Science.gov

Sample records for correlated exponential wave

  1. Recurrence formulas for fully exponentially correlated four-body wave functions

    NASA Astrophysics Data System (ADS)

    Harris, Frank E.

    2009-03-01

    Formulas are presented for the recursive generation of four-body integrals in which the integrand consists of arbitrary integer powers (≥-1) of all the interparticle distances rij , multiplied by an exponential containing an arbitrary linear combination of all the rij . These integrals are generalizations of those encountered using Hylleraas basis functions and include all that are needed to make energy computations on the Li atom and other four-body systems with a fully exponentially correlated Slater-type basis of arbitrary quantum numbers. The only quantities needed to start the recursion are the basic four-body integral first evaluated by Fromm and Hill plus some easily evaluated three-body “boundary” integrals. The computational labor in constructing integral sets for practical computations is less than when the integrals are generated using explicit formulas obtained by differentiating the basic integral with respect to its parameters. Computations are facilitated by using a symbolic algebra program (MAPLE) to compute array index pointers and present syntactically correct FORTRAN source code as output; in this way it is possible to obtain error-free high-speed evaluations with minimal effort. The work can be checked by verifying sum rules the integrals must satisfy.

  2. Valence-electron correlation in extended systems: A nonparametric exponential transformation of molecular orbitals into valence-bond wave functions

    NASA Astrophysics Data System (ADS)

    Oujia, Brahim; Malrieu, Jean-Paul

    1991-07-01

    From the exact solution of the homoatomic two-center problem one may define a bond factor ρl (hereafter named bond correlance) characterizing the reduction of the ionic valence-bond component in the correlated wave function: ρl=ln(Cexactionic/Cuncorrelatedionic), for any t/U (delocalization versus electronic repulsion) ratio. For an N-center problem, an excellent correlated wave function may be obtained by decomposing the single-determinantal wave function φ0 into its valence-bond components φI and then multiplying CI=<φI||φ0> by exp(-tsumi,j qIiqIjρeffij), where qIi and qIj are the net charges (0,+/-1) of the atoms i and j in φI, and ρeffij is obtained by combining the bond correlances of the bonds between atoms i and j according to Kirchhoff's laws for the electrical resistances. This nonparametric wave function gives at least 90% of the correlation energy for a large series of structures involving up to 12 atoms, and is able to treat heterogeneous systems involving bonds of various t/U ratios.

  3. An exponential multireference wave-function Ansatz

    SciTech Connect

    Hanrath, Michael

    2005-08-22

    An exponential multireference wave-function Ansatz is formulated. In accordance with the state universal coupled-cluster Ansatz of Jeziorski and Monkhorst [Phys. Rev. A 24, 1668 (1981)] the approach uses a reference specific cluster operator. In order to achieve state selectiveness the excitation- and reference-related amplitude indexing of the state universal Ansatz is replaced by an indexing which is based on excited determinants. There is no reference determinant playing a particular role. The approach is size consistent, coincides with traditional single-reference coupled cluster if applied to a single-reference, and converges to full configuration interaction with an increasing cluster operator excitation level. Initial applications on BeH{sub 2}, CH{sub 2}, Li{sub 2}, and nH{sub 2} are reported.

  4. Exponential Correlation of IQ and the Wealth of Nations

    ERIC Educational Resources Information Center

    Dickerson, Richard E.

    2006-01-01

    Plots of mean IQ and per capita real Gross Domestic Product for groups of 81 and 185 nations, as collected by Lynn and Vanhanen, are best fitted by an exponential function of the form: GDP = "a" * 10["b"*(IQ)], where "a" and "b" are empirical constants. Exponential fitting yields markedly higher correlation coefficients than either linear or…

  5. Exponential Correlation of IQ and the Wealth of Nations

    ERIC Educational Resources Information Center

    Dickerson, Richard E.

    2006-01-01

    Plots of mean IQ and per capita real Gross Domestic Product for groups of 81 and 185 nations, as collected by Lynn and Vanhanen, are best fitted by an exponential function of the form: GDP = "a" * 10["b"*(IQ)], where "a" and "b" are empirical constants. Exponential fitting yields markedly higher correlation coefficients than either linear or…

  6. Neural pulse frequency modulation of an exponentially correlated Gaussian process

    NASA Technical Reports Server (NTRS)

    Hutchinson, C. E.; Chon, Y.-T.

    1976-01-01

    The effect of NPFM (Neural Pulse Frequency Modulation) on a stationary Gaussian input, namely an exponentially correlated Gaussian input, is investigated with special emphasis on the determination of the average number of pulses in unit time, known also as the average frequency of pulse occurrence. For some classes of stationary input processes where the formulation of the appropriate multidimensional Markov diffusion model of the input-plus-NPFM system is possible, the average impulse frequency may be obtained by a generalization of the approach adopted. The results are approximate and numerical, but are in close agreement with Monte Carlo computer simulation results.

  7. Method for numerical simulation of two-term exponentially correlated colored noise

    SciTech Connect

    Yilmaz, B.; Ayik, S.; Abe, Y.; Gokalp, A.; Yilmaz, O.

    2006-04-15

    A method for numerical simulation of two-term exponentially correlated colored noise is proposed. The method is an extension of traditional method for one-term exponentially correlated colored noise. The validity of the algorithm is tested by comparing numerical simulations with analytical results in two physical applications.

  8. Wave Propagation by Way of Exponential B-Spline Galerkin Method

    NASA Astrophysics Data System (ADS)

    Zorsahin Gorgulu, M.; Dag, I.; Irk, D.

    2016-10-01

    In this paper, the exponential B-spline Galerkin method is set up for getting the numerical solution of the Burgers’ equation. Two numerical examples related to shock wave propagation and travelling wave are studied to illustrate the accuracy and the efficiency of the method. Obtained results are compared with some early studies.

  9. Exponential wave-packet spreading via self-interaction time modulation

    NASA Astrophysics Data System (ADS)

    Zhao, Wen-Lei; Gong, Jiangbin; Wang, Wen-Ge; Casati, Giulio; Liu, Jie; Fu, Li-Bin

    2016-11-01

    The time-periodic modulation of the self-interaction of a Bose-Einstein condensate or a nonlinear optics system has been recognized as an exciting tool to explore interesting physics that was previously unavailable. This tool is exploited here to examine the exotic dynamics of a nonlinear system described by the Gross-Pitaevskii equation. We observe three remarkable and closely related dynamical phenomena, exponentially localized profile of wave functions in momentum space with localization length exponentially increasing in time, exponential wave-packet spreading, and exponential sensitivity to initial conditions. A hybrid quantum-classical theory is developed to partly explain these findings. Time-periodic self-interaction modulation is seen to be a robust method to achieve superfast spreading and induce genuine chaos even in the absence of any external potential.

  10. On the interaction of deep water waves and exponential shear currents

    NASA Astrophysics Data System (ADS)

    Cheng, Jun; Cang, Jie; Liao, Shi-Jun

    2009-05-01

    A train of periodic deep-water waves propagating on a steady shear current with a vertical distribution of vorticity is investigated by an analytic method, namely the homotopy analysis method (HAM). The magnitude of the vorticity varies exponentially with the magnitude of the stream function, while remaining constant on a particular streamline. The so-called Dubreil-Jacotin transformation is used to transfer the original exponentially nonlinear boundary-value problem in an unknown domain into an algebraically nonlinear boundary-value problem in a known domain. Convergent series solutions are obtained not only for small amplitude water waves on a weak current but also for large amplitude waves on a strong current. The nonlinear wave-current interaction is studied in detail. It is found that an aiding shear current tends to enlarge the wave phase speed, sharpen the wave crest, but shorten the maximum wave height, while an opposing shear current has the opposite effect. Besides, the amplitude of waves and fluid velocity decay over the depth more quickly on an aiding shear current but more slowly on an opposing shear current than that of waves on still water. Furthermore, it is found that Stokes criteria of wave breaking is still valid for waves on a shear current: a train of propagating waves on a shear current breaks as the fiuid velocity at crest equals the wave phase speed. Especially, it is found that the highest waves on an opposing shear current are even higher and steeper than that of waves on still water. Mathematically, this analytic method is rather general in principle and can be employed to solve many types of nonlinear partial differential equations with variable coefficients in science, finance and engineering.

  11. H2SOLV: Fortran solver for diatomic molecules in explicitly correlated exponential basis

    NASA Astrophysics Data System (ADS)

    Pachucki, K.; Zientkiewicz, M.; Yerokhin, V. A.

    2016-11-01

    We present the Fortran package H2SOLV for an efficient computation of the nonrelativistic energy levels and the wave functions of diatomic two-electron molecules within the Born-Oppenheimer approximation. The wave function is obtained as a linear combination of the explicitly correlated exponential (Kołos-Wolniewicz) functions. The computations of H2SOLV are performed within the arbitrary-precision arithmetics, where the number of working digits can be adjusted by the user. The key part of H2SOLV is the implementation of the algorithm of an efficient computation of the two-center two-electron integrals for arbitrary values of internuclear distances developed by one of us (Pachucki, 2013). This have been one of the long-standing problems of quantum chemistry. The code is parallelized, suitable for large-scale computations limited only by the computer resources available and can produce highly accurate results. As an example, we report several benchmark results obtained with H2SOLV, including the energy value accurate to 18 decimal digits.

  12. Exponential decay of spatial correlation in driven diffusive system: A universal feature of macroscopic homogeneous state.

    PubMed

    Hao, Qing-Yi; Jiang, Rui; Hu, Mao-Bin; Jia, Bin; Wang, Wen-Xu

    2016-01-25

    Driven diffusive systems have been a paradigm for modelling many physical, chemical, and biological transport processes. In the systems, spatial correlation plays an important role in the emergence of a variety of nonequilibrium phenomena and exhibits rich features such as pronounced oscillations. However, the lack of analytical results of spatial correlation precludes us from fully understanding the effect of spatial correlation on the dynamics of the system. Here we offer precise analytical predictions of the spatial correlation in a typical driven diffusive system, namely facilitated asymmetric exclusion process. We find theoretically that the correlation between two sites decays exponentially as their distance increases, which is in good agreement with numerical simulations. Furthermore, we find the exponential decay is a universal property of macroscopic homogeneous state in a broad class of 1D driven diffusive systems. Our findings deepen the understanding of many nonequilibrium phenomena resulting from spatial correlation in driven diffusive systems.

  13. Exponential decay of spatial correlation in driven diffusive system: A universal feature of macroscopic homogeneous state

    PubMed Central

    Hao, Qing-Yi; Jiang, Rui; Hu, Mao-Bin; Jia, Bin; Wang, Wen-Xu

    2016-01-01

    Driven diffusive systems have been a paradigm for modelling many physical, chemical, and biological transport processes. In the systems, spatial correlation plays an important role in the emergence of a variety of nonequilibrium phenomena and exhibits rich features such as pronounced oscillations. However, the lack of analytical results of spatial correlation precludes us from fully understanding the effect of spatial correlation on the dynamics of the system. Here we offer precise analytical predictions of the spatial correlation in a typical driven diffusive system, namely facilitated asymmetric exclusion process. We find theoretically that the correlation between two sites decays exponentially as their distance increases, which is in good agreement with numerical simulations. Furthermore, we find the exponential decay is a universal property of macroscopic homogeneous state in a broad class of 1D driven diffusive systems. Our findings deepen the understanding of many nonequilibrium phenomena resulting from spatial correlation in driven diffusive systems. PMID:26804770

  14. The evolution of travelling waves in generalized Fisher equations via matched asymptotic expansions: Exponential corrections

    NASA Astrophysics Data System (ADS)

    Leach, J. A.; Needham, D. J.

    2004-09-01

    In this paper we address an initial boundary value problem for a generalized Fisher equation. In particular we develop the matched asymptotic theory presented in Leach and Needham (2000) to consider the correction terms to the asymptotic approach to the wave-front of speed v = v*(≥ 2) as t (time) → ∞. We establish the precise form of these corrections, and demonstrate that the rate of approach to the wave-front is algebraic in t when v* = 2 (there being two cases), but exponential in t when v* > 2.

  15. Few-parameter exponentially correlated wavefunctions for the ground state of lithium

    NASA Astrophysics Data System (ADS)

    Albert, Victor V.; Guevara, Nicolais L.; Sabin, John R.; Harris, Frank E.

    Compact, but relatively accurate wavefunctions for the ground state of the Li atom were obtained through the use of a limited basis of exponentially correlated functions with optimized nonlinear parameters. In contrast to our earlier work, the basis contains pre-exponential factors that improve the rate of convergence of the basis-set expansion. The matrix elements needed in the present work were evaluated analytically using recursive methods reported recently by one of us; a check on the programming was provided by comparison with numerical evaluations carried out by Turbiner and Guevara. The rate of convergence of the expansion is compared with those of Hylleraas-basis computations, and a comparison is also made with exponentially correlated studies of He-like systems.

  16. Markov models of non-Gaussian exponentially correlated processes and their applications

    SciTech Connect

    Primak, S.; Lyandres, V.; Kontorovich, V.

    2001-06-01

    We consider three different methods of generating non-Gaussian Markov processes with given probability density functions and exponential correlation functions. All models are based on stochastic differential equations. A number of analytically treatable examples are considered. The results obtained can be used in different areas such as telecommunications and neurobiology.

  17. Propagation of exponential shock wave in an axisymmetric rotating non-ideal dusty gas

    NASA Astrophysics Data System (ADS)

    Nath, G.

    2016-09-01

    One-dimensional unsteady isothermal and adiabatic flow behind a strong exponential shock wave propagating in a rotational axisymmetric mixture of non-ideal gas and small solid particles, which has variable azimuthal and axial fluid velocities, is analyzed. The shock wave is driven out by a piston moving with time according to exponential law. The azimuthal and axial components of the fluid velocity in the ambient medium are assumed to be varying and obeying exponential laws. In the present work, small solid particles are considered as pseudo-fluid with the assumption that the equilibrium flow-conditions are maintained in the flow-field, and the viscous-stress and heat conduction of the mixture are negligible. Solutions are obtained in both the cases, when the flow between the shock and the piston is isothermal or adiabatic by taking into account the components of vorticity vector and compressibility. It is found that the assumption of zero temperature gradient brings a profound change in the density, axial component of vorticity vector and compressibility distributions as compared to that of the adiabatic case. To investigate the behavior of the flow variables and the influence on the shock wave propagation by the parameter of non-idealness of the gas overline{b} in the mixture as well as by the mass concentration of solid particles in the mixture Kp and by the ratio of the density of solid particles to the initial density of the gas G1 are worked out in detail. It is interesting to note that the shock strength increases with an increase in G1 ; whereas it decreases with an increase in overline{b} . Also, a comparison between the solutions in the cases of isothermal and adiabatic flows is made.

  18. Exponential series expansion for correlation functions of many-body systems.

    PubMed

    Barocchi, Fabrizio; Guarini, Eleonora; Bafile, Ubaldo

    2014-09-01

    We demonstrate that in Hamiltonian many-body systems at equilibrium, any kind of time dependent correlation function c(t) can always be expanded in a series of (complex) exponential functions of time when its Laplace transform C̃(z) has single poles. The characteristic frequencies can be identified as the eigenfrequencies of the correlation. This is done without introducing the concepts of fluctuating forces and memory functions, due to Mori and Zwanzig and extensively used in the literature in the last decades. Our method is based on a different projection technique in the Hilbert space S of the system and shows that appropriate approximations of the exponential series are related to the contraction of S to a finite, usually small, number of dimensions. The time dependence of correlation functions is always described in detail by a multiple-exponential functionality also at long times. This result is therefore also valid for correlation functions of many-body Hamiltonian systems for which a power-law dependence, observed in restricted time ranges and predicted to be the asymptotic one, can be considered at most as a useful approximate modeling of long-time behavior.

  19. Spontaneous thermal waves and exponential spectra associated with a filamentary pressure structure in a magnetized plasma

    NASA Astrophysics Data System (ADS)

    Pace, David Carl

    An experimental study of plasma turbulence and transport is performed in the fundamental geometry of a narrow pressure filament in a magnetized plasma. An electron beam is used to heat a cold background plasma in a linear device, the Large Plasma Device (LAPD-U) [W. Gekelman et al. Rev. Sci. Instrum. 62, 2875 (1991)] operated by the Basic Plasma Science Facility at the University of California, Los Angeles. This results in the generation of a filamentary structure 1000 cm in length and 1 cm in diameter) exhibiting a controllable radial temperature gradient embedded in a large plasma. The filament serves as a resonance cavity for a thermal (diffusive) wave manifested by large amplitude, coherent oscillations in electron temperature. Properties of this wave are used to determine the electron collision time of the plasma and suggest that a diagnostic method for studying plasma transport can be designed in a similar manner. For short times and low heating powers the filament conducts away thermal energy through particle collisions, consistent with classical theory. Experiments performed with longer heating times or greater injected power feature a transition from the classical transport regime to a regime of enhanced transport levels. During the anomalous transport regime, fluctuations exhibit an exponential power spectrum for frequencies below the ion cyclotron frequency. The exponential feature has been traced to the presence of solitary pulses having a Lorentzian temporal signature. These pulses arise from nonlinear interactions of drift-Alfven waves driven by the pressure gradients. The temporal width of the pulses is measured to be a fraction of a period of the drift-Alfven waves. A second experiment involves a macroscopic (3.5 cm gradient length) limiter-edge geometry in which a density gradient is established by inserting a metallic plate at the edge of the nominal plasma column of the LAPD-U. In both experiments the width of the pulses is narrowly distributed

  20. Compressed exponential decays in correlation experiments: The influence of temperature gradients and convection

    NASA Astrophysics Data System (ADS)

    Gabriel, Jan; Blochowicz, Thomas; Stühn, Bernd

    2015-03-01

    In a wide range of soft materials, correlation experiments using laser light or partially coherent X-rays report the so called compressed exponential correlation functions, i. e., decays c(t) ∝ exp(-(t/τ)β) with β > 1. In many cases, this is related to the relaxation of inner stresses, but in some systems, the source of such a phenomenon is still poorly understood. We performed multi speckle-dynamic light scattering experiments in a system of polystyrene spheres in supercooled propanediol. At low temperatures, compressed exponential decays are observed in a multispeckle experiment, in agreement with the literature findings in similar systems. At the same time, due to the particular geometry of our setup, the speckle pattern shows indication for convection in the sample due to a slight temperature gradient across the sample cuvette mounted in a cold finger cryostat. These effects increase with decreasing temperature and after a temperature jump. In some cases it can be corrected for by assuming convective flow at constant velocity. Such corrections reduce or remove compressed exponential behavior in our experiment.

  1. Global existence and exponential decay of the solution for a viscoelastic wave equation with a delay

    NASA Astrophysics Data System (ADS)

    Dai, Qiuyi; Yang, Zhifeng

    2014-10-01

    In this paper, we consider initial-boundary value problem of viscoelastic wave equation with a delay term in the interior feedback. Namely, we study the following equation together with initial-boundary conditions of Dirichlet type in Ω × (0, + ∞) and prove that for arbitrary real numbers μ 1 and μ 2, the above-mentioned problem has a unique global solution under suitable assumptions on the kernel g. This improve the results of the previous literature such as Nicaise and Pignotti (SIAM J. Control Optim 45:1561-1585, 2006) and Kirane and Said-Houari (Z. Angew. Math. Phys. 62:1065-1082, 2011) by removing the restriction imposed on μ 1 and μ 2. Furthermore, we also get an exponential decay results for the energy of the concerned problem in the case μ 1 = 0 which solves an open problem proposed by Kirane and Said-Houari (Z. Angew. Math. Phys. 62:1065-1082, 2011).

  2. Correlating the stretched-exponential and super-Arrhenius behaviors in the structural relaxation of glass-forming liquids.

    PubMed

    Wang, Lianwen; Li, Jiangong; Fecht, Hans-Jörg

    2011-04-20

    Following the report of a single-exponential activation behavior behind the super-Arrhenius structural relaxation of glass-forming liquids in our preceding paper, we find that the non-exponentiality in the structural relaxation of glass-forming liquids is straightforwardly determined by the relaxation time, and could be calculated from the measured relaxation data. Comparisons between the calculated and measured non-exponentialities for typical glass-forming liquids, from fragile to intermediate, convincingly support the present analysis. Hence the origin of the non-exponentiality and its correlation with liquid fragility become clearer.

  3. Head wave correlations in ambient noise.

    PubMed

    Gebbie, John; Siderius, Martin

    2016-07-01

    Ambient ocean noise is processed with a vertical line array to reveal coherent time-separated arrivals suggesting the presence of head wave multipath propagation. Head waves, which are critically propagating water waves created by seabed waves traveling parallel to the water-sediment interface, can propagate faster than water-only waves. Such eigenrays are much weaker than water-only eigenrays, and are often completely overshadowed by them. Surface-generated noise is different whereby it amplifies the coherence between head waves and critically propagating water-only waves, which is measured by cross-correlating critically steered beams. This phenomenon is demonstrated both experimentally and with a full wave simulation.

  4. Almost Exponential Decay of Periodic Viscous Surface Waves without Surface Tension

    NASA Astrophysics Data System (ADS)

    Guo, Yan; Tice, Ian

    2013-02-01

    We consider a viscous fluid of finite depth below the air, occupying a three-dimensional domain bounded below by a fixed solid boundary and above by a free moving boundary. The fluid dynamics are governed by the gravity-driven incompressible Navier-Stokes equations, and the effect of surface tension is neglected on the free surface. The long time behavior of solutions near equilibrium has been an intriguing question since the work of Beale (Commun Pure Appl Math 34(3):359-392, 1981). This paper is the third in a series of three (Guo in Local well-posedness of the viscous surface wave problem without surface tension, Anal PDE 2012, to appear; in Decay of viscous surface waves without surface tension in horizontally infinite domains, Preprint, 2011) that answers this question. Here we consider the case in which the free interface is horizontally periodic; we prove that the problem is globally well-posed and that solutions decay to equilibrium at an almost exponential rate. In particular, the free interface decays to a flat surface. Our framework contains several novel techniques, which include: (1) a priori estimates that utilize a "geometric" reformulation of the equations; (2) a two-tier energy method that couples the boundedness of high-order energy to the decay of low-order energy, the latter of which is necessary to balance out the growth of the highest derivatives of the free interface; (3) a localization procedure that is compatible with the energy method and allows for curved lower surface geometry. Our decay estimates lead to the construction of global-in-time solutions to the surface wave problem.

  5. Statistical properties and correlation functions for drift waves

    NASA Technical Reports Server (NTRS)

    Horton, W.

    1986-01-01

    The dissipative one-field drift wave equation is solved using the pseudospectral method to generate steady-state fluctuations. The fluctuations are analyzed in terms of space-time correlation functions and modal probability distributions. Nearly Gaussian statistics and exponential decay of the two-time correlation functions occur in the presence of electron dissipation, while in the absence of electron dissipation long-lived vortical structures occur. Formulas from renormalized, Markovianized statistical turbulence theory are given in a local approximation to interpret the dissipative turbulence.

  6. Modulated exponential films generated by surface acoustic waves and their role in liquid wicking and aerosolization at a pinned drop.

    PubMed

    Taller, Daniel; Go, David B; Chang, Hsueh-Chia

    2013-05-01

    The exponentially decaying acoustic pressure of scattered surface acoustic waves (SAWs) at the contact line of a liquid film pinned to filter paper is shown to sustain a high curvature conic tip with micron-sized modulations whose dimension grows exponentially from the tip. The large negative capillary pressure in the film, necessary for offsetting the large positive acoustic pressure at the contact line, also creates significant negative hydrodynamic pressure and robust wicking action through the paper. An asymptotic analysis of this intricate pressure matching between the quasistatic conic film and bulk drop shows that the necessary SAW power to pump liquid from the filter paper and aerosolize, expressed in terms of the acoustic pressure scaled by the drop capillary pressure, grows exponentially with respect to twice the acoustic decay constant multiplied by the drop length, with a universal preexponential coefficient. Global rapid aerosolization occurs at a SAW power twice as high, beyond which the wicking rate saturates.

  7. Modulated exponential films generated by surface acoustic waves and their role in liquid wicking and aerosolization at a pinned drop

    NASA Astrophysics Data System (ADS)

    Taller, Daniel; Go, David B.; Chang, Hsueh-Chia

    2013-05-01

    The exponentially decaying acoustic pressure of scattered surface acoustic waves (SAWs) at the contact line of a liquid film pinned to filter paper is shown to sustain a high curvature conic tip with micron-sized modulations whose dimension grows exponentially from the tip. The large negative capillary pressure in the film, necessary for offsetting the large positive acoustic pressure at the contact line, also creates significant negative hydrodynamic pressure and robust wicking action through the paper. An asymptotic analysis of this intricate pressure matching between the quasistatic conic film and bulk drop shows that the necessary SAW power to pump liquid from the filter paper and aerosolize, expressed in terms of the acoustic pressure scaled by the drop capillary pressure, grows exponentially with respect to twice the acoustic decay constant multiplied by the drop length, with a universal preexponential coefficient. Global rapid aerosolization occurs at a SAW power twice as high, beyond which the wicking rate saturates.

  8. Phase sorting wave-particle correlator

    NASA Astrophysics Data System (ADS)

    Kletzing, C. A.; LaBelle, J.; Bounds, S. R.; Dolan, J.; Kaeppler, S. R.; Dombrowski, M.

    2017-02-01

    Wave-particle correlations, particularly of Langmuir waves and electrons, have been the subject of significant interest extending back to the 1970s. Often, these correlations have been simply observing modulation of the electrons at the plasma frequency with no phase resolution. The first phase-resolving correlators were developed at UC Berkeley in the late 1980s and reported by Ergun in the early 1990s. A design is presented which further improves on phase resolution in correlations of Langmuir waves and electrons with phase resolution of 22.5°. In this technique, a phase-locked loop (PLL) is used to lock onto the wave and subdivide the phase. Electrons are sorted on-the-fly as they arrive into the phase bins. Discussed are details of accurate timing, testing, and calibration of this system as well as results from rocket flights in which statistically significant phase correlations have been observed.

  9. Transduction of a bistable inductive generator driven by white and exponentially correlated Gaussian noise

    NASA Astrophysics Data System (ADS)

    Daqaq, Mohammed F.

    2011-05-01

    In this theoretical study, the response of an inductive power generator with a bistable symmetric potential to stationary random environmental excitations is investigated. Both white and Ornstein-Uhlenbeck-type excitations are considered. In the white noise limit, the stationary Fokker-Plank-Kolmagorov equation is solved for the exact joint probability density function (PDF) of the response. The PDF is then used to obtain analytical expressions for the response statistics. It is shown that the expected value of the generator's output power is independent of the potential shape leading to the conclusion that under white noise excitations, bistabilities in the potential do not provide any enhancement over the traditional linear resonant generators which have a single-well potential. In the case of Ornstein-Uhlenbeck (exponentially correlated) noise, an approximate expression for the mean power of the generator which depends on the potential shape, the generator's design parameters and the noise bandwidth and intensity is obtained. It is shown that there exists an optimal potential shape which maximizes the output power. This optimal shape guarantees an optimal escapement frequency between the potential wells which remains constant even as the noise intensity is varied.

  10. Propagating wave correlations in complex systems

    NASA Astrophysics Data System (ADS)

    Creagh, Stephen C.; Gradoni, Gabriele; Hartmann, Timo; Tanner, Gregor

    2017-01-01

    We describe a novel approach for computing wave correlation functions inside finite spatial domains driven by complex and statistical sources. By exploiting semiclassical approximations, we provide explicit algorithms to calculate the local mean of these correlation functions in terms of the underlying classical dynamics. By defining appropriate ensemble averages, we show that fluctuations about the mean can be characterised in terms of classical correlations. We give in particular an explicit expression relating fluctuations of diagonal contributions to those of the full wave correlation function. The methods have a wide range of applications both in quantum mechanics and for classical wave problems such as in vibro-acoustics and electromagnetism. We apply the methods here to simple quantum systems, so-called quantum maps, which model the behaviour of generic problems on Poincaré sections. Although low-dimensional, these models exhibit a chaotic classical limit and share common characteristics with wave propagation in complex structures.

  11. Wave Propagation of Myocardial Stretch: Correlation with Myocardial Stiffness

    PubMed Central

    Pislaru, Cristina; Pellikka, Patricia A.; Pislaru, Sorin V.

    2015-01-01

    The mechanism of flow propagation during diastole in the left ventricle (LV) has been well described. Little is known about the associated waves propagating along the heart wall s. These waves may have a mechanism similar to pulse wave propagation in arteries. The major goal of the study was to evaluate the effect of myocardial stiffness and preload on this wave transmission. Methods Longitudinal late diastolic deformation and wave speed (Vp) of myocardial stretch in the anterior LV wall were measured using sonomicrometry in sixteen pigs. Animals with normal and altered myocardial stiffness (acute myocardial infarction) were studied with and without preload alterations. Elastic modulus estimated from Vp (EVP; Moens-Korteweg equation) was compared to incremental elastic modulus obtained from exponential end -diastolic stress-strain relation (ESS). Myocardial distensibility and α-and β-coefficients of stress-strain relations were calculated. Results Vp was higher at reperfusion compared to baseline (2.6±1.3 m/s vs. 1.3±0.4 m/s; p=0.005) and best correlated with ESS (r 2=0.80, p<0.0001), β-coefficient (r2=0.78, p<0.0001), distensibility (r2=0.47, p=0.005), and wall thickness/diameter ratio (r2=0.42, p=0.009). Elastic moduli (EVP and ESS) were strongly correlated (r2=0.83, p<0.0001). Increasing preload increased Vp and EVP and decreased distensibility. At multivariate analysis, ESS, wall thickness, and end-diastolic and systolic LV pressures were independent predictors of Vp (r2model=0.83, p<0.0001). Conclusions The main determinants of wave propagation of longitudinal myocardial stretch were myocardial stiffness and LV geometry and pressure. This local wave speed could potentially be measured noninvasively by echocardiography. PMID:25193091

  12. Wave propagation of myocardial stretch: correlation with myocardial stiffness.

    PubMed

    Pislaru, Cristina; Pellikka, Patricia A; Pislaru, Sorin V

    2014-01-01

    The mechanism of flow propagation during diastole in the left ventricle (LV) has been well described. Little is known about the associated waves propagating along the heart walls. These waves may have a mechanism similar to pulse wave propagation in arteries. The major goal of the study was to evaluate the effect of myocardial stiffness and preload on this wave transmission. Longitudinal late diastolic deformation and wave speed (Vp) of myocardial stretch in the anterior LV wall were measured using sonomicrometry in 16 pigs. Animals with normal and altered myocardial stiffness (acute myocardial infarction) were studied with and without preload alterations. Elastic modulus estimated from Vp (E VP; Moens-Korteweg equation) was compared to incremental elastic modulus obtained from exponential end-diastolic stress-strain relation (E SS). Myocardial distensibility and α- and β-coefficients of stress-strain relations were calculated. Vp was higher at reperfusion compared to baseline (2.6 ± 1.3 vs. 1.3 ± 0.4 m/s; p = 0.005) and best correlated with E SS (r2 = 0.80, p < 0.0001), β-coefficient (r2 = 0.78, p < 0.0001), distensibility (r2 = 0.47, p = 0.005), and wall thickness/diameter ratio (r2 = 0.42, p = 0.009). Elastic moduli (E VP and E SS) were strongly correlated (r2 = 0.83, p < 0.0001). Increasing preload increased Vp and E VP and decreased distensibility. At multivariate analysis, E SS, wall thickness, and end-diastolic and systolic LV pressures were independent predictors of Vp (r2 model = 0.83, p < 0.0001). In conclusion, the main determinants of wave propagation of longitudinal myocardial stretch were myocardial stiffness and LV geometry and pressure. This local wave speed could potentially be measured noninvasively by echocardiography.

  13. Flow behind an exponential shock wave in a rotational axisymmetric perfect gas with magnetic field and variable density.

    PubMed

    Nath, G; Sahu, P K

    2016-01-01

    A self-similar model for one-dimensional unsteady isothermal and adiabatic flows behind a strong exponential shock wave driven out by a cylindrical piston moving with time according to an exponential law in an ideal gas in the presence of azimuthal magnetic field and variable density is discussed in a rotating atmosphere. The ambient medium is assumed to possess radial, axial and azimuthal component of fluid velocities. The initial density, the fluid velocities and magnetic field of the ambient medium are assumed to be varying with time according to an exponential law. The gas is taken to be non-viscous having infinite electrical conductivity. Solutions are obtained, in both the cases, when the flow between the shock and the piston is isothermal or adiabatic by taking into account the components of vorticity vector. The effects of the variation of the initial density index, adiabatic exponent of the gas and the Alfven-Mach number on the flow-field behind the shock wave are investigated. It is found that the presence of the magnetic field have decaying effects on the shock wave. Also, it is observed that the effect of an increase in the magnetic field strength is more impressive in the case of adiabatic flow than in the case of isothermal flow. The assumption of zero temperature gradient brings a profound change in the density, non-dimensional azimuthal and axial components of vorticity vector distributions in comparison to those in the case of adiabatic flow. A comparison is made between isothermal and adiabatic flows. It is obtained that an increase in the initial density variation index, adiabatic exponent and strength of the magnetic field decrease the shock strength.

  14. Exponential Stability of the Energy of the Wave Equation with Variable Coefficients and a Boundary Distributed Delay

    NASA Astrophysics Data System (ADS)

    Liu, Wenjun

    2014-11-01

    In this paper, we consider a wave equation with space variable coefficients. Due to physical considerations, a distributed delay damping is acted on the part of the boundary. Under suitable assumptions, we prove the exponential stability of the energy based on the use of Riemannian geometry method, the perturbed energy argument, and some observability inequalities. From the applications point of view, our results may provide some qualitative analysis and intuition for the researchers in fields such as engineering, biophysics, and mechanics. And the method is rather general and can be adapted to other evolution systems with variable coefficients (e. g. elasticity plates) as well.

  15. Auto-correlation function and frequency spectrum due to a super-position of uncorrelated exponential pulses

    NASA Astrophysics Data System (ADS)

    Garcia, O. E.; Theodorsen, A.

    2017-03-01

    The auto-correlation function and the frequency power spectral density due to a super-position of uncorrelated exponential pulses are considered. These are shown to be independent of the degree of pulse overlap and thereby the intermittency of the stochastic process. For constant pulse duration and a one-sided exponential pulse shape, the power spectral density has a Lorentzian shape which is flat for low frequencies and a power law at high frequencies. The algebraic tail is demonstrated to result from the discontinuity in the pulse function. For a strongly asymmetric two-sided exponential pulse shape, the frequency spectrum is a broken power law with two scaling regions. In the case of a symmetric pulse shape, the power spectral density is the square of a Lorentzian function. The steep algebraic tail at high frequencies in these cases is demonstrated to follow from the discontinuity in the derivative of the pulse function. A random distribution of pulse durations is shown to result in apparently longer correlation times but has no influence on the asymptotic power law tail of the frequency spectrum. The effect of additional random noise is also discussed, leading to a flat spectrum for high frequencies. The probability density function for the fluctuations is shown to be independent of the distribution of pulse durations. The predictions of this model describe the variety of auto-correlation functions and power spectral densities reported from experimental measurements in the scrape-off layer of magnetically confined plasmas.

  16. Nonsimilar Solution for Shock Waves in a Rotational Axisymmetric Perfect Gas with a Magnetic Field and Exponentially Varying Density

    NASA Astrophysics Data System (ADS)

    Nath, G.; Sinha, A. K.

    2017-01-01

    The propagation of a cylindrical shock wave in an ideal gas in the presence of a constant azimuthal magnetic field with consideration for the axisymmetric rotational effects is investigated. The ambient medium is assumed to have the radial, axial, and azimuthal velocity components. The fluid velocities and density of the ambient medium are assumed to vary according to an exponential law. Nonsimilar solutions are obtained by taking into account the vorticity vector and its components. The dependences of the characteristics of the problem on the Alfven-Mach number and time are obtained. It is shown that the presence of a magnetic field has a decaying effect on the shock wave. The pressure and density are shown to vanish at the inner surface (piston), and hence a vacuum forms at the line of symmetry.

  17. Exponential stabilization of magnetoelastic waves in a Mindlin-Timoshenko plate by localized internal damping

    NASA Astrophysics Data System (ADS)

    Grobbelaar-Van Dalsen, Marié

    2015-08-01

    This article is a continuation of our earlier work in Grobbelaar-Van Dalsen (Z Angew Math Phys 63:1047-1065, 2012) on the polynomial stabilization of a linear model for the magnetoelastic interactions in a two-dimensional electrically conducting Mindlin-Timoshenko plate. We introduce nonlinear damping that is effective only in a small portion of the interior of the plate. It turns out that the model is uniformly exponentially stable when the function , that represents the locally distributed damping, behaves linearly near the origin. However, the use of Mindlin-Timoshenko plate theory in the model enforces a restriction on the region occupied by the plate.

  18. Removing Wave Artifacts from Eddy Correlation Data

    NASA Astrophysics Data System (ADS)

    Neumann, Andreas; Brand, Andreas

    2017-04-01

    The German Wadden Sea is an extensive system of back-barrier tidal basins along the margin of the southern North Sea. Due to their high productivity and the strong retention potential of labile organic carbon high mineralization rates are expected in this system. Since the sediment bed is sandy, the oxygen fluxes across the sediment-water interface (SWI) may be enhanced by strong tidal currents as well as by wind-induced surface waves. In order to measure oxygen fluxes in-situ without disturbance of the sediment, the Eddy Correlation method (ECM) was introduced to aquatic geoscience by Berg et al. (2003). The method is based on correlating turbulent fluctuations of oxygen concentration and vertical velocity measured at high frequency above the SWI. The method integrates over spatial heterogeneities and allows the observation of total benthic oxygen fluxes in complex systems where other methods like flux chamber deployments and oxygen profile measurements in the sediment fail. Therefore, the method should also reflect effects like the enhancement of oxygen fluxes by porewater advection driven by waves and currents over sandy sediments. Unfortunately the ECM suffers from wave contamination due to stirring sensitivity of the electrodes, spatial separation between the oxygen electrode and the location of velocity measurement as well as by a tilt of the measurement setup at the deployment side. In order to correct for this wave contamination we tested the method of spectral reconstruction initially introduced by Bricker and Monismith (2007) for the determination of Reynolds-stresses in wave-affected environments. In short, this method attempts to remove the wave signal from the Power spectral densities of oxygen concentration and vertical velocity fluctuations by cutting off the wave peak in these spectra. The wave contribution to the co-spectrum between both quantities is then reconstructed by assuming that the phasing in the wave band is dominated by the waves. Based

  19. Exponentiated Weibull distribution family under aperture averaging for Gaussian beam waves.

    PubMed

    Barrios, Ricardo; Dios, Federico

    2012-06-04

    Nowadays, the search for a distribution capable of modeling the probability density function (PDF) of irradiance data under all conditions of atmospheric turbulence in the presence of aperture averaging still continues. Here, a family of PDFs alternative to the widely accepted Log-Normal and Gamma-Gamma distributions is proposed to model the PDF of the received optical power in free-space optical communications, namely, the Weibull and the exponentiated Weibull (EW) distribution. Particularly, it is shown how the proposed EW distribution offers an excellent fit to simulation and experimental data under all aperture averaging conditions, under weak and moderate turbulence conditions, as well as for point-like apertures. Another very attractive property of these distributions is the simple closed form expression of their respective PDF and cumulative distribution function.

  20. Coupled-cluster Green's function: Analysis of properties originating in the exponential parametrization of the ground-state wave function

    SciTech Connect

    Peng, Bo; Kowalski, Karol

    2016-12-23

    In this paper we derive basic properties of the Green’s function matrix elements stemming from the exponential coupled cluster (CC) parametrization of the ground-state wave function. We demon- strate that all intermediates used to express retarded (or equivalently, ionized) part of the Green’s function in the ω-representation can be expressed through connected diagrams only. Similar proper- ties are also shared by the first order ω-derivatives of the retarded part of the CC Green’s function. This property can be extended to any order ω-derivatives of the Green’s function. Through the Dyson equation of CC Green’s function, the derivatives of corresponding CC self-energy can be evaluated analytically. In analogy to the CC Green’s function, the corresponding CC self-energy is expressed in terms of connected diagrams only. Moreover, the ionized part of the CC Green’s func- tion satisfies the non-homogeneous linear system of ordinary differential equations, whose solution may be represented in the exponential form. Our analysis can be easily generalized to the advanced part of the CC Green’s function.

  1. Coupled-cluster Green's function: Analysis of properties originating in the exponential parametrization of the ground-state wave function

    NASA Astrophysics Data System (ADS)

    Peng, Bo; Kowalski, Karol

    2016-12-01

    In this paper we derive basic properties of the Green's-function matrix elements stemming from the exponential coupled-cluster (CC) parametrization of the ground-state wave function. We demonstrate that all intermediates used to express the retarded (or, equivalently, ionized) part of the Green's function in the ω representation can be expressed only through connected diagrams. Similar properties are also shared by the first-order ω derivative of the retarded part of the CC Green's function. Moreover, the first-order ω derivative of the CC Green's function can be evaluated analytically. This result can be generalized to any order of ω derivatives. Through the Dyson equation, derivatives of the corresponding CC self-energy operator can be evaluated analytically. In analogy to the CC Green's function, the corresponding CC self-energy operator can be represented by connected terms. Our analysis can easily be generalized to the advanced part of the CC Green's function.

  2. Unsteady isothermal flow behind a magnetogasdynamic shock wave in a self-gravitating gas with exponentially varying density

    NASA Astrophysics Data System (ADS)

    Nath, G.

    2014-06-01

    The propagation of spherical (or cylindrical) shock wave in an ideal gas with or without gravitational effects in the presence of a constant azimuthal magnetic field is investigated. Non-similarity solutions are obtained for isothermal flow between the shock and the piston. The numerical solutions are obtained using the Runge-Kutta method of the fourth order. The density of the gas is assumed to be varying and obeying an exponential law. The shock wave moves with variable velocity, and the total energy of the wave is non-constant and varies with time. The effects of variation of the Alfven-Mach number, gravitational parameter and time are obtained. It is investigated that the presence of gravitational field reduces the effect of the magnetic field. Also, the presence of gravitational field increases the compressibility of the medium, due to which it is compressed and, therefore, the distance between the inner contact surface and the shock surface is reduced. The shock waves in conducting perfect gas can be important for description of shocks in supernova explosions, in the study of central part of star burst galaxies, nuclear explosion, rupture of a pressurized vessel and explosion in the ionosphere. Other potential applications of this study include analysis of data from exploding wire experiments and cylindrically symmetric hypersonic flow problems associated with meteors or re-entry vehicles etc. A comparison is made between the solutions in the cases of the gravitating and the non-gravitating medium with or without magnetic field. The obtained solutions are applicable for arbitrary values of time.

  3. Intensity correlation of orthogonally crossed speckle waves

    NASA Astrophysics Data System (ADS)

    Okamoto, Takashi

    2006-05-01

    The statistical properties of three-dimensional laser speckles formed with orthogonally crossed multiple speckle waves are studied theoretically. The analytical expressions for the first and second order statistics of the crossed speckle fields are derived, and the theoretical results are verified by means of computer simulations. In the simulations, fractal speckles are also analyzed to examine the self-similar properties of the resulting field. The correlation properties of clipped speckles are investigated to explore the possibility of fabricating fractal random media by means of photopolymerization for three-dimensional patterning of micro structures.

  4. N2O production rate of an enriched ammonia-oxidising bacteria culture exponentially correlates to its ammonia oxidation rate.

    PubMed

    Law, Yingyu; Ni, Bing-Jie; Lant, Paul; Yuan, Zhiguo

    2012-06-15

    The relationship between the ammonia oxidation rate (AOR) and nitrous oxide production rate (N(2)OR) of an enriched ammonia-oxidising bacteria (AOB) culture was investigated. The AOB culture was enriched in a nitritation system fed with synthetic anaerobic digester liquor. The AOR was controlled by adjusting the dissolved oxygen (DO) and pH levels and also by varying the initial ammonium (NH(4)(+)) concentration in batch experiments. Tests were also performed directly on the parent reactor where a stepwise decrease/increase in DO was implemented to alter AOR. The experimental data indicated a clear exponential relationship between the biomass specific N(2)OR and AOR. Four metabolic models were used to analyse the experimental data. The metabolic model formulated based on aerobic N(2)O production from the decomposition of nitrosyl radical (NOH) predicted the exponential correlation observed experimentally. The experimental data could not be reproduced by models developed on the basis of N(2)O production through nitrite (NO(2)(-)) and nitric oxide (NO) reduction by AOB.

  5. Propagation of a strong spherical shock wave in a gravitating or non-gravitating dusty gas with exponentially varying density

    NASA Astrophysics Data System (ADS)

    Nath, G.; Vishwakarma, J. P.

    2016-06-01

    The propagation of a strong spherical shock wave in a dusty gas with or without self-gravitational effects is investigated in the case of isothermal and adiabatic flows. The dusty gas is assumed to be a mixture of small solid particles and perfect gas. The equilibrium flow conditions are assumed to be maintained, and the density of the mixture is assumed to be varying and obeying an exponential law. Non-similarity solutions are obtained and the effects of variations of the mass concentration of solid particles in the mixture and the ratio of the density of solid particles to the initial density of the gas, and the presence of self-gravitational field on the flow variables are investigated at given times. Our analysis reveals that after inclusion of gravitational field effects surprisingly the shock strength increases and remarkable differences are found in the distribution of flow variables. An increase in time also, increases the shock strength. Further, it is investigated that the consideration of isothermal flow increases the shock strength, and removes the singularity in the density distribution. Also, the presence of gravitational field increases the compressibility of the medium, due to which it is compressed and therefore the distance between the inner contact surface and the shock surface is reduced. The shock waves in self-gravitating dusty gas can be important for description of shocks in supernova explosions, in the study of central part of star burst galaxies, star formation and shocks in stellar explosion, nuclear explosion, in industry, rupture of a pressurized vessel and explosion in the ionosphere. Other potential applications of this study include analysis of data from exploding wire experiments and cylindrically symmetric hypersonic flow problems associated with meteors or re-entry of vehicles etc. A comparison is made between the solutions in the cases of the gravitating and the non-gravitating media. The obtained solutions are applicable for

  6. Stochastic epigenetic mutations (DNA methylation) increase exponentially in human aging and correlate with X chromosome inactivation skewing in females.

    PubMed

    Gentilini, Davide; Garagnani, Paolo; Pisoni, Serena; Bacalini, Maria Giulia; Calzari, Luciano; Mari, Daniela; Vitale, Giovanni; Franceschi, Claudio; Di Blasio, Anna Maria

    2015-08-01

    In this study we applied a new analytical strategy to investigate the relations between stochastic epigenetic mutations (SEMs) and aging. We analysed methylation levels through the Infinium HumanMethylation27 and HumanMethylation450 BeadChips in a population of 178 subjects ranging from 3 to 106 years. For each CpG probe, epimutated subjects were identified as the extreme outliers with methylation level exceeding three times interquartile ranges the first quartile (Q1-(3 x IQR)) or the third quartile (Q3+(3 x IQR)). We demonstrated that the number of SEMs was low in childhood and increased exponentially during aging. Using the HUMARA method, skewing of X chromosome inactivation (XCI) was evaluated in heterozygotes women. Multivariate analysis indicated a significant correlation between log(SEMs) and degree of XCI skewing after adjustment for age (β = 0.41; confidence interval: 0.14, 0.68; p-value = 0.0053). The PATH analysis tested the complete model containing the variables: skewing of XCI, age, log(SEMs) and overall CpG methylation. After adjusting for the number of epimutations we failed to confirm the well reported correlation between skewing of XCI and aging. This evidence might suggest that the known correlation between XCI skewing and aging could not be a direct association but mediated by the number of SEMs.

  7. Temporal binning of time-correlated single photon counting data improves exponential decay fits and imaging speed

    PubMed Central

    Walsh, Alex J.; Sharick, Joe T.; Skala, Melissa C.; Beier, Hope T.

    2016-01-01

    Time-correlated single photon counting (TCSPC) enables acquisition of fluorescence lifetime decays with high temporal resolution within the fluorescence decay. However, many thousands of photons per pixel are required for accurate lifetime decay curve representation, instrument response deconvolution, and lifetime estimation, particularly for two-component lifetimes. TCSPC imaging speed is inherently limited due to the single photon per laser pulse nature and low fluorescence event efficiencies (<10%) required to reduce bias towards short lifetimes. Here, simulated fluorescence lifetime decays are analyzed by SPCImage and SLIM Curve software to determine the limiting lifetime parameters and photon requirements of fluorescence lifetime decays that can be accurately fit. Data analysis techniques to improve fitting accuracy for low photon count data were evaluated. Temporal binning of the decays from 256 time bins to 42 time bins significantly (p<0.0001) improved fit accuracy in SPCImage and enabled accurate fits with low photon counts (as low as 700 photons/decay), a 6-fold reduction in required photons and therefore improvement in imaging speed. Additionally, reducing the number of free parameters in the fitting algorithm by fixing the lifetimes to known values significantly reduced the lifetime component error from 27.3% to 3.2% in SPCImage (p<0.0001) and from 50.6% to 4.2% in SLIM Curve (p<0.0001). Analysis of nicotinamide adenine dinucleotide–lactate dehydrogenase (NADH-LDH) solutions confirmed temporal binning of TCSPC data and a reduced number of free parameters improves exponential decay fit accuracy in SPCImage. Altogether, temporal binning (in SPCImage) and reduced free parameters are data analysis techniques that enable accurate lifetime estimation from low photon count data and enable TCSPC imaging speeds up to 6x and 300x faster, respectively, than traditional TCSPC analysis. PMID:27446663

  8. Microscopic model of quantum butterfly effect: Out-of-time-order correlators and traveling combustion waves

    NASA Astrophysics Data System (ADS)

    Aleiner, Igor L.; Faoro, Lara; Ioffe, Lev B.

    2016-12-01

    We extend the Keldysh technique to enable the computation of out-of-time order correlators such as < O(t) O ˜ (0) O(t) O ˜ (0) > . We show that the behavior of these correlators is described by equations that display initially an exponential instability which is followed by a linear propagation of the decoherence between two initially identically copies of the quantum many body systems with interactions. At large times the decoherence propagation (quantum butterfly effect) is described by a diffusion equation with non-linear dissipation known in the theory of combustion waves. The solution of this equation is a propagating non-linear wave moving with constant velocity despite the diffusive character of the underlying dynamics. Our general conclusions are illustrated by the detailed computations for the specific models describing the electrons interacting with bosonic degrees of freedom (phonons, two-level-systems etc.) or with each other.

  9. Human Cortical Traveling Waves: Dynamical Properties and Correlations with Responses

    PubMed Central

    Patten, Timothy M.; Rennie, Christopher J.; Robinson, Peter A.; Gong, Pulin

    2012-01-01

    The spatiotemporal behavior of human EEG oscillations is investigated. Traveling waves in the alpha and theta ranges are found to be common in both prestimulus and poststimulus EEG activity. The dynamical properties of these waves, including their speeds, directions, and durations, are systematically characterized for the first time, and the results show that there are significant changes of prestimulus spontaneous waves in the presence of an external stimulus. Furthermore, the functional relevance of these waves is examined by studying how they are correlated with reaction times on a single trial basis; prestimulus alpha waves traveling in the frontal-to-occipital direction are found to be most correlated to reaction speeds. These findings suggest that propagating waves of brain oscillations might be involved in mediating long-range interactions between widely distributed parts of human cortex. PMID:22675555

  10. Human cortical traveling waves: dynamical properties and correlations with responses.

    PubMed

    Patten, Timothy M; Rennie, Christopher J; Robinson, Peter A; Gong, Pulin

    2012-01-01

    The spatiotemporal behavior of human EEG oscillations is investigated. Traveling waves in the alpha and theta ranges are found to be common in both prestimulus and poststimulus EEG activity. The dynamical properties of these waves, including their speeds, directions, and durations, are systematically characterized for the first time, and the results show that there are significant changes of prestimulus spontaneous waves in the presence of an external stimulus. Furthermore, the functional relevance of these waves is examined by studying how they are correlated with reaction times on a single trial basis; prestimulus alpha waves traveling in the frontal-to-occipital direction are found to be most correlated to reaction speeds. These findings suggest that propagating waves of brain oscillations might be involved in mediating long-range interactions between widely distributed parts of human cortex.

  11. Quench-induced correlation waves, and quantum grenades

    NASA Astrophysics Data System (ADS)

    Corson, John; Bohn, John

    2016-05-01

    We investigate the wave packet dynamics of a pair of particles that undergoes a rapid change of scattering length. Such quenches have recently become experimentally feasible with fast magnetic-field ramps and optical switching in the vicinity of a Feshbach resonance. The short-range interactions are modelled in the zero-range limit, where the quench is accomplished by switching the boundary condition of the wave function at vanishing particle separation. This generates a correlation wave that propagates rapidly to nonzero particle separations. We have derived universal, analytic results for this process that lead to a simple phase-space picture of quench-induced scattering. Intuitively, the strength of the correlation wave relates to the initial contact of the system. A natural consequence is that the waves are significant when the quench dissociates, at least partially, a bound state. These waves can propagate with high energy from one lattice site to another, potentially triggering highly non-equilibrium dynamics.

  12. Approximate models for the study of exponential changed quantities: Application on the plasma waves growth rate or damping

    NASA Astrophysics Data System (ADS)

    Xaplanteris, C. L.; Xaplanteris, L. C.; Leousis, D. P.

    2014-03-01

    Many physical phenomena that concern the research these days are basically complicated because of being multi-parametric. Thus, their study and understanding meets with big if not unsolved obstacles. Such complicated and multi-parametric is the plasmatic state as well, where the plasma and the physical quantities that appear along with it have chaotic behavior. Many of those physical quantities change exponentially and at most times they are stabilized by presenting wavy behavior. Mostly in the transitive state rather than the steady state, the exponentially changing quantities (Growth, Damping etc) depend on each other in most cases. Thus, it is difficult to distinguish the cause from the result. The present paper attempts to help this difficult study and understanding by proposing mathematical exponential models that could relate with the study and understanding of the plasmatic wavy instability behavior. Such instabilities are already detected, understood and presented in previous publications of our laboratory. In other words, our new contribution is the study of the already known plasmatic quantities by using mathematical models (modeling and simulation). These methods are both useful and applicable in the chaotic theory. In addition, our ambition is to also conduct a list of models useful for the study of chaotic problems, such as those that appear into the plasma, starting with this paper's examples.

  13. Approximate models for the study of exponential changed quantities: Application on the plasma waves growth rate or damping

    SciTech Connect

    Xaplanteris, C. L.; Xaplanteris, L. C.; Leousis, D. P.

    2014-03-15

    Many physical phenomena that concern the research these days are basically complicated because of being multi-parametric. Thus, their study and understanding meets with big if not unsolved obstacles. Such complicated and multi-parametric is the plasmatic state as well, where the plasma and the physical quantities that appear along with it have chaotic behavior. Many of those physical quantities change exponentially and at most times they are stabilized by presenting wavy behavior. Mostly in the transitive state rather than the steady state, the exponentially changing quantities (Growth, Damping etc) depend on each other in most cases. Thus, it is difficult to distinguish the cause from the result. The present paper attempts to help this difficult study and understanding by proposing mathematical exponential models that could relate with the study and understanding of the plasmatic wavy instability behavior. Such instabilities are already detected, understood and presented in previous publications of our laboratory. In other words, our new contribution is the study of the already known plasmatic quantities by using mathematical models (modeling and simulation). These methods are both useful and applicable in the chaotic theory. In addition, our ambition is to also conduct a list of models useful for the study of chaotic problems, such as those that appear into the plasma, starting with this paper's examples.

  14. Correlation equation for the marine drag coefficient and wave steepness

    NASA Astrophysics Data System (ADS)

    Foreman, Richard J.; Emeis, Stefan

    2012-09-01

    This work questions, starting from dimensional considerations, the generality of the belief that the marine drag coefficient levels off with increasing wind speed. Dimensional analysis shows that the drag coefficient scales with the wave steepness as opposed to a wave-age scaling. A correlation equation is employed here that uses wave steepness scaling at low aspect ratios (inverse wave steepnesses) and a constant drag coefficient at high aspect ratios. Invoked in support of the correlation are measurements sourced from the literature and at the FINO1 platform in the North Sea. The correlation equation is then applied to measurements recorded from buoys during the passage of hurricanes Rita, Katrina (2005) and Ike (2008). Results show that the correlation equation anticipates the expected levelling off in deeper water, but a drag coefficient more consistent with a Charnock type relation is also possible in more shallower water. Some suggestions are made for proceeding with a higher-order analysis than that conducted here.

  15. Correlation between the change in the kinetics of the ribosomal RNA rrnB P2 promoter and the transition from lag to exponential phase with Pseudomonas fluorescens.

    PubMed

    McKellar, Robin C

    2008-01-15

    Developing accurate mathematical models to describe the pre-exponential lag phase in food-borne pathogens presents a considerable challenge to food microbiologists. While the growth rate is influenced by current environmental conditions, the lag phase is affected in addition by the history of the inoculum. A deeper understanding of physiological changes taking place during the lag phase would improve accuracy of models, and in earlier studies a strain of Pseudomonas fluorescens containing the Tn7-luxCDABE gene cassette regulated by the rRNA promoter rrnB P2 was used to measure the influence of starvation, growth temperature and sub-lethal heating on promoter expression and subsequent growth. The present study expands the models developed earlier to include a model which describes the change from exponential to linear increase in promoter expression with time when the exponential phase of growth commences. A two-phase linear model with Poisson weighting was used to estimate the lag (LPDLin) and the rate (RLin) for this linear increase in bioluminescence. The Spearman rank correlation coefficient (r=0.830) between the LPDLin and the growth lag phase (LPDOD) was extremely significant (Pexponential growth. These results suggest that models based on measurable physiological changes in the cells can be useful in predicting the behaviour of food-borne pathogens.

  16. Correlation techniques and measurements of wave-height statistics

    NASA Technical Reports Server (NTRS)

    Guthart, H.; Taylor, W. C.; Graf, K. A.; Douglas, D. G.

    1972-01-01

    Statistical measurements of wave height fluctuations have been made in a wind wave tank. The power spectral density function of temporal wave height fluctuations evidenced second-harmonic components and an f to the minus 5th power law decay beyond the second harmonic. The observations of second harmonic effects agreed very well with a theoretical prediction. From the wave statistics, surface drift currents were inferred and compared to experimental measurements with satisfactory agreement. Measurements were made of the two dimensional correlation coefficient at 15 deg increments in angle with respect to the wind vector. An estimate of the two-dimensional spatial power spectral density function was also made.

  17. A matrix-exponential decomposition based time-domain method for calculating the defect states of scalar waves in two-dimensional periodic structures

    NASA Astrophysics Data System (ADS)

    Su, Xiao-Xing; Wang, Yue-Sheng; Zhang, Chuanzeng

    2017-05-01

    A time-domain method for calculating the defect states of scalar waves in two-dimensional (2D) periodic structures is proposed. In the time-stepping process of the proposed method, the column vector containing the spatially sampled field values is updated by multiplying it with an iteration matrix, which is written in a matrix-exponential form. The matrix-exponential is first computed by using the Suzuki's decomposition based technique of the fourth order, in which the Floquet-Bloch boundary conditions are incorporated. The obtained iteration matrix is then squared to enlarge the time-step that can be used in the time-stepping process (namely, the squaring technique), and the small nonzero elements in the iteration matrix is finally pruned to improve the sparse structure of the matrix (namely, the pruning technique). The numerical examples of the super-cell calculations for 2D defect-containing phononic crystal structures show that, the fourth order decomposition based technique for the matrix-exponential computation is much more efficient than the frequently used precise integration technique (PIT) if the PIT is of an order greater than 2. Although it is not unconditionally stable, the proposed time-domain method is particularly efficient for the super-cell calculations of the defect states in a 2D periodic structure containing a defect with a wave speed much higher than those of the background materials. For this kind of defect-containing structures, the time-stepping process can run stably for a sufficiently large number of the time-steps with a time-step much larger than the Courant-Friedrichs-Lewy (CFL) upper limit, and consequently the overall efficiency of the proposed time-domain method can be significantly higher than that of the conventional finite-difference time-domain (FDTD) method. Some physical interpretations on the properties of the band structures and the defect states of the calculated periodic structures are also presented.

  18. Correlation between PLD repair capacity and the survival curve of human fibroblasts in exponential growth phase: analysis in terms of several parameters

    SciTech Connect

    Fertil, B.; Deschavanne, P.J.; Debieu, D.; Malaise, E.P.

    1988-10-01

    Published data on the in vitro radiosensitivity of 46 nontransformed fibroblasts of different genetic origins studied in plateau phase with immediate or delayed plating were used to investigate to what extent potentially lethal damage repair capacity is related to intrinsic radiosensitivity (i.e., irradiated in exponential growth phase). While most of the survival curve analysis is conducted in terms of D0, Dq, and the mean inactivation dose D, some of the data are also discussed in terms of the linear-quadratic model parameter alpha. Using D it is shown that: (i) the radiosensitivity of human fibroblasts in exponential growth phase does not significantly differ from that of plateau-phase fibroblasts with immediate plating; (ii) the radiosensitivity of plateau-phase cells with delayed plating is correlated to the radiosensitivity of cells with immediate plating: the more radioresistant the cell strain in exponential growth phase, the higher its repair capacity; (iii) the repair capacity of the cell strains is related to their genetic origin. In conclusion, we suggest that the survival curve of growing cells depends on the repair capacity of the cells.

  19. Shear wave arrival time estimates correlate with local speckle pattern.

    PubMed

    Mcaleavey, Stephen A; Osapoetra, Laurentius O; Langdon, Jonathan

    2015-12-01

    We present simulation and phantom studies demonstrating a strong correlation between errors in shear wave arrival time estimates and the lateral position of the local speckle pattern in targets with fully developed speckle. We hypothesize that the observed arrival time variations are largely due to the underlying speckle pattern, and call the effect speckle bias. Arrival time estimation is a key step in quantitative shear wave elastography, performed by tracking tissue motion via cross-correlation of RF ultrasound echoes or similar methods. Variations in scatterer strength and interference of echoes from scatterers within the tracking beam result in an echo that does not necessarily describe the average motion within the beam, but one favoring areas of constructive interference and strong scattering. A swept-receive image, formed by fixing the transmit beam and sweeping the receive aperture over the region of interest, is used to estimate the local speckle pattern. Metrics for the lateral position of the speckle are found to correlate strongly (r > 0.7) with the estimated shear wave arrival times both in simulations and in phantoms. Lateral weighting of the swept-receive pattern improved the correlation between arrival time estimates and speckle position. The simulations indicate that high RF echo correlation does not equate to an accurate shear wave arrival time estimate-a high correlation coefficient indicates that motion is being tracked with high precision, but the location tracked is uncertain within the tracking beam width. The presence of a strong on-axis speckle is seen to imply high RF correlation and low bias. The converse does not appear to be true-highly correlated RF echoes can still produce biased arrival time estimates. The shear wave arrival time bias is relatively stable with variations in shear wave amplitude and sign (-20 μm to 20 μm simulated) compared with the variation with different speckle realizations obtained along a given tracking

  20. Shear Wave Arrival Time Estimates Correlate with Local Speckle Pattern

    PubMed Central

    McAleavey, Stephen A.; Osapoetra, Laurentius O.; Langdon, Jonathan

    2016-01-01

    We present simulation and phantom studies demonstrating a strong correlation between errors in shear wave arrival time estimates and the lateral position of the local speckle pattern in targets with fully developed speckle. We hypothesize that the observed arrival time variations are largely due to the underlying speckle pattern, and call the effect speckle bias. Arrival time estimation is a key step in quantitative shear wave elastography, performed by tracking tissue motion via cross correlation of RF ultrasound echoes or similar methods. Variations in scatterer strength and interference of echoes from scatterers within the tracking beam result in an echo that does not necessarily describe the average motion within the beam, but one favoring areas of constructive interference and strong scattering. A swept-receive image, formed by fixing the transmit beam and sweeping the receive aperture over the region of interest, is used to estimate the local speckle pattern. Metrics for the lateral position of the speckle are found to correlate strongly (r>0.7) with the estimated shear wave arrival times both in simulations and in phantoms. Lateral weighting of the swept-receive pattern improved the correlation between arrival time estimates and speckle position. The simulations indicate that high RF echo correlation does not equate to an accurate shear wave arrival time estimate – a high correlation coefficient indicates that motion is being tracked with high precision, but the location tracked is uncertain within the tracking beam width. The presence of a strong on-axis speckle is seen to imply high RF correlation and low bias. The converse does not appear to be true – highly correlated RF echoes can still produce biased arrival time estimates. The shear wave arrival time bias is relatively stable with variations in shear wave amplitude and sign (−20 μm to 20 μm simulated) compared to the variation with different speckle realizations obtained along a given tracking

  1. Cross-correlation search for periodic gravitational waves

    SciTech Connect

    Dhurandhar, Sanjeev; Mukhopadhyay, Himan; Krishnan, Badri; Whelan, John T.

    2008-04-15

    In this paper we study the use of cross correlations between multiple gravitational wave (GW) data streams for detecting long-lived periodic signals. Cross-correlation searches between data from multiple detectors have traditionally been used to search for stochastic GW signals, but recently they have also been used in directed searches for periodic GWs. Here we further adapt the cross-correlation statistic for periodic GW searches by taking into account both the nonstationarity and the long-term-phase coherence of the signal. We study the statistical properties and sensitivity of this search and its relation to existing periodic wave searches, and describe the precise way in which the cross-correlation statistic interpolates between semicoherent and fully coherent methods. Depending on the maximum duration over which we wish to preserve phase coherence, the cross-correlation statistic can be tuned to go from a standard cross-correlation statistic using data from distinct detectors, to the semicoherent time-frequency methods with increasing coherent time baselines, and all the way to a full coherent search. This leads to a unified framework for studying periodic wave searches and can be used to make informed trade-offs between computational cost, sensitivity, and robustness against signal uncertainties.

  2. Exponentiating Higgs

    NASA Astrophysics Data System (ADS)

    Matone, Marco

    2017-09-01

    We consider two related formulations for mass generation in the U (1) Higgs-Kibble model and in the Standard Model (SM). In the first formulation there are no scalar self-interactions and, in the case of the SM, the formulation is related to the normal subgroup of G = SU (3) × SU (2) × U (1), generated by (e 2 πi / 3 I , - I ,e πi / 3) ∈ G, that acts trivially on all the fields of the SM. The key step of our construction is to relax the non-negative definiteness condition for the Higgs field due to the polar decomposition. This solves several stringent problems, that we will shortly review, both at the non-perturbative and perturbative level. We will show that the usual polar decomposition of the complex scalar doublet Φ should be done with U ∈ SU (2) /Z2 ≃ SO (3), where Z2 is the group generated by -I, and with the Higgs field ϕ ∈ R rather than ϕ ∈R≥0. As a byproduct, the investigation shows how Elitzur theorem may be avoided in the usual formulation of the SM. It follows that the simplest lagrangian density for the Higgs mechanism has the standard kinetic term in addition to the mass term, with the right sign, and to a linear term in ϕ. The other model concerns the scalar theories with normal ordered exponential interactions. The remarkable property of these theories is that for D > 2 the purely scalar sector corresponds to a free theory.

  3. Strong correlations generically protect d -wave superconductivity against disorder

    NASA Astrophysics Data System (ADS)

    Tang, Shao; Dobrosavljević, V.; Miranda, E.

    2016-05-01

    We address the question of why strongly correlated d -wave superconductors, such as the cuprates, prove to be surprisingly robust against the introduction of nonmagnetic impurities. We show that, very generally, both the pair-breaking and the normal state transport scattering rates are significantly suppressed by strong correlations effects arising in the proximity to a Mott insulating state. We also show that the correlation-renormalized scattering amplitude is generically enhanced in the forward direction, an effect which was previously often ascribed to the specific scattering by charged impurities outside the copper-oxide planes.

  4. Ballistic quench-induced correlation waves in ultracold gases

    NASA Astrophysics Data System (ADS)

    Corson, John P.; Bohn, John L.

    2016-08-01

    We investigate the wave-packet dynamics of a pair of particles that undergoes a rapid change of scattering length. The short-range interactions are modeled in the zero-range limit, where the quench is accomplished by switching the boundary condition of the wave function at vanishing particle separation. This generates a correlation wave that propagates rapidly to nonzero particle separations. We have derived universal, analytic results for this process that lead to a simple phase-space picture of the quench-induced scattering. Intuitively, the strength of the correlation wave relates to the initial contact of the system. We find that, in one spatial dimension, the k-4 tail of the momentum distribution contains a ballistic contribution that does not originate from short-range pair correlations, and a similar conclusion can hold in other dimensionalities depending on the quench protocol. We examine the resultant quench-induced transport in an optical lattice in one dimension, and a semiclassical treatment is found to give quantitatively accurate estimates for the transport probabilities.

