NASA Astrophysics Data System (ADS)
Ruan, Qingsong; Zhang, Shuhua; Lv, Dayong; Lu, Xinsheng
2018-02-01
Based on the implementation of Shanghai-Hong Kong Stock Connect in China, this paper examines the effects of financial liberalization on stock market comovement using both multifractal detrended fluctuation analysis (MF-DFA) and multifractal detrended cross-correlation analysis (MF-DCCA) methods. Results based on MF-DFA confirm the multifractality of Shanghai and Hong Kong stock markets, and the market efficiency of Shanghai stock market increased after the implementation of this connect program. Besides, analysis based on MF-DCCA has verified the existence of persistent cross-correlation between Shanghai and Hong Kong stock markets, and the cross-correlation gets stronger after the launch of this liberalization program. Finally, we find that fat-tail distribution is the main source of multifractality in the cross-correlations before the stock connect program, while long-range correlation contributes to the multifractality after this program.
[Electroencephalogram Feature Selection Based on Correlation Coefficient Analysis].
Zhou, Jinzhi; Tang, Xiaofang
2015-08-01
In order to improve the accuracy of classification with small amount of motor imagery training data on the development of brain-computer interface (BCD systems, we proposed an analyzing method to automatically select the characteristic parameters based on correlation coefficient analysis. Throughout the five sample data of dataset IV a from 2005 BCI Competition, we utilized short-time Fourier transform (STFT) and correlation coefficient calculation to reduce the number of primitive electroencephalogram dimension, then introduced feature extraction based on common spatial pattern (CSP) and classified by linear discriminant analysis (LDA). Simulation results showed that the average rate of classification accuracy could be improved by using correlation coefficient feature selection method than those without using this algorithm. Comparing with support vector machine (SVM) optimization features algorithm, the correlation coefficient analysis can lead better selection parameters to improve the accuracy of classification.
A scalable correlator for multichannel diffuse correlation spectroscopy.
Stapels, Christopher J; Kolodziejski, Noah J; McAdams, Daniel; Podolsky, Matthew J; Fernandez, Daniel E; Farkas, Dana; Christian, James F
2016-02-01
Diffuse correlation spectroscopy (DCS) is a technique which enables powerful and robust non-invasive optical studies of tissue micro-circulation and vascular blood flow. The technique amounts to autocorrelation analysis of coherent photons after their migration through moving scatterers and subsequent collection by single-mode optical fibers. A primary cost driver of DCS instruments are the commercial hardware-based correlators, limiting the proliferation of multi-channel instruments for validation of perfusion analysis as a clinical diagnostic metric. We present the development of a low-cost scalable correlator enabled by microchip-based time-tagging, and a software-based multi-tau data analysis method. We will discuss the capabilities of the instrument as well as the implementation and validation of 2- and 8-channel systems built for live animal and pre-clinical settings.
Analysis of DNA Sequences by an Optical ime-Integrating Correlator: Proposal
1991-11-01
CURRENT TECHNOLOGY 2 3.0 TIME-INTEGRATING CORRELATOR 2 4.0 REPRESENTATIONS OF THE DNA BASES 8 5.0 DNA ANALYSIS STRATEGY 8 6.0 STRATEGY FOR COARSE...1)-correlation peak formed by the AxB term and (2)-pedestal formed by the A + B terms. 7 Figure 4: Short representations of the DNA bases where each...linear scale. 15 x LIST OF TABLES PAGE Table 1: Short representations of the DNA bases where each base is represented by 7-bits long pseudorandom
Volatility and correlation-based systemic risk measures in the US market
NASA Astrophysics Data System (ADS)
Civitarese, Jamil
2016-10-01
This paper deals with the problem of how to use simple systemic risk measures to assess portfolio risk characteristics. Using three simple examples taken from previous literature, one based on raw and partial correlations, another based on the eigenvalue decomposition of the covariance matrix and the last one based on an eigenvalue entropy, a Granger-causation analysis revealed some of them are not always a good measure of risk in the S&P 500 and in the VIX. The measures selected do not Granger-cause the VIX index in all windows selected; therefore, in the sense of risk as volatility, the indicators are not always suitable. Nevertheless, their results towards returns are similar to previous works that accept them. A deeper analysis has shown that any symmetric measure based on eigenvalue decomposition of correlation matrices, however, is not useful as a measure of "correlation" risk. The empirical counterpart analysis of this proposition stated that negative correlations are usually small and, therefore, do not heavily distort the behavior of the indicator.
Fuzzy correlation analysis with realization
NASA Astrophysics Data System (ADS)
Tang, Yue Y.; Fan, Xinrui; Zheng, Ying N.
1998-10-01
The fundamental concept of fuzzy correlation is briefly discussed. Based on the correlation coefficient of classic correlation, polarity correlation and fuzzy correlation, the relationship between the correlations are analyzed. A fuzzy correlation analysis has the merits of both rapidity and accuracy as some amplitude information of random signals has been utilized. It has broad prospects for application. The form of fuzzy correlative analyzer with NLX 112 fuzzy data correlator and single-chip microcomputer is introduced.
Functional network connectivity analysis based on partial correlation in Alzheimer's disease
NASA Astrophysics Data System (ADS)
Zhang, Nan; Guan, Xiaoting; Zhang, Yumei; Li, Jingjing; Chen, Hongyan; Chen, Kewei; Fleisher, Adam; Yao, Li; Wu, Xia
2009-02-01
Functional network connectivity (FNC) measures the temporal dependency among the time courses of functional networks. However, the marginal correlation between two networks used in the classic FNC analysis approach doesn't separate the FNC from the direct/indirect effects of other networks. In this study, we proposed an alternative approach based on partial correlation to evaluate the FNC, since partial correlation based FNC can reveal the direct interaction between a pair of networks, removing dependencies or influences from others. Previous studies have demonstrated less task-specific activation and less rest-state activity in Alzheimer's disease (AD). We applied present approach to contrast FNC differences of resting state network (RSN) between AD and normal controls (NC). The fMRI data under resting condition were collected from 15 AD and 16 NC. FNC was calculated for each pair of six RSNs identified using Group ICA, thus resulting in 15 (2 out of 6) pairs for each subject. Partial correlation based FNC analysis indicated 6 pairs significant differences between groups, while marginal correlation only revealed 2 pairs (involved in the partial correlation results). Additionally, patients showed lower correlation than controls among most of the FNC differences. Our results provide new evidences for the disconnection hypothesis in AD.
Grosse Frie, Kirstin; Janssen, Christian
2009-01-01
Based on the theoretical and empirical approach of Pierre Bourdieu, a multivariate non-linear method is introduced as an alternative way to analyse the complex relationships between social determinants and health. The analysis is based on face-to-face interviews with 695 randomly selected respondents aged 30 to 59. Variables regarding socio-economic status, life circumstances, lifestyles, health-related behaviour and health were chosen for the analysis. In order to determine whether the respondents can be differentiated and described based on these variables, a non-linear canonical correlation analysis (OVERALS) was performed. The results can be described on three dimensions; Eigenvalues add up to the fit of 1.444, which can be interpreted as approximately 50 % of explained variance. The three-dimensional space illustrates correspondences between variables and provides a framework for interpretation based on latent dimensions, which can be described by age, education, income and gender. Using non-linear canonical correlation analysis, health characteristics can be analysed in conjunction with socio-economic conditions and lifestyles. Based on Bourdieus theoretical approach, the complex correlations between these variables can be more substantially interpreted and presented.
NASA Astrophysics Data System (ADS)
Hsiao, Y. R.; Tsai, C.
2017-12-01
As the WHO Air Quality Guideline indicates, ambient air pollution exposes world populations under threat of fatal symptoms (e.g. heart disease, lung cancer, asthma etc.), raising concerns of air pollution sources and relative factors. This study presents a novel approach to investigating the multiscale variations of PM2.5 in southern Taiwan over the past decade, with four meteorological influencing factors (Temperature, relative humidity, precipitation and wind speed),based on Noise-assisted Multivariate Empirical Mode Decomposition(NAMEMD) algorithm, Hilbert Spectral Analysis(HSA) and Time-dependent Intrinsic Correlation(TDIC) method. NAMEMD algorithm is a fully data-driven approach designed for nonlinear and nonstationary multivariate signals, and is performed to decompose multivariate signals into a collection of channels of Intrinsic Mode Functions (IMFs). TDIC method is an EMD-based method using a set of sliding window sizes to quantify localized correlation coefficients for multiscale signals. With the alignment property and quasi-dyadic filter bank of NAMEMD algorithm, one is able to produce same number of IMFs for all variables and estimates the cross correlation in a more accurate way. The performance of spectral representation of NAMEMD-HSA method is compared with Complementary Empirical Mode Decomposition/ Hilbert Spectral Analysis (CEEMD-HSA) and Wavelet Analysis. The nature of NAMAMD-based TDICC analysis is then compared with CEEMD-based TDIC analysis and the traditional correlation analysis.
Analysis of DNA Sequences by an Optical Time-Integrating Correlator: Proposal
1991-11-01
OF THE PROBLEM AND CURRENT TECHNOLOGY 2 3.0 TIME-INTEGRATING CORRELATOR 2 4.0 REPRESENTATIONS OF THE DNA BASES 8 5.0 DNA ANALYSIS STRATEGY 8 6.0... DNA bases where each base is represented by a 7-bits long pseudorandom sequence. 9 Figure 5: The flow of data in a DNA analysis system based on an...logarithmic scale and a linear scale. 15 x LIST OF TABLES PAGE Table 1: Short representations of the DNA bases where each base is represented by 7-bits
Parameter Optimization for Selected Correlation Analysis of Intracranial Pathophysiology.
Faltermeier, Rupert; Proescholdt, Martin A; Bele, Sylvia; Brawanski, Alexander
2015-01-01
Recently we proposed a mathematical tool set, called selected correlation analysis, that reliably detects positive and negative correlations between arterial blood pressure (ABP) and intracranial pressure (ICP). Such correlations are associated with severe impairment of the cerebral autoregulation and intracranial compliance, as predicted by a mathematical model. The time resolved selected correlation analysis is based on a windowing technique combined with Fourier-based coherence calculations and therefore depends on several parameters. For real time application of this method at an ICU it is inevitable to adjust this mathematical tool for high sensitivity and distinct reliability. In this study, we will introduce a method to optimize the parameters of the selected correlation analysis by correlating an index, called selected correlation positive (SCP), with the outcome of the patients represented by the Glasgow Outcome Scale (GOS). For that purpose, the data of twenty-five patients were used to calculate the SCP value for each patient and multitude of feasible parameter sets of the selected correlation analysis. It could be shown that an optimized set of parameters is able to improve the sensitivity of the method by a factor greater than four in comparison to our first analyses.
Parameter Optimization for Selected Correlation Analysis of Intracranial Pathophysiology
Faltermeier, Rupert; Proescholdt, Martin A.; Bele, Sylvia; Brawanski, Alexander
2015-01-01
Recently we proposed a mathematical tool set, called selected correlation analysis, that reliably detects positive and negative correlations between arterial blood pressure (ABP) and intracranial pressure (ICP). Such correlations are associated with severe impairment of the cerebral autoregulation and intracranial compliance, as predicted by a mathematical model. The time resolved selected correlation analysis is based on a windowing technique combined with Fourier-based coherence calculations and therefore depends on several parameters. For real time application of this method at an ICU it is inevitable to adjust this mathematical tool for high sensitivity and distinct reliability. In this study, we will introduce a method to optimize the parameters of the selected correlation analysis by correlating an index, called selected correlation positive (SCP), with the outcome of the patients represented by the Glasgow Outcome Scale (GOS). For that purpose, the data of twenty-five patients were used to calculate the SCP value for each patient and multitude of feasible parameter sets of the selected correlation analysis. It could be shown that an optimized set of parameters is able to improve the sensitivity of the method by a factor greater than four in comparison to our first analyses. PMID:26693250
A new method for correlation analysis of compositional (environmental) data - a worked example.
Reimann, C; Filzmoser, P; Hron, K; Kynčlová, P; Garrett, R G
2017-12-31
Most data in environmental sciences and geochemistry are compositional. Already the unit used to report the data (e.g., μg/l, mg/kg, wt%) implies that the analytical results for each element are not free to vary independently of the other measured variables. This is often neglected in statistical analysis, where a simple log-transformation of the single variables is insufficient to put the data into an acceptable geometry. This is also important for bivariate data analysis and for correlation analysis, for which the data need to be appropriately log-ratio transformed. A new approach based on the isometric log-ratio (ilr) transformation, leading to so-called symmetric coordinates, is presented here. Summarizing the correlations in a heat-map gives a powerful tool for bivariate data analysis. Here an application of the new method using a data set from a regional geochemical mapping project based on soil O and C horizon samples is demonstrated. Differences to 'classical' correlation analysis based on log-transformed data are highlighted. The fact that some expected strong positive correlations appear and remain unchanged even following a log-ratio transformation has probably led to the misconception that the special nature of compositional data can be ignored when working with trace elements. The example dataset is employed to demonstrate that using 'classical' correlation analysis and plotting XY diagrams, scatterplots, based on the original or simply log-transformed data can easily lead to severe misinterpretations of the relationships between elements. Copyright © 2017 Elsevier B.V. All rights reserved.
TACT: A Set of MSC/PATRAN- and MSC/NASTRAN- based Modal Correlation Tools
NASA Technical Reports Server (NTRS)
Marlowe, Jill M.; Dixon, Genevieve D.
1998-01-01
This paper describes the functionality and demonstrates the utility of the Test Analysis Correlation Tools (TACT), a suite of MSC/PATRAN Command Language (PCL) tools which automate the process of correlating finite element models to modal survey test data. The initial release of TACT provides a basic yet complete set of tools for performing correlation totally inside the PATRAN/NASTRAN environment. Features include a step-by-step menu structure, pre-test accelerometer set evaluation and selection, analysis and test result export/import in Universal File Format, calculation of frequency percent difference and cross-orthogonality correlation results using NASTRAN, creation and manipulation of mode pairs, and five different ways of viewing synchronized animations of analysis and test modal results. For the PATRAN-based analyst, TACT eliminates the repetitive, time-consuming and error-prone steps associated with transferring finite element data to a third-party modal correlation package, which allows the analyst to spend more time on the more challenging task of model updating. The usefulness of this software is presented using a case history, the correlation for a NASA Langley Research Center (LaRC) low aspect ratio research wind tunnel model. To demonstrate the improvements that TACT offers the MSC/PATRAN- and MSC/DIASTRAN- based structural analysis community, a comparison of the modal correlation process using TACT within PATRAN versus external third-party modal correlation packages is presented.
Utility of texture analysis for quantifying hepatic fibrosis on proton density MRI.
Yu, HeiShun; Buch, Karen; Li, Baojun; O'Brien, Michael; Soto, Jorge; Jara, Hernan; Anderson, Stephan W
2015-11-01
To evaluate the potential utility of texture analysis of proton density maps for quantifying hepatic fibrosis in a murine model of hepatic fibrosis. Following Institutional Animal Care and Use Committee (IACUC) approval, a dietary model of hepatic fibrosis was used and 15 ex vivo murine liver tissues were examined. All images were acquired using a 30 mm bore 11.7T magnetic resonance imaging (MRI) scanner with a multiecho spin-echo sequence. A texture analysis was employed extracting multiple texture features including histogram-based, gray-level co-occurrence matrix-based (GLCM), gray-level run-length-based features (GLRL), gray level gradient matrix (GLGM), and Laws' features. Texture features were correlated with histopathologic and digital image analysis of hepatic fibrosis. Histogram features demonstrated very weak to moderate correlations (r = -0.29 to 0.51) with hepatic fibrosis. GLCM features correlation and contrast demonstrated moderate-to-strong correlations (r = -0.71 and 0.59, respectively) with hepatic fibrosis. Moderate correlations were seen between hepatic fibrosis and the GLRL feature short run low gray-level emphasis (SRLGE) (r = -0. 51). GLGM features demonstrate very weak to weak correlations with hepatic fibrosis (r = -0.27 to 0.09). Moderate correlations were seen between hepatic fibrosis and Laws' features L6 and L7 (r = 0.58). This study demonstrates the utility of texture analysis applied to proton density MRI in a murine liver fibrosis model and validates the potential utility of texture-based features for the noninvasive, quantitative assessment of hepatic fibrosis. © 2015 Wiley Periodicals, Inc.
Detecting coupled collective motions in protein by independent subspace analysis
NASA Astrophysics Data System (ADS)
Sakuraba, Shun; Joti, Yasumasa; Kitao, Akio
2010-11-01
Protein dynamics evolves in a high-dimensional space, comprising aharmonic, strongly correlated motional modes. Such correlation often plays an important role in analyzing protein function. In order to identify significantly correlated collective motions, here we employ independent subspace analysis based on the subspace joint approximate diagonalization of eigenmatrices algorithm for the analysis of molecular dynamics (MD) simulation trajectories. From the 100 ns MD simulation of T4 lysozyme, we extract several independent subspaces in each of which collective modes are significantly correlated, and identify the other modes as independent. This method successfully detects the modes along which long-tailed non-Gaussian probability distributions are obtained. Based on the time cross-correlation analysis, we identified a series of events among domain motions and more localized motions in the protein, indicating the connection between the functionally relevant phenomena which have been independently revealed by experiments.
Co-occurrence correlations of heavy metals in sediments revealed using network analysis.
Liu, Lili; Wang, Zhiping; Ju, Feng; Zhang, Tong
2015-01-01
In this study, the correlation-based study was used to identify the co-occurrence correlations among metals in marine sediment of Hong Kong, based on the long-term (from 1991 to 2011) temporal and spatial monitoring data. 14 stations out of the total 45 marine sediment monitoring stations were selected from three representative areas, including Deep Bay, Victoria Harbour and Mirs Bay. Firstly, Spearman's rank correlation-based network analysis was conducted as the first step to identify the co-occurrence correlations of metals from raw metadata, and then for further analysis using the normalized metadata. The correlations patterns obtained by network were consistent with those obtained by the other statistic normalization methods, including annual ratios, R-squared coefficient and Pearson correlation coefficient. Both Deep Bay and Victoria Harbour have been polluted by heavy metals, especially for Pb and Cu, which showed strong co-occurrence with other heavy metals (e.g. Cr, Ni, Zn and etc.) and little correlations with the reference parameters (Fe or Al). For Mirs Bay, which has better marine sediment quality compared with Deep Bay and Victoria Harbour, the co-occurrence patterns revealed by network analysis indicated that the metals in sediment dominantly followed the natural geography process. Besides the wide applications in biology, sociology and informatics, it is the first time to apply network analysis in the researches of environment pollutions. This study demonstrated its powerful application for revealing the co-occurrence correlations among heavy metals in marine sediments, which could be further applied for other pollutants in various environment systems. Copyright © 2014 Elsevier Ltd. All rights reserved.
Multivariate analysis: A statistical approach for computations
NASA Astrophysics Data System (ADS)
Michu, Sachin; Kaushik, Vandana
2014-10-01
Multivariate analysis is a type of multivariate statistical approach commonly used in, automotive diagnosis, education evaluating clusters in finance etc and more recently in the health-related professions. The objective of the paper is to provide a detailed exploratory discussion about factor analysis (FA) in image retrieval method and correlation analysis (CA) of network traffic. Image retrieval methods aim to retrieve relevant images from a collected database, based on their content. The problem is made more difficult due to the high dimension of the variable space in which the images are represented. Multivariate correlation analysis proposes an anomaly detection and analysis method based on the correlation coefficient matrix. Anomaly behaviors in the network include the various attacks on the network like DDOs attacks and network scanning.
NASA Astrophysics Data System (ADS)
Zhaunerchyk, V.; Frasinski, L. J.; Eland, J. H. D.; Feifel, R.
2014-05-01
Multidimensional covariance analysis and its validity for correlation of processes leading to multiple products are investigated from a theoretical point of view. The need to correct for false correlations induced by experimental parameters which fluctuate from shot to shot, such as the intensity of self-amplified spontaneous emission x-ray free-electron laser pulses, is emphasized. Threefold covariance analysis based on simple extension of the two-variable formulation is shown to be valid for variables exhibiting Poisson statistics. In this case, false correlations arising from fluctuations in an unstable experimental parameter that scale linearly with signals can be eliminated by threefold partial covariance analysis, as defined here. Fourfold covariance based on the same simple extension is found to be invalid in general. Where fluctuations in an unstable parameter induce nonlinear signal variations, a technique of contingent covariance analysis is proposed here to suppress false correlations. In this paper we also show a method to eliminate false correlations associated with fluctuations of several unstable experimental parameters.
Data analytics using canonical correlation analysis and Monte Carlo simulation
NASA Astrophysics Data System (ADS)
Rickman, Jeffrey M.; Wang, Yan; Rollett, Anthony D.; Harmer, Martin P.; Compson, Charles
2017-07-01
A canonical correlation analysis is a generic parametric model used in the statistical analysis of data involving interrelated or interdependent input and output variables. It is especially useful in data analytics as a dimensional reduction strategy that simplifies a complex, multidimensional parameter space by identifying a relatively few combinations of variables that are maximally correlated. One shortcoming of the canonical correlation analysis, however, is that it provides only a linear combination of variables that maximizes these correlations. With this in mind, we describe here a versatile, Monte-Carlo based methodology that is useful in identifying non-linear functions of the variables that lead to strong input/output correlations. We demonstrate that our approach leads to a substantial enhancement of correlations, as illustrated by two experimental applications of substantial interest to the materials science community, namely: (1) determining the interdependence of processing and microstructural variables associated with doped polycrystalline aluminas, and (2) relating microstructural decriptors to the electrical and optoelectronic properties of thin-film solar cells based on CuInSe2 absorbers. Finally, we describe how this approach facilitates experimental planning and process control.
Kenett, Dror Y; Tumminello, Michele; Madi, Asaf; Gur-Gershgoren, Gitit; Mantegna, Rosario N; Ben-Jacob, Eshel
2010-12-20
What are the dominant stocks which drive the correlations present among stocks traded in a stock market? Can a correlation analysis provide an answer to this question? In the past, correlation based networks have been proposed as a tool to uncover the underlying backbone of the market. Correlation based networks represent the stocks and their relationships, which are then investigated using different network theory methodologies. Here we introduce a new concept to tackle the above question--the partial correlation network. Partial correlation is a measure of how the correlation between two variables, e.g., stock returns, is affected by a third variable. By using it we define a proxy of stock influence, which is then used to construct partial correlation networks. The empirical part of this study is performed on a specific financial system, namely the set of 300 highly capitalized stocks traded at the New York Stock Exchange, in the time period 2001-2003. By constructing the partial correlation network, unlike the case of standard correlation based networks, we find that stocks belonging to the financial sector and, in particular, to the investment services sub-sector, are the most influential stocks affecting the correlation profile of the system. Using a moving window analysis, we find that the strong influence of the financial stocks is conserved across time for the investigated trading period. Our findings shed a new light on the underlying mechanisms and driving forces controlling the correlation profile observed in a financial market.
NASA Astrophysics Data System (ADS)
Xie, Wen-Jie; Jiang, Zhi-Qiang; Gu, Gao-Feng; Xiong, Xiong; Zhou, Wei-Xing
2015-10-01
Many complex systems generate multifractal time series which are long-range cross-correlated. Numerous methods have been proposed to characterize the multifractal nature of these long-range cross correlations. However, several important issues about these methods are not well understood and most methods consider only one moment order. We study the joint multifractal analysis based on partition function with two moment orders, which was initially invented to investigate fluid fields, and derive analytically several important properties. We apply the method numerically to binomial measures with multifractal cross correlations and bivariate fractional Brownian motions without multifractal cross correlations. For binomial multifractal measures, the explicit expressions of mass function, singularity strength and multifractal spectrum of the cross correlations are derived, which agree excellently with the numerical results. We also apply the method to stock market indexes and unveil intriguing multifractality in the cross correlations of index volatilities.
Likelihood-Based Confidence Intervals in Exploratory Factor Analysis
ERIC Educational Resources Information Center
Oort, Frans J.
2011-01-01
In exploratory or unrestricted factor analysis, all factor loadings are free to be estimated. In oblique solutions, the correlations between common factors are free to be estimated as well. The purpose of this article is to show how likelihood-based confidence intervals can be obtained for rotated factor loadings and factor correlations, by…
Features of Cross-Correlation Analysis in a Data-Driven Approach for Structural Damage Assessment
Camacho Navarro, Jhonatan; Ruiz, Magda; Villamizar, Rodolfo; Mujica, Luis
2018-01-01
This work discusses the advantage of using cross-correlation analysis in a data-driven approach based on principal component analysis (PCA) and piezodiagnostics to obtain successful diagnosis of events in structural health monitoring (SHM). In this sense, the identification of noisy data and outliers, as well as the management of data cleansing stages can be facilitated through the implementation of a preprocessing stage based on cross-correlation functions. Additionally, this work evidences an improvement in damage detection when the cross-correlation is included as part of the whole damage assessment approach. The proposed methodology is validated by processing data measurements from piezoelectric devices (PZT), which are used in a piezodiagnostics approach based on PCA and baseline modeling. Thus, the influence of cross-correlation analysis used in the preprocessing stage is evaluated for damage detection by means of statistical plots and self-organizing maps. Three laboratory specimens were used as test structures in order to demonstrate the validity of the methodology: (i) a carbon steel pipe section with leak and mass damage types, (ii) an aircraft wing specimen, and (iii) a blade of a commercial aircraft turbine, where damages are specified as mass-added. As the main concluding remark, the suitability of cross-correlation features combined with a PCA-based piezodiagnostic approach in order to achieve a more robust damage assessment algorithm is verified for SHM tasks. PMID:29762505
Features of Cross-Correlation Analysis in a Data-Driven Approach for Structural Damage Assessment.
Camacho Navarro, Jhonatan; Ruiz, Magda; Villamizar, Rodolfo; Mujica, Luis; Quiroga, Jabid
2018-05-15
This work discusses the advantage of using cross-correlation analysis in a data-driven approach based on principal component analysis (PCA) and piezodiagnostics to obtain successful diagnosis of events in structural health monitoring (SHM). In this sense, the identification of noisy data and outliers, as well as the management of data cleansing stages can be facilitated through the implementation of a preprocessing stage based on cross-correlation functions. Additionally, this work evidences an improvement in damage detection when the cross-correlation is included as part of the whole damage assessment approach. The proposed methodology is validated by processing data measurements from piezoelectric devices (PZT), which are used in a piezodiagnostics approach based on PCA and baseline modeling. Thus, the influence of cross-correlation analysis used in the preprocessing stage is evaluated for damage detection by means of statistical plots and self-organizing maps. Three laboratory specimens were used as test structures in order to demonstrate the validity of the methodology: (i) a carbon steel pipe section with leak and mass damage types, (ii) an aircraft wing specimen, and (iii) a blade of a commercial aircraft turbine, where damages are specified as mass-added. As the main concluding remark, the suitability of cross-correlation features combined with a PCA-based piezodiagnostic approach in order to achieve a more robust damage assessment algorithm is verified for SHM tasks.
2013-01-01
Peak alignment is a critical procedure in mass spectrometry-based biomarker discovery in metabolomics. One of peak alignment approaches to comprehensive two-dimensional gas chromatography mass spectrometry (GC×GC-MS) data is peak matching-based alignment. A key to the peak matching-based alignment is the calculation of mass spectral similarity scores. Various mass spectral similarity measures have been developed mainly for compound identification, but the effect of these spectral similarity measures on the performance of peak matching-based alignment still remains unknown. Therefore, we selected five mass spectral similarity measures, cosine correlation, Pearson's correlation, Spearman's correlation, partial correlation, and part correlation, and examined their effects on peak alignment using two sets of experimental GC×GC-MS data. The results show that the spectral similarity measure does not affect the alignment accuracy significantly in analysis of data from less complex samples, while the partial correlation performs much better than other spectral similarity measures when analyzing experimental data acquired from complex biological samples. PMID:24151524
A New Methodology of Spatial Cross-Correlation Analysis
Chen, Yanguang
2015-01-01
Spatial correlation modeling comprises both spatial autocorrelation and spatial cross-correlation processes. The spatial autocorrelation theory has been well-developed. It is necessary to advance the method of spatial cross-correlation analysis to supplement the autocorrelation analysis. This paper presents a set of models and analytical procedures for spatial cross-correlation analysis. By analogy with Moran’s index newly expressed in a spatial quadratic form, a theoretical framework is derived for geographical cross-correlation modeling. First, two sets of spatial cross-correlation coefficients are defined, including a global spatial cross-correlation coefficient and local spatial cross-correlation coefficients. Second, a pair of scatterplots of spatial cross-correlation is proposed, and the plots can be used to visually reveal the causality behind spatial systems. Based on the global cross-correlation coefficient, Pearson’s correlation coefficient can be decomposed into two parts: direct correlation (partial correlation) and indirect correlation (spatial cross-correlation). As an example, the methodology is applied to the relationships between China’s urbanization and economic development to illustrate how to model spatial cross-correlation phenomena. This study is an introduction to developing the theory of spatial cross-correlation, and future geographical spatial analysis might benefit from these models and indexes. PMID:25993120
A new methodology of spatial cross-correlation analysis.
Chen, Yanguang
2015-01-01
Spatial correlation modeling comprises both spatial autocorrelation and spatial cross-correlation processes. The spatial autocorrelation theory has been well-developed. It is necessary to advance the method of spatial cross-correlation analysis to supplement the autocorrelation analysis. This paper presents a set of models and analytical procedures for spatial cross-correlation analysis. By analogy with Moran's index newly expressed in a spatial quadratic form, a theoretical framework is derived for geographical cross-correlation modeling. First, two sets of spatial cross-correlation coefficients are defined, including a global spatial cross-correlation coefficient and local spatial cross-correlation coefficients. Second, a pair of scatterplots of spatial cross-correlation is proposed, and the plots can be used to visually reveal the causality behind spatial systems. Based on the global cross-correlation coefficient, Pearson's correlation coefficient can be decomposed into two parts: direct correlation (partial correlation) and indirect correlation (spatial cross-correlation). As an example, the methodology is applied to the relationships between China's urbanization and economic development to illustrate how to model spatial cross-correlation phenomena. This study is an introduction to developing the theory of spatial cross-correlation, and future geographical spatial analysis might benefit from these models and indexes.
