEA TRS-398 can be used for scanned beams in the SOBP of a high-energy proton beam. Jefferson Sorriaux is financed by the Walloon Region under the convention 1217662. Jefferson Sorriaux is sponsored by a public-private partnership IBA - Walloon Region.« less
Improving Planck calibration by including frequency-dependent relativistic corrections
NASA Astrophysics Data System (ADS)
Quartin, Miguel; Notari, Alessio
2015-09-01
The Planck satellite detectors are calibrated in the 2015 release using the "orbital dipole", which is the time-dependent dipole generated by the Doppler effect due to the motion of the satellite around the Sun. Such an effect has also relativistic time-dependent corrections of relative magnitude 10-3, due to coupling with the "solar dipole" (the motion of the Sun compared to the CMB rest frame), which are included in the data calibration by the Planck collaboration. We point out that such corrections are subject to a frequency-dependent multiplicative factor. This factor differs from unity especially at the highest frequencies, relevant for the HFI instrument. Since currently Planck calibration errors are dominated by systematics, to the point that polarization data is currently unreliable at large scales, such a correction can in principle be highly relevant for future data releases.
[Quantitative surface analysis of Pt-Co, Cu-Au and Cu-Ag alloy films by XPS and AES].
Li, Lian-Zhong; Zhuo, Shang-Jun; Shen, Ru-Xiang; Qian, Rong; Gao, Jie
2013-11-01
In order to improve the quantitative analysis accuracy of AES, We associated XPS with AES and studied the method to reduce the error of AES quantitative analysis, selected Pt-Co, Cu-Au and Cu-Ag binary alloy thin-films as the samples, used XPS to correct AES quantitative analysis results by changing the auger sensitivity factors to make their quantitative analysis results more similar. Then we verified the accuracy of the quantitative analysis of AES when using the revised sensitivity factors by other samples with different composition ratio, and the results showed that the corrected relative sensitivity factors can reduce the error in quantitative analysis of AES to less than 10%. Peak defining is difficult in the form of the integral spectrum of AES analysis since choosing the starting point and ending point when determining the characteristic auger peak intensity area with great uncertainty, and to make analysis easier, we also processed data in the form of the differential spectrum, made quantitative analysis on the basis of peak to peak height instead of peak area, corrected the relative sensitivity factors, and verified the accuracy of quantitative analysis by the other samples with different composition ratio. The result showed that the analytical error in quantitative analysis of AES reduced to less than 9%. It showed that the accuracy of AES quantitative analysis can be highly improved by the way of associating XPS with AES to correct the auger sensitivity factors since the matrix effects are taken into account. Good consistency was presented, proving the feasibility of this method.
Analyses of factors of crash avoidance maneuvers using the general estimates system.
Yan, Xuedong; Harb, Rami; Radwan, Essam
2008-06-01
Taking an effective corrective action to a critical traffic situation provides drivers an opportunity to avoid crash occurrence and minimize crash severity. The objective of this study is to investigate the relationship between the probability of taking corrective actions and the characteristics of drivers, vehicles, and driving environments. Using the 2004 GES crash database, this study classified drivers who encountered critical traffic events (identified as P_CRASH3 in the GES database) into two pre-crash groups: corrective avoidance actions group and no corrective avoidance actions group. Single and multiple logistic regression analyses were performed to identify potential traffic factors associated with the probability of drivers taking corrective actions. The regression results showed that the driver/vehicle factors associated with the probability of taking corrective actions include: driver age, gender, alcohol use, drug use, physical impairments, distraction, sight obstruction, and vehicle type. In particular, older drivers, female drivers, drug/alcohol use, physical impairment, distraction, or poor visibility may increase the probability of failing to attempt to avoid crashes. Moreover, drivers of larger size vehicles are 42.5% more likely to take corrective avoidance actions than passenger car drivers. On the other hand, the significant environmental factors correlated with the drivers' crash avoidance maneuver include: highway type, number of lanes, divided/undivided highway, speed limit, highway alignment, highway profile, weather condition, and surface condition. Some adverse highway environmental factors, such as horizontal curves, vertical curves, worse weather conditions, and slippery road surface conditions are correlated with a higher probability of crash avoidance maneuvers. These results may seem counterintuitive but they can be explained by the fact that motorists may be more likely to drive cautiously in those adverse driving environments. The analyses revealed that drivers' distraction could be the highest risk factor leading to the failure of attempting to avoid crashes. Further analyses entailing distraction causes (e.g., cellular phone use) and their possible countermeasures need to be conducted. The age and gender factors are overrepresented in the "no avoidance maneuver." A possible solution could involve the integration of a new function in the current ITS technologies. A personalized system, which could be related to the expected type of maneuver for a driver with certain characteristics, would assist different drivers with different characteristics to avoid crashes. Further crash database studies are recommended to investigate the association of drivers' emergency maneuvers such as braking, steering, or their combination with crash severity.
NASA Astrophysics Data System (ADS)
Jiménez Pérez, L. A.; Toledo Sánchez, G.
2017-12-01
Unstable spin-1 particles are properly described by including absorptive corrections to the electromagnetic vertex and propagator, without breaking the electromagnetic gauge invariance. We show that the modified propagator can be set in a complex mass form, provided the mass and width parameters, which are properly defined at the pole, are replaced by energy dependent functions fulfilling the same requirements at the pole. We exemplify the case for the {K}* (892) vector meson, and find that the mass function deviates around 2 MeV from the Kπ threshold to the pole, and that the width function exhibits a different behavior compared to the uncorrected energy dependent width. Considering the {τ }-\\to {K}{{S}}{π }-{ν }τ decay as dominated by the {K}* (892) and {K}{\\prime * }(1410) vectors and one scalar particle, we exhibit the role of the transversal and longitudinal corrections to the vector propagator by obtaining the modified vector and scalar form factors. The modified vector form factor is found to be the same as in the complex mass form, while the scalar form factor receives a modification from the longitudinal correction to the vector propagator. A fit to the experimental Kπ spectrum shows that the phase induced by the presence of this new contribution in the scalar sector improves the description of the experimental data in the troublesome region around 0.7 GeV. Besides that, the correction to the scalar form factor is found to be negligible.
Tornero-López, Ana M; Guirado, Damián; Perez-Calatayud, Jose; Ruiz-Arrebola, Samuel; Simancas, Fernando; Gazdic-Santic, Maja; Lallena, Antonio M
2013-12-01
Air-communicating well ionization chambers are commonly used to assess air kerma strength of sources used in brachytherapy. The signal produced is supposed to be proportional to the air density within the chamber and, therefore, a density-independent air kerma strength is obtained when the measurement is corrected to standard atmospheric conditions using the usual temperature and pressure correction factor. Nevertheless, when assessing low energy sources, the ionization chambers may not fulfill that condition and a residual density dependence still remains after correction. In this work, the authors examined the behavior of the PTW 34051 SourceCheck ionization chamber when measuring the air kerma strength of (125)I seeds. Four different SourceCheck chambers were analyzed. With each one of them, two series of measurements of the air kerma strength for (125)I selectSeed(TM) brachytherapy sources were performed inside a pressure chamber and varying the pressure in a range from 747 to 1040 hPa (560 to 780 mm Hg). The temperature and relative humidity were kept basically constant. An analogous experiment was performed by taking measurements at different altitudes above sea level. Contrary to other well-known ionization chambers, like the HDR1000 PLUS, in which the temperature-pressure correction factor overcorrects the measurements, in the SourceCheck ionization chamber they are undercorrected. At a typical atmospheric situation of 933 hPa (700 mm Hg) and 20 °C, this undercorrection turns out to be 1.5%. Corrected measurements show a residual linear dependence on the density and, as a consequence, an additional density dependent correction must be applied. The slope of this residual linear density dependence is different for each SourceCheck chamber investigated. The results obtained by taking measurements at different altitudes are compatible with those obtained with the pressure chamber. Variations of the altitude and changes in the weather conditions may produce significant density corrections, and that effect should be taken into account. This effect is chamber-dependent, indicating that a specific calibration is necessary for each particular chamber. To our knowledge, this correction has not been considered so far for SourceCheck ionization chambers, but its magnitude cannot be neglected in clinical practice. The atmospheric pressure and temperature at which the chamber was calibrated need to be taken into account, and they should be reported in the calibration certificate. In addition, each institution should analyze the particular response of its SourceCheck ionization chamber and compute the adequate correction factors. In the absence of a suitable pressure chamber, a possibility for this assessment is to take measurements at different altitudes, spanning a wide enough air density range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tornero-López, Ana M.; Guirado, Damián; Ruiz-Arrebola, Samuel
2013-12-15
Purpose: Air-communicating well ionization chambers are commonly used to assess air kerma strength of sources used in brachytherapy. The signal produced is supposed to be proportional to the air density within the chamber and, therefore, a density-independent air kerma strength is obtained when the measurement is corrected to standard atmospheric conditions using the usual temperature and pressure correction factor. Nevertheless, when assessing low energy sources, the ionization chambers may not fulfill that condition and a residual density dependence still remains after correction. In this work, the authors examined the behavior of the PTW 34051 SourceCheck ionization chamber when measuring themore » air kerma strength of {sup 125}I seeds.Methods: Four different SourceCheck chambers were analyzed. With each one of them, two series of measurements of the air kerma strength for {sup 125}I selectSeed{sup TM} brachytherapy sources were performed inside a pressure chamber and varying the pressure in a range from 747 to 1040 hPa (560 to 780 mm Hg). The temperature and relative humidity were kept basically constant. An analogous experiment was performed by taking measurements at different altitudes above sea level.Results: Contrary to other well-known ionization chambers, like the HDR1000 PLUS, in which the temperature-pressure correction factor overcorrects the measurements, in the SourceCheck ionization chamber they are undercorrected. At a typical atmospheric situation of 933 hPa (700 mm Hg) and 20 °C, this undercorrection turns out to be 1.5%. Corrected measurements show a residual linear dependence on the density and, as a consequence, an additional density dependent correction must be applied. The slope of this residual linear density dependence is different for each SourceCheck chamber investigated. The results obtained by taking measurements at different altitudes are compatible with those obtained with the pressure chamber.Conclusions: Variations of the altitude and changes in the weather conditions may produce significant density corrections, and that effect should be taken into account. This effect is chamber-dependent, indicating that a specific calibration is necessary for each particular chamber. To our knowledge, this correction has not been considered so far for SourceCheck ionization chambers, but its magnitude cannot be neglected in clinical practice. The atmospheric pressure and temperature at which the chamber was calibrated need to be taken into account, and they should be reported in the calibration certificate. In addition, each institution should analyze the particular response of its SourceCheck ionization chamber and compute the adequate correction factors. In the absence of a suitable pressure chamber, a possibility for this assessment is to take measurements at different altitudes, spanning a wide enough air density range.« less
Relativistic corrections to heavy quark fragmentation to S-wave heavy mesons
NASA Astrophysics Data System (ADS)
Sang, Wen-Long; Yang, Lan-Fei; Chen, Yu-Qi
2009-07-01
The relativistic corrections of order v2 to the fragmentation functions for the heavy quark to S-wave heavy quarkonia are calculated in the framework of the nonrelativistic quantum chromodynamics factorization formula. We derive the fragmentation functions by using the Collins-Soper definition in both the Feynman gauge and the axial gauge. We also extract them through the process Z0→Hq qmacr in the limit MZ/m→∞. We find that all results obtained by these two different methods and in different gauges are the same. We estimate the relative size of the relativistic corrections to the fragmentation functions.
Relativistic corrections to heavy quark fragmentation to S-wave heavy mesons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sang Wenlong; Yang Lanfei; Chen Yuqi
The relativistic corrections of order v{sup 2} to the fragmentation functions for the heavy quark to S-wave heavy quarkonia are calculated in the framework of the nonrelativistic quantum chromodynamics factorization formula. We derive the fragmentation functions by using the Collins-Soper definition in both the Feynman gauge and the axial gauge. We also extract them through the process Z{sup 0}{yields}Hqq in the limit M{sub Z}/m{yields}{infinity}. We find that all results obtained by these two different methods and in different gauges are the same. We estimate the relative size of the relativistic corrections to the fragmentation functions.
NASA Astrophysics Data System (ADS)
Walwyn-Salas, G.; Czap, L.; Gomola, I.; Tamayo-García, J. A.
2016-07-01
The cylindrical NE2575 and spherical PTW32002 chamber types were tested in this paper to determine their performance at different source-chamber distances, field sizes and two radiation qualities. To ensure an accurate measurement, there is a need to apply a correction factor to NE2575 measurements at different distances because of differences found between the reference point defined by the manufacturer and the effective point of measurements. This correction factor for NE2575 secondary standard from the Center for Radiation Protection and Hygiene of Cuba was assessed with a 0.3% uncertainty using the results of three methods. Those laboratories that use the NE2575 chambers should take into consideration the performance characteristics tested in this paper to obtain accurate measurements.
Zhao, Wen-Wen; Wu, Zhi-Min; Wu, Xia; Zhao, Hai-Yu; Chen, Xiao-Qing
2016-10-01
This study is to determine five naphthaquinones (acetylshikonin, β-acetoxyisovalerylalkannin, isobutylshikonin, β,β'-dimethylacrylalkannin,α-methyl-n-butylshikonin) by quantitative analysis of multi-components with a single marker (QAMS). β,β'-Dimethylacrylalkannin was selected as the internal reference substance, and the relative correlation factors (RCFs) of acetylshikonin, β-acetoxyisovalerylalkannin, isobutylshikonin and α-methyl-n-butylshikonin were calculated. Then the ruggedness of relative correction factors was tested on different instruments and columns. Meanwhile, 16 batches of Arnebia euchroma were analyzed by external standard method (ESM) and QAMS, respectively. The peaks were identifited by LC-MS. The ruggedness of relative correction factors was good. And the analytical results calculated by ESM and QAMS showed no difference. The quantitative method established was feasible and suitable for the quality evaluation of A. euchroma. Copyright© by the Chinese Pharmaceutical Association.
Finding of Correction Factor and Dimensional Error in Bio-AM Model by FDM Technique
NASA Astrophysics Data System (ADS)
Manmadhachary, Aiamunoori; Ravi Kumar, Yennam; Krishnanand, Lanka
2018-06-01
Additive Manufacturing (AM) is the swift manufacturing process, in which input data can be provided from various sources like 3-Dimensional (3D) Computer Aided Design (CAD), Computed Tomography (CT), Magnetic Resonance Imaging (MRI) and 3D scanner data. From the CT/MRI data can be manufacture Biomedical Additive Manufacturing (Bio-AM) models. The Bio-AM model gives a better lead on preplanning of oral and maxillofacial surgery. However manufacturing of the accurate Bio-AM model is one of the unsolved problems. The current paper demonstrates error between the Standard Triangle Language (STL) model to Bio-AM model of dry mandible and found correction factor in Bio-AM model with Fused Deposition Modelling (FDM) technique. In the present work dry mandible CT images are acquired by CT scanner and supplied into a 3D CAD model in the form of STL model. Further the data is sent to FDM machine for fabrication of Bio-AM model. The difference between Bio-AM to STL model dimensions is considered as dimensional error and the ratio of STL to Bio-AM model dimensions considered as a correction factor. This correction factor helps to fabricate the AM model with accurate dimensions of the patient anatomy. These true dimensional Bio-AM models increasing the safety and accuracy in pre-planning of oral and maxillofacial surgery. The correction factor for Dimension SST 768 FDM AM machine is 1.003 and dimensional error is limited to 0.3 %.
Finding of Correction Factor and Dimensional Error in Bio-AM Model by FDM Technique
NASA Astrophysics Data System (ADS)
Manmadhachary, Aiamunoori; Ravi Kumar, Yennam; Krishnanand, Lanka
2016-06-01
Additive Manufacturing (AM) is the swift manufacturing process, in which input data can be provided from various sources like 3-Dimensional (3D) Computer Aided Design (CAD), Computed Tomography (CT), Magnetic Resonance Imaging (MRI) and 3D scanner data. From the CT/MRI data can be manufacture Biomedical Additive Manufacturing (Bio-AM) models. The Bio-AM model gives a better lead on preplanning of oral and maxillofacial surgery. However manufacturing of the accurate Bio-AM model is one of the unsolved problems. The current paper demonstrates error between the Standard Triangle Language (STL) model to Bio-AM model of dry mandible and found correction factor in Bio-AM model with Fused Deposition Modelling (FDM) technique. In the present work dry mandible CT images are acquired by CT scanner and supplied into a 3D CAD model in the form of STL model. Further the data is sent to FDM machine for fabrication of Bio-AM model. The difference between Bio-AM to STL model dimensions is considered as dimensional error and the ratio of STL to Bio-AM model dimensions considered as a correction factor. This correction factor helps to fabricate the AM model with accurate dimensions of the patient anatomy. These true dimensional Bio-AM models increasing the safety and accuracy in pre-planning of oral and maxillofacial surgery. The correction factor for Dimension SST 768 FDM AM machine is 1.003 and dimensional error is limited to 0.3 %.
Gurka, Matthew J; Kuperminc, Michelle N; Busby, Marjorie G; Bennis, Jacey A; Grossberg, Richard I; Houlihan, Christine M; Stevenson, Richard D; Henderson, Richard C
2010-02-01
To assess the accuracy of skinfold equations in estimating percentage body fat in children with cerebral palsy (CP), compared with assessment of body fat from dual energy X-ray absorptiometry (DXA). Data were collected from 71 participants (30 females, 41 males) with CP (Gross Motor Function Classification System [GMFCS] levels I-V) between the ages of 8 and 18 years. Estimated percentage body fat was computed using established (Slaughter) equations based on the triceps and subscapular skinfolds. A linear model was fitted to assess the use of a simple correction to these equations for children with CP. Slaughter's equations consistently underestimated percentage body fat (mean difference compared with DXA percentage body fat -9.6/100 [SD 6.2]; 95% confidence interval [CI] -11.0 to -8.1). New equations were developed in which a correction factor was added to the existing equations based on sex, race, GMFCS level, size, and pubertal status. These corrected equations for children with CP agree better with DXA (mean difference 0.2/100 [SD=4.8]; 95% CI -1.0 to 1.3) than existing equations. A simple correction factor to commonly used equations substantially improves the ability to estimate percentage body fat from two skinfold measures in children with CP.
Topographic Correction Module at Storm (TC@Storm)
NASA Astrophysics Data System (ADS)
Zaksek, K.; Cotar, K.; Veljanovski, T.; Pehani, P.; Ostir, K.
2015-04-01
Different solar position in combination with terrain slope and aspect result in different illumination of inclined surfaces. Therefore, the retrieved satellite data cannot be accurately transformed to the spectral reflectance, which depends only on the land cover. The topographic correction should remove this effect and enable further automatic processing of higher level products. The topographic correction TC@STORM was developed as a module within the SPACE-SI automatic near-real-time image processing chain STORM. It combines physical approach with the standard Minnaert method. The total irradiance is modelled as a three-component irradiance: direct (dependent on incidence angle, sun zenith angle and slope), diffuse from the sky (dependent mainly on sky-view factor), and diffuse reflected from the terrain (dependent on sky-view factor and albedo). For computation of diffuse irradiation from the sky we assume an anisotropic brightness of the sky. We iteratively estimate a linear combination from 10 different models, to provide the best results. Dependent on the data resolution, we mask shades based on radiometric (image) or geometric properties. The method was tested on RapidEye, Landsat 8, and PROBA-V data. Final results of the correction were evaluated and statistically validated based on various topography settings and land cover classes. Images show great improvements in shaded areas.
Improving Planck calibration by including frequency-dependent relativistic corrections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quartin, Miguel; Notari, Alessio, E-mail: mquartin@if.ufrj.br, E-mail: notari@ffn.ub.es
2015-09-01
The Planck satellite detectors are calibrated in the 2015 release using the 'orbital dipole', which is the time-dependent dipole generated by the Doppler effect due to the motion of the satellite around the Sun. Such an effect has also relativistic time-dependent corrections of relative magnitude 10{sup −3}, due to coupling with the 'solar dipole' (the motion of the Sun compared to the CMB rest frame), which are included in the data calibration by the Planck collaboration. We point out that such corrections are subject to a frequency-dependent multiplicative factor. This factor differs from unity especially at the highest frequencies, relevantmore » for the HFI instrument. Since currently Planck calibration errors are dominated by systematics, to the point that polarization data is currently unreliable at large scales, such a correction can in principle be highly relevant for future data releases.« less
Reliability of IGBT in a STATCOM for Harmonic Compensation and Power Factor Correction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopi Reddy, Lakshmi Reddy; Tolbert, Leon M; Ozpineci, Burak
With smart grid integration, there is a need to characterize reliability of a power system by including reliability of power semiconductors in grid related applications. In this paper, the reliability of IGBTs in a STATCOM application is presented for two different applications, power factor correction and harmonic elimination. The STATCOM model is developed in EMTP, and analytical equations for average conduction losses in an IGBT and a diode are derived and compared with experimental data. A commonly used reliability model is used to predict reliability of IGBT.
Sparse PCA corrects for cell type heterogeneity in epigenome-wide association studies.
Rahmani, Elior; Zaitlen, Noah; Baran, Yael; Eng, Celeste; Hu, Donglei; Galanter, Joshua; Oh, Sam; Burchard, Esteban G; Eskin, Eleazar; Zou, James; Halperin, Eran
2016-05-01
In epigenome-wide association studies (EWAS), different methylation profiles of distinct cell types may lead to false discoveries. We introduce ReFACTor, a method based on principal component analysis (PCA) and designed for the correction of cell type heterogeneity in EWAS. ReFACTor does not require knowledge of cell counts, and it provides improved estimates of cell type composition, resulting in improved power and control for false positives in EWAS. Corresponding software is available at http://www.cs.tau.ac.il/~heran/cozygene/software/refactor.html.
Lépy, M-C; Altzitzoglou, T; Anagnostakis, M J; Capogni, M; Ceccatelli, A; De Felice, P; Djurasevic, M; Dryak, P; Fazio, A; Ferreux, L; Giampaoli, A; Han, J B; Hurtado, S; Kandic, A; Kanisch, G; Karfopoulos, K L; Klemola, S; Kovar, P; Laubenstein, M; Lee, J H; Lee, J M; Lee, K B; Pierre, S; Carvalhal, G; Sima, O; Tao, Chau Van; Thanh, Tran Thien; Vidmar, T; Vukanac, I; Yang, M J
2012-09-01
The second part of an intercomparison of the coincidence summing correction methods is presented. This exercise concerned three volume sources, filled with liquid radioactive solution. The same experimental spectra, decay scheme and photon emission intensities were used by all the participants. The results were expressed as coincidence summing corrective factors for several energies of (152)Eu and (134)Cs, and different source-to-detector distances. They are presented and discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.
Elevation correction factor for absolute pressure measurements
NASA Technical Reports Server (NTRS)
Panek, Joseph W.; Sorrells, Mark R.
1996-01-01
With the arrival of highly accurate multi-port pressure measurement systems, conditions that previously did not affect overall system accuracy must now be scrutinized closely. Errors caused by elevation differences between pressure sensing elements and model pressure taps can be quantified and corrected. With multi-port pressure measurement systems, the sensing elements are connected to pressure taps that may be many feet away. The measurement system may be at a different elevation than the pressure taps due to laboratory space or test article constraints. This difference produces a pressure gradient that is inversely proportional to height within the interface tube. The pressure at the bottom of the tube will be higher than the pressure at the top due to the weight of the tube's column of air. Tubes with higher pressures will exhibit larger absolute errors due to the higher air density. The above effect is well documented but has generally been taken into account with large elevations only. With error analysis techniques, the loss in accuracy from elevation can be easily quantified. Correction factors can be applied to maintain the high accuracies of new pressure measurement systems.
NASA Astrophysics Data System (ADS)
Mohammadi, S. M.; Tavakoli-Anbaran, H.; Zeinali, H. Z.
2017-02-01
The parallel-plate free-air ionization chamber termed FAC-IR-300 was designed at the Atomic Energy Organization of Iran, AEOI. This chamber is used for low and medium X-ray dosimetry on the primary standard level. In order to evaluate the air-kerma, some correction factors such as electron-loss correction factor (ke) and photon scattering correction factor (ksc) are needed. ke factor corrects the charge loss from the collecting volume and ksc factor corrects the scattering of photons into collecting volume. In this work ke and ksc were estimated by Monte Carlo simulation. These correction factors are calculated for mono-energy photon. As a result of the simulation data, the ke and ksc values for FAC-IR-300 ionization chamber are 1.0704 and 0.9982, respectively.
Development of a correction factor for Xe-133 vials for use with a dose calibrator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gels, G.L.; Piltingsrud, H.V.
1982-04-01
Manufacturers of dose calibrators who give calibration settings for various radionuclies sometimes do not specify the type of radionuclide container the calibration is for. The container, moreover, may not be of the same type as those a user might purchase. When these factors are not considered, the activity administered to the patient may be significantly different from that intended. An experiment is described in which calibration factors are determined for measurement of Xe-133 activity in vials in a dose calibrator. This was accomplished by transferring the Xe-133 from the commercial vials to standard NBS calibration ampules. Based on ten suchmore » transfers, the resulting correction factor for the dose calibrator was 1.22.« less
Dugan, Alicia G.; Farr, Dana A.; Namazi, Sara; Henning, Robert A.; Wallace, Kelly N.; El Ghaziri, Mazen; Punnett, Laura; Dussetschleger, Jeffrey L.; Cherniack, Martin G.
2018-01-01
Background Correctional Officers (COs) have among the highest injury rates and poorest health of all the public safety occupations. The HITEC-2 (Health Improvement Through Employee Control-2) study uses Participatory Action Research (PAR) to design and implement interventions to improve health and safety of COs. Method HITEC-2 compared two different types of participatory program, a CO-only “Design Team” (DT) and “Kaizen Event Teams” (KET) of COs and supervisors, to determine differences in implementation process and outcomes. The Program Evaluation Rating Sheet (PERS) was developed to document and evaluate program implementation. Results Both programs yielded successful and unsuccessful interventions, dependent upon team-, facility-, organizational, state-, facilitator-, and intervention-level factors. Conclusions PAR in corrections, and possibly other sectors, depends upon factors including participation, leadership, continuity and timing, resilience, and financial circumstances. The new PERS instrument may be useful in other sectors to assist in assessing intervention success. PMID:27378470
Dugan, Alicia G; Farr, Dana A; Namazi, Sara; Henning, Robert A; Wallace, Kelly N; El Ghaziri, Mazen; Punnett, Laura; Dussetschleger, Jeffrey L; Cherniack, Martin G
2016-10-01
Correctional Officers (COs) have among the highest injury rates and poorest health of all the public safety occupations. The HITEC-2 (Health Improvement Through Employee Control-2) study uses Participatory Action Research (PAR) to design and implement interventions to improve health and safety of COs. HITEC-2 compared two different types of participatory program, a CO-only "Design Team" (DT) and "Kaizen Event Teams" (KET) of COs and supervisors, to determine differences in implementation process and outcomes. The Program Evaluation Rating Sheet (PERS) was developed to document and evaluate program implementation. Both programs yielded successful and unsuccessful interventions, dependent upon team-, facility-, organizational, state-, facilitator-, and intervention-level factors. PAR in corrections, and possibly other sectors, depends upon factors including participation, leadership, continuity and timing, resilience, and financial circumstances. The new PERS instrument may be useful in other sectors to assist in assessing intervention success. Am. J. Ind. Med. 59:897-918, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Fortmann, Carsten; Wierling, August; Röpke, Gerd
2010-02-01
The dynamic structure factor, which determines the Thomson scattering spectrum, is calculated via an extended Mermin approach. It incorporates the dynamical collision frequency as well as the local-field correction factor. This allows to study systematically the impact of electron-ion collisions as well as electron-electron correlations due to degeneracy and short-range interaction on the characteristics of the Thomson scattering signal. As such, the plasmon dispersion and damping width is calculated for a two-component plasma, where the electron subsystem is completely degenerate. Strong deviations of the plasmon resonance position due to the electron-electron correlations are observed at increasing Brueckner parameters r(s). These results are of paramount importance for the interpretation of collective Thomson scattering spectra, as the determination of the free electron density from the plasmon resonance position requires a precise theory of the plasmon dispersion. Implications due to different approximations for the electron-electron correlation, i.e., different forms of the one-component local-field correction, are discussed.
ERIC Educational Resources Information Center
Tryon, Warren W.; Lewis, Charles
2009-01-01
Tryon presented a graphic inferential confidence interval (ICI) approach to analyzing two independent and dependent means for statistical difference, equivalence, replication, indeterminacy, and trivial difference. Tryon and Lewis corrected the reduction factor used to adjust descriptive confidence intervals (DCIs) to create ICIs and introduced…
Resistivity Correction Factor for the Four-Probe Method: Experiment II
NASA Astrophysics Data System (ADS)
Yamashita, Masato; Yamaguchi, Shoji; Nishii, Toshifumi; Kurihara, Hiroshi; Enjoji, Hideo
1989-05-01
Experimental verification of the theoretically derived resistivity correction factor F is presented. Factor F can be applied to a system consisting of a disk sample and a four-probe array. Measurements are made on isotropic graphite disks and crystalline ITO films. Factor F can correct the apparent variations of the data and lead to reasonable resistivities and sheet resistances. Here factor F is compared to other correction factors; i.e. FASTM and FJIS.
Software tool for portal dosimetry research.
Vial, P; Hunt, P; Greer, P B; Oliver, L; Baldock, C
2008-09-01
This paper describes a software tool developed for research into the use of an electronic portal imaging device (EPID) to verify dose for intensity modulated radiation therapy (IMRT) beams. A portal dose image prediction (PDIP) model that predicts the EPID response to IMRT beams has been implemented into a commercially available treatment planning system (TPS). The software tool described in this work was developed to modify the TPS PDIP model by incorporating correction factors into the predicted EPID image to account for the difference in EPID response to open beam radiation and multileaf collimator (MLC) transmitted radiation. The processes performed by the software tool include; i) read the MLC file and the PDIP from the TPS, ii) calculate the fraction of beam-on time that each point in the IMRT beam is shielded by MLC leaves, iii) interpolate correction factors from look-up tables, iv) create a corrected PDIP image from the product of the original PDIP and the correction factors and write the corrected image to file, v) display, analyse, and export various image datasets. The software tool was developed using the Microsoft Visual Studio.NET framework with the C# compiler. The operation of the software tool was validated. This software provided useful tools for EPID dosimetry research, and it is being utilised and further developed in ongoing EPID dosimetry and IMRT dosimetry projects.
NASA Astrophysics Data System (ADS)
Jiang, Fulin; Tang, Jie; Fu, Dinfa; Huang, Jianping; Zhang, Hui
2018-04-01
Multistage stress-strain curve correction based on an instantaneous friction factor was studied for axisymmetric uniaxial hot compression of 7150 aluminum alloy. Experimental friction factors were calculated based on continuous isothermal axisymmetric uniaxial compression tests at various deformation parameters. Then, an instantaneous friction factor equation was fitted by mathematic analysis. After verification by comparing single-pass flow stress correction with traditional average friction factor correction, the instantaneous friction factor equation was applied to correct multistage stress-strain curves. The corrected results were reasonable and validated by multistage relative softening calculations. This research provides a broad potential for implementing axisymmetric uniaxial compression in multistage physical simulations and friction optimization in finite element analysis.
Schüller, Andreas; Meier, Markus; Selbach, Hans-Joachim; Ankerhold, Ulrike
2015-07-01
The aim of this study was to investigate whether a chamber-type-specific radiation quality correction factor kQ can be determined in order to measure the reference air kerma rate of (60)Co high-dose-rate (HDR) brachytherapy sources with acceptable uncertainty by means of a well-type ionization chamber calibrated for (192)Ir HDR sources. The calibration coefficients of 35 well-type ionization chambers of two different chamber types for radiation fields of (60)Co and (192)Ir HDR brachytherapy sources were determined experimentally. A radiation quality correction factor kQ was determined as the ratio of the calibration coefficients for (60)Co and (192)Ir. The dependence on chamber-to-chamber variations, source-to-source variations, and source strength was investigated. For the PTW Tx33004 (Nucletron source dosimetry system (SDS)) well-type chamber, the type-specific radiation quality correction factor kQ is 1.19. Note that this value is valid for chambers with the serial number, SN ≥ 315 (Nucletron SDS SN ≥ 548) onward only. For the Standard Imaging HDR 1000 Plus well-type chambers, the type-specific correction factor kQ is 1.05. Both kQ values are independent of the source strengths in the complete clinically relevant range. The relative expanded uncertainty (k = 2) of kQ is UkQ = 2.1% for both chamber types. The calibration coefficient of a well-type chamber for radiation fields of (60)Co HDR brachytherapy sources can be calculated from a given calibration coefficient for (192)Ir radiation by using a chamber-type-specific radiation quality correction factor kQ. However, the uncertainty of a (60)Co calibration coefficient calculated via kQ is at least twice as large as that for a direct calibration with a (60)Co source.
Correcting the Relative Bias of Light Obscuration and Flow Imaging Particle Counters.
Ripple, Dean C; Hu, Zhishang
2016-03-01
Industry and regulatory bodies desire more accurate methods for counting and characterizing particles. Measurements of proteinaceous-particle concentrations by light obscuration and flow imaging can differ by factors of ten or more. We propose methods to correct the diameters reported by light obscuration and flow imaging instruments. For light obscuration, diameters were rescaled based on characterization of the refractive index of typical particles and a light scattering model for the extinction efficiency factor. The light obscuration models are applicable for either homogeneous materials (e.g., silicone oil) or for chemically homogeneous, but spatially non-uniform aggregates (e.g., protein aggregates). For flow imaging, the method relied on calibration of the instrument with silica beads suspended in water-glycerol mixtures. These methods were applied to a silicone-oil droplet suspension and four particle suspensions containing particles produced from heat stressed and agitated human serum albumin, agitated polyclonal immunoglobulin, and abraded ethylene tetrafluoroethylene polymer. All suspensions were measured by two flow imaging and one light obscuration apparatus. Prior to correction, results from the three instruments disagreed by a factor ranging from 3.1 to 48 in particle concentration over the size range from 2 to 20 μm. Bias corrections reduced the disagreement from an average factor of 14 down to an average factor of 1.5. The methods presented show promise in reducing the relative bias between light obscuration and flow imaging.
NASA Astrophysics Data System (ADS)
Takaishi, Tetsuya
2018-06-01
The realized stochastic volatility model has been introduced to estimate more accurate volatility by using both daily returns and realized volatility. The main advantage of the model is that no special bias-correction factor for the realized volatility is required a priori. Instead, the model introduces a bias-correction parameter responsible for the bias hidden in realized volatility. We empirically investigate the bias-correction parameter for realized volatilities calculated at various sampling frequencies for six stocks on the Tokyo Stock Exchange, and then show that the dynamic behavior of the bias-correction parameter as a function of sampling frequency is qualitatively similar to that of the Hansen-Lunde bias-correction factor although their values are substantially different. Under the stochastic diffusion assumption of the return dynamics, we investigate the accuracy of estimated volatilities by examining the standardized returns. We find that while the moments of the standardized returns from low-frequency realized volatilities are consistent with the expectation from the Gaussian variables, the deviation from the expectation becomes considerably large at high frequencies. This indicates that the realized stochastic volatility model itself cannot completely remove bias at high frequencies.
Impact of correction factors in human brain lesion-behavior inference.
Sperber, Christoph; Karnath, Hans-Otto
2017-03-01
Statistical voxel-based lesion-behavior mapping (VLBM) in neurological patients with brain lesions is frequently used to examine the relationship between structure and function of the healthy human brain. Only recently, two simulation studies noted reduced anatomical validity of this method, observing the results of VLBM to be systematically misplaced by about 16 mm. However, both simulation studies differed from VLBM analyses of real data in that they lacked the proper use of two correction factors: lesion size and "sufficient lesion affection." In simulation experiments on a sample of 274 real stroke patients, we found that the use of these two correction factors reduced misplacement markedly compared to uncorrected VLBM. Apparently, the misplacement is due to physiological effects of brain lesion anatomy. Voxel-wise topographies of collateral damage in the real data were generated and used to compute a metric for the inter-voxel relation of brain damage. "Anatomical bias" vectors that were solely calculated from these inter-voxel relations in the patients' real anatomical data, successfully predicted the VLBM misplacement. The latter has the potential to help in the development of new VLBM methods that provide even higher anatomical validity than currently available by the proper use of correction factors. Hum Brain Mapp 38:1692-1701, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Toth, Ronald T; Mills, Brittney J; Joshi, Sangeeta B; Esfandiary, Reza; Bishop, Steven M; Middaugh, C Russell; Volkin, David B; Weis, David D
2017-09-05
A barrier to the use of hydrogen exchange-mass spectrometry (HX-MS) in many contexts, especially analytical characterization of various protein therapeutic candidates, is that differences in temperature, pH, ionic strength, buffering agent, or other additives can alter chemical exchange rates, making HX data gathered under differing solution conditions difficult to compare. Here, we present data demonstrating that HX chemical exchange rates can be substantially altered not only by the well-established variables of temperature and pH but also by additives including arginine, guanidine, methionine, and thiocyanate. To compensate for these additive effects, we have developed an empirical method to correct the hydrogen-exchange data for these differences. First, differences in chemical exchange rates are measured by use of an unstructured reporter peptide, YPI. An empirical chemical exchange correction factor, determined by use of the HX data from the reporter peptide, is then applied to the HX measurements obtained from a protein of interest under different solution conditions. We demonstrate that the correction is experimentally sound through simulation and in a proof-of-concept experiment using unstructured peptides under slow-exchange conditions (pD 4.5 at ambient temperature). To illustrate its utility, we applied the correction to HX-MS excipient screening data collected for a pharmaceutically relevant IgG4 mAb being characterized to determine the effects of different formulations on backbone dynamics.
GURKA, MATTHEW J; KUPERMINC, MICHELLE N; BUSBY, MARJORIE G; BENNIS, JACEY A; GROSSBERG, RICHARD I; HOULIHAN, CHRISTINE M; STEVENSON, RICHARD D; HENDERSON, RICHARD C
2010-01-01
AIM To assess the accuracy of skinfold equations in estimating percentage body fat in children with cerebral palsy (CP), compared with assessment of body fat from dual energy X-ray absorptiometry (DXA). METHOD Data were collected from 71 participants (30 females, 41 males) with CP (Gross Motor Function Classification System [GMFCS] levels I–V) between the ages of 8 and 18 years. Estimated percentage body fat was computed using established (Slaughter) equations based on the triceps and subscapular skinfolds. A linear model was fitted to assess the use of a simple correction to these equations for children with CP. RESULTS Slaughter’s equations consistently underestimated percentage body fat (mean difference compared with DXA percentage body fat −9.6/100 [SD 6.2]; 95% confidence interval [CI] −11.0 to −8.1). New equations were developed in which a correction factor was added to the existing equations based on sex, race, GMFCS level, size, and pubertal status. These corrected equations for children with CP agree better with DXA (mean difference 0.2/100 [SD=4.8]; 95% CI −1.0 to 1.3) than existing equations. INTERPRETATION A simple correction factor to commonly used equations substantially improves the ability to estimate percentage body fat from two skinfold measures in children with CP. PMID:19811518
On the impact of power corrections in the prediction of B → K *μ+μ- observables
NASA Astrophysics Data System (ADS)
Descotes-Genon, Sébastien; Hofer, Lars; Matias, Joaquim; Virto, Javier
2014-12-01
The recent LHCb angular analysis of the exclusive decay B → K * μ + μ - has indicated significant deviations from the Standard Model expectations. Accurate predictions can be achieved at large K *-meson recoil for an optimised set of observables designed to have no sensitivity to hadronic input in the heavy-quark limit at leading order in α s . However, hadronic uncertainties reappear through non-perturbative ΛQCD /m b power corrections, which must be assessed precisely. In the framework of QCD factorisation we present a systematic method to include factorisable power corrections and point out that their impact on angular observables depends on the scheme chosen to define the soft form factors. Associated uncertainties are found to be under control, contrary to earlier claims in the literature. We also discuss the impact of possible non-factorisable power corrections, including an estimate of charm-loop effects. We provide results for angular observables at large recoil for two different sets of inputs for the form factors, spelling out the different sources of theoretical uncertainties. Finally, we comment on a recent proposal to explain the anomaly in B → K * μ + μ - observables through charm-resonance effects, and we propose strategies to test this proposal identifying observables and kinematic regions where either the charm-loop model can be disentangled from New Physics effects or the two options leave different imprints.
The two sides of the C-factor.
Fok, Alex S L; Aregawi, Wondwosen A
2018-04-01
The aim of this paper is to investigate the effects on shrinkage strain/stress development of the lateral constraints at the bonded surfaces of resin composite specimens used in laboratory measurement. Using three-dimensional (3D) Hooke's law, a recently developed shrinkage stress theory is extended to 3D to include the additional out-of-plane strain/stress induced by the lateral constraints at the bonded surfaces through the Poisson's ratio effect. The model contains a parameter that defines the relative thickness of the boundary layers, adjacent to the bonded surfaces, that are under such multiaxial stresses. The resulting differential equation is solved for the shrinkage stress under different boundary conditions. The accuracy of the model is assessed by comparing the numerical solutions with a wide range of experimental data, which include those from both shrinkage strain and shrinkage stress measurements. There is good agreement between theory and experiments. The model correctly predicts the different instrument-dependent effects that a specimen's configuration factor (C-factor) has on shrinkage stress. That is, for noncompliant stress-measuring instruments, shrinkage stress increases with the C-factor of the cylindrical specimen; while the opposite is true for compliant instruments. The model also provides a correction factor, which is a function of the C-factor, Poisson's ratio and boundary layer thickness of the specimen, for shrinkage strain measured using the bonded-disc method. For the resin composite examined, the boundary layers have a combined thickness that is ∼11.5% of the specimen's diameter. The theory provides a physical and mechanical basis for the C-factor using principles of engineering mechanics. The correction factor it provides allows the linear shrinkage strain of a resin composite to be obtained more accurately from the bonded-disc method. Published by Elsevier Ltd.
Ibañez, Gladys E.; Agudo, Michelle; Martin, Steve S.; O’Connell, Daniel J.; Auf, Rehab; Sheehan, Diana
2017-01-01
Little is known about the offending behavior and recidivism factors of Latinos by nativity (U.S. born, foreign-born). The present study focused on Latinos in community corrections (n=201) in Miami, Florida, and examined differences in criminal activity, drug use, and mental health by nativity. Data were collected utilizing convenience sampling between June 2014 and December 2015. The research question was: what are the offending, drug use, and mental health histories of Latinos involved in community corrections? Participants were mostly male (n=120; 59.7%), White (n=105; 52.2%), and Cuban (n=97; 48.3%). U.S. born community corrections clients (n = 141) were more likely to report more lifetime and recent criminal activity; and more likely to report lifetime and recent drug use behavior than foreign-born Latinos (n = 60). No differences were found in recent mental health. Correctional healthcare should tailor services such as substance abuse treatment differently toward U.S. born and foreign-born Latinos. PMID:28035647
Radiological responses of different types of Egyptian Mediterranean coastal sediments
NASA Astrophysics Data System (ADS)
El-Gamal, A.; Rashad, M.; Ghatass, Z.
2010-08-01
The aim of this study was to identify gamma self-absorption correction factors for different types of Egyptian Mediterranean coastal sediments. Self-absorption corrections based on direct transmission through different thicknesses of the most dominant sediment species have been tested against point sources with gamma-ray energies of 241Am, 137Cs and 60Co with 2% uncertainties. Black sand samples from the Rashid branch of the Nile River quantitatively absorbed the low energy of 241Am through a thickness of 5 cm. In decreasing order of gamma energy self-absorption of 241Am, the samples under investigation ranked black sand, Matrouh sand, Sidi Gaber sand, shells, Salloum sand, and clay. Empirical self-absorption correction formulas were also deduced. Chemical analyses such as pH, CaCO 3, total dissolved solids, Ca 2+, Mg 2+, CO 32-, HCO 3- and total Fe 2+ have been carried out for the sediments. The relationships between self absorption corrections and the other chemical parameters of the sediments were also examined.
Radiative corrections to double-Dalitz decays revisited
NASA Astrophysics Data System (ADS)
Kampf, Karol; Novotný, Jiři; Sanchez-Puertas, Pablo
2018-03-01
In this study, we revisit and complete the full next-to-leading order corrections to pseudoscalar double-Dalitz decays within the soft-photon approximation. Comparing to the previous study, we find small differences, which are nevertheless relevant for extracting information about the pseudoscalar transition form factors. Concerning the latter, these processes could offer the opportunity to test them—for the first time—in their double-virtual regime.
Anisotropic determination and correction for ultrasonic flaw detection by spectral analysis
Adler, Laszlo; Von Cook, K.; Simpson, Jr., William A.; Lewis, D. Kent
1978-01-01
The anisotropic nature of a material is determined by measuring the velocity of an ultrasonic longitudinal wave and a pair of perpendicular ultrasonic shear waves through a sample of the material each at a plurality of different angles in three planes orthogonal to each other. The determined anisotropic nature is used as a correction factor in a spectral analyzing system of flaw determination.
Continuous quantum error correction for non-Markovian decoherence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oreshkov, Ognyan; Brun, Todd A.; Communication Sciences Institute, University of Southern California, Los Angeles, California 90089
2007-08-15
We study the effect of continuous quantum error correction in the case where each qubit in a codeword is subject to a general Hamiltonian interaction with an independent bath. We first consider the scheme in the case of a trivial single-qubit code, which provides useful insights into the workings of continuous error correction and the difference between Markovian and non-Markovian decoherence. We then study the model of a bit-flip code with each qubit coupled to an independent bath qubit and subject to continuous correction, and find its solution. We show that for sufficiently large error-correction rates, the encoded state approximatelymore » follows an evolution of the type of a single decohering qubit, but with an effectively decreased coupling constant. The factor by which the coupling constant is decreased scales quadratically with the error-correction rate. This is compared to the case of Markovian noise, where the decoherence rate is effectively decreased by a factor which scales only linearly with the rate of error correction. The quadratic enhancement depends on the existence of a Zeno regime in the Hamiltonian evolution which is absent in purely Markovian dynamics. We analyze the range of validity of this result and identify two relevant time scales. Finally, we extend the result to more general codes and argue that the performance of continuous error correction will exhibit the same qualitative characteristics.« less
Characterization of the nanoDot OSLD dosimeter in CT.
Scarboro, Sarah B; Cody, Dianna; Alvarez, Paola; Followill, David; Court, Laurence; Stingo, Francesco C; Zhang, Di; McNitt-Gray, Michael; Kry, Stephen F
2015-04-01
The extensive use of computed tomography (CT) in diagnostic procedures is accompanied by a growing need for more accurate and patient-specific dosimetry techniques. Optically stimulated luminescent dosimeters (OSLDs) offer a potential solution for patient-specific CT point-based surface dosimetry by measuring air kerma. The purpose of this work was to characterize the OSLD nanoDot for CT dosimetry, quantifying necessary correction factors, and evaluating the uncertainty of these factors. A characterization of the Landauer OSL nanoDot (Landauer, Inc., Greenwood, IL) was conducted using both measurements and theoretical approaches in a CT environment. The effects of signal depletion, signal fading, dose linearity, and angular dependence were characterized through direct measurement for CT energies (80-140 kV) and delivered doses ranging from ∼5 to >1000 mGy. Energy dependence as a function of scan parameters was evaluated using two independent approaches: direct measurement and a theoretical approach based on Burlin cavity theory and Monte Carlo simulated spectra. This beam-quality dependence was evaluated for a range of CT scanning parameters. Correction factors for the dosimeter response in terms of signal fading, dose linearity, and angular dependence were found to be small for most measurement conditions (<3%). The relative uncertainty was determined for each factor and reported at the two-sigma level. Differences in irradiation geometry (rotational versus static) resulted in a difference in dosimeter signal of 3% on average. Beam quality varied with scan parameters and necessitated the largest correction factor, ranging from 0.80 to 1.15 relative to a calibration performed in air using a 120 kV beam. Good agreement was found between the theoretical and measurement approaches. Correction factors for the measurement of air kerma were generally small for CT dosimetry, although angular effects, and particularly effects due to changes in beam quality, could be more substantial. In particular, it would likely be necessary to account for variations in CT scan parameters and measurement location when performing CT dosimetry using OSLD.
Russo, Serenella; Masi, Laura; Francescon, Paolo; Frassanito, Maria Cristina; Fumagalli, Maria Luisa; Marinelli, Marco; Falco, Maria Daniela; Martinotti, Anna Stefania; Pimpinella, Maria; Reggiori, Giacomo; Verona Rinati, Gianluca; Vigorito, Sabrina; Mancosu, Pietro
2016-04-01
The aim of the present work was to evaluate small field size output factors (OFs) using the latest diamond detector commercially available, PTW-60019 microDiamond, over different CyberKnife systems. OFs were measured also by silicon detectors routinely used by each center, considered as reference. Five Italian CyberKnife centers performed OFs measurements for field sizes ranging from 5 to 60mm, defined by fixed circular collimators (5 centers) and by Iris(™) variable aperture collimator (4 centers). Setup conditions were: 80cm source to detector distance, and 1.5cm depth in water. To speed up measurements two diamond detectors were used and their equivalence was evaluated. MonteCarlo (MC) correction factors for silicon detectors were used for comparing the OF measurements. Considering OFs values averaged over all centers, diamond data resulted lower than uncorrected silicon diode ones. The agreement between diamond and MC corrected silicon values was within 0.6% for all fixed circular collimators. Relative differences between microDiamond and MC corrected silicon diodes data for Iris(™) collimator were lower than 1.0% for all apertures in the totality of centers. The two microDiamond detectors showed similar characteristics, in agreement with the technical specifications. Excellent agreement between microDiamond and MC corrected silicon diode detectors OFs was obtained for both collimation systems fixed cones and Iris(™), demonstrating the microDiamond could be a suitable detector for CyberKnife commissioning and routine checks. These results obtained in five centers suggest that for CyberKnife systems microDiamond can be used without corrections even at the smallest field size. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Azangwe, Godfrey; Grochowska, Paulina; Georg, Dietmar; Izewska, Joanna; Hopfgartner, Johannes; Lechner, Wolfgang; Andersen, Claus E; Beierholm, Anders R; Helt-Hansen, Jakob; Mizuno, Hideyuki; Fukumura, Akifumi; Yajima, Kaori; Gouldstone, Clare; Sharpe, Peter; Meghzifene, Ahmed; Palmans, Hugo
2014-07-01
The aim of the present study is to provide a comprehensive set of detector specific correction factors for beam output measurements for small beams, for a wide range of real time and passive detectors. The detector specific correction factors determined in this study may be potentially useful as a reference data set for small beam dosimetry measurements. Dose response of passive and real time detectors was investigated for small field sizes shaped with a micromultileaf collimator ranging from 0.6 × 0.6 cm(2) to 4.2 × 4.2 cm(2) and the measurements were extended to larger fields of up to 10 × 10 cm(2). Measurements were performed at 5 cm depth, in a 6 MV photon beam. Detectors used included alanine, thermoluminescent dosimeters (TLDs), stereotactic diode, electron diode, photon diode, radiophotoluminescent dosimeters (RPLDs), radioluminescence detector based on carbon-doped aluminium oxide (Al2O3:C), organic plastic scintillators, diamond detectors, liquid filled ion chamber, and a range of small volume air filled ionization chambers (volumes ranging from 0.002 cm(3) to 0.3 cm(3)). All detector measurements were corrected for volume averaging effect and compared with dose ratios determined from alanine to derive a detector correction factors that account for beam perturbation related to nonwater equivalence of the detector materials. For the detectors used in this study, volume averaging corrections ranged from unity for the smallest detectors such as the diodes, 1.148 for the 0.14 cm(3) air filled ionization chamber and were as high as 1.924 for the 0.3 cm(3) ionization chamber. After applying volume averaging corrections, the detector readings were consistent among themselves and with alanine measurements for several small detectors but they differed for larger detectors, in particular for some small ionization chambers with volumes larger than 0.1 cm(3). The results demonstrate how important it is for the appropriate corrections to be applied to give consistent and accurate measurements for a range of detectors in small beam geometry. The results further demonstrate that depending on the choice of detectors, there is a potential for large errors when effects such as volume averaging, perturbation and differences in material properties of detectors are not taken into account. As the commissioning of small fields for clinical treatment has to rely on accurate dose measurements, the authors recommend the use of detectors that require relatively little correction, such as unshielded diodes, diamond detectors or microchambers, and solid state detectors such as alanine, TLD, Al2O3:C, or scintillators.
Performance of a Line Loss Correction Method for Gas Turbine Emission Measurements
NASA Astrophysics Data System (ADS)
Hagen, D. E.; Whitefield, P. D.; Lobo, P.
2015-12-01
International concern for the environmental impact of jet engine exhaust emissions in the atmosphere has led to increased attention on gas turbine engine emission testing. The Society of Automotive Engineers Aircraft Exhaust Emissions Measurement Committee (E-31) has published an Aerospace Information Report (AIR) 6241 detailing the sampling system for the measurement of non-volatile particulate matter from aircraft engines, and is developing an Aerospace Recommended Practice (ARP) for methodology and system specification. The Missouri University of Science and Technology (MST) Center for Excellence for Aerospace Particulate Emissions Reduction Research has led numerous jet engine exhaust sampling campaigns to characterize emissions at different locations in the expanding exhaust plume. Particle loss, due to various mechanisms, occurs in the sampling train that transports the exhaust sample from the engine exit plane to the measurement instruments. To account for the losses, both the size dependent penetration functions and the size distribution of the emitted particles need to be known. However in the proposed ARP, particle number and mass are measured, but size is not. Here we present a methodology to generate number and mass correction factors for line loss, without using direct size measurement. A lognormal size distribution is used to represent the exhaust aerosol at the engine exit plane and is defined by the measured number and mass at the downstream end of the sample train. The performance of this line loss correction is compared to corrections based on direct size measurements using data taken by MST during numerous engine test campaigns. The experimental uncertainty in these correction factors is estimated. Average differences between the line loss correction method and size based corrections are found to be on the order of 10% for number and 2.5% for mass.
López, Carlos; Jaén Martinez, Joaquín; Lejeune, Marylène; Escrivà, Patricia; Salvadó, Maria T; Pons, Lluis E; Alvaro, Tomás; Baucells, Jordi; García-Rojo, Marcial; Cugat, Xavier; Bosch, Ramón
2009-10-01
The volume of digital image (DI) storage continues to be an important problem in computer-assisted pathology. DI compression enables the size of files to be reduced but with the disadvantage of loss of quality. Previous results indicated that the efficiency of computer-assisted quantification of immunohistochemically stained cell nuclei may be significantly reduced when compressed DIs are used. This study attempts to show, with respect to immunohistochemically stained nuclei, which morphometric parameters may be altered by the different levels of JPEG compression, and the implications of these alterations for automated nuclear counts, and further, develops a method for correcting this discrepancy in the nuclear count. For this purpose, 47 DIs from different tissues were captured in uncompressed TIFF format and converted to 1:3, 1:23 and 1:46 compression JPEG images. Sixty-five positive objects were selected from these images, and six morphological parameters were measured and compared for each object in TIFF images and those of the different compression levels using a set of previously developed and tested macros. Roundness proved to be the only morphological parameter that was significantly affected by image compression. Factors to correct the discrepancy in the roundness estimate were derived from linear regression models for each compression level, thereby eliminating the statistically significant differences between measurements in the equivalent images. These correction factors were incorporated in the automated macros, where they reduced the nuclear quantification differences arising from image compression. Our results demonstrate that it is possible to carry out unbiased automated immunohistochemical nuclear quantification in compressed DIs with a methodology that could be easily incorporated in different systems of digital image analysis.
Air density correction in ionization dosimetry.
Christ, G; Dohm, O S; Schüle, E; Gaupp, S; Martin, M
2004-05-21
Air density must be taken into account when ionization dosimetry is performed with unsealed ionization chambers. The German dosimetry protocol DIN 6800-2 states an air density correction factor for which current barometric pressure and temperature and their reference values must be known. It also states that differences between air density and the attendant reference value, as well as changes in ionization chamber sensitivity, can be determined using a radioactive check source. Both methods have advantages and drawbacks which the paper discusses in detail. Barometric pressure at a given height above sea level can be determined by using a suitable barometer, or data downloaded from airport or weather service internet sites. The main focus of the paper is to show how barometric data from measurement or from the internet are correctly processed. Therefore the paper also provides all the requisite equations and terminological explanations. Computed and measured barometric pressure readings are compared, and long-term experience with air density correction factors obtained using both methods is described.
Data-driven sensitivity inference for Thomson scattering electron density measurement systems.
Fujii, Keisuke; Yamada, Ichihiro; Hasuo, Masahiro
2017-01-01
We developed a method to infer the calibration parameters of multichannel measurement systems, such as channel variations of sensitivity and noise amplitude, from experimental data. We regard such uncertainties of the calibration parameters as dependent noise. The statistical properties of the dependent noise and that of the latent functions were modeled and implemented in the Gaussian process kernel. Based on their statistical difference, both parameters were inferred from the data. We applied this method to the electron density measurement system by Thomson scattering for the Large Helical Device plasma, which is equipped with 141 spatial channels. Based on the 210 sets of experimental data, we evaluated the correction factor of the sensitivity and noise amplitude for each channel. The correction factor varies by ≈10%, and the random noise amplitude is ≈2%, i.e., the measurement accuracy increases by a factor of 5 after this sensitivity correction. The certainty improvement in the spatial derivative inference was demonstrated.
Effectiveness and confounding factors of penetrating astigmatic keratotomy in clinical practice
Yen, Chu-Yu; Tseng, Gow-Lieng
2018-01-01
Abstract Rationale: Penetrating astigmatic keratotomy (penetrating AK) is a well-known method to correct corneal astigmatism but rarely be performed nowadays. This article reevaluated the clinical effectiveness and confounding factors of penetrating AK. Patient concerns: Penetrating AK has been introduced to serve as one alternative operation for astigmatism correction, and is thought to have the potential advantage of being more affordable and easy to perform. The purpose of our study is to evaluate the effectiveness and confounding factors of penetrating AK. Diagnoses: The chart of 95 patients with corneal astigmatism (range: 0.75–3.25 diopters [D]) who received penetrating AK from January 2014 to December 2016 was collected. The corneal astigmatism were measured by an autokeratometer (Topcon KR8100PA topographer-autorefractor), and repeated with manual keratometer in low reproducibility cases. Interventions: All patients received penetrating AK by an experienced ophthalmologist (Dr. Gow-Lieng Tseng, MD, PHD) in the operation room. Among which, 66 patients received penetrating AK with phacoemulsification simultaneously (group A), whereas 29 patients received penetrating AK at least 3 months after phacoemulsification (group B). After excluding the patients combined with other procedures or lost followed up, 79 patients are remaining for analysis. The outcome was evaluated by net correction, the difference between preoperative corneal astigmatism (PCA) and residual corneal astigmatism (RCA). Two sample t tests and Pearson test were used for effectiveness evaluation. For confounding factors, multivariate linear regression was used for statistical analysis. Outcomes: The mean preoperative and postoperative refractive cylinders were 1.97 ± 0.77 and 1.08 ± 0.64 D, respectively, in group A and 2.62 ± 1.05 and 1.51 ± 0.89 D in group B. There were no statistically significant differences in net correction between these two groups (0.9 ± 0.66 vs. 1.1 ± 0.69, P = .214). Higher PCA were associated with higher net correction in both group A (P = .002) and group B (P = .019). Compound myopic astigmatism caused less net correction than others only in group A (P = 0.031). Lessons: Penetrating AK is an accessible, affordable, and effective way to correct corneal astigmatism. The results of this procedure are comparable to modern methods in patients with low to moderate corneal astigmatism. PMID:29369200
Lujan, Heidi L; DiCarlo, Stephen E
2018-06-01
Spirometers are used globally to diagnose respiratory diseases, and most commercially available spirometers "correct" for race. "Race correction" is built into the software of spirometers. To evaluate pulmonary function and to make recordings, the operator must enter the subject's race. In fact, the Joint Working Party of the American Thoracic Society/European Respiratory Society recommends the use of race- and ethnic-specific reference values. In the United States, spirometers apply correction factors of 10-15% for individuals labeled "Black" and 4-6% for people labeled "Asian." Thus race is purported to be a biologically important and scientifically valid category. However, history suggests that race corrections may represent an implicit bias, discrimination, and racism. Furthermore, this practice masks economic and environmental factors. The flawed logic of innate, racial difference is also considered with disability estimates, preemployment physicals, and clinical diagnoses that rely on the spirometer. Thomas Jefferson's Notes on the State of Virginia (1832) may have initiated this mistaken belief by noting deficiencies of the "pulmonary apparatus" of blacks. Plantation physicians used Jefferson's statement to support slavery, believing that forced labor was a way to "vitalize the blood" of deficient black slaves. Samuel Cartwright, a Southern physician and slave holder, was the first to use spirometry to record deficiencies in pulmonary function of blacks. A massive study by Benjamin Apthorp Gould (1869) during the Civil War validated his results. The history of slavery created an environment where racial difference in lung capacity become so widely accepted that race correction became a scientifically valid procedure.
An optically stimulated luminescence system to measure dose profiles in x-ray computed tomography
NASA Astrophysics Data System (ADS)
Yukihara, E. G.; Ruan, C.; Gasparian, P. B. R.; Clouse, W. J.; Kalavagunta, C.; Ahmad, S.
2009-10-01
This paper describes an LED-based optically stimulated luminescence (OSL) system for dose profile measurements using OSL detector strips and investigates its performance in x-ray computed tomography (CT) dosimetry. To compensate for the energy response of the Al2O3:C OSL detectors, which have an effective atomic number of 11.28, field-specific energy correction factors were determined using two methods: (a) comparing the OSL profiles with ionization chamber point measurements (0.3 cm3 ionization chamber) and (b) comparing the OSL profiles integrated over a 100 mm length with 100 mm long pencil ionization chamber measurements. These correction factors were obtained for the CT body and head phantoms, central and peripheral positions and three x-ray tube potential differences (100 kVp, 120 kVp and 140 kVp). The OSL dose profiles corrected by the energy dependence agreed with the ionization chamber point measurements over the entire length of the phantom (300 mm). For 120 kVp x-ray tube potential difference, the CTDI100 values calculated using the OSL dose profiles corrected for the energy dependence and those obtained from an independent measurement with a 100 mm long pencil ionization chamber also agreed within ±5%.
Conversion from dose-to-graphite to dose-to-water in an 80 MeV/A carbon ion beam.
Rossomme, S; Palmans, H; Shipley, D; Thomas, R; Lee, N; Romano, F; Cirrone, P; Cuttone, G; Bertrand, D; Vynckier, S
2013-08-21
Based on experiments and numerical simulations, a study is carried out pertaining to the conversion of dose-to-graphite to dose-to-water in a carbon ion beam. This conversion is needed to establish graphite calorimeters as primary standards of absorbed dose in these beams. It is governed by the water-to-graphite mass collision stopping power ratio and fluence correction factors, which depend on the particle fluence distributions in each of the two media. The paper focuses on the experimental and numerical determination of this fluence correction factor for an 80 MeV/A carbon ion beam. Measurements have been performed in the nuclear physics laboratory INFN-LNS in Catania (Sicily, Italy). The numerical simulations have been made with a Geant4 Monte Carlo code through the GATE simulation platform. The experimental data are in good agreement with the simulated results for the fluence correction factors and are found to be close to unity. The experimental values increase with depth reaching 1.010 before the Bragg peak region. They have been determined with an uncertainty of 0.25%. Different numerical results are obtained depending on the level of approximation made in calculating the fluence correction factors. When considering carbon ions only, the difference between measured and calculated values is maximal just before the Bragg peak, but its value is less than 1.005. The numerical value is close to unity at the surface and increases to 1.005 near the Bragg peak. When the fluence of all charged particles is considered, the fluence correction factors are lower than unity at the surface and increase with depth up to 1.025 before the Bragg peak. Besides carbon ions, secondary particles created due to nuclear interactions have to be included in the analysis: boron ions ((10)B and (11)B), beryllium ions ((7)Be), alpha particles and protons. At the conclusion of this work, we have the conversion of dose-to-graphite to dose-to-water to apply to the response of a graphite calorimeter in an 80 MeV/A carbon ion beam. This conversion consists of the product of two contributions: the water-to-graphite electronic mass collision stopping power ratio, which is equal to 1.115, and the fluence correction factor which varies linearly with depth, as k(fl, all) = 0.9995 + 0.0048(zw-eq). The latter has been determined on the basis of experiments and numerical simulations.
Ratio-based vs. model-based methods to correct for urinary creatinine concentrations.
Jain, Ram B
2016-08-01
Creatinine-corrected urinary analyte concentration is usually computed as the ratio of the observed level of analyte concentration divided by the observed level of the urinary creatinine concentration (UCR). This ratio-based method is flawed since it implicitly assumes that hydration is the only factor that affects urinary creatinine concentrations. On the contrary, it has been shown in the literature, that age, gender, race/ethnicity, and other factors also affect UCR. Consequently, an optimal method to correct for UCR should correct for hydration as well as other factors like age, gender, and race/ethnicity that affect UCR. Model-based creatinine correction in which observed UCRs are used as an independent variable in regression models has been proposed. This study was conducted to evaluate the performance of ratio-based and model-based creatinine correction methods when the effects of gender, age, and race/ethnicity are evaluated one factor at a time for selected urinary analytes and metabolites. It was observed that ratio-based method leads to statistically significant pairwise differences, for example, between males and females or between non-Hispanic whites (NHW) and non-Hispanic blacks (NHB), more often than the model-based method. However, depending upon the analyte of interest, the reverse is also possible. The estimated ratios of geometric means (GM), for example, male to female or NHW to NHB, were also compared for the two methods. When estimated UCRs were higher for the group (for example, males) in the numerator of this ratio, these ratios were higher for the model-based method, for example, male to female ratio of GMs. When estimated UCR were lower for the group (for example, NHW) in the numerator of this ratio, these ratios were higher for the ratio-based method, for example, NHW to NHB ratio of GMs. Model-based method is the method of choice if all factors that affect UCR are to be accounted for.
49 CFR 325.79 - Application of correction factors.
Code of Federal Regulations, 2014 CFR
2014-10-01
... microphone location point and the microphone target point is 60 feet (18.3 m) and that the measurement area... vehicle would be 87 dB(A), calculated as follows: 88 dB(A)Uncorrected average of readings −3 dB(A)Distance correction factor +2 dB(A)Ground surface correction factor _____ 87 dB(A)Corrected reading ...
49 CFR 325.79 - Application of correction factors.
Code of Federal Regulations, 2013 CFR
2013-10-01
... microphone location point and the microphone target point is 60 feet (18.3 m) and that the measurement area... vehicle would be 87 dB(A), calculated as follows: 88 dB(A)Uncorrected average of readings −3 dB(A)Distance correction factor +2 dB(A)Ground surface correction factor _____ 87 dB(A)Corrected reading ...
49 CFR 325.79 - Application of correction factors.
Code of Federal Regulations, 2012 CFR
2012-10-01
... microphone location point and the microphone target point is 60 feet (18.3 m) and that the measurement area... vehicle would be 87 dB(A), calculated as follows: 88 dB(A)Uncorrected average of readings −3 dB(A)Distance correction factor +2 dB(A)Ground surface correction factor _____ 87 dB(A)Corrected reading ...
O'Brien, D J; León-Vintró, L; McClean, B
2016-01-01
The use of radiotherapy fields smaller than 3 cm in diameter has resulted in the need for accurate detector correction factors for small field dosimetry. However, published factors do not always agree and errors introduced by biased reference detectors, inaccurate Monte Carlo models, or experimental errors can be difficult to distinguish. The aim of this study was to provide a robust set of detector-correction factors for a range of detectors using numerical, empirical, and semiempirical techniques under the same conditions and to examine the consistency of these factors between techniques. Empirical detector correction factors were derived based on small field output factor measurements for circular field sizes from 3.1 to 0.3 cm in diameter performed with a 6 MV beam. A PTW 60019 microDiamond detector was used as the reference dosimeter. Numerical detector correction factors for the same fields were derived based on calculations from a geant4 Monte Carlo model of the detectors and the Linac treatment head. Semiempirical detector correction factors were derived from the empirical output factors and the numerical dose-to-water calculations. The PTW 60019 microDiamond was found to over-respond at small field sizes resulting in a bias in the empirical detector correction factors. The over-response was similar in magnitude to that of the unshielded diode. Good agreement was generally found between semiempirical and numerical detector correction factors except for the PTW 60016 Diode P, where the numerical values showed a greater over-response than the semiempirical values by a factor of 3.7% for a 1.1 cm diameter field and higher for smaller fields. Detector correction factors based solely on empirical measurement or numerical calculation are subject to potential bias. A semiempirical approach, combining both empirical and numerical data, provided the most reliable results.
The impact of water temperature on the measurement of absolute dose
NASA Astrophysics Data System (ADS)
Islam, Naveed Mehdi
To standardize reference dosimetry in radiation therapy, Task Group 51 (TG 51) of American Association of Physicist's in Medicine (AAPM) recommends that dose calibration measurements be made in a water tank at a depth of 10 cm and at a reference geometry. Methodologies are provided for calculating various correction factors to be applied in calculating the absolute dose. However the protocol does not specify the water temperature to be used. In practice, the temperature of water during dosimetry may vary considerably between independent sessions and different centers. In this work the effect of water temperature on absolute dosimetry has been investigated. Density of water varies with temperature, which in turn may impact the beam attenuation and scatter properties. Furthermore, due to thermal expansion or contraction air volume inside the chamber may change. All of these effects can result in a change in the measurement. Dosimetric measurements were made using a Farmer type ion chamber on a Varian Linear Accelerator for 6 MV and 23 MV photon energies for temperatures ranging from 10 to 40 °C. A thermal insulation was designed for the water tank in order to maintain relatively stable temperature over the duration of the experiment. Dose measured at higher temperatures were found to be consistently higher by a very small magnitude. Although the differences in dose were less than the uncertainty in each measurement, a linear regression of the data suggests that the trend is statistically significant with p-values of 0.002 and 0.013 for 6 and 23 MV beams respectively. For a 10 degree difference in water phantom temperatures, which is a realistic deviation across clinics, the final calculated reference dose can differ by 0.24% or more. To address this effect, first a reference temperature (e.g.22 °C) can be set as the standard; subsequently a correction factor can be implemented for deviations from this reference. Such a correction factor is expected to be of similar magnitude as existing TG 51 recommended correction factors.
NASA Astrophysics Data System (ADS)
Swanpalmer, John; Johansson, Karl-Axel
2011-11-01
In the late 1970s, Johansson et al (1978 Int. Symp. National and International Standardization of Radiation Dosimetry (Atlanta 1977) vol 2 (Vienna: IAEA) pp 243-70) reported experimentally determined displacement correction factors (pdis) for cylindrical ionization chamber dosimetry in 60Co and high-energy photon beams. These pdis factors have been implemented and are currently in use in a number of dosimetry protocols. However, the accuracy of these factors has recently been questioned by Wang and Rogers (2009a Phys. Med. Biol. 54 1609-20), who performed Monte Carlo simulations of the experiments performed by Johansson et al. They reported that the inaccuracy of the pdis factors originated from the normalization procedure used by Johansson et al. In their experiments, Johansson et al normalized the measured depth-ionization curves at the depth of maximum ionization for each of the different ionization chambers. In this study, we experimentally investigated the effect of air cavity size of cylindrical ionization chambers in a PMMA phantom and 60Co γ-beam. Two different pairs of air-filled cylindrical ionization chambers were used. The chambers in each pair had identical construction and materials but different air cavity volume (diameter). A 20 MeV electron beam was utilized to determine the ratio of the mass of air in the cavity of the two chambers in each pair. This ratio of the mass of air in each pair was then used to compare the ratios of the ionizations obtained at different depths in the PMMA phantom and 60Co γ-beam using the two pairs of chambers. The diameter of the air cavity of cylindrical ionization chambers influences both the depth at which the maximum ionization is observed and the ionization per unit mass of air at this depth. The correction determined at depths of 50 mm and 100 mm is smaller than the correction currently used in many dosimetry protocols. The results presented here agree with the findings of Wang and Rogers' Monte Carlo simulations and show that the normalization procedure employed by Johansson et al is not correct.
Wang, Hui-Mei; Sun, Wei; Zu, Yuan-Gang; Wang, Wen-Jie
2011-12-01
Based on the one-year (2005) observations with a frequency of half hour on the stem sap flow of Larix gmelinii plantation trees planted in 1969 and the related environmental factors air humidity (RH), air temperature (T(air)), photosynthetic components active radiation (PAR), soil temperature (T(soil)), and soil moisture (TDR), principal analysis (PCA) and correction analysis were made on the time lag effect of the stem flow in different seasons (26 days of each season) and in a year via dislocation analysis, with the complexity and its integrative effects of the time lags of environment factors affecting the stem sap flow approached. The results showed that in different seasons and for different environmental factors, the time lag effect varied obviously. In general, the time lag of PAR was 0.5-1 hour ahead of sap flow, that of T(air) and RH was 0-2 hours ahead of or behind the sap flow, and the time lags of T(soil) and TDR were much longer or sometimes undetectable. Because of the complexity of the time lags, no evident improvements were observed in the linear correlations (R2, slope, and intercept) when the time lags based on short-term (20 days) data were used to correct the time lags based on whole year data. However, obvious improvements were found in the standardized and non-standardized correlation coefficients in stepwise multiple regressions, i.e., the time lag corrections could improve the effects of RH, but decreased the effects of PAR, T(air), and T(soil). PCA could be used to simplify the complexity. The first and the second principal components could stand for over 75% information of all the environmental factors in different seasons and in whole year. The time lags of both the first and the second principal components were 1-1.5 hours in advance of the sap flow, except in winter (no time lag effect).
Baumann, Soo Mee; Webb, Patrick; Zeller, Manfred
2013-03-01
Cross-cultural validity of food security indicators is commonly presumed without questioning the suitability of generic indicators in different geographic settings. However, ethnic differences in the perception of and reporting on, food insecurity, as well as variations in consumption patterns, may limit the comparability of results. Although research on correction factors for standardization of food security indicators is in process, so far no universal indicator has been identified. The current paper considers the ability of the Food Consumption Score (FCS) developed by the World Food Programme in southern Africa in 1996 to meet the requirement of local cultural validity in a Laotian context. The analysis is based on research that seeks to identify options for correcting possible biases linked to cultural disparities. Based on the results of a household survey conducted in different agroecological zones of Laos in 2009, the FCS was validated against a benchmark of calorie consumption. Changing the thresholds and excluding small amounts of food items consumed were tested as options to correct for biases caused by cultural disparities. The FCS in its original form underestimates the food insecurity level in the surveyed villages. However, the closeness of fit of the FCS to the benchmark classification improves when small amounts of food items are excluded from the assessment. Further research in different cultural settings is required to generate more insight into the extent to which universal thresholds can be applied to dietary diversity indicators with or without locally determined correction factors such as the exclusion of small amounts of food items.
Lee, Gung-Chol; Yoo, Jo-Kwang; Kim, Seong-Hun; Moon, Cheol-Hyun
2017-03-01
To evaluate the effects of orthodontic camouflage treatment (OCT), one-jaw surgery, and two-jaw surgery on the correction of lip line cant (LLC) and to examine factors affecting the correction of LLC in Class III craniofacial asymmetry patients. A sample of 30 Class III craniofacial asymmetry patients was divided into OCT (n = 10), one-jaw surgery (n = 10), and two-jaw surgery (n = 10) groups such that the pretreatment LLC was similar in each group. Pretreatment and posttreatment cone-beam computed tomography scans were used to measure dental and skeletal parameters and LLC. Pretreatment and posttreatment measurements were compared within groups and between groups. Pearson's correlation tests and multiple regression analyses were performed to investigate factors affecting the amount and rate of LLC correction. The average LLC correction was 1.00° in the one-jaw surgery group, and in the two-jaw surgery group, it was 1.71°. In the OCT group it was -0.04°, which differed statistically significantly from the LLC correction in the other two groups. The amount and rate of LLC correction could be explained by settling of skeletal discrepancies or LLC at pretreatment with goodness of fit percentages of approximately 82% and 41%, respectively. Orthognathic surgery resulted in significant correction of LLC in Class III craniofacial asymmetry patients, while OCT did not.
Underwood, T S A; Rowland, B C; Ferrand, R; Vieillevigne, L
2015-09-07
In this work we use EBT3 film measurements at 10 MV to demonstrate the suitability of the Exradin W1 (plastic scintillator) for relative dosimetry within small photon fields. We then use the Exradin W1 to measure the small field correction factors required by two other detectors: the PTW unshielded Ediode 60017 and the PTW microDiamond 60019. We consider on-axis correction-factors for small fields collimated using MLCs for four different TrueBeam energies: 6 FFF, 6 MV, 10 FFF and 10 MV. We also investigate percentage depth dose and lateral profile perturbations. In addition to high-density effects from its silicon sensitive region, the Ediode exhibited a dose-rate dependence and its known over-response to low energy scatter was found to be greater for 6 FFF than 6 MV. For clinical centres without access to a W1 scintillator, we recommend the microDiamond over the Ediode and suggest that 'limits of usability', field sizes below which a detector introduces unacceptable errors, can form a practical alternative to small-field correction factors. For a dosimetric tolerance of 2% on-axis, the microDiamond might be utilised down to 10 mm and 15 mm field sizes for 6 MV and 10 MV, respectively.
New technique for calibrating hydrocarbon gas flowmeters
NASA Technical Reports Server (NTRS)
Singh, J. J.; Puster, R. L.
1984-01-01
A technique for measuring calibration correction factors for hydrocarbon mass flowmeters is described. It is based on the Nernst theorem for matching the partial pressure of oxygen in the combustion products of the test hydrocarbon, burned in oxygen-enriched air, with that in normal air. It is applied to a widely used type of commercial thermal mass flowmeter for a number of hydrocarbons. The calibration correction factors measured using this technique are in good agreement with the values obtained by other independent procedures. The technique is successfully applied to the measurement of differences as low as one percent of the effective hydrocarbon content of the natural gas test samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lessard, Francois; Archambault, Louis; Plamondon, Mathieu
Purpose: Photon dosimetry in the kilovolt (kV) energy range represents a major challenge for diagnostic and interventional radiology and superficial therapy. Plastic scintillation detectors (PSDs) are potentially good candidates for this task. This study proposes a simple way to obtain accurate correction factors to compensate for the response of PSDs to photon energies between 80 and 150 kVp. The performance of PSDs is also investigated to determine their potential usefulness in the diagnostic energy range. Methods: A 1-mm-diameter, 10-mm-long PSD was irradiated by a Therapax SXT 150 unit using five different beam qualities made of tube potentials ranging from 80more » to 150 kVp and filtration thickness ranging from 0.8 to 0.2 mmAl + 1.0 mmCu. The light emitted by the detector was collected using an 8-m-long optical fiber and a polychromatic photodiode, which converted the scintillation photons to an electrical current. The PSD response was compared with the reference free air dose rate measured with a calibrated Farmer NE2571 ionization chamber. PSD measurements were corrected using spectra-weighted corrections, accounting for mass energy-absorption coefficient differences between the sensitive volumes of the ionization chamber and the PSD, as suggested by large cavity theory (LCT). Beam spectra were obtained from x-ray simulation software and validated experimentally using a CdTe spectrometer. Correction factors were also obtained using Monte Carlo (MC) simulations. Percent depth dose (PDD) measurements were compensated for beam hardening using the LCT correction method. These PDD measurements were compared with uncorrected PSD data, PDD measurements obtained using Gafchromic films, Monte Carlo simulations, and previous data. Results: For each beam quality used, the authors observed an increase of the energy response with effective energy when no correction was applied to the PSD response. Using the LCT correction, the PSD response was almost energy independent, with a residual 2.1% coefficient of variation (COV) over the 80-150-kVp energy range. Monte Carlo corrections reduced the COV to 1.4% over this energy range. All PDD measurements were in good agreement with one another except for the uncorrected PSD data, in which an over-response was observed with depth (13% at 10 cm with a 100 kVp beam), showing that beam hardening had a non-negligible effect on the PSD response. A correction based on LCT compensated very well for this effect, reducing the over-response to 3%.Conclusion: In the diagnostic energy range, PSDs show high-energy dependence, which can be corrected using spectra-weighted mass energy-absorption coefficients, showing no considerable sign of quenching between these energies. Correction factors obtained by Monte Carlo simulations confirm that the approximations made by LCT corrections are valid. Thus, PSDs could be useful for real-time dosimetry in radiology applications.« less
The central electrode correction factor for high-Z electrodes in small ionization chambers.