  5. Correlations of πN partial waves for multireaction analyses

    DOE PAGES

    Doring, M.; Revier, J.; Ronchen, D.; ...

    2016-06-15

    In the search for missing baryonic resonances, many analyses include data from a variety of pion- and photon-induced reactions. For elastic πN scattering, however, usually the partial waves of the SAID (Scattering Analysis Interactive Database) or other groups are fitted, instead of data. We provide the partial-wave covariance matrices needed to perform correlated χ2 fits, in which the obtained χ2 equals the actual χ2 up to nonlinear and normalization corrections. For any analysis relying on partial waves extracted from elastic pion scattering, this is a prerequisite to assess the significance of resonance signals and to assign any uncertainty on results.more » Lastly, the influence of systematic errors is also considered.« less

  6. Optimization of Quantum Correlation in Cascaded Four-Wave Mixing

    NASA Astrophysics Data System (ADS)

    Feng, Jingliang; Jing, Jietai

    2017-03-01

    We propose a measurement strategy that can be used to optimize quantum correlation for a cascaded four-wave mixing (FWM) structure. By calculating the covariance matrix of a cascaded FWM structure, we can get all the correlations between any two parties in the outputs. We then calculate the eigenvalues and corresponding eigenmodes of the covariance matrix to find the squeezing degrees of the squeezed modes. Our theoretical model can explain our previous experimental results very well and is useful to optimize the squeezing degree in the cascaded FWM structure.

  7. Hydrodynamic Waves and Correlation Functions in Dusty Plasmas

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, A.; Wang, Xiaogang

    1997-11-01

    A hydrodynamic description of strongly coupled dusty plasmas is given when physical quantities vary slowly in space and time and the system can be assumed to be in local thermodynamic equilibrium. The linear waves in such a system are analyzed. In particular, a dispersion equation is derived for low-frequency dust acoustic waves, including collisional damping effects, and compared with experimental results. The linear response of the system is calculated from the fluctuation-dissipation theorem and the hydrodynamic equations. The requirement that these two calculations coincide constrains the particle correlation function for slowly varying perturbations [L. P. Kadanoff and P. C. Martin, Ann. Phys. 24, 419 (1963)]. It is shown that in the presence of the slow dust-acoustic waves, the dust auto-correlation function is of the Debye-Hekel form and the shielding distance is the dust Debye length. In the short-wavelength regime, an integral equation is derived from kinetic theory and solved numerically to yield particle correlation functions that display ``liquid-like'' behavior and have been observed experimentally [R. A.. Quinn, C. Cui, J. Goree, J. B. Pieper, H. Thomas and G. E. Morfill, Phys. Rev. E 53, R2049 (1996)].

  8. Viscosity, Shear Waves and Atomic Level Stress Correlations

    NASA Astrophysics Data System (ADS)

    Levashov, Valentin; Morris, James; Egami, Takeshi

    2011-03-01

    The Green-Kubo equation relates the macroscopic stress-stress correlation function to a liquid's viscosity. The concept of the atomic level stresses allows the macroscopic stress-stress correlation function in the equation to be expressed in terms of the space/time correlations between the atomic level stress-stress correlation functions. Molecular dynamics studies show surprisingly long spatial extension of stress-stress correlations and also longitudinal and transverse waves propagating in liquids over ranges exceeding the system size. The results reveal that the range of propagation of shear waves corresponds to the range of distances relevant for viscosity. Thus our results show that viscosity is a fundamentally non-local quantity. We also show that periodic boundary conditions play very non-trivial, previously undiscussed, role in molecular dynamics simulations effectively masking the long range nature of viscosity. This work was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences.

  9. Strongly correlated nature of d-wave superconductivity in cuprates

    NASA Astrophysics Data System (ADS)

    Yokoyama, H.; Tamura, S.; Miyagawa, T.; Kobayashi, K.; Ogata, M.

    With the high-Tc cuprates in mind, properties of correlated d-wave superconducting (SC) states are studied for a Hubbard model on square lattices with a diagonal transfer (t-t'-U model), using a variational Monte Carlo method. We employ a simple wave function, which includes crucial parameters, in particular, a doublon-holon (D-H) binding factor important for correlated SC and normal states as doped Mott insulators. We first check that the range of dominant superconductivity is limited to a strongly correlated regime (U>W, U: onsite correlation strength, W: band width), and coincides with the effective range of the D-H binding factors. In this range of U/t and δ (doping rate), holons (in hole-doped cases) are classified into two types: doped holons and ones created as D-H pairs. Only the former holons participate in current, whereas the latter contribute to singlet-pair formation. Next, we show that the SC properties undergo a crossover at U=Uco∼W. For UUco (the regime of cuprates), a new idea is needed to understand the peculiar SC behavior.

  10. Quantum correlation measurements in interferometric gravitational-wave detectors

    NASA Astrophysics Data System (ADS)

    Martynov, D. V.; Frolov, V. V.; Kandhasamy, S.; Izumi, K.; Miao, H.; Mavalvala, N.; Hall, E. D.; Lanza, R.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Adams, C.; Adhikari, R. X.; Anderson, S. B.; Ananyeva, A.; Appert, S.; Arai, K.; Aston, S. M.; Ballmer, S. W.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Bartos, I.; Batch, J. C.; Bell, A. S.; Betzwieser, J.; Billingsley, G.; Birch, J.; Biscans, S.; Biwer, C.; Blair, C. D.; Bork, R.; Brooks, A. F.; Ciani, G.; Clara, F.; Countryman, S. T.; Cowart, M. J.; Coyne, D. C.; Cumming, A.; Cunningham, L.; Danzmann, K.; Da Silva Costa, C. F.; Daw, E. J.; DeBra, D.; DeRosa, R. T.; DeSalvo, R.; Dooley, K. L.; Doravari, S.; Driggers, J. C.; Dwyer, S. E.; Effler, A.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fair, H.; Fernández Galiana, A.; Fisher, R. P.; Fritschel, P.; Fulda, P.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Goetz, E.; Goetz, R.; Gras, S.; Gray, C.; Grote, H.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hammond, G.; Hanks, J.; Hanson, J.; Hardwick, T.; Harry, G. M.; Heintze, M. C.; Heptonstall, A. W.; Hough, J.; Jones, R.; Karki, S.; Kasprzack, M.; Kaufer, S.; Kawabe, K.; Kijbunchoo, N.; King, E. J.; King, P. J.; Kissel, J. S.; Korth, W. Z.; Kuehn, G.; Landry, M.; Lantz, B.; Lockerbie, N. A.; Lormand, M.; Lundgren, A. P.; MacInnis, M.; Macleod, D. M.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martin, I. W.; Mason, K.; Massinger, T. J.; Matichard, F.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McIntyre, G.; McIver, J.; Mendell, G.; Merilh, E. L.; Meyers, P. M.; Miller, J.; Mittleman, R.; Moreno, G.; Mueller, G.; Mullavey, A.; Munch, J.; Nuttall, L. K.; Oberling, J.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ottaway, D. J.; Overmier, H.; Palamos, J. R.; Paris, H. R.; Parker, W.; Pele, A.; Penn, S.; Phelps, M.; Pierro, V.; Pinto, I.; Principe, M.; Prokhorov, L. G.; Puncken, O.; Quetschke, V.; Quintero, E. A.; Raab, F. J.; Radkins, H.; Raffai, P.; Reid, S.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Roma, V. J.; Romie, J. H.; Rowan, S.; Ryan, K.; Sadecki, T.; Sanchez, E. J.; Sandberg, V.; Savage, R. L.; Schofield, R. M. S.; Sellers, D.; Shaddock, D. A.; Shaffer, T. J.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sigg, D.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Sorazu, B.; Staley, A.; Strain, K. A.; Tanner, D. B.; Taylor, R.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Torrie, C. I.; Traylor, G.; Vajente, G.; Valdes, G.; van Veggel, A. A.; Vecchio, A.; Veitch, P. J.; Venkateswara, K.; Vo, T.; Vorvick, C.; Walker, M.; Ward, R. L.; Warner, J.; Weaver, B.; Weiss, R.; Weßels, P.; Willke, B.; Wipf, C. C.; Worden, J.; Wu, G.; Yamamoto, H.; Yancey, C. C.; Yu, Hang; Yu, Haocun; Zhang, L.; Zucker, M. E.; Zweizig, J.; LSC Instrument Authors

    2017-04-01

    Quantum fluctuations in the phase and amplitude quadratures of light set limitations on the sensitivity of modern optical instruments. The sensitivity of the interferometric gravitational-wave detectors, such as the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO), is limited by quantum shot noise, quantum radiation pressure noise, and a set of classical noises. We show how the quantum properties of light can be used to distinguish these noises using correlation techniques. Particularly, in the first part of the paper we show estimations of the coating thermal noise and gas phase noise, hidden below the quantum shot noise in the Advanced LIGO sensitivity curve. We also make projections on the observatory sensitivity during the next science runs. In the second part of the paper we discuss the correlation technique that reveals the quantum radiation pressure noise from the background of classical noises and shot noise. We apply this technique to the Advanced LIGO data, collected during the first science run, and experimentally estimate the quantum correlations and quantum radiation pressure noise in the interferometer.

  11. Mesoscopic correlation within transmitted speckle pattern and wave localization

    NASA Astrophysics Data System (ADS)

    Hu, Bing

    This thesis is an experimental study of the statistical character of the field distribution within one-dimensional and transmitted through quasi-1D random samples. We measured the spatial extent of the field for extended, evanescent, and localized wave in random single-mode waveguide. We find that spectrally and spatially overlapping modes in a nominally localized region of an open dissipative system can be decomposed into quasi-normal-modes. Microwave field measurements of the near-field transmitted speckle pattern through random quasi-one-dimensional samples were carried out with polarization rotation, along a line, on a tight grid covering the full output surface. The field spectrum is Fourier transformed to give the temporal evolution of the speckle pattern. Field and intensity correlation versus displacement, frequency shift, and polarization rotation were studied to exhibit the growing impact of mesoscopic fluctuation and photon localization with time delay from a exciting pulse. The variation of key distributions and correlation functions with delay time were examined. We find a universal expression for the intensity correlation function which is valid for localized and diffusive waves in steady-state and in the time domain. It is a function only of the field correlation function which is the same in steady state and in the time domain and the degree of correlation, kappa, which also indicates the closeness of the random system to the localization transition. We also studied the microstatistics of the transmitted field in individual sample realizations, as opposed to the traditional focus on fluctuations relative to the ensemble average. We find that the field distribution in each configuration is Gaussian and that mesoscopic correlation arises as a result of fluctuation of the total transmission. The degree of correlation kappa is just the variance of total transmission normalized by its ensemble average. Other aspects on phase statistics of the speckle

  12. Quantum properties of exponential states

    SciTech Connect

    Luis, Alfredo

    2007-05-15

    The use of Renyi entropy as an uncertainty measure alternative to variance leads to the study of states with quantum fluctuations below the levels established by Gaussian states, which are the position-momentum minimum uncertainty states according to variance. We examine the quantum properties of states with exponential wave functions, which combine reduced fluctuations with practical feasibility.

  13. Correlated responses in body composition to divergent selection for exponential growth rate to 14 or 42 days of age in chickens.

    PubMed

    Sizemore, F G; Barbato, G F

    2002-07-01

    Chicks divergently selected for 14-d (14H and 14L) or 42-d (42H and 42L) exponential growth rate (EGR) over five generations were used to determine correlated responses between growth at different ages and body composition. Regression coefficient estimates across five generations of selection were not significant for any line at either age for percentage total body water or protein. Genetic correlations between EGR from hatching to 14 d of age (EGR14) and 42-d percentage carcass fat were -0.18, -0.57, 0.63, and -0.79 among the 14H, 14L, 42H, and 42L lines, respectively. Genetic correlations between EGR from hatching to 42 d of age (EGR42) and 42-d percentage carcass fat were 0.09, -0.67,0.50, and -0.75 among the 14H, 14L, 42H, and 42L lines, respectively. During the short-term selection experiment, selection for fast EGR14 or EGR42 increased fat at the age of selection. However, selection for fast EGR42 increased body weight and percentage fat at 42 d of age (DOA), whereas selection for fast EGR14 increased body weight but not fat at 42 DOA. Therefore, it is possible to simultaneously select for high body weight at, or near, the inflection point of the growth curve without increasing fat deposition or obesity by taking advantage of the lack of a genetic correlation between EGR14 and body fat percentage at later ages.

  14. Charge density waves in strongly correlated electron systems

    NASA Astrophysics Data System (ADS)

    Chen, Chih-Wei; Choe, Jesse; Morosan, E.

    2016-08-01

    Strong electron correlations are at the heart of many physical phenomena of current interest to the condensed matter community. Here we present a survey of the mechanisms underlying such correlations in charge density wave (CDW) systems, including the current theoretical understanding and experimental evidence for CDW transitions. The focus is on emergent phenomena that result as CDWs interact with other charge or spin states, such as magnetism and superconductivity. In addition to reviewing the CDW mechanisms in 1D, 2D, and 3D systems, we pay particular attention to the prevalence of this state in two particular classes of compounds, the high temperature superconductors (cuprates) and the layered transition metal dichalcogenides. The possibilities for quantum criticality resulting from the competition between magnetic fluctuations and electronic instabilities (CDW, unconventional superconductivity) are also discussed.

  15. Quantum dust magnetosonic waves with spin and exchange correlation effects

    SciTech Connect

    Maroof, R.; Qamar, A.; Mushtaq, A.

    2016-01-15

    Dust magnetosonic waves are studied in degenerate dusty plasmas with spin and exchange correlation effects. Using the fluid equations of magnetoplasma with quantum corrections due to the Bohm potential, temperature degeneracy, spin magnetization energy, and exchange correlation, a generalized dispersion relation is derived. Spin effects are incorporated via spin force and macroscopic spin magnetization current. The exchange-correlation potentials are used, based on the adiabatic local-density approximation, and can be described as a function of the electron density. For three different values of angle, the dispersion relation is reduced to three different modes under the low frequency magnetohydrodynamic assumptions. It is found that the effects of quantum corrections in the presence of dust concentration significantly modify the dispersive properties of these modes. The results are useful for understanding numerous collective phenomena in quantum plasmas, such as those in compact astrophysical objects (e.g., the cores of white dwarf stars and giant planets) and in plasma-assisted nanotechnology (e.g., quantum diodes, quantum free-electron lasers, etc.)

  16. Quantum dust magnetosonic waves with spin and exchange correlation effects

    NASA Astrophysics Data System (ADS)

    Maroof, R.; Mushtaq, A.; Qamar, A.

    2016-01-01

    Dust magnetosonic waves are studied in degenerate dusty plasmas with spin and exchange correlation effects. Using the fluid equations of magnetoplasma with quantum corrections due to the Bohm potential, temperature degeneracy, spin magnetization energy, and exchange correlation, a generalized dispersion relation is derived. Spin effects are incorporated via spin force and macroscopic spin magnetization current. The exchange-correlation potentials are used, based on the adiabatic local-density approximation, and can be described as a function of the electron density. For three different values of angle, the dispersion relation is reduced to three different modes under the low frequency magnetohydrodynamic assumptions. It is found that the effects of quantum corrections in the presence of dust concentration significantly modify the dispersive properties of these modes. The results are useful for understanding numerous collective phenomena in quantum plasmas, such as those in compact astrophysical objects (e.g., the cores of white dwarf stars and giant planets) and in plasma-assisted nanotechnology (e.g., quantum diodes, quantum free-electron lasers, etc.).

  17. Exploiting large-scale correlations to detect continuous gravitational waves.

    PubMed

    Pletsch, Holger J; Allen, Bruce

    2009-10-30

    Fully coherent searches (over realistic ranges of parameter space and year-long observation times) for unknown sources of continuous gravitational waves are computationally prohibitive. Less expensive hierarchical searches divide the data into shorter segments which are analyzed coherently, then detection statistics from different segments are combined incoherently. The novel method presented here solves the long-standing problem of how best to do the incoherent combination. The optimal solution exploits large-scale parameter-space correlations in the coherent detection statistic. Application to simulated data shows dramatic sensitivity improvements compared with previously available (ad hoc) methods, increasing the spatial volume probed by more than 2 orders of magnitude at lower computational cost.

  18. Exploring correlations in the CGC wave function: Odd azimuthal anisotropy

    NASA Astrophysics Data System (ADS)

    Kovner, Alex; Lublinsky, Michael; Skokov, Vladimir

    2017-07-01

    We extend the color glass condensate (CGC) approach to a calculation of the double inclusive gluon production by including the high density effect in the CGC wave function of the projectile (proton). Our main result is that these effects lead to the appearance of odd harmonics in the two particle correlation C (k ,p ) . We find that in the high momentum limit, |k |,|p |≫Qs , this results in a positive c1{2 }. Additionally when the magnitudes of the two momenta are approximately equal, |k |/|p |≈1 , the density effects also generate a positive third harmonic c3{2 }, which translates into a nonvanishing v3 when the momenta of the trigger and an associated particle are in the same momentum bin. The sign of c3{2 } becomes negative when |k |/|p |>1.1 suggesting an interesting experimental signature.

  19. Time-Correlated Soliton Tunneling in Density Waves

    NASA Astrophysics Data System (ADS)

    Miller, John H.; Wijesinghe, Asanga Iroshan; Tang, Zhongjia; Guloy, Arnold M.

    2011-03-01

    In the quantum sine-Gordon model of a pinned charge or spin density wave, the electrostatic energy generated by charged soliton domain walls leads to a Coulomb blockade threshold electric field for quantum soliton-antisoliton pair creation. This field can be much smaller than the classical depinning field, since the quantum instability occurs as soon as the formerly lowest energy potential well rises to become a metastable well, or ``false vacuum.'' The analogy to time-correlated single electron tunneling and comparison to recent experimental results, as well as broader implications of the proposed tunneling process, are briefly discussed. This work was supported by the State of Texas though the Texas Center for Superconductivity at the University of Houston and the Norman Hackerman Advanced Research Program, and by NIH R21CA133153 and ARRA supplement 3R21CA133153-03S, and by the Robert A. Welch Foundation, and DoE Basic Energy Sciences.

  20. Exploring correlations in the CGC wave function: Odd azimuthal anisotropy

    DOE PAGES

    Kovner, Alex; Lublinsky, Michael; Skokov, Vladimir

    2017-07-17

    In this paper, we extend the color glass condensate (CGC) approach to a calculation of the double inclusive gluon production by including the high density effect in the CGC wave function of the projectile (proton). Our main result is that these effects lead to the appearance of odd harmonics in the two particle correlation C(k,p). We find that in the high momentum limit, |k|, |p| >> Qs, this results in a positive c1{2}. Additionally when the magnitudes of the two momenta are approximately equal, |k|/|p| ≈ 1, the density effects also generate a positive third harmonic c3{2}, which translates intomore » a nonvanishing v3 when the momenta of the trigger and an associated particle are in the same momentum bin. Finally, the sign of c3{2} becomes negative when |k|/|p| > 1.1 suggesting an interesting experimental signature.« less

  1. Exponentially increasing incidences of cutaneous malignant melanoma in Europe correlate with low personal annual UV doses and suggests 2 major risk factors

    PubMed Central

    Merrill, Stephen J; Ashrafi, Samira; Subramanian, Madhan; Godar, Dianne E

    2015-01-01

    For several decades the incidence of cutaneous malignant melanoma (CMM) steadily increased in fair-skinned, indoor-working people around the world. Scientists think poor tanning ability resulting in sunburns initiate CMM, but they do not understand why the incidence continues to increase despite the increased use of sunscreens and formulations offering more protection. This paradox, along with lower incidences of CMM in outdoor workers, although they have significantly higher annual UV doses than indoor workers have, perplexes scientists. We found a temporal exponential increase in the CMM incidence indicating second-order reaction kinetics revealing the existence of 2 major risk factors. From epidemiology studies, we know one major risk factor for getting CMM is poor tanning ability and we now propose the other major risk factor may be the Human Papilloma Virus (HPV) because clinicians find β HPVs in over half the biopsies. Moreover, we uncovered yet another paradox; the increasing CMM incidences significantly correlate with decreasing personal annual UV dose, a proxy for low vitamin D3 levels. We also discovered the incidence of CMM significantly increased with decreasing personal annual UV dose from 1960, when it was almost insignificant, to 2000. UV and other DNA-damaging agents can activate viruses, and UV-induced cytokines can hide HPV from immune surveillance, which may explain why CMM also occurs in anatomical locations where the sun does not shine. Thus, we propose the 2 major risk factors for getting CMM are intermittent UV exposures that result in low cutaneous levels of vitamin D3 and possibly viral infection. PMID:26413188

  2. Correlated wave functions for three-particle systems with Coulomb interaction - The muonic helium atom

    NASA Technical Reports Server (NTRS)

    Huang, K.-N.

    1977-01-01

    A computational procedure for calculating correlated wave functions is proposed for three-particle systems interacting through Coulomb forces. Calculations are carried out for the muonic helium atom. Variational wave functions which explicitly contain interparticle coordinates are presented for the ground and excited states. General Hylleraas-type trial functions are used as the basis for the correlated wave functions. Excited-state energies of the muonic helium atom computed from 1- and 35-term wave functions are listed for four states.

  3. Ensemble dynamics and the emergence of correlations in one- and two-dimensional wave turbulence

    NASA Astrophysics Data System (ADS)

    Sheffield, Thomas Y.; Rumpf, Benno

    2017-06-01

    We investigate statistical properties of wave turbulence by monitoring the dynamics of ensembles of trajectories. The system under investigation is a simplified model for surface gravity waves in one and two dimensions with a square-root dispersion and a four-wave interaction term. The simulations of decaying turbulence confirm the Kolmogorov-Zakharov spectral power distribution of wave turbulence theory. Fourth-order correlations are computed numerically as ensemble averages of trajectories. The shape, scaling, and time evolution of the correlations agree with the predictions of wave turbulence theory.

  4. Correlated wave functions for the ground and some excited states of the iron atom.

    PubMed

    Buendía, E; Gálvez, F J; Sarsa, A

    2006-04-21

    We study the states arising from the [Ar]4s(2)3d6 and [Ar]4s(1)3d7 configurations of iron atom with explicitly correlated wave functions. The variational wave function is the product of the Jastrow correlation factor times a model function obtained within the parametrized optimized effective potential framework. A systematic analysis of the dependence of both the effective potential and the correlation factor on the configuration and on the term is carried out. The ground state of both, the cation, Fe+, and anion, Fe-, are calculated with correlated wave functions and the ionization potential and the electron affinity are obtained.

  5. An Exceptional Exponential Function

    ERIC Educational Resources Information Center

    Curgus, Branko

    2006-01-01

    We show that there is a link between a standard calculus problem of finding the best view of a painting and special tangent lines to the graphs of exponential functions. Surprisingly, the exponential function with the "best view" is not the one with the base "e." A similar link is established for families of functions obtained by composing…

  6. The correlation between the amplitude of Osborn wave and core body temperature.

    PubMed

    Omar, Hesham R; Camporesi, Enrico M

    2015-08-01

    Several reports illustrate an inverse correlation between the Osborn wave (J wave) amplitude and core body temperature. We attempted to study the strength of this correlation. We reviewed all articles reporting hypothermic J waves from 1950-2014 for patient demographics, core body temperature in Celsius (°C), amplitude of the J wave in millimeters (mm), lead with the highest amplitude of J wave, presence of acidosis, PO2, electrolytes and outcome. In cases with more than one electrocardiogram (ECG), the respective core body temperature and J wave amplitude of each ECG were recorded. The main study outcome is to evaluate the correlation between the J wave amplitude and core body temperature in the admission ECG. We have also examined the strength of this relationship in cases with more than one ECG. We attempted to find the most frequent lead that recorded the highest amplitude of the J wave in addition to the correlation between the amplitude of J wave and pH. We found 64 articles comprising a total of 68 cases. When analyzing only cases with more than one reported ECG, there was a strong inverse correlation (r = - 0.682, p<0.001) between J wave amplitude and body temperature: however, when analyzing admission ECG of all cases, the correlation was only moderate (r = - 0.410, p<0.001). The lead with the highest amplitude of the J wave was V4 (44% of the cases, p<0.001) followed by V3 (23.7% of the cases, p<0.001). The amplitude of the J wave in the admission ECG of hypothermic patients may not accurately predict the core body temperature. © The European Society of Cardiology 2014.

  7. Waves in a bounded quantum plasma with electron exchange-correlation effects

    SciTech Connect

    Ma Yutng; Mao Shenghng; Xue Juji

    2011-10-15

    Within a quantum hydrodynamic model, the collective excitations of the quantum plasma with electron exchange-correlation effects in a nano-cylindrical wave guide are studied both analytically and numerically. The influences of the electron exchange-correlation potential, the radius of the wave guide, and the quantum effect on the dispersion properties of the bounded quantum plasma are discussed. Significant frequency-shift induced by the electron exchange-correlation effect, the radius of the wave guide and the quantum correction are observed. It is found that the influence of the electron exchange-correlation, the radius of the wave guide and the quantum correction on the wave modes in a bounded nano-waveguide are strongly coupled.

  8. Comparing exponential and exponentiated models of drug demand in cocaine users.

    PubMed

    Strickland, Justin C; Lile, Joshua A; Rush, Craig R; Stoops, William W

    2016-12-01

    Drug purchase tasks provide rapid and efficient measurement of drug demand. Zero values (i.e., prices with zero consumption) present a quantitative challenge when using exponential demand models that exponentiated models may resolve. We aimed to replicate and advance the utility of using an exponentiated model by demonstrating construct validity (i.e., association with real-world drug use) and generalizability across drug commodities. Participants (N = 40 cocaine-using adults) completed Cocaine, Alcohol, and Cigarette Purchase Tasks evaluating hypothetical consumption across changes in price. Exponentiated and exponential models were fit to these data using different treatments of zero consumption values, including retaining zeros or replacing them with 0.1, 0.01, or 0.001. Excellent model fits were observed with the exponentiated model. Means and precision fluctuated with different replacement values when using the exponential model but were consistent for the exponentiated model. The exponentiated model provided the strongest correlation between derived demand intensity (Q0) and self-reported free consumption in all instances (Cocaine r = .88; Alcohol r = .97; Cigarette r = .91). Cocaine demand elasticity was positively correlated with alcohol and cigarette elasticity. Exponentiated parameters were associated with real-world drug use (e.g., weekly cocaine use) whereas these correlations were less consistent for exponential parameters. Our findings show that selection of zero replacement values affects demand parameters and their association with drug-use outcomes when using the exponential model but not the exponentiated model. This work supports the adoption of the exponentiated demand model by replicating improved fit and consistency and demonstrating construct validity and generalizability. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  9. How exponential are FREDs?

    NASA Astrophysics Data System (ADS)

    Schaefer, Bradley E.; Dyson, Samuel E.

    1996-08-01

    A common Gamma-Ray Burst-light curve shape is the ``FRED'' or ``fast-rise exponential-decay.'' But how exponential is the tail? Are they merely decaying with some smoothly decreasing decline rate, or is the functional form an exponential to within the uncertainties? If the shape really is an exponential, then it would be reasonable to assign some physically significant time scale to the burst. That is, there would have to be some specific mechanism that produces the characteristic decay profile. So if an exponential is found, then we will know that the decay light curve profile is governed by one mechanism (at least for simple FREDs) instead of by complex/multiple mechanisms. As such, a specific number amenable to theory can be derived for each FRED. We report on the fitting of exponentials (and two other shapes) to the tails of ten bright BATSE bursts. The BATSE trigger numbers are 105, 257, 451, 907, 1406, 1578, 1883, 1885, 1989, and 2193. Our technique was to perform a least square fit to the tail from some time after peak until the light curve approaches background. We find that most FREDs are not exponentials, although a few come close. But since the other candidate shapes come close just as often, we conclude that the FREDs are misnamed.

  10. Exponential splines: A survey

    SciTech Connect

    McCartin, B.J.

    1996-12-31

    Herein, we discuss a generalization of the semiclassical cubic spline known in the literature as the exponential spline. In actuality, the exponential spline represents a continuum of interpolants ranging from the cubic spline to the linear spline. A particular member of this family is uniquely specified by the choice of certain {open_quotes}tension{close_quotes} parameters. We first outline the theoretical underpinnings of the exponential spline. This development roughly parallels the existing theory for cubic splines. The primary extension lies in the ability of the exponential spline to preserve convexity and monotonicity present in the data. We next discuss the numerical computation of the exponential spline. A variety of numerical devices are employed to produce a stable and robust algorithm. An algorithm for the selection of tension parameters that will produce a shape preserving approximant is developed. A sequence of selected curve-fitting examples are presented which clearly demonstrate the advantages of exponential splines over cubic splines. We conclude with a consideration of the broad spectrum of possible uses of exponential splines in the applications. Our primary emphasis is on computational fluid dynamics although the imaginative reader will recognize the wider generality of the techniques developed.

  11. An Unusual Exponential Graph

    ERIC Educational Resources Information Center

    Syed, M. Qasim; Lovatt, Ian

    2014-01-01

    This paper is an addition to the series of papers on the exponential function begun by Albert Bartlett. In particular, we ask how the graph of the exponential function y = e[superscript -t/t] would appear if y were plotted versus ln t rather than the normal practice of plotting ln y versus t. In answering this question, we find a new way to…

  12. An Unusual Exponential Graph

    ERIC Educational Resources Information Center

    Syed, M. Qasim; Lovatt, Ian

    2014-01-01

    This paper is an addition to the series of papers on the exponential function begun by Albert Bartlett. In particular, we ask how the graph of the exponential function y = e[superscript -t/t] would appear if y were plotted versus ln t rather than the normal practice of plotting ln y versus t. In answering this question, we find a new way to…

  13. Four-body correlation embedded in antisymmetrized geminal power wave function.

    PubMed

    Kawasaki, Airi; Sugino, Osamu

    2016-12-28

    We extend the Coleman's antisymmetrized geminal power (AGP) to develop a wave function theory that can incorporate up to four-body correlation in a region of strong correlation. To facilitate the variational determination of the wave function, the total energy is rewritten in terms of the traces of geminals. This novel trace formula is applied to a simple model system consisting of one dimensional Hubbard ring with a site of strong correlation. Our scheme significantly improves the result obtained by the AGP-configuration interaction scheme of Uemura et al. and also achieves more efficient compression of the degrees of freedom of the wave function. We regard the result as a step toward a first-principles wave function theory for a strongly correlated point defect or adsorbate embedded in an AGP-based mean-field medium.

  14. Spatial correlation of shear-wave velocity in the San Francisco Bay Area sediments

    USGS Publications Warehouse

    Thompson, E.M.; Baise, L.G.; Kayen, R.E.

    2007-01-01

    Ground motions recorded within sedimentary basins are variable over short distances. One important cause of the variability is that local soil properties are variable at all scales. Regional hazard maps developed for predicting site effects are generally derived from maps of surficial geology; however, recent studies have shown that mapped geologic units do not correlate well with the average shear-wave velocity of the upper 30 m, Vs(30). We model the horizontal variability of near-surface soil shear-wave velocity in the San Francisco Bay Area to estimate values in unsampled locations in order to account for site effects in a continuous manner. Previous geostatistical studies of soil properties have shown horizontal correlations at the scale of meters to tens of meters while the vertical correlations are on the order of centimeters. In this paper we analyze shear-wave velocity data over regional distances and find that surface shear-wave velocity is correlated at horizontal distances up to 4 km based on data from seismic cone penetration tests and the spectral analysis of surface waves. We propose a method to map site effects by using geostatistical methods based on the shear-wave velocity correlation structure within a sedimentary basin. If used in conjunction with densely spaced shear-wave velocity profiles in regions of high seismic risk, geostatistical methods can produce reliable continuous maps of site effects. ?? 2006 Elsevier Ltd. All rights reserved.

  15. Extension of the spatial autocorrelation (SPAC) method to mixed-component correlations of surface waves

    USGS Publications Warehouse

    Haney, Matthew M.; Mikesell, T. Dylan; van Wijk, Kasper; Nakahara, Hisashi

    2012-01-01

    Using ambient seismic noise for imaging subsurface structure dates back to the development of the spatial autocorrelation (SPAC) method in the 1950s. We present a theoretical analysis of the SPAC method for multicomponent recordings of surface waves to determine the complete 3 × 3 matrix of correlations between all pairs of three-component motions, called the correlation matrix. In the case of isotropic incidence, when either Rayleigh or Love waves arrive from all directions with equal power, the only non-zero off-diagonal terms in the matrix are the vertical–radial (ZR) and radial–vertical (RZ) correlations in the presence of Rayleigh waves. Such combinations were not considered in the development of the SPAC method. The method originally addressed the vertical–vertical (ZZ), RR and TT correlations, hence the name spatial autocorrelation. The theoretical expressions we derive for the ZR and RZ correlations offer additional ways to measure Rayleigh wave dispersion within the SPAC framework. Expanding on the results for isotropic incidence, we derive the complete correlation matrix in the case of generally anisotropic incidence. We show that the ZR and RZ correlations have advantageous properties in the presence of an out-of-plane directional wavefield compared to ZZ and RR correlations. We apply the results for mixed-component correlations to a data set from Akutan Volcano, Alaska and find consistent estimates of Rayleigh wave phase velocity from ZR compared to ZZ correlations. This work together with the recently discovered connections between the SPAC method and time-domain correlations of ambient noise provide further insights into the retrieval of surface wave Green’s functions from seismic noise.

  16. Spatial correlation of shear-wave velocity within San Francisco Bay Sediments

    USGS Publications Warehouse

    Thompson, E.M.; Baise, L.G.; Kayen, R.E.

    2006-01-01

    Sediment properties are spatially variable at all scales, and this variability at smaller scales influences high frequency ground motions. We show that surface shear-wave velocity is highly correlated within San Francisco Bay Area sediments using shear-wave velocity measurements from 210 seismic cone penetration tests. We use this correlation to estimate the surface sediment velocity structure using geostatistics. We find that the variance of the estimated shear-wave velocity is reduced using ordinary kriging, and that including this velocity structure in 2D ground motion simulations of a moderate sized earthquake improves the accuracy of the synthetics. Copyright ASCE 2006.

  17. The intensity correlation function in evanescent wave scattering.

    PubMed

    Cichocki, B; Wajnryb, E; Bławzdziewicz, J; Dhont, J K G; Lang, P R

    2010-02-21

    As a first step toward the interpretation of dynamic light scattering with evanescent illumination from suspensions of interacting spheres, in order to probe their near wall dynamics, we develop a theory for the initial slope of the intensity autocorrelation function. An expression for the first cumulant is derived that is valid for arbitrary concentrations, which generalizes a well-known expression for the short-time, wave-vector dependent collective diffusion coefficient in bulk to the case where a wall is present. Explicit expressions and numerical results for the various contributions to the initial slope are obtained within a leading order virial expansion. The dependence of the initial slope on the components of the wave vector parallel and perpendicular to the wall, as well as the dependence on the evanescent-light penetration depth are discussed. For the hydrodynamic interactions between colloids and between the wall, which are essential for a correct description of the near-interface dynamics, we include both far-field and lubrication contributions. Lubrication contributions are essential to capture the dynamics as probed in experiments with small penetration depths. Simulations have been performed to verify the theory and to estimate the extent of the concentration range where the virial expansion is valid. The computer algorithm developed for this purpose will also be of future importance for the interpretation of experiments and to develop an understanding of near-interface dynamics, at high colloid concentrations.

  18. Laser induced fluorescence lifetime characterization of Bacillus endospore species using time correlated single photon counting analysis with the multi-exponential fit method

    NASA Astrophysics Data System (ADS)

    Smith, Clint; Edwards, Jarrod; Fisher, Andmorgan

    2010-04-01

    Rapid detection of biological material is critical for determining presence/absence of bacterial endospores within various investigative programs. Even more critical is that if select material tests positive for bacillus endospores then tests should provide data at the species level. Optical detection of microbial endospore formers such as Bacillus sp. can be heavy, cumbersome, and may only identify at the genus level. Data provided from this study will aid in characterization needed by future detection systems for further rapid breakdown analysis to gain insight into a more positive signature collection of Bacillus sp. Literature has shown that fluorescence spectroscopy of endospores could be statistically separated from other vegetative genera, but could not be separated among one another. Results of this study showed endospore species separation is possible using laser-induce fluorescence with lifetime decay analysis for Bacillus endospores. Lifetime decays of B. subtilis, B. megaterium, B. coagulans, and B. anthracis Sterne strain were investigated. Using the Multi-Exponential fit method data showed three distinct lifetimes for each species within the following ranges, 0.2-1.3 ns; 2.5-7.0 ns; 7.5-15.0 ns, when laser induced at 307 nm. The four endospore species were individually separated using principle component analysis (95% CI).

  19. Exponentially fitted symplectic integrator

    NASA Astrophysics Data System (ADS)

    Simos, T. E.; Vigo-Aguiar, Jesus

    2003-01-01

    In this paper a procedure for constructing efficient symplectic integrators for Hamiltonian problems is introduced. This procedure is based on the combination of the exponential fitting technique and symplecticness conditions. Based on this procedure, a simple modified Runge-Kutta-Nyström second-order algebraic exponentially fitted method is developed. We give explicitly the symplecticness conditions for the modified Runge-Kutta-Nyström method. We also give the exponential fitting and trigonometric fitting conditions. Numerical results indicate that the present method is much more efficient than the “classical” symplectic Runge-Kutta-Nyström second-order algebraic method introduced by M.P. Calvo and J.M. Sanz-Serna [J. Sci. Comput. (USA) 14, 1237 (1993)]. We note that the present procedure is appropriate for all near-unimodal systems.

  20. Characterization of Pairwise Correlations from Multiple Quantum Correlated Beams Generated from Cascaded Four-Wave Mixing Processes

    PubMed Central

    Wang, Hailong; Cao, Leiming; Jing, Jietai

    2017-01-01

    We theoretically characterize the performance of the pairwise correlations (PCs) from multiple quantum correlated beams based on the cascaded four-wave mixing (FWM) processes. The presence of the PCs with quantum corre- lation in these systems can be verified by calculating the degree of intensity difference squeezing for any pair of all the output fields. The quantum correlation characteristics of all the PCs under different cascaded schemes are also discussed in detail and the repulsion effect between PCs in these cascaded FWM processes is theoretically predicted. Our results open the way for the classification and application of quantum states generated from the cascaded FWM processes. PMID:28071759

  1. The correlations between the saturated and dry P-wave velocity of rocks.

    PubMed

    Kahraman, S

    2007-11-01

    Sometimes engineers need to estimate the wet-rock P-wave velocity from the dry-rock P-wave velocity. An estimation equation embracing all rock classes will be useful for the rock engineers. To investigate the predictability of wet-rock P-wave velocity from the dry-rock P-wave velocity, P-wave velocity measurements were performed on 41 different rock types, 11 of which were igneous, 15 of which were sedimentary and 15 of which was metamorphic. In addition to the dry- and wet-rock P-wave velocity measurements, the P-wave velocity changing as a function of saturation degree was studied. Moreover, dry-rock S-wave velocity measurements were conducted. The test results were modeled using Gassmann's and Wood's theory and it was seen that the measured data did not fit the theories. The unconformity is due to the fact that the theories are valid for high-porosity unconsolidated sediments at low frequencies. Gassmann's equation was modified for the rocks except high-porosity unconsolidated sediments. The dry- and wet-rock P-wave velocity values were evaluated using regression analysis. A strong linear correlation between the dry- and wet-rock P-wave velocities was found. Regression analyses were repeated for the rock classes and it was shown that correlation coefficients were increased. Concluding remark is that the derived equations can be used for the prediction of wet-rock P-wave velocity from the dry-rock P-wave velocity.

  2. Correlation of P-wave dispersion with insulin sensitivity in obese adolescents.

    PubMed

    Sert, Ahmet; Aslan, Eyup; Buyukınan, Muammer; Pirgon, Ozgur

    2017-03-01

    P-wave dispersion is a new and simple electrocardiographic marker that has been reported to be associated with inhomogeneous and discontinuous propagation of sinus impulses. In the present study, we evaluated P-wave dispersion in obese adolescents and investigated the relationship between P-wave dispersion, cardiovascular risk factors, and echocardiographic parameters. We carried out a case-control study comparing 150 obese adolescents and 50 healthy controls. Maximum and minimum P-wave durations were measured using a 12-lead surface electrocardiogram, and P-wave dispersion was calculated as the difference between these two measures. Echocardiographic examination was also performed for each subject. Multivariate linear regression analysis with stepwise variable selection was used to evaluate parameters associated with increased P-wave dispersion in obese subjects. Maximum P-wave duration and P-wave dispersion were significantly higher in obese adolescents than control subjects (143±19 ms versus 117±20 ms and 49±15 ms versus 29±9 ms, p<0.0001 for both). P-wave dispersion was positively correlated with body mass index, waist and hip circumferences, systolic and diastolic blood pressures, total cholesterol, serum levels of low-density lipoprotein cholesterol, triglycerides, glucose, and insulin, homoeostasis model assessment for insulin resistance score, left ventricular mass, and left atrial dimension. P-wave dispersion was negatively correlated with high-density lipoprotein cholesterol levels. By multiple stepwise regression analysis, left atrial dimension (β: 0.252, p=0.008) and homoeostasis model assessment for insulin resistance (β: 0.205; p=0.009) were independently associated with increased P-wave dispersion in obese adolescents. Insulin resistance is a significant, independent predictor of P-wave dispersion in obese adolescents.

  3. Correlation coefficient measurement of the mode-locked laser tones using four-wave mixing.

    PubMed

    Anthur, Aravind P; Panapakkam, Vivek; Vujicic, Vidak; Merghem, Kamel; Lelarge, Francois; Ramdane, Abderrahim; Barry, Liam P

    2016-06-01

    We use four-wave mixing to measure the correlation coefficient of comb tones in a quantum-dash mode-locked laser under passive and active locked regimes. We study the uncertainty in the measurement of the correlation coefficient of the proposed method.

  4. Correlated electron-nuclear dynamics with conditional wave functions.

    PubMed

    Albareda, Guillermo; Appel, Heiko; Franco, Ignacio; Abedi, Ali; Rubio, Angel

    2014-08-22

    The molecular Schrödinger equation is rewritten in terms of nonunitary equations of motion for the nuclei (or electrons) that depend parametrically on the configuration of an ensemble of generally defined electronic (or nuclear) trajectories. This scheme is exact and does not rely on the tracing out of degrees of freedom. Hence, the use of trajectory-based statistical techniques can be exploited to circumvent the calculation of the computationally demanding Born-Oppenheimer potential-energy surfaces and nonadiabatic coupling elements. The concept of the potential-energy surface is restored by establishing a formal connection with the exact factorization of the full wave function. This connection is used to gain insight from a simplified form of the exact propagation scheme.

  5. Phase correlator reduces mm-wave radar cost

    NASA Astrophysics Data System (ADS)

    Weiss, R., Sr.; Hobbs, P.; Locatelli, J.

    1986-03-01

    A technique involving the IC storage of magnetron phase for reference has been developed to make possible the use of the low-cost efficient magnetron in obtaining phase coherent signals for pulse Doppler radar. In the new external coherence method, the recorded random midpulse-region phase is compared with the frequency of the echo allowing Doppler information, free of phase noise, to be extracted. The gated magnetron was tested at Ka-band in a 35-GHz radar, and good agreement with the CP-4 5.5 GHz radar was shown. With good accuracy down to 10 cm/s, the present system, especially in the mm-wave region, has important applications to meteorological and military radar.

  6. Correlation analysis of waves above a capacitive plasma applicator.

    PubMed

    Gekelman, W; Barnes, M; Vincena, S; Pribyl, P

    2009-07-24

    Capacitively coupled plasma glow discharges have been extensively used for materials processing in numerous industrial applications. Considerable research has been performed on plasma sheaths and standing waves over a capacitive applicator, which typically holds the processed substrate (e.g., a semiconductor wafer). In this work, we demonstrate for the first time the existence of normal modes in electric potential analogous to the vibrational modes in circular membranes and plates. These modes are exhibited through cross spectral analysis of the plasma potential measured with an emissive probe at 208 spatial positions and sampled at 1 GHz. These modes exist at several frequencies and are described by a series of Bessel functions. The data further suggests a nonlinear interaction between modes of different frequencies.

  7. Correlation Analysis of Waves above a Capacitive Plasma Applicator

    SciTech Connect

    Gekelman, W.; Vincena, S.; Pribyl, P.; Barnes, M.

    2009-07-24

    Capacitively coupled plasma glow discharges have been extensively used for materials processing in numerous industrial applications. Considerable research has been performed on plasma sheaths and standing waves over a capacitive applicator, which typically holds the processed substrate (e.g., a semiconductor wafer). In this work, we demonstrate for the first time the existence of normal modes in electric potential analogous to the vibrational modes in circular membranes and plates. These modes are exhibited through cross spectral analysis of the plasma potential measured with an emissive probe at 208 spatial positions and sampled at 1 GHz. These modes exist at several frequencies and are described by a series of Bessel functions. The data further suggests a nonlinear interaction between modes of different frequencies.

  8. Exponential Localization of Photons

    NASA Astrophysics Data System (ADS)

    Bialynicki-Birula, Iwo

    1998-06-01

    It is shown that photons can be localized in space with an exponential falloff of the energy density and photodetection rates. The limits of localization are determined by the fundamental Paley-Wiener theorem. A direct mathematical connection between the spatial localization of photons and the decay in time of quantum mechanical systems is established.

  9. Automatic determination of important mode-mode correlations in many-mode vibrational wave functions.

    PubMed

    König, Carolin; Christiansen, Ove

    2015-04-14

    We introduce new automatic procedures for parameterizing vibrational coupled cluster (VCC) and vibrational configuration interaction wave functions. Importance measures for individual mode combinations in the wave function are derived based on upper bounds to Hamiltonian matrix elements and/or the size of perturbative corrections derived in the framework of VCC. With a threshold, this enables an automatic, system-adapted way of choosing which mode-mode correlations are explicitly parameterized in the many-mode wave function. The effect of different importance measures and thresholds is investigated for zero-point energies and infrared spectra for formaldehyde and furan. Furthermore, the direct link between important mode-mode correlations and coordinates is illustrated employing water clusters as examples: Using optimized coordinates, a larger number of mode combinations can be neglected in the correlated many-mode vibrational wave function than with normal coordinates for the same accuracy. Moreover, the fraction of important mode-mode correlations compared to the total number of correlations decreases with system size. This underlines the potential gain in efficiency when using optimized coordinates in combination with a flexible scheme for choosing the mode-mode correlations included in the parameterization of the correlated many-mode vibrational wave function. All in all, it is found that the introduced schemes for parameterizing correlated many-mode vibrational wave functions lead to at least as systematic and accurate calculations as those using more standard and straightforward excitation level definitions. This new way of defining approximate calculations offers potential for future calculations on larger systems.

  10. Shear wave velocities from noise correlation at local scale

    SciTech Connect

    De Nisco, G.; Nunziata, C.; Vaccari, F.; Panza, G. F.

    2008-07-08

    Cross correlations of ambient seismic noise recordings have been studied to infer shear seismic velocities with depth. Experiments have been done in the crowded and noisy historical centre of Napoli over inter-station distances from 50 m to about 400 m, whereas active seismic spreadings are prohibitive, even for just one receiver. Group velocity dispersion curves have been extracted with FTAN method from the noise cross correlations and then the non linear inversion of them has resulted in Vs profiles with depth. The information of near by stratigraphies and the range of Vs variability for samples of Neapolitan soils and rocks confirms the validity of results obtained with our expeditious procedure. Moreover, the good comparison of noise H/V frequency of the first main peak with 1D and 2D spectral amplifications encourages to continue experiments of noise cross-correlation. If confirmed in other geological settings, the proposed approach could reveal a low cost methodology to obtain reliable and detailed Vs velocity profiles.

  11. Characteristics of Scholte-Rayleigh waves and reflected body waves recovered by ocean bottom ambient noise cross-correlation

    NASA Astrophysics Data System (ADS)

    Yao, H.; Gao, C.; Lin, C.

    2013-12-01

    Ambient noise interferometry has been widely used to recover surface waves for understanding the crustal and lithospheric structures. Recent studies have shown that body wave reflections from deep mantle and core discontinuities can be successfully retrieved by stacking ambient noise cross-correlation functions (CFs) of many different land-station pairs. Here we report that not only surface waves but also reflected body waves from mantle transition zone discontinuities can be successfully recovered from one-year ambient noise data recorded by ocean bottom seismometers near equatorial eastern Pacific Rise. The recovered surface waves include Scholte-Rayleigh waves on the vertical-vertical (Z-Z) and radial-radial (R-R) component CFs and Love waves on the transverse-transverse (T-T) component CFs. On the Z-Z component CFs, we observe both the fundamental mode and the first higher mode Scholte-Rayleigh waves in the period band 2 - 10 s; however, on the R-R component CFs, we only observe the first higher mode, which has the same dispersion characteristics of that on the Z-Z component CFs. Synthetic radial component seismograms as the result of a radial-direction point source in the shallow sediment layer explain the missing of fundamental mode Scholte-Rayleigh waves on the R-R component CFs, which are primarily sensitive to very low rigidity and high attenuation shallow sedimentary layers below the ocean bottom. We also observe clear body wave reflections in the period band 5 - 10 s from mantle transition zone discontinuities, e.g., 410 km and 660 km discontinuities, on many single station-pair CFs without stacking over many different station pairs. In particular, these deep reflected signals appear quite stable on almost every daily CF and the amplitude and phase of these reflections show great symmetry on the yearly-stacked CFs. The ambient noise sources to generate these deep reflected signals are probably from ocean wave pressure exerted on the seafloor, as the

  12. Unveiling linearly and nonlinearly correlated signals between gravitational wave detectors and environmental monitors

    NASA Astrophysics Data System (ADS)

    Yuzurihara, Hirotaka; Hayama, Kazuhiro; Mano, Shuhei; Verkindt, Didier; Kanda, Nobuyuki

    2016-08-01

    Noise hunting is a critical requirement for realizing design sensitivity of a detector, and consequently, noise origins and its features have been revealed partially. Among the noise sources to be hunted, sources of nonlinearly correlated noise, such up-conversion noise, are hard to find and can limit the sensitivity of gravitational wave searches with advanced detectors. We propose using a correlation analysis method called maximal information coefficient (MIC) to find both nonlinear and linear correlations. We apply MIC to the scattered light noise correlated between the seismic activity and the strain signal, which limited the sensitivity of the Virgo detector during the first science run. The results show that MIC can find nonlinearly correlated noise more efficiently than the Pearson correlation method. When the data is linearly correlated, the efficiency of the Pearson method and MIC is comparable. On the other hand, when the data is known to be nonlinearly correlated, MIC finds the correlation while the Pearson method fails completely.

  13. Wave Correlation Effects in Active Microwave Remote Sensing of the Environment.

    NASA Astrophysics Data System (ADS)

    Khadr, Nagi Mahmoud

    This study examines the wave correlation effects that arise in active microwave remote sensing of the environment. These correlation effects, or coherent interference effects, are not accounted for by the regular phenomenological transport and radar equations, in which intensities, as a rule, are added incoherently. In particular, two types of correlation effects are examined: those associated with the medium and those associated with the source. The study method is the analytical wave approach to propagation and scattering from random media. This entails using Maxwell's equations to arrive at expressions for the first and second moments of the field. Unlike previous studies, however, in which plane wave incidence is assumed, here the radar is directly incorporated into the analytical wave formulation, and the antenna fields replaced via their plane wave representations. In this way, analysis of both the medium and source correlation effects on a per plane wave basis becomes a straightforward matter. The medium correlation effects are responsible for backscatter enhancement. Although the enhancement effect has been studied before on numerous occasions, careful characterization of the enhancement for microwave scattering from environmental scenes, such as vegetation canopies, has been lacking. The study at hand therefore fills this void and, in addition, quantifies the influence of this enhancement on phase difference statistics, a new and potentially important environmental remote sensing tool. The source correlation effects arise as a result of both the nature of the source and the geometry of the particular problem. By including these effects, a more general expression than the radar equation is obtained analytically. Quantitative examples show that, under certain circumstances, the results of this general expression deviate substantially from the results provided by the radar equation. This finding verifies the importance of considering source correlation

  14. Dynamic cross correlation studies of wave particle interactions in ULF phenomena

    NASA Technical Reports Server (NTRS)

    Mcpherron, R. L.

    1979-01-01

    Magnetic field observations made by satellites in the earth's magnetic field reveal a wide variety of ULF waves. These waves interact with the ambient particle populations in complex ways, causing modulation of the observed particle fluxes. This modulation is found to be a function of species, pitch angle, energy and time. The characteristics of this modulation provide information concerning the wave mode and interaction process. One important characteristic of wave-particle interactions is the phase of the particle flux modulation relative to the magnetic field variations. To display this phase as a function of time a dynamic cross spectrum program has been developed. The program produces contour maps in the frequency time plane of the cross correlation coefficient between any particle flux time series and the magnetic field vector. This program has been utilized in several studies of ULF wave-particle interactions at synchronous orbit.

  15. Dynamic cross correlation studies of wave particle interactions in ULF phenomena

    NASA Technical Reports Server (NTRS)

    Mcpherron, R. L.

    1979-01-01

    Magnetic field observations made by satellites in the earth's magnetic field reveal a wide variety of ULF waves. These waves interact with the ambient particle populations in complex ways, causing modulation of the observed particle fluxes. This modulation is found to be a function of species, pitch angle, energy and time. The characteristics of this modulation provide information concerning the wave mode and interaction process. One important characteristic of wave-particle interactions is the phase of the particle flux modulation relative to the magnetic field variations. To display this phase as a function of time a dynamic cross spectrum program has been developed. The program produces contour maps in the frequency time plane of the cross correlation coefficient between any particle flux time series and the magnetic field vector. This program has been utilized in several studies of ULF wave-particle interactions at synchronous orbit.

  16. Wave energy level and geographic setting correlate with Florida beach water quality.

    PubMed

    Feng, Zhixuan; Reniers, Ad; Haus, Brian K; Solo-Gabriele, Helena M; Kelly, Elizabeth A

    2016-03-15

    Many recreational beaches suffer from elevated levels of microorganisms, resulting in beach advisories and closures due to lack of compliance with Environmental Protection Agency guidelines. We conducted the first statewide beach water quality assessment by analyzing decadal records of fecal indicator bacteria (enterococci and fecal coliform) levels at 262 Florida beaches. The objectives were to depict synoptic patterns of beach water quality exceedance along the entire Florida shoreline and to evaluate their relationships with wave condition and geographic location. Percent exceedances based on enterococci and fecal coliform were negatively correlated with both long-term mean wave energy and beach slope. Also, Gulf of Mexico beaches exceeded the thresholds significantly more than Atlantic Ocean ones, perhaps partially due to the lower wave energy. A possible linkage between wave energy level and water quality is beach sand, a pervasive nonpoint source that tends to harbor more bacteria in the low-wave-energy environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Left ventricular ejection time, not heart rate, is an independent correlate of aortic pulse wave velocity.

    PubMed

    Salvi, Paolo; Palombo, Carlo; Salvi, Giovanni Matteo; Labat, Carlos; Parati, Gianfranco; Benetos, Athanase

    2013-12-01

    Several studies showed a positive association between heart rate and pulse wave velocity, a sensitive marker of arterial stiffness. However, no study involving a large population has specifically addressed the dependence of pulse wave velocity on different components of the cardiac cycle. The aim of this study was to explore in subjects of different age the link between pulse wave velocity with heart period (the reciprocal of heart rate) and the temporal components of the cardiac cycle such as left ventricular ejection time and diastolic time. Carotid-femoral pulse wave velocity was assessed in 3,020 untreated subjects (1,107 men). Heart period, left ventricular ejection time, diastolic time, and early-systolic dP/dt were determined by carotid pulse wave analysis with high-fidelity applanation tonometry. An inverse association was found between pulse wave velocity and left ventricular ejection time at all ages (<25 years, r(2) = 0.043; 25-44 years, r(2) = 0.103; 45-64 years, r(2) = 0.079; 65-84 years, r(2) = 0.044; ≥ 85 years, r(2) = 0.022; P < 0.0001 for all). A significant (P < 0.0001) negative but always weaker correlation between pulse wave velocity and heart period was also found, with the exception of the youngest subjects (P = 0.20). A significant positive correlation was also found between pulse wave velocity and dP/dt (P < 0.0001). With multiple stepwise regression analysis, left ventricular ejection time and dP/dt remained the only determinant of pulse wave velocity at all ages, whereas the contribution of heart period no longer became significant. Our data demonstrate that pulse wave velocity is more closely related to left ventricular systolic function than to heart period. This may have methodological and pathophysiological implications.

  18. Surface waves on quantum plasma half-space with electron exchange-correlation effects

    SciTech Connect

    Khalilpour, H.

    2015-12-15

    The propagation of surface waves on a quantum plasma half-space is investigated, taking into account the electron exchange-correlation effect. Using the modified quantum hydrodynamic model in conjunction with the Poisson equation, the dispersion relation of surface waves is obtained. It is found that due to the presence of electron exchange-correlation effect the wave frequency is shifted to lower frequencies. For different ranges of Brueckner parameter r{sub s}, the effect of electron exchange-correlation is investigated. It is indicated that for weak coupling region with r{sub s} < 0.1, the wave frequency remains unchanged and in this region the effect of electron exchange-correlation is negligible. For moderate coupling region, i.e., (0.1 < r{sub s} < 1), the influence of electron exchange-correlation is important and as r{sub s} increases, the electron exchange-correlation effect also increases.

  19. Polynomial scaling approximations and dynamic correlation corrections to doubly occupied configuration interaction wave functions.

    PubMed

    Van Raemdonck, Mario; Alcoba, Diego R; Poelmans, Ward; De Baerdemacker, Stijn; Torre, Alicia; Lain, Luis; Massaccesi, Gustavo E; Van Neck, Dimitri; Bultinck, Patrick

    2015-09-14

    A class of polynomial scaling methods that approximate Doubly Occupied Configuration Interaction (DOCI) wave functions and improve the description of dynamic correlation is introduced. The accuracy of the resulting wave functions is analysed by comparing energies and studying the overlap between the newly developed methods and full configuration interaction wave functions, showing that a low energy does not necessarily entail a good approximation of the exact wave function. Due to the dependence of DOCI wave functions on the single-particle basis chosen, several orbital optimisation algorithms are introduced. An energy-based algorithm using the simulated annealing method is used as a benchmark. As a computationally more affordable alternative, a seniority number minimising algorithm is developed and compared to the energy based one revealing that the seniority minimising orbital set performs well. Given a well-chosen orbital basis, it is shown that the newly developed DOCI based wave functions are especially suitable for the computationally efficient description of static correlation and to lesser extent dynamic correlation.

  20. On the reliability of direct Rayleigh-wave estimation from multicomponent cross-correlations

    NASA Astrophysics Data System (ADS)

    Xu, Zongbo; Mikesell, T. Dylan

    2017-09-01

    Seismic interferometry is routinely used to image and characterize underground geology. The vertical component cross-correlations (CZZ) are often analysed in this process; although one can also use radial component and multicomponent cross-correlations (CRR and CZR, respectively), which have been shown to provide a more accurate Rayleigh-wave Green's function than CZZ when sources are unevenly distributed. In this letter, we identify the relationship between the multicomponent cross-correlations (CZR and CRR) and the Rayleigh-wave Green's functions to show why CZR and CRR are less sensitive than CZZ to non-stationary phase source energy. We demonstrate the robustness of CRR with a synthetic seismic noise data example. These results provide a compelling reason as to why CRR should be used to estimate the dispersive characteristics of the direct Rayleigh wave with seismic interferometry when the signal-to-noise ratio is high.

  1. Correlated Monte Carlo wave functions for the atoms He through Ne

    SciTech Connect

    Schmidt, K.E. ); Moskowitz, J.W. )

    1990-09-15

    We apply the variational Monte Carlo method to the atoms He through Ne. Our trial wave function is of the form introduced by Boys and Handy. We use the Monte Carlo method to calculate the first and second derivatives of an unreweighted variance and apply Newton's method to minimize this variance. We motivate the form of the correlation function using the local current conservation arguments of Feynman and Cohen. Using a self-consistent field wave function multiplied by a Boys and Handy correlation function, we recover a large fraction of the correlation energy of these atoms. We give the value of all variational parameters necessary to reproduce our wave functions. The method can be extended easily to other atoms and to molecules.

  2. Quantifying local exciton, charge resonance, and multiexciton character in correlated wave functions of multichromophoric systems

    SciTech Connect

    Casanova, David; Krylov, Anna I.

    2016-01-07

    A new method for quantifying the contributions of local excitation, charge resonance, and multiexciton configurations in correlated wave functions of multichromophoric systems is presented. The approach relies on fragment-localized orbitals and employs spin correlators. Its utility is illustrated by calculations on model clusters of hydrogen, ethylene, and tetracene molecules using adiabatic restricted-active-space configuration interaction wave functions. In addition to the wave function analysis, this approach provides a basis for a simple state-specific energy correction accounting for insufficient description of electron correlation. The decomposition scheme also allows one to compute energies of the diabatic states of the local excitonic, charge-resonance, and multi-excitonic character. The new method provides insight into electronic structure of multichromophoric systems and delivers valuable reference data for validating excitonic models.

  3. Correlation between intensity fluctuations of electromagnetic waves scattered from a spatially quasi-homogeneous, anisotropic medium.

    PubMed

    Li, Jia; Chen, Feinan; Chang, Liping

    2016-10-17

    Within the validity of the first-order Born approximation, expressions are derived for the correlation between intensity fluctuations (CIF) of an electromagnetic plane wave scattered from a spatially quasi-homogeneous (QH), anisotropic medium. Upon establishing the correlation matrix of the scattering potential of the medium, we show that the CIF is the summation of Fourier transforms of the strengths and normalized correlation coefficients (NCCs) of the scattering potential matrix. Numerical results reveal that the CIF is susceptible to the effective width and correlation length of the medium, and degree of polarization of the incident electromagnetic wave. Our study not only extends the current knowledge of the CIF of a scattered field but also provides an important reference to the study of high-order intensity correlations of light scattered from a spatially anisotropic medium.

  4. Ambient Noise Cross-correlation Surface Wave Tomography of the Continental United States and Alaska.

    NASA Astrophysics Data System (ADS)

    Bensen, G. D.; McCoy, C.; Ritzwoller, M. H.; Levshin, A. L.; Barmin, M. P.; Shapiro, N. M.

    2006-12-01

    The recent development of surface wave tomography based on ambient noise cross-correlations has provided good results on regional scales and relatively short periods less than 40 seconds. This technique however is viable at longer periods and on the continental scale. We present dispersion maps from ambient noise cross- correlation surface-wave tomography for the continental United States and Alaska between 10 and 60 seconds period. Using up to 2 years of data from over 250 permanent and temporary stations obtained from the IRIS DMC and the Canadian National Seismic Network we compute cross-correlations for all station pairs. An automated dispersion analysis technique is applied to obtain Rayleigh wave group and phase speed curves and unacceptable measurements are removed. Dispersion curves from over 12,500 paths are retained in the continental US and about 1,000 cross-correlation and earthquake paths result in Alaska. We obtain isotropic Rayleigh wave group and phase speed maps on a one half degree grid using a damped ray theoretical inversion. Compared to previous teleseismic earthquake techniques, the short period maps provide better resolution of smaller scale features, especially those in the crust. The improved path coverage also enhances resolution at longer periods compared to previous maps with better delineation of tectonic provinces. In Alaska, limited station coverage and earthquake distribution confine the results to the south-central part of the state. Preliminary azimuthally anisotropic Rayleigh wave tomography maps are also presented together with an assessment of their robustness.

  5. The correlation of VLF propagation variations with atmospheric planetary-scale waves

    NASA Technical Reports Server (NTRS)

    Cavalieri, D. J.; Deland, R. J.; Potemra, T. A.; Gavin, R. F.

    1973-01-01

    Variations in the received daytime phase of long distance, cesium-controlled, VLF transmission were compared to the height variations of the 10-mb isobaric surface during the first three months of 1965 and 1969. The VLF phase values are also compared to height variations of constant electron densities in the E-region and to variations of f-min which have been shown to be well correlated with planetary-scale variations in the stratosphere by Deland and Cavalieri (1973). The VLF phase variations show good correlation with these previous ionospheric measurements and with the 10-mb surfaces. The planetary scale waves in the stratosphere are shown to be travelling on the average eastward in 1965 and westward in 1969. These correlations are interpreted as due to the propagation of travelling planetary scale waves with westward tilted wave fronts. Upward energy transport due to the vertical structure of those waves is also discussed. These correlations provide further evidence for the coupling between the lower ionosphere at about 70 km altitude (the daytime VLF reflection height and the stratosphere, and they demonstrate the importance of planetary wave phenomena to VLF propagation.

  6. Synthesis of body-wave information from global earthquake coda correlation: A numerical evaluation

    NASA Astrophysics Data System (ADS)

    Huang, H. H.; Tsai, V. C.; Lin, F. C.; Wang, W.; Chaput, J. A.

    2016-12-01

    Retrieval of body waves from noise or coda correlations that provides sampling at deeper depth compared to laterally propagating surface waves has advanced our ability of probing and monitoring the deep Earth. In contrast to the fruitful discussion on the accuracy and limitations for surface wave retrieval, the understanding of successful retrieval of body waves and their possible bias is relatively limited but of great importance for further applications. Here, using a numerical approach with the actual configuration of global large earthquakes and USArray stations, we validate the path sensitivity of recently-reported core phases (e.g. PKIKP2) and examine various parameters such as source duration, source distribution, and Q structure that may affect travel time and spectral characteristics of retrieved body-wave signals. Simulation results based on 1-D models show that, at least for earthquake coda correlations, using only reverberations (without scattering) can replicate most of body-wave signals in correlation functions as those from real observations. The observed lower frequency content of coda correlations compared to that of noise correlations shown in previous studies is likely caused by the long source time function of large earthquakes. Furthermore, the extracted travel times in autocorrelation functions (zero-offset) are relatively robust with insignificant bias as long as the selected coda windows are sufficiently late (after 10000 s); on the other hand, travel times in cross-correlation functions are biased and require careful window selection based upon azimuth and epicenter distance criteria. With a ray-based analytical model, we can explain the majority of such bias and show how the stationary phase approximation could be fulfilled by (ballistic) multiples that reverberate at different times in the coda and how the spurious phases emerge from the cross-terms of multiples.

  7. Small-scale seismic inversion using surface waves extracted from noise cross correlation.

    PubMed

    Gouédard, Pierre; Roux, Philippe; Campillo, Michel

    2008-03-01

    Green's functions can be retrieved between receivers from the correlation of ambient seismic noise or with an appropriate set of randomly distributed sources. This principle is demonstrated in small-scale geophysics using noise sources generated by human steps during a 10-min walk in the alignment of a 14-m-long accelerometer line array. The time-domain correlation of the records yields two surface wave modes extracted from the Green's function between each pair of accelerometers. A frequency-wave-number Fourier analysis yields each mode contribution and their dispersion curve. These dispersion curves are then inverted to provide the one-dimensional shear velocity of the near surface.

  8. Fragility of brushite stones in shock wave lithotripsy: absence of correlation with computerized tomography visible structure.

    PubMed

    Williams, James C; Hameed, Tariq; Jackson, Molly E; Aftab, Syed; Gambaro, Alessia; Pishchalnikov, Yuri A; Lingeman, James E; McAteer, James A

    2012-09-01

    Brushite stones were imaged in vitro and then broken with shock wave lithotripsy to assess whether stone fragility correlates with internal stone structure visible on helical computerized tomography. A total of 52 brushite calculi were scanned by micro computerized tomography, weighed, hydrated and placed in a radiological phantom. Stones were scanned using a Philips® Brilliance iCT 256 system and images were evaluated for the visibility of internal structural features. The calculi were then treated with shock wave lithotripsy in vitro. The number of shock waves needed to break each stone to completion was recorded. The number of shock waves needed to break each stone normalized to stone weight did not differ by HU value (p = 0.84) or by computerized tomography visible structures that could be identified consistently by all observers (p = 0.053). Stone fragility correlated highly with stone density and brushite content (each p <0.001). Calculi of almost pure brushite required the most shock waves to break. When all observations of computerized tomography visible structures were used for analysis by logistic fit, computerized tomography visible structure predicted increased stone fragility with an overall area under the ROC curve of 0.64. The shock wave lithotripsy fragility of brushite stones did not correlate with internal structure discernible on helical computerized tomography. However, fragility did correlate with stone density and increasing brushite mineral content, consistent with clinical experience with patients with brushite calculi. Thus, current diagnostic computerized tomography technology does not provide a means to predict when brushite stones will break well using shock wave lithotripsy. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  9. Study of the Piton de la Fournaise volcano using teleseismic waves from noise cross-correlation

    NASA Astrophysics Data System (ADS)

    Verbeke, J.; Shapiro, N.; Brenguier, F.; De Rosny, J.