NASA Astrophysics Data System (ADS)
Ceffa, Nicolo G.; Cesana, Ilaria; Collini, Maddalena; D'Alfonso, Laura; Carra, Silvia; Cotelli, Franco; Sironi, Laura; Chirico, Giuseppe
2017-10-01
Ramification of blood circulation is relevant in a number of physiological and pathological conditions. The oxygen exchange occurs largely in the capillary bed, and the cancer progression is closely linked to the angiogenesis around the tumor mass. Optical microscopy has made impressive improvements in in vivo imaging and dynamic studies based on correlation analysis of time stacks of images. Here, we develop and test advanced methods that allow mapping the flow fields in branched vessel networks at the resolution of 10 to 20 μm. The methods, based on the application of spatiotemporal image correlation spectroscopy and its extension to cross-correlation analysis, are applied here to the case of early stage embryos of zebrafish.
ERIC Educational Resources Information Center
Muslihah, Oleh Eneng
2015-01-01
The research examines the correlation between the understanding of school-based management, emotional intelligences and headmaster performance. Data was collected, using quantitative methods. The statistical analysis used was the Pearson Correlation, and multivariate regression analysis. The results of this research suggest firstly that there is…
ERIC Educational Resources Information Center
Yeo, Seungsoo
2010-01-01
The purpose of this synthesis was to examine the relationship between Curriculum-Based Measurement (CBM) and statewide achievement tests in reading. A multilevel meta-analysis was used to calculate the correlation coefficient of the population for 27 studies that met the inclusion criteria. Results showed an overall large correlation coefficient…
ERIC Educational Resources Information Center
Nuriakhmetov, Aidar
2012-01-01
The article describes psycholinguistic correlates of progress in literature, discovered on the basis of correlation analysis of grades, and results of several psychological and psycholinguistic tests were taken in the context of comprehensive psycholinguistic research based on one of Russian vocational training schools. Analysis revealed a list of…
ERIC Educational Resources Information Center
Macmann, Gregg M.; Barnett, David W.
1994-01-01
Describes exploratory and confirmatory analyses of verbal-performance procedures to illustrate concepts and procedures for analysis of correlated factors. Argues that, based on convergent and discriminant validity criteria, factors should have higher correlations with variables that they purport to measure than with other variables. Discusses…
Self-Informant Agreement in Well-Being Ratings: A Meta-Analysis
ERIC Educational Resources Information Center
Schneider, Leann; Schimmack, Ulrich
2009-01-01
A meta-analysis of published studies that reported correlations between self-ratings and informant ratings of well-being (life-satisfaction, happiness, positive affect, negative affect) was performed. The average self-informant correlation based on 44 independent samples and 81 correlations for a total of 8,897 participants was r = 0.42 [99%…
NASA Astrophysics Data System (ADS)
Wang, Fang; Liao, Gui-ping; Li, Jian-hui; Zou, Rui-biao; Shi, Wen
2013-03-01
A novel method, which we called the analogous multifractal cross-correlation analysis, is proposed in this paper to study the multifractal behavior in the power-law cross-correlation between price and load in California electricity market. In addition, a statistic ρAMF -XA, which we call the analogous multifractal cross-correlation coefficient, is defined to test whether the cross-correlation between two given signals is genuine or not. Our analysis finds that both the price and load time series in California electricity market express multifractal nature. While, as indicated by the ρAMF -XA statistical test, there is a huge difference in the cross-correlation behavior between the years 1999 and 2000 in California electricity markets.
Wang, Fang; Liao, Gui-ping; Li, Jian-hui; Zou, Rui-biao; Shi, Wen
2013-03-01
A novel method, which we called the analogous multifractal cross-correlation analysis, is proposed in this paper to study the multifractal behavior in the power-law cross-correlation between price and load in California electricity market. In addition, a statistic ρAMF-XA, which we call the analogous multifractal cross-correlation coefficient, is defined to test whether the cross-correlation between two given signals is genuine or not. Our analysis finds that both the price and load time series in California electricity market express multifractal nature. While, as indicated by the ρAMF-XA statistical test, there is a huge difference in the cross-correlation behavior between the years 1999 and 2000 in California electricity markets.
NASA Astrophysics Data System (ADS)
Cristescu, Constantin P.; Stan, Cristina; Scarlat, Eugen I.; Minea, Teofil; Cristescu, Cristina M.
2012-04-01
We present a novel method for the parameter oriented analysis of mutual correlation between independent time series or between equivalent structures such as ordered data sets. The proposed method is based on the sliding window technique, defines a new type of correlation measure and can be applied to time series from all domains of science and technology, experimental or simulated. A specific parameter that can characterize the time series is computed for each window and a cross correlation analysis is carried out on the set of values obtained for the time series under investigation. We apply this method to the study of some currency daily exchange rates from the point of view of the Hurst exponent and the intermittency parameter. Interesting correlation relationships are revealed and a tentative crisis prediction is presented.
The cross-correlation analysis of multi property of stock markets based on MM-DFA
NASA Astrophysics Data System (ADS)
Yang, Yujun; Li, Jianping; Yang, Yimei
2017-09-01
In this paper, we propose a new method called DH-MXA based on distribution histograms of Hurst surface and multiscale multifractal detrended fluctuation analysis. The method allows us to investigate the cross-correlation characteristics among multiple properties of different stock time series. It may provide a new way of measuring the nonlinearity of several signals. It also can provide a more stable and faithful description of cross-correlation of multiple properties of stocks. The DH-MXA helps us to present much richer information than multifractal detrented cross-correlation analysis and allows us to assess many universal and subtle cross-correlation characteristics of stock markets. We show DH-MXA by selecting four artificial data sets and five properties of four stock time series from different countries. The results show that our proposed method can be adapted to investigate the cross-correlation of stock markets. In general, the American stock markets are more mature and less volatile than the Chinese stock markets.
Local-feature analysis for automated coarse-graining of bulk-polymer molecular dynamics simulations.
Xue, Y; Ludovice, P J; Grover, M A
2012-12-01
A method for automated coarse-graining of bulk polymers is presented, using the data-mining tool of local feature analysis. Most existing methods for polymer coarse-graining define superatoms based on their covalent bonding topology along the polymer backbone, but here superatoms are defined based only on their correlated motions, as observed in molecular dynamics simulations. Correlated atomic motions are identified in the simulation data using local feature analysis, between atoms in the same or in different polymer chains. Groups of highly correlated atoms constitute the superatoms in the coarse-graining scheme, and the positions of their seed coordinates are then projected forward in time. Based on only the seed positions, local feature analysis enables the full reconstruction of all atomic positions. This reconstruction suggests an iterative scheme to reduce the computation of the simulations to initialize another short molecular dynamic simulation, identify new superatoms, and again project forward in time.
Hierarchical multivariate covariance analysis of metabolic connectivity.
Carbonell, Felix; Charil, Arnaud; Zijdenbos, Alex P; Evans, Alan C; Bedell, Barry J
2014-12-01
Conventional brain connectivity analysis is typically based on the assessment of interregional correlations. Given that correlation coefficients are derived from both covariance and variance, group differences in covariance may be obscured by differences in the variance terms. To facilitate a comprehensive assessment of connectivity, we propose a unified statistical framework that interrogates the individual terms of the correlation coefficient. We have evaluated the utility of this method for metabolic connectivity analysis using [18F]2-fluoro-2-deoxyglucose (FDG) positron emission tomography (PET) data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. As an illustrative example of the utility of this approach, we examined metabolic connectivity in angular gyrus and precuneus seed regions of mild cognitive impairment (MCI) subjects with low and high β-amyloid burdens. This new multivariate method allowed us to identify alterations in the metabolic connectome, which would not have been detected using classic seed-based correlation analysis. Ultimately, this novel approach should be extensible to brain network analysis and broadly applicable to other imaging modalities, such as functional magnetic resonance imaging (MRI).
Sensitivity analysis of a sound absorption model with correlated inputs
NASA Astrophysics Data System (ADS)
Chai, W.; Christen, J.-L.; Zine, A.-M.; Ichchou, M.
2017-04-01
Sound absorption in porous media is a complex phenomenon, which is usually addressed with homogenized models, depending on macroscopic parameters. Since these parameters emerge from the structure at microscopic scale, they may be correlated. This paper deals with sensitivity analysis methods of a sound absorption model with correlated inputs. Specifically, the Johnson-Champoux-Allard model (JCA) is chosen as the objective model with correlation effects generated by a secondary micro-macro semi-empirical model. To deal with this case, a relatively new sensitivity analysis method Fourier Amplitude Sensitivity Test with Correlation design (FASTC), based on Iman's transform, is taken into application. This method requires a priori information such as variables' marginal distribution functions and their correlation matrix. The results are compared to the Correlation Ratio Method (CRM) for reference and validation. The distribution of the macroscopic variables arising from the microstructure, as well as their correlation matrix are studied. Finally the results of tests shows that the correlation has a very important impact on the results of sensitivity analysis. Assessment of correlation strength among input variables on the sensitivity analysis is also achieved.
Zhe Fan; Zhong Wang; Guanglin Li; Ruomei Wang
2016-08-01
Motion classification system based on surface Electromyography (sEMG) pattern recognition has achieved good results in experimental condition. But it is still a challenge for clinical implement and practical application. Many factors contribute to the difficulty of clinical use of the EMG based dexterous control. The most obvious and important is the noise in the EMG signal caused by electrode shift, muscle fatigue, motion artifact, inherent instability of signal and biological signals such as Electrocardiogram. In this paper, a novel method based on Canonical Correlation Analysis (CCA) was developed to eliminate the reduction of classification accuracy caused by electrode shift. The average classification accuracy of our method were above 95% for the healthy subjects. In the process, we validated the influence of electrode shift on motion classification accuracy and discovered the strong correlation with correlation coefficient of >0.9 between shift position data and normal position data.
Decomposition of Proteins into Dynamic Units from Atomic Cross-Correlation Functions.
Calligari, Paolo; Gerolin, Marco; Abergel, Daniel; Polimeno, Antonino
2017-01-10
In this article, we present a clustering method of atoms in proteins based on the analysis of the correlation times of interatomic distance correlation functions computed from MD simulations. The goal is to provide a coarse-grained description of the protein in terms of fewer elements that can be treated as dynamically independent subunits. Importantly, this domain decomposition method does not take into account structural properties of the protein. Instead, the clustering of protein residues in terms of networks of dynamically correlated domains is defined on the basis of the effective correlation times of the pair distance correlation functions. For these properties, our method stands as a complementary analysis to the customary protein decomposition in terms of quasi-rigid, structure-based domains. Results obtained for a prototypal protein structure illustrate the approach proposed.
Moon, Chung-Man; Shin, Il-Seon; Jeong, Gwang-Woo
2017-02-01
Background Non-invasive imaging markers can be used to diagnose Alzheimer's disease (AD) in its early stages, but an optimized quantification analysis to measure the brain integrity has been less studied. Purpose To evaluate white matter volume change and its correlation with neuropsychological scales in patients with AD using a diffeomorphic anatomical registration through exponentiated lie algebra (DARTEL)-based voxel-based morphometry (VBM). Material and Methods The 21 participants comprised 11 patients with AD and 10 age-matched healthy controls. High-resolution magnetic resonance imaging (MRI) data were processed by VBM analysis based on DARTEL algorithm. Results The patients showed significant white matter volume reductions in the posterior limb of the internal capsule, cerebral peduncle of the midbrain, and parahippocampal gyrus compared to healthy controls. In correlation analysis, the parahippocampal volume was positively correlated with the Korean-mini mental state examination score in AD. Conclusion This study provides an evidence for localized white matter volume deficits in conjunction with cognitive dysfunction in AD. These findings would be helpful to understand the neuroanatomical mechanisms in AD and to robust the diagnostic accuracy for AD.
Interplay between past market correlation structure changes and future volatility outbursts.
Musmeci, Nicoló; Aste, Tomaso; Di Matteo, T
2016-11-18
We report significant relations between past changes in the market correlation structure and future changes in the market volatility. This relation is made evident by using a measure of "correlation structure persistence" on correlation-based information filtering networks that quantifies the rate of change of the market dependence structure. We also measured changes in the correlation structure by means of a "metacorrelation" that measures a lagged correlation between correlation matrices computed over different time windows. Both methods show a deep interplay between past changes in correlation structure and future changes in volatility and we demonstrate they can anticipate market risk variations and this can be used to better forecast portfolio risk. Notably, these methods overcome the curse of dimensionality that limits the applicability of traditional econometric tools to portfolios made of a large number of assets. We report on forecasting performances and statistical significance of both methods for two different equity datasets. We also identify an optimal region of parameters in terms of True Positive and False Positive trade-off, through a ROC curve analysis. We find that this forecasting method is robust and it outperforms logistic regression predictors based on past volatility only. Moreover the temporal analysis indicates that methods based on correlation structural persistence are able to adapt to abrupt changes in the market, such as financial crises, more rapidly than methods based on past volatility.
Interplay between past market correlation structure changes and future volatility outbursts
NASA Astrophysics Data System (ADS)
Musmeci, Nicoló; Aste, Tomaso; Di Matteo, T.
2016-11-01
We report significant relations between past changes in the market correlation structure and future changes in the market volatility. This relation is made evident by using a measure of “correlation structure persistence” on correlation-based information filtering networks that quantifies the rate of change of the market dependence structure. We also measured changes in the correlation structure by means of a “metacorrelation” that measures a lagged correlation between correlation matrices computed over different time windows. Both methods show a deep interplay between past changes in correlation structure and future changes in volatility and we demonstrate they can anticipate market risk variations and this can be used to better forecast portfolio risk. Notably, these methods overcome the curse of dimensionality that limits the applicability of traditional econometric tools to portfolios made of a large number of assets. We report on forecasting performances and statistical significance of both methods for two different equity datasets. We also identify an optimal region of parameters in terms of True Positive and False Positive trade-off, through a ROC curve analysis. We find that this forecasting method is robust and it outperforms logistic regression predictors based on past volatility only. Moreover the temporal analysis indicates that methods based on correlation structural persistence are able to adapt to abrupt changes in the market, such as financial crises, more rapidly than methods based on past volatility.
Interplay between past market correlation structure changes and future volatility outbursts
Musmeci, Nicoló; Aste, Tomaso; Di Matteo, T.
2016-01-01
We report significant relations between past changes in the market correlation structure and future changes in the market volatility. This relation is made evident by using a measure of “correlation structure persistence” on correlation-based information filtering networks that quantifies the rate of change of the market dependence structure. We also measured changes in the correlation structure by means of a “metacorrelation” that measures a lagged correlation between correlation matrices computed over different time windows. Both methods show a deep interplay between past changes in correlation structure and future changes in volatility and we demonstrate they can anticipate market risk variations and this can be used to better forecast portfolio risk. Notably, these methods overcome the curse of dimensionality that limits the applicability of traditional econometric tools to portfolios made of a large number of assets. We report on forecasting performances and statistical significance of both methods for two different equity datasets. We also identify an optimal region of parameters in terms of True Positive and False Positive trade-off, through a ROC curve analysis. We find that this forecasting method is robust and it outperforms logistic regression predictors based on past volatility only. Moreover the temporal analysis indicates that methods based on correlation structural persistence are able to adapt to abrupt changes in the market, such as financial crises, more rapidly than methods based on past volatility. PMID:27857144
2003-01-01
AFRL-IF-RS-TR-2002-315 Final Technical Report January 2003 THE EMERALD MISSION-BASED CORRELATION SYSTEM – AN EXPERIMENTAL DATA...2003 3. REPORT TYPE AND DATES COVERED Final Jan 02 – Jul 02 4. TITLE AND SUBTITLE THE EMERALD MISSION-BASED CORRELATION SYSTEM – AN EXPERIMENTAL...DISTRIBUTION CODE 13. ABSTRACT (Maximum 200 Words) This project was established to experiment on the efficacy of the SRI EMERALD Mission-based
Modified friction factor correlation for CICC's based on a porous media analogy
NASA Astrophysics Data System (ADS)
Lewandowska, Monika; Bagnasco, Maurizio
2011-09-01
A modified correlation for the bundle friction factor in CICC's based on a porous media analogy is presented. The correlation is obtained by the analysis of the collected pressure drop data measured for 23 CICC's. The friction factors predicted by the proposed correlation are compared with those resulting from the pressure drop data for two CICC's measured recently using cryogenic helium in the SULTAN test facility at EPFL-CRPP.
Structural brain alterations in primary open angle glaucoma: a 3T MRI study
Wang, Jieqiong; Li, Ting; Sabel, Bernhard A.; Chen, Zhiqiang; Wen, Hongwei; Li, Jianhong; Xie, Xiaobin; Yang, Diya; Chen, Weiwei; Wang, Ningli; Xian, Junfang; He, Huiguang
2016-01-01
Glaucoma is not only an eye disease but is also associated with degeneration of brain structures. We now investigated the pattern of visual and non-visual brain structural changes in 25 primary open angle glaucoma (POAG) patients and 25 age-gender-matched normal controls using T1-weighted imaging. MRI images were subjected to volume-based analysis (VBA) and surface-based analysis (SBA) in the whole brain as well as ROI-based analysis of the lateral geniculate nucleus (LGN), visual cortex (V1/2), amygdala and hippocampus. While VBA showed no significant differences in the gray matter volumes of patients, SBA revealed significantly reduced cortical thickness in the right frontal pole and ROI-based analysis volume shrinkage in LGN bilaterally, right V1 and left amygdala. Structural abnormalities were correlated with clinical parameters in a subset of the patients revealing that the left LGN volume was negatively correlated with bilateral cup-to-disk ratio (CDR), the right LGN volume was positively correlated with the mean deviation of the right visual hemifield, and the right V1 cortical thickness was negatively correlated with the right CDR in glaucoma. These results demonstrate that POAG affects both vision-related structures and non-visual cortical regions. Moreover, alterations of the brain visual structures reflect the clinical severity of glaucoma. PMID:26743811
The effects of common risk factors on stock returns: A detrended cross-correlation analysis
NASA Astrophysics Data System (ADS)
Ruan, Qingsong; Yang, Bingchan
2017-10-01
In this paper, we investigate the cross-correlations between Fama and French three factors and the return of American industries on the basis of cross-correlation statistic test and multifractal detrended cross-correlation analysis (MF-DCCA). Qualitatively, we find that the return series of Fama and French three factors and American industries were overall significantly cross-correlated based on the analysis of a statistic. Quantitatively, we find that the cross-correlations between three factors and the return of American industries were strongly multifractal, and applying MF-DCCA we also investigate the cross-correlation of industry returns and residuals. We find that there exists multifractality of industry returns and residuals. The result of correlation coefficients we can verify that there exist other factors which influence the industry returns except Fama three factors.
A Simple Geotracer Compositional Correlation Analysis Reveals Oil Charge and Migration Pathways
NASA Astrophysics Data System (ADS)
Yang, Yunlai; Arouri, Khaled
2016-03-01
A novel approach, based on geotracer compositional correlation analysis is reported, which reveals the oil charge sequence and migration pathways for five oil fields in Saudi Arabia. The geotracers utilised are carbazoles, a family of neutral pyrrolic nitrogen compounds known to occur naturally in crude oils. The approach is based on the concept that closely related fields, with respect to filling sequence, will show a higher carbazole compositional correlation, than those fields that are less related. That is, carbazole compositional correlation coefficients can quantify the charge and filling relationships among different fields. Consequently, oil migration pathways can be defined based on the established filling relationships. The compositional correlation coefficients of isomers of C1 and C2 carbazoles, and benzo[a]carbazole for all different combination pairs of the five fields were found to vary extremely widely (0.28 to 0.94). A wide range of compositional correlation coefficients allows adequate differentiation of separate filling relationships. Based on the established filling relationships, three distinct migration pathways were inferred, with each apparently being charged from a different part of a common source kitchen. The recognition of these charge and migration pathways will greatly aid the search for new accumulations.
A Simple Geotracer Compositional Correlation Analysis Reveals Oil Charge and Migration Pathways
Yang, Yunlai; Arouri, Khaled
2016-01-01
A novel approach, based on geotracer compositional correlation analysis is reported, which reveals the oil charge sequence and migration pathways for five oil fields in Saudi Arabia. The geotracers utilised are carbazoles, a family of neutral pyrrolic nitrogen compounds known to occur naturally in crude oils. The approach is based on the concept that closely related fields, with respect to filling sequence, will show a higher carbazole compositional correlation, than those fields that are less related. That is, carbazole compositional correlation coefficients can quantify the charge and filling relationships among different fields. Consequently, oil migration pathways can be defined based on the established filling relationships. The compositional correlation coefficients of isomers of C1 and C2 carbazoles, and benzo[a]carbazole for all different combination pairs of the five fields were found to vary extremely widely (0.28 to 0.94). A wide range of compositional correlation coefficients allows adequate differentiation of separate filling relationships. Based on the established filling relationships, three distinct migration pathways were inferred, with each apparently being charged from a different part of a common source kitchen. The recognition of these charge and migration pathways will greatly aid the search for new accumulations. PMID:26965479
A Simple Geotracer Compositional Correlation Analysis Reveals Oil Charge and Migration Pathways.
Yang, Yunlai; Arouri, Khaled
2016-03-11
A novel approach, based on geotracer compositional correlation analysis is reported, which reveals the oil charge sequence and migration pathways for five oil fields in Saudi Arabia. The geotracers utilised are carbazoles, a family of neutral pyrrolic nitrogen compounds known to occur naturally in crude oils. The approach is based on the concept that closely related fields, with respect to filling sequence, will show a higher carbazole compositional correlation, than those fields that are less related. That is, carbazole compositional correlation coefficients can quantify the charge and filling relationships among different fields. Consequently, oil migration pathways can be defined based on the established filling relationships. The compositional correlation coefficients of isomers of C1 and C2 carbazoles, and benzo[a]carbazole for all different combination pairs of the five fields were found to vary extremely widely (0.28 to 0.94). A wide range of compositional correlation coefficients allows adequate differentiation of separate filling relationships. Based on the established filling relationships, three distinct migration pathways were inferred, with each apparently being charged from a different part of a common source kitchen. The recognition of these charge and migration pathways will greatly aid the search for new accumulations.
Visual Skills and Chinese Reading Acquisition: A Meta-Analysis of Correlation Evidence
ERIC Educational Resources Information Center
Yang, Ling-Yan; Guo, Jian-Peng; Richman, Lynn C.; Schmidt, Frank L.; Gerken, Kathryn C.; Ding, Yi
2013-01-01
This paper used meta-analysis to synthesize the relation between visual skills and Chinese reading acquisition based on the empirical results from 34 studies published from 1991 to 2011. We obtained 234 correlation coefficients from 64 independent samples, with a total of 5,395 participants. The meta-analysis revealed that visual skills as a…
Ahmed, Towfiq; Haraldsen, Jason T; Rehr, John J; Di Ventra, Massimiliano; Schuller, Ivan; Balatsky, Alexander V
2014-03-28
Nanopore-based sequencing has demonstrated a significant potential for the development of fast, accurate, and cost-efficient fingerprinting techniques for next generation molecular detection and sequencing. We propose a specific multilayered graphene-based nanopore device architecture for the recognition of single biomolecules. Molecular detection and analysis can be accomplished through the detection of transverse currents as the molecule or DNA base translocates through the nanopore. To increase the overall signal-to-noise ratio and the accuracy, we implement a new 'multi-point cross-correlation' technique for identification of DNA bases or other molecules on the single molecular level. We demonstrate that the cross-correlations between each nanopore will greatly enhance the transverse current signal for each molecule. We implement first-principles transport calculations for DNA bases surveyed across a multilayered graphene nanopore system to illustrate the advantages of the proposed geometry. A time-series analysis of the cross-correlation functions illustrates the potential of this method for enhancing the signal-to-noise ratio. This work constitutes a significant step forward in facilitating fingerprinting of single biomolecules using solid state technology.
Cui, Jiajia; Liu, Yuetao; Hu, Yinghuan; Tong, Jiayu; Li, Aiping; Qu, Tingli; Qin, Xuemei; Du, Guanhua
2017-01-05
Chronic atrophic gastritis (CAG) is one of the most important pre-cancerous states with a high prevalence. Exploring of the underlying mechanism and potential biomarkers is of significant importance for CAG. In the present work, 1 H NMR-based metabonomics with correlative analysis was performed to analyze the metabolic features of CAG. 19 plasma metabolites and 18 urine metabolites were enrolled to construct the circulatory and excretory metabolome of CAG, which was in response to alterations of energy metabolism, inflammation, immune dysfunction, as well as oxidative stress. 7 plasma biomarkers and 7 urine biomarkers were screened to elucidate the pathogenesis of CAG based on the further correlation analysis with biochemical indexes. Finally, 3 plasma biomarkers (arginine, succinate and 3-hydroxybutyrate) and 2 urine biomarkers (α-ketoglutarate and valine) highlighted the potential to indicate risks of CAG in virtue of correlation with pepsin activity and ROC analysis. Here, our results paved a way for elucidating the underlying mechanisms in the development of CAG, and provided new avenues for the diagnosis of CAG and presented potential drug targets for treatment of CAG. Copyright © 2016 Elsevier B.V. All rights reserved.
Accessing and constructing driving data to develop fuel consumption forecast model
NASA Astrophysics Data System (ADS)
Yamashita, Rei-Jo; Yao, Hsiu-Hsen; Hung, Shih-Wei; Hackman, Acquah
2018-02-01
In this study, we develop a forecasting models, to estimate fuel consumption based on the driving behavior, in which vehicles and routes are known. First, the driving data are collected via telematics and OBDII. Then, the driving fuel consumption formula is used to calculate the estimate fuel consumption, and driving behavior indicators are generated for analysis. Based on statistical analysis method, the driving fuel consumption forecasting model is constructed. Some field experiment results were done in this study to generate hundreds of driving behavior indicators. Based on data mining approach, the Pearson coefficient correlation analysis is used to filter highly fuel consumption related DBIs. Only highly correlated DBI will be used in the model. These DBIs are divided into four classes: speed class, acceleration class, Left/Right/U-turn class and the other category. We then use K-means cluster analysis to group to the driver class and the route class. Finally, more than 12 aggregate models are generated by those highly correlated DBIs, using the neural network model and regression analysis. Based on Mean Absolute Percentage Error (MAPE) to evaluate from the developed AMs. The best MAPE values among these AM is below 5%.
NASA Technical Reports Server (NTRS)
Gangwani, S. T.
1985-01-01
A reliable rotor aeroelastic analysis operational that correctly predicts the vibration levels for a helicopter is utilized to test various unsteady aerodynamics models with the objective of improving the correlation between test and theory. This analysis called Rotor Aeroelastic Vibration (RAVIB) computer program is based on a frequency domain forced response analysis which utilizes the transfer matrix techniques to model helicopter/rotor dynamic systems of varying degrees of complexity. The results for the AH-1G helicopter rotor were compared with the flight test data during high speed operation and they indicated a reasonably good correlation for the beamwise and chordwise blade bending moments, but for torsional moments the correlation was poor. As a result, a new aerodynamics model based on unstalled synthesized data derived from the large amplitude oscillating airfoil experiments was developed and tested.
Research on criticality analysis method of CNC machine tools components under fault rate correlation
NASA Astrophysics Data System (ADS)
Gui-xiang, Shen; Xian-zhuo, Zhao; Zhang, Ying-zhi; Chen-yu, Han
2018-02-01
In order to determine the key components of CNC machine tools under fault rate correlation, a system component criticality analysis method is proposed. Based on the fault mechanism analysis, the component fault relation is determined, and the adjacency matrix is introduced to describe it. Then, the fault structure relation is hierarchical by using the interpretive structure model (ISM). Assuming that the impact of the fault obeys the Markov process, the fault association matrix is described and transformed, and the Pagerank algorithm is used to determine the relative influence values, combined component fault rate under time correlation can obtain comprehensive fault rate. Based on the fault mode frequency and fault influence, the criticality of the components under the fault rate correlation is determined, and the key components are determined to provide the correct basis for equationting the reliability assurance measures. Finally, taking machining centers as an example, the effectiveness of the method is verified.
Generalization of Clustering Coefficients to Signed Correlation Networks
Costantini, Giulio; Perugini, Marco
2014-01-01
The recent interest in network analysis applications in personality psychology and psychopathology has put forward new methodological challenges. Personality and psychopathology networks are typically based on correlation matrices and therefore include both positive and negative edge signs. However, some applications of network analysis disregard negative edges, such as computing clustering coefficients. In this contribution, we illustrate the importance of the distinction between positive and negative edges in networks based on correlation matrices. The clustering coefficient is generalized to signed correlation networks: three new indices are introduced that take edge signs into account, each derived from an existing and widely used formula. The performances of the new indices are illustrated and compared with the performances of the unsigned indices, both on a signed simulated network and on a signed network based on actual personality psychology data. The results show that the new indices are more resistant to sample variations in correlation networks and therefore have higher convergence compared with the unsigned indices both in simulated networks and with real data. PMID:24586367
Hierarchical multivariate covariance analysis of metabolic connectivity
Carbonell, Felix; Charil, Arnaud; Zijdenbos, Alex P; Evans, Alan C; Bedell, Barry J
2014-01-01
Conventional brain connectivity analysis is typically based on the assessment of interregional correlations. Given that correlation coefficients are derived from both covariance and variance, group differences in covariance may be obscured by differences in the variance terms. To facilitate a comprehensive assessment of connectivity, we propose a unified statistical framework that interrogates the individual terms of the correlation coefficient. We have evaluated the utility of this method for metabolic connectivity analysis using [18F]2-fluoro-2-deoxyglucose (FDG) positron emission tomography (PET) data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) study. As an illustrative example of the utility of this approach, we examined metabolic connectivity in angular gyrus and precuneus seed regions of mild cognitive impairment (MCI) subjects with low and high β-amyloid burdens. This new multivariate method allowed us to identify alterations in the metabolic connectome, which would not have been detected using classic seed-based correlation analysis. Ultimately, this novel approach should be extensible to brain network analysis and broadly applicable to other imaging modalities, such as functional magnetic resonance imaging (MRI). PMID:25294129
Ontology-aided feature correlation for multi-modal urban sensing
NASA Astrophysics Data System (ADS)
Misra, Archan; Lantra, Zaman; Jayarajah, Kasthuri
2016-05-01
The paper explores the use of correlation across features extracted from different sensing channels to help in urban situational understanding. We use real-world datasets to show how such correlation can improve the accuracy of detection of city-wide events by combining metadata analysis with image analysis of Instagram content. We demonstrate this through a case study on the Singapore Haze. We show that simple ontological relationships and reasoning can significantly help in automating such correlation-based understanding of transient urban events.