Muir, B R; Rogers, D W O
2011-02-01
Recent Monte Carlo calculations of beam quality conversion factors for ion chambers that use high-Z electrodes [B. R. Muir and D. W. O. Rogers, Med. Phys. 37, 5939-5950 (2010)] have shown large deviations of kQ values from values calculated using the same techniques as the TG-51 and TRS-398 protocols. This report investigates the central electrode correction factor, Pcel, for these chambers. Ionization chambers are modeled and Pcel is calculated using the EGSnrc user code egs_chamber for three cases: in photon and electron beams under reference conditions; as a function of distance from an iridium-192 point source in a water phantom; and as a function of depth in a water phantom on which a 200 kVp x-ray source or 6 MV beam is incident. In photon beams, differences of up to 3% between Pcel calculations for a chamber with a high-Z electrode and those used by TG-51 for a 1 mm diameter aluminum electrode are observed. The central electrode correction factor for a given value of the beam quality specifier is different depending on the amount of filtration of the photon beam. However, in an unfiltered 6 MV beam, Pcel, varies by only 0.3% for a chamber with a high-Z electrode as the depth is varied from 1 to 20 cm in water. The difference between Pcel calculations for chambers with high-Z electrodes and TG-51 values for a chamber with an aluminum electrode is up to 0.45% in electron beams. The central electrode correction, which is roughly proportional to the chambers absorbed dose sensitivity, is found to be large and variable as a function of distance for chambers with high-Z and aluminum electrodes in low-energy photon fields. In this work, ionization chambers that employ high-Z electrodes have been shown to be problematic in various situations. For beam quality conversion factors, the ratio of Pcel in a beam quality Q to that in a Co-60 beam is required; for some chambers, kQ is significantly different from current dosimetry protocol values because of central electrode effects. It would be best for manufacturers to avoid producing ion chambers that use high-Z electrodes.
Conical twist fields and null polygonal Wilson loops
NASA Astrophysics Data System (ADS)
Castro-Alvaredo, Olalla A.; Doyon, Benjamin; Fioravanti, Davide
2018-06-01
Using an extension of the concept of twist field in QFT to space-time (external) symmetries, we study conical twist fields in two-dimensional integrable QFT. These create conical singularities of arbitrary excess angle. We show that, upon appropriate identification between the excess angle and the number of sheets, they have the same conformal dimension as branch-point twist fields commonly used to represent partition functions on Riemann surfaces, and that both fields have closely related form factors. However, we show that conical twist fields are truly different from branch-point twist fields. They generate different operator product expansions (short distance expansions) and form factor expansions (large distance expansions). In fact, we verify in free field theories, by re-summing form factors, that the conical twist fields operator product expansions are correctly reproduced. We propose that conical twist fields are the correct fields in order to understand null polygonal Wilson loops/gluon scattering amplitudes of planar maximally supersymmetric Yang-Mills theory.
Holmqvist, Kristian; Davidsson, Johan; Mendoza-Vazquez, Manuel; Rundberget, Peter; Svensson, Mats Y; Thorn, Stefan; Törnvall, Fredrik
2014-01-01
The main aim of this study was to improve the quality of injury risk assessments in steering wheel rim to chest impacts when using the Hybrid III crash test dummy in frontal heavy goods vehicle (HGV) collision tests. Correction factors for chest injury criteria were calculated as the model chest injury parameter ratios between finite element (FE) Hybrid III, evaluated in relevant load cases, and the Total Human Model for Safety (THUMS). This is proposed to be used to compensate Hybrid III measurements in crash tests where steering wheel rim to chest impacts occur. The study was conducted in an FE environment using an FE-Hybrid III model and the THUMS. Two impactor shapes were used, a circular hub and a long, thin horizontal bar. Chest impacts at velocities ranging from 3.0 to 6.0 m/s were simulated at 3 impact height levels. A ratio between FE-Hybrid III and THUMS chest injury parameters, maximum chest compression C max, and maximum viscous criterion VC max, were calculated for the different chest impact conditions to form a set of correction factors. The definition of the correction factor is based on the assumption that the response from a circular hub impact to the middle of the chest is well characterized and that injury risk measures are independent of impact height. The current limits for these chest injury criteria were used as a basis to develop correction factors that compensate for the limitations in biofidelity of the Hybrid III in steering wheel rim to chest impacts. The hub and bar impactors produced considerably higher C max and VC max responses in the THUMS compared to the FE-Hybrid III. The correction factor for the responses of the FE-Hybrid III showed that the criteria responses for the bar impactor were consistently overestimated. Ratios based on Hybrid III and THUMS responses provided correction factors for the Hybrid III responses ranging from 0.84 to 0.93. These factors can be used to estimate C max and VC max values when the Hybrid III is used in crash tests for which steering wheel rim to chest interaction occurs. For the FE-Hybrid III, bar impacts caused higher chest deflection compared to hub impacts, although the contrary results were obtained with the more humanlike THUMS. Correction factors were developed that can be used to correct the Hybrid III chest responses. Higher injury criteria capping limits for steering wheel impacts are acceptable. Supplemental materials are available for this article. Go to the publisher's online edition of Traffic Injury Prevention to view the supplemental file.
NASA Technical Reports Server (NTRS)
Tam, Christopher K. W.; Webb, Jay C.
1994-01-01
In this paper finite-difference solutions of the Helmholtz equation in an open domain are considered. By using a second-order central difference scheme and the Bayliss-Turkel radiation boundary condition, reasonably accurate solutions can be obtained when the number of grid points per acoustic wavelength used is large. However, when a smaller number of grid points per wavelength is used excessive reflections occur which tend to overwhelm the computed solutions. Excessive reflections are due to the incompability between the governing finite difference equation and the Bayliss-Turkel radiation boundary condition. The Bayliss-Turkel radiation boundary condition was developed from the asymptotic solution of the partial differential equation. To obtain compatibility, the radiation boundary condition should be constructed from the asymptotic solution of the finite difference equation instead. Examples are provided using the improved radiation boundary condition based on the asymptotic solution of the governing finite difference equation. The computed results are free of reflections even when only five grid points per wavelength are used. The improved radiation boundary condition has also been tested for problems with complex acoustic sources and sources embedded in a uniform mean flow. The present method of developing a radiation boundary condition is also applicable to higher order finite difference schemes. In all these cases no reflected waves could be detected. The use of finite difference approximation inevita bly introduces anisotropy into the governing field equation. The effect of anisotropy is to distort the directional distribution of the amplitude and phase of the computed solution. It can be quite large when the number of grid points per wavelength used in the computation is small. A way to correct this effect is proposed. The correction factor developed from the asymptotic solutions is source independent and, hence, can be determined once and for all. The effectiveness of the correction factor in providing improvements to the computed solution is demonstrated in this paper.
Scaling methane oxidation: From laboratory incubation experiments to landfill cover field conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abichou, Tarek, E-mail: abichou@eng.fsu.edu; Mahieu, Koenraad; Chanton, Jeff
2011-05-15
Evaluating field-scale methane oxidation in landfill cover soils using numerical models is gaining interest in the solid waste industry as research has made it clear that methane oxidation in the field is a complex function of climatic conditions, soil type, cover design, and incoming flux of landfill gas from the waste mass. Numerical models can account for these parameters as they change with time and space under field conditions. In this study, we developed temperature, and water content correction factors for methane oxidation parameters. We also introduced a possible correction to account for the different soil structure under field conditions.more » These parameters were defined in laboratory incubation experiments performed on homogenized soil specimens and were used to predict the actual methane oxidation rates to be expected under field conditions. Water content and temperature corrections factors were obtained for the methane oxidation rate parameter to be used when modeling methane oxidation in the field. To predict in situ measured rates of methane with the model it was necessary to set the half saturation constant of methane and oxygen, K{sub m}, to 5%, approximately five times larger than laboratory measured values. We hypothesize that this discrepancy reflects differences in soil structure between homogenized soil conditions in the lab and actual aggregated soil structure in the field. When all of these correction factors were re-introduced into the oxidation module of our model, it was able to reproduce surface emissions (as measured by static flux chambers) and percent oxidation (as measured by stable isotope techniques) within the range measured in the field.« less
Poster — Thur Eve — 72: Clinical Subtleties of Flattening-Filter-Free Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corns, Robert; Thomas, Steven; Huang, Vicky
2014-08-15
Flattening-filter-free (fff) beams offer superior dose rates, reducing treatment times for important techniques that utilize small field sizes, such as stereotactic ablative radiotherapy (SABR). The impact of ion collection efficiency (P{sub ion}) on the percent depth dose (PDD) has been discussed at length in the literature. Relative corrections of the order of l%–2% are possible. In the process of commissioning 6fff and 10fff beams, we identified a number of other important details that influence commissioning. We looked at the absolute dose difference between corrected and uncorrected PDD. We discovered a curve with a broad maximum between 10 and 20 cm.more » We wondered about the consequences of this PDD correction on the absolute dose calibration of the linac because the TG-51 protocol does not correct the PDD curve. The quality factor k{sub Q} depends on the PDD, so in principle, a correction to the PDD will alter the absolute calibration of the linac. Finally, there are other clinical tables, such as TMR, which are derived from PDD. Attention to details on how this computation is performed is important because different corrections are possible depending the method of calculation.« less
Hibi, Yoshihiko; Kashihara, Ayumi
2018-03-01
A previous study has reported that Knudsen diffusion coefficients obtained by tracer experiments conducted with a binary gas system and a porous medium are consistently smaller than those obtained by permeability experiments conducted with a single-gas system and a porous medium. To date, however, that study is the only one in which tracer experiments have been conducted with a binary gas system. Therefore, to confirm this difference in Knudsen diffusion coefficients, we used a method we had developed previously to conduct tracer experiments with a binary carbon dioxide-nitrogen gas system and five porous media with permeability coefficients ranging from 10 -13 to 10 -11 m 2 . The results showed that the Knudsen diffusion coefficient of N 2 (D N2 ) (cm 2 /s) was related to the effective permeability coefficient k e (m 2 ) as D N2 = 7.39 × 10 7 k e 0.767 . Thus, the Knudsen diffusion coefficients of N 2 obtained by our tracer experiments were consistently 1/27 of those obtained by permeability experiments conducted with many porous media and air by other researchers. By using an inversion simulation to fit the advection-diffusion equation to the distribution of concentrations at observation points calculated by mathematically solving the equation, we confirmed that the method used to obtain the Knudsen diffusion coefficient in this study yielded accurate values. Moreover, because the Knudsen diffusion coefficient did not differ when columns with two different lengths, 900 and 1500 mm, were used, this column property did not influence the flow of gas in the column. The equation of the dusty gas model already includes obstruction factors for Knudsen diffusion and molecular diffusion, which relate to medium heterogeneity and tortuosity and depend only on the structure of the porous medium. Furthermore, there is no need to take account of any additional correction factor for molecular diffusion except the obstruction factor because molecular diffusion is only treated in a multicomponent gas system. Thus, molecular diffusion considers only the obstruction factor related to tortuosity. Therefore, we introduced a correction factor for a multicomponent gas system into the DGM equation, multiplying the Knudsen diffusion coefficient, which includes the obstruction factor related to tortuosity, by this correction factor. From the present experimental results, the value of this correction factor was 1/27, and it depended only on the structure of the gas system in the porous medium. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Hibi, Yoshihiko; Kashihara, Ayumi
2018-03-01
A previous study has reported that Knudsen diffusion coefficients obtained by tracer experiments conducted with a binary gas system and a porous medium are consistently smaller than those obtained by permeability experiments conducted with a single-gas system and a porous medium. To date, however, that study is the only one in which tracer experiments have been conducted with a binary gas system. Therefore, to confirm this difference in Knudsen diffusion coefficients, we used a method we had developed previously to conduct tracer experiments with a binary carbon dioxide-nitrogen gas system and five porous media with permeability coefficients ranging from 10-13 to 10-11 m2. The results showed that the Knudsen diffusion coefficient of N2 (DN2) (cm2/s) was related to the effective permeability coefficient ke (m2) as DN2 = 7.39 × 107ke0.767. Thus, the Knudsen diffusion coefficients of N2 obtained by our tracer experiments were consistently 1/27 of those obtained by permeability experiments conducted with many porous media and air by other researchers. By using an inversion simulation to fit the advection-diffusion equation to the distribution of concentrations at observation points calculated by mathematically solving the equation, we confirmed that the method used to obtain the Knudsen diffusion coefficient in this study yielded accurate values. Moreover, because the Knudsen diffusion coefficient did not differ when columns with two different lengths, 900 and 1500 mm, were used, this column property did not influence the flow of gas in the column. The equation of the dusty gas model already includes obstruction factors for Knudsen diffusion and molecular diffusion, which relate to medium heterogeneity and tortuosity and depend only on the structure of the porous medium. Furthermore, there is no need to take account of any additional correction factor for molecular diffusion except the obstruction factor because molecular diffusion is only treated in a multicomponent gas system. Thus, molecular diffusion considers only the obstruction factor related to tortuosity. Therefore, we introduced a correction factor for a multicomponent gas system into the DGM equation, multiplying the Knudsen diffusion coefficient, which includes the obstruction factor related to tortuosity, by this correction factor. From the present experimental results, the value of this correction factor was 1/27, and it depended only on the structure of the gas system in the porous medium.
Ibañez, Gladys E; Agudo, Michelle; Martin, Steve S; O'Connell, Daniel J; Auf, Rehab; Sheehan, Diana M
2017-06-01
Little is known about the offending behavior and recidivism factors of Latinos by nativity (U.S. born, foreign-born). The present study focused on Latinos in community corrections (n = 201) in Miami, Florida, and examined differences in criminal activity, drug use, and mental health by nativity. Data were collected utilizing convenience sampling between June 2014 and December 2015. The research question was: what are the offending, drug use, and mental health histories of Latinos involved in community corrections? Participants were mostly male (n = 120; 59.7%), White (n = 105; 52.2%), and Cuban (n = 97; 48.3%). U.S. born community corrections clients (n = 141) were more likely to report more lifetime and recent criminal activity; and more likely to report lifetime and recent drug use behavior than foreign-born Latinos (n = 60). No differences were found in recent mental health. Correctional healthcare should tailor services such as substance abuse treatment differently toward U.S. born and foreign-born Latinos.
A maintenance time prediction method considering ergonomics through virtual reality simulation.
Zhou, Dong; Zhou, Xin-Xin; Guo, Zi-Yue; Lv, Chuan
2016-01-01
Maintenance time is a critical quantitative index in maintainability prediction. An efficient maintenance time measurement methodology plays an important role in early stage of the maintainability design. While traditional way to measure the maintenance time ignores the differences between line production and maintenance action. This paper proposes a corrective MOD method considering several important ergonomics factors to predict the maintenance time. With the help of the DELMIA analysis tools, the influence coefficient of several factors are discussed to correct the MOD value and the designers can measure maintenance time by calculating the sum of the corrective MOD time of each maintenance therbligs. Finally a case study is introduced, by maintaining the virtual prototype of APU motor starter in DELMIA, designer obtains the actual maintenance time by the proposed method, and the result verifies the effectiveness and accuracy of the proposed method.
Xu, Xiaohong; Tay, Yilin; Sim, Bernice; Yoon, Su-In; Huang, Yihui; Ooi, Jolene; Utami, Kagistia Hana; Ziaei, Amin; Ng, Bryan; Radulescu, Carola; Low, Donovan; Ng, Alvin Yu Jin; Loh, Marie; Venkatesh, Byrappa; Ginhoux, Florent; Augustine, George J; Pouladi, Mahmoud A
2017-03-14
Huntington disease (HD) is a dominant neurodegenerative disorder caused by a CAG repeat expansion in HTT. Here we report correction of HD human induced pluripotent stem cells (hiPSCs) using a CRISPR-Cas9 and piggyBac transposon-based approach. We show that both HD and corrected isogenic hiPSCs can be differentiated into excitable, synaptically active forebrain neurons. We further demonstrate that phenotypic abnormalities in HD hiPSC-derived neural cells, including impaired neural rosette formation, increased susceptibility to growth factor withdrawal, and deficits in mitochondrial respiration, are rescued in isogenic controls. Importantly, using genome-wide expression analysis, we show that a number of apparent gene expression differences detected between HD and non-related healthy control lines are absent between HD and corrected lines, suggesting that these differences are likely related to genetic background rather than HD-specific effects. Our study demonstrates correction of HD hiPSCs and associated phenotypic abnormalities, and the importance of isogenic controls for disease modeling using hiPSCs. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
García-Garduño, Olivia A; Rodríguez-Ávila, Manuel A; Lárraga-Gutiérrez, José M
2018-01-01
Silicon-diode-based detectors are commonly used for the dosimetry of small radiotherapy beams due to their relatively small volumes and high sensitivity to ionizing radiation. Nevertheless, silicon-diode-based detectors tend to over-respond in small fields because of their high density relative to water. For that reason, detector-specific beam correction factors ([Formula: see text]) have been recommended not only to correct the total scatter factors but also to correct the tissue maximum and off-axis ratios. However, the application of [Formula: see text] to in-depth and off-axis locations has not been studied. The goal of this work is to address the impact of the correction factors on the calculated dose distribution in static non-conventional photon beams (specifically, in stereotactic radiosurgery with circular collimators). To achieve this goal, the total scatter factors, tissue maximum, and off-axis ratios were measured with a stereotactic field diode for 4.0-, 10.0-, and 20.0-mm circular collimators. The irradiation was performed with a Novalis® linear accelerator using a 6-MV photon beam. The detector-specific correction factors were calculated and applied to the experimental dosimetry data for in-depth and off-axis locations. The corrected and uncorrected dosimetry data were used to commission a treatment planning system for radiosurgery planning. Various plans were calculated with simulated lesions using the uncorrected and corrected dosimetry. The resulting dose calculations were compared using the gamma index test with several criteria. The results of this work presented important conclusions for the use of detector-specific beam correction factors ([Formula: see text] in a treatment planning system. The use of [Formula: see text] for total scatter factors has an important impact on monitor unit calculation. On the contrary, the use of [Formula: see text] for tissue-maximum and off-axis ratios has not an important impact on the dose distribution calculation by the treatment planning system. This conclusion is only valid for the combination of treatment planning system, detector, and correction factors used in this work; however, this technique can be applied to other treatment planning systems, detectors, and correction factors.
NASA Astrophysics Data System (ADS)
Su, Yunquan; Yao, Xuefeng; Wang, Shen; Ma, Yinji
2017-03-01
An effective correction model is proposed to eliminate the refraction error effect caused by an optical window of a furnace in digital image correlation (DIC) deformation measurement under high-temperature environment. First, a theoretical correction model with the corresponding error correction factor is established to eliminate the refraction error induced by double-deck optical glass in DIC deformation measurement. Second, a high-temperature DIC experiment using a chromium-nickel austenite stainless steel specimen is performed to verify the effectiveness of the correction model by the correlation calculation results under two different conditions (with and without the optical glass). Finally, both the full-field and the divisional displacement results with refraction influence are corrected by the theoretical model and then compared to the displacement results extracted from the images without refraction influence. The experimental results demonstrate that the proposed theoretical correction model can effectively improve the measurement accuracy of DIC method by decreasing the refraction errors from measured full-field displacements under high-temperature environment.
Correction factors for on-line microprobe analysis of multielement alloy systems
NASA Technical Reports Server (NTRS)
Unnam, J.; Tenney, D. R.; Brewer, W. D.
1977-01-01
An on-line correction technique was developed for the conversion of electron probe X-ray intensities into concentrations of emitting elements. This technique consisted of off-line calculation and representation of binary interaction data which were read into an on-line minicomputer to calculate variable correction coefficients. These coefficients were used to correct the X-ray data without significantly increasing computer core requirements. The binary interaction data were obtained by running Colby's MAGIC 4 program in the reverse mode. The data for each binary interaction were represented by polynomial coefficients obtained by least-squares fitting a third-order polynomial. Polynomial coefficients were generated for most of the common binary interactions at different accelerating potentials and are included. Results are presented for the analyses of several alloy standards to demonstrate the applicability of this correction procedure.
On Choosing a Rational Flight Trajectory to the Moon
NASA Astrophysics Data System (ADS)
Gordienko, E. S.; Khudorozhkov, P. A.
2017-12-01
The algorithm for choosing a trajectory of spacecraft flight to the Moon is discussed. The characteristic velocity values needed for correcting the flight trajectory and a braking maneuver are estimated using the Monte Carlo method. The profile of insertion and flight to a near-circular polar orbit with an altitude of 100 km of an artificial lunar satellite (ALS) is given. The case of two corrections applied during the flight and braking phases is considered. The flight to an ALS orbit is modeled in the geocentric geoequatorial nonrotating coordinate system with the influence of perturbations from the Earth, the Sun, and the Moon factored in. The characteristic correction costs corresponding to corrections performed at different time points are examined. Insertion phase errors, the errors of performing the needed corrections, and the errors of determining the flight trajectory parameters are taken into account.
ERIC Educational Resources Information Center
Cho, Sun-Joo; Preacher, Kristopher J.
2016-01-01
Multilevel modeling (MLM) is frequently used to detect cluster-level group differences in cluster randomized trial and observational studies. Group differences on the outcomes (posttest scores) are detected by controlling for the covariate (pretest scores) as a proxy variable for unobserved factors that predict future attributes. The pretest and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voigts-Rhetz, P von; Czarnecki, D; Anton, M
Purpose: Alanine dosimeters are often used for in-vivo dosimetry purposes in radiation therapy. In a Monte Carlo study the influence of 20 different surrounding/phantom materials for alanine dosimeters was investigated. The investigations were performed in high-energy photon beams, covering the whole range from {sup 60}Co up to 25 MV-X. The aim of the study is the introduction of a perturbation correction k{sub env} for alanine dosimeters accounting for the environmental material. Methods: The influence of different surrounding materials on the response of alanine dosimeters was investigated with Monte Carlo simulations using the EGSnrc code. The photon source was adapted withmore » BEAMnrc to a {sup 60}Co unit and an Elekta (E{sub nom}=6, 10, 25 MV-X) linear accelerator. Different tissue-equivalent materials ranging from cortical bone to lung were investigated. In addition to available phantom materials, some material compositions were taken and scaled to different electron densities. The depth of the alanine detectors within the different phantom materials corresponds to 5 cm depth in water, i.e. the depth is scaled according to the electron density (n{sub e}/n{sub e,w}) of the corresponding phantom material. The dose was scored within the detector volume once for an alanine/paraffin mixture and once for a liquid water voxel. The relative response, the ratio of the absorbed dose to alanine to the absorbed dose to water, was calculated and compared to the corresponding ratio under reference conditions. Results: For each beam quality the relative response r and the correction factor for the environment kenv was calculated. k{sub env}=0.9991+0.0049 *((n{sub e}/n{sub e,w})−0.7659){sup 3} Conclusion: A perturbation correction factor k{sub env} accounting for the phantom environment has been introduced. The response of the alanine dosimeter can be considered independent of the surrounding material for relative electron densities (n{sub e}/n{sub e,w}) between 1 and 1.4. For denser materials such as bone or much less dense surroundings such as lung, a small correction would be appropriate.« less
Seidl, R.; Grosse Perdekamp, M.; Ogawa, A.; ...
2012-08-09
In the original article, it was found in Monte Carlo simulations that the reconstructed A₀ results are roughly consistent with the generated asymmetries, while the A₁₂ results systematically underestimate the generated asymmetries. This underestimation can be attributed to the difference between the reconstructed thrust axis and the original quark-antiquark axis. The corresponding correction factors are 1.6 ± 0.04 for the A₁₂ results and 1.11 ± 0.05 for the A₀ results. Because of a flaw in the original analysis program, these correction factors were not applied to the A UC-type asymmetries in Table V as well as in some figures. Inmore » addition, a small mistake in the error propagation in the charm correction resulted in slightly underestimated statistical uncertainties. These omissions affect all but the charm asymmetry results. The correct central values are therefore given in Tables IV and V of this Erratum. The systematic uncertainties of the original publication remain unchanged.« less
NASA Technical Reports Server (NTRS)
Zhang, S. Nan; Zhang, Xiaoling; Wu, Xuebing; Yao, Yangsen; Sun, Xuejun; Xu, Haiguang; Cui, Wei; Chen, Wan; Harmon, B. A.; Robinson, C. R.
1999-01-01
The results of spectral modeling of the data for a series of RXTE observations and four ASCA observations of GRO J1655-40 are presented. The thermal Comptonization model is used instead of the power-law model for the hard component of the two-component continuum spectra. The previously reported dramatic variations of the apparent inner disk radius of GRO J1655-40 during its outburst may be due to the inverse Compton scattering in the hot corona. A procedure is developed for making the radiative transfer correction to the fitting parameters from RXTE data and a more stable inner disk radius is obtained. A practical process of determining the color correction (hardening) factor from observational data is proposed and applied to the four ASCA observations of GRO J1655-40. We found that the color correction factor may vary significantly between different observations and the finally corrected physical inner disk radius remains reasonably stable over a large range of luminosity and spectral states.
Resistivity Correction Factor for the Four-Probe Method: Experiment III
NASA Astrophysics Data System (ADS)
Yamashita, Masato; Nishii, Toshifumi; Kurihara, Hiroshi; Enjoji, Hideo; Iwata, Atsushi
1990-04-01
Experimental verification of the theoretically derived resistivity correction factor F is presented. Factor F is applied to a system consisting of a rectangular parallelepiped sample and a square four-probe array. Resistivity and sheet resistance measurements are made on isotropic graphites and crystalline ITO films. Factor F corrects experimental data and leads to reasonable resistivity and sheet resistance.
Bias Correction of MODIS AOD using DragonNET to obtain improved estimation of PM2.5
NASA Astrophysics Data System (ADS)
Gross, B.; Malakar, N. K.; Atia, A.; Moshary, F.; Ahmed, S. A.; Oo, M. M.
2014-12-01
MODIS AOD retreivals using the Dark Target algorithm is strongly affected by the underlying surface reflection properties. In particular, the operational algorithms make use of surface parameterizations trained on global datasets and therefore do not account properly for urban surface differences. This parameterization continues to show an underestimation of the surface reflection which results in a general over-biasing in AOD retrievals. Recent results using the Dragon-Network datasets as well as high resolution retrievals in the NYC area illustrate that this is even more significant at the newest C006 3 km retrievals. In the past, we used AERONET observation in the City College to obtain bias-corrected AOD, but the homogeneity assumptions using only one site for the region is clearly an issue. On the other hand, DragonNET observations provide ample opportunities to obtain better tuning the surface corrections while also providing better statistical validation. In this study we present a neural network method to obtain bias correction of the MODIS AOD using multiple factors including surface reflectivity at 2130nm, sun-view geometrical factors and land-class information. These corrected AOD's are then used together with additional WRF meteorological factors to improve estimates of PM2.5. Efforts to explore the portability to other urban areas will be discussed. In addition, annual surface ratio maps will be developed illustrating that among the land classes, the urban pixels constitute the largest deviations from the operational model.
HIV-risk characteristics in community corrections.
Clark, C Brendan; McCullumsmith, Cheryl B; Waesche, Matthew C; Islam, M Aminul; Francis, Reginald; Cropsey, Karen L
2013-01-01
Individuals in the criminal justice system engage in behaviors that put them at high risk for HIV. This study sought to identify characteristics of individuals who are under community corrections supervision (eg, probation) and at risk for HIV. Approximately 25,000 individuals under community corrections supervision were assessed for HIV risk, and 5059 participants were deemed high-risk or no-risk. Of those, 1519 exhibited high sexual-risk (SR) behaviors, 203 exhibited injection drug risk (IVR), 957 exhibited both types of risk (SIVR), and 2380 exhibited no risk. Sociodemographic characteristics and drug of choice were then examined using univariate and binary logistic regression. Having a history of sexual abuse, not having insurance, and selecting any drug of choice were associated with all forms of HIV risk. However, the effect sizes associated with the various drugs of choice varied significantly by group. Aside from those common risk factors, very different patterns emerged. Female gender was a risk factor for the SR group but was less likely to be associated with IVR. Younger age was associated with SR, whereas older age was associated with IVR. Black race was a risk factor for SR but had a negative association with IVR and SIVR. Living in a shelter, living with relatives/friends, and being unemployed were all risk factors for IVR but were protective factors for SR. Distinct sociodemographic and substance use characteristics were associated with sexual versus injection drug use risk for individuals under community corrections supervision who were at risk for HIV. Information from this study could help identify high-risk individuals and allow tailoring of interventions.
Characterization of the nanoDot OSLD dosimeter in CT
Scarboro, Sarah B.; Cody, Dianna; Alvarez, Paola; Followill, David; Court, Laurence; Stingo, Francesco C.; Zhang, Di; Kry, Stephen F.
2015-01-01
Purpose: The extensive use of computed tomography (CT) in diagnostic procedures is accompanied by a growing need for more accurate and patient-specific dosimetry techniques. Optically stimulated luminescent dosimeters (OSLDs) offer a potential solution for patient-specific CT point-based surface dosimetry by measuring air kerma. The purpose of this work was to characterize the OSLD nanoDot for CT dosimetry, quantifying necessary correction factors, and evaluating the uncertainty of these factors. Methods: A characterization of the Landauer OSL nanoDot (Landauer, Inc., Greenwood, IL) was conducted using both measurements and theoretical approaches in a CT environment. The effects of signal depletion, signal fading, dose linearity, and angular dependence were characterized through direct measurement for CT energies (80–140 kV) and delivered doses ranging from ∼5 to >1000 mGy. Energy dependence as a function of scan parameters was evaluated using two independent approaches: direct measurement and a theoretical approach based on Burlin cavity theory and Monte Carlo simulated spectra. This beam-quality dependence was evaluated for a range of CT scanning parameters. Results: Correction factors for the dosimeter response in terms of signal fading, dose linearity, and angular dependence were found to be small for most measurement conditions (<3%). The relative uncertainty was determined for each factor and reported at the two-sigma level. Differences in irradiation geometry (rotational versus static) resulted in a difference in dosimeter signal of 3% on average. Beam quality varied with scan parameters and necessitated the largest correction factor, ranging from 0.80 to 1.15 relative to a calibration performed in air using a 120 kV beam. Good agreement was found between the theoretical and measurement approaches. Conclusions: Correction factors for the measurement of air kerma were generally small for CT dosimetry, although angular effects, and particularly effects due to changes in beam quality, could be more substantial. In particular, it would likely be necessary to account for variations in CT scan parameters and measurement location when performing CT dosimetry using OSLD. PMID:25832070
Characterization of the nanoDot OSLD dosimeter in CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scarboro, Sarah B.; Graduate School of Biomedical Sciences, The University of Texas Health Science Center Houston, Houston, Texas 77030; The Methodist Hospital, Houston, Texas 77030
Purpose: The extensive use of computed tomography (CT) in diagnostic procedures is accompanied by a growing need for more accurate and patient-specific dosimetry techniques. Optically stimulated luminescent dosimeters (OSLDs) offer a potential solution for patient-specific CT point-based surface dosimetry by measuring air kerma. The purpose of this work was to characterize the OSLD nanoDot for CT dosimetry, quantifying necessary correction factors, and evaluating the uncertainty of these factors. Methods: A characterization of the Landauer OSL nanoDot (Landauer, Inc., Greenwood, IL) was conducted using both measurements and theoretical approaches in a CT environment. The effects of signal depletion, signal fading, dosemore » linearity, and angular dependence were characterized through direct measurement for CT energies (80–140 kV) and delivered doses ranging from ∼5 to >1000 mGy. Energy dependence as a function of scan parameters was evaluated using two independent approaches: direct measurement and a theoretical approach based on Burlin cavity theory and Monte Carlo simulated spectra. This beam-quality dependence was evaluated for a range of CT scanning parameters. Results: Correction factors for the dosimeter response in terms of signal fading, dose linearity, and angular dependence were found to be small for most measurement conditions (<3%). The relative uncertainty was determined for each factor and reported at the two-sigma level. Differences in irradiation geometry (rotational versus static) resulted in a difference in dosimeter signal of 3% on average. Beam quality varied with scan parameters and necessitated the largest correction factor, ranging from 0.80 to 1.15 relative to a calibration performed in air using a 120 kV beam. Good agreement was found between the theoretical and measurement approaches. Conclusions: Correction factors for the measurement of air kerma were generally small for CT dosimetry, although angular effects, and particularly effects due to changes in beam quality, could be more substantial. In particular, it would likely be necessary to account for variations in CT scan parameters and measurement location when performing CT dosimetry using OSLD.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghaffar, I; Balik, S; Zhuang, T
Purpose: To investigate the feasibility of using TMR ratio correction factors for a fast online adaptive plan to compensate for anatomical changes in stereotactic radiosurgery (SRS) of L-spine tumors. Methods: Three coplanar treatment plans were made for 11 patients: Uniform (9 IMRT beams equally distributed around the patient); Posterior (IMRT with 9 posterior beams every 20 degree) and VMAT (2 360° arcs). For each patient, the external body and bowel gas were contoured on the planning CT and pre-treatment CBCT. After registering CBCT and the planning CT by aligning to the tumor, the CBCT contours were transferred to the planningmore » CT. To estimate the actual delivered dose while considering patient’s anatomy of the treatment day, a hybrid CT was created by overriding densities in planning CT using the differences between CT and CBCT external and bowel gas contours. Correction factors (CF) were calculated using the effective depth information obtained from the planning system using the hybrid CT: CF = TMR (delivery)/TMR (planning). The adaptive plan was generated by multiplying the planned Monitor Units with the CFs. Results: The mean absolute difference (MAD) in V16Gy of the target between planned and estimated delivery with and without TMR correction was 0.8 ± 0.7% vs. 2.4 ± 1.3% for Uniform and 1.0 ± 0.9% vs. 2.6 ± 1.3% for VMAT plans(p<0.05), respectively. For V12Gy of cauda-equina with and without TMR correction, MAD was 0.24 ± 0.19% vs. 1.2 ± 1.02% for Uniform and 0.23 ± 0.20% vs. 0.78 ± 0.79% for VMAT plans(p<0.05), respectively. The differences between adaptive and original plans were not significant for posterior plans. Conclusion: The online adaptive strategy using TMR ratios and pre-treatment CBCT information was feasible strategy to compensate for anatomical changes for the patients treated for L-spine tumors, particularly for equally spaced IMRT and VMAT plans.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vandervoort, Eric; Christiansen, Eric; Belec, Jaso
Purpose: The purpose of this work is to investigate the utility of plan class specific reference (PCSR) fields for predicting dosimeter response within isocentric and non-isocentric composite clinical fields using the smallest fields employed by the CyberKnife radiosurgery system. Methods: Monte Carlo dosimeter response correction factors (CFs) were calculated for a plastic scintillator and microchamber dosimeter in 21 clinical fields and 9 candidate plan-class PCSR fields which employ the 5, 7.5 and 10 mm diameter collimators. Measurements were performed in 5 PCSR fields to confirm the predicted relative response of detectors in the same field. Results: Ratios of corrected measuredmore » dose in the PCSR fields agree to within 1% of unity. Calculated CFs for isocentric fields agree within 1.5% of those for PCSR fields. Large and variable microchamber CFs are required for non-isocentric fields, with differences as high as 5% between different clinical fields in the same plan class and 4% within the same field depending on the point of measurement. Non-isocentric PCSR fields constructed to have relatively homogenous dose over a region larger than the detector have very different ion chamber CFs from clinical fields. The plastic scintillator detector has much more consistent response within each plan class but still require 3–4% corrections in some fields. Conclusions: While the PCSR field concept is useful for small isocentric fields, this approach may not be appropriate for non-isocentric clinical fields which exhibit large and variable ion chamber CFs which differ significantly from CFs for homogenous field PCSRs.« less
Bokemeyer, Carsten; Gascón, Pere; Aapro, Matti; Ludwig, Heinz; Boccadoro, Mario; Denhaerynck, Kris; Gorray, Michael; Krendyukov, Andriy; Abraham, Ivo; MacDonald, Karen
2017-06-01
In the MONITOR-GCSF study of chemotherapy-induced (febrile) neutropenia with biosimilar filgrastim, 56.6% of patients were prophylacted according to amended EORTC guidelines, but 17.4% were prophylacted below and 26.0% above guideline recommendations. MONITOR-GCSF is a prospective, observational study of 1447 evaluable patients from 140 cancers centers in 12 European countries treated with myelosuppressive chemotherapy for up to 6 cycles receiving biosimilar GCSF prophylaxis. Patients were classified as under-, correctly-, or over-prophylacted with GCSF relative to guideline recommendations based on their chemotherapy risk, individual risk factors, and type of GCSF prophylaxis (primary versus secondary). Differences between under- (17.4%), correctly- (56.6%), or over-prophylacted (26.0%) groups were found in terms of patient risk factors (age, performance status, history of FN, comorbid conditions) as well as prophylaxis patterns (type of prophylaxis, day of GCSF initiation, and GCSF duration). Rates of chemotherapy-induced neutropenia (CIN) (all grades), FN, and CIN-related hospitalizations were consistently lower in over-prophylacted patients relative to under- and correctly-prophylacted patients. No differences were observed between under- and correctly-prophylacted patients except for CIN/FN-related chemotherapy disturbances. No GCSF safety differences were found between groups (except for headaches). The real-world evidence provided by the MONITOR-GCSF study indicates that providing GCSF support may yield better CIN, FN, and CIN/FN-related hospitalization outcomes if patients are prophylacted at levels above guideline recommendations. Patients who are under-prophylacted are at higher risk for disturbances to their chemotherapy regimens. Our findings support the guideline recommendation that CIN/FN risk be assessed at the beginning of each chemotherapy cycle.
Kaneta, Tomohiro; Kurihara, Hideyuki; Hakamatsuka, Takashi; Ito, Hiroshi; Maruoka, Shin; Fukuda, Hiroshi; Takahashi, Shoki; Yamada, Shogo
2004-12-01
123I-15-(p-iodophenyl)-3-(R,S)-methylpentadecanoic acid (BMIPP) and 99mTc-tetrofosmin (TET) are widely used for evaluation of myocardial fatty acid metabolism and perfusion, respectively. ECG-gated TET SPECT is also used for evaluation of myocardial wall motion. These tests are often performed on the same day to minimize both the time required and inconvenience to patients and medical staff. However, as 123I and 99mTc have similar emission energies (159 keV and 140 keV, respectively), it is necessary to consider not only scattered photons, but also primary photons of each radionuclide detected in the wrong window (cross-talk). In this study, we developed and evaluated the effectiveness of a new scatter and cross-talk correction imaging protocol. Fourteen patients with ischemic heart disease or heart failure (8 men and 6 women with a mean age of 69.4 yr, ranging from 45 to 94 yr) were enrolled in this study. In the routine one-day acquisition protocol, BMIPP SPECT was performed in the morning, with TET SPECT performed 4 h later. An additional SPECT was performed just before injection of TET with the energy window for 99mTc. These data correspond to the scatter and cross-talk factor of the next TET SPECT. The correction was performed by subtraction of the scatter and cross-talk factor from TET SPECT. Data are presented as means +/- S.E. Statistical analyses were performed using Wilcoxon's matched-pairs signed-ranks test, and p < 0.05 was considered significant. The percentage of scatter and cross-talk relative to the corrected total count was 26.0 +/- 5.3%. EDV and ESV after correction were significantly greater than those before correction (p = 0.019 and 0.016, respectively). After correction, EF was smaller than that before correction, but the difference was not significant. Perfusion scores (17 segments per heart) were significantly lower after as compared with those before correction (p < 0.001). Scatter and cross-talk correction revealed significant differences in EDV, ESV, and perfusion scores. These observations indicate that scatter and cross-talk correction is required for one-day acquisition of 123I-BMIPP and 99mTc-tetrofosmin SPECT.
Zhang, Jiamei; Wang, Yan; Chen, Xiaoqin
2016-04-01
To evaluate and compare refractive outcomes of moderate- and high-astigmatism correction after wavefront-guided laser in situ keratomileusis (LASIK) and small-incision lenticule extraction (SMILE). This comparative study enrolled a total of 64 eyes that had undergone SMILE (42 eyes) and wavefront-guided LASIK (22 eyes). Preoperative cylindrical diopters were ≤-2.25 D in moderate- and >-2.25 D in high-astigmatism subgroups. The refractive results were analyzed based on the Alpins vector method that included target-induced astigmatism, surgically induced astigmatism, difference vector, correction index, index of success, magnitude of error, angle of error, and flattening index. All subjects completed the 3-month follow-up. No significant differences were found in the target-induced astigmatism, surgically induced astigmatism, and difference vector between SMILE and wavefront-guided LASIK. However, the average angle of error value was -1.00 ± 3.16 after wavefront-guided LASIK and 1.22 ± 3.85 after SMILE with statistical significance (P < 0.05). The absolute angle of error value was statistically correlated with difference vector and index of success after both procedures. In the moderate-astigmatism group, correction index was 1.04 ± 0.15 after wavefront-guided LASIK and 0.88 ± 0.15 after SMILE (P < 0.05). However, in the high-astigmatism group, correction index was 0.87 ± 0.13 after wavefront-guided LASIK and 0.88 ± 0.12 after SMILE (P = 0.889). Both procedures showed preferable outcomes in the correction of moderate and high astigmatism. However, high astigmatism was undercorrected after both procedures. Axial error of astigmatic correction may be one of the potential factors for the undercorrection.
The Accuracy and Correction of Fuel Consumption from Controller Area Network Broadcast
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Lijuan; Gonder, Jeffrey D; Wood, Eric W
Fuel consumption (FC) has always been an important factor in vehicle cost. With the advent of electronically controlled engines, the controller area network (CAN) broadcasts information about engine and vehicle performance, including fuel use. However, the accuracy of the FC estimates is uncertain. In this study, the researchers first compared CAN-broadcasted FC against physically measured fuel use for three different types of trucks, which revealed the inaccuracies of CAN-broadcast fueling estimates. To match precise gravimetric fuel-scale measurements, polynomial models were developed to correct the CAN-broadcasted FC. Lastly, the robustness testing of the correction models was performed. The training cycles inmore » this section included a variety of drive characteristics, such as high speed, acceleration, idling, and deceleration. The mean relative differences were reduced noticeably.« less
Calibration of neutron detectors on the Joint European Torus.
Batistoni, Paola; Popovichev, S; Conroy, S; Lengar, I; Čufar, A; Abhangi, M; Snoj, L; Horton, L
2017-10-01
The present paper describes the findings of the calibration of the neutron yield monitors on the Joint European Torus (JET) performed in 2013 using a 252 Cf source deployed inside the torus by the remote handling system, with particular regard to the calibration of fission chambers which provide the time resolved neutron yield from JET plasmas. The experimental data obtained in toroidal, radial, and vertical scans are presented. These data are first analysed following an analytical approach adopted in the previous neutron calibrations at JET. In this way, a calibration function for the volumetric plasma source is derived which allows us to understand the importance of the different plasma regions and of different spatial profiles of neutron emissivity on fission chamber response. Neutronics analyses have also been performed to calculate the correction factors needed to derive the plasma calibration factors taking into account the different energy spectrum and angular emission distribution of the calibrating (point) 252 Cf source, the discrete positions compared to the plasma volumetric source, and the calibration circumstances. All correction factors are presented and discussed. We discuss also the lessons learnt which are the basis for the on-going 14 MeV neutron calibration at JET and for ITER.
NASA Astrophysics Data System (ADS)
Long, D.; Scanlon, B. R.; Longuevergne, L.; Chen, X.
2015-12-01
Increasing interest in use of GRACE satellites and a variety of new products to monitor changes in total water storage (TWS) underscores the need to assess the reliability of output from different products. The objective of this study was to assess skills and uncertainties of different approaches for processing GRACE data to restore signal losses caused by spatial filtering based on analysis of 1°×1° grid scale data and basin scale data in 60 river basins globally. Results indicate that scaling factors from six land surface models (LSMs), including four models from GLDAS-1 (Noah 2.7, Mosaic, VIC, and CLM 2.0), CLM 4.0, and WGHM, are similar over most humid, sub-humid, and high-latitude regions but can differ by up to 100% over arid and semi-arid basins and areas with intensive irrigation. Large differences in TWS anomalies from three processing approaches (scaling factor, additive, and multiplicative corrections) were found in arid and semi-arid regions, areas with intensive irrigation, and relatively small basins (e.g., ≤ 200,000 km2). Furthermore, TWS anomaly products from gridded data with CLM4.0 scaling factors and the additive correction approach more closely agree with WGHM output than the multiplicative correction approach. Estimation of groundwater storage changes using GRACE satellites requires caution in selecting an appropriate approach for restoring TWS changes. A priori ground-based data used in forward modeling can provide a powerful tool for explaining the distribution of signal gains or losses caused by low-pass filtering in specific regions of interest and should be very useful for more reliable estimation of groundwater storage changes using GRACE satellites.
NASA Astrophysics Data System (ADS)
Alappattu, Denny P.; Wang, Qing; Yamaguchi, Ryan; Lind, Richard J.; Reynolds, Mike; Christman, Adam J.
2017-08-01
The sea surface temperature (SST) relevant to air-sea interaction studies is the temperature immediately adjacent to the air, referred to as skin SST. Generally, SST measurements from ships and buoys are taken at depths varies from several centimeters to 5 m below the surface. These measurements, known as bulk SST, can differ from skin SST up to O(1°C). Shipboard bulk and skin SST measurements were made during the Coupled Air-Sea Processes and Electromagnetic ducting Research east coast field campaign (CASPER-East). An Infrared SST Autonomous Radiometer (ISAR) recorded skin SST, while R/V Sharp's Surface Mapping System (SMS) provided bulk SST from 1 m water depth. Since the ISAR is sensitive to sea spray and rain, missing skin SST data occurred in these conditions. However, SMS measurement is less affected by adverse weather and provided continuous bulk SST measurements. It is desirable to correct the bulk SST to obtain a good representation of the skin SST, which is the objective of this research. Bulk-skin SST difference has been examined with respect to meteorological factors associated with cool skin and diurnal warm layers. Strong influences of wind speed, diurnal effects, and net longwave radiation flux on temperature difference are noticed. A three-step scheme is established to correct for wind effect, diurnal variability, and then for dependency on net longwave radiation flux. Scheme is tested and compared to existing correction schemes. This method is able to effectively compensate for multiple factors acting to modify bulk SST measurements over the range of conditions experienced during CASPER-East.
Robert, Mark E; Linthicum, Fred H
2016-01-01
Profile count method for estimating cell number in sectioned tissue applies a correction factor for double count (resulting from transection during sectioning) of count units selected to represent the cell. For human spiral ganglion cell counts, we attempted to address apparent confusion between published correction factors for nucleus and nucleolus count units that are identical despite the role of count unit diameter in a commonly used correction factor formula. We examined a portion of human cochlea to empirically derive correction factors for the 2 count units, using 3-dimensional reconstruction software to identify double counts. The Neurotology and House Histological Temporal Bone Laboratory at University of California at Los Angeles. Using a fully sectioned and stained human temporal bone, we identified and generated digital images of sections of the modiolar region of the lower first turn of cochlea, identified count units with a light microscope, labeled them on corresponding digital sections, and used 3-dimensional reconstruction software to identify double-counted count units. For 25 consecutive sections, we determined that double-count correction factors for nucleus count unit (0.91) and nucleolus count unit (0.92) matched the published factors. We discovered that nuclei and, therefore, spiral ganglion cells were undercounted by 6.3% when using nucleolus count units. We determined that correction factors for count units must include an element for undercounting spiral ganglion cells as well as the double-count element. We recommend a correction factor of 0.91 for the nucleus count unit and 0.98 for the nucleolus count unit when using 20-µm sections. © American Academy of Otolaryngology—Head and Neck Surgery Foundation 2015.
Takayanagi, Taisuke; Nihongi, Hideaki; Nishiuchi, Hideaki; Tadokoro, Masahiro; Ito, Yuki; Nakashima, Chihiro; Fujitaka, Shinichiro; Umezawa, Masumi; Matsuda, Koji; Sakae, Takeji; Terunuma, Toshiyuki
2016-07-01
To develop a multilayer ionization chamber (MLIC) and a correction technique that suppresses differences between the MLIC and water phantom measurements in order to achieve fast and accurate depth dose measurements in pencil beam scanning proton therapy. The authors distinguish between a calibration procedure and an additional correction: 1-the calibration for variations in the air gap thickness and the electrometer gains is addressed without involving measurements in water; 2-the correction is addressed to suppress the difference between depth dose profiles in water and in the MLIC materials due to the nuclear interaction cross sections by a semiempirical model tuned by using measurements in water. In the correction technique, raw MLIC data are obtained for each energy layer and integrated after multiplying them by the correction factor because the correction factor depends on incident energy. The MLIC described here has been designed especially for pencil beam scanning proton therapy. This MLIC is called a dual ring multilayer ionization chamber (DRMLIC). The shape of the electrodes allows the DRMLIC to measure both the percentage depth dose (PDD) and integrated depth dose (IDD) because ionization electrons are collected from inner and outer air gaps independently. IDDs for which the beam energies were 71.6, 120.6, 159, 180.6, and 221.4 MeV were measured and compared with water phantom results. Furthermore, the measured PDDs along the central axis of the proton field with a nominal field size of 10 × 10 cm(2) were compared. The spread out Bragg peak was 20 cm for fields with a range of 30.6 and 3 cm for fields with a range of 6.9 cm. The IDDs measured with the DRMLIC using the correction technique were consistent with those that of the water phantom; except for the beam energy of 71.6 MeV, all of the points satisfied the 1% dose/1 mm distance to agreement criterion of the gamma index. The 71.6 MeV depth dose profile showed slight differences in the shallow region, but 94.5% of the points satisfied the 1%/1 mm criterion. The 90% ranges, defined at the 90% dose position in distal fall off, were in good agreement with those in the water phantom, and the range differences from the water phantom were less than ±0.3 mm. The PDDs measured with the DRMLIC were also consistent with those that of the water phantom; 97% of the points passed the 1%/1 mm criterion. It was demonstrated that the new correction technique suppresses the difference between the depth dose profiles obtained with the MLIC and those obtained from a water phantom, and a DRMLIC enabling fast measurements of both IDD and PDD was developed. The IDDs and PDDs measured with the DRMLIC and using the correction technique were in good agreement with those that of the water phantom, and it was concluded that the correction technique and DRMLIC are useful for depth dose profile measurements in pencil beam scanning proton therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takayanagi, Taisuke, E-mail: taisuke.takayanagi.wd
2016-07-15
Purpose: To develop a multilayer ionization chamber (MLIC) and a correction technique that suppresses differences between the MLIC and water phantom measurements in order to achieve fast and accurate depth dose measurements in pencil beam scanning proton therapy. Methods: The authors distinguish between a calibration procedure and an additional correction: 1—the calibration for variations in the air gap thickness and the electrometer gains is addressed without involving measurements in water; 2—the correction is addressed to suppress the difference between depth dose profiles in water and in the MLIC materials due to the nuclear interaction cross sections by a semiempirical modelmore » tuned by using measurements in water. In the correction technique, raw MLIC data are obtained for each energy layer and integrated after multiplying them by the correction factor because the correction factor depends on incident energy. The MLIC described here has been designed especially for pencil beam scanning proton therapy. This MLIC is called a dual ring multilayer ionization chamber (DRMLIC). The shape of the electrodes allows the DRMLIC to measure both the percentage depth dose (PDD) and integrated depth dose (IDD) because ionization electrons are collected from inner and outer air gaps independently. Results: IDDs for which the beam energies were 71.6, 120.6, 159, 180.6, and 221.4 MeV were measured and compared with water phantom results. Furthermore, the measured PDDs along the central axis of the proton field with a nominal field size of 10 × 10 cm{sup 2} were compared. The spread out Bragg peak was 20 cm for fields with a range of 30.6 and 3 cm for fields with a range of 6.9 cm. The IDDs measured with the DRMLIC using the correction technique were consistent with those that of the water phantom; except for the beam energy of 71.6 MeV, all of the points satisfied the 1% dose/1 mm distance to agreement criterion of the gamma index. The 71.6 MeV depth dose profile showed slight differences in the shallow region, but 94.5% of the points satisfied the 1%/1 mm criterion. The 90% ranges, defined at the 90% dose position in distal fall off, were in good agreement with those in the water phantom, and the range differences from the water phantom were less than ±0.3 mm. The PDDs measured with the DRMLIC were also consistent with those that of the water phantom; 97% of the points passed the 1%/1 mm criterion. Conclusions: It was demonstrated that the new correction technique suppresses the difference between the depth dose profiles obtained with the MLIC and those obtained from a water phantom, and a DRMLIC enabling fast measurements of both IDD and PDD was developed. The IDDs and PDDs measured with the DRMLIC and using the correction technique were in good agreement with those that of the water phantom, and it was concluded that the correction technique and DRMLIC are useful for depth dose profile measurements in pencil beam scanning proton therapy.« less
Effect of 6 days of support withdrawal on characteristics of balance function
NASA Astrophysics Data System (ADS)
Sayenko, D.; Artamonov, A. A.; Ivanov, O. G.; Kozlovskaya, I. B.
2005-08-01
The role of different sensorimotor and sensory factors on postural disorders at different stages of the exposure to microgravity still remains unknown. The results obtained after the Dry Immersion (DI) exposure, showed that after 6 days of DI the subjects' ability to resist to posture perturbations was highly reduced, the EMG response of corrective muscles was increased, and the structure of corrective responses was modified, so that the equilibrium was maintained by the elimination of excessive degrees of freedom. Thus, the results of the study have revealed profound changes in postural synergies suggesting a significant contribution of the support afferentation to posture control.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schüller, Andreas, E-mail: andreas.schueller@ptb.de; Meier, Markus; Selbach, Hans-Joachim
Purpose: The aim of this study was to investigate whether a chamber-type-specific radiation quality correction factor k{sub Q} can be determined in order to measure the reference air kerma rate of {sup 60}Co high-dose-rate (HDR) brachytherapy sources with acceptable uncertainty by means of a well-type ionization chamber calibrated for {sup 192}Ir HDR sources. Methods: The calibration coefficients of 35 well-type ionization chambers of two different chamber types for radiation fields of {sup 60}Co and {sup 192}Ir HDR brachytherapy sources were determined experimentally. A radiation quality correction factor k{sub Q} was determined as the ratio of the calibration coefficients for {supmore » 60}Co and {sup 192}Ir. The dependence on chamber-to-chamber variations, source-to-source variations, and source strength was investigated. Results: For the PTW Tx33004 (Nucletron source dosimetry system (SDS)) well-type chamber, the type-specific radiation quality correction factor k{sub Q} is 1.19. Note that this value is valid for chambers with the serial number, SN ≥ 315 (Nucletron SDS SN ≥ 548) onward only. For the Standard Imaging HDR 1000 Plus well-type chambers, the type-specific correction factor k{sub Q} is 1.05. Both k{sub Q} values are independent of the source strengths in the complete clinically relevant range. The relative expanded uncertainty (k = 2) of k{sub Q} is U{sub k{sub Q}} = 2.1% for both chamber types. Conclusions: The calibration coefficient of a well-type chamber for radiation fields of {sup 60}Co HDR brachytherapy sources can be calculated from a given calibration coefficient for {sup 192}Ir radiation by using a chamber-type-specific radiation quality correction factor k{sub Q}. However, the uncertainty of a {sup 60}Co calibration coefficient calculated via k{sub Q} is at least twice as large as that for a direct calibration with a {sup 60}Co source.« less
Calculation of structural dynamic forces and stresses using mode acceleration
NASA Technical Reports Server (NTRS)
Blelloch, Paul
1989-01-01
While the standard mode acceleration formulation in structural dynamics has often been interpreted to suggest that the reason for improved convergence obtainable is that the dynamic correction factor is divided by the modal frequencies-squared, an alternative formulation is presented which clearly indicates that the only difference between mode acceleration and mode displacement data recovery is the addition of a static correction term. Attention is given to the advantages in numerical implementation associated with this alternative, as well as to an illustrative example.
SU-F-T-69: Correction Model of NIPAM Gel and Presage for Electron and Proton PDD Measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, C; Lin, C; Tu, P
Purpose: The current standard equipment for proton PDD measurement is multilayer-parallel-ion-chamber. Disadvantage of multilayer-parallel-ion-chamber is expensive and complexity manipulation. NIPAM-gel and Presage are options for PDD measurement. Due to different stopping power, the result of NIPAM-gel and Presage need to be corrected. This study aims to create a correction model for NIPAM-gel and Presage PDD measurement. Methods: Standard water based PDD profiles of electron 6MeV, 12MeV, and proton 90MeV were acquired. Electron PDD profile after 1cm thickness of NIPAM-gel added on the top of water was measured. Electron PDD profile with extra 1cm thickness of solid water, PTW RW3, wasmore » measured. The distance shift among standard PDD, NIPAM-gel PDD, and solid water PDD at R50% was compared and water equivalent thickness correction factor (WET) was calculated. Similar process was repeated. WETs for electron with Presage, proton with NIPAM-gel, and proton with Presage were calculated. PDD profiles of electron and proton with NIPAM-gel and Presage columns were corrected with each WET. The corrected profiles were compared with standard profiles. Results: WET for electron 12MeV with NIPAM-gel was 1.135, and 1.034 for electron 12Mev with Presage. After correction, PDD profile matched to the standard profile at the fall-off range well. The difference at R50% was 0.26mm shallower and 0.39mm deeper. The same WET was used to correct electron 6MeV profile. Energy independence of electron WET was observed. The difference at R50% was 0.17mm deeper for NIPAM-gel and 0.54mm deeper for Presage. WET for proton 90MeV with NIPAM-gel was 1.056. The difference at R50% was 0.37 deeper. Quenching effect at Bragg peak was revealed. The underestimated dose percentage at Bragg peak was 27%. Conclusion: This correction model can be used to modify PDD profile with depth error within 1mm. With this correction model, NIPAM-gel and Presage can be practical at PDD profile measurement.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donaghue, J; Gajdos, S
Purpose: To determine the correction factor of the correspondence factor for the Standard Imaging IVB 1000 well chamber for commissioning of Elekta’s Leipzig and Valencia skin applicators. Methods: The Leipzig and Valencia applicators are designed to treat small skin lesions by collimating irradiation to the treatment area. Published output factors are used to calculate dose rates for clinical treatments. To validate onsite applicators, a correspondence factor (CFrev) is measured and compared to published values. The published CFrev is based on well chamber model SI HDR 1000 Plus. The CFrev is determined by correlating raw values of the source calibration setupmore » (Rcal,raw) and values taken when each applicator is mounted on the same well chamber with an adapter (Rapp,raw). The CFrev is calculated by using the equation CFrev =Rapp,raw/Rcal,raw. The CFrev was measured for each applicator in both the SI HDR 1000 Plus and the SI IVB 1000. A correction factor, CFIVB for the SI IVB 1000 was determined by finding the ratio of CFrev (SI IVB 1000) and CFrev (SI HDR 1000 Plus). Results: The average correction factors at dwell position 1121 were found to be 1.073, 1.039, 1.209, 1.091, and 1.058 for the Valencia V2, Valencia V3, Leipzig H1, Leipzig H2, and Leipzig H3 respectively. There were no significant variations in the correction factor for dwell positions 1119 through 1121. Conclusion: By using the appropriate correction factor, the correspondence factors for the Leipzig and Valencia surface applicators can be validated with the Standard Imaging IVB 1000. This allows users to correlate their measurements with the Standard Imaging IVB 1000 to the published data. The correction factor is included in the equation for the CFrev as follows: CFrev= Rapp,raw/(CFIVB*Rcal,raw). Each individual applicator has its own correction factor, so care must be taken that the appropriate factor is used.« less
a Semi-Empirical Topographic Correction Model for Multi-Source Satellite Images
NASA Astrophysics Data System (ADS)
Xiao, Sa; Tian, Xinpeng; Liu, Qiang; Wen, Jianguang; Ma, Yushuang; Song, Zhenwei
2018-04-01
Topographic correction of surface reflectance in rugged terrain areas is the prerequisite for the quantitative application of remote sensing in mountainous areas. Physics-based radiative transfer model can be applied to correct the topographic effect and accurately retrieve the reflectance of the slope surface from high quality satellite image such as Landsat8 OLI. However, as more and more images data available from various of sensors, some times we can not get the accurate sensor calibration parameters and atmosphere conditions which are needed in the physics-based topographic correction model. This paper proposed a semi-empirical atmosphere and topographic corrction model for muti-source satellite images without accurate calibration parameters.Based on this model we can get the topographic corrected surface reflectance from DN data, and we tested and verified this model with image data from Chinese satellite HJ and GF. The result shows that the correlation factor was reduced almost 85 % for near infrared bands and the classification overall accuracy of classification increased 14 % after correction for HJ. The reflectance difference of slope face the sun and face away the sun have reduced after correction.
Clinical implementation of MOSFET detectors for dosimetry in electron beams.
Bloemen-van Gurp, Esther J; Minken, Andre W H; Mijnheer, Ben J; Dehing-Oberye, Cary J G; Lambin, Philippe
2006-09-01
To determine the factors converting the reading of a MOSFET detector placed on the patient's skin without additional build-up to the dose at the depth of dose maximum (D(max)) and investigate their feasibility for in vivo dose measurements in electron beams. Factors were determined to relate the reading of a MOSFET detector to D(max) for 4 - 15 MeV electron beams in reference conditions. The influence of variation in field size, SSD, angle and field shape on the MOSFET reading, obtained without additional build-up, was evaluated using 4, 8 and 15 MeV beams and compared to ionisation chamber data at the depth of dose maximum (z(max)). Patient entrance in vivo measurements included 40 patients, mostly treated for breast tumours. The MOSFET reading, converted to D(max), was compared to the dose prescribed at this depth. The factors to convert MOSFET reading to D(max) vary between 1.33 and 1.20 for the 4 and 15 MeV beams, respectively. The SSD correction factor is approximately 8% for a change in SSD from 95 to 100 cm, and 2% for each 5-cm increment above 100 cm SSD. A correction for fields having sides smaller than 6 cm and for irregular field shape is also recommended. For fields up to 20 x 20 cm(2) and for oblique incidence up to 45 degrees, a correction is not necessary. Patient measurements demonstrated deviations from the prescribed dose with a mean difference of -0.7% and a standard deviation of 2.9%. Performing dose measurements with MOSFET detectors placed on the patient's skin without additional build-up is a well suited technique for routine dose verification in electron beams, when applying the appropriate conversion and correction factors.
Mikkelsen, Mark; Singh, Krish D; Brealy, Jennifer A; Linden, David E J; Evans, C John
2016-11-01
The quantification of γ-aminobutyric acid (GABA) concentration using localised MRS suffers from partial volume effects related to differences in the intrinsic concentration of GABA in grey (GM) and white (WM) matter. These differences can be represented as a ratio between intrinsic GABA in GM and WM: r M . Individual differences in GM tissue volume can therefore potentially drive apparent concentration differences. Here, a quantification method that corrects for these effects is formulated and empirically validated. Quantification using tissue water as an internal concentration reference has been described previously. Partial volume effects attributed to r M can be accounted for by incorporating into this established method an additional multiplicative correction factor based on measured or literature values of r M weighted by the proportion of GM and WM within tissue-segmented MRS volumes. Simulations were performed to test the sensitivity of this correction using different assumptions of r M taken from previous studies. The tissue correction method was then validated by applying it to an independent dataset of in vivo GABA measurements using an empirically measured value of r M . It was shown that incorrect assumptions of r M can lead to overcorrection and inflation of GABA concentration measurements quantified in volumes composed predominantly of WM. For the independent dataset, GABA concentration was linearly related to GM tissue volume when only the water signal was corrected for partial volume effects. Performing a full correction that additionally accounts for partial volume effects ascribed to r M successfully removed this dependence. With an appropriate assumption of the ratio of intrinsic GABA concentration in GM and WM, GABA measurements can be corrected for partial volume effects, potentially leading to a reduction in between-participant variance, increased power in statistical tests and better discriminability of true effects. Copyright © 2016 John Wiley & Sons, Ltd.
Gonzalez-Bermejo, Jésus; Morelot-Panzini, Capucine; Arnol, Nathalie; Meininger, Vincent; Kraoua, Salah; Salachas, François; Similowski, Thomas
2013-09-01
Abstract NIV adherence ('quantity' of ventilation) has a prognostic impact in amyotrophic lateral sclerosis (ALS). We hypothesized that NIV effectiveness ('quality') could also have a similar impact. NIV effectiveness was evaluated in 82 patients within the first month (M1) and every three months (symptoms, arterial blood bases, and nocturnal pulsed oxygen saturation - SpO2). Kaplan-Meier survival and risk factors for mortality one year after NIV initiation were evaluated. Forty patients were considered 'correctly ventilated' at M1 (Group 1, less than 5% of nocturnal oximetry time with an SpO2<90% - TS90) while 42 were not (Group 2). Both groups were comparable in terms of respiratory and neurological baseline characteristics. Survival was better in Group 1 (75% survival at 12 months) than in Group 2 (43% survival at 12 months, p = 0.002). In 12 Group 2 patients corrective measures were efficient in correcting TS90 at six months. In this subgroup, one-year mortality was not different from that in Group 1. Multivariate analysis identified independent mortality risk factors expectedly including bulbar involvement (HR = 4.31 (1.73 - 10.76), p = 0.002), 'rapid respiratory decline' (HR = 3.55 (1.29 - 9.75), p = 0.014) and vital capacity (HR = 0.97 (0.95 - 0.99), p = 0.010), but also inadequate ventilation in the first month (HR = 2.32 (1.09 - 4.94), p = 0.029). In conclusion, in ALS patients NIV effectiveness to correct nocturnal desaturations is an independent prognostic factor.
NASA Astrophysics Data System (ADS)
Banerjee, Pulak; Dhani, Prasanna K.; Kumar, M. C.; Mathews, Prakash; Ravindran, V.
2018-05-01
We study the phenomenological impact of the interaction of spin-2 fields with those of the Standard Model in a model independent framework up to next-to-next-to-leading order in perturbative quantum chromodynamics. We use the invariant mass distribution of the pair of leptons produced at the Large Hadron Collider to demonstrate this. A minimal scenario where the spin-2 fields couple to two gauge invariant operators with different coupling strengths has been considered. These operators not being conserved show very different ultraviolet behavior increasing the searches options of spin-2 particles at the colliders. We find that our results using the higher order quantum corrections stabilize the predictions with respect to renormalization and factorization scales. We also find that corrections are appreciable which need to be taken into account in such searches at the colliders.
NASA Astrophysics Data System (ADS)
Draxler, M.; Walker, M.; McConville, C. F.
2006-08-01
We have used coaxial impact collision ion scattering spectroscopy (CAICISS) data collected from 3 keV He+ ions backscattered from a Cu(1 0 0) surface in different azimuthal orientations to investigate the influence of the screening length on CAICISS polar angle scans. We have compared the experimental data to computer simulations generated with the FAN code and found that for our experimental conditions an exceptionally low value of 0.53 was required for the correction factor to the Firsov screening length used with the Thomas-Fermi-Moliere potential. In addition we found that the Ziegler-Biersack-Littmark potential is not applicable, resulting in incorrect peak positions in the CAICISS polar angle plots.
75 FR 5536 - Pipeline Safety: Control Room Management/Human Factors, Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-03
... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration 49 CFR Parts...: Control Room Management/Human Factors, Correction AGENCY: Pipeline and Hazardous Materials Safety... following correcting amendments: PART 192--TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM...
ERIC Educational Resources Information Center
Tryon, Warren W.; Lewis, Charles
2008-01-01
Evidence of group matching frequently takes the form of a nonsignificant test of statistical difference. Theoretical hypotheses of no difference are also tested in this way. These practices are flawed in that null hypothesis statistical testing provides evidence against the null hypothesis and failing to reject H[subscript 0] is not evidence…
NASA Astrophysics Data System (ADS)
Lourenço, A.; Shipley, D.; Wellock, N.; Thomas, R.; Bouchard, H.; Kacperek, A.; Fracchiolla, F.; Lorentini, S.; Schwarz, M.; MacDougall, N.; Royle, G.; Palmans, H.
2017-05-01
The aim of this work was to evaluate the water-equivalence of new trial plastics designed specifically for light-ion beam dosimetry as well as commercially available plastics in clinical proton beams. The water-equivalence of materials was tested by computing a plastic-to-water conversion factor, {{H}\\text{pl,\\text{w}}} . Trial materials were characterized experimentally in 60 MeV and 226 MeV un-modulated proton beams and the results were compared with Monte Carlo simulations using the FLUKA code. For the high-energy beam, a comparison between the trial plastics and various commercial plastics was also performed using FLUKA and Geant4 Monte Carlo codes. Experimental information was obtained from laterally integrated depth-dose ionization chamber measurements in water, with and without plastic slabs with variable thicknesses in front of the water phantom. Fluence correction factors, {{k}\\text{fl}} , between water and various materials were also derived using the Monte Carlo method. For the 60 MeV proton beam, {{H}\\text{pl,\\text{w}}} and {{k}\\text{fl}} factors were within 1% from unity for all trial plastics. For the 226 MeV proton beam, experimental {{H}\\text{pl,\\text{w}}} values deviated from unity by a maximum of about 1% for the three trial plastics and experimental results showed no advantage regarding which of the plastics was the most equivalent to water. Different magnitudes of corrections were found between Geant4 and FLUKA for the various materials due mainly to the use of different nonelastic nuclear data. Nevertheless, for the 226 MeV proton beam, {{H}\\text{pl,\\text{w}}} correction factors were within 2% from unity for all the materials. Considering the results from the two Monte Carlo codes, PMMA and trial plastic #3 had the smallest {{H}\\text{pl,\\text{w}}} values, where maximum deviations from unity were 1%, however, PMMA range differed by 16% from that of water. Overall, {{k}\\text{fl}} factors were deviating more from unity than {{H}\\text{pl,\\text{w}}} factors and could amount to a few percent for some materials.
Lourenço, A; Shipley, D; Wellock, N; Thomas, R; Bouchard, H; Kacperek, A; Fracchiolla, F; Lorentini, S; Schwarz, M; MacDougall, N; Royle, G; Palmans, H
2017-05-21
The aim of this work was to evaluate the water-equivalence of new trial plastics designed specifically for light-ion beam dosimetry as well as commercially available plastics in clinical proton beams. The water-equivalence of materials was tested by computing a plastic-to-water conversion factor, [Formula: see text]. Trial materials were characterized experimentally in 60 MeV and 226 MeV un-modulated proton beams and the results were compared with Monte Carlo simulations using the FLUKA code. For the high-energy beam, a comparison between the trial plastics and various commercial plastics was also performed using FLUKA and Geant4 Monte Carlo codes. Experimental information was obtained from laterally integrated depth-dose ionization chamber measurements in water, with and without plastic slabs with variable thicknesses in front of the water phantom. Fluence correction factors, [Formula: see text], between water and various materials were also derived using the Monte Carlo method. For the 60 MeV proton beam, [Formula: see text] and [Formula: see text] factors were within 1% from unity for all trial plastics. For the 226 MeV proton beam, experimental [Formula: see text] values deviated from unity by a maximum of about 1% for the three trial plastics and experimental results showed no advantage regarding which of the plastics was the most equivalent to water. Different magnitudes of corrections were found between Geant4 and FLUKA for the various materials due mainly to the use of different nonelastic nuclear data. Nevertheless, for the 226 MeV proton beam, [Formula: see text] correction factors were within 2% from unity for all the materials. Considering the results from the two Monte Carlo codes, PMMA and trial plastic #3 had the smallest [Formula: see text] values, where maximum deviations from unity were 1%, however, PMMA range differed by 16% from that of water. Overall, [Formula: see text] factors were deviating more from unity than [Formula: see text] factors and could amount to a few percent for some materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrett, J C; Karmanos Cancer Institute McLaren-Macomb, Clinton Township, MI; Knill, C
Purpose: To determine small field correction factors for PTW’s microDiamond detector in Elekta’s Gamma Knife Model-C unit. These factors allow the microDiamond to be used in QA measurements of output factors in the Gamma Knife Model-C; additionally, the results also contribute to the discussion on the water equivalence of the relatively-new microDiamond detector and its overall effectiveness in small field applications. Methods: The small field correction factors were calculated as k correction factors according to the Alfonso formalism. An MC model of the Gamma Knife and microDiamond was built with the EGSnrc code system, using BEAMnrc and DOSRZnrc user codes.more » Validation of the model was accomplished by simulating field output factors and measurement ratios for an available ABS plastic phantom and then comparing simulated results to film measurements, detector measurements, and treatment planning system (TPS) data. Once validated, the final k factors were determined by applying the model to a more waterlike solid water phantom. Results: During validation, all MC methods agreed with experiment within the stated uncertainties: MC determined field output factors agreed within 0.6% of the TPS and 1.4% of film; and MC simulated measurement ratios matched physically measured ratios within 1%. The final k correction factors for the PTW microDiamond in the solid water phantom approached unity to within 0.4%±1.7% for all the helmet sizes except the 4 mm; the 4 mm helmet size over-responded by 3.2%±1.7%, resulting in a k factor of 0.969. Conclusion: Similar to what has been found in the Gamma Knife Perfexion, the PTW microDiamond requires little to no corrections except for the smallest 4 mm field. The over-response can be corrected via the Alfonso formalism using the correction factors determined in this work. Using the MC calculated correction factors, the PTW microDiamond detector is an effective dosimeter in all available helmet sizes. The authors would like to thank PTW (Friedberg, Germany) for providing the PTW microDiamond detector for this research.« less
Automated general temperature correction method for dielectric soil moisture sensors
NASA Astrophysics Data System (ADS)
Kapilaratne, R. G. C. Jeewantinie; Lu, Minjiao
2017-08-01
An effective temperature correction method for dielectric sensors is important to ensure the accuracy of soil water content (SWC) measurements of local to regional-scale soil moisture monitoring networks. These networks are extensively using highly temperature sensitive dielectric sensors due to their low cost, ease of use and less power consumption. Yet there is no general temperature correction method for dielectric sensors, instead sensor or site dependent correction algorithms are employed. Such methods become ineffective at soil moisture monitoring networks with different sensor setups and those that cover diverse climatic conditions and soil types. This study attempted to develop a general temperature correction method for dielectric sensors which can be commonly used regardless of the differences in sensor type, climatic conditions and soil type without rainfall data. In this work an automated general temperature correction method was developed by adopting previously developed temperature correction algorithms using time domain reflectometry (TDR) measurements to ThetaProbe ML2X, Stevens Hydra probe II and Decagon Devices EC-TM sensor measurements. The rainy day effects removal procedure from SWC data was automated by incorporating a statistical inference technique with temperature correction algorithms. The temperature correction method was evaluated using 34 stations from the International Soil Moisture Monitoring Network and another nine stations from a local soil moisture monitoring network in Mongolia. Soil moisture monitoring networks used in this study cover four major climates and six major soil types. Results indicated that the automated temperature correction algorithms developed in this study can eliminate temperature effects from dielectric sensor measurements successfully even without on-site rainfall data. Furthermore, it has been found that actual daily average of SWC has been changed due to temperature effects of dielectric sensors with a significant error factor comparable to ±1% manufacturer's accuracy.
An analysis of the ArcCHECK-MR diode array's performance for ViewRay quality assurance.
Ellefson, Steven T; Culberson, Wesley S; Bednarz, Bryan P; DeWerd, Larry A; Bayouth, John E
2017-07-01
The ArcCHECK-MR diode array utilizes a correction system with a virtual inclinometer to correct the angular response dependencies of the diodes. However, this correction system cannot be applied to measurements on the ViewRay MR-IGRT system due to the virtual inclinometer's incompatibility with the ViewRay's multiple simultaneous beams. Additionally, the ArcCHECK's current correction factors were determined without magnetic field effects taken into account. In the course of performing ViewRay IMRT quality assurance with the ArcCHECK, measurements were observed to be consistently higher than the ViewRay TPS predictions. The goals of this study were to quantify the observed discrepancies and test whether applying the current factors improves the ArcCHECK's accuracy for measurements on the ViewRay. Gamma and frequency analysis were performed on 19 ViewRay patient plans. Ion chamber measurements were performed at a subset of diode locations using a PMMA phantom with the same dimensions as the ArcCHECK. A new method for applying directionally dependent factors utilizing beam information from the ViewRay TPS was developed in order to analyze the current ArcCHECK correction factors. To test the current factors, nine ViewRay plans were altered to be delivered with only a single simultaneous beam and were measured with the ArcCHECK. The current correction factors were applied using both the new and current methods. The new method was also used to apply corrections to the original 19 ViewRay plans. It was found the ArcCHECK systematically reports doses higher than those actually delivered by the ViewRay. Application of the current correction factors by either method did not consistently improve measurement accuracy. As dose deposition and diode response have both been shown to change under the influence of a magnetic field, it can be concluded the current ArcCHECK correction factors are invalid and/or inadequate to correct measurements on the ViewRay system. © 2017 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
Wellness and illness self-management skills in community corrections.
Kelly, Patricia J; Ramaswamy, Megha; Chen, Hsiang-Feng; Denny, Donald
2015-02-01
Community corrections provide a readjustment venue for re-entry between incarceration and home for inmates in the US corrections system. Our goal was to determine how self-management skills, an important predictor of re-entry success, varied by demographic and risk factors. In this cross-sectional study, we analyzed responses of 675 clients from 57 community corrections programs run by the regional division of the Federal Bureau of Prisons. A self-administered survey collected data on self-management skills, demographics, and risk factors; significant associations were applied in four regression models: the overall self-management score and three self-management subscales: coping skills, goals, and drug use. Over one-quarter (27.2%/146) of participants had a mental health history. White race, no mental health history and high school education were associated with better overall self-management scores; mental health history and drug use in the past year were associated with lower coping scores; female gender and high school education were associated with better self-management goals; female gender was associated with better self-management drug use scores. Self-management programs may need to be individualized for different groups of clients. Lower scores for those with less education suggest an area for targeted, nurse-led interventions.
Lattice calculation of electric dipole moments and form factors of the nucleon
NASA Astrophysics Data System (ADS)
Abramczyk, M.; Aoki, S.; Blum, T.; Izubuchi, T.; Ohki, H.; Syritsyn, S.