    2013-12-01

    The ambient noise technique is based on the theoretical fact that the cross-correlation of a random signal recorded at two locations contains the Green's functions associated with those locations, one being treated as the source, the other as the receiver and vice versa. Because the surface-wave packet is the most energetic part of the signal, most of the noise-based studies have focused on the extraction of the surface waves to image the earth at crustal scale. More recently, body-waves signal have emerged out of the noise cross-correlations both at regional and global scales. Correlations of year-long continuous records resulted in extraction of seismic body waves illuminating the mantle transition zone as well as the core-mantle boundary. In our study, we make an attempt to use the teleseismic body waves extracted from the noise to illuminate the structure below the Piton de la Fournaise volcano one of the most active volcanoes on the Earth. The Piton de la Fournaise located on La Réunion island is nowadays continuously recorded and monitored. Extraction of the body waves-from the noise would, therefore, allow us to monitor the deep parts of the volcano plumbing system. To study the feasibility of this approach, we cross-correlate the continuous records from 21 broadband seismic stations operating on La Réunion island with continuous records from two high density networks: USArray and Hinet in Japan. Using these high-density networks gives us the opportunity to stack the information both in time and in space to enhance the signal of the body-waves.

  10. Correlation between opposite-helicity gravitons: Imprints on gravity-wave and microwave backgrounds

    NASA Astrophysics Data System (ADS)

    Gubitosi, Giulia; Magueijo, João

    2017-01-01

    We examine some of the roots of parity violation for gravitons and uncover a closely related new effect: correlations between right- and left-handed gravitons. Such correlators have spin 4 if they involve gravitons moving along the same direction and spin zero for gravitons moving with opposite directions. In the first case, the most immediate implication would be a degree of linear polarization for the tensor vacuum fluctuations, which could be seen by gravity-wave detectors sensitive enough to probe the primordial background, its degree of polarization and anisotropies. Looking at the anisotropy of the gravity waves linear polarization, we identify the parity respecting and violating components of the effect. The imprint on the cosmic microwave background temperature and polarization would be more elusive, since it averages to zero in the two-point functions, appearing only in their cosmic variance or in fourth-order correlators. In contrast, spin-zero correlations would have an effect on the two-point function of the cosmic microwave background temperature and polarization, enhancing the B B component if they were anticorrelations. Such correlations represent an amplitude for the production of standing waves, as first envisaged by Grishchuk, and could also leave an interesting signature for gravity-wave detectors.

  11. Mapping Global and Regional Correlations Between MORB Helium Isotopes and Seismic Wave Speeds

    NASA Astrophysics Data System (ADS)

    Williams, C. D.; Mukhopadhyay, S.; Romanowicz, B. A.

    2015-12-01

    The global mid-ocean ridge system stretches over 65,000 km and randomly samples the Earth's mantle. Compositional variations observed in mid-ocean ridge basalts reflect complex relationships between the thermal, compositional, and dynamical state of the mantle. In this study, we compare globally distributed ridge segment averaged helium isotopic compositions with shear-wave velocities, at both the global and regional scale. Our goal is to understand how temperature, composition and mantle flow control the distribution of helium isotopic compositions in basalts erupted at mid-ocean ridges. The global dataset displays a strong correlation between helium isotopes and the underlying shear-wave velocities in the upper mantle with the most prominent correlations corresponding to depths between ~200 to 700 km. A similar, but less pronounced feature, is observed in the mid-mantle at depths of ~1000 to 1500 km. The exclusion of MORBs influenced by hotspots slightly reduces the magnitude of the global correlations observed between helium isotopes and shear-wave velocities in the upper mantle (though a statistically significant correlation still remains), while slightly intensifying the correlation at mid-mantle depths. Data grouped by individual ocean basin exhibit distinct geochemical-seismological correlations. Mid-ocean ridge basalts from the Atlantic and Indian oceans display similar features as the global correlation and dominate the global upper mantle correlations. However, in the Pacific ocean, the most dominant feature is a correlation between helium isotopes and shear-wave velocities at depths between ~750 to 1500 km. In the Atlantic, temperature appears to be the primary driver of helium isotope variability, even when influence from hotspots is removed. However, it still remains unclear what controls helium isotope variability in the Pacific.

  12. Automated identification of peristaltic pressure waves in oesophageal manometry investigations using the rolling correlation technique.

    PubMed

    Perring, S; Jones, E

    2009-11-01

    We have implemented the technique of rolling correlation coefficient as proposed by Buttfield and Bolton (2005 Real time measurement of RR intervals using a digital signal processor J. Med. Eng. Technol. 29 8-13) for ECG R-wave detection in the detection and timing of oesophageal peristalsis. 43 sequential patients attending for oesophageal manometry were retrospectively reviewed. Two expert reviewers visually assessed each swallow for normality of peristaltic amplitude and propagation speed. Automatic assessment was performed using rolling correlation, maximum amplitude, threshold and maximum gradient techniques of identifying onset of peristalsis. Rolling correlation was comparable with the maximum amplitude technique at identifying peristaltic pressure waves visually identified as present. Rolling correlation was most effective at correctly identifying propagation velocity as normal (698 out of 845 normally propagating waves) and highest correlation with expert visual assessment of percentage abnormal propagation for each patient (R value 0.918). In a sub-group of 11 studies assessed as displaying normal motility, rolling correlation gave lowest variation of propagation speed and highest consistency with visual assessment. The rolling correlation technique is effective and accurate at identifying oesophageal peristalsis and characterizing peristaltic propagation in manometric studies even in the presence of abnormally weak peristalsis and other confounding pressure perturbations.

  13. Triplet p-wave pairing correlation in low-doped zigzag graphene nanoribbons.

    PubMed

    Ma, Tianxing; Yang, Fan; Huang, Zhongbing; Lin, Hai-Qing

    2017-02-02

    We reveal an edge spin triplet p-wave superconducting pairing correlation in slightly doped zigzag graphene nanoribbons. By employing a method that combines random-phase approximation, the finite-temperature determinant quantum Monte Carlo approach, and the ground-state constrained-path quantum Monte Carlo method, it is shown that such a spin-triplet pairing is mediated by the ferromagnetic fluctuations caused by the flat band at the edge. The spin susceptibility and effective pairing interactions at the edge strongly increase as the on-site Coulomb interaction increases, indicating the importance of electron-electron correlations. It is also found that the doping-dependent ground-state p-wave pairing correlation bears some similarity to the famous superconducting dome in the phase diagram of a high-temperature superconductor, while the spin correlation at the edge is weakened as the system is doped away from half filling.

  14. Triplet p-wave pairing correlation in low-doped zigzag graphene nanoribbons.

    PubMed

    Ma, Tianxing; Yang, Fan; Huang, Zhongbing; Lin, Hai-Qing

    2017-02-10

    We reveal an edge spin triplet p-wave superconducting pairing correlation in slightly doped zigzag graphene nanoribbons. By employing a method that combines random-phase approximation, the finite-temperature determinant quantum Monte Carlo approach, and the ground-state constrained-path quantum Monte Carlo method, it is shown that such a spin-triplet pairing is mediated by the ferromagnetic fluctuations caused by the flat band at the edge. The spin susceptibility and effective pairing interactions at the edge strongly increase as the on-site Coulomb interaction increases, indicating the importance of electron-electron correlations. It is also found that the doping-dependent ground-state p-wave pairing correlation bears some similarity to the famous superconducting dome in the phase diagram of a high-temperature superconductor, while the spin correlation at the edge is weakened as the system is doped away from half filling.

  15. Triplet p-wave pairing correlation in low-doped zigzag graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Ma, Tianxing; Yang, Fan; Huang, Zhongbing; Lin, Hai-Qing

    2017-02-01

    We reveal an edge spin triplet p–wave superconducting pairing correlation in slightly doped zigzag graphene nanoribbons. By employing a method that combines random-phase approximation, the finite-temperature determinant quantum Monte Carlo approach, and the ground-state constrained-path quantum Monte Carlo method, it is shown that such a spin-triplet pairing is mediated by the ferromagnetic fluctuations caused by the flat band at the edge. The spin susceptibility and effective pairing interactions at the edge strongly increase as the on-site Coulomb interaction increases, indicating the importance of electron-electron correlations. It is also found that the doping-dependent ground-state p-wave pairing correlation bears some similarity to the famous superconducting dome in the phase diagram of a high-temperature superconductor, while the spin correlation at the edge is weakened as the system is doped away from half filling.

  16. Viscosity, Shear Waves, and Atomic-Level Stress-Stress Correlations

    NASA Astrophysics Data System (ADS)

    Levashov, V. A.; Morris, J. R.; Egami, T.

    2011-03-01

    The Green-Kubo equation relates the macroscopic stress-stress correlation function to a liquid’s viscosity. The concept of the atomic-level stresses allows the macroscopic stress-stress correlation function in the equation to be expressed in terms of the space-time correlations among the atomic-level stresses. Molecular dynamics studies show surprisingly long spatial extension of stress-stress correlations and also longitudinal and transverse waves propagating in liquids over ranges which could exceed the system size. The results reveal that the range of propagation of shear waves corresponds to the range of distances relevant for viscosity. Thus our results show that viscosity is a fundamentally nonlocal quantity. We also show that the periodic boundary conditions play a nontrivial role in molecular dynamics simulations, effectively masking the long-range nature of viscosity.

  17. Triplet p-wave pairing correlation in low-doped zigzag graphene nanoribbons

    PubMed Central

    Ma, Tianxing; Yang, Fan; Huang, Zhongbing; Lin, Hai-Qing

    2017-01-01

    We reveal an edge spin triplet p–wave superconducting pairing correlation in slightly doped zigzag graphene nanoribbons. By employing a method that combines random-phase approximation, the finite-temperature determinant quantum Monte Carlo approach, and the ground-state constrained-path quantum Monte Carlo method, it is shown that such a spin-triplet pairing is mediated by the ferromagnetic fluctuations caused by the flat band at the edge. The spin susceptibility and effective pairing interactions at the edge strongly increase as the on-site Coulomb interaction increases, indicating the importance of electron-electron correlations. It is also found that the doping-dependent ground-state p-wave pairing correlation bears some similarity to the famous superconducting dome in the phase diagram of a high-temperature superconductor, while the spin correlation at the edge is weakened as the system is doped away from half filling. PMID:28186185

  18. Viscosity, shear waves, and atomic-level stress-stress correlations.

    PubMed

    Levashov, V A; Morris, J R; Egami, T

    2011-03-18

    The Green-Kubo equation relates the macroscopic stress-stress correlation function to a liquid's viscosity. The concept of the atomic-level stresses allows the macroscopic stress-stress correlation function in the equation to be expressed in terms of the space-time correlations among the atomic-level stresses. Molecular dynamics studies show surprisingly long spatial extension of stress-stress correlations and also longitudinal and transverse waves propagating in liquids over ranges which could exceed the system size. The results reveal that the range of propagation of shear waves corresponds to the range of distances relevant for viscosity. Thus our results show that viscosity is a fundamentally nonlocal quantity. We also show that the periodic boundary conditions play a nontrivial role in molecular dynamics simulations, effectively masking the long-range nature of viscosity.

  19. Direct Calculation of the Scattering Amplitude Without Partial Wave Decomposition. III; Inclusion of Correlation Effects

    NASA Technical Reports Server (NTRS)

    Shertzer, Janine; Temkin, Aaron

    2007-01-01

    In the first two papers in this series, we developed a method for studying electron-hydrogen scattering that does not use partial wave analysis. We constructed an ansatz for the wave function in both the static and static exchange approximations and calculated the full scattering amplitude. Here we go beyond the static exchange approximation, and include correlation in the wave function via a modified polarized orbital. This correlation function provides a significant improvement over the static exchange approximation: the resultant elastic scattering amplitudes are in very good agreement with fully converged partial wave calculations for electron-hydrogen scattering. A fully variational modification of this approach is discussed in the conclusion of the article Popular summary of Direct calculation of the scattering amplitude without partial wave expansion. III ....." by J. Shertzer and A. Temkin. In this paper we continue the development of In this paper we continue the development of a new approach to the way in which researchers have traditionally used to calculate the scattering cross section of (low-energy) electrons from atoms. The basic mathematical problem is to solve the Schroedinger Equation (SE) corresponding the above physical process. Traditionally it was always the case that the SE was reduced to a sequence of one-dimensional (ordinary) differential equations - called partial waves which were solved and from the solutions "phase shifts" were extracted, from which the scattering cross section was calculated.

  20. Directional disorder of ciliary metachronal waves using two-dimensional correlation map.

    PubMed

    Yi, Won-Jin; Park, Kwang-Suk; Lee, Chul-Hee; Rhee, Chae-Seo; Nam, Sang-Won

    2002-03-01

    The interrelationship of cilia and the order of wave directions are important factors that determine the effectiveness of cilia to transport materials in mucociliary systems of the respiratory tract. The interrelationship of cilia and the directional disorder of ciliary metachronal wave were analyzed using digital microscopic images. The degree of synchronization between ciliary beats was determined by the correlation factor between two different spots. To find out the uniphase directions of beating cilia, principal axes of inertia were applied to the two-dimensional correlation map calculated from sequential ciliary images. The standard deviation of determined wave directions in a region of interest (ROI) was defined as a measure of metachronal wave disorder. The pooled mean of metachronal wave disorder was 23.4 +/- 8.79 degrees in ROIs of 8 microm x 8 microm and 25.4 +/- 6.46 degrees in 32 microm x 24 microm from the sphenoid sinus mucosa of five normal subjects. Our result shows that there is a considerable variation in metachronal wave directions of cilia beating on the epithelium.

  1. Controlling correlations in the Rydberg-dressing six-wave mixing process

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoyang; Ma, Danmeng; Liu, Junfeng; Ahmed, Irfan; Tian, Hao; Che, Junling; Tang, Haijun; Raza, Faizan; Zhang, Yanpeng

    2017-01-01

    We report the experimental observation of intensity noise correlation between six-wave mixing (SWM), fluorescence and probe transmission signal in a coherently prepared Rydberg atomic ensemble. With the assistance of the electromagnetically induced transparency (EIT) technique, the Rydberg SWM is generated with high efficiency. Then the correlation between the probe transmission and SWM, the anti-correlation between the probe and fluorescence, and the anti-correlation between SWM and fluorescence occur, with these being caused by the enhanced dispersion and nonlinearity in the Rydberg-EIT medium. Such intensity correlation can be effectively controlled by the strong Rydberg-dressing effect. This investigation can potentially contribute to the further study of multi-field quantum correlations and anti-correlations via atomic spin coherence.

  2. Body and surface wave reconstruction from seismic noise correlations between arrays at Piton de la Fournaise volcano

    NASA Astrophysics Data System (ADS)

    Nakata, Nori; Boué, Pierre; Brenguier, Florent; Roux, Philippe; Ferrazzini, Valérie; Campillo, Michel

    2016-02-01

    Body wave reconstruction from ambient seismic noise correlations is an important step toward improving volcano imaging and monitoring. Here we extract body and surface waves that propagate in Piton de la Fournaise volcano on La Réunion island using ambient noise cross correlation and array-processing techniques. Ambient noise was continuously recorded at three dense arrays, each comprising 49 geophones. To identify and enhance the Green's function from the ambient noise correlation, we apply a double beamforming (DBF) technique between the array pairs. The DBF allows us to separate surface and body waves, direct and reflected waves, and multipathing waves. Based on their azimuths and slownesses, we successfully extract body waves between all the combinations of arrays, including the wave that propagates through the active magmatic system of the volcano. Additionally, we identify the effects of uneven noise source distribution and interpret the surface wave reflections.

  3. Kinetic correlation in the final-state wave function in photo-double-ionization of He

    SciTech Connect

    Otranto, S.; Garibotti, C. R.

    2003-06-01

    We evaluate the triply differential cross section (TDCS) for photo-double-ionization of helium. We use a final continuum wave function which correlates the motion of the three particles, through an expansion in products of two-body Coulomb functions. This function satisfies a set of appropriate physical conditions in the coalescence points, in addition to the correct asymptotic behavior condition. We analyze the effect of this correlation in the TDCS and compare our results with experimental data.

  4. Correlation of stress-wave-emission characteristics with fracture aluminum alloys

    NASA Technical Reports Server (NTRS)

    Hartbower, C. E.; Reuter, W. G.; Morais, C. F.; Crimmins, P. P.

    1972-01-01

    A study to correlate stress wave emission characteristics with fracture in welded and unwelded aluminum alloys tested at room and cryogenic temperature is reported. The stress wave emission characteristics investigated were those which serve to presage crack instability; viz., a marked increase in:(1) signal amplitude; (2) signal repetition rate; and (3) the slope of cumulative count plotted versus load. The alloys were 7075-T73, 2219-T87 and 2014-T651, welded with MIG and TIG using 2319 and 4043 filler wire. The testing was done with both unnotched and part-through-crack (PTC) tension specimens and with 18-in.-dia subscale pressure vessels. In the latter testing, a real time, acoustic emission, triangulation system was used to locate the source of each stress wave emission. With such a system, multiple emissions from a given location were correlated with defects found by conventional nondestructive inspection.

  5. Correlation between scintillation indices and gradient drift wave amplitudes in the northern polar ionosphere

    NASA Astrophysics Data System (ADS)

    Burston, Robert; Astin, Ivan; Mitchell, Cathryn; Alfonsi, Lucilla; Pedersen, Todd; Skone, Susan

    2009-07-01

    A model is developed of the gradient drift instability growth rate in the north polar cap ionosphere, utilizing a novel approach employing an ionospheric imaging algorithm. The growth rate values calculated by this model are in turn used to estimate how the amplitudes of actual gradient drift waves vary over time as the plasma drifts and the growth rates change with time. Ionospheric imaging is again used in order to determine plasma drift velocities. The final output from the model is in turn used to assess the linear correlation between the scintillation indices S4 and σ $\\phi$ recorded by several GPS L1 band scintillation receivers stationed in the north polar cap and mean gradient drift wave amplitudes. Four separate magnetic storm periods, totaling 13 days, are analyzed in this way. The results show weak but significant linear correlations between the mean wave amplitudes calculated and the observed scintillation indices at F layer altitudes.

  6. Empirical Synthesis of Green functions from the correlation of diffuse waves

    NASA Astrophysics Data System (ADS)

    Campillo, M.; Larose, E.; Margerin, L.; Paul, A.; van Tiggelen, B.; Derode, A.; Abers, G.

    2003-12-01

    We show the existence of long range field correlations in the seismic coda of regional records in both Mexico and Alaska. The cross-correlation tensor between the coda records at two points is measured for a set of distant earthquakes. Remarkably, while individual correlations have a random character, the source- averaged correlations exhibit deterministic arrivals that obey the same symmetry rules as the Green tensor between the two points. In addition, the arrival times of these waves coincide with propagating surface waves between the two stations. Thus, we propose to identify the averaged correlation signals with the surface wave part of the Green tensor. However, while time reversal symmetry theoretically imposes that the Green function appears at both negative and positive times, we find experimentally this symmetry to be broken when the distribution of earthquakes is not isotropic around the stations. We explain this observation by the long lasting anisotropy of the diffuse field. This point is further discussed in a companion paper where we prove both experimentally and theoretically that a dominant flux of energy coming from the source can persist in the late coda. Finally, we show that averaged cross-correlations of ambient noise enable the reconstruction of some coherent arrivals. These examples illustrate a novel empirical method that provides synthetic seismograms between two stations, without the knowledge of the precise location and origin times of the sources.

  7. A correlative investigation of the propagation of ULF wave power through the dayside magnetosphere

    NASA Technical Reports Server (NTRS)

    Engebretson, Mark J.

    1992-01-01

    Work performed from 1 Jan. - 30 Jun. 1992 is reported. The topics covered include the following: the radial pulsation study, the wave polarization study; radial boundaries of Pc 3-4 pulsations in the dayside magnetosphere; and source regions for correlated ULF-VLF pulsations.

  8. Comments on 'Square-wave correlation phase detector with VLF atmospheric noise'

    NASA Astrophysics Data System (ADS)

    Kroenert, J. T.

    1980-11-01

    Calculated sine wave response data from Raab's paper (1979) are used to develop an algorithm for converting the outputs of a squarewave correlator into estimates of signal phase that is valid for all signal-to-noise ratios. The proposed algorithm is considerably simpler than three separate schemes suggested for low, intermediate, and high signal-to-noise ratio regions.

  9. Deterioration of abstract reasoning ability in mild cognitive impairment and Alzheimer's disease: correlation with regional grey matter volume loss revealed by diffeomorphic anatomical registration through exponentiated lie algebra analysis.

    PubMed

    Yoshiura, Takashi; Hiwatashi, Akio; Yamashita, Koji; Ohyagi, Yasumasa; Monji, Akira; Takayama, Yukihisa; Kamano, Norihiro; Kawashima, Toshiro; Kira, Jun-Ichi; Honda, Hiroshi

    2011-02-01

    To determine which brain regions are relevant to deterioration in abstract reasoning as measured by Raven's Colored Progressive Matrices (CPM) in the context of dementia. MR images of 37 consecutive patients including 19 with Alzheimer's disease (AD) and 18 with amnestic mild cognitive impairment (aMCI) were retrospectively analyzed. All patients were administered the CPM. Regional grey matter (GM) volume was evaluated according to the regimens of voxel-based morphometry, during which a non-linear registration algorithm called Diffeomorphic Anatomical Registration Through Exponentiated Lie algebra was employed. Multiple regression analyses were used to map the regions where GM volumes were correlated with CPM scores. The strongest correlation with CPM scores was seen in the left middle frontal gyrus while a region with the largest volume was identified in the left superior temporal gyrus. Significant correlations were seen in 14 additional regions in the bilateral cerebral hemispheres and right cerebellum. Deterioration of abstract reasoning ability in AD and aMCI measured by CPM is related to GM loss in multiple regions, which is in close agreement with the results of previous activation studies.

  10. Correlated noise in networks of gravitational-wave detectors: Subtraction and mitigation

    NASA Astrophysics Data System (ADS)

    Thrane, E.; Christensen, N.; Schofield, R. M. S.; Effler, A.

    2014-07-01

    One of the key science goals of advanced gravitational-wave detectors is to observe a stochastic gravitational-wave background. However, recent work demonstrates that correlated magnetic fields from Schumann resonances can produce correlated strain noise over global distances, potentially limiting the sensitivity of stochastic background searches with advanced detectors. In this paper, we estimate the correlated noise budget for the worldwide advanced detector network and conclude that correlated noise may affect upcoming measurements. We investigate the possibility of a Wiener filtering scheme to subtract correlated noise from Advanced LIGO searches, and estimate the required specifications. We also consider the possibility that residual correlated noise remains following subtraction, and we devise an optimal strategy for measuring astronomical parameters in the presence of correlated noise. Using this new formalism, we estimate the loss of sensitivity for a broadband, isotropic stochastic background search using 1 yr of LIGO data at design sensitivity. Given our current noise budget, the uncertainty with which LIGO can estimate energy density will likely increase by a factor of ≈12—if it is impossible to achieve significant subtraction. Additionally, narrow band cross-correlation searches may be severely affected at low frequencies f ≲70 Hz without effective subtraction.

  11. Exponentiated power Lindley distribution

    PubMed Central

    Ashour, Samir K.; Eltehiwy, Mahmoud A.

    2014-01-01

    A new generalization of the Lindley distribution is recently proposed by Ghitany et al. [1], called as the power Lindley distribution. Another generalization of the Lindley distribution was introduced by Nadarajah et al. [2], named as the generalized Lindley distribution. This paper proposes a more generalization of the Lindley distribution which generalizes the two. We refer to this new generalization as the exponentiated power Lindley distribution. The new distribution is important since it contains as special sub-models some widely well-known distributions in addition to the above two models, such as the Lindley distribution among many others. It also provides more flexibility to analyze complex real data sets. We study some statistical properties for the new distribution. We discuss maximum likelihood estimation of the distribution parameters. Least square estimation is used to evaluate the parameters. Three algorithms are proposed for generating random data from the proposed distribution. An application of the model to a real data set is analyzed using the new distribution, which shows that the exponentiated power Lindley distribution can be used quite effectively in analyzing real lifetime data. PMID:26644927

  12. Exponentiated power Lindley distribution.

    PubMed

    Ashour, Samir K; Eltehiwy, Mahmoud A

    2015-11-01

    A new generalization of the Lindley distribution is recently proposed by Ghitany et al. [1], called as the power Lindley distribution. Another generalization of the Lindley distribution was introduced by Nadarajah et al. [2], named as the generalized Lindley distribution. This paper proposes a more generalization of the Lindley distribution which generalizes the two. We refer to this new generalization as the exponentiated power Lindley distribution. The new distribution is important since it contains as special sub-models some widely well-known distributions in addition to the above two models, such as the Lindley distribution among many others. It also provides more flexibility to analyze complex real data sets. We study some statistical properties for the new distribution. We discuss maximum likelihood estimation of the distribution parameters. Least square estimation is used to evaluate the parameters. Three algorithms are proposed for generating random data from the proposed distribution. An application of the model to a real data set is analyzed using the new distribution, which shows that the exponentiated power Lindley distribution can be used quite effectively in analyzing real lifetime data.

  13. Experimental characterization of quantum correlated triple beams generated by cascaded four-wave mixing processes

    SciTech Connect

    Qin, Zhongzhong; Cao, Leiming; Jing, Jietai

    2015-05-25

    Quantum correlations and entanglement shared among multiple modes are fundamental ingredients of most continuous-variable quantum technologies. Recently, a method used to generate multiple quantum correlated beams using cascaded four-wave mixing (FWM) processes was theoretically proposed and experimentally realized by our group [Z. Qin et al., Phys. Rev. Lett. 113, 023602 (2014)]. Our study of triple-beam quantum correlation paves the way to showing the tripartite entanglement in our system. Our system also promises to find applications in quantum information and precision measurement such as the controlled quantum communications, the generation of multiple quantum correlated images, and the realization of a multiport nonlinear interferometer. For its applications, the degree of quantum correlation is a crucial figure of merit. In this letter, we experimentally study how various parameters, such as the cell temperatures, one-photon, and two-photon detunings, influence the degree of quantum correlation between the triple beams generated from the cascaded two-FWM configuration.

  14. Experimental characterization of quantum correlated triple beams generated by cascaded four-wave mixing processes

    NASA Astrophysics Data System (ADS)

    Qin, Zhongzhong; Cao, Leiming; Jing, Jietai

    2015-05-01

    Quantum correlations and entanglement shared among multiple modes are fundamental ingredients of most continuous-variable quantum technologies. Recently, a method used to generate multiple quantum correlated beams using cascaded four-wave mixing (FWM) processes was theoretically proposed and experimentally realized by our group [Z. Qin et al., Phys. Rev. Lett. 113, 023602 (2014)]. Our study of triple-beam quantum correlation paves the way to showing the tripartite entanglement in our system. Our system also promises to find applications in quantum information and precision measurement such as the controlled quantum communications, the generation of multiple quantum correlated images, and the realization of a multiport nonlinear interferometer. For its applications, the degree of quantum correlation is a crucial figure of merit. In this letter, we experimentally study how various parameters, such as the cell temperatures, one-photon, and two-photon detunings, influence the degree of quantum correlation between the triple beams generated from the cascaded two-FWM configuration.

  15. Imaging correlated wave functions of few-electron quantum dots: Theory and scanning tunneling spectroscopy experimentsa)

    NASA Astrophysics Data System (ADS)

    Rontani, Massimo; Molinari, Elisa; Maruccio, Giuseppe; Janson, Martin; Schramm, Andreas; Meyer, Christian; Matsui, Tomohiro; Heyn, Christian; Hansen, Wolfgang; Wiesendanger, Roland

    2007-04-01

    We show both theoretically and experimentally that scanning tunneling spectroscopy (STS) images of semiconductor quantum dots may display clear signatures of electron-electron correlation. We apply many-body tunneling theory to a realistic model, which fully takes into account correlation effects and dot anisotropy. Comparing measured STS images of freestanding InAs quantum dots with those calculated by the full configuration interaction method, we explain the wave-function sequence in terms of images of one- and two-electron states. The STS map corresponding to double charging is significantly distorted by electron correlation with respect to the noninteracting case.

  16. New analysis for the correlation between gravitational wave and neutrino detectors during SN1987A

    NASA Astrophysics Data System (ADS)

    Galeotti, P.; Pizzella, G.

    2016-08-01

    Two major problems, still associated with the SN1987A, are: (a) the signals observed with the gravitational waves detectors, (b) the duration of the collapse. Indeed, (a) the sensitivity of the gravitational wave detectors seems to be small for detecting gravitational waves and, (b) while some experimental data indicate a duration of order of hours, most theories assume that the collapse develops in a few seconds. Since recent data of the X-ray NuSTAR satellite show a clear evidence of an asymmetric collapse, we have revisited the experimental data recorded by the underground and gravitational wave detectors running during the SN1987A. New evidence is shown that confirms previous results, namely that the data recorded by the gravitational wave detectors running in Rome and in Maryland are strongly correlated with the data of both the Mont Blanc and the Kamiokande detectors, and that the correlation extends over a long period of time (1 or 2 h) centered at the Mont Blanc time. This result indicates that also Kamiokande detected neutrinos at the Mont Blanc time, and these interactions were not identified because not grouped in a burst.

  17. Computation of correlation functions and wave function projections in the context of quantum trajectory dynamics.

    PubMed

    Garashchuk, Sophya

    2007-04-21

    The de Broglie-Bohm formulation of the Schrodinger equation implies conservation of the wave function probability density associated with each quantum trajectory in closed systems. This conservation property greatly simplifies numerical implementations of the quantum trajectory dynamics and increases its accuracy. The reconstruction of a wave function, however, becomes expensive or inaccurate as it requires fitting or interpolation procedures. In this paper we present a method of computing wave packet correlation functions and wave function projections, which typically contain all the desired information about dynamics, without the full knowledge of the wave function by making quadratic expansions of the wave function phase and amplitude near each trajectory similar to expansions used in semiclassical methods. Computation of the quantities of interest in this procedure is linear with respect to the number of trajectories. The introduced approximations are consistent with approximate quantum potential dynamics method. The projection technique is applied to model chemical systems and to the H+H(2) exchange reaction in three dimensions.

  18. Correlations between personality traits and specific groups of alpha waves in the human EEG

    PubMed Central

    2016-01-01

    Background. Different individuals have alpha waves with different wavelengths. The distribution of the wavelengths is assumed to be bell-shaped and smooth. Although this view is generally accepted, it is still just an assumption and has never been critically tested. When exploring the relationship between alpha waves and personality traits, it makes a huge difference if the distribution of the alpha waves is smooth or if specific groups of alpha waves can be demonstrated. Previous studies have not considered the possibility that specific groups of alpha waves may exist. Methods. Computerized EEGs have become standard, but wavelength measurements are problematic when based on averaging procedures using the Fourier transformation because such procedures cause a large systematic error. If the actual wavelength is of interest, it is necessary to go back to basic physiology and use raw EEG signals. In the present study, measurements were made directly from sequences of alpha waves where every wave could be identified. Personality dimensions were measured using an inventory derived from the International Personality Item Pool. Results. Recordings from 200 healthy individuals revealed that there are three main groups of alpha waves. These groups had frequencies around 8, 10, and 12 waves per second. The middle group had a bimodal distribution, and a subdivision gave a total of four alpha groups. In the center of each group, the degree of extraversion was high and the degree of neuroticism was low. Many small differences in personality traits were found when the centers were compared with one another. This gave four personality profiles that resemble the four classical temperaments. When people in the surrounding zones were compared with those in the centers, relatively large differences in personality traits were found. Conclusions. Specific groups of alpha waves exist, and these groups have to be taken into account when correlations are made to personality dimensions and

  19. Correlations between personality traits and specific groups of alpha waves in the human EEG.

    PubMed

    Johannisson, Tomas

    2016-01-01

    Background. Different individuals have alpha waves with different wavelengths. The distribution of the wavelengths is assumed to be bell-shaped and smooth. Although this view is generally accepted, it is still just an assumption and has never been critically tested. When exploring the relationship between alpha waves and personality traits, it makes a huge difference if the distribution of the alpha waves is smooth or if specific groups of alpha waves can be demonstrated. Previous studies have not considered the possibility that specific groups of alpha waves may exist. Methods. Computerized EEGs have become standard, but wavelength measurements are problematic when based on averaging procedures using the Fourier transformation because such procedures cause a large systematic error. If the actual wavelength is of interest, it is necessary to go back to basic physiology and use raw EEG signals. In the present study, measurements were made directly from sequences of alpha waves where every wave could be identified. Personality dimensions were measured using an inventory derived from the International Personality Item Pool. Results. Recordings from 200 healthy individuals revealed that there are three main groups of alpha waves. These groups had frequencies around 8, 10, and 12 waves per second. The middle group had a bimodal distribution, and a subdivision gave a total of four alpha groups. In the center of each group, the degree of extraversion was high and the degree of neuroticism was low. Many small differences in personality traits were found when the centers were compared with one another. This gave four personality profiles that resemble the four classical temperaments. When people in the surrounding zones were compared with those in the centers, relatively large differences in personality traits were found. Conclusions. Specific groups of alpha waves exist, and these groups have to be taken into account when correlations are made to personality dimensions and

  20. Analysis of fundamental and higher mode surface waves from noise correlation near Eastern Pacific Rise

    NASA Astrophysics Data System (ADS)

    Yao, H.; Gouedard, P.; Gerstoft, P.; McGuire, J. J.; Collins, J. A.; van der Hilst, R. D.

    2010-12-01

    Noise cross-correlation has been used to recover surface wave Green’s functions between receivers. However, most noise cross-correlation studies are restricted to land seismic stations and few studies have observed higher-mode surface waves. We apply noise cross-correlation on three-component broadband data recorded by 30 ocean bottom seismometers (OBSs) around the Gofar/Discovery/Quebrada transform faults on the Eastern Pacific Rise. On the vertical component, the cross-correlation functions (CFs) reveal clear Rayleigh wave propagation between each station pair for both the fundamental mode in the 2-30s period band and the first-higher mode in the 2-10 s band. However, on the radial component CFs, the first-higher mode Rayleigh waves dominate within 2-10s band and the fundamental mode Rayleigh waves appear mainly in 10-20s band. On the transverse component CFs, Love waves are observed within 2-10s band. The directionality of CFs is different for the fundamental mode and the first higher-mode surface waves, and is also frequency dependent. This infers different mechanisms for each mode, probably due to ocean wave activities and ocean bottom scattering. The dispersion characteristics of the vertical component CFs are analyzed using the time-frequency analysis for group velocities and a time-variable filter technique for phase velocities. We obtain inter-station dispersion curves within 2-30s period for the fundamental mode and within 2-8s period for the first higher-mode. These dispersion curves are averaged over station pairs and used to invert for the 1-D shear wavespeed structure in the crust and uppermost mantle in the study region. The obtained 1-D velocity model shows very low shear wavespeed in the uppermost mantle (4.25 and 4.0 km/s within 10-25 km and 25-45 km depth ranges, respectively), consistent with the local geology with hot upper mantle material upwelling to the surface through the ridges of the Eastern Pacific Rise.

  1. Noise in Exponential Growth

    NASA Astrophysics Data System (ADS)

    Iyer-Biswas, Srividya; Wright, Charles; Henry, Jon; Burov, Stas; Lin, Yihan; Crosson, Sean; Dinner, Aaron; Scherer, Norbert

    2013-03-01

    The interplay between growth and division of cells is has been studied in the context of exponential growth of bacterial cells (in suitable conditions) for decades. However, bulk culture studies obscure phenomena that manifest in single cells over many generations. We introduce a unique technology combining microfluidics, single-cell imaging, and quantitative analysis. This enables us to track the growth of single Caulobacter crescentus stalked cells over hundreds of generations. The statistics that we extract indicate a size thresholding mechanism for cell division and a non-trivial scaling collapse of division time distributions at different temperatures. In this talk I shall discuss these observations and a stochastic model of growth and division that captures all our observations with no free parameters.

  2. Forecasting exponential growth and exponential decline: similarities and differences.

    PubMed

    Ebersbach, Mirjam; Lehner, Mirjam; Resing, Wilma C M; Wilkening, Friedrich

    2008-02-01

    Previous research has demonstrated adults' difficulties with explicitly forecasting exponential processes. Exponential growth is usually grossly underestimated, whereas exponential decline is forecast more accurately. By contrast, the present study examined implicit knowledge about exponential processes and how it is affected by function type (growth versus decline) in samples of 7-, 10-, 14-year-olds, and adults (N=80). Different indicators of the quality of forecasts were investigated. As opposed to previous findings, participants of all age groups estimated exponential decline less adequately than exponential growth. This effect could be attributed mainly to the fact that, in relation to fitted exponential functions, the starting value, or intercept, of the function was approximated well for exponential growth but badly with regard to exponential decline. The accuracy of the non-linear component in forecast functions barely differed between function types within the same age group. Furthermore, even 7-year-olds appeared to have a preliminary understanding of exponential processes, while both intercepts and exponents of forecasts became more accurate with age. Theoretical and practical implications are discussed.

  3. [Wave-type time series variation of the correlation between NDVI and climatic factors].

    PubMed

    Bi, Xiaoli; Wang, Hui; Ge, Jianping

    2005-02-01

    Based on the 1992-1996 data of 1 km monthly NDVI and those of the monthly precipitation and mean temperature collected by 400 standard meteorological stations in China, this paper analyzed the temporal and spatial dynamic changes of the correlation between NDVI and climatic factors in different climate districts of this country. The results showed that there was a significant correlation between monthly precipitations and NDVI. The wave-type time series model could simulate well the temporal dynamic changes of the correlation between NDVI and climatic factors, and the simulated results of the correlation between NDVI and precipitation was better than that between NDVI and temperature. The correlation coefficients (R2) were 0.91 and 0.86, respectively for the whole country.

  4. A wave field synthesis approach to reproduction of spatially correlated sound fields.

    PubMed

    Berry, Alain; Dia, Rokhiya; Robin, Olivier

    2012-02-01

    This article discusses an open-loop wave field synthesis (WFS) approach for the reproduction of spatially correlated sound fields. The main application concerns laboratory reproduction of turbulent boundary layer wall pressure on aircraft fuselages and measurement of their sound transmission loss. The problem configuration involves reconstruction of random sound pressure distributions on a planar reproduction surface using a planar array of reproduction monopoles parallel to the reproduction plane. In this paper, the WFS formulation is extended to sound fields with imposed time and spatial correlation properties (or equivalently imposed cross-spectral density in the frequency and wave number domains). Numerical examples are presented for the reproduction of a propagating plane wave, diffuse acoustic field and wall pressure in subsonic or supersonic turbulent boundary layers. The reproduction accuracy is examined in terms of the size of the source plane and reproduction plane, their separation, and the number of reproduction sources required per acoustic wavelength. While the reproduction approach cannot reconstruct sub-wavelength correlation scales of subsonic turbulent boundary layers, it effectively reconstructs correlation scales larger than the acoustic wavelength, making it appropriate for diffuse acoustic field and supersonic turbulent layers.

  5. Locating small changes in the earth crust with coda waves obtained from ambient noise correlations (Invited)

    NASA Astrophysics Data System (ADS)

    Larose, E. F.; Obermann, A.; Planes, T.; Campillo, M.

    2013-12-01

    Coda waves are the random like waveforms that constitute the late part of the seismograms after an earthquake. These signals have long been considered as devoid of any practical information on the geological materials they traverse. In the 1980's, the idea of using these late arrivals to track small relative velocity changes in the earth emerged, a technique later named Coda Wave Interferometry. A more recent procedure named Locadiff proposes to locate structural changes by processing the decorrelation of the coda waveforms. This contribution will cover recent experiments, both in the laboratory and in the field, that take advantage of the spatial and temporal sensitivity of coda waves to locate small changes. We will emphasize applications to ambient noise correlations.

  6. Equality of bulk wave functions and edge correlations in some topological superconductors: a spacetime derivation.

    PubMed

    Shankar, R; Vishwanath, Ashvin

    2011-09-02

    For certain systems, the N-particle ground-state wave functions of the bulk happen to be exactly equal to the N-point spacetime correlation functions at the edge, in the infrared limit. We show why this had to be so for a class of topological superconductors, beginning with the p+ip state in D=2+1. Varying the chemical potential as a function of Euclidean time between weak and strong pairing states is shown to extract the wave function. Then a Euclidean rotation that exchanges time and space and approximate Lorentz invariance lead to the edge connection. This framework readily generalizes to other dimensions. We illustrate it with a D=3+1 example, superfluid 3He- B, and a p-wave superfluid in D=1+1. Our method works only when the particle number is not conserved, as in superconductors.

  7. From plane waves to local Gaussians for the simulation of correlated periodic systems

    NASA Astrophysics Data System (ADS)

    Booth, George H.; Tsatsoulis, Theodoros; Chan, Garnet Kin-Lic; Grüneis, Andreas

    2016-08-01

    We present a simple, robust, and black-box approach to the implementation and use of local, periodic, atom-centered Gaussian basis functions within a plane wave code, in a computationally efficient manner. The procedure outlined is based on the representation of the Gaussians within a finite bandwidth by their underlying plane wave coefficients. The core region is handled within the projected augment wave framework, by pseudizing the Gaussian functions within a cutoff radius around each nucleus, smoothing the functions so that they are faithfully represented by a plane wave basis with only moderate kinetic energy cutoff. To mitigate the effects of the basis set superposition error and incompleteness at the mean-field level introduced by the Gaussian basis, we also propose a hybrid approach, whereby the complete occupied space is first converged within a large plane wave basis, and the Gaussian basis used to construct a complementary virtual space for the application of correlated methods. We demonstrate that these pseudized Gaussians yield compact and systematically improvable spaces with an accuracy comparable to their non-pseudized Gaussian counterparts. A key advantage of the described method is its ability to efficiently capture and describe electronic correlation effects of weakly bound and low-dimensional systems, where plane waves are not sufficiently compact or able to be truncated without unphysical artifacts. We investigate the accuracy of the pseudized Gaussians for the water dimer interaction, neon solid, and water adsorption on a LiH surface, at the level of second-order Møller-Plesset perturbation theory.

  8. Surface wave phase-velocity tomography based on multichannel cross-correlation

    NASA Astrophysics Data System (ADS)

    Jin, Ge; Gaherty, James B.

    2015-06-01

    We have developed a new method to retrieve seismic surface wave phase velocity using dense seismic arrays. The method measures phase variations between nearby stations based on waveform cross-correlation. The coherence in waveforms between adjacent stations results in highly precise relative phase estimates. Frequency-dependent phase variations are then inverted for spatial variations in apparent phase velocity via the Eikonal equation. Frequency-dependent surface wave amplitudes measured on individual stations are used to correct the apparent phase velocity to account for multipathing via the Helmholtz equation. By using coherence and other data selection criteria, we construct an automated system that retrieves structural phase-velocity maps directly from raw seismic waveforms for individual earthquakes without human intervention. The system is applied to broad-band seismic data from over 800 events recorded on EarthScope's USArray from 2006 to 2014, systematically building up Rayleigh-wave phase-velocity maps between the periods of 20 and 100 s for the entire continental United States. At the highest frequencies, the resulting maps are highly correlated with phase-velocity maps derived from ambient noise tomography. At all frequencies, we observe a significant contrast in Rayleigh-wave phase velocity between the tectonically active western US and the stable eastern US, with the phase velocity variations in the western US being 1-2 times greater. The Love wave phase-velocity maps are also calculated. We find that overtone contamination may produce systemic bias for the Love-wave phase-velocity measurements.

  9. Test Exponential Pile

    NASA Astrophysics Data System (ADS)

    Fermi, Enrico

    The Patent contains an extremely detailed description of an atomic pile employing natural uranium as fissile material and graphite as moderator. It starts with the discussion of the theory of the intervening phenomena, in particular the evaluation of the reproduction or multiplication factor, K, that is the ratio of the number of fast neutrons produced in one generation by the fissions to the original number of fast neutrons, in a system of infinite size. The possibility of having a self-maintaining chain reaction in a system of finite size depends both on the facts that K is greater than unity and the overall size of the system is sufficiently large to minimize the percentage of neutrons escaping from the system. After the description of a possible realization of such a pile (with many detailed drawings), the various kinds of neutron losses in a pile are depicted. Particularly relevant is the reported "invention" of the exponential experiment: since theoretical calculations can determine whether or not a chain reaction will occur in a give system, but can be invalidated by uncertainties in the parameters of the problem, an experimental test of the pile is proposed, aimed at ascertaining if the pile under construction would be divergent (i.e. with a neutron multiplication factor K greater than 1) by making measurements on a smaller pile. The idea is to measure, by a detector containing an indium foil, the exponential decrease of the neutron density along the length of a column of uranium-graphite lattice, where a neutron source is placed near its base. Such an exponential decrease is greater or less than that expected due to leakage, according to whether the K factor is less or greater than 1, so that this experiment is able to test the criticality of the pile, its accuracy increasing with the size of the column. In order to perform this measure a mathematical description of the effect of neutron production, diffusion, and absorption on the neutron density in the

  10. Optical Measurement of In-plane Waves in Mechanical Metamaterials Through Digital Image Correlation

    PubMed Central

    Schaeffer, Marshall; Trainiti, Giuseppe; Ruzzene, Massimo

    2017-01-01

    We report on a Digital Image Correlation-based technique for the detection of in-plane elastic waves propagating in structural lattices. The experimental characterization of wave motion in lattice structures is currently of great interest due its relevance to the design of novel mechanical metamaterials with unique/unusual properties such as strongly directional behaviour, negative refractive indexes and topologically protected wave motion. Assessment of these functionalities often requires the detection of highly spatially resolved in-plane wavefields, which for reticulated or porous structural assemblies is an open challenge. A Digital Image Correlation approach is implemented that tracks small displacements of the lattice nodes by centring image subsets about the lattice intersections. A high speed camera records the motion of the points by properly interleaving subse- quent frames thus artificially enhancing the available sampling rate. This, along with an imaging stitching procedure, enables the capturing of a field of view that is sufficiently large for subsequent processing. The transient response is recorded in the form of the full wavefields, which are processed to unveil features of wave motion in a hexagonal lattice. Time snapshots and frequency contours in the spatial Fourier domain are compared with numerical predictions to illustrate the accuracy of the recorded wavefields. PMID:28205589

  11. Optical Measurement of In-plane Waves in Mechanical Metamaterials Through Digital Image Correlation.

    PubMed

    Schaeffer, Marshall; Trainiti, Giuseppe; Ruzzene, Massimo

    2017-02-13

    We report on a Digital Image Correlation-based technique for the detection of in-plane elastic waves propagating in structural lattices. The experimental characterization of wave motion in lattice structures is currently of great interest due its relevance to the design of novel mechanical metamaterials with unique/unusual properties such as strongly directional behaviour, negative refractive indexes and topologically protected wave motion. Assessment of these functionalities often requires the detection of highly spatially resolved in-plane wavefields, which for reticulated or porous structural assemblies is an open challenge. A Digital Image Correlation approach is implemented that tracks small displacements of the lattice nodes by centring image subsets about the lattice intersections. A high speed camera records the motion of the points by properly interleaving subse- quent frames thus artificially enhancing the available sampling rate. This, along with an imaging stitching procedure, enables the capturing of a field of view that is sufficiently large for subsequent processing. The transient response is recorded in the form of the full wavefields, which are processed to unveil features of wave motion in a hexagonal lattice. Time snapshots and frequency contours in the spatial Fourier domain are compared with numerical predictions to illustrate the accuracy of the recorded wavefields.

  12. Optical Measurement of In-plane Waves in Mechanical Metamaterials Through Digital Image Correlation

    NASA Astrophysics Data System (ADS)

    Schaeffer, Marshall; Trainiti, Giuseppe; Ruzzene, Massimo

    2017-02-01

    We report on a Digital Image Correlation-based technique for the detection of in-plane elastic waves propagating in structural lattices. The experimental characterization of wave motion in lattice structures is currently of great interest due its relevance to the design of novel mechanical metamaterials with unique/unusual properties such as strongly directional behaviour, negative refractive indexes and topologically protected wave motion. Assessment of these functionalities often requires the detection of highly spatially resolved in-plane wavefields, which for reticulated or porous structural assemblies is an open challenge. A Digital Image Correlation approach is implemented that tracks small displacements of the lattice nodes by centring image subsets about the lattice intersections. A high speed camera records the motion of the points by properly interleaving subse- quent frames thus artificially enhancing the available sampling rate. This, along with an imaging stitching procedure, enables the capturing of a field of view that is sufficiently large for subsequent processing. The transient response is recorded in the form of the full wavefields, which are processed to unveil features of wave motion in a hexagonal lattice. Time snapshots and frequency contours in the spatial Fourier domain are compared with numerical predictions to illustrate the accuracy of the recorded wavefields.

  13. On the correlation of non-isotropically distributed ballistic scalar diffuse waves.

    PubMed

    Weaver, Richard; Froment, Berenice; Campillo, Michel

    2009-10-01

    Theorems indicating that a fully equipartitioned random wave field will have correlations equivalent to the Green's function that would be obtained in an active measurement are now legion. Studies with seismic waves, ocean acoustics, and laboratory ultrasound have confirmed them. So motivated, seismologists have evaluated apparent seismic travel times in correlations of ambient seismic noise and tomographically constructed impressive maps of seismic wave velocity. Inasmuch as the random seismic waves used in these evaluations are usually not fully equipartitioned, it seems right to ask why it works so well, or even if the results are trustworthy. The error, in apparent travel time, due to non-isotropic specific intensity is evaluated here in a limit of large receiver-receiver separation and for the case in which the source of the noise is in the far field of both receivers. It is shown that the effect is small, even for cases in which one might have considered the anisotropy to be significant, and even for station pairs separated by as little as one or two wavelengths. A formula is derived that permits estimations of error and corrections to apparent travel time. It is successfully compared to errors seen in synthetic waveforms.

  14. Spatial and temporal correlation between beach and wave processes: implications for bar-berm sediment transition

    NASA Astrophysics Data System (ADS)

    Joevivek, V.; Chandrasekar, N.; Saravanan, S.; Anandakumar, H.; Thanushkodi, K.; Suguna, N.; Jaya, J.

    2017-06-01

    Investigation of a beach and its wave conditions is highly requisite for understanding the physical processes in a coast. This study composes spatial and temporal correlation between beach and nearshore processes along the extensive sandy beach of Nagapattinam coast, southeast peninsular India. The data collection includes beach profile, wave data, and intertidal sediment samples for 2 years from January 2011 to January 2013. The field data revealed significant variability in beach and wave morphology during the northeast (NE) and southwest (SW) monsoon. However, the beach has been stabilized by the reworking of sediment distribution during the calm period. The changes in grain sorting and longshore sediment transport serve as a clear evidence of the sediment migration that persevered between foreshore and nearshore regions. The Empirical Orthogonal Function (EOF) analysis and Canonical Correlation Analysis (CCA) were utilized to investigate the spatial and temporal linkages between beach and nearshore criterions. The outcome of the multivariate analysis unveiled that the seasonal variations in the wave climate tends to influence the bar-berm sediment transition that is discerned in the coast.

  15. Correlating P-wave Velocity with the Physico-Mechanical Properties of Different Rocks

    NASA Astrophysics Data System (ADS)

    Khandelwal, Manoj

    2013-04-01

    In mining and civil engineering projects, physico-mechanical properties of the rock affect both the project design and the construction operation. Determination of various physico-mechanical properties of rocks is expensive and time consuming, and sometimes it is very difficult to get cores to perform direct tests to evaluate the rock mass. The purpose of this work is to investigate the relationships between the different physico-mechanical properties of the various rock types with the P-wave velocity. Measurement of P-wave velocity is relatively cheap, non-destructive and easy to carry out. In this study, representative rock mass samples of igneous, sedimentary, and metamorphic rocks were collected from the different locations of India to obtain an empirical relation between P-wave velocity and uniaxial compressive strength, tensile strength, punch shear, density, slake durability index, Young's modulus, Poisson's ratio, impact strength index and Schmidt hammer rebound number. A very strong correlation was found between the P-wave velocity and different physico-mechanical properties of various rock types with very high coefficients of determination. To check the sensitivity of the empirical equations, Students t test was also performed, which confirmed the validity of the proposed correlations.

  16. Studying propagation of seismic waves across the Valley of Mexico from correlations of seismic noise

    NASA Astrophysics Data System (ADS)

    Rivet, D. N.; Campillo, M.; Shapiro, N. M.; Singh, S.; Cruz Atienza, V. M.; Quintanar, L.; Valdés, C.

    2009-12-01

    We reconstruct Rayleigh and Love waves from cross-correlations of ambient seismic noise recorded at 22 broad-band stations of the MesoAmerica Seismic Experiment (MASE) and Valley of Mexico Experiment (VMEX). The cross-correlations are computed over 2 years of noise data for the 9 MASE stations and over 1 year for the 13 VMEX stations. Surface waves with sufficient signal-to-noise ratio are then used in the group velocity dispersion analysis. We use the reconstructed waveforms to measure group velocity dispersion curves at period of 0.5 to 5 seconds. For traveling path inside the lake-bed zone, the maximum energy is observed at velocity higher than expected for the fundamental mode. This indicates that the propagation within the Mexico basin is dominated by higher modes of surface waves that propagate deeper in the basin. We identify the propagation modes by comparing observations with theoretical dispersion curves and eigenfunctions calculated for Rayleigh and Loves waves associated with a given model of the upper crust. The fundamental mode shows a very low group velocity, <100m/s, which is consistent with previous studies. The domination of the higher modes in the Valley of Mexico may be a determining factor in the long duration of the seismic signal. A better velocity constraint on the deeper structure of the basin is thus needed to fully understand this phenomenon.

  17. Optical imaging through turbid media with a degenerate four-wave mixing correlation time gate

    DOEpatents

    Sappey, Andrew D.

    1998-04-14

    Optical imaging through turbid media is demonstrated using a degenerate four-wave mixing correlation time gate. An apparatus and method for detecting ballistic and/or snake light while rejecting unwanted diffusive light for imaging structures within highly scattering media are described. Degenerate four-wave mixing (DFWM) of a doubled YAG laser in rhodamine 590 is used to provide an ultrafast correlation time gate to discriminate against light that has undergone multiple scattering and therefore has lost memory of the structures within the scattering medium. Images have been obtained of a test cross-hair pattern through highly turbid suspensions of whole milk in water that are opaque to the naked eye, which demonstrates the utility of DFWM for imaging through turbid media. Use of DFWM as an ultrafast time gate for the detection of ballistic and/or snake light in optical mammography is discussed.

  18. Subtraction of correlated noise in global networks of gravitational-wave interferometers

    NASA Astrophysics Data System (ADS)

    Coughlin, Michael W.; Christensen, Nelson L.; De Rosa, Rosario; Fiori, Irene; Gołkowski, Mark; Guidry, Melissa; Harms, Jan; Kubisz, Jerzy; Kulak, Andrzej; Mlynarczyk, Janusz; Paoletti, Federico; Thrane, Eric

    2016-11-01

    The recent discovery of merging black holes suggests that a stochastic gravitational-wave background is within reach of the advanced detector network operating at design sensitivity. However, correlated magnetic noise from Schumann resonances threatens to contaminate observation of a stochastic background. In this paper, we report on the first effort to eliminate intercontinental correlated noise from Schumann resonances using Wiener filtering. Using magnetometers as proxies for gravitational-wave detectors, we demonstrate as much as a factor of two reduction in the coherence between magnetometers on different continents. While much work remains to be done, our results constitute a proof-of-principle and motivate follow-up studies with a dedicated array of magnetometers.

  19. Experimental generation of quadruple quantum-correlated beams from hot rubidium vapor by cascaded four-wave mixing using spatial multiplexing

    NASA Astrophysics Data System (ADS)

    Cao, Leiming; Qi, Jian; Du, Jinjian; Jing, Jietai

    2017-02-01

    Multimode quantum states, such as multipartite quantum entanglement or quantum correlations, are important for both fundamental science and the future development of quantum technologies. Here we theoretically propose and experimentally realize a scheme that can fully exploit the multi-spatial-mode nature of the four-wave-mixing (FWM) process, i.e., spatial multiplexing, and thus integrates multiple FWM processes into a single cell at each stage of the cascaded process. The number of generated quantum-correlated beams 2n is exponentially dependent on the number of vapor cells n . In addition, the quantum correlations between the multiple beams also increase as the number of vapor cell increases. For the case of n =2 , we experimentally show that the degree of intensity-difference squeezing between the four quantum-correlated beams in our scheme is enhanced to -8.2 ±0.2 dB from -5.6 ±0.3 and -6.5 ±0.2 dB of squeezing obtained with a single FWM process. Our system may find applications in quantum information and precision measurement.

  20. Collective modes in strongly correlated yukawa liquids: waves in dusty plasmas.

    PubMed

    Kalman, G; Rosenberg, M; DeWitt, H E

    2000-06-26

    We determine the collective mode structure of a strongly correlated Yukawa fluid, with the purpose of analyzing wave propagation in a strongly coupled dusty plasma. We identify a longitudinal plasmon and a transverse shear mode. The dispersion is characterized by a low- k acoustic behavior, a frequency maximum well below the plasma frequency, and a high- k merging of the two modes around the Einstein frequency of localized oscillations. The damping effect of collisions between neutrals and dust grains is estimated.

  1. Correlation of scanning-tunneling-microscope image profiles and charge-density-wave amplitudes

    NASA Astrophysics Data System (ADS)

    Giambattista, B.; Johnson, A.; McNairy, W. W.; Slough, C. G.; Coleman, R. V.

    1988-08-01

    Scanning-tunneling-microscope (STM) studies of 4Hb-TaS2 and 4Hb-TaSe2 at 4.2 K show systematic correlation between the charge-density-wave (CDW) amplitude and the STM deflection. The 4Hb phases have both weak and strong CDW's in the trigonal prismatic and octahedral sandwiches, respectively. Scans on opposite faces of the same cleave allow a comparison of the STM response to the two types of CDW.

  2. OPINION: Safe exponential manufacturing

    NASA Astrophysics Data System (ADS)

    Phoenix, Chris; Drexler, Eric

    2004-08-01

    In 1959, Richard Feynman pointed out that nanometre-scale machines could be built and operated, and that the precision inherent in molecular construction would make it easy to build multiple identical copies. This raised the possibility of exponential manufacturing, in which production systems could rapidly and cheaply increase their productive capacity, which in turn suggested the possibility of destructive runaway self-replication. Early proposals for artificial nanomachinery focused on small self-replicating machines, discussing their potential productivity and their potential destructiveness if abused. In the light of controversy regarding scenarios based on runaway replication (so-called 'grey goo'), a review of current thinking regarding nanotechnology-based manufacturing is in order. Nanotechnology-based fabrication can be thoroughly non-biological and inherently safe: such systems need have no ability to move about, use natural resources, or undergo incremental mutation. Moreover, self-replication is unnecessary: the development and use of highly productive systems of nanomachinery (nanofactories) need not involve the construction of autonomous self-replicating nanomachines. Accordingly, the construction of anything resembling a dangerous self-replicating nanomachine can and should be prohibited. Although advanced nanotechnologies could (with great difficulty and little incentive) be used to build such devices, other concerns present greater problems. Since weapon systems will be both easier to build and more likely to draw investment, the potential for dangerous systems is best considered in the context of military competition and arms control.

  3. Cancellous bone fast and slow waves obtained with Bayesian probability theory correlate with porosity from computed tomography.

    PubMed

    Hoffman, Joseph J; Nelson, Amber M; Holland, Mark R; Miller, James G

    2012-09-01

    A Bayesian probability theory approach for separating overlapping ultrasonic fast and slow waves in cancellous bone has been previously introduced. The goals of this study were to investigate whether the fast and slow waves obtained from Bayesian separation of an apparently single mode signal individually correlate with porosity and to isolate the fast and slow waves from medial-lateral insonification of the calcaneus. The Bayesian technique was applied to trabecular bone data from eight human calcanei insonified in the medial-lateral direction. The phase velocity, slope of attenuation (nBUA), and amplitude were determined for both the fast and slow waves. The porosity was assessed by micro-computed tomography (microCT) and ranged from 78.7% to 94.1%. The method successfully separated the fast and slow waves from medial-lateral insonification of the calcaneus. The phase velocity for both the fast and slow wave modes showed an inverse correlation with porosity (R(2) = 0.73 and R(2) = 0.86, respectively). The slope of attenuation for both wave modes also had a negative correlation with porosity (fast wave: R(2) = 0.73, slow wave: R(2) = 0.53). The fast wave amplitude decreased with increasing porosity (R(2) = 0.66). Conversely, the slow wave amplitude modestly increased with increasing porosity (R(2) = 0.39).

  4. Cancellous bone fast and slow waves obtained with Bayesian probability theory correlate with porosity from computed tomography

    PubMed Central

    Hoffman, Joseph J.; Nelson, Amber M.; Holland, Mark R.; Miller, James G.

    2012-01-01

    A Bayesian probability theory approach for separating overlapping ultrasonic fast and slow waves in cancellous bone has been previously introduced. The goals of this study were to investigate whether the fast and slow waves obtained from Bayesian separation of an apparently single mode signal individually correlate with porosity and to isolate the fast and slow waves from medial-lateral insonification of the calcaneus. The Bayesian technique was applied to trabecular bone data from eight human calcanei insonified in the medial-lateral direction. The phase velocity, slope of attenuation (nBUA), and amplitude were determined for both the fast and slow waves. The porosity was assessed by micro-computed tomography (microCT) and ranged from 78.7% to 94.1%. The method successfully separated the fast and slow waves from medial-lateral insonification of the calcaneus. The phase velocity for both the fast and slow wave modes showed an inverse correlation with porosity (R2 = 0.73 and R2 = 0.86, respectively). The slope of attenuation for both wave modes also had a negative correlation with porosity (fast wave: R2 = 0.73, slow wave: R2 = 0.53). The fast wave amplitude decreased with increasing porosity (R2 = 0.66). Conversely, the slow wave amplitude modestly increased with increasing porosity (R2 = 0.39). PMID:22978910

  5. Spin correlations and spin-wave excitations in Dirac-Weyl semimetals

    NASA Astrophysics Data System (ADS)

    Araki, Yasufumi; Nomura, Kentaro

    We study correlations among magnetic dopants in three-dimensional Dirac and Weyl semimetals. Effective field theory for localized magnetic moments is derived by integrating out the itinerant electron degrees of freedom. We find that spin correlation in the spatial direction parallel to local magnetization is more rigid than that in the perpendicular direction, reflecting spin-momentum locking nature of the Dirac Hamiltonian. Such an anisotropy becomes stronger for Fermi level close to the Dirac points, due to Van Vleck paramagnetism triggered by spin-orbit coupling. One can expect topologically nontrivial spin textures under this anisotropy, such as a hedgehog around a single point, or a radial vortex around an axis, as well as a uniform ferromagnetic order. We further investigate the characteristics of spin waves in the ferromagnetic state. Spin-wave dispersion also shows a spatial anisotropy, which is less dispersed in the direction transverse to the magnetization than that in the longitudinal direction. The spin-wave dispersion anisotropy can be traced back to the rigidity and flexibility of spin correlations discussed above. This work was supported by Grant-in-Aid for Scientific Research (Grants No.15H05854, No.26107505, and No.26400308) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

  6. Baseline-free fatigue crack detection based on spectral correlation and nonlinear wave modulation

    NASA Astrophysics Data System (ADS)

    Liu, Peipei; Sohn, Hoon; Yang, Suyoung; Lim, Hyung Jin

    2016-12-01

    By generating ultrasonic waves at two different frequencies onto a cracked structure, modulations due to crack-induced nonlinearity can be observed in the corresponding ultrasonic response. This nonlinear wave modulation phenomenon has been widely studied and proven capable of detecting a fatigue crack at a very early stage. However, under field conditions, other exogenous vibrations exist and the modulation components can be buried under ambient noises, making it difficult to extract the modulation components simply by using a spectral density function. In this study, the nonlinear modulation components in the ultrasonic response were extracted using a spectral correlation function (the double Fourier transform) with respect to time and time lag of a signal’s autocorrelation. Using spectral correlation, noise or interference, which is spectrally overlapped with the nonlinear modulation components in the ultrasonic response, can be effectively removed or reduced. Only the nonlinear modulation components are accentuated at specific coordinates of the spectral correlation plot. A damage feature is defined by comparing the spectral correlation value between nonlinear modulation components with other spectral correlation values among randomly selected frequencies. Then, by analyzing the statistical characteristics of the multiple damage feature values obtained from different input frequency combinations, fatigue cracks can be detected without relying on baseline data obtained from the pristine condition of the target structure. In the end, an experimental test was conducted on aluminum plates with a real fatigue crack and the test signals were contaminated by simulated noises with varying signal-to-noise ratios. The results validated the proposed technique.

  7. Nonlocal density-functional description constructed from a correlated many-body wave function

    NASA Astrophysics Data System (ADS)

    Umezawa, Naoto; Tsuneyuki, Shinji

    2004-03-01

    We suggest a new approach to the nonlocal density-functional theory. In our method, the nonlocal correlation functional is derived from a correlated many-body wave function using the transcorrelated similarity transformation [1,2]. Our formalism is rigorous in principle if the v-representable density is assumed. In practice, Jastrow-Slater-type wave function is adopted and the correlation functional consists of many-body interactions originated from the Jastrow factor. Instead of struggling with these higher order interactions, we retain only 2-body interactions multiplying an adjusting parameter so that it can reproduce the exact correlation energy for the homogeneous electron gas. Therefore, the computational cost is comparable to the exact exchange method. Moreover, parameters in the Jastrow factor are determined by the two conditions: the cusp conditions and the random-phase approximation without empirical fitting. We found that our correlation functional gives fairly good results for small atoms and ions (He, Li^+, Be^2+, Li, and Be). [1]S. F. Boys and N. C. Handy, Proc. Roy. Soc. A, 309, 209; 310, 43; 310, 63; 311, 309. [2] N. Umezawa and S. Tsuneyuki, J. Chem. Phys. 119, 10015 (2003).

  8. Increased neural correlations in primate auditory cortex during slow-wave sleep.

    PubMed

    Issa, Elias B; Wang, Xiaoqin

    2013-06-01

    During sleep, changes in brain rhythms and neuromodulator levels in cortex modify the properties of individual neurons and the network as a whole. In principle, network-level interactions during sleep can be studied by observing covariation in spontaneous activity between neurons. Spontaneous activity, however, reflects only a portion of the effective functional connectivity that is activated by external and internal inputs (e.g., sensory stimulation, motor behavior, and mental activity), and it has been shown that neural responses are less correlated during external sensory stimulation than during spontaneous activity. Here, we took advantage of the unique property that the auditory cortex continues to respond to sounds during sleep and used external acoustic stimuli to activate cortical networks for studying neural interactions during sleep. We found that during slow-wave sleep (SWS), local (neuron-neuron) correlations are not reduced by acoustic stimulation remaining higher than in wakefulness and rapid eye movement sleep and remaining similar to spontaneous activity correlations. This high level of correlations during SWS complements previous work finding elevated global (local field potential-local field potential) correlations during sleep. Contrary to the prediction that slow oscillations in SWS would increase neural correlations during spontaneous activity, we found little change in neural correlations outside of periods of acoustic stimulation. Rather, these findings suggest that functional connections recruited in sound processing are modified during SWS and that slow rhythms, which in general are suppressed by sensory stimulation, are not the sole mechanism leading to elevated network correlations during sleep.

  9. UNCOVERING THE WAVE NATURE OF THE EIT WAVE FOR THE 2010 JANUARY 17 EVENT THROUGH ITS CORRELATION TO THE BACKGROUND MAGNETOSONIC SPEED

    SciTech Connect

    Zhao, X. H.; Feng, X. S.; Jiang, C. W.; Wu, S. T.; Wang, A. H.; Vourlidas, A. E-mail: wus@uah.edu

    2011-12-01

    An EIT wave, which typically appears as a diffuse brightening that propagates across the solar disk, is one of the major discoveries of the Extreme ultraviolet Imaging Telescope on board the Solar and Heliospheric Observatory. However, the physical nature of the so-called EIT wave continues to be debated. In order to understand the relationship between an EIT wave and its associated coronal wave front, we investigate the morphology and kinematics of the coronal mass ejection (CME)-EIT wave event that occurred on 2010 January 17. Using the observations of the SECCHI EUVI, COR1, and COR2 instruments on board the Solar Terrestrial Relations Observation-B, we track the shape and movements of the CME fronts along different radial directions to a distance of about 15 solar radii (R{sub s} ); for the EIT wave, we determine the propagation of the wave front on the solar surface along different propagating paths. The relation between the EIT wave speed, the CME speed, and the local fast-mode characteristic speed is also investigated. Our results demonstrate that the propagation of the CME front is much faster than that of the EIT wave on the solar surface, and that both the CME front and the EIT wave propagate faster than the fast-mode speed in their local environments. Specifically, we show a significant positive correlation between the EIT wave speed and the local fast-mode wave speed in the propagation paths of the EIT wave. Our findings support that the EIT wave under study is a fast-mode magnetohydrodynamic wave.