NASA Astrophysics Data System (ADS)
Akın, Ata
2017-12-01
A theoretical framework, a partial correlation-based functional connectivity (PC-FC) analysis to functional near-infrared spectroscopy (fNIRS) data, is proposed. This is based on generating a common background signal from a high passed version of fNIRS data averaged over all channels as the regressor in computing the PC between pairs of channels. This approach has been employed to real data collected during a Stroop task. The results show a strong significance in the global efficiency (GE) metric computed by the PC-FC analysis for neutral, congruent, and incongruent stimuli (NS, CS, IcS; GEN=0.10±0.009, GEC=0.11±0.01, GEIC=0.13±0.015, p=0.0073). A positive correlation (r=0.729 and p=0.0259) is observed between the interference of reaction times (incongruent-neutral) and interference of GE values (GEIC-GEN) computed from [HbO] signals.
Smitha, K A; Arun, K M; Rajesh, P G; Thomas, B; Kesavadas, C
2017-06-01
Language is a cardinal function that makes human unique. Preservation of language function poses a great challenge for surgeons during resection. The aim of the study was to assess the efficacy of resting-state fMRI in the lateralization of language function in healthy subjects to permit its further testing in patients who are unable to perform task-based fMRI. Eighteen healthy right-handed volunteers were prospectively evaluated with resting-state fMRI and task-based fMRI to assess language networks. The laterality indices of Broca and Wernicke areas were calculated by using task-based fMRI via a voxel-value approach. We adopted seed-based resting-state fMRI connectivity analysis together with parameters such as amplitude of low-frequency fluctuation and fractional amplitude of low-frequency fluctuation (fALFF). Resting-state fMRI connectivity maps for language networks were obtained from Broca and Wernicke areas in both hemispheres. We performed correlation analysis between the laterality index and the z scores of functional connectivity, amplitude of low-frequency fluctuation, and fALFF. Pearson correlation analysis between signals obtained from the z score of fALFF and the laterality index yielded a correlation coefficient of 0.849 ( P < .05). Regression analysis of the fALFF with the laterality index yielded an R 2 value of 0.721, indicating that 72.1% of the variance in the laterality index of task-based fMRI could be predicted from the fALFF of resting-state fMRI. The present study demonstrates that fALFF can be used as an alternative to task-based fMRI for assessing language laterality. There was a strong positive correlation between the fALFF of the Broca area of resting-state fMRI with the laterality index of task-based fMRI. Furthermore, we demonstrated the efficacy of fALFF for predicting the laterality of task-based fMRI. © 2017 by American Journal of Neuroradiology.
Joint multifractal analysis based on wavelet leaders
NASA Astrophysics Data System (ADS)
Jiang, Zhi-Qiang; Yang, Yan-Hong; Wang, Gang-Jin; Zhou, Wei-Xing
2017-12-01
Mutually interacting components form complex systems and these components usually have long-range cross-correlated outputs. Using wavelet leaders, we propose a method for characterizing the joint multifractal nature of these long-range cross correlations; we call this method joint multifractal analysis based on wavelet leaders (MF-X-WL). We test the validity of the MF-X-WL method by performing extensive numerical experiments on dual binomial measures with multifractal cross correlations and bivariate fractional Brownian motions (bFBMs) with monofractal cross correlations. Both experiments indicate that MF-X-WL is capable of detecting cross correlations in synthetic data with acceptable estimating errors. We also apply the MF-X-WL method to pairs of series from financial markets (returns and volatilities) and online worlds (online numbers of different genders and different societies) and determine intriguing joint multifractal behavior.
NASA Astrophysics Data System (ADS)
Zhang, Jinmai; Luo, Huajie; Liu, Hao; Ye, Wei; Luo, Ray; Chen, Hai-Feng
2016-04-01
Histone modification plays a key role in gene regulation and gene expression. TRIM24 as a histone reader can recognize histone modification. However the specific recognition mechanism between TRIM24 and histone modification is unsolved. Here, systems biology method of dynamics correlation network based on molecular dynamics simulation was used to answer the question. Our network analysis shows that the dynamics correlation network of H3K23ac is distinctly different from that of wild type and other modifications. A hypothesis of “synergistic modification induced recognition” is then proposed to link histone modification and TRIM24 binding. These observations were further confirmed from community analysis of networks with mutation and network perturbation. Finally, a possible recognition pathway is also identified based on the shortest path search for H3K23ac. Significant difference of recognition pathway was found among different systems due to methylation and acetylation modifications. The analysis presented here and other studies show that the dynamic network-based analysis might be a useful general strategy to study the biology of protein post-translational modification and associated recognition.
NASA Astrophysics Data System (ADS)
Cao, Guangxi; Han, Yan; Chen, Yuemeng; Yang, Chunxia
2014-05-01
Based on the daily price data of Shanghai and London gold spot markets, we applied detrended cross-correlation analysis (DCCA) and detrended moving average cross-correlation analysis (DMCA) methods to quantify power-law cross-correlation between domestic and international gold markets. Results show that the cross-correlations between the Chinese domestic and international gold spot markets are multifractal. Furthermore, forward DMCA and backward DMCA seems to outperform DCCA and centered DMCA for short-range gold series, which confirms the comparison results of short-range artificial data in L. Y. He and S. P. Chen [Physica A 390 (2011) 3806-3814]. Finally, we analyzed the local multifractal characteristics of the cross-correlation between Chinese domestic and international gold markets. We show that multifractal characteristics of the cross-correlation between the Chinese domestic and international gold markets are time-varying and that multifractal characteristics were strengthened by the financial crisis in 2007-2008.
Meta-analysis of pathway enrichment: combining independent and dependent omics data sets.
Kaever, Alexander; Landesfeind, Manuel; Feussner, Kirstin; Morgenstern, Burkhard; Feussner, Ivo; Meinicke, Peter
2014-01-01
A major challenge in current systems biology is the combination and integrative analysis of large data sets obtained from different high-throughput omics platforms, such as mass spectrometry based Metabolomics and Proteomics or DNA microarray or RNA-seq-based Transcriptomics. Especially in the case of non-targeted Metabolomics experiments, where it is often impossible to unambiguously map ion features from mass spectrometry analysis to metabolites, the integration of more reliable omics technologies is highly desirable. A popular method for the knowledge-based interpretation of single data sets is the (Gene) Set Enrichment Analysis. In order to combine the results from different analyses, we introduce a methodical framework for the meta-analysis of p-values obtained from Pathway Enrichment Analysis (Set Enrichment Analysis based on pathways) of multiple dependent or independent data sets from different omics platforms. For dependent data sets, e.g. obtained from the same biological samples, the framework utilizes a covariance estimation procedure based on the nonsignificant pathways in single data set enrichment analysis. The framework is evaluated and applied in the joint analysis of Metabolomics mass spectrometry and Transcriptomics DNA microarray data in the context of plant wounding. In extensive studies of simulated data set dependence, the introduced correlation could be fully reconstructed by means of the covariance estimation based on pathway enrichment. By restricting the range of p-values of pathways considered in the estimation, the overestimation of correlation, which is introduced by the significant pathways, could be reduced. When applying the proposed methods to the real data sets, the meta-analysis was shown not only to be a powerful tool to investigate the correlation between different data sets and summarize the results of multiple analyses but also to distinguish experiment-specific key pathways.
Characteristic analysis on UAV-MIMO channel based on normalized correlation matrix.
Gao, Xi jun; Chen, Zi li; Hu, Yong Jiang
2014-01-01
Based on the three-dimensional GBSBCM (geometrically based double bounce cylinder model) channel model of MIMO for unmanned aerial vehicle (UAV), the simple form of UAV space-time-frequency channel correlation function which includes the LOS, SPE, and DIF components is presented. By the methods of channel matrix decomposition and coefficient normalization, the analytic formula of UAV-MIMO normalized correlation matrix is deduced. This formula can be used directly to analyze the condition number of UAV-MIMO channel matrix, the channel capacity, and other characteristic parameters. The simulation results show that this channel correlation matrix can be applied to describe the changes of UAV-MIMO channel characteristics under different parameter settings comprehensively. This analysis method provides a theoretical basis for improving the transmission performance of UAV-MIMO channel. The development of MIMO technology shows practical application value in the field of UAV communication.
Characteristic Analysis on UAV-MIMO Channel Based on Normalized Correlation Matrix
Xi jun, Gao; Zi li, Chen; Yong Jiang, Hu
2014-01-01
Based on the three-dimensional GBSBCM (geometrically based double bounce cylinder model) channel model of MIMO for unmanned aerial vehicle (UAV), the simple form of UAV space-time-frequency channel correlation function which includes the LOS, SPE, and DIF components is presented. By the methods of channel matrix decomposition and coefficient normalization, the analytic formula of UAV-MIMO normalized correlation matrix is deduced. This formula can be used directly to analyze the condition number of UAV-MIMO channel matrix, the channel capacity, and other characteristic parameters. The simulation results show that this channel correlation matrix can be applied to describe the changes of UAV-MIMO channel characteristics under different parameter settings comprehensively. This analysis method provides a theoretical basis for improving the transmission performance of UAV-MIMO channel. The development of MIMO technology shows practical application value in the field of UAV communication. PMID:24977185
Liu, Hong; Tan, Li-Ping; Huang, Xin; Liao, Yi-Qiu; Zhang, Wei-Jian; Li, Pei-Bo; Wang, Yong-Gang; Peng, Wei; Wu, Zhong; Su, Wei-Wei; Yao, Hong-Liang
2018-05-03
Discovery and identification of three bioactive compounds affecting endothelial function in Ginkgo biloba Extract (GBE) based on chromatogram-bioactivity correlation analysis. Three portions were separated from GBE via D101 macroporous resin and then re-combined to prepare nine GBE samples. 21 compounds in GBE samples were identified through UFLC-DAD-Q-TOF-MS/MS. Correlation analysis between compounds differences and endothelin-1 (ET-1) in vivo in nine GBE samples was conducted. The analysis results indicated that three bioactive compounds had close relevance to ET-1: Kaempferol-3- O -α-l-glucoside, 3- O -{2- O -{6- O -[P-OH-trans-cinnamoyl]-β-d-glucosyl}-α-rhamnosyl} Quercetin isomers, and 3- O -{2- O -{6- O -[P-OH-trans-cinnamoyl]-β-d-glucosyl}-α-rhamnosyl} Kaempferide. The discovery of bioactive compounds could provide references for the quality control and novel pharmaceuticals development of GRE. The present work proposes a feasible chromatogram-bioactivity correlation based approach to discover the compounds and define their bioactivities for the complex multi-component systems.
Zhang, Lei; Zheng, Xi-Long; Qiu, Dao-Shou; Cai, Shi-Ke; Luo, Huan-Ming; Deng, Rui-Yun; Liu, Xiao-Jin
2013-10-01
In order to provide theoretical and technological basis for the germplasm innovation and variety breeding in Dendrobium officinale, a study of the correlation between polysaccharide content and agronomic characters was conducted. Based on the polysaccharide content determination and the agronomic characters investigation of 30 copies (110 individual plants) of Dendrobium officinale germplasm resources, the correlation between polysaccharide content and agronomic characters was analyzed via path and correlation analysis. Correlation analysis results showed that there was a significant negative correlation between average spacing and polysaccharide content, the correlation coefficient was -0.695. And the blade thickness was positively correlated with the polysaccharide content, but the correlation was not significant. The path analysis results showed that the stem length was the maximum influence factor to the polysaccharide, and it was positive effect, the direct path coefficient was 1.568. According to thess results, the polysaccharide content can be easily and intuitively estimated by the agronomic characters investigating data in the germpalsm resources screening and variety breeding. Therefore, it is a visual and practical technology guidance in quality variety breeding of Dendrobium officinale.
Sievers, Aaron; Bosiek, Katharina; Bisch, Marc; Dreessen, Chris; Riedel, Jascha; Froß, Patrick; Hausmann, Michael; Hildenbrand, Georg
2017-01-01
In genome analysis, k-mer-based comparison methods have become standard tools. However, even though they are able to deliver reliable results, other algorithms seem to work better in some cases. To improve k-mer-based DNA sequence analysis and comparison, we successfully checked whether adding positional resolution is beneficial for finding and/or comparing interesting organizational structures. A simple but efficient algorithm for extracting and saving local k-mer spectra (frequency distribution of k-mers) was developed and used. The results were analyzed by including positional information based on visualizations as genomic maps and by applying basic vector correlation methods. This analysis was concentrated on small word lengths (1 ≤ k ≤ 4) on relatively small viral genomes of Papillomaviridae and Herpesviridae, while also checking its usability for larger sequences, namely human chromosome 2 and the homologous chromosomes (2A, 2B) of a chimpanzee. Using this alignment-free analysis, several regions with specific characteristics in Papillomaviridae and Herpesviridae formerly identified by independent, mostly alignment-based methods, were confirmed. Correlations between the k-mer content and several genes in these genomes have been found, showing similarities between classified and unclassified viruses, which may be potentially useful for further taxonomic research. Furthermore, unknown k-mer correlations in the genomes of Human Herpesviruses (HHVs), which are probably of major biological function, are found and described. Using the chromosomes of a chimpanzee and human that are currently known, identities between the species on every analyzed chromosome were reproduced. This demonstrates the feasibility of our approach for large data sets of complex genomes. Based on these results, we suggest k-mer analysis with positional resolution as a method for closing a gap between the effectiveness of alignment-based methods (like NCBI BLAST) and the high pace of standard k-mer analysis. PMID:28422050
ERIC Educational Resources Information Center
Zhang, Guangjian; Preacher, Kristopher J.; Luo, Shanhong
2010-01-01
This article is concerned with using the bootstrap to assign confidence intervals for rotated factor loadings and factor correlations in ordinary least squares exploratory factor analysis. Coverage performances of "SE"-based intervals, percentile intervals, bias-corrected percentile intervals, bias-corrected accelerated percentile…
NASA Astrophysics Data System (ADS)
Huang, D.; Wang, G.
2014-12-01
Stochastic simulation of spatially distributed ground-motion time histories is important for performance-based earthquake design of geographically distributed systems. In this study, we develop a novel technique to stochastically simulate regionalized ground-motion time histories using wavelet packet analysis. First, a transient acceleration time history is characterized by wavelet-packet parameters proposed by Yamamoto and Baker (2013). The wavelet-packet parameters fully characterize ground-motion time histories in terms of energy content, time- frequency-domain characteristics and time-frequency nonstationarity. This study further investigates the spatial cross-correlations of wavelet-packet parameters based on geostatistical analysis of 1500 regionalized ground motion data from eight well-recorded earthquakes in California, Mexico, Japan and Taiwan. The linear model of coregionalization (LMC) is used to develop a permissible spatial cross-correlation model for each parameter group. The geostatistical analysis of ground-motion data from different regions reveals significant dependence of the LMC structure on regional site conditions, which can be characterized by the correlation range of Vs30 in each region. In general, the spatial correlation and cross-correlation of wavelet-packet parameters are stronger if the site condition is more homogeneous. Using the regional-specific spatial cross-correlation model and cokriging technique, wavelet packet parameters at unmeasured locations can be best estimated, and regionalized ground-motion time histories can be synthesized. Case studies and blind tests demonstrated that the simulated ground motions generally agree well with the actual recorded data, if the influence of regional-site conditions is considered. The developed method has great potential to be used in computational-based seismic analysis and loss estimation in a regional scale.
Jesse, Stephen; Kalinin, Sergei V
2009-02-25
An approach for the analysis of multi-dimensional, spectroscopic-imaging data based on principal component analysis (PCA) is explored. PCA selects and ranks relevant response components based on variance within the data. It is shown that for examples with small relative variations between spectra, the first few PCA components closely coincide with results obtained using model fitting, and this is achieved at rates approximately four orders of magnitude faster. For cases with strong response variations, PCA allows an effective approach to rapidly process, de-noise, and compress data. The prospects for PCA combined with correlation function analysis of component maps as a universal tool for data analysis and representation in microscopy are discussed.
NASA Astrophysics Data System (ADS)
Martin, Lynn A.
The purpose of this study was to examine the relationship between teachers' self-reported preparedness for teaching science content and their instructional practices to the science achievement of eighth grade science students in the United States as demonstrated by TIMSS 2007. Six hundred eighty-seven eighth grade science teachers in the United States representing 7,377 students responded to the TIMSS 2007 questionnaire about their instructional preparedness and their instructional practices. Quantitative data were reported. Through correlation analysis, the researcher found statistically significant positive relationships emerge between eighth grade science teachers' main area of study and their self-reported beliefs about their preparedness to teach that same content area. Another correlation analysis found a statistically significant negative relationship existed between teachers' self-reported use of inquiry-based instruction and preparedness to teach chemistry, physics and earth science. Another correlation analysis discovered a statistically significant positive relationship existed between physics preparedness and student science achievement. Finally, a correlation analysis found a statistically significant positive relationship existed between science teachers' self-reported implementation of inquiry-based instructional practices and student achievement. The data findings support the conclusion that teachers who have feelings of preparedness to teach science content and implement more inquiry-based instruction and less didactic instruction produce high achieving science students. As science teachers obtain the appropriate knowledge in science content and pedagogy, science teachers will feel prepared and will implement inquiry-based instruction in science classrooms.
Shin, Eun-Seok; Garcia-Garcia, Hector M; Garg, Scot; Serruys, Patrick W
2011-04-01
Although percent plaque components on plaque-based measurement have been used traditionally in previous studies, the impact of vessel-based measurement for percent plaque components have yet to be studied. The purpose of this study was therefore to correlate percent plaque components derived by plaque- and vessel-based measurement using intravascular ultrasound virtual histology (IVUS-VH). The patient cohort comprised of 206 patients with de novo coronary artery lesions who were imaged with IVUS-VH. Age ranged from 35 to 88 years old, and 124 patients were male. Whole pullback analysis was used to calculate plaque volume, vessel volume, and absolute and percent volumes of fibrous, fibrofatty, necrotic core, and dense calcium. The plaque and vessel volumes were well correlated (r = 0.893, P < 0.001). There was a strong correlation between percent plaque components volumes calculated by plaque and those calculated by vessel volumes (fibrous; r = 0.927, P < 0.001, fibrofatty; r = 0.972, P < 0.001, necrotic core; r = 0.964, P < 0.001, dense calcium; r = 0.980, P < 0.001,). Plaque and vessel volumes correlated well to the overall plaque burden. For percent plaque component volume, plaque-based measurement was also highly correlated with vessel-based measurement. Therefore, the percent plaque component volume calculated by vessel volume could be used instead of the conventional percent plaque component volume calculated by plaque volume.
NASA Astrophysics Data System (ADS)
Chen, Yuebiao; Zhou, Yiqi; Yu, Gang; Lu, Dan
In order to analyze the effect of engine vibration on cab noise of construction machinery in multi-frequency bands, a new method based on ensemble empirical mode decomposition (EEMD) and spectral correlation analysis is proposed. Firstly, the intrinsic mode functions (IMFs) of vibration and noise signals were obtained by EEMD method, and then the IMFs which have the same frequency bands were selected. Secondly, we calculated the spectral correlation coefficients between the selected IMFs, getting the main frequency bands in which engine vibration has significant impact on cab noise. Thirdly, the dominated frequencies were picked out and analyzed by spectral analysis method. The study result shows that the main frequency bands and dominated frequencies in which engine vibration have serious impact on cab noise can be identified effectively by the proposed method, which provides effective guidance to noise reduction of construction machinery.
Wang, Kun; Jiang, Tianzi; Liang, Meng; Wang, Liang; Tian, Lixia; Zhang, Xinqing; Li, Kuncheng; Liu, Zhening
2006-01-01
In this work, we proposed a discriminative model of Alzheimer's disease (AD) on the basis of multivariate pattern classification and functional magnetic resonance imaging (fMRI). This model used the correlation/anti-correlation coefficients of two intrinsically anti-correlated networks in resting brains, which have been suggested by two recent studies, as the feature of classification. Pseudo-Fisher Linear Discriminative Analysis (pFLDA) was then performed on the feature space and a linear classifier was generated. Using leave-one-out (LOO) cross validation, our results showed a correct classification rate of 83%. We also compared the proposed model with another one based on the whole brain functional connectivity. Our proposed model outperformed the other one significantly, and this implied that the two intrinsically anti-correlated networks may be a more susceptible part of the whole brain network in the early stage of AD.
Liang, Xia; Wang, Jinhui; Yan, Chaogan; Shu, Ni; Xu, Ke; Gong, Gaolang; He, Yong
2012-01-01
Graph theoretical analysis of brain networks based on resting-state functional MRI (R-fMRI) has attracted a great deal of attention in recent years. These analyses often involve the selection of correlation metrics and specific preprocessing steps. However, the influence of these factors on the topological properties of functional brain networks has not been systematically examined. Here, we investigated the influences of correlation metric choice (Pearson's correlation versus partial correlation), global signal presence (regressed or not) and frequency band selection [slow-5 (0.01-0.027 Hz) versus slow-4 (0.027-0.073 Hz)] on the topological properties of both binary and weighted brain networks derived from them, and we employed test-retest (TRT) analyses for further guidance on how to choose the "best" network modeling strategy from the reliability perspective. Our results show significant differences in global network metrics associated with both correlation metrics and global signals. Analysis of nodal degree revealed differing hub distributions for brain networks derived from Pearson's correlation versus partial correlation. TRT analysis revealed that the reliability of both global and local topological properties are modulated by correlation metrics and the global signal, with the highest reliability observed for Pearson's-correlation-based brain networks without global signal removal (WOGR-PEAR). The nodal reliability exhibited a spatially heterogeneous distribution wherein regions in association and limbic/paralimbic cortices showed moderate TRT reliability in Pearson's-correlation-based brain networks. Moreover, we found that there were significant frequency-related differences in topological properties of WOGR-PEAR networks, and brain networks derived in the 0.027-0.073 Hz band exhibited greater reliability than those in the 0.01-0.027 Hz band. Taken together, our results provide direct evidence regarding the influences of correlation metrics and specific preprocessing choices on both the global and nodal topological properties of functional brain networks. This study also has important implications for how to choose reliable analytical schemes in brain network studies.
Katwal, Santosh B; Gore, John C; Marois, Rene; Rogers, Baxter P
2013-09-01
We present novel graph-based visualizations of self-organizing maps for unsupervised functional magnetic resonance imaging (fMRI) analysis. A self-organizing map is an artificial neural network model that transforms high-dimensional data into a low-dimensional (often a 2-D) map using unsupervised learning. However, a postprocessing scheme is necessary to correctly interpret similarity between neighboring node prototypes (feature vectors) on the output map and delineate clusters and features of interest in the data. In this paper, we used graph-based visualizations to capture fMRI data features based upon 1) the distribution of data across the receptive fields of the prototypes (density-based connectivity); and 2) temporal similarities (correlations) between the prototypes (correlation-based connectivity). We applied this approach to identify task-related brain areas in an fMRI reaction time experiment involving a visuo-manual response task, and we correlated the time-to-peak of the fMRI responses in these areas with reaction time. Visualization of self-organizing maps outperformed independent component analysis and voxelwise univariate linear regression analysis in identifying and classifying relevant brain regions. We conclude that the graph-based visualizations of self-organizing maps help in advanced visualization of cluster boundaries in fMRI data enabling the separation of regions with small differences in the timings of their brain responses.
A powerful score-based test statistic for detecting gene-gene co-association.
Xu, Jing; Yuan, Zhongshang; Ji, Jiadong; Zhang, Xiaoshuai; Li, Hongkai; Wu, Xuesen; Xue, Fuzhong; Liu, Yanxun
2016-01-29
The genetic variants identified by Genome-wide association study (GWAS) can only account for a small proportion of the total heritability for complex disease. The existence of gene-gene joint effects which contains the main effects and their co-association is one of the possible explanations for the "missing heritability" problems. Gene-gene co-association refers to the extent to which the joint effects of two genes differ from the main effects, not only due to the traditional interaction under nearly independent condition but the correlation between genes. Generally, genes tend to work collaboratively within specific pathway or network contributing to the disease and the specific disease-associated locus will often be highly correlated (e.g. single nucleotide polymorphisms (SNPs) in linkage disequilibrium). Therefore, we proposed a novel score-based statistic (SBS) as a gene-based method for detecting gene-gene co-association. Various simulations illustrate that, under different sample sizes, marginal effects of causal SNPs and co-association levels, the proposed SBS has the better performance than other existed methods including single SNP-based and principle component analysis (PCA)-based logistic regression model, the statistics based on canonical correlations (CCU), kernel canonical correlation analysis (KCCU), partial least squares path modeling (PLSPM) and delta-square (δ (2)) statistic. The real data analysis of rheumatoid arthritis (RA) further confirmed its advantages in practice. SBS is a powerful and efficient gene-based method for detecting gene-gene co-association.
A cyber-event correlation framework and metrics
NASA Astrophysics Data System (ADS)
Kang, Myong H.; Mayfield, Terry
2003-08-01
In this paper, we propose a cyber-event fusion, correlation, and situation assessment framework that, when instantiated, will allow cyber defenders to better understand the local, regional, and global cyber-situation. This framework, with associated metrics, can be used to guide assessment of our existing cyber-defense capabilities, and to help evaluate the state of cyber-event correlation research and where we must focus our future cyber-event correlation research. The framework, based on the cyber-event gathering activities and analysis functions, consists of five operational steps, each of which provides a richer set of contextual information to support greater situational understanding. The first three steps are categorically depicted as increasingly richer and broader-scoped contexts achieved through correlation activity, while in the final two steps, these richer contexts are achieved through analytical activities (situation assessment, and threat analysis & prediction). Category 1 Correlation focuses on the detection of suspicious activities and the correlation of events from a single cyber-event source. Category 2 Correlation clusters the same or similar events from multiple detectors that are located at close proximity and prioritizes them. Finally, the events from different time periods and event sources at different location/regions are correlated at Category 3 to recognize the relationship among different events. This is the category that focuses on the detection of large-scale and coordinated attacks. The situation assessment step (Category 4) focuses on the assessment of cyber asset damage and the analysis of the impact on missions. The threat analysis and prediction step (Category 5) analyzes attacks based on attack traces and predicts the next steps. Metrics that can distinguish correlation and cyber-situation assessment tools for each category are also proposed.
Wang, Yikai; Kang, Jian; Kemmer, Phebe B.; Guo, Ying
2016-01-01
Currently, network-oriented analysis of fMRI data has become an important tool for understanding brain organization and brain networks. Among the range of network modeling methods, partial correlation has shown great promises in accurately detecting true brain network connections. However, the application of partial correlation in investigating brain connectivity, especially in large-scale brain networks, has been limited so far due to the technical challenges in its estimation. In this paper, we propose an efficient and reliable statistical method for estimating partial correlation in large-scale brain network modeling. Our method derives partial correlation based on the precision matrix estimated via Constrained L1-minimization Approach (CLIME), which is a recently developed statistical method that is more efficient and demonstrates better performance than the existing methods. To help select an appropriate tuning parameter for sparsity control in the network estimation, we propose a new Dens-based selection method that provides a more informative and flexible tool to allow the users to select the tuning parameter based on the desired sparsity level. Another appealing feature of the Dens-based method is that it is much faster than the existing methods, which provides an important advantage in neuroimaging applications. Simulation studies show that the Dens-based method demonstrates comparable or better performance with respect to the existing methods in network estimation. We applied the proposed partial correlation method to investigate resting state functional connectivity using rs-fMRI data from the Philadelphia Neurodevelopmental Cohort (PNC) study. Our results show that partial correlation analysis removed considerable between-module marginal connections identified by full correlation analysis, suggesting these connections were likely caused by global effects or common connection to other nodes. Based on partial correlation, we find that the most significant direct connections are between homologous brain locations in the left and right hemisphere. When comparing partial correlation derived under different sparse tuning parameters, an important finding is that the sparse regularization has more shrinkage effects on negative functional connections than on positive connections, which supports previous findings that many of the negative brain connections are due to non-neurophysiological effects. An R package “DensParcorr” can be downloaded from CRAN for implementing the proposed statistical methods. PMID:27242395
Wang, Yikai; Kang, Jian; Kemmer, Phebe B; Guo, Ying
2016-01-01
Currently, network-oriented analysis of fMRI data has become an important tool for understanding brain organization and brain networks. Among the range of network modeling methods, partial correlation has shown great promises in accurately detecting true brain network connections. However, the application of partial correlation in investigating brain connectivity, especially in large-scale brain networks, has been limited so far due to the technical challenges in its estimation. In this paper, we propose an efficient and reliable statistical method for estimating partial correlation in large-scale brain network modeling. Our method derives partial correlation based on the precision matrix estimated via Constrained L1-minimization Approach (CLIME), which is a recently developed statistical method that is more efficient and demonstrates better performance than the existing methods. To help select an appropriate tuning parameter for sparsity control in the network estimation, we propose a new Dens-based selection method that provides a more informative and flexible tool to allow the users to select the tuning parameter based on the desired sparsity level. Another appealing feature of the Dens-based method is that it is much faster than the existing methods, which provides an important advantage in neuroimaging applications. Simulation studies show that the Dens-based method demonstrates comparable or better performance with respect to the existing methods in network estimation. We applied the proposed partial correlation method to investigate resting state functional connectivity using rs-fMRI data from the Philadelphia Neurodevelopmental Cohort (PNC) study. Our results show that partial correlation analysis removed considerable between-module marginal connections identified by full correlation analysis, suggesting these connections were likely caused by global effects or common connection to other nodes. Based on partial correlation, we find that the most significant direct connections are between homologous brain locations in the left and right hemisphere. When comparing partial correlation derived under different sparse tuning parameters, an important finding is that the sparse regularization has more shrinkage effects on negative functional connections than on positive connections, which supports previous findings that many of the negative brain connections are due to non-neurophysiological effects. An R package "DensParcorr" can be downloaded from CRAN for implementing the proposed statistical methods.
Feature Selection Using Information Gain for Improved Structural-Based Alert Correlation
Siraj, Maheyzah Md; Zainal, Anazida; Elshoush, Huwaida Tagelsir; Elhaj, Fatin
2016-01-01
Grouping and clustering alerts for intrusion detection based on the similarity of features is referred to as structurally base alert correlation and can discover a list of attack steps. Previous researchers selected different features and data sources manually based on their knowledge and experience, which lead to the less accurate identification of attack steps and inconsistent performance of clustering accuracy. Furthermore, the existing alert correlation systems deal with a huge amount of data that contains null values, incomplete information, and irrelevant features causing the analysis of the alerts to be tedious, time-consuming and error-prone. Therefore, this paper focuses on selecting accurate and significant features of alerts that are appropriate to represent the attack steps, thus, enhancing the structural-based alert correlation model. A two-tier feature selection method is proposed to obtain the significant features. The first tier aims at ranking the subset of features based on high information gain entropy in decreasing order. The second tier extends additional features with a better discriminative ability than the initially ranked features. Performance analysis results show the significance of the selected features in terms of the clustering accuracy using 2000 DARPA intrusion detection scenario-specific dataset. PMID:27893821
[Study on ecological suitability regionalization of Eucommia ulmoides in Guizhou].