2017-07-01
We analyze commonly used expressions for computing the nucleon electric dipole form factors (EDFF) F3 and moments (EDM) on a lattice and find that they lead to spurious contributions from the Pauli form factor F2 due to inadequate definition of these form factors when parity mixing of lattice nucleon fields is involved. Using chirally symmetric domain wall fermions, we calculate the proton and the neutron EDFF induced by the C P -violating quark chromo-EDM interaction using the corrected expression. In addition, we calculate the electric dipole moment of the neutron using a background electric field that respects time translation invariance and boundary conditions, and we find that it decidedly agrees with the new formula but not the old formula for F3. Finally, we analyze some selected lattice results for the nucleon EDM and observe that after the correction is applied, they either agree with zero or are substantially reduced in magnitude, thus reconciling their difference from phenomenological estimates of the nucleon EDM.
Santos, Ana R; Costa, Miguel Â; Schwartz, Christian; Alves, Dalila; Figueira, João; Silva, Rufino; Cunha-Vaz, Jose G
2018-06-01
To identify baseline optical coherence tomography morphologic characteristics predicting the visual response to anti-vascular endothelial growth factor therapy in diabetic macular edema. Sixty-seven patients with diabetic macular edema completed a prospective, observational study (NCT01947881-CHARTRES). All patients received monthly intravitreal injections of Lucentis for 3 months followed by PRN treatment and underwent best-corrected visual acuity measurements and spectral domain optical coherence tomography at Baseline, Months 1, 2, 3, and 6. Visual treatment response was characterized as good (≥10 letters), moderate (5-10 letters), and poor (<5 or letters loss). Spectral domain optical coherence tomography images were graded before and after treatment by a certified Reading Center. One month after loading dose, 26 patients (38.80%) were identified as good responders, 19 (28.35%) as Moderate and 22 (32.83%) as poor responders. There were no significant best-corrected visual acuity and central retinal thickness differences at baseline (P = 0.176; P = 0.573, respectively). Ellipsoid zone disruption and disorganization of retinal inner layers were good predictors for treatment response, representing a significant risk for poor visual recovery to anti-vascular endothelial growth factor therapy (odds ratio = 10.96; P < 0.001 for ellipsoid zone disruption and odds ratio = 7.05; P = 0.034 for disorganization of retinal inner layers). Damage of ellipsoid zone, higher values of disorganization of retinal inner layers, and central retinal thickness decrease are good predictors of best-corrected visual acuity response to anti-vascular endothelial growth factor therapy.
Ratios of total suspended solids to suspended sediment concentrations by particle size
Selbig, W.R.; Bannerman, R.T.
2011-01-01
Wet-sieving sand-sized particles from a whole storm-water sample before splitting the sample into laboratory-prepared containers can reduce bias and improve the precision of suspended-sediment concentrations (SSC). Wet-sieving, however, may alter concentrations of total suspended solids (TSS) because the analytical method used to determine TSS may not have included the sediment retained on the sieves. Measuring TSS is still commonly used by environmental managers as a regulatory metric for solids in storm water. For this reason, a new method of correlating concentrations of TSS and SSC by particle size was used to develop a series of correction factors for SSC as a means to estimate TSS. In general, differences between TSS and SSC increased with greater particle size and higher sand content. Median correction factors to SSC ranged from 0.29 for particles larger than 500m to 0.85 for particles measuring from 32 to 63m. Great variability was observed in each fraction-a result of varying amounts of organic matter in the samples. Wide variability in organic content could reduce the transferability of the correction factors. ?? 2011 American Society of Civil Engineers.
ERIC Educational Resources Information Center
Zhang, Guangjian; Preacher, Kristopher J.; Luo, Shanhong
2010-01-01
This article is concerned with using the bootstrap to assign confidence intervals for rotated factor loadings and factor correlations in ordinary least squares exploratory factor analysis. Coverage performances of "SE"-based intervals, percentile intervals, bias-corrected percentile intervals, bias-corrected accelerated percentile…
Veselsky, T; Novotny, J; Pastykova, V; Koniarova, I
2017-12-01
The aim of this study was to determine small field correction factors for a synthetic single-crystal diamond detector (PTW microDiamond) for routine use in clinical dosimetric measurements. Correction factors following small field Alfonso formalism were calculated by comparison of PTW microDiamond measured ratio M Qclin fclin /M Qmsr fmsr with Monte Carlo (MC) based field output factors Ω Qclin,Qmsr fclin,fmsr determined using Dosimetry Diode E or with MC simulation itself. Diode measurements were used for the CyberKnife and Varian Clinac 2100C/D linear accelerator. PTW microDiamond correction factors for Leksell Gamma Knife (LGK) were derived using MC simulated reference values from the manufacturer. PTW microDiamond correction factors for CyberKnife field sizes 25-5 mm were mostly smaller than 1% (except for 2.9% for 5 mm Iris field and 1.4% for 7.5 mm fixed cone field). The correction of 0.1% and 2.0% for 8 mm and 4 mm collimators, respectively, needed to be applied to PTW microDiamond measurements for LGK Perfexion. Finally, PTW microDiamond M Qclin fclin /M Qmsr fmsr for the linear accelerator varied from MC corrected Dosimetry Diode data by less than 0.5% (except for 1 × 1 cm 2 field size with 1.3% deviation). Regarding low resulting correction factor values, the PTW microDiamond detector may be considered an almost ideal tool for relative small field dosimetry in a large variety of stereotactic and radiosurgery treatment devices. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Correcting coils in end magnets of accelerators
NASA Astrophysics Data System (ADS)
Kassab, L. R.; Gouffon, P.
1998-05-01
We present an empirical investigation of the correcting coils behavior used to homogenize the field distribution of the race-track microtron accelerator end magnets. These end magnets belong to the second stage of the 30.0 MeV cw electron accelerator under construction at IFUSP, the race-track microtron booster, in which the beam energy is raised from 1.97 to 5.1 MeV. The correcting coils are attached to the pole faces and are based on the inhomogeneities of the magnetic field measured. The performance of these coils, when operating the end magnets with currents that differ by +/-10% from the one used in the mappings that originated the coils copper leads, is presented. For one of the magnets, adjusting conveniently the current of the correcting coils makes it possible to homogenize field distributions of different intensities, once their shapes are practically identical to those that originated the coils. For the other one, the shapes are changed and the coils are less efficient. This is related to intrinsic factors that determine the inhomogeneities. However, we obtained uniformity of 0.001% in both cases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soh, R; Lee, J; Harianto, F
Purpose: To determine and compare the correction factors obtained for TLDs in 2 × 2cm{sup 2} small field in lung heterogenous phantom using Acuros XB (AXB) and EGSnrc. Methods: This study will simulate the correction factors due to the perturbation of TLD-100 chips (Harshaw/Thermoscientific, 3 × 3 × 0.9mm{sup 3}, 2.64g/cm{sup 3}) in small field lung medium for Stereotactic Body Radiation Therapy (SBRT). A physical lung phantom was simulated by a 14cm thick composite cork phantom (0.27g/cm{sup 3}, HU:-743 ± 11) sandwiched between 4cm thick Plastic Water (CIRS,Norfolk). Composite cork has been shown to be a good lung substitute materialmore » for dosimetric studies. 6MV photon beam from Varian Clinac iX (Varian Medical Systems, Palo Alto, CA) with field size 2 × 2cm{sup 2} was simulated. Depth dose profiles were obtained from the Eclipse treatment planning system Acuros XB (AXB) and independently from DOSxyznrc, EGSnrc. Correction factors was calculated by the ratio of unperturbed to perturbed dose. Since AXB has limitations in simulating actual material compositions, EGSnrc will also simulate the AXB-based material composition for comparison to the actual lung phantom. Results: TLD-100, with its finite size and relatively high density, causes significant perturbation in 2 × 2cm{sup 2} small field in a low lung density phantom. Correction factors calculated by both EGSnrc and AXB was found to be as low as 0.9. It is expected that the correction factor obtained by EGSnrc wlll be more accurate as it is able to simulate the actual phantom material compositions. AXB have a limited material library, therefore it only approximates the composition of TLD, Composite cork and Plastic water, contributing to uncertainties in TLD correction factors. Conclusion: It is expected that the correction factors obtained by EGSnrc will be more accurate. Studies will be done to investigate the correction factors for higher energies where perturbation may be more pronounced.« less
2010-09-01
53 Figure 26. Image of the phased array antenna...................................................................54...69 Figure 38. Computation of correction angle from array factor and sum/difference beams...71 Figure 39. Front panel of the tracking algorithm
Factors Associated With Early Loss of Hallux Valgus Correction.
Shibuya, Naohiro; Kyprios, Evangelos M; Panchani, Prakash N; Martin, Lanster R; Thorud, Jakob C; Jupiter, Daniel C
Recurrence is common after hallux valgus corrective surgery. Although many investigators have studied the risk factors associated with a suboptimal hallux position at the end of long-term follow-up, few have evaluated the factors associated with actual early loss of correction. We conducted a retrospective cohort study to identify the predictors of lateral deviation of the hallux during the postoperative period. We evaluated the demographic data, preoperative severity of the hallux valgus, other angular measurements characterizing underlying deformities, amount of hallux valgus correction, and postoperative alignment of the corrected hallux valgus for associations with recurrence. After adjusting for the covariates, the only factor associated with recurrence was the postoperative tibial sesamoid position. The recurrence rate was ~50% and ~60% when the postoperative tibial sesamoid position was >4 and >5 on the 7-point scale, respectively. Published by Elsevier Inc.
Mogasale, Vittal; Maskery, Brian; Ochiai, R Leon; Lee, Jung Seok; Mogasale, Vijayalaxmi V; Ramani, Enusa; Kim, Young Eun; Park, Jin Kyung; Wierzba, Thomas F
2014-10-01
No access to safe water is an important risk factor for typhoid fever, yet risk-level heterogeneity is unaccounted for in previous global burden estimates. Since WHO has recommended risk-based use of typhoid polysaccharide vaccine, we revisited the burden of typhoid fever in low-income and middle-income countries (LMICs) after adjusting for water-related risk. We estimated the typhoid disease burden from studies done in LMICs based on blood-culture-confirmed incidence rates applied to the 2010 population, after correcting for operational issues related to surveillance, limitations of diagnostic tests, and water-related risk. We derived incidence estimates, correction factors, and mortality estimates from systematic literature reviews. We did scenario analyses for risk factors, diagnostic sensitivity, and case fatality rates, accounting for the uncertainty in these estimates and we compared them with previous disease burden estimates. The estimated number of typhoid fever cases in LMICs in 2010 after adjusting for water-related risk was 11·9 million (95% CI 9·9-14·7) cases with 129 000 (75 000-208 000) deaths. By comparison, the estimated risk-unadjusted burden was 20·6 million (17·5-24·2) cases and 223 000 (131 000-344 000) deaths. Scenario analyses indicated that the risk-factor adjustment and updated diagnostic test correction factor derived from systematic literature reviews were the drivers of differences between the current estimate and past estimates. The risk-adjusted typhoid fever burden estimate was more conservative than previous estimates. However, by distinguishing the risk differences, it will allow assessment of the effect at the population level and will facilitate cost-effectiveness calculations for risk-based vaccination strategies for future typhoid conjugate vaccine. Copyright © 2014 Mogasale et al. Open Access article distributed under the terms of CC BY-NC-SA. Published by .. All rights reserved.
NASA Astrophysics Data System (ADS)
de Prez, Leon; de Pooter, Jacco; Jansen, Bartel; Perik, Thijs; Wittkämper, Frits
2018-02-01
Recently flattening filter free (FFF) beams became available for application in modern radiotherapy. There are several advantages of FFF beams over conventional flattening filtered (cFF) beams, however differences in beam spectra at the point of interest in a phantom potentially affect the ion chamber response. Beams are also non-uniform over the length of a typical reference ion chamber and recombination is usually larger. Despite several studies describing FFF beam characteristics, only a limited number of studies investigated their effect on k Q factors. Some of those studies predicted significant discrepancies in k Q factors (0.4% up to 1.0%) if TPR20,10 based codes of practice (CoPs) were to be used. This study addresses the question to which extent k Q factors, based on a TPR20,10 CoP, can be applied in clinical reference dosimetry. It is the first study that compares k Q factors measured directly with an absorbed dose to water primary standard in FFF-cFF pairs of clinical photon beams. This was done with a transportable water calorimeter described elsewhere. The measurements corrected for recombination and beam radial non-uniformity were performed in FFF-cFF beam pairs at 6 MV and 10 MV of an Elekta Versa HD for a selection of three different Farmer-type ion chambers (eight serial numbers). The ratio of measured k Q factors of the FFF-cFF beam pairs were compared with the TPR20,10 CoPs of the NCS and IAEA and the %dd(10) x CoP of the AAPM. For the TPR20,10 based CoPs differences less than 0.23% were found in k Q factors between the corresponding FFF-cFF beams with standard uncertainties smaller than 0.35%, while for the %dd(10) x these differences were smaller than 0.46% and within the expanded uncertainty of the measurements. Based on the measurements made with the equipment described in this study the authors conclude that the k Q factors provided by the NCS-18 and IAEA TRS-398 codes of practice can be applied for flattening filter free beams without additional correction. However, existing codes of practice cannot be applied ignoring the significant volume averaging effect of the FFF beams over the ion chamber cavity. For this a corresponding volume averaging correction must be applied.
Comparison of Activity Determination of Radium 226 in FUSRAP Soil using Various Energy Lines - 12299
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tucker, Brian; Donakowski, Jough; Hays, David
2012-07-01
Gamma spectroscopy is used at the Formerly Utilized Sites Remedial Action Program (FUSRAP) Maywood Superfund Site as the primary radioanalytical tool for quantization of activities of the radionuclides of concern in site soil. When selecting energy lines in gamma spectroscopy, a number of factors are considered including assumptions concerning secondary equilibrium, interferences, and the strength of the lines. The case of the Maywood radionuclide of concern radium-226 (Ra-226) is considered in this paper. At the FUSRAP Maywood Superfund Site, one of the daughters produced from radioactive decay of Ra-226, lead-214 (Pb- 214), is used to quantitate Ra-226. Another Ra-226 daughter,more » bismuth-214 (Bi-214), also may be used to quantitate Ra-226. In this paper, a comparison of Ra-226 to Pb-214 activities and Ra-226 to Bi-214 activities, obtained using gamma spectrometry for a large number of soil samples, was performed. The Pb-214, Bi-214, and Ra-226 activities were quantitated using the 352 kilo electron volt (keV), 609 keV, and 186 keV lines, respectively. The comparisons were made after correcting the Ra-226 activities by a factor of 0.571 and both ignoring and accounting for the contribution of a U-235 interfering line to the Ra-226 line. For the Pb-214 and Bi-214 activities, a mean in-growth factor was employed. The gamma spectrometer was calibrated for efficiency and energy using a mixed gamma standard and an energy range of 59 keV to 1830 keV. The authors expect other sites with Ra-226 contamination in soil may benefit from the discussions and points in this paper. Proper use of correction factors and comparison of the data from three different gamma-emitting radionuclides revealed agreement with expectations and provided confidence that using such correction factors generates quality data. The results indicate that if contamination is low level and due to NORM, the Ra-226 can be measured directly if corrected to subtract the contribution from U-235. If there is any indication that technologically enhanced uranium may be present, the preferred measurement approach for quantitation of Ra-226 activity is detection of one of the Ra-226 daughters, Pb-214 or Bi-214, using a correction factor obtained from an in-growth curve. The results also show that the adjusted Ra-226 results compare very well with both the Pb-214 and Bi-214 results obtained using an in-growth curve correction factor. (authors)« less
Measurement of the photon identification efficiencies with the ATLAS detector using LHC Run-1 data
NASA Astrophysics Data System (ADS)
Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Verzini, M. J. Alconada; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alstaty, M.; Gonzalez, B. Alvarez; Piqueras, D. Álvarez; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Coutinho, Y. Amaral; Amelung, C.; Amidei, D.; Santos, S. P. Amor Dos; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Anulli, F.; Aoki, M.; Bella, L. Aperio; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Navarro, L. Barranco; Barreiro, F.; da Costa, J. Barreiro Guimarães; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Noccioli, E. Benhar; Benitez, J.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Kuutmann, E. Bergeaas; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bylund, O. Bessidskaia; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; De Mendizabal, J. Bilbao; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Sola, J. D. Bossio; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Madden, W. D. Breaden; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; de Renstrom, P. A. Bruckman; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruni, L. S.; Brunt, B. H.; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Urbán, S. Cabrera; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Calvet, T. P.; Toro, R. Camacho; Camarda, S.; Camarri, P.; Cameron, D.; Armadans, R. Caminal; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Canepa, A.; Bret, M. Cano; Cantero, J.; Cantrill, R.; Cao, T.; Garrido, M. D. M. Capeans; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Casper, D. W.; Castaneda-Miranda, E.; Castelijn, R.; Castelli, A.; Gimenez, V. Castillo; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Alberich, L. Cerda; Cerio, B. C.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chatterjee, A.; Chau, C. C.; Barajas, C. A. Chavez; Che, S.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; El Moursli, R. Cherkaoui; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Muiño, P. Conde; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cormier, K. J. R.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Ortuzar, M. Crispin; Cristinziani, M.; Croft, V.; Crosetti, G.; Donszelmann, T. Cuhadar; Cummings, J.; Curatolo, M.; Cúth, J.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'amen, G.; D'Auria, S.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dado, T.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Dann, N. S.; Danninger, M.; Hoffmann, M. Dano; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, M.; Davison, P.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Maria, A.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Clemente, W. K.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duffield, E. M.; Duflot, L.; Duguid, L.; Dührssen, M.; Dumancic, M.; Dunford, M.; Yildiz, H. Duran; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edwards, N. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellajosyula, V.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Ennis, J. S.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, F.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, C.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Giannelli, M. Faucci; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Martinez, P. Fernandez; Perez, S. Fernandez; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; de Lima, D. E. Ferreira; Ferrer, A.; Ferrere, D.; Ferretti, C.; Parodi, A. Ferretto; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, G. T.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Castillo, L. R. Flores; Flowerdew, M. J.; Forcolin, G. T.; Formica, A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Torregrosa, E. Fullana; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, L. G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Walls, F. M. Garay; García, C.; Navarro, J. E. García; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Bravo, A. Gascon; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisen, M.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuli, F.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Da Costa, J. Goncalves Pinto Firmino; Gonella, G.; Gonella, L.; Gongadze, A.; de la Hoz, S. González; Parra, G. Gonzalez; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Grohs, J. P.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guan, W.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Ortiz, N. G. Gutierrez; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hartmann, N. M.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Hellman, S.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Correia, A. M. Henriques; Henrot-Versille, S.; Herbert, G. H.; Jiménez, Y. Hernández; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huo, P.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Ito, F.; Ponce, J. M. Iturbe; Iuppa, R.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jain, V.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiggins, S.; Belenguer, M. Jimenez; Pena, J. Jimenez; Jin, S.; Jinaru, A.; Jinnouchi, O.; Johansson, P.; Johns, K. A.; Johnson, W. J.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Rozas, A. Juste; Köhler, M. K.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kanjir, L.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Kawade, K.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-zada, F.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; Rosa, A. La; Navarro, J. L. La Rosa; Rotonda, L. La; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Manghi, F. Lasagni; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Lazzaroni, M.; Le, B.; Dortz, O. Le; Guirriec, E. Le; Quilleuc, E. P. Le; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Miotto, G. Lehmann; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Lerner, G.; Leroy, C.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limosani, A.; Lin, S. C.; Lin, T. H.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Merino, J. Llorente; Lloyd, S. L.; Sterzo, F. Lo; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopes, L.; Mateos, D. Lopez; Paredes, B. Lopez; Paz, I. Lopez; Solis, A. Lopez; Lorenz, J.; Martinez, N. Lorenzo; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Miguens, J. Machado; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Maneira, J.; Filho, L. Manhaes de Andrade; Ramos, J. Manjarres; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Mapelli, L.; Marceca, G.; March, L.; Marchiori, G.; Marcisovsky, M.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Latour, B. Martin dit; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Fadden, N. C. Mc; Goldrick, G. Mc; Kee, S. P. Mc; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melini, D.; Garcia, B. R. Mellado; Melo, M.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Theenhausen, H. Meyer Zu; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Monden, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Berlingen, J. Montejo; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Llácer, M. Moreno; Morettini, P.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Sanchez, F. J. Munoz; Quijada, J. A. Murillo; Murray, W. J.; Musheghyan, H.; Muškinja, M.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Garcia, R. F. Naranjo; Narayan, R.; Villar, D. I. Narrias; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Manh, T. Nguyen; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Norjoharuddeen, N.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'grady, F.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Seabra, L. F. Oleiro; Pino, S. A. Olivares; Damazio, D. Oliveira; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Garzon, G. Otero y.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pages, A. Pacheco; Rodriguez, L. Pacheco; Aranda, C. Padilla; Pagáčová, M.; Griso, S. Pagan; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Panagiotopoulou, E. St.; Pandini, C. E.; Vazquez, J. G. Panduro; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Hernandez, D. Paredes; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Lopez, S. Pedraza; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Perepelitsa, D. V.; Codina, E. Perez; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pin, A. W. J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Astigarraga, M. E. Pozo; Pralavorio, P.; Pranko, A.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puddu, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Ratti, M. G.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Ravinovich, I.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodina, Y.; Perez, A. Rodriguez; Rodriguez, D. Rodriguez; Roe, S.; Rogan, C. S.; Røhne, O.; Romaniouk, A.; Romano, M.; Saez, S. M. Romano; Adam, E. Romero; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosenthal, O.; Rosien, N.-A.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Tehrani, F. Safai; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Loyola, J. E. Salazar; Salek, D.; De Bruin, P. H. Sales; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Martinez, V. Sanchez; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Castillo, I. Santoyo; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schier, S.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schneider, B.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schott, M.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Saadi, D. Shoaleh; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smiesko, J.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Sanchez, C. A. Solans; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, H. Y.; Sood, A.; Sopczak, A.; Sopko, V.; Sorin, V.; Sosa, D.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Denis, R. D. St.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Araya, S. Tapia; Tapprogge, S.; Tarem, S.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Delgado, A. Tavares; Tayalati, Y.; Taylor, A. C.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Kate, H. Ten; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Tibbetts, M. J.; Torres, R. E. Ticse; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Torrence, E.; Torres, H.; Pastor, E. Torró; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsui, K. M.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turgeman, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tyndel, M.; Ucchielli, G.; Ueda, I.; Ueno, R.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Santurio, E. Valdes; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Vallecorsa, S.; Ferrer, J. A. Valls; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vazeille, F.; Schroeder, T. Vazquez; Veatch, J.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Boeriu, O. E. Vickey; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Vigne, R.; Villa, M.; Perez, M. Villaplana; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Milosavljevic, M. Vranjes; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, W.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, M. D.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A.; White, M. J.; White, R.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Wong, K. H. Yau; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, J. C.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Nedden, M. zur; Zurzolo, G.; Zwalinski, L.
2016-12-01
The algorithms used by the ATLAS Collaboration to reconstruct and identify prompt photons are described. Measurements of the photon identification efficiencies are reported, using 4.9 fb^{-1} of pp collision data collected at the LHC at √{s} = 7 {TeV} and 20.3 fb^{-1} at √{s} = 8 {TeV}. The efficiencies are measured separately for converted and unconverted photons, in four different pseudorapidity regions, for transverse momenta between 10 {GeV} and 1.5 {TeV}. The results from the combination of three data-driven techniques are compared to the predictions from a simulation of the detector response, after correcting the electromagnetic shower momenta in the simulation for the average differences observed with respect to data. Data-to-simulation efficiency ratios used as correction factors in physics measurements are determined to account for the small residual efficiency differences. These factors are measured with uncertainties between 0.5% and 10% in 7 {TeV} data and between 0.5% and 5.6% in 8 {TeV} data, depending on the photon transverse momentum and pseudorapidity.
Nassiri, Nader; Sheibani, Kourosh; Azimi, Abbas; Khosravi, Farinaz Mahmoodi; Heravian, Javad; Yekta, Abasali; Moghaddam, Hadi Ostadi; Nassiri, Saman; Yasseri, Mehdi; Nassiri, Nariman
2015-10-01
To compare refractive outcomes, contrast sensitivity, higher-order aberrations (HOAs), and patient satisfaction after photorefractive keratectomy for correction of moderate myopia with two methods: tissue saving versus wavefront optimized. In this prospective, comparative study, 152 eyes (80 patients) with moderate myopia with and without astigmatism were randomly divided into two groups: the tissue-saving group (Technolas 217z Zyoptix laser; Bausch & Lomb, Rochester, NY) (76 eyes of 39 patients) or the wavefront-optimized group (WaveLight Allegretto Wave Eye-Q laser; Alcon Laboratories, Inc., Fort Worth, TX) (76 eyes of 41 patients). Preoperative and 3-month postoperative refractive outcomes, contrast sensitivity, HOAs, and patient satisfaction were compared between the two groups. The mean spherical equivalent was -4.50 ± 1.02 diopters. No statistically significant differences were detected between the groups in terms of uncorrected and corrected distance visual acuity and spherical equivalent preoperatively and 3 months postoperatively. No statistically significant differences were seen in the amount of preoperative to postoperative contrast sensitivity changes between the two groups in photopic and mesopic conditions. HOAs and Q factor increased in both groups postoperatively (P = .001), with the tissue-saving method causing more increases in HOAs (P = .007) and Q factor (P = .039). Patient satisfaction was comparable between both groups. Both platforms were effective in correcting moderate myopia with or without astigmatism. No difference in refractive outcome, contrast sensitivity changes, and patient satisfaction between the groups was observed. Postoperatively, the tissue-saving method caused a higher increase in HOAs and Q factor compared to the wavefront-optimized method, which could be due to larger optical zone sizes in the tissue-saving group. Copyright 2015, SLACK Incorporated.
Gurnani, Ashita S; John, Samantha E; Gavett, Brandon E
2015-05-01
The current study developed regression-based normative adjustments for a bi-factor model of the The Brief Test of Adult Cognition by Telephone (BTACT). Archival data from the Midlife Development in the United States-II Cognitive Project were used to develop eight separate linear regression models that predicted bi-factor BTACT scores, accounting for age, education, gender, and occupation-alone and in various combinations. All regression models provided statistically significant fit to the data. A three-predictor regression model fit best and accounted for 32.8% of the variance in the global bi-factor BTACT score. The fit of the regression models was not improved by gender. Eight different regression models are presented to allow the user flexibility in applying demographic corrections to the bi-factor BTACT scores. Occupation corrections, while not widely used, may provide useful demographic adjustments for adult populations or for those individuals who have attained an occupational status not commensurate with expected educational attainment. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamio, Y; Bouchard, H
2014-06-15
Purpose: Discrepancies in the verification of the absorbed dose to water from an IMRT plan using a radiation dosimeter can be wither caused by 1) detector specific nonstandard field correction factors as described by the formalism of Alfonso et al. 2) inaccurate delivery of the DQA plan. The aim of this work is to develop a simple/fast method to determine an upper limit on the contribution of composite field correction factors to these discrepancies. Methods: Indices that characterize the non-flatness of the symmetrised collapsed delivery (VSC) of IMRT fields over detector-specific regions of interest were shown to be correlated withmore » IMRT field correction factors. The indices introduced are the uniformity index (UI) and the mean fluctuation index (MF). Each one of these correlation plots have 10 000 fields generated with a stochastic model. A total of eight radiation detectors were investigated in the radial orientation. An upper bound on the correction factors was evaluated by fitting values of high correction factors for a given index value. Results: These fitted curves can be used to compare the performance of radiation dosimeters in composite IMRT fields. Highly water-equivalent dosimeters like the scintillating detector (Exradin W1) and a generic alanine detector have been found to have corrections under 1% over a broad range of field modulations (0 – 0.12 for MF and 0 – 0.5 for UI). Other detectors have been shown to have corrections of a few percent over this range. Finally, a full Monte Carlo simulations of 18 clinical and nonclinical IMRT field showed good agreement with the fitted curve for the A12 ionization chamber. Conclusion: This work proposes a rapid method to evaluate an upper bound on the contribution of correction factors to discrepancies found in the verification of DQA plans.« less
Whole-heart coronary MRA with 3D affine motion correction using 3D image-based navigation.
Henningsson, Markus; Prieto, Claudia; Chiribiri, Amedeo; Vaillant, Ghislain; Razavi, Reza; Botnar, René M
2014-01-01
Robust motion correction is necessary to minimize respiratory motion artefacts in coronary MR angiography (CMRA). The state-of-the-art method uses a 1D feet-head translational motion correction approach, and data acquisition is limited to a small window in the respiratory cycle, which prolongs the scan by a factor of 2-3. The purpose of this work was to implement 3D affine motion correction for Cartesian whole-heart CMRA using a 3D navigator (3D-NAV) to allow for data acquisition throughout the whole respiratory cycle. 3D affine transformations for different respiratory states (bins) were estimated by using 3D-NAV image acquisitions which were acquired during the startup profiles of a steady-state free precession sequence. The calculated 3D affine transformations were applied to the corresponding high-resolution Cartesian image acquisition which had been similarly binned, to correct for respiratory motion between bins. Quantitative and qualitative comparisons showed no statistical difference between images acquired with the proposed method and the reference method using a diaphragmatic navigator with a narrow gating window. We demonstrate that 3D-NAV and 3D affine correction can be used to acquire Cartesian whole-heart 3D coronary artery images with 100% scan efficiency with similar image quality as with the state-of-the-art gated and corrected method with approximately 50% scan efficiency. Copyright © 2013 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Ellis, Johnica; McFadden, Cheryl; Colaric, Susan
2008-01-01
This article summarizes the results of a study conducted to investigate factors influencing the organizational design, establishment, administration, and governance of correctional education for females. The research involved interviews with correctional and community college administrators and practitioners representing North Carolina female…
Chung, Hung-Tao; Chang, Yu-Sheng; Liao, Sui-Ling; Lai, Shen-Hao
2017-04-01
Objective To investigate the influence of surgical correction on biomarkers of endothelial dysfunction in children with congenital heart disease and to evaluate anthropometric data. Methods Children with pulmonary hypertension (PH) or Tetralogy of Fallot (TOF) who were scheduled for corrective surgery were enrolled in this prospective study. Age-matched healthy children were included as controls. Demographic, haemodynamic and cardiac ultrasonography data were collected. Blood samples were taken pre-surgery, 24-48 hours post-surgery and again 3-6 months later. Several biomarkers (protein C, soluble platelet selectin [CD62P], soluble endothelium selectin [CD62E], soluble leukocyte selectin [CD62L], plasma von Willebrand Factor [vWF] atrial natriuretic peptide [ANP], brain natriuretic peptide[(BNP] and insulin-like growth factor-1 [IGF-1]) were measured. Results Sixty-three children (32 with PH, 15 with TOF, and 16 controls) were enrolled. No significant differences between the PH and TOF groups were observed in the expression of biomarkers pre- and post-surgery. IGF-1 levels were closely related to anthropometric data, particularly those children with PH. Expression of IGF-1 and weight/height normalized after corrective surgery. Conclusions No significant endothelial dysfunction was observed in children with PH or TOF before or after corrective surgery. Significant retardation of growth, particularly weight, was found before surgery and may be related to IGF-1 suppression.
Ando, Kei; Kobayashi, Kazuyoshi; Ito, Kenyu; Tsushima, Mikito; Morozumi, Masayoshi; Tanaka, Satoshi; Machino, Masaaki; Ota, Kyotaro; Nishida, Yoshihiro; Ishiguro, Naoki; Imagama, Shiro
2018-03-29
There is little information on intraoperative neuromonitoring during correction fusion surgery for syndromic scoliosis. To investigate intraoperative TcMEPs and conditions (body temperature and blood pressure) for syndromic scoliosis. The subjects were 23 patients who underwent 25 surgeries for corrective fusion using TcMEP. Patients were divided into groups based on a decrease (DA+) or no decrease (DA-) of the amplitude of the TcMEP waveform of ≥70%. The groups were compared for age, sex, disease, type of surgery, fusion area, operation time, estimated blood loss, body temperature, blood pressure, Cobb angle, angular curve (Cobb angle/number of vertebra), bending flexibility, correction rate, and recovery. The mean Cobb angles before and after surgery were 85.2° and 29.1°, giving a correction rate of 68.2%. There were 16 surgeries (64.0%) with intraoperative TcMEP wave changes. The DA+ and DA- groups had similar intraoperative conditions, but the short angular curve differed significantly between these groups. Amplitude deterioration occurred in 4 cases during first rod placement, in 8 during rotation, and in 3 during second rod placement after rotation. Seven patients had complete loss of TcMEP. However, most TcMEP changes recovered after pediclectomy or decreased correction. The preoperative angular curve differed significantly between patients with and without TcMEP changes (P < .05). Intraoperative TcMEP wave changes occurred in 64.0% of surgeries for corrective fusion, and all but one of these changes occurred during the correction procedure. The angular curve was a risk factor for intraoperative motor deficit.
Papaconstadopoulos, Pavlos; Archambault, Louis; Seuntjens, Jan
2017-02-01
To investigate the accuracy of output factor measurements using a commercial (Exradin W1, SI) and a prototype, "in-house" developed, plastic scintillation dosimeter (PSD) in small photon fields. Repetitive detector-specific output factor OF det measurements were performed in water (parallel to the CAX) using two W1 PSDs (SI), a PTW microLion, a PTW microDiamond and an unshielded diode D1V (SI) to which Monte Carlo calculated corrections factors were applied. Four sets of repetitive measurements were performed with the W1 PSD positioned parallel and perpendicular to the CAX, each set on a different day, and with analytically calculated volume averaging corrections applied. The W1 OF det measurements were compared to measurements using an "in-house" developed PSD in water (CHUQ) and both were validated against a previously commissioned Monte Carlo beam model in small photon fields. The performance of the spectrum discrimination calibration procedure was evaluated under different fiber orientations and wavelength threshold choices and the impact on the respective OF det was reported. For all detectors in the study an excellent agreement was observed down to a field size of 1 × 1 cm 2 . For the smallest field size of 0.5 × 0.5 cm 2 , the W1 PSDs presented OF det readings higher by 3.8 to 5.0% relative to the mean corrected OF det of the rest of the detectors and by 5.8 to 6.1% relative to the CHUQ PSD. The repetitive W1 OF det measurements in water (parallel CAX) were higher by 3.9% relative to the OF det measurements in Solid Water TM (perpendicular CAX) even after volume averaging corrections were applied, indicating a potential fiber orientation dependency in small fields. Uncertainties in jaw and detector repositioning as well as source variations with time were estimated to be less than 0.9% (1 σ) for the W1 under both orientations. The CHUQ PSD agreed with the MC dose calculations in water, for the smallest field size, within 1.1-1.7% before any corrections and within 0.3-0.8% after volume averaging corrections. The spectrum discrimination method provided reproducible Cherenkov spectra under the different calibration set-ups with noisier spectra extracted if the calibration is performed in water and parallel to the CAX. The impact of fiber orientation and wavelength threshold during calibration on OF det was in general minimal. Clinically relevant differences were observed between similar scintillator dosimeters in photon fields smaller than 1 × 1 cm 2 . Further research on PSDs is needed that can explain the origin of these differences especially related to the Cherenkov spectrum dependencies on the optical fiber technical characteristics. © 2016 American Association of Physicists in Medicine.
2014-09-01
peak shaving, conducting power factor correction, matching critical load to most efficient distributed resource, and islanding a system during...photovoltaic arrays during islanding, and power factor correction, the implementation of the ESS by itself is likely to prove cost prohibitive. The DOD...These functions include peak shaving, conducting power factor correction, matching critical load to most efficient distributed resource, and islanding a
Photometric Lambert Correction for Global Mosaicking of HRSC Data
NASA Astrophysics Data System (ADS)
Walter, Sebastian; Michael, Greg; van Gasselt, Stephan; Kneissl, Thomas
2015-04-01
The High Resolution Stereo Camera (HRSC) is a push-broom image sensor onboard Mars Express recording the Martian surface in 3D and color. Being in orbit since 2004, the camera has obtained over 3,600 panchromatic image sequences covering about 70% of the planet's surface at 10-20 m/pixel. The composition of an homogenous global mosaic is a major challenge due to the strong elliptical and highly irregular orbit of the spacecraft, which often results in large variations of illumination and atmospheric conditions between individual images. For the purpose of a global mosaic in the full Nadir resolution of 12.5 m per pixel we present a first-order systematic photometric correction for the individual image sequences based on a Lambertian reflection model. During the radiometric calibration of the HRSC data, values for the reflectance scaling factor and the reflectance offset are added to the individual image labels. These parameters can be used for a linear transformation from the original DN values into spectral reflectance values. The spectral reflectance varies with the solar incidence angle, topography (changing the local incidence angle and therefore adding an exta geometry factor for each ground pixel), the bi-directional reflectance distribution function (BRDF) of the surface, and atmospheric effects. Mosaicking the spectral values together as images sometimes shows large brightness differences. One major contributor to the brightness differences between two images is the differing solar geometry due to the varying time of day when the individual images were obtained. This variation causes two images of the same or adjacent areas to have different image brightnesses. As a first-order correction for the varying illumination conditions and resulting brightness variations, the images are corrected for the solar incidence angle by assuming an ideal diffusely reflecting behaviour of the surface. This correction requires the calculation of the solar geometry for each image pixel by an image-to-ground function. For the calculations we are using the VICAR framework and the SPICE library. Under the Lambertian assumption, the reflectance diminishment resulting from an inclined Sun angle can be corrected by dividing the measured reflectance by the cosine of the illumination angle. After rectification of the corrected images, the individual images are mosaicked together. The overall visual impression shows a much better integration of the individual image sequences. The correction resolves the direct correlation between the reflectance and the incidence angles from the data. It does not account for topographic, atmospheric or BRDF influences to the measurements. Since the main purpose of the global HRSC image mosaic is the application for geomorphologic studies with a good visual impression of the albedo variations and the topography, the remaining distortions at the image seams can be equalized by non-reversible image matching techniques.
Improved estimates of environmental copper release rates from antifouling products.
Finnie, Alistair A
2006-01-01
The US Navy Dome method for measuring copper release rates from antifouling paint in-service on ships' hulls can be considered to be the most reliable indicator of environmental release rates. In this paper, the relationship between the apparent copper release rate and the environmental release rate is established for a number of antifouling coating types using data from a variety of available laboratory, field and calculation methods. Apart from a modified Dome method using panels, all laboratory, field and calculation methods significantly overestimate the environmental release rate of copper from antifouling coatings. The difference is greatest for self-polishing copolymer antifoulings (SPCs) and smallest for certain erodible/ablative antifoulings, where the ASTM/ISO standard and the CEPE calculation method are seen to typically overestimate environmental release rates by factors of about 10 and 4, respectively. Where ASTM/ISO or CEPE copper release rate data are used for environmental risk assessment or regulatory purposes, it is proposed that the release rate values should be divided by a correction factor to enable more reliable generic environmental risk assessments to be made. Using a conservative approach based on a realistic worst case and accounting for experimental uncertainty in the data that are currently available, proposed default correction factors for use with all paint types are 5.4 for the ASTM/ISO method and 2.9 for the CEPE calculation method. Further work is required to expand this data-set and refine the correction factors through correlation of laboratory measured and calculated copper release rates with the direct in situ environmental release rate for different antifouling paints under a range of environmental conditions.
The Effects of Methods of Imputation for Missing Values on the Validity and Reliability of Scales
ERIC Educational Resources Information Center
Cokluk, Omay; Kayri, Murat
2011-01-01
The main aim of this study is the comparative examination of the factor structures, corrected item-total correlations, and Cronbach-alpha internal consistency coefficients obtained by different methods used in imputation for missing values in conditions of not having missing values, and having missing values of different rates in terms of testing…
Haidinger, Teresa; Zweimüller, Martin; Stütz, Lena; Demir, Dondue; Kaider, Alexandra; Strametz-Juranek, Jeanette
2012-04-01
The incidence of cardiovascular disease (CVD) is increasing in industrialized countries. Preventive action is an important factor in minimizing CVD-associated morbidity and mortality. However, it is not known whether gender differences affect CVD or risk factor awareness influencing self-assessment of personal risk and preventive action. This study was performed to assess individual CVD and risk factor awareness, preventive action taken, and barriers to cardiovascular health. The study included 573 women and 336 men, randomly chosen to complete an anonymous questionnaire to assess individual CVD and risk factor awareness, preventive action taken, and barriers to cardiovascular health. The data were analyzed using SAS software. Cardiovascular disease was identified in 75% of patients, in both sexes, as the leading cause of death; however, both groups showed significant lack of knowledge about CVD risk factors. Type 2 diabetes was identified correctly in only 27.5%. Preventive action was linked more often to family members in 66.5% of women and 62.8% of men. The primary barrier to cardiovascular health in adults was incorrect assessment of personal CVD risk. More than half of female respondents (56.4%) and male respondents (52.7%) underestimated their risk of CVD. Knowledge about risk factors for CVD needs to be improved in members of both sexes. Because women, in particular, have difficulty in correctly assessing their personal CVD risk, future education programs are warranted to inform both women and men about CVD and its risk factors, thereby helping them to correctly assess their individual risk. However, greater effort is needed to inform men, compared with women, about the various ways in which to prevent CVD and to motivate them to take preventive action. Copyright © 2012 Elsevier HS Journals, Inc. All rights reserved.
Electron fluence correction factors for various materials in clinical electron beams.
Olivares, M; DeBlois, F; Podgorsak, E B; Seuntjens, J P
2001-08-01
Relative to solid water, electron fluence correction factors at the depth of dose maximum in bone, lung, aluminum, and copper for nominal electron beam energies of 9 MeV and 15 MeV of the Clinac 18 accelerator have been determined experimentally and by Monte Carlo calculation. Thermoluminescent dosimeters were used to measure depth doses in these materials. The measured relative dose at dmax in the various materials versus that of solid water, when irradiated with the same number of monitor units, has been used to calculate the ratio of electron fluence for the various materials to that of solid water. The beams of the Clinac 18 were fully characterized using the EGS4/BEAM system. EGSnrc with the relativistic spin option turned on was used to optimize the primary electron energy at the exit window, and to calculate depth doses in the five phantom materials using the optimized phase-space data. Normalizing all depth doses to the dose maximum in solid water stopping power ratio corrected, measured depth doses and calculated depth doses differ by less than +/- 1% at the depth of dose maximum and by less than 4% elsewhere. Monte Carlo calculated ratios of doses in each material to dose in LiF were used to convert the TLD measurements at the dose maximum into dose at the center of the TLD in the phantom material. Fluence perturbation correction factors for a LiF TLD at the depth of dose maximum deduced from these calculations amount to less than 1% for 0.15 mm thick TLDs in low Z materials and are between 1% and 3% for TLDs in Al and Cu phantoms. Electron fluence ratios of the studied materials relative to solid water vary between 0.83+/-0.01 and 1.55+/-0.02 for materials varying in density from 0.27 g/cm3 (lung) to 8.96 g/cm3 (Cu). The difference in electron fluence ratios derived from measurements and calculations ranges from -1.6% to +0.2% at 9 MeV and from -1.9% to +0.2% at 15 MeV and is not significant at the 1sigma level. Excluding the data for Cu, electron fluence correction factors for open electron beams are approximately proportional to the electron density of the phantom material and only weakly dependent on electron beam energy.
Phiri, Sam; Rothenbacher, Dietrich; Neuhann, Florian
2015-01-01
Background Chronic kidney disease (CKD) is a probably underrated public health problem in Sub-Saharan-Africa, in particular in combination with HIV-infection. Knowledge about the CKD prevalence is scarce and in the available literature different methods to classify CKD are used impeding comparison and general prevalence estimates. Methods This study assessed different serum-creatinine based equations for glomerular filtration rates (eGFR) and compared them to a cystatin C based equation. The study was conducted in Lilongwe, Malawi enrolling a population of 363 adults of which 32% were HIV-positive. Results Comparison of formulae based on Bland-Altman-plots and accuracy revealed best performance for the CKD-EPI equation without the correction factor for black Americans. Analyzing the differences between HIV-positive and –negative individuals CKD-EPI systematically overestimated eGFR in comparison to cystatin C and therefore lead to underestimation of CKD in HIV-positives. Conclusions Our findings underline the importance for standardization of eGFR calculation in a Sub-Saharan African setting, to further investigate the differences with regard to HIV status and to develop potential correction factors as established for age and sex. PMID:26083345
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bergstrom, P
Purpose: The National Institute of Standards and Technology (NIST) uses 3 free-air chambers to establish primary standards for radiation dosimetry at x-ray energies. For medium-energy × rays, the Ritz free-air chamber is the main measurement device. In order to convert the charge or current collected by the chamber to the radiation quantities air kerma or air kerma rate, a number of correction factors specific to the chamber must be applied. Methods: We used the Monte Carlo codes EGSnrc and PENELOPE. Results: Among these correction factors are the diaphragm correction (which accounts for interactions of photons from the x-ray source inmore » the beam-defining diaphragm of the chamber), the scatter correction (which accounts for the effects of photons scattered out of the primary beam), the electron-loss correction (which accounts for electrons that only partially expend their energy in the collection region), the fluorescence correction (which accounts for ionization due to reabsorption ffluorescence photons and the bremsstrahlung correction (which accounts for the reabsorption of bremsstrahlung photons). We have computed monoenergetic corrections for the NIST Ritz chamber for the 1 cm, 3 cm and 7 cm collection plates. Conclusion: We find good agreement with other’s results for the 7 cm plate. The data used to obtain these correction factors will be used to establish air kerma and it’s uncertainty in the standard NIST x-ray beams.« less
Is the PTW 60019 microDiamond a suitable candidate for small field reference dosimetry?
NASA Astrophysics Data System (ADS)
De Coste, Vanessa; Francescon, Paolo; Marinelli, Marco; Masi, Laura; Paganini, Lucia; Pimpinella, Maria; Prestopino, Giuseppe; Russo, Serenella; Stravato, Antonella; Verona, Claudio; Verona-Rinati, Gianluca
2017-09-01
A systematic study of the PTW microDiamond (MD) output factors (OF) is reported, aimed at clarifying its response in small fields and investigating its suitability for small field reference dosimetry. Ten MDs were calibrated under 60Co irradiation. OF measurements were performed in 6 MV photon beams by a CyberKnife M6, a Varian DHX and an Elekta Synergy linacs. Two PTW silicon diodes E (Si-D) were used for comparison. The results obtained by the MDs were evaluated in terms of absorbed dose to water determination in reference conditions and OF measurements, and compared to the results reported in the recent literature. To this purpose, the Monte Carlo (MC) beam-quality correction factor, kQMD , was calculated for the MD, and the small field output correction factors, k{{Qclin},{{Q}msr}}{{fclin},{{f}msr}} , were calculated for both the MD and the Si-D by two different research groups. An empirical function was also derived, providing output correction factors within 0.5% from the MC values calculated for all of the three linacs. A high reproducibility of the dosimetric properties was observed among the ten MDs. The experimental kQMD values are in agreement within 1% with the MC calculated ones. Output correction factors within +0.7% and -1.4% were obtained down to field sizes as narrow as 5 mm. The resulting MD and Si-D field factors are in agreement within 0.2% in the case of CyberKnife measurements and 1.6% in the other cases. This latter higher spread of the data was demonstrated to be due to a lower reproducibility of small beam sizes defined by jaws or multi leaf collimators. The results of the present study demonstrate the reproducibility of the MD response and provide a validation of the MC modelling of this device. In principle, accurate reference dosimetry is thus feasible by using the microDiamond dosimeter for field sizes down to 5 mm.
Liu, Paul Z.Y.; Lee, Christopher; McKenzie, David R.; Suchowerska, Natalka
2016-01-01
Flattening filter‐free (FFF) beams are becoming the preferred beam type for stereotactic radiosurgery (SRS) and stereotactic ablative radiation therapy (SABR), as they enable an increase in dose rate and a decrease in treatment time. This work assesses the effects of the flattening filter on small field output factors for 6 MV beams generated by both Elekta and Varian linear accelerators, and determines differences between detector response in flattened (FF) and FFF beams. Relative output factors were measured with a range of detectors (diodes, ionization chambers, radiochromic film, and microDiamond) and referenced to the relative output factors measured with an air core fiber optic dosimeter (FOD), a scintillation dosimeter developed at Chris O'Brien Lifehouse, Sydney. Small field correction factors were generated for both FF and FFF beams. Diode measured detector response was compared with a recently published mathematical relation to predict diode response corrections in small fields. The effect of flattening filter removal on detector response was quantified using a ratio of relative detector responses in FFF and FF fields for the same field size. The removal of the flattening filter was found to have a small but measurable effect on ionization chamber response with maximum deviations of less than ±0.9% across all field sizes measured. Solid‐state detectors showed an increased dependence on the flattening filter of up to ±1.6%. Measured diode response was within ±1.1% of the published mathematical relation for all fields up to 30 mm, independent of linac type and presence or absence of a flattening filter. For 6 MV beams, detector correction factors between FFF and FF beams are interchangeable for a linac between FF and FFF modes, providing that an additional uncertainty of up to ±1.6% is accepted. PACS number(s): 87.55.km, 87.56.bd, 87.56.Da PMID:27167280
Zhang, Yanbin; Lin, Guanfeng; Wang, Shengru; Zhang, Jianguo; Shen, Jianxiong; Wang, Yipeng; Guo, Jianwei; Yang, Xinyu; Zhao, Lijuan
2016-01-01
Study Design. Retrospective study. Objective. To study the behavior of the unfused thoracic curve in Lenke type 5C during the follow-up and to identify risk factors for its correction loss. Summary of Background Data. Few studies have focused on the spontaneous behaviors of the unfused thoracic curve after selective thoracolumbar or lumbar fusion during the follow-up and the risk factors for spontaneous correction loss. Methods. We retrospectively reviewed 45 patients (41 females and 4 males) with AIS who underwent selective TL/L fusion from 2006 to 2012 in a single institution. The follow-up averaged 36 months (range, 24–105 months). Patients were divided into two groups. Thoracic curves in group A improved or maintained their curve magnitude after spontaneous correction, with a negative or no correction loss during the follow-up. Thoracic curves in group B deteriorated after spontaneous correction with a positive correction loss. Univariate analysis and multivariate analysis were built to identify the risk factors for correction loss of the unfused thoracic curves. Results. The minor thoracic curve was 26° preoperatively. It was corrected to 13° immediately with a spontaneous correction of 48.5%. At final follow-up it was 14° with a correction loss of 1°. Thoracic curves did not deteriorate after spontaneous correction in 23 cases in group A, while 22 cases were identified with thoracic curve progressing in group B. In multivariate analysis, two risk factors were independently associated with thoracic correction loss: higher flexibility and better immediate spontaneous correction rate of thoracic curve. Conclusion. Posterior selective TL/L fusion with pedicle screw constructs is an effective treatment for Lenke 5C AIS patients. Nonstructural thoracic curves with higher flexibility or better immediate correction are more likely to progress during the follow-up and close attentions must be paid to these patients in case of decompensation. Level of Evidence: 4 PMID:27831989
Two-Dimensional Thermal Boundary Layer Corrections for Convective Heat Flux Gauges
NASA Technical Reports Server (NTRS)
Kandula, Max; Haddad, George
2007-01-01
This work presents a CFD (Computational Fluid Dynamics) study of two-dimensional thermal boundary layer correction factors for convective heat flux gauges mounted in flat plate subjected to a surface temperature discontinuity with variable properties taken into account. A two-equation k - omega turbulence model is considered. Results are obtained for a wide range of Mach numbers (1 to 5), gauge radius ratio, and wall temperature discontinuity. Comparisons are made for correction factors with constant properties and variable properties. It is shown that the variable-property effects on the heat flux correction factors become significant
A study on scattering correction for γ-photon 3D imaging test method
NASA Astrophysics Data System (ADS)
Xiao, Hui; Zhao, Min; Liu, Jiantang; Chen, Hao
2018-03-01
A pair of 511KeV γ-photons is generated during a positron annihilation. Their directions differ by 180°. The moving path and energy information can be utilized to form the 3D imaging test method in industrial domain. However, the scattered γ-photons are the major factors influencing the imaging precision of the test method. This study proposes a γ-photon single scattering correction method from the perspective of spatial geometry. The method first determines possible scattering points when the scattered γ-photon pair hits the detector pair. The range of scattering angle can then be calculated according to the energy window. Finally, the number of scattered γ-photons denotes the attenuation of the total scattered γ-photons along its moving path. The corrected γ-photons are obtained by deducting the scattered γ-photons from the original ones. Two experiments are conducted to verify the effectiveness of the proposed scattering correction method. The results concluded that the proposed scattering correction method can efficiently correct scattered γ-photons and improve the test accuracy.
Casey, Kevin E.; Alvarez, Paola; Kry, Stephen F.; Howell, Rebecca M.; Lawyer, Ann; Followill, David
2013-01-01
Purpose: The aim of this work was to create a mailable phantom with measurement accuracy suitable for Radiological Physics Center (RPC) audits of high dose-rate (HDR) brachytherapy sources at institutions participating in National Cancer Institute-funded cooperative clinical trials. Optically stimulated luminescence dosimeters (OSLDs) were chosen as the dosimeter to be used with the phantom. Methods: The authors designed and built an 8 × 8 × 10 cm3 prototype phantom that had two slots capable of holding Al2O3:C OSLDs (nanoDots; Landauer, Glenwood, IL) and a single channel capable of accepting all 192Ir HDR brachytherapy sources in current clinical use in the United States. The authors irradiated the phantom with Nucletron and Varian 192Ir HDR sources in order to determine correction factors for linearity with dose and the combined effects of irradiation energy and phantom characteristics. The phantom was then sent to eight institutions which volunteered to perform trial remote audits. Results: The linearity correction factor was kL = (−9.43 × 10−5 × dose) + 1.009, where dose is in cGy, which differed from that determined by the RPC for the same batch of dosimeters using 60Co irradiation. Separate block correction factors were determined for current versions of both Nucletron and Varian 192Ir HDR sources and these vendor-specific correction factors differed by almost 2.6%. For the Nucletron source, the correction factor was 1.026 [95% confidence interval (CI) = 1.023–1.028], and for the Varian source, it was 1.000 (95% CI = 0.995–1.005). Variations in lateral source positioning up to 0.8 mm and distal/proximal source positioning up to 10 mm had minimal effect on dose measurement accuracy. The overall dose measurement uncertainty of the system was estimated to be 2.4% and 2.5% for the Nucletron and Varian sources, respectively (95% CI). This uncertainty was sufficient to establish a ±5% acceptance criterion for source strength audits under a formal RPC audit program. Trial audits of four Nucletron sources and four Varian sources revealed an average RPC-to-institution dose ratio of 1.000 (standard deviation = 0.011). Conclusions: The authors have created an OSLD-based 192Ir HDR brachytherapy source remote audit tool which offers sufficient dose measurement accuracy to allow the RPC to establish a remote audit program with a ±5% acceptance criterion. The feasibility of the system has been demonstrated with eight trial audits to date. PMID:24320455
Size Distribution of Sea-Salt Emissions as a Function of Relative Humidity
NASA Astrophysics Data System (ADS)
Zhang, K. M.; Knipping, E. M.; Wexler, A. S.; Bhave, P. V.; Tonnesen, G. S.
2004-12-01
Here we introduced a simple method for correcting sea-salt particle-size distributions as a function of relative humidity. Distinct from previous approaches, our derivation uses particle size at formation as the reference state rather than dry particle size. The correction factors, corresponding to the size at formation and the size at 80% RH, are given as polynomial functions of local relative humidity which are straightforward to implement. Without major compromises, the correction factors are thermodynamically accurate and can be applied between 0.45 and 0.99 RH. Since the thermodynamic properties of sea-salt electrolytes are weakly dependent on ambient temperature, these factors can be regarded as temperature independent. The correction factor w.r.t. to the size at 80% RH is in excellent agreement with those from Fitzgerald's and Gerber's growth equations; while the correction factor w.r.t. the size at formation has the advantage of being independent of dry size and relative humidity at formation. The resultant sea-salt emissions can be used directly in atmospheric model simulations at urban, regional and global scales without further correction. Application of this method to several common open-ocean and surf-zone sea-salt-particle source functions is described.
The combination of the error correction methods of GAFCHROMIC EBT3 film
Li, Yinghui; Chen, Lixin; Zhu, Jinhan; Liu, Xiaowei
2017-01-01
Purpose The aim of this study was to combine a set of methods for use of radiochromic film dosimetry, including calibration, correction for lateral effects and a proposed triple-channel analysis. These methods can be applied to GAFCHROMIC EBT3 film dosimetry for radiation field analysis and verification of IMRT plans. Methods A single-film exposure was used to achieve dose calibration, and the accuracy was verified based on comparisons with the square-field calibration method. Before performing the dose analysis, the lateral effects on pixel values were corrected. The position dependence of the lateral effect was fitted by a parabolic function, and the curvature factors of different dose levels were obtained using a quadratic formula. After lateral effect correction, a triple-channel analysis was used to reduce disturbances and convert scanned images from films into dose maps. The dose profiles of open fields were measured using EBT3 films and compared with the data obtained using an ionization chamber. Eighteen IMRT plans with different field sizes were measured and verified with EBT3 films, applying our methods, and compared to TPS dose maps, to check correct implementation of film dosimetry proposed here. Results The uncertainty of lateral effects can be reduced to ±1 cGy. Compared with the results of Micke A et al., the residual disturbances of the proposed triple-channel method at 48, 176 and 415 cGy are 5.3%, 20.9% and 31.4% smaller, respectively. Compared with the ionization chamber results, the difference in the off-axis ratio and percentage depth dose are within 1% and 2%, respectively. For the application of IMRT verification, there were no difference between two triple-channel methods. Compared with only corrected by triple-channel method, the IMRT results of the combined method (include lateral effect correction and our present triple-channel method) show a 2% improvement for large IMRT fields with the criteria 3%/3 mm. PMID:28750023
NASA Technical Reports Server (NTRS)
Molino, J. A.
1982-01-01
A review of 34 studies indicates that several factors or variables might be important in providing a psychoacoustic foundation for measurements of the noise from helicopters. These factors are phase relations, tail rotor noise, repetition rate, crest level, and generic differences between conventional aircraft and helicopters. Particular attention was given to the impulsive noise known as blade slap. Analysis of the evidence for and against each factor reveals that, for the present state of scientific knowledge, none of these factors should be regarded as the basis for a significant noise measurement correction due to impulsive blade slap. The current method of measuring effective perceived noise level for conventional aircraft appears to be adequate for measuring helicopter noise as well.
Bias and uncertainty in regression-calibrated models of groundwater flow in heterogeneous media
Cooley, R.L.; Christensen, S.
2006-01-01
Groundwater models need to account for detailed but generally unknown spatial variability (heterogeneity) of the hydrogeologic model inputs. To address this problem we replace the large, m-dimensional stochastic vector ?? that reflects both small and large scales of heterogeneity in the inputs by a lumped or smoothed m-dimensional approximation ????*, where ?? is an interpolation matrix and ??* is a stochastic vector of parameters. Vector ??* has small enough dimension to allow its estimation with the available data. The consequence of the replacement is that model function f(????*) written in terms of the approximate inputs is in error with respect to the same model function written in terms of ??, ??,f(??), which is assumed to be nearly exact. The difference f(??) - f(????*), termed model error, is spatially correlated, generates prediction biases, and causes standard confidence and prediction intervals to be too small. Model error is accounted for in the weighted nonlinear regression methodology developed to estimate ??* and assess model uncertainties by incorporating the second-moment matrix of the model errors into the weight matrix. Techniques developed by statisticians to analyze classical nonlinear regression methods are extended to analyze the revised method. The analysis develops analytical expressions for bias terms reflecting the interaction of model nonlinearity and model error, for correction factors needed to adjust the sizes of confidence and prediction intervals for this interaction, and for correction factors needed to adjust the sizes of confidence and prediction intervals for possible use of a diagonal weight matrix in place of the correct one. If terms expressing the degree of intrinsic nonlinearity for f(??) and f(????*) are small, then most of the biases are small and the correction factors are reduced in magnitude. Biases, correction factors, and confidence and prediction intervals were obtained for a test problem for which model error is large to test robustness of the methodology. Numerical results conform with the theoretical analysis. ?? 2005 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Marsolat, F.; De Marzi, L.; Pouzoulet, F.; Mazal, A.
2016-01-01
In proton therapy, the relative biological effectiveness (RBE) depends on various types of parameters such as linear energy transfer (LET). An analytical model for LET calculation exists (Wilkens’ model), but secondary particles are not included in this model. In the present study, we propose a correction factor, L sec, for Wilkens’ model in order to take into account the LET contributions of certain secondary particles. This study includes secondary protons and deuterons, since the effects of these two types of particles can be described by the same RBE-LET relationship. L sec was evaluated by Monte Carlo (MC) simulations using the GATE/GEANT4 platform and was defined by the ratio of the LET d distributions of all protons and deuterons and only primary protons. This method was applied to the innovative Pencil Beam Scanning (PBS) delivery systems and L sec was evaluated along the beam axis. This correction factor indicates the high contribution of secondary particles in the entrance region, with L sec values higher than 1.6 for a 220 MeV clinical pencil beam. MC simulations showed the impact of pencil beam parameters, such as mean initial energy, spot size, and depth in water, on L sec. The variation of L sec with these different parameters was integrated in a polynomial function of the L sec factor in order to obtain a model universally applicable to all PBS delivery systems. The validity of this correction factor applied to Wilkens’ model was verified along the beam axis of various pencil beams in comparison with MC simulations. A good agreement was obtained between the corrected analytical model and the MC calculations, with mean-LET deviations along the beam axis less than 0.05 keV μm-1. These results demonstrate the efficacy of our new correction of the existing LET model in order to take into account secondary protons and deuterons along the pencil beam axis.
SU-E-T-123: Anomalous Altitude Effect in Permanent Implant Brachytherapy Seeds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watt, E; Spencer, DP; Meyer, T
Purpose: Permanent seed implant brachytherapy procedures require the measurement of the air kerma strength of seeds prior to implant. This is typically accomplished using a well-type ionization chamber. Previous measurements (Griffin et al., 2005; Bohm et al., 2005) of several low-energy seeds using the air-communicating HDR 1000 Plus chamber have demonstrated that the standard temperature-pressure correction factor, P{sub TP}, may overcompensate for air density changes induced by altitude variations by up to 18%. The purpose of this work is to present empirical correction factors for two clinically-used seeds (IsoAid ADVANTAGE™ {sup 103}Pd and Nucletron selectSeed {sup 125}I) for which empiricalmore » altitude correction factors do not yet exist in the literature when measured with the HDR 1000 Plus chamber. Methods: An in-house constructed pressure vessel containing the HDR 1000 Plus well chamber and a digital barometer/thermometer was pumped or evacuated, as appropriate, to a variety of pressures from 725 to 1075 mbar. Current measurements, corrected with P{sub TP}, were acquired for each seed at these pressures and normalized to the reading at ‘standard’ pressure (1013.25 mbar). Results: Measurements in this study have shown that utilization of P{sub TP} can overcompensate in the corrected current reading by up to 20% and 17% for the IsoAid Pd-103 and the Nucletron I-125 seed respectively. Compared to literature correction factors for other seed models, the correction factors in this study diverge by up to 2.6% and 3.0% for iodine (with silver) and palladium respectively, indicating the need for seed-specific factors. Conclusion: The use of seed specific altitude correction factors can reduce uncertainty in the determination of air kerma strength. The empirical correction factors determined in this work can be applied in clinical quality assurance measurements of air kerma strength for two previously unpublished seed designs (IsoAid ADVANTAGE™ {sup 103}Pd and Nucletron selectSeed {sup 125}I) with the HDR 1000 Plus well chamber.« less
Lourenço, Ana; Thomas, Russell; Bouchard, Hugo; Kacperek, Andrzej; Vondracek, Vladimir; Royle, Gary; Palmans, Hugo
2016-07-01
The aim of this study was to determine fluence corrections necessary to convert absorbed dose to graphite, measured by graphite calorimetry, to absorbed dose to water. Fluence corrections were obtained from experiments and Monte Carlo simulations in low- and high-energy proton beams. Fluence corrections were calculated to account for the difference in fluence between water and graphite at equivalent depths. Measurements were performed with narrow proton beams. Plane-parallel-plate ionization chambers with a large collecting area compared to the beam diameter were used to intercept the whole beam. High- and low-energy proton beams were provided by a scanning and double scattering delivery system, respectively. A mathematical formalism was established to relate fluence corrections derived from Monte Carlo simulations, using the fluka code [A. Ferrari et al., "fluka: A multi-particle transport code," in CERN 2005-10, INFN/TC 05/11, SLAC-R-773 (2005) and T. T. Böhlen et al., "The fluka Code: Developments and challenges for high energy and medical applications," Nucl. Data Sheets 120, 211-214 (2014)], to partial fluence corrections measured experimentally. A good agreement was found between the partial fluence corrections derived by Monte Carlo simulations and those determined experimentally. For a high-energy beam of 180 MeV, the fluence corrections from Monte Carlo simulations were found to increase from 0.99 to 1.04 with depth. In the case of a low-energy beam of 60 MeV, the magnitude of fluence corrections was approximately 0.99 at all depths when calculated in the sensitive area of the chamber used in the experiments. Fluence correction calculations were also performed for a larger area and found to increase from 0.99 at the surface to 1.01 at greater depths. Fluence corrections obtained experimentally are partial fluence corrections because they account for differences in the primary and part of the secondary particle fluence. A correction factor, F(d), has been established to relate fluence corrections defined theoretically to partial fluence corrections derived experimentally. The findings presented here are also relevant to water and tissue-equivalent-plastic materials given their carbon content.
NASA Astrophysics Data System (ADS)
Zhang, Yongqian; Brandner, Edward; Ozhasoglu, Cihat; Lalonde, Ron; Heron, Dwight E.; Saiful Huq, M.
2018-02-01
The use of small fields in radiation therapy techniques has increased substantially in particular in stereotactic radiosurgery (SRS) and stereotactic body radiation therapy (SBRT). However, as field size reduces further still, the response of the detector changes more rapidly with field size, and the effects of measurement uncertainties become increasingly significant due to the lack of lateral charged particle equilibrium, spectral changes as a function of field size, detector choice, and subsequent perturbations of the charged particle fluence. This work presents a novel 3D dose volume-to-point correction method to predict the readings of a 0.015 cc PinPoint chamber (PTW 31014) for both small static-fields and composite-field dosimetry formed by fixed cones on the CyberKnife® M6™ machine. A 3D correction matrix is introduced to link the 3D dose distribution to the response of the PinPoint chamber in water. The parameters of the correction matrix are determined by modeling its 3D dose response in circular fields created using the 12 fixed cones (5 mm-60 mm) on a CyberKnife® M6™ machine. A penalized least-square optimization problem is defined by fitting the calculated detector reading to the experimental measurement data to generate the optimal correction matrix; the simulated annealing algorithm is used to solve the inverse optimization problem. All the experimental measurements are acquired for every 2 mm chamber shift in the horizontal planes for each field size. The 3D dose distributions for the measurements are calculated using the Monte Carlo calculation with the MultiPlan® treatment planning system (Accuray Inc., Sunnyvale, CA, USA). The performance evaluation of the 3D conversion matrix is carried out by comparing the predictions of the output factors (OFs), off-axis ratios (OARs) and percentage depth dose (PDD) data to the experimental measurement data. The discrepancy of the measurement and the prediction data for composite fields is also performed for clinical SRS plans. The optimization algorithm used for generating the optimal correction factors is stable, and the resulting correction factors were smooth in the spatial domain. The measurement and prediction of OFs agree closely with percentage differences of less than 1.9% for all the 12 cones. The discrepancies between the prediction and the measurement PDD readings at 50 mm and 80 mm depth are 1.7% and 1.9%, respectively. The percentage differences of OARs between measurement and prediction data are less than 2% in the low dose gradient region, and 2%/1 mm discrepancies are observed within the high dose gradient regions. The differences between the measurement and prediction data for all the CyberKnife based SRS plans are less than 1%. These results demonstrate the existence and efficiency of the novel 3D correction method for small field dosimetry. The 3D correction matrix links the 3D dose distribution and the reading of the PinPoint chamber. The comparison between the predicted reading and the measurement data for static small fields (OFs, OARs and PDDs) yield discrepancies within 2% for low dose gradient regions and 2%/1 mm for high dose gradient regions; the discrepancies between the predicted and the measurement data are less than 1% for all the SRS plans. The 3D correction method provides an access to evaluate the clinical measurement data and can be applied to non-standard composite fields intensity modulated radiation therapy point dose verification.
NASA Astrophysics Data System (ADS)
Jentzen, Walter
2010-04-01
The use of recovery coefficients (RCs) in 124I PET lesion imaging is a simple method to correct the imaged activity concentration (AC) primarily for the partial-volume effect and, to a minor extent, for the prompt gamma coincidence effect. The aim of this phantom study was to experimentally investigate a number of various factors affecting the 124I RCs. Three RC-based correction approaches were considered. These approaches differ with respect to the volume of interest (VOI) drawn, which determines the imaged AC and the RCs: a single voxel VOI containing the maximum value (maximum RC), a spherical VOI with a diameter of the scanner resolution (resolution RC) and a VOI equaling the physical object volume (isovolume RC). Measurements were performed using mainly a stand-alone PET scanner (EXACT HR+) and a latest-generation PET/CT scanner (BIOGRAPH mCT). The RCs were determined using a cylindrical phantom containing spheres or rotational ellipsoids and were derived from images acquired with a reference acquisition protocol. For each type of RC, the influence of the following factors on the RC was assessed: object shape, background activity spill in and iterative image reconstruction parameters. To evaluate the robustness of the RC-based correction approaches, the percentage deviation between RC-corrected and true ACs was determined from images acquired with a clinical acquisition protocol of different AC regimes. The observed results of the shape and spill-in effects were compared with simulation data derived from a convolution-based model. The study demonstrated that the shape effect was negligible and, therefore, was in agreement with theoretical expectations. In contradiction to the simulation results, the observed spill-in effect was unexpectedly small. To avoid variations in the determination of RCs due to reconstruction parameter changes, image reconstruction with a pixel length of about one-third or less of the scanner resolution and an OSEM 1 × 32 algorithm or one with somewhat higher number of effective iterations are recommended. Using the clinical acquisition protocol, the phantom study indicated that the resolution- or isovolume-based recovery-correction approaches appeared to be more appropriate to recover the ACs from patient data; however, the application of the three RC-based correction approaches to small lesions containing low ACs was, in particular, associated with large underestimations. The phantom study had several limitations, which were discussed in detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saha, K; Barbarits, J; Humenik, R
Purpose: Chang’s mathematical formulation is a common method of attenuation correction applied on reconstructed Jaszczak phantom images. Though Chang’s attenuation correction method has been used for 360° angle acquisition, its applicability for 180° angle acquisition remains a question with one vendor’s camera software producing artifacts. The objective of this work is to ensure that Chang’s attenuation correction technique can be applied for reconstructed Jaszczak phantom images acquired in both 360° and 180° mode. Methods: The Jaszczak phantom filled with 20 mCi of diluted Tc-99m was placed on the patient table of Siemens e.cam™ (n = 2) and Siemens Symbia™ (nmore » = 1) dual head gamma cameras centered both in lateral and axial directions. A total of 3 scans were done at 180° and 2 scans at 360° orbit acquisition modes. Thirty two million counts were acquired for both modes. Reconstruction of the projection data was performed using filtered back projection smoothed with pre reconstruction Butterworth filter (order: 6, cutoff: 0.55). Reconstructed transaxial slices were attenuation corrected by Chang’s attenuation correction technique as implemented in the camera software. Corrections were also done using a modified technique where photon path lengths for all possible attenuation paths through a pixel in the image space were added to estimate the corresponding attenuation factor. The inverse of the attenuation factor was utilized to correct the attenuated pixel counts. Results: Comparable uniformity and noise were observed for 360° acquired phantom images attenuation corrected by the vendor technique (28.3% and 7.9%) and the proposed technique (26.8% and 8.4%). The difference in uniformity for 180° acquisition between the proposed technique (22.6% and 6.8%) and the vendor technique (57.6% and 30.1%) was more substantial. Conclusion: Assessment of attenuation correction performance by phantom uniformity analysis illustrated improved uniformity with the proposed algorithm compared to the camera software.« less
Using Mason number to predict MR damper performance from limited test data
NASA Astrophysics Data System (ADS)
Becnel, Andrew C.; Wereley, Norman M.
2017-05-01
The Mason number can be used to produce a single master curve which relates MR fluid stress versus strain rate behavior across a wide range of shear rates, temperatures, and applied magnetic fields. As applications of MR fluid energy absorbers expand to a variety of industries and operating environments, Mason number analysis offers a path to designing devices with desired performance from a minimal set of preliminary test data. Temperature strongly affects the off-state viscosity of the fluid, as the passive viscous force drops considerably at higher temperatures. Yield stress is not similarly affected, and stays relatively constant with changing temperature. In this study, a small model-scale MR fluid rotary energy absorber is used to measure the temperature correction factor of a commercially-available MR fluid from LORD Corporation. This temperature correction factor is identified from shear stress vs. shear rate data collected at four different temperatures. Measurements of the MR fluid yield stress are also obtained and related to a standard empirical formula. From these two MR fluid properties - temperature-dependent viscosity and yield stress - the temperature-corrected Mason number is shown to predict the force vs. velocity performance of a full-scale rotary MR fluid energy absorber. This analysis technique expands the design space of MR devices to high shear rates and allows for comprehensive predictions of overall performance across a wide range of operating conditions from knowledge only of the yield stress vs. applied magnetic field and a temperature-dependent viscosity correction factor.
Bracing of pectus carinatum: A quantitative analysis.
Bugajski, Tomasz; Murari, Kartikeya; Lopushinsky, Steven; Schneider, Marc; Ronsky, Janet
2018-05-01
Primary treatment of pectus carinatum (PC) is performed with an external brace that compresses the protrusion. Patients are 'prescribed' a brace tightening force. However, no visual guides exist to display this force magnitude. The purpose of this study was to determine the repeatability of patients in applying their prescribed force over time and to determine whether the protrusion stiffness influences the patient-applied forces and the protrusion correction rate. Twenty-one male participants (12-17years) with chondrogladiolar PC were recruited at the time of brace fitting. Participants were evaluated on three visits: fitting, one month postfitting, and two months postfitting. Differences between prescribed force and patient-applied force were evaluated. Relationships of patient-applied force and correction rate with protrusion stiffness were assessed. Majority of individuals followed for two months (75%) had a significantly different patient-applied force (p<0.05) from their prescribed force. Protrusion stiffness had a positive relationship with patient-applied force, but no relationship with correction rate. Patients did not follow their prescribed force. Magnitudes of these differences require further investigation to determine clinical significance. Patient-applied forces were influenced by protrusion stiffness, but correction rate was not. Other factors may influence these variables, such as patient compliance. Treatment Study - Level IV. Copyright © 2018 Elsevier Inc. All rights reserved.
Higashide, Tomomi; Ohkubo, Shinji; Hangai, Masanori; Ito, Yasuki; Shimada, Noriaki; Ohno-Matsui, Kyoko; Terasaki, Hiroko; Sugiyama, Kazuhisa; Chew, Paul; Li, Kenneth K W; Yoshimura, Nagahisa
2016-01-01
To identify the factors which significantly contribute to the thickness variabilities in macular retinal layers measured by optical coherence tomography with or without magnification correction of analytical areas in normal subjects. The thickness of retinal layers {retinal nerve fiber layer (RNFL), ganglion cell layer plus inner plexiform layer (GCLIPL), RNFL plus GCLIPL (ganglion cell complex, GCC), total retina, total retina minus GCC (outer retina)} were measured by macular scans (RS-3000, NIDEK) in 202 eyes of 202 normal Asian subjects aged 20 to 60 years. The analytical areas were defined by three concentric circles (1-, 3- and 6-mm nominal diameters) with or without magnification correction. For each layer thickness, a semipartial correlation (sr) was calculated for explanatory variables including age, gender, axial length, corneal curvature, and signal strength index. Outer retinal thickness was significantly thinner in females than in males (sr2, 0.07 to 0.13) regardless of analytical areas or magnification correction. Without magnification correction, axial length had a significant positive sr with RNFL (sr2, 0.12 to 0.33) and a negative sr with GCLIPL (sr2, 0.22 to 0.31), GCC (sr2, 0.03 to 0.17), total retina (sr2, 0.07 to 0.17) and outer retina (sr2, 0.16 to 0.29) in multiple analytical areas. The significant sr in RNFL, GCLIPL and GCC became mostly insignificant following magnification correction. The strong correlation between the thickness of inner retinal layers and axial length appeared to result from magnification effects. Outer retinal thickness may differ by gender and axial length independently of magnification correction.
Higashide, Tomomi; Ohkubo, Shinji; Hangai, Masanori; Ito, Yasuki; Shimada, Noriaki; Ohno-Matsui, Kyoko; Terasaki, Hiroko; Sugiyama, Kazuhisa; Chew, Paul; Li, Kenneth K. W.; Yoshimura, Nagahisa
2016-01-01
Purpose To identify the factors which significantly contribute to the thickness variabilities in macular retinal layers measured by optical coherence tomography with or without magnification correction of analytical areas in normal subjects. Methods The thickness of retinal layers {retinal nerve fiber layer (RNFL), ganglion cell layer plus inner plexiform layer (GCLIPL), RNFL plus GCLIPL (ganglion cell complex, GCC), total retina, total retina minus GCC (outer retina)} were measured by macular scans (RS-3000, NIDEK) in 202 eyes of 202 normal Asian subjects aged 20 to 60 years. The analytical areas were defined by three concentric circles (1-, 3- and 6-mm nominal diameters) with or without magnification correction. For each layer thickness, a semipartial correlation (sr) was calculated for explanatory variables including age, gender, axial length, corneal curvature, and signal strength index. Results Outer retinal thickness was significantly thinner in females than in males (sr2, 0.07 to 0.13) regardless of analytical areas or magnification correction. Without magnification correction, axial length had a significant positive sr with RNFL (sr2, 0.12 to 0.33) and a negative sr with GCLIPL (sr2, 0.22 to 0.31), GCC (sr2, 0.03 to 0.17), total retina (sr2, 0.07 to 0.17) and outer retina (sr2, 0.16 to 0.29) in multiple analytical areas. The significant sr in RNFL, GCLIPL and GCC became mostly insignificant following magnification correction. Conclusions The strong correlation between the thickness of inner retinal layers and axial length appeared to result from magnification effects. Outer retinal thickness may differ by gender and axial length independently of magnification correction. PMID:26814541
Murphy, Kathleen R.; Butler, Kenna D.; Spencer, Robert G. M.; Stedmon, Colin A.; Boehme, Jennifer R.; Aiken, George R.
2010-01-01
The fluorescent properties of dissolved organic matter (DOM) are often studied in order to infer DOM characteristics in aquatic environments, including source, quantity, composition, and behavior. While a potentially powerful technique, a single widely implemented standard method for correcting and presenting fluorescence measurements is lacking, leading to difficulties when comparing data collected by different research groups. This paper reports on a large-scale interlaboratory comparison in which natural samples and well-characterized fluorophores were analyzed in 20 laboratories in the U.S., Europe, and Australia. Shortcomings were evident in several areas, including data quality-assurance, the accuracy of spectral correction factors used to correct EEMs, and the treatment of optically dense samples. Data corrected by participants according to individual laboratory procedures were more variable than when corrected under a standard protocol. Wavelength dependency in measurement precision and accuracy were observed within and between instruments, even in corrected data. In an effort to reduce future occurrences of similar problems, algorithms for correcting and calibrating EEMs are described in detail, and MATLAB scripts for implementing the study's protocol are provided. Combined with the recent expansion of spectral fluorescence standards, this approach will serve to increase the intercomparability of DOM fluorescence studies.