  10. Uncovering the Wave Nature of the EIT Wave for the 2010 January 17 Event through Its Correlation to the Background Magnetosonic Speed

    NASA Astrophysics Data System (ADS)

    Zhao, X. H.; Wu, S. T.; Wang, A. H.; Vourlidas, A.; Feng, X. S.; Jiang, C. W.

    2011-12-01

    An EIT wave, which typically appears as a diffuse brightening that propagates across the solar disk, is one of the major discoveries of the Extreme ultraviolet Imaging Telescope on board the Solar and Heliospheric Observatory. However, the physical nature of the so-called EIT wave continues to be debated. In order to understand the relationship between an EIT wave and its associated coronal wave front, we investigate the morphology and kinematics of the coronal mass ejection (CME)-EIT wave event that occurred on 2010 January 17. Using the observations of the SECCHI EUVI, COR1, and COR2 instruments on board the Solar Terrestrial Relations Observation-B, we track the shape and movements of the CME fronts along different radial directions to a distance of about 15 solar radii (Rs ); for the EIT wave, we determine the propagation of the wave front on the solar surface along different propagating paths. The relation between the EIT wave speed, the CME speed, and the local fast-mode characteristic speed is also investigated. Our results demonstrate that the propagation of the CME front is much faster than that of the EIT wave on the solar surface, and that both the CME front and the EIT wave propagate faster than the fast-mode speed in their local environments. Specifically, we show a significant positive correlation between the EIT wave speed and the local fast-mode wave speed in the propagation paths of the EIT wave. Our findings support that the EIT wave under study is a fast-mode magnetohydrodynamic wave.

  11. Wave reflection correlates with pulmonary vascular wall thickening in rats with pulmonary arterial hypertension.

    PubMed

    Fukumitsu, Masafumi; Kawada, Toru; Shimizu, Shuji; Turner, Michael J; Uemura, Kazunori; Sugimachi, Masaru

    2017-09-14

    Wave reflection is enhanced in patients with pulmonary arterial hypertension (PAH), which may be derived from a mismatch of pulmonary artery (PA) impedance between proximal and distal sites of arteries. Whether enhanced wave reflection correlates with histological remodeling remains unknown, partly because lung biopsy is not clinically recommended for PAH patients due to substantial risks of mortality and morbidity. Pulmonary hypertension was induced by SU5416 injection and 3-week hypoxic exposure (SuHx-PH) in rats, and hemodynamic and histological examinations were performed at 4weeks (SuHx-PH4W) and 8weeks (SuHx-PH8W) after SU5416 injection (n=7 each). Two groups of age-matched normal rats were also analyzed (n=7 each). Using an elastic tube with a 3-element Windkessel model, PA impedance was parameterized as pulmonary artery compliance (CP), peripheral resistance (RP), characteristic impedance (ZC), and transmission time (TD) in conducting arteries. Wave reflection was quantified as reflection gain at 0 Hz (Γgain) in the frequency domain, and as the ratio of peak backward pressure to peak forward pressure (KB/F) in the time domain. The SuHx-PH groups demonstrated increased RP and ZC, and decreased CP and TD compared with normal groups. Γgain and KB/F were significantly higher in the SuHx-PH8W group than in the SuHx-PH4W group, and correlated strongly with a histological index of vascular wall thickening (R(2)=0.839, P<0.001 for Γgain and R(2)=0.775, P<0.001 for KB/F). Enhanced wave reflection caused by abnormal PA impedance correlates with histological remodeling, and may have a diagnostic value in clinical staging of PAH. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  12. α Power Modulation and Event-Related Slow Wave Provide Dissociable Correlates of Visual Working Memory

    PubMed Central

    Mance, Irida; Vogel, Edward K.

    2015-01-01

    Traditionally, electrophysiological correlates of visual working memory (VWM) capacity have been characterized using a lateralized VWM task in which participants had to remember items presented on the cued hemifield while ignoring the distractors presented on the other hemifield. Though this approach revealed a lateralized parieto-occipital negative slow wave (i.e., the contralateral delay activity) and lateralized α power modulation as neural correlates of VWM capacity that may be mechanistically related, recent evidence suggested that these measures might be reflecting individuals' ability to ignore distractors rather than their ability to maintain VWM representations. To better characterize the neural correlates of VWM capacity, we had human participants perform a whole-field VWM task in which they remembered all the items on the display. Here, we found that both the parieto-occipital negative slow wave and the α power suppression showed the characteristics of VWM capacity in the absence of distractors, suggesting that they reflect the maintenance of VWM representations rather than filtering of distractors. Furthermore, the two signals explained unique portions of variance in individual differences of VWM capacity and showed differential temporal characteristics. This pattern of results clearly suggests that individual differences in VWM capacity are determined by dissociable neural mechanisms reflected in the ERP and the oscillatory measures of VWM capacity. SIGNIFICANCE STATEMENT Our work demonstrates that there exist event-related potential and oscillatory correlates of visual working memory (VWM) capacity even in the absence of task-irrelevant distractors. This clearly shows that the two neural correlates are directly linked to maintenance of task-relevant information rather than filtering of task-irrelevant information. Furthermore, we found that these two correlates show differential temporal characteristics. These results are inconsistent with proposals

  13. α Power Modulation and Event-Related Slow Wave Provide Dissociable Correlates of Visual Working Memory.

    PubMed

    Fukuda, Keisuke; Mance, Irida; Vogel, Edward K

    2015-10-14

    Traditionally, electrophysiological correlates of visual working memory (VWM) capacity have been characterized using a lateralized VWM task in which participants had to remember items presented on the cued hemifield while ignoring the distractors presented on the other hemifield. Though this approach revealed a lateralized parieto-occipital negative slow wave (i.e., the contralateral delay activity) and lateralized α power modulation as neural correlates of VWM capacity that may be mechanistically related, recent evidence suggested that these measures might be reflecting individuals' ability to ignore distractors rather than their ability to maintain VWM representations. To better characterize the neural correlates of VWM capacity, we had human participants perform a whole-field VWM task in which they remembered all the items on the display. Here, we found that both the parieto-occipital negative slow wave and the α power suppression showed the characteristics of VWM capacity in the absence of distractors, suggesting that they reflect the maintenance of VWM representations rather than filtering of distractors. Furthermore, the two signals explained unique portions of variance in individual differences of VWM capacity and showed differential temporal characteristics. This pattern of results clearly suggests that individual differences in VWM capacity are determined by dissociable neural mechanisms reflected in the ERP and the oscillatory measures of VWM capacity. Our work demonstrates that there exist event-related potential and oscillatory correlates of visual working memory (VWM) capacity even in the absence of task-irrelevant distractors. This clearly shows that the two neural correlates are directly linked to maintenance of task-relevant information rather than filtering of task-irrelevant information. Furthermore, we found that these two correlates show differential temporal characteristics. These results are inconsistent with proposals that the two neural

  14. A Statistical Analysis of Langmuir Wave-Electron Correlations Observed by the CHARM II Auroral Sounding Rocket

    NASA Astrophysics Data System (ADS)

    Dombrowski, M. P.; Labelle, J. W.; Kletzing, C.; Bounds, S. R.; Kaeppler, S. R.

    2014-12-01

    Langmuir-mode electron plasma waves are frequently observed by spacecraft in active plasma environments such as the ionosphere. Ionospheric Langmuir waves may be excited by the bump-on-tail instability generated by impinging beams of electrons traveling parallel to the background magnetic field (B). The Correlation of High-frequencies and Auroral Roar Measurement (CHARM II) sounding rocket was launched into a substorm at 9:49 UT on 17 February 2010, from the Poker Flat Research Range in Alaska. The primary instruments included the University of Iowa Wave-Particle Correlator (WPC), the Dartmouth High-Frequency Experiment (HFE), several charged particle detectors, low-frequency wave instruments, and a magnetometer. The HFE is a receiver system which effectively yields continuous (100% duty cycle) electric-field waveform measurements from 100 kHz to 5 MHz, and which had its detection axis aligned nominally parallel to B. The HFE output was fed on-payload to the WPC, which uses a phase-locked loop to track the incoming wave frequency with the most power, then sorting incoming electrons at eight energy levels into sixteen wave-phase bins. CHARM II encountered several regions of strong Langmuir wave activity throughout its 15-minute flight, and the WPC showed wave-lock and statistically significant particle correlation distributions during several time periods. We show results of an in-depth analysis of the CHARM II WPC data for the entire flight, including statistical analysis of correlations which show evidence of direct interaction with the Langmuir waves, indicating (at various times) trapping of particles and both driving and damping of Langmuir waves by particles. In particular, the sign of the gradient in particle flux appears to correlate with the phase relation between the electrons and the wave field, with possible implications for the wave physics.

  15. Correlation of seismic wave velocities with fracture densities: Implications for the critical zone in mountain watersheds

    NASA Astrophysics Data System (ADS)

    Peters, M. P.; Holbrook, W. S.; Flinchum, B. A.; Pasquet, S.

    2016-12-01

    Despite increasing scientific interest in the critical zone, the accurate determination of fracture density in the subsurface remains difficult as access and costs can prohibit ground-truthing through drilling. A more precise characterization of the fracturing process provides critical insight in to subsurface structures. This is particularly important in determining the point at which protolithic rock becomes fractured bedrock and then degrades to soil through the process of weathering. We studied outcrops in the Laramie Range of southeastern Wyoming were studied and fracture densities were correlated with seismic pressure (P) wave velocities. We used the Differential Effective Medium (DEM) rock physics model to validate our findings and provide a more robust characterization of the role of P-wave velocities acquired on outcrops play in critical zone science. This approach marks a significant departure from previous research, which has not applied P-wave fracture relationships in outcrops onto the critical zone for subsurface characterization. We compared our results with borehole data to establish a relationship between surface outcrops and subsurface rock structures. We found a clear, inverse relationship between a decrease in P-wave velocity and an increase in fracture density consistent with borehole data in the studied area. Our findings suggest that outcrops can be used to determine fracture density in the critical zone. We show that the use of seismic refraction surveys on outcrops provides a non-invasive, highly transferrable method through which we can predict fracturing densities in the subsurface.

  16. Temporal changes of surface wave velocity associated with major Sumatra earthquakes from ambient noise correlation.

    PubMed

    Xu, Zhen J; Song, Xiaodong

    2009-08-25

    Detecting temporal changes of the medium associated with major earthquakes has implications for understanding earthquake genesis. Here we report temporal changes of surface wave velocity over a large area associated with 3 major Sumatra earthquakes in 2004, 2005, and 2007. We use ambient noise correlation to retrieve empirical Green's function (EGF) of surface waves between stations. Because the process is completely repeatable, the technique is powerful in detecting possible temporal change of medium. We find that 1 excellent station pair (PSI in Indonesia and CHTO in Thailand) shows significant time shifts (up to 1.44 s) after the 2004 and 2005 events in the Rayleigh waves at 10-20 s but not in the Love waves, suggesting that the Rayleigh time shifts are not from clock error. The time shifts are frequency dependent with the largest shifts at the period band of 11-16 s. We also observe an unusual excursion approximately 1 month before the 2004 event. We obtain a total of 17 pairs for June, 2007 to June, 2008, which allow us to examine the temporal and spatial variation of the time shifts. We observed strong anomalies (up to 0.68 s) near the epicenter after the 2007 event, but not in the region further away from the source or before the event or 3 months after the event. The observations are interpreted as stress changes and subsequent relaxation in upper-mid crust in the immediate vicinity of the rupture and the broad area near the fault zone.

  17. The Correlation Between Intracranial Pressure and Cerebral Blood Flow Velocity During ICP Plateau Waves.

    PubMed

    Lewis, Philip M; Smielewski, Peter; Rosenfeld, Jeffrey V; Pickard, John D; Czosnyka, Marek

    2016-01-01

    We previously showed that the flow-ICP index (Fix), a moving correlation coefficient between intracranial pressure (ICP) and cerebral blood flow velocity (CBFV), had marginally greater prognostic value for patients with traumatic brain injury (TBI) than an index of cerebral autoregulation (mean index, Mx). The aim of this study was to further examine the clinical and physiological relevance of Fix by studying its behaviour during ICP plateau waves in patients with TBI. Twenty-nine recordings of CBFV made during ICP plateau waves were analysed. Both Mx and Fix at baseline and peak ICP were significantly different, although the magnitude of Fix change was slightly greater. The correlation between Fix and cerebral perfusion pressure (CPP) was stronger than that between Mx and CPP. Unlike in our previous study, plotting Fix against CPP revealed a peak value in the range of "optimal" CPP, as indicated by the Mx versus CPP plot. The findings suggest that during periods of reduced CPP caused by plateau waves, the dynamic behaviour of Fix is similar to that of a measure of cerebral autoregulation. This conclusion needs to be verified against similar results obtained during episodes of supranormal CPP.

  18. Time Reversal Mirrors and Cross Correlation Functions in Acoustic Wave Propagation

    NASA Astrophysics Data System (ADS)

    Fishman, Louis; Jonsson, B. Lars G.; de Hoop, Maarten V.

    2009-03-01

    In time reversal acoustics (TRA), a signal is recorded by an array of transducers, time reversed, and then retransmitted into the configuration. The retransmitted signal propagates back through the same medium and retrofocuses on the source that generated the signal. If the transducer array is a single, planar (flat) surface, then this configuration is referred to as a planar, one-sided, time reversal mirror (TRM). In signal processing, for example, in active-source seismic interferometry, the measurement of the wave field at two distinct receivers, generated by a common source, is considered. Cross correlating these two observations and integrating the result over the sources yield the cross correlation function (CCF). Adopting the TRM experiments as the basic starting point and identifying the kinematically correct correspondences, it is established that the associated CCF signal processing constructions follow in a specific, infinite recording time limit. This perspective also provides for a natural rationale for selecting the Green's function components in the TRM and CCF expressions. For a planar, one-sided, TRM experiment and the corresponding CCF signal processing construction, in a three-dimensional homogeneous medium, the exact expressions are explicitly calculated, and the connecting limiting relationship verified. Finally, the TRM and CCF results are understood in terms of the underlying, governing, two-way wave equation, its corresponding time reversal invariance (TRI) symmetry, and the absence of TRI symmetry in the associated one-way wave equations, highlighting the role played by the evanescent modal contributions.

  19. Shear wave elastography of tumour growth in a human breast cancer model with pathological correlation.

    PubMed

    Chamming's, Foucauld; Latorre-Ossa, H; Le Frère-Belda, M A; Fitoussi, V; Quibel, T; Assayag, F; Marangoni, E; Autret, G; Balvay, D; Pidial, L; Gennisson, J L; Tanter, M; Cuenod, C A; Clément, O; Fournier, L S

    2013-08-01

    To assess stiffness in a human breast cancer implanted in mice using shear wave elastography (SWE) during tumour growth and to correlate the results with pathology. Local ethics committee for animal research approval was obtained. A human invasive ductal carcinoma was implanted subcutaneously in 24 athymic nude female mice. Ultrasound was longitudinally performed in 22 tumours, every 1-2 weeks. Maximum diameter and mean stiffness were collected. Seven tumours were measured both in vivo and ex vivo. Tumours of different sizes were removed for pathological analysis on which the percentages of viable cellular tissue, fibrosis and necrosis were measured. A total of 63 SWE measurements were performed. Stiffness increased during tumour growth with an excellent correlation with size (r = 0.94, P < 0.0001). No differences were found between the values of stiffness in vivo and ex vivo (P = 0.81). There was a significant correlation between elasticity and fibrosis (r = 0.83, P < 0.0001), a negative correlation with necrosis (r = -0.76, p = 0.0004) but no significant correlation with cellular tissue (r = 0.40, p = 0.1). Fibrosis plays an important role in stiffness as measured by SWE, whereas necrosis is correlated with softness. • In a breast cancer model, ultrasound tumour stiffness is correlated with size. • Stiffness changes with tumour growth are correlated with pathological changes. • Stiffness is very well correlated with proportion of tumour fibrosis. • Stiffness is inversely correlated with proportion of tumour necrosis. • Tumour stiffness measurements are similar in vivo and ex vivo.

  20. Excited states of boron isoelectronic series from explicitly correlated wave functions.

    PubMed

    Gálvez, F J; Buendía, E; Sarsa, A

    2005-04-15

    The ground state and some low-lying excited states arising from the 1s2 2s2p2 configuration of the boron isoelectronic series are studied starting from explicitly correlated multideterminant wave functions. One- and two-body densities in position space have been calculated and different expectation values such as , , , , , and , where r, r12, and R stand for the electron-nucleus, interelectronic, and two electron center of mass coordinates, respectively, have been obtained. The energetic ordering of the excited states and the fulfillment of the Hund's rules is analyzed systematically along the isoelectronic series in terms of the electron-electron and electron-nucleus potential energies. The effects of electronic correlations have been systematically studied by comparing the correlated results with the corresponding noncorrelated ones. All the calculations have been done by using the variational Monte Carlo method.

  1. A correlation polarimeter for noise-like signals. [optimum estimation of linearly polarized electromagnetic wave

    NASA Technical Reports Server (NTRS)

    Ohlson, J. E.

    1976-01-01

    Optimum estimation (tracking) of the polarization plane of a linearly polarized electromagnetic wave is determined when the signal is a narrow-band Gaussian random process with a polarization plane angle which is also a Gaussian random process. This model is compared to previous work and is applicable to space communication. The estimator performs a correlation operation similar to an amplitude-comparison monopulse angle tracker, giving the name correlation polarimeter. Under large signal-to-noise ratio (SNR), the estimator is causal. Performance of the causal correlation polarimeter is evaluated for arbitrary SNR. Optimum precorrelation filtering is determined. With low SNR, the performance of this system is far better than that of previously developed systems. Practical implementation is discussed. A scheme is given to reduce the effect of linearly polarized noise.

  2. On the Matrix Exponential Function

    ERIC Educational Resources Information Center

    Hou, Shui-Hung; Hou, Edwin; Pang, Wan-Kai

    2006-01-01

    A novel and simple formula for computing the matrix exponential function is presented. Specifically, it can be used to derive explicit formulas for the matrix exponential of a general matrix A satisfying p(A) = 0 for a polynomial p(s). It is ready for use in a classroom and suitable for both hand as well as symbolic computation.

  3. On the Matrix Exponential Function

    ERIC Educational Resources Information Center

    Hou, Shui-Hung; Hou, Edwin; Pang, Wan-Kai

    2006-01-01

    A novel and simple formula for computing the matrix exponential function is presented. Specifically, it can be used to derive explicit formulas for the matrix exponential of a general matrix A satisfying p(A) = 0 for a polynomial p(s). It is ready for use in a classroom and suitable for both hand as well as symbolic computation.

  4. Propagation of electrostatic surface waves in a thin degenerate plasma film with electron exchange-correlation effects

    NASA Astrophysics Data System (ADS)

    Abdikian, A.; Ehsan, Zahida

    2017-09-01

    Propagation of an electrostatic surface wave in a thin degenerate Fermi plasma film in the presence of constant external magnetic field is studied here. Dispersion relations for the symmetric and anti-symmetric modes have been derived and studied quantitatively with the exchange-correlation effects. It has been studied that with the increase in the strength of magnetic field, phase velocity of the waves decreases. Also electron exchange-correlation effects significantly modify the behavior of the surface waves such as frequency of surface wave is found to be downshifted by these effects. Moreover it has been studied that the group velocity of the anti-symmetric mode is greater than the symmetric mode for the whole wave numbers; however, these modes merge into a single mode with the increase of the wave number.

  5. Cerebral correlates of delta waves during non-REM sleep revisited.

    PubMed

    Dang-Vu, Thien Thanh; Desseilles, Martin; Laureys, Steven; Degueldre, Christian; Perrin, Fabien; Phillips, Christophe; Maquet, Pierre; Peigneux, Philippe

    2005-10-15

    We aimed at characterizing the neural correlates of delta activity during Non Rapid Eye Movement (NREM) sleep in non-sleep-deprived normal young adults, based on the statistical analysis of a positron emission tomography (PET) sleep data set. One hundred fifteen PET scans were obtained using H(2)(15)O under continuous polygraphic monitoring during stages 2-4 of NREM sleep. Correlations between regional cerebral blood flow (rCBF) and delta power (1.5-4 Hz) spectral density were analyzed using statistical parametric mapping (SPM2). Delta power values obtained at central scalp locations negatively correlated during NREM sleep with rCBF in the ventromedial prefrontal cortex, the basal forebrain, the striatum, the anterior insula, and the precuneus. These regions embrace the set of brain areas in which rCBF decreases during slow wave sleep (SWS) as compared to Rapid Eye Movement (REM) sleep and wakefulness (Maquet, P., Degueldre, C., Delfiore, G., Aerts, J., Peters, J.M., Luxen, A., Franck, G., 1997. Functional neuroanatomy of human slow wave sleep. J. Neurosci. 17, 2807-S2812), supporting the notion that delta activity is a valuable prominent feature of NREM sleep. A strong association was observed between rCBF in the ventromedial prefrontal regions and delta power, in agreement with electrophysiological studies. In contrast to the results of a previous PET study investigating the brain correlates of delta activity (Hofle, N., Paus, T., Reutens, D., Fiset, P., Gotman, J., Evans, A.C., Jones, B.E., 1997. Regional cerebral blood flow changes as a function of delta and spindle activity during slow wave sleep in humans. J. Neurosci. 17, 4800-4808), in which waking scans were mixed with NREM sleep scans, no correlation was found with thalamus activity. This latter result stresses the importance of an extra-thalamic delta rhythm among the synchronous NREM sleep oscillations. Consequently, this rCBF distribution might preferentially reflect a particular modulation of the

  6. Correlations between wave activity and electron temperature in the Martian upper ionosphere

    NASA Astrophysics Data System (ADS)

    Fowler, Chris; Andersson, Laila; Ergun, Robert; Andrews, David

    2017-04-01

    Prior to the Mars Atmosphere and Volatile EvolutioN (MAVEN) mission, only two electron temperature profiles of the Martian ionosphere existed, made by the Viking landers in the late 70s. Since MAVENs arrival at Mars in late 2014, electron temperature (and density) profiles have been measured every orbit, once every 4.5 hours. Recent analysis of this new dataset has shown that the Martian ionospheric electron temperature is significantly warmer than expected by factors of 2-3 above the exobase and within the upper ionosphere. We present correlations between electron temperature and electric field wave power (also measured by MAVEN), and discuss the possibility that such waves (which are likely produced by the Mars-solar wind interaction) may drive electron heating and contribute to the observed high temperatures.

  7. Four-wave mixing and edge-enhanced optical correlation in a Ce:KNSBN crystal.

    PubMed

    Liang, B; Wang, Z; Guan, J; Mu, G; Cartwright, C M

    2000-08-01

    In the case of degenerate four-wave mixing in a cerium-doped potassium sodium strontium barium niobate (Ce:KNSBN) crystal, it is found that the transmission grating is dominant when the incident beams are extraordinarily polarized, the crystal response is more rapid, and the conjugate beam is more intense. Furthermore, the variation of the conjugate beam intensity forms a loop as the fringe modulation of the transmission grating varies. Based on this observation, we have implemented edge enhancement of an image and edge-enhanced optical correlation via four-wave mixing in a Ce:KNSBN crystal without the requirement of reversal of the signal-pump-beam intensity ratio.

  8. Seismic Body-Wave Interferometry Using Noise Auto-correlations for Crustal Structure

    NASA Astrophysics Data System (ADS)

    Oren, Can; Nowack, Robert L.

    2016-10-01

    In this study, we use ambient seismic noise recorded at selected broadband USArray Earthscope Transportable Array (TA) stations to obtain effective reflection seismograms using noise auto-correlations. In order to best retrieve the body-wave component of the Green's function beneath a station from ambient seismic noise, a number of processing steps are used, including temporal sign-bit normalization, spectral whitening, and band-pass filtering. Hourly auto-correlations are stacked for different time periods including one day, one month, and one year. On the final stack, different amplitude gain functions are applied, including automatic gain control (AGC), to equalize the correlation amplitudes. The robustness of the resulting ambient noise auto-correlations is first tested on a TA station in Nevada where we are able to identify arrivals similar to those found in an earlier study. We then investigated noise auto-correlations applied to several USArray TA stations in the central U.S., and the results were then compared with reflectivity synthetics for an average crustal model based on CRUST 1.0 where an AGC was used to enhance the later arrivals. Different stacking periods are also investigated in order to find stable correlation stacks.

  9. Multi-channel analysis of passive surface waves based on cross-correlations

    NASA Astrophysics Data System (ADS)

    Cheng, F.; Xia, J.; Xu, Z.; Hu, Y.

    2015-12-01

    Traditional active seismic survey can no longer be properly applied in highly populated urban areas due to restrictions in modern civilian life styles. Passive seismic methods, however, have gained much more attention from the engineering geophysics community because of their environmental friendly and deeper investigation depth. Due to extracting signal from noise has never been as comfortable as that in active seismic survey, how to make it more efficiently and accurately has been emphasized. We propose a multi-channel analysis of passive surface waves (MAPW) based on long noise sequences cross-correlations to meet the demand for increasing investigation depth by acquiring surface-wave data at a relative low-frequency range (1 Hz ≤ f ≤ 10 Hz) in urban areas. We utilize seismic interferometry to produce common virtual source gathers from one-hour-long noise records and do dispersion measurements by using the classic passive multi-channel analysis of surface waves (PMASW). We used synthetic tests to demonstrate the advantages of MAPW for various noise distributions. Results show that our method has the superiority of maximizing the analysis accuracy. Finally, we used two field data applications to demonstrate the advantages of our MAPW over the classic PMASW on isolating azimuth of the predominant noise sources and the effectivity of combined survey of active multi-channel analysis of surface waves (MASW) and MAPW. We suggest, for the field operation using MAPW, that a parallel receiver line which is close to a main road or river, if any, with one or two hours noise observation will be an effective means for an unbiased dispersion image. Keywords: passive seismic method, MAPW, MASW, cross-correlation, directional noise source, spatial-aliasing effects, inversion

  10. Topographically induced internal solitary waves in a pycnocline: Ultrasonic probes and stereo-correlation measurements

    SciTech Connect

    Dossmann, Yvan; Paci, Alexandre; Auclair, Francis; Lepilliez, Mathieu; Cid, Emmanuel

    2014-05-15

    Internal solitary waves (ISWs) are large amplitude stable waves propagating in regions of high density gradients such as the ocean pycnocline. Their dynamics has often been investigated in two-dimensional approaches, however, their three-dimensional evolution is still poorly known. Experiments have been conducted in the large stratified water tank of CNRM-GAME to study the generation of ISWs in two academic configurations inspired by oceanic regimes. First, ultrasonic probes are used to measure the interfacial displacement in the two configurations. In the primary generation case for which the two layers are of constant density, the generation of ISWs is investigated in two series of experiments with varying amplitude and forcing frequency. In the secondary generation case for which the lower layer is stratified, the generation of ISWs from the impact of an internal wave beam on the pycnocline and their subsequent dynamics is studied. The dynamics of ISWs in these two regimes accords well with analytical approaches and numerical simulations performed in analogous configurations. Then, recent developments of a stereo correlation technique are used to describe the three-dimensional structure of propagating ISWs. In the primary generation configuration, small transverse effects are observed in the course of the ISW propagation. In the secondary generation configuration, larger transverse structures are observed in the interfacial waves dynamics. The interaction between interfacial troughs and internal waves propagating in the lower stratified layer are a possible cause for the generation of these structures. The magnitude of these transverse structures is quantified with a nondimensional parameter in the two configurations. They are twice as large in the secondary generation case as in the primary generation case.

  11. Radio-wave emission due to hypervelocity impacts and its correlation with optical observations

    NASA Astrophysics Data System (ADS)

    Takano, T.; Maki, K.; Yamori, A.

    This paper describes the most interesting phenomena of radio-wave emission due to hypervelocity impacts. A projectile of polycarbonate with 1.1 g weight was accelerated by a rail gun to 3.8 km/sec, and hit two targets which are a 2 mm thick aluminum plate upstream and a 45 mm diameter aluminum column downstream, respectively. The projectile first breaks wires to give a triggering signal to a data recorder, then penetrates the aluminum plate, and finally hit the column, The emitted radio-waves propagate through the chamber window, and are received by antennas at each frequency band. The receivers in 22 GHz- and 2 GHz-bands consist of a low noise amplifier, a mixer, a local oscillator and an IF amplifier , respectively. The receiver in 1 MHz-band is a simple RF amplifier. The outputs of all receivers are fed to a data recorder which is actually a high-speed digital oscilloscope with a large amount of memory. The radio-waves were successfully recorded in 22 GHz-band with 500 MHz bandwidth, in 2 GHz-band with 300 MHz bandwidth, and in 1MHz-band. The waveforms in 22 GHz- and 2 GHz-bands coincide well each other, and are composed of two groups of sharp impulses with a separation of about 20 micro seconds. The width of an impulse is less than 2 n sec. which is the resolution limit of the data recorder. We carried out optical observations using an ultra-high speed camera simultaneously through another window of the chamber. The time interval between scenes is 2 micro sec. We can see a faint light of the projectile before the first impact to the plate, and then a brilliant gas exploding backward from the plate and forward to the column. After hitting the column target, the brilliant gas flows to the chamber wall and is reflected back to make a mixture with dark gas in the chamber. Excellent correlation between radio-wave emission and the observed optical phenomena was obtained in the experiment. It is easily conceived that the radio-waves consist of quite a wide frequency

  12. High-energy spin-density-wave correlated fluctuations in paramagnetic Cr + 5 at. % V

    SciTech Connect

    Werner, S.A.; Fawcett, E.; Elmiger, M.W.; Shirane, G.

    1992-11-01

    Measurements of the magnetic fluctuations, termed spin-density-wave (SDW) paramagnons, in the nearly antiferromagnetic alloy Cr + 5 at.%V are extended up in energy to about 80 MeV. These fluctuating spin-spin correlations occur at incommensurate positions, corresponding to the SDW wavevector Q. Their characteristic energy is at least an order of magnitude larger than that of the magnetic fluctuations seen in the paramagnetic phase of pure Cr, but their intensity is more than two orders of magnitude smaller. We find that the dynamic susceptibility decreases by about 50% between temperature T = 10K and 300K.

  13. High-energy spin-density-wave correlated fluctuations in paramagnetic Cr + 5 at. % V

    SciTech Connect

    Werner, S.A. . Dept. of Physics); Fawcett, E. . Dept. of Physics); Elmiger, M.W.; Shirane, G. )

    1992-01-01

    Measurements of the magnetic fluctuations, termed spin-density-wave (SDW) paramagnons, in the nearly antiferromagnetic alloy Cr + 5 at.%V are extended up in energy to about 80 MeV. These fluctuating spin-spin correlations occur at incommensurate positions, corresponding to the SDW wavevector Q. Their characteristic energy is at least an order of magnitude larger than that of the magnetic fluctuations seen in the paramagnetic phase of pure Cr, but their intensity is more than two orders of magnitude smaller. We find that the dynamic susceptibility decreases by about 50% between temperature T = 10K and 300K.

  14. Quantitative shear wave elastography: correlation with prognostic histologic features and immunohistochemical biomarkers of breast cancer.

    PubMed

    Au, Frederick Wing-Fai; Ghai, Sandeep; Lu, Fang-I; Moshonov, Hadas; Crystal, Pavel

    2015-03-01

    To correlate prognostic histologic features and immunohistochemical biomarkers of breast cancer with quantitative shear wave elastography (SWE) parameters. B-mode ultrasound (US) and SWE were performed before core biopsy on 72 cancers in 68 patients. Mean cancer size was determined from US. Histologic grade, lymph node status, lymphovascular invasion (LVI), histologic type, and immunohistochemical biomarkers (estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2 [HER2]) were determined from surgical pathology reports. Correlation between these features and quantitative SWE parameters (mean elasticity [E mean], maximum elasticity [E max], and elasticity ratio [E ratio]) was made. There was significant correlation of mean cancer size with E mean, E max, and E ratio (correlation, 0.492, 0.500, and 0.435, respectively; all P < .001). Lymph node involvement was associated with significantly higher E max (P = .040). LVI was associated with significantly higher E mean, E max, and E ratio (P = .002, .004, and .042, respectively). There was no significant correlation of histologic grade with SWE parameters. HER2+ cancers were associated with significantly higher E ratio (P = .030). In multivariate analysis, only mean cancer size was significantly correlated with E mean and E max (P < .001). There was significant correlation of cancer size with SWE parameters. There was significant correlation of lymph node status and LVI with SWE, but only on univariate analysis. SWE has the potential to provide prognostic information of breast cancer in a noninvasive manner, but further study is required. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  15. Phase-sensitive cascaded four-wave-mixing processes for generating three quantum correlated beams

    NASA Astrophysics Data System (ADS)

    Wang, Li; Wang, Hailong; Li, Sijin; Wang, Yaxian; Jing, Jietai

    2017-01-01

    Theoretical studies and experimental implementations of quantum correlation are the important contents of continuous variables quantum optics and quantum information science. There are various systems for the study of quantum correlation. Here, we study an experimental scheme for generating three quantum correlated beams based on phase-sensitive cascaded four-wave-mixing (FWM) processes in rubidium vapor. Quantum correlation including intensity difference or sum squeezing, two other combinatorial squeezing, and quantum entanglement among the three output light fields are theoretically analyzed in this paper. Also, the comparison of the quantum correlations have been made between the phase-sensitive cascaded FWM processes and the phase-insensitive cascaded FWM processes. By changing the phases and intensities of the input beams, it is interesting to find that the maximum degrees of various combinatorial squeezing are equal when the two FWM processes share a common intensity gain. When the common intensity gain of the two FWM processes changes, the maximum degrees of different combinatorial squeezing will be synchronously controlled. At last we discuss the genuine tripartite entanglement and steering in our phase-sensitive cascaded scheme, and compare them with the cases of the phase-insensitive cascaded scheme.

  16. The correlations of multi-wave band luminosity and BLR luminosity in Fermi 2LAC blazars

    NASA Astrophysics Data System (ADS)

    Wang, Zerui; Xue, Rui; Xie, Zhaohua; Du, Leiming; Yi, Tingfeng; Xu, Yunbing; Liu, Wenguang

    2017-10-01

    We collect a sample of 78 Fermi detected blazars with broad line region (BLR) data and the quasi-simultaneous multi-wave band data. By analyzing the sample, we find: (1) For whole blazar sample, there exist significant correlations between radio, γ-ray luminosity and BLR luminosity. The slope of the best-fit linear regression equation is close to the theoretical value 1. Our results provided another support of jet-disk symbiosis. (2) For FSRQ sample, we find a significant correlation between radio luminosity and optical luminosity, and weaker correlations between X-ray luminosity and radio, optical luminosity. It indicates that the X-ray band radiation mechanism is slightly different from radio and optical bands. The X-ray emission is diluted by inverse Compton scattering (IC). There is a significant correlation between BLR luminosity and γ-ray luminosity, but no correlations between X-ray luminosity and BLR, γ-ray luminosity, which suggests that the seed soft photons are different for IC process. From these results we suggest that the X-ray band emission is diluted by synchrotron self-Compton (SSC) process, γ-ray band emission is produced by external Compton (EC) process.

  17. Correlations Between Shear Wave Velocity and In-Situ Penetration Test Results for Korean Soil Deposits

    NASA Astrophysics Data System (ADS)

    Sun, Chang-Guk; Cho, Chang-Soo; Son, Minkyung; Shin, Jin Soo

    2013-03-01

    Shear wave velocity ( V S) can be obtained using seismic tests, and is viewed as a fundamental geotechnical characteristic for seismic design and seismic performance evaluation in the field of earthquake engineering. To apply conventional geotechnical site investigation techniques to geotechnical earthquake engineering, standard penetration tests (SPT) and piezocone penetration tests (CPTu) were undertaken together with a variety of borehole seismic tests for a range of sites in Korea. Statistical modeling of the in-situ testing data identified correlations between V S and geotechnical in-situ penetration data, such as blow counts ( N value) from SPT and CPTu data including tip resistance ( q t), sleeve friction ( f s), and pore pressure ratio ( B q). Despite the difference in strain levels between conventional geotechnical penetration tests and borehole seismic tests, it is shown that the suggested correlations in this study is applicable to the preliminary determination of V S for soil deposits.

  18. Dimensional Crossover of Charge-Density Wave Correlations in the Cuprates

    NASA Astrophysics Data System (ADS)

    Caplan, Yosef; Orgad, Dror

    2017-09-01

    Short-range charge-density wave correlations are ubiquitous in underdoped cuprates. They are largely confined to the copper-oxygen planes and typically oscillate out of phase from one unit cell to the next in the c direction. Recently, it was found that a considerably longer-range charge-density wave order develops in YBa2 Cu3 O6 +x above a sharply defined crossover magnetic field. This order is more three-dimensional and is in-phase along the c axis. Here, we show that such behavior is a consequence of the conflicting ordering tendencies induced by the disorder potential and the Coulomb interaction, where the magnetic field acts to tip the scales from the former to the latter. We base our conclusion on analytic large-N analysis and Monte Carlo simulations of a nonlinear sigma model of competing superconducting and charge-density wave orders. Our results are in agreement with the observed phenomenology in the cuprates, and we discuss their implications to other members of this family, which have not been measured yet at high magnetic fields.

  19. Photoionization of helium by attosecond pulses: Extraction of spectra from correlated wave functions

    NASA Astrophysics Data System (ADS)

    Argenti, Luca; Pazourek, Renate; Feist, Johannes; Nagele, Stefan; Liertzer, Matthias; Persson, Emil; Burgdörfer, Joachim; Lindroth, Eva

    2013-05-01

    We investigate the photoionization spectrum of helium by attosecond XUV pulses both in the spectral region of doubly excited resonances as well as above the double ionization threshold. In order to probe for convergence, we compare three techniques to extract photoelectron spectra from the wave packet resulting from the integration of the time-dependent Schrödinger equation in a finite-element discrete variable representation basis. These techniques are projection on products of hydrogenic bound and continuum states, projection onto multichannel scattering states computed in a B-spline close-coupling basis, and a technique based on exterior complex scaling implemented in the same basis used for the time propagation. These methods allow one to monitor the population of continuum states in wave packets created with ultrashort pulses in different regimes. Applications include photo cross sections and anisotropy parameters in the spectral region of doubly excited resonances, time-resolved photoexcitation of autoionizing resonances in an attosecond pump-probe setting, and the energy and angular distribution of correlated wave packets for two-photon double ionization.

  20. A cross-correlation search for intermediate-duration gravitational waves from GRB magnetars

    NASA Astrophysics Data System (ADS)

    Coyne, Robert

    2015-04-01

    Since the discovery of the afterglow in 1997, the progress made in our understanding of gamma-ray bursts (GRBs) has been spectacular. Yet a direct proof of GRB progenitors is still missing. In the last few years, evidence for a long-lived and sustained central engine in GRBs has mounted. This has called attention to the so-called millisecond-magnetar model, which proposes that a highly magnetized, rapidly-rotating neutron star may exist at the heart of some of these events. The advent of advanced gravitational wave detectors such as LIGO and Virgo may enable us to probe directly, for the first time, the nature of GRB progenitors and their byproducts. In this context, we describe a novel application of a generalized cross-correlation technique optimized for the detection of long-duration gravitational wave signals that may be associated with bar-like deformations of GRB magnetars. The detection of these signals would allow us to answer some of the most intriguing questions on the nature of GRB progenitors, and serve as a starting point for a new class of intermediate-duration gravitational wave searches.

  1. Capillary waves and the decay of density correlations at liquid surfaces.

    PubMed

    Hernández-Muñoz, Jose; Chacón, Enrique; Tarazona, Pedro

    2016-12-01

    Wertheim predicted strong density-density correlations at free liquid surfaces, produced by capillary wave fluctuations of the interface [M. S. Wertheim, J. Chem. Phys. 65, 2377 (1976)JCPSA60021-960610.1063/1.433352]. That prediction has been used to search for a link between capillary wave (CW) theory and density functional (DF) formalism for classical fluids. In particular, Parry et al. have recently analyzed the decaying tails of these CW effects moving away from the interface as a clue for the extended CW theory [A. O. Parry et al., J. Phys.: Condens. Matter 28, 244013 (2016)JCOMEL0953-898410.1088/0953-8984/28/24/244013], beyond the strict long-wavelength limit studied by Wertheim. Some apparently fundamental inconsistencies between the CW and the DF theoretical views of the fluid interfaces arose from the asymptotic analysis of the CW signal. In this paper we revisit the problem of the CW asymptotic decay with a separation of local non-CW surface correlation effects from those that are a truly nonlocal propagation of the CW fluctuations from the surface towards the liquid bulk.

  2. Capillary waves and the decay of density correlations at liquid surfaces

    NASA Astrophysics Data System (ADS)

    Hernández-Muñoz, Jose; Chacón, Enrique; Tarazona, Pedro

    2016-12-01

    Wertheim predicted strong density-density correlations at free liquid surfaces, produced by capillary wave fluctuations of the interface [M. S. Wertheim, J. Chem. Phys. 65, 2377 (1976), 10.1063/1.433352]. That prediction has been used to search for a link between capillary wave (CW) theory and density functional (DF) formalism for classical fluids. In particular, Parry et al. have recently analyzed the decaying tails of these CW effects moving away from the interface as a clue for the extended CW theory [A. O. Parry et al., J. Phys.: Condens. Matter 28, 244013 (2016), 10.1088/0953-8984/28/24/244013], beyond the strict long-wavelength limit studied by Wertheim. Some apparently fundamental inconsistencies between the CW and the DF theoretical views of the fluid interfaces arose from the asymptotic analysis of the CW signal. In this paper we revisit the problem of the CW asymptotic decay with a separation of local non-CW surface correlation effects from those that are a truly nonlocal propagation of the CW fluctuations from the surface towards the liquid bulk.

  3. Temporal changes of surface wave velocity associated with major Sumatra earthquakes from ambient noise correlation

    PubMed Central

    Xu, Zhen J.; Song, Xiaodong

    2009-01-01

    Detecting temporal changes of the medium associated with major earthquakes has implications for understanding earthquake genesis. Here we report temporal changes of surface wave velocity over a large area associated with 3 major Sumatra earthquakes in 2004, 2005, and 2007. We use ambient noise correlation to retrieve empirical Green's function (EGF) of surface waves between stations. Because the process is completely repeatable, the technique is powerful in detecting possible temporal change of medium. We find that 1 excellent station pair (PSI in Indonesia and CHTO in Thailand) shows significant time shifts (up to 1.44 s) after the 2004 and 2005 events in the Rayleigh waves at 10–20 s but not in the Love waves, suggesting that the Rayleigh time shifts are not from clock error. The time shifts are frequency dependent with the largest shifts at the period band of 11–16 s. We also observe an unusual excursion ∼1 month before the 2004 event. We obtain a total of 17 pairs for June, 2007 to June, 2008, which allow us to examine the temporal and spatial variation of the time shifts. We observed strong anomalies (up to 0.68 s) near the epicenter after the 2007 event, but not in the region further away from the source or before the event or 3 months after the event. The observations are interpreted as stress changes and subsequent relaxation in upper-mid crust in the immediate vicinity of the rupture and the broad area near the fault zone. PMID:19667205

  4. Exponential approximations in optimal design

    NASA Technical Reports Server (NTRS)

    Belegundu, A. D.; Rajan, S. D.; Rajgopal, J.

    1990-01-01

    One-point and two-point exponential functions have been developed and proved to be very effective approximations of structural response. The exponential has been compared to the linear, reciprocal and quadratic fit methods. Four test problems in structural analysis have been selected. The use of such approximations is attractive in structural optimization to reduce the numbers of exact analyses which involve computationally expensive finite element analysis.

  5. Is radioactive decay really exponential?

    NASA Astrophysics Data System (ADS)

    Aston, P. J.

    2012-03-01

    Radioactive decay of an unstable isotope is widely believed to be exponential. This view is supported by experiments on rapidly decaying isotopes but is more difficult to verify for slowly decaying isotopes. The decay of 14C can be calibrated over a period of 12550 years by comparing radiocarbon dates with dates obtained from dendrochronology. It is well known that this approach shows that radiocarbon dates of over 3000 years are in error, which is generally attributed to past variation in atmospheric levels of 14C. We note that predicted atmospheric variation (assuming exponential decay) does not agree with results from modelling, and that theoretical quantum mechanics does not predict exact exponential decay. We give mathematical arguments that non-exponential decay should be expected for slowly decaying isotopes and explore the consequences of non-exponential decay. We propose an experimental test of this prediction of non-exponential decay for 14C. If confirmed, a foundation stone of current dating methods will have been removed, requiring a radical reappraisal both of radioisotope dating methods and of currently predicted dates obtained using these methods.

  6. Quantum correlations by four-wave mixing in an atomic vapor in a nonamplifying regime: Quantum beam splitter for photons

    SciTech Connect

    Glorieux, Quentin; Guidoni, Luca; Guibal, Samuel; Likforman, Jean-Pierre; Coudreau, Thomas

    2011-11-15

    We study the generation of intensity quantum correlations using four-wave mixing in a rubidium vapor. The absence of cavities in these experiments allows to deal with several spatial modes simultaneously. In the standard amplifying configuration, we measure relative intensity squeezing up to 9.2 dB below the standard quantum limit. We also theoretically identify and experimentally demonstrate an original regime where, despite no overall amplification, quantum correlations are generated. In this regime, a four-wave mixing setup can play the role of a photonic beam splitter with nonclassical properties, that is, a device that splits a coherent state input into two quantum-correlated beams.

  7. Enhanced Rayleigh waves tomography of Mexico using ambient noise cross-correlations (C1) and correlations of coda of correlations (C3)

    NASA Astrophysics Data System (ADS)

    Spica, Z. J.; Perton, M.; Calo, M.; Cordoba-Montiel, F.; Legrand, D.; Iglesias, A.

    2015-12-01

    Standard application of the seismic ambient noise tomography considers the existence of synchronous records at stations for green's functions retrieval. More recent theoretical and experimental observations showed the possibility to apply correlation of coda of noise correlation (C3) to obtain green's functions between stations of asynchronous seismic networks making possible to dramatically increase databases for imagining the Earth's interior. However, this possibility has not been fully exploited yet, and right now the data C3 are not included into tomographic inversions to refine seismic structures. Here we show for the first time how to incorporate the data of C1 and C3 to calculate dispersion maps of Rayleigh waves in the range period of 10-120s, and how the merging of these datasets improves the resolution of the structures imaged. Tomographic images are obtained for an area covering Mexico, the Gulf of Mexico and the southern U.S. We show dispersion maps calculated using both data of C1 and the complete dataset (C1+C3). The latter provide new details of the seismic structure of the region allowing a better understanding of their role on the geodynamics of the study area. The resolving power obtained in our study is several times higher than in previous studies based on ambient noise. This demonstrates the new possibilities for imaging the Earth's crust and upper mantle using this enlarged database.

  8. Coherent scattering of an atom in the field of a standing wave under conditions of initial quantum correlation of subsystems

    SciTech Connect

    Trubilko, A. I.

    2016-10-15

    Coherent scattering of a two-level atom in the field of a quantized standing wave of a micromaser is considered under conditions of initial quantum correlation between the atom and the field. Such a correlation can be produced by a broadband parametric source. The interaction leading to scattering of the atom from the nonuniform field occurs in the dispersion limit or in the wing of the absorption line of the atom. Apart from the quantized field, the atom simultaneously interacts with two classical counterpropagating waves with different frequencies, which are acting in the plane perpendicular to the atom’s propagation velocity and to the wavevector of the standing wave. Joint action of the quantized field and two classical waves induces effective two-photon and Raman resonance interaction on the working transition. The effective Hamiltonian of the interaction is derived using the unitary transformation method developed for a moving atom. A strong effect is detected, which makes it possible to distinguish the correlated initial state of the atom and the field in the scattering of atom from the state of independent systems. For all three waves, scattering is not observed when systems with quantum correlation are prepared using a high-intensity parametric source. Conversely, when the atom interacts only with the nonuniform field of the standing wave, scattering is not observed in the case of the initial factorized state.

  9. Wintertime planetary wave propagation in the lower stratosphere and its observed effect on northern hemisphere temperature-ozone correlations

    NASA Astrophysics Data System (ADS)

    Sabutis, J. L.; Turco, R. P.; Kar, S. K.

    1997-09-01

    This study examines temporal and spatial correlations between TOMS total ozone and MSU4 brightness temperature data for the seven-years 1980-1986. These data sets are separated into monthly mean and transient time series, and a Monte Carlo method is used to determine the statistical significance of the observed correlations. Monthly mean data have large areas of positive correlations during NH summer months, and during SH springtime months. Both the NH and SH have smaller areas of monthly mean positive correlations during winter. The NH has large areas of transient correlations during October, November and April, and the SH during September, October and November. One result of this analysis is that monthly mean and transient total ozone and brightness temperature show little correlation in the NH during January and the SH during July. To examine the role that planetary waves play in these correlations during January, LIMS data are used to calculate the wave activity. It is found that the NH regions of significant total ozone-temperature positive correlations correspond to regions (corridors) in the stratosphere where large vertical planetary wave propagation takes place. Monthly mean correlations are found in the corridors over north central Asia, northeastern Pacific and northern Atlantic Oceans. Transient correlations are found over northern Canada. The northern Atlantic Ocean region is characterized by downward, and the remaining three regions are dominated by upward propagating wave activity. Trajectory calculations are used to examine the observed LIMS temperature and ozone trends. This analysis shows that as air parcels pass through the corridor over the northern Atlantic Ocean, they rise and cool. This unique region of downward wave activity and subsequent upward trajectory motion may be important when considering the processing of air by polar stratospheric clouds.

  10. Correlation lengths and topological entanglement entropies of unitary and nonunitary fractional quantum Hall wave functions.

    PubMed

    Estienne, B; Regnault, N; Bernevig, B A

    2015-05-08

    Using the newly developed matrix product state formalism for non-Abelian fractional quantum Hall (FQH) states, we address the question of whether a FQH trial wave function written as a correlation function in a nonunitary conformal field theory (CFT) can describe the bulk of a gapped FQH phase. We show that the nonunitary Gaffnian state exhibits clear signatures of a pathological behavior. As a benchmark we compute the correlation length of a Moore-Read state and find it to be finite in the thermodynamic limit. By contrast, the Gaffnian state has an infinite correlation length in (at least) the non-Abelian sector, and is therefore gapless. We also compute the topological entanglement entropy of several non-Abelian states with and without quasiholes. For the first time in the FQH effect the results are in excellent agreement in all topological sectors with the CFT prediction for unitary states. For the nonunitary Gaffnian state in finite size systems, the topological entanglement entropy seems to behave like that of the composite fermion Jain state at equal filling.

  11. Interferometric surface-wave acousto-optic time-integrating correlators

    NASA Technical Reports Server (NTRS)

    Berg, N. J.; Abramovitz, I. J.; Casseday, M. W.

    1981-01-01

    A structure for a coherent-interferometric acousto-optic (AO) time-integrating correlator was implemented by using a single surface acoustic wave (SAW) device with tilted transducers to reduce intermodulation terms. The SAW device was fabricated on Y-Z LiNbO3 with a center frequency of 175 MHz, a bandwidth of 60 MHz, and a time aperture of about 10 micros. The density of the photodetector array, with a potential of 120 MHz. Typical integration times are 30 to 40 ms, providing processing gains in excess of 10 to the 6th power. Such a device is useful in providing fast synchronization of communication links and in demodulating to base band and simultaneously acting as a synchronization lock monitor for moderate data rates. Where processing may be limited by Doppler shifts, a two dimensional architecture was implemented to allow full processing gain. Two one-dimensional, SAW AO time-integrating correlators and a two dimensional correlator are evaluated.

  12. Universal bulk charge-density-wave (CDW) correlations in the cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Tabis, Wojciech

    2014-03-01

    The recent observation of bulk CDW order in YBa2Cu3O8+δ(YBCO) in competition with superconductivity is a significant development. Using Cu L-edge resonant X-ray scattering, we also observe bulk CDW order in HgBa2CuO4+δ(Hg1201 Tc = 72K). The correlations appear below TCDW ~ 200K, well below the pseudogap temperature T* ~ 320K associated with unusual magnetism, but coincident with the onset of Fermi-liquid-like charge transport. In contrast to YBCO, we observe no decrease of the CDW amplitude below Tc, and the correlation length is short and temperature independent. CDW correlations therefore are a universal property of underdoped cuprates, enhanced by low structural symmetry and a magnetic field, but fundamentally not in significant competition with superconductivity. We also discuss the relationship between the CDW modulation wave vector and the Fermi surface area extracted from QO experiments. Work supported by DOE-BES. In collaboration with Y. Li, M. Le Tacon, L. Braicovich, A. Kreyssig, M. Minola, G. Dellea, E. Weschke, M. Veit, A. Goldman, T. Schmitt, G. Ghiringhelli, N. Barisic, M.K. Chan, C. Dorow, G. Yu, X. Zhao, B. Keimer, M. Greven.

  13. Universality in Stochastic Exponential Growth

    NASA Astrophysics Data System (ADS)

    Iyer-Biswas, Srividya; Crooks, Gavin E.; Scherer, Norbert F.; Dinner, Aaron R.

    2014-07-01

    Recent imaging data for single bacterial cells reveal that their mean sizes grow exponentially in time and that their size distributions collapse to a single curve when rescaled by their means. An analogous result holds for the division-time distributions. A model is needed to delineate the minimal requirements for these scaling behaviors. We formulate a microscopic theory of stochastic exponential growth as a Master Equation that accounts for these observations, in contrast to existing quantitative models of stochastic exponential growth (e.g., the Black-Scholes equation or geometric Brownian motion). Our model, the stochastic Hinshelwood cycle (SHC), is an autocatalytic reaction cycle in which each molecular species catalyzes the production of the next. By finding exact analytical solutions to the SHC and the corresponding first passage time problem, we uncover universal signatures of fluctuations in exponential growth and division. The model makes minimal assumptions, and we describe how more complex reaction networks can reduce to such a cycle. We thus expect similar scalings to be discovered in stochastic processes resulting in exponential growth that appear in diverse contexts such as cosmology, finance, technology, and population growth.

  14. Universality in stochastic exponential growth.

    PubMed

    Iyer-Biswas, Srividya; Crooks, Gavin E; Scherer, Norbert F; Dinner, Aaron R

    2014-07-11

    Recent imaging data for single bacterial cells reveal that their mean sizes grow exponentially in time and that their size distributions collapse to a single curve when rescaled by their means. An analogous result holds for the division-time distributions. A model is needed to delineate the minimal requirements for these scaling behaviors. We formulate a microscopic theory of stochastic exponential growth as a Master Equation that accounts for these observations, in contrast to existing quantitative models of stochastic exponential growth (e.g., the Black-Scholes equation or geometric Brownian motion). Our model, the stochastic Hinshelwood cycle (SHC), is an autocatalytic reaction cycle in which each molecular species catalyzes the production of the next. By finding exact analytical solutions to the SHC and the corresponding first passage time problem, we uncover universal signatures of fluctuations in exponential growth and division. The model makes minimal assumptions, and we describe how more complex reaction networks can reduce to such a cycle. We thus expect similar scalings to be discovered in stochastic processes resulting in exponential growth that appear in diverse contexts such as cosmology, finance, technology, and population growth.

  15. A seismic waves velocity model for Gran Canaria Island from ambient noise correlations

    NASA Astrophysics Data System (ADS)

    García-Jerez, Antonio; Almendros, Javier; Martínez-Arévalo, Carmen; de Lis Mancilla, Flor; Luzón, Francisco; Carmona, Enrique; Martín, Rosa; Sánchez, Nieves

    2014-05-01

    We have analysed continuous ambient seismic noise recorded by a temporary array in Gran Canaria (Canary Islands, Spain) in order to find a velocity model for the top few kilometers. The SISTEVOTENCAN-IGN seismic array consisted of five broadband stations surrounding a sixth central one placed close to Pico de las Nieves, at the center of the island. The array had a radius of 12-14 km, with interstation distances ranging from 10 to 27 km. This network was operative from December 2009 to November 2011. The Green's functions between the 15 pairs of stations have been estimated in the time domain by stacking cross-correlations of 60-s time windows for the whole recording period (~2 years). The effects of several processing adjustments such as 1-bit normalization and spectral whitening are discussed. We observe significant differences (mainly in amplitude) between causal and acausal parts of the estimated Green's functions, which can be associated to an uneven distribution of the seismic noise sources. The application of a phase-matched filter based on an average dispersion curve allowed the effective reduction of some spurious early arrivals and the selection of fundamental-mode Rayleigh wave pulses, making possible an automatic extraction of their group velocities. Then, Rayleigh-wave dispersion curves were retrieved for the set of paths by using frequency-time analysis (FTAN) as well as by following the procedure described by Herrin and Goforth (1977, BSSA) based on the iterative fitting of a phase-matched filter which optimally undisperses the signal. Reliable curves were obtained from 1 s to 6-7 s with group velocities ranging between 1.5 and 2.2 km/s. Some lateral variations in velocity have been detected in spite of the limited spatial coverage and path density, which substantially restricted the resolution. A mean S-wave velocity model has been inverted for this area down to ~3 km.

  16. Incidence rates, correlates, and prognosis of electrocardiographic P-wave abnormalities - a nationwide population-based study.

    PubMed

    Lehtonen, Arttu O; Langén, Ville L; Puukka, Pauli J; Kähönen, Mika; Nieminen, Markku S; Jula, Antti M; Niiranen, Teemu J

    2017-07-12

    Scant data exist on incidence rates, correlates, and prognosis of electrocardiographic P-wave abnormalities in the general population. We recorded ECG and measured conventional cardiovascular risk factors in 5667 Finns who were followed up for incident atrial fibrillation (AF). We obtained repeat ECGs from 3089 individuals 11years later. The incidence rates of prolonged P-wave duration, abnormal P terminal force (PTF), left P-wave axis deviation, and right P-wave axis deviation were 16.0%, 7.4%, 3.4%, and 2.2%, respectively. Older age and higher BMI were associated with incident prolonged P-wave duration and abnormal PTF (P≤0.01). Higher blood pressure was associated with incident prolonged P-wave duration and right P-wave axis deviation (P≤0.01). During follow-up, only prolonged P-wave duration predicted AF (multivariable-adjusted hazard ratio, 1.38; P=0.001). Modifiable risk factors associate with P-wave abnormalities that are common and may represent intermediate steps of atrial cardiomyopathy on a pathway leading to AF. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Minimum variance imaging based on correlation analysis of Lamb wave signals.

    PubMed

    Hua, Jiadong; Lin, Jing; Zeng, Liang; Luo, Zhi

    2016-08-01

    In Lamb wave imaging, MVDR (minimum variance distortionless response) is a promising approach for the detection and monitoring of large areas with sparse transducer network. Previous studies in MVDR use signal amplitude as the input damage feature, and the imaging performance is closely related to the evaluation accuracy of the scattering characteristic. However, scattering characteristic is highly dependent on damage parameters (e.g. type, orientation and size), which are unknown beforehand. The evaluation error can degrade imaging performance severely. In this study, a more reliable damage feature, LSCC (local signal correlation coefficient), is established to replace signal amplitude. In comparison with signal amplitude, one attractive feature of LSCC is its independence of damage parameters. Therefore, LSCC model in the transducer network could be accurately evaluated, the imaging performance is improved subsequently. Both theoretical analysis and experimental investigation are given to validate the effectiveness of the LSCC-based MVDR algorithm in improving imaging performance.

  18. Correlated photon pair generation in AlGaAs nanowaveguides via spontaneous four-wave mixing.

    PubMed

    Kultavewuti, Pisek; Zhu, Eric Y; Qian, Li; Pusino, Vincenzo; Sorel, Marc; Stewart Aitchison, J

    2016-02-22

    We demonstrate a source of correlated photon pairs which will have applications in future integrated quantum photonic circuits. The source utilizes spontaneous four-wave mixing (SFWM) in a dispersion-engineered nanowaveguide made of AlGaAs, which has merits of negligible two-photon absorption and low spontaneous Raman scattering (SpRS). We observe a coincidence-to-accidental (CAR) ratio up to 177, mainly limited by propagation losses. Experimental results agree well with theoretical predictions of the SFWM photon pair generation and the SpRS noise photon generation. We also study the effects from the SpRS, propagation losses, and waveguide lengths on the quality of our source.

  19. Measuring the distance-redshift relation with the cross-correlation of gravitational wave standard sirens and galaxies

    NASA Astrophysics Data System (ADS)

    Oguri, Masamune

    2016-04-01

    Gravitational waves from inspiraling compact binaries are known to be an excellent absolute distance indicator, yet it is unclear whether electromagnetic counterparts of these events are securely identified for measuring their redshifts, especially in the case of black hole-black hole mergers such as the one recently observed with the Advanced LIGO. We propose to use the cross-correlation between spatial distributions of gravitational wave sources and galaxies with known redshifts as an alternative means of constraining the distance-redshift relation from gravitational waves. In our analysis, we explicitly include the modulation of the distribution of gravitational wave sources due to weak gravitational lensing. We show that the cross-correlation analysis in next-generation observations will be able to tightly constrain the relation between the absolute distance and the redshift and therefore constrain the Hubble constant as well as dark energy parameters.

  20. Elliptically polarized electromagnetic waves in a magnetized quantum electron-positron plasma with effects of exchange-correlation

    SciTech Connect

    Shahmansouri, M.; Misra, A. P. E-mail: apmisra@gmail.com

    2016-07-15

    The dispersion properties of elliptically polarized electromagnetic waves in a magnetized electron-positron-pair (EP-pair) plasma are studied with the effects of particle dispersion associated with the Bohm potential, the Fermi degenerate pressure, and the exchange-correlation force. Two possible modes of the extraordinary or X wave, modified by these quantum effects, are identified and their propagation characteristics are investigated numerically. It is shown that the upper-hybrid frequency and the cutoff and resonance frequencies are no longer constants but are dispersive due to these quantum effects. It is found that the particle dispersion and the exchange-correlation force can have different dominating roles on each other depending on whether the X waves are of short or long wavelengths (in comparison with the Fermi Debye length). The present investigation should be useful for understanding the collective behaviors of EP plasma oscillations and the propagation of extraordinary waves in magnetized dense EP-pair plasmas.

  1. Derivation of stretched exponential tap density equations of granular powders.

    PubMed

    Hao, Tian

    2015-04-21

    The tap density of granular powders was found to be better fitted with the stretched exponential law. In our previous work, the stretched exponential tap density equations were derived with the rate process theory and free volume concept, under the assumption that the particle packing rate during the tapping process obeys the stretched Arrhenius equation, which, however, has an empirical origin. In this article, the above assumption is eliminated and attempts are made to obtain the stretched exponential tap density equations from very fundamental bases. In a vertical tapping process, the probability of particles attaining certain energy states is assumed to obey the Boltzmann distribution and particles traveling from one site to another are assumed to follow a very common memoryless random exponential law. The stretched exponential tap density equations are thus derived and all parameters acquire clear physical meanings. The most important parameter, the stretched exponential, is demonstrated to correlate with the interparticle forces: a small value may indicate a strong adhesive or cohesive interaction. Therefore, the stretched exponential could be a better indicator for powder flowability correlated with particle interactions as well.

  2. Health correlates of workplace bullying: a 3-wave prospective follow-up study.

    PubMed

    Bonde, Jens Peter; Gullander, Maria; Hansen, Åse Marie; Grynderup, Matias; Persson, Roger; Hogh, Annie; Willert, Morten Vejs; Kaerlev, Linda; Rugulies, Reiner; Kolstad, Henrik A

    2016-01-01

    This study aimed to examine the course of workplace bullying and health correlates among Danish employees across a four-year period. In total, 7502 public service and private sector employees participated in a 3-wave study from 2006 through 2011. Workplace bullying over the past 6-12 months and data on health characteristics were obtained by self-reports. We identified major depression using Schedules for Clinical Assessment in Neuropsychiatry interviews and the Major Depression Inventory. We performed cross-sectional and longitudinal analyses of outcomes according to self-labelled bullying at baseline using logistic regression. Reports of bullying were persistent across four years in 22.2% (57/257) of employees who initially reported bullying. Baseline associations between self-labelled bullying and sick-listing, poor self-rated health, poor sleep, and depressive symptoms were significant with adjusted odds ratios (OR) ranging from 1.8 [95% confidence interval (95% CI) 1.5-2.4] for poor sleep quality among those bullied "now and then" to 6.9 (95% CI 3.9-12.3) for depression among those reporting being bullied on a daily to monthly basis. In longitudinal analyses adjusting for bullying during follow-up, all health correlates except poor sleep quality persisted up to four years. Self-reported health correlates of workplace bullying including sick-listing, poor self-rated health, depressive symptoms, and a diagnosis of depression tend to persist for several years regardless of whether bullying is discontinued or not. Independent measures of bullying and outcomes are needed to learn whether these findings reflect long lasting health consequences of workplace bullying or whether self-labelled workplace bullying and health complaints are correlated because of common underlying factors.

  3. Fragility of Brushite Stones in Shock Wave Lithotripsy: Absence of Correlation with Computerized Tomography Visible Structure

    PubMed Central

    Williams, James C.; Hameed, Tariq; Jackson, Molly E.; Aftab, Syed; Gambaro, Alessia; Pishchalnikov, Yuri A.; Lingeman, James E.; McAteer, James A.

    2012-01-01

    Purpose Brushite stones were imaged in vitro and then broken with shock wave (SW) lithotripsy (SWL) to assess whether stone fragility correlates with internal stone structure visible by helical computed tomography (helical CT). Materials and Methods 52 brushite stones were scanned by micro CT, weighed, hydrated, and placed within a radiological phantom. The stones were scanned using a Philips Brilliance iCT 256 system, and the images evaluated for visibility of internal structural features. The stones were then treated by SWL in vitro, and the number of SWs needed to break each stone to completion was recorded. Results The number of SWs to break each stone, normalized to stone weight, did not differ by Hounsfield unit value (P=0.84), or CT-visible structure that could be identified consistently by all observers (P =0.053). Fragility of stones was highly correlated with stone density and with brushite content (both P <0.001), with stones of nearly pure brushite requiring the most SWs to break. When all observations of CT-visible structure were used in analysis by logistic fit, CT-visible structure predicted increased stone fragility with an overall area under the receiver operating characteristic (ROC) curve of 0.64. Conclusions SWL fragility of brushite stones did not correlate with internal structure discernable using helical CT. However, fragility did correlate with stone density and increasing brushite mineral content, which is consistent with clinical experience with brushite stone patients. Thus, current technology in diagnostic CT does not provide a means to predict when brushite stones will break well using SW lithotripsy. PMID:22819106

  4. Studies of Tidal and Planetary Wave Variability in the Middle Atmosphere using UARS and Correlative MF Radar Data

    NASA Technical Reports Server (NTRS)

    Fritts, David C.

    1996-01-01

    The goals of this research effort have been to use MF radar and UARS/HRDI wind measurements for correlative studies of large-scale atmospheric dynamics, focusing specifically on the tidal and various planetary wave structures occurring in the middle atmosphere. We believed that the two data sets together would provide the potential for much more comprehensive studies than either by itself, since they jointly would allow the removal of ambiguities in wave structure that are difficult to resolve with either data set alone. The joint data were to be used for studies of wave structure, variability, and the coupling of these motions to mean and higher-frequency motions.

  5. Studies of Tidal and Planetary Wave Variability in the Middle Atmosphere using UARS and Correlative MF Radar Data

    NASA Technical Reports Server (NTRS)

    Fritts, David C.

    1996-01-01

    The goals of this research effort have been to use MF radar and UARS/HRDI wind measurements for correlative studies of large-scale atmospheric dynamics, focusing specifically on the tidal and various planetary wave structures occurring in the middle atmosphere. We believed that the two data sets together would provide the potential for much more comprehensive studies than either by itself, since they jointly would allow the removal of ambiguities in wave structure that are difficult to resolve with either data set alone. The joint data were to be used for studies of wave structure, variability, and the coupling of these motions to mean and higher-frequency motions.