Kang, Chuan-Zhi; Wang, Qing-Qing; Zhou, Tao; Jiang, Wei-Ke; Xiao, Cheng-Hong; Xie, Yu
2014-05-01
To study the ecological suitability regionalization of Eucommia ulmoides, for selecting artificial planting base and high-quality industrial raw material purchase area of the herb in Guizhou. Based on the investigation of 14 Eucommia ulmoides producing areas, pinoresinol diglucoside content and ecological factors were obtained. Using spatial analysis method to carry on ecological suitability regionalization. Meanwhile, combining pinoresinol diglucoside content, the correlation of major active components and environmental factors were analyzed by statistical analysis. The most suitability planting area of Eucommia ulmoides was the northwest of Guizhou. The distribution of Eucommia ulmoides was mainly affected by the type and pH value of soil, and monthly precipitation. The spatial structure of major active components in Eucommia ulmoides were randomly distributed in global space, but had only one aggregation point which had a high positive correlation in local space. The major active components of Eucommia ulmoides had no correlation with altitude, longitude or latitude. Using the spatial analysis method and statistical analysis method, based on environmental factor and pinoresinol diglucoside content, the ecological suitability regionalization of Eucommia ulmoides can provide reference for the selection of suitable planting area, artificial planting base and directing production layout.
Plenis, Alina; Rekowska, Natalia; Bączek, Tomasz
2016-01-01
This article focuses on correlating the column classification obtained from the method created at the Katholieke Universiteit Leuven (KUL), with the chromatographic resolution attained in biomedical separation. In the KUL system, each column is described with four parameters, which enables estimation of the FKUL value characterising similarity of those parameters to the selected reference stationary phase. Thus, a ranking list based on the FKUL value can be calculated for the chosen reference column, then correlated with the results of the column performance test. In this study, the column performance test was based on analysis of moclobemide and its two metabolites in human plasma by liquid chromatography (LC), using 18 columns. The comparative study was performed using traditional correlation of the FKUL values with the retention parameters of the analytes describing the column performance test. In order to deepen the comparative assessment of both data sets, factor analysis (FA) was also used. The obtained results indicated that the stationary phase classes, closely related according to the KUL method, yielded comparable separation for the target substances. Therefore, the column ranking system based on the FKUL-values could be considered supportive in the choice of the appropriate column for biomedical analysis. PMID:26805819
Plenis, Alina; Rekowska, Natalia; Bączek, Tomasz
2016-01-21
This article focuses on correlating the column classification obtained from the method created at the Katholieke Universiteit Leuven (KUL), with the chromatographic resolution attained in biomedical separation. In the KUL system, each column is described with four parameters, which enables estimation of the FKUL value characterising similarity of those parameters to the selected reference stationary phase. Thus, a ranking list based on the FKUL value can be calculated for the chosen reference column, then correlated with the results of the column performance test. In this study, the column performance test was based on analysis of moclobemide and its two metabolites in human plasma by liquid chromatography (LC), using 18 columns. The comparative study was performed using traditional correlation of the FKUL values with the retention parameters of the analytes describing the column performance test. In order to deepen the comparative assessment of both data sets, factor analysis (FA) was also used. The obtained results indicated that the stationary phase classes, closely related according to the KUL method, yielded comparable separation for the target substances. Therefore, the column ranking system based on the FKUL-values could be considered supportive in the choice of the appropriate column for biomedical analysis.
NASA Technical Reports Server (NTRS)
Christensen, H. E.; Kipp, H. W.
1974-01-01
Wind tunnel tests were conducted to determine the aerodynamic heating created by gaps in the reusable surface insulation (RSI) thermal protection system (TPS) for the space shuttle. The effects of various parameters of the RSI on convective heating characteristics are described. The wind tunnel tests provided a data base for accurate assessment of gap heating. Analysis and correlation of the data provide methods for predicting heating in the RSI gaps on the space shuttle.
Extreme values in the Chinese and American stock markets based on detrended fluctuation analysis
NASA Astrophysics Data System (ADS)
Cao, Guangxi; Zhang, Minjia
2015-10-01
This paper focuses on the comparative analysis of extreme values in the Chinese and American stock markets based on the detrended fluctuation analysis (DFA) algorithm using the daily data of Shanghai composite index and Dow Jones Industrial Average. The empirical results indicate that the multifractal detrended fluctuation analysis (MF-DFA) method is more objective than the traditional percentile method. The range of extreme value of Dow Jones Industrial Average is smaller than that of Shanghai composite index, and the extreme value of Dow Jones Industrial Average is more time clustering. The extreme value of the Chinese or American stock markets is concentrated in 2008, which is consistent with the financial crisis in 2008. Moreover, we investigate whether extreme events affect the cross-correlation between the Chinese and American stock markets using multifractal detrended cross-correlation analysis algorithm. The results show that extreme events have nothing to do with the cross-correlation between the Chinese and American stock markets.
Xiao, Qiyang; Li, Jian; Bai, Zhiliang; Sun, Jiedi; Zhou, Nan; Zeng, Zhoumo
2016-12-13
In this study, a small leak detection method based on variational mode decomposition (VMD) and ambiguity correlation classification (ACC) is proposed. The signals acquired from sensors were decomposed using the VMD, and numerous components were obtained. According to the probability density function (PDF), an adaptive de-noising algorithm based on VMD is proposed for noise component processing and de-noised components reconstruction. Furthermore, the ambiguity function image was employed for analysis of the reconstructed signals. Based on the correlation coefficient, ACC is proposed to detect the small leak of pipeline. The analysis of pipeline leakage signals, using 1 mm and 2 mm leaks, has shown that proposed detection method can detect a small leak accurately and effectively. Moreover, the experimental results have shown that the proposed method achieved better performances than support vector machine (SVM) and back propagation neural network (BP) methods.
Xiao, Qiyang; Li, Jian; Bai, Zhiliang; Sun, Jiedi; Zhou, Nan; Zeng, Zhoumo
2016-01-01
In this study, a small leak detection method based on variational mode decomposition (VMD) and ambiguity correlation classification (ACC) is proposed. The signals acquired from sensors were decomposed using the VMD, and numerous components were obtained. According to the probability density function (PDF), an adaptive de-noising algorithm based on VMD is proposed for noise component processing and de-noised components reconstruction. Furthermore, the ambiguity function image was employed for analysis of the reconstructed signals. Based on the correlation coefficient, ACC is proposed to detect the small leak of pipeline. The analysis of pipeline leakage signals, using 1 mm and 2 mm leaks, has shown that proposed detection method can detect a small leak accurately and effectively. Moreover, the experimental results have shown that the proposed method achieved better performances than support vector machine (SVM) and back propagation neural network (BP) methods. PMID:27983577
Process Correlation Analysis Model for Process Improvement Identification
Park, Sooyong
2014-01-01
Software process improvement aims at improving the development process of software systems. It is initiated by process assessment identifying strengths and weaknesses and based on the findings, improvement plans are developed. In general, a process reference model (e.g., CMMI) is used throughout the process of software process improvement as the base. CMMI defines a set of process areas involved in software development and what to be carried out in process areas in terms of goals and practices. Process areas and their elements (goals and practices) are often correlated due to the iterative nature of software development process. However, in the current practice, correlations of process elements are often overlooked in the development of an improvement plan, which diminishes the efficiency of the plan. This is mainly attributed to significant efforts and the lack of required expertise. In this paper, we present a process correlation analysis model that helps identify correlations of process elements from the results of process assessment. This model is defined based on CMMI and empirical data of improvement practices. We evaluate the model using industrial data. PMID:24977170
Process correlation analysis model for process improvement identification.
Choi, Su-jin; Kim, Dae-Kyoo; Park, Sooyong
2014-01-01
Software process improvement aims at improving the development process of software systems. It is initiated by process assessment identifying strengths and weaknesses and based on the findings, improvement plans are developed. In general, a process reference model (e.g., CMMI) is used throughout the process of software process improvement as the base. CMMI defines a set of process areas involved in software development and what to be carried out in process areas in terms of goals and practices. Process areas and their elements (goals and practices) are often correlated due to the iterative nature of software development process. However, in the current practice, correlations of process elements are often overlooked in the development of an improvement plan, which diminishes the efficiency of the plan. This is mainly attributed to significant efforts and the lack of required expertise. In this paper, we present a process correlation analysis model that helps identify correlations of process elements from the results of process assessment. This model is defined based on CMMI and empirical data of improvement practices. We evaluate the model using industrial data.
Water quality assessment with hierarchical cluster analysis based on Mahalanobis distance.
Du, Xiangjun; Shao, Fengjing; Wu, Shunyao; Zhang, Hanlin; Xu, Si
2017-07-01
Water quality assessment is crucial for assessment of marine eutrophication, prediction of harmful algal blooms, and environment protection. Previous studies have developed many numeric modeling methods and data driven approaches for water quality assessment. The cluster analysis, an approach widely used for grouping data, has also been employed. However, there are complex correlations between water quality variables, which play important roles in water quality assessment but have always been overlooked. In this paper, we analyze correlations between water quality variables and propose an alternative method for water quality assessment with hierarchical cluster analysis based on Mahalanobis distance. Further, we cluster water quality data collected form coastal water of Bohai Sea and North Yellow Sea of China, and apply clustering results to evaluate its water quality. To evaluate the validity, we also cluster the water quality data with cluster analysis based on Euclidean distance, which are widely adopted by previous studies. The results show that our method is more suitable for water quality assessment with many correlated water quality variables. To our knowledge, it is the first attempt to apply Mahalanobis distance for coastal water quality assessment.
ERIC Educational Resources Information Center
Fan, Yi; Lance, Charles E.
2017-01-01
The correlated trait-correlated method (CTCM) model for the analysis of multitrait-multimethod (MTMM) data is known to suffer convergence and admissibility (C&A) problems. We describe a little known and seldom applied reparameterized version of this model (CTCM-R) based on Rindskopf's reparameterization of the simpler confirmatory factor…
Wang, Jun-Sheng; Olszewski, Emily; Devine, Erin E; Hoffman, Matthew R; Zhang, Yu; Shao, Jun; Jiang, Jack J
2016-08-01
To evaluate the spatiotemporal correlation of vocal fold vibration using eigenmode analysis before and after polyp removal and explore the potential clinical relevance of spatiotemporal analysis of correlation length and entropy as quantitative voice parameters. We hypothesized that increased order in the vibrating signal after surgical intervention would decrease the eigenmode-based entropy and increase correlation length. Prospective case series. Forty subjects (23 males, 17 females) with unilateral (n = 24) or bilateral (n = 16) polyps underwent polyp removal. High-speed videoendoscopy was performed preoperatively and 2 weeks postoperatively. Spatiotemporal analysis was performed to determine entropy, quantification of signal disorder, correlation length, size, and spatially ordered structure of vocal fold vibration in comparison to full spatial consistency. The signal analyzed consists of the vibratory pattern in space and time derived from the high-speed video glottal area contour. Entropy decreased (Z = -3.871, P < .001) and correlation length increased (t = -8.913, P < .001) following polyp excision. The intraclass correlation coefficients (ICC) for correlation length and entropy were 0.84 and 0.93. Correlation length and entropy are sensitive to mass lesions. These parameters could potentially be used to augment subjective visualization after polyp excision when evaluating procedural efficacy. © The Author(s) 2016.
Ma, Chuang; Wang, Xiangfeng
2012-09-01
One of the computational challenges in plant systems biology is to accurately infer transcriptional regulation relationships based on correlation analyses of gene expression patterns. Despite several correlation methods that are applied in biology to analyze microarray data, concerns regarding the compatibility of these methods with the gene expression data profiled by high-throughput RNA transcriptome sequencing (RNA-Seq) technology have been raised. These concerns are mainly due to the fact that the distribution of read counts in RNA-Seq experiments is different from that of fluorescence intensities in microarray experiments. Therefore, a comprehensive evaluation of the existing correlation methods and, if necessary, introduction of novel methods into biology is appropriate. In this study, we compared four existing correlation methods used in microarray analysis and one novel method called the Gini correlation coefficient on previously published microarray-based and sequencing-based gene expression data in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). The comparisons were performed on more than 11,000 regulatory relationships in Arabidopsis, including 8,929 pairs of transcription factors and target genes. Our analyses pinpointed the strengths and weaknesses of each method and indicated that the Gini correlation can compensate for the shortcomings of the Pearson correlation, the Spearman correlation, the Kendall correlation, and the Tukey's biweight correlation. The Gini correlation method, with the other four evaluated methods in this study, was implemented as an R package named rsgcc that can be utilized as an alternative option for biologists to perform clustering analyses of gene expression patterns or transcriptional network analyses.
Ma, Chuang; Wang, Xiangfeng
2012-01-01
One of the computational challenges in plant systems biology is to accurately infer transcriptional regulation relationships based on correlation analyses of gene expression patterns. Despite several correlation methods that are applied in biology to analyze microarray data, concerns regarding the compatibility of these methods with the gene expression data profiled by high-throughput RNA transcriptome sequencing (RNA-Seq) technology have been raised. These concerns are mainly due to the fact that the distribution of read counts in RNA-Seq experiments is different from that of fluorescence intensities in microarray experiments. Therefore, a comprehensive evaluation of the existing correlation methods and, if necessary, introduction of novel methods into biology is appropriate. In this study, we compared four existing correlation methods used in microarray analysis and one novel method called the Gini correlation coefficient on previously published microarray-based and sequencing-based gene expression data in Arabidopsis (Arabidopsis thaliana) and maize (Zea mays). The comparisons were performed on more than 11,000 regulatory relationships in Arabidopsis, including 8,929 pairs of transcription factors and target genes. Our analyses pinpointed the strengths and weaknesses of each method and indicated that the Gini correlation can compensate for the shortcomings of the Pearson correlation, the Spearman correlation, the Kendall correlation, and the Tukey’s biweight correlation. The Gini correlation method, with the other four evaluated methods in this study, was implemented as an R package named rsgcc that can be utilized as an alternative option for biologists to perform clustering analyses of gene expression patterns or transcriptional network analyses. PMID:22797655
NASA Astrophysics Data System (ADS)
Wang, Huiqin; Wang, Xue; Lynette, Kibe; Cao, Minghua
2018-06-01
The performance of multiple-input multiple-output wireless optical communication systems that adopt Q-ary pulse position modulation over spatial correlated log-normal fading channel is analyzed in terms of its un-coded bit error rate and ergodic channel capacity. The analysis is based on the Wilkinson's method which approximates the distribution of a sum of correlated log-normal random variables to a log-normal random variable. The analytical and simulation results corroborate the increment of correlation coefficients among sub-channels lead to system performance degradation. Moreover, the receiver diversity has better performance in resistance of spatial correlation caused channel fading.
NASA Astrophysics Data System (ADS)
Schroer, M. A.; Gutt, C.; Grübel, G.
2014-07-01
Recently the analysis of scattering patterns by angular cross-correlation analysis (CCA) was introduced to reveal the orientational order in disordered samples with special focus to future applications on x-ray free-electron laser facilities. We apply this CCA approach to ultra-small-angle light-scattering data obtained from two-dimensional monolayers of microspheres. The films were studied in addition by optical microscopy. This combined approach allows to calculate the cross-correlations of the scattering patterns, characterized by the orientational correlation function Ψl(q), as well as to obtain the real-space structure of the monolayers. We show that CCA is sensitive to the orientational order of monolayers formed by the microspheres which are not directly visible from the scattering patterns. By mixing microspheres of different radii the sizes of ordered monolayer domains is reduced. For these samples it is shown that Ψl(q) quantitatively describes the degree of hexagonal order of the two-dimensional films. The experimental CCA results are compared with calculations based on the microscopy images. Both techniques show qualitatively similar features. Differences can be attributed to the wave-front distortion of the laser beam in the experiment. This effect is discussed by investigating the effect of different wave fronts on the cross-correlation analysis results. The so-determined characteristics of the cross-correlation analysis will be also relevant for future x-ray-based studies.
One-year test-retest reliability of intrinsic connectivity network fMRI in older adults
Guo, Cong C.; Kurth, Florian; Zhou, Juan; Mayer, Emeran A.; Eickhoff, Simon B; Kramer, Joel H.; Seeley, William W.
2014-01-01
“Resting-state” or task-free fMRI can assess intrinsic connectivity network (ICN) integrity in health and disease, suggesting a potential for use of these methods as disease-monitoring biomarkers. Numerous analytical options are available, including model-driven ROI-based correlation analysis and model-free, independent component analysis (ICA). High test-retest reliability will be a necessary feature of a successful ICN biomarker, yet available reliability data remains limited. Here, we examined ICN fMRI test-retest reliability in 24 healthy older subjects scanned roughly one year apart. We focused on the salience network, a disease-relevant ICN not previously subjected to reliability analysis. Most ICN analytical methods proved reliable (intraclass coefficients > 0.4) and could be further improved by wavelet analysis. Seed-based ROI correlation analysis showed high map-wise reliability, whereas graph theoretical measures and temporal concatenation group ICA produced the most reliable individual unit-wise outcomes. Including global signal regression in ROI-based correlation analyses reduced reliability. Our study provides a direct comparison between the most commonly used ICN fMRI methods and potential guidelines for measuring intrinsic connectivity in aging control and patient populations over time. PMID:22446491
Correlational Neural Networks.
Chandar, Sarath; Khapra, Mitesh M; Larochelle, Hugo; Ravindran, Balaraman
2016-02-01
Common representation learning (CRL), wherein different descriptions (or views) of the data are embedded in a common subspace, has been receiving a lot of attention recently. Two popular paradigms here are canonical correlation analysis (CCA)-based approaches and autoencoder (AE)-based approaches. CCA-based approaches learn a joint representation by maximizing correlation of the views when projected to the common subspace. AE-based methods learn a common representation by minimizing the error of reconstructing the two views. Each of these approaches has its own advantages and disadvantages. For example, while CCA-based approaches outperform AE-based approaches for the task of transfer learning, they are not as scalable as the latter. In this work, we propose an AE-based approach, correlational neural network (CorrNet), that explicitly maximizes correlation among the views when projected to the common subspace. Through a series of experiments, we demonstrate that the proposed CorrNet is better than AE and CCA with respect to its ability to learn correlated common representations. We employ CorrNet for several cross-language tasks and show that the representations learned using it perform better than the ones learned using other state-of-the-art approaches.
NASA Astrophysics Data System (ADS)
Noda, Isao
2014-07-01
A comprehensive survey review of new and noteworthy developments, which are advancing forward the frontiers in the field of 2D correlation spectroscopy during the last four years, is compiled. This review covers books, proceedings, and review articles published on 2D correlation spectroscopy, a number of significant conceptual developments in the field, data pretreatment methods and other pertinent topics, as well as patent and publication trends and citation activities. Developments discussed include projection 2D correlation analysis, concatenated 2D correlation, and correlation under multiple perturbation effects, as well as orthogonal sample design, predicting 2D correlation spectra, manipulating and comparing 2D spectra, correlation strategy based on segmented data blocks, such as moving-window analysis, features like determination of sequential order and enhanced spectral resolution, statistical 2D spectroscopy using covariance and other statistical metrics, hetero-correlation analysis, and sample-sample correlation technique. Data pretreatment operations prior to 2D correlation analysis are discussed, including the correction for physical effects, background and baseline subtraction, selection of reference spectrum, normalization and scaling of data, derivatives spectra and deconvolution technique, and smoothing and noise reduction. Other pertinent topics include chemometrics and statistical considerations, peak position shift phenomena, variable sampling increments, computation and software, display schemes, such as color coded format, slice and power spectra, tabulation, and other schemes.
A density difference based analysis of orbital-dependent exchange-correlation functionals
NASA Astrophysics Data System (ADS)
Grabowski, Ireneusz; Teale, Andrew M.; Fabiano, Eduardo; Śmiga, Szymon; Buksztel, Adam; Della Sala, Fabio
2014-03-01
We present a density difference based analysis for a range of orbital-dependent Kohn-Sham functionals. Results for atoms, some members of the neon isoelectronic series and small molecules are reported and compared with ab initio wave function calculations. Particular attention is paid to the quality of approximations to the exchange-only optimised effective potential (OEP) approach: we consider both the localised Hartree-Fock as well as the Krieger-Li-Iafrate methods. Analysis of density differences at the exchange-only level reveals the impact of the approximations on the resulting electronic densities. These differences are further quantified in terms of the ground state energies, frontier orbital energy differences and highest occupied orbital energies obtained. At the correlated level, an OEP approach based on a perturbative second-order correlation energy expression is shown to deliver results comparable with those from traditional wave function approaches, making it suitable for use as a benchmark against which to compare standard density functional approximations.
Coal-tar-based sealcoated pavement: a major PAH source to urban stream sediments.
Witter, Amy E; Nguyen, Minh H; Baidar, Sunil; Sak, Peter B
2014-02-01
We used land-use analysis, PAH concentrations and assemblages, and multivariate statistics to identify sediment PAH sources in a small (~1303 km(2)) urbanizing watershed located in South-Central, Pennsylvania, USA. A geographic information system (GIS) was employed to quantify land-use features that may serve as PAH sources. Urban PAH concentrations were three times higher than rural levels, and were significantly and highly correlated with combined residential/commercial/industrial land use. Principal components analysis (PCA) was used to group sediments with similar PAH assemblages, and correlation analysis compared PAH sediment assemblages to common PAH sources. The strongest correlations were observed between rural sediments (n = 7) and coke-oven emissions sources (r = 0.69-0.78, n = 5), and between urban sediments (n = 22) and coal-tar-based sealcoat dust (r = 0.94, n = 47) suggesting that coal-tar-based sealcoat is an important urban PAH source in this watershed linked to residential and commercial/industrial land use. Copyright © 2013 Elsevier Ltd. All rights reserved.
Detrended cross-correlation analysis on RMB exchange rate and Hang Seng China Enterprises Index
NASA Astrophysics Data System (ADS)
Ruan, Qingsong; Yang, Bingchan; Ma, Guofeng
2017-02-01
In this paper, we investigate the cross-correlations between the Hang Seng China Enterprises Index and RMB exchange markets on the basis of a cross-correlation statistic test and multifractal detrended cross-correlation analysis (MF-DCCA). MF-DCCA has, at best, serious limitations for most of the signals describing complex natural processes and often indicates multifractal cross-correlations when there are none. In order to prevent these false multifractal cross-correlations, we apply MFCCA to verify the cross-correlations. Qualitatively, we find that the return series of the Hang Seng China Enterprises Index and RMB exchange markets were, overall, significantly cross-correlated based on the statistical analysis. Quantitatively, we find that the cross-correlations between the stock index and RMB exchange markets were strongly multifractal, and the multifractal degree of the onshore RMB exchange markets was somewhat larger than the offshore RMB exchange markets. Moreover, we use the absolute return series to investigate and confirm the fact of multifractality. The results from the rolling windows show that the short-term cross-correlations between volatility series remain high.
Analysis of field-scale spatial correlations and variations of soil nutrients using geostatistics.
Liu, Ruimin; Xu, Fei; Yu, Wenwen; Shi, Jianhan; Zhang, Peipei; Shen, Zhenyao
2016-02-01
Spatial correlations and soil nutrient variations are important for soil nutrient management. They help to reduce the negative impacts of agricultural nonpoint source pollution. Based on the sampled available nitrogen (AN), available phosphorus (AP), and available potassium (AK), soil nutrient data from 2010, the spatial correlation, was analyzed, and the probabilities of the nutrient's abundance or deficiency were discussed. This paper presents a statistical approach to spatial analysis, the spatial correlation analysis (SCA), which was originally developed for describing heterogeneity in the presence of correlated variation and based on ordinary kriging (OK) results. Indicator kriging (IK) was used to assess the susceptibility of excess of soil nutrients based on crop needs. The kriged results showed there was a distinct spatial variability in the concentration of all three soil nutrients. High concentrations of these three soil nutrients were found near Anzhou. As the distance from the center of town increased, the concentration of the soil nutrients gradually decreased. Spatially, the relationship between AN and AP was negative, and the relationship between AP and AK was not clear. The IK results showed that there were few areas with a risk of AN and AP overabundance. However, almost the entire study region was at risk of AK overabundance. Based on the soil nutrient distribution results, it is clear that the spatial variability of the soil nutrients differed throughout the study region. This spatial soil nutrient variability might be caused by different fertilizer types and different fertilizing practices.
NASA Astrophysics Data System (ADS)
Davis, S. J.; Egolf, T. A.
1980-07-01
Acoustic characteristics predicted using a recently developed computer code were correlated with measured acoustic data for two helicopter rotors. The analysis, is based on a solution of the Ffowcs-Williams-Hawkings (FW-H) equation and includes terms accounting for both the thickness and loading components of the rotational noise. Computations are carried out in the time domain and assume free field conditions. Results of the correlation show that the Farrassat/Nystrom analysis, when using predicted airload data as input, yields fair but encouraging correlation for the first 6 harmonics of blade passage. It also suggests that although the analysis represents a valuable first step towards developing a truly comprehensive helicopter rotor noise prediction capability, further work remains to be done identifying and incorporating additional noise mechanisms into the code.
Psychological Factors and Conditioned Pain Modulation: A Meta-Analysis.
Nahman-Averbuch, Hadas; Nir, Rony-Reuven; Sprecher, Elliot; Yarnitsky, David
2016-06-01
Conditioned pain modulation (CPM) responses may be affected by psychological factors such as anxiety, depression, and pain catastrophizing; however, most studies on CPM do not address these relations as their primary outcome. The aim of this meta-analysis was to analyze the findings regarding the associations between CPM responses and psychological factors in both pain-free individuals and pain patients. After a comprehensive PubMed search, 37 articles were found to be suitable for inclusion. Analyses used DerSimonian and Laird's random-effects model on Fisher's z-transforms of correlations; potential publication bias was tested using funnel plots and Egger's regression test for funnel plot asymmetry. Six meta-analyses were performed examining the correlations between anxiety, depression, and pain catastrophizing, and CPM responses in healthy individuals and pain patients. No significant correlations between CPM responses and any of the examined psychological factors were found. However, a secondary analysis, comparing modality-specific CPM responses and psychological factors in healthy individuals, revealed the following: (1) pressure-based CPM responses were correlated with anxiety (grand mean correlation in original units r=-0.1087; 95% confidence limits, -0.1752 to -0.0411); (2) heat-based CPM was correlated with depression (r=0.2443; 95% confidence limits, 0.0150 to 0.4492); and (3) electrical-based CPM was correlated with pain catastrophizing levels (r=-0.1501; 95% confidence limits, -0.2403 to -0.0574). Certain psychological factors seem to be associated with modality-specific CPM responses in healthy individuals. This potentially supports the notion that CPM paradigms evoked by different stimulation modalities represent different underlying mechanisms.
Speckle-correlation analysis of the microcapillary blood circulation in nail bed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vilenskii, M A; Agafonov, D N; Zimnyakov, D A
2011-04-30
We present the results of the experimental studies of the possibility of monitoring the blood microcirculation in human finger nail bed with application of speckle-correlation analysis, based on estimating the contrast of time-averaged dynamic speckles. The hemodynamics at normal blood circulation and under conditions of partially suppressed blood circulation is analysed. A microscopic analysis is performed to visualise the structural changes in capillaries that are caused by suppressing blood circulation. The problems and prospects of speckle-correlation monitoring of the nail bed microhemodynamics under laboratory and clinical conditions are discussed. (optical technologies in biophysics and medicine)
Liu, An-Nuo; Wang, Lu-Lu; Li, Hui-Ping; Gong, Juan; Liu, Xiao-Hong
2017-05-01
The literature on posttraumatic growth (PTG) is burgeoning, with the inconsistencies in the literature of the relationship between PTG and posttraumatic stress disorder (PTSD) symptoms becoming a focal point of attention. Thus, this meta-analysis aims to explore the relationship between PTG and PTSD symptoms through the Pearson correlation coefficient. A systematic search of the literature from January 1996 to November 2015 was completed. We retrieved reports on 63 studies that involved 26,951 patients. The weighted correlation coefficient revealed an effect size of 0.22 with a 95% confidence interval of 0.18 to 0.25. Meta-analysis provides evidence that PTG may be positively correlated with PTSD symptoms and that this correlation may be modified by age, trauma type, and time since trauma. Accordingly, people with high levels of PTG should not be ignored, but rather, they should continue to receive help to alleviate their PTSD symptoms.
NASA Technical Reports Server (NTRS)
Ni, Jianjun (David)
2012-01-01
This presentation discusses an analysis approach to evaluate the interuser interference for Direct-Sequence Spread-Spectrum (DSSS) Systems for Space Network (SN) Users. Part I of this analysis shows that the correlation property of pseudo noise (PN) sequences is the critical factor which determines the interuser interference performance of the DSSS system. For non-standard DSSS systems in which PN sequence s period is much larger than one data symbol duration, it is the partial-period cross-correlation that determines the system performance. This study reveals through an example that a well-designed PN sequence set (e.g. Gold Sequence, in which the cross-correlation for a whole-period is well controlled) may have non-controlled partial-period cross-correlation which could cause severe interuser interference for a DSSS system. Since the analytical derivation of performance metric (bit error rate or signal-to-noise ratio) based on partial-period cross-correlation is prohibitive, the performance degradation due to partial-period cross-correlation will be evaluated using simulation in Part II of this analysis in the future.
Villa-Parra, Ana Cecilia; Bastos-Filho, Teodiano; López-Delis, Alberto; Frizera-Neto, Anselmo; Krishnan, Sridhar
2017-01-01
This work presents a new on-line adaptive filter, which is based on a similarity analysis between standard electrode locations, in order to reduce artifacts and common interferences throughout electroencephalography (EEG) signals, but preserving the useful information. Standard deviation and Concordance Correlation Coefficient (CCC) between target electrodes and its correspondent neighbor electrodes are analyzed on sliding windows to select those neighbors that are highly correlated. Afterwards, a model based on CCC is applied to provide higher values of weight to those correlated electrodes with lower similarity to the target electrode. The approach was applied to brain computer-interfaces (BCIs) based on Canonical Correlation Analysis (CCA) to recognize 40 targets of steady-state visual evoked potential (SSVEP), providing an accuracy (ACC) of 86.44 ± 2.81%. In addition, also using this approach, features of low frequency were selected in the pre-processing stage of another BCI to recognize gait planning. In this case, the recognition was significantly (p<0.01) improved for most of the subjects (ACC≥74.79%), when compared with other BCIs based on Common Spatial Pattern, Filter Bank-Common Spatial Pattern, and Riemannian Geometry. PMID:29186848
Analysis of DNA Sequences by an Optical Time-Integrating Correlator: Proof-of-Concept Experiments.