Relativistic corrections to the form factors of Bc into P-wave orbitally excited charmonium
NASA Astrophysics Data System (ADS)
Zhu, Ruilin
2018-06-01
We investigated the form factors of the Bc meson into P-wave orbitally excited charmonium using the nonrelativistic QCD effective theory. Through the analytic computation, the next-to-leading order relativistic corrections to the form factors were obtained, and the asymptotic expressions were studied in the infinite bottom quark mass limit. Employing the general form factors, we discussed the exclusive decays of the Bc meson into P-wave orbitally excited charmonium and a light meson. We found that the relativistic corrections lead to a large correction for the form factors, which makes the branching ratios of the decay channels B (Bc ± →χcJ (hc) +π± (K±)) larger. These results are useful for the phenomenological analysis of the Bc meson decays into P-wave charmonium, which shall be tested in the LHCb experiments.
NASA Technical Reports Server (NTRS)
Lan, C. E.; Lamar, J. E.
1977-01-01
A logarithmic-singularity correction factor is derived for use in kernel function methods associated with Multhopp's subsonic lifting-surface theory. Because of the form of the factor, a relation was formulated between the numbers of chordwise and spanwise control points needed for good accuracy. This formulation is developed and discussed. Numerical results are given to show the improvement of the computation with the new correction factor.
Power corrections to TMD factorization for Z-boson production
Balitsky, I.; Tarasov, A.
2018-05-24
A typical factorization formula for production of a particle with a small transverse momentum in hadron-hadron collisions is given by a convolution of two TMD parton densities with cross section of production of the final particle by the two partons. For practical applications at a given transverse momentum, though, one should estimate at what momenta the power corrections to the TMD factorization formula become essential. In this work, we calculate the first power corrections to TMD factorization formula for Z-boson production and Drell-Yan process in high-energy hadron-hadron collisions. At the leading order in N c power corrections are expressed inmore » terms of leading power TMDs by QCD equations of motion.« less
Power corrections to TMD factorization for Z-boson production
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balitsky, I.; Tarasov, A.
A typical factorization formula for production of a particle with a small transverse momentum in hadron-hadron collisions is given by a convolution of two TMD parton densities with cross section of production of the final particle by the two partons. For practical applications at a given transverse momentum, though, one should estimate at what momenta the power corrections to the TMD factorization formula become essential. In this work, we calculate the first power corrections to TMD factorization formula for Z-boson production and Drell-Yan process in high-energy hadron-hadron collisions. At the leading order in N c power corrections are expressed inmore » terms of leading power TMDs by QCD equations of motion.« less
NASA Astrophysics Data System (ADS)
Wang, Jinliang; Wu, Xuejiao
2010-11-01
Geometric correction of imagery is a basic application of remote sensing technology. Its precision will impact directly on the accuracy and reliability of applications. The accuracy of geometric correction depends on many factors, including the used model for correction and the accuracy of the reference map, the number of ground control points (GCP) and its spatial distribution, resampling methods. The ETM+ image of Kunming Dianchi Lake Basin and 1:50000 geographical maps had been used to compare different correction methods. The results showed that: (1) The correction errors were more than one pixel and some of them were several pixels when the polynomial model was used. The correction accuracy was not stable when the Delaunay model was used. The correction errors were less than one pixel when the collinearity equation was used. (2) 6, 9, 25 and 35 GCP were selected randomly for geometric correction using the polynomial correction model respectively, the best result was obtained when 25 GCPs were used. (3) The contrast ratio of image corrected by using nearest neighbor and the best resampling rate was compared to that of using the cubic convolution and bilinear model. But the continuity of pixel gravy value was not very good. The contrast of image corrected was the worst and the computation time was the longest by using the cubic convolution method. According to the above results, the result was the best by using bilinear to resample.
NASA Astrophysics Data System (ADS)
Liu, WenXiang; Mou, WeiHua; Wang, FeiXue
2012-03-01
As the introduction of triple-frequency signals in GNSS, the multi-frequency ionosphere correction technology has been fast developing. References indicate that the triple-frequency second order ionosphere correction is worse than the dual-frequency first order ionosphere correction because of the larger noise amplification factor. On the assumption that the variances of three frequency pseudoranges were equal, other references presented the triple-frequency first order ionosphere correction, which proved worse or better than the dual-frequency first order correction in different situations. In practice, the PN code rate, carrier-to-noise ratio, parameters of DLL and multipath effect of each frequency are not the same, so three frequency pseudorange variances are unequal. Under this consideration, a new unequal-weighted triple-frequency first order ionosphere correction algorithm, which minimizes the variance of the pseudorange ionosphere-free combination, is proposed in this paper. It is found that conventional dual-frequency first-order correction algorithms and the equal-weighted triple-frequency first order correction algorithm are special cases of the new algorithm. A new pseudorange variance estimation method based on the three carrier combination is also introduced. Theoretical analysis shows that the new algorithm is optimal. The experiment with COMPASS G3 satellite observations demonstrates that the ionosphere-free pseudorange combination variance of the new algorithm is smaller than traditional multi-frequency correction algorithms.
Limitations of silicon diodes for clinical electron dosimetry.
Song, Haijun; Ahmad, Munir; Deng, Jun; Chen, Zhe; Yue, Ning J; Nath, Ravinder
2006-01-01
This work investigates the relevance of several factors affecting the response of silicon diode dosemeters in depth-dose scans of electron beams. These factors are electron energy, instantaneous dose rate, dose per pulse, photon/electron dose ratio and electron scattering angle (directional response). Data from the literature and our own experiments indicate that the impact of these factors may be up to +/-15%. Thus, the different factors would have to cancel out perfectly at all depths in order to produce true depth-dose curves. There are reports of good agreement between depth-doses measured with diodes and ionisation chambers. However, our measurements with a Scantronix electron field detector (EFD) diode and with a plane-parallel ionisation chamber show discrepancies both in the build-up and in the low-dose regions, with a ratio up to 1.4. Moreover, the absolute sensitivity of two diodes of the same EFD model was found to differ by a factor of 3, and this ratio was not constant but changed with depth between 5 and 15% in the low-dose regions of some clinical electron beams. Owing to these inhomogeneities among diodes even of the same model, corrections for each factor would have to be diode-specific and beam-specific. All these corrections would have to be determined using parallel plane chambers, as recommended by AAPM TG-25, which would be unrealistic in clinical practice. Our conclusion is that in general diodes are not reliable in the measurement of depth-dose curves of clinical electron beams.
Oparaji, U; Tsai, Y H; Liu, Y C; Lee, K W; Patelli, E; Sheu, R J
2017-06-01
This paper presents improved and extended results of our previous study on corrections for conventional neutron dose meters used in environments with high-energy neutrons (En > 10 MeV). Conventional moderated-type neutron dose meters tend to underestimate the dose contribution of high-energy neutrons because of the opposite trends of dose conversion coefficients and detection efficiencies as the neutron energy increases. A practical correction scheme was proposed based on analysis of hundreds of neutron spectra in the IAEA-TRS-403 report. By comparing 252Cf-calibrated dose responses with reference values derived from fluence-to-dose conversion coefficients, this study provides recommendations for neutron field characterization and the corresponding dose correction factors. Further sensitivity studies confirm the appropriateness of the proposed scheme and indicate that (1) the spectral correction factors are nearly independent of the selection of three commonly used calibration sources: 252Cf, 241Am-Be and 239Pu-Be; (2) the derived correction factors for Bonner spheres of various sizes (6"-9") are similar in trend and (3) practical high-energy neutron indexes based on measurements can be established to facilitate the application of these correction factors in workplaces. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Parenting style in relation to pathogenic and protective factors of Type A behaviour pattern.
Castro, J; de Pablo, J; Toro, J; Valdés, M
1999-07-01
Studies of type A behaviour pattern suggest that it can be promoted as a whole by certain parental rearing styles. However, the association of the different components of the type A behaviour with specific rearing practices has not been clarified. The relationship between parents' rearing style and the different type A behaviour components of their children was analysed in a sample of 312 university students. Parental rearing style was assessed with the EMBU, a Swedish measure originally designed to assess one's recollections concerning one's parents rearing behaviour. Type A pattern was measured by the JAS, a self-administered questionnaire that gives the global type A score and three of its components. Hard Driving was related to Rejection and Favouring Subject in males. Speed-Impatience was related to Rejection and Control in both sexes, and Job Involvement was related to Control and Favouring Subject in females. In a discriminant factor analysis in males, Rejection, Control and Favouring Subject on the part of fathers classified correctly 80% of the subjects identified as having high or low Speed-Impatience and the variables of Rejection and Favouring Subject (also by fathers) classified correctly 69.23% of the subjects identified as high or low Hard Driving. In females, Control and Favouring Subject on the part of mothers and low Rejection by fathers classified correctly 70.37% of the subjects with high or low Job Involvement. These results suggest that different rearing characteristics are related to the various components of the type A behaviour pattern.
WE-AB-207A-07: A Planning CT-Guided Scatter Artifact Correction Method for CBCT Images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, X; Liu, T; Dong, X
Purpose: Cone beam computed tomography (CBCT) imaging is on increasing demand for high-performance image-guided radiotherapy such as online tumor delineation and dose calculation. However, the current CBCT imaging has severe scatter artifacts and its current clinical application is therefore limited to patient setup based mainly on the bony structures. This study’s purpose is to develop a CBCT artifact correction method. Methods: The proposed scatter correction method utilizes the planning CT to improve CBCT image quality. First, an image registration is used to match the planning CT with the CBCT to reduce the geometry difference between the two images. Then, themore » planning CT-based prior information is entered into the Bayesian deconvolution framework to iteratively perform a scatter artifact correction for the CBCT mages. This technique was evaluated using Catphan phantoms with multiple inserts. Contrast-to-noise ratios (CNR) and signal-to-noise ratios (SNR), and the image spatial nonuniformity (ISN) in selected volume of interests (VOIs) were calculated to assess the proposed correction method. Results: Post scatter correction, the CNR increased by a factor of 1.96, 3.22, 3.20, 3.46, 3.44, 1.97 and 1.65, and the SNR increased by a factor 1.05, 2.09, 1.71, 3.95, 2.52, 1.54 and 1.84 for the Air, PMP, LDPE, Polystryrene, Acrylic, Delrin and Teflon inserts, respectively. The ISN decreased from 21.1% to 4.7% in the corrected images. All values of CNR, SNR and ISN in the corrected CBCT image were much closer to those in the planning CT images. The results demonstrated that the proposed method reduces the relevant artifacts and recovers CT numbers. Conclusion: We have developed a novel CBCT artifact correction method based on CT image, and demonstrated that the proposed CT-guided correction method could significantly reduce scatter artifacts and improve the image quality. This method has great potential to correct CBCT images allowing its use in adaptive radiotherapy.« less
The cosmic evolution of dust-corrected metallicity in the neutral gas
NASA Astrophysics Data System (ADS)
De Cia, Annalisa; Ledoux, Cédric; Petitjean, Patrick; Savaglio, Sandra
2018-04-01
Interpreting abundances of damped Ly-α absorbers (DLAs) from absorption-line spectroscopy has typically been a challenge because of the presence of dust. Nevertheless, because DLAs trace distant gas-rich galaxies regardless of their luminosity, they provide an attractive way of measuring the evolution of the metallicity of the neutral gas with cosmic time. This has been done extensively so far, but typically not taking proper dust corrections into account. The aims of this paper are to: (i) provide a simplified way of calculating dust corrections, based on a single observed [X/Fe], (ii) assess the importance of dust corrections for DLA metallicities and their evolution, and (iii) investigate the cosmic evolution of iron for a large DLA sample. We have derived dust corrections based on the observed [Zn/Fe], [Si/Fe], or [S/Fe], and confirmed their robustness. We present dust-corrected metallicities in a scale of [Fe/H]tot for 236 DLAs over a broad range of z, and assess the extent of dust corrections for different metals at different metallicities. Dust corrections in DLAs are important even for Zn (typically of 0.1-0.2, and up to 0.5 dex), which is often neglected. Finally, we study the evolution of the dust-corrected metallicity with z. The DLA metallicities decrease with redshift, by a factor of 50-100 from today to 12.6 billion years ago (z = 5). When including dust corrections, the average DLA metallicities are 0.4-0.5 dex higher than without corrections. The upper envelope of the relation between metallicity and z reaches solar metallicity at z ≲ 0.5, although some systems can have solar metallicity already out to z 3. Based on observations carried out at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 065.P-0038, 065.O-0063, 066.A-0624, 067.A-0078, and 068.A-0600.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez-Castano, D. M.; Gonzalez, L. Brualla; Gago-Arias, M. A.
2012-01-15
Purpose: This work contains an alternative methodology for obtaining correction factors for ionization chamber (IC) dosimetry of small fields and composite fields such as IMRT. The method is based on the convolution/superposition (C/S) of an IC response function (RF) with the dose distribution in a certain plane which includes chamber position. This method is an alternative to the full Monte Carlo (MC) approach that has been used previously by many authors for the same objective. Methods: The readout of an IC at a point inside a phantom irradiated by a certain beam can be obtained as the convolution of themore » dose spatial distribution caused by the beam and the IC two-dimensional RF. The proposed methodology has been applied successfully to predict the response of a PTW 30013 IC when measuring different nonreference fields, namely: output factors of 6 MV small fields, beam profiles of cobalt 60 narrow fields and 6 MV radiosurgery segments. The two-dimensional RF of a PTW 30013 IC was obtained by MC simulation of the absorbed dose to cavity air when the IC was scanned by a 0.6 x 0.6 mm{sup 2} cross section parallel pencil beam at low depth in a water phantom. For each of the cases studied, the results of the IC direct measurement were compared with the corresponding obtained by the C/S method. Results: For all of the cases studied, the agreement between the IC direct measurement and the IC calculated response was excellent (better than 1.5%). Conclusions: This method could be implemented in TPS in order to calculate dosimetry correction factors when an experimental IMRT treatment verification with in-phantom ionization chamber is performed. The miss-response of the IC due to the nonreference conditions could be quickly corrected by this method rather than employing MC derived correction factors. This method can be considered as an alternative to the plan-class associated correction factors proposed recently as part of an IAEA work group on nonstandard field dosimetry.« less
Bolte, John F B
2016-09-01
Personal exposure measurements of radio frequency electromagnetic fields are important for epidemiological studies and developing prediction models. Minimizing biases and uncertainties and handling spatial and temporal variability are important aspects of these measurements. This paper reviews the lessons learnt from testing the different types of exposimeters and from personal exposure measurement surveys performed between 2005 and 2015. Applying them will improve the comparability and ranking of exposure levels for different microenvironments, activities or (groups of) people, such that epidemiological studies are better capable of finding potential weak correlations with health effects. Over 20 papers have been published on how to prevent biases and minimize uncertainties due to: mechanical errors; design of hardware and software filters; anisotropy; and influence of the body. A number of biases can be corrected for by determining multiplicative correction factors. In addition a good protocol on how to wear the exposimeter, a sufficiently small sampling interval and sufficiently long measurement duration will minimize biases. Corrections to biases are possible for: non-detects through detection limit, erroneous manufacturer calibration and temporal drift. Corrections not deemed necessary, because no significant biases have been observed, are: linearity in response and resolution. Corrections difficult to perform after measurements are for: modulation/duty cycle sensitivity; out of band response aka cross talk; temperature and humidity sensitivity. Corrections not possible to perform after measurements are for: multiple signals detection in one band; flatness of response within a frequency band; anisotropy to waves of different elevation angle. An analysis of 20 microenvironmental surveys showed that early studies using exposimeters with logarithmic detectors, overestimated exposure to signals with bursts, such as in uplink signals from mobile phones and WiFi appliances. Further, the possible corrections for biases have not been fully applied. The main findings are that if the biases are not corrected for, the actual exposure will on average be underestimated. Copyright © 2016 Elsevier Ltd. All rights reserved.
49 CFR 325.79 - Application of correction factors.
Code of Federal Regulations, 2011 CFR
2011-10-01
... illustrate the application of correction factors to sound level measurement readings: (1) Example 1—Highway operations. Assume that a motor vehicle generates a maximum observed sound level reading of 86 dB(A) during a... of the test site is acoustically “hard.” The corrected sound level generated by the motor vehicle...
49 CFR 325.79 - Application of correction factors.
Code of Federal Regulations, 2010 CFR
2010-10-01
... illustrate the application of correction factors to sound level measurement readings: (1) Example 1—Highway operations. Assume that a motor vehicle generates a maximum observed sound level reading of 86 dB(A) during a... of the test site is acoustically “hard.” The corrected sound level generated by the motor vehicle...
Cashmore, Aaron W; Indig, Devon; Hampton, Stephen E; Hegney, Desley G; Jalaludin, Bin B
2016-11-01
Little is known about the environmental and organisational determinants of workplace violence in correctional health settings. This paper describes the views of health professionals working in these settings on the factors influencing workplace violence risk. All employees of a large correctional health service in New South Wales, Australia, were invited to complete an online survey. The survey included an open-ended question seeking the views of participants about the factors influencing workplace violence in correctional health settings. Responses to this question were analysed using qualitative thematic analysis. Participants identified several factors that they felt reduced the risk of violence in their workplace, including: appropriate workplace health and safety policies and procedures; professionalism among health staff; the presence of prison guards and the quality of security provided; and physical barriers within clinics. Conversely, participants perceived workplace violence risk to be increased by: low health staff-to-patient and correctional officer-to-patient ratios; high workloads; insufficient or underperforming security staff; and poor management of violence, especially horizontal violence. The views of these participants should inform efforts to prevent workplace violence among correctional health professionals.
Ipe, N E; Rosser, K E; Moretti, C J; Manning, J W; Palmer, M J
2001-08-01
This paper evaluates the characteristics of ionization chambers for the measurement of absorbed dose to water using very low-energy x-rays. The values of the chamber correction factor, k(ch), used in the IPEMB 1996 code of practice for the UK secondary standard ionization chambers (PTW type M23342 and PTW type M23344), the Roos (PTW type 34001) and NACP electron chambers are derived. The responses in air of the small and large soft x-ray chambers (PTW type M23342 and PTW type M23344) and the NACP and Roos electron ionization chambers were compared. Besides the soft x-ray chambers, the NACP and Roos chambers can be used for very low-energy x-ray dosimetry provided that they are used in the restricted energy range for which their response does not change by more than 5%. The chamber correction factor was found by comparing the absorbed dose to water determined using the dosimetry protocol recommended for low-energy x-rays with that for very low-energy x-rays. The overlap energy range was extended using data from Grosswendt and Knight. Chamber correction factors given in this paper are chamber dependent, varying from 1.037 to 1.066 for a PTW type M23344 chamber, which is very different from a value of unity given in the IPEMB code. However, the values of k(ch) determined in this paper agree with those given in the DIN standard within experimental uncertainty. The authors recommend that the very low-energy section of the IPEMB code is amended to include the most up-to-date values of k(ch).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferguson, S; Ahmad, S; Chen, Y
2016-06-15
Purpose: To commission and investigate the accuracy of an output (cGy/MU) prediction model for a compact passively scattered proton therapy system. Methods: A previously published output prediction model (Sahoo et al, Med Phys, 35, 5088–5097, 2008) was commissioned for our Mevion S250 proton therapy system. This model is a correction-based model that multiplies correction factors (d/MUwnc=ROFxSOBPF xRSFxSOBPOCFxOCRxFSFxISF). These factors accounted for changes in output due to options (12 large, 5 deep, and 7 small), modulation width M, range R, off-center, off-axis, field-size, and off-isocenter. In this study, the model was modified to ROFxSOBPFxRSFxOCRxFSFxISF-OCFxGACF by merging SOBPOCF and ISF for simplicitymore » and introducing a gantry angle correction factor (GACF). To commission the model, outputs over 1,000 data points were taken at the time of the system commissioning. The output was predicted by interpolation (1D for SOBPF, FSF, and GACF; 2D for RSF and OCR) with inverse-square calculation (ISF-OCR). The outputs of 273 combinations of R and M covering total 24 options were measured to test the model. To minimize fluence perturbation, scattered dose from range compensator and patient was not considered. The percent differences between the predicted (P) and measured (M) outputs were calculated to test the prediction accuracy ([P-M]/Mx100%). Results: GACF was required because of up to 3.5% output variation dependence on the gantry angle. A 2D interpolation was required for OCR because the dose distribution was not radially symmetric especially for the deep options. The average percent differences were −0.03±0.98% (mean±SD) and the differences of all the measurements fell within ±3%. Conclusion: It is concluded that the model can be clinically used for the compact passively scattered proton therapy system. However, great care should be taken when the field-size is less than 5×5 cm{sup 2} where a direct output measurement is required due to substantial output change by irregular block shape.« less
Shidahara, Miho; Watabe, Hiroshi; Kim, Kyeong Min; Kato, Takashi; Kawatsu, Shoji; Kato, Rikio; Yoshimura, Kumiko; Iida, Hidehiro; Ito, Kengo
2005-10-01
An image-based scatter correction (IBSC) method was developed to convert scatter-uncorrected into scatter-corrected SPECT images. The purpose of this study was to validate this method by means of phantom simulations and human studies with 99mTc-labeled tracers, based on comparison with the conventional triple energy window (TEW) method. The IBSC method corrects scatter on the reconstructed image I(mub)AC with Chang's attenuation correction factor. The scatter component image is estimated by convolving I(mub)AC with a scatter function followed by multiplication with an image-based scatter fraction function. The IBSC method was evaluated with Monte Carlo simulations and 99mTc-ethyl cysteinate dimer SPECT human brain perfusion studies obtained from five volunteers. The image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were compared. Using data obtained from the simulations, the image counts and contrast of the scatter-corrected images obtained by the IBSC and TEW methods were found to be nearly identical for both gray and white matter. In human brain images, no significant differences in image contrast were observed between the IBSC and TEW methods. The IBSC method is a simple scatter correction technique feasible for use in clinical routine.
Assessment of the impact of the scanner-related factors on brain morphometry analysis with Brainvisa
2011-01-01
Background Brain morphometry is extensively used in cross-sectional studies. However, the difference in the estimated values of the morphometric measures between patients and healthy subjects may be small and hence overshadowed by the scanner-related variability, especially with multicentre and longitudinal studies. It is important therefore to investigate the variability and reliability of morphometric measurements between different scanners and different sessions of the same scanner. Methods We assessed the variability and reliability for the grey matter, white matter, cerebrospinal fluid and cerebral hemisphere volumes as well as the global sulcal index, sulcal surface and mean geodesic depth using Brainvisa. We used datasets obtained across multiple MR scanners at 1.5 T and 3 T from the same groups of 13 and 11 healthy volunteers, respectively. For each morphometric measure, we conducted ANOVA analysis and verified whether the estimated values were significantly different across different scanners or different sessions of the same scanner. The between-centre and between-visit reliabilities were estimated from their contribution to the total variance, using a random-effects ANOVA model. To estimate the main processes responsible for low reliability, the results of brain segmentation were compared to those obtained using FAST within FSL. Results In a considerable number of cases, the main effects of both centre and visit factors were found to be significant. Moreover, both between-centre and between-visit reliabilities ranged from poor to excellent for most morphometric measures. A comparison between segmentation using Brainvisa and FAST revealed that FAST improved the reliabilities for most cases, suggesting that morphometry could benefit from improving the bias correction. However, the results were still significantly different across different scanners or different visits. Conclusions Our results confirm that for morphometry analysis with the current version of Brainvisa using data from multicentre or longitudinal studies, the scanner-related variability must be taken into account and where possible should be corrected for. We also suggest providing some flexibility to Brainvisa for a step-by-step analysis of the robustness of this package in terms of reproducibility of the results by allowing the bias corrected images to be imported from other packages and bias correction step be skipped, for example. PMID:22189342
Radiative corrections to the η(') Dalitz decays
NASA Astrophysics Data System (ADS)
Husek, Tomáš; Kampf, Karol; Novotný, Jiří; Leupold, Stefan
2018-05-01
We provide the complete set of radiative corrections to the Dalitz decays η(')→ℓ+ℓ-γ beyond the soft-photon approximation, i.e., over the whole range of the Dalitz plot and with no restrictions on the energy of a radiative photon. The corrections inevitably depend on the η(')→ γ*γ(*) transition form factors. For the singly virtual transition form factor appearing, e.g., in the bremsstrahlung correction, recent dispersive calculations are used. For the one-photon-irreducible contribution at the one-loop level (for the doubly virtual form factor), we use a vector-meson-dominance-inspired model while taking into account the η -η' mixing.
Bazarian, Jeffrey J; Beck, Christopher; Blyth, Brian; von Ahsen, Nicolas; Hasselblatt, Martin
2006-01-01
To validate a correction factor for the extracranial release of the astroglial protein, S-100B, based on concomitant creatine kinase (CK) levels. The CK- S-100B relationship in non-head injured marathon runners was used to derive a correction factor for the extracranial release of S-100B. This factor was then applied to a separate cohort of 96 mild traumatic brain injury (TBI) patients in whom both CK and S-100B levels were measured. Corrected S-100B was compared to uncorrected S-100B for the prediction of initial head CT, three-month headache and three-month post concussive syndrome (PCS). Corrected S-100B resulted in a statistically significant improvement in the prediction of 3-month headache (area under curve [AUC] 0.46 vs 0.52, p=0.02), but not PCS or initial head CT. Using a cutoff that maximizes sensitivity (> or = 90%), corrected S-100B improved the prediction of initial head CT scan (negative predictive value from 75% [95% CI, 2.6%, 67.0%] to 96% [95% CI: 83.5%, 99.8%]). Although S-100B is overall poorly predictive of outcome, a correction factor using CK is a valid means of accounting for extracranial release. By increasing the proportion of mild TBI patients correctly categorized as low risk for abnormal head CT, CK-corrected S100-B can further reduce the number of unnecessary brain CT scans performed after this injury.
TU-F-BRE-08: Significant Variations in Measured Small Cone Output Factor for FFF Beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sudhyadhom, A; Ma, L; Kirby, N
2014-06-15
Purpose: To evaluate the measurement accuracy of several dosimeters for small cone output factors in two SRS/SBRT dedicated systems with Flattening Filter Free (FFF) beams: a Varian TrueBeam STx (TB) and an Accuray CyberKnife VSI (CK). Output factors (OFs) were measured for both machines and for CK, compared against a Monte Carlo model. Methods: Dose measurements were taken using three different FFF beams (TB 6XFFF, TB 10XFFF, and CK 6XFFF). Three commonly used types of dosimeters were examined in this work: a micro-ion chamber (Exradin A16), two shielded diodes (PTW TN60008 and PTW TN60017), and radiochromic film (Gafchromic EBT2). Measuredmore » OFs from these dosimeters were compared with each other and OFs measured with an Exradin W1 scintillator. Monte Carlo determined correction factors for the CK beam for the micro-ion chamber and diodes were applied to the respective OF measurements and compared against scintillator measured OFs corrected for volume averaging. Results: OFs measured for the smallest fields using the micro-ion chamber, diodes, scintillator, and film varied substantially (with up to a 16% difference between dosimeters). Micro-ion chamber and film OF measurements were up to 9% and 10%, respectively, lower than scintillator measurements for the smallest fields. OF measurements by diode were up to 6% greater than scintillator measurements for the smallest fields. With correction factors, the micro-ion chamber and diode measured OFs showed good agreement with scintillator measured OFs for the CK 6XFFF beam (within 3% and 1.5%, respectively). Conclusion: Uncorrected small field OFs vary significantly with dosimeter. The accuracy of scintillator measurements for small field OFs may be greater than the other dosimeters studied in this work (when uncorrected). Measurements involving EBT2 film may Result in lower accuracy for smaller fields (less than 10mm). Care should be taken in the choice of the dosimeter used for small field OF measurements.« less
Risk factors for amblyopia in the vision in preschoolers study.
Pascual, Maisie; Huang, Jiayan; Maguire, Maureen G; Kulp, Marjean Taylor; Quinn, Graham E; Ciner, Elise; Cyert, Lynn A; Orel-Bixler, Deborah; Moore, Bruce; Ying, Gui-Shuang
2014-03-01
To evaluate risk factors for unilateral amblyopia and for bilateral amblyopia in the Vision in Preschoolers (VIP) study. Multicenter, cross-sectional study. Three- to 5-year-old Head Start preschoolers from 5 clinical centers, overrepresenting children with vision disorders. All children underwent comprehensive eye examinations, including threshold visual acuity (VA), cover testing, and cycloplegic retinoscopy, performed by VIP-certified optometrists and ophthalmologists who were experienced in providing care to children. Monocular threshold VA was tested using a single-surround HOTV letter protocol without correction, and retested with full cycloplegic correction when retest criteria were met. Unilateral amblyopia was defined as an interocular difference in best-corrected VA of 2 lines or more. Bilateral amblyopia was defined as best-corrected VA in each eye worse than 20/50 for 3-year-olds and worse than 20/40 for 4- to 5-year-olds. Risk of amblyopia was summarized by the odds ratios and their 95% confidence intervals estimated from logistic regression models. In this enriched sample of Head Start children (n = 3869), 296 children (7.7%) had unilateral amblyopia, and 144 children (3.7%) had bilateral amblyopia. Presence of strabismus (P<0.0001) and greater magnitude of significant refractive errors (myopia, hyperopia, astigmatism, and anisometropia; P<0.00001 for each) were associated independently with an increased risk of unilateral amblyopia. Presence of strabismus, hyperopia of 2.0 diopters (D) or more, astigmatism of 1.0 D or more, or anisometropia of 0.5 D or more were present in 91% of children with unilateral amblyopia. Greater magnitude of astigmatism (P<0.0001) and bilateral hyperopia (P<0.0001) were associated independently with increased risk of bilateral amblyopia. Bilateral hyperopia of 3.0 D or more or astigmatism of 1.0 D or more were present in 76% of children with bilateral amblyopia. Strabismus and significant refractive errors were risk factors for unilateral amblyopia. Bilateral astigmatism and bilateral hyperopia were risk factors for bilateral amblyopia. Despite differences in selection of the study population, these results validated the findings from the Multi-Ethnic Pediatric Eye Disease Study and Baltimore Pediatric Eye Disease Study. Copyright © 2014 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Risk Factors for Amblyopia in the Vision In Preschoolers Study
Pascual, Maisie; Huang, Jiayan; Maguire, Maureen G; Kulp, Marjean Taylor; Quinn, Graham E; Ciner, Elise; Cyert, Lynn A; Orel-Bixler, Deborah; Moore, Bruce; Ying, Gui-shuang
2013-01-01
Objective To evaluate risk factors for unilateral amblyopia and for bilateral amblyopia in the Vision In Preschoolers (VIP) Study. Design Multicenter, cross-sectional Study. Participants Three- to 5-year old Head Start preschoolers from 5 clinical centers, over-representing children with vision disorders. Methods All children underwent comprehensive eye exams including threshold visual acuity (VA), cover testing, and cycloplegic retinoscopy, performed by VIP-certified optometrists and ophthalmologists who were experienced in providing care to children. Monocular threshold VA was tested using single-surround HOTV letter protocol without correction, and retested with full cycloplegic correction when retest criteria were met. Unilateral amblyopia was defined as an inter-ocular difference in best-corrected VA ≥2 lines. Bilateral amblyopia was defined as best-corrected VA in each eye worse than 20/50 for 3-year-olds and worse than 20/40 for 4- to 5-year-olds. Main Outcome Measures Risk of amblyopia was summarized by The odds ratios (ORs) and their 95% confidence intervals (95% CIs) estimated from logistic regression models. Results In this enriched sample of Head Start children (N=3869), 296 (7.7%) children had unilateral amblyopia, and 144 (3.7%) children had bilateral amblyopia. Presence of strabismus (p<0.0001), greater magnitude of significant refractive errors (myopia, hyperopia, astigmatism, and anisometropia, each p<0.00001) were independently associated with increased risk of unilateral amblyopia. Presence of strabismus, hyperopia ≥2.0 D, astigmatism ≥1.0 D, or anisometropia ≥0.5 D were present in 91% of children with unilateral amblyopia. Greater magnitude of astigmatism (p<0.0001) and of bilateral hyperopia (p<0.0001) were independently associated with increased risk of bilateral amblyopia. Bilateral hyperopia ≥3.0 diopters (D) or astigmatism ≥1.0 D were present in 76% of children with bilateral amblyopia. Conclusion Strabismus and significant refractive errors were risk factors for unilateral amblyopia. Bilateral astigmatism and bilateral hyperopia were risk factors for bilateral amblyopia. Despite differences in selection of study population, these results validated the findings from the Multi-ethnic Pediatric Eye Disease Study and Baltimore Pediatric Eye Disease Study. PMID:24140117
Greer, Peter B; Vial, Philip; Oliver, Lyn; Baldock, Clive
2007-11-01
The aim of this work was to experimentally determine the difference in response of an amorphous silicon (a-Si) electronic portal imaging device (EPID) to the open and multileaf collimator (MLC) transmitted beam components of intensity modulated radiation therapy (IMRT) beams. EPID dose response curves were measured for open and MLC transmitted (MLCtr) 10 x 10 cm2 beams at central axis and with off axis distance using a shifting field technique. The EPID signal was obtained by replacing the flood-field correction with a pixel sensitivity variation matrix correction. This signal, which includes energy-dependent response, was then compared to ion-chamber measurements. An EPID calibration method to remove the effect of beam energy variations on EPID response was developed for IMRT beams. This method uses the component of open and MLCtr fluence to an EPID pixel calculated from the MLC delivery file and applies separate radially dependent calibration factors for each component. The calibration procedure does not correct for scatter differences between ion chamber in water measurements and EPID response; these must be accounted for separately with a kernel-based approach or similar method. The EPID response at central axis for the open beam was found to be 1.28 +/- 0.03 of the response for the MLCtr beam, with the ratio increasing to 1.39 at 12.5 cm off axis. The EPID response to MLCtr radiation did not change with off-axis distance. Filtering the beam with copper plates to reduce the beam energy difference between open and MLCtr beams was investigated; however, these were not effective at reducing EPID response differences. The change in EPID response for uniform sliding window IMRT beams with MLCtr dose components from 0.3% to 69% was predicted to within 2.3% using the separate EPID response calibration factors for each dose component. A clinical IMRT image calibrated with this method differed by nearly 30% in high MLCtr regions from an image calibrated with an open beam calibration factor only. Accounting for the difference in EPID response to open and MLCtr radiation should improve IMRT dosimetry with a-Si EPIDs.
Winterhalter, Wade E.
2011-09-01
Global climate change is expected to impact biological populations through a variety of mechanisms including increases in the length of their growing season. Climate models are useful tools for predicting how season length might change in the future. However, the accuracy of these models tends to be rather low at regional geographic scales. Here, I determined the ability of several atmosphere and ocean general circulating models (AOGCMs) to accurately simulate historical season lengths for a temperate ectotherm across the continental United States. I also evaluated the effectiveness of regional-scale correction factors to improve the accuracy of these models. I foundmore » that both the accuracy of simulated season lengths and the effectiveness of the correction factors to improve the model's accuracy varied geographically and across models. These results suggest that regional specific correction factors do not always adequately remove potential discrepancies between simulated and historically observed environmental parameters. As such, an explicit evaluation of the correction factors' effectiveness should be included in future studies of global climate change's impact on biological populations.« less
Light-Field Correction for Spatial Calibration of Optical See-Through Head-Mounted Displays.
Itoh, Yuta; Klinker, Gudrun
2015-04-01
A critical requirement for AR applications with Optical See-Through Head-Mounted Displays (OST-HMD) is to project 3D information correctly into the current viewpoint of the user - more particularly, according to the user's eye position. Recently-proposed interaction-free calibration methods [16], [17] automatically estimate this projection by tracking the user's eye position, thereby freeing users from tedious manual calibrations. However, the method is still prone to contain systematic calibration errors. Such errors stem from eye-/HMD-related factors and are not represented in the conventional eye-HMD model used for HMD calibration. This paper investigates one of these factors - the fact that optical elements of OST-HMDs distort incoming world-light rays before they reach the eye, just as corrective glasses do. Any OST-HMD requires an optical element to display a virtual screen. Each such optical element has different distortions. Since users see a distorted world through the element, ignoring this distortion degenerates the projection quality. We propose a light-field correction method, based on a machine learning technique, which compensates the world-scene distortion caused by OST-HMD optics. We demonstrate that our method reduces the systematic error and significantly increases the calibration accuracy of the interaction-free calibration.
NASA Technical Reports Server (NTRS)
Joppa, R. G.
1973-01-01
A problem associated with the wind tunnel testing of very slow flying aircraft is the correction of observed pitching moments to free air conditions. The most significant effects of such corrections are to be found at moderate downwash angles typical of the landing approach. The wind tunnel walls induce interference velocities at the tail different from those induced at the wing, and these induced velocities also alter the trajectory of the trailing vortex system. The relocated vortex system induces different velocities at the tail from those experienced in free air. The effect of the relocated vortex and the walls is to cause important changes in the measured pitching moments in the wind tunnel.
NASA Astrophysics Data System (ADS)
Loveley, Matthew R.; Marcantonio, Franco; Lyle, Mitchell; Ibrahim, Rami; Hertzberg, Jennifer E.; Schmidt, Matthew W.
2017-12-01
Here, we examine how redistribution of differing grain sizes by sediment focusing processes in Panama Basin sediments affects the use of 230Th as a constant-flux proxy. We study representative sediments of Holocene and Last Glacial Maximum (LGM) time slices from four sediment cores from two different localities close to the ridges that bound the Panama Basin. Each locality contains paired sites that are seismically interpreted to have undergone extremes in sediment redistribution, i.e., focused versus winnowed sites. Both Holocene and LGM samples from sites where winnowing has occurred contain significant amounts (up to 50%) of the 230Th within the >63 μm grain size fraction, which makes up 40-70% of the bulk sediment analyzed. For sites where focusing has occurred, Holocene and LGM samples contain the greatest amounts of 230Th (up to 49%) in the finest grain-sized fraction (<4 μm), which makes up 26-40% of the bulk sediment analyzed. There are slight underestimations of 230Th-derived mass accumulation rates (MARs) and overestimations of 230Th-derived focusing factors at focused sites, while the opposite is true for winnowed sites. Corrections made using a model by Kretschmer et al. (2010) suggest a maximum change of about 30% in 230Th-derived MARs and focusing factors at focused sites, except for our most focused site which requires an approximate 70% correction in one sample. Our 230Th-corrected 232Th flux results suggest that the boundary between hemipelagically- and pelagically-derived sediments falls between 350 and 600 km from the continental margin.
Percy, Charles L; Hartmann, Rudolf; Jones, Rhidian M; Balachandran, Subramaniam; Mehta, Dheeraj; Dockal, Michael; Scheiflinger, Friedrich; O'Donnell, Valerie B; Hall, Judith E; Collins, Peter W
2015-06-01
Recently, lower thrombin generation has been associated with excess bleeding post-cardiopulmonary bypass (CPB). Therefore, treatment to correct thrombin generation is a potentially important aspect of management of bleeding in this group of patients. The objective of the present study was to investigate the effects of fresh frozen plasma (FFP), recombinant factor VIIa (rFVIIa), prothrombin complex concentrate (PCC) and tissue factor pathway inhibitor (TFPI) inhibition on thrombin generation when added ex vivo to the plasma of patients who had undergone cardiac surgery requiring CPB. Patients undergoing elective cardiac surgery were recruited. Blood samples were collected before administration of heparin and 30 min after its reversal. Thrombin generation was measured in the presence and absence of different concentrations of FFP, rFVIIa, PCC and an anti-TFPI antibody. A total of 102 patients were recruited. Thrombin generation following CPB was lower compared with pre-CPB (median endogenous thrombin potential pre-CPB 339 nmol/l per min, post-CPB 155 nmol/l per min, P < 0.0001; median peak thrombin pre-CPB 35 nmol/l, post-CPB 11 nmol/l, P < 0.0001). Coagulation factors and anticoagulants decreased, apart from total TFPI, which increased (55-111 ng/ml, P < 0.0001), and VWF (144-170 IU/dl, P < 0.0001). Thrombin generation was corrected to pre-CPB levels by the equivalent of 15 ml/kg FFP, 45 μg/kg rFVIIa and 25 U/kg of PCC. Inhibition of TFPI resulted in an enhancement of thrombin generation significantly beyond pre-CPB levels. This study shows that FFP, rFVIIa, PCC and inhibition of TFPI correct thrombin generation in the plasma of patients who have undergone surgery requiring CPB. Inhibition of TFPI may be a further potential therapeutic strategy for managing bleeding in this group of patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, J; Culberson, W; DeWerd, L
Purpose: To test the validity of a windowless extrapolation chamber used to measure surface dose rate from planar ophthalmic applicators and to compare different Monte Carlo based codes for deriving correction factors. Methods: Dose rate measurements were performed using a windowless, planar extrapolation chamber with a {sup 90}Sr/{sup 90}Y Tracerlab RA-1 ophthalmic applicator previously calibrated at the National Institute of Standards and Technology (NIST). Capacitance measurements were performed to estimate the initial air gap width between the source face and collecting electrode. Current was measured as a function of air gap, and Bragg-Gray cavity theory was used to calculate themore » absorbed dose rate to water. To determine correction factors for backscatter, divergence, and attenuation from the Mylar entrance window found in the NIST extrapolation chamber, both EGSnrc Monte Carlo user code and Monte Carlo N-Particle Transport Code (MCNP) were utilized. Simulation results were compared with experimental current readings from the windowless extrapolation chamber as a function of air gap. Additionally, measured dose rate values were compared with the expected result from the NIST source calibration to test the validity of the windowless chamber design. Results: Better agreement was seen between EGSnrc simulated dose results and experimental current readings at very small air gaps (<100 µm) for the windowless extrapolation chamber, while MCNP results demonstrated divergence at these small gap widths. Three separate dose rate measurements were performed with the RA-1 applicator. The average observed difference from the expected result based on the NIST calibration was −1.88% with a statistical standard deviation of 0.39% (k=1). Conclusion: EGSnrc user code will be used during future work to derive correction factors for extrapolation chamber measurements. Additionally, experiment results suggest that an entrance window is not needed in order for an extrapolation chamber to provide accurate dose rate measurements for a planar ophthalmic applicator.« less
Correction factors in determining speed of sound among freshmen in undergraduate physics laboratory
NASA Astrophysics Data System (ADS)
Lutfiyah, A.; Adam, A. S.; Suprapto, N.; Kholiq, A.; Putri, N. P.
2018-03-01
This paper deals to identify the correction factor in determining speed of sound that have been done by freshmen in undergraduate physics laboratory. Then, the result will be compared with speed of sound that determining by senior student. Both of them used the similar instrument, namely resonance tube with apparatus. The speed of sound indicated by senior was 333.38 ms-1 with deviation to the theory about 3.98%. Meanwhile, for freshmen, the speed of sound experiment was categorised into three parts: accurate value (52.63%), middle value (31.58%) and lower value (15.79%). Based on analysis, some correction factors were suggested: human error in determining first and second harmonic, end correction of tube diameter, and another factors from environment, such as temperature, humidity, density, and pressure.
Hydrophone area-averaging correction factors in nonlinearly generated ultrasonic beams
NASA Astrophysics Data System (ADS)
Cooling, M. P.; Humphrey, V. F.; Wilkens, V.
2011-02-01
The nonlinear propagation of an ultrasonic wave can be used to produce a wavefield rich in higher frequency components that is ideally suited to the calibration, or inter-calibration, of hydrophones. These techniques usually use a tone-burst signal, limiting the measurements to harmonics of the fundamental calibration frequency. Alternatively, using a short pulse enables calibration at a continuous spectrum of frequencies. Such a technique is used at PTB in conjunction with an optical measurement technique to calibrate devices. Experimental findings indicate that the area-averaging correction factor for a hydrophone in such a field demonstrates a complex behaviour, most notably varying periodically between frequencies that are harmonics of the centre frequency of the original pulse and frequencies that lie midway between these harmonics. The beam characteristics of such nonlinearly generated fields have been investigated using a finite difference solution to the nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation for a focused field. The simulation results are used to calculate the hydrophone area-averaging correction factors for 0.2 mm and 0.5 mm devices. The results clearly demonstrate a number of significant features observed in the experimental investigations, including the variation with frequency, drive level and hydrophone element size. An explanation for these effects is also proposed.
Zhou, Tao; Zhao, Motian; Wang, Jun; Lu, Hai
2008-01-01
Two enriched isotopes, 99.94 at.% 56Fe and 99.90 at.% 54Fe, were blended under gravimetric control to prepare ten synthetic isotope samples whose 56Fe isotope abundances ranged from 95% to 20%. For multiple-collector inductively coupled plasma mass spectrometry (MC-ICP-MS) measurements typical polyatomic interferences were removed by using Ar and H2 as collision gas and operating the MC-ICP-MS system in soft mode. Thus high-precision measurements of the Fe isotope abundance ratios were accomplished. Based on the measurement of the synthetic isotope abundance ratios by MC-ICP-MS, the correction factor for mass discrimination was calculated and the results were in agreement with results from IRMM014. The precision of all ten correction factors was 0.044%, indicating a good linearity of the MC-ICP-MS method for different isotope abundance ratio values. An isotopic reference material was certified under the same conditions as the instrument was calibrated. The uncertainties of ten correction factors K were calculated and the final extended uncertainties of the isotopic certified Fe reference material were 5.8363(37) at.% 54Fe, 91.7621(51) at.% 56Fe, 2.1219(23) at.% 57Fe, and 0.2797(32) at.% 58Fe.
Research on the Application of Fast-steering Mirror in Stellar Interferometer
NASA Astrophysics Data System (ADS)
Mei, R.; Hu, Z. W.; Xu, T.; Sun, C. S.
2017-07-01
For a stellar interferometer, the fast-steering mirror (FSM) is widely utilized to correct wavefront tilt caused by atmospheric turbulence and internal instrumental vibration due to its high resolution and fast response frequency. In this study, the non-coplanar error between the FSM and actuator deflection axis introduced by manufacture, assembly, and adjustment is analyzed. Via a numerical method, the additional optical path difference (OPD) caused by above factors is studied, and its effects on tracking accuracy of stellar interferometer are also discussed. On the other hand, the starlight parallelism between the beams of two arms is one of the main factors of the loss of fringe visibility. By analyzing the influence of wavefront tilt caused by the atmospheric turbulence on fringe visibility, a simple and efficient real-time correction scheme of starlight parallelism is proposed based on a single array detector. The feasibility of this scheme is demonstrated by laboratory experiment. The results show that starlight parallelism meets the requirement of stellar interferometer in wavefront tilt preliminarily after the correction of fast-steering mirror.
Beyer, Thomas; Lassen, Martin L; Boellaard, Ronald; Delso, Gaspar; Yaqub, Maqsood; Sattler, Bernhard; Quick, Harald H
2016-02-01
We assess inter- and intra-subject variability of magnetic resonance (MR)-based attenuation maps (MRμMaps) of human subjects for state-of-the-art positron emission tomography (PET)/MR imaging systems. Four healthy male subjects underwent repeated MR imaging with a Siemens Biograph mMR, Philips Ingenuity TF and GE SIGNA PET/MR system using product-specific MR sequences and image processing algorithms for generating MRμMaps. Total lung volumes and mean attenuation values in nine thoracic reference regions were calculated. Linear regression was used for comparing lung volumes on MRμMaps. Intra- and inter-system variability was investigated using a mixed effects model. Intra-system variability was seen for the lung volume of some subjects, (p = 0.29). Mean attenuation values across subjects were significantly different (p < 0.001) due to different segmentations of the trachea. Differences in the attenuation values caused noticeable intra-individual and inter-system differences that translated into a subsequent bias of the corrected PET activity values, as verified by independent simulations. Significant differences of MRμMaps generated for the same subjects but different PET/MR systems resulted in differences in attenuation correction factors, particularly in the thorax. These differences currently limit the quantitative use of PET/MR in multi-center imaging studies.
Ratio Variables in Aggregate Data Analysis: Their Uses, Problems, and Alternatives.
ERIC Educational Resources Information Center
Bollen, Kenneth A.; Ward, Sally
1979-01-01
Three different uses of ratio variables in aggregate data analysis are discussed: (1) as measures of theoretical concepts, (2) as a means to control an extraneous factor, and (3) as a correction for heteroscedasticity. Alternatives to ratios for each of these cases are discussed and evaluated. (Author/JKS)
Western juniper drying project summaries, 1993-96.
Scott Leavengood; Larry Swan
1999-01-01
Drying tests and trials for western juniper (Juniperus occidentalis Hook.) were conducted between 1993 and 1996 to (1) test and refine existing dry kiln schedules; (2) develop moisture meter correction factors; (3) test dry western juniper in different types of kilns, both by itself and with ponderosa pine (Pinus ponderosa...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guillot, Mathieu; Gingras, Luc; Archambault, Louis
2011-04-15
Purpose: The purposes of this work were: (1) To determine if a spectral method can accurately correct the Cerenkov light effect in plastic scintillation detectors (PSDs) for situations where the Cerenkov light is dominant over the scintillation light and (2) to develop a procedural guideline for accurately determining the calibration factors of PSDs. Methods: The authors demonstrate, by using the equations of the spectral method, that the condition for accurately correcting the effect of Cerenkov light is that the ratio of the two calibration factors must be equal to the ratio of the Cerenkov light measured within the two differentmore » spectral regions used for analysis. Based on this proof, the authors propose two new procedures to determine the calibration factors of PSDs, which were designed to respect this condition. A PSD that consists of a cylindrical polystyrene scintillating fiber (1.6 mm{sup 3}) coupled to a plastic optical fiber was calibrated by using these new procedures and the two reference procedures described in the literature. To validate the extracted calibration factors, relative dose profiles and output factors for a 6 MV photon beam from a medical linac were measured with the PSD and an ionization chamber. Emphasis was placed on situations where the Cerenkov light is dominant over the scintillation light and on situations dissimilar to the calibration conditions. Results: The authors found that the accuracy of the spectral method depends on the procedure used to determine the calibration factors of the PSD and on the attenuation properties of the optical fiber used. The results from the relative dose profile measurements showed that the spectral method can correct the Cerenkov light effect with an accuracy level of 1%. The results obtained also indicate that PSDs measure output factors that are lower than those measured with ionization chambers for square field sizes larger than 25x25 cm{sup 2}, in general agreement with previously published Monte Carlo results. Conclusions: The authors conclude that the spectral method can be used to accurately correct the Cerenkov light effect in PSDs. The authors confirmed the importance of maximizing the difference of Cerenkov light production between calibration measurements. The authors also found that the attenuation of the optical fiber, which is assumed to be constant in the original formulation of the spectral method, may cause a variation of the calibration factors in some experimental setups.« less
Resistivity Correction Factor for the Four-Probe Method: Experiment I
NASA Astrophysics Data System (ADS)
Yamashita, Masato; Yamaguchi, Shoji; Enjoji, Hideo
1988-05-01
Experimental verification of the theoretically derived resistivity correction factor (RCF) is presented. Resistivity and sheet resistance measurements by the four-probe method are made on three samples: isotropic graphite, ITO film and Au film. It is indicated that the RCF can correct the apparent variations of experimental data to yield reasonable resistivities and sheet resistances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mizuno, Hideyuki, E-mail: h-mizuno@nirs.go.jp; Fukumura, Akifumi; Fukahori, Mai
Purpose: The purpose of this study was to obtain a set of correction factors of the radiophotoluminescent glass dosimeter (RGD) output for field size changes and wedge insertions. Methods: Several linear accelerators were used for irradiation of the RGDs. The field sizes were changed from 5 × 5 cm to 25 × 25 cm for 4, 6, 10, and 15 MV x-ray beams. The wedge angles were 15°, 30°, 45°, and 60°. In addition to physical wedge irradiation, nonphysical (dynamic/virtual) wedge irradiations were performed. Results: The obtained data were fitted with a single line for each energy, and correction factorsmore » were determined. Compared with ionization chamber outputs, the RGD outputs gradually increased with increasing field size, because of the higher RGD response to scattered low-energy photons. The output increase was about 1% per 10 cm increase in field size, with a slight difference dependent on the beam energy. For both physical and nonphysical wedged beam irradiation, there were no systematic trends in the RGD outputs, such as monotonic increase or decrease depending on the wedge angle change if the authors consider the uncertainty, which is approximately 0.6% for each set of measured points. Therefore, no correction factor was needed for all inserted wedges. Based on this work, postal dose audits using RGDs for the nonreference condition were initiated in 2010. The postal dose audit results between 2010 and 2012 were analyzed. The mean difference between the measured and stated doses was within 0.5% for all fields with field sizes between 5 × 5 cm and 25 × 25 cm and with wedge angles from 15° to 60°. The standard deviations (SDs) of the difference distribution were within the estimated uncertainty (1SD) except for the 25 × 25 cm field size data, which were not reliable because of poor statistics (n = 16). Conclusions: A set of RGD output correction factors was determined for field size changes and wedge insertions. The results obtained from recent postal dose audits were analyzed, and the mean differences between the measured and stated doses were within 0.5% for every field size and wedge angle. The SDs of the distribution were within the estimated uncertainty, except for one condition that was not reliable because of poor statistics.« less
Lattice calculation of electric dipole moments and form factors of the nucleon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abramczyk, M.; Aoki, S.; Blum, T.
In this paper, we analyze commonly used expressions for computing the nucleon electric dipole form factors (EDFF)more » $$F_3$$ and moments (EDM) on a lattice and find that they lead to spurious contributions from the Pauli form factor $$F_2$$ due to inadequate definition of these form factors when parity mixing of lattice nucleon fields is involved. Using chirally symmetric domain wall fermions, we calculate the proton and the neutron EDFF induced by the CP-violating quark chromo-EDM interaction using the corrected expression. In addition, we calculate the electric dipole moment of the neutron using a background electric field that respects time translation invariance and boundary conditions, and we find that it decidedly agrees with the new formula but not the old formula for $$F_3$$. In conclusion, we analyze some selected lattice results for the nucleon EDM and observe that after the correction is applied, they either agree with zero or are substantially reduced in magnitude, thus reconciling their difference from phenomenological estimates of the nucleon EDM.« less
Lattice calculation of electric dipole moments and form factors of the nucleon
Abramczyk, M.; Aoki, S.; Blum, T.; ...
2017-07-10
In this paper, we analyze commonly used expressions for computing the nucleon electric dipole form factors (EDFF)more » $$F_3$$ and moments (EDM) on a lattice and find that they lead to spurious contributions from the Pauli form factor $$F_2$$ due to inadequate definition of these form factors when parity mixing of lattice nucleon fields is involved. Using chirally symmetric domain wall fermions, we calculate the proton and the neutron EDFF induced by the CP-violating quark chromo-EDM interaction using the corrected expression. In addition, we calculate the electric dipole moment of the neutron using a background electric field that respects time translation invariance and boundary conditions, and we find that it decidedly agrees with the new formula but not the old formula for $$F_3$$. In conclusion, we analyze some selected lattice results for the nucleon EDM and observe that after the correction is applied, they either agree with zero or are substantially reduced in magnitude, thus reconciling their difference from phenomenological estimates of the nucleon EDM.« less
Fatigue Crack Growth Rate and Stress-Intensity Factor Corrections for Out-of-Plane Crack Growth
NASA Technical Reports Server (NTRS)
Forth, Scott C.; Herman, Dave J.; James, Mark A.
2003-01-01
Fatigue crack growth rate testing is performed by automated data collection systems that assume straight crack growth in the plane of symmetry and use standard polynomial solutions to compute crack length and stress-intensity factors from compliance or potential drop measurements. Visual measurements used to correct the collected data typically include only the horizontal crack length, which for cracks that propagate out-of-plane, under-estimates the crack growth rates and over-estimates the stress-intensity factors. The authors have devised an approach for correcting both the crack growth rates and stress-intensity factors based on two-dimensional mixed mode-I/II finite element analysis (FEA). The approach is used to correct out-of-plane data for 7050-T7451 and 2025-T6 aluminum alloys. Results indicate the correction process works well for high DeltaK levels but fails to capture the mixed-mode effects at DeltaK levels approaching threshold (da/dN approximately 10(exp -10) meter/cycle).
HIV counselling and testing utilisation and attitudes of male inmates in a South African prison.
Motshabi, Lelaka C; Pengpid, Supa; Peltzer, Karl
2011-01-01
The Department of Correctional Services Policy on the management of HIV and AIDS for offenders include voluntary counselling and testing (VCT) for HIV as one of the priorities in the rehabilitation of inmates. The aim of this study was to determine factors associated with the utilisation of VCT services in the correctional centres in terms of level of satisfaction, their experiences and expectations, and motivating factors and barriers for VCT utilisation at Losperfontein Correctional Centre, South Africa. This was a case control study (cases being those who underwent testing and controls those who did not) examining predictors of HIV VCT utilisation among 200 male adult sentenced inmates serving medium and maximum sentences. Results indicate that a poor health system (OR=0.34, 95%CI: 0.23 - 0.50) was inversely associated with HIV testing acceptance in prison, while age, educational level, population group, marital status, length of incarceration and access to HIV testing in prison were not associated with HIV testing acceptance in prison. Half of the participants (50%) agreed that VCT services are accessible and are promoted at their correctional centre. Most were satisfied with different components of VCT services, ranging from 79% (fair to very good) for 'the way he/she received you' to 62% 'clarified all your concerns'. This study demonstrated some challenges and benefits to the field of health promotion and HIV prevention in the correctional centres especially with regard to VCT services.
NASA Astrophysics Data System (ADS)
Jimenez, Jose Ramón; González Anera, Rosario; Jiménez del Barco, Luis; Hita, Enrique; Pérez-Ocón, Francisco
2005-01-01
We provide a correction factor to be added in ablation algorithms when a Gaussian beam is used in photorefractive laser surgery. This factor, which quantifies the effect of pulse overlapping, depends on beam radius and spot size. We also deduce the expected post-surgical corneal radius and asphericity when considering this factor. Data on 141 eyes operated on LASIK (laser in situ keratomileusis) with a Gaussian profile show that the discrepancy between experimental and expected data on corneal power is significantly lower when using the correction factor. For an effective improvement of post-surgical visual quality, this factor should be applied in ablation algorithms that do not consider the effects of pulse overlapping with a Gaussian beam.
Lee, Choon Sung; Hwang, Chang Ju; Lim, Eic Ju; Lee, Dong-Ho; Cho, Jae Hwan
2016-12-01
OBJECTIVE Postoperative shoulder imbalance (PSI) is a critical consideration after corrective surgery for a double thoracic curve (Lenke Type 2); however, the radiographic factors related to PSI remain unclear. The purpose of this study was to identify the radiographic factors related to PSI after corrective surgery for adolescent idiopathic scoliosis (AIS) in patients with a double thoracic curve. METHODS This study included 80 patients with Lenke Type 2 AIS who underwent corrective surgery. Patients were grouped according to the presence [PSI(+)] or absence [PSI(-)] of shoulder imbalance at the final follow-up examination (differences of 20, 15, and 10 mm were used). Various radiographic parameters, including the Cobb angle of the proximal and middle thoracic curves (PTC and MTC), radiographic shoulder height (RSH), clavicle angle, T-1 tilt, trunk shift, and proximal and distal wedge angles (PWA and DWA), were assessed before and after surgery and compared between groups. RESULTS Overall, postoperative RSH decreased with time in the PSI(-) group but not in the PSI(+) group. Statistical analyses revealed that the preoperative Risser grade (p = 0.048), postoperative PWA (p = 0.028), and postoperative PTC/MTC ratio (p = 0.011) correlated with PSI. Presence of the adding-on phenomenon was also correlated with PSI, although this result was not statistically significant (p = 0.089). CONCLUSIONS Postoperative shoulder imbalance is common after corrective surgery for Lenke Type 2 AIS and correlates with a higher Risser grade, a larger postoperative PWA, and a higher postoperative PTC/MTC ratio. Presence of the distal adding-on phenomenon is associated with an increased PSI trend, although this result was not statistically significant. However, preoperative factors other than the Risser grade that affect the development of PSI were not identified by the study. Additional studies are required to reveal the risk factors for the development of PSI.
Bito, Haruhiko; Takeuchi, Ryohei; Kumagai, Ken; Aratake, Masato; Saito, Izumi; Hayashi, Riku; Sasaki, Yohei; Aota, Yoichi; Saito, Tomoyuki
2009-04-01
Obtaining a correct postoperative limb alignment is an important factor in achieving a successful clinical outcome after an opening-wedge high tibial osteotomy (OWHTO). To better predict some of the aspects that impact upon the clinical outcomes following this procedure, including postoperative correction loss and over correction, we examined the changes in the frontal plane of the lower limb in a cohort of patients who had undergone OWHTO using radiography. Forty-two knees from 33 patients (23 cases of osteoarthritis and 10 of osteonecrosis) underwent a valgus realignment OWHTO procedure and were radiographically assessed for changes that occurred pre- and post-surgery. The mean femorotibial angle (FTA) was found to be 182.1 +/- 2.0 degrees (12 +/- 2.0 anatomical varus angulation) preoperatively and 169.6 +/- 2.4 degrees (10.4 +/- 2.4 anatomical valgus angulation) postoperatively. These measurements thus revealed significant changes in the weight bearing line ratio (WBL), femoral axis angle (FA), tibial axis angle (TA), tibia plateau angle (TP), tibia vara angle (TV) and talar tilt angle (TT) following OWHTO. In contrast, no significant change was found in the weight bearing line angle (WBLA) after these treatments. To assess the relationship between the correction angle and these indexes, 42 knees were divided into the following three groups according to the postoperative FTA; a normal correction group (168 degrees < or = FTA < or = 172 degrees ), an over-correction group (FTA < 168 degrees ), and an under-correction group (FTA > 172 degrees ). There were significant differences in the delta angle [DA; calculated as (pre FTA - post FTA) - (pre TV - post TV)] among each group of patients. Our results thus indicate a negative correlation between the DA and preoperative TA (R(2) = 0.148, p < 0.05). Hence, given that the correction errors in our patients appear to negatively correlate with the preoperative TA, postoperative malalignments are likely to be predictable prior to surgery.
Krause, Lennard; Herbst-Irmer, Regine; Sheldrick, George M; Stalke, Dietmar
2015-02-01
The quality of diffraction data obtained using silver and molybdenum microsources has been compared for six model compounds with a wide range of absorption factors. The experiments were performed on two 30 W air-cooled Incoatec IµS microfocus sources with multilayer optics mounted on a Bruker D8 goniometer with a SMART APEX II CCD detector. All data were analysed, processed and refined using standard Bruker software. The results show that Ag K α radiation can be beneficial when heavy elements are involved. A numerical absorption correction based on the positions and indices of the crystal faces is shown to be of limited use for the highly focused microsource beams, presumably because the assumption that the crystal is completely bathed in a (top-hat profile) beam of uniform intensity is no longer valid. Fortunately the empirical corrections implemented in SADABS , although originally intended as a correction for absorption, also correct rather well for the variations in the effective volume of the crystal irradiated. In three of the cases studied (two Ag and one Mo) the final SHELXL R 1 against all data after application of empirical corrections implemented in SADABS was below 1%. Since such corrections are designed to optimize the agreement of the intensities of equivalent reflections with different paths through the crystal but the same Bragg 2θ angles, a further correction is required for the 2θ dependence of the absorption. For this, SADABS uses the transmission factor of a spherical crystal with a user-defined value of μ r (where μ is the linear absorption coefficient and r is the effective radius of the crystal); the best results are obtained when r is biased towards the smallest crystal dimension. The results presented here suggest that the IUCr publication requirement that a numerical absorption correction must be applied for strongly absorbing crystals is in need of revision.
NASA Astrophysics Data System (ADS)
Sulkosky, V.; Jin, G.; Long, E.; Zhang, Y.-W.; Mihovilovic, M.; Kelleher, A.; Anderson, B.; Higinbotham, D. W.; Širca, S.; Allada, K.; Annand, J. R. M.; Averett, T.; Bertozzi, W.; Boeglin, W.; Bradshaw, P.; Camsonne, A.; Canan, M.; Cates, G. D.; Chen, C.; Chen, J.-P.; Chudakov, E.; De Leo, R.; Deng, X.; Deur, A.; Dutta, C.; El Fassi, L.; Flay, D.; Frullani, S.; Garibaldi, F.; Gao, H.; Gilad, S.; Gilman, R.; Glamazdin, O.; Golge, S.; Gomez, J.; Hansen, J.-O.; Holmstrom, T.; Huang, J.; Ibrahim, H.; de Jager, C. W.; Jensen, E.; Jiang, X.; Jones, M.; Kang, H.; Katich, J.; Khanal, H. P.; King, P.; Korsch, W.; LeRose, J.; Lindgren, R.; Lu, H.-J.; Luo, W.; Markowitz, P.; Meekins, D.; Meziane, M.; Michaels, R.; Moffit, B.; Monaghan, P.; Muangma, N.; Nanda, S.; Norum, B. E.; Pan, K.; Parno, D.; Piasetzky, E.; Posik, M.; Punjabi, V.; Puckett, A. J. R.; Qian, X.; Qiang, Y.; Qui, X.; Riordan, S.; Saha, A.; Sawatzky, B.; Shabestari, M.; Shahinyan, A.; Shoenrock, B.; John, J. St.; Subedi, R.; Tobias, W. A.; Tireman, W.; Urciuoli, G. M.; Wang, D.; Wang, K.; Wang, Y.; Watson, J.; Wojtsekhowski, B.; Ye, Z.; Zhan, X.; Zhang, Y.; Zheng, X.; Zhao, B.; Zhu, L.; Jefferson Lab Hall A Collaboration
2017-12-01
Background: Measurements of the neutron charge form factor, GEn, are challenging because the neutron has no net charge. In addition, measurements of the neutron form factors must use nuclear targets which require accurately accounting for nuclear effects. Extracting GEn with different targets and techniques provides an important test of our handling of these effects. Purpose: The goal of the measurement was to use an inclusive asymmetry measurement technique to extract the neutron charge form factor at a four-momentum transfer of 1 (GeV/c ) 2 . This technique has very different systematic uncertainties than traditional exclusive measurements and thus serves as an independent check of whether nuclear effects have been taken into account correctly. Method: The inclusive quasielastic reaction 3He ⃗(e ⃗,e') was measured at Jefferson Laboratory. The neutron electric form factor, GEn, was extracted at Q2=0.98 (GeV/c ) 2 from ratios of electron-polarization asymmetries measured for two orthogonal target spin orientations. This Q2 is high enough that the sensitivity to GEn is not overwhelmed by the neutron magnetic contribution, and yet low enough that explicit neutron detection is not required to suppress pion production. Results: The neutron electric form factor, GEn, was determined to be 0.0414 ±0.0077 (stat)±0.0022 (syst) , providing the first high-precision inclusive extraction of the neutron's charge form factor. Conclusions: The use of the inclusive quasielastic 3He ⃗(e ⃗,e') with a four-momentum transfer near 1 (GeV/c ) 2 has been used to provide a unique measurement of GEn. This new result provides a systematically independent validation of the exclusive extraction technique results and implies that the nuclear corrections are understood. This is contrary to the proton form factor where asymmetry and differential cross section measurements have been shown to have large systematic differences.
Geometrical correction factors for heat flux meters
NASA Technical Reports Server (NTRS)
Baumeister, K. J.; Papell, S. S.
1974-01-01
General formulas are derived for determining gage averaging errors of strip-type heat flux meters used in the measurement of one-dimensional heat flux distributions. The local averaging error e(x) is defined as the difference between the measured value of the heat flux and the local value which occurs at the center of the gage. In terms of e(x), a correction procedure is presented which allows a better estimate for the true value of the local heat flux. For many practical problems, it is possible to use relatively large gages to obtain acceptable heat flux measurements.
Electrical resistivity of liquid lanthanides using charge hard sphere system
NASA Astrophysics Data System (ADS)
Sonvane, Y. A.; Thakor, P. B.; Jani, A. R.
2013-06-01
In the present paper, we have studied electrical resistivity (ρ) of liquid lanthanides. To describe the structural information, the structure factor S(q) due to the charged hard sphere (CHS) reference systems is used along with our newly constructed model potential. To see the influence of exchange and correlation effect on the electrical resistivity (ρ) have used different local field correction functions like Hartree (H), Sarkar et al (S) and Taylor (T). Lastly we conclude that the proper choice of the model potential along with local field correction function plays a vital role to the study of the electrical resistivity (ρ).
Re-evaluation of the correction factors for the GROVEX
NASA Astrophysics Data System (ADS)
Ketelhut, Steffen; Meier, Markus
2018-04-01
The GROVEX (GROssVolumige EXtrapolationskammer, large-volume extrapolation chamber) is the primary standard for the dosimetry of low-dose-rate interstitial brachytherapy at the Physikalisch-Technische Bundesanstalt (PTB). In the course of setup modifications and re-measuring of several dimensions, the correction factors have been re-evaluated in this work. The correction factors for scatter and attenuation have been recalculated using the Monte Carlo software package EGSnrc, and a new expression has been found for the divergence correction. The obtained results decrease the measured reference air kerma rate by approximately 0.9% for the representative example of a seed of type Bebig I25.S16C. This lies within the expanded uncertainty (k = 2).
Measurement of the photon identification efficiencies with the ATLAS detector using LHC Run-1 data
Aaboud, M.; Aad, G.; Abbott, B.; ...
2016-12-03
The algorithms used by the ATLAS Collaboration to reconstruct and identify prompt photons are described. Measurements of the photon identification efficiencies are reported, using 4.9 fb –1 of pp collision data collected at the LHC at √s = 7 TeV and 20.3 fb –1 at √s = 8 TeV. The efficiencies are measured separately for converted and unconverted photons, in four different pseudorapidity regions, for transverse momenta between 10 GeV and 1.5 TeV. The results from the combination of three data-driven techniques are compared to the predictions from a simulation of the detector response, after correcting the electromagnetic shower momentamore » in the simulation for the average differences observed with respect to data. Data-to-simulation efficiency ratios used as correction factors in physics measurements are determined to account for the small residual efficiency differences. These factors are measured with uncertainties between 0.5% and 10% in 7 TeV data and between 0.5% and 5.6% in 8 TeV data, depending on the photon transverse momentum and pseudorapidity.« less
Measurement of the photon identification efficiencies with the ATLAS detector using LHC Run-1 data.