  6. Biomagnetic and bioelectric detection of gastric slow wave activity in normal human subjects--a correlation study.

    PubMed

    Somarajan, S; Muszynski, N D; Obioha, C; Richards, W O; Bradshaw, L A

    2012-07-01

    We measured gastric slow wave activity simultaneously with a Superconducting Quantum Interference Device (SQUID) magnetometer, mucosal electrodes and cutaneous electrodes in 18 normal human subjects (11 women and 7 men). We processed signals with Fourier spectral analysis and SOBI blind-source separation techniques. We observed a high waveform correlation between the mucosal electromyogram (EMG) and multichannel SQUID magnetogastrogram (MGG). There was a lower waveform correlation between the mucosal EMG and cutaneous electrogastrogram (EGG), but the correlation improved with the application of SOBI. There was also a high correlation between the frequency of the electrical activity recorded in the MGG and in mucosal electrodes (r = 0.97). We concluded that SQUID magnetometers noninvasively record gastric slow wave activity that is highly correlated with the activity recorded by invasive mucosal electrodes.

  7. Biomagnetic and bioelectric detection of gastric slow wave activity in normal human subjects – a correlation study

    PubMed Central

    Somarajan, S; Muszynski, ND; Obioha, C; Richards, WO; Bradshaw, LA

    2012-01-01

    We measured gastric slow wave activity simultaneously with a Superconducting Quantum Interference Device (SQUID) magnetometer, mucosal electrodes, and cutaneous electrodes in 18 normal human subjects (11 women and 7 men). We processed signals with Fourier spectral analysis and SOBI blind-source separation techniques. We observed a high waveform correlation between mucosal electromyogram (EMG) and multichannel SQUID magnetogastrogram (MGG). There was a lower waveform correlation between mucosal EMG and cutaneous electrogastrogram (EGG), but the correlation improved with application of SOBI. There was also a high correlation between the frequency of the electrical activity recorded in MGG and in mucosal electrodes (r =0.97). We concluded that SQUID magnetometers noninvasively record gastric slow wave activity that is highly correlated with the activity recorded by invasive mucosal electrodes. PMID:22735166

  8. Cross-correlation search for a hot spot of gravitational waves

    SciTech Connect

    Dhurandhar, Sanjeev; Tagoshi, Hideyuki; Okada, Yuta; Kanda, Nobuyuki; Takahashi, Hirotaka

    2011-10-15

    The cross-correlation search has been previously applied to map the gravitational wave (GW) stochastic background in the sky and also to target GW from rotating neutron stars/pulsars. Here we investigate how the cross-correlation method can be used to target a small region in the sky spanning at most a few pixels, where a pixel in the sky is determined by the diffraction limit which depends on the (i) baseline joining a pair of detectors and (ii) detector bandwidth. Here as one of the promising targets, we consider the Virgo cluster--a ''hot spot'' spanning few pixels--which could contain, as estimates suggest {approx}10{sup 11} neutron stars, of which a small fraction would continuously emit GW in the bandwidth of the detectors. For the detector baselines, we consider advanced detector pairs among LCGT, LIGO, Virgo, ET, etc. Our results show that sufficient signal to noise can be accumulated with integration times of the order of a year if the ellipticity of neutron stars is larger than 10{sup -6}. The results improve for the multibaseline search. This analysis could as well be applied to other likely hot spots in the sky and other possible pairs of detectors.

  9. Brain correlates of spike and wave discharges in GLUT1 deficiency syndrome.

    PubMed

    Vaudano, Anna Elisabetta; Olivotto, Sara; Ruggieri, Andrea; Gessaroli, Giuliana; De Giorgis, Valentina; Parmeggiani, Antonia; Veggiotti, Pierangelo; Meletti, Stefano

    2017-01-01

    To provide imaging biomarkers of generalized spike-and-wave discharges (GSWD) in patients with GLUT1 deficiency syndrome (GLUT1DS). Eighteen GLUT1DS patients with pathogenetic mutation in SLC2A1 gene were studied by means of Video-EEG simultaneously recorded with functional MRI (VideoEEG-fMRI). A control group of sex and age-matched patients affected by Genetic Generalized Epilepsy (GGE) with GSWD were investigated with the same protocol. Within and between groups comparison was performed as appropriated. For GLUT1DS, correlations analyses between the contrast of interest and the main clinical measurements were provided. EEG during fMRI revealed interictal GSWD in 10 GLUT1DS patients. Group-level analysis showed BOLD signal increases at the premotor cortex and putamen. With respect to GGE, GLUT1DS patients demonstrated increased neuronal activity in the putamen, precuneus, cingulate cortex, SMA and paracentral lobule. Whole-brain correlation analyses disclosed a linear relationship between the GSWD-related BOLD changes and the levels of glycorrhachia at diagnosis over the sensory-motor cortex and superior parietal lobuli. The BOLD dynamics related to GSWD in GLUT1DS are substantially different from typical GGE showing the former an increased activity in the premotor-striatal network and a decrease in the thalamus. The revealed hemodynamic maps might represent imaging biomarkers of GLUT1DS, being potentially useful for a precocious diagnosis of this genetic disorder.

  10. Approximating Functions with Exponential Functions

    ERIC Educational Resources Information Center

    Gordon, Sheldon P.

    2005-01-01

    The possibility of approximating a function with a linear combination of exponential functions of the form e[superscript x], e[superscript 2x], ... is considered as a parallel development to the notion of Taylor polynomials which approximate a function with a linear combination of power function terms. The sinusoidal functions sin "x" and cos "x"…

  11. Linear or Exponential Number Lines

    ERIC Educational Resources Information Center

    Stafford, Pat

    2011-01-01

    Having decided to spend some time looking at one's understanding of numbers, the author was inspired by "Alex's Adventures in Numberland," by Alex Bellos to look at one's innate appreciation of number. Bellos quotes research studies suggesting that an individual's natural appreciation of numbers is more likely to be exponential rather…

  12. Phenomenology of stochastic exponential growth

    NASA Astrophysics Data System (ADS)

    Pirjol, Dan; Jafarpour, Farshid; Iyer-Biswas, Srividya

    2017-06-01

    Stochastic exponential growth is observed in a variety of contexts, including molecular autocatalysis, nuclear fission, population growth, inflation of the universe, viral social media posts, and financial markets. Yet literature on modeling the phenomenology of these stochastic dynamics has predominantly focused on one model, geometric Brownian motion (GBM), which can be described as the solution of a Langevin equation with linear drift and linear multiplicative noise. Using recent experimental results on stochastic exponential growth of individual bacterial cell sizes, we motivate the need for a more general class of phenomenological models of stochastic exponential growth, which are consistent with the observation that the mean-rescaled distributions are approximately stationary at long times. We show that this behavior is not consistent with GBM, instead it is consistent with power-law multiplicative noise with positive fractional powers. Therefore, we consider this general class of phenomenological models for stochastic exponential growth, provide analytical solutions, and identify the important dimensionless combination of model parameters, which determines the shape of the mean-rescaled distribution. We also provide a prescription for robustly inferring model parameters from experimentally observed stochastic growth trajectories.

  13. Linear or Exponential Number Lines

    ERIC Educational Resources Information Center

    Stafford, Pat

    2011-01-01

    Having decided to spend some time looking at one's understanding of numbers, the author was inspired by "Alex's Adventures in Numberland," by Alex Bellos to look at one's innate appreciation of number. Bellos quotes research studies suggesting that an individual's natural appreciation of numbers is more likely to be exponential rather…

  14. Correlation between the radiological observation of isolated tertiary waves on an esophagram and findings on high-resolution esophageal manometry.

    PubMed

    Halland, M; Ravi, K; Barlow, J; Arora, A

    2016-01-01

    Barium esophagrams are a frequently performed test, and radiological observations about potential abnormal esophageal motility, such as tertiary contractions, are commonly reported. We sought to assess the correlation between tertiary waves, and in particular isolated tertiary waves, on esophagrams and findings on non-synchronous high-resolution esophageal manometry. We retrospectively reviewed reports of esophagrams performed at a tertiary referral center and identified patients in whom tertiary waves were observed and a high-resolution esophageal manometry had been performed. We defined two groups; group 1 was defined as patients with isolated tertiary waves, whereas group 2 had tertiary waves and evidence of achalasia or an obstructing structural abnormality on the esophagram. We collected data on demographics, dysphagia score, associated findings on esophagram, and need for intervention. We reviewed the reports of 2100 esophagrams of which tertiary waves were noted as an isolated abnormality in 92, and in association with achalasia or a structural obstruction in 61. High-resolution manometry was performed in 17 patients in group 1, and five had evidence of a significant esophageal motility disorder and 4 required any intervention. Twenty-one patients in group 2 underwent manometry, and 18 had a significant esophageal motility disorder. An isolated finding of tertiary waves on an esophagram is rarely associated with a significant esophageal motility disorder that requires intervention. All patients with isolated tertiary waves who required intervention had a dysphagia to liquids. Tertiary contractions, in the absence of dysphagia to liquids, indicate no significant esophageal motility disorder.

  15. Correlation between intensity fluctuations induced by scattering of a partially coherent, electromagnetic wave from a quasi-homogeneous medium

    NASA Astrophysics Data System (ADS)

    Li, Jia; Chang, Liping; Chen, Feinan

    2016-12-01

    Based on the first-order Born approximation, the correlation between intensity fluctuations is derived for a partially coherent, electromagnetic plane wave scattering from a spatially quasi-homogeneous medium. Young's pinholes are utilized to control the degree of coherence of the incident field. For the electromagnetic scattering case, it is shown that the CIF of the scattered field strongly depends on the degree of polarization of the incident wave, Young's pinhole parameter, effective radius and correlation length of the medium. The influences of these parameters on the CIF distributions are revealed by numerical calculations.

  16. Model-based cross-correlation search for gravitational waves from Scorpius X-1

    NASA Astrophysics Data System (ADS)

    Whelan, John T.; Sundaresan, Santosh; Zhang, Yuanhao; Peiris, Prabath

    2015-05-01

    We consider the cross-correlation search for periodic gravitational waves and its potential application to the low-mass x-ray binary Sco X-1. This method coherently combines data not only from different detectors at the same time, but also data taken at different times from the same or different detectors. By adjusting the maximum allowed time offset between a pair of data segments to be coherently combined, one can tune the method to trade off sensitivity and computing costs. In particular, the detectable signal amplitude scales as the inverse fourth root of this coherence time. The improvement in amplitude sensitivity for a search with a maximum time offset of one hour, compared with a directed stochastic background search with 0.25-Hz-wide bins, is about a factor of 5.4. We show that a search of one year of data from the Advanced LIGO and Advanced Virgo detectors with a coherence time of one hour would be able to detect gravitational waves from Sco X-1 at the level predicted by torque balance over a range of signal frequencies from 30 to 300 Hz; if the coherence time could be increased to ten hours, the range would be 20 to 500 Hz. In addition, we consider several technical aspects of the cross-correlation method: We quantify the effects of spectral leakage and show that nearly rectangular windows still lead to the most sensitive search. We produce an explicit parameter-space metric for the cross-correlation search, in general, and as applied to a neutron star in a circular binary system. We consider the effects of using a signal template averaged over unknown amplitude parameters: The quantity to which the search is sensitive is a given function of the intrinsic signal amplitude and the inclination of the neutron-star rotation axis to the line of sight, and the peak of the expected detection statistic is systematically offset from the true signal parameters. Finally, we describe the potential loss of signal-to-noise ratio due to unmodeled effects such as signal

  17. Carotid-femoral pulse wave velocity is negatively correlated with aortic diameter.

    PubMed

    Bailey, Marc A; Davies, Jennifer M; Griffin, Kathryn J; Bridge, Katherine I; Johnson, Anne B; Sohrabi, Soroush; Baxter, Paul D; Scott, D Julian A

    2014-10-01

    Cardiovascular events pose significant morbidity and mortality burden to abdominal aortic aneurysm (AAA) patients. Arterial stiffness as measured by pulse wave velocity (PWV) is an independent predictor of cardiovascular risk. We investigated the relationship between aortic diameter and PWV. Consecutive patients with AAA were invited to participate. Patients completed a health questionnaire, received aortic ultrasound and carotid-femoral PWV (cfPWV) recordings with a Vicorder. Thirty patients were used for reproducibility assessment. A linear regression model was used to identify significant predictors of cfPWV. Observer variation was assessed using Bland and Altman analysis and the intraclass correlation coefficient. Three hundred and nine patients were included-148 with AAA and 161 controls. The mean difference for repeated cfPWV between observers was 0.11 ms(-1). cfPWV was positively correlated with age (r=0.24, P<0.001) and systolic blood pressure (r=0.29, P<0.001) and negatively correlated with aortic diameter (r=-0.15, P=0.008). There was no difference in cfPWV between AAA and control groups (9.75±2.3 ms(-1) vs. 9.55±2.3 ms(-1), P=0.43). Aortic diameter (P=0.003) and systolic blood pressure (P<0.001) were significant predictors of cfPWV independent of age, aspirin usage and a history of myocardial infarction. Patients with large AAA (>5 cm) had decreased cfPWV compared with patients with small AAA (P=0.02) or normal diameter aorta (P=0.02). Vicorder measurements of cfPWV are repeatable. cfPWV is negatively associated with infra-renal aortic diameter and reduced in large AAA. cfPWV is likely invalid for accurate arterial stiffness assessment in patients with AAA owing to the apparent confounding effect of aortic size.

  18. Correlation of attention deficit, rapid eye movement latency and slow wave sleep in schizophrenia patients.

    PubMed

    Chang, Yu-San; Hsu, Chung-Yao; Tang, Shu-Hui; Lin, Ching-Yu; Chen, Ming-Chao

    2009-04-01

    Schizophrenia patients present both reduced slow wave sleep (SWS) and shortened rapid eye movement latency (REML) in polysomnographic (PSG) profiles, which have been linked to dopaminergic and muscarinic impairment, respectively. Two main selective attentional systems involve different anatomical structures. The first system is the parietal cortical areas and thalamic areas, which are linked to cholinergic neurotransmission. This is responsible for automatic attention response. The second system is the frontal regions, which are linked to dopaminergic neurotransmission. This is responsible for voluntary control of attentional resources. It was hypothesized that low attentional performance in schizophrenia patients is associated with shortened REML and reduced SWS. The PSG profile was correlated with the continuous performance test (CPT) in 15 schizophrenia inpatients under treatment with risperidone. Schizophrenia was diagnosed according to DSM-IV criteria, and clinical symptoms were evaluated on the Brief Psychiatric Rating Scale. REML was negatively correlated with errors of omission (P < 0.05), reaction time (RT; P < 0.05) and positively correlated with hit rate (HR; P < 0.05). No association was found between SWS and CPT performance. The significant indicators of CPT represent different attention processes. Errors of omission, which are linked to the problems with automatic attention processing, RT, which represent the speed of automatic processing, and HR, are involved in the integration of autonomic and voluntary attention control. The present results suggest that REML is associated with thalamus-related automatic attention response. Due to study limitations, however, confirmation of these findings in a large-scale controlled study of drug-naïve patients is needed.

  19. Circumpapillary course of retinal pigment epithelium can be fit to sine wave and amplitude of sine wave is significantly correlated with ovality ratio of optic disc.

    PubMed

    Yamashita, Takehiro; Sakamoto, Taiji; Yoshihara, Naoya; Terasaki, Hiroto; Kii, Yuya; Tanaka, Minoru; Nakao, Kumiko

    2015-01-01

    The purpose of this study was to develop a method of quantifying the degree of optic disc tilt in normal eyes. This was a prospective, observational cross sectional study of 126 right eyes of 126 healthy volunteers. The optic disc tilt was determined from the circular peripapillary optical coherence tomographic (OCT) scan images. The course of the retinal pigment epithelium (RPE) layer in the peripapillary cross sectional scan images was fit to a sine wave curve, and the amplitude of the sine curve was used to reflect the degree of the optic disc tilt in the optical axis. The repeatability of the amplitude determinations was calculated. The correlation between the amplitude and the ovality ratio of the optic disc was determined. The correlation between the amplitude and the body height was also calculated. The mean amplitude was 36.6 ± 17.5 pixels, which was significantly and inversely correlated with the ovality ratio of the optic disc (R = -0.59, P < 0.001). The intra-rater and inter-rater correlation coefficients of the amplitude were significant high (P < 0.001, both). The amplitude was significantly and inversely correlated with the body height (R = -0.38, P < 0.001), but not with the axial length. In conclusion, a sine wave function can be used to describe the course of the RPE in the circumpapillary OCT images. The results indicate that the amplitude of the sine wave can be used to represent the degree of optic disc tilt. Thus, the sine wave analyses can be used as a quantifiable and repeatable method to determine the optic disc tilt.

  20. Shear wave elastography results correlate with liver fibrosis histology and liver function reserve

    PubMed Central

    Feng, Yan-Hong; Hu, Xiang-Dong; Zhai, Lin; Liu, Ji-Bin; Qiu, Lan-Yan; Zu, Yuan; Liang, Si; Gui, Yu; Qian, Lin-Xue

    2016-01-01

    AIM: To evaluate the correlation of shear wave elastography (SWE) results with liver fibrosis histology and quantitative function reserve. METHODS: Weekly subcutaneous injection of 60% carbon tetrachloride (1.5 mL/kg) was given to 12 canines for 24 wk to induce experimental liver fibrosis, with olive oil given to 2 control canines. At 24 wk, liver condition was evaluated using clinical biochemistry assays, SWE imaging, lidocaine metabolite monoethylglycine-xylidide (MEGX) test, and histologic fibrosis grading. Clinical biochemistry assays were performed at the institutional central laboratory for routine liver function evaluation. Liver stiffness was measured in triplicate from three different intercostal spaces and expressed as mean liver stiffness modulus (LSM). Plasma concentrations of lidocaine and its metabolite MEGX were determined using high-performance liquid chromatography repeated in duplicate. Liver biopsy samples were fixed in 10% formaldehyde, and liver fibrosis was graded using the modified histological activity index Knodell score (F0-F4). Correlations among histologic grading, LSM, and MEGX measures were analyzed with the Pearson linear correlation coefficient. RESULTS: At 24 wk liver fibrosis histologic grading was as follows: F0, n = 2 (control); F1, n = 0; F2, n = 3; F3, n = 7; and F4, n = 2. SWE LSM was positively correlated with histologic grading (r = 0.835, P < 0.001). Specifically, the F4 group had a significantly higher elastic modulus than the F3, F2, and F0 groups (P = 0.002, P = 0.003, and P = 0.006, respectively), and the F3 group also had a significantly higher modulus than the control F0 group (P = 0.039). LSM was negatively associated with plasma MEGX concentrations at 30 min (r = -0.642; P = 0.013) and 60 min (r = -0.651; P = 0.012), time to ½ of the maximum concentration (r = -0.538; P = 0.047), and the area under the curve (r = -0.636; P = 0.014). Multiple comparisons showed identical differences in these three measures

  1. EEG Σ and slow-wave activity during NREM sleep correlate with overnight declarative and procedural memory consolidation.

    PubMed

    Holz, Johannes; Piosczyk, Hannah; Feige, Bernd; Spiegelhalder, Kai; Baglioni, Chiara; Riemann, Dieter; Nissen, Christoph

    2012-12-01

    Previous studies suggest that sleep-specific brain activity patterns such as sleep spindles and electroencephalographic slow-wave activity contribute to the consolidation of novel memories. The generation of both sleep spindles and slow-wave activity relies on synchronized oscillations in a thalamo-cortical network that might be implicated in synaptic strengthening (spindles) and downscaling (slow-wave activity) during sleep. This study further examined the association between electroencephalographic power during non-rapid eye movement sleep in the spindle (sigma, 12-16 Hz) and slow-wave frequency range (0.1-3.5 Hz) and overnight memory consolidation in 20 healthy subjects (10 men, 27.1 ± 4.6 years). We found that both electroencephalographic sigma power and slow-wave activity were positively correlated with the pre-post-sleep consolidation of declarative (word list) and procedural (mirror-tracing) memories. These results, although only correlative in nature, are consistent with the view that processes of synaptic strengthening (sleep spindles) and synaptic downscaling (slow-wave activity) might act in concert to promote synaptic plasticity and the consolidation of both declarative and procedural memories during sleep.

  2. Spatial correlation for transmitters in spatial MIMO optical wireless links with Gaussian-beam waves and aperture effects

    NASA Astrophysics Data System (ADS)

    Chen, Zhixiao; Yu, Song; Wang, Tianyi; Wu, Guohua; Guo, Hong; Gu, Wanyi

    2013-01-01

    The spatial correlation between signals arising from a pair of constituent transmitters in a spatial multiple-input-multiple-output (MIMO) system is investigated. General formulations for the spatial correlation functions considering Gaussian-beam waves and receiver aperture effects are given under weak turbulence condition. Based on the analytical expressions, we find that spatial correlation decreases with separation distance, but increases with receiver aperture sizes, turbulence strength and wavelengths. In particular, receiver aperture averaging effects can evidently increase the correlation. It is also shown that decreasing the beam widths can generally reduce the spatial correlation, and convergent beams have lower spatial correlation than their collimated counterparts. It is found that Gaussian beams with the Fresnel ratios larger than 1 have advantages in reducing both the spatial correlation and the beam scintillations.

  3. Measurement of circumferential Lamb waves using a line-focus poly(vinylidene fluoride) transducer and cross correlation waveform analysis.

    PubMed

    Lin, Chun-I; Lu, Yan; He, Cunfu; Song, Guorong; Lee, Yung-Chun

    2015-11-01

    This paper presents a method for measuring circumferential Lamb waves propagating on a cylindrically curved thin plate. The measurement is carried out using a wideband and line-focused poly(vinylidene fluoride) transducer along with a defocusing waveform measurement method. After synthesizing the acquired waveforms, interference patterns can be obtained and a cross correlation method is developed to accurately extract the wave velocity as a function of wave frequency. Using three stainless steel thin plates of different thicknesses (100, 150, and 300 μm) and a radius of curvature of 10 mm, dispersion curves for several fundamental and higher order modes of circumferential Lamb waves are simultaneously determined. Theoretical dispersion curves are also calculated and compared with their experimental counterparts. Very good agreements are observed, which concludes the measurement accuracy of this measurement method.

  4. Remote sensing of the correlation between breakpoint oscillations and infragravity waves in the surf and swash zone

    NASA Astrophysics Data System (ADS)

    Moura, T.; Baldock, T. E.

    2017-04-01

    A novel remote sensing methodology to determine the dominant infragravity mechanism in the inner surf and swash zone in the field is presented. Video observations of the breakpoint motion are correlated with the shoreline motion and inner surf zone water levels to determine the relationship between the time-varying breakpoint oscillations and the shoreline motion. The results of 13 field data sets collected from three different beaches indicate that, inside the surf zone, the dominance of bound wave or breakpoint forcing is strongly dependent on the surf zone width and the type of short wave breaking. Infragravity generation by bound wave release was stronger for conditions with relatively narrow surf zones and plunging waves; breakpoint forcing was dominant for wider surf zones and spilling breaker conditions.

  5. Exponential Size Distribution of von Willebrand Factor

    PubMed Central

    Lippok, Svenja; Obser, Tobias; Müller, Jochen P.; Stierle, Valentin K.; Benoit, Martin; Budde, Ulrich; Schneppenheim, Reinhard; Rädler, Joachim O.

    2013-01-01

    Von Willebrand Factor (VWF) is a multimeric protein crucial for hemostasis. Under shear flow, it acts as a mechanosensor responding with a size-dependent globule-stretch transition to increasing shear rates. Here, we quantify for the first time, to our knowledge, the size distribution of recombinant VWF and VWF-eGFP using a multilateral approach that involves quantitative gel analysis, fluorescence correlation spectroscopy, and total internal reflection fluorescence microscopy. We find an exponentially decaying size distribution of multimers for recombinant VWF as well as for VWF derived from blood samples in accordance with the notion of a step-growth polymerization process during VWF biosynthesis. The distribution is solely described by the extent of polymerization, which was found to be reduced in the case of the pathologically relevant mutant VWF-IIC. The VWF-specific protease ADAMTS13 systematically shifts the VWF size distribution toward smaller sizes. This dynamic evolution is monitored using fluorescence correlation spectroscopy and compared to a computer simulation of a random cleavage process relating ADAMTS13 concentration to the degree of VWF breakdown. Quantitative assessment of VWF size distribution in terms of an exponential might prove to be useful both as a valuable biophysical characterization and as a possible disease indicator for clinical applications. PMID:24010664

  6. Exponentially Stabilizing Robot Control Laws

    NASA Technical Reports Server (NTRS)

    Wen, John T.; Bayard, David S.

    1990-01-01

    New class of exponentially stabilizing laws for joint-level control of robotic manipulators introduced. In case of set-point control, approach offers simplicity of proportion/derivative control architecture. In case of tracking control, approach provides several important alternatives to completed-torque method, as far as computational requirements and convergence. New control laws modified in simple fashion to obtain asymptotically stable adaptive control, when robot model and/or payload mass properties unknown.

  7. Correlation of wave propagation modes in helicon plasma with source tube lengths

    NASA Astrophysics Data System (ADS)

    Niu, Chen; Zhao, Gao; Wang, Yu; Liu, Zhongwei; Chen, Qiang

    2017-01-01

    Helicon wave plasma demonstrates lots of advantages in high coupling efficiency, high density, and low magnetic field. However, the helicon wave plasma still meets challenges in applications of material deposition, surface treatment, and electromagnetic thrusters owing to the changeable coupled efficiency and the remarkable non-uniformity. In this paper, we explore the wave propagation characterization by the B-dot probe in various lengths of source tubes. We find that in a long source tube the standing wave appears under the antenna zone, while the traveling wave is formed out of the antenna region. The apparent modulation of wave amplitude is formed in upstream rather than in downstream of the antenna. In a short source tube, however, there is only standing wave propagation.

  8. Stress-wave induced fracture of unidirectional composites: an experimental study using digital image correlation method

    NASA Astrophysics Data System (ADS)

    Lee, Dongyeon; Tippur, Hareesh V.

    2010-03-01

    In this work, fracture behavior of unidirectional graphite/epoxy composite materials is optically investigated. Single-edge notched coupons are studied under geometrically symmetric impact loading. The notch orientation parallel to or at an angle relative to the fiber orientation is considered to produce mode-I as well as mixed-mode fracture. Stress-wave induced crack initiation and rapid crack growth events are studied using a digital correlation technique and high-speed photography. Surface deformations histories in the crack-tip vicinity are obtained by analyzing decorated speckle recordings. Measured deformation fields are used to extract fracture parameters and examine the effect of fiber orientation on crack initiation and growth behaviors. The maximum crack speed observed is the highest for mode-I dominant conditions and decreases with increasing fiber orientation angle. With increasing fiber orientation angle, crack takes longer to attain the maximum speed upon initiation. The crack initiation toughness values decrease with increasing degree-of-anisotropy.

  9. Stress-wave induced fracture of unidirectional composites: an experimental study using digital image correlation method

    NASA Astrophysics Data System (ADS)

    Lee, Dongyeon; Tippur, Hareesh V.

    2009-12-01

    In this work, fracture behavior of unidirectional graphite/epoxy composite materials is optically investigated. Single-edge notched coupons are studied under geometrically symmetric impact loading. The notch orientation parallel to or at an angle relative to the fiber orientation is considered to produce mode-I as well as mixed-mode fracture. Stress-wave induced crack initiation and rapid crack growth events are studied using a digital correlation technique and high-speed photography. Surface deformations histories in the crack-tip vicinity are obtained by analyzing decorated speckle recordings. Measured deformation fields are used to extract fracture parameters and examine the effect of fiber orientation on crack initiation and growth behaviors. The maximum crack speed observed is the highest for mode-I dominant conditions and decreases with increasing fiber orientation angle. With increasing fiber orientation angle, crack takes longer to attain the maximum speed upon initiation. The crack initiation toughness values decrease with increasing degree-of-anisotropy.

  10. Nonlinear optical cryptosystem based on joint Fresnel transform correlator under vector wave illumination

    NASA Astrophysics Data System (ADS)

    Xueju, Shen; Chao, Lin; Xiao, Zou; Jianjun, Cai

    2015-05-01

    We present a nonlinear optical cryptosystem with multi-dimensional keys including phase, polarization and diffraction distance. To make full use of the degrees of freedom that optical processing offers, an elaborately designed vector wave with both a space-variant phase and locally linear polarization is generated with a common-path interferometer for illumination. The joint transform correlator in the Fresnel domain, implemented with a double optical wedge, is utilized as the encryption framework which provides an additional key known as the Fresnel diffraction distance. Two nonlinear operations imposed on the recorded joint Fresnel power distribution (JFPD) by a charge coupled device (CCD) are adopted. The first one is the division of power distribution of the reference window random function which is previously proposed by researchers and can improve the quality of the decrypted image. The second one is the recording of a hybrid JFPD using a micro-polarizers array with orthogonal and random transmissive axes attached to the CCD. Then the hybrid JFPD is further scrambled by substituting random noise for partial power distribution. The two nonlinear operations break the linearity of this cryptosystem and provide ultra security. We verify our proposal using a quick response code for noise-free recovery.

  11. Weak values, quantum trajectories, and the cavity-QED experiment on wave-particle correlation

    NASA Astrophysics Data System (ADS)

    Wiseman, H. M.

    2002-03-01

    Weak values as introduced by Aharonov, Albert, and Vaidman (AAV) are ensemble-average values for the results of weak measurements. They are interesting when the ensemble is preselected on a particular initial state and postselected on a particular final measurement result. It is shown that weak values arise naturally in quantum optics, as weak measurements occur whenever an open system is monitored (as by a photodetector). The quantum-trajectory theory is used to derive a generalization of AAV's formula to include (a) mixed initial conditions, (b) nonunitary evolution, (c) a generalized (nonprojective) final measurement, and (d) a non-back-action-evading weak measurement. This theory is applied to the recent cavity-QED experiment demonstrating wave particle duality [G. T. Foster, L. A. Orozco, H. M. Castro-Beltran, and H. J. Carmichael, Phys. Rev. Lett. 85, 3149 (2000)]. It is shown that the ``fractional-order'' correlation function measured in that experiment can be recast as a weak value in a form as simple as that introduced by AAV.

  12. Optical imaging through turbid media with a degenerate four wave mixing correlation time gate

    SciTech Connect

    Sappey, A.D. )

    1994-12-20

    A novel method for detection of ballistic light and rejection of unwanted diffusive light to image structures inside highly scattering media is demonstrated. Degenerate four wave mixing (DFWM) of a doubled YAG laser in Rhodamine 6G is used to provide an ultrafast correlation time gate to discriminate against light that has undergone multiple scattering and therefore lost memory of the structures inside the scattering medium. We present preliminary results that determine the nature of the DFWM grating, confirm the coherence time of the laser, prove the phase-conjugate nature of the signal beam, and determine the dependence of the signal (reflectivity) on dye concentration and laser intensity. Finally, we have obtained images of a test cross-hair pattern through highly turbid suspensions of whole milk in water that are opaque to the naked eye. These imaging experiments demonstrate the utility of DFWM for imaging through turbid media. Based on our results, the use of DFWM as an ultrafast time gate for the detection of ballistic light in optical mammography appears to hold great promise for improving the current state of the art.

  13. Accuracy of Frequencies Obtained with the Aid of Explicitly Correlated Wave Function Based Methods.

    PubMed

    Schmitz, Gunnar; Christiansen, Ove

    2017-08-08

    We asses the basis set convergence of harmonic frequencies using different explicitly correlated wave function based methods. All commonly available CCSD(T) variants as well as MP2-F12 and MP4(F12*) are considered, and a hierarchy of the different approaches is established. As for reaction and atomization energies, CCSD(F12*)(T*) is a close approximation to CCSD(F12)(T*) and clearly superior to the other tested approximations. The used scaling for the triples correction enhances the accuracy relative to CCSD(F12*)(T) especially for small basis sets and is very attractive since no additional computational costs are added. However, this scaling slightly breaks size consistency, and therefore we additionally study the accuracy of CCSD(F12*)(T*) and CCSD(F12*)(T) in the context of calculating anharmonic frequencies to check if this causes problems in the generation of the potential energy surface (PES). We find a fast basis set convergence for harmonic and anharmonic frequencies. Already in the cc-pVDZ-F12 basis, the RMSD to the CBS limit is only around 4-5 cm(-1).

  14. Quantifying gravity wave momentum fluxes with Mesosphere Temperature Mappers and correlative instrumentation

    NASA Astrophysics Data System (ADS)

    Fritts, David C.; Pautet, P.-Dominique; Bossert, Katrina; Taylor, Michael J.; Williams, Bifford P.; Iimura, Hiroyuki; Yuan, Tao; Mitchell, Nicholas J.; Stober, Gunter

    2014-12-01

    An Advanced Mesosphere Temperature Mapper and other instruments at the Arctic Lidar Observatory for Middle Atmosphere Research in Norway (69.3°N) and at Logan and Bear Lake Observatory in Utah (42°N) are used to demonstrate a new method for quantifying gravity wave (GW) pseudo-momentum fluxes accompanying spatially and temporally localized GW packets. The method improves on previous airglow techniques by employing direct characterization of the GW temperature perturbations averaged over the OH airglow layer and correlative wind and temperature measurements to define the intrinsic GW properties with high confidence. These methods are applied to two events, each of which involves superpositions of GWs having various scales and character. In each case, small-scale GWs were found to achieve transient, but very large, momentum fluxes with magnitudes varying from ~60 to 940 m2 s-2, which are ~1-2 decades larger than mean values. Quantification of the spatial and temporal variations of GW amplitudes and pseudo-momentum fluxes may also enable assessments of the total pseudo-momentum accompanying individual GW packets and of the potential for secondary GW generation that arises from GW localization. We expect that the use of this method will yield key insights into the statistical forcing of the mesosphere and lower thermosphere by GWs, the importance of infrequent large-amplitude events, and their effects on GW spectral evolution with altitude.

  15. Seismic Surface-wave Tomography From Cross-correlations Of Ambient Noise At The Valhall Oil Field

    NASA Astrophysics Data System (ADS)

    Mordret, A.; Landès, M.; Shapiro, N. M.; Singh, S. C.; Roux, P.; Barkved, O. I.

    2011-12-01

    Here we present cross-correlation analysis of 6 hours of noise data recorded by a network of 3D multi-component ocean bottom cable at the Valhall Life of Field. The 2413 sensors were spaced at 50 m along 10 km long line and line spacing was 300 m. At 0.4- 2 Hz frequencies, the best signal-to-noise ratio was obtained for vertical-vertical (VV) cross-correlations that clearly show Scholte waves. At higher frequencies (3-30 Hz), the seismic noise is mainly produced by the exploitation platform at the center of the network and the highest signal-to-noise ratio was obtained on transverse-transverse (TT) cross-correlations, which was dominated by Love's waves. Because of the localized noise source at these high frequencies, we selected a profile of stations suitably aligned relative to the platform and computed TT cross-correlations between all pairs of stations. We then extracted dispersion curves and inverted them to construct a 2D shear-velocity profile down to 20 m depth. We find that upper strata of the sediments have velocities of 200- 400 m/s and vary laterally, which is extremely important for S-wave statics. At low frequencies, we computed VV cross-correlations for all possible station pairs. We then measured Scholte wave group velocity dispersion curves and inverted them to build group velocity maps of the Valhall area. Similar to previously published models from full waveform inversion of an active seismic dataset, our results show a coherent pattern dominated by paleo-channels at the seabed above the Valhall field. Our results show that a detailed 3D S-wave velocity could be determined using noise data collected by permanent ocean bottom cables.

  16. Multiple factors underlying the maximum motility of Escherichia coli as cultures enter post-exponential growth.

    PubMed Central

    Amsler, C D; Cho, M; Matsumura, P

    1993-01-01

    Motility and chemotaxis allow cells to move away from stressful microenvironments. Motility of Escherichia coli in batch cultures, as measured by cell swimming speed, was low in early-exponential-phase cells, peaked as the cells entered post-exponential phase, and declined into early stationary phase. Transcription from the flhB operon and synthesis of flagellin protein similarly peaked in late exponential and early post-exponential phases, respectively. The increase in swimming speed between early-exponential and post-exponential phases was correlated with twofold increases in both flagellar length and flagellar density per cell volume. This increased investment in flagella probably reflects the increased adaptive value of motility in less favorable environments. The decrease in speed between post-exponential and stationary phases was correlated with a threefold decrease in torque produced by the flagellar motors and presumably reflects decreased proton motive force available to stationary-phase cells. Images PMID:8407796

  17. Continuous-wave quasi-phase-matched waveguide correlated photon pair source on a III–V chip

    SciTech Connect

    Sarrafi, Peyman Zhu, Eric Y.; Dolgaleva, Ksenia; Aitchison, J. Stewart; Qian, Li; Holmes, Barry M.; Hutchings, David C.

    2013-12-16

    We report on the demonstration of correlated photon pair generation in a quasi-phase-matched superlattice GaAs/AlGaAs waveguide using a continuous-wave pump. Our photon pair source has a low noise level and achieves a high coincidence-to-accidental ratio greater than 100, which is the highest value reported in III–V chips so far. This correlated photon pair source has the potential to be monolithically integrated with on-chip pump laser sources fabricated on the same superlattice wafer structure, enabling direct correlated/entangled photon pair production from a compact electrically powered chip.

  18. Energy correlations of photon pairs generated by a silicon microring resonator probed by Stimulated Four Wave Mixing

    PubMed Central

    Grassani, Davide; Simbula, Angelica; Pirotta, Stefano; Galli, Matteo; Menotti, Matteo; Harris, Nicholas C.; Baehr-Jones, Tom; Hochberg, Michael; Galland, Christophe; Liscidini, Marco; Bajoni, Daniele

    2016-01-01

    Compact silicon integrated devices, such as micro-ring resonators, have recently been demonstrated as efficient sources of quantum correlated photon pairs. The mass production of integrated devices demands the implementation of fast and reliable techniques to monitor the device performances. In the case of time-energy correlations, this is particularly challenging, as it requires high spectral resolution that is not currently achievable in coincidence measurements. Here we reconstruct the joint spectral density of photons pairs generated by spontaneous four-wave mixing in a silicon ring resonator by studying the corresponding stimulated process, namely stimulated four wave mixing. We show that this approach, featuring high spectral resolution and short measurement times, allows one to discriminate between nearly-uncorrelated and highly-correlated photon pairs. PMID:27032688

  19. Energy correlations of photon pairs generated by a silicon microring resonator probed by Stimulated Four Wave Mixing.

    PubMed

    Grassani, Davide; Simbula, Angelica; Pirotta, Stefano; Galli, Matteo; Menotti, Matteo; Harris, Nicholas C; Baehr-Jones, Tom; Hochberg, Michael; Galland, Christophe; Liscidini, Marco; Bajoni, Daniele

    2016-04-01

    Compact silicon integrated devices, such as micro-ring resonators, have recently been demonstrated as efficient sources of quantum correlated photon pairs. The mass production of integrated devices demands the implementation of fast and reliable techniques to monitor the device performances. In the case of time-energy correlations, this is particularly challenging, as it requires high spectral resolution that is not currently achievable in coincidence measurements. Here we reconstruct the joint spectral density of photons pairs generated by spontaneous four-wave mixing in a silicon ring resonator by studying the corresponding stimulated process, namely stimulated four wave mixing. We show that this approach, featuring high spectral resolution and short measurement times, allows one to discriminate between nearly-uncorrelated and highly-correlated photon pairs.

  20. Non-linear Inversion of Noise Cross-correlations Using Probability Density Functions of Surface Waves Dispersion

    NASA Astrophysics Data System (ADS)

    Gaudot, I.; Beucler, E.; Mocquet, A.; Drilleau, M.; Le Feuvre, M.

    2015-12-01

    Cross-correlations of ambient seismic noise are widely used to retrieve the information of the medium between pairs of stations. For periods between 1 and 50 s, the diffuse wavefield is dominated by microseismic energy which travels mostly as surface waves. Therefore, such waves are mainly reconstructed in the cross-correlations, and information about the structure are obtained using dispersion analysis, i.e computing phase or group velocities. Classical group velocity determination relies on tracking the maximum energy in the dispersion diagrams in order to get a unique dispersion curve. This procedure may often present problems due to the presence of several maxima. Moreover, the estimation of associated measurement errors usually depends on ad hoc user's criteria. We handle the non-unicity of the problem by inverting the whole dispersion diagram using a non-linear inversion scheme. For each frequency, the seismic energy is mapped into a time-dependent probability density function. The resulting map is inverted for the S-wave velocity structure using a Markov-chain Monte Carlo algorithm. Each time a new model is randomly sampled, the misfit value is computed according to the position of the corresponding group velocity curve in the probability density functions map. This method is applied for the analysis of vertical component noise cross-correlations computed from seismic data recorded in western Europe by the temporary PYROPE and IBERARRAY networks. The inversion of the fundamental mode Rayleigh wave dispersion diagrams between 5 and 50 s period gives a set of 1D S-wave velocity models, which are regionalized to infer a 3D S-wave velocity model of western France.

  1. Fine structure of transient waves in a random medium: The correlation and spectral density functions

    NASA Technical Reports Server (NTRS)

    Wenzel, Alan R.

    1994-01-01

    This is essentially a progress report on a theoretical investigation of the propagation of transient waves in a random medium. The emphasis in this study is on applications to sonic-boom propagation, particularly as regards the effect of atmospheric turbulence on the sonic-boom waveform. The analysis is general, however, and is applicable to other types of waves besides sonic-boom waves. The phenomenon of primary concern in this investigation is the fine structure of the wave. A figure is used to illustrate what is meant by finestructure.

  2. Cometary kilometric radio waves and plasma waves correlated with ion pick-up effect at Comet Halley

    NASA Technical Reports Server (NTRS)

    Oya, H.; Morioka, A.; Miyake, W.; Smith, E. J.; Tsurutani, B. T.

    1985-01-01

    Bow-shock movements at Comet Halley are inferred from the discrete spectra of the cometary kilometric radiation (30-195 kHz); the observed emissions can be interpreted as being generated and propagating from the moving shock. The shock motion is possibly associated with the time variation of the solar wind and cometary outgassing. It is concluded that these plasma wave phenomena are manifestations of ion pick-up processes, which occur even in a remote region 7 million to 10 million km from the cometary nucleus.

  3. Cometary kilometric radio waves and plasma waves correlated with ion pick-up effect at Comet Halley

    NASA Technical Reports Server (NTRS)

    Oya, H.; Morioka, A.; Miyake, W.; Smith, E. J.; Tsurutani, B. T.

    1985-01-01

    Bow-shock movements at Comet Halley are inferred from the discrete spectra of the cometary kilometric radiation (30-195 kHz); the observed emissions can be interpreted as being generated and propagating from the moving shock. The shock motion is possibly associated with the time variation of the solar wind and cometary outgassing. It is concluded that these plasma wave phenomena are manifestations of ion pick-up processes, which occur even in a remote region 7 million to 10 million km from the cometary nucleus.

  4. Three dimensional left atrial volume index is correlated with P wave dispersion in elderly patients with sinus rhythm.

    PubMed

    Ozyigit, Tolga; Kocas, Onur; Karadag, Berrin; Ozben, Beste

    2016-03-01

    P wave dispersion is a noninvasive electrocardiographic predictor for atrial fibrillation. The aim of the study was to explore relation between left atrial volume index assessed by 3-dimensional echocardiography and P wave dispersion in elderly patients. Seventy-three consecutive patients over the age of 65 (mean age: 75 ± 7 years, 17 men) were included. P wave dispersion is calculated as the difference between maximum and minimum P wave durations. Left atrial volume index was measured by both 2-dimensional and 3-dimensional echocardiography and categorized as normal (≤ 34 mL/m(2)) or increased (mild, 35-41 mL/m(2); moderate, 42-48 mL/m(2); severe, ≥ 49 mL/m(2)). Thirty-one patients had normal left atrium while 24 patients had mildly enlarged, nine had moderately enlarged, and nine had severely enlarged left atrium. Prolongation of P wave dispersion was more prevalent in patients with dilated left atrium. P wave dispersion was significantly correlated with both 2-dimensional (r = 0.600, p < 0.001) and 3-dimensional left atrial volume index (r = 0.688, p < 0.001). Both left atrial volume indexes were associated with prolonged P wave dispersion when adjusted for age, sex, presence of hypertension, and left ventricular mass index. Receiver-operator characteristic (ROC) analysis revealed that a 3-dimensional left atrial volume index ≥ 25 mL/m(2) separated patients with prolonged P wave dispersion with a sensitivity of 82.2 %, specificity of 67.9 %, positive predictive value of 80.4 %, and negative predictive value of 70.4 %. In elderly patients, 3-dimensional left atrial volume index showed a better correlation with P wave dispersion and might be helpful in discriminating patients with prolonged P wave dispersion, who might be prone to atrial fibrillation.

  5. Exponential Formulae and Effective Operations

    NASA Technical Reports Server (NTRS)

    Mielnik, Bogdan; Fernandez, David J. C.

    1996-01-01

    One of standard methods to predict the phenomena of squeezing consists in splitting the unitary evolution operator into the product of simpler operations. The technique, while mathematically general, is not so simple in applications and leaves some pragmatic problems open. We report an extended class of exponential formulae, which yield a quicker insight into the laboratory details for a class of squeezing operations, and moreover, can be alternatively used to programme different type of operations, as: (1) the free evolution inversion; and (2) the soft simulations of the sharp kicks (so that all abstract results involving the kicks of the oscillator potential, become realistic laboratory prescriptions).

  6. Hybrid functional for correlated electrons in the projector augmented-wave formalism: Study of multiple minima for actinide oxides

    NASA Astrophysics Data System (ADS)

    Jollet, F.; Jomard, G.; Amadon, B.; Crocombette, J. P.; Torumba, D.

    2009-12-01

    Exact (Hartree-Fock) exchange for correlated electrons is implemented to describe correlated orbitals in the projector augmented-waves (PAW) framework, as suggested recently in another context [P. Novák , Phys. Status Solidi B 243, 563 (2006)]. Hartree-Fock exchange energy is applied to strongly correlated electrons only inside the PAW atomic spheres. This allows the use of PBE0 hybrid exchange-correlation functional for correlated electrons. This method is tested on NiO and results agree well with already published results and generalized gradient approximation, GGA+U calculations. It is then applied to plutonium oxides and UO2 for which the results are comparable with the ones of GGA+U calculations but without adjustable parameter. As evidenced in the uranium oxide case, the occurrence of multiple energy minima may lead to very different results depending on the initial electronic configurations and on the symmetries taken into account in the calculation.

  7. Potential Functional Embedding Theory at the Correlated Wave Function Level. 2. Error Sources and Performance Tests.

    PubMed

    Cheng, Jin; Yu, Kuang; Libisch, Florian; Dieterich, Johannes M; Carter, Emily A

    2017-03-14

    Quantum mechanical embedding theories partition a complex system into multiple spatial regions that can use different electronic structure methods within each, to optimize trade-offs between accuracy and cost. The present work incorporates accurate but expensive correlated wave function (CW) methods for a subsystem containing the phenomenon or feature of greatest interest, while self-consistently capturing quantum effects of the surroundings using fast but less accurate density functional theory (DFT) approximations. We recently proposed two embedding methods [for a review, see: Acc. Chem. Res. 2014 , 47 , 2768 ]: density functional embedding theory (DFET) and potential functional embedding theory (PFET). DFET provides a fast but non-self-consistent density-based embedding scheme, whereas PFET offers a more rigorous theoretical framework to perform fully self-consistent, variational CW/DFT calculations [as defined in part 1, CW/DFT means subsystem 1(2) is treated with CW(DFT) methods]. When originally presented, PFET was only tested at the DFT/DFT level of theory as a proof of principle within a planewave (PW) basis. Part 1 of this two-part series demonstrated that PFET can be made to work well with mixed Gaussian type orbital (GTO)/PW bases, as long as optimized GTO bases and consistent electron-ion potentials are employed throughout. Here in part 2 we conduct the first PFET calculations at the CW/DFT level and compare them to DFET and full CW benchmarks. We test the performance of PFET at the CW/DFT level for a variety of types of interactions (hydrogen bonding, metallic, and ionic). By introducing an intermediate CW/DFT embedding scheme denoted DFET/PFET, we show how PFET remedies different types of errors in DFET, serving as a more robust type of embedding theory.

  8. Test Particle Correlation by a Whistler Wave in a Nonuniform Magnetic Field.

    DTIC Science & Technology

    1977-06-01

    relation to the wave amplitude. In the case abs . val. R 1, where electron trapping is possible, a hole (or an island) of particles is found to occur in...phase plots of the distribution function. This causes the appearance of a transverse current coherent with the wave, which is most intense for abs . val. R

  9. Teaching about Exponential Growth in Social Studies.

    ERIC Educational Resources Information Center

    Allen, Rodney F.; LaHart, David E.

    1984-01-01

    Characteristics of exponential growth which should be taught in social studies classes are listed, and learning activities dealing with exponential growth which can be used in secondary social studies classes are provided. (RM)

  10. Fourier Transforms of Pulses Containing Exponential Leading and Trailing Profiles

    SciTech Connect

    Warshaw, S I

    2001-07-15

    In this monograph we discuss a class of pulse shapes that have exponential rise and fall profiles, and evaluate their Fourier transforms. Such pulses can be used as models for time-varying processes that produce an initial exponential rise and end with the exponential decay of a specified physical quantity. Unipolar examples of such processes include the voltage record of an increasingly rapid charge followed by a damped discharge of a capacitor bank, and the amplitude of an electromagnetic pulse produced by a nuclear explosion. Bipolar examples include acoustic N waves propagating for long distances in the atmosphere that have resulted from explosions in the air, and sonic booms generated by supersonic aircraft. These bipolar pulses have leading and trailing edges that appear to be exponential in character. To the author's knowledge the Fourier transforms of such pulses are not generally well-known or tabulated in Fourier transform compendia, and it is the purpose of this monograph to derive and present these transforms. These Fourier transforms are related to a definite integral of a ratio of exponential functions, whose evaluation we carry out in considerable detail. From this result we derive the Fourier transforms of other related functions. In all Figures showing plots of calculated curves, the actual numbers used for the function parameter values and dependent variables are arbitrary and non-dimensional, and are not identified with any particular physical phenomenon or model.

  11. Non-exponential and oscillatory decays in quantum mechanics

    SciTech Connect

    Peshkin, Murray; Volya, Alexander; Zelevinsky, Vladimir

    2014-08-07

    The quantum-mechanical theory of the decay of unstable states is revisited. We show that the decay is non-exponential both in the short-time and long-time limits using a more physical definition of the decay rate than the one usually used. We report results of numerical studies based on Winter's model that may elucidate qualitative features of exponential and non-exponential decay more generally. The main exponential stage is related to the formation of a radiating state that maintains the shape of its wave function with exponentially diminishing normalization. We discuss situations where the radioactive decay displays several exponents. The transient stages between different regimes are typically accompanied by interference of various contributions and resulting oscillations in the decay curve. The decay curve can be fully oscillatory in a two-flavor generalization of Winter's model with some values of the parameters. We consider the implications of that result for models of the oscillations reported by GSI.

  12. Non-exponential and oscillatory decays in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Peshkin, Murray; Volya, Alexander; Zelevinsky, Vladimir

    2014-08-01

    The quantum-mechanical theory of the decay of unstable states is revisited. We show that the decay is non-exponential both in the short-time and long-time limits using a more physical definition of the decay rate than the one usually used. We report results of numerical studies based on Winter's model that may elucidate qualitative features of exponential and non-exponential decay more generally. The main exponential stage is related to the formation of a radiating state that maintains the shape of its wave function with exponentially diminishing normalization. We discuss situations where the radioactive decay displays several exponents. The transient stages between different regimes are typically accompanied by interference of various contributions and resulting oscillations in the decay curve. The decay curve can be fully oscillatory in a two-flavor generalization of Winter's model with some values of the parameters. We consider the implications of that result for models of the oscillations reported by GSI.

  13. Plasma Waves Observed During CUSP Energetic Particle Events and Their Correlation With Polar and Akebono Satellite and Ground Data

    NASA Technical Reports Server (NTRS)

    Pickett, J. S.; Gurnett, D. A.; Menietti, J. D.; LeDocq, M. J.; Scudder, J. D.; Frank, L. A.; Sigwarth, J. B.; Ackerson, K. L.; Morgan, D. D.; Franz, J. R.

    1999-01-01

    We present Polar plasma wave data during cusp energetic particle (CEP) events at 6-9 R(sub E). These data suggest the presence of coherent electrostatic structures that are highly localized and that have typical velocities on the order of hundreds to thousands of kilometers per second along the ambient magnetic field. Some of the wave signatures are solitary waves and some are wave packets. The Polar wave instrument also provides evidence that some of the bursts of electromagnetic waves (with frequencies of a few hundred Hz and just below the electron cyclotron frequency around 800 Hz to 1-2 kHz) that are observed are coher&nt and propagating both up and down the field lines. Electron cyclotron harmonic (ECH) waves are often detected but their duration is usually short (less than 1 second). Low Frequency (less than 1 kHz), broadband, bursty electromagnetic waves are also present. The Polar wave data results are used to obtain a better understanding of the macro/microphysics during a CEP event that takes place on September 11, 1996, by correlating various Polar (approximately 7.0 R(sub E)) and Akebono (approximately 1.4 R(sub E)) data while both spacecraft are in or near the cusp/cleft region and nearly on the same field line, and magnetometer data from the Canadian Intermagnet and Canopus ground stations, which lie near the base of the magnetic footprint passing through Polar. Solar wind and magnetic field data from the interplanetary medium and magnetosheath are provided by the Geotail and IMP-8 satellites, respectively. Some of the cusp waves may be indicators of the reconnection process taking place through the cusp, the result of mixing of magnetosheath with magnetospheric plasma, and the consequence of an anisotropic electron population in a depressed magnetic field. The low frequency electromagnetic waves are still under study to determine their role, if any, in the heating and acceleration of the MeV He ions during CEP events.

  14. Correlation between equatorial Kelvin waves and the occurrence of extremely thin ice clouds at the tropical tropopause

    NASA Astrophysics Data System (ADS)

    Immler, F.; Krüger, K.; Fujiwara, M.; Verver, G.; Rex, M.; Schrems, O.

    2008-07-01

    A number of field-campaigns in the tropics have been conducted in recent years with two different LIDAR systems at Paramaribo (5.8° N, 55.2° W), Suriname. The lidars detect particles in the atmosphere with high vertical and temporal resolution and are capable of detecting extremely thin cloud layers which frequently occur in the tropical tropopause layer (TTL). Radiosonde as well as operational ECMWF analysis showed that equatorial Kelvin waves propagated in the TTL and greatly modulated its temperature structure. We found a clear correlation between the temperature anomalies introduced by these waves and the occurrence of thin cirrus in the TTL. In particular we found that extremely thin ice clouds form regularly where cold anomalies shift the tropopause to high altitudes. These findings suggest an influence of Kelvin wave activity on the dehydration in the TTL and thus on the global stratospheric water vapour concentration.

  15. Correlation between equatorial Kelvin waves and the occurrence of extremely thin ice clouds at the tropical tropopause

    NASA Astrophysics Data System (ADS)

    Immler, F.; Krüger, K.; Fujiwara, M.; Verver, G.; Rex, M.; Schrems, O.

    2008-02-01

    A number of field-campaigns in the tropics have been conducted in the recent years with two different LIDAR systems at Paramaribo in Suriname (5.8° N, 55.2° W). The lidars detect particles in the atmosphere with high vertical and temporal resolution and are capable of detecting extremely thin cloud layers which frequently occur in the tropical tropopause layer (TTL). Radiosonde as well as operational ECMWF analysis show that temperature anomalies caused by equatorial Kelvin waves propagate downward, well below the cold point tropopause (CPT). We find a clear correlation between the temperature anomalies introduced by these waves and the occurrence of thin cirrus in the TTL. In particular we found that extremely thin ice clouds form regularly where cold anomalies shift the tropopause to high altitudes. This finding suggests an influence of Kelvin wave activity on the dehydration in the TTL and thus on the global stratospheric water vapour concentration.

  16. Correlations of πN partial waves for multireaction analyses

    SciTech Connect

    Doring, M.; Revier, J.; Ronchen, D.; Workman, R. L.

    2016-06-15

    In the search for missing baryonic resonances, many analyses include data from a variety of pion- and photon-induced reactions. For elastic πN scattering, however, usually the partial waves of the SAID (Scattering Analysis Interactive Database) or other groups are fitted, instead of data. We provide the partial-wave covariance matrices needed to perform correlated χ2 fits, in which the obtained χ2 equals the actual χ2 up to nonlinear and normalization corrections. For any analysis relying on partial waves extracted from elastic pion scattering, this is a prerequisite to assess the significance of resonance signals and to assign any uncertainty on results. Lastly, the influence of systematic errors is also considered.

  17. Correlations of πN partial waves for multireaction analyses

    SciTech Connect

    Doring, M.; Revier, J.; Ronchen, D.; Workman, R. L.

    2016-06-15

    In the search for missing baryonic resonances, many analyses include data from a variety of pion- and photon-induced reactions. For elastic πN scattering, however, usually the partial waves of the SAID (Scattering Analysis Interactive Database) or other groups are fitted, instead of data. We provide the partial-wave covariance matrices needed to perform correlated χ2 fits, in which the obtained χ2 equals the actual χ2 up to nonlinear and normalization corrections. For any analysis relying on partial waves extracted from elastic pion scattering, this is a prerequisite to assess the significance of resonance signals and to assign any uncertainty on results. Lastly, the influence of systematic errors is also considered.

  18. Circulating motilin, ghrelin, and GLP-1 and their correlations with gastric slow waves in patients with chronic kidney disease.

    PubMed

    Wu, Gao-Jue; Cai, Xu-Dong; Xing, Jie; Zhong, Guang-Hui; Chen, Jiande D Z

    2017-08-01

    Patients with chronic kidney disease (CKD) commonly complain upper gastrointestinal (GI) symptoms, especially anorexia. Hemodialysis (HD) has been noted to improve GI symptoms; however, the underlying mechanisms are unclear. This study was designed 1) to study effects of HD on GI symptoms and gastric slow waves; and 2) to investigate possible roles of ghrelin and glucagon-like peptide-1 (GLP-1): the study recruited 13 healthy controls, 20 CKD patients without HD (CKD group), and 18 CKD patients with HD (HD group). Dyspeptic symptoms, autonomic functions, gastric slow waves, and plasma level of ghrelin and GLP-1 were analyzed. First, the CKD patients with HD showed markedly lower scores of anorexia (0.6 ± 0.2 vs. 3.2 ± 0.4, P < 0.001) compared with patients without HD. Second, the CKD group but not HD group showed a significant reduction (25.6%) in the percentage of normal gastric slow waves, compared with controls. Third, the CKD group exhibited a significantly lower ghrelin level compared with the HD group (26.8 ± 0.9 vs. 34.1 ± 2.3 ng/l, P < 0.02) and a higher GLP-1 level (29.4 ± 2.8 vs. 20.0 ± 2.1 pmol/l, P < 0.05) compared with controls. Moreover, the percentage of normal slow waves was positively correlated with ghrelin (r = 0.385, P = 0.019) but negatively correlated with GLP-1 (r = -0.558, P < 0.001) in all CKD patients. Hemodialysis improves upper GI symptoms and gastric slow waves in CKD patients. An increase in ghrelin and a decrease in GLP-1 might be involved in the HD-induced improvement in gastric slow waves. Copyright © 2017 the American Physiological Society.

  19. Correlated Band Structure of a Transition Metal Oxide ZnO Obtained from a Many-Body Wave Function Theory

    NASA Astrophysics Data System (ADS)

    Ochi, Masayuki; Arita, Ryotaro; Tsuneyuki, Shinji

    2017-01-01

    Obtaining accurate band structures of correlated solids has been one of the most important and challenging problems in first-principles electronic structure calculation. There have been promising recent active developments of wave function theory for condensed matter, but its application to band-structure calculation remains computationally expensive. In this Letter, we report the first application of the biorthogonal transcorrelated (BITC) method: self-consistent, free from adjustable parameters, and systematically improvable many-body wave function theory, to solid-state calculations with d electrons: wurtzite ZnO. We find that the BITC band structure better reproduces the experimental values of the gaps between the bands with different characters than several other conventional methods. This study paves the way for reliable first-principles calculations of the properties of strongly correlated materials.

  20. Correlated Band Structure of a Transition Metal Oxide ZnO Obtained from a Many-Body Wave Function Theory.

    PubMed

    Ochi, Masayuki; Arita, Ryotaro; Tsuneyuki, Shinji

    2017-01-13

    Obtaining accurate band structures of correlated solids has been one of the most important and challenging problems in first-principles electronic structure calculation. There have been promising recent active developments of wave function theory for condensed matter, but its application to band-structure calculation remains computationally expensive. In this Letter, we report the first application of the biorthogonal transcorrelated (BITC) method: self-consistent, free from adjustable parameters, and systematically improvable many-body wave function theory, to solid-state calculations with d electrons: wurtzite ZnO. We find that the BITC band structure better reproduces the experimental values of the gaps between the bands with different characters than several other conventional methods. This study paves the way for reliable first-principles calculations of the properties of strongly correlated materials.

  1. The "Fermi hole" and the correlation introduced by the symmetrization or the anti-symmetrization of the wave function

    NASA Astrophysics Data System (ADS)

    Giner, Emmanuel; Tenti, Lorenzo; Angeli, Celestino; Malrieu, Jean-Paul

    2016-09-01

    The impact of the antisymmetrization is often addressed as a local property of the many-electron wave function, namely that the wave function should vanish when two electrons with parallel spins are in the same position in space. In this paper, we emphasize that this presentation is unduly restrictive: we illustrate the strong non-local character of the antisymmetrization principle, together with the fact that it is a matter of spin symmetry rather than spin parallelism. To this aim, we focus our attention on the simplest representation of various states of two-electron systems, both in atomic (helium atom) and molecular (H2 and the π system of the ethylene molecule) cases. We discuss the non-local property of the nodal structure of some two-electron wave functions, both using analytical derivations and graphical representations of cuttings of the nodal hypersurfaces. The attention is then focussed on the impact of the antisymmetrization on the maxima of the two-body density, and we show that it introduces strong correlation effects (radial and/or angular) with a non-local character. These correlation effects are analyzed in terms of inflation and depletion zones, which are easily identifiable, thanks to the nodes of the orbitals composing the wave function. Also, we show that the correlation effects induced by the antisymmetrization occur also for anti-parallel spins since all Ms components of a given spin state have the same N-body densities. Finally, we illustrate that these correlation effects occur also for the singlet states, but they have strictly opposite impacts: the inflation zones in the triplet become depletion zones in the singlet and vice versa.

  2. Few millimeter-resolution Brillouin optical correlation domain analysis using amplified-spontaneous-emission pump and signal waves

    NASA Astrophysics Data System (ADS)

    Cohen, Raphael; London, Yosef; Antman, Yair; Zadok, Avi

    2014-05-01

    A new technique for Brillouin optical correlation domain analysis is proposed and demonstrated, in which the pump and signal waves are drawn from the filtered amplified spontaneous emission of an erbium-doped fiber amplifier. An estimated spatial resolution of 3.3 mm is obtained using a 33 GHz-wide source. The reconstruction of the Brillouin gain line and the recognition of a localized hot spot are demonstrated in a proof-of-concept experiment. Unlike phase-coded correlation domain analysis methods, the proposed scheme is not restricted by the bandwidth of available electro-optic modulators or pattern generators. Resolution is scalable to less than one millimeter.

  3. Low Energy Particle Oscillations and Correlations with Hydromagnetic Waves in the Jovian Magnetosphere: Ulysses Measurements

    NASA Technical Reports Server (NTRS)

    Krupp, N.; Tsurutani, B. T.; Lanzerotti, L. J.; Maclennan, C. G.

    1996-01-01

    We report on measurements of energetic particle modulations observed by the HI-SCALE instrument aboard the Ulysses Spacecraft that were associated with the only hydromagnetic wave event measured inside the Jovian magnetosphere by the Ulysses magnetometer investigation.

  4. Low Energy Particle Oscillations and Correlations with Hydromagnetic Waves in the Jovian Magnetosphere: Ulysses Measurements

    NASA Technical Reports Server (NTRS)

    Krupp, N.; Tsurutani, B. T.; Lanzerotti, L. J.; Maclennan, C. G.

    1996-01-01

    We report on measurements of energetic particle modulations observed by the HI-SCALE instrument aboard the Ulysses Spacecraft that were associated with the only hydromagnetic wave event measured inside the Jovian magnetosphere by the Ulysses magnetometer investigation.