1992-05-01
DNA ANALYSIS STRATEGY 4 2.1 Representation of DNA Bases 4 2.2 DNA Analysis Strategy 6 3.0 CUSTOM GENERATORS FOR DNA SEQUENCES 10 3.1 Hardware Design 10...of the DNA bases where each base is represented by a 7-bits long pseudorandom sequence. 5 Figure 4: Coarse analysis of a DNA sequence. 7 Figure 5: Fine...a 20-bases long database. 32 xiii LIST OF TABLES PAGE Table 1: Short representations of the DNA bases where each base is represented by 7-bits long
NASA Astrophysics Data System (ADS)
Cao, Guangxi; Han, Yan; Cui, Weijun; Guo, Yu
2014-11-01
The cross-correlation between the China Securities Index 300 (CSI 300) index futures and the spot markets based on high-frequency data is discussed in this paper. We empirically analyze the cross-correlation by using the multifractal detrended cross-correlation analysis (MF-DCCA), and investigate further the characteristics of asymmetry, frequency difference, and transmission direction of the cross-correlation. The results indicate that the cross-correlation between the two markets is significant and multifractal. Meanwhile, weak asymmetries exist in the cross-correlation, and higher data frequency results in a lower multifractality degree of the cross-correlation. The causal relationship between the two markets is bidirectional, but the CSI 300 index futures market has greater impact on the spot market.
F. Mauro; Vicente J. Monleon; H. Temesgen; L.A. Ruiz
2017-01-01
Accounting for spatial correlation of LiDAR model errors can improve the precision of model-based estimators. To estimate spatial correlation, sample designs that provide close observations are needed, but their implementation might be prohibitively expensive. To quantify the gains obtained by accounting for the spatial correlation of model errors, we examined (
Modal energy analysis for mechanical systems excited by spatially correlated loads
NASA Astrophysics Data System (ADS)
Zhang, Peng; Fei, Qingguo; Li, Yanbin; Wu, Shaoqing; Chen, Qiang
2018-10-01
MODal ENergy Analysis (MODENA) is an energy-based method, which is proposed to deal with vibroacoustic problems. The performance of MODENA on the energy analysis of a mechanical system under spatially correlated excitation is investigated. A plate/cavity coupling system excited by a pressure field is studied in a numerical example, in which four kinds of pressure fields are involved, which include the purely random pressure field, the perfectly correlated pressure field, the incident diffuse field, and the turbulent boundary layer pressure fluctuation. The total energies of subsystems differ to reference solution only in the case of purely random pressure field and only for the non-excited subsystem (the cavity). A deeper analysis on the scale of modal energy is further conducted via another numerical example, in which two structural modes excited by correlated forces are coupled with one acoustic mode. A dimensionless correlation strength factor is proposed to determine the correlation strength between modal forces. Results show that the error on modal energy increases with the increment of the correlation strength factor. A criterion is proposed to establish a link between the error and the correlation strength factor. According to the criterion, the error is negligible when the correlation strength is weak, in this situation the correlation strength factor is less than a critical value.
Bayesian Correlation Analysis for Sequence Count Data
Lau, Nelson; Perkins, Theodore J.
2016-01-01
Evaluating the similarity of different measured variables is a fundamental task of statistics, and a key part of many bioinformatics algorithms. Here we propose a Bayesian scheme for estimating the correlation between different entities’ measurements based on high-throughput sequencing data. These entities could be different genes or miRNAs whose expression is measured by RNA-seq, different transcription factors or histone marks whose expression is measured by ChIP-seq, or even combinations of different types of entities. Our Bayesian formulation accounts for both measured signal levels and uncertainty in those levels, due to varying sequencing depth in different experiments and to varying absolute levels of individual entities, both of which affect the precision of the measurements. In comparison with a traditional Pearson correlation analysis, we show that our Bayesian correlation analysis retains high correlations when measurement confidence is high, but suppresses correlations when measurement confidence is low—especially for entities with low signal levels. In addition, we consider the influence of priors on the Bayesian correlation estimate. Perhaps surprisingly, we show that naive, uniform priors on entities’ signal levels can lead to highly biased correlation estimates, particularly when different experiments have widely varying sequencing depths. However, we propose two alternative priors that provably mitigate this problem. We also prove that, like traditional Pearson correlation, our Bayesian correlation calculation constitutes a kernel in the machine learning sense, and thus can be used as a similarity measure in any kernel-based machine learning algorithm. We demonstrate our approach on two RNA-seq datasets and one miRNA-seq dataset. PMID:27701449
NASA Astrophysics Data System (ADS)
Radhakrishnan, Srinivasan; Duvvuru, Arjun; Sultornsanee, Sivarit; Kamarthi, Sagar
2016-02-01
The cross correlation coefficient has been widely applied in financial time series analysis, in specific, for understanding chaotic behaviour in terms of stock price and index movements during crisis periods. To better understand time series correlation dynamics, the cross correlation matrices are represented as networks, in which a node stands for an individual time series and a link indicates cross correlation between a pair of nodes. These networks are converted into simpler trees using different schemes. In this context, Minimum Spanning Trees (MST) are the most favoured tree structures because of their ability to preserve all the nodes and thereby retain essential information imbued in the network. Although cross correlations underlying MSTs capture essential information, they do not faithfully capture dynamic behaviour embedded in the time series data of financial systems because cross correlation is a reliable measure only if the relationship between the time series is linear. To address the issue, this work investigates a new measure called phase synchronization (PS) for establishing correlations among different time series which relate to one another, linearly or nonlinearly. In this approach the strength of a link between a pair of time series (nodes) is determined by the level of phase synchronization between them. We compare the performance of phase synchronization based MST with cross correlation based MST along selected network measures across temporal frame that includes economically good and crisis periods. We observe agreement in the directionality of the results across these two methods. They show similar trends, upward or downward, when comparing selected network measures. Though both the methods give similar trends, the phase synchronization based MST is a more reliable representation of the dynamic behaviour of financial systems than the cross correlation based MST because of the former's ability to quantify nonlinear relationships among time series or relations among phase shifted time series.
NASA Astrophysics Data System (ADS)
Xie, Chi; Zhou, Yingying; Wang, Gangjin; Yan, Xinguo
We use the multifractal detrended cross-correlation analysis (MF-DCCA) method to explore the multifractal behavior of the cross-correlation between exchange rates of onshore RMB (CNY) and offshore RMB (CNH) against US dollar (USD). The empirical data are daily prices of CNY/USD and CNH/USD from May 1, 2012 to February 29, 2016. The results demonstrate that: (i) the cross-correlation between CNY/USD and CNH/USD is persistent and its fluctuation is smaller when the order of fluctuation function is negative than that when the order is positive; (ii) the multifractal behavior of the cross-correlation between CNY/USD and CNH/USD is significant during the sample period; (iii) the dynamic Hurst exponents obtained by the rolling windows analysis show that the cross-correlation is stable when the global economic situation is good and volatile in bad situation; and (iv) the non-normal distribution of original data has a greater effect on the multifractality of the cross-correlation between CNY/USD and CNH/USD than the temporary correlation.
Tan, Peng; Zhang, Hai-Zhu; Zhang, Ding-Kun; Wu, Shan-Na; Niu, Ming; Wang, Jia-Bo; Xiao, Xiao-He
2017-07-01
This study attempts to evaluate the quality of Chinese formula granules by combined use of multi-component simultaneous quantitative analysis and bioassay. The rhubarb dispensing granules were used as the model drug for demonstrative study. The ultra-high performance liquid chromatography (UPLC) method was adopted for simultaneously quantitative determination of the 10 anthraquinone derivatives (such as aloe emodin-8-O-β-D-glucoside) in rhubarb dispensing granules; purgative biopotency of different batches of rhubarb dispensing granules was determined based on compound diphenoxylate tablets-induced mouse constipation model; blood activating biopotency of different batches of rhubarb dispensing granules was determined based on in vitro rat antiplatelet aggregation model; SPSS 22.0 statistical software was used for correlation analysis between 10 anthraquinone derivatives and purgative biopotency, blood activating biopotency. The results of multi-components simultaneous quantitative analysisshowed that there was a great difference in chemical characterizationand certain differences inpurgative biopotency and blood activating biopotency among 10 batches of rhubarb dispensing granules. The correlation analysis showed that the intensity of purgative biopotency was significantly correlated with the content of conjugated anthraquinone glycosides (P<0.01), and the intensity of blood activating biopotency was significantly correlated with the content of free anthraquinone (P<0.01). In summary, the combined use of multi-component simultaneous quantitative analysis and bioassay can achieve objective quantification and more comprehensive reflection on overall quality difference among different batches of rhubarb dispensing granules. Copyright© by the Chinese Pharmaceutical Association.
Analysis of DNA Sequences by An Optical Time-Integrating Correlator: Proof-Of-Concept Experiments.
1992-05-01
TABLES xv LIST OF ABBREVIATIONS xvii 1.0 INTRODUCTION 1 2.0 DNA ANALYSIS STRATEGY 4 2.1 Representation of DNA Bases 4 2.2 DNA Analysis Strategy 6 3.0...Zehnder architecture. 3 Figure 3: Short representations of the DNA bases where each base is represented by a 7-bits long pseudorandom sequence. 5... DNA bases where each base is represented by 7-bits long pseudorandom sequences. 4 Table 2: Long representations of the DNA bases with 255-bits maximum
Study on power grid characteristics in summer based on Linear regression analysis
NASA Astrophysics Data System (ADS)
Tang, Jin-hui; Liu, You-fei; Liu, Juan; Liu, Qiang; Liu, Zhuan; Xu, Xi
2018-05-01
The correlation analysis of power load and temperature is the precondition and foundation for accurate load prediction, and a great deal of research has been made. This paper constructed the linear correlation model between temperature and power load, then the correlation of fault maintenance work orders with the power load is researched. Data details of Jiangxi province in 2017 summer such as temperature, power load, fault maintenance work orders were adopted in this paper to develop data analysis and mining. Linear regression models established in this paper will promote electricity load growth forecast, fault repair work order review, distribution network operation weakness analysis and other work to further deepen the refinement.
Digital Correlation Microwave Polarimetry: Analysis and Demonstration
NASA Technical Reports Server (NTRS)
Piepmeier, J. R.; Gasiewski, A. J.; Krebs, Carolyn A. (Technical Monitor)
2000-01-01
The design, analysis, and demonstration of a digital-correlation microwave polarimeter for use in earth remote sensing is presented. We begin with an analysis of three-level digital correlation and develop the correlator transfer function and radiometric sensitivity. A fifth-order polynomial regression is derived for inverting the digital correlation coefficient into the analog statistic. In addition, the effects of quantizer threshold asymmetry and hysteresis are discussed. A two-look unpolarized calibration scheme is developed for identifying correlation offsets. The developed theory and calibration method are verified using a 10.7 GHz and a 37.0 GHz polarimeter. The polarimeters are based upon 1-GS/s three-level digital correlators and measure the first three Stokes parameters. Through experiment, the radiometric sensitivity is shown to approach the theoretical as derived earlier in the paper and the two-look unpolarized calibration method is successfully compared with results using a polarimetric scheme. Finally, sample data from an aircraft experiment demonstrates that the polarimeter is highly-useful for ocean wind-vector measurement.
NASA Technical Reports Server (NTRS)
Hague, D. S.; Woodbury, N. W.
1975-01-01
The Mars system is a tool for rapid prediction of aircraft or engine characteristics based on correlation-regression analysis of past designs stored in the data bases. An example of output obtained from the MARS system, which involves derivation of an expression for gross weight of subsonic transport aircraft in terms of nine independent variables is given. The need is illustrated for careful selection of correlation variables and for continual review of the resulting estimation equations. For Vol. 1, see N76-10089.
Novel Image Encryption Scheme Based on Chebyshev Polynomial and Duffing Map
2014-01-01
We present a novel image encryption algorithm using Chebyshev polynomial based on permutation and substitution and Duffing map based on substitution. Comprehensive security analysis has been performed on the designed scheme using key space analysis, visual testing, histogram analysis, information entropy calculation, correlation coefficient analysis, differential analysis, key sensitivity test, and speed test. The study demonstrates that the proposed image encryption algorithm shows advantages of more than 10113 key space and desirable level of security based on the good statistical results and theoretical arguments. PMID:25143970
NASA Astrophysics Data System (ADS)
Feng, Jinchao; Lansford, Joshua; Mironenko, Alexander; Pourkargar, Davood Babaei; Vlachos, Dionisios G.; Katsoulakis, Markos A.
2018-03-01
We propose non-parametric methods for both local and global sensitivity analysis of chemical reaction models with correlated parameter dependencies. The developed mathematical and statistical tools are applied to a benchmark Langmuir competitive adsorption model on a close packed platinum surface, whose parameters, estimated from quantum-scale computations, are correlated and are limited in size (small data). The proposed mathematical methodology employs gradient-based methods to compute sensitivity indices. We observe that ranking influential parameters depends critically on whether or not correlations between parameters are taken into account. The impact of uncertainty in the correlation and the necessity of the proposed non-parametric perspective are demonstrated.
Intracellular applications of fluorescence correlation spectroscopy: prospects for neuroscience.
Kim, Sally A; Schwille, Petra
2003-10-01
Based on time-averaging fluctuation analysis of small fluorescent molecular ensembles in equilibrium, fluorescence correlation spectroscopy has recently been applied to investigate processes in the intracellular milieu. The exquisite sensitivity of fluorescence correlation spectroscopy provides access to a multitude of measurement parameters (rates of diffusion, local concentration, states of aggregation and molecular interactions) in real time with fast temporal and high spatial resolution. The introduction of dual-color cross-correlation, imaging, two-photon excitation, and coincidence analysis coupled with fluorescence correlation spectroscopy has expanded the utility of the technique to encompass a wide range of promising applications in living cells that may provide unprecedented insight into understanding the molecular mechanisms of intracellular neurobiological processes.
Statistical analysis of co-occurrence patterns in microbial presence-absence datasets.
Mainali, Kumar P; Bewick, Sharon; Thielen, Peter; Mehoke, Thomas; Breitwieser, Florian P; Paudel, Shishir; Adhikari, Arjun; Wolfe, Joshua; Slud, Eric V; Karig, David; Fagan, William F
2017-01-01
Drawing on a long history in macroecology, correlation analysis of microbiome datasets is becoming a common practice for identifying relationships or shared ecological niches among bacterial taxa. However, many of the statistical issues that plague such analyses in macroscale communities remain unresolved for microbial communities. Here, we discuss problems in the analysis of microbial species correlations based on presence-absence data. We focus on presence-absence data because this information is more readily obtainable from sequencing studies, especially for whole-genome sequencing, where abundance estimation is still in its infancy. First, we show how Pearson's correlation coefficient (r) and Jaccard's index (J)-two of the most common metrics for correlation analysis of presence-absence data-can contradict each other when applied to a typical microbiome dataset. In our dataset, for example, 14% of species-pairs predicted to be significantly correlated by r were not predicted to be significantly correlated using J, while 37.4% of species-pairs predicted to be significantly correlated by J were not predicted to be significantly correlated using r. Mismatch was particularly common among species-pairs with at least one rare species (<10% prevalence), explaining why r and J might differ more strongly in microbiome datasets, where there are large numbers of rare taxa. Indeed 74% of all species-pairs in our study had at least one rare species. Next, we show how Pearson's correlation coefficient can result in artificial inflation of positive taxon relationships and how this is a particular problem for microbiome studies. We then illustrate how Jaccard's index of similarity (J) can yield improvements over Pearson's correlation coefficient. However, the standard null model for Jaccard's index is flawed, and thus introduces its own set of spurious conclusions. We thus identify a better null model based on a hypergeometric distribution, which appropriately corrects for species prevalence. This model is available from recent statistics literature, and can be used for evaluating the significance of any value of an empirically observed Jaccard's index. The resulting simple, yet effective method for handling correlation analysis of microbial presence-absence datasets provides a robust means of testing and finding relationships and/or shared environmental responses among microbial taxa.
An analysis of high school students' perceptions and academic performance in laboratory experiences
NASA Astrophysics Data System (ADS)
Mirchin, Robert Douglas
This research study is an investigation of student-laboratory (i.e., lab) learning based on students' perceptions of experiences using questionnaire data and evidence of their science-laboratory performance based on paper-and-pencil assessments using Maryland-mandated criteria, Montgomery County Public Schools (MCPS) criteria, and published laboratory questions. A 20-item questionnaire consisting of 18 Likert-scale items and 2 open-ended items that addressed what students liked most and least about lab was administered to students before labs were observed. A pre-test and post-test assessing laboratory achievement were administered before and after the laboratory experiences. The three labs observed were: soda distillation, stoichiometry, and separation of a mixture. Five significant results or correlations were found. For soda distillation, there were two positive correlations. Student preference for analyzing data was positively correlated with achievement on the data analysis dimension of the lab rubric. A student preference for using numbers and graphs to analyze data was positively correlated with achievement on the analysis dimension of the lab rubric. For the separating a mixture lab data the following pairs of correlations were significant. Student preference for doing chemistry labs where numbers and graphs were used to analyze data had a positive correlation with writing a correctly worded hypothesis. Student responses that lab experiences help them learn science positively correlated with achievement on the data dimension of the lab rubric. The only negative correlation found related to the first result where students' preference for computers was inversely correlated to their performance on analyzing data on their lab report. Other findings included the following: students like actual experimental work most and the write-up and analysis of a lab the least. It is recommended that lab science instruction be inquiry-based, hands-on, and that students be tested for lab content acquisition. The final conclusion of the study is that students expressed a preference for working in groups and working with materials and equipment as opposed to individual, non-group work and analyzing data.
Investigation of priorities in water quality management based on correlations and variations.
Boyacıoğlu, Hülya; Gündogdu, Vildan; Boyacıoğlu, Hayal
2013-04-15
The development of water quality assessment strategies investigating spatial and temporal changes caused by natural and anthropogenic phenomena is an important tool in management practices. This paper used cluster analysis, water quality index method, sensitivity analysis and canonical correlation analysis to investigate priorities in pollution control activities. Data sets representing 22 surface water quality parameters were subject to analysis. Results revealed that organic pollution was serious threat for overall water quality in the region. Besides, oil and grease, lead and mercury were the critical variables violating the standard. In contrast to inorganic variables, organic and physical-inorganic chemical parameters were influenced by variations in physical conditions (discharge, temperature). This study showed that information produced based on the variations and correlations in water quality data sets can be helpful to investigate priorities in water management activities. Moreover statistical techniques and index methods are useful tools in data - information transformation process. Copyright © 2013 Elsevier Ltd. All rights reserved.
Segmentation of the Speaker's Face Region with Audiovisual Correlation
NASA Astrophysics Data System (ADS)
Liu, Yuyu; Sato, Yoichi
The ability to find the speaker's face region in a video is useful for various applications. In this work, we develop a novel technique to find this region within different time windows, which is robust against the changes of view, scale, and background. The main thrust of our technique is to integrate audiovisual correlation analysis into a video segmentation framework. We analyze the audiovisual correlation locally by computing quadratic mutual information between our audiovisual features. The computation of quadratic mutual information is based on the probability density functions estimated by kernel density estimation with adaptive kernel bandwidth. The results of this audiovisual correlation analysis are incorporated into graph cut-based video segmentation to resolve a globally optimum extraction of the speaker's face region. The setting of any heuristic threshold in this segmentation is avoided by learning the correlation distributions of speaker and background by expectation maximization. Experimental results demonstrate that our method can detect the speaker's face region accurately and robustly for different views, scales, and backgrounds.
Characterizing multivariate decoding models based on correlated EEG spectral features
McFarland, Dennis J.
2013-01-01
Objective Multivariate decoding methods are popular techniques for analysis of neurophysiological data. The present study explored potential interpretative problems with these techniques when predictors are correlated. Methods Data from sensorimotor rhythm-based cursor control experiments was analyzed offline with linear univariate and multivariate models. Features were derived from autoregressive (AR) spectral analysis of varying model order which produced predictors that varied in their degree of correlation (i.e., multicollinearity). Results The use of multivariate regression models resulted in much better prediction of target position as compared to univariate regression models. However, with lower order AR features interpretation of the spectral patterns of the weights was difficult. This is likely to be due to the high degree of multicollinearity present with lower order AR features. Conclusions Care should be exercised when interpreting the pattern of weights of multivariate models with correlated predictors. Comparison with univariate statistics is advisable. Significance While multivariate decoding algorithms are very useful for prediction their utility for interpretation may be limited when predictors are correlated. PMID:23466267
SPAN: Astronomy and astrophysics
NASA Technical Reports Server (NTRS)
Thomas, Valerie L.; Green, James L.; Warren, Wayne H., Jr.; Lopez-Swafford, Brian
1987-01-01
The Space Physics Analysis Network (SPAN) is a multi-mission, correlative data comparison network which links science research and data analysis computers in the U.S., Canada, and Europe. The purpose of this document is to provide Astronomy and Astrophysics scientists, currently reachable on SPAN, with basic information and contacts for access to correlative data bases, star catalogs, and other astrophysic facilities accessible over SPAN.
ERIC Educational Resources Information Center
Gao, Ying; Du, Wanyi
2013-01-01
This paper traces 9 non-English major EFL students and collects their oral productions in 4 successive oral exams in 2 years. The canonical correlation analysis approach of SPSS is adopted to study the disfluencies developmental traits under the influence of language acquisition development. We find that as language acquisition develops, the total…
20 Meter Solar Sail Analysis and Correlation
NASA Technical Reports Server (NTRS)
Taleghani, B.; Lively, P.; Banik, J.; Murphy, D.; Trautt, T.
2005-01-01
This presentation discusses studies conducted to determine the element type and size that best represents a 20-meter solar sail under ground-test load conditions, the performance of test/Analysis correlation by using Static Shape Optimization Method for Q4 sail, and system dynamic. TRIA3 elements better represent wrinkle patterns than do QUAD3 elements Baseline, ten-inch elements are small enough to accurately represent sail shape, and baseline TRIA3 mesh requires a reasonable computation time of 8 min. 21 sec. In the test/analysis correlation by using Static shape optimization method for Q4 sail, ten parameters were chosen and varied during optimization. 300 sail models were created with random parameters. A response surfaces for each targets which were created based on the varied parameters. Parameters were optimized based on response surface. Deflection shape comparison for 0 and 22.5 degrees yielded a 4.3% and 2.1% error respectively. For the system dynamic study testing was done on the booms without the sails attached. The nominal boom properties produced a good correlation to test data the frequencies were within 10%. Boom dominated analysis frequencies and modes compared well with the test results.
NASA Technical Reports Server (NTRS)
Davis, S. J.; Egolf, T. A.
1980-01-01
Acoustic characteristics predicted using a recently developed computer code were correlated with measured acoustic data for two helicopter rotors. The analysis, is based on a solution of the Ffowcs-Williams-Hawkings (FW-H) equation and includes terms accounting for both the thickness and loading components of the rotational noise. Computations are carried out in the time domain and assume free field conditions. Results of the correlation show that the Farrassat/Nystrom analysis, when using predicted airload data as input, yields fair but encouraging correlation for the first 6 harmonics of blade passage. It also suggests that although the analysis represents a valuable first step towards developing a truly comprehensive helicopter rotor noise prediction capability, further work remains to be done identifying and incorporating additional noise mechanisms into the code.
Bibliographic Analysis of Nature Based on Twitter and Facebook Altmetrics Data
Xia, Feng; Su, Xiaoyan; Wang, Wei; Zhang, Chenxin; Ning, Zhaolong; Lee, Ivan
2016-01-01
This paper presents a bibliographic analysis of Nature articles based on altmetrics. We assess the concern degree of social users on the Nature articles through the coverage analysis of Twitter and Facebook by publication year and discipline. The social media impact of a Nature article is examined by evaluating the mention rates on Twitter and on Facebook. Moreover, the correlation between tweets and citations is analyzed by publication year, discipline and Twitter user type to explore factors affecting the correlation. The results show that Twitter users have a higher concern degree on Nature articles than Facebook users, and Nature articles have higher and faster-growing impact on Twitter than on Facebook. The results also show that tweets and citations are somewhat related, and they mostly measure different types of impact. In addition, the correlation between tweets and citations highly depends on publication year, discipline and Twitter user type. PMID:27906981
Bibliographic Analysis of Nature Based on Twitter and Facebook Altmetrics Data.
Xia, Feng; Su, Xiaoyan; Wang, Wei; Zhang, Chenxin; Ning, Zhaolong; Lee, Ivan
2016-01-01
This paper presents a bibliographic analysis of Nature articles based on altmetrics. We assess the concern degree of social users on the Nature articles through the coverage analysis of Twitter and Facebook by publication year and discipline. The social media impact of a Nature article is examined by evaluating the mention rates on Twitter and on Facebook. Moreover, the correlation between tweets and citations is analyzed by publication year, discipline and Twitter user type to explore factors affecting the correlation. The results show that Twitter users have a higher concern degree on Nature articles than Facebook users, and Nature articles have higher and faster-growing impact on Twitter than on Facebook. The results also show that tweets and citations are somewhat related, and they mostly measure different types of impact. In addition, the correlation between tweets and citations highly depends on publication year, discipline and Twitter user type.
An uncertainty analysis of the flood-stage upstream from a bridge.
Sowiński, M
2006-01-01
The paper begins with the formulation of the problem in the form of a general performance function. Next the Latin hypercube sampling (LHS) technique--a modified version of the Monte Carlo method is briefly described. The essential uncertainty analysis of the flood-stage upstream from a bridge starts with a description of the hydraulic model. This model concept is based on the HEC-RAS model developed for subcritical flow under a bridge without piers in which the energy equation is applied. The next section contains the characteristic of the basic variables including a specification of their statistics (means and variances). Next the problem of correlated variables is discussed and assumptions concerning correlation among basic variables are formulated. The analysis of results is based on LHS ranking lists obtained from the computer package UNCSAM. Results fot two examples are given: one for independent and the other for correlated variables.
Automated vessel segmentation using cross-correlation and pooled covariance matrix analysis.
Du, Jiang; Karimi, Afshin; Wu, Yijing; Korosec, Frank R; Grist, Thomas M; Mistretta, Charles A
2011-04-01
Time-resolved contrast-enhanced magnetic resonance angiography (CE-MRA) provides contrast dynamics in the vasculature and allows vessel segmentation based on temporal correlation analysis. Here we present an automated vessel segmentation algorithm including automated generation of regions of interest (ROIs), cross-correlation and pooled sample covariance matrix analysis. The dynamic images are divided into multiple equal-sized regions. In each region, ROIs for artery, vein and background are generated using an iterative thresholding algorithm based on the contrast arrival time map and contrast enhancement map. Region-specific multi-feature cross-correlation analysis and pooled covariance matrix analysis are performed to calculate the Mahalanobis distances (MDs), which are used to automatically separate arteries from veins. This segmentation algorithm is applied to a dual-phase dynamic imaging acquisition scheme where low-resolution time-resolved images are acquired during the dynamic phase followed by high-frequency data acquisition at the steady-state phase. The segmented low-resolution arterial and venous images are then combined with the high-frequency data in k-space and inverse Fourier transformed to form the final segmented arterial and venous images. Results from volunteer and patient studies demonstrate the advantages of this automated vessel segmentation and dual phase data acquisition technique. Copyright © 2011 Elsevier Inc. All rights reserved.
A unifying framework for marginalized random intercept models of correlated binary outcomes
Swihart, Bruce J.; Caffo, Brian S.; Crainiceanu, Ciprian M.
2013-01-01
We demonstrate that many current approaches for marginal modeling of correlated binary outcomes produce likelihoods that are equivalent to the copula-based models herein. These general copula models of underlying latent threshold random variables yield likelihood-based models for marginal fixed effects estimation and interpretation in the analysis of correlated binary data with exchangeable correlation structures. Moreover, we propose a nomenclature and set of model relationships that substantially elucidates the complex area of marginalized random intercept models for binary data. A diverse collection of didactic mathematical and numerical examples are given to illustrate concepts. PMID:25342871
The influence of weather on migraine – are migraine attacks predictable?
Hoffmann, Jan; Schirra, Tonio; Lo, Hendra; Neeb, Lars; Reuter, Uwe; Martus, Peter
2015-01-01
Objective The study aimed at elucidating a potential correlation between specific meteorological variables and the prevalence and intensity of migraine attacks as well as exploring a potential individual predictability of a migraine attack based on meteorological variables and their changes. Methods Attack prevalence and intensity of 100 migraineurs were correlated with atmospheric pressure, relative air humidity, and ambient temperature in 4-h intervals over 12 consecutive months. For each correlation, meteorological parameters at the time of the migraine attack as well as their variation within the preceding 24 h were analyzed. For migraineurs showing a positive correlation, logistic regression analysis was used to assess the predictability of a migraine attack based on meteorological information. Results In a subgroup of migraineurs, a significant weather sensitivity could be observed. In contrast, pooled analysis of all patients did not reveal a significant association. An individual prediction of a migraine attack based on meteorological data was not possible, mainly as a result of the small prevalence of attacks. Interpretation The results suggest that only a subgroup of migraineurs is sensitive to specific weather conditions. Our findings may provide an explanation as to why previous studies, which commonly rely on a pooled analysis, show inconclusive results. The lack of individual attack predictability indicates that the use of preventive measures based on meteorological conditions is not feasible. PMID:25642431
Carbonell, Felix; Bellec, Pierre; Shmuel, Amir
2011-01-01
The influence of the global average signal (GAS) on functional-magnetic resonance imaging (fMRI)-based resting-state functional connectivity is a matter of ongoing debate. The global average fluctuations increase the correlation between functional systems beyond the correlation that reflects their specific functional connectivity. Hence, removal of the GAS is a common practice for facilitating the observation of network-specific functional connectivity. This strategy relies on the implicit assumption of a linear-additive model according to which global fluctuations, irrespective of their origin, and network-specific fluctuations are super-positioned. However, removal of the GAS introduces spurious negative correlations between functional systems, bringing into question the validity of previous findings of negative correlations between fluctuations in the default-mode and the task-positive networks. Here we present an alternative method for estimating global fluctuations, immune to the complications associated with the GAS. Principal components analysis was applied to resting-state fMRI time-series. A global-signal effect estimator was defined as the principal component (PC) that correlated best with the GAS. The mean correlation coefficient between our proposed PC-based global effect estimator and the GAS was 0.97±0.05, demonstrating that our estimator successfully approximated the GAS. In 66 out of 68 runs, the PC that showed the highest correlation with the GAS was the first PC. Since PCs are orthogonal, our method provides an estimator of the global fluctuations, which is uncorrelated to the remaining, network-specific fluctuations. Moreover, unlike the regression of the GAS, the regression of the PC-based global effect estimator does not introduce spurious anti-correlations beyond the decrease in seed-based correlation values allowed by the assumed additive model. After regressing this PC-based estimator out of the original time-series, we observed robust anti-correlations between resting-state fluctuations in the default-mode and the task-positive networks. We conclude that resting-state global fluctuations and network-specific fluctuations are uncorrelated, supporting a Resting-State Linear-Additive Model. In addition, we conclude that the network-specific resting-state fluctuations of the default-mode and task-positive networks show artifact-free anti-correlations.