Aaboud, M; Aad, G; Abbott, B; Abdallah, J; Abdinov, O; Abeloos, B; Aben, R; AbouZeid, O S; Abraham, N L; Abramowicz, H; Abreu, H; Abreu, R; Abulaiti, Y; Acharya, B S; Adamczyk, L; Adams, D L; Adelman, J; Adomeit, S; Adye, T; Affolder, A A; Agatonovic-Jovin, T; Agricola, J; Aguilar-Saavedra, J A; Ahlen, S P; Ahmadov, F; Aielli, G; Akerstedt, H; Åkesson, T P A; Akimov, A V; Alberghi, G L; Albert, J; Albrand, S; Verzini, M J Alconada; Aleksa, M; Aleksandrov, I N; Alexa, C; Alexander, G; Alexopoulos, T; Alhroob, M; Aliev, M; Alimonti, G; Alison, J; Alkire, S P; Allbrooke, B M M; Allen, B W; Allport, P P; Aloisio, A; Alonso, A; Alonso, F; Alpigiani, C; Alstaty, M; Gonzalez, B Alvarez; Piqueras, D Álvarez; Alviggi, M G; Amadio, B T; Amako, K; Coutinho, Y Amaral; Amelung, C; Amidei, D; Santos, S P Amor Dos; Amorim, A; Amoroso, S; Amundsen, G; Anastopoulos, C; Ancu, L S; Andari, N; Andeen, T; Anders, C F; Anders, G; Anders, J K; Anderson, K J; Andreazza, A; Andrei, V; Angelidakis, S; Angelozzi, I; Anger, P; Angerami, A; Anghinolfi, F; Anisenkov, A V; Anjos, N; Annovi, A; Antonelli, M; Antonov, A; Anulli, F; Aoki, M; Bella, L Aperio; Arabidze, G; Arai, Y; Araque, J P; Arce, A T H; Arduh, F A; Arguin, J-F; Argyropoulos, S; Arik, M; Armbruster, A J; Armitage, L J; Arnaez, O; Arnold, H; Arratia, M; Arslan, O; Artamonov, A; Artoni, G; Artz, S; Asai, S; Asbah, N; Ashkenazi, A; Åsman, B; Asquith, L; Assamagan, K; Astalos, R; Atkinson, M; Atlay, N B; Augsten, K; Avolio, G; Axen, B; Ayoub, M K; Azuelos, G; Baak, M A; Baas, A E; Baca, M J; Bachacou, H; Bachas, K; Backes, M; Backhaus, M; Bagiacchi, P; Bagnaia, P; Bai, Y; Baines, J T; Baker, O K; Baldin, E M; Balek, P; Balestri, T; Balli, F; Balunas, W K; Banas, E; Banerjee, Sw; Bannoura, A A E; Barak, L; Barberio, E L; Barberis, D; Barbero, M; Barillari, T; Barklow, T; Barlow, N; Barnes, S L; Barnett, B M; Barnett, R M; Barnovska, Z; Baroncelli, A; Barone, G; Barr, A J; Navarro, L Barranco; Barreiro, F; da Costa, J Barreiro Guimarães; Bartoldus, R; Barton, A E; Bartos, P; Basalaev, A; Bassalat, A; Bates, R L; Batista, S J; Batley, J R; Battaglia, M; Bauce, M; Bauer, F; Bawa, H S; Beacham, J B; Beattie, M D; Beau, T; Beauchemin, P H; Bechtle, P; Beck, H P; Becker, K; Becker, M; Beckingham, M; Becot, C; Beddall, A J; Beddall, A; Bednyakov, V A; Bedognetti, M; Bee, C P; Beemster, L J; Beermann, T A; Begel, M; Behr, J K; Belanger-Champagne, C; Bell, A S; Bella, G; Bellagamba, L; Bellerive, A; Bellomo, M; Belotskiy, K; Beltramello, O; Belyaev, N L; Benary, O; Benchekroun, D; Bender, M; Bendtz, K; Benekos, N; Benhammou, Y; Noccioli, E Benhar; Benitez, J; Benjamin, D P; Bensinger, J R; Bentvelsen, S; Beresford, L; Beretta, M; Berge, D; Kuutmann, E Bergeaas; Berger, N; Beringer, J; Berlendis, S; Bernard, N R; Bernius, C; Bernlochner, F U; Berry, T; Berta, P; Bertella, C; Bertoli, G; Bertolucci, F; Bertram, I A; Bertsche, C; Bertsche, D; Besjes, G J; Bylund, O Bessidskaia; Bessner, M; Besson, N; Betancourt, C; Bethke, S; Bevan, A J; Bhimji, W; Bianchi, R M; Bianchini, L; Bianco, M; Biebel, O; Biedermann, D; Bielski, R; Biesuz, N V; Biglietti, M; De Mendizabal, J Bilbao; Bilokon, H; Bindi, M; Binet, S; Bingul, A; Bini, C; Biondi, S; Bjergaard, D M; Black, C W; Black, J E; Black, K M; Blackburn, D; Blair, R E; Blanchard, J-B; Blanco, J E; Blazek, T; Bloch, I; Blocker, C; Blum, W; Blumenschein, U; Blunier, S; Bobbink, G J; Bobrovnikov, V S; Bocchetta, S S; Bocci, A; Bock, C; Boehler, M; Boerner, D; Bogaerts, J A; Bogavac, D; Bogdanchikov, A G; Bohm, C; Boisvert, V; Bokan, P; Bold, T; Boldyrev, A S; Bomben, M; Bona, M; Boonekamp, M; Borisov, A; Borissov, G; Bortfeldt, J; Bortoletto, D; Bortolotto, V; Bos, K; Boscherini, D; Bosman, M; Sola, J D Bossio; Boudreau, J; Bouffard, J; Bouhova-Thacker, E V; Boumediene, D; Bourdarios, C; Boutle, S K; Boveia, A; Boyd, J; Boyko, I R; Bracinik, J; Brandt, A; Brandt, G; Brandt, O; Bratzler, U; Brau, B; Brau, J E; Braun, H M; Madden, W D Breaden; Brendlinger, K; Brennan, A J; Brenner, L; Brenner, R; Bressler, S; Bristow, T M; Britton, D; Britzger, D; Brochu, F M; Brock, I; Brock, R; Brooijmans, G; Brooks, T; Brooks, W K; Brosamer, J; Brost, E; Broughton, J H; de Renstrom, P A Bruckman; Bruncko, D; Bruneliere, R; Bruni, A; Bruni, G; Bruni, L S; Brunt, B H; Bruschi, M; Bruscino, N; Bryant, P; Bryngemark, L; Buanes, T; Buat, Q; Buchholz, P; Buckley, A G; Budagov, I A; Buehrer, F; Bugge, M K; Bulekov, O; Bullock, D; Burckhart, H; Burdin, S; Burgard, C D; Burghgrave, B; Burka, K; Burke, S; Burmeister, I; Busato, E; Büscher, D; Büscher, V; Bussey, P; Butler, J M; Buttar, C M; Butterworth, J M; Butti, P; Buttinger, W; Buzatu, A; Buzykaev, A R; Urbán, S Cabrera; Caforio, D; Cairo, V M; Cakir, O; Calace, N; Calafiura, P; Calandri, A; Calderini, G; Calfayan, P; Caloba, L P; Calvet, D; Calvet, S; Calvet, T P; Toro, R Camacho; Camarda, S; Camarri, P; Cameron, D; Armadans, R Caminal; Camincher, C; Campana, S; Campanelli, M; Camplani, A; Campoverde, A; Canale, V; Canepa, A; Bret, M Cano; Cantero, J; Cantrill, R; Cao, T; Garrido, M D M Capeans; Caprini, I; Caprini, M; Capua, M; Caputo, R; Carbone, R M; Cardarelli, R; Cardillo, F; Carli, I; Carli, T; Carlino, G; Carminati, L; Caron, S; Carquin, E; Carrillo-Montoya, G D; Carter, J R; Carvalho, J; Casadei, D; Casado, M P; Casolino, M; Casper, D W; Castaneda-Miranda, E; Castelijn, R; Castelli, A; Gimenez, V Castillo; Castro, N F; Catinaccio, A; Catmore, J R; Cattai, A; Caudron, J; Cavaliere, V; Cavallaro, E; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Ceradini, F; Alberich, L Cerda; Cerio, B C; Cerqueira, A S; Cerri, A; Cerrito, L; Cerutti, F; Cerv, M; Cervelli, A; Cetin, S A; Chafaq, A; Chakraborty, D; Chan, S K; Chan, Y L; Chang, P; Chapman, J D; Charlton, D G; Chatterjee, A; Chau, C C; Barajas, C A Chavez; Che, S; Cheatham, S; Chegwidden, A; Chekanov, S; Chekulaev, S V; Chelkov, G A; Chelstowska, M A; Chen, C; Chen, H; Chen, K; Chen, S; Chen, S; Chen, X; Chen, Y; Cheng, H C; Cheng, H J; Cheng, Y; Cheplakov, A; Cheremushkina, E; El Moursli, R Cherkaoui; Chernyatin, V; Cheu, E; Chevalier, L; Chiarella, V; Chiarelli, G; Chiodini, G; Chisholm, A S; Chitan, A; Chizhov, M V; Choi, K; Chomont, A R; Chouridou, S; Chow, B K B; Christodoulou, V; Chromek-Burckhart, D; Chudoba, J; Chuinard, A J; Chwastowski, J J; Chytka, L; Ciapetti, G; Ciftci, A K; Cinca, D; Cindro, V; Cioara, I A; Ciocio, A; Cirotto, F; Citron, Z H; Citterio, M; Ciubancan, M; Clark, A; Clark, B L; Clark, M R; Clark, P J; Clarke, R N; Clement, C; Coadou, Y; Cobal, M; Coccaro, A; Cochran, J; Coffey, L; Colasurdo, L; Cole, B; Colijn, A P; Collot, J; Colombo, T; Compostella, G; Muiño, P Conde; Coniavitis, E; Connell, S H; Connelly, I A; Consorti, V; Constantinescu, S; Conti, G; Conventi, F; Cooke, M; Cooper, B D; Cooper-Sarkar, A M; Cormier, K J R; Cornelissen, T; Corradi, M; Corriveau, F; Corso-Radu, A; Cortes-Gonzalez, A; Cortiana, G; Costa, G; Costa, M J; Costanzo, D; Cottin, G; Cowan, G; Cox, B E; Cranmer, K; Crawley, S J; Cree, G; Crépé-Renaudin, S; Crescioli, F; Cribbs, W A; Ortuzar, M Crispin; Cristinziani, M; Croft, V; Crosetti, G; Donszelmann, T Cuhadar; Cummings, J; Curatolo, M; Cúth, J; Cuthbert, C; Czirr, H; Czodrowski, P; D'amen, G; D'Auria, S; D'Onofrio, M; Da Cunha Sargedas De Sousa, M J; Da Via, C; Dabrowski, W; Dado, T; Dai, T; Dale, O; Dallaire, F; Dallapiccola, C; Dam, M; Dandoy, J R; Dang, N P; Daniells, A C; Dann, N S; Danninger, M; Hoffmann, M Dano; Dao, V; Darbo, G; Darmora, S; Dassoulas, J; Dattagupta, A; Davey, W; David, C; Davidek, T; Davies, M; Davison, P; Dawe, E; Dawson, I; Daya-Ishmukhametova, R K; De, K; de Asmundis, R; De Benedetti, A; De Castro, S; De Cecco, S; De Groot, N; de Jong, P; De la Torre, H; De Lorenzi, F; De Maria, A; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; Dearnaley, W J; Debbe, R; Debenedetti, C; Dedovich, D V; Dehghanian, N; Deigaard, I; Del Gaudio, M; Del Peso, J; Del Prete, T; Delgove, D; Deliot, F; Delitzsch, C M; Deliyergiyev, M; Dell'Acqua, A; Dell'Asta, L; Dell'Orso, M; Della Pietra, M; Della Volpe, D; Delmastro, M; Delsart, P A; Deluca, C; DeMarco, D A; Demers, S; Demichev, M; Demilly, A; Denisov, S P; Denysiuk, D; Derendarz, D; Derkaoui, J E; Derue, F; Dervan, P; Desch, K; Deterre, C; Dette, K; Deviveiros, P O; Dewhurst, A; Dhaliwal, S; Di Ciaccio, A; Di Ciaccio, L; Di Clemente, W K; Di Donato, C; Di Girolamo, A; Di Girolamo, B; Di Micco, B; Di Nardo, R; Di Simone, A; Di Sipio, R; Di Valentino, D; Diaconu, C; Diamond, M; Dias, F A; Diaz, M A; Diehl, E B; Dietrich, J; Diglio, S; Dimitrievska, A; Dingfelder, J; Dita, P; Dita, S; Dittus, F; Djama, F; Djobava, T; Djuvsland, J I; do Vale, M A B; Dobos, D; Dobre, M; Doglioni, C; Dohmae, T; Dolejsi, J; Dolezal, Z; Dolgoshein, B A; Donadelli, M; Donati, S; Dondero, P; Donini, J; Dopke, J; Doria, A; Dova, M T; Doyle, A T; Drechsler, E; Dris, M; Du, Y; Duarte-Campderros, J; Duchovni, E; Duckeck, G; Ducu, O A; Duda, D; Dudarev, A; Duffield, E M; Duflot, L; Duguid, L; Dührssen, M; Dumancic, M; Dunford, M; Yildiz, H Duran; Düren, M; Durglishvili, A; Duschinger, D; Dutta, B; Dyndal, M; Eckardt, C; Ecker, K M; Edgar, R C; Edwards, N C; Eifert, T; Eigen, G; Einsweiler, K; Ekelof, T; El Kacimi, M; Ellajosyula, V; Ellert, M; Elles, S; Ellinghaus, F; Elliot, A A; Ellis, N; Elmsheuser, J; Elsing, M; Emeliyanov, D; Enari, Y; Endner, O C; Endo, M; Ennis, J S; Erdmann, J; Ereditato, A; Ernis, G; Ernst, J; Ernst, M; Errede, S; Ertel, E; Escalier, M; Esch, H; Escobar, C; Esposito, B; Etienvre, A I; Etzion, E; Evans, H; Ezhilov, A; Fabbri, F; Fabbri, L; Facini, G; Fakhrutdinov, R M; Falciano, S; Falla, R J; Faltova, J; Fang, Y; Fanti, M; Farbin, A; Farilla, A; Farina, C; Farooque, T; Farrell, S; Farrington, S M; Farthouat, P; Fassi, F; Fassnacht, P; Fassouliotis, D; Giannelli, M Faucci; Favareto, A; Fawcett, W J; Fayard, L; Fedin, O L; Fedorko, W; Feigl, S; Feligioni, L; Feng, C; Feng, E J; Feng, H; Fenyuk, A B; Feremenga, L; Martinez, P Fernandez; Perez, S Fernandez; Ferrando, J; Ferrari, A; Ferrari, P; Ferrari, R; de Lima, D E Ferreira; Ferrer, A; Ferrere, D; Ferretti, C; Parodi, A Ferretto; Fiedler, F; Filipčič, A; Filipuzzi, M; Filthaut, F; Fincke-Keeler, M; Finelli, K D; Fiolhais, M C N; Fiorini, L; Firan, A; Fischer, A; Fischer, C; Fischer, J; Fisher, W C; Flaschel, N; Fleck, I; Fleischmann, P; Fletcher, G T; Fletcher, R R M; Flick, T; Floderus, A; Castillo, L R Flores; Flowerdew, M J; Forcolin, G T; Formica, A; Forti, A; Foster, A G; Fournier, D; Fox, H; Fracchia, S; Francavilla, P; Franchini, M; Francis, D; Franconi, L; Franklin, M; Frate, M; Fraternali, M; Freeborn, D; Fressard-Batraneanu, S M; Friedrich, F; Froidevaux, D; Frost, J A; Fukunaga, C; Torregrosa, E Fullana; Fusayasu, T; Fuster, J; Gabaldon, C; Gabizon, O; Gabrielli, A; Gabrielli, A; Gach, G P; Gadatsch, S; Gadomski, S; Gagliardi, G; Gagnon, L G; Gagnon, P; Galea, C; Galhardo, B; Gallas, E J; Gallop, B J; Gallus, P; Galster, G; Gan, K K; Gao, J; Gao, Y; Gao, Y S; Walls, F M Garay; García, C; Navarro, J E García; Garcia-Sciveres, M; Gardner, R W; Garelli, N; Garonne, V; Bravo, A Gascon; Gatti, C; Gaudiello, A; Gaudio, G; Gaur, B; Gauthier, L; Gavrilenko, I L; Gay, C; Gaycken, G; Gazis, E N; Gecse, Z; Gee, C N P; Geich-Gimbel, Ch; Geisen, M; Geisler, M P; Gemme, C; Genest, M H; Geng, C; Gentile, S; George, S; Gerbaudo, D; Gershon, A; Ghasemi, S; Ghazlane, H; Ghneimat, M; Giacobbe, B; Giagu, S; Giannetti, P; Gibbard, B; Gibson, S M; Gignac, M; Gilchriese, M; Gillam, T P S; Gillberg, D; Gilles, G; Gingrich, D M; Giokaris, N; Giordani, M P; Giorgi, F M; Giorgi, F M; Giraud, P F; Giromini, P; Giugni, D; Giuli, F; Giuliani, C; Giulini, M; Gjelsten, B K; Gkaitatzis, S; Gkialas, I; Gkougkousis, E L; Gladilin, L K; Glasman, C; Glatzer, J; Glaysher, P C F; Glazov, A; Goblirsch-Kolb, M; Godlewski, J; Goldfarb, S; Golling, T; Golubkov, D; Gomes, A; Gonçalo, R; Da Costa, J Goncalves Pinto Firmino; Gonella, G; Gonella, L; Gongadze, A; de la Hoz, S González; Parra, G Gonzalez; Gonzalez-Sevilla, S; Goossens, L; Gorbounov, P A; Gordon, H A; Gorelov, I; Gorini, B; Gorini, E; Gorišek, A; Gornicki, E; Goshaw, A T; Gössling, C; Gostkin, M I; Goudet, C R; Goujdami, D; Goussiou, A G; Govender, N; Gozani, E; Graber, L; Grabowska-Bold, I; Gradin, P O J; Grafström, P; Gramling, J; Gramstad, E; Grancagnolo, S; Gratchev, V; Gravila, P M; Gray, H M; Graziani, E; Greenwood, Z D; Grefe, C; Gregersen, K; Gregor, I M; Grenier, P; Grevtsov, K; Griffiths, J; Grillo, A A; Grimm, K; Grinstein, S; Gris, Ph; Grivaz, J-F; Groh, S; Grohs, J P; Gross, E; Grosse-Knetter, J; Grossi, G C; Grout, Z J; Guan, L; Guan, W; Guenther, J; Guescini, F; Guest, D; Gueta, O; Guido, E; Guillemin, T; Guindon, S; Gul, U; Gumpert, C; Guo, J; Guo, Y; Gupta, S; Gustavino, G; Gutierrez, P; Ortiz, N G Gutierrez; Gutschow, C; Guyot, C; Gwenlan, C; Gwilliam, C B; Haas, A; Haber, C; Hadavand, H K; Haddad, N; Hadef, A; Haefner, P; Hageböck, S; Hajduk, Z; Hakobyan, H; Haleem, M; Haley, J; Halladjian, G; Hallewell, G D; Hamacher, K; Hamal, P; Hamano, K; Hamilton, A; Hamity, G N; Hamnett, P G; Han, L; Hanagaki, K; Hanawa, K; Hance, M; Haney, B; Hanke, P; Hanna, R; Hansen, J B; Hansen, J D; Hansen, M C; Hansen, P H; Hara, K; Hard, A S; Harenberg, T; Hariri, F; Harkusha, S; Harrington, R D; Harrison, P F; Hartjes, F; Hartmann, N M; Hasegawa, M; Hasegawa, Y; Hasib, A; Hassani, S; Haug, S; Hauser, R; Hauswald, L; Havranek, M; Hawkes, C M; Hawkings, R J; Hayden, D; Hays, C P; Hays, J M; Hayward, H S; Haywood, S J; Head, S J; Heck, T; Hedberg, V; Heelan, L; Heim, S; Heim, T; Heinemann, B; Heinrich, J J; Heinrich, L; Heinz, C; Hejbal, J; Helary, L; Hellman, S; Helsens, C; Henderson, J; Henderson, R C W; Heng, Y; Henkelmann, S; Correia, A M Henriques; Henrot-Versille, S; Herbert, G H; Jiménez, Y Hernández; Herten, G; Hertenberger, R; Hervas, L; Hesketh, G G; Hessey, N P; Hetherly, J W; Hickling, R; Higón-Rodriguez, E; Hill, E; Hill, J C; Hiller, K H; Hillier, S J; Hinchliffe, I; Hines, E; Hinman, R R; Hirose, M; Hirschbuehl, D; Hobbs, J; Hod, N; Hodgkinson, M C; Hodgson, P; Hoecker, A; Hoeferkamp, M R; Hoenig, F; Hohn, D; Holmes, T R; Homann, M; Hong, T M; Hooberman, B H; Hopkins, W H; Horii, Y; Horton, A J; Hostachy, J-Y; Hou, S; Hoummada, A; Howarth, J; Hrabovsky, M; Hristova, I; Hrivnac, J; Hryn'ova, T; Hrynevich, A; Hsu, C; Hsu, P J; Hsu, S-C; Hu, D; Hu, Q; Huang, Y; Hubacek, Z; Hubaut, F; Huegging, F; Huffman, T B; Hughes, E W; Hughes, G; Huhtinen, M; Hülsing, T A; Huo, P; Huseynov, N; Huston, J; Huth, J; Iacobucci, G; Iakovidis, G; Ibragimov, I; Iconomidou-Fayard, L; Ideal, E; Idrissi, Z; Iengo, P; Igonkina, O; Iizawa, T; Ikegami, Y; Ikeno, M; Ilchenko, Y; Iliadis, D; Ilic, N; Ince, T; Introzzi, G; Ioannou, P; Iodice, M; Iordanidou, K; Ippolito, V; Ishino, M; Ishitsuka, M; Ishmukhametov, R; Issever, C; Istin, S; Ito, F; Ponce, J M Iturbe; Iuppa, R; Iwanski, W; Iwasaki, H; Izen, J M; Izzo, V; Jabbar, S; Jackson, B; Jackson, M; Jackson, P; Jain, V; Jakobi, K B; Jakobs, K; Jakobsen, S; Jakoubek, T; Jamin, D O; Jana, D K; Jansen, E; Jansky, R; Janssen, J; Janus, M; Jarlskog, G; Javadov, N; Javůrek, T; Jeanneau, F; Jeanty, L; Jejelava, J; Jeng, G-Y; Jennens, D; Jenni, P; Jentzsch, J; Jeske, C; Jézéquel, S; Ji, H; Jia, J; Jiang, H; Jiang, Y; Jiggins, S; Belenguer, M Jimenez; Pena, J Jimenez; Jin, S; Jinaru, A; Jinnouchi, O; Johansson, P; Johns, K A; Johnson, W J; Jon-And, K; Jones, G; Jones, R W L; Jones, S; Jones, T J; Jongmanns, J; Jorge, P M; Jovicevic, J; Ju, X; Rozas, A Juste; Köhler, M K; Kaczmarska, A; Kado, M; Kagan, H; Kagan, M; Kahn, S J; Kajomovitz, E; Kalderon, C W; Kaluza, A; Kama, S; Kamenshchikov, A; Kanaya, N; Kaneti, S; Kanjir, L; Kantserov, V A; Kanzaki, J; Kaplan, B; Kaplan, L S; Kapliy, A; Kar, D; Karakostas, K; Karamaoun, A; Karastathis, N; Kareem, M J; Karentzos, E; Karnevskiy, M; Karpov, S N; Karpova, Z M; Karthik, K; Kartvelishvili, V; Karyukhin, A N; Kasahara, K; Kashif, L; Kass, R D; Kastanas, A; Kataoka, Y; Kato, C; Katre, A; Katzy, J; Kawagoe, K; Kawamoto, T; Kawamura, G; Kazama, S; Kazanin, V F; Keeler, R; Kehoe, R; Keller, J S; Kempster, J J; Kawade, K; Keoshkerian, H; Kepka, O; Kerševan, B P; Kersten, S; Keyes, R A; Khalil-Zada, F; Khanov, A; Kharlamov, A G; Khoo, T J; Khovanskiy, V; Khramov, E; Khubua, J; Kido, S; Kim, H Y; Kim, S H; Kim, Y K; Kimura, N; Kind, O M; King, B T; King, M; King, S B; Kirk, J; Kiryunin, A E; Kishimoto, T; Kisielewska, D; Kiss, F; Kiuchi, K; Kivernyk, O; Kladiva, E; Klein, M H; Klein, M; Klein, U; Kleinknecht, K; Klimek, P; Klimentov, A; Klingenberg, R; Klinger, J A; Klioutchnikova, T; Kluge, E-E; Kluit, P; Kluth, S; Knapik, J; Kneringer, E; Knoops, E B F G; Knue, A; Kobayashi, A; Kobayashi, D; Kobayashi, T; Kobel, M; Kocian, M; Kodys, P; Koffas, T; Koffeman, E; Koi, T; Kolanoski, H; Kolb, M; Koletsou, I; Komar, A A; Komori, Y; Kondo, T; Kondrashova, N; Köneke, K; König, A C; Kono, T; Konoplich, R; Konstantinidis, N; Kopeliansky, R; Koperny, S; Köpke, L; Kopp, A K; Korcyl, K; Kordas, K; Korn, A; Korol, A A; Korolkov, I; Korolkova, E V; Kortner, O; Kortner, S; Kosek, T; Kostyukhin, V V; Kotwal, A; Kourkoumeli-Charalampidi, A; Kourkoumelis, C; Kouskoura, V; Kowalewska, A B; Kowalewski, R; Kowalski, T Z; Kozakai, C; Kozanecki, W; Kozhin, A S; Kramarenko, V A; Kramberger, G; Krasnopevtsev, D; Krasny, M W; Krasznahorkay, A; Kraus, J K; Kravchenko, A; Kretz, M; Kretzschmar, J; Kreutzfeldt, K; Krieger, P; Krizka, K; Kroeninger, K; Kroha, H; Kroll, J; Kroseberg, J; Krstic, J; Kruchonak, U; Krüger, H; Krumnack, N; Kruse, A; Kruse, M C; Kruskal, M; Kubota, T; Kucuk, H; Kuday, S; Kuechler, J T; Kuehn, S; Kugel, A; Kuger, F; Kuhl, A; Kuhl, T; Kukhtin, V; Kukla, R; Kulchitsky, Y; Kuleshov, S; Kuna, M; Kunigo, T; Kupco, A; Kurashige, H; Kurochkin, Y A; Kus, V; Kuwertz, E S; Kuze, M; Kvita, J; Kwan, T; Kyriazopoulos, D; Rosa, A La; Navarro, J L La Rosa; Rotonda, L La; Lacasta, C; Lacava, F; Lacey, J; Lacker, H; Lacour, D; Lacuesta, V R; Ladygin, E; Lafaye, R; Laforge, B; Lagouri, T; Lai, S; Lammers, S; Lampl, W; Lançon, E; Landgraf, U; Landon, M P J; Lang, V S; Lange, J C; Lankford, A J; Lanni, F; Lantzsch, K; Lanza, A; Laplace, S; Lapoire, C; Laporte, J F; Lari, T; Manghi, F Lasagni; Lassnig, M; Laurelli, P; Lavrijsen, W; Law, A T; Laycock, P; Lazovich, T; Lazzaroni, M; Le, B; Dortz, O Le; Guirriec, E Le; Quilleuc, E P Le; LeBlanc, M; LeCompte, T; Ledroit-Guillon, F; Lee, C A; Lee, S C; Lee, L; Lefebvre, G; Lefebvre, M; Legger, F; Leggett, C; Lehan, A; Miotto, G Lehmann; Lei, X; Leight, W A; Leisos, A; Leister, A G; Leite, M A L; Leitner, R; Lellouch, D; Lemmer, B; Leney, K J C; Lenz, T; Lenzi, B; Leone, R; Leone, S; Leonidopoulos, C; Leontsinis, S; Lerner, G; Leroy, C; Lesage, A A J; Lester, C G; Levchenko, M; Levêque, J; Levin, D; Levinson, L J; Levy, M; Lewis, D; Leyko, A M; Leyton, M; Li, B; Li, H; Li, H L; Li, L; Li, L; Li, Q; Li, S; Li, X; Li, Y; Liang, Z; Liberti, B; Liblong, A; Lichard, P; Lie, K; Liebal, J; Liebig, W; Limosani, A; Lin, S C; Lin, T H; Lindquist, B E; Lionti, A E; Lipeles, E; Lipniacka, A; Lisovyi, M; Liss, T M; Lister, A; Litke, A M; Liu, B; Liu, D; Liu, H; Liu, H; Liu, J; Liu, J B; Liu, K; Liu, L; Liu, M; Liu, M; Liu, Y L; Liu, Y; Livan, M; Lleres, A; Merino, J Llorente; Lloyd, S L; Sterzo, F Lo; Lobodzinska, E; Loch, P; Lockman, W S; Loebinger, F K; Loevschall-Jensen, A E; Loew, K M; Loginov, A; Lohse, T; Lohwasser, K; Lokajicek, M; Long, B A; Long, J D; Long, R E; Longo, L; Looper, K A; Lopes, L; Mateos, D Lopez; Paredes, B Lopez; Paz, I Lopez; Solis, A Lopez; Lorenz, J; Martinez, N Lorenzo; Losada, M; Lösel, P J; Lou, X; Lounis, A; Love, J; Love, P A; Lu, H; Lu, N; Lubatti, H J; Luci, C; Lucotte, A; Luedtke, C; Luehring, F; Lukas, W; Luminari, L; Lundberg, O; Lund-Jensen, B; Luzi, P M; Lynn, D; Lysak, R; Lytken, E; Lyubushkin, V; Ma, H; Ma, L L; Ma, Y; Maccarrone, G; Macchiolo, A; Macdonald, C M; Maček, B; Miguens, J Machado; Madaffari, D; Madar, R; Maddocks, H J; Mader, W F; Madsen, A; Maeda, J; Maeland, S; Maeno, T; Maevskiy, A; Magradze, E; Mahlstedt, J; Maiani, C; Maidantchik, C; Maier, A A; Maier, T; Maio, A; Majewski, S; Makida, Y; Makovec, N; Malaescu, B; Malecki, Pa; Maleev, V P; Malek, F; Mallik, U; Malon, D; Malone, C; Maltezos, S; Malyukov, S; Mamuzic, J; Mancini, G; Mandelli, B; Mandelli, L; Mandić, I; Maneira, J; Filho, L Manhaes de Andrade; Ramos, J Manjarres; Mann, A; Manousos, A; Mansoulie, B; Mansour, J D; Mantifel, R; Mantoani, M; Manzoni, S; Mapelli, L; Marceca, G; March, L; Marchiori, G; Marcisovsky, M; Marjanovic, M; Marley, D E; Marroquim, F; Marsden, S P; Marshall, Z; Marti-Garcia, S; Martin, B; Martin, T A; Martin, V J; Latour, B Martin Dit; Martinez, M; Martin-Haugh, S; Martoiu, V S; Martyniuk, A C; Marx, M; Marzin, A; Masetti, L; Mashimo, T; Mashinistov, R; Masik, J; Maslennikov, A L; Massa, I; Massa, L; Mastrandrea, P; Mastroberardino, A; Masubuchi, T; Mättig, P; Mattmann, J; Maurer, J; Maxfield, S J; Maximov, D A; Mazini, R; Mazza, S M; Fadden, N C Mc; Goldrick, G Mc; Kee, S P Mc; McCarn, A; McCarthy, R L; McCarthy, T G; McClymont, L I; McDonald, E F; McFarlane, K W; Mcfayden, J A; Mchedlidze, G; McMahon, S J; McPherson, R A; Medinnis, M; Meehan, S; Mehlhase, S; Mehta, A; Meier, K; Meineck, C; Meirose, B; Melini, D; Garcia, B R Mellado; Melo, M; Meloni, F; Mengarelli, A; Menke, S; Meoni, E; Mergelmeyer, S; Mermod, P; Merola, L; Meroni, C; Merritt, F S; Messina, A; Metcalfe, J; Mete, A S; Meyer, C; Meyer, C; Meyer, J-P; Meyer, J; Theenhausen, H Meyer Zu; Miano, F; Middleton, R P; Miglioranzi, S; Mijović, L; Mikenberg, G; Mikestikova, M; Mikuž, M; Milesi, M; Milic, A; Miller, D W; Mills, C; Milov, A; Milstead, D A; Minaenko, A A; Minami, Y; Minashvili, I A; Mincer, A I; Mindur, B; Mineev, M; Ming, Y; Mir, L M; Mistry, K P; Mitani, T; Mitrevski, J; Mitsou, V A; Miucci, A; Miyagawa, P S; Mjörnmark, J U; Moa, T; Mochizuki, K; Mohapatra, S; Molander, S; Moles-Valls, R; Monden, R; Mondragon, M C; Mönig, K; Monk, J; Monnier, E; Montalbano, A; Berlingen, J Montejo; Monticelli, F; Monzani, S; Moore, R W; Morange, N; Moreno, D; Llácer, M Moreno; Morettini, P; Mori, D; Mori, T; Morii, M; Morinaga, M; Morisbak, V; Moritz, S; Morley, A K; Mornacchi, G; Morris, J D; Mortensen, S S; Morvaj, L; Mosidze, M; Moss, J; Motohashi, K; Mount, R; Mountricha, E; Mouraviev, S V; Moyse, E J W; Muanza, S; Mudd, R D; Mueller, F; Mueller, J; Mueller, R S P; Mueller, T; Muenstermann, D; Mullen, P; Mullier, G A; Sanchez, F J Munoz; Quijada, J A Murillo; Murray, W J; Musheghyan, H; Muškinja, M; Myagkov, A G; Myska, M; Nachman, B P; Nackenhorst, O; Nagai, K; Nagai, R; Nagano, K; Nagasaka, Y; Nagata, K; Nagel, M; Nagy, E; Nairz, A M; Nakahama, Y; Nakamura, K; Nakamura, T; Nakano, I; Namasivayam, H; Garcia, R F Naranjo; Narayan, R; Villar, D I Narrias; Naryshkin, I; Naumann, T; Navarro, G; Nayyar, R; Neal, H A; Nechaeva, P Yu; Neep, T J; Nef, P D; Negri, A; Negrini, M; Nektarijevic, S; Nellist, C; Nelson, A; Nemecek, S; Nemethy, P; Nepomuceno, A A; Nessi, M; Neubauer, M S; Neumann, M; Neves, R M; Nevski, P; Newman, P R; Nguyen, D H; Manh, T Nguyen; Nickerson, R B; Nicolaidou, R; Nielsen, J; Nikiforov, A; Nikolaenko, V; Nikolic-Audit, I; Nikolopoulos, K; Nilsen, J K; Nilsson, P; Ninomiya, Y; Nisati, A; Nisius, R; Nobe, T; Nodulman, L; Nomachi, M; Nomidis, I; Nooney, T; Norberg, S; Nordberg, M; Norjoharuddeen, N; Novgorodova, O; Nowak, S; Nozaki, M; Nozka, L; Ntekas, K; Nurse, E; Nuti, F; O'grady, F; O'Neil, D C; O'Rourke, A A; O'Shea, V; Oakham, F G; Oberlack, H; Obermann, T; Ocariz, J; Ochi, A; Ochoa, I; Ochoa-Ricoux, J P; Oda, S; Odaka, S; Ogren, H; Oh, A; Oh, S H; Ohm, C C; Ohman, H; Oide, H; Okawa, H; Okumura, Y; Okuyama, T; Olariu, A; Seabra, L F Oleiro; Pino, S A Olivares; Damazio, D Oliveira; Olszewski, A; Olszowska, J; Onofre, A; Onogi, K; Onyisi, P U E; Oreglia, M J; Oren, Y; Orestano, D; Orlando, N; Orr, R S; Osculati, B; Ospanov, R; Garzon, G Otero Y; Otono, H; Ouchrif, M; Ould-Saada, F; Ouraou, A; Oussoren, K P; Ouyang, Q; Owen, M; Owen, R E; Ozcan, V E; Ozturk, N; Pachal, K; Pages, A Pacheco; Rodriguez, L Pacheco; Aranda, C Padilla; Pagáčová, M; Griso, S Pagan; Paige, F; Pais, P; Pajchel, K; Palacino, G; Palestini, S; Palka, M; Pallin, D; Palma, A; Panagiotopoulou, E St; Pandini, C E; Vazquez, J G Panduro; Pani, P; Panitkin, S; Pantea, D; Paolozzi, L; Papadopoulou, Th D; Papageorgiou, K; Paramonov, A; Hernandez, D Paredes; Parker, A J; Parker, M A; Parker, K A; Parodi, F; Parsons, J A; Parzefall, U; Pascuzzi, V R; Pasqualucci, E; Passaggio, S; Pastore, Fr; Pásztor, G; Pataraia, S; Pater, J R; Pauly, T; Pearce, J; Pearson, B; Pedersen, L E; Pedersen, M; Lopez, S Pedraza; Pedro, R; Peleganchuk, S V; Pelikan, D; Penc, O; Peng, C; Peng, H; Penwell, J; Peralva, B S; Perego, M M; Perepelitsa, D V; Codina, E Perez; Perini, L; Pernegger, H; Perrella, S; Peschke, R; Peshekhonov, V D; Peters, K; Peters, R F Y; Petersen, B A; Petersen, T C; Petit, E; Petridis, A; Petridou, C; Petroff, P; Petrolo, E; Petrov, M; Petrucci, F; Pettersson, N E; Peyaud, A; Pezoa, R; Phillips, P W; Piacquadio, G; Pianori, E; Picazio, A; Piccaro, E; Piccinini, M; Pickering, M A; Piegaia, R; Pilcher, J E; Pilkington, A D; Pin, A W J; Pinamonti, M; Pinfold, J L; Pingel, A; Pires, S; Pirumov, H; Pitt, M; Plazak, L; Pleier, M-A; Pleskot, V; Plotnikova, E; Plucinski, P; Pluth, D; Poettgen, R; Poggioli, L; Pohl, D; Polesello, G; Poley, A; Policicchio, A; Polifka, R; Polini, A; Pollard, C S; Polychronakos, V; Pommès, K; Pontecorvo, L; Pope, B G; Popeneciu, G A; Popovic, D S; Poppleton, A; Pospisil, S; Potamianos, K; Potrap, I N; Potter, C J; Potter, C T; Poulard, G; Poveda, J; Pozdnyakov, V; Astigarraga, M E Pozo; Pralavorio, P; Pranko, A; Prell, S; Price, D; Price, L E; Primavera, M; Prince, S; Proissl, M; Prokofiev, K; Prokoshin, F; Protopopescu, S; Proudfoot, J; Przybycien, M; Puddu, D; Purohit, M; Puzo, P; Qian, J; Qin, G; Qin, Y; Quadt, A; Quayle, W B; Queitsch-Maitland, M; Quilty, D; Raddum, S; Radeka, V; Radescu, V; Radhakrishnan, S K; Radloff, P; Rados, P; Ragusa, F; Rahal, G; Raine, J A; Rajagopalan, S; Rammensee, M; Rangel-Smith, C; Ratti, M G; Rauscher, F; Rave, S; Ravenscroft, T; Ravinovich, I; Raymond, M; Read, A L; Readioff, N P; Reale, M; Rebuzzi, D M; Redelbach, A; Redlinger, G; Reece, R; Reeves, K; Rehnisch, L; Reichert, J; Reisin, H; Rembser, C; Ren, H; Rescigno, M; Resconi, S; Rezanova, O L; Reznicek, P; Rezvani, R; Richter, R; Richter, S; Richter-Was, E; Ricken, O; Ridel, M; Rieck, P; Riegel, C J; Rieger, J; Rifki, O; Rijssenbeek, M; Rimoldi, A; Rimoldi, M; Rinaldi, L; Ristić, B; Ritsch, E; Riu, I; Rizatdinova, F; Rizvi, E; Rizzi, C; Robertson, S H; Robichaud-Veronneau, A; Robinson, D; Robinson, J E M; Robson, A; Roda, C; Rodina, Y; Perez, A Rodriguez; Rodriguez, D Rodriguez; Roe, S; Rogan, C S; Røhne, O; Romaniouk, A; Romano, M; Saez, S M Romano; Adam, E Romero; Rompotis, N; Ronzani, M; Roos, L; Ros, E; Rosati, S; Rosbach, K; Rose, P; Rosenthal, O; Rosien, N-A; Rossetti, V; Rossi, E; Rossi, L P; Rosten, J H N; Rosten, R; Rotaru, M; Roth, I; Rothberg, J; Rousseau, D; Royon, C R; Rozanov, A; Rozen, Y; Ruan, X; Rubbo, F; Rudolph, M S; Rühr, F; Ruiz-Martinez, A; Rurikova, Z; Rusakovich, N A; Ruschke, A; Russell, H L; Rutherfoord, J P; Ruthmann, N; Ryabov, Y F; Rybar, M; Rybkin, G; Ryu, S; Ryzhov, A; Rzehorz, G F; Saavedra, A F; Sabato, G; Sacerdoti, S; Sadrozinski, H F-W; Sadykov, R; Tehrani, F Safai; Saha, P; Sahinsoy, M; Saimpert, M; Saito, T; Sakamoto, H; Sakurai, Y; Salamanna, G; Salamon, A; Loyola, J E Salazar; Salek, D; De Bruin, P H Sales; Salihagic, D; Salnikov, A; Salt, J; Salvatore, D; Salvatore, F; Salvucci, A; Salzburger, A; Sammel, D; Sampsonidis, D; Sanchez, A; Sánchez, J; Martinez, V Sanchez; Sandaker, H; Sandbach, R L; Sander, H G; Sandhoff, M; Sandoval, C; Sandstroem, R; Sankey, D P C; Sannino, M; Sansoni, A; Santoni, C; Santonico, R; Santos, H; Castillo, I Santoyo; Sapp, K; Sapronov, A; Saraiva, J G; Sarrazin, B; Sasaki, O; Sasaki, Y; Sato, K; Sauvage, G; Sauvan, E; Savage, G; Savard, P; Sawyer, C; Sawyer, L; Saxon, J; Sbarra, C; Sbrizzi, A; Scanlon, T; Scannicchio, D A; Scarcella, M; Scarfone, V; Schaarschmidt, J; Schacht, P; Schachtner, B M; Schaefer, D; Schaefer, R; Schaeffer, J; Schaepe, S; Schaetzel, S; Schäfer, U; Schaffer, A C; Schaile, D; Schamberger, R D; Scharf, V; Schegelsky, V A; Scheirich, D; Schernau, M; Schiavi, C; Schier, S; Schillo, C; Schioppa, M; Schlenker, S; Schmidt-Sommerfeld, K R; Schmieden, K; Schmitt, C; Schmitt, S; Schmitz, S; Schneider, B; Schnoor, U; Schoeffel, L; Schoening, A; Schoenrock, B D; Schopf, E; Schott, M; Schovancova, J; Schramm, S; Schreyer, M; Schuh, N; Schultens, M J; Schultz-Coulon, H-C; Schulz, H; Schumacher, M; Schumm, B A; Schune, Ph; Schwartzman, A; Schwarz, T A; Schwegler, Ph; Schweiger, H; Schwemling, Ph; Schwienhorst, R; Schwindling, J; Schwindt, T; Sciolla, G; Scuri, F; Scutti, F; Searcy, J; Seema, P; Seidel, S C; Seiden, A; Seifert, F; Seixas, J M; Sekhniaidze, G; Sekhon, K; Sekula, S J; Seliverstov, D M; Semprini-Cesari, N; Serfon, C; Serin, L; Serkin, L; Sessa, M; Seuster, R; Severini, H; Sfiligoj, T; Sforza, F; Sfyrla, A; Shabalina, E; Shaikh, N W; Shan, L Y; Shang, R; Shank, J T; Shapiro, M; Shatalov, P B; Shaw, K; Shaw, S M; Shcherbakova, A; Shehu, C Y; Sherwood, P; Shi, L; Shimizu, S; Shimmin, C O; Shimojima, M; Shiyakova, M; Shmeleva, A; Saadi, D Shoaleh; Shochet, M J; Shojaii, S; Shrestha, S; Shulga, E; Shupe, M A; Sicho, P; Sickles, A M; Sidebo, P E; Sidiropoulou, O; Sidorov, D; Sidoti, A; Siegert, F; Sijacki, Dj; Silva, J; Silverstein, S B; Simak, V; Simard, O; Simic, Lj; Simion, S; Simioni, E; Simmons, B; Simon, D; Simon, M; Sinervo, P; Sinev, N B; Sioli, M; Siragusa, G; Sivoklokov, S Yu; Sjölin, J; Sjursen, T B; Skinner, M B; Skottowe, H P; Skubic, P; Slater, M; Slavicek, T; Slawinska, M; Sliwa, K; Slovak, R; Smakhtin, V; Smart, B H; Smestad, L; Smiesko, J; Smirnov, S Yu; Smirnov, Y; Smirnova, L N; Smirnova, O; Smith, M N K; Smith, R W; Smizanska, M; Smolek, K; Snesarev, A A; Snyder, S; Sobie, R; Socher, F; Soffer, A; Soh, D A; Sokhrannyi, G; Sanchez, C A Solans; Solar, M; Soldatov, E Yu; Soldevila, U; Solodkov, A A; Soloshenko, A; Solovyanov, O V; Solovyev, V; Sommer, P; Son, H; Song, H Y; Sood, A; Sopczak, A; Sopko, V; Sorin, V; Sosa, D; Sotiropoulou, C L; Soualah, R; Soukharev, A M; South, D; Sowden, B C; Spagnolo, S; Spalla, M; Spangenberg, M; Spanò, F; Sperlich, D; Spettel, F; Spighi, R; Spigo, G; Spiller, L A; Spousta, M; Denis, R D St; Stabile, A; Stamen, R; Stamm, S; Stanecka, E; Stanek, R W; Stanescu, C; Stanescu-Bellu, M; Stanitzki, M M; Stapnes, S; Starchenko, E A; Stark, G H; Stark, J; Staroba, P; Starovoitov, P; Stärz, S; Staszewski, R; Steinberg, P; Stelzer, B; Stelzer, H J; Stelzer-Chilton, O; Stenzel, H; Stewart, G A; Stillings, J A; Stockton, M C; Stoebe, M; Stoicea, G; Stolte, P; Stonjek, S; Stradling, A R; Straessner, A; Stramaglia, M E; Strandberg, J; Strandberg, S; Strandlie, A; Strauss, M; Strizenec, P; Ströhmer, R; Strom, D M; Stroynowski, R; Strubig, A; Stucci, S A; Stugu, B; Styles, N A; Su, D; Su, J; Subramaniam, R; Suchek, S; Sugaya, Y; Suk, M; Sulin, V V; Sultansoy, S; Sumida, T; Sun, S; Sun, X; Sundermann, J E; Suruliz, K; Susinno, G; Sutton, M R; Suzuki, S; Svatos, M; Swiatlowski, M; Sykora, I; Sykora, T; Ta, D; Taccini, C; Tackmann, K; Taenzer, J; Taffard, A; Tafirout, R; Taiblum, N; Takai, H; Takashima, R; Takeshita, T; Takubo, Y; Talby, M; Talyshev, A A; Tan, K G; Tanaka, J; Tanaka, R; Tanaka, S; Tannenwald, B B; Araya, S Tapia; Tapprogge, S; Tarem, S; Tartarelli, G F; Tas, P; Tasevsky, M; Tashiro, T; Tassi, E; Delgado, A Tavares; Tayalati, Y; Taylor, A C; Taylor, G N; Taylor, P T E; Taylor, W; Teischinger, F A; Teixeira-Dias, P; Temming, K K; Temple, D; Kate, H Ten; Teng, P K; Teoh, J J; Tepel, F; Terada, S; Terashi, K; Terron, J; Terzo, S; Testa, M; Teuscher, R J; Theveneaux-Pelzer, T; Thomas, J P; Thomas-Wilsker, J; Thompson, E N; Thompson, P D; Thompson, A S; Thomsen, L A; Thomson, E; Thomson, M; Tibbetts, M J; Torres, R E Ticse; Tikhomirov, V O; Tikhonov, Yu A; Timoshenko, S; Tipton, P; Tisserant, S; Todome, K; Todorov, T; Todorova-Nova, S; Tojo, J; Tokár, S; Tokushuku, K; Tolley, E; Tomlinson, L; Tomoto, M; Tompkins, L; Toms, K; Tong, B; Torrence, E; Torres, H; Pastor, E Torró; Toth, J; Touchard, F; Tovey, D R; Trefzger, T; Tricoli, A; Trigger, I M; Trincaz-Duvoid, S; Tripiana, M F; Trischuk, W; Trocmé, B; Trofymov, A; Troncon, C; Trottier-McDonald, M; Trovatelli, M; Truong, L; Trzebinski, M; Trzupek, A; Tseng, J C-L; Tsiareshka, P V; Tsipolitis, G; Tsirintanis, N; Tsiskaridze, S; Tsiskaridze, V; Tskhadadze, E G; Tsui, K M; Tsukerman, I I; Tsulaia, V; Tsuno, S; Tsybychev, D; Tudorache, A; Tudorache, V; Tuna, A N; Tupputi, S A; Turchikhin, S; Turecek, D; Turgeman, D; Turra, R; Turvey, A J; Tuts, P M; Tyndel, M; Ucchielli, G; Ueda, I; Ueno, R; Ughetto, M; Ukegawa, F; Unal, G; Undrus, A; Unel, G; Ungaro, F C; Unno, Y; Unverdorben, C; Urban, J; Urquijo, P; Urrejola, P; Usai, G; Usanova, A; Vacavant, L; Vacek, V; Vachon, B; Valderanis, C; Santurio, E Valdes; Valencic, N; Valentinetti, S; Valero, A; Valery, L; Valkar, S; Vallecorsa, S; Ferrer, J A Valls; Van Den Wollenberg, W; Van Der Deijl, P C; van der Geer, R; van der Graaf, H; van Eldik, N; van Gemmeren, P; Van Nieuwkoop, J; van Vulpen, I; van Woerden, M C; Vanadia, M; Vandelli, W; Vanguri, R; Vaniachine, A; Vankov, P; Vardanyan, G; Vari, R; Varnes, E W; Varol, T; Varouchas, D; Vartapetian, A; Varvell, K E; Vasquez, J G; Vazeille, F; Schroeder, T Vazquez; Veatch, J; Veloce, L M; Veloso, F; Veneziano, S; Ventura, A; Venturi, M; Venturi, N; Venturini, A; Vercesi, V; Verducci, M; Verkerke, W; Vermeulen, J C; Vest, A; Vetterli, M C; Viazlo, O; Vichou, I; Vickey, T; Boeriu, O E Vickey; Viehhauser, G H A; Viel, S; Vigani, L; Vigne, R; Villa, M; Perez, M Villaplana; Vilucchi, E; Vincter, M G; Vinogradov, V B; Vittori, C; Vivarelli, I; Vlachos, S; Vlasak, M; Vogel, M; Vokac, P; Volpi, G; Volpi, M; von der Schmitt, H; von Toerne, E; Vorobel, V; Vorobev, K; Vos, M; Voss, R; Vossebeld, J H; Vranjes, N; Milosavljevic, M Vranjes; Vrba, V; Vreeswijk, M; Vuillermet, R; Vukotic, I; Vykydal, Z; Wagner, P; Wagner, W; Wahlberg, H; Wahrmund, S; Wakabayashi, J; Walder, J; Walker, R; Walkowiak, W; Wallangen, V; Wang, C; Wang, C; Wang, F; Wang, H; Wang, H; Wang, J; Wang, J; Wang, K; Wang, R; Wang, S M; Wang, T; Wang, T; Wang, W; Wang, X; Wanotayaroj, C; Warburton, A; Ward, C P; Wardrope, D R; Washbrook, A; Watkins, P M; Watson, A T; Watson, M F; Watts, G; Watts, S; Waugh, B M; Webb, S; Weber, M S; Weber, S W; Webster, J S; Weidberg, A R; Weinert, B; Weingarten, J; Weiser, C; Weits, H; Wells, P S; Wenaus, T; Wengler, T; Wenig, S; Wermes, N; Werner, M; Werner, M D; Werner, P; Wessels, M; Wetter, J; Whalen, K; Whallon, N L; Wharton, A M; White, A; White, M J; White, R; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Wienemann, P; Wiglesworth, C; Wiik-Fuchs, L A M; Wildauer, A; Wilk, F; Wilkens, H G; Williams, H H; Williams, S; Willis, C; Willocq, S; Wilson, J A; Wingerter-Seez, I; Winklmeier, F; Winston, O J; Winter, B T; Wittgen, M; Wittkowski, J; Wollstadt, S J; Wolter, M W; Wolters, H; Wosiek, B K; Wotschack, J; Woudstra, M J; Wozniak, K W; Wu, M; Wu, M; Wu, S L; Wu, X; Wu, Y; Wyatt, T R; Wynne, B M; Xella, S; Xu, D; Xu, L; Yabsley, B; Yacoob, S; Yakabe, R; Yamaguchi, D; Yamaguchi, Y; Yamamoto, A; Yamamoto, S; Yamanaka, T; Yamauchi, K; Yamazaki, Y; Yan, Z; Yang, H; Yang, H; Yang, Y; Yang, Z; Yao, W-M; Yap, Y C; Yasu, Y; Yatsenko, E; Wong, K H Yau; Ye, J; Ye, S; Yeletskikh, I; Yen, A L; Yildirim, E; Yorita, K; Yoshida, R; Yoshihara, K; Young, C; Young, C J S; Youssef, S; Yu, D R; Yu, J; Yu, J M; Yu, J; Yuan, L; Yuen, S P Y; Yusuff, I; Zabinski, B; Zaidan, R; Zaitsev, A M; Zakharchuk, N; Zalieckas, J; Zaman, A; Zambito, S; Zanello, L; Zanzi, D; Zeitnitz, C; Zeman, M; Zemla, A; Zeng, J C; Zeng, Q; Zengel, K; Zenin, O; Ženiš, T; Zerwas, D; Zhang, D; Zhang, F; Zhang, G; Zhang, H; Zhang, J; Zhang, L; Zhang, R; Zhang, R; Zhang, X; Zhang, Z; Zhao, X; Zhao, Y; Zhao, Z; Zhemchugov, A; Zhong, J; Zhou, B; Zhou, C; Zhou, L; Zhou, L; Zhou, M; Zhou, N; Zhu, C G; Zhu, H; Zhu, J; Zhu, Y; Zhuang, X; Zhukov, K; Zibell, A; Zieminska, D; Zimine, N I; Zimmermann, C; Zimmermann, S; Zinonos, Z; Zinser, M; Ziolkowski, M; Živković, L; Zobernig, G; Zoccoli, A; Nedden, M Zur; Zurzolo, G; Zwalinski, L
2016-01-01
The algorithms used by the ATLAS Collaboration to reconstruct and identify prompt photons are described. Measurements of the photon identification efficiencies are reported, using 4.9 fb[Formula: see text] of pp collision data collected at the LHC at [Formula: see text] [Formula: see text] and 20.3 fb[Formula: see text] at [Formula: see text] [Formula: see text]. The efficiencies are measured separately for converted and unconverted photons, in four different pseudorapidity regions, for transverse momenta between 10 [Formula: see text] and 1.5 [Formula: see text]. The results from the combination of three data-driven techniques are compared to the predictions from a simulation of the detector response, after correcting the electromagnetic shower momenta in the simulation for the average differences observed with respect to data. Data-to-simulation efficiency ratios used as correction factors in physics measurements are determined to account for the small residual efficiency differences. These factors are measured with uncertainties between 0.5% and 10% in 7 [Formula: see text] data and between 0.5% and 5.6% in 8 [Formula: see text] data, depending on the photon transverse momentum and pseudorapidity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vianello, E. A.; Almeida, C. E. de
2008-07-15
In brachytherapy, one of the elements to take into account for measurements free in air is the non-uniformity of the photon fluence due to the beam divergence that causes a steep dose gradient near the source. The correction factors for this phenomenon have been usually evaluated by two available theories by Kondo and Randolph [Radiat. Res. 13, 37-60 (1960)] and Bielajew [Phys. Med. Biol. 35, 517-538 (1990)], both conceived for point sources. This work presents the experimental validation of the Monte Carlo calculations made by Rodriguez and deAlmeida [Phys. Med. Biol. 49, 1705-1709 (2004)] for the non-uniformity correction specifically formore » a Cs-137 linear source measured using a Farmer type ionization chamber. The experimental values agree very well with the Monte Carlo calculations and differ from the results predicted by both theoretical models widely used. This result confirms that for linear sources there are some important differences at short distances from the source and emphasizes that those theories should not be used for linear sources. The data provided in this study confirm the limitations of the mentioned theories when linear sources are used. Considering the difficulties and uncertainties associated with the experimental measurements, it is recommended to use the Monte Carlo data to assess the non-uniformity factors for linear sources in situations that require this knowledge.« less
Detector signal correction method and system
Carangelo, Robert M.; Duran, Andrew J.; Kudman, Irwin
1995-07-11
Corrective factors are applied so as to remove anomalous features from the signal generated by a photoconductive detector, and to thereby render the output signal highly linear with respect to the energy of incident, time-varying radiation. The corrective factors may be applied through the use of either digital electronic data processing means or analog circuitry, or through a combination of those effects.
Detector signal correction method and system
Carangelo, R.M.; Duran, A.J.; Kudman, I.
1995-07-11
Corrective factors are applied so as to remove anomalous features from the signal generated by a photoconductive detector, and to thereby render the output signal highly linear with respect to the energy of incident, time-varying radiation. The corrective factors may be applied through the use of either digital electronic data processing means or analog circuitry, or through a combination of those effects. 5 figs.
NASA Astrophysics Data System (ADS)
Li, Runze; Peng, Tong; Liang, Yansheng; Yang, Yanlong; Yao, Baoli; Yu, Xianghua; Min, Junwei; Lei, Ming; Yan, Shaohui; Zhang, Chunmin; Ye, Tong
2017-10-01
Focusing and imaging through scattering media has been proved possible with high resolution wavefront shaping. A completely scrambled scattering field can be corrected by applying a correction phase mask on a phase only spatial light modulator (SLM) and thereby the focusing quality can be improved. The correction phase is often found by global searching algorithms, among which Genetic Algorithm (GA) stands out for its parallel optimization process and high performance in noisy environment. However, the convergence of GA slows down gradually with the progression of optimization, causing the improvement factor of optimization to reach a plateau eventually. In this report, we propose an interleaved segment correction (ISC) method that can significantly boost the improvement factor with the same number of iterations comparing with the conventional all segment correction method. In the ISC method, all the phase segments are divided into a number of interleaved groups; GA optimization procedures are performed individually and sequentially among each group of segments. The final correction phase mask is formed by applying correction phases of all interleaved groups together on the SLM. The ISC method has been proved significantly useful in practice because of its ability to achieve better improvement factors when noise is present in the system. We have also demonstrated that the imaging quality is improved as better correction phases are found and applied on the SLM. Additionally, the ISC method lowers the demand of dynamic ranges of detection devices. The proposed method holds potential in applications, such as high-resolution imaging in deep tissue.
Leadership and Situational Factors Related to AWOL
1971-07-01
subsequent require- ment placed on military police, legal operations, personnel control facilities, stockades and the correctional training program increase...variables and particularly different aspects of the env,ronmtent. 7 -’:.- -.-’C. . *C? From this overviev , as well as a perusal of an in-depth review ’ of...variahles. The-3nalysis w•’s col•iieted at the University of Wisconsin Computer Center, U!I’,PC 1108 System. Ten factors, dealing with response to AWM
Calculation of the Pitot tube correction factor for Newtonian and non-Newtonian fluids.
Etemad, S Gh; Thibault, J; Hashemabadi, S H
2003-10-01
This paper presents the numerical investigation performed to calculate the correction factor for Pitot tubes. The purely viscous non-Newtonian fluids with the power-law model constitutive equation were considered. It was shown that the power-law index, the Reynolds number, and the distance between the impact and static tubes have a major influence on the Pitot tube correction factor. The problem was solved for a wide range of these parameters. It was shown that employing Bernoulli's equation could lead to large errors, which depend on the magnitude of the kinetic energy and energy friction loss terms. A neural network model was used to correlate the correction factor of a Pitot tube as a function of these three parameters. This correlation is valid for most Newtonian, pseudoplastic, and dilatant fluids at low Reynolds number.
Hong, Jae-Young; Suh, Seung-Woo; Modi, Hitesh N; Yang, Jae-Hyuk; Park, Si-Young
2013-06-01
To identify factors that can affect postoperative shoulder balance in AIS. 89 adolescent idiopathic scoliosis patients with six types of curvatures who underwent surgery were included in this study. Whole spine antero-posterior and lateral radiographs were obtained pre- and postoperatively. In radiograms, shape and changes in curvatures were analyzed. In addition, four shoulder parameters and coronal balance were analyzed in an effort to identify factors significantly related to postoperative shoulder balance. In general, all the four shoulder parameters (CHD, CA, CRID, RSH) were slightly increased at final follow up (t test, P < 0.05), although there was a decrease in Lenke type II and IV curvatures. However, pre- and postoperative shoulder parameters were not significantly different between each curvature types (ANOVA, P > 0.05). Moreover, no significant differences of pre- and postoperative shoulder level between different level of proximal fusion groups (ANOVA, P > 0.05) existed. In the analysis of coronal curvature changes, no difference was observed in every individual coronal curvatures between improved shoulder balance and aggravated groups (P > 0.05). However, the middle to distal curve change ratio was significantly lower in patients with aggravated shoulder balance (P < 0.05). In addition, patients with smaller preoperative shoulder imbalance showed the higher chance of aggravation after surgery with similar postoperative changes (P < 0.05). Significant relations were found between correction rate of middle, and distal curvature, and postoperative shoulder balance. In addition, preoperative shoulder level difference can be a determinant of postoperative shoulder balance.
Eliminating bias in rainfall estimates from microwave links due to antenna wetting
NASA Astrophysics Data System (ADS)
Fencl, Martin; Rieckermann, Jörg; Bareš, Vojtěch
2014-05-01
Commercial microwave links (MWLs) are point-to-point radio systems which are widely used in telecommunication systems. They operate at frequencies where the transmitted power is mainly disturbed by precipitation. Thus, signal attenuation from MWLs can be used to estimate path-averaged rain rates, which is conceptually very promising, since MWLs cover about 20 % of surface area. Unfortunately, MWL rainfall estimates are often positively biased due to additional attenuation caused by antenna wetting. To correct MWL observations a posteriori to reduce the wet antenna effect (WAE), both empirically and physically based models have been suggested. However, it is challenging to calibrate these models, because the wet antenna attenuation depends both on the MWL properties (frequency, type of antennas, shielding etc.) and different climatic factors (temperature, due point, wind velocity and direction, etc.). Instead, it seems straight forward to keep antennas dry by shielding them. In this investigation we compare the effectiveness of antenna shielding to model-based corrections to reduce the WAE. The experimental setup, located in Dübendorf-Switzerland, consisted of 1.85-km long commercial dual-polarization microwave link at 38 GHz and 5 optical disdrometers. The MWL was operated without shielding in the period from March to October 2011 and with shielding from October 2011 to July 2012. This unique experimental design made it possible to identify the attenuation due to antenna wetting, which can be computed as the difference between the measured and theoretical attenuation. The theoretical path-averaged attenuation was calculated from the path-averaged drop size distribution. During the unshielded periods, the total bias caused by WAE was 0.74 dB, which was reduced by shielding to 0.39 dB for the horizontal polarization (vertical: reduction from 0.96 dB to 0.44 dB). Interestingly, the model-based correction (Schleiss et al. 2013) was more effective because it reduced the bias of unshielded periods to 0.07 dB for the horizontal polarization (vertical: 0.06 dB). Applying the same model-based correction to shielded periods reduces the bias even more, to -0.03 dB and -0.01 dB, respectively. This indicates that additional attenuation could be caused also by different effects, such as reflection of sidelobes from wet surfaces and other environmental factors. Further, model-based corrections do not capture correctly the nature of WAE, but more likely provide only an empirical correction. This claim is supported by the fact that detailed analysis of particular events reveals that both antenna shielding and model-based correction performance differ substantially from event to event. Further investigation based on direct observation of antenna wetting and other environmental variables needs to be performed to identify more properly the nature of the attenuation bias. Schleiss, M., J. Rieckermann, and A. Berne, 2013: Quantification and modeling of wet-antenna attenuation for commercial microwave links. IEEE Geosci. Remote Sens. Lett., 10.1109/LGRS.2012.2236074.
Zhu, X. R.
2000-01-01
Silicon diode dosimeters have been used routinely for in‐vivo dosimetry. Despite their popularity, an appropriate implementation of an in‐vivo dosimetry program using diode detectors remains a challenge for clinical physicists. One common approach is to relate the diode readout to the entrance dose, that is, dose to the reference depth of maximum dose such as dmax for the 10×10 cm2 field. Various correction factors are needed in order to properly infer the entrance dose from the diode readout, depending on field sizes, target‐to‐surface distances (TSD), and accessories (such as wedges and compensate filters). In some clinical practices, however, no correction factor is used. In this case, a diode‐dosimeter‐based in‐vivo dosimetry program may not serve the purpose effectively; that is, to provide an overall check of the dosimetry procedure. In this paper, we provide a formula to relate the diode readout to the entrance dose. Correction factors for TSD, field size, and wedges used in this formula are also clearly defined. Two types of commercial diode detectors, ISORAD (n‐type) and the newly available QED (p‐type) (Sun Nuclear Corporation), are studied. We compared correction factors for TSDs, field sizes, and wedges. Our results are consistent with the theory of radiation damage of silicon diodes. Radiation damage has been shown to be more serious for n‐type than for p‐type detectors. In general, both types of diode dosimeters require correction factors depending on beam energy, TSD, field size, and wedge. The magnitudes of corrections for QED (p‐type) diodes are smaller than ISORAD detectors. PACS number(s): 87.66.–a, 87.52.–g PMID:11674824
Emara, Khaled; El Moatasem, El Hussein; El Shazly, Ossama
2011-12-01
Complex foot deformity is a multi-planar foot deformity with many etiologic factors. Different corrective procedures using Ilizarov external fixation have been described which include, soft tissue release, V-osteotomy, multiple osteotomies and triple fusion. In this study we compare the results of two groups of skeletally mature patients with complex foot deformity who were treated by two different protocols. The first group (27 patients, 29 feet) was treated by triple fusion fixed by Ilizarov external fixator until union. The second group (29 patients, 30 feet), was treated by triple fusion with initial fixation by Ilizarov external fixation until correction of the deformity was achieved clinically, and then the Ilizarov fixation was replaced by internal fixation using percutaneous screws. Both groups were compared as regard the surgical outcome and the incidence of complications. There was statistically significant difference between the two groups regarding duration of external fixation and duration of casting with shorter duration in the group 2. Also there was statistically significant difference between both groups regarding pin tract infection with less incidence in group 2. Early removal of Ilizarov external fixation after correction of the deformity and percutaneous internal fixation using 6.5 cannulated screws can shorten the duration of treatment and be more comfortable for the patient with a low risk of recurrence or infection. Copyright © 2010 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.
Method of absorbance correction in a spectroscopic heating value sensor
Saveliev, Alexei; Jangale, Vilas Vyankatrao; Zelepouga, Sergeui; Pratapas, John
2013-09-17
A method and apparatus for absorbance correction in a spectroscopic heating value sensor in which a reference light intensity measurement is made on a non-absorbing reference fluid, a light intensity measurement is made on a sample fluid, and a measured light absorbance of the sample fluid is determined. A corrective light intensity measurement at a non-absorbing wavelength of the sample fluid is made on the sample fluid from which an absorbance correction factor is determined. The absorbance correction factor is then applied to the measured light absorbance of the sample fluid to arrive at a true or accurate absorbance for the sample fluid.
SU-E-T-17: A Mathematical Model for PinPoint Chamber Correction in Measuring Small Fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, T; Zhang, Y; Li, X
2014-06-01
Purpose: For small field dosimetry, such as measuring the cone output factor for stereotactic radiosurgery, ion chambers often result in underestimation of the dose, due to both the volume averaging effect and the lack of electron equilibrium. The purpose of this work is to develop a mathematical model, specifically for the pinpoint chamber, to calculate the correction factors corresponding to different type of small fields, including single cone-based circular field and non-standard composite fields. Methods: A PTW 0.015cc PinPoint chamber was used in the study. Its response in a certain field was modeled as the total contribution of many smallmore » beamlets, each with different response factor depending on the relative strength, radial distance to the chamber axis, and the beam angle. To get these factors, 12 cone-shaped circular fields (5mm,7.5mm, 10mm, 12.5mm, 15mm, 20mm, 25mm, 30mm, 35mm, 40mm, 50mm, 60mm) were irradiated and measured with the PinPoint chamber. For each field size, hundreds of readings were recorded for every 2mm chamber shift in the horizontal plane. These readings were then compared with the theoretical doses as obtained with Monte Carlo calculation. A penalized-least-square optimization algorithm was developed to find out the beamlet response factors. After the parameter fitting, the established mathematical model was validated with the same MC code for other non-circular fields. Results: The optimization algorithm used for parameter fitting was stable and the resulted response factors were smooth in spatial domain. After correction with the mathematical model, the chamber reading matched with the Monte Carlo calculation for all the tested fields to within 2%. Conclusion: A novel mathematical model has been developed for the PinPoint chamber for dosimetric measurement of small fields. The current model is applicable only when the beam axis is perpendicular to the chamber axis. It can be applied to non-standard composite fields. Further validation with other type of detectors is being conducted.« less
Vaidyanathan, Balu; Radhakrishnan, Reshma; Sarala, Deepa Aravindakshan; Sundaram, Karimassery Ramaiyar; Kumar, Raman Krishna
2009-08-01
Malnutrition is common in children with congenital heart disease (CHD), especially in developing countries. To examine the impact of corrective intervention on the nutritional status of children with CHD and identify factors associated with suboptimal recovery. Consecutive patients with CHD in a tertiary center in South India were evaluated for nutritional status before and 2 years after corrective intervention. Anthropometry was performed at presentation and every 6 months for 2 years, and z scores were compared. Malnutrition was defined as a weight-for-age, height-for-age, and weight/height z score <-2. Determinants of malnutrition were entered into a multivariate logistic regression analysis model. Of 476 patients undergoing corrective intervention (surgical: 344; catheter-based: 132) z scores of less than -2 for weight for age, height for age, and weight/height were recorded in 59%, 26.3%, and 55.9% of patients, respectively, at presentation. On follow-up (425 patients [92.5% of survivors; 20.63 +/- 13.1 months of age]), z scores for weight for age and weight/height improved significantly from the baseline (weight: -1.42 +/- 1.03 vs -2.19 +/- 1.16; P < .001; weight/height: -1.15 +/- 1.25 vs -2.09 +/- 1.3; P < .001). Height-for-age z scores were not significantly different. Malnutrition persisted in 116 (27.3%) patients on follow-up and was associated with a birth weight of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kudish, A.I.; Ianetz, A.
1993-12-01
The authors have utilized concurrently measured global, normal incidence beam, and diffuse radiation data, the latter measured by means of a shadow ring pyranometer to study the relative magnitude of the anisotropic contribution (circumsolar region and nonuniform sky conditions) to the diffuse radiation. In the case of Beer Sheva, the monthly average hourly anisotropic correction factor varies from 2.9 to 20.9%, whereas the [open quotes]standard[close quotes] geometric correction factor varies from 5.6 to 14.0%. The monthly average hourly overall correction factor (combined anisotropic and geometric factors) varies from 8.9 to 37.7%. The data have also been analyzed using a simplemore » model of sky radiance developed by Steven in 1984. His anisotropic correction factor is a function of the relative strength and angular width of the circumsolar radiation region. The results of this analysis are in agreement with those previously reported for Quidron on the Dead Sea, viz. the anisotropy and relative strength of the circumsolar radiation are significantly greater than at any of the sites analyzed by Steven. In addition, the data have been utilized to validate a model developed by LeBaron et al. in 1990 for correcting shadow ring diffuse radiation data. The monthly average deviation between the corrected and true diffuse radiation values varies from 4.55 to 7.92%.« less
S-NPP VIIRS thermal emissive band gain correction during the blackbody warm-up-cool-down cycle
NASA Astrophysics Data System (ADS)
Choi, Taeyoung J.; Cao, Changyong; Weng, Fuzhong
2016-09-01
The Suomi National Polar orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) has onboard calibrators called blackbody (BB) and Space View (SV) for Thermal Emissive Band (TEB) radiometric calibration. In normal operation, the BB temperature is set to 292.5 K providing one radiance level. From the NOAA's Integrated Calibration and Validation System (ICVS) monitoring system, the TEB calibration factors (F-factors) have been trended and show very stable responses, however the BB Warm-Up-Cool-Down (WUCD) cycles provide detectors' gain and temperature dependent sensitivity measurements. Since the launch of S-NPP, the NOAA Sea Surface Temperature (SST) group noticed unexpected global SST anomalies during the WUCD cycles. In this study, the TEB Ffactors are calculated during the WUCD cycle on June 17th 2015. The TEB F-factors are analyzed by identifying the VIIRS On-Board Calibrator Intermediate Product (OBCIP) files to be Warm-Up or Cool-Down granules. To correct the SST anomaly, an F-factor correction parameter is calculated by the modified C1 (or b1) values which are derived from the linear portion of C1 coefficient during the WUCD. The F-factor correction factors are applied back to the original VIIRS SST bands showing significantly reducing the F-factor changes. Obvious improvements are observed in M12, M14 and M16, but corrections effects are hardly seen in M16. Further investigation is needed to find out the source of the F-factor oscillations during the WUCD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casey, Kevin E.; Kry, Stephen F.; Howell, Rebecca M.
Purpose: The aim of this work was to create a mailable phantom with measurement accuracy suitable for Radiological Physics Center (RPC) audits of high dose-rate (HDR) brachytherapy sources at institutions participating in National Cancer Institute-funded cooperative clinical trials. Optically stimulated luminescence dosimeters (OSLDs) were chosen as the dosimeter to be used with the phantom.Methods: The authors designed and built an 8 × 8 × 10 cm{sup 3} prototype phantom that had two slots capable of holding Al{sub 2}O{sub 3}:C OSLDs (nanoDots; Landauer, Glenwood, IL) and a single channel capable of accepting all {sup 192}Ir HDR brachytherapy sources in current clinicalmore » use in the United States. The authors irradiated the phantom with Nucletron and Varian {sup 192}Ir HDR sources in order to determine correction factors for linearity with dose and the combined effects of irradiation energy and phantom characteristics. The phantom was then sent to eight institutions which volunteered to perform trial remote audits.Results: The linearity correction factor was k{sub L}= (−9.43 × 10{sup −5}× dose) + 1.009, where dose is in cGy, which differed from that determined by the RPC for the same batch of dosimeters using {sup 60}Co irradiation. Separate block correction factors were determined for current versions of both Nucletron and Varian {sup 192}Ir HDR sources and these vendor-specific correction factors differed by almost 2.6%. For the Nucletron source, the correction factor was 1.026 [95% confidence interval (CI) = 1.023–1.028], and for the Varian source, it was 1.000 (95% CI = 0.995–1.005). Variations in lateral source positioning up to 0.8 mm and distal/proximal source positioning up to 10 mm had minimal effect on dose measurement accuracy. The overall dose measurement uncertainty of the system was estimated to be 2.4% and 2.5% for the Nucletron and Varian sources, respectively (95% CI). This uncertainty was sufficient to establish a ±5% acceptance criterion for source strength audits under a formal RPC audit program. Trial audits of four Nucletron sources and four Varian sources revealed an average RPC-to-institution dose ratio of 1.000 (standard deviation = 0.011).Conclusions: The authors have created an OSLD-based {sup 192}Ir HDR brachytherapy source remote audit tool which offers sufficient dose measurement accuracy to allow the RPC to establish a remote audit program with a ±5% acceptance criterion. The feasibility of the system has been demonstrated with eight trial audits to date.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iliescu, Elena; Bercea, Sorin; Dudu, Dorin
2013-12-16
The use of the U-120 Cyclotron of the IFIN-HH allowed to perform a testing bench with fast neutrons in order to determine the correction factors of the doseratemeters dedicated to neutron measurement. This paper deals with researchers performed in order to develop the irradiation facility testing the fast neutrons flux generated at the Cyclotron. This facility is presented, together with the results obtain in determining the correction factor for a doseratemeter dedicated to the neutron dose equivalent rate measurement.
Understanding the atmospheric measurement and behavior of perfluorooctanoic acid.
Webster, Eva M; Ellis, David A
2012-09-01
The recently reported quantification of the atmospheric sampling artifact for perfluorooctanoic acid (PFOA) was applied to existing gas and particle concentration measurements. Specifically, gas phase concentrations were increased by a factor of 3.5 and particle-bound concentrations by a factor of 0.1. The correlation constants in two particle-gas partition coefficient (K(QA)) estimation equations were determined for multiple studies with and without correcting for the sampling artifact. Correction for the sampling artifact gave correlation constants with improved agreement to those reported for other neutral organic contaminants, thus supporting the application of the suggested correction factors for perfluorinated carboxylic acids. Applying the corrected correlation constant to a recent multimedia modeling study improved model agreement with corrected, reported, atmospheric concentrations. This work confirms that there is sufficient partitioning to the gas phase to support the long-range atmospheric transport of PFOA. Copyright © 2012 SETAC.
Slice profile and B1 corrections in 2D magnetic resonance fingerprinting.
Ma, Dan; Coppo, Simone; Chen, Yong; McGivney, Debra F; Jiang, Yun; Pahwa, Shivani; Gulani, Vikas; Griswold, Mark A
2017-11-01
The goal of this study is to characterize and improve the accuracy of 2D magnetic resonance fingerprinting (MRF) scans in the presence of slice profile (SP) and B 1 imperfections, which are two main factors that affect quantitative results in MRF. The SP and B 1 imperfections are characterized and corrected separately. The SP effect is corrected by simulating the radiofrequency pulse in the dictionary, and the B 1 is corrected by acquiring a B 1 map using the Bloch-Siegert method before each scan. The accuracy, precision, and repeatability of the proposed method are evaluated in phantom studies. The effects of both SP and B 1 imperfections are also illustrated and corrected in the in vivo studies. The SP and B 1 corrections improve the accuracy of the T 1 and T 2 values, independent of the shape of the radiofrequency pulse. The T 1 and T 2 values obtained from different excitation patterns become more consistent after corrections, which leads to an improvement of the robustness of the MRF design. This study demonstrates that MRF is sensitive to both SP and B 1 effects, and that corrections can be made to improve the accuracy of MRF with only a 2-s increase in acquisition time. Magn Reson Med 78:1781-1789, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Kim, Jung Hyeun; Mulholland, George W.; Kukuck, Scott R.; Pui, David Y. H.
2005-01-01
The slip correction factor has been investigated at reduced pressures and high Knudsen number using polystyrene latex (PSL) particles. Nano-differential mobility analyzers (NDMA) were used in determining the slip correction factor by measuring the electrical mobility of 100.7 nm, 269 nm, and 19.90 nm particles as a function of pressure. The aerosol was generated via electrospray to avoid multiplets for the 19.90 nm particles and to reduce the contaminant residue on the particle surface. System pressure was varied down to 8.27 kPa, enabling slip correction measurements for Knudsen numbers as large as 83. A condensation particle counter was modified for low pressure application. The slip correction factor obtained for the three particle sizes is fitted well by the equation: C = 1 + Kn (α + β exp(−γ/Kn)), with α = 1.165, β = 0.483, and γ = 0.997. The first quantitative uncertainty analysis for slip correction measurements was carried out. The expanded relative uncertainty (95 % confidence interval) in measuring slip correction factor was about 2 % for the 100.7 nm SRM particles, about 3 % for the 19.90 nm PSL particles, and about 2.5 % for the 269 nm SRM particles. The major sources of uncertainty are the diameter of particles, the geometric constant associated with NDMA, and the voltage. PMID:27308102
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoiber, Eva Maria, E-mail: eva.stoiber@med.uni-heidelberg.de; Department of Medical Physics, German Cancer Research Center, Heidelberg; Giske, Kristina
Purpose: To evaluate local positioning errors of the lumbar spine during fractionated intensity-modulated radiotherapy of patients treated with craniospinal irradiation and to assess the impact of rotational error correction on these uncertainties for one patient setup correction strategy. Methods and Materials: 8 patients (6 adults, 2 children) treated with helical tomotherapy for craniospinal irradiation were retrospectively chosen for this analysis. Patients were immobilized with a deep-drawn Aquaplast head mask. Additionally to daily megavoltage control computed tomography scans of the skull, once-a-week positioning of the lumbar spine was assessed. Therefore, patient setup was corrected by a target point correction, derived frommore » a registration of the patient's skull. The residual positioning variations of the lumbar spine were evaluated applying a rigid-registration algorithm. The impact of different rotational error corrections was simulated. Results: After target point correction, residual local positioning errors of the lumbar spine varied considerably. Craniocaudal axis rotational error correction did not improve or deteriorate these translational errors, whereas simulation of a rotational error correction of the right-left and anterior-posterior axis increased these errors by a factor of 2 to 3. Conclusion: The patient fixation used allows for deformations between the patient's skull and spine. Therefore, for the setup correction strategy evaluated in this study, generous margins for the lumbar spinal target volume are needed to prevent a local geographic miss. With any applied correction strategy, it needs to be evaluated whether or not a rotational error correction is beneficial.« less
Method and system for photoconductive detector signal correction
Carangelo, Robert M.; Hamblen, David G.; Brouillette, Carl R.
1992-08-04
A corrective factor is applied so as to remove anomalous features from the signal generated by a photoconductive detector, and to thereby render the output signal highly linear with respect to the energy of incident, time-varying radiation. The corrective factor may be applied through the use of either digital electronic data processing means or analog circuitry, or through a combination of those effects.
Method and system for photoconductive detector signal correction
Carangelo, R.M.; Hamblen, D.G.; Brouillette, C.R.
1992-08-04
A corrective factor is applied so as to remove anomalous features from the signal generated by a photoconductive detector, and to thereby render the output signal highly linear with respect to the energy of incident, time-varying radiation. The corrective factor may be applied through the use of either digital electronic data processing means or analog circuitry, or through a combination of those effects. 5 figs.
Energy Expenditure in Critically Ill Elderly Patients: Indirect Calorimetry vs Predictive Equations.
Segadilha, Nara L A L; Rocha, Eduardo E M; Tanaka, Lilian M S; Gomes, Karla L P; Espinoza, Rodolfo E A; Peres, Wilza A F
2017-07-01
Predictive equations (PEs) are used for estimating resting energy expenditure (REE) when the measurements obtained from indirect calorimetry (IC) are not available. This study evaluated the degree of agreement and the accuracy between the REE measured by IC (REE-IC) and REE estimated by PE (REE-PE) in mechanically ventilated elderly patients admitted to the intensive care unit (ICU). REE-IC of 97 critically ill elderly patients was compared with REE-PE by 6 PEs: Harris and Benedict (HB) multiplied by the correction factor of 1.2; European Society for Clinical Nutrition and Metabolism (ESPEN) using the minimum (ESPENmi), average (ESPENme), and maximum (ESPENma) values; Mifflin-St Jeor; Ireton-Jones (IJ); Fredrix; and Lührmann. Degree of agreement between REE-PE and REE-IC was analyzed by the interclass correlation coefficient and the Bland-Altman test. The accuracy was calculated by the percentage of male and/or female patients whose REE-PE values differ by up to ±10% in relation to REE-IC. For both sexes, there was no difference for average REE-IC in kcal/kg when the values obtained with REE-PE by corrected HB and ESPENme were compared. A high level of agreement was demonstrated by corrected HB for both sexes, with greater accuracy for women. The best accuracy in the male group was obtained with the IJ equation but with a low level of agreement. The effectiveness of PEs is limited for estimating REE of critically ill elderly patients. Nonetheless, HB multiplied by a correction factor of 1.2 can be used until a specific PE for this group of patients is developed.
A groundwater data assimilation application study in the Heihe mid-reach
NASA Astrophysics Data System (ADS)
Ragettli, S.; Marti, B. S.; Wolfgang, K.; Li, N.
2017-12-01
The present work focuses on modelling of the groundwater flow in the mid-reach of the endorheic river Heihe in the Zhangye oasis (Gansu province) in arid north-west China. In order to optimise the water resources management in the oasis, reliable forecasts of groundwater level development under different management options and environmental boundary conditions have to be produced. For this means, groundwater flow is modelled with Modflow and coupled to an Ensemble Kalman Filter programmed in Matlab. The model is updated with monthly time steps, featuring perturbed boundary conditions to account for uncertainty in model forcing. Constant biases between model and observations have been corrected prior to updating and compared to model runs without bias correction. Different options for data assimilation (states and/or parameters), updating frequency, and measures against filter inbreeding (damping factor, covariance inflation, spatial localization) have been tested against each other. Results show a high dependency of the Ensemble Kalman filter performance on the selection of observations for data assimilation. For the present regional model, bias correction is necessary for a good filter performance. A combination of spatial localization and covariance inflation is further advisable to reduce filter inbreeding problems. Best performance is achieved if parameter updates are not large, an indication for good prior model calibration. Asynchronous updating of parameter values once every five years (with data of the past five years) and synchronous updating of the groundwater levels is better suited for this groundwater system with not or slow changing parameter values than synchronous updating of both groundwater levels and parameters at every time step applying a damping factor. The filter is not able to correct time lags of signals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guler, Hayg
2003-12-17
In the framework of quantum chromodynamics, the nucleon is made of three valence quarks surrpounded by a sea of gluons and quark-antiquark pairs. Only the only lightest quarks (u, d and s) contribute significantly to the nucleon properties. In Go we using the property of weak interaction to violate parity symmetry, in order to determine separately the contributions of the three types of quarks to nucleon form factors. The experiment, which takes place at Thomas Jefferson laboratory (USA), aims at measuring parity violation asymmetry in electron-proton scattering. By doing several measurements at different momentum squared of the exchanged photons andmore » for different kinematics (forward angle when the proton is detected and backward angle it will be the electron) will permit to determine separately strange quarks electric and magnetic contributions to nucleon form factors. To extract an asymmetry with small errors, it is necessary to correct all the beam parameters, and to have high enough counting rates in detectors. A special electronics was developed to treat information coming from 16 scintillator pairs for each of the 8 sectors of the Go spectrometer. A complete calculation of radiative corrections has been clone and Monte Carlo simulations with the GEANT program has permitted to determine the shape of the experimental spectra including inelastic background. This work will allow to do a comparison between experimental data and theoretical calculations based on the Standard Model.« less
A comparison of quality of present-day heat flow obtained from BHTs, Horner Plots of Malay Basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waples, D.W.; Mahadir, R.