  5. First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds

    NASA Astrophysics Data System (ADS)

    Abbott, B.; Abbott, R.; Adhikari, R.; Agresti, J.; Ajith, P.; Allen, B.; Amin, R.; Anderson, S. B.; Anderson, W. G.; Arain, M.; Araya, M.; Armandula, H.; Ashley, M.; Aston, S.; Aufmuth, P.; Aulbert, C.; Babak, S.; Ballmer, S.; Bantilan, H.; Barish, B. C.; Barker, C.; Barker, D.; Barr, B.; Barriga, P.; Barton, M. A.; Bayer, K.; Belczynski, K.; Betzwieser, J.; Beyersdorf, P. T.; Bhawal, B.; Bilenko, I. A.; Billingsley, G.; Biswas, R.; Black, E.; Blackburn, K.; Blackburn, L.; Blair, D.; Bland, B.; Bogenstahl, J.; Bogue, L.; Bork, R.; Boschi, V.; Bose, S.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Brinkmann, M.; Brooks, A.; Brown, D. A.; Bullington, A.; Bunkowski, A.; Buonanno, A.; Burgamy, M.; Burmeister, O.; Busby, D.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Camp, J. B.; Cannizzo, J.; Cannon, K.; Cantley, C. A.; Cao, J.; Cardenas, L.; Casey, M. M.; Castaldi, G.; Cepeda, C.; Chalkey, E.; Charlton, P.; Chatterji, S.; Chelkowski, S.; Chen, Y.; Chiadini, F.; Chin, D.; Chin, E.; Chow, J.; Christensen, N.; Clark, J.; Cochrane, P.; Cokelaer, T.; Colacino, C. N.; Coldwell, R.; Conte, R.; Cook, D.; Corbitt, T.; Coward, D.; Coyne, D.; Creighton, J. D. E.; Creighton, T. D.; Croce, R. P.; Crooks, D. R. M.; Cruise, A. M.; Cumming, A.; Dalrymple, J.; D'Ambrosio, E.; Danzmann, K.; Davies, G.; Debra, D.; Degallaix, J.; Degree, M.; Demma, T.; Dergachev, V.; Desai, S.; Desalvo, R.; Dhurandhar, S.; Díaz, M.; Dickson, J.; di Credico, A.; Diederichs, G.; Dietz, A.; Doomes, E. E.; Drever, R. W. P.; Dumas, J.-C.; Dupuis, R. J.; Dwyer, J. G.; Ehrens, P.; Espinoza, E.; Etzel, T.; Evans, M.; Evans, T.; Fairhurst, S.; Fan, Y.; Fazi, D.; Fejer, M. M.; Finn, L. S.; Fiumara, V.; Fotopoulos, N.; Franzen, A.; Franzen, K. Y.; Freise, A.; Frey, R.; Fricke, T.; Fritschel, P.; Frolov, V. V.; Fyffe, M.; Galdi, V.; Garofoli, J.; Gholami, I.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Goda, K.; Goetz, E.; Goggin, L.; González, G.; Gossler, S.; Grant, A.; Gras, S.; Gray, C.; Gray, M.; Greenhalgh, J.; Gretarsson, A. M.; Grosso, R.; Grote, H.; Grunewald, S.; Guenther, M.; Gustafson, R.; Hage, B.; Hamilton, W. O.; Hammer, D.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G.; Harstad, E.; Hayler, T.; Heefner, J.; Heng, I. S.; Heptonstall, A.; Heurs, M.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hosken, D.; Hough, J.; Howell, E.; Hoyland, D.; Huttner, S. H.; Ingram, D.; Innerhofer, E.; Ito, M.; Itoh, Y.; Ivanov, A.; Jackrel, D.; Johnson, B.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kasprzyk, D.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalili, F. Ya.; Kim, C.; King, P.; Kissel, J. S.; Klimenko, S.; Kokeyama, K.; Kondrashov, V.; Kopparapu, R. K.; Kozak, D.; Krishnan, B.; Kwee, P.; Lam, P. K.; Landry, M.; Lantz, B.; Lazzarini, A.; Lee, B.; Lei, M.; Leiner, J.; Leonhardt, V.; Leonor, I.; Libbrecht, K.; Lindquist, P.; Lockerbie, N. A.; Longo, M.; Lormand, M.; Lubiński, M.; Lück, H.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Malec, M.; Mandic, V.; Marano, S.; Márka, S.; Markowitz, J.; Maros, E.; Martin, I.; Marx, J. N.; Mason, K.; Matone, L.; Matta, V.; Mavalvala, N.; McCarthy, R.; McCaulley, B. J.; McClelland, D. E.; McGuire, S. C.; McHugh, M.; McKenzie, K.; McNabb, J. W. C.; McWilliams, S.; Meier, T.; Melissinos, A.; Mendell, G.; Mercer, R. A.; Meshkov, S.; Messaritaki, E.; Messenger, C. J.; Meyers, D.; Mikhailov, E.; Miller, P.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Miyakawa, O.; Mohanty, S.; Moody, V.; Moreno, G.; Mossavi, K.; Mowlowry, C.; Moylan, A.; Mudge, D.; Mueller, G.; Mukherjee, S.; Müller-Ebhardt, H.; Munch, J.; Murray, P.; Myers, E.; Myers, J.; Nash, T.; Nettles, D.; Newton, G.; Nishizawa, A.; Numata, K.; O'Reilly, B.; O'Shaughnessy, R.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Paik, H.-J.; Pan, Y.; Papa, M. A.; Parameshwaraiah, V.; Patel, P.; Pedraza, M.; Penn, S.; Pierro, V.; Pinto, I. M.; Pitkin, M.; Pletsch, H.; Plissi, M. V.; Postiglione, F.; Prix, R.; Quetschke, V.; Raab, F.; Rabeling, D.; Radkins, H.; Rahkola, R.; Rainer, N.; Rakhmanov, M.; Ramsunder, M.; Rawlins, K.; Ray-Majumder, S.; Re, V.; Rehbein, H.; Reid, S.; Reitze, D. H.; Ribichini, L.; Riesen, R.; Riles, K.; Rivera, B.; Robertson, N. A.; Robinson, C.; Robinson, E. L.; Roddy, S.; Rodriguez, A.; Rogan, A. M.; Rollins, J.; Romano, J. D.; Romie, J.; Route, R.; Rowan, S.; Rüdiger, A.; Ruet, L.; Russell, P.; Ryan, K.; Sakata, S.; Samidi, M.; Sancho de La Jordana, L.; Sandberg, V.; Sannibale, V.; Saraf, S.; Sarin, P.; Sathyaprakash, B. S.; Sato, S.; Saulson, P. R.; Savage, R.; Savov, P.; Schediwy, S.; Schilling, R.; Schnabel, R.; Schofield, R.; Schutz, B. F.; Schwinberg, P.; Scott, S. M.; Searle, A. C.; Sears, B.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Sidles, J. A.; Siemens, X.; Sigg, D.; Sinha, S.; Sintes, A. M.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Somiya, K.; Strain, K. A.; Strom, D. M.; Stuver, A.; Summerscales, T. Z.; Sun, K.-X.; Sung, M.; Sutton, P. J.; Takahashi, H.; Tanner, D. B.; Tarallo, M.; Taylor, R.; Taylor, R.; Thacker, J.; Thorne, K. A.; Thorne, K. S.; Thüring, A.; Tokmakov, K. V.; Torres, C.; Torrie, C.; Traylor, G.; Trias, M.; Tyler, W.; Ugolini, D.; Ungarelli, C.; Urbanek, K.; Vahlbruch, H.; Vallisneri, M.; van den Broeck, C.; Varvella, M.; Vass, S.; Vecchio, A.; Veitch, J.; Veitch, P.; Villar, A.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Ward, H.; Ward, R.; Watts, K.; Weaver, J.; Webber, D.; Weber, A.; Weidner, A.; Weinert, M.; Weinstein, A.; Weiss, R.; Wen, S.; Wette, K.; Whelan, J. T.; Whitbeck, D. M.; Whitcomb, S. E.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, L.; Willke, B.; Wilmut, I.; Winkler, W.; Wipf, C. C.; Wise, S.; Wiseman, A. G.; Woan, G.; Woods, D.; Wooley, R.; Worden, J.; Wu, W.; Yakushin, I.; Yamamoto, H.; Yan, Z.; Yoshida, S.; Yunes, N.; Zanolin, M.; Zhang, J.; Zhang, L.; Zhang, P.; Zhao, C.; Zotov, N.; Zucker, M.; Zur Mühlen, H.; Zweizig, J.

    2007-07-01

    Data from the LIGO Livingston interferometer and the ALLEGRO resonant-bar detector, taken during LIGO’s fourth science run, were examined for cross correlations indicative of a stochastic gravitational-wave background in the frequency range 850 950 Hz, with most of the sensitivity arising between 905 and 925 Hz. ALLEGRO was operated in three different orientations during the experiment to modulate the relative sign of gravitational-wave and environmental correlations. No statistically significant correlations were seen in any of the orientations, and the results were used to set a Bayesian 90% confidence level upper limit of Ωgw(f)≤1.02, which corresponds to a gravitational-wave strain at 915 Hz of 1.5×10-23Hz-1/2. In the traditional units of h1002Ωgw(f), this is a limit of 0.53, 2 orders of magnitude better than the previous direct limit at these frequencies. The method was also validated with successful extraction of simulated signals injected in hardware and software.

  6. Diffraction of collinear correlated photon pairs by an ultrasonic wave within Raman-Nath and intermediate region.

    PubMed

    Kwiek, Piotr

    2015-03-01

    The phenomenon of collinear correlated photon pairs diffraction by an ultrasonic wave is investigated within Raman-Nath and intermediate region. The numbers of single photons and photon pairs counts in discrete diffraction orders were measured as functions of the Raman-Nath parameter. Similarly, the number of coincidence photon counts in separate diffraction orders was also investigated. It was shown experimentally that the phenomenon of photon pairs diffraction by an ultrasonic wave happens at angles identical to those corresponding to single photons diffraction. It was also demonstrated that in case of Raman-Nath diffraction the number of photon pairs in a selected, n(th), diffraction order varies with the Raman-Nath parameter changes as an n(th) order Bessel function of the first kind, raised to the fourth power. Whilst in the so-called intermediate diffraction zone, the number of diffracted photon pairs varies as squared intensity of a diffracted light beam consisting of single photons. Moreover, it was revealed that correlations between photons in selected diffraction orders change with the Raman-Nath parameter variation as products of relevant intensities of light in the considered diffraction orders. Finally, it should be emphasized that the presented formulae describing diffraction of collinear correlated proton pairs by an ultrasonic wave are in a very good agreement with corresponding experimental data, for both Raman-Nath and intermediate diffraction.

  7. The correlation of ring distributions with electron conics - Simulations of the production of upper hybrid waves

    NASA Astrophysics Data System (ADS)

    Menietti, J. D.; Lin, C. S.; Wong, H. K.

    Using the High Altitude Plasma Instrument on board the Dynamics Explorer 1 satellite, an example of electron conics associated with ring (trapped) distributions of warm electrons is shown. Using an electrostatic P-I-C code, numerical simulations of the generation of upper hybrid waves with ring distributions as the free energy source are performed. These waves heat the electrons perpendicular to the magnetic field, and thus provide a very efficient mechanism for the production of electron conics.

  8. Observational constraints on exponential gravity

    SciTech Connect

    Yang, Louis; Lee, Chung-Chi; Luo, Ling-Wei; Geng, Chao-Qiang

    2010-11-15

    We study the observational constraints on the exponential gravity model of f(R)=-{beta}R{sub s}(1-e{sup -R/R}{sub s}). We use the latest observational data including Supernova Cosmology Project Union2 compilation, Two-Degree Field Galaxy Redshift Survey, Sloan Digital Sky Survey Data Release 7, and Seven-Year Wilkinson Microwave Anisotropy Probe in our analysis. From these observations, we obtain a lower bound on the model parameter {beta} at 1.27 (95% C.L.) but no appreciable upper bound. The constraint on the present matter density parameter is 0.245<{Omega}{sub m}{sup 0}<0.311 (95% C.L.). We also find out the best-fit value of model parameters on several cases.

  9. Capillary rogue waves.

    PubMed

    Shats, M; Punzmann, H; Xia, H

    2010-03-12

    We report the first observation of extreme wave events (rogue waves) in parametrically driven capillary waves. Rogue waves are observed above a certain threshold in forcing. Above this threshold, frequency spectra broaden and develop exponential tails. For the first time we present evidence of strong four-wave coupling in nonlinear waves (high tricoherence), which points to modulation instability as the main mechanism in rogue waves. The generation of rogue waves is identified as the onset of a distinct tail in the probability density function of the wave heights. Their probability is higher than expected from the measured wave background.

  10. Correlation between insulin resistance and breast elasticity heterogeneity measured by shear wave elastography in premenopausal women - a pilot study.

    PubMed

    Rzymski, Pawel; Wysocki, Piotr J; Kycler, Witold; Opala, Tomasz

    2011-12-31

    Recent studies have demonstrated a strong correlation between obesity, insulin resistance, increased insulin and insulin-like growth factor levels and the risk of breast cancer. Our study was aimed at exploring correlations between glucose, insulin, insulin resistance, obesity and quantitatively estimated breast elasticity in healthy women. The pilot study included 37 premenopausal women aged 22-45 years who underwent B-mode sonography and real-time shear wave elastography. Blood was collected for fasting insulin and glucose, and HOMA insulin resistance index was calculated. The mean elasticity of glandular and fatty tissue measured in both breasts was 12.5 ±3.5 kPa and 10.9 ±3.7 kPa respectively. Insulin levels did not correlate with glandular tissue elasticity (Rs=-0.23, p=0.15), but nearly correlated with fat tissue elasticity (Rs=-0.30, p=0.06), in outer quadrants significantly (Rs=-0.38, p=0.02). Interestingly, a strong correlation of insulin and insulin resistance with elasticity heterogeneity was found in fatty tissue (Rs=-0.59, p<0.001 and Rs=-0.60, p<0.001 respectively). The heterogeneity of fatty tissue but not glandular elasticity also correlated with body mass index. Insulin levels and insulin resistance correlate with breast fat tissue heterogeneity, but their role in breast pathology remains unclear.

  11. Electronic structure and correlated wave functions of a few electron quantum dots

    SciTech Connect

    Sako, Tokuei; Ishida, Hiroshi; Fujikawa, Kazuo

    2015-01-22

    The energy spectra and wave functions of a few electrons confined by a quasi-one-dimensional harmonic and anharmonic potentials have been studied by using a full configuration interaction method employing a Cartesian anisotropic Gaussian basis set. The energy spectra are classified into three regimes of the strength of confinement, namely, large, medium and small. The polyad quantum number defined by a total number of nodes in the wave functions is shown to be a key ingredient to interpret the energy spectra for the whole range of the confinement strength. The nodal pattern of the wave functions exhibits normal modes for the harmonic confining potential, indicating collective motions of electrons. These normal modes are shown to undergo a transition to local modes for an anharmonic potential with large anharmonicity.

  12. Correlation of fiber composite tensile strength with the ultrasonic stress wave factor

    NASA Technical Reports Server (NTRS)

    Vary, A.; Lark, R. F.

    1978-01-01

    An ultrasonic-acoustic technique was used to indicate the strength variations of tensile specimens of a graphite-epoxy composite. A 'stress wave factor' was determined and its value was found to depend on variations of the fiber-resin bonding as well as fiber orientation. The fiber orientations studied were 0 deg (longitudinal), 10 deg (off-axis), 90 deg (transverse), (0 deg/+ or - 45 deg/0) symmetrical, and (+ or - 45 deg) symmetrical. The stress wave factor can indicate variations of the tensile and shear strengths of composite materials. The stress wave factor was also found to be sensitive to strength variations associated with microporosity and differences in fiber-resin ratio.

  13. Correlation of fiber composite tensile strength with the ultrasonic stress wave factor

    NASA Technical Reports Server (NTRS)

    Vary, A.; Lark, R. F.

    1978-01-01

    An ultrasonic-acoustic technique was used to indicate the strength variations of tensile specimens of a graphite-epoxy composite. A 'stress wave factor' was determined and its value was found to depend on variations of the fiber-resin bonding as well as fiber orientation. The fiber orientations studied were 0 deg (longitudinal), 10 deg (off-axis), 90 deg (transverse), (0 deg/+ or - 45 deg/0) symmetrical, and (+ or - 45 deg) symmetrical. The stress wave factor can indicate variations of the tensile and shear strengths of composite materials. The stress wave factor was also found to be sensitive to strength variations associated with microporosity and differences in fiber-resin ratio.

  14. Correlation of Fiber Composite Tensile Strength with the Ultrasonic Stress Wave Factor

    NASA Technical Reports Server (NTRS)

    Vary, A.; Lark, R. F.

    1978-01-01

    An ultrasonic-acoustic technique was used to indicate the strength variations of tensile specimens of a graphite-epoxy composite. A stress wave factor was determined and its value was found to depend on variations of the fiber-resin bonding as well as fiber orientation. The fiber orientations studied were 0 deg (longitudinal), 10 deg (off-axis), 90 deg (transverse), 0 deg + or - 45 deg/0 deg symmetrical, and + or - 45 deg] symmetrical. The stress wave factor can indicate variations of the tensile and shear strengths of composite materials. The stress wave factor was also found to be sensitive to strength variations associated with microporosity and differences in fiber-resin ratio.

  15. A correlative investigation of the propagation of ULF wave power through the dayside magnetosphere

    NASA Technical Reports Server (NTRS)

    Engebretson, Mark J.

    1990-01-01

    Three different ULF wave phenomena (azimuthally polarized Pc 3 pulsations, radially polarized Pc 4 pulsations, and solitary Pc 5 pulsations related to solar wind pressure pulses) were studied. The main problems covered are: (1) how do magnetospheric Pc 3-4 pulsations, which appear to originate in the solar wind, enter the magnetosphere, and how is this wave energy transported throughout the magnetosphere once it enters; (2) what is the ULF response of the outer dayside magnetosphere to solar wind pressure pulses; and (3) how do Pc 3-4 pulsations modulate ELF-VLF emissions in the dayside magnetosphere.

  16. Theory and software for large Quantum Monte Carlo super-computer simulations over exponential type orbitals.

    NASA Astrophysics Data System (ADS)

    Hoggan, Philip E.

    2009-03-01

    Slater-type orbitals (STO) are rarely used as atomic basis sets for molecular structure and property calculations, since integrals are expensive to evaluate, reliable basis sets are scarce and exact properties such as Kato's cusp condition and the correct exponential decay of the electron density are not significantly better described numerically than with commonly used Gaussian basis sets. We adopt the systematic parallelized development of integration routines for multi-centre integrals, and high-quality basis sets over STOs, useful for modern electron correlation calculations via compact low-variance trial wave-functions for QMC (Quantum Monte Carlo). Molecular QMC applications are also rare, because the method is comparatively complicated to use, however it is extremely precise and can be made to include nearly all the correlation energy. It also scales well for large numbers of processors (1000 s at nearly 100 percent efficiency). Applications need to be carried out on a large scale, to determine electronic structure and properties of large (about 100 atoms) molecules of chemical interest, including intermolecular interactions, best described using Slater trial wave-functions for QMC. Such functions combined as hydrogen-like atomic orbitals possess the correct nodal structure for the high precision FN-MC (Fixed Node Monte Carlo) methods, which include more than 95 percent of the electron correlation energy.

  17. Influence of positional correlations on the propagation of waves in a complex medium with polydisperse resonant scatterers

    NASA Astrophysics Data System (ADS)

    Leroy, Valentin; Strybulevych, Anatoliy; Page, John H.; Scanlon, Martin G.

    2011-04-01

    We present experimental results on a model system for studying wave propagation in a complex medium exhibiting low-frequency resonances. These experiments enable us to investigate a fundamental question that is relevant for many materials, such as metamaterials, where low-frequency scattering resonances strongly influence the effective medium properties. This question concerns the effect of correlations in the positions of the scatterers on the coupling between their resonances, and hence on wave transport through the medium. To examine this question experimentally, we measure the effective medium wavenumber of acoustic waves in a sample made of bubbles embedded in an elastic matrix over a frequency range that includes the resonance frequency of the bubbles. The effective medium is highly dispersive, showing peaks in the attenuation and the phase velocity as functions of the frequency, which cannot be accurately described using the independent scattering approximation (ISA). This discrepancy may be explained by the effects of the positional correlations of the scatterers, which we show to be dependent on the size of the scatterers. We propose a self-consistent approach for taking this “polydisperse correlation” into account and show that our model better describes the experimental results than the ISA.

  18. Superconducting transition temperatures and coherence length in non-s-wave pairing materials correlated with spin-fluctuation mediated interaction

    NASA Astrophysics Data System (ADS)

    Angilella, G. G.; March, N. H.; Pucci, R.

    2002-03-01

    Following earlier work on electron or hole liquids flowing through assemblies with magnetic fluctuations, we have recently exposed a marked correlation of the superconducting temperature Tc, for non-s-wave pairing materials, with coherence length ξ and effective mass m*. The very recent study of Abanov et al. [Europhys. Lett. 54, 488 (2001)] and the prior investigation of Monthoux and Lonzarich [Phys. Rev. B 59, 14 598 (1999)] have each focused on the concept of a spin-fluctuation temperature Tsf, which again is intimately related to Tc. For the d-wave pairing via antiferromagnetic spin fluctuations in the cuprates, these studies are brought into close contact with our own work, and the result is that kBTsf~ħ2/m*ξ2. This demonstrates that ξ is also determined by such antiferromagnetic spin-fluctuation mediated pair interaction. The coherence length in units of the lattice spacing is then essentially given in the cuprates as the square root of the ratio of two characteristic energies, namely, the kinetic energy of localization of a charge carrier of mass m* in a specified magnetic correlation length to the hopping energy. The quasi-two-dimensional ruthenate Sr2RuO4, with Tc~1.3 K, has p-wave spin-triplet pairing and so is also briefly discussed here.

  19. Standing waves as an explanation for generic stationary correlation patterns in noninvasive EEG of focal onset seizures.

    PubMed

    Müller, Markus Franziskus; Rummel, Christian; Goodfellow, Marc; Schindler, Kaspar

    2014-03-01

    Cerebral electrical activity is highly nonstationary because the brain reacts to ever changing external stimuli and continuously monitors internal control circuits. However, a large amount of energy is spent to maintain remarkably stationary activity patterns and functional inter-relations between different brain regions. Here we examine linear EEG correlations in the peri-ictal transition of focal onset seizures, which are typically understood to be manifestations of dramatically changing inter-relations. Contrary to expectations we find stable correlation patterns with a high similarity across different patients and different frequency bands. This skeleton of spatial correlations may be interpreted as a signature of standing waves of electrical brain activity constituting a dynamical ground state. Such a state could promote the formation of spatiotemporal neuronal assemblies and may be important for the integration of information stemming from different local circuits of the functional brain network.

  20. Midlife Decline in Declarative Memory Consolidation Is Correlated with a Decline in Slow Wave Sleep

    ERIC Educational Resources Information Center

    Backhaus, Jutta; Born, Jan; Hoeckesfeld, Ralf; Fokuhl, Sylvia; Hohagen, Fritz; Junghanns, Klaus

    2007-01-01

    Sleep architecture as well as memory function are strongly age dependent. Slow wave sleep (SWS), in particular, decreases dramatically with increasing age, starting already beyond the age of 30. SWS normally predominates during early nocturnal sleep and is implicated in declarative memory consolidation. However, the consequences of changes in…

  1. Midlife Decline in Declarative Memory Consolidation Is Correlated with a Decline in Slow Wave Sleep

    ERIC Educational Resources Information Center

    Backhaus, Jutta; Born, Jan; Hoeckesfeld, Ralf; Fokuhl, Sylvia; Hohagen, Fritz; Junghanns, Klaus

    2007-01-01

    Sleep architecture as well as memory function are strongly age dependent. Slow wave sleep (SWS), in particular, decreases dramatically with increasing age, starting already beyond the age of 30. SWS normally predominates during early nocturnal sleep and is implicated in declarative memory consolidation. However, the consequences of changes in…

  2. EXPONENTIAL GALAXY DISKS FROM STELLAR SCATTERING

    SciTech Connect

    Elmegreen, Bruce G.; Struck, Curtis E-mail: curt@iastate.edu

    2013-10-01

    Stellar scattering off of orbiting or transient clumps is shown to lead to the formation of exponential profiles in both surface density and velocity dispersion in a two-dimensional non-self gravitating stellar disk with a fixed halo potential. The exponential forms for both nearly flat rotation curves and near-solid-body rotation curves. The exponential does not depend on initial conditions, spiral arms, bars, viscosity, star formation, or strong shear. After a rapid initial development, the exponential saturates to an approximately fixed scale length. The inner exponential in a two-component profile has a break radius comparable to the initial disk radius; the outer exponential is primarily scattered stars.

  3. Theory, computation, and application of exponential splines

    SciTech Connect

    McCartin, B.J.

    1981-10-01

    A generalization of the semiclassical cubic spline known in the literature as the exponential spline is discussed. In actuality, the exponential spline represents a continuum of interpolants ranging from the cubic spline to the linear spline. A particular member of this family is uniquely specified by the choice of certain tension parameters. The theoretical underpinnings of the exponential spline are outlined. This development roughly parallels the existing theory for cubic splines. The primary extension lies in the ability of the exponential spline to preserve convexity and monotonicity present in the data. Next, the numerical computation of the exponential spline is discussed. A variety of numerical devices are employed to produce a stable and robust algorithm. An algorithm for the selection of tension parameters that will produce a shape preserving approximant is developed. A sequence of selected curve-fitting examples are presented which clearly demonstrate the advantages of exponential splines over cubic splines.

  4. Theory, computation, and application of exponential splines

    NASA Technical Reports Server (NTRS)

    Mccartin, B. J.

    1981-01-01

    A generalization of the semiclassical cubic spline known in the literature as the exponential spline is discussed. In actuality, the exponential spline represents a continuum of interpolants ranging from the cubic spline to the linear spline. A particular member of this family is uniquely specified by the choice of certain tension parameters. The theoretical underpinnings of the exponential spline are outlined. This development roughly parallels the existing theory for cubic splines. The primary extension lies in the ability of the exponential spline to preserve convexity and monotonicity present in the data. Next, the numerical computation of the exponential spline is discussed. A variety of numerical devices are employed to produce a stable and robust algorithm. An algorithm for the selection of tension parameters that will produce a shape preserving approximant is developed. A sequence of selected curve-fitting examples are presented which clearly demonstrate the advantages of exponential splines over cubic splines.

  5. High-Frequency Seismic Waves generated by Building-Shaking Experiments and Surface Wave Group Velocity Estimates from the Cross-Correlation of Data

    NASA Astrophysics Data System (ADS)

    Tanimoto, T.; Okamoto, T.

    2013-12-01

    Modeling high-frequency (>1 Hz) seismic waves is known to be difficult but it is extremely important for earthquake hazard mitigation as many buildings have resonant frequencies above 1 Hz. In this study, we examine high-frequency waves at 1.64 Hz, generated by building-shaking experiments in California. The specific data we will examine are seismic data generated by shaking experiments of the Millikan Library between 2000 and 2002, located on the campus of California Institute of Technology in Pasadena, California. The excited wavefields were recorded by the broadband seismic network in the region (~150 stations), Southern California Seismic Network (SCSN). There were about 60 stations with good signal-to-noise ratios among SCSN stations. The maximum distance for signal detection was 323 km (station GRA). Based on numerical calculations for a regional seismic structure model (SCEC Community Velocity Model 11.9), we can show that the signals are dominated by surface waves (at 1.11 Hz and 1.64 Hz), whose energy is confined to shallow depths. The focus of this report will be on the cross-correlated signals between a station in the building (station MIK) and other stations. This cross-correlation may be viewed as a source deconvolution process and will let us focus on propagation in the medium. This cross-correlated phase can be expressed as a line integral of wavenumber along a propagation path for a direct (ballistic) phase, although it may contain complexity from the caustics (the Maslov index). Somewhat to our surprise, despite the fact that we are dealing with high frequency waves (1.64 Hz), we observe well-defined constant phase in many cross-correlated seismograms. If we knew the number of cycles between the source (Millikan) and a station, we could estimate phase velocity in principle but this is not possible and seems extremely hard because the number of cycles is about 50-100 or more. However, our signals do show frequency-dependence within a narrow (signal

  6. Surface wave group velocity in the Osaka sedimentary basin, Japan, estimated using ambient noise cross-correlation functions

    NASA Astrophysics Data System (ADS)

    Asano, Kimiyuki; Iwata, Tomotaka; Sekiguchi, Haruko; Somei, Kazuhiro; Miyakoshi, Ken; Aoi, Shin; Kunugi, Takashi

    2017-08-01

    Inter-station cross-correlation functions estimated using continuous ambient noise or microtremor records were used to extract the seismic wave propagation characteristics of the Osaka sedimentary basin, Japan. Temporary continuous observations were conducted at 15 sites in the Osaka basin between 2011 and 2013. The data were analyzed using seismic interferometry. The target period range was 2-8 s. Cross-correlations between all of the possible station pairs were calculated and stacked to produce a year-long data set, and Rayleigh wave signals in the vertical and radial components and Love wave signals in the transverse component were identified from the results. Simulation of inter-station Green's functions using the finite difference method was conducted to check the performance of the current three-dimensional velocity structure model. The measured time lag between the observed and theoretical Green's functions was less than 2 s for most station pairs, which is less than the wave period of interest in the target frequency range. Group velocity tomography was applied to group delay times estimated by means of multiple filter analysis. The estimated group velocities for longer periods of 5-8 s exhibited spatial variation within the basin, which is consistent with the bedrock depth distribution; however, the group velocities for shorter periods of 2-3 s were almost constant over the studied area. The waveform and group velocity information obtained by seismic interferometry analysis can be useful for future reconstruction of a three-dimensional velocity structure model in the Osaka basin.[Figure not available: see fulltext.

  7. 3-D shear wave velocity model of Mexico and South US: bridging seismic networks with ambient noise cross-correlations (C1) and correlation of coda of correlations (C3)

    NASA Astrophysics Data System (ADS)

    Spica, Zack; Perton, Mathieu; Calò, Marco; Legrand, Denis; Córdoba-Montiel, Francisco; Iglesias, Arturo

    2016-09-01

    This work presents an innovative strategy to enhance the resolution of surface wave tomography obtained from ambient noise cross-correlation (C1) by bridging asynchronous seismic networks through the correlation of coda of correlations (C3). Rayleigh wave group dispersion curves show consistent results between synchronous and asynchronous stations. Rayleigh wave group traveltimes are inverted to construct velocity-period maps with unprecedented resolution for a region covering Mexico and the southern United States. The resulting period maps are then used to regionalize dispersion curves in order to obtain local 1-D shear velocity models (VS) of the crust and uppermost mantle in every cell of a grid of 0.4°. The 1-D structures are obtained by iteratively adding layers until reaching a given misfit, and a global tomography model is considered as an input for depths below 150 km. Finally, a high-resolution 3-D VS model is obtained from these inversions. The major structures observed in the 3-D model are in agreement with the tectonic-geodynamic features and with previous regional and local studies. It also offers new insights to understand the present and past tectonic evolution of the region.

  8. Equivalences between nonuniform exponential dichotomy and admissibility

    NASA Astrophysics Data System (ADS)

    Zhou, Linfeng; Lu, Kening; Zhang, Weinian

    2017-01-01

    Relationship between exponential dichotomies and admissibility of function classes is a significant problem for hyperbolic dynamical systems. It was proved that a nonuniform exponential dichotomy implies several admissible pairs of function classes and conversely some admissible pairs were found to imply a nonuniform exponential dichotomy. In this paper we find an appropriate admissible pair of classes of Lyapunov bounded functions which is equivalent to the existence of nonuniform exponential dichotomy on half-lines R± separately, on both half-lines R± simultaneously, and on the whole line R. Additionally, the maximal admissibility is proved in the case on both half-lines R± simultaneously.

  9. Long-range correlations induced by the self-regulation of zonal flows and drift-wave turbulence

    SciTech Connect

    Manz, P.; Ramisch, M.; Stroth, U.

    2010-11-15

    By means of a unique probe array, the interaction between zonal flows and broad-band drift-wave turbulence has been investigated experimentally in a magnetized toroidal plasma. Homogeneous potential fluctuations on a magnetic flux surface, previously reported as long range correlations, could be traced back to a predator-prey-like interaction between the turbulence and the zonal flow. At higher frequency the nonlocal transfer of energy to the zonal flow is dominant and the low-frequency oscillations are shown to result from the reduced turbulence activity due to this energy loss. This self-regulation process turns out to be enhanced with increased background shear flows.

  10. Investigations of Passive Seismic Body-Wave Interferometry Using Noise Auto-correlations for Crustal and Upper Mantle Structure

    NASA Astrophysics Data System (ADS)

    Oren, C.; Nowack, R. L.

    2015-12-01

    It is known that the positive lags of the auto-correlation for the seismic transmission response of a layered medium correspond to the reflection seismogram (Claerbout, 1968). In this study, we investigate the use of ambient seismic noise recorded at selected broadband USArray EarthScope Transportable Array (TA) stations to obtain effective reflection seismograms for frequencies up to 1 Hz. The goal is to determine the most suitable parameters used for the processing of ambient seismic noise for the identification of crustal and upper mantle reflections and to minimize unwanted artifacts in the noise correlations. In order to best retrieve the body-wave components of the Green's function beneath a station, a number of processing steps are required. We first remove the instrument response and apply a temporal normalization to remove the effects of the most energetic sources. Next we implement spectral whitening. We test several operators for the spectral whitening where the undulations of the power spectrum are related to the strengths of later arrivals in the auto-correlation. Different filters are then applied to the auto-correlation functions, including Gaussian and zero phase Butterworth filters, in order to reduce the effect of side lobes. Hourly auto-correlations are then stacked for up to one year. On the final stack, Automatic Gain Control (AGC) is applied to equalize the correlation amplitudes in the time domain. The robustness of the resulting ambient noise auto-correlation is first tested on selected TA stations in Nevada, where we are able to identify PmP and SmS arrivals similar to those found by Tibuleac and von Seggern (2012). We then investigate noise auto-correlations applied to selected USArray TA stations in the central US.

  11. Ground state and resonant states of helium in exponential cosine screened Coulomb potential

    NASA Astrophysics Data System (ADS)

    Ghoshal, Arijit; Ho, Y. K.

    2009-05-01

    We have investigated the ground state and a resonance state of normal helium atom in exponential cosine screened Coulomb potential (ECSCP) with screening parameterλ: V(r),,,1r,^-λr(λr) (in a.u.), where r denotes the inter-particle distance. Within the framework of Ritz's variational principle and making use of a highly correlated wave function, we have determined the ground state energies and wave functions of the helium atom for different values of the screening parameterλ. Furthermore, we have shown that the ground state energy of helium for a particular value of λ does converge with increasing number of terms in the wave function. In addition, using the stabilization method, we have investigated the doubly excited 2s^2 ^1S^e resonance state in helium with ECSCP. Resonance energy and width for various λ values are calculated. Our present work will play a useful role in the investigations of atomic structures in quantum plasmas [1]. [1]. P.K. Shukla and B. Eliasson, Phys. Lett. A 372, 2899 (2008).

  12. Impact of correlated magnetic noise on the detection of stochastic gravitational waves: Estimation based on a simple analytical model

    NASA Astrophysics Data System (ADS)

    Himemoto, Yoshiaki; Taruya, Atsushi

    2017-07-01

    After the first direct detection of gravitational waves (GW), detection of the stochastic background of GWs is an important next step, and the first GW event suggests that it is within the reach of the second-generation ground-based GW detectors. Such a GW signal is typically tiny and can be detected by cross-correlating the data from two spatially separated detectors if the detector noise is uncorrelated. It has been advocated, however, that the global magnetic fields in the Earth-ionosphere cavity produce the environmental disturbances at low-frequency bands, known as Schumann resonances, which potentially couple with GW detectors. In this paper, we present a simple analytical model to estimate its impact on the detection of stochastic GWs. The model crucially depends on the geometry of the detector pair through the directional coupling, and we investigate the basic properties of the correlated magnetic noise based on the analytic expressions. The model reproduces the major trend of the recently measured global correlation between the GW detectors via magnetometer. The estimated values of the impact of correlated noise also match those obtained from the measurement. Finally, we give an implication to the detection of stochastic GWs including upcoming detectors, KAGRA and LIGO India. The model suggests that LIGO Hanford-Virgo and Virgo-KAGRA pairs are possibly less sensitive to the correlated noise and can achieve a better sensitivity to the stochastic GW signal in the most pessimistic case.

  13. Wave breaking and turbulence at a tidal inlet

    NASA Astrophysics Data System (ADS)

    Zippel, Seth; Thomson, Jim

    2015-02-01

    Field measurements collected with surface drifters at New River Inlet (NC, USA) are used to characterize wave breaking and turbulence in the presence of currents. Shoreward wave evolution is affected by currents, and breaking is observed in deeper water with opposing currents (ebb tides) relative to the following currents (flood tides). Wave dissipation models are evaluated with observed cross-shore gradients in wave energy flux. Wave dissipation models that include the effects of currents are better correlated with the observations than the depth-only models. Turbulent dissipation rates measured in the breaking regions are used to evaluate two existing scaling models for the vertical structure and magnitude of turbulent dissipation relative to wave dissipation. Although both describe the rapid decay of turbulence beneath the surface, exponential vertical scaling by water depth is superior to power law vertical scaling by wave height.

  14. Giving Exponential Functions a Fair Shake

    ERIC Educational Resources Information Center

    Wanko, Jeffrey J.

    2005-01-01

    This article details an exploration of exponential decay and growth relationships using M&M's and dice. Students collect data for mathematical models and use graphing calculators to make sense of the general form of the exponential functions. (Contains 10 figures and 2 tables.)

  15. Long-time correlation for the chaotic orbit in the two-wave Hamiltonian

    NASA Astrophysics Data System (ADS)

    Hatori, Tadatsugu; Irie, Haruyuki

    1987-03-01

    The time correlation function of velocity is found to decay with the power law for the orbit governed by a Hamiltonian, H=v sup 2/2 - Mcosx - Pcos (k(x-t)). The renormalization group technique can predict the power of decay for the correlation function defined by the ensemble average. The power spectrum becomes the 1/f-type for a special case.

  16. Correlation between the Maryland and Rome gravitational-wave detectors and the Mont Blanc, Kamioka and IMB particle detectors during SN 1987A.

    NASA Astrophysics Data System (ADS)

    Aglietta, M.; Castellina, A.; Fulgione, W.; Trinchero, G.; Vernetto, S.; Astone, P.; Badino, G.; Bologna, G.; Bassan, M.; Coccia, E.; Modena, I.; Bonifazi, P.; Castellano, M. G.; Visco, M.; Castagnoli, C.; Galeotti, P.; Saavedra, O.; Cosmelli, C.; Frasca, S.; Pallottino, G. V.; Pizzella, G.; Rapagnani, P.; Ricci, F.; Majorana, E.; Gretz, D.; Weber, J.; Wilmot, G.

    1991-11-01

    Following a previously found correlation between the gravitational-wave detectors and the Mont Blanc particle detector, the authors have searched for a similar correlation between the data of the experiments mentioned in the title. They have found that both the Kamioka and the IMB data have a correlation with the gravitational-wave data that occurs with the same characteristics and at the same time of that already found with Mont Blanc. This correlation extends for a period of one or two hours centred at the hour 2:45 UT of 23 February 1987. It shows that the particle detector signals are delayed with respect to the gravitational-wave detector signals by (1.2±0.5)s. The probability that the additional correlation due to Kamioka and IMB is only accidental is estimated of the order of 10-3 or 10-4.

  17. The matrix exponential in transient structural analysis

    NASA Technical Reports Server (NTRS)

    Minnetyan, Levon

    1987-01-01

    The primary usefulness of the presented theory is in the ability to represent the effects of high frequency linear response with accuracy, without requiring very small time steps in the analysis of dynamic response. The matrix exponential contains a series approximation to the dynamic model. However, unlike the usual analysis procedure which truncates the high frequency response, the approximation in the exponential matrix solution is in the time domain. By truncating the series solution to the matrix exponential short, the solution is made inaccurate after a certain time. Yet, up to that time the solution is extremely accurate, including all high frequency effects. By taking finite time increments, the exponential matrix solution can compute the response very accurately. Use of the exponential matrix in structural dynamics is demonstrated by simulating the free vibration response of multi degree of freedom models of cantilever beams.

  18. Optical imaging through turbid media using a degenerate-four-wave mixing correlation time gate

    SciTech Connect

    Bigio, I.J.; Strauss, C.E.M.; Zerkle, D.K.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors have demonstrated the use of a degenerate-four-wave-mixing time gate to allow imaging through turbid media, with potential application to tissue imaging. A near infrared (NIR), long-pulse Cr{sup +3}:Li{sub 2}SrAlF{sub 6} laser was used as the light source (during most the project) for imaging through clear and turbid media. Preliminary experiments were also carried out with a continuous diode laser.

  19. Effect of particle size distribution on the correlation between liquefaction resistance and shear wave velocity of granular soils

    NASA Astrophysics Data System (ADS)

    Zhou, Changtao; Xu, Xiao Min; Cheng, Yi Pik

    2017-06-01

    Shear wave method has been increasingly popular in assessing the liquefaction potential of granular soils. Two particle-scale parameters, the inter-particle friction and the shear modulus of grains, play vital roles in correlation between Cyclic Resistance Ratio (CRR) and shear wave velocity corrected by overburden stress (Vs1). Series of drained one-dimensional compression tests were simulated on samples of different inter-particle friction angles assigned during preparation stage. Uniformity coefficients of these Particle Size Distribution (PSD) curves are 2 and 4 whose average particle size d50 are identical. The shearing results, as well as their assigned inter-particle friction angles form calibration curves for real sands. Dissimilar PSD curves result in different calibration outcomes. For Silica sand no.8, these curves give divergent inter-particle friction angles. This study calibrates particle shear modulus for Silica sand no.8 as well. Different PSD curves give divergent values of particle shear modulus. PSDs show impacts on calibrations of both vital parameters, which have converse effects on CRR-Vs1 curves. This study suggests that the CRR-Vs1 correlation should be independent of PSDs.

  20. Effects of extracorporal shock wave therapy on symptomatic heel spurs: a correlation between clinical outcome and radiologic changes.

    PubMed

    Yalcin, E; Keskin Akca, A; Selcuk, B; Kurtaran, A; Akyuz, M

    2012-02-01

    Plantar heel pain, a chronic and disabling foot alignment, occurs in the adult population. Extracorporal shock wave therapy (ESWT) offers a nonsurgical option in addition to stretching exercises, heel cups, NSAI, and corticosteroid injections. This study aimed to investigate the effects of ESWT on calcaneal bone spurs and the correlation between clinical outcomes and radiologic changes. The study involved 108 patients with heel pain and radiologically diagnosed heel spurs. All patients underwent ESWT once a week for 5 weeks at the clinic. Each patient received 2,000 impulses of shock waves, starting with 0.05 mJ/mm2 (1.8 bar) and increasing to 0.4 mJ/mm2 (4.0 bar). Standard radiographies of the affected heels were obtained before and after the therapy. Clinical results demonstrated excellent (no pain) in 66.7% of the cases, good (50% of pain reduced) in 15.7% of the cases, and unsatisfactory (no reduction in pain) in 17.6%. After five ESWT treatments, no patients who received shock wave applications had significant spur reductions, but 19 patients (17.6%) had a decrease in the angle of the spur, 23 patients (21.3%) had a decrease in the dimensions of the spur, and one patient had a broken spur. Therefore, results showed no correlation between clinical outcome and radiologic changes. The present study supports the finding that even with no radiologic change after ESWT therapy, the therapy produces significant effects in reducing patients' complaints about heel spurs.

  1. Stretched Exponential relaxation in pure Se glass

    NASA Astrophysics Data System (ADS)

    Dash, S.; Ravindren, S.; Boolchand, P.

    A universal feature of glasses is the stretched exponential relaxation, f (t) = exp[ - t / τ ] β . The model of diffusion of excitations to randomly distributed traps in a glass by Phillips1 yields the stretched exponent β = d[d +2] where d, the effective dimensionality. We have measured the enthalpy of relaxation ΔHnr (tw) at Tg of Se glass in modulated DSC experiments as glasses age at 300K and find β = 0.43(2) for tw in the 0 correlations mediated by both long range (van der Waals forces) and short-range (covalent) interactions. A striking consequence of this relaxation is a narrowing of the glass transition width from 7.1°C to 1.4°C, and the ΔHnr term increasing from 0.21 cal/gm to 0.92 cal/gm. In bulk GexSe100-x glasses as x increases to 20%, the length of the polymeric Sen chains between the Ge-crosslinks decreases to n = 2. and the striking relaxation effects nearly vanish. J.C. Phillips, Rep.Prog.Phys. 59 , 1133 (1996). Supported by NSF Grant DMR 08-53957.

  2. Increased Cross-Correlation in Cascaded Four-Wave Mixing Processes

    DTIC Science & Technology

    2007-06-11

    over the spontaneous non- degenerate FWM process ωP1 +ωP2 = ωst + ωas in creating stokes (ωst) and anti-stokes (ωas) light in the spectral side bands...Study of cross-correlation between the created stokes and anti- stokes light is of special interest for the generation of squeezed states [14] or...interest in studying the correlation between the stokes and anti-stokes light created in a degenerate FWM process with a single pump wavelength [18, 19

  3. Constraints on structural evolution from correlations between hydraulic properties and P-wave velocities during brittle faulting of rocks

    NASA Astrophysics Data System (ADS)

    Ahrens, Benedikt; Duda, Mandy; Renner, Jörg

    2017-04-01

    One of the key challenges in geophysics concerns the derivation of structure and state of rocks and rock formations from constraints on the spatial distribution of their physical properties, as gained from laboratory experiments, borehole logging, and surveys at the surface covering scales from centimeters to kilometers. The use of information from the propagation of elastic waves constitutes the most common approach to derive the structure and state of rocks, if direct information on in-situ properties is limited (e.g., through boreholes) or inaccessible. Furthermore, the determination of hydraulic rock properties serves the dual purpose of constraining structure and providing the basis for predictions of the behavior of a system of interest during continued fluid injection or production, as associated with, e.g., exploitation of hydrocarbon reservoirs, operation of subsurface liquid-waste repositories, or geothermal energy provision. In-situ, wave observations potentially provide better coverage of rock volumes (in space and time) than hydraulic investigations and thus constraints on correlations between elastic and hydraulic properties bear the potential to improve subsurface characterization. In our laboratory study, we continuously monitored hydraulic properties and elastic wave velocities of porous Wilkeson sandstone samples during conventional triaxial deformation. Confining pressures applied in the tests cover the range from below to above the critical pressure for crack closure to control the state of pre-existing cracks. Hydraulic properties were determined using the oscillatory pore-pressure method owing to its benefits regarding continuous and highly resolved monitoring of permeability and specific storage capacity during deformation and even imminent localized failure. The magnitude of the deformation-associated variations in the monitored physical properties strongly depends on initial microstructure and degree of hydrostatically induced crack closure

  4. Recovery of correlation function of internal random rough surfaces from diffusely scattered elastic waves

    NASA Astrophysics Data System (ADS)

    Shi, F.; Lowe, M. J. S.; Craster, R. V.

    2017-02-01

    We propose an ultrasonic methodology to reconstruct the height correlation function of remotely inaccessible random rough surfaces in solids. The inverse method is based on the Kirchhoff approximation(KA), and it requires measuring the angular distribution of diffuse scattering intensities by sending in a narrow band incident pulse. Near field scattering effects are also included by considering the Fresnel assumption. The proposed approach is successfully verified by simulating the scattering from multiple realizations of rough surfaces whose correlation function is known, calculating the mean scattering intensities from these received signals, and then deploying the inverse method on these to reconstruct the original correlation function. Very good agreement between the reconstructed correlation function and the original is found, for a wide range of roughness parameters. In addition, the effect of reducing the number of realizations to approximate the mean intensity are investigated, providing confidence bounds for the experiment. An experiment on a corrugated rough surface is performed with a limited number of scans using a phased array, which further validates the proposed inversion algorithm.

  5. Correlation of bow shock plasma wave turbulence with solar wind parameters

    NASA Technical Reports Server (NTRS)

    Rodriguez, P.; Gurnett, D. A.

    1975-01-01

    The r.m.s. field strengths of electrostatic and electromagnetic turbulence in the earth's bow shock, measured in the frequency range 20 Hz to 200 kHz with IMP-6 satellite, are found to correlate with specific solar wind parameters measured upstream of the bow shock.

  6. Strongly correlated s-wave superconductivity in the N-type infinite-layer cuprate.

    PubMed

    Chen, C-T; Seneor, P; Yeh, N-C; Vasquez, R P; Bell, L D; Jung, C U; Kim, J Y; Park, Min-Seok; Kim, Heon-Jung; Lee, Sung-Ik

    2002-06-03

    Quasiparticle tunneling spectra of the electron-doped ( n-type) infinite-layer cuprate Sr0.9La0.1CuO2 reveal characteristics that counter a number of common phenomena in the hole-doped ( p-type) cuprates. The optimally doped Sr0.9La0.1CuO2 with T(c) = 43 K exhibits a momentum-independent superconducting gap Delta = 13.0+/-1.0 meV that substantially exceeds the BCS value, and the spectral characteristics indicate insignificant quasiparticle damping by spin fluctuations and the absence of pseudogap. The response to quantum impurities in the Cu sites also differs fundamentally from that of the p-type cuprates with d(x(2)-y(2))-wave pairing symmetry.

  7. Charactrisation of particle assemblies by 3D cross correlation light scattering and diffusing wave spectroscopy

    NASA Astrophysics Data System (ADS)

    Scheffold, Frank

    2014-08-01

    To characterize the structural and dynamic properties of soft materials and small particles, information on the relevant mesoscopic length scales is required. Such information is often obtained from traditional static and dynamic light scattering (SLS/DLS) experiments in the single scattering regime. In many dense systems, however, these powerful techniques frequently fail due to strong multiple scattering of light. Here I will discuss some experimental innovations that have emerged over the last decade. New methods such as 3D static and dynamic light scattering (3D LS) as well as diffusing wave spectroscopy (DWS) can cover a much extended range of experimental parameters ranging from dilute polymer solutions, colloidal suspensions to extremely opaque viscoelastic emulsions.

  8. On the emission and correlation of electromagnetic waves of different frequencies from EAS

    NASA Astrophysics Data System (ADS)

    Sarma, Dilip

    The present thesis illustrates the author's experi-mental studies on the electromagnetic emission from extensive air showers at three preselected radiofrequencies namely 60, 110 and 220 MHz. Moreover experimental results on simultaneous emission of optical Cerenkov pulses with 220 MHz radiopulses is also presented. The experiment was carried out at Cosmic Radiation Research Laboratory, Department of Physics, Gauhati University, Assam, India during 1977-1980. The detectors for two types of pulses (radio and optical) were triggered by an EAS (Ep > 1016 eV) selecting system comprising of three particle detector arrays of G.M. counters. For detection of 60 MHz radiopulses a set of broad-side half-wave dipole antenna system was used, whereas for 110 and 220 MHz frequencies, stacked Yagi antennas, one for each frequency, were set up. The optical Cerenkov pulse detector consisted of a 5' ' diameter photomultiplier tube, a parabolic mirror and a fast linear amplifier. The events were recorded with the help of an automatic recording device. The data - both on radio as well as optical pulses were collected during the period from October, 1977 to March 1980. A thorough analysis of the data is presented in the thesis. The results of the present experiment show that electromagnetic waves both in optical as well as in the radio region of the spectrum are associated with EAS of the primary energy Ep > 1016 eV. The pulse height distribution of the optical Cerenkov pulses is compared with a theoretical distri-bution expected under the present experimental set up and the two sets of data are found to tally within the experimental error. It is noticed that emissions of radiopulses below and above 75 MHz may perhaps take place through different mechanisms. Further it also appears that radio emission mechanism is perhaps different from that of optical Cerenkov pulses emitted from EAS.

  9. Correlation between intensity fluctuations of light generated by scattering of Young’s diffractive electromagnetic waves by a quasi-homogeneous, anisotropic medium

    NASA Astrophysics Data System (ADS)

    Li, Jia; Chen, Feinan

    2016-11-01

    Based on the first-order Born approximation, formulas are derived for the correlation between intensity fluctuations (CIF) of light generated by a Young’s diffractive electromagnetic wave scattered by a spatially quasi-homogeneous (QH), anisotropic medium. It is shown that the CIF of the scattered field can be written as the summation of the Fourier transforms of the strengths and normalized correlation coefficients (NCCs) of the scattering potentials. The differences between our results and those obtained in the previous literature are discussed. Our results might be important in investigating the high-order intensity correlation of an electromagnetic wave scattered from a 3D anisotropic object.

  10. Effect of harmonic confinement on correlation studies of a spin-polarized s-wave superconductor

    NASA Astrophysics Data System (ADS)

    Dey, P.; Basu, S.

    2011-08-01

    We study different correlation functions for a spin imbalanced and harmonically trapped Fermi gas in two dimensions described by an attractive Hubbard model. Eigensolutions obtained via numerically solving Bogoliubov de Gennes equations are used to compute the local pairing amplitudes which show significantly different behaviour for the trapped case where the profile is radially modulated in contrast with a spatial modulation extending throughout the lattice geometry when trap effects are switched off. Further, different experimentally accessible quantities, such as pair-pair, density-density correlations and local density fluctuations show characteristic fluctuations for the spin polarized phase, which however wash away as the trapping effects are turned on. A contrasting scenario is presented corresponding to the case when the spin polarization effects are turned off.

  11. The effects of exchange-correlation on high-frequency electrostatic surface wave in magnetized quantum plasma through a porous medium

    NASA Astrophysics Data System (ADS)

    Abdikian, Alireza

    2017-09-01

    In this paper the propagation of an electrostatic surface wave at the interface between a vacuum and quantum plasma through a Brinkman porous medium is studied by considering exchange-correlation effects. A general analytical expression for dispersion relation is derived using the linearized quantum hydrodynamic model in conjunction with Poisson's equation in the presence of a static and constant magnetic field. The growth and instability rates of electrostatic surface waves are obtained and separated. Numerical values are used to summarize and analyze the normalized dispersion relations for overcritical dense plasma condition in different cases. The results show that the behavior of surface plasmon waves can be significantly modified by the exchange-correlation effects which have different influences on the system stability. It is shown that the exchange-correlation effects caused the frequency of such waves to down-shift. It is found that the down-shift of the real part of frequency Re(Ω) by the exchange-correlation effect may increase by either increasing the plasmonic coupling H or increasing the porosity effects. In addition, it is shown that by increasing the magnetic field strength the group velocity is increased. Although the instability of the surface wave is decreased by increasing the plasmonic coupling H, it is increased by increasing the porosity effects ( ν). The obtained results can help us in the physical understanding of the surface magnetized quantum wave on a semi-bounded quantum plasma through a porous media.

  12. Three & Four Product Surface-Wave Acousto-Optic Time Integrating Correlators.

    DTIC Science & Technology

    four product correlated signals. A laser beam is split and shaped into first and second sheet beams. The first beam is directed to a first acousto - optic medium...where it is doubly diffracted by first and second signals. The second beam is directed to a second acousto - optic medium which is spatially...rotated 90 degs relative to the first acousto - optic medium where the second sheet beam is either singly diffracted by a third signal or doubly diffracted

  13. Fate of disorder-induced inhomogeneities in strongly correlated d-wave superconductors

    NASA Astrophysics Data System (ADS)

    Chakraborty, Debmalya; Ghosal, Amit

    2014-10-01

    We analyze the complex interplay of the strong correlations and impurities in a high temperature superconductor and show that both the nature and degree of the inhomogeneities at zero temperature in the local-order parameters change drastically from those obtained in a simple Hartree-Fock-Bogoliubov theory. Although both the strong electronic repulsions and disorder contribute to the nanoscale inhomogeneity in the population of charge-carriers, we find they compete with each other, leading to a relatively smooth variation of the local density. Our self-consistent calculations modify the spatial fluctuations in the pairing amplitude by suppressing all the double occupancy within a Gutzwiller formalism and prohibit the formation of distinct superconducting ‘islands’. In contrast, presence of such ‘islands’ controls the outcome if strong correlations are neglected. The reorganization of the spatial structures in the Gutzwiller method makes these superconductors surprisingly insensitive to the impurities. This is illustrated by a very weak decay of superfluid stiffness, off-diagonal long-range order and local density of states up to a large disorder strength. Exploring the origin of such a robustness, we conclude that the underlying one-particle normal states reshape in a rich manner, such that the superconductor formed by pairing these states experiences a weaker but spatially correlated effective disorder. Such a route to superconductivity is evocative of Anderson's theorem. Our results capture the key experimental trends in the cuprates.

  14. All correlations must die: Assessing the significance of a stochastic gravitational-wave background in pulsar timing arrays

    NASA Astrophysics Data System (ADS)

    Taylor, S. R.; Lentati, L.; Babak, S.; Brem, P.; Gair, J. R.; Sesana, A.; Vecchio, A.

    2017-02-01

    We present two methods for determining the significance of a stochastic gravitational-wave (GW) background affecting a pulsar-timing array, where detection is based on evidence for quadrupolar spatial correlations between pulsars. Rather than constructing noise simulations, we eliminate the GWB spatial correlations in the true data sets to assess detection significance with all real data features intact. In our first method, we perform random phase shifts in the signal-model basis functions. This phase shifting eliminates signal phase coherence between pulsars, while keeping the statistical properties of the pulsar timing residuals intact. We then explore a method to null correlations between pulsars by using a "scrambled" overlap-reduction function in the signal model for the array. This scrambled function is orthogonal to what we expect of a real GW background signal. We demonstrate the efficacy of these methods using Bayesian model selection on a set of simulated data sets that contain a stochastic GW signal, timing noise, undiagnosed glitches, and uncertainties in the Solar system ephemeris. Finally, we introduce an overarching formalism under which these two techniques are naturally linked. These methods are immediately applicable to all current pulsar-timing array data sets, and should become standard tools for future analyses.

  15. A Simulation To Model Exponential Growth.

    ERIC Educational Resources Information Center

    Appelbaum, Elizabeth Berman

    2000-01-01

    Describes a simulation using dice-tossing students in a population cluster to model the growth of cancer cells. This growth is recorded in a scatterplot and compared to an exponential function graph. (KHR)

  16. A Simulation To Model Exponential Growth.

    ERIC Educational Resources Information Center

    Appelbaum, Elizabeth Berman

    2000-01-01

    Describes a simulation using dice-tossing students in a population cluster to model the growth of cancer cells. This growth is recorded in a scatterplot and compared to an exponential function graph. (KHR)

  17. Shear-wave velocity model of the Chukuo fault zone, Southwest Taiwan, from cross correlation of seismic ambient noise

    NASA Astrophysics Data System (ADS)

    Yeh, Yu-Lien; Wen, Strong; Lee, Kung-Jer; Chen, Chau-Huei

    2013-10-01

    The Chia-Nan (Chiayi-Tainan) area is in the southwestern Taiwan, and is located at the active deformation front of the collision of the Eurasian continental plate and the Philippine Sea plate, which causes complex folds as well as thrust fault systems in the area. The Chukuo fault zone is a boundary between the Western Foothill and the Western Coastal Plain in the Chia-Nan area. The nature of the crustal structure beneath the fault zone, especially the eastern part of the fault zone with mountain topography, has not been well known in detailed due to lack of drilling data as well as its limitation in using other geophysical methods, such as active source survey. In this study, we deployed an array with 11 broadband seismic stations to monitor the seismicity of the Chukuo fault zone. The array has recorded more than 1000 microearthquakes around this area. It provides an opportunity to use P- and S-wave travel time data to investigate the both the crustal P- and S-velocity in the fault zone, however due to the nature of the earthquake distribution, the ray density is relatively low at depth between 0 and 7 km. In addition, the uncertainty of S-wave reading for small earthquake also a limit in building precise S-velocity profile, Thus, we take the advantages of using cross-correlation of seismic ambient noise to investigate crustal S-velocity profile in the Chukuo fault area, especially in the mountain area where crustal faulting is a dominated phenomenon. The results indicate that S-wave velocity in the uppermost crust in the Chukuo fault zone is shown to be slower than previous studies. A low velocity layer exists at depth between 1 and 2 km in the east of the Chukuo Fault. The low S-velocity is related to a highly fractured upper crust due to intensive deformation caused by the orogenic process.

  18. Benchmark calculations with correlated molecular wave functions. VII. Binding energy and structure of the HF dimer

    SciTech Connect

    Peterson, K.A. ); Dunning, T.H. Jr. )

    1995-02-01

    The hydrogen bond energy and geometry of the HF dimer have been investigated using the series of correlation consistent basis sets from aug-cc-pVDZ to aug-cc-pVQZ and several theoretical methods including Moller--Plesset perturbation and coupled cluster theories. Estimates of the complete basis set (CBS) limit have been derived for the binding energy of (HF)[sub 2] at each level of theory by utilizing the regular convergence characteristics of the correlation consistent basis sets. CBS limit hydrogen bond energies of 3.72, 4.53, 4.55, and 4.60 kcal/mol are estimated at the SCF, MP2, MP4, and CCSD(T) levels of theory, respectively. CBS limits for the intermolecular F--F distance are estimated to be 2.82, 2.74, 2.73, and 2.73 A, respectively, for the same correlation methods. The effects of basis set superposition error (BSSE) on both the binding energies and structures have also been investigated for each basis set using the standard function counterpoise (CP) method. While BSSE has a negligible effect on the intramolecular geometries, the CP-corrected F--F distance and binding energy differ significantly from the uncorrected values for the aug-cc-pVDZ basis set; these differences decrease regularly with increasing basis set size, yielding the same limits in the CBS limit. Best estimates for the equilibrium properties of the HF dimer from CCSD(T) calculations are [ital D][sub [ital e

  19. Pulse-to-pulse correlation in satellite radar altimeters. [for ocean wave height measurement

    NASA Technical Reports Server (NTRS)

    Walsh, E. J.

    1982-01-01

    Pulse-to-pulse correlation in satellite radar altimeters is examined to determine if range jitter in future altimeters could be reduced by increasing the pulse repetition frequency (PRF). Data from the Skylab radar altimeter is analyzed and compared with rules of thumb and the results of a Monte Carlo simulation. Altimeter range tracker configurations are reviewed and a simple curve is developed for the PRF below which decorrelation is assured. An adaptive PRF for future altimeters is recommended to conserve mission power while optimizing data collection during high-sea states.

  20. Double ionization of neon by electron impact: use of correlated wave functions*

    NASA Astrophysics Data System (ADS)

    Kada, Imene; Cappello, Claude Dal; Mansouri, Abdelaziz

    2017-02-01

    A model including correlation both in the initial state and in the final state is applied to the case of the double ionization of neon. The results of our model are compared to the available experimental data performed at high incident energy. Fully (fivefold) differential cross sections (FDCS) have been studied by applying the first Born approximation. Four ion states of Ne++, which are not resolved in the experiments, have been included in our calculation. Contribution to the Topical Issue "Many Particle Spectroscopy of Atoms, Molecules, Clusters and Surfaces", edited by A.N. Grum-Grzhimailo, E.V. Gryzlova, Yu V. Popov, and A.V. Solov'yov.

  1. The Correlation Radiometer - A New Application in MM-Wave Total Power Radiometry

    NASA Technical Reports Server (NTRS)

    Gaier, Todd; Tanner, Alan; Kangaslahti, Pekka; Lim, Boon

    2013-01-01

    We describe the design and performance of a 180 GHz correlation radiometer suitable for remote sensing. The radiometer provides continuous comparisons between a the observed signal and a reference load to provide stable radiometric baselines. The radiometer was assembled and tested using parts from the GeoSTAR-II instrument and is fully compatible with operation in a synthetic aperture radiometer or as a standalone technology for use in microwave sounding and imaging. This new radiometer was tested over several days easily demonstrating the required 6 hour stability requirement for observations of mean brightness temperature for a geostationary instrument.

  2. The Correlation Radiometer - A New Application in MM-Wave Total Power Radiometry

    NASA Technical Reports Server (NTRS)

    Gaier, Todd; Tanner, Alan; Kangaslahti, Pekka; Lim, Boon

    2013-01-01

    We describe the design and performance of a 180 GHz correlation radiometer suitable for remote sensing. The radiometer provides continuous comparisons between a the observed signal and a reference load to provide stable radiometric baselines. The radiometer was assembled and tested using parts from the GeoSTAR-II instrument and is fully compatible with operation in a synthetic aperture radiometer or as a standalone technology for use in microwave sounding and imaging. This new radiometer was tested over several days easily demonstrating the required 6 hour stability requirement for observations of mean brightness temperature for a geostationary instrument.

  3. Electronic correlation effects and orbital density wave in the layered compound 1 T -TaS2

    NASA Astrophysics Data System (ADS)

    Yu, Xiang-Long; Liu, Da-Yong; Quan, Ya-Min; Wu, Jiansheng; Lin, Hai-Qing; Chang, Kai; Zou, Liang-Jian

    2017-09-01

    In this paper, we present the electronic structures and orbital-resolved electronic properties of structurally distorted 1 T -TaS2 bulk and monolayer within density functional theory approaches. The relaxed commensurate-charge-density-wave (CCDW) structure shows that 13 Ta atoms condense into a star-of-David cluster, accompanied by a buckling of neighboring S planes. Through detailed analyses to the orbital characters near the Fermi level, we show that there exists an orbital-density-wave (ODW) order, which is predominantly contributed by Ta-5 d3 z2-r2 orbital in the central Ta of the star-of-David cluster. We further demonstrate that the structural distortion, together with the Coulomb interaction, stabilizes the CCDW insulating ground state with an ODW order. The results obtained from dynamical mean-field theory confirm the role of the electronic correlation. Moreover, such an ODW ground state favors an intralayer ferromagnetic order in bulk and monolayer 1 T -TaS2 , and an interlayer antiferromagnetic order in bulk. We propose that 1 T -TaS2 monolayer may pave new ways to study exciton physics, flat-band physics, and potential applications in luminescence.

  4. Correlated input-port, matter-wave interferometer: Quantum-noise limits to the atom-laser gyroscope

    NASA Astrophysics Data System (ADS)

    Dowling, Jonathan P.

    1998-06-01

    I derive the quantum phase-noise limit to the sensitivity of a Mach-Zehnder interferometer in which the incident quantum particles enter via both input ports. I show that if the incident particles are entangled and correlated properly, then the phase sensitivity scales asymptotically like the Heisenberg-limited Δφ=O(1/N), for large N, where N is the number of particles incident per unit time. (In a one-input-port device, the sensitivity can be at best Δφ=1/N.) My calculation applies to bosons or fermions of arbitrary integer or half-integer spin. Applications to optical, atom-beam, and atom-laser gyroscopes are discussed-in particular, an atom-laser can be used to obtain the required entanglements for achieving this Heisenberg-limited sensitivity with atomic matter waves.

  5. 3D shear-wave velocity structure of the eastern Tennessee seismic zone from ambient noise correlation data

    NASA Astrophysics Data System (ADS)

    Arroucau, Pierre; Kuponiyi, Ayodeji; Vlahovic, Gordana; Powell, Chris

    2013-04-01

    The Eastern Tennessee Seismic Zone (ETSZ) is an intraplate seismic region characterized by frequent but low magnitude earthquakes and is the second most active seismic area in the United States east of the Rocky Mountains. One key question in the ETSZ is the actual relationship between earthquake distribution and geological structure at depth. Seismicity is mostly confined in the Precambrian basement, below the Paleozoic cover of the southern Appalachian foreland fold-and-thrust belt and shows little to no correlation with surface geological features. Since the middle of the seventies, the Center for Earthquake Research and Information (CERI) has installed and maintained several seismic networks in central and eastern United States. In this work, we use Rayleigh wave group and phase velocity dispersion information obtained from cross-correlation of seismic ambient noise at 24 short-period stations located in the vicinity of the ETSZ. The 3D velocity structure is estimated in four steps. First, dispersion curves are obtained for simultaneously recording station pairs for periods ranging from 2 to 20 s. Then, 2D group and phase velocity maps are determined for each period. Those maps are further used to reconstruct dispersion curves at fixed, regularly spaced locations. For each of these locations, a 1D shear-wave velocity profile is finally inverted for, that takes velocity information from previous studies into account. By providing new information about the upper crustal structure of this region, this work is a contribution to the understanding of the seismic activity of the ETSZ, and -to a broader extent- of the structure and evolution of the North American lithosphere.

  6. Anomalous relaxation kinetics and charge-density-wave correlations in underdoped BaPb1-x Bi x O3.

    PubMed

    Nicoletti, D; Casandruc, E; Fu, D; Giraldo-Gallo, P; Fisher, I R; Cavalleri, A

    2017-08-22

    Superconductivity often emerges in proximity of other symmetry-breaking ground states, such as antiferromagnetism or charge-density-wave (CDW) order. However, the subtle interrelation of these phases remains poorly understood, and in some cases even the existence of short-range correlations for superconducting compositions is uncertain. In such circumstances, ultrafast experiments can provide new insights by tracking the relaxation kinetics following excitation at frequencies related to the broken-symmetry state. Here, we investigate the transient terahertz conductivity of BaPb1-x Bi x O3--a material for which superconductivity is "adjacent" to a competing CDW phase--after optical excitation tuned to the CDW absorption band. In insulating BaBiO3 we observed an increase in conductivity and a subsequent relaxation, which are consistent with quasiparticles injection across a rigid semiconducting gap. In the doped compound BaBi0.72Pb0.28O3 (superconducting below TC = 7 K), a similar response was also found immediately above TC This observation evidences the presence of a robust gap up to T [Formula: see text] 40 K, which is presumably associated with short-range CDW correlations. A qualitatively different behavior was observed in the same material for [Formula: see text] 40 K. Here, the photoconductivity was dominated by an enhancement in carrier mobility at constant density, suggestive of melting of the CDW correlations rather than excitation across an optical gap. The relaxation displayed a temperature-dependent, Arrhenius-like kinetics, suggestive of the crossing of a free-energy barrier between two phases. These results support the existence of short-range CDW correlations above TC in underdoped BaPb1-x Bi x O3, and provide information on the dynamical interplay between superconductivity and charge order.

  7. Correlated dynamics of the motion of proton-hole wave packets in a photoionized water cluster.

    PubMed

    Li, Zheng; Madjet, Mohamed El-Amine; Vendrell, Oriol; Santra, Robin

    2013-01-18

    We explore the correlated dynamics of an electron hole and a proton after ionization of a protonated water cluster by extreme ultraviolet light. An ultrafast decay mechanism is found in which the proton-hole dynamics after the ionization are driven by electrostatic repulsion and involve a strong coupling between the nuclear and electronic degrees of freedom. We describe the system by a quantum-dynamical approach and show that nonadiabatic effects are a key element of the mechanism by which electron and proton repel each other and become localized at opposite sides of the cluster. Based on the generality of the decay mechanism, similar effects may be expected for other ionized systems featuring hydrogen bonds.

  8. Exponential frequency spectrum and Lorentzian pulses in magnetized plasmas

    SciTech Connect

    Pace, D. C.; Shi, M.; Maggs, J. E.; Morales, G. J.; Carter, T. A.

    2008-12-15

    Two different experiments involving pressure gradients across the confinement magnetic field in a large plasma column are found to exhibit a broadband turbulence that displays an exponential frequency spectrum for frequencies below the ion cyclotron frequency. The exponential feature has been traced to the presence of solitary pulses having a Lorentzian temporal signature. These pulses arise from nonlinear interactions of drift-Alfven waves driven by the pressure gradients. In both experiments the width of the pulses is narrowly distributed resulting in exponential spectra with a single characteristic time scale. The temporal width of the pulses is measured to be a fraction of a period of the drift-Alfven waves. The experiments are performed in the Large Plasma Device (LAPD-U) [W. Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] operated by the Basic Plasma Science Facility at the University of California, Los Angeles. One experiment involves a controlled, pure electron temperature gradient associated with a microscopic (6 mm gradient length) hot electron temperature filament created by the injection a small electron beam embedded in the center of a large, cold magnetized plasma. The other experiment is a macroscopic (3.5 cm gradient length) limiter-edge experiment in which a density gradient is established by inserting a metallic plate at the edge of the nominal plasma column of the LAPD-U. The temperature filament experiment permits a detailed study of the transition from coherent to turbulent behavior and the concomitant change from classical to anomalous transport. In the limiter experiment the turbulence sampled is always fully developed. The similarity of the results in the two experiments strongly suggests a universal feature of pressure-gradient driven turbulence in magnetized plasmas that results in nondiffusive cross-field transport. This may explain previous observations in helical confinement devices, research tokamaks, and arc plasmas.