Liang, Xia; Wang, Jinhui; Yan, Chaogan; Shu, Ni; Xu, Ke; Gong, Gaolang; He, Yong
2012-01-01
Graph theoretical analysis of brain networks based on resting-state functional MRI (R-fMRI) has attracted a great deal of attention in recent years. These analyses often involve the selection of correlation metrics and specific preprocessing steps. However, the influence of these factors on the topological properties of functional brain networks has not been systematically examined. Here, we investigated the influences of correlation metric choice (Pearson's correlation versus partial correlation), global signal presence (regressed or not) and frequency band selection [slow-5 (0.01–0.027 Hz) versus slow-4 (0.027–0.073 Hz)] on the topological properties of both binary and weighted brain networks derived from them, and we employed test-retest (TRT) analyses for further guidance on how to choose the “best” network modeling strategy from the reliability perspective. Our results show significant differences in global network metrics associated with both correlation metrics and global signals. Analysis of nodal degree revealed differing hub distributions for brain networks derived from Pearson's correlation versus partial correlation. TRT analysis revealed that the reliability of both global and local topological properties are modulated by correlation metrics and the global signal, with the highest reliability observed for Pearson's-correlation-based brain networks without global signal removal (WOGR-PEAR). The nodal reliability exhibited a spatially heterogeneous distribution wherein regions in association and limbic/paralimbic cortices showed moderate TRT reliability in Pearson's-correlation-based brain networks. Moreover, we found that there were significant frequency-related differences in topological properties of WOGR-PEAR networks, and brain networks derived in the 0.027–0.073 Hz band exhibited greater reliability than those in the 0.01–0.027 Hz band. Taken together, our results provide direct evidence regarding the influences of correlation metrics and specific preprocessing choices on both the global and nodal topological properties of functional brain networks. This study also has important implications for how to choose reliable analytical schemes in brain network studies. PMID:22412922
NASA Astrophysics Data System (ADS)
Pacheco-Vega, Arturo
2016-09-01
In this work a new set of correlation equations is developed and introduced to accurately describe the thermal performance of compact heat exchangers with possible condensation. The feasible operating conditions for the thermal system correspond to dry- surface, dropwise condensation, and film condensation. Using a prescribed form for each condition, a global regression analysis for the best-fit correlation to experimental data is carried out with a simulated annealing optimization technique. The experimental data were taken from the literature and algorithmically classified into three groups -related to the possible operating conditions- with a previously-introduced Gaussian-mixture-based methodology. Prior to their use in the analysis, the correct data classification was assessed and confirmed via artificial neural networks. Predictions from the correlations obtained for the different conditions are within the uncertainty of the experiments and substantially more accurate than those commonly used.
The Identification and Tracking of Uterine Contractions Using Template Based Cross-Correlation.
McDonald, Sarah C; Brooker, Graham; Phipps, Hala; Hyett, Jon
2017-09-01
The purpose of this paper is to outline a novel method of using template based cross-correlation to identify and track uterine contractions during labour. A purpose built six-channel Electromyography (EMG) device was used to collect data from consenting women during labour and birth. A range of templates were constructed for the purpose of identifying and tracking uterine activity when cross-correlated with the EMG signal. Peak finding techniques were applied on the cross-correlated result to simplify and automate the identification and tracking of contractions. The EMG data showed a unique pattern when a woman was contracting with key features of the contraction signal remaining consistent and identifiable across subjects. Contraction profiles across subjects were automatically identified using template based cross-correlation. Synthetic templates from a rectangular function with a duration of between 5 and 10 s performed best at identifying and tracking uterine activity across subjects. The successful application of this technique provides opportunity for both simple and accurate real-time analysis of contraction data while enabling investigations into the application of techniques such as machine learning which could enable automated learning from contraction data as part of real-time monitoring and post analysis.
Relationships between CSID and vocal fold vibratory function
NASA Astrophysics Data System (ADS)
Cooke, Melissa L.
High correlations have been reported between the acoustic-based Cepstral/Spectral Index of Dysphonia (CSID) and perceptual judgments of dysphonia. This study explores whether CSID provides additional insight and explains more of the variance in HSV-based properties of vocal fold vibratory function than has been reported for other acoustic measures. Using the Analysis of Dysphonia in Speech and Voice (ADSV) program, CSID and its component variables were correlated with HSV-based measures of glottal cycle aperiodicity and glottal area for 20 subjects who underwent phonomicrosurgery. Results indicate CSID is only marginally correlated with glottal cycle aperiodicity in pre- and post-surgical conditions and does not correlate as highly as the cepstral peak prominence alone. Additionally, results reveal higher correlations when examining within-subject change from pre-surgical to post-surgical assessments rather than correlating measures across subjects. Future directions are discussed that aim at improving our understanding of the relationships between acoustic parameters and underlying phonatory function.
Shim, Hyungsub; Hurley, Robert S; Rogalski, Emily; Mesulam, M-Marsel
2012-07-01
This study evaluates spelling errors in the three subtypes of primary progressive aphasia (PPA): agrammatic (PPA-G), logopenic (PPA-L), and semantic (PPA-S). Forty-one PPA patients and 36 age-matched healthy controls were administered a test of spelling. The total number of errors and types of errors in spelling to dictation of regular words, exception words and nonwords, were recorded. Error types were classified based on phonetic plausibility. In the first analysis, scores were evaluated by clinical diagnosis. Errors in spelling exception words and phonetically plausible errors were seen in PPA-S. Conversely, PPA-G was associated with errors in nonword spelling and phonetically implausible errors. In the next analysis, spelling scores were correlated to other neuropsychological language test scores. Significant correlations were found between exception word spelling and measures of naming and single word comprehension. Nonword spelling correlated with tests of grammar and repetition. Global language measures did not correlate significantly with spelling scores, however. Cortical thickness analysis based on MRI showed that atrophy in several language regions of interest were correlated with spelling errors. Atrophy in the left supramarginal gyrus and inferior frontal gyrus (IFG) pars orbitalis correlated with errors in nonword spelling, while thinning in the left temporal pole and fusiform gyrus correlated with errors in exception word spelling. Additionally, phonetically implausible errors in regular word spelling correlated with thinning in the left IFG pars triangularis and pars opercularis. Together, these findings suggest two independent systems for spelling to dictation, one phonetic (phoneme to grapheme conversion), and one lexical (whole word retrieval). Copyright © 2012 Elsevier Ltd. All rights reserved.
Urban area thermal monitoring: Liepaja case study using satellite and aerial thermal data
NASA Astrophysics Data System (ADS)
Gulbe, Linda; Caune, Vairis; Korats, Gundars
2017-12-01
The aim of this study is to explore large (60 m/pixel) and small scale (individual building level) temperature distribution patterns from thermal remote sensing data and to conclude what kind of information could be extracted from thermal remote sensing on regular basis. Landsat program provides frequent large scale thermal images useful for analysis of city temperature patterns. During the study correlation between temperature patterns and vegetation content based on NDVI and building coverage based on OpenStreetMap data was studied. Landsat based temperature patterns were independent from the season, negatively correlated with vegetation content and positively correlated with building coverage. Small scale analysis included spatial and raster descriptor analysis for polygons corresponding to roofs of individual buildings for evaluating insulation of roofs. Remote sensing and spatial descriptors are poorly related to heat consumption data, however, thermal aerial data median and entropy can help to identify poorly insulated roofs. Automated quantitative roof analysis has high potential for acquiring city wide information about roof insulation, but quality is limited by reference data quality and information on building types, and roof materials would be crucial for further studies.
Spectral and correlation analysis with applications to middle-atmosphere radars
NASA Technical Reports Server (NTRS)
Rastogi, Prabhat K.
1989-01-01
The correlation and spectral analysis methods for uniformly sampled stationary random signals, estimation of their spectral moments, and problems arising due to nonstationary are reviewed. Some of these methods are already in routine use in atmospheric radar experiments. Other methods based on the maximum entropy principle and time series models have been used in analyzing data, but are just beginning to receive attention in the analysis of radar signals. These methods are also briefly discussed.
Warsi, Mohammed A; Molloy, William; Noseworthy, Michael D
2012-10-01
To correlate temporal fractal structure of resting state blood oxygen level dependent (rsBOLD) functional magnetic resonance imaging (fMRI) with in vivo proton magnetic resonance spectroscopy ((1)H-MRS), in Alzheimer's disease (AD) and healthy age-matched normal controls (NC). High temporal resolution (4 Hz) rsBOLD signal and single voxel (left putamen) magnetic resonance spectroscopy data was acquired in 33 AD patients and 13 NC. The rsBOLD data was analyzed using two types of fractal dimension (FD) analysis based on relative dispersion and frequency power spectrum. Comparisons in FD were performed between AD and NC, and FD measures were correlated with (1)H-MRS findings. Temporal fractal analysis of rsBOLD, was able to differentiate AD from NC subjects (P = 0.03). Low FD correlated with markers of AD severity including decreased concentrations of N-acetyl aspartate (R = 0.44, P = 0.015) and increased myoinositol (mI) (R = -0.45, P = 0.012). Based on these results we suggest fractal analysis of rsBOLD could provide an early marker of AD.
Cavitation in liquid cryogens. 2: Hydrofoil
NASA Technical Reports Server (NTRS)
Hord, J.
1973-01-01
Boundary layer principles, along with two-phase concepts, are used to improve existing correlative theory for developed cavity data. Details concerning cavity instrumentation, data analysis, correlative techniques, and experimental and theoretical aspects of a cavitating hydrofoil are given. Both desinent and thermodynamic data, using liquid hydrogen and liquid nitrogen, are reported. The thermodynamic data indicated that stable thermodynamic equilibrium exists throughout the vaporous cryogen cavities. The improved correlative formulas were used to evaluate these data. A new correlating parameter based on consideration of mass limiting two-phase flow flux across the cavity interface, is proposed. This correlating parameter appears attractive for future correlative and predictive applications. Agreement between theory and experiment is discussed, and directions for future analysis are suggested. The front half of the cavities, developed on the hydrofoil, may be considered as parabolically shaped.
ERIC Educational Resources Information Center
Renshaw, Tyler L.; Olinger Steeves, Rachel M.
2016-01-01
The development of gratitude in youth has received increasing attention during the past several years, and gratitude-based interventions have often been recommended for use in schools. Yet, the empirical status of the correlates of gratitude and the effects of gratitude-based interventions on youths' outcomes remains unclear. The present study…
Updating signal typing in voice: addition of type 4 signals.
Sprecher, Alicia; Olszewski, Aleksandra; Jiang, Jack J; Zhang, Yu
2010-06-01
The addition of a fourth type of voice to Titze's voice classification scheme is proposed. This fourth voice type is characterized by primarily stochastic noise behavior and is therefore unsuitable for both perturbation and correlation dimension analysis. Forty voice samples were classified into the proposed four types using narrowband spectrograms. Acoustic, perceptual, and correlation dimension analyses were completed for all voice samples. Perturbation measures tended to increase with voice type. Based on reliability cutoffs, the type 1 and type 2 voices were considered suitable for perturbation analysis. Measures of unreliability were higher for type 3 and 4 voices. Correlation dimension analyses increased significantly with signal type as indicated by a one-way analysis of variance. Notably, correlation dimension analysis could not quantify the type 4 voices. The proposed fourth voice type represents a subset of voices dominated by noise behavior. Current measures capable of evaluating type 4 voices provide only qualitative data (spectrograms, perceptual analysis, and an infinite correlation dimension). Type 4 voices are highly complex and the development of objective measures capable of analyzing these voices remains a topic of future investigation.
Brydges, Ryan; Hatala, Rose; Zendejas, Benjamin; Erwin, Patricia J; Cook, David A
2015-02-01
To examine the evidence supporting the use of simulation-based assessments as surrogates for patient-related outcomes assessed in the workplace. The authors systematically searched MEDLINE, EMBASE, Scopus, and key journals through February 26, 2013. They included original studies that assessed health professionals and trainees using simulation and then linked those scores with patient-related outcomes assessed in the workplace. Two reviewers independently extracted information on participants, tasks, validity evidence, study quality, patient-related and simulation-based outcomes, and magnitude of correlation. All correlations were pooled using random-effects meta-analysis. Of 11,628 potentially relevant articles, the 33 included studies enrolled 1,203 participants, including postgraduate physicians (n = 24 studies), practicing physicians (n = 8), medical students (n = 6), dentists (n = 2), and nurses (n = 1). The pooled correlation for provider behaviors was 0.51 (95% confidence interval [CI], 0.38 to 0.62; n = 27 studies); for time behaviors, 0.44 (95% CI, 0.15 to 0.66; n = 7); and for patient outcomes, 0.24 (95% CI, -0.02 to 0.47; n = 5). Most reported validity evidence was favorable, though studies often included only correlational evidence. Validity evidence of internal structure (n = 13 studies), content (n = 12), response process (n = 2), and consequences (n = 1) were reported less often. Three tools showed large pooled correlations and favorable (albeit incomplete) validity evidence. Simulation-based assessments often correlate positively with patient-related outcomes. Although these surrogates are imperfect, tools with established validity evidence may replace workplace-based assessments for evaluating select procedural skills.
Pavlov, A N; Pavlova, O N; Abdurashitov, A S; Sindeeva, O A; Semyachkina-Glushkovskaya, O V; Kurths, J
2018-01-01
The scaling properties of complex processes may be highly influenced by the presence of various artifacts in experimental recordings. Their removal produces changes in the singularity spectra and the Hölder exponents as compared with the original artifacts-free data, and these changes are significantly different for positively correlated and anti-correlated signals. While signals with power-law correlations are nearly insensitive to the loss of significant parts of data, the removal of fragments of anti-correlated signals is more crucial for further data analysis. In this work, we study the ability of characterizing scaling features of chaotic and stochastic processes with distinct correlation properties using a wavelet-based multifractal analysis, and discuss differences between the effect of missed data for synchronous and asynchronous oscillatory regimes. We show that even an extreme data loss allows characterizing physiological processes such as the cerebral blood flow dynamics.
NASA Astrophysics Data System (ADS)
Pavlov, A. N.; Pavlova, O. N.; Abdurashitov, A. S.; Sindeeva, O. A.; Semyachkina-Glushkovskaya, O. V.; Kurths, J.
2018-01-01
The scaling properties of complex processes may be highly influenced by the presence of various artifacts in experimental recordings. Their removal produces changes in the singularity spectra and the Hölder exponents as compared with the original artifacts-free data, and these changes are significantly different for positively correlated and anti-correlated signals. While signals with power-law correlations are nearly insensitive to the loss of significant parts of data, the removal of fragments of anti-correlated signals is more crucial for further data analysis. In this work, we study the ability of characterizing scaling features of chaotic and stochastic processes with distinct correlation properties using a wavelet-based multifractal analysis, and discuss differences between the effect of missed data for synchronous and asynchronous oscillatory regimes. We show that even an extreme data loss allows characterizing physiological processes such as the cerebral blood flow dynamics.
Integrated system for well-to-well correlation with geological knowledge base
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saito, K.; Doi, E.; Uchiyama, T.
1987-05-01
A task of well-to-well correlation is an essential part of the reservoir description study. Since the task is involved with diverse data such as logs, dipmeter, seismic, and reservoir engineering, a system with simultaneous access to such data is desirable. A system is developed to aid stratigraphic correlation under a Xerox 1108 workstation, written in INTERLISP-D. The system uses log, dipmeter, seismic, and computer-processed results such as Litho-Analysis and LSA (Log Shape Analyzer). The system first defines zones which are segmentations of log data into consistent layers using Litho-Analysis and LSA results. Each zone is defined as a minimum unitmore » for correlation with slot values of lithology, thickness, log values, and log shape such as bell, cylinder, and funnel. Using a user's input of local geological knowledge such as depositional environment, the system selects marker beds and performs correlation among the wells chosen from the base map. Correlation is performed first with markers and then with sandstones of lesser lateral extent. Structural dip and seismic horizon are guides for seeking a correlatable event. Knowledge of sand body geometry such as ratio of thickness and width is also used to provide a guide on how far a correlation should be made. Correlation results performed by the system are displayed on the screen for the user to examine and modify. The system has been tested with data sets from several depositional settings and has shown to be a useful tool for correlation work. The results are stored as a data base for structural mapping and reservoir engineering study.« less
Liu, Fang; Shen, Changqing; He, Qingbo; Zhang, Ao; Liu, Yongbin; Kong, Fanrang
2014-01-01
A fault diagnosis strategy based on the wayside acoustic monitoring technique is investigated for locomotive bearing fault diagnosis. Inspired by the transient modeling analysis method based on correlation filtering analysis, a so-called Parametric-Mother-Doppler-Wavelet (PMDW) is constructed with six parameters, including a center characteristic frequency and five kinematic model parameters. A Doppler effect eliminator containing a PMDW generator, a correlation filtering analysis module, and a signal resampler is invented to eliminate the Doppler effect embedded in the acoustic signal of the recorded bearing. Through the Doppler effect eliminator, the five kinematic model parameters can be identified based on the signal itself. Then, the signal resampler is applied to eliminate the Doppler effect using the identified parameters. With the ability to detect early bearing faults, the transient model analysis method is employed to detect localized bearing faults after the embedded Doppler effect is eliminated. The effectiveness of the proposed fault diagnosis strategy is verified via simulation studies and applications to diagnose locomotive roller bearing defects. PMID:24803197
The use of copula functions for predictive analysis of correlations between extreme storm tides
NASA Astrophysics Data System (ADS)
Domino, Krzysztof; Błachowicz, Tomasz; Ciupak, Maurycy
2014-11-01
In this paper we present a method used in quantitative description of weakly predictable hydrological, extreme events at inland sea. Investigations for correlations between variations of individual measuring points, employing combined statistical methods, were carried out. As a main tool for this analysis we used a two-dimensional copula function sensitive for correlated extreme effects. Additionally, a new proposed methodology, based on Detrended Fluctuations Analysis (DFA) and Anomalous Diffusion (AD), was used for the prediction of negative and positive auto-correlations and associated optimum choice of copula functions. As a practical example we analysed maximum storm tides data recorded at five spatially separated places at the Baltic Sea. For the analysis we used Gumbel, Clayton, and Frank copula functions and introduced the reversed Clayton copula. The application of our research model is associated with modelling the risk of high storm tides and possible storm flooding.
A new approach for SSVEP detection using PARAFAC and canonical correlation analysis.
Tello, Richard; Pouryazdian, Saeed; Ferreira, Andre; Beheshti, Soosan; Krishnan, Sridhar; Bastos, Teodiano
2015-01-01
This paper presents a new way for automatic detection of SSVEPs through correlation analysis between tensor models. 3-way EEG tensor of channel × frequency × time is decomposed into constituting factor matrices using PARAFAC model. PARAFAC analysis of EEG tensor enables us to decompose multichannel EEG into constituting temporal, spectral and spatial signatures. SSVEPs characterized with localized spectral and spatial signatures are then detected exploiting a correlation analysis between extracted signatures of the EEG tensor and the corresponding simulated signatures of all target SSVEP signals. The SSVEP that has the highest correlation is selected as the intended target. Two flickers blinking at 8 and 13 Hz were used as visual stimuli and the detection was performed based on data packets of 1 second without overlapping. Five subjects participated in the experiments and the highest classification rate of 83.34% was achieved, leading to the Information Transfer Rate (ITR) of 21.01 bits/min.
Combined magnetic and gravity analysis
NASA Technical Reports Server (NTRS)
Hinze, W. J.; Braile, L. W.; Chandler, V. W.; Mazella, F. E.
1975-01-01
Efforts are made to identify methods of decreasing magnetic interpretation ambiguity by combined gravity and magnetic analysis, to evaluate these techniques in a preliminary manner, to consider the geologic and geophysical implications of correlation, and to recommend a course of action to evaluate methods of correlating gravity and magnetic anomalies. The major thrust of the study was a search and review of the literature. The literature of geophysics, geology, geography, and statistics was searched for articles dealing with spatial correlation of independent variables. An annotated bibliography referencing the Germane articles and books is presented. The methods of combined gravity and magnetic analysis techniques are identified and reviewed. A more comprehensive evaluation of two types of techniques is presented. Internal correspondence of anomaly amplitudes is examined and a combined analysis is done utilizing Poisson's theorem. The geologic and geophysical implications of gravity and magnetic correlation based on both theoretical and empirical relationships are discussed.
NASA Technical Reports Server (NTRS)
Erickson, D. J., III; Hernandez, J.; Ginoux, P.; Gregg, W.; Kawa, R.; Behrenfeld, M.; Esaias, W.; Einaudi, Franco (Technical Monitor)
2000-01-01
Since the atmospheric deposition of iron has been linked to primary productivity in various oceanic regions, we have conducted an objective study of the correlation of dust deposition and satellite remotely sensed surface ocean chlorophyll concentrations. We present a global analysis of the correlation between atmospheric dust deposition derived from a satellite-based 3-D atmospheric transport model and SeaWiFs estimates of ocean color. We use the monthly mean dust deposition fields of Ginoux et al. which are based on a global model of dust generation and transport. This model is driven by atmospheric circulation from the Data Assimilation Office (DAO) for the period 1995-1998. This global dust model is constrained by several satellite estimates of standard circulation characteristics. We then perform an analysis of the correlation between the dust deposition and the 1998 SeaWIFS ocean color data for each 2.0 deg x 2.5 deg lat/long grid point, for each month of the year. The results are surprisingly robust. The region between 40 S and 60 S has correlation coefficients from 0.6 to 0.95, statistically significant at the 0.05 level. There are swaths of high correlation at the edges of some major ocean current systems. We interpret these correlations as reflecting areas that have shear related turbulence bringing nitrogen and phosphorus from depth into the surface ocean, and the atmospheric supply of iron provides the limiting nutrient and the correlation between iron deposition and surface ocean chlorophyll is high. There is a region in the western North Pacific with high correlation, reflecting the input of Asian dust to that region. The southern hemisphere has an average correlation coefficient of 0.72 compared that in the northern hemisphere of 0.42 consistent with present conceptual models of where atmospheric iron deposition may play a role in surface ocean biogeochemical cycles. The spatial structure of the correlation fields will be discussed within the context of guiding the design of field programs.
NASA Astrophysics Data System (ADS)
Manzo, Ciro; Braga, Federica; Zaggia, Luca; Brando, Vittorio Ernesto; Giardino, Claudia; Bresciani, Mariano; Bassani, Cristiana
2018-04-01
This paper describes a procedure to perform spatio-temporal analysis of river plume dispersion in prodelta areas by multi-temporal Landsat-8-derived products for identifying zones sensitive to water discharge and for providing geostatistical patterns of turbidity linked to different meteo-marine forcings. In particular, we characterized the temporal and spatial variability of turbidity and sea surface temperature (SST) in the Po River prodelta (Northern Adriatic Sea, Italy) during the period 2013-2016. To perform this analysis, a two-pronged processing methodology was implemented and the resulting outputs were analysed through a series of statistical tools. A pixel-based spatial correlation analysis was carried out by comparing temporal curves of turbidity and SST hypercubes with in situ time series of wind speed and water discharge, providing correlation coefficient maps. A geostatistical analysis was performed to determine the spatial dependency of the turbidity datasets per each satellite image, providing maps of correlation and variograms. The results show a linear correlation between water discharge and turbidity variations in the points more affected by the buoyant plumes and along the southern coast of Po River delta. Better inverse correlation was found between turbidity and SST during floods rather than other periods. The correlation maps of wind speed with turbidity show different spatial patterns depending on local or basin-scale wind effects. Variogram maps identify different spatial anisotropy structures of turbidity in response to ambient conditions (i.e. strong Bora or Scirocco winds, floods). Since the implemented processing methodology is based on open source software and free satellite data, it represents a promising tool for the monitoring of maritime ecosystems and to address water quality analyses and the investigations of sediment dynamics in estuarine and coastal waters.
Humphries, Stephen M; Yagihashi, Kunihiro; Huckleberry, Jason; Rho, Byung-Hak; Schroeder, Joyce D; Strand, Matthew; Schwarz, Marvin I; Flaherty, Kevin R; Kazerooni, Ella A; van Beek, Edwin J R; Lynch, David A
2017-10-01
Purpose To evaluate associations between pulmonary function and both quantitative analysis and visual assessment of thin-section computed tomography (CT) images at baseline and at 15-month follow-up in subjects with idiopathic pulmonary fibrosis (IPF). Materials and Methods This retrospective analysis of preexisting anonymized data, collected prospectively between 2007 and 2013 in a HIPAA-compliant study, was exempt from additional institutional review board approval. The extent of lung fibrosis at baseline inspiratory chest CT in 280 subjects enrolled in the IPF Network was evaluated. Visual analysis was performed by using a semiquantitative scoring system. Computer-based quantitative analysis included CT histogram-based measurements and a data-driven textural analysis (DTA). Follow-up CT images in 72 of these subjects were also analyzed. Univariate comparisons were performed by using Spearman rank correlation. Multivariate and longitudinal analyses were performed by using a linear mixed model approach, in which models were compared by using asymptotic χ 2 tests. Results At baseline, all CT-derived measures showed moderate significant correlation (P < .001) with pulmonary function. At follow-up CT, changes in DTA scores showed significant correlation with changes in both forced vital capacity percentage predicted (ρ = -0.41, P < .001) and diffusing capacity for carbon monoxide percentage predicted (ρ = -0.40, P < .001). Asymptotic χ 2 tests showed that inclusion of DTA score significantly improved fit of both baseline and longitudinal linear mixed models in the prediction of pulmonary function (P < .001 for both). Conclusion When compared with semiquantitative visual assessment and CT histogram-based measurements, DTA score provides additional information that can be used to predict diminished function. Automatic quantification of lung fibrosis at CT yields an index of severity that correlates with visual assessment and functional change in subjects with IPF. © RSNA, 2017.
WGCNA: an R package for weighted correlation network analysis.
Langfelder, Peter; Horvath, Steve
2008-12-29
Correlation networks are increasingly being used in bioinformatics applications. For example, weighted gene co-expression network analysis is a systems biology method for describing the correlation patterns among genes across microarray samples. Weighted correlation network analysis (WGCNA) can be used for finding clusters (modules) of highly correlated genes, for summarizing such clusters using the module eigengene or an intramodular hub gene, for relating modules to one another and to external sample traits (using eigengene network methodology), and for calculating module membership measures. Correlation networks facilitate network based gene screening methods that can be used to identify candidate biomarkers or therapeutic targets. These methods have been successfully applied in various biological contexts, e.g. cancer, mouse genetics, yeast genetics, and analysis of brain imaging data. While parts of the correlation network methodology have been described in separate publications, there is a need to provide a user-friendly, comprehensive, and consistent software implementation and an accompanying tutorial. The WGCNA R software package is a comprehensive collection of R functions for performing various aspects of weighted correlation network analysis. The package includes functions for network construction, module detection, gene selection, calculations of topological properties, data simulation, visualization, and interfacing with external software. Along with the R package we also present R software tutorials. While the methods development was motivated by gene expression data, the underlying data mining approach can be applied to a variety of different settings. The WGCNA package provides R functions for weighted correlation network analysis, e.g. co-expression network analysis of gene expression data. The R package along with its source code and additional material are freely available at http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/Rpackages/WGCNA.
WGCNA: an R package for weighted correlation network analysis
Langfelder, Peter; Horvath, Steve
2008-01-01
Background Correlation networks are increasingly being used in bioinformatics applications. For example, weighted gene co-expression network analysis is a systems biology method for describing the correlation patterns among genes across microarray samples. Weighted correlation network analysis (WGCNA) can be used for finding clusters (modules) of highly correlated genes, for summarizing such clusters using the module eigengene or an intramodular hub gene, for relating modules to one another and to external sample traits (using eigengene network methodology), and for calculating module membership measures. Correlation networks facilitate network based gene screening methods that can be used to identify candidate biomarkers or therapeutic targets. These methods have been successfully applied in various biological contexts, e.g. cancer, mouse genetics, yeast genetics, and analysis of brain imaging data. While parts of the correlation network methodology have been described in separate publications, there is a need to provide a user-friendly, comprehensive, and consistent software implementation and an accompanying tutorial. Results The WGCNA R software package is a comprehensive collection of R functions for performing various aspects of weighted correlation network analysis. The package includes functions for network construction, module detection, gene selection, calculations of topological properties, data simulation, visualization, and interfacing with external software. Along with the R package we also present R software tutorials. While the methods development was motivated by gene expression data, the underlying data mining approach can be applied to a variety of different settings. Conclusion The WGCNA package provides R functions for weighted correlation network analysis, e.g. co-expression network analysis of gene expression data. The R package along with its source code and additional material are freely available at . PMID:19114008
Choi, Seong Hee; Zhang, Yu; Jiang, Jack J.; Bless, Diane M.; Welham, Nathan V.
2011-01-01
Objective The primary goal of this study was to evaluate a nonlinear dynamic approach to the acoustic analysis of dysphonia associated with vocal fold scar and sulcus vocalis. Study Design Case-control study. Methods Acoustic voice samples from scar/sulcus patients and age/sex-matched controls were analyzed using correlation dimension (D2) and phase plots, time-domain based perturbation indices (jitter, shimmer, signal-to-noise ratio [SNR]), and an auditory-perceptual rating scheme. Signal typing was performed to identify samples with bifurcations and aperiodicity. Results Type 2 and 3 acoustic signals were highly represented in the scar/sulcus patient group. When data were analyzed irrespective of signal type, all perceptual and acoustic indices successfully distinguished scar/sulcus patients from controls. Removal of type 2 and 3 signals eliminated the previously identified differences between experimental groups for all acoustic indices except D2. The strongest perceptual-acoustic correlation in our dataset was observed for SNR; the weakest correlation was observed for D2. Conclusions These findings suggest that D2 is inferior to time-domain based perturbation measures for the analysis of dysphonia associated with scar/sulcus; however, time-domain based algorithms are inherently susceptible to inflation under highly aperiodic (i.e., type 2 and 3) signal conditions. Auditory-perceptual analysis, unhindered by signal aperiodicity, is therefore a robust strategy for distinguishing scar/sulcus patient voices from normal voices. Future acoustic analysis research in this area should consider alternative (e.g., frequency- and quefrency-domain based) measures alongside additional nonlinear approaches. PMID:22516315
Reliability measures in item response theory: manifest versus latent correlation functions.