1994-07-01
Reconciling temperature data obtained from measurement of single BHT, multiple BHT at a single depth, RFTs, and DSTs, is very difficult. Quality of data varied widely, however DST data were assumed to be most reliable. Data from 87 wells was used in this study, but only 47 wells have DST data. BASINMOD program was used to calculate the present-day heat flow, using measured thermal conductivity and calibrated against the DST data. The heat flows obtained from the DST data were assumed to be correct and representative throughout the basin. Then, heat flows using (1) uncorrected RFT data, (2) multiple BHTmore » data corrected by the Horner plot method, and (3) single BHT values corrected upward by a standard 10% were calculated. All of these three heat-flow populations had identically standard deviations to that for the DST data, but with significantly lower mean values. Correction factors were calculated to give each of the three erroneous populations the same mean value as the DST population. Heat flows calculated from RFT data had to be corrected upward by a factor of 1.12 to be equivalent to DST data; Horner plot data corrected by a factor of 1.18, and single BHT data by a factor of 1.2. These results suggest that present-day subsurface temperatures using RFT, Horner plot, and BHT data are considerably lower than they should be. The authors suspect qualitatively similar results would be found in other areas. Hence, they recommend significant corrections be routinely made until local calibration factors are established.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mille, M; Bergstrom, P
2015-06-15
Purpose: To use Monte Carlo radiation transport methods to calculate correction factors for a free-air ionization chamber in support of a national air-kerma standard for low-energy, miniature x-ray sources used for electronic brachytherapy (eBx). Methods: The NIST is establishing a calibration service for well-type ionization chambers used to characterize the strength of eBx sources prior to clinical use. The calibration approach involves establishing the well-chamber’s response to an eBx source whose air-kerma rate at a 50 cm distance is determined through a primary measurement performed using the Lamperti free-air ionization chamber. However, the free-air chamber measurements of charge or currentmore » can only be related to the reference air-kerma standard after applying several corrections, some of which are best determined via Monte Carlo simulation. To this end, a detailed geometric model of the Lamperti chamber was developed in the EGSnrc code based on the engineering drawings of the instrument. The egs-fac user code in EGSnrc was then used to calculate energy-dependent correction factors which account for missing or undesired ionization arising from effects such as: (1) attenuation and scatter of the x-rays in air; (2) primary electrons escaping the charge collection region; (3) lack of charged particle equilibrium; (4) atomic fluorescence and bremsstrahlung radiation. Results: Energy-dependent correction factors were calculated assuming a monoenergetic point source with the photon energy ranging from 2 keV to 60 keV in 2 keV increments. Sufficient photon histories were simulated so that the Monte Carlo statistical uncertainty of the correction factors was less than 0.01%. The correction factors for a specific eBx source will be determined by integrating these tabulated results over its measured x-ray spectrum. Conclusion: The correction factors calculated in this work are important for establishing a national standard for eBx which will help ensure that dose is accurately and consistently delivered to patients.« less
Heavy quark form factors at two loops
NASA Astrophysics Data System (ADS)
Ablinger, J.; Behring, A.; Blümlein, J.; Falcioni, G.; De Freitas, A.; Marquard, P.; Rana, N.; Schneider, C.
2018-05-01
We compute the two-loop QCD corrections to the heavy quark form factors in the case of the vector, axial-vector, scalar and pseudoscalar currents up to second order in the dimensional parameter ɛ =(4 -D )/2 . These terms are required in the renormalization of the higher-order corrections to these form factors.
McBee, Elexis; Ratcliffe, Temple; Picho, Katherine; Schuwirth, Lambert; Artino, Anthony R; Yepes-Rios, Ana Monica; Masel, Jennifer; van der Vleuten, Cees; Durning, Steven J
2017-11-15
The impact of context on the complex process of clinical reasoning is not well understood. Using situated cognition as the theoretical framework and videos to provide the same contextual "stimulus" to all participants, we examined the relationship between specific contextual factors on diagnostic and therapeutic reasoning accuracy in board certified internists versus resident physicians. Each participant viewed three videotaped clinical encounters portraying common diagnoses in internal medicine. We explicitly modified the context to assess its impact on performance (patient and physician contextual factors). Patient contextual factors, including English as a second language and emotional volatility, were portrayed in the videos. Physician participant contextual factors were self-rated sleepiness and burnout.. The accuracy of diagnostic and therapeutic reasoning was compared with covariates using Fisher Exact, Mann-Whitney U tests and Spearman Rho's correlations as appropriate. Fifteen board certified internists and 10 resident physicians participated from 2013 to 2014. Accuracy of diagnostic and therapeutic reasoning did not differ between groups despite residents reporting significantly higher rates of sleepiness (mean rank 20.45 vs 8.03, U = 0.5, p < .001) and burnout (mean rank 20.50 vs 8.00, U = 0.0, p < .001). Accuracy of diagnosis and treatment were uncorrelated (r = 0.17, p = .65). In both groups, the proportion scoring correct responses for treatment was higher than the proportion scoring correct responses for diagnosis. This study underscores that specific contextual factors appear to impact clinical reasoning performance. Further, the processes of diagnostic and therapeutic reasoning, although related, may not be interchangeable. This raises important questions about the impact that contextual factors have on clinical reasoning and provides insight into how clinical reasoning processes in more authentic settings may be explained by situated cognition theory.
Method and apparatus for reconstructing in-cylinder pressure and correcting for signal decay
Huang, Jian
2013-03-12
A method comprises steps for reconstructing in-cylinder pressure data from a vibration signal collected from a vibration sensor mounted on an engine component where it can generate a signal with a high signal-to-noise ratio, and correcting the vibration signal for errors introduced by vibration signal charge decay and sensor sensitivity. The correction factors are determined as a function of estimated motoring pressure and the measured vibration signal itself with each of these being associated with the same engine cycle. Accordingly, the method corrects for charge decay and changes in sensor sensitivity responsive to different engine conditions to allow greater accuracy in the reconstructed in-cylinder pressure data. An apparatus is also disclosed for practicing the disclosed method, comprising a vibration sensor, a data acquisition unit for receiving the vibration signal, a computer processing unit for processing the acquired signal and a controller for controlling the engine operation based on the reconstructed in-cylinder pressure.
Morasiewicz, Piotr; Filipiak, Jarosław; Krysztoforski, Krzysztof; Dragan, Szymon
2014-03-01
The correction of torsional deformities with the Ilizarov apparatus is accompanied by rotational and translational displacement, which affects the biomechanics of the bone fragments. Understanding the biomechanical factors will assist in designing the optimal treatment strategy and mechanical properties of the fixator, thus shortening the duration of treatment and improving the outcomes. In order to determine the impact of different types of derotators on the kinematics of bone fragments in Ilizarov apparatus, physical models were studied. Translational and derotational displacement was measured using non-contact method (Optotrak Certus Motion Capture System). The results of the studies conducted on physical models have shown that regardless of the type of the derotator, the divergence between the applied angle of derotation and the obtained angle of rotation relative to fragments needs to be taken into account. Transverse displacement of fragments occur by 3.5 mm to approximately 9 mm, depending on the angle of derotation. For correction of rotational deformities up to 30°, it is advisable to use the type Z derotators because of its higher accuracy of derotation. Different types of derotators can affect the biomechanical conditions in the regenerating bone tissue through different kinematics characteristics.
Kittaka, Daisuke; Takase, Tadashi; Akiyama, Masayuki; Nakazawa, Yasuo; Shinozuka, Akira; Shirai, Muneaki
2011-01-01
(123)I-MIBG Heart-to-Mediastinum activity ratio (H/M) is commonly used as an indicator of relative myocardial (123)I-MIBG uptake. H/M ratios reflect myocardial sympathetic nerve function, therefore it is a useful parameter to assess regional myocardial sympathetic denervation in various cardiac diseases. However, H/M ratio values differ by site, gamma camera system, position and size of region of interest (ROI), and collimator. In addition to these factors, 529 keV scatter component may also affect (123)I-MIBG H/M ratio. In this study, we examined whether the H/M ratio shows correlation between two different gamma camera systems and that sought for H/M ratio calculation formula. Moreover, we assessed the feasibility of (123)I Dual Window (IDW) method, which is a scatter correction method, and compared H/M ratios with and without IDW method. H/M ratio displayed a good correlation between two gamma camera systems. Additionally, we were able to create a new H/M calculation formula. These results indicated that the IDW method is a useful scatter correction method for calculating (123)I-MIBG H/M ratios.
Improved correction for the tissue fraction effect in lung PET/CT imaging
NASA Astrophysics Data System (ADS)
Holman, Beverley F.; Cuplov, Vesna; Millner, Lynn; Hutton, Brian F.; Maher, Toby M.; Groves, Ashley M.; Thielemans, Kris
2015-09-01
Recently, there has been an increased interest in imaging different pulmonary disorders using PET techniques. Previous work has shown, for static PET/CT, that air content in the lung influences reconstructed image values and that it is vital to correct for this ‘tissue fraction effect’ (TFE). In this paper, we extend this work to include the blood component and also investigate the TFE in dynamic imaging. CT imaging and PET kinetic modelling are used to determine fractional air and blood voxel volumes in six patients with idiopathic pulmonary fibrosis. These values are used to illustrate best and worst case scenarios when interpreting images without correcting for the TFE. In addition, the fractional volumes were used to determine correction factors for the SUV and the kinetic parameters. These were then applied to the patient images. The kinetic parameters K1 and Ki along with the static parameter SUV were all found to be affected by the TFE with both air and blood providing a significant contribution to the errors. Without corrections, errors range from 34-80% in the best case and 29-96% in the worst case. In the patient data, without correcting for the TFE, regions of high density (fibrosis) appeared to have a higher uptake than lower density (normal appearing tissue), however this was reversed after air and blood correction. The proposed correction methods are vital for quantitative and relative accuracy. Without these corrections, images may be misinterpreted.
SU-F-T-281: Monte Carlo Investigation of Sources of Dosimetric Discrepancies with 2D Arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Afifi, M; Deiab, N; El-Farrash, A
2016-06-15
Purpose: Intensity modulated radiation therapy (IMRT) poses a number of challenges for properly measuring commissioning data and quality assurance (QA). Understanding the limitations and use of dosimeters to measure these dose distributions is critical to safe IMRT implementation. In this work, we used Monte Carlo simulations to investigate the possible sources of discrepancy between our measurement with 2D array system and our dose calculation using our treatment planning system (TPS). Material and Methods: MCBEAM and MCSIM Monte Carlo codes were used for treatment head simulation and phantom dose calculation. Accurate modeling of a 6MV beam from Varian trilogy machine wasmore » verified by comparing simulated and measured percentage depth doses and profiles. Dose distribution inside the 2D array was calculated using Monte Carlo simulations and our TPS. Then Cross profiles for different field sizes were compared with actual measurements for zero and 90° gantry angle setup. Through the analysis and comparison, we tried to determine the differences and quantify a possible angular calibration factor. Results: Minimum discrepancies was seen in the comparison between the simulated and the measured profiles for the zero gantry angles at all studied field sizes (4×4cm{sup 2}, 10×10cm{sup 2}, 15×15cm{sup 2}, and 20×20cm{sup 2}). Discrepancies between our measurements and calculations increased dramatically for the cross beam profiles at the 90° gantry angle. This could ascribe mainly to the different attenuation caused by the layer of electronics at the base behind the ion chambers in the 2D array. The degree of attenuation will vary depending on the angle of beam incidence. Correction factors were implemented to correct the errors. Conclusion: Monte Carlo modeling of the 2D arrays and the derivation of angular dependence correction factors will allow for improved accuracy of the device for IMRT QA.« less
Dose measurement in heterogeneous phantoms with an extrapolation chamber
NASA Astrophysics Data System (ADS)
Deblois, Francois
A hybrid phantom-embedded extrapolation chamber (PEEC) made of Solid Water(TM) and bone-equivalent material was used for determining absolute dose in a bone-equivalent phantom irradiated with clinical radiation beams (cobalt-60 gamma rays; 6 and 18 MV x-rays; and 9 and 15 MeV electrons). The dose was determined with the Spencer-Attix cavity theory, using ionization gradient measurements and an indirect determination of the chamber air-mass through measurements of chamber capacitance. The air gaps used were between 2 and 3 mm and the sensitive air volume of the extrapolation chamber was remotely controlled through the motion of the motorized piston with a precision of +/-0.0025 mm. The collected charge was corrected for ionic recombination and diffusion in the chamber air volume following the standard two-voltage technique. Due to the hybrid chamber design, correction factors accounting for scatter deficit and electrode composition were determined and applied in the dose equation to obtain dose data for the equivalent homogeneous bone phantom. Correction factors for graphite electrodes were calculated with Monte Carlo techniques and the calculated results were verified through relative air cavity dose measurements for three different polarizing electrode materials: graphite, steel, and brass in conjunction with a graphite collecting electrode. Scatter deficit, due mainly to loss of lateral scatter in the hybrid chamber, reduces the dose to the air cavity in the hybrid PEEC in comparison with full bone PEEC from 0.7 to ˜2% depending on beam quality and energy. In megavoltage photon and electron beams, graphite electrodes do not affect the dose measurement in the Solid Water(TM) PEEC but decrease the cavity dose by up to 5% in the bone-equivalent PEEC even for very thin graphite electrodes (<0.0025 cm). The collecting electrode material in comparison with the polarizing electrode material has a larger effect on the electrode correction factor; the thickness of thin electrodes, on the other hand, has a negligible effect on dose determination. The uncalibrated hybrid PEEC is an accurate and absolute device for measuring the dose directly in bone material in conjunction with appropriate correction factors determined with Monte Carlo techniques.
Correction factors for self-selection when evaluating screening programmes.
Spix, Claudia; Berthold, Frank; Hero, Barbara; Michaelis, Jörg; Schilling, Freimut H
2016-03-01
In screening programmes there is recognized bias introduced through participant self-selection (the healthy screenee bias). Methods used to evaluate screening programmes include Intention-to-screen, per-protocol, and the "post hoc" approach in which, after introducing screening for everyone, the only evaluation option is participants versus non-participants. All methods are prone to bias through self-selection. We present an overview of approaches to correct for this bias. We considered four methods to quantify and correct for self-selection bias. Simple calculations revealed that these corrections are actually all identical, and can be converted into each other. Based on this, correction factors for further situations and measures were derived. The application of these correction factors requires a number of assumptions. Using as an example the German Neuroblastoma Screening Study, no relevant reduction in mortality or stage 4 incidence due to screening was observed. The largest bias (in favour of screening) was observed when comparing participants with non-participants. Correcting for bias is particularly necessary when using the post hoc evaluation approach, however, in this situation not all required data are available. External data or further assumptions may be required for estimation. © The Author(s) 2015.
Simulation and Correction of Triana-Viewed Earth Radiation Budget with ERBE/ISCCP Data
NASA Technical Reports Server (NTRS)
Huang, Jian-Ping; Minnis, Patrick; Doelling, David R.; Valero, Francisco P. J.
2002-01-01
This paper describes the simulation of the earth radiation budget (ERB) as viewed by Triana and the development of correction models for converting Trianaviewed radiances into a complete ERB. A full range of Triana views and global radiation fields are simulated using a combination of datasets from ERBE (Earth Radiation Budget Experiment) and ISCCP (International Satellite Cloud Climatology Project) and analyzed with a set of empirical correction factors specific to the Triana views. The results show that the accuracy of global correction factors to estimate ERB from Triana radiances is a function of the Triana position relative to the Lagrange-1 (L1) or the Sun location. Spectral analysis of the global correction factor indicates that both shortwave (SW; 0.2 - 5.0 microns) and longwave (LW; 5 -50 microns) parameters undergo seasonal and diurnal cycles that dominate the periodic fluctuations. The diurnal cycle, especially its amplitude, is also strongly dependent on the seasonal cycle. Based on these results, models are developed to correct the radiances for unviewed areas and anisotropic emission and reflection. A preliminary assessment indicates that these correction models can be applied to Triana radiances to produce the most accurate global ERB to date.
Enhancement of breast periphery region in digital mammography
NASA Astrophysics Data System (ADS)
Menegatti Pavan, Ana Luiza; Vacavant, Antoine; Petean Trindade, Andre; Quini, Caio Cesar; Rodrigues de Pina, Diana
2018-03-01
Volumetric breast density has been shown to be one of the strongest risk factor for breast cancer diagnosis. This metric can be estimated using digital mammograms. During mammography acquisition, breast is compressed and part of it loses contact with the paddle, resulting in an uncompressed region in periphery with thickness variation. Therefore, reliable density estimation in the breast periphery region is a problem, which affects the accuracy of volumetric breast density measurement. The aim of this study was to enhance breast periphery to solve the problem of thickness variation. Herein, we present an automatic algorithm to correct breast periphery thickness without changing pixel value from internal breast region. The correction pixel values from periphery was based on mean values over iso-distance lines from the breast skin-line using only adipose tissue information. The algorithm detects automatically the periphery region where thickness should be corrected. A correction factor was applied in breast periphery image to enhance the region. We also compare our contribution with two other algorithms from state-of-the-art, and we show its accuracy by means of different quality measures. Experienced radiologists subjectively evaluated resulting images from the tree methods in relation to original mammogram. The mean pixel value, skewness and kurtosis from histogram of the three methods were used as comparison metric. As a result, the methodology presented herein showed to be a good approach to be performed before calculating volumetric breast density.
NASA Astrophysics Data System (ADS)
Sadjadi, Seyed Jafar; Hamidi Hesarsorkh, Aghil; Mohammadi, Mehdi; Bonyadi Naeini, Ali
2015-06-01
Coordination and harmony between different departments of a company can be an important factor in achieving competitive advantage if the company corrects alignment between strategies of different departments. This paper presents an integrated decision model based on recent advances of geometric programming technique. The demand of a product considers as a power function of factors such as product's price, marketing expenditures, and consumer service expenditures. Furthermore, production cost considers as a cubic power function of outputs. The model will be solved by recent advances in convex optimization tools. Finally, the solution procedure is illustrated by numerical example.
Propulsion of a fin whale (Balaenoptera physalus): why the fin whale is a fast swimmer.
Bose, N; Lien, J
1989-07-22
Measurements of an immature fin whale (Balaenoptera physalus), which died as a result of entrapment in fishing gear near Frenchmans Cove, Newfoundland (47 degrees 9' N, 55 degrees 25' W), were made to obtain estimates of volume and surface area of the animal. Detailed measurements of the flukes, both planform and sections, were also obtained. A strip theory was developed to calculate the hydrodynamic performance of the whale's flukes as an oscillating propeller. This method is based on linear, two-dimensional, small-amplitude, unsteady hydrofoil theory with correction factors used to account for the effects of finite span and finite amplitude motion. These correction factors were developed from theoretical results of large-amplitude heaving motion and unsteady lifting-surface theory. A model that makes an estimate of the effects of viscous flow on propeller performance was superimposed on the potential-flow results. This model estimates the drag of the hydrofoil sections by assuming that the drag is similar to that of a hydrofoil section in steady flow. The performance characteristics of the flukes of the fin whale were estimated by using this method. The effects of the different correction factors, and of the frictional drag of the fluke sections, are emphasized. Frictional effects in particular were found to reduce the hydrodynamic efficiency of the flukes significantly. The results are discussed and compared with the known characteristics of fin-whale swimming.
On the Performance of T2∗ Correction Methods for Quantification of Hepatic Fat Content
Reeder, Scott B.; Bice, Emily K.; Yu, Huanzhou; Hernando, Diego; Pineda, Angel R.
2014-01-01
Nonalcoholic fatty liver disease is the most prevalent chronic liver disease in Western societies. MRI can quantify liver fat, the hallmark feature of nonalcoholic fatty liver disease, so long as multiple confounding factors including T2∗ decay are addressed. Recently developed MRI methods that correct for T2∗ to improve the accuracy of fat quantification either assume a common T2∗ (single- T2∗) for better stability and noise performance or independently estimate the T2∗ for water and fat (dual- T2∗) for reduced bias, but with noise performance penalty. In this study, the tradeoff between bias and variance for different T2∗ correction methods is analyzed using the Cramér-Rao bound analysis for biased estimators and is validated using Monte Carlo experiments. A noise performance metric for estimation of fat fraction is proposed. Cramér-Rao bound analysis for biased estimators was used to compute the metric at different echo combinations. Optimization was performed for six echoes and typical T2∗ values. This analysis showed that all methods have better noise performance with very short first echo times and echo spacing of ∼π/2 for single- T2∗ correction, and ∼2π/3 for dual- T2∗ correction. Interestingly, when an echo spacing and first echo shift of ∼π/2 are used, methods without T2∗ correction have less than 5% bias in the estimates of fat fraction. PMID:21661045
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Kaifang; Reinhardt, Joseph M.; Christensen, Gary E.
2013-12-15
Purpose: Four-dimensional computed tomography (4DCT) can be used to make measurements of pulmonary function longitudinally. The sensitivity of such measurements to identify change depends on measurement uncertainty. Previously, intrasubject reproducibility of Jacobian-based measures of lung tissue expansion was studied in two repeat prior-RT 4DCT human acquisitions. Difference in respiratory effort such as breathing amplitude and frequency may affect longitudinal function assessment. In this study, the authors present normalization schemes that correct ventilation images for variations in respiratory effort and assess the reproducibility improvement after effort correction.Methods: Repeat 4DCT image data acquired within a short time interval from 24 patients priormore » to radiation therapy (RT) were used for this analysis. Using a tissue volume preserving deformable image registration algorithm, Jacobian ventilation maps in two scanning sessions were computed and compared on the same coordinate for reproducibility analysis. In addition to computing the ventilation maps from end expiration to end inspiration, the authors investigated the effort normalization strategies using other intermediated inspiration phases upon the principles of equivalent tidal volume (ETV) and equivalent lung volume (ELV). Scatter plots and mean square error of the repeat ventilation maps and the Jacobian ratio map were generated for four conditions: no effort correction, global normalization, ETV, and ELV. In addition, gamma pass rate was calculated from a modified gamma index evaluation between two ventilation maps, using acceptance criterions of 2 mm distance-to-agreement and 5% ventilation difference.Results: The pattern of regional pulmonary ventilation changes as lung volume changes. All effort correction strategies improved reproducibility when changes in respiratory effort were greater than 150 cc (p < 0.005 with regard to the gamma pass rate). Improvement of reproducibility was correlated with respiratory effort difference (R = 0.744 for ELV in the cohort with tidal volume difference greater than 100 cc). In general for all subjects, global normalization, ETV and ELV significantly improved reproducibility compared to no effort correction (p = 0.009, 0.002, 0.005 respectively). When tidal volume difference was small (less than 100 cc), none of the three effort correction strategies improved reproducibility significantly (p = 0.52, 0.46, 0.46 respectively). For the cohort (N = 13) with tidal volume difference greater than 100 cc, the average gamma pass rate improves from 57.3% before correction to 66.3% after global normalization, and 76.3% after ELV. ELV was found to be significantly better than global normalization (p = 0.04 for all subjects, and p = 0.003 for the cohort with tidal volume difference greater than 100 cc).Conclusions: All effort correction strategies improve the reproducibility of the authors' pulmonary ventilation measures, and the improvement of reproducibility is highly correlated with the changes in respiratory effort. ELV gives better results as effort difference increase, followed by ETV, then global. However, based on the spatial and temporal heterogeneity in the lung expansion rate, a single scaling factor (e.g., global normalization) appears to be less accurate to correct the ventilation map when changes in respiratory effort are large.« less
Infant mortality by color or race from Rondônia, Brazilian Amazon
Gava, Caroline; Cardoso, Andrey Moreira; Basta, Paulo Cesar
2017-01-01
ABSTRACT OBJECTIVE To analyze the quality of records for live births and infant deaths and to estimate the infant mortality rate for skin color or race, in order to explore possible racial inequalities in health. METHODS Descriptive study that analyzed the quality of records of the Live Births Information System and Mortality Information System in Rondônia, Brazilian Amazonian, between 2006-2009. The infant mortality rates were estimated for skin color or race with the direct method and corrected by: (1) proportional distribution of deaths with missing data related to skin color or race; and (2) application of correction factors. We also calculated proportional mortality by causes and age groups. RESULTS The capture of live births and deaths improved in relation to 2006-2007, which required lower correction factors to estimate infant mortality rate. The risk of death of indigenous infant (31.3/1,000 live births) was higher than that noted for the other skin color or race groups, exceeding by 60% the infant mortality rate in Rondônia (19.9/1,000 live births). Black children had the highest neonatal infant mortality rate, while the indigenous had the highest post-neonatal infant mortality rate. Among the indigenous deaths, 15.2% were due to ill-defined causes, while the other groups did not exceed 5.4%. The proportional infant mortality due to infectious and parasitic diseases was higher among indigenous children (12.1%), while among black children it occurred due to external causes (8.7%). CONCLUSIONS Expressive inequalities in infant mortality were noted between skin color or race categories, more unfavorable for indigenous infants. Correction factors proposed in the literature lack to consider differences in underreporting of deaths for skin color or race. The specific correction among the color or race categories would likely result in exacerbation of the observed inequalities. PMID:28423134
Calibration of entrance dose measurement for an in vivo dosimetry programme.
Ding, W; Patterson, W; Tremethick, L; Joseph, D
1995-11-01
An increasing number of cancer treatment centres are using in vivo dosimetry as a quality assurance tool for verifying dosimetry as either the entrance or exit surface of the patient undergoing external beam radiotherapy. Equipment is usually limited to either thermoluminescent dosimeters (TLD) or semiconductor detectors such as p-type diodes. The semiconductor detector is more popular than the TLD due to the major advantage of real time analysis of the actual dose delivered. If a discrepancy is observed between the calculated and the measured entrance dose, it is possible to eliminate several likely sources of errors by immediately verifying all treatment parameters. Five Scanditronix EDP-10 p-type diodes were investigated to determine their calibration and relevant correction factors for entrance dose measurements using a Victoreen White Water-RW3 tissue equivalent phantom and a 6 MV photon beam from a Varian Clinac 2100C linear accelerator. Correction factors were determined for individual diodes for the following parameters: source to surface distance (SSD), collimator size, wedge, plate (tray) and temperature. The directional dependence of diode response was also investigated. The SSD correction factor (CSSD) was found to increase by approximately 3% over the range of SSD from 80 to 130 cm. The correction factor for collimator size (Cfield) also varied by approximately 3% between 5 x 5 and 40 x 40 cm2. The wedge correction factor (Cwedge) and plate correction factor (Cplate) were found to be a function of collimator size. Over the range of measurement, these factors varied by a maximum of 1 and 1.5%, respectively. The Cplate variation between the solid and the drilled plates under the same irradiation conditions was a maximum of 2.4%. The diode sensitivity demonstrated an increase with temperature. A maximum of 2.5% variation for the directional dependence of diode response was observed for angle of +/- 60 degrees. In conclusion, in vivo dosimetry is an important and reliable method for checking the dose delivered to the patient. Preclinical calibration and determination of the relevant correction factors for each diode are essential in order to achieve a high accuracy of dose delivered to the patient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, M; Lee, V; Wong, M
Purpose: Following the method of in-phantom measurements of reference air kerma rate (Ka) at 100cm and absorbed water dose rate (Dw1) at 1cm of high-dose-rate 192Ir brachytherapy source using 60Co absorbed-dose-to-water calibrated (ND,w,60Co) ionization chamber (IC), we experimentally determined the in-phantom correction factors (kglob) of the PTW30013 (PTW, Freiburg, Germany) IC by comparing the Monte Carlo (MC)-calculated kglob of the other PTW30016 IC. Methods: The Dw1 formalism of in-phantom measurement is: M*ND,w,60Co*(kglob)Dw1, where M is the collected charges, and (kglob)Dw1 the in-phantom Dw1 correction factor. Similarly, Ka is determined by M*ND,w,60Co*(kglob)ka, where (kglob)ka the in-phantom Ka correction factor. Two thimblemore » ICs PTW30013 and another PTW30016 having a ND,w,60Co from the German primary standard laboratory (PTB) were simultaneously exposed to the microselectron 192Ir v2 source at 8cm in a PMMA phantom. A reference well chamber (PTW33004) with a PTB transfer Ka calibration Nka was used for comparing the in-phantom measurements to derive the experimental (kglob)ka factors. We determined the experimental (kglob)Dw1 of the PTW30013 by comparing the PTW30016 measurements with MC-calculated (kglob)Dw1. Results: Ka results of the PTW30016 based on ND,w,60Co and MC-calculated (kglob)ka differ from the well chamber results based on Nka by 1.6% and from the manufacturer by 1.0%. Experimental (kglob)ka factors for the PTW30016 and two other PTW30013 are 0.00683, 0.00681 and 0.00679, and vary <0.5% with 1mm source positioning uncertainty. Experimental (kglob)Dw1 of the PTW30013 ICs are 75.3 and 75.6, and differ by 1.6% from the conversion by dose rate constant from the AAPM report 229. Conclusion: The 1.7% difference between MC and experimental (kglob)ka for the PTW30016 IC is within the PTB 2.5% expanded uncertainty in Ka calibration standard. Using a single IC with ND,w,60Co to calibrate the brachytherapy source and dose output in external radiotherapy is feasible. MC validation of the PTW30013(kglob)Dw1 is warranted.« less
Overbeek, Thérèse J M; van Boxtel, Anton; Westerink, Joyce H D M
2012-09-01
The literature shows large inconsistencies in respiratory sinus arrhythmia (RSA) responses to induced emotional states. This may be caused by differences in emotion induction methods, RSA quantification, and non-emotional demands of the situation. In 83 healthy subjects, we studied RSA responses to pictures and film fragments eliciting six different discrete emotions relative to neutral baseline stimuli. RSA responses were quantified in the time and frequency domain and were additionally corrected for differences in mean heart rate and respiration rate, resulting in eight different RSA response measures. Subjective ratings of emotional stimuli and facial electromyographic responses indicated that pictures and film fragments elicited the intended emotions. Although RSA measures showed various emotional effects, responses were quite heterogeneous and frequently nonsignificant. They were substantially influenced by methodological factors, in particular time vs. frequency domain response measures, correction for changes in respiration rate, use of pictures vs. film fragments, and sex of participants. Copyright © 2012 Elsevier B.V. All rights reserved.
McCaffrey, J P; Mainegra-Hing, E; Kawrakow, I; Shortt, K R; Rogers, D W O
2004-06-21
The basic equation for establishing a 60Co air-kerma standard based on a cavity ionization chamber includes a wall correction term that corrects for the attenuation and scatter of photons in the chamber wall. For over a decade, the validity of the wall correction terms determined by extrapolation methods (K(w)K(cep)) has been strongly challenged by Monte Carlo (MC) calculation methods (K(wall)). Using the linear extrapolation method with experimental data, K(w)K(cep) was determined in this study for three different styles of primary-standard-grade graphite ionization chamber: cylindrical, spherical and plane-parallel. For measurements taken with the same 60Co source, the air-kerma rates for these three chambers, determined using extrapolated K(w)K(cep) values, differed by up to 2%. The MC code 'EGSnrc' was used to calculate the values of K(wall) for these three chambers. Use of the calculated K(wall) values gave air-kerma rates that agreed within 0.3%. The accuracy of this code was affirmed by its reliability in modelling the complex structure of the response curve obtained by rotation of the non-rotationally symmetric plane-parallel chamber. These results demonstrate that the linear extrapolation technique leads to errors in the determination of air-kerma.
Improving the accuracy of CT dimensional metrology by a novel beam hardening correction method
NASA Astrophysics Data System (ADS)
Zhang, Xiang; Li, Lei; Zhang, Feng; Xi, Xiaoqi; Deng, Lin; Yan, Bin
2015-01-01
Its powerful nondestructive characteristics are attracting more and more research into the study of computed tomography (CT) for dimensional metrology, which offers a practical alternative to the common measurement methods. However, the inaccuracy and uncertainty severely limit the further utilization of CT for dimensional metrology due to many factors, among which the beam hardening (BH) effect plays a vital role. This paper mainly focuses on eliminating the influence of the BH effect in the accuracy of CT dimensional metrology. To correct the BH effect, a novel exponential correction model is proposed. The parameters of the model are determined by minimizing the gray entropy of the reconstructed volume. In order to maintain the consistency and contrast of the corrected volume, a punishment term is added to the cost function, enabling more accurate measurement results to be obtained by the simple global threshold method. The proposed method is efficient, and especially suited to the case where there is a large difference in gray value between material and background. Different spheres with known diameters are used to verify the accuracy of dimensional measurement. Both simulation and real experimental results demonstrate the improvement in measurement precision. Moreover, a more complex workpiece is also tested to show that the proposed method is of general feasibility.
Control circuit maintains unity power factor of reactive load
NASA Technical Reports Server (NTRS)
Kramer, M.; Martinage, L. H.
1966-01-01
Circuit including feedback control elements automatically corrects the power factor of a reactive load. It maintains power supply efficiency where negative load reactance changes and varies by providing corrective error signals to the control windings of a power supply transformer.
Experimental Verification of the Theory of Wind-Tunnel Boundary Interference
NASA Technical Reports Server (NTRS)
Theodorsen, Theodore; Silverstein, Abe
1935-01-01
The results of an experimental investigation on the boundary-correction factor are presented in this report. The values of the boundary-correction factor from the theory, which at the present time is virtually completed, are given in the report for all conventional types of tunnels. With the isolation of certain disturbing effects, the experimental boundary-correction factor was found to be in satisfactory agreement with the theoretically predicted values, thus verifying the soundness and sufficiency of the theoretical analysis. The establishment of a considerable velocity distortion, in the nature of a unique blocking effect, constitutes a principal result of the investigation.
Ham, D Cal; Lin, Carol; Newman, Lori; Wijesooriya, N Saman; Kamb, Mary
2015-06-01
"Probable active syphilis," is defined as seroreactivity in both non-treponemal and treponemal tests. A correction factor of 65%, namely the proportion of pregnant women reactive in one syphilis test type that were likely reactive in the second, was applied to reported syphilis seropositivity data reported to WHO for global estimates of syphilis during pregnancy. To identify more accurate correction factors based on test type reported. Medline search using: "Syphilis [Mesh] and Pregnancy [Mesh]," "Syphilis [Mesh] and Prenatal Diagnosis [Mesh]," and "Syphilis [Mesh] and Antenatal [Keyword]. Eligible studies must have reported results for pregnant or puerperal women for both non-treponemal and treponemal serology. We manually calculated the crude percent estimates of subjects with both reactive treponemal and reactive non-treponemal tests among subjects with reactive treponemal and among subjects with reactive non-treponemal tests. We summarized the percent estimates using random effects models. Countries reporting both reactive non-treponemal and reactive treponemal testing required no correction factor. Countries reporting non-treponemal testing or treponemal testing alone required a correction factor of 52.2% and 53.6%, respectively. Countries not reporting test type required a correction factor of 68.6%. Future estimates should adjust reported maternal syphilis seropositivity by test type to ensure accuracy. Published by Elsevier Ireland Ltd.
NASA Astrophysics Data System (ADS)
Oelze, Michael L.; O'Brien, William D.
2004-11-01
Backscattered rf signals used to construct conventional ultrasound B-mode images contain frequency-dependent information that can be examined through the backscattered power spectrum. The backscattered power spectrum is found by taking the magnitude squared of the Fourier transform of a gated time segment corresponding to a region in the scattering volume. When a time segment is gated, the edges of the gated regions change the frequency content of the backscattered power spectrum due to truncating of the waveform. Tapered windows, like the Hanning window, and longer gate lengths reduce the relative contribution of the gate-edge effects. A new gate-edge correction factor was developed that partially accounted for the edge effects. The gate-edge correction factor gave more accurate estimates of scatterer properties at small gate lengths compared to conventional windowing functions. The gate-edge correction factor gave estimates of scatterer properties within 5% of actual values at very small gate lengths (less than 5 spatial pulse lengths) in both simulations and from measurements on glass-bead phantoms. While the gate-edge correction factor gave higher accuracy of estimates at smaller gate lengths, the precision of estimates was not improved at small gate lengths over conventional windowing functions. .
Air-braked cycle ergometers: validity of the correction factor for barometric pressure.
Finn, J P; Maxwell, B F; Withers, R T
2000-10-01
Barometric pressure exerts by far the greatest influence of the three environmental factors (barometric pressure, temperature and humidity) on power outputs from air-braked ergometers. The barometric pressure correction factor for power outputs from air-braked ergometers is in widespread use but apparently has never been empirically validated. Our experiment validated this correction factor by calibrating two air-braked cycle ergometers in a hypobaric chamber using a dynamic calibration rig. The results showed that if the power output correction for changes in air resistance at barometric pressures corresponding to altitudes of 38, 600, 1,200 and 1,800 m above mean sea level were applied, then the coefficients of variation were 0.8-1.9% over the range of 160-1,597 W. The overall mean error was 3.0 % but this included up to 0.73 % for the propagated error that was associated with errors in the measurement of: a) temperature b) relative humidity c) barometric pressure d) force, distance and angular velocity by the dynamic calibration rig. The overall mean error therefore approximated the +/- 2.0% of true load that was specified by the Laboratory Standards Assistance Scheme of the Australian Sports Commission. The validity of the correction factor for barometric pressure on power output was therefore demonstrated over the altitude range of 38-1,800 m.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez, Miguel L.; Abrego, Eladio; Pineda, Amalia
2008-04-01
This report describes the results obtained with the Isorad{sup TM} (Red) semiconductor detectors for implementing an in vivo dosimetry program in patients subject to radiotherapy treatment of the pelvis. Four n-type semiconductor diodes were studied to characterize them for the application. The diode calibration consisted of establishing reading-to-dose conversion factors in reference conditions and a set of correction factors accounting for deviations of the diode response in comparison to that of an ion chamber. Treatments of the pelvis were performed by using an isocentric 'box' technique employing a beam of 18 MV with the shape of the fields defined bymore » a multileaf collimator. The method of Rizzotti-Leunen was used to assess the dose at the isocenter based on measurements of the in vivo dose at the entrance and at the exit of each radiation field. The in vivo dose was evaluated for a population of 80 patients. The diodes exhibit good characteristics for their use in in vivo dosimetry; however, the high attenuation of the beam ({approx}12% at 5.0-cm depth) produced, and some important correction factors, must be taken into account. The correction factors determined, including the source-to-surface factor, were within a range of {+-}4%. The frequency histograms of the relative difference between the expected and measured doses at the entrance, the exit, and the isocenter, have mean values and standard deviations of -0.09% (2.18%), 0.77% (2.73%), and -0.11% (1.76%), respectively. The method implemented has proven to be very useful in the assessment of the in vivo dose in this kind of treatment.« less
NASA Astrophysics Data System (ADS)
Weigel, Ralf; Spichtinger, Peter; Mahnke, Christoph; Klingebiel, Marcus; Afchine, Armin; Petzold, Andreas; Krämer, Martina; Costa, Anja; Molleker, Sergej; Reutter, Philipp; Szakáll, Miklós; Port, Max; Grulich, Lucas; Jurkat, Tina; Minikin, Andreas; Borrmann, Stephan
2016-10-01
Particle concentration measurements with underwing probes on aircraft are impacted by air compression upstream of the instrument body as a function of flight velocity. In particular, for fast-flying aircraft the necessity arises to account for compression of the air sample volume. Hence, a correction procedure is needed to invert measured particle number concentrations to ambient conditions that is commonly applicable to different instruments to gain comparable results. In the compression region where the detection of particles occurs (i.e. under factual measurement conditions), pressure and temperature of the air sample are increased compared to ambient (undisturbed) conditions in certain distance away from the aircraft. Conventional procedures for scaling the measured number densities to ambient conditions presume that the air volume probed per time interval is determined by the aircraft speed (true air speed, TAS). However, particle imaging instruments equipped with pitot tubes measuring the probe air speed (PAS) of each underwing probe reveal PAS values systematically below those of the TAS. We conclude that the deviation between PAS and TAS is mainly caused by the compression of the probed air sample. From measurements during two missions in 2014 with the German Gulfstream G-550 (HALO - High Altitude LOng range) research aircraft we develop a procedure to correct the measured particle concentration to ambient conditions using a thermodynamic approach. With the provided equation, the corresponding concentration correction factor ξ is applicable to the high-frequency measurements of the underwing probes, each of which is equipped with its own air speed sensor (e.g. a pitot tube). ξ values of 1 to 0.85 are calculated for air speeds (i.e. TAS) between 60 and 250 m s-1. For different instruments at individual wing position the calculated ξ values exhibit strong consistency, which allows for a parameterisation of ξ as a function of TAS for the current HALO underwing probe configuration. The ability of cloud particles to adopt changes of air speed between ambient and measurement conditions depends on the cloud particles' inertia as a function of particle size (diameter Dp). The suggested inertia correction factor μ (Dp) for liquid cloud drops ranges between 1 (for Dp < 70 µm) and 0.8 (for 100 µm < Dp < 225 µm) but it needs to be applied carefully with respect to the particles' phase and nature. The correction of measured concentration by both factors, ξ and μ (Dp), yields higher ambient particle concentration by about 10-25 % compared to conventional procedures - an improvement which can be considered as significant for many research applications. The calculated ξ values are specifically related to the considered HALO underwing probe arrangement and may differ for other aircraft. Moreover, suggested corrections may not cover all impacts originating from high flight velocities and from interferences between the instruments and e.g. the aircraft wings and/or fuselage. Consequently, it is important that PAS (as a function of TAS) is individually measured by each probe deployed underneath the wings of a fast-flying aircraft.
Correction for spatial averaging in laser speckle contrast analysis
Thompson, Oliver; Andrews, Michael; Hirst, Evan
2011-01-01
Practical laser speckle contrast analysis systems face a problem of spatial averaging of speckles, due to the pixel size in the cameras used. Existing practice is to use a system factor in speckle contrast analysis to account for spatial averaging. The linearity of the system factor correction has not previously been confirmed. The problem of spatial averaging is illustrated using computer simulation of time-integrated dynamic speckle, and the linearity of the correction confirmed using both computer simulation and experimental results. The valid linear correction allows various useful compromises in the system design. PMID:21483623
NASA Astrophysics Data System (ADS)
Rick, Torben C.; Henkes, Gregory A.; Lowery, Darrin L.; Colman, Steven M.; Culleton, Brendan J.
2012-01-01
Radiocarbon dates from known age, pre-bomb eastern oyster (Crassostrea virginica) shells provide local marine reservoir corrections (∆R) for Chesapeake Bay and the Middle Atlantic coastal area of eastern North America. These data suggest subregional variability in ∆R, ranging from 148 ± 46 14C yr on the Potomac River to - 109 ± 38 14C yr at Swan Point, Maryland. The ∆R weighted mean for the Chesapeake's Western Shore (129 ± 22 14C yr) is substantially higher than the Eastern Shore (- 88 ± 23 14C yr), with outer Atlantic Coast samples falling between these values (106 ± 46 and 2 ± 46 14C yr). These differences may result from a combination of factors, including 14C-depleted freshwater that enters the bay from some if its drainages, 14C-depleted seawater that enters the bay at its mouth, and/or biological carbon recycling. We advocate using different subregional ∆R corrections when calibrating 14C dates on aquatic specimens from the Chesapeake Bay and coastal Middle Atlantic region of North America.
The Use of Correcting Coils in End Magnets Accelerators
NASA Astrophysics Data System (ADS)
Kassab, L. R. P.; Gouffon, P.
1997-05-01
The end magnets of the race-track microtron booster (L.R.P. Kassab, PhD Thesis, IFUSP, 1996) , which is the second stage of the 30.0 MeV cw electron accelerator under construction at IFUSP, play a fundamental role in terms of the beam quality. Their efficiency depends on the behavior of the magnetic fields that deflect, focus and return the beam to the accelerating section. The use of correcting coils, based on the inhomogeneities of the magnetic field and attached to the pole faces, assured uniformity of 10-5. We present the performance of these coils when operating the end magnets with currents that differ from the one used in the mappings that originated the coils copper leads. For one of the magnets, adjusting conveniently the current of the correcting coils, made it possible to homogenize field distributions of different intensities, once their shapes are identical to those that originated the coils. For the other one, the shapes are smoothly changed and the coils are less efficient. This is related to intrinsic factors that determine the inhomogeneities. However, in both cases we obtained uniformity of 10-5.
Quantitation of tumor uptake with molecular breast imaging.
Bache, Steven T; Kappadath, S Cheenu
2017-09-01
We developed scatter and attenuation-correction techniques for quantifying images obtained with Molecular Breast Imaging (MBI) systems. To investigate scatter correction, energy spectra of a 99m Tc point source were acquired with 0-7-cm-thick acrylic to simulate scatter between the detector heads. System-specific scatter correction factor, k, was calculated as a function of thickness using a dual energy window technique. To investigate attenuation correction, a 7-cm-thick rectangular phantom containing 99m Tc-water simulating breast tissue and fillable spheres simulating tumors was imaged. Six spheres 10-27 mm in diameter were imaged with sphere-to-background ratios (SBRs) of 3.5, 2.6, and 1.7 and located at depths of 0.5, 1.5, and 2.5 cm from the center of the water bath for 54 unique tumor scenarios (3 SBRs × 6 sphere sizes × 3 depths). Phantom images were also acquired in-air under scatter- and attenuation-free conditions, which provided ground truth counts. To estimate true counts, T, from each tumor, the geometric mean (GM) of the counts within a prescribed region of interest (ROI) from the two projection images was calculated as T=C1C2eμtF, where C are counts within the square ROI circumscribing each sphere on detectors 1 and 2, μ is the linear attenuation coefficient of water, t is detector separation, and the factor F accounts for background activity. Four unique F definitions-standard GM, background-subtraction GM, MIRD Primer 16 GM, and a novel "volumetric GM"-were investigated. Error in T was calculated as the percentage difference with respect to in-air. Quantitative accuracy using the different GM definitions was calculated as a function of SBR, depth, and sphere size. Sensitivity of quantitative accuracy to ROI size was investigated. We developed an MBI simulation to investigate the robustness of our corrections for various ellipsoidal tumor shapes and detector separations. Scatter correction factor k varied slightly (0.80-0.95) over a compressed breast thickness range of 6-9 cm. Corrected energy spectra recovered general characteristics of scatter-free spectra. Quantitatively, photopeak counts were recovered to <10% compared to in-air conditions after scatter correction. After GM attenuation correction, mean errors (95% confidence interval, CI) for all 54 imaging scenarios were 149% (-154% to +455%), -14.0% (-38.4% to +10.4%), 16.8% (-14.7% to +48.2%), and 2.0% (-14.3 to +18.3%) for the standard GM, background-subtraction GM, MIRD 16 GM, and volumetric GM, respectively. Volumetric GM was less sensitive to SBR and sphere size, while all GM methods were insensitive to sphere depth. Simulation results showed that Volumetric GM method produced a mean error within 5% over all compressed breast thicknesses (3-14 cm), and that the use of an estimated radius for nonspherical tumors increases the 95% CI to at most ±23%, compared with ±16% for spherical tumors. Using DEW scatter- and our Volumetric GM attenuation-correction methodology yielded accurate estimates of tumor counts in MBI over various tumor sizes, shapes, depths, background uptake, and compressed breast thicknesses. Accurate tumor uptake can be converted to radiotracer uptake concentration, allowing three patient-specific metrics to be calculated for quantifying absolute uptake and relative uptake change for assessment of treatment response. © 2017 American Association of Physicists in Medicine.
ERIC Educational Resources Information Center
Levy, Gary D.; Carter, D. Bruce
The present study investigated relationships between cognitive components of children's sex-role development and the bases of their attributions of sex-stereotypes to a particular gender. Specifically, it was predicted that the number of sex-stereotypes children correctly attributed would be significantly related to gender differences between the…
USDA-ARS?s Scientific Manuscript database
This study was designed to determine if the present USDA ARS Spray Nozzle models based on water plus non-ionic surfactant spray solutions could be used to estimate spray droplet size data for different spray formulations through use of experimentally determined correction factors or if full spray fo...
USDA-ARS?s Scientific Manuscript database
The correct identification of the source population of an invasive species is a prerequisite for defining and testing different hypotheses concerning the environmental and evolutionary factors responsible for biological invasions. The native area of invasive species may be large, barely known and/or...
Measurement of absorbed dose with a bone-equivalent extrapolation chamber.
DeBlois, François; Abdel-Rahman, Wamied; Seuntjens, Jan P; Podgorsak, Ervin B
2002-03-01
A hybrid phantom-embedded extrapolation chamber (PEEC) made of Solid Water and bone-equivalent material was used for determining absorbed dose in a bone-equivalent phantom irradiated with clinical radiation beams (cobalt-60 gamma rays; 6 and 18 MV x rays; and 9 and 15 MeV electrons). The dose was determined with the Spencer-Attix cavity theory, using ionization gradient measurements and an indirect determination of the chamber air-mass through measurements of chamber capacitance. The collected charge was corrected for ionic recombination and diffusion in the chamber air volume following the standard two-voltage technique. Due to the hybrid chamber design, correction factors accounting for scatter deficit and electrode composition were determined and applied in the dose equation to obtain absorbed dose in bone for the equivalent homogeneous bone phantom. Correction factors for graphite electrodes were calculated with Monte Carlo techniques and the calculated results were verified through relative air cavity dose measurements for three different polarizing electrode materials: graphite, steel, and brass in conjunction with a graphite collecting electrode. Scatter deficit, due mainly to loss of lateral scatter in the hybrid chamber, reduces the dose to the air cavity in the hybrid PEEC in comparison with full bone PEEC by 0.7% to approximately 2% depending on beam quality and energy. In megavoltage photon and electron beams, graphite electrodes do not affect the dose measurement in the Solid Water PEEC but decrease the cavity dose by up to 5% in the bone-equivalent PEEC even for very thin graphite electrodes (<0.0025 cm). In conjunction with appropriate correction factors determined with Monte Carlo techniques, the uncalibrated hybrid PEEC can be used for measuring absorbed dose in bone material to within 2% for high-energy photon and electron beams.
Frank, Florian; Liu, Chen; Scanziani, Alessio; Alpak, Faruk O; Riviere, Beatrice
2018-08-01
We consider an energy-based boundary condition to impose an equilibrium wetting angle for the Cahn-Hilliard-Navier-Stokes phase-field model on voxel-set-type computational domains. These domains typically stem from μCT (micro computed tomography) imaging of porous rock and approximate a (on μm scale) smooth domain with a certain resolution. Planar surfaces that are perpendicular to the main axes are naturally approximated by a layer of voxels. However, planar surfaces in any other directions and curved surfaces yield a jagged/topologically rough surface approximation by voxels. For the standard Cahn-Hilliard formulation, where the contact angle between the diffuse interface and the domain boundary (fluid-solid interface/wall) is 90°, jagged surfaces have no impact on the contact angle. However, a prescribed contact angle smaller or larger than 90° on jagged voxel surfaces is amplified. As a remedy, we propose the introduction of surface energy correction factors for each fluid-solid voxel face that counterbalance the difference of the voxel-set surface area with the underlying smooth one. The discretization of the model equations is performed with the discontinuous Galerkin method. However, the presented semi-analytical approach of correcting the surface energy is equally applicable to other direct numerical methods such as finite elements, finite volumes, or finite differences, since the correction factors appear in the strong formulation of the model. Copyright © 2018 Elsevier Inc. All rights reserved.
Measurement of stiffness of standing trees and felled logs using acoustics: A review.
Legg, Mathew; Bradley, Stuart
2016-02-01
This paper provides a review on the use of acoustics to measure stiffness of standing trees, stems, and logs. An outline is given of the properties of wood and how these are related to stiffness and acoustic velocity throughout the tree. Factors are described that influence the speed of sound in wood, including the different types of acoustic waves which propagate in tree stems and lumber. Acoustic tools and techniques that have been used to measure the stiffness of wood are reviewed. The reasons for a systematic difference between direct and acoustic measurements of stiffness for standing trees, and methods for correction, are discussed. Other techniques, which have been used in addition to acoustics to try to improve stiffness measurements, are also briefly described. Also reviewed are studies which have used acoustic tools to investigate factors that influence the stiffness of trees. These factors include different silvicultural practices, geographic and environmental conditions, and genetics.
An advanced method to assess the diet of free-ranging large carnivores based on scats.
Wachter, Bettina; Blanc, Anne-Sophie; Melzheimer, Jörg; Höner, Oliver P; Jago, Mark; Hofer, Heribert
2012-01-01
The diet of free-ranging carnivores is an important part of their ecology. It is often determined from prey remains in scats. In many cases, scat analyses are the most efficient method but they require correction for potential biases. When the diet is expressed as proportions of consumed mass of each prey species, the consumed prey mass to excrete one scat needs to be determined and corrected for prey body mass because the proportion of digestible to indigestible matter increases with prey body mass. Prey body mass can be corrected for by conducting feeding experiments using prey of various body masses and fitting a regression between consumed prey mass to excrete one scat and prey body mass (correction factor 1). When the diet is expressed as proportions of consumed individuals of each prey species and includes prey animals not completely consumed, the actual mass of each prey consumed by the carnivore needs to be controlled for (correction factor 2). No previous study controlled for this second bias. Here we use an extended series of feeding experiments on a large carnivore, the cheetah (Acinonyx jubatus), to establish both correction factors. In contrast to previous studies which fitted a linear regression for correction factor 1, we fitted a biologically more meaningful exponential regression model where the consumed prey mass to excrete one scat reaches an asymptote at large prey sizes. Using our protocol, we also derive correction factor 1 and 2 for other carnivore species and apply them to published studies. We show that the new method increases the number and proportion of consumed individuals in the diet for large prey animals compared to the conventional method. Our results have important implications for the interpretation of scat-based studies in feeding ecology and the resolution of human-wildlife conflicts for the conservation of large carnivores.
An Advanced Method to Assess the Diet of Free-Ranging Large Carnivores Based on Scats
Wachter, Bettina; Blanc, Anne-Sophie; Melzheimer, Jörg; Höner, Oliver P.; Jago, Mark; Hofer, Heribert
2012-01-01
Background The diet of free-ranging carnivores is an important part of their ecology. It is often determined from prey remains in scats. In many cases, scat analyses are the most efficient method but they require correction for potential biases. When the diet is expressed as proportions of consumed mass of each prey species, the consumed prey mass to excrete one scat needs to be determined and corrected for prey body mass because the proportion of digestible to indigestible matter increases with prey body mass. Prey body mass can be corrected for by conducting feeding experiments using prey of various body masses and fitting a regression between consumed prey mass to excrete one scat and prey body mass (correction factor 1). When the diet is expressed as proportions of consumed individuals of each prey species and includes prey animals not completely consumed, the actual mass of each prey consumed by the carnivore needs to be controlled for (correction factor 2). No previous study controlled for this second bias. Methodology/Principal Findings Here we use an extended series of feeding experiments on a large carnivore, the cheetah (Acinonyx jubatus), to establish both correction factors. In contrast to previous studies which fitted a linear regression for correction factor 1, we fitted a biologically more meaningful exponential regression model where the consumed prey mass to excrete one scat reaches an asymptote at large prey sizes. Using our protocol, we also derive correction factor 1 and 2 for other carnivore species and apply them to published studies. We show that the new method increases the number and proportion of consumed individuals in the diet for large prey animals compared to the conventional method. Conclusion/Significance Our results have important implications for the interpretation of scat-based studies in feeding ecology and the resolution of human-wildlife conflicts for the conservation of large carnivores. PMID:22715373
Sun, Li; Westerdahl, Dane; Ning, Zhi
2017-08-19
Emerging low-cost gas sensor technologies have received increasing attention in recent years for air quality measurements due to their small size and convenient deployment. However, in the diverse applications these sensors face many technological challenges, including sensor drift over long-term deployment that cannot be easily addressed using mathematical correction algorithms or machine learning methods. This study aims to develop a novel approach to auto-correct the drift of commonly used electrochemical nitrogen dioxide (NO₂) sensor with comprehensive evaluation of its application. The impact of environmental factors on the NO₂ electrochemical sensor in low-ppb concentration level measurement was evaluated in laboratory and the temperature and relative humidity correction algorithm was evaluated. An automated zeroing protocol was developed and assessed using a chemical absorbent to remove NO₂ as a means to perform zero correction in varying ambient conditions. The sensor system was operated in three different environments in which data were compared to a reference NO₂ analyzer. The results showed that the zero-calibration protocol effectively corrected the observed drift of the sensor output. This technique offers the ability to enhance the performance of low-cost sensor based systems and these findings suggest extension of the approach to improve data quality from sensors measuring other gaseous pollutants in urban air.
Mars, J.C.; Rowan, L.C.
2010-01-01
ASTER reflectance spectra from Cuprite, Nevada, and Mountain Pass, California, were compared to spectra of field samples and to ASTER-resampled AVIRIS reflectance data to determine spectral accuracy and spectroscopic mapping potential of two new ASTER SWIR reflectance datasets: RefL1b and AST_07XT. RefL1b is a new reflectance dataset produced for this study using ASTER Level 1B data, crosstalk correction, radiance correction factors, and concurrently acquired level 2 MODIS water vapor data. The AST_07XT data product, available from EDC and ERSDAC, incorporates crosstalk correction and non-concurrently acquired MODIS water vapor data for atmospheric correction. Spectral accuracy was determined using difference values which were compiled from ASTER band 5/6 and 9/8 ratios of AST_07XT or RefL1b data subtracted from similar ratios calculated for field sample and AVIRIS reflectance data. In addition, Spectral Analyst, a statistical program that utilizes a Spectral Feature Fitting algorithm, was used to quantitatively assess spectral accuracy of AST_07XT and RefL1b data.Spectral Analyst matched more minerals correctly and had higher scores for the RefL1b data than for AST_07XT data. The radiance correction factors used in the RefL1b data corrected a low band 5 reflectance anomaly observed in the AST_07XT and AST_07 data but also produced anomalously high band 5 reflectance in RefL1b spectra with strong band 5 absorption for minerals, such as alunite. Thus, the band 5 anomaly seen in the RefL1b data cannot be corrected using additional gain adjustments. In addition, the use of concurrent MODIS water vapor data in the atmospheric correction of the RefL1b data produced datasets that had lower band 9 reflectance anomalies than the AST_07XT data. Although assessment of spectral data suggests that RefL1b data are more consistent and spectrally more correct than AST_07XT data, the Spectral Analyst results indicate that spectral discrimination between some minerals, such as alunite and kaolinite, are still not possible unless additional spectral calibration using site specific spectral data are performed. ?? 2010.
Impact of reconstruction parameters on quantitative I-131 SPECT
NASA Astrophysics Data System (ADS)
van Gils, C. A. J.; Beijst, C.; van Rooij, R.; de Jong, H. W. A. M.
2016-07-01
Radioiodine therapy using I-131 is widely used for treatment of thyroid disease or neuroendocrine tumors. Monitoring treatment by accurate dosimetry requires quantitative imaging. The high energy photons however render quantitative SPECT reconstruction challenging, potentially requiring accurate correction for scatter and collimator effects. The goal of this work is to assess the effectiveness of various correction methods on these effects using phantom studies. A SPECT/CT acquisition of the NEMA IEC body phantom was performed. Images were reconstructed using the following parameters: (1) without scatter correction, (2) with triple energy window (TEW) scatter correction and (3) with Monte Carlo-based scatter correction. For modelling the collimator-detector response (CDR), both (a) geometric Gaussian CDRs as well as (b) Monte Carlo simulated CDRs were compared. Quantitative accuracy, contrast to noise ratios and recovery coefficients were calculated, as well as the background variability and the residual count error in the lung insert. The Monte Carlo scatter corrected reconstruction method was shown to be intrinsically quantitative, requiring no experimentally acquired calibration factor. It resulted in a more accurate quantification of the background compartment activity density compared with TEW or no scatter correction. The quantification error relative to a dose calibrator derived measurement was found to be <1%,-26% and 33%, respectively. The adverse effects of partial volume were significantly smaller with the Monte Carlo simulated CDR correction compared with geometric Gaussian or no CDR modelling. Scatter correction showed a small effect on quantification of small volumes. When using a weighting factor, TEW correction was comparable to Monte Carlo reconstruction in all measured parameters, although this approach is clinically impractical since this factor may be patient dependent. Monte Carlo based scatter correction including accurately simulated CDR modelling is the most robust and reliable method to reconstruct accurate quantitative iodine-131 SPECT images.
Genetic Factors Affecting Late-Onset Alzheimer's Disease Susceptibility.
Rezazadeh, Maryam; Khorrami, Aziz; Yeghaneh, Tarlan; Talebi, Mahnaz; Kiani, Seyed Jalal; Heshmati, Yaser; Gharesouran, Jalal
2016-03-01
Alzheimer's disease is considered a progressive brain disease in the older population. Late-onset Alzheimer's disease (LOAD) as a multifactorial dementia has a polygenic inheritance. Age, environment, and lifestyle along with a growing number of genetic factors have been reported as risk factors for LOAD. Our aim was to present results of LOAD association studies that have been done in northwestern Iran, and we also explored possible interactions with apolipoprotein E (APOE) status. We re-evaluated the association of these markers in dominant, recessive, and additive models. In all, 160 LOAD and 163 healthy control subjects of Azeri Turkish ethnicity were studied. The Chi-square test with Yates' correction and Fisher's exact test were used for statistical analysis. A Bonferroni-corrected p value, based on the number of statistical tests, was considered significant. Our results confirmed that chemokine receptor type 2 (CCR2), estrogen receptor 1 (ESR1), toll-like receptor 2 (TLR2), tumor necrosis factor alpha (TNF α), APOE, bridging integrator 1 (BIN1), and phosphatidylinositol-binding clathrin assembly protein (PICALM) are LOAD susceptibility loci in Azeri Turk ancestry populations. Among them, variants of CCR2, ESR1, TNF α, and APOE revealed associations in three different genetic models. After adjusting for APOE, the association (both allelic and genotypic) with CCR2, BIN1, and ESRα (PvuII) was evident only among subjects without the APOE ε4, whereas the association with CCR5, without Bonferroni correction, was significant only among subjects carrying the APOE ε4 allele. This result is an evidence of a synergistic and antagonistic effect of APOE on variant associations with LOAD.
Zhao, Huaqing; Rebbeck, Timothy R; Mitra, Nandita
2009-12-01
Confounding due to population stratification (PS) arises when differences in both allele and disease frequencies exist in a population of mixed racial/ethnic subpopulations. Genomic control, structured association, principal components analysis (PCA), and multidimensional scaling (MDS) approaches have been proposed to address this bias using genetic markers. However, confounding due to PS can also be due to non-genetic factors. Propensity scores are widely used to address confounding in observational studies but have not been adapted to deal with PS in genetic association studies. We propose a genomic propensity score (GPS) approach to correct for bias due to PS that considers both genetic and non-genetic factors. We compare the GPS method with PCA and MDS using simulation studies. Our results show that GPS can adequately adjust and consistently correct for bias due to PS. Under no/mild, moderate, and severe PS, GPS yielded estimated with bias close to 0 (mean=-0.0044, standard error=0.0087). Under moderate or severe PS, the GPS method consistently outperforms the PCA method in terms of bias, coverage probability (CP), and type I error. Under moderate PS, the GPS method consistently outperforms the MDS method in terms of CP. PCA maintains relatively high power compared to both MDS and GPS methods under the simulated situations. GPS and MDS are comparable in terms of statistical properties such as bias, type I error, and power. The GPS method provides a novel and robust tool for obtaining less-biased estimates of genetic associations that can consider both genetic and non-genetic factors. 2009 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larraga-Gutierrez, J
Purpose: To correct for the over-response of mini-ionization chambers with high-Z central electrodes. The hypothesis is that by applying a negative/reverse voltage, it is possible to suppress the signal generated in the high-Z central electrode by low-energy photons. Methods: The mini-ionization chambers used in the experiments were a PTW-31014, PTW-31006 and IBA-CC01. The PTW-31014 has an aluminum central electrode while the PTW-31006 and IBA-CC01 have a steel one. Total scatter factors (Scp) were measured for a 6 MV photon beam down to a square field size of 0.5 cm. The measurements were performed in water at 10 cm depth withmore » SAD of 100 cm. The Scp were measured with the dosimeters with +400V bias voltage. In the case of the PTW-31006 and IBA-CC01, the measurements were repeated with −400V bias voltage. Also, the field factors in water were calculated with Monte Carlo simulations for comparison. Results: The measured Scp at +400V with the PTW-31006 and IBA-CC01 detectors were in agreement within 0.2% down to a field size of 1.5 cm. Both dosimeters shown a systematic difference about 2.5% with the Scp measured with the PTW-31014 and the Monte Carlo calculated field factors. The measured Scp at −400V with the PTW-31006 and IBA-CC01 detectors were in close agreement with the PTW-31014 measured Scp and the field factors within 0.3 and 1.0%, respectively. In the case of the IBA-CC01 it was found a good agreement (1%) down to field size of 1.0 cm. All the dosimeters shown differences up to 17% between the measured Scp and the field factor for the 0.5 cm field size. Conclusion: By applying a negative/reverse voltage to the mini-ionization chambers with high-Z central electrode it was possible to correct for their over-response to low energy photons.« less
Ionization chamber-based reference dosimetry of intensity modulated radiation beams.
Bouchard, Hugo; Seuntjens, Jan
2004-09-01
The present paper addresses reference dose measurements using thimble ionization chambers for quality assurance in IMRT fields. In these radiation fields, detector fluence perturbation effects invalidate the application of open-field dosimetry protocol data for the derivation of absorbed dose to water from ionization chamber measurements. We define a correction factor C(Q)IMRT to correct the absorbed dose to water calibration coefficient N(D, w)Q for fluence perturbation effects in individual segments of an IMRT delivery and developed a calculation method to evaluate the factor. The method consists of precalculating, using accurate Monte Carlo techniques, ionization chamber, type-dependent cavity air dose, and in-phantom dose to water at the reference point for zero-width pencil beams as a function of position of the pencil beams impinging on the phantom surface. These precalculated kernels are convolved with the IMRT fluence distribution to arrive at the dose-to-water-dose-to-cavity air ratio [D(a)w (IMRT)] for IMRT fields and with a 10x10 cm2 open-field fluence to arrive at the same ratio D(a)w (Q) for the 10x10 cm2 reference field. The correction factor C(Q)IMRT is then calculated as the ratio of D(a)w (IMRT) and D(a)w (Q). The calculation method was experimentally validated and the magnitude of chamber correction factors in reference dose measurements in single static and dynamic IMRT fields was studied. The results show that, for thimble-type ionization chambers the correction factor in a single, realistic dynamic IMRT field can be of the order of 10% or more. We therefore propose that for accurate reference dosimetry of complete n-beam IMRT deliveries, ionization chamber fluence perturbation correction factors must explicitly be taken into account.
Vaknin, David; Bu, Wei; Travesset, Alex
2008-07-28
We show that the structure factor S(q) of water can be obtained from x-ray synchrotron experiments at grazing angle of incidence (in reflection mode) by using a liquid surface diffractometer. The corrections used to obtain S(q) self-consistently are described. Applying these corrections to scans at different incident beam angles (above the critical angle) collapses the measured intensities into a single master curve, without fitting parameters, which within a scale factor yields S(q). Performing the measurements below the critical angle for total reflectivity yields the structure factor of the top most layers of the water/vapor interface. Our results indicate water restructuring at the vapor/water interface. We also introduce a new approach to extract g(r), the pair distribution function (PDF), by expressing the PDF as a linear sum of error functions whose parameters are refined by applying a nonlinear least square fit method. This approach enables a straightforward determination of the inherent uncertainties in the PDF. Implications of our results to previously measured and theoretical predictions of the PDF are also discussed.
Biomechanical principles and mechanobiologic aspects of flexible and locked plating.
Claes, Lutz
2011-02-01
The goal of minimally invasive surgery in extramedullary internal fixation has led to the development of flexible plates, bridging plates, and locked internal fixators. The change from conventional compression plates to these new implants, however, resulted in different biomechanics of fixation and different mechanobiologic processes for fracture healing. The aim of a flexible fixation is the stimulation of fracture healing by callus formation. Fracture healing follows mechanobiologic rules based mainly on interfragmentary strain, which is dependent on the stability of the fixation construct and the type of fracture. Knowledge of the mechanobiologic processes and the factors influencing the stability of fracture fixation are necessary for the surgeon to choose the correct technique for fracture fixation. Problems in the selection of the correct technique and limitations with the available implants as well as possible future developments are discussed.
Baudrexel, Simon; Nöth, Ulrike; Schüre, Jan-Rüdiger; Deichmann, Ralf
2018-06-01
The variable flip angle method derives T 1 maps from radiofrequency-spoiled gradient-echo data sets, acquired with different flip angles α. Because the method assumes validity of the Ernst equation, insufficient spoiling of transverse magnetization yields errors in T 1 estimation, depending on the chosen radiofrequency-spoiling phase increment (Δϕ). This paper presents a versatile correction method that uses modified flip angles α' to restore the validity of the Ernst equation. Spoiled gradient-echo signals were simulated for three commonly used phase increments Δϕ (50°/117°/150°), different values of α, repetition time (TR), T 1 , and a T 2 of 85 ms. For each parameter combination, α' (for which the Ernst equation yielded the same signal) and a correction factor C Δϕ (α, TR, T 1 ) = α'/α were determined. C Δϕ was found to be independent of T 1 and fitted as polynomial C Δϕ (α, TR), allowing to calculate α' for any protocol using this Δϕ. The accuracy of the correction method for T 2 values deviating from 85 ms was also determined. The method was tested in vitro and in vivo for variable flip angle scans with different acquisition parameters. The technique considerably improved the accuracy of variable flip angle-based T 1 maps in vitro and in vivo. The proposed method allows for a simple correction of insufficient spoiling in gradient-echo data. The required polynomial parameters are supplied for three common Δϕ. Magn Reson Med 79:3082-3092, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Characterization of Scattered X-Ray Photons in Dental Cone-Beam Computed Tomography.
Yang, Ching-Ching
2016-01-01
Scatter is a very important artifact causing factor in dental cone-beam CT (CBCT), which has a major influence on the detectability of details within images. This work aimed to improve the image quality of dental CBCT through scatter correction. Scatter was estimated in the projection domain from the low frequency component of the difference between the raw CBCT projection and the projection obtained by extrapolating the model fitted to the raw projections acquired with 2 different sizes of axial field-of-view (FOV). The function for curve fitting was optimized by using Monte Carlo simulation. To validate the proposed method, an anthropomorphic phantom and a water-filled cylindrical phantom with rod inserts simulating different tissue materials were scanned using 120 kVp, 5 mA and 9-second scanning time covering an axial FOV of 4 cm and 13 cm. The detectability of the CT image was evaluated by calculating the contrast-to-noise ratio (CNR). Beam hardening and cupping artifacts were observed in CBCT images without scatter correction, especially in those acquired with 13 cm FOV. These artifacts were reduced in CBCT images corrected by the proposed method, demonstrating its efficacy on scatter correction. After scatter correction, the image quality of CBCT was improved in terms of target detectability which was quantified as the CNR for rod inserts in the cylindrical phantom. Hopefully the calculations performed in this work can provide a route to reach a high level of diagnostic image quality for CBCT imaging used in oral and maxillofacial structures whilst ensuring patient dose as low as reasonably achievable, which may ultimately make CBCT scan a reliable and safe tool in clinical practice.
Lüdtke, Oliver; Marsh, Herbert W; Robitzsch, Alexander; Trautwein, Ulrich
2011-12-01
In multilevel modeling, group-level variables (L2) for assessing contextual effects are frequently generated by aggregating variables from a lower level (L1). A major problem of contextual analyses in the social sciences is that there is no error-free measurement of constructs. In the present article, 2 types of error occurring in multilevel data when estimating contextual effects are distinguished: unreliability that is due to measurement error and unreliability that is due to sampling error. The fact that studies may or may not correct for these 2 types of error can be translated into a 2 × 2 taxonomy of multilevel latent contextual models comprising 4 approaches: an uncorrected approach, partial correction approaches correcting for either measurement or sampling error (but not both), and a full correction approach that adjusts for both sources of error. It is shown mathematically and with simulated data that the uncorrected and partial correction approaches can result in substantially biased estimates of contextual effects, depending on the number of L1 individuals per group, the number of groups, the intraclass correlation, the number of indicators, and the size of the factor loadings. However, the simulation study also shows that partial correction approaches can outperform full correction approaches when the data provide only limited information in terms of the L2 construct (i.e., small number of groups, low intraclass correlation). A real-data application from educational psychology is used to illustrate the different approaches.
Partial volume correction using cortical surfaces
NASA Astrophysics Data System (ADS)
Blaasvær, Kamille R.; Haubro, Camilla D.; Eskildsen, Simon F.; Borghammer, Per; Otzen, Daniel; Ostergaard, Lasse R.
2010-03-01
Partial volume effect (PVE) in positron emission tomography (PET) leads to inaccurate estimation of regional metabolic activities among neighbouring tissues with different tracer concentration. This may be one of the main limiting factors in the utilization of PET in clinical practice. Partial volume correction (PVC) methods have been widely studied to address this issue. MRI based PVC methods are well-established.1 Their performance depend on the quality of the co-registration of the MR and PET dataset, on the correctness of the estimated point-spread function (PSF) of the PET scanner and largely on the performance of the segmentation method that divide the brain into brain tissue compartments.1, 2 In the present study a method for PVC is suggested, that utilizes cortical surfaces, to obtain detailed anatomical information. The objectives are to improve the performance of PVC, facilitate a study of the relationship between metabolic activity in the cerebral cortex and cortical thicknesses, and to obtain an improved visualization of PET data. The gray matter metabolic activity after performing PVC was recovered by 99.7 - 99.8 % , in relation to the true activity when testing on simple simulated data with different PSFs and by 97.9 - 100 % when testing on simulated brain PET data at different cortical thicknesses. When studying the relationship between metabolic activities and anatomical structures it was shown on simulated brain PET data, that it is important to correct for PVE in order to get the true relationship.
Diaphragm correction factors for the FAC-IR-300 free-air ionization chamber.
Mohammadi, Seyed Mostafa; Tavakoli-Anbaran, Hossein
2018-02-01
A free-air ionization chamber FAC-IR-300, designed by the Atomic Energy Organization of Iran, is used as the primary Iranian national standard for the photon air kerma. For accurate air kerma measurements, the contribution from the scattered photons to the total energy released in the collecting volume must be eliminated. One of the sources of scattered photons is the chamber's diaphragm. In this paper, the diaphragm scattering correction factor, k dia , and the diaphragm transmission correction factor, k tr , were introduced. These factors represent corrections to the measured charge (or current) for the photons scattered from the diaphragm surface and the photons penetrated through the diaphragm volume, respectively. The k dia and k tr values were estimated by Monte Carlo simulations. The simulations were performed for the mono-energetic photons in the energy range of 20 - 300keV. According to the simulation results, in this energy range, the k dia values vary between 0.9997 and 0.9948, and k tr values decrease from 1.0000 to 0.9965. The corrections grow in significance with increasing energy of the primary photons. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nakagami, Ryutaro; Yamaguchi, Masayuki; Ezawa, Kenji; Kimura, Sadaaki; Hamamichi, Shusei; Sekine, Norio; Furukawa, Akira; Niitsu, Mamoru; Fujii, Hirofumi
2014-01-01
We explored a recovery correction technique that can correct metabolite loss during perchloric acid (PCA) extraction and minimize inter-assay variance in quantitative (1)H nuclear magnetic resonance (NMR) spectroscopy of the brain and evaluated its efficacy in 5-fluorouracil (5-FU)- and saline-administered rats. We measured the recovery of creatine and dl-valine-2,3-d2 from PCA extract containing both compounds (0.5 to 8 mM). We intravenously administered either 5-FU for 4 days (total, 100 mg/kg body weight) or saline into 2 groups of 11 rats each. We subsequently performed PCA extraction of the whole brain on Day 9, externally adding 7 µmol of dl-valine-2,3-d2. We estimated metabolite concentrations using an NMR spectrometer with recovery correction, correcting metabolite concentrations based on the recovery factor of dl-valine-2,3-d2. For each metabolite concentration, we calculated the coefficient of variation (CEV) and compared differences between the 2 groups using unpaired t-test. Equivalent recoveries of dl-valine-2,3-d2 (89.4 ± 3.9%) and creatine (89.7 ± 3.9%) in the PCA extract of the mixed solution indicated the suitability of dl-valine-2,3-d2 as an internal reference. In the rat study, recovery of dl-valine-2,3-d2 was 90.6 ± 9.2%. Nine major metabolite concentrations adjusted by recovery of dl-valine-2,3-d2 in saline-administered rats were comparable to data in the literature. CEVs of these metabolites were reduced from 10 to 17% before to 7 to 16% after correction. The significance of differences in alanine and taurine between the 5-FU- and saline-administered groups was determined only after recovery correction (0.75 ± 0.12 versus 0.86 ± 0.07 for alanine; 5.17 ± 0.59 versus 5.66 ± 0.42 for taurine [µmol/g brain tissue]; P < 0.05). A new recovery correction technique corrected metabolite loss during PCA extraction, minimized inter-assay variance in quantitative (1)H NMR spectroscopy of brain tissue, and effectively detected inter-group differences in concentrations of brain metabolites between 5-FU- and saline-administered rats.
Directivity in NGA earthquake ground motions: Analysis using isochrone theory
Spudich, P.; Chiou, B.S.J.
2008-01-01
We present correction factors that may be applied to the ground motion prediction relations of Abrahamson and Silva, Boore and Atkinson, Campbell and Bozorgnia, and Chiou and Youngs (all in this volume) to model the azimuthally varying distribution of the GMRotI50 component of ground motion (commonly called 'directivity') around earthquakes. Our correction factors may be used for planar or nonplanar faults having any dip or slip rake (faulting mechanism). Our correction factors predict directivity-induced variations of spectral acceleration that are roughly half of the strike-slip variations predicted by Somerville et al. (1997), and use of our factors reduces record-to-record sigma by about 2-20% at 5 sec or greater period. ?? 2008, Earthquake Engineering Research Institute.
Zhou, Lihong; Yuan, Liming; Thomas, Rick; Iannacchione, Anthony
2017-12-01
When there are installations of air velocity sensors in the mining industry for real-time airflow monitoring, a problem exists with how the monitored air velocity at a fixed location corresponds to the average air velocity, which is used to determine the volume flow rate of air in an entry with the cross-sectional area. Correction factors have been practically employed to convert a measured centerline air velocity to the average air velocity. However, studies on the recommended correction factors of the sensor-measured air velocity to the average air velocity at cross sections are still lacking. A comprehensive airflow measurement was made at the Safety Research Coal Mine, Bruceton, PA, using three measuring methods including single-point reading, moving traverse, and fixed-point traverse. The air velocity distribution at each measuring station was analyzed using an air velocity contour map generated with Surfer ® . The correction factors at each measuring station for both the centerline and the sensor location were calculated and are discussed.
Yuan, Liming; Thomas, Rick; Iannacchione, Anthony
2017-01-01
When there are installations of air velocity sensors in the mining industry for real-time airflow monitoring, a problem exists with how the monitored air velocity at a fixed location corresponds to the average air velocity, which is used to determine the volume flow rate of air in an entry with the cross-sectional area. Correction factors have been practically employed to convert a measured centerline air velocity to the average air velocity. However, studies on the recommended correction factors of the sensor-measured air velocity to the average air velocity at cross sections are still lacking. A comprehensive airflow measurement was made at the Safety Research Coal Mine, Bruceton, PA, using three measuring methods including single-point reading, moving traverse, and fixed-point traverse. The air velocity distribution at each measuring station was analyzed using an air velocity contour map generated with Surfer®. The correction factors at each measuring station for both the centerline and the sensor location were calculated and are discussed. PMID:29201495
A European-wide 222radon and 222radon progeny comparison study
NASA Astrophysics Data System (ADS)
Schmithüsen, Dominik; Chambers, Scott; Fischer, Bernd; Gilge, Stefan; Hatakka, Juha; Kazan, Victor; Neubert, Rolf; Paatero, Jussi; Ramonet, Michel; Schlosser, Clemens; Schmid, Sabine; Vermeulen, Alex; Levin, Ingeborg
2017-04-01
Although atmospheric 222radon (222Rn) activity concentration measurements are currently performed worldwide, they are being made by many different laboratories and with fundamentally different measurement principles, so compatibility issues can limit their utility for regional-to-global applications. Consequently, we conducted a European-wide 222Rn / 222Rn progeny comparison study in order to evaluate the different measurement systems in use, determine potential systematic biases between them, and estimate correction factors that could be applied to harmonize data for their use as a tracer in atmospheric applications. Two compact portable Heidelberg radon monitors (HRM) were moved around to run for at least 1 month at each of the nine European measurement stations included in this comparison. Linear regressions between parallel data sets were calculated, yielding correction factors relative to the HRM ranging from 0.68 to 1.45. A calibration bias between ANSTO (Australian Nuclear Science and Technology Organisation) two-filter radon monitors and the HRM of ANSTO / HRM = 1.11 ± 0.05 was found. Moreover, for the continental stations using one-filter systems that derive atmospheric 222Rn activity concentrations from measured atmospheric progeny activity concentrations, preliminary 214Po / 222Rn disequilibrium values were also estimated. Mean station-specific disequilibrium values between 0.8 at mountain sites (e.g. Schauinsland) and 0.9 at non-mountain sites for sampling heights around 20 to 30 m above ground level were determined. The respective corrections for calibration biases and disequilibrium derived in this study need to be applied to obtain a compatible European atmospheric 222Rn data set for use in quantitative applications, such as regional model intercomparison and validation or trace gas flux estimates with the radon tracer method.