  9. Automated Measurement of P- and S-Wave Differential Times for Imaging Spatial Distributions of Vp/Vs Ratio, with Moving-Window Cross-Correlation Technique

    NASA Astrophysics Data System (ADS)

    Taira, T.; Kato, A.

    2013-12-01

    A high-resolution Vp/Vs ratio estimate is one of the key parameters to understand spatial variations of composition and physical state within the Earth. Lin and Shearer (2007, BSSA) recently developed a methodology to obtain local Vp/Vs ratios in individual similar earthquake clusters, based on P- and S-wave differential times. A waveform cross-correlation approach is typically employed to measure those differential times for pairs of seismograms from similar earthquakes clusters, at narrow time windows around the direct P and S waves. This approach effectively collects P- and S-wave differential times and however requires the robust P- and S-wave time windows that are extracted based on either manually or automatically picked P- and S-phases. We present another technique to estimate P- and S-wave differential times by exploiting temporal properties of delayed time as a function of elapsed time on the seismograms with a moving-window cross-correlation analysis (e.g., Snieder, 2002, Phys. Rev. E; Niu et al. 2003, Nature). Our approach is based on the principle that the delayed time for the direct S wave differs from that for the direct P wave. Two seismograms aligned by the direct P waves from a pair of similar earthquakes yield that delayed times become zero around the direct P wave. In contrast, delayed times obtained from time windows including the direct S wave have non-zero value. Our approach, in principle, is capable of measuring both P- and S-wave differential times from single-component seismograms. In an ideal case, the temporal evolution of delayed time becomes a step function with its discontinuity at the onset of the direct S wave. The offset in the resulting step function would be the S-wave differential time, relative to the P-wave differential time as the two waveforms are aligned by the direct P wave. We apply our moving-window cross-correlation technique to the two different data sets collected at: 1) the Wakayama district, Japan and 2) the Geysers

  10. Correlation between propagation loss and silicon dioxide film properties for surface acoustic wave devices.

    PubMed

    Matsuda, Satoru; Miura, Michio; Matsuda, Takashi; Ueda, Masanori; Satoh, Yoshio; Hashimoto, Ken-Ya

    2013-05-01

    The correlation between the propagation loss and SiO2 film properties has been studied for temperature-compensated SAW devices using the SiO2/LiNbO3 structure. The SAW devices were prepared under different deposition temperatures for SiO2 film. Although they possessed excellent temperature coefficient of elasticity characteristics, devices prepared at lower temperature showed lower Q-factors. The SiO2 films were also deposited on a Si substrate under the same deposition conditions used for the SAW device preparation. Optical characterization was performed with Fourier transform infrared spectroscopy (FT-IR), spectrometer measurement, and Raman spectroscopy. IR absorbance spectra were almost same in the FT-IR measurement. However, optical attenuation in the UV region decreased with the deposition temperature in the spectrometer measurement. The optical attenuation is caused by the increase of the extinction coefficient in the SiO2 layer, and its optical wavelength dependence indicated that observed excess attenuation is caused by Rayleigh scattering. The Raman scattering also decreased with the deposition temperature in the Raman spectroscopy. The scattering is caused by the distortion of the SiO2 network. These results indicate that the Rayleigh scattering caused by the distortion of the SiO2 network is the main contributor to the excess SAW propagation loss in this case.

  11. Quantum Entanglement and Correlation Lengths of a S-wave Superconductors in the Presence of a Weak Constant External Potential

    NASA Astrophysics Data System (ADS)

    Afzali, R.; Fahimi, S.; Dehghan, M.

    2017-05-01

    By considering a s-wave Bardeen-Cooper-Schrieffer superconductor, as a many body system, subject to a weak constant external potential, U, using perturbed linearized Gorkov equations at zero temperature and calculating perturbed Green's functions up to the first approximation, we obtain the two-particle space-spin density matrix of the system. Then, we investigate the effect of the potential on bipartite entanglement (via concurrence) of electron spins of a Cooper pair and also quantum discord in terms of the potential and the relative distance of electrons of a Cooper pair, r. At some fixed values of r, concurrence is zero and does not change until U increases and receives to a special value. Specially, quantum entanglement length and quantum correlation length (in which quantum discord becomes zero) with respect to the potential are derived. We result that by increasing the potential, these lengths are increased. At higher values of U, quantum correlation length is not very sensitive to changes in U. Finally, the relation between these lengths is given.

  12. Wave intensity analysis in mice: age-related changes in WIA peaks and correlation with cardiac indexes.

    PubMed

    Di Lascio, Nicole; Kusmic, Claudia; Stea, Francesco; Faita, Francesco

    2016-11-03

    Mouse models are increasingly employed in the comprehension of cardiovascular disease. Wave Intensity Analysis (WIA) can provide information about the interaction between the vascular and the cardiac system. We investigate age-associated changes in WIA-derived parameters in mice and correlate them with biomarkers of cardiac function. Sixteen wild-type male mice were imaged with high-resolution ultrasound (US) at 8 weeks (T 0) and 25 weeks (T 1) of age. Carotid pulse wave velocity (PWV) was calculated from US images using the diameter-velocity loop and employed to evaluate WIA. Amplitudes of the first (W 1) and the second (W 2) local maxima, local minimum (W b) and the reflection index (RI = W b/W 1) were assessed. Cardiac output (CO), ejection fraction (EF), fractional shortening (FS) and stroke volume (SV) were evaluated; longitudinal, radial and circumferential strain and strain rate values (LS, LSR, RS, RSR, CS, CSR) were obtained through strain analysis. W 1 (T 0: 4.42e-07 ± 2.32e-07 m(2)/s; T 1: 2.21e-07 ± 9.77 m(2)/s), W 2 (T 0: 2.45e-08 ± 9.63e-09 m(2)/s; T 1: 1.78e-08 ± 7.82 m(2)/s), W b (T 0: -8.75e-08 ± 5.45e-08 m(2)/s; T 1: -4.28e-08 ± 2.22e-08 m(2)/s), CO (T 0: 19.27 ± 4.33 ml/min; T 1: 16.71 ± 2.88 ml/min), LS (T 0: 17.55 ± 3.67%; T 1: 15.05 ± 2.89%), LSR (T 0: 6.02 ± 1.39 s(-1); T 1: 5.02 ± 1.25 s(-1)), CS (T 0: 27.5 ± 5.18%; T 1: 22.66 ± 3.09%) and CSR (T 0: 10.03 ± 2.55 s(-1); T 1: 7.50 ± 1.84 s(-1)) significantly reduced with age. W 1 was significantly correlated with CO (R = 0.58), EF (R = 0.72), LS (R = 0.65), LSR (R = 0.89), CS (R = 0.61), CSR (R = 0.70) at T 0; correlations were lost at T 1. The decrease in W 1 and W 2 suggests a cardiac performance reduction, while that in Wb, considering unchanged RI, might indicate a wave energy decrease. The loss of correlation between WIA-derived and cardiac parameters might reflect an alteration in cardiovascular interaction.

  13. Exponential orthogonality catastrophe in single-particle and many-body localized systems

    NASA Astrophysics Data System (ADS)

    Deng, Dong-Ling; Pixley, J. H.; Li, Xiaopeng; Das Sarma, S.

    2015-12-01

    We investigate the statistical orthogonality catastrophe (STOC) in single-particle and many-body localized systems by studying the response of the many-body ground state to a local quench. Using scaling arguments and exact numerical calculations, we establish that the STOC gives rise to a wave function overlap between the pre- and postquench ground states that has an exponential decay with the system size, in sharp contrast to the well-known power law Anderson orthogonality catastrophe in metallic systems. This exponential decay arises from a statistical charge transfer process where a particle can be effectively "transported" to an arbitrary lattice site. In a many-body localized phase, this nonlocal transport and the associated exponential STOC phenomenon persist in the presence of interactions. We study the possible experimental consequences of the exponential STOC on the Loschmidt echo and spectral function, establishing that this phenomenon might be observable in cold atomic experiments through Ramsey interference and radio-frequency spectroscopy.

  14. Phylogenetic Stochastic Mapping Without Matrix Exponentiation

    PubMed Central

    Irvahn, Jan; Minin, Vladimir N.

    2014-01-01

    Abstract Phylogenetic stochastic mapping is a method for reconstructing the history of trait changes on a phylogenetic tree relating species/organism carrying the trait. State-of-the-art methods assume that the trait evolves according to a continuous-time Markov chain (CTMC) and works well for small state spaces. The computations slow down considerably for larger state spaces (e.g., space of codons), because current methodology relies on exponentiating CTMC infinitesimal rate matrices—an operation whose computational complexity grows as the size of the CTMC state space cubed. In this work, we introduce a new approach, based on a CTMC technique called uniformization, which does not use matrix exponentiation for phylogenetic stochastic mapping. Our method is based on a new Markov chain Monte Carlo (MCMC) algorithm that targets the distribution of trait histories conditional on the trait data observed at the tips of the tree. The computational complexity of our MCMC method grows as the size of the CTMC state space squared. Moreover, in contrast to competing matrix exponentiation methods, if the rate matrix is sparse, we can leverage this sparsity and increase the computational efficiency of our algorithm further. Using simulated data, we illustrate advantages of our MCMC algorithm and investigate how large the state space needs to be for our method to outperform matrix exponentiation approaches. We show that even on the moderately large state space of codons our MCMC method can be significantly faster than currently used matrix exponentiation methods. PMID:24918812

  15. Benchmark of Dynamic Electron Correlation Models for Seniority-Zero Wave Functions and Their Application to Thermochemistry.

    PubMed

    Boguslawski, Katharina; Tecmer, Paweł

    2017-10-03

    Wave functions restricted to electron-pair states are promising models to describe static/nondynamic electron correlation effects encountered, for instance, in bond-dissociation processes and transition-metal and actinide chemistry. To reach spectroscopic accuracy, however, the missing dynamic electron correlation effects that cannot be described by electron-pair states need to be included a posteriori. In this Article, we extend the previously presented perturbation theory models with an Antisymmetric Product of 1-reference orbital Geminal (AP1roG) reference function that allows us to describe both static/nondynamic and dynamic electron correlation effects. Specifically, our perturbation theory models combine a diagonal and off-diagonal zero-order Hamiltonian, a single-reference and multireference dual state, and different excitation operators used to construct the projection manifold. We benchmark all proposed models as well as an a posteriori Linearized Coupled Cluster correction on top of AP1roG against CR-CC(2,3) reference data for reaction energies of several closed-shell molecules that are extrapolated to the basis set limit. Moreover, we test the performance of our new methods for multiple bond breaking processes in the homonuclear N2, C2, and F2 dimers as well as the heteronuclear BN, CO, and CN(+) dimers against MRCI-SD, MRCI-SD+Q, and CR-CC(2,3) reference data. Our numerical results indicate that the best performance is obtained from a Linearized Coupled Cluster correction as well as second-order perturbation theory corrections employing a diagonal and off-diagonal zero-order Hamiltonian and a single-determinant dual state. These dynamic corrections on top of AP1roG provide substantial improvements for binding energies and spectroscopic properties obtained with the AP1roG approach, while allowing us to approach chemical accuracy for reaction energies involving closed-shell species.

  16. Shear-wave elastography of invasive breast cancer: correlation between quantitative mean elasticity value and immunohistochemical profile.

    PubMed

    Youk, Ji Hyun; Gweon, Hye Mi; Son, Eun Ju; Kim, Jeong-Ah; Jeong, Joon

    2013-02-01

    To compare the mean elasticity value, as measured by shear-wave elastography (SWE), with immunohistochemical profile of invasive breast cancer. This was an institutional review board-approved retrospective study, with a waiver of informed consent. A total of 166 invasive breast cancers in 152 women undergoing preoperative SWE and surgery were included. Quantitative mean elasticity values in kPa were measured for each lesion by using SWE. Medical records were reviewed to determine palpability, invasive size, lymphovascular invasion, histologic grade, and axillary lymph node status. Based on the immunohistochemical profiles, tumor subtypes were categorized as triple-negative (TN), luminal A and B, or human epidermal growth factor receptor 2-enriched cancer. The mean elasticity value was correlated with clinicopathological features using univariate regression models and multivariate linear regression analysis. Palpability (P < 0.0001), larger size (P = 0.013), lymphovascular invasion (P < 0.0001), higher histologic grade (P < 0.0001), and lymph node involvement (P = 0.018) were significantly associated with the mean elasticity value. For the immunohistochemical profiles and tumor subtypes, the estrogen receptor (P = 0.015), progesterone receptor (P = 0.002), Ki-67 (P = 0.009), and the TN (P = 0.009) tumor subtype were correlated with the mean elasticity value. Multivariate logistic regression analysis showed that the following variables were significantly associated with the mean elasticity value: palpable abnormality, histologic grade, and lymphovascular invasion. No immunohistochemical profile of the cancers was independently correlated with the mean elasticity value. For invasive breast cancers, clinicopathological features of poor prognosis showed higher mean elasticity values than those of good prognosis. However, the immunohistochemical profile showed no independent association with the mean elasticity value.

  17. Seasonal variations of stratospheric gravity waves in Antarctica and correlations to polar mesospheric cloud brightness in summer

    NASA Astrophysics Data System (ADS)

    Yamashita, C.; Chu, X.; Huang, W.; Nott, G. J.; Espy, P. J.

    2007-12-01

    Gravity waves (GWs) play an important role in the dynamics of global middle and upper atmosphere. However, quantitative characterization of GWs in the upper stratosphere is still rare in Antarctica. Here we present a study of stratospheric GW parameters and seasonal variations using the data obtained with the University of Illinois Fe Boltzmann/Rayleigh lidar at the South Pole (90°S) from December 1999 to January 2001 and at Rothera (67.5°S, 68.0°W) from December 2002 to March 2005. Through analyzing the Rayleigh lidar density data in 30-60 km, GW parameters are derived for the South Pole and Rothera, and the results are comparable. The annual mean GW vertical wavelength is 4.3 +/- 1.5 km, vertical phase speed is 0.33 +/- 0.15 m/s, and the period is 245 +/- 110 min. We characterize the stratospheric GW strength with the root- mean-square (RMS) relative density perturbation. The seasonal variation of GW strength is clear at Rothera, with the maximum in winter and the minimum in summer. No significant seasonal variations are observed at the South Pole. The data also show that the GW period is shorter in summer than in winter at Rothera. In addition, the stratospheric GW strength is negatively correlated with PMC brightness at Rothera but no significant correlation at the South Pole. Two important factors, i.e., the wind filtering effect and topographical GW source difference, are investigated in order to explain the GW seasonal variations. We then apply a GW ray-tracing model to analyze the GW source and propagation. The correlation between GW strength and PMC brightness also provides a clue of GW propagation from the stratosphere to the mesosphere.

  18. Decoherence and Exponential Law: A Solvable Model

    NASA Technical Reports Server (NTRS)

    Pascazio, Saverio; Namiki, Mikio

    1996-01-01

    We analyze a modified version of the 'AgBr' Hamiltonian, solve exactly the equations of motion in terms of SU(2) coherent states, and study the weak-coupling, macroscopic limit of the model, obtaining an exponential behavior at all times. The asymptotic dominance of the exponential behavior is representative of a purely stochastic evolution and can be derived quantum mechanically in the so-called van Hove's limit (which is a weak-coupling, macroscopic limit). At the same time, a temporal behavior of the exponential type, yielding a 'probability dissipation' is closely related to dephasing ('decoherence') effects and one can expect a close connection with a dissipative and irreversible behavior. We stress the central relevance of the problem of dissipation to the quantum measurement theory and to the general topic of decoherence.

  19. Exponential energy growth in a Fermi accelerator.

    PubMed

    Shah, Kushal; Turaev, Dmitry; Rom-Kedar, Vered

    2010-05-01

    An unbounded energy growth of particles bouncing off two-dimensional (2D) smoothly oscillating polygons is observed. Notably, such billiards have zero Lyapunov exponents in the static case. For a special 2D polygon geometry--a rectangle with a vertically oscillating horizontal bar--we show that this energy growth is not only unbounded but also exponential in time. For the energy averaged over an ensemble of initial conditions, we derive an a priori expression for the rate of the exponential growth as a function of the geometry and the ensemble type. We demonstrate numerically that the ensemble averaged energy indeed grows exponentially, at a close to the analytically predicted rate-namely, the process is controllable.

  20. Modeling aftershocks as a stretched exponential relaxation

    NASA Astrophysics Data System (ADS)

    Mignan, A.

    2015-11-01

    The decay rate of aftershocks has been modeled as a power law since the pioneering work of Omori in the late nineteenth century. Although other expressions have been proposed in recent decades to describe the temporal behavior of aftershocks, the number of model comparisons remains limited. After reviewing the aftershock models published from the late nineteenth century until today, I solely compare the power law, pure exponential and stretched exponential expressions defined in their simplest forms. By applying statistical methods recommended recently in applied mathematics, I show that all aftershock sequences tested in three regional earthquake catalogs (Southern and Northern California, Taiwan) and with three declustering techniques (nearest-neighbor, second-order moment, window methods) follow a stretched exponential instead of a power law. These results infer that aftershocks are due to a simple relaxation process, in accordance with most other relaxation processes observed in Nature.

  1. Exponential fitting BDF Runge Kutta algorithms

    NASA Astrophysics Data System (ADS)

    Vigo-Aguiar, J.; Martín-Vaquero, J.; Ramos, H.

    2008-01-01

    In other papers, the authors presented exponential fitting methods of BDF type. Now, these methods are used to derive some BDF-Runge-Kutta type formulas (of second-, third- and fourth-order), capable of the exact integration (with only round-off errors) of differential equations whose solutions are linear combinations of an exponential with parameter A and ordinary polynomials. Theorems of the truncation error reveal the good behavior of the new methods for stiff problems. Plots of their absolute stability regions that include the whole of the negative real axis are provided. Different procedures to find the parameter of the method are proposed, using these techniques there will not be necessary to compute the exponential matrix at each step, even when nonlinear problems are integrated. Numerical examples underscore the efficiency of the proposed codes, especially when they are integrating stiff problems.

  2. Method for exponentiating in cryptographic systems

    DOEpatents

    Brickell, Ernest F.; Gordon, Daniel M.; McCurley, Kevin S.

    1994-01-01

    An improved cryptographic method utilizing exponentiation is provided which has the advantage of reducing the number of multiplications required to determine the legitimacy of a message or user. The basic method comprises the steps of selecting a key from a preapproved group of integer keys g; exponentiating the key by an integer value e, where e represents a digital signature, to generate a value g.sup.e ; transmitting the value g.sup.e to a remote facility by a communications network; receiving the value g.sup.e at the remote facility; and verifying the digital signature as originating from the legitimate user. The exponentiating step comprises the steps of initializing a plurality of memory locations with a plurality of values g.sup.xi ; computi The United States Government has rights in this invention pursuant to Contract No. DE-AC04-76DP00789 between the Department of Energy and AT&T Company.

  3. Nonuniform exponential dichotomies and Lyapunov functions

    NASA Astrophysics Data System (ADS)

    Barreira, Luis; Dragičević, Davor; Valls, Claudia

    2017-05-01

    For the nonautonomous dynamics defined by a sequence of bounded linear operators acting on an arbitrary Hilbert space, we obtain a characterization of the notion of a nonuniform exponential dichotomy in terms of quadratic Lyapunov sequences. We emphasize that, in sharp contrast with previous results, we consider the general case of possibly noninvertible linear operators, thus requiring only the invertibility along the unstable direction. As an application, we give a simple proof of the robustness of a nonuniform exponential dichotomy under sufficiently small linear perturbations.

  4. Designing efficient exponential integrators with EPIRK framework

    NASA Astrophysics Data System (ADS)

    Rainwater, Greg; Tokman, Mayya

    2017-07-01

    Exponential propagation iterative methods of Runge-Kutta type (EPIRK) provide a flexible framework to derive efficient exponential integrators for different types of ODE systems. Different classes of EPIRK methods can be constructed depending on the properties of the equations to be solved. Both classically and stiffly accurate EPIRK schemes can be derived. Flexibility of the order conditions allows to optimize coefficients to construct more efficient schemes. Particularly well-performing fourth-order stiffly accurate methods have been derived and applied to a number of problems. A new efficient three-stage fourth order method is presented and tested here using numerical examples.

  5. A method for nonlinear exponential regression analysis

    NASA Technical Reports Server (NTRS)

    Junkin, B. G.

    1971-01-01

    A computer-oriented technique is presented for performing a nonlinear exponential regression analysis on decay-type experimental data. The technique involves the least squares procedure wherein the nonlinear problem is linearized by expansion in a Taylor series. A linear curve fitting procedure for determining the initial nominal estimates for the unknown exponential model parameters is included as an integral part of the technique. A correction matrix was derived and then applied to the nominal estimate to produce an improved set of model parameters. The solution cycle is repeated until some predetermined criterion is satisfied.

  6. An Exponential Growth Learning Trajectory: Students' Emerging Understanding of Exponential Growth through Covariation

    ERIC Educational Resources Information Center

    Ellis, Amy B.; Ozgur, Zekiye; Kulow, Torrey; Dogan, Muhammed F.; Amidon, Joel

    2016-01-01

    This article presents an Exponential Growth Learning Trajectory (EGLT), a trajectory identifying and characterizing middle grade students' initial and developing understanding of exponential growth as a result of an instructional emphasis on covariation. The EGLT explicates students' thinking and learning over time in relation to a set of tasks…

  7. An Exponential Growth Learning Trajectory: Students' Emerging Understanding of Exponential Growth through Covariation

    ERIC Educational Resources Information Center

    Ellis, Amy B.; Ozgur, Zekiye; Kulow, Torrey; Dogan, Muhammed F.; Amidon, Joel

    2016-01-01

    This article presents an Exponential Growth Learning Trajectory (EGLT), a trajectory identifying and characterizing middle grade students' initial and developing understanding of exponential growth as a result of an instructional emphasis on covariation. The EGLT explicates students' thinking and learning over time in relation to a set of tasks…

  8. The Exponential Decay Law, Bell's Inequality, and Nonlinear Dynamics

    NASA Astrophysics Data System (ADS)

    McHarris, Wm. C.

    2002-10-01

    What do the exponential decay law and Bell's inequality have in common? And with nonlinear dynamics? Simply that they both are among the puzzles at the heart of quantum mechanics, puzzles which can have parallel explanations in terms of chaos or nonlinear dynamics. The statistical nature of the exponential decay law, which at first glance is incompatible with the quantum mechanical concept of indistinguishabe particles, can be mocked up by the extreme sensitivity of chaotic systems to initial conditions. In accord with Ockham's Razor, iteration of a simple unimodal (e.g., quadratic) map in its chaotic region and keeping track of the number of iterations required for a trajectory starting from a point chosen at random within a small interval to escape into another small small interval reproduces the observed exponential behavior. Similarly, Bell's inequality derived using classical mechanics (with an underlying assumption of classical statistics) places an upper limit on numbers derived from measurements on entangled states, whereas quantum mechanics implies that this upper limit no longer holds. Experiments have shown the inequality to be violated, upholding quantum mechanics. However, nonlinear dynamics, with its correlated statistics, can yield results overlapping with the quantum mechanical predictions. Whether or not the experiments rule out "local realism" is thus a moot point. Nonlinear determinism just might exist within quantum mechanics.

  9. Communication: Development of standing evanescent-wave fluorescence correlation spectroscopy and its application to the lateral diffusion of lipids in a supported lipid bilayer

    NASA Astrophysics Data System (ADS)

    Otosu, Takuhiro; Yamaguchi, Shoichi

    2017-07-01

    We present standing evanescent-wave fluorescence correlation spectroscopy (SEW-FCS). This technique utilizes the interference of two evanescent waves which generates a standing evanescent-wave. Fringe-pattern illumination created by a standing evanescent-wave enables us to measure the diffusion coefficients of molecules with a super-resolution corresponding to one fringe width. Because the fringe width can be reliably estimated by a simple procedure, utilization of fringes is beneficial to quantitatively analyze the slow diffusion of molecules in a supported lipid bilayer (SLB), a model biomembrane formed on a solid substrate, with the timescale relevant for reliable FCS analysis. Furthermore, comparison of the data between SEW-FCS and conventional total-internal reflection FCS, which can also be performed by the SEW-FCS instrument, effectively eliminates the artifact due to afterpulsing of the photodiode detector. The versatility of SEW-FCS is demonstrated by its application to various SLBs.

  10. Strong correlations, strong coupling, and s -wave superconductivity in hole-doped BaFe2As2 single crystals

    NASA Astrophysics Data System (ADS)

    Hardy, F.; Böhmer, A. E.; de'Medici, L.; Capone, M.; Giovannetti, G.; Eder, R.; Wang, L.; He, M.; Wolf, T.; Schweiss, P.; Heid, R.; Herbig, A.; Adelmann, P.; Fisher, R. A.; Meingast, C.

    2016-11-01

    We present a comprehensive study of the low-temperature heat capacity and thermal expansion of single crystals of the hole-doped Ba1 -xKxFe2As2 series (0 correlations and the possible proximity of these materials to a Mott insulator. This trend is well reproduced theoretically by our density functional theory + slave-spin (DFT+SS) calculations, confirming that 122-iron pnictides are effectively Hund metals, in which sizable Hund's coupling and orbital selectivity are the key ingredients for tuning correlations. We also find direct evidence for the existence of a coherence-incoherence crossover between a low-temperature heavy Fermi liquid and a highly incoherent high-temperature regime similar to heavy fermion systems. In the superconducting state, clear signatures of multiband superconductivity are observed with no evidence for nodes in the energy gaps, ruling out the existence of a doping-induced change of symmetry (from s to d wave). We argue that the disappearance of the electron band in the range 0.4

  11. Exponential lifetime improvement in topological quantum memories

    NASA Astrophysics Data System (ADS)

    Bardyn, Charles-Edouard; Karzig, Torsten

    2016-09-01

    We propose a simple yet efficient mechanism for passive error correction in topological quantum memories. Our scheme relies on driven-dissipative ancilla systems which couple to local excitations (anyons) and make them "sink" in energy, with no required interaction among ancillae or anyons. Through this process, anyons created by some thermal environment end up trapped in potential "trenches" that they themselves generate, which can be interpreted as a "memory foam" for anyons. This self-trapping mechanism provides an energy barrier for anyon propagation and removes entropy from the memory by favoring anyon recombination over anyon separation (responsible for memory errors). We demonstrate that our scheme leads to an exponential increase of the memory-coherence time with system size L , up to an upper bound Lmax, which can increase exponentially with Δ /T , where T is the temperature and Δ is some energy scale defined by potential trenches. This results in a double exponential increase of the memory time with Δ /T , which greatly improves over the Arrhenius (single-exponential) scaling found in typical quantum memories.

  12. Sparse Exponential Family Principal Component Analysis.

    PubMed

    Lu, Meng; Huang, Jianhua Z; Qian, Xiaoning

    2016-12-01

    We propose a Sparse exponential family Principal Component Analysis (SePCA) method suitable for any type of data following exponential family distributions, to achieve simultaneous dimension reduction and variable selection for better interpretation of the results. Because of the generality of exponential family distributions, the method can be applied to a wide range of applications, in particular when analyzing high dimensional next-generation sequencing data and genetic mutation data in genomics. The use of sparsity-inducing penalty helps produce sparse principal component loading vectors such that the principal components can focus on informative variables. By using an equivalent dual form of the formulated optimization problem for SePCA, we derive optimal solutions with efficient iterative closed-form updating rules. The results from both simulation experiments and real-world applications have demonstrated the superiority of our SePCA in reconstruction accuracy and computational efficiency over traditional exponential family PCA (ePCA), the existing Sparse PCA (SPCA) and Sparse Logistic PCA (SLPCA) algorithms.

  13. A Simple Mechanical Experiment on Exponential Growth

    ERIC Educational Resources Information Center

    McGrew, Ralph

    2015-01-01

    With a rod, cord, pulleys, and slotted masses, students can observe and graph exponential growth in the cord tension over a factor of increase as large as several hundred. This experiment is adaptable for use either in algebra-based or calculus-based physics courses, fitting naturally with the study of sliding friction. Significant parts of the…

  14. A note on the Jackson exponentiality test

    NASA Astrophysics Data System (ADS)

    Caeiro, Frederico; Marques, Filipe J.; Mateus, Ayana; Atal, Serra

    2016-12-01

    In this paper we revisit the Jackson exponentiality test. We study and provide functions in R language to compute theoretical moments, the distribution function and quantiles of the statistic test. Approximations to the exact distribution function and quantiles are also provided and their precision discussed. In addition, we provide an application of the Jackson test to real data.

  15. Graphical Models via Univariate Exponential Family Distributions

    PubMed Central

    Yang, Eunho; Ravikumar, Pradeep; Allen, Genevera I.; Liu, Zhandong

    2016-01-01

    Undirected graphical models, or Markov networks, are a popular class of statistical models, used in a wide variety of applications. Popular instances of this class include Gaussian graphical models and Ising models. In many settings, however, it might not be clear which subclass of graphical models to use, particularly for non-Gaussian and non-categorical data. In this paper, we consider a general sub-class of graphical models where the node-wise conditional distributions arise from exponential families. This allows us to derive multivariate graphical model distributions from univariate exponential family distributions, such as the Poisson, negative binomial, and exponential distributions. Our key contributions include a class of M-estimators to fit these graphical model distributions; and rigorous statistical analysis showing that these M-estimators recover the true graphical model structure exactly, with high probability. We provide examples of genomic and proteomic networks learned via instances of our class of graphical models derived from Poisson and exponential distributions. PMID:27570498

  16. A Simple Mechanical Experiment on Exponential Growth

    ERIC Educational Resources Information Center

    McGrew, Ralph

    2015-01-01

    With a rod, cord, pulleys, and slotted masses, students can observe and graph exponential growth in the cord tension over a factor of increase as large as several hundred. This experiment is adaptable for use either in algebra-based or calculus-based physics courses, fitting naturally with the study of sliding friction. Significant parts of the…

  17. Non-uniform exponential tension splines

    NASA Astrophysics Data System (ADS)

    Bosner, Tina; Rogina, Mladen

    2007-11-01

    We describe explicitly each stage of a numerically stable algorithm for calculating with exponential tension B-splines with non-uniform choice of tension parameters. These splines are piecewisely in the kernel of D 2(D 2?p 2), where D stands for ordinary derivative, defined on arbitrary meshes, with a different choice of the tension parameter p on each interval. The algorithm provides values of the associated B-splines and their generalized and ordinary derivatives by performing positive linear combinations of positive quantities, described as lower-order exponential tension splines. We show that nothing else but the knot insertion algorithm and good approximation of a few elementary functions is needed to achieve machine accuracy. The underlying theory is that of splines based on Chebyshev canonical systems which are not smooth enough to be ECC-systems. First, by de Boor algorithm we construct exponential tension spline of class C 1, and then we use quasi-Oslo type algorithms to evaluate classical non-uniform C 2 tension exponential splines.

  18. Intersection of the Exponential and Logarithmic Curves

    ERIC Educational Resources Information Center

    Boukas, Andreas; Valahas, Theodoros

    2009-01-01

    The study of the number of intersection points of y = a[superscript x] and y = log[subscript a]x can be an interesting topic to present in a single-variable calculus class. In this article, the authors present a classroom presentation outline involving the basic algebra and the elementary calculus of the exponential and logarithmic functions. The…

  19. Exponential examples of solving parity games

    NASA Astrophysics Data System (ADS)

    Lebedev, V. N.

    2016-04-01

    This paper is devoted to solving certain problems on the computational complexity of deciding the winner in cyclic games. The main result is the proof of the fact that the nondeterministic potential transformation algorithm designed for solving parity games is exponential in terms of computation time.

  20. Stretched Exponential Relaxation of Glasses at Low Temperature.

    PubMed

    Yu, Yingtian; Wang, Mengyi; Zhang, Dawei; Wang, Bu; Sant, Gaurav; Bauchy, Mathieu

    2015-10-16

    The question of whether glass continues to relax at low temperature is of fundamental and practical interest. Here, we report a novel atomistic simulation method allowing us to directly access the long-term dynamics of glass relaxation at room temperature. We find that the potential energy relaxation follows a stretched exponential decay, with a stretching exponent β=3/5, as predicted by Phillips's diffusion-trap model. Interestingly, volume relaxation is also found. However, it is not correlated to the energy relaxation, but it is rather a manifestation of the mixed alkali effect.

  1. Dynamics of sessile and pendant drops excited by surface acoustic waves: Gravity effects and correlation between oscillatory and translational motions.

    PubMed

    Bussonnière, A; Baudoin, M; Brunet, P; Matar, O Bou

    2016-05-01

    When sessile droplets are excited by ultrasonic traveling surface acoustic waves (SAWs), they undergo complex dynamics with both oscillations and translational motion. While the nature of the Rayleigh-Lamb quadrupolar drop oscillations has been identified, their origin and their influence on the drop mobility remains unexplained. Indeed, the physics behind this peculiar dynamics is complex with nonlinearities involved both at the excitation level (acoustic streaming and radiation pressure) and in the droplet response (nonlinear oscillations and contact line dynamics). In this paper, we investigate the dynamics of sessile and pendant drops excited by SAWs. For pendant drops, so-far unreported dynamics are observed close to the drop detachment threshold with the suppression of the translational motion. Away from this threshold, the comparison between pendant and sessile drop dynamics allows us to identify the role played by gravity or, more generally, by an initial or dynamically induced stretching of the drop. In turn, we elucidate the origin of the resonance frequency shift, as well as the origin of the strong correlation between oscillatory and translational motion. We show that for sessile drops, the velocity is mainly determined by the amplitude of oscillation and that the saturation observed is due to the nonlinear dependence of the drop response frequency on the dynamically induced stretching.

  2. Dynamics of sessile and pendant drops excited by surface acoustic waves: Gravity effects and correlation between oscillatory and translational motions

    NASA Astrophysics Data System (ADS)

    Bussonnière, A.; Baudoin, M.; Brunet, P.; Matar, O. Bou

    2016-05-01

    When sessile droplets are excited by ultrasonic traveling surface acoustic waves (SAWs), they undergo complex dynamics with both oscillations and translational motion. While the nature of the Rayleigh-Lamb quadrupolar drop oscillations has been identified, their origin and their influence on the drop mobility remains unexplained. Indeed, the physics behind this peculiar dynamics is complex with nonlinearities involved both at the excitation level (acoustic streaming and radiation pressure) and in the droplet response (nonlinear oscillations and contact line dynamics). In this paper, we investigate the dynamics of sessile and pendant drops excited by SAWs. For pendant drops, so-far unreported dynamics are observed close to the drop detachment threshold with the suppression of the translational motion. Away from this threshold, the comparison between pendant and sessile drop dynamics allows us to identify the role played by gravity or, more generally, by an initial or dynamically induced stretching of the drop. In turn, we elucidate the origin of the resonance frequency shift, as well as the origin of the strong correlation between oscillatory and translational motion. We show that for sessile drops, the velocity is mainly determined by the amplitude of oscillation and that the saturation observed is due to the nonlinear dependence of the drop response frequency on the dynamically induced stretching.

  3. Phase correlation between four-wave mixing and optical fields in double Λ-type atomic system.

    PubMed

    Jeong, Taek; Moon, Han Seb

    2016-12-12

    We study the spectral features and phase of four-wave mixing (FWM) light according to the relative phase-noise of the optical fields coupled to a double Λ-type atomic system of the 5S1/2-5P1/2 transition of 87Rb atoms. We observe that the spectral shape of the FWM spectrum is identical to that of the two-photon absorption (TPA) spectrum due to two-photon coherence and that it is independent of the relative phase-noise of the pump light. From these results, we clarify that the two-photon coherence plays a very important role in the FWM process. Furthermore, we measure the relative linewidth of the FWM signal to the probe and pump lasers by means of a beat interferometer. We confirmed that the phase of the FWM signal is strongly correlated with that of the pump laser under the condition of phase-locked probe and coupling lasers for two-photon coherence.

  4. Far-field correlation of bidirectional tracking beams due to wave-front deformation in inter-satellites optical communication links.

    PubMed

    Yu, Siyuan; Ma, Zhongtian; Ma, Jing; Wu, Feng; Tan, Liying

    2015-03-23

    In some applications of optical communication systems, such as inter-satellites optical communication, the correlation of the bidirectional tracking beams changes in far-field as a result of wave-front deformation. Far-field correlation model with wave-front deformation on tracking stability is established. Far-field correlation function and factor have been obtained. Combining with parameters of typical laser communication systems, the model is corrected. It shows that deformation pointing-tracking errors θ(A) and θ(B), far-field correlation factor δ depend on RMS of deformation error rms, which decline with a increasing rms including Tilt and Coma. The principle of adjusting far-field correlation factor with wave-front deformation to compensate deformation pointing-tracking errors has been given, through which the deformation pointing-tracking error is reduced to 18.12″ (Azimuth) and 17.65″ (Elevation). Work above possesses significant reference value on optimization design in inter-satellites optical communication.

  5. Mutual-probability prediction and higher-order correlation effects among acoustic, light and electromagnetic waves in a video display terminal environment

    NASA Astrophysics Data System (ADS)

    Ohta, Mitsuo; Ogawa, Hitoshi; Ikuta, Akira

    2005-08-01

    A probabilistic signal processing method, with which is possible to get some methodological suggestion to the measurement method of correlative and/or accumulative effects in the compound environment of sound, light and electromagnetic (EM) waves is discussed. In order to extract various types of latent interrelation characteristics among wave environmental factors leaked from an actually operating video display terminal (VDT), an extended regression system model, hierarchically reflecting not only linear correlation information but also nonlinear correlation information, is first introduced, especially from a viewpoint of 'relationism-first'. Then, through estimating each regression parameter of this model, some original evaluation methods for predicting a whole probability distribution form, from one another, are proposed. Finally, the effectiveness of the methods is experimentally confirmed, by applying them to the actual observed data leaked by a VDT with some television games. To cite this article: M. Ohta et al., C. R. Mecanique 333 (2005).

  6. Correlated Pc4-5 ULF waves, whistler-mode chorus and pulsating aurora observed by the Van Allen Probes and ground-based systems

    NASA Astrophysics Data System (ADS)

    Jaynes, A. N.; Lessard, M.; Takahashi, K.; Ali, A.; Malaspina, D.; Michell, R.; Spanswick, E.; Baker, D. N.; Blake, J. B.; Cully, C. M.; Donovan, E.; Kletzing, C.; Reeves, G. D.; Samara, M.; Spence, H. E.; Wygant, J. R.

    2015-12-01

    Theory and observations have linked equatorial VLF waves with pulsating aurora for decades, invoking the process of pitch-angle scattering of 10's keV electrons in the equatorial magnetosphere. Recently published satellite studies have strengthened this argument, by showing strong correlation between pulsating auroral patches and both lower-band chorus and 10's keV electron modulation in the vicinity of geosynchronous orbit. Additionally, a previous link has been made between Pc4-5 compressional pulsations and modulation of whistler-mode chorus using THEMIS. In the current study, we present simultaneous in-situ observations of structured chorus waves and an apparent field line resonance (in the Pc4-5 range) as a result of a substorm injection, observed by Van Allen Probes, along with ground-based observations of pulsating aurora. We demonstrate the likely scenario being one of substorm-driven Pc4-5 ULF pulsations modulating chorus waves, and thus providing the driver for pulsating particle precipitation into the Earth's atmosphere. Interestingly, the modulated chorus wave and ULF wave periods are well correlated, with chorus occurring at half the periodicity of the ULF waves. We also show, for the first time, a particular few-Hz modulation of individual chorus elements that coincides with the same modulation in a nearby pulsating aurora patch. Such modulation has been noticed as a high-frequency component in ground-based camera data of pulsating aurora for decades, and may be a result of nonlinear chorus wave interactions in the equatorial region. This work illustrates the significant understanding of magnetospheric processes that can be gained through use of conjunctive ground- and space-based observations.

  7. Correlated Pc4-5 ULF waves, whistler-mode chorus, and pulsating aurora observed by the Van Allen Probes and ground-based systems

    DOE PAGES

    Jaynes, A. N.; Lessard, M. R.; Takahashi, K.; ...

    2015-10-28

    Theory and observations have linked equatorial VLF waves with pulsating aurora for decades, invoking the process of pitch angle scattering of tens of keV electrons in the equatorial magnetosphere. Recently published satellite studies have strengthened this argument, by showing strong correlation between pulsating auroral patches and both lower-band chorus and tens of keV electron modulation in the vicinity of geosynchronous orbit. Additionally, a previous link has been made between Pc4–5 compressional pulsations and modulation of whistler-mode chorus using Time History of Events and Macroscale Interactions during Substorms. In the current study, we present simultaneous in situ observations of structured chorusmore » waves and an apparent field line resonance (in the Pc4–5 range) as a result of a substorm injection, observed by Van Allen Probes, along with ground-based observations of pulsating aurora. We demonstrate the likely scenario being one of substorm-driven Pc4–5 ULF pulsations modulating chorus waves, and thus providing the driver for pulsating particle precipitation into the Earth's atmosphere. Interestingly, the modulated chorus wave and ULF wave periods are well correlated, with chorus occurring at half the periodicity of the ULF waves. We also show, for the first time, a particular few-Hz modulation of individual chorus elements that coincides with the same modulation in a nearby pulsating aurora patch. As a result, such modulation has been noticed as a high-frequency component in ground-based camera data of pulsating aurora for decades and may be a result of nonlinear chorus wave interactions in the equatorial region.« less

  8. Correlated Pc4-5 ULF waves, whistler-mode chorus, and pulsating aurora observed by the Van Allen Probes and ground-based systems

    SciTech Connect

    Jaynes, A. N.; Lessard, M. R.; Takahashi, K.; Ali, A. F.; Malaspina, D. M.; Michell, R. G.; Spanswick, E. L.; Baker, D. N.; Blake, J. B.; Cully, C.; Donovan, E. F.; Kletzing, C. A.; Reeves, G. D.; Samara, M.; Spence, H. E.; Wygant, J. R.

    2015-10-28

    Theory and observations have linked equatorial VLF waves with pulsating aurora for decades, invoking the process of pitch angle scattering of tens of keV electrons in the equatorial magnetosphere. Recently published satellite studies have strengthened this argument, by showing strong correlation between pulsating auroral patches and both lower-band chorus and tens of keV electron modulation in the vicinity of geosynchronous orbit. Additionally, a previous link has been made between Pc4–5 compressional pulsations and modulation of whistler-mode chorus using Time History of Events and Macroscale Interactions during Substorms. In the current study, we present simultaneous in situ observations of structured chorus waves and an apparent field line resonance (in the Pc4–5 range) as a result of a substorm injection, observed by Van Allen Probes, along with ground-based observations of pulsating aurora. We demonstrate the likely scenario being one of substorm-driven Pc4–5 ULF pulsations modulating chorus waves, and thus providing the driver for pulsating particle precipitation into the Earth's atmosphere. Interestingly, the modulated chorus wave and ULF wave periods are well correlated, with chorus occurring at half the periodicity of the ULF waves. We also show, for the first time, a particular few-Hz modulation of individual chorus elements that coincides with the same modulation in a nearby pulsating aurora patch. As a result, such modulation has been noticed as a high-frequency component in ground-based camera data of pulsating aurora for decades and may be a result of nonlinear chorus wave interactions in the equatorial region.

  9. Atomic shell structure from the Single-Exponential Decay Detector

    SciTech Connect

    Silva, Piotr de; Korchowiec, Jacek; Wesolowski, Tomasz A.

    2014-04-28

    The density of atomic systems is analysed via the Single-Exponential Decay Detector (SEDD). SEDD is a scalar field designed to explore mathematical, rather than physical, properties of electron density. Nevertheless, it has been shown that SEDD can serve as a descriptor of bonding patterns in molecules as well as an indicator of atomic shells [P. de Silva, J. Korchowiec, and T. A. Wesolowski, ChemPhysChem 13, 3462 (2012)]. In this work, a more detailed analysis of atomic shells is done for atoms in the Li–Xe series. Shell populations based on SEDD agree with the Aufbau principle even better than those obtained from the Electron Localization Function, which is a popular indicator of electron localization. A link between SEDD and the local wave vector is given, which provides a physical interpretation of SEDD.

  10. Statistical Study of the Occurrence of POES Relativistic Electron Precipitation (REP) in Correlation with Electromagnetic Ion Cyclotron (EMIC) Waves

    NASA Astrophysics Data System (ADS)

    Hembeck, J.; Lessard, M.; Engebretson, M. J.; Rodger, C. J.; Hendry, A.

    2016-12-01

    Electromagnetic Ion Cyclotron (EMIC) waves are phenomena that exist within the Earth's magnetosphere caused by an ion temperature anisotropy. The ideal conditions for EMIC wave growth occur during solar storms. In this statistical study, Polar Orbiting Environmental Satellites (POES) relativistic electron precipitation (REP) data are compared to EMIC wave data from Halley Bay in the years ranging from 2008-2010. This statistical study considers a specific type of EMIC wave events known as Intervals of Pulsations of Diminishing Periods (IPDP) to see whether this type of EMIC wave causes a statistically greater occurrence of REP. In this study, different types of IPDP are characterized based on the increase in frequency over time of each wave form. Another considered characteristic of the IPDP waves is whether the wave is continuous or appears as discrete packets, which may actually be separate events. IPDP events are cataloged and then compared to REP events from the POES data set, forming a study that is complementary to that of Hendry et al. [2016], who compared REP from POES data to the presence of EMIC waves at Halley Bay.

  11. Femtosecond x rays link melting of charge-density wave correlations and light-enhanced coherent transport in YBa2Cu3O6.6

    DOE PAGES

    Först, M.; Frano, A.; Kaiser, S.; ...

    2014-11-17

    In this study, we use femtosecond resonant soft x-ray diffraction to measure the optically stimulated ultrafast changes of charge density wave correlations in underdoped YBa₂Cu₃O₆.₆. We find that when coherent interlayer transport is enhanced by optical excitation of the apical oxygen distortions, at least 50% of the in-plane charge density wave order is melted. These results indicate that charge ordering and superconductivity may be competing up to the charge ordering transition temperature, with the latter becoming a hidden phase that is accessible only by nonlinear phonon excitation.

  12. Correlations between seismic wave velocities and physical properties of near-surface geologic materials in the southern San Francisco Bay region, California

    USGS Publications Warehouse

    Fumal, Thomas E.

    1978-01-01

    To identify geologic units with distinctly different seismic responses for the purposes of seismic zonation, compressional and shear wave velocities have been measured in boreholes at 59 sites in the San Francisco Bay region in a wide range of near-surface (0-30m) geologic materials. Several physical parameters, which can be readily determined in the field, were found to correlate with the shear wave velocities and were used to define seismically distinct groups. For the unconsolidated to semiconsolidated sediments, texture, standard penetration resistance and depth were used to define eight seismically distinct groups. For the bedrock materials, fracture spacing and hardness were used to differentiate ten distinct categories. The correlation obtained between shear wave velocity and the physical parameters were used to regroup the map units defined for the San Francisco Bay region into seismically distinct units. The map units for the younger unconsolidated sediments can be really differentiated seismically. In contrast, the older semiconsolidated sedimentary deposits and bedrock units, which have experienced significant variations in post-depositial changes, show wider and overlapping velocity ranges. The map units for the sedimentary deposits have been regrouped into eight seismically distinct geotechnical units. The bedrock map units have been broadly regrouped into five distinct categories. Compressional wave velocities were not found to be well correlated with the physical parameters dependent on the soil or rock structure. For materials above the water table, the wide velocity variations found for each geotechnical group can be attributed to differences in degree of saturation. The strong correlations observed between shear wave velocity and other readily determine physical properties suggest that geologic maps which incorporate these parameters are most useful for seismic zonation.

  13. Perturbing Misiurewicz Parameters in the Exponential Family

    NASA Astrophysics Data System (ADS)

    Dobbs, Neil

    2015-04-01

    In one-dimensional real and complex dynamics, a map whose post-singular (or post-critical) set is bounded and uniformly repelling is often called a Misiurewicz map. In results hitherto, perturbing a Misiurewicz map is likely to give a non-hyperbolic map, as per Jakobson's Theorem for unimodal interval maps. This is despite genericity of hyperbolic parameters (at least in the interval setting). We show the contrary holds in the complex exponential family Misiurewicz maps are Lebesgue density points for hyperbolic parameters. As a by-product, we also show that Lyapunov exponents almost never exist for exponential Misiurewicz maps. The lower Lyapunov exponent is -∞ almost everywhere. The upper Lyapunov exponent is non-negative and depends on the choice of metric.

  14. Exponential Boundary Observers for Pressurized Water Pipe

    NASA Astrophysics Data System (ADS)

    Hermine Som, Idellette Judith; Cocquempot, Vincent; Aitouche, Abdel

    2015-11-01

    This paper deals with state estimation on a pressurized water pipe modeled by nonlinear coupled distributed hyperbolic equations for non-conservative laws with three known boundary measures. Our objective is to estimate the fourth boundary variable, which will be useful for leakage detection. Two approaches are studied. Firstly, the distributed hyperbolic equations are discretized through a finite-difference scheme. By using the Lipschitz property of the nonlinear term and a Lyapunov function, the exponential stability of the estimation error is proven by solving Linear Matrix Inequalities (LMIs). Secondly, the distributed hyperbolic system is preserved for state estimation. After state transformations, a Luenberger-like PDE boundary observer based on backstepping mathematical tools is proposed. An exponential Lyapunov function is used to prove the stability of the resulted estimation error. The performance of the two observers are shown on a water pipe prototype simulated example.

  15. Likelihood Estimation for Generalized Mixed Exponential Distributions.

    DTIC Science & Technology

    1984-07-01

    specified beforehand. 23 S. . ... .- ~T§777 ~"~𔄁~ 7’.7 . -- ." F0 * 0 REFERENCES L. Armijo, "Minimization of Functions Having Lipschitz Continuous...and F. W. Fairman, Exponential Approximation via a Closed Form Gauss-Newton Method, IEEE Trans. Circuit Theory, CT-20 (1973), pp. 361-369. A. R...engineering disciplines of Chemical, Civil, Electrical , and Mechanical and Aerospace to newer, more specialized fields of Biomedical Engineering

  16. Exponential integration algorithms applied to viscoplasticity

    NASA Technical Reports Server (NTRS)

    Freed, Alan D.; Walker, Kevin P.

    1991-01-01

    Four, linear, exponential, integration algorithms (two implicit, one explicit, and one predictor/corrector) are applied to a viscoplastic model to assess their capabilities. Viscoplasticity comprises a system of coupled, nonlinear, stiff, first order, ordinary differential equations which are a challenge to integrate by any means. Two of the algorithms (the predictor/corrector and one of the implicits) give outstanding results, even for very large time steps.

  17. A Simple Mechanical Experiment on Exponential Growth

    NASA Astrophysics Data System (ADS)

    McGrew, Ralph

    2015-04-01

    With a rod, cord, pulleys, and slotted masses, students can observe and graph exponential growth in the cord tension over a factor of increase as large as several hundred. This experiment is adaptable for use either in algebra-based or calculus-based physics courses, fitting naturally with the study of sliding friction. Significant parts of the activity are accessible to students in physical science and environmental science courses.

  18. Exponential DNA Replication by Laminar Convection

    NASA Astrophysics Data System (ADS)

    Braun, Dieter; Goddard, Noel L.; Libchaber, Albert

    2003-10-01

    It is shown that laminar thermal convection can drive a chain reaction of DNA replication. The convection is triggered by a constant horizontal temperature gradient, moving molecules along stationary paths between hot and cold regions. This implements the temperature cycling for the classical polymerase chain reaction (PCR). The amplification is shown to be exponential and reaches 100 000-fold gains within 25min. Besides direct applications, the mechanism might have implications for the molecular evolution of life.

  19. Double transverse wave-vector correlations in photon pairs generated by spontaneous parametric down-conversion pumped by Bessel-Gauss beams

    NASA Astrophysics Data System (ADS)

    Vicuña-Hernández, Verónica; Santiago, José T.; Jerónimo-Moreno, Yasser; Ramírez-Alarcón, Roberto; Cruz-Ramírez, Héctor; U'Ren, Alfred B.; Jáuregui-Renaud, Rocio

    2016-12-01

    We present an experimental and theoretical study of type I, frequency-degenerate spontaneous parametric down-conversion (SPDC) with a Bessel-Gauss pump in which we include both paraxial and nonparaxial pump beam configurations. We present measurements of the SPDC angular spectrum (AS), of the conditional angular spectrum (CAS) of signal-mode single photons as heralded by the detection of an idler photon, and of the transverse wave-vector signal-idler correlations (TWC). We show that as the pump is made increasingly nonparaxial, the AS acquires a nonconcentric double-cone structure, with the CAS shape depending on the azimuthal location of the heralding detector, while the signal-idler wave-vector correlation region splits into characteristic doublet stripes, representing as yet unexplored nontrivial, nonlocal quantum correlations between the signal and idler photons. Our work provides further understanding of SPDC with a particular class of structured pump beams, and we believe that the controlled presence of double wave-vector correlations represents an interesting resource for photon-pair quantum-state engineering.

  20. A positive correlation between energetic electron butterfly distributions and magnetosonic waves in the radiation belt slot region

    NASA Astrophysics Data System (ADS)

    Yang, Chang; Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H. E.; Reeves, G. D.; Baker, D. N.; Blake, J. B.; Funsten, H. O.

    2017-05-01

    Energetic (hundreds of keV) electrons in the radiation belt slot region have been found to exhibit the butterfly pitch angle distributions. Resonant interactions with magnetosonic and whistler-mode waves are two potential mechanisms for the formation of these peculiar distributions. Here we perform a statistical study of energetic electron pitch angle distribution characteristics measured by Van Allen Probes in the slot region during a 3 year period from May 2013 to May 2016. Our results show that electron butterfly distributions are closely related to magnetosonic waves rather than to whistler-mode waves. Both electron butterfly distributions and magnetosonic waves occur more frequently at the geomagnetically active times than at the quiet times. In a statistical sense, more distinct butterfly distributions usually correspond to magnetosonic waves with larger amplitudes and vice versa. The averaged magnetosonic wave amplitude is less than 5 pT in the case of normal and flat-top distributions with a butterfly index BI =1 but reaches ˜50-95 pT in the case of distinct butterfly distributions with BI >1.3. For magnetosonic waves with amplitudes >50 pT, the occurrence rate of butterfly distribution is above 80%. Our study suggests that energetic electron butterfly distributions in the slot region are primarily caused by magnetosonic waves.

  1. Method for exponentiating in cryptographic systems

    SciTech Connect

    Brickell, E.F.; Gordon, D.M.; McCurley, K.S.

    1992-12-31

    An improved cryptographic method utilizing exponentiation is provided which has the advantage of reducing the number of multiplications required to determine the legitimacy of a message or user. The basic method comprises the steps of selecting a key from a pre-approved group of integer keys g; exponentiating the key by an integer value e, where e represents a digital signature, to generate a value g{sup e}; transmitting the value g{sup e} to a remote facility by a communications network; receiving the value g{sup e} at the remote facility; and verifying the digital signature as originating from the legitimate user. The exponentiating step comprises the steps of initializing a plurality of memory locations with a plurality of values g{sup xi}, computing a{sub i} representations for a integer base b, where a{sub i} represents the weighing factor of the ith digit of the integer e; computing the individual values of c{sub d} according to the rule: c{sub d}={product}a{sub i}=d g{sup x {sub i}}; and computing the product of {product}{sup h}/{sub d=1} c{sub d}{sup d} from the stored values of from the plurality of memory locations so as to determine a value for g{sup e}.

  2. Dynamo theory, vorticity generation, and exponential stretching.

    PubMed

    Friedlander, Susan; Vishik, Misha M.

    1991-08-01

    A discussion is given of the analogy between the dynamo equation for the generation of a magnetic field by the motion of an electrically conducting fluid and the equation for the evolution of vorticity of a viscous fluid. In both cases exponential stretching is an important feature of the underlying instability problem. For the "fast" dynamo problem, the existence of exponential stretching (i.e., the positivity of the Lyapunov exponent) somewhere in the flow is a necessary condition when the flow is smooth. An example is presented of a flow with exponential stretching (an Anosov flow) that supports fast dynamo action. A parallel treatment is described for the linearized Navier-Stokes equations for the motion of a viscous fluid. In this problem the analogous necessary condition for "fast vorticity generation" is the existence of some instability in the corresponding Euler (i.e., inviscid) equation. Dynamo theory methods give a second related result, namely a universal geometric estimate from below on the growth rate of a small perturbation in an inviscid fluid. This bound gives an effective sufficient condition for local instability for Eulers equations. In particular, it is proved that a steady flow with a hyperbolic stagnation point is unstable. The growth rate of an infinitesimal perturbation in a metric with derivatives depends on this metric. This dependence is completely described.

  3. Efficient antisymmetrization algorithm for the partially correlated wave functions in the free complement-local Schrödinger equation method.

    PubMed

    Nakashima, Hiroyuki; Nakatsuji, Hiroshi

    2013-07-28

    We propose here fast antisymmetrization procedures for the partially correlated wave functions that appear in the free complement-local Schrödinger equation (FC-LSE) method. Pre-analysis of the correlation diagram, referred to as dot analysis, combined with the determinant update technique based on the Laplace expansion, drastically reduces the orders of the antisymmetrization computations. When the complement functions include only up to single-correlated terms, the order of computations is O(N(3)), which is the same as the non-correlated case. Similar acceleration is obtained for general correlated functions as a result of dot analysis. This algorithm has been successfully used in our laboratory in actual FC-LSE calculations for accurately solving the many-electron Schrödinger equations of atoms and molecules. The proposed method is general and applicable to the sampling-type methodology of other partially correlated wave functions like those in the quantum Monte Carlo and modern Hylleraas-type methods.

  4. Efficient antisymmetrization algorithm for the partially correlated wave functions in the free complement-local Schrödinger equation method

    SciTech Connect

    Nakashima, Hiroyuki; Nakatsuji, Hiroshi

    2013-07-28

    We propose here fast antisymmetrization procedures for the partially correlated wave functions that appear in the free complement-local Schrödinger equation (FC-LSE) method. Pre-analysis of the correlation diagram, referred to as dot analysis, combined with the determinant update technique based on the Laplace expansion, drastically reduces the orders of the antisymmetrization computations. When the complement functions include only up to single-correlated terms, the order of computations is O(N{sup 3}), which is the same as the non-correlated case. Similar acceleration is obtained for general correlated functions as a result of dot analysis. This algorithm has been successfully used in our laboratory in actual FC-LSE calculations for accurately solving the many-electron Schrödinger equations of atoms and molecules. The proposed method is general and applicable to the sampling-type methodology of other partially correlated wave functions like those in the quantum Monte Carlo and modern Hylleraas-type methods.

  5. Predicting jet radius in electrospinning by superpositioning exponential functions

    NASA Astrophysics Data System (ADS)

    Widartiningsih, P. M.; Iskandar, F.; Munir, M. M.; Viridi, S.

    2016-08-01

    This paper presents an analytical study of the correlation between viscosity and fiber diameter in electrospinning. Control over fiber diameter in electrospinning process was important since it will determine the performance of resulting nanofiber. Theoretically, fiber diameter was determined by surface tension, solution concentration, flow rate, and electric current. But experimentally it had been proven that significantly viscosity had an influence to fiber diameter. Jet radius equation in electrospinning process was divided into three areas: near the nozzle, far from the nozzle, and at jet terminal. There was no correlation between these equations. Superposition of exponential series model provides the equations combined into one, thus the entire of working parameters on electrospinning take a contribution to fiber diameter. This method yields the value of solution viscosity has a linear relation to jet radius. However, this method works only for low viscosity.

  6. Is the shear wave sonographic elastography correlated with pain after breast augmentation with silicone implants an indication of inflammatory activity? A preliminary report

    PubMed Central

    Kubasik, Mikołaj; Gaca, Michał; Opala, Tomasz

    2011-01-01

    Introduction Formation of a capsule is a natural inflammatory response to a foreign body such as a breast implant. Breast capsular contracture is the most severe complication of implant surgery. Aim To evaluate breast tissues and the periprosthetic reaction with sonoelastography. Material and methods Nineteen patients aged 20-41 underwent breast augmentation with silicone-filled implants. Their 38 breasts were evaluated before surgery, and 7 and 14 days after surgery. Whole breast stiffness was measured by applanation tonometry. Patients underwent shear wave elastography and Young's moduli of breast tissues and the periprosthetic capsule were estimated. During surgery patients underwent standard anaesthesia and were released home 2 days later after removal of drainage. Each day, patients completed the pain visual analogue scale questionnaire separately for left and right breasts. Results Applanation tonometry did not correlate with any parameter. In shear wave elastography we observed statistically significant changes in elasticity of all breast tissues with the highest values on day 7 after surgery and decreasing on day 14. The correlations between pain and capsule elasticity in lower quadrants measured were significant between days 4 and 10, whereas correlations of pain with applanation tonometry were insignificant. Glandular tissue elasticity in lower quadrants did not correlate with pain, whereas in upper quadrants there was a significant correlation on days 6-10. Fatty tissue, muscle and thoracic fascia elasticity did not correlate with breast pain. Breast implant volume correlated with pain only shortly after surgery, but did not correlate with any sonoelastographic parameters. Conclusions Breast pain correlates strongly with periprosthetic stiffness in elastography 4 to 10 days after breast augmentation, suggesting the possible role of an inflammatory reaction. PMID:23255983

  7. One- and two-body densities of carbon isoelectronic series in their low-lying multiplet states from explicitly correlated wave functions.

    PubMed

    Gálvez, F J; Buendía, E; Sarsa, A

    2006-01-28

    The (3)P ground state and both the (1)D and (1)S excited states arising from the low-lying 1s(2)2s(2)2p(2) configuration of the carbon isoelectronic series are studied starting from explicitly correlated multiconfigurational wave functions. One- and two-body densities in position space have been calculated and different one- and two-body expectation values have been obtained. The effects of electronic correlations have been systematically studied. All the calculations have been done by means of variational Monte Carlo.

  8. Applications of mesoscopic physics to novel correlations and fluctuations of speckle patterns: Imaging and tomography with multiply scattered classical waves. Final report

    SciTech Connect

    Feng, Shechao Charles

    1995-02-01

    This is the final report on the grant, entitled `applications of mesoscopic physics to novel correlations and fluctuations of speckle patterns: imaging and tomography with multiply scattered classical waves`, which expired on September 14, 1994. The author summarizes the highlights of this research program, and lists the publications supported by this grant. The report is divided into sections, titled: application of mesoscopic fluctuations theory to correlations and fluctuations of multiply scattered light; quantum transport in localized electronic systems; electron-phonon inelastic scattering rate and the temperature scaling exponent in integer quantum Hall effect; high frequency quantum transport in quantum well devices.

  9. Auto correlation analysis of coda waves from local earthquakes for detecting temporal changes in shallow subsurface structures - The 2011 Tohoku-Oki, Japan, earthquake -

    NASA Astrophysics Data System (ADS)

    Nakahara, H.

    2013-12-01

    For monitoring temporal changes in subsurface structures, I propose to use auto correlation functions of coda waves from local earthquakes recorded at surface receivers, which probably contain more body waves than surface waves. Because the use of coda waves requires earthquakes, time resolution for monitoring decreases. But at regions with high seismicity, it may be possible to monitor subsurface structures in sufficient time resolutions. Studying the 2011 Tohoku-Oki (Mw 9.0), Japan, earthquake for which velocity changes have been already reported by previous studies, I try to validate the method. KiK-net stations in northern Honshu are used in the analysis. For each moderate earthquake, normalized auto correlation functions of surface records are stacked with respect to time windows in S-wave coda. Aligning the stacked normalized auto correlation functions with time, I search for changes in arrival times of phases. The phases at lag times of less than 1s are studied because changes at shallow depths are focused. Based on the stretching method, temporal variations in the arrival times are measured at the stations. Clear phase delays are found to be associated with the mainshock and to gradually recover with time. Amounts of the phase delays are in the order of 10% on average with the maximum of about 50% at some stations. For validation, the deconvolution analysis using surface and subsurface records at the same stations are conducted. The results show that the phase delays from the deconvolution analysis are slightly smaller than those from the auto correlation analysis, which implies that the phases on the auto correlations are caused by larger velocity changes at shallower depths. The auto correlation analysis seems to have an accuracy of about several percents, which is much larger than methods using earthquake doublets and borehole array data. So this analysis might be applicable to detect larger changes. In spite of these disadvantages, this analysis is

  10. Heat transfer, velocity-temperature correlation, and turbulent shear stress from Navier-Stokes computations of shock wave/turbulent boundary layer interaction flows

    NASA Technical Reports Server (NTRS)

    Wang, C. R.; Hingst, W. R.; Porro, A. R.

    1991-01-01

    The properties of 2-D shock wave/turbulent boundary layer interaction flows were calculated by using a compressible turbulent Navier-Stokes numerical computational code. Interaction flows caused by oblique shock wave impingement on the turbulent boundary layer flow were considered. The oblique shock waves were induced with shock generators at angles of attack less than 10 degs in supersonic flows. The surface temperatures were kept at near-adiabatic (ratio of wall static temperature to free stream total temperature) and cold wall (ratio of wall static temperature to free stream total temperature) conditions. The computational results were studied for the surface heat transfer, velocity temperature correlation, and turbulent shear stress in the interaction flow fields. Comparisons of the computational results with existing measurements indicated that (1) the surface heat transfer rates and surface pressures could be correlated with Holden's relationship, (2) the mean flow streamwise velocity components and static temperatures could be correlated with Crocco's relationship if flow separation did not occur, and (3) the Baldwin-Lomax turbulence model should be modified for turbulent shear stress computations in the interaction flows.

  11. Absence of exponential clustering in quantum Coulomb fluids

    NASA Astrophysics Data System (ADS)

    Alastuey, A.; Martin, Ph. A.

    1989-12-01

    We show that the quantum corrections to the classical correlations of a Coulomb fluid do not decay exponentially fast for all values of the thermodynamical parameters. Specifically, the ħ4 term in the Wigner-Kirkwood expansion of the equilibrium charge-charge correlations of the quantum one-component plasma is found to decay like ||r||-10. More generally, using functional integration, we present a diagrammatic representation of the ħ expansion of the correlations in a multicomponent fluid with a locally regularized Coulomb potential and Maxwell-Boltzmann statistics. The ħ2n terms are found to decay algebraically for all n>=2. Furthermore, an analysis of the hierarchy equations for the correlations provides upper bounds that are compatible with the findings of the perturbative expansion. Except for the monopole, all higher-order multipole sum rules do not hold, in general, in the quantum system. This violation of the multipole sum rules as well as the related algebraic tails are due to the intrinsic quantum fluctuations that prevent a perfect organization of the screening clouds. This phenomenon is illustrated in a simpler model where the large-distance correlations between two quantum particles embedded in a classical plasma can be exactly computed.

  12. Applications of an exponential finite difference technique

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Keith, Theo G., Jr.

    1988-01-01

    An exponential finite difference scheme first presented by Bhattacharya for one dimensional unsteady heat conduction problems in Cartesian coordinates was extended. The finite difference algorithm developed was used to solve the unsteady diffusion equation in one dimensional cylindrical coordinates and was applied to two and three dimensional conduction problems in Cartesian coordinates. Heat conduction involving variable thermal conductivity was also investigated. The method was used to solve nonlinear partial differential equations in one and two dimensional Cartesian coordinates. Predicted results are compared to exact solutions where available or to results obtained by other numerical methods.

  13. Exponential expansion: galactic destiny or technological hubris?

    NASA Astrophysics Data System (ADS)

    Finney, B. R.

    Is it our destiny to expand exponentially to populate the galaxy, or is such a vision but an extreme example of technological hubris? The overall record of human evolution and dispersion over the Earth can be cited to support the view that we are a uniquely expansionary and technological animal bound for the stars, yet an examination of the fate of individual migrations and exploratory initiatives raises doubts. Although it may be in keeping with our hubristic nature to predict ultimate galactic expansion, there is no way to specify how far expansionary urges may drive our spacefaring descendants.

  14. Mixtures of multivariate power exponential distributions.

    PubMed

    Dang, Utkarsh J; Browne, Ryan P; McNicholas, Paul D

    2015-12-01

    An expanded family of mixtures of multivariate power exponential distributions is introduced. While fitting heavy-tails and skewness have received much attention in the model-based clustering literature recently, we investigate the use of a distribution that can deal with both varying tail-weight and peakedness of data. A family of parsimonious models is proposed using an eigen-decomposition of the scale matrix. A generalized expectation-maximization algorithm is presented that combines convex optimization via a minorization-maximization approach and optimization based on accelerated line search algorithms on the Stiefel manifold. Lastly, the utility of this family of models is illustrated using both toy and benchmark data.