Milanzi, Elasma; Molenberghs, Geert; Alonso, Ariel; Verbeke, Geert; De Boeck, Paul
2015-02-01
For item response theory (IRT) models, which belong to the class of generalized linear or non-linear mixed models, reliability at the scale of observed scores (i.e., manifest correlation) is more difficult to calculate than latent correlation based reliability, but usually of greater scientific interest. This is not least because it cannot be calculated explicitly when the logit link is used in conjunction with normal random effects. As such, approximations such as Fisher's information coefficient, Cronbach's α, or the latent correlation are calculated, allegedly because it is easy to do so. Cronbach's α has well-known and serious drawbacks, Fisher's information is not meaningful under certain circumstances, and there is an important but often overlooked difference between latent and manifest correlations. Here, manifest correlation refers to correlation between observed scores, while latent correlation refers to correlation between scores at the latent (e.g., logit or probit) scale. Thus, using one in place of the other can lead to erroneous conclusions. Taylor series based reliability measures, which are based on manifest correlation functions, are derived and a careful comparison of reliability measures based on latent correlations, Fisher's information, and exact reliability is carried out. The latent correlations are virtually always considerably higher than their manifest counterparts, Fisher's information measure shows no coherent behaviour (it is even negative in some cases), while the newly introduced Taylor series based approximations reflect the exact reliability very closely. Comparisons among the various types of correlations, for various IRT models, are made using algebraic expressions, Monte Carlo simulations, and data analysis. Given the light computational burden and the performance of Taylor series based reliability measures, their use is recommended. © 2014 The British Psychological Society.
Xie, Fang-Fei; Deng, Fei-Yan; Wu, Long-Fei; Mo, Xing-Bo; Zhu, Hong; Wu, Jian; Guo, Yu-Fan; Zeng, Ke-Qin; Wang, Ming-Jun; Zhu, Xiao-Wei; Xia, Wei; Wang, Lan; He, Pei; Bing, Peng-Fei; Lu, Xin; Zhang, Yong-Hong; Lei, Shu-Feng
2018-01-01
DNA methylation is an important regulator on the mRNA expression. However, a genome-wide correlation pattern between DNA methylation and mRNA expression in human peripheral blood mononuclear cells (PBMCs) is largely unknown. The comprehensive relationship between mRNA and DNA methylation was explored by using four types of correlation analyses and a genome-wide methylation-mRNA expression quantitative trait locus (eQTL) analysis in PBMCs in 46 unrelated female subjects. An enrichment analysis was performed to detect biological function for the detected genes. Single pair correlation coefficient (r T1 ) between methylation level and mRNA is moderate (-0.63-0.62) in intensity, and the negative and positive correlations are nearly equal in quantity. Correlation analysis on each gene (T4) found 60.1% genes showed correlations between mRNA and gene-based methylation at P < 0.05 and more than 5.96% genes presented very strong correlation (R T4 > 0.8). Methylation sites have regulation effects on mRNA expression in eQTL analysis, with more often observations in region of transcription start site (TSS). The genes under significant methylation regulation both in correlation analysis and eQTL analysis tend to cluster to the categories (e.g., transcription, translation, regulation of transcription) that are essential for maintaining the basic life activities of cells. Our findings indicated that DNA methylation has predictive regulation effect on mRNA with a very complex pattern in PBMCs. The results increased our understanding on correlation of methylation and mRNA and also provided useful clues for future epigenetic studies in exploring biological and disease-related regulatory mechanisms in PBMC.
Cha, Kihoon; Hwang, Taeho; Oh, Kimin; Yi, Gwan-Su
2015-01-01
It has been reported that several brain diseases can be treated as transnosological manner implicating possible common molecular basis under those diseases. However, molecular level commonality among those brain diseases has been largely unexplored. Gene expression analyses of human brain have been used to find genes associated with brain diseases but most of those studies were restricted either to an individual disease or to a couple of diseases. In addition, identifying significant genes in such brain diseases mostly failed when it used typical methods depending on differentially expressed genes. In this study, we used a correlation-based biclustering approach to find coexpressed gene sets in five neurodegenerative diseases and three psychiatric disorders. By using biclustering analysis, we could efficiently and fairly identified various gene sets expressed specifically in both single and multiple brain diseases. We could find 4,307 gene sets correlatively expressed in multiple brain diseases and 3,409 gene sets exclusively specified in individual brain diseases. The function enrichment analysis of those gene sets showed many new possible functional bases as well as neurological processes that are common or specific for those eight diseases. This study introduces possible common molecular bases for several brain diseases, which open the opportunity to clarify the transnosological perspective assumed in brain diseases. It also showed the advantages of correlation-based biclustering analysis and accompanying function enrichment analysis for gene expression data in this type of investigation.
2015-01-01
Background It has been reported that several brain diseases can be treated as transnosological manner implicating possible common molecular basis under those diseases. However, molecular level commonality among those brain diseases has been largely unexplored. Gene expression analyses of human brain have been used to find genes associated with brain diseases but most of those studies were restricted either to an individual disease or to a couple of diseases. In addition, identifying significant genes in such brain diseases mostly failed when it used typical methods depending on differentially expressed genes. Results In this study, we used a correlation-based biclustering approach to find coexpressed gene sets in five neurodegenerative diseases and three psychiatric disorders. By using biclustering analysis, we could efficiently and fairly identified various gene sets expressed specifically in both single and multiple brain diseases. We could find 4,307 gene sets correlatively expressed in multiple brain diseases and 3,409 gene sets exclusively specified in individual brain diseases. The function enrichment analysis of those gene sets showed many new possible functional bases as well as neurological processes that are common or specific for those eight diseases. Conclusions This study introduces possible common molecular bases for several brain diseases, which open the opportunity to clarify the transnosological perspective assumed in brain diseases. It also showed the advantages of correlation-based biclustering analysis and accompanying function enrichment analysis for gene expression data in this type of investigation. PMID:26043779
Statistical and linguistic features of DNA sequences
NASA Technical Reports Server (NTRS)
Havlin, S.; Buldyrev, S. V.; Goldberger, A. L.; Mantegna, R. N.; Peng, C. K.; Simons, M.; Stanley, H. E.
1995-01-01
We present evidence supporting the idea that the DNA sequence in genes containing noncoding regions is correlated, and that the correlation is remarkably long range--indeed, base pairs thousands of base pairs distant are correlated. We do not find such a long-range correlation in the coding regions of the gene. We resolve the problem of the "non-stationary" feature of the sequence of base pairs by applying a new algorithm called Detrended Fluctuation Analysis (DFA). We address the claim of Voss that there is no difference in the statistical properties of coding and noncoding regions of DNA by systematically applying the DFA algorithm, as well as standard FFT analysis, to all eukaryotic DNA sequences (33 301 coding and 29 453 noncoding) in the entire GenBank database. We describe a simple model to account for the presence of long-range power-law correlations which is based upon a generalization of the classic Levy walk. Finally, we describe briefly some recent work showing that the noncoding sequences have certain statistical features in common with natural languages. Specifically, we adapt to DNA the Zipf approach to analyzing linguistic texts, and the Shannon approach to quantifying the "redundancy" of a linguistic text in terms of a measurable entropy function. We suggest that noncoding regions in plants and invertebrates may display a smaller entropy and larger redundancy than coding regions, further supporting the possibility that noncoding regions of DNA may carry biological information.
Antenna systems for base station diversity in urban small and micro cells
NASA Astrophysics Data System (ADS)
Eggers, Patrick C. F.; Toftgard, Jorn; Oprea, Alex M.
1993-09-01
This paper describes cross-correlation properties for compact urban base station antenna configurations, nearly all resulting in very low envelope cross-correlation coefficients of about 0.1 to 0.3. A focus is set on polarization diversity systems for their potential in improving link quality when hand-held terminals are involved. An expression is given for the correlation function of compound space and polarization diversity systems. Dispersion and envelope dynamic statistics are presented for the measured environments. For microcell applications, it is found that systems such as GSM having a bandwidth of 200 MHz or less can use narrowband cross-correlation analysis directly.
Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses.
Faul, Franz; Erdfelder, Edgar; Buchner, Axel; Lang, Albert-Georg
2009-11-01
G*Power is a free power analysis program for a variety of statistical tests. We present extensions and improvements of the version introduced by Faul, Erdfelder, Lang, and Buchner (2007) in the domain of correlation and regression analyses. In the new version, we have added procedures to analyze the power of tests based on (1) single-sample tetrachoric correlations, (2) comparisons of dependent correlations, (3) bivariate linear regression, (4) multiple linear regression based on the random predictor model, (5) logistic regression, and (6) Poisson regression. We describe these new features and provide a brief introduction to their scope and handling.
Peterson, Leif E
2002-01-01
CLUSFAVOR (CLUSter and Factor Analysis with Varimax Orthogonal Rotation) 5.0 is a Windows-based computer program for hierarchical cluster and principal-component analysis of microarray-based transcriptional profiles. CLUSFAVOR 5.0 standardizes input data; sorts data according to gene-specific coefficient of variation, standard deviation, average and total expression, and Shannon entropy; performs hierarchical cluster analysis using nearest-neighbor, unweighted pair-group method using arithmetic averages (UPGMA), or furthest-neighbor joining methods, and Euclidean, correlation, or jack-knife distances; and performs principal-component analysis. PMID:12184816
Nieminen, Teemu; Lähteenmäki, Pasi; Tan, Zhenbing; Cox, Daniel; Hakonen, Pertti J
2016-11-01
We present a microwave correlation measurement system based on two low-cost USB-connected software defined radio dongles modified to operate as coherent receivers by using a common local oscillator. Existing software is used to obtain I/Q samples from both dongles simultaneously at a software tunable frequency. To achieve low noise, we introduce an easy low-noise solution for cryogenic amplification at 600-900 MHz based on single discrete HEMT with 21 dB gain and 7 K noise temperature. In addition, we discuss the quantization effects in a digital correlation measurement and determination of optimal integration time by applying Allan deviation analysis.
Lin, Lixin; Wang, Yunjia; Teng, Jiyao; Wang, Xuchen
2016-02-01
Hyperspectral estimation of soil organic matter (SOM) in coal mining regions is an important tool for enhancing fertilization in soil restoration programs. The correlation--partial least squares regression (PLSR) method effectively solves the information loss problem of correlation--multiple linear stepwise regression, but results of the correlation analysis must be optimized to improve precision. This study considers the relationship between spectral reflectance and SOM based on spectral reflectance curves of soil samples collected from coal mining regions. Based on the major absorption troughs in the 400-1006 nm spectral range, PLSR analysis was performed using 289 independent bands of the second derivative (SDR) with three levels and measured SOM values. A wavelet-correlation-PLSR (W-C-PLSR) model was then constructed. By amplifying useful information that was previously obscured by noise, the W-C-PLSR model was optimal for estimating SOM content, with smaller prediction errors in both calibration (R(2) = 0.970, root mean square error (RMSEC) = 3.10, and mean relative error (MREC) = 8.75) and validation (RMSEV = 5.85 and MREV = 14.32) analyses, as compared with other models. Results indicate that W-C-PLSR has great potential to estimate SOM in coal mining regions.
NASA Astrophysics Data System (ADS)
Shojaeefard, Mohammad Hasan; Khalkhali, Abolfazl; Yarmohammadisatri, Sadegh
2017-06-01
The main purpose of this paper is to propose a new method for designing Macpherson suspension, based on the Sobol indices in terms of Pearson correlation which determines the importance of each member on the behaviour of vehicle suspension. The formulation of dynamic analysis of Macpherson suspension system is developed using the suspension members as the modified links in order to achieve the desired kinematic behaviour. The mechanical system is replaced with an equivalent constrained links and then kinematic laws are utilised to obtain a new modified geometry of Macpherson suspension. The equivalent mechanism of Macpherson suspension increased the speed of analysis and reduced its complexity. The ADAMS/CAR software is utilised to simulate a full vehicle, Renault Logan car, in order to analyse the accuracy of modified geometry model. An experimental 4-poster test rig is considered for validating both ADAMS/CAR simulation and analytical geometry model. Pearson correlation coefficient is applied to analyse the sensitivity of each suspension member according to vehicle objective functions such as sprung mass acceleration, etc. Besides this matter, the estimation of Pearson correlation coefficient between variables is analysed in this method. It is understood that the Pearson correlation coefficient is an efficient method for analysing the vehicle suspension which leads to a better design of Macpherson suspension system.
Surov, Alexey; Meyer, Hans Jonas; Wienke, Andreas
2017-07-01
Diffusion-weighted imaging (DWI) is a magnetic resonance imaging (MRI) technique based on measure of water diffusion that can provide information about tissue microstructure, especially about cell count. Increase of cell density induces restriction of water diffusion and decreases apparent diffusion coefficient (ADC). ADC can be divided into three sub-parameters: ADC minimum or ADC min , mean ADC or ADC mean and ADC maximum or ADC max Some studies have suggested that ADC min shows stronger correlations with cell count in comparison to other ADC fractions and may be used as a parameter for estimation of tumor cellularity. The aim of the present meta-analysis was to summarize correlation coefficients between ADC min and cellularity in different tumors based on large patient data. For this analysis, MEDLINE database was screened for associations between ADC and cell count in different tumors up to September 2016. For this work, only data regarding ADC min were included. Overall, 12 publications with 317 patients were identified. Spearman's correlation coefficient was used to analyze associations between ADC min and cellularity. The reported Pearson correlation coefficients in some publications were converted into Spearman correlation coefficients. The pooled correlation coefficient for all included studies was ρ=-0.59 (95% confidence interval (CI)=-0.72 to -0.45), heterogeneity Tau 2 =0.04 (p<0.0001), I 2 =73%, test for overall effect Z=8.67 (p<0.00001). ADC min correlated moderately with tumor cellularity. The calculated correlation coefficient is not stronger in comparison to the reported coefficient for ADC mean and, therefore, ADC min does not represent a better means to reflect cellularity. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Matsuoka, Kiwamu; Yasuno, Fumihiko; Hashimoto, Akiko; Miyasaka, Toshiteru; Takahashi, Masato; Kiuchi, Kuniaki; Iida, Junzo; Kichikawa, Kimihiko; Kishimoto, Toshifumi
2018-05-01
Caregivers of patients with dementia experience physical and mental deterioration. We have previously reported a correlation between caregiver burden and the Frontal Assessment Battery (FAB) total scores of patients with Alzheimer's disease (AD), especially regarding the dependency factor from the Zarit Burden Interview. The present study aimed to identify an objective biomarker for predicting caregiver burden. The participants were 26 pairs of caregivers and patients with AD and mild-to-moderate dementia. Correlations between regional gray matter volumes in the patients with AD and the FAB total scores were explored by using whole-brain voxel-based morphometric analysis. Path analysis was used to estimate the relationships between regional gray matter volumes, FAB total scores, and caregiver burden based on the Zarit Burden Interview. The voxel-based morphometric revealed a significant positive correlation between the FAB total scores and the volume of the left dorsolateral prefrontal cortex. This positive correlation persisted after controlling for the effect of general cognitive dysfunction, which was assessed by using the Mini-Mental State Examination. Path analysis revealed that decreases in FAB scores, caused by reduced frontal lobe volumes, negatively affected caregiver burden. The present study revealed that frontal lobe function, based on FAB scores, was affected by the volume of the left dorsolateral prefrontal cortex. Decreased scores were associated with greater caregiver burden, especially for the dependency factor. These findings may facilitate the development of an objective biomarker for predicting caregiver burden. Copyright © 2017 John Wiley & Sons, Ltd.
Illa, Miriam; Eixarch, Elisenda; Batalle, Dafnis; Arbat-Plana, Ariadna; Muñoz-Moreno, Emma; Figueras, Francesc; Gratacos, Eduard
2013-01-01
Background Intrauterine growth restriction (IUGR) affects 5–10% of all newborns and is associated with increased risk of memory, attention and anxiety problems in late childhood and adolescence. The neurostructural correlates of long-term abnormal neurodevelopment associated with IUGR are unknown. Thus, the aim of this study was to provide a comprehensive description of the long-term functional and neurostructural correlates of abnormal neurodevelopment associated with IUGR in a near-term rabbit model (delivered at 30 days of gestation) and evaluate the development of quantitative imaging biomarkers of abnormal neurodevelopment based on diffusion magnetic resonance imaging (MRI) parameters and connectivity. Methodology At +70 postnatal days, 10 cases and 11 controls were functionally evaluated with the Open Field Behavioral Test which evaluates anxiety and attention and the Object Recognition Task that evaluates short-term memory and attention. Subsequently, brains were collected, fixed and a high resolution MRI was performed. Differences in diffusion parameters were analyzed by means of voxel-based and connectivity analysis measuring the number of fibers reconstructed within anxiety, attention and short-term memory networks over the total fibers. Principal Findings The results of the neurobehavioral and cognitive assessment showed a significant higher degree of anxiety, attention and memory problems in cases compared to controls in most of the variables explored. Voxel-based analysis (VBA) revealed significant differences between groups in multiple brain regions mainly in grey matter structures, whereas connectivity analysis demonstrated lower ratios of fibers within the networks in cases, reaching the statistical significance only in the left hemisphere for both networks. Finally, VBA and connectivity results were also correlated with functional outcome. Conclusions The rabbit model used reproduced long-term functional impairments and their neurostructural correlates of abnormal neurodevelopment associated with IUGR. The description of the pattern of microstructural changes underlying functional defects may help to develop biomarkers based in diffusion MRI and connectivity analysis. PMID:24143189
Illa, Miriam; Eixarch, Elisenda; Batalle, Dafnis; Arbat-Plana, Ariadna; Muñoz-Moreno, Emma; Figueras, Francesc; Gratacos, Eduard
2013-01-01
Intrauterine growth restriction (IUGR) affects 5-10% of all newborns and is associated with increased risk of memory, attention and anxiety problems in late childhood and adolescence. The neurostructural correlates of long-term abnormal neurodevelopment associated with IUGR are unknown. Thus, the aim of this study was to provide a comprehensive description of the long-term functional and neurostructural correlates of abnormal neurodevelopment associated with IUGR in a near-term rabbit model (delivered at 30 days of gestation) and evaluate the development of quantitative imaging biomarkers of abnormal neurodevelopment based on diffusion magnetic resonance imaging (MRI) parameters and connectivity. At +70 postnatal days, 10 cases and 11 controls were functionally evaluated with the Open Field Behavioral Test which evaluates anxiety and attention and the Object Recognition Task that evaluates short-term memory and attention. Subsequently, brains were collected, fixed and a high resolution MRI was performed. Differences in diffusion parameters were analyzed by means of voxel-based and connectivity analysis measuring the number of fibers reconstructed within anxiety, attention and short-term memory networks over the total fibers. The results of the neurobehavioral and cognitive assessment showed a significant higher degree of anxiety, attention and memory problems in cases compared to controls in most of the variables explored. Voxel-based analysis (VBA) revealed significant differences between groups in multiple brain regions mainly in grey matter structures, whereas connectivity analysis demonstrated lower ratios of fibers within the networks in cases, reaching the statistical significance only in the left hemisphere for both networks. Finally, VBA and connectivity results were also correlated with functional outcome. The rabbit model used reproduced long-term functional impairments and their neurostructural correlates of abnormal neurodevelopment associated with IUGR. The description of the pattern of microstructural changes underlying functional defects may help to develop biomarkers based in diffusion MRI and connectivity analysis.
ERIC Educational Resources Information Center
McDaniel, Michael A.
2005-01-01
The relationship between brain volume and intelligence has been a topic of a scientific debate since at least the 1830s. To address the debate, a meta-analysis of the relationship between in vivo brain volume and intelligence was conducted. Based on 37 samples across 1530 people, the population correlation was estimated at 0.33. The correlation is…
Robust and sparse correlation matrix estimation for the analysis of high-dimensional genomics data.
Serra, Angela; Coretto, Pietro; Fratello, Michele; Tagliaferri, Roberto; Stegle, Oliver
2018-02-15
Microarray technology can be used to study the expression of thousands of genes across a number of different experimental conditions, usually hundreds. The underlying principle is that genes sharing similar expression patterns, across different samples, can be part of the same co-expression system, or they may share the same biological functions. Groups of genes are usually identified based on cluster analysis. Clustering methods rely on the similarity matrix between genes. A common choice to measure similarity is to compute the sample correlation matrix. Dimensionality reduction is another popular data analysis task which is also based on covariance/correlation matrix estimates. Unfortunately, covariance/correlation matrix estimation suffers from the intrinsic noise present in high-dimensional data. Sources of noise are: sampling variations, presents of outlying sample units, and the fact that in most cases the number of units is much larger than the number of genes. In this paper, we propose a robust correlation matrix estimator that is regularized based on adaptive thresholding. The resulting method jointly tames the effects of the high-dimensionality, and data contamination. Computations are easy to implement and do not require hand tunings. Both simulated and real data are analyzed. A Monte Carlo experiment shows that the proposed method is capable of remarkable performances. Our correlation metric is more robust to outliers compared with the existing alternatives in two gene expression datasets. It is also shown how the regularization allows to automatically detect and filter spurious correlations. The same regularization is also extended to other less robust correlation measures. Finally, we apply the ARACNE algorithm on the SyNTreN gene expression data. Sensitivity and specificity of the reconstructed network is compared with the gold standard. We show that ARACNE performs better when it takes the proposed correlation matrix estimator as input. The R software is available at https://github.com/angy89/RobustSparseCorrelation. aserra@unisa.it or robtag@unisa.it. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
DOE Office of Scientific and Technical Information (OSTI.GOV)
So Hirata
2012-01-03
This report discusses the following highlights of the project: (1) grid-based Hartree-Fock equation solver; (2) explicitly correlated coupled-cluster and perturbation methods; (3) anharmonic vibrational frequencies and vibrationally averaged NMR and structural parameters of FHF; (4) anharmonic vibrational frequencies and vibrationally averaged structures of hydrocarbon combustion species; (5) anharmonic vibrational analysis of the guanine-cytosine base pair; (6) the nature of the Born-Oppenheimer approximation; (7) Polymers and solids Brillouin-zone downsampling - the modulo MP2 method; (8) explicitly correlated MP2 for extended systems; (9) fast correlated method for molecular crystals - solid formic acid; and (10) fast correlated method for molecular crystals -more » solid hydrogen fluoride.« less
Minimum number of measurements for evaluating soursop (Annona muricata L.) yield.
Sánchez, C F B; Teodoro, P E; Londoño, S; Silva, L A; Peixoto, L A; Bhering, L L
2017-05-31
Repeatability studies on fruit species are of great importance to identify the minimum number of measurements necessary to accurately select superior genotypes. This study aimed to identify the most efficient method to estimate the repeatability coefficient (r) and predict the minimum number of measurements needed for a more accurate evaluation of soursop (Annona muricata L.) genotypes based on fruit yield. Sixteen measurements of fruit yield from 71 soursop genotypes were carried out between 2000 and 2016. In order to estimate r with the best accuracy, four procedures were used: analysis of variance, principal component analysis based on the correlation matrix, principal component analysis based on the phenotypic variance and covariance matrix, and structural analysis based on the correlation matrix. The minimum number of measurements needed to predict the actual value of individuals was estimated. Principal component analysis using the phenotypic variance and covariance matrix provided the most accurate estimates of both r and the number of measurements required for accurate evaluation of fruit yield in soursop. Our results indicate that selection of soursop genotypes with high fruit yield can be performed based on the third and fourth measurements in the early years and/or based on the eighth and ninth measurements at more advanced stages.
Importance of neutralization sieve analyses when seeking correlates of HIV-1 vaccine efficacy.
Montefiori, David C
2014-01-01
This commentary describes a rationale for the use of breakthrough viruses from clinical trial participants to assess neutralizing antibodies as a correlate of HIV-1 vaccine efficacy. The rationale is based on principles of a genetic sieve analysis, where the 2 analyses may be cooperative for delineating neutralizing antibodies as a mechanistic correlate of protection.
Retrieval of Body-Wave Reflections Using Ambient Noise Interferometry Using a Small-Scale Experiment
NASA Astrophysics Data System (ADS)
Dantas, Odmaksuel Anísio Bezerra; do Nascimento, Aderson Farias; Schimmel, Martin
2018-02-01
We report the retrieval of body-wave reflections from noise records using a small-scale experiment over a mature oil field. The reflections are obtained by cross-correlation and stacking of the data. We used the stacked correlograms to create virtual source-to-receiver common shot gathers and are able to obtain body-wave reflections. Surface waves that obliterate the body-waves in our noise correlations were attenuated following a standard procedure from active source seismics. Further different strategies were employed to cross-correlate and stack the data: classical geometrical normalized cross-correlation (CCGN), phase cross-correlation (PCC), linear stacking**** and phase weighted stacking (PWS). PCC and PWS are based on the instantaneous phase coherence of analytic signals. The four approaches are independent and reveal the reflections; nevertheless, the combination of PWS and CCGN provided the best results. Our analysis is based on 2145 cross-correlations of 600 s data segments. We also compare the resulted virtual shot gathers with an active 2D seismic line near the passive experiment. It is shown that our ambient noise analysis reproduces reflections which are present in the active seismic data.
Characterizing multivariate decoding models based on correlated EEG spectral features.
McFarland, Dennis J
2013-07-01
Multivariate decoding methods are popular techniques for analysis of neurophysiological data. The present study explored potential interpretative problems with these techniques when predictors are correlated. Data from sensorimotor rhythm-based cursor control experiments was analyzed offline with linear univariate and multivariate models. Features were derived from autoregressive (AR) spectral analysis of varying model order which produced predictors that varied in their degree of correlation (i.e., multicollinearity). The use of multivariate regression models resulted in much better prediction of target position as compared to univariate regression models. However, with lower order AR features interpretation of the spectral patterns of the weights was difficult. This is likely to be due to the high degree of multicollinearity present with lower order AR features. Care should be exercised when interpreting the pattern of weights of multivariate models with correlated predictors. Comparison with univariate statistics is advisable. While multivariate decoding algorithms are very useful for prediction their utility for interpretation may be limited when predictors are correlated. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Guo, Xuemei; Long, Piaopiao; Meng, Qilu; Ho, Chi-Tang; Zhang, Liang
2018-04-25
Quantitative analysis and untargeted liquid chromatography mass spectrum (LC-MS) based metabolomics of different grades of Keemun black tea (KBT) were conducted. Quantitative analysis did not show tight correlation between tea grades and contents of polyphenols, but untargeted metabolomics analysis revealed that high-grades KBT were distinguished from the low-grades. S-plot and Variable Importance (VIP) analysis gave 28 marker compounds responsible for the discrimination of different grades of KBT. The inhibitory effects of KBT on α-amylase and α-glucosidase were positively correlated to tea grades, and the correlation coefficient between each marker compound and inhibitory rate were calculated. Thirteen compounds were positively related to the anti-glycemic activity, and theasinensin A, afzelechin gallate and kaempferol-glucoside were confirmed as grade-related bioactive marker compounds by chemical and bioassay in effective fractions. This study suggested that combinatory metabolomics and bioactivities assay provided a new strategy for the classification of tea grades. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Han, Rui-Qi; Xie, Wen-Jie; Xiong, Xiong; Zhang, Wei; Zhou, Wei-Xing
The correlation structure of a stock market contains important financial contents, which may change remarkably due to the occurrence of financial crisis. We perform a comparative analysis of the Chinese stock market around the occurrence of the 2008 crisis based on the random matrix analysis of high-frequency stock returns of 1228 Chinese stocks. Both raw correlation matrix and partial correlation matrix with respect to the market index in two time periods of one year are investigated. We find that the Chinese stocks have stronger average correlation and partial correlation in 2008 than in 2007 and the average partial correlation is significantly weaker than the average correlation in each period. Accordingly, the largest eigenvalue of the correlation matrix is remarkably greater than that of the partial correlation matrix in each period. Moreover, each largest eigenvalue and its eigenvector reflect an evident market effect, while other deviating eigenvalues do not. We find no evidence that deviating eigenvalues contain industrial sectorial information. Surprisingly, the eigenvectors of the second largest eigenvalues in 2007 and of the third largest eigenvalues in 2008 are able to distinguish the stocks from the two exchanges. We also find that the component magnitudes of the some largest eigenvectors are proportional to the stocks’ capitalizations.
Yoon, Jong H.; Tamir, Diana; Minzenberg, Michael J.; Ragland, J. Daniel; Ursu, Stefan; Carter, Cameron S.
2009-01-01
Background Multivariate pattern analysis is an alternative method of analyzing fMRI data, which is capable of decoding distributed neural representations. We applied this method to test the hypothesis of the impairment in distributed representations in schizophrenia. We also compared the results of this method with traditional GLM-based univariate analysis. Methods 19 schizophrenia and 15 control subjects viewed two runs of stimuli--exemplars of faces, scenes, objects, and scrambled images. To verify engagement with stimuli, subjects completed a 1-back matching task. A multi-voxel pattern classifier was trained to identify category-specific activity patterns on one run of fMRI data. Classification testing was conducted on the remaining run. Correlation of voxel-wise activity across runs evaluated variance over time in activity patterns. Results Patients performed the task less accurately. This group difference was reflected in the pattern analysis results with diminished classification accuracy in patients compared to controls, 59% and 72% respectively. In contrast, there was no group difference in GLM-based univariate measures. In both groups, classification accuracy was significantly correlated with behavioral measures. Both groups showed highly significant correlation between inter-run correlations and classification accuracy. Conclusions Distributed representations of visual objects are impaired in schizophrenia. This impairment is correlated with diminished task performance, suggesting that decreased integrity of cortical activity patterns is reflected in impaired behavior. Comparisons with univariate results suggest greater sensitivity of pattern analysis in detecting group differences in neural activity and reduced likelihood of non-specific factors driving these results. PMID:18822407
Correlation between X-ray flux and rotational acceleration in Vela X-1
NASA Technical Reports Server (NTRS)
Deeter, J. E.; Boynton, P. E.; Shibazaki, N.; Hayakawa, S.; Nagase, F.
1989-01-01
The results of a search for correlations between X-ray flux and angular acceleration for the accreting binary pulsar Vela X-1 are presented. Results are based on data obtained with the Hakucho satellite during the interval 1982 to 1984. In undertaking this correlation analysis, it was necessary to modify the usual statistical method to deal with conditions imposed by generally unavoidable satellite observing constraints, most notably a mismatch in sampling between the two variables. The results are suggestive of a correlation between flux and the absolute value of the angular acceleration, at a significance level of 96 percent. The implications of the methods and results for future observations and analysis are discussed.