Fall with and without fracture in elderly: what's different?
Kantayaporn, Choochat
2012-10-01
Falling fracture was one of the health problems in elderly. This presentation aimed to identify the factors of fall that caused fractures. The retrospective case-control study was designed. Samples were all who experienced fall within 1 year in Lamphun. Factors included age, gender underlying diseases, chronic drugs used, history of parent fragility fracture, age of menopause, steroid used, body mass index, visual acuity and time up and go test were studied. Multivariate regression analysis was used. 336 cases of fractures in 1,244 cases of fall were found. Significant factors of falling fracture group that were different from fall without fracture group included age, female gender, menopause before age of 45 and visual impairment. Visual impairment was the other key factor rather than osteoporosis that caused fall with fracture. The author suggested that falling fracture prevention programs should be included correction of visual impairment other than osteoporosis treatment.
Regression dilution bias: tools for correction methods and sample size calculation.
Berglund, Lars
2012-08-01
Random errors in measurement of a risk factor will introduce downward bias of an estimated association to a disease or a disease marker. This phenomenon is called regression dilution bias. A bias correction may be made with data from a validity study or a reliability study. In this article we give a non-technical description of designs of reliability studies with emphasis on selection of individuals for a repeated measurement, assumptions of measurement error models, and correction methods for the slope in a simple linear regression model where the dependent variable is a continuous variable. Also, we describe situations where correction for regression dilution bias is not appropriate. The methods are illustrated with the association between insulin sensitivity measured with the euglycaemic insulin clamp technique and fasting insulin, where measurement of the latter variable carries noticeable random error. We provide software tools for estimation of a corrected slope in a simple linear regression model assuming data for a continuous dependent variable and a continuous risk factor from a main study and an additional measurement of the risk factor in a reliability study. Also, we supply programs for estimation of the number of individuals needed in the reliability study and for choice of its design. Our conclusion is that correction for regression dilution bias is seldom applied in epidemiological studies. This may cause important effects of risk factors with large measurement errors to be neglected.
Francescon, P; Kilby, W; Noll, J M; Masi, L; Satariano, N; Russo, S
2017-02-07
Monte Carlo simulation was used to calculate correction factors for output factor (OF), percentage depth-dose (PDD), and off-axis ratio (OAR) measurements with the CyberKnife M6 System. These include the first such data for the InCise MLC. Simulated detectors include diodes, air-filled microchambers, a synthetic microdiamond detector, and point scintillator. Individual perturbation factors were also evaluated. OF corrections show similar trends to previous studies. With a 5 mm fixed collimator the diode correction to convert a measured OF to the corresponding point dose ratio varies between -6.1% and -3.5% for the diode models evaluated, while in a 7.6 mm × 7.7 mm MLC field these are -4.5% to -1.8%. The corresponding microchamber corrections are +9.9% to +10.7% and +3.5% to +4.0%. The microdiamond corrections have a maximum of -1.4% for the 7.5 mm and 10 mm collimators. The scintillator corrections are <1% in all beams. Measured OF showed uncorrected inter-detector differences >15%, reducing to <3% after correction. PDD corrections at d > d max were <2% for all detectors except IBA Razor where a maximum 4% correction was observed at 300 mm depth. OAR corrections were smaller inside the field than outside. At the beam edge microchamber OAR corrections were up to 15%, mainly caused by density perturbations, which blurs the measured penumbra. With larger beams and depths, PTW and IBA diode corrections outside the beam were up to 20% while the Edge detector needed smaller corrections although these did vary with orientation. These effects are most noticeable for large field size and depth, where they are dominated by fluence and stopping power perturbations. The microdiamond OAR corrections were <3% outside the beam. This paper provides OF corrections that can be used for commissioning new CyberKnife M6 Systems and retrospectively checking estimated corrections used previously. We recommend the PDD and OAR corrections are used to guide detector selection and inform the evaluation of results rather than to explicitly correct measurements.
NASA Astrophysics Data System (ADS)
Francescon, P.; Kilby, W.; Noll, J. M.; Masi, L.; Satariano, N.; Russo, S.
2017-02-01
Monte Carlo simulation was used to calculate correction factors for output factor (OF), percentage depth-dose (PDD), and off-axis ratio (OAR) measurements with the CyberKnife M6 System. These include the first such data for the InCise MLC. Simulated detectors include diodes, air-filled microchambers, a synthetic microdiamond detector, and point scintillator. Individual perturbation factors were also evaluated. OF corrections show similar trends to previous studies. With a 5 mm fixed collimator the diode correction to convert a measured OF to the corresponding point dose ratio varies between -6.1% and -3.5% for the diode models evaluated, while in a 7.6 mm × 7.7 mm MLC field these are -4.5% to -1.8%. The corresponding microchamber corrections are +9.9% to +10.7% and +3.5% to +4.0%. The microdiamond corrections have a maximum of -1.4% for the 7.5 mm and 10 mm collimators. The scintillator corrections are <1% in all beams. Measured OF showed uncorrected inter-detector differences >15%, reducing to <3% after correction. PDD corrections at d > d max were <2% for all detectors except IBA Razor where a maximum 4% correction was observed at 300 mm depth. OAR corrections were smaller inside the field than outside. At the beam edge microchamber OAR corrections were up to 15%, mainly caused by density perturbations, which blurs the measured penumbra. With larger beams and depths, PTW and IBA diode corrections outside the beam were up to 20% while the Edge detector needed smaller corrections although these did vary with orientation. These effects are most noticeable for large field size and depth, where they are dominated by fluence and stopping power perturbations. The microdiamond OAR corrections were <3% outside the beam. This paper provides OF corrections that can be used for commissioning new CyberKnife M6 Systems and retrospectively checking estimated corrections used previously. We recommend the PDD and OAR corrections are used to guide detector selection and inform the evaluation of results rather than to explicitly correct measurements.
Space-based retrieval of NO2 over biomass burning regions: quantifying and reducing uncertainties
NASA Astrophysics Data System (ADS)
Bousserez, N.
2014-10-01
The accuracy of space-based nitrogen dioxide (NO2) retrievals from solar backscatter radiances critically depends on a priori knowledge of the vertical profiles of NO2 and aerosol optical properties. This information is used to calculate an air mass factor (AMF), which accounts for atmospheric scattering and is used to convert the measured line-of-sight "slant" columns into vertical columns. In this study we investigate the impact of biomass burning emissions on the AMF in order to quantify NO2 retrieval errors in the Ozone Monitoring Instrument (OMI) products over these sources. Sensitivity analyses are conducted using the Linearized Discrete Ordinate Radiative Transfer (LIDORT) model. The NO2 and aerosol profiles are obtained from a 3-D chemistry-transport model (GEOS-Chem), which uses the Fire Locating and Monitoring of Burning Emissions (FLAMBE) daily biomass burning emission inventory. Aircraft in situ data collected during two field campaigns, the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) and the Dust and Biomass-burning Experiment (DABEX), are used to evaluate the modeled aerosol optical properties and NO2 profiles over Canadian boreal fires and West African savanna fires, respectively. Over both domains, the effect of biomass burning emissions on the AMF through the modified NO2 shape factor can be as high as -60%. A sensitivity analysis also revealed that the effect of aerosol and shape factor perturbations on the AMF is very sensitive to surface reflectance and clouds. As an illustration, the aerosol correction can range from -20 to +100% for different surface reflectances, while the shape factor correction varies from -70 to -20%. Although previous studies have shown that in clear-sky conditions the effect of aerosols on the AMF was in part implicitly accounted for by the modified cloud parameters, here it is suggested that when clouds are present above a surface layer of scattering aerosols, an explicit aerosol correction would be beneficial to the NO2 retrieval. Finally, a new method that uses slant column information to correct for shape-factor-related AMF error over NOx emission sources is proposed, with possible application to near-real-time OMI retrievals.
On thermal corrections to near-threshold annihilation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Seyong; Laine, M., E-mail: skim@sejong.ac.kr, E-mail: laine@itp.unibe.ch
2017-01-01
We consider non-relativistic ''dark'' particles interacting through gauge boson exchange. At finite temperature, gauge exchange is modified in many ways: virtual corrections lead to Debye screening; real corrections amount to frequent scatterings of the heavy particles on light plasma constituents; mixing angles change. In a certain temperature and energy range, these effects are of order unity. Taking them into account in a resummed form, we estimate the near-threshold spectrum of kinetically equilibrated annihilating TeV scale particles. Weakly bound states are shown to 'melt' below freeze-out, whereas with attractive strong interactions, relevant e.g. for gluinos, bound states boost the annihilation ratemore » by a factor 4 ... 80 with respect to the Sommerfeld estimate, thereby perhaps helping to avoid overclosure of the universe. Modestly non-degenerate dark sector masses and a way to combine the contributions of channels with different gauge and spin structures are also discussed.« less
Perturbative corrections to B → D form factors in QCD
NASA Astrophysics Data System (ADS)
Wang, Yu-Ming; Wei, Yan-Bing; Shen, Yue-Long; Lü, Cai-Dian
2017-06-01
We compute perturbative QCD corrections to B → D form factors at leading power in Λ/ m b , at large hadronic recoil, from the light-cone sum rules (LCSR) with B-meson distribution amplitudes in HQET. QCD factorization for the vacuum-to- B-meson correlation function with an interpolating current for the D-meson is demonstrated explicitly at one loop with the power counting scheme {m}_c˜ O(√{Λ {m}_b}) . The jet functions encoding information of the hard-collinear dynamics in the above-mentioned correlation function are complicated by the appearance of an additional hard-collinear scale m c , compared to the counterparts entering the factorization formula of the vacuum-to- B-meson correction function for the construction of B → π from factors. Inspecting the next-to-leading-logarithmic sum rules for the form factors of B → Dℓν indicates that perturbative corrections to the hard-collinear functions are more profound than that for the hard functions, with the default theory inputs, in the physical kinematic region. We further compute the subleading power correction induced by the three-particle quark-gluon distribution amplitudes of the B-meson at tree level employing the background gluon field approach. The LCSR predictions for the semileptonic B → Dℓν form factors are then extrapolated to the entire kinematic region with the z-series parametrization. Phenomenological implications of our determinations for the form factors f BD +,0 ( q 2) are explored by investigating the (differential) branching fractions and the R( D) ratio of B → Dℓν and by determining the CKM matrix element |V cb | from the total decay rate of B → Dμν μ .
HQET form factors for Bs → Klv decays beyond leading order
NASA Astrophysics Data System (ADS)
Banerjee, Debasish; Koren, Mateusz; Simma, Hubert; Sommer, Rainer
2018-03-01
We compute semi-leptonic Bs decay form factors using Heavy Quark Effective Theory on the lattice. To obtain good control of the 1 /mb expansion, one has to take into account not only the leading static order but also the terms arising at O (1/mb): kinetic, spin and current insertions. We show results for these terms calculated through the ratio method, using our prior results for the static order. After combining them with non-perturbative HQET parameters they can be continuum-extrapolated to give the QCD form factor correct up to O (1/mb2) corrections and without O (αs(mb)n) corrections.
NASA Astrophysics Data System (ADS)
Bozhalkina, Yana; Timofeeva, Galina
2016-12-01
Mathematical model of loan portfolio in the form of a controlled Markov chain with discrete time is considered. It is assumed that coefficients of migration matrix depend on corrective actions and external factors. Corrective actions include process of receiving applications, interaction with existing solvent and insolvent clients. External factors are macroeconomic indicators, such as inflation and unemployment rates, exchange rates, consumer price indices, etc. Changes in corrective actions adjust the intensity of transitions in the migration matrix. The mathematical model for forecasting the credit portfolio structure taking into account a cumulative impact of internal and external changes is obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sulkosky, V.; Jin, G.; Long, E.
Background: Measurements of the neutron charge form factor, Gmore » $$n\\atop{E}$$, are challenging because the neutron has no net charge. Additionally, measurements of the neutron form factors must use nuclear targets which require accurately accounting for nuclear effects. Extracting G$$n\\atop{E}$$ with different targets and techniques provides an important test of our handling of these effects. Purpose: The goal of the measurement was to use an inclusive asymmetry measurement technique to extract the neutron charge form factor at a four-momentum transfer of 1 (GeV/c) 2. This technique has very different systematic uncertainties than traditional exclusive measurements and thus serves as an independent check of whether nuclear effects have been taken into account correctly. Method: The inclusive quasielastic reaction 3$$→\\atop{He}$$ ($$→\\atop{e}$$, e') was measured at Jefferson Laboratory. The neutron electric form factor, G$$n\\atop{E}$$, was extracted at Q 2 = 0.98 ( GeV/c) 2 from ratios of electron-polarization asymmetries measured for two orthogonal target spin orientations. This Q 2 is high enough that the sensitivity to G$$n\\atop{E}$$ is not overwhelmed by the neutron magnetic contribution, and yet low enough that explicit neutron detection is not required to suppress pion production. Results: The neutron electric form factor, G$$n\\atop{E}$$, was determined to be 0.0414 ± 0.0077 ( stat ) ± 0.0022 ( syst ), providing the first high-precision inclusive extraction of the neutron's charge form factor. In conclusion: The use of the inclusive quasielastic 3$$→\\atop{He}$$ ($$→\\atop{e}$$, e') with a four-momentum transfer near 1 (GeV/c) 2 has been used to provide a unique measurement of G$$n\\atop{E}$$. This new result provides a systematically independent validation of the exclusive extraction technique results and implies that the nuclear corrections are understood. This is contrary to the proton form factor where asymmetry and differential cross section measurements have been shown to have large systematic differences.« less
Sulkosky, V.; Jin, G.; Long, E.; ...
2017-12-26
Background: Measurements of the neutron charge form factor, Gmore » $$n\\atop{E}$$, are challenging because the neutron has no net charge. Additionally, measurements of the neutron form factors must use nuclear targets which require accurately accounting for nuclear effects. Extracting G$$n\\atop{E}$$ with different targets and techniques provides an important test of our handling of these effects. Purpose: The goal of the measurement was to use an inclusive asymmetry measurement technique to extract the neutron charge form factor at a four-momentum transfer of 1 (GeV/c) 2. This technique has very different systematic uncertainties than traditional exclusive measurements and thus serves as an independent check of whether nuclear effects have been taken into account correctly. Method: The inclusive quasielastic reaction 3$$→\\atop{He}$$ ($$→\\atop{e}$$, e') was measured at Jefferson Laboratory. The neutron electric form factor, G$$n\\atop{E}$$, was extracted at Q 2 = 0.98 ( GeV/c) 2 from ratios of electron-polarization asymmetries measured for two orthogonal target spin orientations. This Q 2 is high enough that the sensitivity to G$$n\\atop{E}$$ is not overwhelmed by the neutron magnetic contribution, and yet low enough that explicit neutron detection is not required to suppress pion production. Results: The neutron electric form factor, G$$n\\atop{E}$$, was determined to be 0.0414 ± 0.0077 ( stat ) ± 0.0022 ( syst ), providing the first high-precision inclusive extraction of the neutron's charge form factor. In conclusion: The use of the inclusive quasielastic 3$$→\\atop{He}$$ ($$→\\atop{e}$$, e') with a four-momentum transfer near 1 (GeV/c) 2 has been used to provide a unique measurement of G$$n\\atop{E}$$. This new result provides a systematically independent validation of the exclusive extraction technique results and implies that the nuclear corrections are understood. This is contrary to the proton form factor where asymmetry and differential cross section measurements have been shown to have large systematic differences.« less
Drag Corrections in High-Speed Wind Tunnels
NASA Technical Reports Server (NTRS)
Ludwieg, H.
1947-01-01
In the vicinity of a body in a wind tunnel the displacement effect of the wake, due to the finite dimensions of the stream, produces a pressure gradient which evokes a change of drag. In incompressible flow this change of drag is so small, in general, that one does not have to take it into account in wind-tunnel measurements; however, in compressible flow it beoomes considerably larger, so that a correction factor is necessary for measured values. Correction factors for a closed tunnel and an open jet with circular cross sections are calculated and compared with the drag - corrections already bown for high-speed tunnnels.
Hayashi, Kazunori; Toyoda, Hiromitsu; Terai, Hidetomi; Suzuki, Akinobu; Hoshino, Masatoshi; Tamai, Koji; Ohyama, Shoichiro; Nakamura, Hiroaki
2017-04-01
OBJECTIVE Numerous reports have been published on the effectiveness and safety of correction of the coronal Cobb angle and thoracolumbar sagittal alignment in patients with adolescent idiopathic scoliosis (AIS). Suboptimal sagittal alignment, such as decreased thoracic kyphosis (TK), after corrective surgery, is a possible cause of lumbar or cervical spinal degeneration and junctional malalignment; however, few reports are available on reciprocal changes outside of the fused segments, such as the cervical lordotic angle (CLA). This study aimed to investigate the relationship between the perioperative CLA and other radiographic factors or clinical results in AIS, and to identify independent risk factors of postoperative cervical hyperkyphosis. METHODS A total of 51 AIS patients who underwent posterior spinal fusion with the placement of pedicle screw (PS) constructs at thoracic levels were included in the study. Clinical and radiographic follow-up of patients was conducted for a minimum of 2 years, and the postoperative course was evaluated. The authors measured and identified the changes in the CLA and other radiographic parameters using whole-spine radiography, with the patient in the standing position, performed immediately before surgery, 2 weeks after surgery, and 2 years after surgery. The postoperative cervical hyperkyphosis group included patients whose CLA at 2-year follow-up was smaller than -10°. The reciprocal changes of the CLA and other parameters were also investigated. Univariate and multivariate analyses were conducted to determine the associated risk factors for postoperative cervical hyperkyphosis. RESULTS This study comprised 48 females and 3 males (mean age 16.0 years). The mean follow-up period was 47 months (range 24-90 months). The main coronal thoracic curve was corrected from 54.6° to 16.4°, and the mean correction rate was 69.8% at 2 years. The CLA significantly increased from the mean preoperative measurement (-5.4° ± 14°) to the 2-year follow-up measurement (-1.7° ± 11°) (p = 0.019). Twelve of the 51 patients had postoperative cervical hyperkyphosis. This group exhibited significantly smaller preoperative CLA and TK measurements (p = 0.001 and 0.004, respectively) than the others. After adjusting for confounding factors, preoperative CLA less than -5° and preoperative TK less than 10° were significantly associated with postoperative cervical hyperkyphosis (p < 0.05; OR 12.5 and 8.59, respectively). However, no differences were found in the clinical results regardless of cervical hyperkyphosis. CONCLUSIONS The CLA increased significantly from preoperatively to 2 years after surgery. Preoperative small CLA and TK measurements were independent risk factors of postoperative cervical hyperkyphosis. However, there was no difference in the clinical outcomes regardless of cervical hyperkyphosis.
NASA Astrophysics Data System (ADS)
Reveil, Mardochee; Sorg, Victoria C.; Cheng, Emily R.; Ezzyat, Taha; Clancy, Paulette; Thompson, Michael O.
2017-09-01
This paper presents an extensive collection of calculated correction factors that account for the combined effects of a wide range of non-ideal conditions often encountered in realistic four-point probe and van der Pauw experiments. In this context, "non-ideal conditions" refer to conditions that deviate from the assumptions on sample and probe characteristics made in the development of these two techniques. We examine the combined effects of contact size and sample thickness on van der Pauw measurements. In the four-point probe configuration, we examine the combined effects of varying the sample's lateral dimensions, probe placement, and sample thickness. We derive an analytical expression to calculate correction factors that account, simultaneously, for finite sample size and asymmetric probe placement in four-point probe experiments. We provide experimental validation of the analytical solution via four-point probe measurements on a thin film rectangular sample with arbitrary probe placement. The finite sample size effect is very significant in four-point probe measurements (especially for a narrow sample) and asymmetric probe placement only worsens such effects. The contribution of conduction in multilayer samples is also studied and found to be substantial; hence, we provide a map of the necessary correction factors. This library of correction factors will enable the design of resistivity measurements with improved accuracy and reproducibility over a wide range of experimental conditions.
Reveil, Mardochee; Sorg, Victoria C; Cheng, Emily R; Ezzyat, Taha; Clancy, Paulette; Thompson, Michael O
2017-09-01
This paper presents an extensive collection of calculated correction factors that account for the combined effects of a wide range of non-ideal conditions often encountered in realistic four-point probe and van der Pauw experiments. In this context, "non-ideal conditions" refer to conditions that deviate from the assumptions on sample and probe characteristics made in the development of these two techniques. We examine the combined effects of contact size and sample thickness on van der Pauw measurements. In the four-point probe configuration, we examine the combined effects of varying the sample's lateral dimensions, probe placement, and sample thickness. We derive an analytical expression to calculate correction factors that account, simultaneously, for finite sample size and asymmetric probe placement in four-point probe experiments. We provide experimental validation of the analytical solution via four-point probe measurements on a thin film rectangular sample with arbitrary probe placement. The finite sample size effect is very significant in four-point probe measurements (especially for a narrow sample) and asymmetric probe placement only worsens such effects. The contribution of conduction in multilayer samples is also studied and found to be substantial; hence, we provide a map of the necessary correction factors. This library of correction factors will enable the design of resistivity measurements with improved accuracy and reproducibility over a wide range of experimental conditions.
Lee, Dae-Hee; Park, Sung-Chul; Park, Hyung-Joon; Han, Seung-Beom
2016-12-01
Open-wedge high tibial osteotomy (HTO) cannot always accurately correct limb alignment, resulting in under- or over-correction. This study assessed the relationship between soft tissue laxity of the knee joint and alignment correction in open-wedge HTO. This prospective study involved 85 patients (86 knees) undergoing open-wedge HTO for primary medial osteoarthritis. The mechanical axis (MA), weight-bearing line (WBL) ratio, and joint line convergence angle (JLCA) were measured on radiographs preoperatively and after 6 months, and the differences between the pre- and post-surgery values were calculated. Post-operative WBL ratios of 57-67 % were classified as acceptable correction. WBL ratios <57 and >67 % were classified as under- and over-corrections, respectively. Preoperative JLCA correlated positively with differences in MA (r = 0.358, P = 0.001) and WBL ratio (P = 0.003). Difference in JLCA showed a stronger correlation than preoperative JLCA with differences in MA (P < 0.001) and WBL ratio (P < 0.001). Difference in JLCA was the only predictor of both difference in MA (P < 0.001) and difference in WBL ratio (P < 0.001). The difference between pre- and post-operative JLCA differed significantly between the under-correction, acceptable-correction, and over-correction groups (P = 0.033). Preoperative JLCA, however, did not differ significantly between the three groups. Neither preoperative JLCA nor difference in JLCA correlated with change in posterior slope. Preoperative degree of soft tissue laxity in the knee joint was related to the degree of alignment correction, but not to alignment correction error, in open-wedge HTO. Change in soft tissue laxity around the knee from before to after open-wedge HTO correlated with both correction amount and correction error. Therefore, a too large change in JLCA from before to after open-wedge osteotomy may be due to an overly large reduction in JLCA following osteotomy, suggesting alignment over-correction during surgery. II.
NASA Astrophysics Data System (ADS)
Rogers, Jeffrey N.; Parrish, Christopher E.; Ward, Larry G.; Burdick, David M.
2018-03-01
Salt marsh vegetation tends to increase vertical uncertainty in light detection and ranging (lidar) derived elevation data, often causing the data to become ineffective for analysis of topographic features governing tidal inundation or vegetation zonation. Previous attempts at improving lidar data collected in salt marsh environments range from simply computing and subtracting the global elevation bias to more complex methods such as computing vegetation-specific, constant correction factors. The vegetation specific corrections can be used along with an existing habitat map to apply separate corrections to different areas within a study site. It is hypothesized here that correcting salt marsh lidar data by applying location-specific, point-by-point corrections, which are computed from lidar waveform-derived features, tidal-datum based elevation, distance from shoreline and other lidar digital elevation model based variables, using nonparametric regression will produce better results. The methods were developed and tested using full-waveform lidar and ground truth for three marshes in Cape Cod, Massachusetts, U.S.A. Five different model algorithms for nonparametric regression were evaluated, with TreeNet's stochastic gradient boosting algorithm consistently producing better regression and classification results. Additionally, models were constructed to predict the vegetative zone (high marsh and low marsh). The predictive modeling methods used in this study estimated ground elevation with a mean bias of 0.00 m and a standard deviation of 0.07 m (0.07 m root mean square error). These methods appear very promising for correction of salt marsh lidar data and, importantly, do not require an existing habitat map, biomass measurements, or image based remote sensing data such as multi/hyperspectral imagery.
Vos, Janet R; Hsu, Li; Brohet, Richard M; Mourits, Marian J E; de Vries, Jakob; Malone, Kathleen E; Oosterwijk, Jan C; de Bock, Geertruida H
2015-08-10
Recommendations for treating patients who carry a BRCA1/2 gene are mainly based on cumulative lifetime risks (CLTRs) of breast cancer determined from retrospective cohorts. These risks vary widely (27% to 88%), and it is important to understand why. We analyzed the effects of methods of risk estimation and bias correction and of population factors on CLTRs in this retrospective clinical cohort of BRCA1/2 carriers. The following methods to estimate the breast cancer risk of BRCA1/2 carriers were identified from the literature: Kaplan-Meier, frailty, and modified segregation analyses with bias correction consisting of including or excluding index patients combined with including or excluding first-degree relatives (FDRs) or different conditional likelihoods. These were applied to clinical data of BRCA1/2 families derived from our family cancer clinic for whom a simulation was also performed to evaluate the methods. CLTRs and 95% CIs were estimated and compared with the reference CLTRs. CLTRs ranged from 35% to 83% for BRCA1 and 41% to 86% for BRCA2 carriers at age 70 years width of 95% CIs: 10% to 35% and 13% to 46%, respectively). Relative bias varied from -38% to +16%. Bias correction with inclusion of index patients and untested FDRs gave the smallest bias: +2% (SD, 2%) in BRCA1 and +0.9% (SD, 3.6%) in BRCA2. Much of the variation in breast cancer CLTRs in retrospective clinical BRCA1/2 cohorts is due to the bias-correction method, whereas a smaller part is due to population differences. Kaplan-Meier analyses with bias correction that includes index patients and a proportion of untested FDRs provide suitable CLTRs for carriers counseled in the clinic. © 2015 by American Society of Clinical Oncology.
Schinka, J A
1995-02-01
Individual scale characteristics and the inventory structure of the Personality Assessment Inventory (PAI; Morey, 1991) were examined by conducting internal consistency and factor analyses of item and scale score data from a large group (N = 301) of alcohol-dependent patients. Alpha coefficients, mean inter-item correlations, and corrected item-total scale correlations for the sample paralleled values reported by Morey for a large clinical sample. Minor differences in the scale factor structure of the inventory from Morey's clinical sample were found. Overall, the findings support the use of the PAI in the assessment of personality and psychopathology of alcohol-dependent patients.
Extracting Baseline Electricity Usage Using Gradient Tree Boosting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Taehoon; Lee, Dongeun; Choi, Jaesik
To understand how specific interventions affect a process observed over time, we need to control for the other factors that influence outcomes. Such a model that captures all factors other than the one of interest is generally known as a baseline. In our study of how different pricing schemes affect residential electricity consumption, the baseline would need to capture the impact of outdoor temperature along with many other factors. In this work, we examine a number of different data mining techniques and demonstrate Gradient Tree Boosting (GTB) to be an effective method to build the baseline. We train GTB onmore » data prior to the introduction of new pricing schemes, and apply the known temperature following the introduction of new pricing schemes to predict electricity usage with the expected temperature correction. Our experiments and analyses show that the baseline models generated by GTB capture the core characteristics over the two years with the new pricing schemes. In contrast to the majority of regression based techniques which fail to capture the lag between the peak of daily temperature and the peak of electricity usage, the GTB generated baselines are able to correctly capture the delay between the temperature peak and the electricity peak. Furthermore, subtracting this temperature-adjusted baseline from the observed electricity usage, we find that the resulting values are more amenable to interpretation, which demonstrates that the temperature-adjusted baseline is indeed effective.« less
Analysis of self-citation and impact factor in dermatology journals.
Reiter, Ofer; Mimouni, Michael; Mimouni, Daniel
2016-09-01
Concerns have been raised regarding the impact factor's (IF) accuracy and credibility, which may be affected by different factors, including self-citations. To investigate the self-citation rate (SCR) of dermatology journals and its relationship to the IF. Data on all dermatology journals listed in the Journal Citation Reports (JCR) were retrieved, and the following parameters were analyzed: IF, total publications used to calculate the IF, total citations used to calculate the IF, self-citations used to calculate the IF, SCR, and IF without self-citations (corrected IF). The median SCR was 10.53% (0-50%), and the median IF and corrected IF, 1.54 (0.05-6.37) and 1.35 (0.03-5.84), respectively. There was an inverse correlation between the IF and the SCR. A statistically significant difference was noted in the SCR between general and subspecialty journals and between journals that offered a full English text and those that did not. In general, the IF of dermatology journals is not influenced by the SCR. However, journals with a lower IF tend to have a higher SCR. Subspecialty journals and foreign language journals have a higher SCR than general dermatology and English language journals, respectively, probably owing to their limited distribution and the difficulty experienced by international authors in accessing references in specific languages. © 2015 The International Society of Dermatology.
Upscaling gas permeability in tight-gas sandstones
NASA Astrophysics Data System (ADS)
Ghanbarian, B.; Torres-Verdin, C.; Lake, L. W.; Marder, M. P.
2017-12-01
Klinkenberg-corrected gas permeability (k) estimation in tight-gas sandstones is essential for gas exploration and production in low-permeability porous rocks. Most models for estimating k are a function of porosity (ϕ), tortuosity (τ), pore shape factor (s) and a characteristic length scale (lc). Estimation of the latter, however, has been the subject of debate in the literature. Here we invoke two different upscaling approaches from statistical physics: (1) the EMA and (2) critical path analysis (CPA) to estimate lc from pore throat-size distribution derived from mercury intrusion capillary pressure (MICP) curve. τ is approximated from: (1) concepts of percolation theory and (2) formation resistivity factor measurements (F = τ/ϕ). We then estimate k of eighteen tight-gas sandstones from lc, τ, and ϕ by assuming two different pore shapes: cylindrical and slit-shaped. Comparison with Klinkenberg-corrected k measurements showed that τ was estimated more accurately from F measurements than from percolation theory. Generally speaking, our results implied that the EMA estimated k within a factor of two of the measurements and more precisely than CPA. We further found that the assumption of cylindrical pores yielded more accurate k estimates when τ was estimated from concepts of percolation theory than the assumption of slit-shaped pores. However, the EMA with slit-shaped pores estimated k more precisely than that with cylindrical pores when τ was estimated from F measurements.
Prosody and informativity: A cross-linguistic investigation
NASA Astrophysics Data System (ADS)
Ouyang, Iris Chuoying
This dissertation aims to extend our knowledge of prosody -- in particular, what kinds of information may be conveyed through prosody, which prosodic dimensions may be used to convey them, and how individual speakers differ from one another in how they use prosody. Four production studies were conducted to examine how various factors interact with one another in shaping the prosody of an utterance and how prosody fulfills its multi-functional role. Experiments 1 explores the interaction between two types of informativity, namely information structure and information-theoretic properties. The results show that the prosodic consequences of new-information focus are modulated by the focused word's frequency, whereas the prosodic consequences of corrective focus are modulated by the focused word's probability in the context. Furthermore, f0 ranges appear to be more informative than f0 shapes in reflecting informativity across speakers. Specifically, speakers seem to have individual 'preferences' regarding f0 shapes, the f0 ranges they use for an utterance, and the magnitude of differences in f0 ranges by which they mark information-structural distinctions. In contrast, there is more cross-speaker validity in the actual directions of differences in f0 ranges between information-structural types. Experiments 2 and 3 further show that the interaction found between corrective focus and contextual probability depends on the interlocutor's knowledge state. When the interlocutor has no access to the crucial information concerning utterances' contextual probability, speakers prosodically emphasize contextually improbable corrections, but not contextually probable corrections. Furthermore, speakers prosodically emphasize the corrections in response to contextually probable misstatements, but not the corrections in response to contextually improbable misstatements. In contrast, completely opposite patterns are found when words' contextual probability is shared knowledge between the speaker and the interlocutor: speakers prosodically emphasize contextually probable corrections and the corrections in response to contextually improbable misstatements. Experiment 4 demonstrates the multi-functionality of prosody by investigating its discourse-level functions in Mandarin Chinese, a tone language where a word's prosodic patterns is crucial to its meaning. The results show that, although prosody serves fundamental, lexical-level functions in Mandarin Chinese, it nevertheless provides cues to information structure as well. Similar to what has been found with English, corrective information is prosodically more prominent than non-corrective information, and new information is prosodically more prominent than given information. Taken together, these experiments demonstrate the complex relationship between prosody and the different types of information it encodes in a given language. To better understand prosody, it is important to integrate insights from different traditions of research and to investigate across languages. In addition, the findings of this research suggest that speakers' assumptions about what their interlocutors know -- as well as speakers' ability to update these expectations -- play a key role in shaping the prosody of utterances. I hypothesize that prosodic prominence may reflect the gap between what speakers had expected their interlocutors to say and what their interlocutors have actually said.
Radiative corrections to the quark masses in the ferromagnetic Ising and Potts field theories
NASA Astrophysics Data System (ADS)
Rutkevich, Sergei B.
2017-10-01
We consider the Ising Field Theory (IFT), and the 3-state Potts Field Theory (PFT), which describe the scaling limits of the two-dimensional lattice q-state Potts model with q = 2, and q = 3, respectively. At zero magnetic field h = 0, both field theories are integrable away from the critical point, have q degenerate vacua in the ferromagnetic phase, and q (q - 1) particles of the same mass - the kinks interpolating between two different vacua. Application of a weak magnetic field induces confinement of kinks into bound states - the "mesons" (for q = 2 , 3) consisting predominantly of two kinks, and "baryons" (for q = 3), which are essentially the three-kink excitations. The kinks in the confinement regime are also called "the quarks". We review and refine the Form Factor Perturbation Theory (FFPT), adapting it to the analysis of the confinement problem in the limit of small h, and apply it to calculate the corrections to the kink (quark) masses induced by the multi-kink fluctuations caused by the weak magnetic field. It is shown that the subleading third-order ∼h3 correction to the kink mass vanishes in the IFT. The leading second order ∼h2 correction to the kink mass in the 3-state PFT is estimated by truncation the infinite form factor expansion at the first term representing contribution of the two-kink fluctuations into the kink self-energy.
Altitude exposure in sports: the Athlete Biological Passport standpoint.
Sanchis-Gomar, Fabian; Pareja-Galeano, Helios; Brioche, Thomas; Martinez-Bello, Vladimir; Lippi, Giuseppe
2014-03-01
The Athlete Biological Passport (ABP) is principally founded on monitoring an athlete's biological variables over time, to identify abnormal biases on a longitudinal basis. Several factors are known to influence the results of these markers. However, the manner in which the altitude factor is taken into account still needs to be standardized. Causal relationships between haematological variables should be correctly integrated into ABP software. In particular, modifications of haematological parameters during and after exposure to different altitudes/hypoxic protocols need to be properly included within detection models. Copyright © 2013 John Wiley & Sons, Ltd.
ERIC Educational Resources Information Center
Viding, Essi
2013-01-01
Psychologists and psychiatrists have long been aware that individuals differ in their response to environmental stressors. It is equally apparent that whilst positive or corrective environmental factors help some individuals, others seem to benefit little, if at all. To make the matters even more interesting (at least for a researcher who is…
ERIC Educational Resources Information Center
Jonker, Tanya R.
2016-01-01
When memory is tested, researchers are often interested in the items that were correctly recalled or recognized, while ignoring or factoring out trials where one "recalls" or "recognizes" a nonstudied item. However, intrusions and false alarms are more than nuisance data and can provide key insights into the memory system. The…
Krishna P. Poudel; Temesgen Hailemariam
2016-01-01
Using data from destructively sampled Douglas-fir and lodgepole pine trees, we evaluated the performance of regional volume and component biomass equations in terms of bias and RMSE. The volume and component biomass equations were calibrated using three different adjustment methods that used: (a) a correction factor based on ordinary least square regression through...
Intercomparison of 4 Years of Global Formaldehyde Observations from the GOME-2 and OMI Sensors
NASA Astrophysics Data System (ADS)
De Smedt, Isabelle; Van Roozendael, Michel; Stravrakou, Trissevgeni; Muller, Jean-Francois; Chance, Kelly; Kurosu, Thomas
2012-11-01
Formaldehyde (H2CO) tropospheric columns have been retrieved since 2007 from backscattered UV radiance measurements performed by the GOME-2 instrument on the EUMETSAT METOP-A platform. This data set extends the successful time-series of global H2CO observations established with GOME/ ERS-2 (1996-2003), SCIAMACHY/ ENVISAT (2003-2012), and OMI on the NASA AURA platform (2005-now). In this work, we perform an intercomparison of the H2CO tropospheric columns retrieved from GOME-2 and OMI between 2007 and 2010, respectively at BIRA-IASB and at Harvard SAO. We first compare the global formaldehyde data products that are provided by each retrieval group. We then investigate each step of the retrieval procedure: the slant column fitting, the reference sector correction and the air mass factor calculation. New air mass factors are computed for OMI using external parameters consistent with those used for GOME-2. By doing so, the impacts of the different a priori profiles and aerosol corrections are quantified. The remaining differences are evaluated in view of the expected diurnal variations of the formaldehyde concentrations, based on ground-based measurements performed in the Beijing area.
Further Improvement of the RITS Code for Pulsed Neutron Bragg-edge Transmission Imaging
NASA Astrophysics Data System (ADS)
Sato, H.; Watanabe, K.; Kiyokawa, K.; Kiyanagi, R.; Hara, K. Y.; Kamiyama, T.; Furusaka, M.; Shinohara, T.; Kiyanagi, Y.
The RITS code is a unique and powerful tool for a whole Bragg-edge transmission spectrum fitting analysis. However, it has had two major problems. Therefore, we have proposed methods to overcome these problems. The first issue is the difference in the crystallite size values between the diffraction and the Bragg-edge analyses. We found the reason was a different definition of the crystal structure factor. It affects the crystallite size because the crystallite size is deduced from the primary extinction effect which depends on the crystal structure factor. As a result of algorithm change, crystallite sizes obtained by RITS drastically approached to crystallite sizes obtained by Rietveld analyses of diffraction data; from 155% to 110%. The second issue is correction of the effect of background neutrons scattered from a specimen. Through neutron transport simulation studies, we found that the background components consist of forward Bragg scattering, double backward Bragg scattering, and thermal diffuse scattering. RITS with the background correction function which was developed through the simulation studies could well reconstruct various simulated and experimental transmission spectra, but refined crystalline microstructural parameters were often distorted. Finally, it was recommended to reduce the background by improving experimental conditions.
Casaletto, Kaitlin B; Umlauf, Anya; Marquine, Maria; Beaumont, Jennifer L; Mungas, Daniel; Gershon, Richard; Slotkin, Jerry; Akshoomoff, Natacha; Heaton, Robert K
2016-03-01
Hispanics are the fastest growing ethnicity in the United States, yet there are limited well-validated neuropsychological tools in Spanish, and an even greater paucity of normative standards representing this population. The Spanish NIH Toolbox Cognition Battery (NIHTB-CB) is a novel neurocognitive screener; however, the original norms were developed combining Spanish- and English-versions of the battery. We developed normative standards for the Spanish NIHTB-CB, fully adjusting for demographic variables and based entirely on a Spanish-speaking sample. A total of 408 Spanish-speaking neurologically healthy adults (ages 18-85 years) and 496 children (ages 3-7 years) completed the NIH Toolbox norming project. We developed three types of scores: uncorrected based on the entire Spanish-speaking cohort, age-corrected, and fully demographically corrected (age, education, sex) scores for each of the seven NIHTB-CB tests and three composites (Fluid, Crystallized, Total Composites). Corrected scores were developed using polynomial regression models. Demographic factors demonstrated medium-to-large effects on uncorrected NIHTB-CB scores in a pattern that differed from that observed on the English NIHTB-CB. For example, in Spanish-speaking adults, education was more strongly associated with Fluid scores, but showed the strongest association with Crystallized scores among English-speaking adults. Demographic factors were no longer associated with fully corrected scores. The original norms were not successful in eliminating demographic effects, overestimating children's performances, and underestimating adults' performances on the Spanish NIHTB-CB. The disparate pattern of demographic associations on the Spanish versus English NIHTB-CB supports the need for distinct normative standards developed separately for each population. Fully adjusted scores presented here will aid in more accurately characterizing acquired brain dysfunction among U.S. Spanish-speakers.
López, Enrique; Steiner, Alexander J; Hardy, David J; IsHak, Waguih W; Anderson, W Brantley
2016-01-01
This study explored within-subjects differences in the performance of 40 bilingual participants on the English and Spanish versions of the Wechsler Adult Intelligence Scale (WAIS) Digit Span task. To test the linguistic hypothesis that individuals would perform worse in Spanish because of its syllabic demand, we compared the number of syllables correctly recalled by each participant for every correct trial. Our analysis of the correct number of syllables remembered per trial showed that participants performed significantly better (i.e., recalling more syllables) in Spanish than in English on the total score. Findings suggest the Spanish version of the Digit Span (total score) was significantly more difficult than the English version utilizing traditional scoring methods. Moreover, the Forward Trial, rather than the Backward Trial, was more likely to show group differences between both language versions. Additionally, the Spanish trials of the Digit Span were correlated with language comprehension and verbal episodic memory measures, whereas the English trials of the Digit Span were correlated with confrontational naming and verbal fluency tasks. The results suggest that more research is necessary to further investigate other cognitive factors, rather than just syllabic demand, that might contribute to performance and outcome differences on the WAIS Digit Span in Spanish-English bilinguals.
SEMICONDUCTOR TECHNOLOGY: An efficient dose-compensation method for proximity effect correction
NASA Astrophysics Data System (ADS)
Ying, Wang; Weihua, Han; Xiang, Yang; Renping, Zhang; Yang, Zhang; Fuhua, Yang
2010-08-01
A novel simple dose-compensation method is developed for proximity effect correction in electron-beam lithography. The sizes of exposed patterns depend on dose factors while other exposure parameters (including accelerate voltage, resist thickness, exposing step size, substrate material, and so on) remain constant. This method is based on two reasonable assumptions in the evaluation of the compensated dose factor: one is that the relation between dose factors and circle-diameters is linear in the range under consideration; the other is that the compensated dose factor is only affected by the nearest neighbors for simplicity. Four-layer-hexagon photonic crystal structures were fabricated as test patterns to demonstrate this method. Compared to the uncorrected structures, the homogeneity of the corrected hole-size in photonic crystal structures was clearly improved.
NASA Astrophysics Data System (ADS)
Sierra, O.; Parrado, G.; Cañón, Y.; Porras, A.; Alonso, D.; Herrera, D. C.; Peña, M.; Orozco, J.
2016-07-01
This paper presents the progress made by the Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey (SGC in its Spanish acronym), towards the characterization of its gamma spectrometric systems for Instrumental Neutron Activation Analysis (INAA), with the aim of introducing corrections to the measurements by variations in sample geometry. Characterization includes the empirical determination of the interaction point of gamma radiation inside the Germanium crystal, through the application of a linear model and the use of a fast Monte Carlo N-Particle (MCNP) software to estimate correction factors for differences in counting efficiency that arise from variations in sample density between samples and standards.
Stiffness of frictional contact of dissimilar elastic solids
Lee, Jin Haeng; Gao, Yanfei; Bower, Allan F.; ...
2017-12-22
The classic Sneddon relationship between the normal contact stiffness and the contact size is valid for axisymmetric, frictionless contact, in which the two contacting solids are approximated by elastic half-spaces. Deviation from this result critically affects the accuracy of the load and displacement sensing nanoindentation techniques. This study gives a thorough numerical and analytical investigation of corrections needed to the Sneddon solution when finite Coulomb friction exists between an elastic half-space and a flat-ended rigid punch with circular or noncircular shape. Because of linearity of the Coulomb friction, the correction factor is found to be a function of the frictionmore » coefficient, Poisson's ratio, and the contact shape, but independent of the contact size. Two issues are of primary concern in the finite element simulations – adequacy of the mesh near the contact edge and the friction implementation methodology. Although the stick or slip zone sizes are quite different from the penalty or Lagrangian methods, the calculated contact stiffnesses are almost the same and may be considerably larger than those in Sneddon's solution. For circular punch contact, the numerical solutions agree remarkably well with a previous analytical solution. For non-circular punch contact, the results can be represented using the equivalence between the contact problem and bi-material fracture mechanics. Finally, the correction factor is found to be a product of that for the circular contact and a multiplicative factor that depends only on the shape of the punch but not on the friction coefficient or Poisson's ratio.« less
Stiffness of frictional contact of dissimilar elastic solids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jin Haeng; Gao, Yanfei; Bower, Allan F.
The classic Sneddon relationship between the normal contact stiffness and the contact size is valid for axisymmetric, frictionless contact, in which the two contacting solids are approximated by elastic half-spaces. Deviation from this result critically affects the accuracy of the load and displacement sensing nanoindentation techniques. This study gives a thorough numerical and analytical investigation of corrections needed to the Sneddon solution when finite Coulomb friction exists between an elastic half-space and a flat-ended rigid punch with circular or noncircular shape. Because of linearity of the Coulomb friction, the correction factor is found to be a function of the frictionmore » coefficient, Poisson's ratio, and the contact shape, but independent of the contact size. Two issues are of primary concern in the finite element simulations – adequacy of the mesh near the contact edge and the friction implementation methodology. Although the stick or slip zone sizes are quite different from the penalty or Lagrangian methods, the calculated contact stiffnesses are almost the same and may be considerably larger than those in Sneddon's solution. For circular punch contact, the numerical solutions agree remarkably well with a previous analytical solution. For non-circular punch contact, the results can be represented using the equivalence between the contact problem and bi-material fracture mechanics. Finally, the correction factor is found to be a product of that for the circular contact and a multiplicative factor that depends only on the shape of the punch but not on the friction coefficient or Poisson's ratio.« less
Stiffness of frictional contact of dissimilar elastic solids
NASA Astrophysics Data System (ADS)
Lee, Jin Haeng; Gao, Yanfei; Bower, Allan F.; Xu, Haitao; Pharr, George M.
2018-03-01
The classic Sneddon relationship between the normal contact stiffness and the contact size is valid for axisymmetric, frictionless contact, in which the two contacting solids are approximated by elastic half-spaces. Deviation from this result critically affects the accuracy of the load and displacement sensing nanoindentation techniques. This paper gives a thorough numerical and analytical investigation of corrections needed to the Sneddon solution when finite Coulomb friction exists between an elastic half-space and a flat-ended rigid punch with circular or noncircular shape. Because of linearity of the Coulomb friction, the correction factor is found to be a function of the friction coefficient, Poisson's ratio, and the contact shape, but independent of the contact size. Two issues are of primary concern in the finite element simulations - adequacy of the mesh near the contact edge and the friction implementation methodology. Although the stick or slip zone sizes are quite different from the penalty or Lagrangian methods, the calculated contact stiffnesses are almost the same and may be considerably larger than those in Sneddon's solution. For circular punch contact, the numerical solutions agree remarkably well with a previous analytical solution. For non-circular punch contact, the results can be represented using the equivalence between the contact problem and bi-material fracture mechanics. The correction factor is found to be a product of that for the circular contact and a multiplicative factor that depends only on the shape of the punch but not on the friction coefficient or Poisson's ratio.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muir, B R; McEwen, M R
2015-06-15
Purpose: To investigate uncertainties in small field output factors and detector specific correction factors from variations in field size for nominally identical fields using measurements and Monte Carlo simulations. Methods: Repeated measurements of small field output factors are made with the Exradin W1 (plastic scintillation detector) and the PTW microDiamond (synthetic diamond detector) in beams from the Elekta Precise linear accelerator. We investigate corrections for a 0.6x0.6 cm{sup 2} nominal field size shaped with secondary photon jaws at 100 cm source to surface distance (SSD). Measurements of small field profiles are made in a water phantom at 10 cm depthmore » using both detectors and are subsequently used for accurate detector positioning. Supplementary Monte Carlo simulations with EGSnrc are used to calculate the absorbed dose to the detector and absorbed dose to water under the same conditions when varying field size. The jaws in the BEAMnrc model of the accelerator are varied by a reasonable amount to investigate the same situation without the influence of measurements uncertainties (such as detector positioning or variation in beam output). Results: For both detectors, small field output factor measurements differ by up to 11 % when repeated measurements are made in nominally identical 0.6x0.6 cm{sup 2} fields. Variations in the FWHM of measured profiles are consistent with field size variations reported by the accelerator. Monte Carlo simulations of the dose to detector vary by up to 16 % under worst case variations in field size. These variations are also present in calculations of absorbed dose to water. However, calculated detector specific correction factors are within 1 % when varying field size because of cancellation of effects. Conclusion: Clinical physicists should be aware of potentially significant uncertainties in measured output factors required for dosimetry of small fields due to field size variations for nominally identical fields.« less
Acidosis and Correction of Acidosis Does Not Affect rFVIIa Function in Swine
2012-12-15
and its correction (or normalization of pH) has been suggested before clinical use of rFVIIa [21, 22]. FVII is one of the many coagulation factors ...A or B (deficient in Factor VIII and Factor IX). Mice lacking FVII die in-utero or soon after birth due to vascular and hemostatic defects [23...the activity of recombinant activated Factor VII (rFVIIa) in vitro. However, it is not known if acidosis induced by hemorrhagic shock or infusion of
Intrinsic factors influencing help-seeking behaviour in an acute stroke situation.
Zock, Elles; Kerkhoff, Henk; Kleyweg, Ruud Peter; van de Beek, Diederik
2016-09-01
The proportion of stroke patients eligible for intravenous or intra-arterial treatment is still limited because many patients do not seek medical help immediately after stroke onset. The aim of our study was to explore which intrinsic factors and considerations influence help-seeking behaviour of relatively healthy participants, confronted with stroke situations. Semi-structured interviews were conducted with 25 non-stroke participants aged 50 years or older. We presented 5 clinical stroke situations as if experienced by the participants themselves. Recognition and interpretation of symptoms were evaluated and various factors influencing help-seeking behaviour were explored in-depth. We used the thematic synthesis method for data analysis. Five themes influencing help-seeking behaviour in a stroke situation were identified: influence of knowledge, views about seriousness, ideas about illness and health, attitudes towards others and beliefs about the emergency medical system. A correct recognition of stroke symptoms or a correct interpretation of the stroke situations did not automatically result in seeking medical help. Interestingly, similar factors could lead to different types of actions between participants. Many intrinsic, as well as social and environmental factors are of influence on help-seeking behaviour in an acute stroke situation. All these factors seem to play a complex role in help-seeking behaviour with considerable inter-individual variations. Accomplishing more patients eligible for acute stroke treatment, future research should focus on better understanding of all factors at various levels grounded in a theory of help-seeking behaviour.
NASA Technical Reports Server (NTRS)
Kandula, M.; Haddad, G. F.; Chen, R.-H.
2006-01-01
Three-dimensional Navier-Stokes computational fluid dynamics (CFD) analysis has been performed in an effort to determine thermal boundary layer correction factors for circular convective heat flux gauges (such as Schmidt-Boelter and plug type)mounted flush in a flat plate subjected to a stepwise surface temperature discontinuity. Turbulent flow solutions with temperature-dependent properties are obtained for a free stream Reynolds number of 1E6, and freestream Mach numbers of 2 and 4. The effect of gauge diameter and the plate surface temperature have been investigated. The 3-D CFD results for the heat flux correction factors are compared to quasi-21) results deduced from constant property integral solutions and also 2-D CFD analysis with both constant and variable properties. The role of three-dimensionality and of property variations on the heat flux correction factors has been demonstrated.
Yu, Yong-Jie; Wu, Hai-Long; Fu, Hai-Yan; Zhao, Juan; Li, Yuan-Na; Li, Shu-Fang; Kang, Chao; Yu, Ru-Qin
2013-08-09
Chromatographic background drift correction has been an important field of research in chromatographic analysis. In the present work, orthogonal spectral space projection for background drift correction of three-dimensional chromatographic data was described in detail and combined with parallel factor analysis (PARAFAC) to resolve overlapped chromatographic peaks and obtain the second-order advantage. This strategy was verified by simulated chromatographic data and afforded significant improvement in quantitative results. Finally, this strategy was successfully utilized to quantify eleven antibiotics in tap water samples. Compared with the traditional methodology of introducing excessive factors for the PARAFAC model to eliminate the effect of background drift, clear improvement in the quantitative performance of PARAFAC was observed after background drift correction by orthogonal spectral space projection. Copyright © 2013 Elsevier B.V. All rights reserved.
Calculation of Coincidence Summing Correction Factors for an HPGe detector using GEANT4.
Giubrone, G; Ortiz, J; Gallardo, S; Martorell, S; Bas, M C
2016-07-01
The aim of this paper was to calculate the True Coincidence Summing Correction Factors (TSCFs) for an HPGe coaxial detector in order to correct the summing effect as a result of the presence of (88)Y and (60)Co in a multigamma source used to obtain a calibration efficiency curve. Results were obtained for three volumetric sources using the Monte Carlo toolkit, GEANT4. The first part of this paper deals with modeling the detector in order to obtain a simulated full energy peak efficiency curve. A quantitative comparison between the measured and simulated values was made across the entire energy range under study. The True Summing Correction Factors were calculated for (88)Y and (60)Co using the full peak efficiencies obtained with GEANT4. This methodology was subsequently applied to (134)Cs, and presented a complex decay scheme. Copyright © 2016 Elsevier Ltd. All rights reserved.
The advantages of absorbed-dose calibration factors.
Rogers, D W
1992-01-01
A formalism for clinical external beam dosimetry based on use of ion chamber absorbed-dose calibration factors is outlined in the context and notation of the AAPM TG-21 protocol. It is shown that basing clinical dosimetry on absorbed-dose calibration factors ND leads to considerable simplification and reduced uncertainty in dose measurement. In keeping with a protocol which is used in Germany, a quantity kQ is defined which relates an absorbed-dose calibration factor in a beam of quality Q0 to that in a beam of quality Q. For 38 cylindrical ion chambers, two sets of values are presented for ND/NX and Ngas/ND and for kQ for photon beams with beam quality specified by the TPR20(10) ratio. One set is based on TG-21's protocol to allow the new formalism to be used while maintaining equivalence to the TG-21 protocol. To demonstrate the magnitude of the overall error in the TG-21 protocol, the other set uses corrected versions of the TG-21 equations and the more consistent physical data of the IAEA Code of Practice. Comparisons are made to procedures based on air-kerma or exposure calibration factors and it is shown that accuracy and simplicity are gained by avoiding the determination of Ngas from NX. It is also shown that the kQ approach simplifies the use of plastic phantoms in photon beams since kQ values change by less than 0.6% compared to those in water although an overall correction factor of 0.973 is needed to go from absorbed dose in water calibration factors to those in PMMA or polystyrene. Values of kQ calculated using the IAEA Code of Practice are presented but are shown to be anomalous because of the way the effective point of measurement changes for 60Co beams. In photon beams the major difference between the IAEA Code of Practice and the corrected AAPM TG-21 protocol is shown to be the Prepl correction factor. Calculated kQ curves and three parameter equations for them are presented for each wall material and are shown to represent accurately the kQ curve for all ion chambers in this study with a wall of that specified material and a thickness less than 0.25 g/cm2. Values of kQ can be measured using the primary standards for absorbed dose in photon beams.
Experimental and casework validation of ambient temperature corrections in forensic entomology.
Johnson, Aidan P; Wallman, James F; Archer, Melanie S
2012-01-01
This paper expands on Archer (J Forensic Sci 49, 2004, 553), examining additional factors affecting ambient temperature correction of weather station data in forensic entomology. Sixteen hypothetical body discovery sites (BDSs) in Victoria and New South Wales (Australia), both in autumn and in summer, were compared to test whether the accuracy of correlation was affected by (i) length of correlation period; (ii) distance between BDS and weather station; and (iii) periodicity of ambient temperature measurements. The accuracy of correlations in data sets from real Victorian and NSW forensic entomology cases was also examined. Correlations increased weather data accuracy in all experiments, but significant differences in accuracy were found only between periodicity treatments. We found that a >5°C difference between average values of body in situ and correlation period weather station data was predictive of correlations that decreased the accuracy of ambient temperatures estimated using correlation. Practitioners should inspect their weather data sets for such differences. © 2011 American Academy of Forensic Sciences.
Actinic Flux Calculations: A Model Sensitivity Study
NASA Technical Reports Server (NTRS)
Krotkov, Nickolay A.; Flittner, D.; Ahmad, Z.; Herman, J. R.; Einaudi, Franco (Technical Monitor)
2000-01-01
calculate direct and diffuse surface irradiance and actinic flux (downwelling (2p) and total (4p)) for the reference model. Sensitivity analysis has shown that the accuracy of the radiative transfer flux calculations for a unit ETS (i.e. atmospheric transmittance) together with a numerical interpolation technique for the constituents' vertical profiles is better than 1% for SZA less than 70(sub o) and wavelengths longer than 310 nm. The differences increase for shorter wavelengths and larger SZA, due to the differences in pseudo-spherical correction techniques and vertical discretetization among the codes. Our sensitivity study includes variation of ozone cross-sections, ETS spectra and the effects of wavelength shifts between vacuum and air scales. We also investigate the effects of aerosols on the spectral flux components in the UV and visible spectral regions. The "aerosol correction factors" (ACFs) were calculated at discrete wavelengths and different SZAs for each flux component (direct, diffuse, reflected) and prescribed IPMMI aerosol parameters. Finally, the sensitivity study was extended to calculation of selected photolysis rates coefficients.
Awareness of risk factors and warning signs of stroke in a Nigeria university.
Obembe, Adebimpe O; Olaogun, Matthew O; Bamikole, Adesola A; Komolafe, Morenikeji A; Odetunde, Marufat O
2014-04-01
Rapid access to medical services which is an important predictor of treatment and rehabilitation outcome requires that there is an understanding of stroke risk factors and early warning signs. This study assessed awareness of stroke risk factors and warning signs among students and staff of Obafemi Awolowo University, Nigeria. This was a cross sectional survey involving 994 (500 students and 494 staff) respondents. Information on the awareness of stroke risk factors and warning signs was collected with the aid of a structured questionnaire. Descriptive and inferential statistics were used for data analysis. Weakness (66.2%) was the most commonly identified warning sign of stroke with more staff (69.8%) identifying correctly than students (62.6%). Hypertension (83.4%) was the most commonly identified stroke risk factor, with more staff (91.7%) identifying correctly than students (83.2%). There were significant differences (p < 0.05) in the awareness of some risk factors (age, hypertension, stress and obesity), and warning signs (dizziness, numbness, weakness, headache and vision problems) between students and staff. Predictors for adequate awareness of both stroke risk factors and warning signs were younger age, smoking history and higher educational level. Majority of the respondents recognized individual important stroke risk factors and warning signs, but few recognized multiple stroke risk factors and warning signs. Awareness programs on stroke should be organized, even in communities with educated people to increase public awareness on the prevention of stroke and on the reduction of morbidity in the survivors. Copyright © 2014 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Calculated X-ray Intensities Using Monte Carlo Algorithms: A Comparison to Experimental EPMA Data
NASA Technical Reports Server (NTRS)
Carpenter, P. K.
2005-01-01
Monte Carlo (MC) modeling has been used extensively to simulate electron scattering and x-ray emission from complex geometries. Here are presented comparisons between MC results and experimental electron-probe microanalysis (EPMA) measurements as well as phi(rhoz) correction algorithms. Experimental EPMA measurements made on NIST SRM 481 (AgAu) and 482 (CuAu) alloys, at a range of accelerating potential and instrument take-off angles, represent a formal microanalysis data set that has been widely used to develop phi(rhoz) correction algorithms. X-ray intensity data produced by MC simulations represents an independent test of both experimental and phi(rhoz) correction algorithms. The alpha-factor method has previously been used to evaluate systematic errors in the analysis of semiconductor and silicate minerals, and is used here to compare the accuracy of experimental and MC-calculated x-ray data. X-ray intensities calculated by MC are used to generate a-factors using the certificated compositions in the CuAu binary relative to pure Cu and Au standards. MC simulations are obtained using the NIST, WinCasino, and WinXray algorithms; derived x-ray intensities have a built-in atomic number correction, and are further corrected for absorption and characteristic fluorescence using the PAP phi(rhoz) correction algorithm. The Penelope code additionally simulates both characteristic and continuum x-ray fluorescence and thus requires no further correction for use in calculating alpha-factors.
Vanwynsberghe, Hannes; Verbeke, Xander; Coolen, Johan; Van Cutsem, Eric
2017-12-01
The benefit of regorafenib in colorectal cancer is not very pronounced. At present, there is lack of predictive biological or radiological markers. We studied if density reduction or small changes in size of lung metastases could be a predictive marker. We retrospectively measured density in size of lung metastases of all patients included in the CORRECT and CONSIGN trials at our center. Contrast-enhanced CT scan at baseline and at week 8 were compared. Data of progressive-free survival and overall survival were collected from the CORRECT and CONSIGN trials. A significant difference in progressive-free survival was seen in 3 groups: response or stable disease in size (5.36 vs. 3.96 months), response in density (6.03 vs. 2.72 months), and response in corrected density (6.14 vs. 3.08 months). No difference was seen for response in size versus stable disease or progressive disease in size. For overall survival, a difference was observed in the same 3 groups: response or stable disease in size (9.89 vs. 6.44 months), response in density (9.59 vs. 7.04 months), and response in corrected density (9.09 vs. 7.16 months). No difference was seen for response in size versus stable disease or progressive disease in size. Density reduction in lung metastases might be a good predictive parameter to predict outcome for regorafenib. Early tumor progression might be a negative predictive factor. If further validated, density reduction and early tumor progression might be useful to ameliorate the cost-benefit of regorafenib. Copyright © 2017 Elsevier Inc. All rights reserved.
Profile of hepatitis B and C virus infection in prisoners in Lubuk Pakam correctional facilities
NASA Astrophysics Data System (ADS)
Rey, I.; Saragih, R. H.; Effendi-YS, R.; Sembiring, J.; Siregar, G. A.; Zain, L. H.
2018-03-01
Prisoners in correctional facilities are predisposed to chronic viral infections because of their high-risk behaviors or unsafe lifestyle. The economic and public health burden of chronic hepatitis B and C and its sequelae need to be addressed, such as by finding the risk factors and therefore reducing the spread of HCV and HBV infection in prisons. This study aimed to see the profile of Hepatitis B and C Virus Infection in prisoners in Lubuk Pakam Correctional Facilities. This cross-sectional study was in Lubuk Pakam Correctional Facilities in 2016. From 1114 prisoners in Lubuk Pakam correctional facility, we randomly examined 120 prisoners for HBV and HCV serology markers. From 120 prisoners, six prisoners were HBV positive, 21 prisoners were HCV positive and one prisoner positive for both HCV and HBV infection. The most common risk factors for prisoners getting HBV infection are tattoos and free sex (36.4% and 36.4%, respectively). The most common risk factors for HCV infection in prisoners are tattoos and free sex (40% and 35%, respectively).
Amir, Ofra; Amir, Dor; Shahar, Yuval; Hart, Yuval; Gal, Kobi
2018-01-01
Demonstrability-the extent to which group members can recognize a correct solution to a problem-has a significant effect on group performance. However, the interplay between group size, demonstrability and performance is not well understood. This paper addresses these gaps by studying the joint effect of two factors-the difficulty of solving a problem and the difficulty of verifying the correctness of a solution-on the ability of groups of varying sizes to converge to correct solutions. Our empirical investigations use problem instances from different computational complexity classes, NP-Complete (NPC) and PSPACE-complete (PSC), that exhibit similar solution difficulty but differ in verification difficulty. Our study focuses on nominal groups to isolate the effect of problem complexity on performance. We show that NPC problems have higher demonstrability than PSC problems: participants were significantly more likely to recognize correct and incorrect solutions for NPC problems than for PSC problems. We further show that increasing the group size can actually decrease group performance for some problems of low demonstrability. We analytically derive the boundary that distinguishes these problems from others for which group performance monotonically improves with group size. These findings increase our understanding of the mechanisms that underlie group problem-solving processes, and can inform the design of systems and processes that would better facilitate collective decision-making.
Use of 2-octyl cyanoacrylate adhesive in rat liver induced lesion.
Santos, Orlando José dos; Marques, Giancarlo de Souza; Sauaia Filho, Euler Nicolau; Frota, Gustavo Medeiros; Santos, Rayan Haquim Pinheiro; Santos, Rennan Abud Pinheiro
2012-09-01
To evaluate the healing process of rat traumatic liver lesion corrected with the use of 2-octyl cyanoacrylate adhesive, compared to the use of biologically absorbable chromed catgut thread suture. Thirty mail adult rats were divided into two groups (15 per group) according to the used method for liver lesion correction as follows: adhesive group (AG), and catgut group (CG); each group being divided into three subsets of five animals (7th, 14th, and 21st day), respectively, according to post-surgery evaluation. All animals were submitted to homogeneous lesion applying synthetic bonding to AG and using chromed catgut suture to CG for lesion correction. Macroscopic and microscopic parameters of healing processes were evaluated. Both groups of animals showed excellent abdominal wall healing, with no evidence of infection, and no abdominal cavity peritonitis or abscess. The presence of adherence was observed in both groups with no statistically significant difference. As to macroscopic evaluation, there was statistically significant difference with respect to specific factors of clinical inflammation (ischemic inflammation and giant celular inflammatory reaction) between animals evaluated on the 10th day (ischemic necrosis and giant cellular inflammatory reaction) among animals evaluated on the 14th day (A14 versus C14). Applying 2-octyl-cyanoacrylate adhesive for correcting rat liver lesion does not change healing process when compared to the use of chromed catgut stitch.
Junk, J; Ulber, B; Vidal, S; Eickermann, M
2015-11-01
Agricultural production is directly affected by projected increases in air temperature and changes in precipitation. A multi-model ensemble of regional climate change projections indicated shifts towards higher air temperatures and changing precipitation patterns during the summer and winter seasons up to the year 2100 for the region of Goettingen (Lower Saxony, Germany). A second major controlling factor of the agricultural production is the infestation level by pests. Based on long-term field surveys and meteorological observations, a calibration of an existing model describing the migration of the pest insect Ceutorhynchus napi was possible. To assess the impacts of climate on pests under projected changing environmental conditions, we combined the results of regional climate models with the phenological model to describe the crop invasion of this species. In order to reduce systematic differences between the output of the regional climate models and observational data sets, two different bias correction methods were applied: a linear correction for air temperature and a quantile mapping approach for precipitation. Only the results derived from the bias-corrected output of the regional climate models showed satisfying results. An earlier onset, as well as a prolongation of the possible time window for the immigration of Ceutorhynchus napi, was projected by the majority of the ensemble members.
NASA Astrophysics Data System (ADS)
Junk, J.; Ulber, B.; Vidal, S.; Eickermann, M.
2015-11-01
Agricultural production is directly affected by projected increases in air temperature and changes in precipitation. A multi-model ensemble of regional climate change projections indicated shifts towards higher air temperatures and changing precipitation patterns during the summer and winter seasons up to the year 2100 for the region of Goettingen (Lower Saxony, Germany). A second major controlling factor of the agricultural production is the infestation level by pests. Based on long-term field surveys and meteorological observations, a calibration of an existing model describing the migration of the pest insect Ceutorhynchus napi was possible. To assess the impacts of climate on pests under projected changing environmental conditions, we combined the results of regional climate models with the phenological model to describe the crop invasion of this species. In order to reduce systematic differences between the output of the regional climate models and observational data sets, two different bias correction methods were applied: a linear correction for air temperature and a quantile mapping approach for precipitation. Only the results derived from the bias-corrected output of the regional climate models showed satisfying results. An earlier onset, as well as a prolongation of the possible time window for the immigration of Ceutorhynchus napi, was projected by the majority of the ensemble members.
Willms, B; Schumann, E
1990-01-01
Daily profiles of blood glucose, HbA1c, total protein and fructosamine were measured in 10 diabetic patients and the factor fructosamine x 7/g total protein was calculated. Measurements were done at 4 a.m. to be sure that the patients were sleeping for some time, during the day and the following evening at 11 p.m., when the patients were lying again, so that the influence of orthostasis, the difference between bed rest and walking could be demonstrated. The blood glucose profile was typical whereas the HbA1c concentration was very stable and constant. Total protein and fructosamine increased significantly by orthostasis; the correction of fructosamine by total protein diminished the differences, but did not completely eliminate the effect of orthostasis. However, fructosamine should be corrected by the total protein concentration in order to increase the diagnostic value of the parameter.
Attenuation correction factors for cylindrical, disc and box geometry
NASA Astrophysics Data System (ADS)
Agarwal, Chhavi; Poi, Sanhita; Mhatre, Amol; Goswami, A.; Gathibandhe, M.
2009-08-01
In the present study, attenuation correction factors have been experimentally determined for samples having cylindrical, disc and box geometry and compared with the attenuation correction factors calculated by Hybrid Monte Carlo (HMC) method [ C. Agarwal, S. Poi, A. Goswami, M. Gathibandhe, R.A. Agrawal, Nucl. Instr. and. Meth. A 597 (2008) 198] and with the near-field and far-field formulations available in literature. It has been observed that the near-field formulae, although said to be applicable at close sample-detector geometry, does not work at very close sample-detector configuration. The advantage of the HMC method is that it is found to be valid for all sample-detector geometries.
Adaptive convergence nonuniformity correction algorithm.
Qian, Weixian; Chen, Qian; Bai, Junqi; Gu, Guohua
2011-01-01
Nowadays, convergence and ghosting artifacts are common problems in scene-based nonuniformity correction (NUC) algorithms. In this study, we introduce the idea of space frequency to the scene-based NUC. Then the convergence speed factor is presented, which can adaptively change the convergence speed by a change of the scene dynamic range. In fact, the convergence speed factor role is to decrease the statistical data standard deviation. The nonuniformity space relativity characteristic was summarized by plenty of experimental statistical data. The space relativity characteristic was used to correct the convergence speed factor, which can make it more stable. Finally, real and simulated infrared image sequences were applied to demonstrate the positive effect of our algorithm.
Inter-Calibration of EIS, XRT and AIA using Active Region and Bright Point Data
NASA Technical Reports Server (NTRS)
Mulu-Moore, Fana M.; Winebarger, Amy R.; Winebarger, Amy R.; Farid, Samaiyah I.
2012-01-01
Certain limitations in our solar instruments have created the need to use several instruments together for long term and/or large field of view studies. We will, therefore, present an intercalibration study of the EIS, XRT and AIA instruments using active region and bright point data. We will use the DEMs calculated from EIS bright point observations to determine the expected AIA and XRT intensities. We will them compare to the observed intensities and calculate a correction factor. We will consider data taken over a year to see if there is a time dependence to the correction factor. We will then determine if the correction factors are valid for active region observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benmakhlouf, H; Andreo, P; Brualla, L
2016-06-15
Purpose: To calculate output correction factors for Varian Clinac 2100iX beams for seven small field detectors and use the values to determine the small field output factors for the linacs at Karolinska university hospital. Methods: Phase space files (psf) for square fields between 0.25cm and 10cm were calculated using the PENELOPE-based PRIMO software. The linac MC-model was tuned by comparing PRIMO-estimated and experimentally determined depth doses and lateral dose-profiles for 40cmx40cm fields. The calculated psf were used as radiation sources to calculate the correction factors of IBA and PTW detectors with the code penEasy/PENELOPE. Results: The optimal tuning parameters ofmore » the MClinac model in PRIMO were 5.4 MeV incident electron energy and zero energy spread, focal spot size and beam divergence. Correction factors obtained for the liquid ion chamber (PTW-T31018) are within 1% down to 0.5 cm fields. For unshielded diodes (IBA-EFD, IBA-SFD, PTW-T60017 and PTW-T60018) the corrections are up to 2% at intermediate fields (>1cm side), becoming down to −11% for fields smaller than 1cm. The shielded diode (IBA-PFD and PTW-T60016) corrections vary with field size from 0 to −4%. Volume averaging effects are found for most detectors in the presence of 0.25cm fields. Conclusion: Good agreement was found between correction factors based on PRIMO-generated psf and those from other publications. The calculated factors will be implemented in output factor measurements (using several detectors) in the clinic. PRIMO is a userfriendly general code capable of generating small field psf and can be used without having to code own linac geometries. It can therefore be used to improve the clinical dosimetry, especially in the commissioning of linear accelerators. Important dosimetry data, such as dose-profiles and output factors can be determined more accurately for a specific machine, geometry and setup by using PRIMO and having a MC-model of the detector used.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alvarez, P; Gonzalez, S; McDonald, L
Purpose: Analysis of the performance of the microSTARii reader for optically stimulated luminescence dosimeters (OSLD) used by the IROC Houston Quality Assurance Center (IROC HQAC) for external audits compare to the characteristics of the Microstar reader. Methods: The IROC HQAC uses the Microstar reader for the OSLD program for verification of output of photon, electron and proton beams. The calculation of dose from the OSLD system is based on a group of factors defined at time of the commissioning of a batch of detectors. Factors like system sensitivity (SS), depletion (KD), element correction factor (ECF), linearity (KL), energy correction (KE).more » The new microSTARii unit presents many hardware and software upgrades that were considered useful for this program. Based on these changes many factors, that were considered reader dependent, were revised in order to analyze the effect of the new reading process. The SS, KD, ECF and KL were evaluated and compared with data defined based on reading done on Microstar reader. Results: The SS is reader specific and specified at 100 cGy dose level. This value is define per reading session and monitored over time. The KD factor was found to be different because of reading procedure are different. The ECF values changed for a group of nano dots compare to values defined based on reading done on the Microstar reader. The KL was defined for the reader. Conclusion: The new microSTARii reader presents new features that improve the efficiency of the OSLD program at the IROC HQAC. New characterization is needed before final implementation is done to match the requirements of the existing OSLD system defined for the Microstar reader. Changes in uncertainty of the results has not been analized.« less
Essers, M; van Battum, L; Heijmen, B J
2001-11-01
In vivo dosimetry using thermoluminiscence detectors (TLD) is routinely performed in our institution to determine dose inhomogeneities in the match line region during chest wall irradiation. However, TLDs have some drawbacks: online in vivo dosimetry cannot be performed; generally, doses delivered by the contributing fields are not measured separately; measurement analysis is time consuming. To overcome these problems, the Joined Field Detector (JFD-5), a detector for match line in vivo dosimetry based on diodes, has been developed. This detector and its characteristics are presented. The JFD-5 is a linear array of 5 p-type diodes. The middle three diodes, used to measure the dose in the match line region, are positioned at 5-mm intervals. The outer two diodes, positioned at 3-cm distance from the central diode, are used to measure the dose in the two contributing fields. For three JFD-5 detectors, calibration factors for different energies, and sensitivity correction factors for non-standard field sizes, patient skin temperature, and oblique incidence have been determined. The accuracy of penumbra and match line dose measurements has been determined in phantom studies and in vivo. Calibration factors differ significantly between diodes and between photon and electron beams. However, conversion factors between energies can be applied. The correction factor for temperature is 0.35%/ degrees C, and for oblique incidence 2% at maximum. The penumbra measured with the JFD-5 agrees well with film and linear diode array measurements. JFD-5 in vivo match line dosimetry reproducibility was 2.0% (1 SD) while the agreement with TLD was 0.999+/-0.023 (1 SD). The JFD-5 can be used for accurate, reproducible, and fast on-line match line in vivo dosimetry.
Venkatraman, Vijay K; Gonzalez, Christopher E.; Landman, Bennett; Goh, Joshua; Reiter, David A.; An, Yang; Resnick, Susan M.
2017-01-01
Diffusion tensor imaging (DTI) measures are commonly used as imaging markers to investigate individual differences in relation to behavioral and health-related characteristics. However, the ability to detect reliable associations in cross-sectional or longitudinal studies is limited by the reliability of the diffusion measures. Several studies have examined reliability of diffusion measures within (i.e. intra-site) and across (i.e. inter-site) scanners with mixed results. Our study compares the test-retest reliability of diffusion measures within and across scanners and field strengths in cognitively normal older adults with a follow-up interval less than 2.25 years. Intra-class correlation (ICC) and coefficient of variation (CoV) of fractional anisotropy (FA) and mean diffusivity (MD) were evaluated in sixteen white matter and twenty-six gray matter bilateral regions. The ICC for intra-site reliability (0.32 to 0.96 for FA and 0.18 to 0.95 for MD in white matter regions; 0.27 to 0.89 for MD and 0.03 to 0.79 for FA in gray matter regions) and inter-site reliability (0.28 to 0.95 for FA in white matter regions, 0.02 to 0.86 for MD in gray matter regions) with longer follow-up intervals were similar to earlier studies using shorter follow-up intervals. The reliability of across field strengths comparisons was lower than intra- and inter-site reliability. Within and across scanner comparisons showed that diffusion measures were more stable in larger white matter regions (> 1500 mm3). For gray matter regions, the MD measure showed stability in specific regions and was not dependent on region size. Linear correction factor estimated from cross-sectional or longitudinal data improved the reliability across field strengths. Our findings indicate that investigations relating diffusion measures to external variables must consider variable reliability across the distinct regions of interest and that correction factors can be used to improve consistency of measurement across field strengths. An important result of this work is that inter-scanner and field strength effects can be partially mitigated with linear correction factors specific to regions of interest. These data-driven linear correction techniques can be applied in cross-sectional or longitudinal studies. PMID:26146196
Chai, Chao; Liu, Saifeng; Fan, Linlin; Liu, Lei; Li, Jinping; Zuo, Chao; Qian, Tianyi; Haacke, E Mark; Shen, Wen; Xia, Shuang
2018-02-01
Cerebral venous oxygen saturation (SvO 2 ) is an important indicator of brain function. There was debate about lower cerebral oxygen metabolism in hemodialysis patients and there were no reports about the changes of deep regional cerebral SvO 2 in hemodialysis patients. In this study, we aim to explore the deep regional cerebral SvO 2 from straight sinus using quantitative susceptibility mapping (QSM) and the correlation with clinical risk factors and neuropsychiatric testing . 52 hemodialysis patients and 54 age-and gender-matched healthy controls were enrolled. QSM reconstructed from original phase data of 3.0 T susceptibility-weighted imaging was used to measure the susceptibility of straight sinus. The susceptibility was used to calculate the deep regional cerebral SvO 2 and compare with healthy individuals. Correlation analysis was performed to investigate the correlation between deep regional cerebral SvO 2 , clinical risk factors and neuropsychiatric testing. The deep regional cerebral SvO 2 of hemodialysis patients (72.5 ± 3.7%) was significantly lower than healthy controls (76.0 ± 2.1%) (P < 0.001). There was no significant difference in the measured volume of interests of straight sinus between hemodialysis patients (250.92 ± 46.65) and healthy controls (249.68 ± 49.68) (P = 0.859). There were no significant correlations between the measured susceptibility and volume of interests in hemodialysis patients (P = 0.204) and healthy controls (P = 0.562), respectively. Hematocrit (r = 0.480, P < 0.001, FDR corrected), hemoglobin (r = 0.440, P < 0.001, FDR corrected), red blood cell (r = 0.446, P = 0.003, FDR corrected), dialysis duration (r = 0.505, P = 0.002, FDR corrected) and parathyroid hormone (r = -0.451, P = 0.007, FDR corrected) were risk factors for decreased deep regional cerebral SvO 2 in patients. The Mini-Mental State Examination (MMSE) scores of hemodialysis patients were significantly lower than healthy controls (P < 0.001). However, the deep regional cerebral SvO 2 did not correlate with MMSE scores (P = 0.630). In summary, the decreased deep regional cerebral SvO 2 occurred in hemodialysis patients and dialysis duration, parathyroid hormone, hematocrit, hemoglobin and red blood cell may be clinical risk factors.