  15. Brain wave correlates of attentional states: Event related potentials and quantitative EEG analysis during performance of cognitive and perceptual tasks

    NASA Technical Reports Server (NTRS)

    Freeman, Frederick G.

    1993-01-01

    presented target stimulus. In addition to the task requirements, irrelevant tones were presented in the background. Research has shown that even though these stimuli are not attended, ERP's to them can still be elicited. The amplitude of the ERP waves has been shown to change as a function of a person's level of alertness. ERP's were also collected and analyzed for the target stimuli for each task. Brain maps were produced based on the ERP voltages for the different stimuli. In addition to the ERP's, a quantitative EEG (QEEG) was performed on the data using a fast Fourier technique to produce a power spectral analysis of the EEG. This analysis was conducted on the continuous EEG while the subjects were performing the tasks. Finally, a QEEG was performed on periods during the task when subjects indicated that they were in an altered state of awareness. During the tasks, subjects were asked to indicate by pressing a button when they realized their level of task awareness had changed. EEG epochs were collected for times just before and just after subjects made this reponse. The purpose of this final analysis was to determine whether or not subjective indices of level of awareness could be correlated with different patterns of EEG.

  16. Hyperbolic neighborhoods as organizers of finite-time exponential stretching

    NASA Astrophysics Data System (ADS)

    Balasuriya, Sanjeeva; Ouellette, Nicholas

    2016-11-01

    Hyperbolic points and their unsteady generalization, hyperbolic trajectories, drive the exponential stretching that is the hallmark of nonlinear and chaotic flow. Typical experimental and observational velocity data is unsteady and available only over a finite time interval, and in such situations hyperbolic trajectories will move around in the flow, and may lose their hyperbolicity at times. Here we introduce a way to determine their region of influence, which we term a hyperbolic neighborhood, which marks fluid elements whose dynamics are instantaneously dominated by the hyperbolic trajectory. We establish, using both theoretical arguments and numerical verification from model and experimental data, that the hyperbolic neighborhoods profoundly impact Lagrangian stretching experienced by fluid elements. In particular, we show that fluid elements traversing a flow experience exponential boosts in stretching while within these time-varying regions, that greater residence time within hyperbolic neighborhoods is directly correlated to larger Finite-Time Lyapunov Exponent (FTLE) values, and that FTLE diagnostics are reliable only when the hyperbolic neighborhoods have a geometrical structure which is regular in a specific sense. Future Fellowship Grant FT130100484 from the Australian Research Council (SB), and a Terman Faculty Fellowship from Stanford University (NO).

  17. On the use of the exponential window method in the space domain

    NASA Astrophysics Data System (ADS)

    Liu, Li

    Wave propagation in unbounded media is a topic widely studied in different science and engineering fields. Global and local absorbing boundary conditions combined with the finite element method or the finite difference method are the usual numerical treatments. In this dissertation, an alternative is investigated based on the dynamic stiffness and the exponential window method in the space-wave number domain. Applying the exponential window in the space-wave number domain is equivalent to introducing fictitious damping into the system. The Discrete Fourier Transform employed in the dynamic stiffness can be properly performed in a damped system. An open boundary in space is thus created. Since the equation is solved by the finite difference formula in the time domain, this approach is in the time-wave number domain, which provides a complement for the original dynamic stiffness method, which is in the frequency-wave number domain. The approach is tested through different elasto-dynamic models that cover one-, two- and three-dimensional problems. The results from the proposed approach are compared with those from either analytical solutions or the finite element method. The comparison demonstrates the effectiveness of the approach. The incident waves can be efficiently absorbed regardless of incident angles and frequency contents. The approach proposed in this dissertation can be widely applied to the dynamics of railways, dams, tunnels, building and machine foundations, layered soil and composite materials.

  18. Preconditioned implicit-exponential integrators (IMEXP) for stiff PDEs

    NASA Astrophysics Data System (ADS)

    Luan, Vu Thai; Tokman, Mayya; Rainwater, Greg

    2017-04-01

    We propose two new classes of time integrators for stiff DEs: the implicit exponential (IMEXP) and the hybrid exponential methods. In contrast to the existing exponential schemes, the new methods offer significant computational advantages when used with preconditioners. Any preconditioner can be used with any of these new schemes. This leads to a broader applicability of exponential methods. The proof of convergence of these integrators and numerical demonstration of their efficiency are presented.

  19. The LEM exponential integrator for advection-diffusion-reaction equations

    NASA Astrophysics Data System (ADS)

    Caliari, Marco; Vianello, Marco; Bergamaschi, Luca

    2007-12-01

    We implement a second-order exponential integrator for semidiscretized advection-diffusion-reaction equations, obtained by coupling exponential-like Euler and Midpoint integrators, and computing the relevant matrix exponentials by polynomial interpolation at Leja points. Numerical tests on 2D models discretized in space by finite differences or finite elements, show that the Leja-Euler-Midpoint (LEM) exponential integrator can be up to 5 times faster than a classical second-order implicit solver.

  20. Are Urban-Canopy Velocity Profiles Exponential?

    NASA Astrophysics Data System (ADS)

    Castro, Ian P.

    2017-09-01

    Using analyses of data from extant direct numerical simulations and large-eddy simulations of boundary-layer and channel flows over and within urban-type canopies, sectional drag forces, Reynolds and dispersive shear stresses are examined for a range of roughness densities. Using the spatially-averaged mean velocity profiles these quantities allow deduction of the canopy mixing length and sectional drag coefficient. It is shown that the common assumptions about the behaviour of these quantities, needed to produce an analytical model for the canopy velocity profile, are usually invalid, in contrast to what is found in typical vegetative (e.g. forest) canopies. The consequence is that an exponential shape of the spatially-averaged mean velocity profile within the canopy cannot normally be expected, as indeed the data demonstrate. Nonetheless, recent canopy models that allow prediction of the roughness length appropriate for the inertial layer's logarithmic profile above the canopy do not seem to depend crucially on their (invalid) assumption of an exponential profile within the canopy.

  1. Prion disease: exponential growth requires membrane binding.

    PubMed

    Cox, Daniel L; Sing, Rajiv R P; Yang, Sichun

    2006-06-01

    A hallmark feature of prions, whether in mammals or yeast and fungi, is exponential growth associated with fission or autocatalysis of protein aggregates. We have employed a rigorous kinetic analysis to recent data from transgenic mice lacking a glycosylphosphatidylinositol membrane anchor to the normal cellular PrP(C) protein, which show that toxicity requires the membrane binding. We find as well that the membrane is necessary for exponential growth of prion aggregates; without it, the kinetics is simply the quadratic-in-time growth characteristic of linear elongation as observed frequently in in vitro amyloid growth experiments with other proteins. This requires both: i), a substantial intercellular concentration of anchorless PrP(C), and ii), a concentration of small scrapies seeding aggregates from the inoculum, which remains relatively constant with time and exceeds the concentration of large polymeric aggregates. We also can explain via this analysis why mice heterozygous for the anchor-full/anchor-free PrP(C) proteins have more rapid incubation than mice heterozygous for anchor-full/null PrP(C), and contrast the mammalian membrane associated fission or autocatalysis with the membrane free fission of yeast and fungal prions.

  2. Measuring Entanglement Spectrum via Density Matrix Exponentiation

    NASA Astrophysics Data System (ADS)

    Zhu, Guanyu; Seif, Alireza; Pichler, Hannes; Zoller, Peter; Hafezi, Mohammad

    Entanglement spectrum (ES), the eigenvalues of the reduced density matrix of a subsystem, serves as a powerful theoretical tool to study many-body systems. For example, the gap and degeneracies of the entanglement spectrum have been used to identify various topological phases. However, the usefulness of such a concept in real experiments has been debated, since it is believed that obtaining the ES requires full state tomography, at a cost which exponentially grows with the systems size. Inspired by a recent density matrix exponentiation technique, we propose a scheme to measure ES by evolving the system with a Hamiltonian that is the subsystem's own reduced density matrix. Such a time evolution can be induced by an ancilla photon that is coupled to multiple qubits at the same time. The phase associated with the time evolution can be detected and converted into ES through either a digital or an analogue scheme. The digital scheme involves a modified quantum phase estimation algorithm based on random time evolution, while the analogue scheme is in the spirit of Ramsey interferometry. Both schemes are not limited by the size of the system, and are especially sensitive to the gap and degeneracies. We also discuss the implementation in cavity/circuit-QED and ion trap systems.

  3. Are Urban-Canopy Velocity Profiles Exponential?

    NASA Astrophysics Data System (ADS)

    Castro, Ian P.

    2017-06-01

    Using analyses of data from extant direct numerical simulations and large-eddy simulations of boundary-layer and channel flows over and within urban-type canopies, sectional drag forces, Reynolds and dispersive shear stresses are examined for a range of roughness densities. Using the spatially-averaged mean velocity profiles these quantities allow deduction of the canopy mixing length and sectional drag coefficient. It is shown that the common assumptions about the behaviour of these quantities, needed to produce an analytical model for the canopy velocity profile, are usually invalid, in contrast to what is found in typical vegetative (e.g. forest) canopies. The consequence is that an exponential shape of the spatially-averaged mean velocity profile within the canopy cannot normally be expected, as indeed the data demonstrate. Nonetheless, recent canopy models that allow prediction of the roughness length appropriate for the inertial layer's logarithmic profile above the canopy do not seem to depend crucially on their (invalid) assumption of an exponential profile within the canopy.

  4. Human-chimpanzee alignment: ortholog exponentials and paralog power laws.

    PubMed

    Gao, Kun; Miller, Jonathan

    2014-12-01

    Genomic subsequences conserved between closely related species such as human and chimpanzee exhibit an exponential length distribution, in contrast to the algebraic length distribution observed for sequences shared between distantly related genomes. We find that the former exponential can be further decomposed into an exponential component primarily composed of orthologous sequences, and a truncated algebraic component primarily composed of paralogous sequences.

  5. Stretched exponential distribution of recurrent time of wars in China

    NASA Astrophysics Data System (ADS)

    Tang, Da-Hai; Han, Xiao-Pu; Wang, Bing-Hong

    2010-07-01

    As a killing machine and a decisive factor of history, wars play an important role in social system. In this paper, we present an empirical exploration of the distribution of recurrent time of wars in ancient China and find that it obeys a stretched exponential form. The pattern we found implies that there are undetected mechanisms that underlie the dynamics of wars. In order to explain the origin of this form, a model mainly based on the correlation between two consecutive wars is constructed, which is somewhat similar to the Bak-Sneppen model. The simulation results of the model are in agreement with the empirical statistics and suggest that the dynamics of wars could relate with self-organized criticality.

  6. Exponential absorption edge and disorder in Column IV amorphous semiconductors

    NASA Astrophysics Data System (ADS)

    Zanatta, A. R.; Mulato, M.; Chambouleyron, I.

    1998-11-01

    We discuss the likely origin of the exponential absorption tail, or Urbach edge, of fourfold coordinated amorphous (a-)semiconductors. The present analysis is based on a compilation of a considerable amount of experimental data originating from a great variety of samples, alloys, and authors, and obtained with quite different spectroscopic techniques. An attempt is made to correlate the measured Urbach edge with the structural and optical properties of the samples. The present analysis indicates that the Urbach edge may not only reflect the shape of the joint density of states of the valence and conduction band tails, but may also have important contributions from short-range order potential fluctuations produced by charged defects or impurities.

  7. Correlator bank detection of gravitational wave chirps—False-alarm probability, template density, and thresholds: Behind and beyond the minimal-match issue

    NASA Astrophysics Data System (ADS)

    Croce, R. P.; Demma, Th.; Longo, M.; Marano, S.; Matta, V.; Pierro, V.; Pinto, I. M.

    2004-12-01

    The general problem of computing the false-alarm probability vs the detection-threshold relationship for a bank of correlators is addressed, in the context of maximum-likelihood detection of gravitational waves in additive stationary Gaussian noise. Specific reference is made to chirps from coalescing binary systems. Accurate (lower-bound) approximants for the cumulative distribution of the whole-bank supremum are deduced from a class of Bonferroni-type inequalities. The asymptotic properties of the cumulative distribution are obtained, in the limit where the number of correlators goes to infinity. The validity of numerical simulations made on small-size banks is extended to banks of any size, via a Gaussian-correlation inequality. The result is used to readdress the problem of relating the template density to the fraction of potentially observable sources which could be dismissed as an effect of template space discreteness.

  8. Correlation consistent basis sets for molecular core-valence effects with explicitly correlated wave functions: The atoms B-Ne and Al-Ar

    NASA Astrophysics Data System (ADS)

    Hill, J. Grant; Mazumder, Shivnath; Peterson, Kirk A.

    2010-02-01

    Correlation consistent basis sets have been optimized for accurately describing core-core and core-valence correlation effects with explicitly correlated F12 methods. The new sets, denoted cc-pCVnZ-F12 (n =D, T, Q) and aug-cc-pCF12VnZ (n =D, T, Q, 5), were developed by augmenting the cc-pVnZ-F12 and aug-cc-pVnZ families of basis sets with additional functions whose exponents were optimized based on the difference between all-electron and valence-electron correlation energies. The number of augmented functions added is fewer, in general, than in the standard cc-pCVnZ and cc-pwCVnZ families of basis sets. Optimal values of the geminal Slater exponent for use with these basis sets in MP2-F12 calculations are presented and are also recommended for CCSD-F12b calculations. Auxiliary basis sets for use in the resolution of the identity approximation in explicitly correlated calculations have also been optimized and matched to the new cc-pCVnZ-F12 series of orbital basis sets. The cc-pCVnZ-F12 basis sets, along with the new auxiliary sets, were benchmarked in CCSD(T)-F12b calculations of spectroscopic properties on a series of homo- and heteronuclear first and second row diatomic molecules. Comparing the effects of correlating the outer core electrons in these molecules with those from conventional CCSD(T) at the complete basis set limit, which involved calculations with new cc-pCV6Z basis sets for the second row elements that were also developed in the course of this work, it is observed that the F12 values are reasonably well converged already at just the triple-ζ level.

  9. Benchmark Calculations with Correlated Molecular Wave Functions. XIII. Potential Energy Curves for He-2, Ne-2, and Ar-2 Using Correlation Consistent Basis Sets Through Augmented Sextuple Zeta.

    SciTech Connect

    Mourik, Van Tonja; Wilson, Angela K.; Dunning, Thomas H.

    1999-02-20

    The potential energy curves of the rare gas dimers He2, Ne2, and Ar2 have been computed using correlation consistent basis sets ranging from singly augmented aug-cc-pVDZ sets through triply augmented t-aug-cc-pV6Z sets, with the augmented sextuple basis sets being reported herein. Several methods for including electron correlation were investigated, namely Moller Plesset perturbation theory (MP2, MP3 and MP4) and coupled cluster theory [CCSD and CCSD(T)].

  10. Exponential-Krylov methods for ordinary differential equations

    NASA Astrophysics Data System (ADS)

    Tranquilli, Paul; Sandu, Adrian

    2014-12-01

    This paper develops a new family of exponential time discretization methods called exponential-Krylov (EXPK). The new schemes treat the time discretization and the Krylov-based approximation of exponential matrix-vector products as a single computational process. The classical order conditions theory developed herein accounts for both the temporal and the Krylov approximation errors. Unlike traditional exponential schemes, EXPK methods require the construction of only a single Krylov space at each timestep. The number of basis vectors that guarantee the temporal order of accuracy does not depend on the application at hand. Numerical results show favorable properties of EXPK methods when compared to current exponential schemes.

  11. Detecting Pairwise Correlations in Spike Trains: An Objective Comparison of Methods and Application to the Study of Retinal Waves

    PubMed Central

    Eglen, Stephen J.

    2014-01-01

    Correlations in neuronal spike times are thought to be key to processing in many neural systems. Many measures have been proposed to summarize these correlations and of these the correlation index is widely used and is the standard in studies of spontaneous retinal activity. We show that this measure has two undesirable properties: it is unbounded above and confounded by firing rate. We list properties needed for a measure to fairly quantify and compare correlations and we propose a novel measure of correlation—the spike time tiling coefficient. This coefficient, the correlation index, and 33 other measures of correlation of spike times are blindly tested for the required properties on synthetic and experimental data. Based on this, we propose a measure (the spike time tiling coefficient) to replace the correlation index. To demonstrate the benefits of this measure, we reanalyze data from seven key studies, which previously used the correlation index to investigate the nature of spontaneous activity. We reanalyze data from β2(KO) and β2(TG) mutants, mutants lacking connexin isoforms, and also the age-dependent changes in wild-type and β2(KO) correlations. Reanalysis of the data using the proposed measure can significantly change the conclusions. It leads to better quantification of correlations and therefore better inference from the data. We hope that the proposed measure will have wide applications, and will help clarify the role of activity in retinotopic map formation. PMID:25339742

  12. Generalized exponential function and discrete growth models

    NASA Astrophysics Data System (ADS)

    Souto Martinez, Alexandre; Silva González, Rodrigo; Lauri Espíndola, Aquino

    2009-07-01

    Here we show that a particular one-parameter generalization of the exponential function is suitable to unify most of the popular one-species discrete population dynamic models into a simple formula. A physical interpretation is given to this new introduced parameter in the context of the continuous Richards model, which remains valid for the discrete case. From the discretization of the continuous Richards’ model (generalization of the Gompertz and Verhulst models), one obtains a generalized logistic map and we briefly study its properties. Notice, however that the physical interpretation for the introduced parameter persists valid for the discrete case. Next, we generalize the (scramble competition) θ-Ricker discrete model and analytically calculate the fixed points as well as their stabilities. In contrast to previous generalizations, from the generalized θ-Ricker model one is able to retrieve either scramble or contest models.

  13. Poissonian renormalizations, exponentials, and power laws.

    PubMed

    Eliazar, Iddo

    2013-05-01

    This paper presents a comprehensive "renormalization study" of Poisson processes governed by exponential and power-law intensities. These Poisson processes are of fundamental importance, as they constitute the very bedrock of the universal extreme-value laws of Gumbel, Fréchet, and Weibull. Applying the method of Poissonian renormalization we analyze the emergence of these Poisson processes, unveil their intrinsic dynamical structures, determine their domains of attraction, and characterize their structural phase transitions. These structural phase transitions are shown to be governed by uniform and harmonic intensities, to have universal domains of attraction, to uniquely display intrinsic invariance, and to be intimately connected to "white noise" and to "1/f noise." Thus, we establish a Poissonian explanation to the omnipresence of white and 1/f noises.

  14. An exponentiation method for XML element retrieval.

    PubMed

    Wichaiwong, Tanakorn

    2014-01-01

    XML document is now widely used for modelling and storing structured documents. The structure is very rich and carries important information about contents and their relationships, for example, e-Commerce. XML data-centric collections require query terms allowing users to specify constraints on the document structure; mapping structure queries and assigning the weight are significant for the set of possibly relevant documents with respect to structural conditions. In this paper, we present an extension to the MEXIR search system that supports the combination of structural and content queries in the form of content-and-structure queries, which we call the Exponentiation function. It has been shown the structural information improve the effectiveness of the search system up to 52.60% over the baseline BM25 at MAP.

  15. Exponential networks and representations of quivers

    NASA Astrophysics Data System (ADS)

    Eager, Richard; Selmani, Sam Alexandre; Walcher, Johannes

    2017-08-01

    We study the geometric description of BPS states in supersymmetric theories with eight supercharges in terms of geodesic networks on suitable spectral curves. We lift and extend several constructions of Gaiotto-Moore-Neitzke from gauge theory to local Calabi-Yau threefolds and related models. The differential is multi-valued on the covering curve and features a new type of logarithmic singularity in order to account for D0-branes and non-compact D4-branes, respectively. We describe local rules for the three-way junctions of BPS trajectories relative to a particular framing of the curve. We reproduce BPS quivers of local geometries and illustrate the wall-crossing of finite-mass bound states in several new examples. We describe first steps toward understanding the spectrum of framed BPS states in terms of such "exponential networks".

  16. Fluctuation Bounds in the Exponential Bricklayers Process

    NASA Astrophysics Data System (ADS)

    Balázs, Márton; Komjáthy, Júlia; Seppäläinen, Timo

    2012-04-01

    This paper is the continuation of our earlier paper (Balázs et al. in Ann. Inst. Henri Poincaré Probab. Stat. 48(1):151-187, 2012), where we proved t 1/3-order of current fluctuations across the characteristics in a class of one dimensional interacting systems with one conserved quantity. We also claimed two models with concave hydrodynamic flux which satisfied the assumptions which made our proof work. In the present note we show that the totally asymmetric exponential bricklayers process also satisfies these assumptions. Hence this is the first example with convex hydrodynamics of a model with t 1/3-order current fluctuations across the characteristics. As such, it further supports the idea of universality regarding this scaling.

  17. Arsenic for the fool: an exponential connection.

    PubMed

    Dani, Sergio U

    2010-03-15

    Anthropogenic arsenic is insidiously building up together with natural arsenic to a level unprecedented in the history of mankind. Arsenopyrite (FeAsS) is the principal ore of arsenic and gold in hard rock mines; it is formed by a coupled substitution of sulphur by arsenic in the structure of pyrite (FeS(2)) - nicknamed "fool's gold". Other important sources of anthropogenic arsenic are fossil fuels such as coal and oil. Here I report on the first indication that the environmental concentration of total arsenic in topsoils - in the 7-18ppm range - is exponentially related to the prevalence and mortality of Alzheimer's disease and other dementias in European countries. This evidence defies the imputed absence of verified cases of human morbidity or mortality resulting from exposure to low-level arsenic in topsoils.

  18. Exponential Approximations Using Fourier Series Partial Sums

    NASA Technical Reports Server (NTRS)

    Banerjee, Nana S.; Geer, James F.

    1997-01-01

    The problem of accurately reconstructing a piece-wise smooth, 2(pi)-periodic function f and its first few derivatives, given only a truncated Fourier series representation of f, is studied and solved. The reconstruction process is divided into two steps. In the first step, the first 2N + 1 Fourier coefficients of f are used to approximate the locations and magnitudes of the discontinuities in f and its first M derivatives. This is accomplished by first finding initial estimates of these quantities based on certain properties of Gibbs phenomenon, and then refining these estimates by fitting the asymptotic form of the Fourier coefficients to the given coefficients using a least-squares approach. It is conjectured that the locations of the singularities are approximated to within O(N(sup -M-2), and the associated jump of the k(sup th) derivative of f is approximated to within O(N(sup -M-l+k), as N approaches infinity, and the method is robust. These estimates are then used with a class of singular basis functions, which have certain 'built-in' singularities, to construct a new sequence of approximations to f. Each of these new approximations is the sum of a piecewise smooth function and a new Fourier series partial sum. When N is proportional to M, it is shown that these new approximations, and their derivatives, converge exponentially in the maximum norm to f, and its corresponding derivatives, except in the union of a finite number of small open intervals containing the points of singularity of f. The total measure of these intervals decreases exponentially to zero as M approaches infinity. The technique is illustrated with several examples.

  19. Amplitude-free correlation function based on an algebra for coordinate transformation in semiclassical integrals.

    PubMed

    Takatsuka, K

    2001-07-01

    We present an algebra that facilitates a systematic coordinate transformation in semiclassical integrals such as those between the initial and final value representations. Applying this algebra to Maslov-type semiclassical wave packet theory [A. Inoue-Ushiyama and K. Takatsuka, Phys. Rev. A 59, 3256 (1999)], a semiclassical correlation function is extracted, which is free of the amplitude factor that suffers an exponential divergence in a chaotic system.

  20. Correlation of 1- to 10-Hz earthquake resonances with surface measurements of S-wave reflections and refractions in the upper 50 m

    USGS Publications Warehouse

    Williams, R.A.; Stephenson, W.J.; Frankel, A.D.; Cranswick, E.; Meremonte, M.E.; Odum, J.K.

    2000-01-01

    Resonances observed in earthquake seismograms recorded in Seattle, Washington, the central United States and Sherman Oaks, California, are correlated with each site's respective near-surface seismic velocity profile and reflectivity determined from shallow seismic-reflection/refraction surveys. In all of these cases the resonance accounts for the highest amplitude shaking at the site above 1 Hz. These results show that imaging near-surface reflections from the ground surface can locate impedance structures that are important contributors to earthquake ground shaking. A high-amplitude S-wave reflection, recorded 250-m northeast and 300-m east of the Seattle Kingdome earthquake-recording station, with a two-way travel time of about 0.23 to 0.27 sec (about 18- to 22-m depth) marks the boundary between overlying alluvium (VS < 180 m/sec) and a higher velocity material (VS about 400 m/sec). This reflector probably causes a strong 2-Hz resonance that is observed in the earthquake data for the site near the Kingdome. In the central United States, S-wave reflections from a high-impedance boundary (an S-wave velocity increase from about 200 m/sec to 2000 m/sec) at about 40-m depth corresponds to a strong fundamental resonance at about 1.5 Hz. In Sherman Oaks, strong resonances at about 1.0 and 4 Hz are consistently observed on earthquake seismograms. A strong S-wave reflector at about 40-m depth may cause the 1.0 Hz resonance. The 4.0-Hz resonance is possibly explained by constructive interference between the first overtone of the 1.0-Hz resonance and a 3.25- to 3.9-Hz resonance calculated from an areally consistent impedance boundary at about 10-m depth as determined by S-wave refraction data.

  1. Enhancement of the d-wave pairing correlations by charge and spin ordering in the spin-one-half Falicov-Kimball model with Hund and Hubbard coupling

    NASA Astrophysics Data System (ADS)

    Farkašovský, Pavol

    2016-08-01

    The projector quantum Monte Carlo method is used to examine the effects of the spin-independent U fd as well as spin-dependent J z Coulomb interaction between the localized f and itinerant d electrons on the stability of various types of charge/spin ordering and superconducting correlations in the spin-one-half Falicov-Kimball model with Hund and Hubbard coupling. The model is studied for a wide range of f- and d-electron concentrations and it is found that the interband interactions U fd and J z stabilize three basic types of charge/spin ordering, namely, i) the axial striped phases, ii) the regular n-molecular phases and iii) the phase-separated states. It is shown that the d-wave pairing correlations are enhanced within the axial striped and phase-separated states, but not in the regular phases. Moreover, it was found that the antiferromagnetic spin arrangement within the chains further enhances the d-wave paring correlations, while the ferromagnetic one has a fully opposite effect.

  2. Method of optical self-mixing for pulse wave transit time in comparison with other methods and correlation with blood pressure

    NASA Astrophysics Data System (ADS)

    Meigas, Kalju; Lass, Jaanus; Kattai, Rain; Karai, Deniss; Kaik, Juri

    2004-07-01

    This paper is a part of research to develop convenient method for continuous monitoring of arterial blood pressure by non-invasive and non-oscillometric way. A simple optical method, using self-mixing in a diode laser, is used for detection of skin surface vibrations near the artery. These vibrations, which can reveal the pulsate propagation of blood pressure waves along the vasculature, are used for pulse wave registration. The registration of the Pulse Wave Transit Time (PWTT) is based on computing the time delay in different regions of the human body using an ECG as a reference signal. In this study, the comparison of method of optical self-mixing with other methods as photoplethysmographic (PPG) and bioimpedance (BI) for PWTT is done. Also correlation of PWTT, obtained with different methods, with arterial blood pressure is calculated. In our study, we used a group of volunteers (34 persons) who made the bicycle exercise test. The test consisted of cycling sessions of increasing workloads during which the HR changed from 60 to 180 beats per minute. In addition, a blood pressure (NIBP) was registered with standard sphygmomanometer once per minute during the test and all NIBP measurement values were synchronized to other signals to find exact time moments where the systolic blood pressure was detected (Korotkoff sounds starting point). Computer later interpolated the blood pressure signal in order to get individual value for every heart cycle. The other signals were measured continuously during all tests. At the end of every session, a recovery period was included until person's NIBP and heart rate (HR) normalized. As a result of our study it turned out that time intervals that were calculated from plethysmographic (PPG) waveforms were in the best correlation with systolic blood pressure. The diastolic pressure does not correlate with any of the parameters representing PWTT. The pulse wave signals measured by laser and piezoelectric transducer are very similar

  3. Using the Bi-Orthogonal Decomposition framework to compute the three dimensional Empirical Orthogonal Functions of stratospheric planetary waves from time correlation matrices

    NASA Astrophysics Data System (ADS)

    Rolland, Joran; Domeisen, Daniela I. V.

    2016-04-01

    Many geophysical waves in the atmosphere or in the ocean have a three dimensional structure and contain a range of scales. This is for instance the case of planetary waves in the stratosphere connected to baroclinic eddies in the troposphere [1]. In the study of such waves from reanalysis data or output of numerical simulations, Empirical Orthogonal Functions (EOF) obtained as a Proper Orthogonal Decomposition of the data sets have been of great help. However, most of these computations rely on the diagonalisation of space correlation matrices: this means that the considered data set can only have a limited number of gridpoints. The main consequence is that such analyses are often only performed in planes (as function of height and latitude, or longitude and latitude for instance), which makes the educing of the three dimensional structure of the wave quite difficult. In the case of the afore mentionned waves, the matter of the longitudinal dependence or the proper correlation between modes through the tropopause is an open question. An elegant manner to circumvent this problem is to consider the output of the Orthogonal Decomposition as a whole. Indeed, it has been shown that the normalised time series of the amplitude of each EOF, far from just being decorrelated from one another, are actually another set of orthogonal functions. These can actually be computed through the diagonlisation of the time correlation matrix of the data set, just like the EOF were the result of the diagonalisation of the space correlation matrix. The signal is then fully decomposed in the framework of the Bi-Orthogonal Decomposition as the sum of the nth explained variance, time the nth eigenmode of the time correlation times the nth eigenmode of the spacial correlations [2,3]. A practical consequence of this result is that the EOF can be reconstructed from the projection of the dataset onto the eigenmodes of the time correlation matrix in the so-called snapshot method [4]. This is very

  4. Modulating the correlation and squeezing of phase-conjugate four-wave mixing via the polarizable dressing states.

    PubMed

    Wang, Ruimin; Guo, Yao; Liu, Zheng; Ma, Jiaqi; Yin, Ming; Wang, Xiuxiu; Li, Changbiao; Zhang, Yanpeng

    2015-05-28

    We report the experimental observation of the intensity noise correlation and squeezing between counter propagating Stokes and anti-Stokes signals in Pr(3+):Y2SiO5 crystals. Both the degree of correlation and squeezing as well as the oscillation frequency of correlation curves are modulated by changing the polarization states and powers of the dressing fields. The double-dressed effect and the triple-dressed effect in V-type three-level, Λ-type three-level and N-type four-level systems are compared. The polarization and power dependencies in these systems are different, and the oscillation frequency of the correlation curve in the triple-dressed process is greater than that of the double-dressed process. Our results show that the correlation and squeezing of photon pairs can be controlled via polarized dark states.

  5. Acoustic wave propagation in heterogeneous two-dimensional fractured porous media

    NASA Astrophysics Data System (ADS)

    Hamzehpour, Hossein; Asgari, Mojgan; Sahimi, Muhammad

    2016-06-01

    This paper addresses an important fundamental question: the differences between wave propagation in fractured porous media with a uniform matrix (constant bulk modulus) and those in which the matrix is heterogeneous with its bulk modulus distributed spatially. The analysis of extensive experimental data [Phys. Rev. E 71, 046301 (2005), 10.1103/PhysRevE.71.046301] indicated that such distributions are self-affine and induce correlations at all the relevant length scales. The comparison is important from a practical view point because in many of the traditional models of fractured rock, particularly those that are used to study wave propagation or fit some data, the matrix is assumed to be uniform. Using extensive numerical simulation of propagation of acoustic waves, we present strong evidence indicating that the waves' amplitude in a fractured porous medium with a heterogeneous matrix decays exponentially with the distance from the source. This is in sharp contrast with a fractured porous medium with a uniform matrix in which not only the waves' amplitude decays with the distance as a stretched exponential function, but the exponent that characterizes the function is also dependent upon the fracture density. The localization length depends on the correlations in the spatial distribution of the bulk modulus, as well as the fracture density. The mean speed of the waves varies linearly with the fractures' mean orientation.

  6. SN1987A: correlation between the data recorded by the Mont Blanc neutrino detector and by the Maryland and Rome gravitational wave antennas.

    NASA Astrophysics Data System (ADS)

    Pallottino, G. V.

    The author reports the analysis of gravitational wave and neutrino detectors over a period of 18 hours that includes the Mont Blanc 5 neutrino burst time. There is statistical evidence for correlations during a period of about two hours, centered on the 5 neutrino burst: the effect is mainly due to a dozen of large amplitude Maryland and Rome events. The interpretation of these events as due to gravitational radiation from SN1987A should be rejected, according to the standard theory of the cross-section of g.w. detectors, since it would imply an emission of energy too large by a factor of about 104.

  7. Brain perfusion monitoring with frequency-domain and continuous-wave near-infrared spectroscopy: a cross-correlation study in newborn piglets.

    PubMed

    Zhang, G; Katz, A; Alfano, R R; Kofinas, A D; Kofinas, D A; Stubblefield, P G; Rosenfeld, W; Beyer, D; Maulik, D; Stankovic, M R

    2000-11-01

    The newborn piglet brain model was used to correlate continuous-wave (CW) and frequency-domain (FD) near-infrared spectroscopy. Six ventilated and instrumented newborn piglets were subjected to a series of manipulations in blood oxygenation with the effects on brain perfusion known to be associated with brain hypoxia-ischaemia. An excellent agreement between the CW and FD was demonstrated. This agreement improved when the scattering properties (determined by the FD device) were employed to calculate the differential pathlength factor, an important step in CW data processing.

  8. Brain perfusion monitoring with frequency-domain and continuous-wave near-infrared spectroscopy: a cross-correlation study in newborn piglets

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Katz, A.; Alfano, R. R.; Kofinas, A. D.; Kofinas, D. A.; Stubblefield, P. G.; Rosenfeld, W.; Beyer, D.; Maulik, D.; Stankovic, M. R.

    2000-11-01

    The newborn piglet brain model was used to correlate continuous-wave (CW) and frequency-domain (FD) near-infrared spectroscopy. Six ventilated and instrumented newborn piglets were subjected to a series of manipulations in blood oxygenation with the effects on brain perfusion known to be associated with brain hypoxia-ischaemia. An excellent agreement between the CW and FD was demonstrated. This agreement improved when the scattering properties (determined by the FD device) were employed to calculate the differential pathlength factor, an important step in CW data processing.

  9. [Correlation between the orientation of the data wave and the topography of pre-excitation in the Wolff-Parkinson-White syndrome].

    PubMed

    Frank, R; Fontaine, G; Guiraudon, G; Cabrol, C; Grosgogeat, Y; Facquet, J

    1977-05-01

    A comparison between the epicardial siting of the zone of pre-excitation of the ventricle in Wolff-Parkinson-White syndrome and the ECG has allowed us to distinguish 6 topographical types, according to the orientation of the delta wave in the horizontal plane, and especially in the frontal plane which is often ignored: right anterior, left lateral, right of left anterior paraseptal, and right or left posterior paraseptal. The association of a heart defect with ventricular hypertrophy, or the coexistence of several associated accessory pathways prevents such correlation and makes it imperative to carry out intracavitary investigation and epicardial mapping to localise the accessory pathway if surgery is contemplated.

  10. Spontaneous four-wave mixing in liquid-core fibers: towards fibered Raman-free correlated photon sources

    NASA Astrophysics Data System (ADS)

    Barbier, M.; Zaquine, I.; Delaye, P.

    2015-05-01

    We experimentally demonstrate, for the first time to our knowledge, the generation of correlated photon pairs in a liquid-core photonic crystal fiber. Moreover, we show that, thanks to the specific Raman properties of liquids, the Raman noise (which is the main limitation of the performance of silica-core fiber-based correlated photon pair sources) is highly reduced. With a demonstrated coincident-to-accidental ratio equal to 63 and a pair generation efficiency of about 10-4 per pump pulse, this work contributes to the development of high-quality correlated photon pair sources for quantum communications.

  11. Exponential fading to white of black holes in quantum gravity

    NASA Astrophysics Data System (ADS)

    Barceló, Carlos; Carballo-Rubio, Raúl; Garay, Luis J.

    2017-05-01

    Quantization of the gravitational field may allow the existence of a decay channel of black holes into white holes with an explicit time-reversal symmetry. The definition of a meaningful decay probability for this channel is studied in spherically symmetric situations. As a first nontrivial calculation, we present the functional integration over a set of geometries using a single-variable function to interpolate between black-hole and white-hole geometries in a bounded region of spacetime. This computation gives a finite result which depends only on the Schwarzschild mass and a parameter measuring the width of the interpolating region. The associated probability distribution displays an exponential decay law on the latter parameter, with a mean lifetime inversely proportional to the Schwarzschild mass. In physical terms this would imply that matter collapsing to a black hole from a finite radius bounces back elastically and instantaneously, with negligible time delay as measured by external observers. These results invite to reconsider the ultimate nature of astrophysical black holes, providing a possible mechanism for the formation of black stars instead of proper general relativistic black holes. The existence of both this decay channel and black stars can be tested in future observations of gravitational waves.

  12. SN 1987 A - Correlations between the Maryland and Rome gravitational wave detector data and the Mont Blanc and KAMIOKANDE neutrino detector data

    NASA Astrophysics Data System (ADS)

    Pallottino, G. V.

    1990-02-01

    The paper describes the analysis of data obtained in the period 12 h of February 22, 1987 to 6 h of February 23, 1987, that includes the time of neutrino observation with the Mont Blanc detector during SN 1987 A. A very significant correlation has been observed among the data of the above detectors in a period of one or two hours which includes the time of the Mont Blanc 5-neutrino observation. The correlation between the gravitational wave detector data and the Kamiokande data is found if a time of 7.8 s is added to the Kamioka recorded time; this is very close to the time difference, 6.2 s, between the IMB and Kamioka large neutrino bursts observed at about 7 h 35 min.

  13. Exponentiated exponential model (Gompertz kinetics) of Na+ and K+ conductance changes in squid giant axon.

    PubMed Central

    Easton, D M

    1978-01-01

    The conductance changes, gK(t) and gNa(t), of squid giant axon under voltage clamp (Hodgkin and Huxley, 1952) may be modeled by exponentiated exponential functions (Gompertz kinetics) from any holding potential VO to any membrane clamp potential V. The equation constants are set by the membrane potential V, and include, for any voltage step in the case of gK, the initial conductance, gO, the asymptote conductance g, and rate constant k: gK = g exp(-be-kt) where b = 1n g/gO. Equations of similar form relate g and k to the voltage V, and govern the corresponding parameters of the gNa system. For the gNa, the fast phase y = y exp (-be-kt) is cut down in proportion to a slow process p = (1 - p)e-k't + p, and thus gNa = py. The expo-exponential functions involve fewer constants than the Hodgkin-Huxley model. In particular, the role of the n, m, h parameters appears to be filled largely by 1n (g/gO) in the case of gK and by 1n (y/yO) in the case of gNa. Membrane action potentials during current clamp may be computed from the conductances generated by use of the appropriate differential forms of the equations; diverse other membrane behaviors may be predicted. PMID:638223

  14. An exponential decay model for mediation.

    PubMed

    Fritz, Matthew S

    2014-10-01

    Mediation analysis is often used to investigate mechanisms of change in prevention research. Results finding mediation are strengthened when longitudinal data are used because of the need for temporal precedence. Current longitudinal mediation models have focused mainly on linear change, but many variables in prevention change nonlinearly across time. The most common solution to nonlinearity is to add a quadratic term to the linear model, but this can lead to the use of the quadratic function to explain all nonlinearity, regardless of theory and the characteristics of the variables in the model. The current study describes the problems that arise when quadratic functions are used to describe all nonlinearity and how the use of nonlinear functions, such as exponential decay, address many of these problems. In addition, nonlinear models provide several advantages over polynomial models including usefulness of parameters, parsimony, and generalizability. The effects of using nonlinear functions for mediation analysis are then discussed and a nonlinear growth curve model for mediation is presented. An empirical example using data from a randomized intervention study is then provided to illustrate the estimation and interpretation of the model. Implications, limitations, and future directions are also discussed.

  15. An Exponential Decay Model for Mediation

    PubMed Central

    Fritz, Matthew S.

    2013-01-01

    Mediation analysis is often used to investigate mechanisms of change in prevention research. Results finding mediation are strengthened when longitudinal data are used because of the need for temporal precedence. Current longitudinal mediation models have focused mainly on linear change, but many variables in prevention change nonlinearly across time. The most common solution to nonlinearity is to add a quadratic term to the linear model, but this can lead to the use of the quadratic function to explain all nonlinearity, regardless of theory and the characteristics of the variables in the model. The current study describes the problems that arise when quadratic functions are used to describe all nonlinearity and how the use of nonlinear functions, such as exponential decay, addresses many of these problems. In addition, nonlinear models provide several advantages over polynomial models including usefulness of parameters, parsimony, and generalizability. The effects of using nonlinear functions for mediation analysis are then discussed and a nonlinear growth curve model for mediation is presented. An empirical example using data from a randomized intervention study is then provided to illustrate the estimation and interpretation of the model. Implications, limitations, and future directions are also discussed. PMID:23625557

  16. On the breaking of a plasma wave in a thermal plasma. II. Electromagnetic wave interaction with the breaking plasma wave

    SciTech Connect

    Bulanov, Sergei V.; Esirkepov, Timur Zh.; Kando, Masaki; Koga, James K.; Pirozhkov, Alexander S.; Nakamura, Tatsufumi; Bulanov, Stepan S.; Schroeder, Carl B.; Esarey, Eric; Califano, Francesco; Pegoraro, Francesco

    2012-11-15

    In thermal plasma, the structure of the density singularity formed in a relativistically large amplitude plasma wave close to the wavebreaking limit leads to a refraction coefficient with discontinuous spatial derivatives. This results in a non-exponentially small above-barrier reflection of an electromagnetic wave interacting with the nonlinear plasma wave.

  17. Time evolution of the exponential wavenumber spectra of turbulence upon helium injection into a hydrogen discharge at the FT-2 tokamak

    SciTech Connect

    Gurchenko, A. D.; Gusakov, E. Z.; Lashkul, S. I.; Altukhov, A. B.; Selyunin, E. P.; Esipov, L. A.; Kantor, M. Yu.; Kouprienko, D. V.; Stepanov, A. Yu.

    2013-05-15

    The effect of variations in the key parameter of short-wavelength turbulence-the ion-acoustic Larmor radius {rho}{sub s}, which determines the position of the maximum of the drift instability growth rate over poloidal wavenumbers-was studied experimentally at the FT-2 tokamak. For this purpose, helium was injected to hydrogen plasma, which resulted in a change in the electron temperature at the plasma edge. The universality of the exponential shape of the turbulence spectra over radial wavenumbers q and a substantial excess of the characteristic turbulence scale L over the ion-acoustic Larmor radius was confirmed with the help of correlative diagnostics of enhanced scattering. This excess at the discharge periphery reaches a value of 3-5 at a low electron temperature, apparently, due to an increase in the dissipation of drift waves upon their cascade transfer toward short scale-lengths.

  18. Motion-Correlated Flow Distortion and Wave-Induced Biases in Air-Sea Flux Measurements From Ships

    NASA Astrophysics Data System (ADS)

    Prytherch, J.; Yelland, M. J.; Brooks, I. M.; Tupman, D. J.; Pascal, R. W.; Moat, B. I.; Norris, S. J.

    2016-02-01

    Direct measurements of the turbulent air-sea fluxes of momentum, heat, moisture and gases are often made using sensors mounted on ships. Ship-based turbulent wind measurements are corrected for platform motion using well established techniques, but biases at scales associated with wave and platform motion are often still apparent in the flux measurements. It has been uncertain whether this signal is due to time-varying distortion of the air flow over the platform, or to wind-wave interactions impacting the turbulence. Methods for removing such motion-scale biases from scalar measurements have previously been published but their application to momentum flux measurements remains controversial. Here we use eddy covariance momentum flux measurements obtained onboard RRS James Clark Ross as part of the Waves, Aerosol and Gas Exchange Study (WAGES), a programme of near-continuous measurements using the autonomous AutoFlux system (Yelland et al., 2009). Measurements were made in 2013 in locations throughout the North and South Atlantic, the Southern Ocean and the Arctic Ocean, at latitudes ranging from 62°S to 75°N. We show that the measured motion-scale bias has a dependence on the horizontal ship velocity, and that a correction for it reduces the dependence of the measured momentum flux on the orientation of the ship to the wind. We conclude that the bias is due to experimental error, and that time-varying motion-dependent flow distortion is the likely source. Yelland, M., Pascal, R., Taylor, P. and Moat, B.: AutoFlux: an autonomous system for the direct measurement of the air-sea fluxes of CO2, heat and momentum. J. Operation. Oceanogr., 15-23, doi:10.1080/1755876X.2009.11020105, 2009.

  19. Exponential and power-law contact distributions represent different atmospheric conditions.

    PubMed

    Reynolds, A M

    2011-12-01

    It is well known that the dynamics of plant disease epidemics are very sensitive to the functional form of the contact distribution?the probability distribution function for the distance of viable fungal spore movement until deposition. Epidemics can take the form of a constant-velocity travelling wave when the contact distribution is exponentially bounded. Fat-tailed contact distributions, on the other hand, lead to epidemic spreads that accelerate over time. Some empirical data for contact distributions can be well represented by negative exponentials while other data are better represented by fat-tailed inverse power laws. Here we present data from numerical simulations that suggest that negative exponentials and inverse power laws are not competing candidate forms of the contact distribution but are instead representative of different atmospheric conditions. Contact distributions for atmospheric boundary-layers with stabilities ranging from strongly convective (a hot windless day time scenario) to stable stratification (a cold windy night time scenario) but without precipitation events are calculated using well-established state-of-the-art Lagrangian stochastic (particle tracking) dispersal models. Contact distributions are found to be well represented by exponentials for strongly convective conditions; a -3/2 inverse power law for convective boundary-layers with wind shear; and by a -2/3 inverse power law for stably stratified conditions.

  20. Bound state solutions of Dirac equation with radial exponential-type potentials

    NASA Astrophysics Data System (ADS)

    Peña, J. J.; Morales, J.; García-Ravelo, J.

    2017-04-01

    In this work, a direct approach for obtaining analytical bound state solutions of the Dirac equation for radial exponential-type potentials with spin and pseudospin symmetry conditions within the frame of the Green and Aldrich approximation to the centrifugal term is presented. The proposal is based on the relation existing between the Dirac equation and the exactly solvable Schrödinger equation for a class of multi-parameter exponential-type potential. The usefulness of the present approach is exemplified by considering some known specific exponential-type potentials which are obtained as particular cases from our proposal. That is, instead of solving the Dirac equation for a special exponential potential, by means of a specialized method, the energy spectra and wave functions are derived directly from the proposed approach. Beyond the applications considered in this work, our proposition could be used as an alternative way in the search of bound state solutions of the Dirac equation for other potentials as well as it can be easily adapted to other approximations to the centrifugal term.

  1. Synaptic transmission is impaired prior to plaque formation in amyloid precursor protein-overexpressing mice without altering behaviorally-correlated sharp wave-ripple complexes.

    PubMed

    Hermann, D; Both, M; Ebert, U; Gross, G; Schoemaker, H; Draguhn, A; Wicke, K; Nimmrich, V

    2009-09-15

    One of the hallmarks of Alzheimer's disease is the accumulation of amyloid plaques in brains of affected patients. Several recent studies provided evidence that soluble oligomer forms of amyloid-beta (Abeta) rather than plaques determine cognitive decline. In vitro studies using artificial Abeta oligomer preparations suggest that such pathophysiology is caused by a specific impairment of synaptic function. We examined whether synaptic deficits occur before deposition of insoluble fibrillar Abeta by analyzing brain slices taken from young Tg2576 mice overexpressing mutant amyloid precursor protein. Excitatory synaptic transmission in the hippocampal CA1 region was strongly impaired before plaque development, suggesting a dissociation of an early synaptic impairment, probably caused by soluble oligomeric amyloid-beta, from subsequent plaque formation. At higher age neurotransmission was also decreased in wild type mice, paralleling a cognitive decline of normal aged animals. Memory formation in rats is accompanied by distinct hippocampal network oscillations. It has recently been shown that hippocampal gamma oscillations, a network correlate of exploratory behavior, are impaired in amyloid precursor protein (APP)-overexpressing mice. We determined whether sharp wave-ripple complexes, which contribute to memory consolidation during slow wave-sleep, are modified in Tg2576 mice. Interestingly, neither sharp waves nor superimposed ripples were changed at pre-plaque or plaque stages. During aging, however, there was a strong reduction of sharp wave frequency and ripple energy in wild type and APP-overexpressing animals. This indicates that the reported changes in network oscillations following APP-overexpression are specific for gamma oscillations, whereas aging has a more general effect on network properties. Taken together our data suggest that non-fibrillar forms of Abeta--possibly Abeta oligomers--specifically interfere with synaptic function in Tg2576, but do not

  2. Nonlinear dynamical systems effects of homeopathic remedies on multiscale entropy and correlation dimension of slow wave sleep EEG in young adults with histories of coffee-induced insomnia.

    PubMed

    Bell, Iris R; Howerter, Amy; Jackson, Nicholas; Aickin, Mikel; Bootzin, Richard R; Brooks, Audrey J

    2012-07-01

    Investigators of homeopathy have proposed that nonlinear dynamical systems (NDS) and complex systems science offer conceptual and analytic tools for evaluating homeopathic remedy effects. Previous animal studies demonstrate that homeopathic medicines alter delta electroencephalographic (EEG) slow wave sleep. The present study extended findings of remedy-related sleep stage alterations in human subjects by testing the feasibility of using two different NDS analytic approaches to assess remedy effects on human slow wave sleep EEG. Subjects (N=54) were young adult male and female college students with a history of coffee-related insomnia who participated in a larger 4-week study of the polysomnographic effects of homeopathic medicines on home-based all-night sleep recordings. Subjects took one bedtime dose of a homeopathic remedy (Coffea cruda or Nux vomica 30c). We computed multiscale entropy (MSE) and the correlation dimension (Mekler-D2) for stages 3 and 4 slow wave sleep EEG sampled in artifact-free 2-min segments during the first two rapid-eye-movement (REM) cycles for remedy and post-remedy nights, controlling for placebo and post-placebo night effects. MSE results indicate significant, remedy-specific directional effects, especially later in the night (REM cycle 2) (CC: remedy night increases and post-remedy night decreases in MSE at multiple sites for both stages 3 and 4 in both REM cycles; NV: remedy night decreases and post-remedy night increases, mainly in stage 3 REM cycle 2 MSE). D2 analyses yielded more sporadic and inconsistent findings. Homeopathic medicines Coffea cruda and Nux vomica in 30c potencies alter short-term nonlinear dynamic parameters of slow wave sleep EEG in healthy young adults. MSE may provide a more sensitive NDS analytic method than D2 for evaluating homeopathic remedy effects on human sleep EEG patterns. Copyright © 2012 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.

  3. Nonlinear Dynamical Systems Effects of Homeopathic Remedies on Multiscale Entropy and Correlation Dimension of Slow Wave Sleep EEG in Young Adults with Histories of Coffee-Induced Insomnia

    PubMed Central

    Bell, Iris R.; Howerter, Amy; Jackson, Nicholas; Aickin, Mikel; Bootzin, Richard R.; Brooks, Audrey J.

    2012-01-01

    Background Investigators of homeopathy have proposed that nonlinear dynamical systems (NDS) and complex systems science offer conceptual and analytic tools for evaluating homeopathic remedy effects. Previous animal studies demonstrate that homeopathic medicines alter delta electroencephalographic (EEG) slow wave sleep. The present study extended findings of remedy-related sleep stage alterations in human subjects by testing the feasibility of using two different NDS analytic approaches to assess remedy effects on human slow wave sleep EEG. Methods Subjects (N=54) were young adult male and female college students with a history of coffee-related insomnia who participated in a larger 4-week study of the polysomnographic effects of homeopathic medicines on home-based all-night sleep recordings. Subjects took one bedtime dose of a homeopathic remedy (Coffea cruda or Nux vomica 30c). We computed multiscale entropy (MSE) and the correlation dimension (Mekler-D2) for stage 3 and 4 slow wave sleep EEG sampled in artifact-free 2-minute segments during the first two rapid-eye-movement (REM) cycles for remedy and post-remedy nights, controlling for placebo and post-placebo night effects. Results MSE results indicate significant, remedy-specific directional effects, especially later in the night (REM cycle 2) (CC: remedy night increases and post-remedy night decreases in MSE at multiple sites for both stages 3 and 4 in both REM cycles; NV: remedy night decreases and post-remedy night increases, mainly in stage 3 REM cycle 2 MSE). D2 analyses yielded more sporadic and inconsistent findings. Conclusions Homeopathic medicines Coffea cruda and Nux vomica in 30c potencies alter short-term nonlinear dynamic parameters of slow wave sleep EEG in healthy young adults. MSE may provide a more sensitive NDS analytic method than D2 for evaluating homeopathic remedy effects on human sleep EEG patterns. PMID:22818237

  4. Density Estimation of Simulation Output Using Exponential EPI-Splines

    DTIC Science & Technology

    2013-12-01

    ak+1,1, k = 1, 2, ..., N − 1. Pointwise Fisher information. We define the pointwise Fisher information of an exponential epi-spline density h at x to...are required to obtain meaningful results. All exponential epi-splines are computed under the assumptions of continuity, smoothness, pointwise Fisher...Kernel 0.4310 0.3536 In the exponential epi-spline estimates, we include continuity, differentiability, and pointwise Fisher information constraints with

  5. Exponential convergence rates for weighted sums in noncommutative probability space

    NASA Astrophysics Data System (ADS)

    Choi, Byoung Jin; Ji, Un Cig

    2016-11-01

    We study exponential convergence rates for weighted sums of successive independent random variables in a noncommutative probability space of which the weights are in a von Neumann algebra. Then we prove a noncommutative extension of the result for the exponential convergence rate by Baum, Katz and Read. As applications, we first study a large deviation type inequality for weighted sums in a noncommutative probability space, and secondly we study exponential convergence rates for weighted free additive convolution sums of probability measures.

  6. Observed correlation of Venus topography with the zonal wind and albedo at cloud top level: the role of stationary gravity waves.

    NASA Astrophysics Data System (ADS)

    Bertaux, Jean-Loup; Khatunstsev, Igor; Hauchecorne, Alain; Markiewicz, Wojtek; Emmanuel, Marcq; Sébastien, Lebonnois; Marina, Patsaeva; Alex, Turin; Anna, Fedorova

    2016-04-01

    Based on the analysis of UV images (at 365 nm) of Venus cloud top (altitude 67±2 km) collected with VMC (Venus Monitoring Camera) on board Venus Express (VEX), it is found that the zonal wind speed south of the equator (from 5°S to 15°s) shows a conspicuous variation (from -101 to -83 m/s) with geographic longitude of Venus, correlated with the underlying relief of Aphrodite Terra. We interpret this pattern as the result of stationary gravity waves produced at ground level by the up lift of air when the horizontal wind encounters a mountain slope. These waves can propagate up to cloud top level, break there and transfer their momentum to the zonal flow. Such upward propagation of gravity waves and influence on the wind speed vertical profile was shown to play an important role in the middle atmosphere of the Earth by Lindzen [1981], but is not reproduced in a current GCM of Venus atmosphere. Consistent with present findings, the two VEGA mission balloons experienced a small, but significant, difference of westward velocity, at their 53 km floating altitude. The albedo at 365 nm varies also with longitude and latitude in a pattern strikingly similar in the low latitude regions to a recent map of cloud top H2O [Fedorova et al., 2015], in which a lower UV albedo is correlated with increased H2O. We argue that H2O enhancement is the sign of upwelling, suggesting that the UV absorber is also brought to cloud top by upwelling.

  7. Correlation of light-induced changes in retinal extracellular potassium concentration with c-wave of the electroretinogram.

    PubMed

    Oakley, B; Green, D G

    1976-09-01

    1. Double-barrel, potassium-specific microelectrodes have been used to measure light-induced transient changes in [K+]o in the frog eye cup preparation. These changes in [K+]o have been termed the potassioretinogram (KRG). 2. The KRG consists of two components: a rapid increase in [K+]o in the proximal retina and a slow decrease in [K+]o in the distal retina. 3. The KRG decrease has the rhodopsin action spectrum, is maximal in the photoreceptor layer, persists after aspartate treatment, and has an increment threshold curve which saturates at moderate background intensities. The rhodopsin rods are, therefore, most likely the only neurons which generate this ionic change, although the Müller (glial) cells may also be involved in this process. 4. The KRG decrease has the same time course as the c-wave of the electroretinogram for all variations in the stimulus parameters, including intensity, duration, and chromaticity. 5. It is suggested that the c-wave may be produced by the pigment epithelial cells as they hyperpolarize in response to the decrease in [K+]o around the photoreceptors.

  8. Motion-correlated flow distortion and wave-induced biases in air-sea flux measurements from ships

    NASA Astrophysics Data System (ADS)

    Prytherch, J.; Yelland, M. J.; Brooks, I. M.; Tupman, D. J.; Pascal, R. W.; Moat, B. I.; Norris, S. J.

    2015-09-01

    Direct measurements of the turbulent air-sea fluxes of momentum, heat, moisture and gases are often made using sensors mounted on ships. Ship-based turbulent wind measurements are corrected for platform motion using well established techniques, but biases at scales associated with wave and platform motion are often still apparent in the flux measurements. It has been uncertain whether this signal is due to time-varying distortion of the air flow over the platform or to wind-wave interactions impacting the turbulence. Methods for removing such motion-scale biases from scalar measurements have previously been published but their application to momentum flux measurements remains controversial. Here we show that the measured motion-scale bias has a dependence on the horizontal ship velocity and that a correction for it reduces the dependence of the measured momentum flux on the orientation of the ship to the wind. We conclude that the bias is due to experimental error and that time-varying motion-dependent flow distortion is the likely source.

  9. Motion-correlated flow distortion and wave-induced biases in air-sea flux measurements from ships

    NASA Astrophysics Data System (ADS)

    Prytherch, J.; Yelland, M. J.; Brooks, I. M.; Tupman, D. J.; Pascal, R. W.; Moat, B. I.; Norris, S. J.

    2015-06-01

    Direct measurements of the turbulent air-sea fluxes of momentum, heat, moisture and gases. are often made using sensors mounted on ships. Ship-based turbulent wind measurements are corrected for platform motion using well established techniques, but biases at scales associated with wave and platform motion are often still apparent in the flux measurements. It has been uncertain whether this signal is due to time-varying distortion of the air flow over the platform, or to wind-wave interactions impacting the turbulence. Methods for removing such motion-scale biases from scalar measurements have previously been published but their application to momentum flux measurements remains controversial. Here we show that the measured motion-scale bias has a dependence on the horizontal ship velocity, and that a correction for it reduces the dependence of the measured momentum flux on the orientation of the ship to the wind. We conclude that the bias is due to experimental error, and that time-varying motion-dependent flow distortion is the likely source.

  10. Gravitational waves and red shifts - A space experiment for testing relativistic gravity using multiple time-correlated radio signals

    NASA Technical Reports Server (NTRS)

    Smarr, L. L.; Vessot, R. F. C.; Lundquist, C. A.; Decher, R.; Piran, T.

    1983-01-01

    A two-step satellite mission for improving the accuracy of gravitational wave detection and for observing actual gravity waveforms is proposed. The spacecraft would carry both a highly stable hydrogen maser, which would control a transmitter sending signals to earth, and a Doppler transponder operating in the two-way mode. The use of simultaneous one- and two-way Doppler transmissions offers four time records of frequency pulsations, which can reveal gravitational radiation at 1-10 MHz with an amplitude accuracy of a factor of six. The first mission phase would consist of a Shuttle launch into a highly eccentric orbit to obtain measurements of the gravitational redshift using gravitational potentials of different earth regions to establish that gravity is describable by a metric theory. Then, after a boost into a heliocentric orbit at 6 AU, the earth-satellite system could detect gravitational waves in the solar system, as well as bursts emitted by the collisions of supermassive black holes.

  11. Using Differentials to Differentiate Trigonometric and Exponential Functions

    ERIC Educational Resources Information Center

    Dray, Tevian

    2013-01-01

    Starting from geometric definitions, we show how differentials can be used to differentiate trigonometric and exponential functions without limits, numerical estimates, solutions of differential equations, or integration.

  12. Using Differentials to Differentiate Trigonometric and Exponential Functions

    ERIC Educational Resources Information Center

    Dray, Tevian

    2013-01-01

    Starting from geometric definitions, we show how differentials can be used to differentiate trigonometric and exponential functions without limits, numerical estimates, solutions of differential equations, or integration.

  13. Robust Variable Selection with Exponential Squared Loss.

    PubMed

    Wang, Xueqin; Jiang, Yunlu; Huang, Mian; Zhang, Heping

    2013-04-01

    Robust variable selection procedures through penalized regression have been gaining increased attention in the literature. They can be used to perform variable selection and are expected to yield robust estimates. However, to the best of our knowledge, the robustness of those penalized regression procedures has not been well characterized. In this paper, we propose a class of penalized robust regression estimators based on exponential squared loss. The motivation for this new procedure is that it enables us to characterize its robustness that has not been done for the existing procedures, while its performance is near optimal and superior to some recently developed methods. Specifically, under defined regularity conditions, our estimators are [Formula: see text] and possess the oracle property. Importantly, we show that our estimators can achieve the highest asymptotic breakdown point of 1/2 and that their influence functions are bounded with respect to the outliers in either the response or the covariate domain. We performed simulation studies to compare our proposed method with some recent methods, using the oracle method as the benchmark. We consider common sources of influential points. Our simulation studies reveal that our proposed method performs similarly to the oracle method in terms of the model error and the positive selection rate even in the presence of influential points. In contrast, other existing procedures have a much lower non-causal selection rate. Furthermore, we re-analyze the Boston Housing Price Dataset and the Plasma Beta-Carotene Level Dataset that are commonly used examples for regression diagnostics of influential points. Our analysis unravels the discrepancies of using our robust method versus the other penalized regression method, underscoring the importance of developing and applying robust penalized regression methods.

  14. An exponential filter model predicts lightness illusions

    PubMed Central

    Zeman, Astrid; Brooks, Kevin R.; Ghebreab, Sennay

    2015-01-01

    Lightness, or perceived reflectance of a surface, is influenced by surrounding context. This is demonstrated by the Simultaneous Contrast Illusion (SCI), where a gray patch is perceived lighter against a black background and vice versa. Conversely, assimilation is where the lightness of the target patch moves toward that of the bounding areas and can be demonstrated in White's effect. Blakeslee and McCourt (1999) introduced an oriented difference-of-Gaussian (ODOG) model that is able to account for both contrast and assimilation in a number of lightness illusions and that has been subsequently improved using localized normalization techniques. We introduce a model inspired by image statistics that is based on a family of exponential filters, with kernels spanning across multiple sizes and shapes. We include an optional second stage of normalization based on contrast gain control. Our model was tested on a well-known set of lightness illusions that have previously been used to evaluate ODOG and its variants, and model lightness values were compared with typical human data. We investigate whether predictive success depends on filters of a particular size or shape and whether pooling information across filters can improve performance. The best single filter correctly predicted the direction of lightness effects for 21 out of 27 illusions. Combining two filters together increased the best performance to 23, with asymptotic performance at 24 for an arbitrarily large combination of filter outputs. While normalization improved prediction magnitudes, it only slightly improved overall scores in direction predictions. The prediction performance of 24 out of 27 illusions equals that of the best performing ODOG variant, with greater parsimony. Our model shows that V1-style orientation-selectivity is not necessary to account for lightness illusions and that a low-level model based on image statistics is able to account for a wide range of both contrast and assimilation effects

  15. Dynamic Site Characterization and Correlation of Shear Wave Velocity with Standard Penetration Test ` N' Values for the City of Agartala, Tripura State, India

    NASA Astrophysics Data System (ADS)

    Sil, Arjun; Sitharam, T. G.

    2014-08-01

    the city is susceptible to site effects and liquefaction. Further, the different data set combinations between V s and SPT-N (corrected and uncorrected) values have been used to develop site-specific correlation equations by statistical regression, as ` V s' is a function of SPT- N value (corrected and uncorrected), considered with or without depth. However, after considering the data set pairs, a probabilistic approach has also been presented to develop a correlation using a quantile-quantile (Q-Q) plot. A comparison has also been made with the well known published correlations (for all soils) available in the literature. The present correlations closely agree with the other equations, but, comparatively, the correlation of shear wave velocity with the variation of depth and uncorrected SPT-N values provides a more suitable predicting model. Also the Q-Q plot agrees with all the other equations. In the absence of in situ measurements, the present correlations could be used to measure V s profiles of the study area for site response studies.

  16. Exponential and polynomial stability of an elastic Bresse system with two locally distributed feedbacks

    SciTech Connect

    Wehbe, Ali; Youssef, Wael

    2010-10-15

    In this paper, we study the energy decay rate for the elastic Bresse system in one-dimensional bounded domain. The physical system consists of three wave equations. The two wave equations about the rotation angle and the longitudinal displacement are damped by two locally distributed feedbacks at the neighborhood of the boundary. Then indirect damping is applied to the equation for the transverse displacement of the beam through the coupling terms. We will establish the exponential stability for this system in the case of the same speed of propagation in the equation for the vertical displacement and the equation for the rotation angle of the system. When the wave speeds are different, nonexponential decay rate is proved and a polynomial-type decay rate is obtained. The frequency domain method and the multiplier technique are applied.

  17. Study of B and Bs mesons with a Coulomb plus exponential type potential

    NASA Astrophysics Data System (ADS)

    Yazarloo, B. H.; Mehraban, H.

    2016-11-01

    In this paper, we have studied the B and B s mesons spectra and their decays within the framework of nonrelativistic potential model. We have considered a new potential model for the interaction of mesonic systems, the Coulomb plus exponential type potential. We have applied the perturbation approach and reported the total wave function. We have used the Nikiforov-Uvarov (NU) technique to calculate the parent wave function and thereby obtained a series solution for the perturbative wave function. Besides the decay constant and leptonic decay width, we have considered the semileptonic decay width which is related to the Isgur-Wise function. The obtained results are compared with the available experimental and theoretical data.

  18. Lack of exponential stability to Timoshenko system with viscoelastic Kelvin-Voigt type

    NASA Astrophysics Data System (ADS)

    Malacarne, Andréia; Muñoz Rivera, Jaime Edilberto

    2016-06-01

    We study the Timoshenko systems with a viscoelastic dissipative mechanism of Kelvin-Voigt type. We prove that the model is analytical if and only if the viscoelastic damping is present in both the shear stress and the bending moment. Otherwise, the corresponding semigroup is not exponentially stable no matter the choice of the coefficients. This result is different to all others related to Timoshenko model with partial dissipation, which establish that the system is exponentially stable if and only if the wave speeds are equal. Finally, we show that the solution decays polynomially to zero as {t^{-1/2}} , no matter where the viscoelastic mechanism is effective and that the rate is optimal whenever the initial data are taken on the domain of the infinitesimal operator.

  19. Seislet-based morphological component analysis using scale-dependent exponential shrinkage

    NASA Astrophysics Data System (ADS)

    Yang, Pengliang; Fomel, Sergey

    2015-07-01

    Morphological component analysis (MCA) is a powerful tool used in image processing to separate different geometrical components (cartoons and textures, curves and points etc.). MCA is based on the observation that many complex signals may not be sparsely represented using only one dictionary/transform, however can have sparse representation by combining several over-complete dictionaries/transforms. In this paper we propose seislet-based MCA for seismic data processing. MCA algorithm is reformulated in the shaping-regularization framework. Successful seislet-based MCA depends on reliable slope estimation of seismic events, which is done by plane-wave destruction (PWD) filters. An exponential shrinkage operator unifies many existing thresholding operators and is adopted in scale-dependent shaping regularization to promote sparsity. Numerical examples demonstrate a superior performance of the proposed exponential shrinkage operator and the potential of seislet-based MCA in application to trace interpolation and multiple removal.

  20. Entanglement effects in capillary waves on liquid polymer films.

    PubMed

    Jiang, Zhang; Mukhopadhyay, Mrinmay K; Song, Sanghoon; Narayanan, Suresh; Lurio, L B; Kim, Hyunjung; Sinha, Sunil K

    2008-12-12

    Overdamped surface capillary wave relaxations on molten polymer films were measured using x-ray photon correlation spectroscopy. We found a transition from a single through a stretched to another single exponential regime as the temperature is decreased from well above to near the bulk glass transition temperature. A universal scaling of the dynamics was discovered over a wide range of film thicknesses, temperatures, and molecular weights (except in the multiple relaxation regime). These observations are justified by hydrodynamic theory and the time-temperature superposition principle by considering an effective viscosity instead of the bulk zero shear viscosity.