Incidence of Speech-Correcting Surgery in Children With Isolated Cleft Palate.
Gustafsson, Charlotta; Heliövaara, Arja; Leikola, Junnu; Rautio, Jorma
2018-01-01
Speech-correcting surgeries (pharyngoplasty) are performed to correct velopharyngeal insufficiency (VPI). This study aimed to analyze the need for speech-correcting surgery in children with isolated cleft palate (ICP) and to determine differences among cleft extent, gender, and primary technique used. In addition, we assessed the timing and number of secondary procedures performed and the incidence of operated fistulas. Retrospective medical chart review study from hospital archives and electronic records. These comprised the 423 consecutive nonsyndromic children (157 males and 266 females) with ICP treated at the Cleft Palate and Craniofacial Center of Helsinki University Hospital during 1990 to 2016. The total incidence of VPI surgery was 33.3% and the fistula repair rate, 7.8%. Children with cleft of both the hard and soft palate (n = 300) had a VPI secondary surgery rate of 37.3% (fistula repair rate 10.7%), whereas children with only cleft of the soft palate (n = 123) had a corresponding rate of 23.6% (fistula repair rate 0.8%). Gender and primary palatoplasty technique were not considered significant factors in need for VPI surgery. The majority of VPI surgeries were performed before school age. One fifth of patients receiving speech-correcting surgery had more than one subsequent procedure. The need for speech-correcting surgery and fistula repair was related to the severity of the cleft. Although the majority of the corrective surgeries were done before the age of 7 years, a considerable number were performed at a later stage, necessitating long-term observation.
On Aethalometer measurement uncertainties and an instrument correction factor for the Arctic
NASA Astrophysics Data System (ADS)
Backman, John; Schmeisser, Lauren; Virkkula, Aki; Ogren, John A.; Asmi, Eija; Starkweather, Sandra; Sharma, Sangeeta; Eleftheriadis, Konstantinos; Uttal, Taneil; Jefferson, Anne; Bergin, Michael; Makshtas, Alexander; Tunved, Peter; Fiebig, Markus
2017-12-01
Several types of filter-based instruments are used to estimate aerosol light absorption coefficients. Two significant results are presented based on Aethalometer measurements at six Arctic stations from 2012 to 2014. First, an alternative method of post-processing the Aethalometer data is presented, which reduces measurement noise and lowers the detection limit of the instrument more effectively than boxcar averaging. The biggest benefit of this approach can be achieved if instrument drift is minimised. Moreover, by using an attenuation threshold criterion for data post-processing, the relative uncertainty from the electronic noise of the instrument is kept constant. This approach results in a time series with a variable collection time (Δt) but with a constant relative uncertainty with regard to electronic noise in the instrument. An additional advantage of this method is that the detection limit of the instrument will be lowered at small aerosol concentrations at the expense of temporal resolution, whereas there is little to no loss in temporal resolution at high aerosol concentrations ( > 2.1-6.7 Mm-1 as measured by the Aethalometers). At high aerosol concentrations, minimising the detection limit of the instrument is less critical. Additionally, utilising co-located filter-based absorption photometers, a correction factor is presented for the Arctic that can be used in Aethalometer corrections available in literature. The correction factor of 3.45 was calculated for low-elevation Arctic stations. This correction factor harmonises Aethalometer attenuation coefficients with light absorption coefficients as measured by the co-located light absorption photometers. Using one correction factor for Arctic Aethalometers has the advantage that measurements between stations become more inter-comparable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolthaus, J; Asselen, B van; Woodings, S
2016-06-15
Purpose: With an MR-linac, radiation is delivered in the presence of a magnetic field. Modifications in the codes of practice (CoPs) for reference dosimetry are required to incorporate the effect of the magnetic field. Methods: In most CoPs the absorbed dose is determined using the well-known kQ formalism as the product of the calibration coefficient, the corrected electrometer reading and kQ, to account for the difference in beam quality. To keep a similar formalism a single correction factor is introduced which replaces kQ, and which corrects for beam quality and B-field, kQ,B. In this study we propose a method tomore » determine kQ,B under reference conditions in the MRLinac without using a primary standard, as the product of:- the ratio between detector readings without and with B-field (kB),- the ratio between doses in the point of measurement with and without B-field (rho),- kQ in the absence of the B-field in the MRLinac beam (kQmrl0,Q0),The ratio of the readings, which covers the change in detector reading due to the different electron trajectories in the detector, was measured with a waterproof ionization chamber (IBA-FC65g) in a water phantom in the MRLinac without and with B-field. The change in dose-to-water in the point of measurement due to the B-field was determined with a Monte Carlo based TPS. Results: For the presented approach, the measured ratio of readings is 0.956, the calculated ratio of doses in the point of measurement is 0.995. Based on TPR20,10 measurements kQ was calculated as 0.989 using NCS-18. This yields a value of 0.9408 for kQ,B. Conclusion: The presented approach to determine kQ,B agrees with a method based on primary standards within 0.4% with an uncertainty of 1% (1 std.uncert). It differs from a similar approach using a PMMA-phantom and an NE2571 chamber with 1.3%.« less
Zimmermann, Michael B; Harrington, Mary; Villalpando, Salvador; Hurrell, Richard F
2010-03-01
Iron absorption in humans is highly variable even after iron status and dietary components that influence iron absorption are controlled for. Inherited factors may help explain this variance. Our objective was to compare nonheme-iron absorption from a noninhibitory, stable-isotope-labeled test meal in preschool-aged children and their mothers. We provided 72 test meals based on degermed maize flour and milk powder and fortified with [(57)Fe]ferrous fumarate or [(58)Fe]ferrous sulfate to healthy Mexican preschool children [n = 18; mean (+/-SD) age: 3.6 +/- 1.0 y] and their mothers [n = 18; mean (+/-SD) age: 28.0 +/- 5.2 y]. Iron absorption was calculated on the basis of incorporation of isotopes into erythrocytes after 14 d and was adjusted for differences in iron status. There was a wide variation in iron absorption from the test meals: in the mothers and children, the median fractional absorption of ferrous sulfate was 22.55% (range: 1.65-54.83%) and 5.51% (range: 2.23-17.20%), respectively (P < 0.0001). After adjustment for serum ferritin, the significant difference in absorption between mothers and their children disappeared. Despite this broad range of iron absorption, corrected fractional iron absorption from the ferrous fumarate-fortified (r(2) = 0.582) and the ferrous sulfate-fortified test meals (r(2) = 0.557) was strongly correlated in mothers and their children (P < 0.0001). There was a striking positive correlation between the mean corrected fractional iron absorption from both test meals in mothers and their children (r(2) = 0.782, P < 0.0001). In regression analyses that included age, sex, and hemoglobin, the only significant predictor of corrected fractional iron absorption in children was corrected fractional iron absorption in their mothers (standardized beta = 0.884, P < 0.001). Nonheme-iron absorption exhibits a strong familial tendency. After differences in meal matrix and serum ferritin are accounted for, these data suggest that inheritance and/or shared environmental factors explain most of the variance in dietary iron absorption.
Journal Impact Factor: Do the Numerator and Denominator Need Correction?
Liu, Xue-Li; Gai, Shuang-Shuang; Zhou, Jing
2016-01-01
To correct the incongruence of document types between the numerator and denominator in the traditional impact factor (IF), we make a corresponding adjustment to its formula and present five corrective IFs: IFTotal/Total, IFTotal/AREL, IFAR/AR, IFAREL/AR, and IFAREL/AREL. Based on a survey of researchers in the fields of ophthalmology and mathematics, we obtained the real impact ranking of sample journals in the minds of peer experts. The correlations between various IFs and questionnaire score were analyzed to verify their journal evaluation effects. The results show that it is scientific and reasonable to use five corrective IFs for journal evaluation for both ophthalmology and mathematics. For ophthalmology, the journal evaluation effects of the five corrective IFs are superior than those of traditional IF: the corrective effect of IFAR/AR is the best, IFAREL/AR is better than IFTotal/Total, followed by IFTotal/AREL, and IFAREL/AREL. For mathematics, the journal evaluation effect of traditional IF is superior than those of the five corrective IFs: the corrective effect of IFTotal/Total is best, IFAREL/AR is better than IFTotal/AREL and IFAREL/AREL, and the corrective effect of IFAR/AR is the worst. In conclusion, not all disciplinary journal IF need correction. The results in the current paper show that to correct the IF of ophthalmologic journals may be valuable, but it seems to be meaningless for mathematic journals. PMID:26977697
Vessel-Mounted ADCP Data Calibration and Correction
NASA Astrophysics Data System (ADS)
de Andrade, A. F.; Barreira, L. M.; Violante-Carvalho, N.
2013-05-01
A set of scripts for vessel-mounted ADCP (Acoustic Doppler Current Profiler) data processing is presented. The need for corrections in the data measured by a ship-mounted ADCP and the complexities found during installation, implementation and identification of tasks performed by currently available systems for data processing consist the main motivating factors for the development of a system that would be more practical in manipulation, open code and more manageable for the user. The proposed processing system consists of a set of scripts developed in Matlab TM programming language. The system is able to read the binary files provided by the data acquisition program VMDAS (Vessel Mounted Data Acquisition System), Teledyne RDInstruments proprietary, and calculate calibration factors to correct the data and visualize them after correction. For use the new system, it is only necessary that the ADCP data collected with VMDAS program is in a processing diretory and Matlab TM software be installed on the user's computer. Developed algorithms were extensively tested with ADCP data obtained during Oceano Sul III (Southern Ocean III - OSIII) cruise, conducted by Brazilian Navy aboard the R/V "Antares", from March 26th to May 10th 2007, in the oceanic region between the states of São Paulo and Rio Grande do Sul. For read the data the function rdradcp.m, developed by Rich Pawlowicz and available on his website (http://www.eos.ubc.ca/~rich/#RDADCP), was used. To calculate the calibration factors, alignment error (α) and sensitivity error (β) in Water Tracking and Bottom Tracking Modes, equations deduced by Joyce (1998), Pollard & Read (1989) and Trump & Marmorino (1996) were implemented in Matlab. To validate the calibration factors obtained in the processing system developed, the parameters were compared with the factors provided by CODAS (Common Ocean Data Access System, available at http://currents.soest.hawaii.edu/docs/doc/index.html), post-processing program. For the same data analyzed, the factors provided by both systems were similar. Thereafter, the values obtained were used to correct the data and finally matrices were saved with data corrected and they can be plotted. The values of volume transport of the Brazil Current (BC) were calculated using the corrected data by the two systems and proved quite close, confirming the quality of the correction of the system.
NASA Astrophysics Data System (ADS)
Zoros, E.; Moutsatsos, A.; Pappas, E. P.; Georgiou, E.; Kollias, G.; Karaiskos, P.; Pantelis, E.
2017-09-01
Detector-, field size- and machine-specific correction factors are required for precise dosimetry measurements in small and non-standard photon fields. In this work, Monte Carlo (MC) simulation techniques were used to calculate the k{{Qmsr},{{Q}0}}{{fmsr},{{f}ref}} and k{{Qclin},{{Q}msr}}{{fclin},{{f}msr}} correction factors for a series of ionization chambers, a synthetic microDiamond and diode dosimeters, used for reference and/or output factor (OF) measurements in the Gamma Knife Perfexion photon fields. Calculations were performed for the solid water (SW) and ABS plastic phantoms, as well as for a water phantom of the same geometry. MC calculations for the k{{Qclin},{{Q}msr}}{{fclin},{{f}msr}} correction factors in SW were compared against corresponding experimental results for a subset of ionization chambers and diode detectors. Reference experimental OF data were obtained through the weighted average of corresponding measurements using TLDs, EBT-2 films and alanine pellets. k{{Qmsr},{{Q}0}}{{fmsr},{{f}ref}} values close to unity (within 1%) were calculated for most of ionization chambers in water. Greater corrections of up to 6.0% were observed for chambers with relatively large air-cavity dimensions and steel central electrode. A phantom correction of 1.006 and 1.024 (breaking down to 1.014 from the ABS sphere and 1.010 from the accompanying ABS phantom adapter) were calculated for the SW and ABS phantoms, respectively, adding up to k{{Qmsr},{{Q}0}}{{fmsr},{{f}ref}} corrections in water. Both measurements and MC calculations for the diode and microDiamond detectors resulted in lower than unit k{{Qclin},{{Q}msr}}{{fclin},{{f}msr}} correction factors, due to their denser sensitive volume and encapsulation materials. In comparison, higher than unit k{{Qclin},{{Q}msr}}{{fclin},{{f}msr}} results for the ionization chambers suggested field size depended dose underestimations (being significant for the 4 mm field), with magnitude depending on the combination of contradicting phenomena associated with volume averaging and electron fluence perturbations. Finally, the presence of 0.5 mm air-gap between the diodes’ frontal surface and their phantom-inserts may considerably influence OF measurements, reaching 4.6% for the Razor diode.
Calibration of low-temperature ac susceptometers with a copper cylinder standard
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, D.-X.; Skumryev, V.
2010-02-15
A high-quality low-temperature ac susceptometer is calibrated by comparing the measured ac susceptibility of a copper cylinder with its eddy-current ac susceptibility accurately calculated. Different from conventional calibration techniques that compare the measured results with the known property of a standard sample at certain fixed temperature T, field amplitude H{sub m}, and frequency f, to get a magnitude correction factor, here, the electromagnetic properties of the copper cylinder are unknown and are determined during the calibration of the ac susceptometer in the entire T, H{sub m}, and f range. It is shown that the maximum magnitude error and the maximummore » phase error of the susceptometer are less than 0.7% and 0.3 deg., respectively, in the region T=5-300 K and f=111-1111 Hz at H{sub m}=800 A/m, after a magnitude correction by a constant factor as done in a conventional calibration. However, the magnitude and phase errors can reach 2% and 4.3 deg. at 10 000 and 11 Hz, respectively. Since the errors are reproducible, a large portion of them may be further corrected after a calibration, the procedure for which is given. Conceptual discussions concerning the error sources, comparison with other calibration methods, and applications of ac susceptibility techniques are presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossomme, S; Renaud, J; Sarfehnia, A
2014-06-01
Purpose: To reduce the uncertainty of the beam quality correction factor k Q,Q0, for scattered proton beams (SPB). This factor is used in dosimetry protocols, to determine absorbed dose-to-water with ionization chambers. For the Roos plane parallel chambers (RPPICs), the IAEA TRS-398 protocol estimates k Q,Q0-factor to be 1.004(for a beam quality Rres=2 g.cm{sup 2}), with an uncertainty of 2.1%. Methods: A graphite calorimeter (GCal), a water calorimeter (WCal) and RPPICs were exposed, in a single experiment, to a 60 MeV non-modulated SPB. RPPICs were calibrated in terms of absorbed dose-to-water in a 20 MeV electron beam. The calibration coefficientmore » is traceable to NPL's absorbed dose standards. Chamber measurements were corrected for environmental conditions, recombination and polarity. The WCal corrections include heat loss, heat defect and vessel perturbation. The GCal corrections include heat loss and absorbed dose conversion. Except for heat loss correction and its uncertainty in the WCal system, all major corrections were included in the analysis. Other minor corrections, such as beam profile non-uniformity, are still to be evaluated. Experimental k Q,Q0-factors were derived by comparing the results obtained with both calorimeters and ionometry. Results: The absorbed dose-to-water from both calorimeters was found to be within 1.3% with an uncertainty of 1.2%. k Q,Q0-factor for a RPPIC was found to be 0.998 and 1.011, with a standard uncertainty of 1.4% and 0.9% when the dose is based on the GCal and the WCal, respectively. Conclusion: Results suggest the possibility to determine k Q,Q0-values for PPICs in SPB with a lower uncertainty than specified in the TRS-398 thereby helping to reduce uncertainty on absorbed dose-to-water. The agreement between calorimeters confirms the possibility to use GCal or WCal as primary standard in SPB. Because of the dose conversion, the use of GCal may lead to slightly higher uncertainty, but is, at present, considerably easier to operate.« less
Ward, Zachary J.; Long, Michael W.; Resch, Stephen C.; Gortmaker, Steven L.; Cradock, Angie L.; Giles, Catherine; Hsiao, Amber; Wang, Y. Claire
2016-01-01
Background State-level estimates from the Centers for Disease Control and Prevention (CDC) underestimate the obesity epidemic because they use self-reported height and weight. We describe a novel bias-correction method and produce corrected state-level estimates of obesity and severe obesity. Methods Using non-parametric statistical matching, we adjusted self-reported data from the Behavioral Risk Factor Surveillance System (BRFSS) 2013 (n = 386,795) using measured data from the National Health and Nutrition Examination Survey (NHANES) (n = 16,924). We validated our national estimates against NHANES and estimated bias-corrected state-specific prevalence of obesity (BMI≥30) and severe obesity (BMI≥35). We compared these results with previous adjustment methods. Results Compared to NHANES, self-reported BRFSS data underestimated national prevalence of obesity by 16% (28.67% vs 34.01%), and severe obesity by 23% (11.03% vs 14.26%). Our method was not significantly different from NHANES for obesity or severe obesity, while previous methods underestimated both. Only four states had a corrected obesity prevalence below 30%, with four exceeding 40%–in contrast, most states were below 30% in CDC maps. Conclusions Twelve million adults with obesity (including 6.7 million with severe obesity) were misclassified by CDC state-level estimates. Previous bias-correction methods also resulted in underestimates. Accurate state-level estimates are necessary to plan for resources to address the obesity epidemic. PMID:26954566
Sun, Li; Westerdahl, Dane; Ning, Zhi
2017-01-01
Emerging low-cost gas sensor technologies have received increasing attention in recent years for air quality measurements due to their small size and convenient deployment. However, in the diverse applications these sensors face many technological challenges, including sensor drift over long-term deployment that cannot be easily addressed using mathematical correction algorithms or machine learning methods. This study aims to develop a novel approach to auto-correct the drift of commonly used electrochemical nitrogen dioxide (NO2) sensor with comprehensive evaluation of its application. The impact of environmental factors on the NO2 electrochemical sensor in low-ppb concentration level measurement was evaluated in laboratory and the temperature and relative humidity correction algorithm was evaluated. An automated zeroing protocol was developed and assessed using a chemical absorbent to remove NO2 as a means to perform zero correction in varying ambient conditions. The sensor system was operated in three different environments in which data were compared to a reference NO2 analyzer. The results showed that the zero-calibration protocol effectively corrected the observed drift of the sensor output. This technique offers the ability to enhance the performance of low-cost sensor based systems and these findings suggest extension of the approach to improve data quality from sensors measuring other gaseous pollutants in urban air. PMID:28825633
Patients' misunderstanding of common orthopaedic terminology: the need for clarity
Bagley, CHM; Hunter, AR; Bacarese-Hamilton, IA
2011-01-01
INTRODUCTION Patients' understanding of their medical problems is essential to allow them to make competent decisions, comply with treatment and enable recovery. We investigated Patients' understanding of orthopaedic terms to identify those words surgeons should make the most effort to explain. METHODS This questionnaire-based study recruited patients attending the orthopaedic clinics. Qualitative and quantitative data were collected using free text boxes for the Patients' written definitions and multiple choice questions (MCQs). RESULTS A total of 133 patients took part. Of these, 74% identified English as their first language. ‘Broken bone’ was correctly defined by 71% of respondents whereas ‘fractured bone’ was only correctly defined by 33%. ‘Sprain’ was correctly defined by 17% of respondents, with 29% being almost correct, 25% wrong and 29% unsure. In the MCQs, 51% of respondents answered correctly for ‘fracture’, 55% for ‘arthroscopy’, 46% for ‘meniscus’, 35% for ‘tendon’ and 23% for ‘ligament’. ‘Sprained’ caused confusion, with only 11% of patients answering correctly. Speaking English as a second language was a significant predictive factor for patients who had difficulty with definitions. There was no significant variation among different age groups. CONCLUSIONS Care should be taken by surgeons when using basic and common orthopaedic terminology in order to avoid misunderstanding. Educating patients in clinic is a routine part of practice. PMID:21943466
NASA Astrophysics Data System (ADS)
Habte, Frezghi; Natarajan, Arutselvan; Paik, David S.; Gambhir, Sanjiv S.
2014-03-01
Cerenkov luminescence imaging (CLI) is an emerging cost effective modality that uses conventional small animal optical imaging systems and clinically available radionuclide probes for light emission. CLI has shown good correlation with PET for organs of high uptake such as kidney, spleen, thymus and subcutaneous tumors in mouse models. However, CLI has limitations for deep tissue quantitative imaging since the blue-weighted spectral characteristics of Cerenkov radiation attenuates highly by mammalian tissue. Large organs such as the liver have also shown higher signal due to the contribution of emission of light from a greater thickness of tissue. In this study, we developed a simple model that estimates the effective tissue attenuation coefficient in order to correct the CLI signal intensity with a priori estimated depth and thickness of specific organs. We used several thin slices of ham to build a phantom with realistic attenuation. We placed radionuclide sources inside the phantom at different tissue depths and imaged it using an IVIS Spectrum (Perkin-Elmer, Waltham, MA, USA) and Inveon microPET (Preclinical Solutions Siemens, Knoxville, TN). We also performed CLI and PET of mouse models and applied the proposed attenuation model to correct CLI measurements. Using calibration factors obtained from phantom study that converts the corrected CLI measurements to %ID/g, we obtained an average difference of less that 10% for spleen and less than 35% for liver compared to conventional PET measurements. Hence, the proposed model has a capability of correcting the CLI signal to provide comparable measurements with PET data.
Britton, Jr., Charles L.; Wintenberg, Alan L.
1993-01-01
A radiation detection method and system for continuously correcting the quantization of detected charge during pulse pile-up conditions. Charge pulses from a radiation detector responsive to the energy of detected radiation events are converted to voltage pulses of predetermined shape whose peak amplitudes are proportional to the quantity of charge of each corresponding detected event by means of a charge-sensitive preamplifier. These peak amplitudes are sampled and stored sequentially in accordance with their respective times of occurrence. Based on the stored peak amplitudes and times of occurrence, a correction factor is generated which represents the fraction of a previous pulses influence on a preceding pulse peak amplitude. This correction factor is subtracted from the following pulse amplitude in a summing amplifier whose output then represents the corrected charge quantity measurement.
NASA Astrophysics Data System (ADS)
Cannone, T. C.; Kelly, S. K.; Foster, K.
2013-05-01
One anticipated result of ocean acidification is lower calcification rates of corals. Many studies currently use the buoyant weights of coral nubbins as a means of estimating skeletal weight during non-destructive experiments. The objectives of this study, conducted at the Little Cayman Research Centre, were twofold: (1) to determine whether the purple and yellow color variations of Porites divaricata had similar tissue mass to total mass ratios; and (2) to determine a correction factor for tissue mass based on the total coral mass. T-test comparisons indicated that the tissue to total mass ratios were statistically similar for purple and yellow cohorts, thus allowing them to be grouped together within a given sample population. Linear regression analysis provided a correction factor (r2 = 0.69) to estimate the tissue mass from the total mass, which may eliminate the need to remove tissue during studies and allow subsequent testing on the same nubbins or their return to the natural environment. Additional work is needed in the development of a correction factor for P. divaricata with a higher prediction accuracy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vandervoort, E.; Szanto, J.; Christiansen, E.
Plastic scintillation dosimeters (PSDs) have favourable characteristics for small and composite field dosimetry in radiosurgery, however, imperfect corrections for the Cerenkov radiation contamination could limit their accuracy for complex deliveries. In this work, we characterize the dose and dose-rate linearity, directional dependence, and compare output factors with other stereotactic detectors for a new commercially available PSD (Exradin W1). We provide some preliminary comparisons of planned and measured dose for composite fields delivered clinically by a Cyberknife radiosurgery system. The W1 detector shows good linearity with dose (<0.5%) and dose rate (<0.8%) relative to the signal obtained using an ion chambermore » under the same conditions. A maximum difference of 2% was observed depending on the detector's angular orientation. Output factors for all detectors agree within a range of ±3.2% and ±1.5% for the 5 and 7.5 mm collimators, respectively, provided Monte-Carlo corrections for detector effects are applied to diode and ion chambers (without corrections the range is ±5.5% and ±3.1% for these two collimators). For clinical beam deliveries using 5 and 7.5 mm collimators, four of the six patients showed better agreement with planned dose for the PSD detector compared to a micro ion chamber. Two of the six patients investigated, however, showed 5% differences between PSD and planned dose, film measurements and the ratio of PSD and micro ion chamber signal suggest that further investigation is warranted for these plans. The W1 detector is a promising tool for stereotactic plan verification under the challenging dosimetric conditions of stereotactic radiosurgery.« less
Allele frequency data for 15 autosomal STR loci in eight Indonesian subpopulations.
Venables, Samantha J; Daniel, Runa; Sarre, Stephen D; Soedarsono, Nurtami; Sudoyo, Herawati; Suryadi, Helena; van Oorschot, Roland A H; Walsh, Simon J; Widodo, Putut T; McNevin, Dennis
2016-01-01
Evolutionary and cultural history can affect the genetic characteristics of a population and influences the frequency of different variants at a particular genetic marker (allele frequency). These characteristics directly influence the strength of forensic DNA evidence and make the availability of suitable allele frequency information for every discrete country or jurisdiction highly relevant. Population sub-structure within Indonesia has not been well characterised but should be expected given the complex geographical, linguistic and cultural architecture of the Indonesian population. Here we use forensic short tandem repeat (STR) markers to identify a number of distinct genetic subpopulations within Indonesia and calculate appropriate population sub-structure correction factors. This data represents the most comprehensive investigation of population sub-structure within Indonesia to date using these markers. The results demonstrate that significant sub-structure is present within the Indonesian population and must be accounted for using island specific allele frequencies and corresponding sub-structure correction factors in the calculation of forensic DNA match statistics. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
LeBlanc, Julia K; DeWitt, Jon; Johnson, Cynthia; Okumu, Wycliffe; McGreevy, Kathleen; Symms, Michelle; McHenry, Lee; Sherman, Stuart; Imperiale, Thomas
2009-04-01
The efficacy of 1-injection versus a 2-injections method of EUS-guided celiac plexus block (EUS-CPB) in patients with chronic pancreatitis is not known. To compare the clinical effectiveness and safety of EUS-CPB by using 1 versus 2 injections in patients with chronic pancreatitis and pain. The secondary aim is to identify factors that predict responsiveness. A prospective randomized study. EUS-CPB was performed by using bupivacaine and triamcinolone injected into 1 or 2 sites at the level of the celiac trunk during a single EUS-CPB procedure. Duration of pain relief, onset of pain relief, and complications. Fifty [corrected] subjects were enrolled (23 received 1 injection, 27 [corrected] received 2 injections). The median duration of pain relief in the 31 responders was 28 days (range 1-673 days). [corrected] Fifteen [corrected] of 23 (65%) [corrected] subjects who received 1 injection [corrected] had relief from pain compared with 16 of 27 (59%) [corrected] subjects who received 2 injections [corrected] (P = .67). [corrected] The median times to onset in the 1-injection and 2-injections groups were 21 and 14 days, respectively (P = .99). No correlation existed between duration of pain relief and time to onset of pain relief or onset within 24 hours. Age, sex, race, prior EUS-CPB, and smoking or alcohol history did not predict duration of pain relief. Telephone interviewers were not blinded. There was no difference in duration of pain relief or onset of pain relief in subjects with chronic pancreatitis and pain when the same total amount of medication was delivered in 1 or 2 injections during a single EUS-CPB procedure. Both methods were safe.
Improving Lidar Turbulence Estimates for Wind Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newman, Jennifer F.; Clifton, Andrew; Churchfield, Matthew J.
2016-10-06
Remote sensing devices (e.g., lidars) are quickly becoming a cost-effective and reliable alternative to meteorological towers for wind energy applications. Although lidars can measure mean wind speeds accurately, these devices measure different values of turbulence intensity (TI) than an instrument on a tower. In response to these issues, a lidar TI error reduction model was recently developed for commercially available lidars. The TI error model first applies physics-based corrections to the lidar measurements, then uses machine-learning techniques to further reduce errors in lidar TI estimates. The model was tested at two sites in the Southern Plains where vertically profiling lidarsmore » were collocated with meteorological towers. This presentation primarily focuses on the physics-based corrections, which include corrections for instrument noise, volume averaging, and variance contamination. As different factors affect TI under different stability conditions, the combination of physical corrections applied in L-TERRA changes depending on the atmospheric stability during each 10-minute time period. This stability-dependent version of L-TERRA performed well at both sites, reducing TI error and bringing lidar TI estimates closer to estimates from instruments on towers. However, there is still scatter evident in the lidar TI estimates, indicating that there are physics that are not being captured in the current version of L-TERRA. Two options are discussed for modeling the remainder of the TI error physics in L-TERRA: machine learning and lidar simulations. Lidar simulations appear to be a better approach, as they can help improve understanding of atmospheric effects on TI error and do not require a large training data set.« less
Pregnancy outcomes among patients with recurrent pregnancy loss and uterine anatomic abnormalities.
Gabbai, Daniel; Harlev, Avi; Friger, Michael; Steiner, Naama; Sergienko, Ruslan; Kreinin, Andrey; Bashiri, Asher
2017-07-25
Different etiologies for recurrent pregnancy loss have been identified, among them are: anatomical, endocrine, genetic, chromosomal and thrombophilia pathologies. To assess medical and obstetric characteristics, and pregnancy outcomes, among women with uterine abnormalities and recurrent pregnancy loss (RPL). This study also aims to assess the impact of uterine anatomic surgical correction on pregnancy outcomes. A retrospective case control study of 313 patients with two or more consecutive pregnancy losses followed by a subsequent (index) pregnancy. Anatomic abnormalities were detected in 80 patients. All patients were evaluated and treated in the RPL clinic at Soroka University Medical Center. Out of 80 patients with uterine anatomic abnormalities, 19 underwent surgical correction, 32 did not and 29 had no clear record of surgical intervention, and thus were excluded from this study. Women with anatomic abnormalities had a higher rate of previous cesarean section (18.8% vs. 8.6%, P=0.022), tended to have a lower number of previous live births (1.05 vs. 1.37, P=0.07), and a higher rate of preterm delivery (22.9% vs. 10%, P=0.037). Using multivariate logistic regression analysis, anatomic abnormality was identified as an independent risk factor for RPL in patients with previous cesarean section after controlling for place of residence, positive genetic/autoimmune/endocrine workup, and fertility problems (OR 7.22; 95% CI 1.17-44.54, P=0.03). Women suffering from anatomic abnormalities tended to have a higher rate of pregnancy loss compared to those without anatomic abnormalities (40% vs. 30.9%, P=0.2). The difference in pregnancy loss rate among women who underwent surgical correction compared to those who did not was not statistically significant. In patients with previous cesarean section, uterine abnormality is an independent risk factor for pregnancy loss. Surgical correction of uterine abnormalities among RPL patients might have the potential to improve live birth rate.
Zhu, Lei; Jacob, Daniel J.; Kim, Patrick S.; Fisher, Jenny A.; Yu, Karen; Travis, Katherine R.; Mickley, Loretta J.; Yantosca, Robert M.; Sulprizio, Melissa P.; De Smedt, Isabelle; Abad, Gonzalo Gonzalez; Chance, Kelly; Li, Can; Ferrare, Richard; Fried, Alan; Hair, Johnathan W.; Hanisco, Thomas F.; Richter, Dirk; Scarino, Amy Jo; Walega, James; Weibring, Petter; Wolfe, Glenn M.
2018-01-01
Formaldehyde (HCHO) column data from satellites are widely used as a proxy for emissions of volatile organic compounds (VOCs) but validation of the data has been extremely limited. Here we use highly accurate HCHO aircraft observations from the NASA SEAC4RS campaign over the Southeast US in August–September 2013 to validate and intercompare six retrievals of HCHO columns from four different satellite instruments (OMI, GOME2A, GOME2B and OMPS) and three different research groups. The GEOS-Chem chemical transport model is used as a common intercomparison platform. All retrievals feature a HCHO maximum over Arkansas and Louisiana, consistent with the aircraft observations and reflecting high emissions of biogenic isoprene. The retrievals are also interconsistent in their spatial variability over the Southeast US (r=0.4–0.8 on a 0.5°×0.5° grid) and in their day-to-day variability (r=0.5–0.8). However, all retrievals are biased low in the mean by 20–51%, which would lead to corresponding bias in estimates of isoprene emissions from the satellite data. The smallest bias is for OMI-BIRA, which has high corrected slant columns relative to the other retrievals and low scattering weights in its air mass factor (AMF) calculation. OMI-BIRA has systematic error in its assumed vertical HCHO shape profiles for the AMF calculation and correcting this would eliminate its bias relative to the SEAC4RS data. Our results support the use of satellite HCHO data as a quantitative proxy for isoprene emission after correction of the low mean bias. There is no evident pattern in the bias, suggesting that a uniform correction factor may be applied to the data until better understanding is achieved. PMID:29619044
Evaluation of Bias Correction Method for Satellite-Based Rainfall Data
Bhatti, Haris Akram; Rientjes, Tom; Haile, Alemseged Tamiru; Habib, Emad; Verhoef, Wouter
2016-01-01
With the advances in remote sensing technology, satellite-based rainfall estimates are gaining attraction in the field of hydrology, particularly in rainfall-runoff modeling. Since estimates are affected by errors correction is required. In this study, we tested the high resolution National Oceanic and Atmospheric Administration’s (NOAA) Climate Prediction Centre (CPC) morphing technique (CMORPH) satellite rainfall product (CMORPH) in the Gilgel Abbey catchment, Ethiopia. CMORPH data at 8 km-30 min resolution is aggregated to daily to match in-situ observations for the period 2003–2010. Study objectives are to assess bias of the satellite estimates, to identify optimum window size for application of bias correction and to test effectiveness of bias correction. Bias correction factors are calculated for moving window (MW) sizes and for sequential windows (SW’s) of 3, 5, 7, 9, …, 31 days with the aim to assess error distribution between the in-situ observations and CMORPH estimates. We tested forward, central and backward window (FW, CW and BW) schemes to assess the effect of time integration on accumulated rainfall. Accuracy of cumulative rainfall depth is assessed by Root Mean Squared Error (RMSE). To systematically correct all CMORPH estimates, station based bias factors are spatially interpolated to yield a bias factor map. Reliability of interpolation is assessed by cross validation. The uncorrected CMORPH rainfall images are multiplied by the interpolated bias map to result in bias corrected CMORPH estimates. Findings are evaluated by RMSE, correlation coefficient (r) and standard deviation (SD). Results showed existence of bias in the CMORPH rainfall. It is found that the 7 days SW approach performs best for bias correction of CMORPH rainfall. The outcome of this study showed the efficiency of our bias correction approach. PMID:27314363
Evaluation of Bias Correction Method for Satellite-Based Rainfall Data.
Bhatti, Haris Akram; Rientjes, Tom; Haile, Alemseged Tamiru; Habib, Emad; Verhoef, Wouter
2016-06-15
With the advances in remote sensing technology, satellite-based rainfall estimates are gaining attraction in the field of hydrology, particularly in rainfall-runoff modeling. Since estimates are affected by errors correction is required. In this study, we tested the high resolution National Oceanic and Atmospheric Administration's (NOAA) Climate Prediction Centre (CPC) morphing technique (CMORPH) satellite rainfall product (CMORPH) in the Gilgel Abbey catchment, Ethiopia. CMORPH data at 8 km-30 min resolution is aggregated to daily to match in-situ observations for the period 2003-2010. Study objectives are to assess bias of the satellite estimates, to identify optimum window size for application of bias correction and to test effectiveness of bias correction. Bias correction factors are calculated for moving window (MW) sizes and for sequential windows (SW's) of 3, 5, 7, 9, …, 31 days with the aim to assess error distribution between the in-situ observations and CMORPH estimates. We tested forward, central and backward window (FW, CW and BW) schemes to assess the effect of time integration on accumulated rainfall. Accuracy of cumulative rainfall depth is assessed by Root Mean Squared Error (RMSE). To systematically correct all CMORPH estimates, station based bias factors are spatially interpolated to yield a bias factor map. Reliability of interpolation is assessed by cross validation. The uncorrected CMORPH rainfall images are multiplied by the interpolated bias map to result in bias corrected CMORPH estimates. Findings are evaluated by RMSE, correlation coefficient (r) and standard deviation (SD). Results showed existence of bias in the CMORPH rainfall. It is found that the 7 days SW approach performs best for bias correction of CMORPH rainfall. The outcome of this study showed the efficiency of our bias correction approach.
Hu, S; Wang, J-N; Liu, L; Wu, H; Yang, X; Wang, Y; Wang, L
2015-09-01
It is well known that job burnout is a major problem for many professions. Correctional officers, the most important driving force in correctional facilities, deal with unwilling and potentially violent populations, and this may lead to burnout. However, in China, few studies are available regarding burnout among correctional officers and associations with work-related factors. The aim of this study was to explore the impact of work characteristics on job burnout among Chinese correctional officers in public prisons. Cross-sectional survey. This cross-sectional study was performed in March/April 2011. The study population comprised 2185 correctional officers working in four prisons in a province in north-east China. A questionnaire that examined job burnout [three subscales: emotional exhaustion (EE), cynicism (CY) and professional efficacy (PE)], work conditions, occupational stress and demographic factors was distributed to these correctional officers. In total, 1769 responses were received (response rate 81%). Multiple logistic regression was used to explore the factors related to burnout. Mean (±standard deviation) scores were 10.59 ± 7.51 for EE, 9.65 ± 6.56 for CY and 23.90 ± 9.39 for PE. Strong extrinsic effort and reward were the most powerful predictors of job burnout; an imbalance between effort and reward at work and perceived threat was mainly associated with EE and CY, and strong overcommitment was mainly associated with EE and PE. Chinese correctional officers experience a slightly higher level of job burnout, and this is affected by work-related stress. It is important to reduce occupational stress in correctional officers and improve disadvantageous work conditions in order to reduce burnout in this population. Copyright © 2015 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.
Alkemade, Nathan; Bowden, Stephen C; Salzman, Louis
2015-02-01
It has been suggested that MMPI-2 scoring requires removal of some items when assessing patients after a traumatic brain injury (TBI). Gass (1991. MMPI-2 interpretation and closed head injury: A correction factor. Psychological assessment, 3, 27-31) proposed a correction procedure in line with the hypothesis that MMPI-2 endorsement may be affected by symptoms of TBI. This study assessed the validity of the Gass correction procedure. A sample of patients with a TBI (n = 242), and a random subset of the MMPI-2 normative sample (n = 1,786). The correction procedure implies a failure of measurement invariance across populations. This study examined measurement invariance of one of the MMPI-2 scales (Hs) that includes TBI correction items. A four-factor model of the MMPI-2 Hs items was defined. The factor model was found to meet the criteria for partial measurement invariance. Analysis of the change in sensitivity and specificity values implied by partial measurement invariance failed to indicate significant practical impact of partial invariance. Overall, the results support continued use of all Hs items to assess psychological well-being in patients with TBI. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Golino, Hudson F.; Epskamp, Sacha
2017-01-01
The estimation of the correct number of dimensions is a long-standing problem in psychometrics. Several methods have been proposed, such as parallel analysis (PA), Kaiser-Guttman’s eigenvalue-greater-than-one rule, multiple average partial procedure (MAP), the maximum-likelihood approaches that use fit indexes as BIC and EBIC and the less used and studied approach called very simple structure (VSS). In the present paper a new approach to estimate the number of dimensions will be introduced and compared via simulation to the traditional techniques pointed above. The approach proposed in the current paper is called exploratory graph analysis (EGA), since it is based on the graphical lasso with the regularization parameter specified using EBIC. The number of dimensions is verified using the walktrap, a random walk algorithm used to identify communities in networks. In total, 32,000 data sets were simulated to fit known factor structures, with the data sets varying across different criteria: number of factors (2 and 4), number of items (5 and 10), sample size (100, 500, 1000 and 5000) and correlation between factors (orthogonal, .20, .50 and .70), resulting in 64 different conditions. For each condition, 500 data sets were simulated using lavaan. The result shows that the EGA performs comparable to parallel analysis, EBIC, eBIC and to Kaiser-Guttman rule in a number of situations, especially when the number of factors was two. However, EGA was the only technique able to correctly estimate the number of dimensions in the four-factor structure when the correlation between factors were .7, showing an accuracy of 100% for a sample size of 5,000 observations. Finally, the EGA was used to estimate the number of factors in a real dataset, in order to compare its performance with the other six techniques tested in the simulation study. PMID:28594839
Golino, Hudson F; Epskamp, Sacha
2017-01-01
The estimation of the correct number of dimensions is a long-standing problem in psychometrics. Several methods have been proposed, such as parallel analysis (PA), Kaiser-Guttman's eigenvalue-greater-than-one rule, multiple average partial procedure (MAP), the maximum-likelihood approaches that use fit indexes as BIC and EBIC and the less used and studied approach called very simple structure (VSS). In the present paper a new approach to estimate the number of dimensions will be introduced and compared via simulation to the traditional techniques pointed above. The approach proposed in the current paper is called exploratory graph analysis (EGA), since it is based on the graphical lasso with the regularization parameter specified using EBIC. The number of dimensions is verified using the walktrap, a random walk algorithm used to identify communities in networks. In total, 32,000 data sets were simulated to fit known factor structures, with the data sets varying across different criteria: number of factors (2 and 4), number of items (5 and 10), sample size (100, 500, 1000 and 5000) and correlation between factors (orthogonal, .20, .50 and .70), resulting in 64 different conditions. For each condition, 500 data sets were simulated using lavaan. The result shows that the EGA performs comparable to parallel analysis, EBIC, eBIC and to Kaiser-Guttman rule in a number of situations, especially when the number of factors was two. However, EGA was the only technique able to correctly estimate the number of dimensions in the four-factor structure when the correlation between factors were .7, showing an accuracy of 100% for a sample size of 5,000 observations. Finally, the EGA was used to estimate the number of factors in a real dataset, in order to compare its performance with the other six techniques tested in the simulation study.
Moon, Rebecca J; Crozier, Sarah R; Dennison, Elaine M; Davies, Justin H; Robinson, Sian M; Inskip, Hazel M; Godfrey, Keith M; Cooper, Cyrus; Harvey, Nicholas C
2015-11-01
The role of maternal 25-hydroxyvitamin D [25(OH)D] in fetal development is uncertain, and findings of observational studies have been inconsistent. Most studies have assessed 25(OH)D only one time during pregnancy, but to our knowledge, the tracking of an individual's 25(OH)D during pregnancy has not been assessed previously. We determined the tracking of serum 25(OH)D from early to late pregnancy and factors that influence this. The Southampton Women's Survey is a prospective mother-offspring birth-cohort study. Lifestyle, diet, and 25(OH)D status were assessed at 11 and 34 wk of gestation. A Fourier transformation was used to model the seasonal variation in 25(OH)D for early and late pregnancy separately, and the difference between the measured and seasonally modeled 25(OH)D was calculated to generate a season-corrected 25(OH)D. Tracking was assessed with the use of the Pearson correlation coefficient, and multivariate linear regression was used to determine factors associated with the change in season-corrected 25(OH)D. A total of 1753 women had 25(OH)D measured in both early and late pregnancy. There was a moderate correlation between season-corrected 25(OH)D measurements at 11 and 34 wk of gestation (r = 0.53, P < 0.0001; n = 1753). Vitamin D supplementation was the strongest predictor of tracking; in comparison with women who never used supplements, the discontinuation of supplementation after 11 wk was associated with a reduction in season-corrected 25(OH)D (β = -7.3 nmol/L; P < 0.001), whereas the commencement (β = 12.6 nmol/L; P < 0.001) or continuation (β = 6.6 nmol/L; P < 0.001) of supplementation was associated with increases in season-corrected 25(OH)D. Higher pregnancy weight gain was associated with a reduction in season-corrected 25(OH)D (β = -0.4 nmol · L(-1) · kg(-1); P = 0.015), whereas greater physical activity (β = 0.4 nmol/L per h/wk; P = 0.011) was associated with increases. There is a moderate tracking of 25(OH)D status through pregnancy; factors such as vitamin D supplementation, weight gain, and physical activity are associated with changes in season-corrected 25(OH)D from early to late gestation. These findings have implications for study designs and analyses and approaches to intervention studies and clinical care. © 2015 American Society for Nutrition.
[Cardiovascular diseases risk factors knowledge among soldiers of the Polish army].
Olszewski, Robert; Grabysa, Radosław; Kwasiborski, Przemysław J; Makowski, Tomasz; Warmiński, Janusz; Szczechowicz, Robert; Kubik, Leszek
2009-10-01
Cardiovascular diseases (CVDs) are the main cause of death and disability in Poland. There are many risk factors of CVD which are modifiable due to preventive strategies. Knowledge about these factors among population at risk of CVD is the most important condition for success of them. To evaluate the knowledge of CVD risk factors among soldiers of the Polish Army and try to identify a demographic factors influenced on them. Authors investigated the level of knowledge about CVD risk factors among 644 soldiers (aged between 18 to 62 years) using the special questionnaire. Whole group was analyzed according to a place of origin: city, town and village and according to a function: professionals and conscripts. Soldiers achieved a total score of 58.4% correct answers. Commonly known risk factors of CVD (average 82% of correct answers) in studied group were: obesity, tobacco smoking, high level of cholesterol and hypertension. Knowledge about above risk factors was significantly higher (p < 0.01) than about other. Lesser known risk factors (average 54% of correct answers) were: male gender, abnormal diet, sedentary lifestyle, family history of CVDs, diabetes, family history of heart infarction below 55 yrs and peripheral atherosclerosis. residents achieved 64.5% correct answers, town--61.5%, and village--58%. Professionals achieved 65.1% vs. 58.8% for conscripts. The level of knowledge about CVD risk factors are significantly higher among professionals than in urban population. Our data confirm the need of continuation and developing new CVDs preventive strategies in Poland, especially among poor educated and village populations. There is a need to emphasize the role of lesser known, modifiable CVD risk factors (e.g., obesity, sedentary lifestyle) in existing and future health programs.
ERIC Educational Resources Information Center
Vogel, Ronald J.
A study was conducted in 1976 of applicants who submitted corrections or amendments to their Student Eligibility Reports (SERs) for the Basic Educational Opportunity Grant (BEOG) Program. The objective was to review the applications corrections process and to determine factors linked to applicants' use of correction procedures. Attention was…
Human Factors Engineering. Student Supplement,
1981-08-01
a job TASK TAXONOMY A classification scheme for the different levels of activities in a system, i.e., job - task - sub-task, etc. TASK-AN~ALYSIS...with the classification of learning objectives by learning category so as to identify learningPhas III guidelines necessary for optimum learning to...correct. .4... .the sequencing of all dependent tasks. .1.. .the classification of learning objectives by learning category and the Identification of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czarnecki, D; Voigts-Rhetz, P von; Zink, K
2016-06-15
Purpose: The impact of removing the flattening filter on absolute dosimetry based on IAEA’s TPR-398 and AAPM’s TG-51 was investigated in this study using Monte Carlo simulations. Methods: The EGSnrc software package was used for all Monte Carlo simulations performed in this work. Five different ionization chambers and nine linear accelerator heads have been modeled according to technical drawings. To generate a flattening filter free radiation field the flattening filter was replaced by a 2 mm thick aluminum layer. Dose calculation in a water phantom were performed to calculate the beam quality correction factor k{sub Q} as a function ofmore » the beam quality specifiers %dd(10){sub x}, TPR{sub 20,10} and mean photon and electron energies at the point of measurement in photon fields with (WFF) and without flattening filter (FFF). Results: The beam quality correction factor as a function of %dd(10){sub x} differs systematically between FFF and WFF beams for all investigated ionization chambers. The largest difference of 1.8% was observed for the largest investigated Farmer-type ionization chamber with a sensitive volume of 0.69 cm{sup 3}. For ionization chambers with a smaller nominal sensitive volume (0.015 – 0.3 cm{sup 3}) the deviation was less than 0.4% between WFF and FFF beams for %dd(10){sub x} > 62%. The specifier TPR{sub 20,10} revealed only a good correlation between WFF and FFF beams (< 0.3%) for low energies. Conclusion: The results confirm that %dd(10){sub x} is a suitable beam quality specifier for FFF beams with an acceptable bias. The deviation depends on the volume of the ionization chamber. Using %dd(10){sub x} to predict k{sub Q} for a large volume chamber in a FFF photon field may lead to not acceptable errors according to the results of this study. This bias may be caused by the volume effect due to the inhomogeneous photon fields of FFF linear accelerators.« less
Comparison of Different Attitude Correction Models for ZY-3 Satellite Imagery
NASA Astrophysics Data System (ADS)
Song, Wenping; Liu, Shijie; Tong, Xiaohua; Niu, Changling; Ye, Zhen; Zhang, Han; Jin, Yanmin
2018-04-01
ZY-3 satellite, launched in 2012, is the first civilian high resolution stereo mapping satellite of China. This paper analyzed the positioning errors of ZY-3 satellite imagery and conducted compensation for geo-position accuracy improvement using different correction models, including attitude quaternion correction, attitude angle offset correction, and attitude angle linear correction. The experimental results revealed that there exist systematic errors with ZY-3 attitude observations and the positioning accuracy can be improved after attitude correction with aid of ground controls. There is no significant difference between the results of attitude quaternion correction method and the attitude angle correction method. However, the attitude angle offset correction model produced steady improvement than the linear correction model when limited ground control points are available for single scene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christiansen, E; Belec, J; Vandervoort, E
2015-06-15
Purpose: To calculate using Monte-Carlo the intermediate and total correction factors (CFs) for two microchambers and a plastic scintillator for composite fields delivered by the CyberKnife system. Methods: A linac model was created in BEAMnrc by matching percentage depth dose (PDD) curves and output factors (OFs) measured using an A16 microchamber with Monte Carlo calculations performed in egs-chamber to explicitly model detector response. Intermediate CFs were determined for the A16 and A26 microchambers and the W1 plastic scintillator in fourteen different composite fields inside a solid water phantom. Seven of these fields used a 5 mm diameter collimator; the remainingmore » fields employed a 7.5 mm collimator but were otherwise identical to the first seven. Intermediate CFs are reported relative to the respective CF for a 60 mm collimator (800 mm source to detector distance and 100 mm depth in water). Results: For microchambers in composite fields, the intermediate CFs that account for detector density and volume were the largest contributors to total CFs. The total CFs for the A26 were larger than those for the A16, especially for the 5 mm cone (1.227±0.003 to 1.144±0.004 versus 1.142±0.003 to 1.099±0.004), due to the A26’s larger active volume (0.015 cc) relative to the A16 (0.007 cc), despite the A26 using similar wall and electrode material. The W1 total and intermediate CFs are closer to unity, due to its smaller active volume and near water-equivalent composition, however, 3–4% detector volume corrections are required for 5 mm collimator fields. In fields using the 7.5 mm collimator, the correction is nearly eliminated for the W1 except for a non-isocentric field. Conclusion: Large and variable CFs are required for microchambers in small composite fields primarily due to density and volume effects. Corrections are reduced but not eliminated for a plastic scintillator in the same fields.« less
Using Visual Displays to Communicate Risk of Cancer to Women From Diverse Race/Ethnic Backgrounds
Wong, Sabrina T.; Pérez-Stable, Eliseo J.; Kim, Sue E.; Gregorich, Steven E.; Sawaya, George F.; Walsh, Judith M. E.; Washington, A. Eugene; Kaplan, Celia P.
2012-01-01
Objective This study evaluated how well women from diverse race/ethnic groups were able to take a quantitative cancer risk statistic verbally provided to them and report it in a visual format. Methods Cross-sectional survey was administered in English, Spanish or Chinese, to women aged 50 to 80 (n=1,160), recruited from primary care practices. The survey contained breast, colorectal or cervical cancer questions regarding screening and prevention. Women were told cancer-specific lifetime risk then shown a visual display of risk and asked to indicate the specific lifetime risk. Correct indication of risk was the main outcome. Results Correct responses on icon arrays were 46% for breast, 55% for colon, and 44% for cervical; only 25% correctly responded to a magnifying glass graphic. Compared to Whites, African American and Latina women were significantly less likely to use the icon arrays correctly. Higher education and higher numeracy were associated with correct responses. Lower education was associated with lower numeracy. Conclusions Race/Ethnic differences were associated with women’s ability to take a quantitative cancer risk statistic verbally provided to them and report it in a visual format. Practice Implications Systematically considering the complexity of intersecting factors such as race/ethnicity, educational level, poverty, and numeracy in most health communications is needed. (200) PMID:22244322
NASA Astrophysics Data System (ADS)
Williams, Robert W.; Schlücker, Sebastian; Hudson, Bruce S.
2008-01-01
A scaled quantum mechanical harmonic force field (SQMFF) corrected for anharmonicity is obtained for the 23 K L-alanine crystal structure using van der Waals corrected periodic boundary condition density functional theory (DFT) calculations with the PBE functional. Scale factors are obtained with comparisons to inelastic neutron scattering (INS), Raman, and FT-IR spectra of polycrystalline L-alanine at 15-23 K. Calculated frequencies for all 153 normal modes differ from observed frequencies with a standard deviation of 6 wavenumbers. Non-bonded external k = 0 lattice modes are included, but assignments to these modes are presently ambiguous. The extension of SQMFF methodology to lattice modes is new, as are the procedures used here for providing corrections for anharmonicity and van der Waals interactions in DFT calculations on crystals. First principles Born-Oppenheimer molecular dynamics (BOMD) calculations are performed on the L-alanine crystal structure at a series of classical temperatures ranging from 23 K to 600 K. Corrections for zero-point energy (ZPE) are estimated by finding the classical temperature that reproduces the mean square displacements (MSDs) measured from the diffraction data at 23 K. External k = 0 lattice motions are weakly coupled to bonded internal modes.
Annual mean mixing ratios of N2, Ar, O2, and CO in the martian atmosphere
NASA Astrophysics Data System (ADS)
Krasnopolsky, V.
2017-09-01
The precise mixing ratios of N2, Ar, O2, and CO measured by the MSL Curiosity quadrupole mass spectrometer must be corrected for the seasonal variations of the atmospheric pressure to reproduce annual mean mixing ratios on Mars. The corrections are made using measurements the Viking Landers and the Mars Climate Database data. The mean correction factor is 0.899 ± 0.006 resulting in annual mean mixing ratios of (1.83 ± 0.03)% for N2, (1.86 ± 0.02)% for Ar, (1.56 ± 0.06)×10-3 for O2, and 673 ± 2.6 ppm for CO. The O2 mixing ratio agrees with the Herschel value within its uncertainty, the ground-based observations corrected for the dust extinction, and photochemical models by Nair et al. (1994) and Krasnopolsky (2010). The CO mixing ratio is in excellent agreement with the MRO/CRISM value of 700 ppm and with 667, 693, and 684 ppm recently observed at LS = 60, 89, and 110° and corrected to the annual mean conditions. Lifetimes of N2 and Ar are very long in the martian atmosphere, and differences between the MSL and Viking data on these species cannot be attributed to their variations.
Annual mean mixing ratios of N2, Ar, O2, and CO in the martian atmosphere
NASA Astrophysics Data System (ADS)
Krasnopolsky, Vladimir A.
2017-09-01
The precise mixing ratios of N2, Ar, O2, and CO measured by the MSL Curiosity quadrupole mass spectrometer must be corrected for the seasonal variations of the atmospheric pressure to reproduce annual mean mixing ratios on Mars. The corrections are made using measurements for the first year of the Viking Landers 1 and 2 and the Mars Climate Database data. The mean correction factor is 0.899 ± 0.006 resulting in annual mean mixing ratios of (1.83 ± 0.03)% for N2, (1.86 ± 0.02)% for Ar, (1.56 ± 0.06) × 10-3 for O2, and 673 ± 2.6 ppm for CO. The O2 mixing ratio agrees with the Herschel value within its uncertainty, the ground-based observations corrected for the dust extinction, and photochemical models by Nair et al. (1994) and Krasnopolsky (2010). The CO mixing ratio is in excellent agreement with the MRO/CRISM value of 700 ppm and with 667, 693, and 684 ppm recently observed at LS = 60, 89, and 110° and corrected to the annual mean conditions. Lifetimes of N2 and Ar are very long in the martian atmosphere, and differences between the MSL and Viking data on these species cannot be attributed to their variations.
Yue, Jianting; Mauxion, Thibault; Reyes, Diane K.; Lodge, Martin A.; Hobbs, Robert F.; Rong, Xing; Dong, Yinfeng; Herman, Joseph M.; Wahl, Richard L.; Geschwind, Jean-François H.; Frey, Eric C.
2016-01-01
Purpose: Radioembolization with yttrium-90 microspheres may be optimized with patient-specific pretherapy treatment planning. Dose verification and validation of treatment planning methods require quantitative imaging of the post-therapy distribution of yttrium-90 (Y-90). Methods for quantitative imaging of Y-90 using both bremsstrahlung SPECT and PET have previously been described. The purpose of this study was to compare the two modalities quantitatively in humans. Methods: Calibration correction factors for both quantitative Y-90 bremsstrahlung SPECT and a non-time-of-flight PET system without compensation for prompt coincidences were developed by imaging three phantoms. The consistency of these calibration correction factors for the different phantoms was evaluated. Post-therapy images from both modalities were obtained from 15 patients with hepatocellular carcinoma who underwent hepatic radioembolization using Y-90 glass microspheres. Quantitative SPECT and PET images were rigidly registered and the total liver activities and activity distributions estimated for each modality were compared. The activity distributions were compared using profiles, voxel-by-voxel correlation and Bland–Altman analyses, and activity-volume histograms. Results: The mean ± standard deviation of difference in the total activity in the liver between the two modalities was 0% ± 9% (range −21%–18%). Voxel-by-voxel comparisons showed a good agreement in regions corresponding roughly to treated tumor and treated normal liver; the agreement was poorer in regions with low or no expected activity, where PET appeared to overestimate the activity. The correlation coefficients between intrahepatic voxel pairs for the two modalities ranged from 0.86 to 0.94. Cumulative activity volume histograms were in good agreement. Conclusions: These data indicate that, with appropriate reconstruction methods and measured calibration correction factors, either Y-90 SPECT/CT or Y-90 PET/CT can be used for quantitative post-therapy monitoring of Y-90 activity distribution following hepatic radioembolization. PMID:27782730
Yue, Jianting; Mauxion, Thibault; Reyes, Diane K; Lodge, Martin A; Hobbs, Robert F; Rong, Xing; Dong, Yinfeng; Herman, Joseph M; Wahl, Richard L; Geschwind, Jean-François H; Frey, Eric C
2016-10-01
Radioembolization with yttrium-90 microspheres may be optimized with patient-specific pretherapy treatment planning. Dose verification and validation of treatment planning methods require quantitative imaging of the post-therapy distribution of yttrium-90 (Y-90). Methods for quantitative imaging of Y-90 using both bremsstrahlung SPECT and PET have previously been described. The purpose of this study was to compare the two modalities quantitatively in humans. Calibration correction factors for both quantitative Y-90 bremsstrahlung SPECT and a non-time-of-flight PET system without compensation for prompt coincidences were developed by imaging three phantoms. The consistency of these calibration correction factors for the different phantoms was evaluated. Post-therapy images from both modalities were obtained from 15 patients with hepatocellular carcinoma who underwent hepatic radioembolization using Y-90 glass microspheres. Quantitative SPECT and PET images were rigidly registered and the total liver activities and activity distributions estimated for each modality were compared. The activity distributions were compared using profiles, voxel-by-voxel correlation and Bland-Altman analyses, and activity-volume histograms. The mean ± standard deviation of difference in the total activity in the liver between the two modalities was 0% ± 9% (range -21%-18%). Voxel-by-voxel comparisons showed a good agreement in regions corresponding roughly to treated tumor and treated normal liver; the agreement was poorer in regions with low or no expected activity, where PET appeared to overestimate the activity. The correlation coefficients between intrahepatic voxel pairs for the two modalities ranged from 0.86 to 0.94. Cumulative activity volume histograms were in good agreement. These data indicate that, with appropriate reconstruction methods and measured calibration correction factors, either Y-90 SPECT/CT or Y-90 PET/CT can be used for quantitative post-therapy monitoring of Y-90 activity distribution following hepatic radioembolization.
Eberhart, L H; Jakobi, G; Winterhalter, M; Georgieff, M
2000-10-01
In a survey concerning postoperative nausea and vomiting an unexpected high number of the participants stressed the impact of environmental factors, like weather and--even more surprising--the phase of the moon, on the occurrence of postoperative nausea and vomiting (PONV). Thus, the aim of this study was to determine the influence of these factors on the incidence of PONV. On 203 days within the 19-month study period, 2488 patients were followed up for at least 24 hours postoperatively to determine the occurrence of PONV. For each day the actual incidence of PONV was compared with the mean predicted risk of PONV calculated with two risk scores for prediction of PONV (Koivuranta, 1997; Apfel, 1998). 32 days with the most significant difference between actual and predicted incidence of PONV were analysed retrospectively by two biometeorological experts, who were blind to the information whether each day was associated with a high or low incidence of PONV, evaluated the possible impact of the weather of these days. To analyse the influence of the cycle of the moon it was prospectively classified into four different phases. The two biometeorologists rated 22 out of the presented 32 days correctly. The likelihood p that this rating happened by chance is 0.0251, assuming that the likelihood for predicting each day correctly is 0.5 (independent Bernoulli-experiments, e.g. throwing a coin). However, days with a high or low incidence of PONV were equally distributed within the four phases of the moon (p = 0.97; chi 2-test with Yates' correction). Results from this analysis suggest that the weather may have some impact on the occurrence of PONV. However, our data do not support the hypothesis that the phases of the moon have any influence on this symptom.
How enhanced molecular ions in Cold EI improve compound identification by the NIST library.
Alon, Tal; Amirav, Aviv
2015-12-15
Library-based compound identification with electron ionization (EI) mass spectrometry (MS) is a well-established identification method which provides the names and structures of sample compounds up to the isomer level. The library (such as NIST) search algorithm compares different EI mass spectra in the library's database with the measured EI mass spectrum, assigning each of them a similarity score called 'Match' and an overall identification probability. Cold EI, electron ionization of vibrationally cold molecules in supersonic molecular beams, provides mass spectra with all the standard EI fragment ions combined with enhanced Molecular Ions and high-mass fragments. As a result, Cold EI mass spectra differ from those provided by standard EI and tend to yield lower matching scores. However, in most cases, library identification actually improves with Cold EI, as library identification probabilities for the correct library mass spectra increase, despite the lower matching factors. This research examined the way that enhanced molecular ion abundances affect library identification probability and the way that Cold EI mass spectra, which include enhanced molecular ions and high-mass fragment ions, typically improve library identification results. It involved several computer simulations, which incrementally modified the relative abundances of the various ions and analyzed the resulting mass spectra. The simulation results support previous measurements, showing that while enhanced molecular ion and high-mass fragment ions lower the matching factor of the correct library compound, the matching factors of the incorrect library candidates are lowered even more, resulting in a rise in the identification probability for the correct compound. This behavior which was previously observed by analyzing Cold EI mass spectra can be explained by the fact that high-mass ions, and especially the molecular ion, characterize a compound more than low-mass ions and therefore carries more weight in library search identification algorithms. These ions are uniquely abundant in Cold EI, which therefore enables enhanced compound characterization along with improved NIST library based identification. Copyright © 2015 John Wiley & Sons, Ltd.
Maev, E Z; Zaĭtseva, V P
2002-09-01
The different aspects of the problem of health maintaining and strengthening are discussed. The special attention is devoted to the problem of diet that at present is characterized by deficiency of macro- and micronutrients. It is supposed that this factor together with the change in ecological condition promotes the development of different somatic diseases and their atypical course. To correct the dietary regimen, to strengthen the body functional reserves and to improve its nonspecific resistance to the influence of environmental unfavorable and pathogenic factors the possibility of wide use of biologically active food additives (BAA) is discussed. The examples of BAAs based on plant materials and results of their use in health resort conditions are given.
Stress-Strain Behavior of Cementitious Materials with Different Sizes
Zhou, Jikai; Qian, Pingping; Chen, Xudong
2014-01-01
The size dependence of flexural properties of cement mortar and concrete beams is investigated. Bazant's size effect law and modified size effect law by Kim and Eo give a very good fit to the flexural strength of both cement mortar and concrete. As observed in the test results, a strong size effect in flexural strength is found in cement mortar than in concrete. A modification has been suggested to Li's equation for describing the stress-strain curve of cement mortar and concrete by incorporating two different correction factors, the factors contained in the modified equation being established empirically as a function of specimen size. A comparison of the predictions of this equation with test data generated in this study shows good agreement. PMID:24744688
Alkarkhi, Abbas F M; Ramli, Saifullah Bin; Easa, Azhar Mat
2009-01-01
Major (sodium, potassium, calcium, magnesium) and minor elements (iron, copper, zinc, manganese) and one heavy metal (lead) of Cavendish banana flour and Dream banana flour were determined, and data were analyzed using multivariate statistical techniques of factor analysis and discriminant analysis. Factor analysis yielded four factors explaining more than 81% of the total variance: the first factor explained 28.73%, comprising magnesium, sodium, and iron; the second factor explained 21.47%, comprising only manganese and copper; the third factor explained 15.66%, comprising zinc and lead; while the fourth factor explained 15.50%, comprising potassium. Discriminant analysis showed that magnesium and sodium exhibited a strong contribution in discriminating the two types of banana flour, affording 100% correct assignation. This study presents the usefulness of multivariate statistical techniques for analysis and interpretation of complex mineral content data from banana flour of different varieties.
NASA Astrophysics Data System (ADS)
Khaleghi, Mohammad Reza; Varvani, Javad
2018-02-01
Complex and variable nature of the river sediment yield caused many problems in estimating the long-term sediment yield and problems input into the reservoirs. Sediment Rating Curves (SRCs) are generally used to estimate the suspended sediment load of the rivers and drainage watersheds. Since the regression equations of the SRCs are obtained by logarithmic retransformation and have a little independent variable in this equation, they also overestimate or underestimate the true sediment load of the rivers. To evaluate the bias correction factors in Kalshor and Kashafroud watersheds, seven hydrometric stations of this region with suitable upstream watershed and spatial distribution were selected. Investigation of the accuracy index (ratio of estimated sediment yield to observed sediment yield) and the precision index of different bias correction factors of FAO, Quasi-Maximum Likelihood Estimator (QMLE), Smearing, and Minimum-Variance Unbiased Estimator (MVUE) with LSD test showed that FAO coefficient increases the estimated error in all of the stations. Application of MVUE in linear and mean load rating curves has not statistically meaningful effects. QMLE and smearing factors increased the estimated error in mean load rating curve, but that does not have any effect on linear rating curve estimation.
NASA Astrophysics Data System (ADS)
Gillen, Rebecca; Firbank, Michael J.; Lloyd, Jim; O'Brien, John T.
2015-09-01
This study investigated if the appearance and diagnostic accuracy of HMPAO brain perfusion SPECT images could be improved by using CT-based attenuation and scatter correction compared with the uniform attenuation correction method. A cohort of subjects who were clinically categorized as Alzheimer’s Disease (n=38 ), Dementia with Lewy Bodies (n=29 ) or healthy normal controls (n=30 ), underwent SPECT imaging with Tc-99m HMPAO and a separate CT scan. The SPECT images were processed using: (a) correction map derived from the subject’s CT scan or (b) the Chang uniform approximation for correction or (c) no attenuation correction. Images were visually inspected. The ratios between key regions of interest known to be affected or spared in each condition were calculated for each correction method, and the differences between these ratios were evaluated. The images produced using the different corrections were noted to be visually different. However, ROI analysis found similar statistically significant differences between control and dementia groups and between AD and DLB groups regardless of the correction map used. We did not identify an improvement in diagnostic accuracy in images which were corrected using CT-based attenuation and scatter correction, compared with those corrected using a uniform correction map.
van der Harst, Eugenie; Potting, José; Kroeze, Carolien
2016-02-01
Many methods have been reported and used to include recycling in life cycle assessments (LCAs). This paper evaluates six widely used methods: three substitution methods (i.e. substitution based on equal quality, a correction factor, and alternative material), allocation based on the number of recycling loops, the recycled-content method, and the equal-share method. These six methods were first compared, with an assumed hypothetical 100% recycling rate, for an aluminium can and a disposable polystyrene (PS) cup. The substitution and recycled-content method were next applied with actual rates for recycling, incineration and landfilling for both product systems in selected countries. The six methods differ in their approaches to credit recycling. The three substitution methods stimulate the recyclability of the product and assign credits for the obtained recycled material. The choice to either apply a correction factor, or to account for alternative substituted material has a considerable influence on the LCA results, and is debatable. Nevertheless, we prefer incorporating quality reduction of the recycled material by either a correction factor or an alternative substituted material over simply ignoring quality loss. The allocation-on-number-of-recycling-loops method focusses on the life expectancy of material itself, rather than on a specific separate product. The recycled-content method stimulates the use of recycled material, i.e. credits the use of recycled material in products and ignores the recyclability of the products. The equal-share method is a compromise between the substitution methods and the recycled-content method. The results for the aluminium can follow the underlying philosophies of the methods. The results for the PS cup are additionally influenced by the correction factor or credits for the alternative material accounting for the drop in PS quality, the waste treatment management (recycling rate, incineration rate, landfilling rate), and the source of avoided electricity in case of waste incineration. The results for the PS cup, which are less dominated by production of virgin material than aluminium can, furthermore depend on the environmental impact categories. This stresses the importance to consider other impact categories besides the most commonly used global warming impact. The multitude of available methods complicates the choice of an appropriate method for the LCA practitioner. New guidelines keep appearing and industries also suggest their own preferred method. Unambiguous ISO guidelines, particularly related to sensitivity analysis, would be a great step forward in making more robust LCAs. Copyright © 2015 Elsevier Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-04
... Conservation Program: Test Procedures for Residential Clothes Washers; Correction AGENCY: Office of Energy.... Department of Energy (DOE) is correcting a final rule establishing revised test procedures for residential... factor calculation section of the currently applicable test procedure. DATES: Effective: April 6, 2012...
Prison inmates' suicidal ideation in China: a study of gender differences and their impact.
Zhang, Jie; Liang, Bin; Zhou, Yong; Brame, Wendy
2010-12-01
Suicide is one of the leading causes of inmate death, and many studies have explored suicidal risks among inmates in Western countries. Such studies, however, have been extremely rare in China. Because of China's unique cultural and social conditions, suicide displays many distinctive features and one of them is the greater percentage of women (than men) who commit suicide. With data collected from three adult prisons in China, this study tests gender differences on prison inmates' suicidal risk factors and explores the correlation of gender's impact with other factors. Findings show that male and female inmates present distinctive patterns of suicidal ideation, although gender fails to exert a significant direct impact on the outcome. The results call for different approaches and treatments toward both gender groups for suicide prevention in Chinese correctional facilities.
Correction to Account for the Isomer of 87Y in the 87Y Radiochemical Diagnostic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes-Sterbenz, Anna Catherine; Jungman, Gerard
Here we summarize the need to correct inventories of 87Y reported by the Los Alamos weapons radiochemistry team. The need for a correction arises from the fact that a 13.37 hour isomer of 87Y, that is strongly populated through (n, 2n) reactions on 88Y and isomers of 88Y, has not been included in the experimental analyses of NTS data. Inventories of 87Y reported by LANL’s weapons radiochemistry team should be multiplied by a correction factor that is numerically close to 0.9. Alternatively, the user could increase simulated values of 87Y by 1.1 for comparison with the original method for reportingmore » NTS values. If the inventories in question were directly reported by LLNL’s radiochemistry team, care must be taken to determine whether or not the correction factor has already been applied.« less
Calibration and temperature correction of a V-block refractometer
NASA Astrophysics Data System (ADS)
Le Menn, Marc
2018-03-01
V-block refractometers have been used since the 1940s to retrieve the refractive index values of substances or optical glasses. When used outside laboratories, they are submitted to temperature variations which degrade their accuracy by varying the refractive index of the glasses and the length of the prisms. This paper proposes a method to calibrate a double-prism V-block refractometer by retrieving the values of two coefficients at a constant temperature and by applying corrections to these coefficients when the instrument is used at different temperatures. This method is applied to calibrate in salinity a NOSS instrument which can be used at sea on drifting floats, and the results show that measurement errors can be reduced by a factor of 5.8.
NASA Astrophysics Data System (ADS)
Li, Hsiang-Nan; Mishima, Satoshi; Sanda, A. I.
2005-12-01
We calculate the important next-to-leading-order contributions to the B→πK, ππ decays from the vertex corrections, the quark loops, and the magnetic penguins in the perturbative QCD approach. It is found that the latter two reduce the leading-order penguin amplitudes by about 10% and modify only the B→πK branching ratios. The main effect of the vertex corrections is to increase the small color-suppressed tree amplitude by a factor of 3, which then resolves the large difference between the direct CP asymmetries of the B0→π∓K± and B±→π0K± modes. The puzzle from the large B0→π0π0 branching ratio still remains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sierra, O., E-mail: osierra@sgc.gov.co; Parrado, G., E-mail: gparrado@sgc.gov.co; Cañón, Y.
This paper presents the progress made by the Neutron Activation Analysis (NAA) laboratory at the Colombian Geological Survey (SGC in its Spanish acronym), towards the characterization of its gamma spectrometric systems for Instrumental Neutron Activation Analysis (INAA), with the aim of introducing corrections to the measurements by variations in sample geometry. Characterization includes the empirical determination of the interaction point of gamma radiation inside the Germanium crystal, through the application of a linear model and the use of a fast Monte Carlo N-Particle (MCNP) software to estimate correction factors for differences in counting efficiency that arise from variations in samplemore » density between samples and standards.« less
Kóbor, Andrea; Takács, Ádám; Bryce, Donna; Szűcs, Dénes; Honbolygó, Ferenc; Nagy, Péter; Csépe, Valéria
2015-01-01
This study investigated the role of impaired inhibitory control as a factor underlying attention deficit hyperactivity disorder (ADHD). Children with ADHD and typically developing children completed an animal Stroop task while electroencephalogram (EEG) was recorded. The lateralized readiness potential and event-related brain potentials associated with perceptual and conflict processing were analyzed. Children with ADHD were slower to give correct responses irrespective of congruency, and slower to prepare correct responses in the incongruent condition. This delay could result from enhanced effort allocation at earlier processing stages, indicated by differences in P1, N1, and conflict sustained potential. Results suggest multiple deficits in information processing rather than a specific response inhibition impairment.
Bias-correction of PERSIANN-CDR Extreme Precipitation Estimates Over the United States
NASA Astrophysics Data System (ADS)
Faridzad, M.; Yang, T.; Hsu, K. L.; Sorooshian, S.
2017-12-01
Ground-based precipitation measurements can be sparse or even nonexistent over remote regions which make it difficult for extreme event analysis. PERSIANN-CDR (CDR), with 30+ years of daily rainfall information, provides an opportunity to study precipitation for regions where ground measurements are limited. In this study, the use of CDR annual extreme precipitation for frequency analysis of extreme events over limited/ungauged basins is explored. The adjustment of CDR is implemented in two steps: (1) Calculated CDR bias correction factor at limited gauge locations based on the linear regression analysis of gauge and CDR annual maxima precipitation; and (2) Extend the bias correction factor to the locations where gauges are not available. The correction factors are estimated at gauge sites over various catchments, elevation zones, and climate regions and the results were generalized to ungauged sites based on regional and climatic similarity. Case studies were conducted on 20 basins with diverse climate and altitudes in the Eastern and Western US. Cross-validation reveals that the bias correction factors estimated on limited calibration data can be extended to regions with similar characteristics. The adjusted CDR estimates also outperform gauge interpolation on validation sites consistently. It is suggested that the CDR with bias adjustment has a potential for study frequency analysis of extreme events, especially for regions with limited gauge observations.
Analysis on trust influencing factors and trust model from multiple perspectives of online Auction
NASA Astrophysics Data System (ADS)
Yu, Wang
2017-10-01
Current reputation models lack the research on online auction trading completely so they cannot entirely reflect the reputation status of users and may cause problems on operability. To evaluate the user trust in online auction correctly, a trust computing model based on multiple influencing factors is established. It aims at overcoming the efficiency of current trust computing methods and the limitations of traditional theoretical trust models. The improved model comprehensively considers the trust degree evaluation factors of three types of participants according to different participation modes of online auctioneers, to improve the accuracy, effectiveness and robustness of the trust degree. The experiments test the efficiency and the performance of our model under different scale of malicious user, under environment like eBay and Sporas model. The experimental results analysis show the model proposed in this paper makes up the deficiency of existing model and it also has better feasibility.
Vibration and damping of laminated, composite-material plates including thickness-shear effects
NASA Technical Reports Server (NTRS)
Bert, C. W.; Siu, C. C.
1972-01-01
An analytical investigation of sinusoidally forced vibration of laminated, anisotropic plates including bending-stretching coupling, thickness-shear flexibility, all three types of inertia effects, and material damping is presented. In the analysis the effects of thickness-shear deformation are considered by the use of a shear correction factor K, analogous to that used by Mindlin for homogeneous plates. Two entirely different approaches for calculating the thickness-shear factor for a laminate are presented. Numerical examples indicate that the value of K depends on the layer properties and the stacking sequence of the laminate.
NOTE: Monte Carlo simulation of correction factors for IAEA TLD holders
NASA Astrophysics Data System (ADS)
Hultqvist, Martha; Fernández-Varea, José M.; Izewska, Joanna
2010-03-01
The IAEA standard thermoluminescent dosimeter (TLD) holder has been developed for the IAEA/WHO TLD postal dose program for audits of high-energy photon beams, and it is also employed by the ESTRO-QUALity assurance network (EQUAL) and several national TLD audit networks. Factors correcting for the influence of the holder on the TL signal under reference conditions have been calculated in the present work from Monte Carlo simulations with the PENELOPE code for 60Co γ-rays and 4, 6, 10, 15, 18 and 25 MV photon beams. The simulation results are around 0.2% smaller than measured factors reported in the literature, but well within the combined standard uncertainties. The present study supports the use of the experimentally obtained holder correction factors in the determination of the absorbed dose to water from the TL readings; the factors calculated by means of Monte Carlo simulations may be adopted for the cases where there are no measured data.