Statistical analysis of co-occurrence patterns in microbial presence-absence datasets
Bewick, Sharon; Thielen, Peter; Mehoke, Thomas; Breitwieser, Florian P.; Paudel, Shishir; Adhikari, Arjun; Wolfe, Joshua; Slud, Eric V.; Karig, David; Fagan, William F.
2017-01-01
Drawing on a long history in macroecology, correlation analysis of microbiome datasets is becoming a common practice for identifying relationships or shared ecological niches among bacterial taxa. However, many of the statistical issues that plague such analyses in macroscale communities remain unresolved for microbial communities. Here, we discuss problems in the analysis of microbial species correlations based on presence-absence data. We focus on presence-absence data because this information is more readily obtainable from sequencing studies, especially for whole-genome sequencing, where abundance estimation is still in its infancy. First, we show how Pearson’s correlation coefficient (r) and Jaccard’s index (J)–two of the most common metrics for correlation analysis of presence-absence data–can contradict each other when applied to a typical microbiome dataset. In our dataset, for example, 14% of species-pairs predicted to be significantly correlated by r were not predicted to be significantly correlated using J, while 37.4% of species-pairs predicted to be significantly correlated by J were not predicted to be significantly correlated using r. Mismatch was particularly common among species-pairs with at least one rare species (<10% prevalence), explaining why r and J might differ more strongly in microbiome datasets, where there are large numbers of rare taxa. Indeed 74% of all species-pairs in our study had at least one rare species. Next, we show how Pearson’s correlation coefficient can result in artificial inflation of positive taxon relationships and how this is a particular problem for microbiome studies. We then illustrate how Jaccard’s index of similarity (J) can yield improvements over Pearson’s correlation coefficient. However, the standard null model for Jaccard’s index is flawed, and thus introduces its own set of spurious conclusions. We thus identify a better null model based on a hypergeometric distribution, which appropriately corrects for species prevalence. This model is available from recent statistics literature, and can be used for evaluating the significance of any value of an empirically observed Jaccard’s index. The resulting simple, yet effective method for handling correlation analysis of microbial presence-absence datasets provides a robust means of testing and finding relationships and/or shared environmental responses among microbial taxa. PMID:29145425
Zhang, Xiaoshuai; Yang, Xiaowei; Yuan, Zhongshang; Liu, Yanxun; Li, Fangyu; Peng, Bin; Zhu, Dianwen; Zhao, Jinghua; Xue, Fuzhong
2013-01-01
For genome-wide association data analysis, two genes in any pathway, two SNPs in the two linked gene regions respectively or in the two linked exons respectively within one gene are often correlated with each other. We therefore proposed the concept of gene-gene co-association, which refers to the effects not only due to the traditional interaction under nearly independent condition but the correlation between two genes. Furthermore, we constructed a novel statistic for detecting gene-gene co-association based on Partial Least Squares Path Modeling (PLSPM). Through simulation, the relationship between traditional interaction and co-association was highlighted under three different types of co-association. Both simulation and real data analysis demonstrated that the proposed PLSPM-based statistic has better performance than single SNP-based logistic model, PCA-based logistic model, and other gene-based methods. PMID:23620809
Zhang, Xiaoshuai; Yang, Xiaowei; Yuan, Zhongshang; Liu, Yanxun; Li, Fangyu; Peng, Bin; Zhu, Dianwen; Zhao, Jinghua; Xue, Fuzhong
2013-01-01
For genome-wide association data analysis, two genes in any pathway, two SNPs in the two linked gene regions respectively or in the two linked exons respectively within one gene are often correlated with each other. We therefore proposed the concept of gene-gene co-association, which refers to the effects not only due to the traditional interaction under nearly independent condition but the correlation between two genes. Furthermore, we constructed a novel statistic for detecting gene-gene co-association based on Partial Least Squares Path Modeling (PLSPM). Through simulation, the relationship between traditional interaction and co-association was highlighted under three different types of co-association. Both simulation and real data analysis demonstrated that the proposed PLSPM-based statistic has better performance than single SNP-based logistic model, PCA-based logistic model, and other gene-based methods.
Song, Ruiguang; Hall, H Irene; Harrison, Kathleen McDavid; Sharpe, Tanya Telfair; Lin, Lillian S; Dean, Hazel D
2011-01-01
We developed a statistical tool that brings together standard, accessible, and well-understood analytic approaches and uses area-based information and other publicly available data to identify social determinants of health (SDH) that significantly affect the morbidity of a specific disease. We specified AIDS as the disease of interest and used data from the American Community Survey and the National HIV Surveillance System. Morbidity and socioeconomic variables in the two data systems were linked through geographic areas that can be identified in both systems. Correlation and partial correlation coefficients were used to measure the impact of socioeconomic factors on AIDS diagnosis rates in certain geographic areas. We developed an easily explained approach that can be used by a data analyst with access to publicly available datasets and standard statistical software to identify the impact of SDH. We found that the AIDS diagnosis rate was highly correlated with the distribution of race/ethnicity, population density, and marital status in an area. The impact of poverty, education level, and unemployment depended on other SDH variables. Area-based measures of socioeconomic variables can be used to identify risk factors associated with a disease of interest. When correlation analysis is used to identify risk factors, potential confounding from other variables must be taken into account.
Relative velocity change measurement based on seismic noise analysis in exploration geophysics
NASA Astrophysics Data System (ADS)
Corciulo, M.; Roux, P.; Campillo, M.; Dubuq, D.
2011-12-01
Passive monitoring techniques based on noise cross-correlation analysis are still debated in exploration geophysics even if recent studies showed impressive performance in seismology at larger scale. Time evolution of complex geological structure using noise data includes localization of noise sources and measurement of relative velocity variations. Monitoring relative velocity variations only requires the measurement of phase shifts of seismic noise cross-correlation functions computed for successive time recordings. The existing algorithms, such as the Stretching and the Doublet, classically need great efforts in terms of computation time, making them not practical when continuous dataset on dense arrays are acquired. We present here an innovative technique for passive monitoring based on the measure of the instantaneous phase of noise-correlated signals. The Instantaneous Phase Variation (IPV) technique aims at cumulating the advantages of the Stretching and Doublet methods while proposing a faster measurement of the relative velocity change. The IPV takes advantage of the Hilbert transform to compute in the time domain the phase difference between two noise correlation functions. The relative velocity variation is measured through the slope of the linear regression of the phase difference curve as a function of correlation time. The large amount of noise correlation functions, classically available at exploration scale on dense arrays, allows for a statistical analysis that further improves the precision of the estimation of the velocity change. In this work, numerical tests first aim at comparing the IPV performance to the Stretching and Doublet techniques in terms of accuracy, robustness and computation time. Then experimental results are presented using a seismic noise dataset with five days of continuous recording on 397 geophones spread on a ~1 km-squared area.
Loran-C monitor correlation over a 92-mile baseline in Ohio
NASA Technical Reports Server (NTRS)
Lilley, Robert W.; Edwards, Jamie S.
1988-01-01
Two Loran C monitors, at Galion and Athens, Ohio, were operated over a one-year period, measuring chain 9960 Time Delay (TD) and Signal to Noise Ratio (SNR). Analysis of data concentrated on correlation of short term TD variations during the winter months of 1985 to 86, over the 92 nm baseline. Excellent correlation was found, with slight additional improvement possible if local temperature is also included in the analysis. Although SNR and TD effects were suspected during the presence of thunderstorms near the monitors, the scope of the study did not permit storm by storm analysis. A computer tape data base of all measurements was produced, with measurements at both sites included. Data recording and analysis concentrated on the fall and winter months of September 1985 to February 1986.
Continued investigation of potential application of Omega navigation to civil aviation
NASA Technical Reports Server (NTRS)
Baxa, E. G., Jr.
1978-01-01
Major attention is given to an analysis of receiver repeatability in measuring OMEGA phase data. Repeatability is defined as the ability of two like receivers which are co-located to achieve the same LOP phase readings. Specific data analysis is presented. A propagation model is described which has been used in the analysis of propagation anomalies. Composite OMEGA analysis is presented in terms of carrier phase correlation analysis and the determination of carrier phase weighting coefficients for minimizing composite phase variation. Differential OMEGA error analysis is presented for receiver separations. Three frequency analysis includes LOP error and position error based on three and four OMEGA transmissions. Results of phase amplitude correlation studies are presented.
Multi-frequency local wavenumber analysis and ply correlation of delamination damage.
Juarez, Peter D; Leckey, Cara A C
2015-09-01
Wavenumber domain analysis through use of scanning laser Doppler vibrometry has been shown to be effective for non-contact inspection of damage in composites. Qualitative and semi-quantitative local wavenumber analysis of realistic delamination damage and quantitative analysis of idealized damage scenarios (Teflon inserts) have been performed previously in the literature. This paper presents a new methodology based on multi-frequency local wavenumber analysis for quantitative assessment of multi-ply delamination damage in carbon fiber reinforced polymer (CFRP) composite specimens. The methodology is presented and applied to a real world damage scenario (impact damage in an aerospace CFRP composite). The methodology yields delamination size and also correlates local wavenumber results from multiple excitation frequencies to theoretical dispersion curves in order to robustly determine the delamination ply depth. Results from the wavenumber based technique are validated against a traditional nondestructive evaluation method. Published by Elsevier B.V.
Froeling, Vera; Heimann, Uwe; Huebner, Ralf-Harto; Kroencke, Thomas J; Maurer, Martin H; Doellinger, Felix; Geisel, Dominik; Hamm, Bernd; Brenner, Winfried; Schreiter, Nils F
2015-07-01
To evaluate the utility of attenuation correction (AC) of V/P SPECT images for patients with pulmonary emphysema. Twenty-one patients (mean age 67.6 years) with pulmonary emphysema who underwent V/P SPECT/CT were included. AC/non-AC V/P SPECT images were compared visually and semiquantitatively. Visual comparison of AC/non-AC images was based on a 5-point likert scale. Semiquantitative comparison assessed absolute counts per lung (aCpLu) and lung lobe (aCpLo) for AC/non-AC images using software-based analysis; percentage counts (PC = (aCpLo/aCpLu) × 100) were calculated. Correlation between AC/non-AC V/P SPECT images was analyzed using Spearman's rho correlation coefficient; differences were tested for significance with the Wilcoxon rank sum test. Visual analysis revealed high conformity for AC and non-AC V/P SPECT images. Semiquantitative analysis of PC in AC/non-AC images had an excellent correlation and showed no significant differences in perfusion (ρ = 0.986) or ventilation (ρ = 0.979, p = 0.809) SPECT/CT images. AC of V/P SPECT images for lung lobe-based function imaging in patients with pulmonary emphysema do not improve visual or semiquantitative image analysis.
DGCA: A comprehensive R package for Differential Gene Correlation Analysis.
McKenzie, Andrew T; Katsyv, Igor; Song, Won-Min; Wang, Minghui; Zhang, Bin
2016-11-15
Dissecting the regulatory relationships between genes is a critical step towards building accurate predictive models of biological systems. A powerful approach towards this end is to systematically study the differences in correlation between gene pairs in more than one distinct condition. In this study we develop an R package, DGCA (for Differential Gene Correlation Analysis), which offers a suite of tools for computing and analyzing differential correlations between gene pairs across multiple conditions. To minimize parametric assumptions, DGCA computes empirical p-values via permutation testing. To understand differential correlations at a systems level, DGCA performs higher-order analyses such as measuring the average difference in correlation and multiscale clustering analysis of differential correlation networks. Through a simulation study, we show that the straightforward z-score based method that DGCA employs significantly outperforms the existing alternative methods for calculating differential correlation. Application of DGCA to the TCGA RNA-seq data in breast cancer not only identifies key changes in the regulatory relationships between TP53 and PTEN and their target genes in the presence of inactivating mutations, but also reveals an immune-related differential correlation module that is specific to triple negative breast cancer (TNBC). DGCA is an R package for systematically assessing the difference in gene-gene regulatory relationships under different conditions. This user-friendly, effective, and comprehensive software tool will greatly facilitate the application of differential correlation analysis in many biological studies and thus will help identification of novel signaling pathways, biomarkers, and targets in complex biological systems and diseases.
Lee, Jun Ho; Byun, Min Soo; Sohn, Bo Kyung; Choe, Young Min; Yi, Dahyun; Han, Ji Young; Choi, Hyo Jung; Baek, Hyewon; Woo, Jong Inn; Lee, Dong Young
2015-09-01
We aimed to elucidate the functional neuroanatomical correlates of Frontal Assessment Battery (FAB) performances by applying [(18)F]fluorodeoxyglucose positron emission tomography (FDG-PET) to a large population of patients with Alzheimer disease (AD). The FAB was administered to 177 patients with AD, and regional cerebral glucose metabolism (rCMglc) was measured by FDG-PET scan. Correlations between FAB scores and rCMglc were explored using both region-of-interest-based (ROI-based) and voxel-based approaches. The ROI-based analysis showed that FAB scores correlated with the rCMglc of the dorsolateral prefrontal cortices. Voxel-based approach revealed significant positive correlations between FAB scores and rCMglc which were in various cortical regions including the temporal and parietal cortices as well as frontal regions, independent of age, gender, and education. After controlling the effect of global disease severity with Mini-Mental State Examination score, significant positive correlation was found only in the bilateral prefrontal regions. Although FAB scores are influenced by temporoparietal dysfunction due to the overall progression of AD, it likely reflects prefrontal dysfunction specifically regardless of global cognitive state or disease severity in patients with AD. © The Author(s) 2015.
Carbonell, Felix; Bellec, Pierre
2011-01-01
Abstract The influence of the global average signal (GAS) on functional-magnetic resonance imaging (fMRI)–based resting-state functional connectivity is a matter of ongoing debate. The global average fluctuations increase the correlation between functional systems beyond the correlation that reflects their specific functional connectivity. Hence, removal of the GAS is a common practice for facilitating the observation of network-specific functional connectivity. This strategy relies on the implicit assumption of a linear-additive model according to which global fluctuations, irrespective of their origin, and network-specific fluctuations are super-positioned. However, removal of the GAS introduces spurious negative correlations between functional systems, bringing into question the validity of previous findings of negative correlations between fluctuations in the default-mode and the task-positive networks. Here we present an alternative method for estimating global fluctuations, immune to the complications associated with the GAS. Principal components analysis was applied to resting-state fMRI time-series. A global-signal effect estimator was defined as the principal component (PC) that correlated best with the GAS. The mean correlation coefficient between our proposed PC-based global effect estimator and the GAS was 0.97±0.05, demonstrating that our estimator successfully approximated the GAS. In 66 out of 68 runs, the PC that showed the highest correlation with the GAS was the first PC. Since PCs are orthogonal, our method provides an estimator of the global fluctuations, which is uncorrelated to the remaining, network-specific fluctuations. Moreover, unlike the regression of the GAS, the regression of the PC-based global effect estimator does not introduce spurious anti-correlations beyond the decrease in seed-based correlation values allowed by the assumed additive model. After regressing this PC-based estimator out of the original time-series, we observed robust anti-correlations between resting-state fluctuations in the default-mode and the task-positive networks. We conclude that resting-state global fluctuations and network-specific fluctuations are uncorrelated, supporting a Resting-State Linear-Additive Model. In addition, we conclude that the network-specific resting-state fluctuations of the default-mode and task-positive networks show artifact-free anti-correlations. PMID:22444074
NASA Astrophysics Data System (ADS)
Zhang, Qiong; Peng, Cong; Lu, Yiming; Wang, Hao; Zhu, Kaiguang
2018-04-01
A novel technique is developed to level airborne geophysical data using principal component analysis based on flight line difference. In the paper, flight line difference is introduced to enhance the features of levelling error for airborne electromagnetic (AEM) data and improve the correlation between pseudo tie lines. Thus we conduct levelling to the flight line difference data instead of to the original AEM data directly. Pseudo tie lines are selected distributively cross profile direction, avoiding the anomalous regions. Since the levelling errors of selective pseudo tie lines show high correlations, principal component analysis is applied to extract the local levelling errors by low-order principal components reconstruction. Furthermore, we can obtain the levelling errors of original AEM data through inverse difference after spatial interpolation. This levelling method does not need to fly tie lines and design the levelling fitting function. The effectiveness of this method is demonstrated by the levelling results of survey data, comparing with the results from tie-line levelling and flight-line correlation levelling.
On the equivalence of the RTI and SVM approaches to time correlated analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Croft, S.; Favalli, A.; Henzlova, D.
2014-11-21
Recently two papers on how to perform passive neutron auto-correlation analysis on time gated histograms formed from pulse train data, generically called time correlation analysis (TCA), have appeared in this journal [1,2]. For those of us working in international nuclear safeguards these treatments are of particular interest because passive neutron multiplicity counting is a widely deployed technique for the quantification of plutonium. The purpose of this letter is to show that the skewness-variance-mean (SVM) approach developed in [1] is equivalent in terms of assay capability to the random trigger interval (RTI) analysis laid out in [2]. Mathematically we could alsomore » use other numerical ways to extract the time correlated information from the histogram data including for example what we might call the mean, mean square, and mean cube approach. The important feature however, from the perspective of real world applications, is that the correlated information extracted is the same, and subsequently gets interpreted in the same way based on the same underlying physics model.« less
Neuroanatomical Correlates of Intelligence
ERIC Educational Resources Information Center
Luders, Eileen; Narr, Katherine L.; Thompson, Paul M.; Toga, Arthur W.
2009-01-01
With the advancement of image acquisition and analysis methods in recent decades, unique opportunities have emerged to study the neuroanatomical correlates of intelligence. Traditional approaches examining global measures have been complemented by insights from more regional analyses based on pre-defined areas. Newer state-of-the-art approaches…
Conservatism and Cognitive Ability
ERIC Educational Resources Information Center
Stankov, Lazar
2009-01-01
Conservatism and cognitive ability are negatively correlated. The evidence is based on 1254 community college students and 1600 foreign students seeking entry to United States' universities. At the individual level of analysis, conservatism scores correlate negatively with SAT, Vocabulary, and Analogy test scores. At the national level of…
Ma, Shi-Lei; Tang, Qiao-Ling; Liu, Hong-Wei; He, Juan; Gao, Si-Hua
2013-03-01
To explore the impact of meteorological factors on the outbreak of bacillary dysentery, so as to provide suggestions for disease prevention. Based on the Chinese medicine theory of Yunqi, the descriptive statistics, single-factor correlation analysis and back-propagation artificial neural net-work were conducted using data on five basic meteorological factors and data on incidence of bacillary dysentery in Beijing, China, for the period 1970-2004. The incidence of bacillary dysentery showed significant positive correlation relationship with the precipitation, relative humidity, vapor pressure, and temperature, respectively. The incidence of bacillary dysentery showed a negatively correlated relationship with the wind speed and the change trend of average wind speed. The results of medical-meteorological forecast model showed a relatively high accuracy rate. There is a close relationship between the meteorological factors and the incidence of bacillary dysentery, but the contributions of which to the onset of bacillary dysentery are different to each other.
Ming, Dengming; Chen, Rui; Huang, He
2018-05-10
Optimizing amino-acid mutations in enzyme design has been a very challenging task in modern bio-industrial applications. It is well known that many successful designs often hinge on extensive correlations among mutations at different sites within the enzyme, however, the underpinning mechanism for these correlations is far from clear. Here, we present a topology-based model to quantitively characterize non-additive effects between mutations. The method is based on the molecular dynamic simulations and the amino-acid network clique analysis. It examines if the two mutation sites of a double-site mutation fall into to a 3-clique structure, and associates such topological property of mutational site spatial distribution with mutation additivity features. We analyzed 13 dual mutations of T4 phage lysozyme and found that the clique-based model successfully distinguishes highly correlated or non-additive double-site mutations from those additive ones whose component mutations have less correlation. We also applied the model to protein Eglin c whose structural topology is significantly different from that of T4 phage lysozyme, and found that the model can, to some extension, still identify non-additive mutations from additive ones. Our calculations showed that mutation non-additive effects may heavily depend on a structural topology relationship between mutation sites, which can be quantitatively determined using amino-acid network k -cliques. We also showed that double-site mutation correlations can be significantly altered by exerting a third mutation, indicating that more detailed physicochemical interactions should be considered along with the network clique-based model for better understanding of this elusive mutation-correlation principle.
Designing Industrial Networks Using Ecological Food Web Metrics.
Layton, Astrid; Bras, Bert; Weissburg, Marc
2016-10-18
Biologically Inspired Design (biomimicry) and Industrial Ecology both look to natural systems to enhance the sustainability and performance of engineered products, systems and industries. Bioinspired design (BID) traditionally has focused on a unit operation and single product level. In contrast, this paper describes how principles of network organization derived from analysis of ecosystem properties can be applied to industrial system networks. Specifically, this paper examines the applicability of particular food web matrix properties as design rules for economically and biologically sustainable industrial networks, using an optimization model developed for a carpet recycling network. Carpet recycling network designs based on traditional cost and emissions based optimization are compared to designs obtained using optimizations based solely on ecological food web metrics. The analysis suggests that networks optimized using food web metrics also were superior from a traditional cost and emissions perspective; correlations between optimization using ecological metrics and traditional optimization ranged generally from 0.70 to 0.96, with flow-based metrics being superior to structural parameters. Four structural food parameters provided correlations nearly the same as that obtained using all structural parameters, but individual structural parameters provided much less satisfactory correlations. The analysis indicates that bioinspired design principles from ecosystems can lead to both environmentally and economically sustainable industrial resource networks, and represent guidelines for designing sustainable industry networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, M; Fan, T; Duan, J
2015-06-15
Purpose: Prospectively assess the potential utility of texture analysis for differentiation of central cancer from atelectasis. Methods: 0 consecutive central lung cancer patients who were referred for CT imaging and PET-CT were enrolled. Radiotherapy doctor delineate the tumor and atelectasis according to the fusion imaging based on CT image and PET-CT image. The texture parameters (such as energy, correlation, sum average, difference average, difference entropy), were obtained respectively to quantitatively discriminate tumor and atelectasis based on gray level co-occurrence matrix (GLCM) Results: The texture analysis results showed that the parameters of correlation and sum average had an obviously statistical significance(P<0.05).more » Conclusion: the results of this study indicate that texture analysis may be useful for the differentiation of central lung cancer and atelectasis.« less
Empirical analysis of web-based user-object bipartite networks
NASA Astrophysics Data System (ADS)
Shang, Ming-Sheng; Lü, Linyuan; Zhang, Yi-Cheng; Zhou, Tao
2010-05-01
Understanding the structure and evolution of web-based user-object networks is a significant task since they play a crucial role in e-commerce nowadays. This letter reports the empirical analysis on two large-scale web sites, audioscrobbler.com and del.icio.us, where users are connected with music groups and bookmarks, respectively. The degree distributions and degree-degree correlations for both users and objects are reported. We propose a new index, named collaborative similarity, to quantify the diversity of tastes based on the collaborative selection. Accordingly, the correlation between degree and selection diversity is investigated. We report some novel phenomena well characterizing the selection mechanism of web users and outline the relevance of these phenomena to the information recommendation problem.
Algorithm of reducing the false positives in IDS based on correlation Analysis
NASA Astrophysics Data System (ADS)
Liu, Jianyi; Li, Sida; Zhang, Ru
2018-03-01
This paper proposes an algorithm of reducing the false positives in IDS based on correlation Analysis. Firstly, the algorithm analyzes the distinguishing characteristics of false positives and real alarms, and preliminary screen the false positives; then use the method of attribute similarity clustering to the alarms and further reduces the amount of alarms; finally, according to the characteristics of multi-step attack, associated it by the causal relationship. The paper also proposed a reverse causation algorithm based on the attack association method proposed by the predecessors, turning alarm information into a complete attack path. Experiments show that the algorithm simplifies the number of alarms, improve the efficiency of alarm processing, and contribute to attack purposes identification and alarm accuracy improvement.
Rank Determination of Mental Functions by 1D Wavelets and Partial Correlation.
Karaca, Y; Aslan, Z; Cattani, C; Galletta, D; Zhang, Y
2017-01-01
The main aim of this paper is to classify mental functions by the Wechsler Adult Intelligence Scale-Revised tests with a mixed method based on wavelets and partial correlation. The Wechsler Adult Intelligence Scale-Revised is a widely used test designed and applied for the classification of the adults cognitive skills in a comprehensive manner. In this paper, many different intellectual profiles have been taken into consideration to measure the relationship between the mental functioning and psychological disorder. We propose a method based on wavelets and correlation analysis for classifying mental functioning, by the analysis of some selected parameters measured by the Wechsler Adult Intelligence Scale-Revised tests. In particular, 1-D Continuous Wavelet Analysis, 1-D Wavelet Coefficient Method and Partial Correlation Method have been analyzed on some Wechsler Adult Intelligence Scale-Revised parameters such as School Education, Gender, Age, Performance Information Verbal and Full Scale Intelligence Quotient. In particular, we will show that gender variable has a negative but a significant role on age and Performance Information Verbal factors. The age parameters also has a significant relation in its role on Performance Information Verbal and Full Scale Intelligence Quotient change.
An efficient signal processing tool for impedance-based structural health monitoring
NASA Astrophysics Data System (ADS)
O'Brien, Megan K.; Taylor, Stuart G.; Farinholt, Kevin M.; Park, Gyuhae; Farrar, Charles R.
2009-03-01
Various experimental studies have demonstrated that an impedance-based approach to structural health monitoring can be an effective means of damage detection. Using the self-sensing and active-sensing capabilities of piezoelectric materials, the electromechanical impedance response can be monitored to provide a qualitative indication of the overall health of a structure. Although impedance analyzers are commonly used to collect such data, they are bulky and impractical for long-term field implementation, so a smaller and more portable device is desired. However, impedance measurements often contain a sizeable number of data points, and a smaller device may not possess enough memory to store the required information, particularly for real-time analysis. Therefore, the amount of data used to assess the integrity of a structure must be significantly reduced. A new type of cross correlation analysis, for which impedance data is instantaneously correlated between different sensor sets and different frequency ranges, as opposed to be correlated to pre-stored baseline data, is proposed to drastically reduce the amount of data to a single correlation coefficient and provide a quantitative means of detecting damage relative to the sensor positions. The proposed analysis is carried out on a 3-story representative structure and its efficiency is demonstrated.
Rapid Isolation and Detection for RNA Biomarkers for TBI Diagnostics
2015-10-01
V., Grape and wine sensory attributes correlate with pattern- based discrimination of Cabernet Sauvignon wines by a peptidic sensor array, Tetrahedron... wine samples. Partial Least Squares Regression (PLSR) was used for the correlation of wine sensory attributes to the peptide-based receptor...responses. Data analysis was done using the software XLSTAT Addinsoft, NewYork) and R.Absorbance values due to wine without the sensing ensembles were
Richter, Craig G; Thompson, William H; Bosman, Conrado A; Fries, Pascal
2015-07-01
The quantification of covariance between neuronal activities (functional connectivity) requires the observation of correlated changes and therefore multiple observations. The strength of such neuronal correlations may itself undergo moment-by-moment fluctuations, which might e.g. lead to fluctuations in single-trial metrics such as reaction time (RT), or may co-fluctuate with the correlation between activity in other brain areas. Yet, quantifying the relation between moment-by-moment co-fluctuations in neuronal correlations is precluded by the fact that neuronal correlations are not defined per single observation. The proposed solution quantifies this relation by first calculating neuronal correlations for all leave-one-out subsamples (i.e. the jackknife replications of all observations) and then correlating these values. Because the correlation is calculated between jackknife replications, we address this approach as jackknife correlation (JC). First, we demonstrate the equivalence of JC to conventional correlation for simulated paired data that are defined per observation and therefore allow the calculation of conventional correlation. While the JC recovers the conventional correlation precisely, alternative approaches, like sorting-and-binning, result in detrimental effects of the analysis parameters. We then explore the case of relating two spectral correlation metrics, like coherence, that require multiple observation epochs, where the only viable alternative analysis approaches are based on some form of epoch subdivision, which results in reduced spectral resolution and poor spectral estimators. We show that JC outperforms these approaches, particularly for short epoch lengths, without sacrificing any spectral resolution. Finally, we note that the JC can be applied to relate fluctuations in any smooth metric that is not defined on single observations. Copyright © 2015. Published by Elsevier Inc.
NASA Astrophysics Data System (ADS)
Amalita, N.; Fitria, D.; Distian, V.
2018-04-01
National examination is an assessment of learning outcomes that aims to assess the achievement of graduate competence nationally. The result of the national examination is used as a mapping of educational issues in order to arrange the national education policy. Therefore the results of National Examination are used, also, as a reference for the admission of new students to continue their education to a higher level. The results of National Examination in West Sumatra in 2016 decreased from the previous year, both elementary schools (SD) and Junior High School level (SMP). This paper aims to determine the characteristics of the National Examination results in each regency / city in West Sumatra for elementary and junior levels by using Bi-plot analysis. The result of Bi-plot Analysis provides the information that the results of the National Examination of Regency / City in West Sumatra Province are quite diverse. At Junior High School level there are 9 of Regencies / Cities which have similar characteristics. English subjects are the greatest diversity among all of subjects. The calculation results of the correlation of each variable in junior high school level are positively correlated. The variables with positive correlation are mathematics that correlates with English. Based on the mark of National Examination for elementary school level in West Sumatra, there are 8 Regencies / Cities have similar characteristics. The correlations of each variable at the elementary level are positively correlated. The variables that have positive correlation are Sciences (IPA) with Language.
Comparative study of Sperm Motility Analysis System and conventional microscopic semen analysis
KOMORI, KAZUHIKO; ISHIJIMA, SUMIO; TANJAPATKUL, PHANU; FUJITA, KAZUTOSHI; MATSUOKA, YASUHIRO; TAKAO, TETSUYA; MIYAGAWA, YASUSHI; TAKADA, SHINGO; OKUYAMA, AKIHIKO
2006-01-01
Background and Aim: Conventional manual sperm analysis still shows variations in structure, process and outcome although World Health Organization (WHO) guidelines present an appropriate method for sperm analysis. In the present study a new system for sperm analysis, Sperm Motility Analysis System (SMAS), was compared with manual semen analysis based on WHO guidelines. Materials and methods: Samples from 30 infertility patients and 21 healthy volunteers were subjected to manual microscopic analysis and SMAS analysis, simultaneously. We compared these two methods with respect to sperm concentration and percent motility. Results: Sperm concentrations obtained by SMAS (Csmas) and manual microscopic analyses on WHO guidelines (Cwho) were strongly correlated (Cwho = 1.325 × Csmas; r = 0.95, P < 0.001). If we excluded subjects with Csmas values >30 × 106 sperm/mL, the results were more similar (Cwho = 1.022 × Csmas; r = 0.81, P < 0.001). Percent motility obtained by SMAS (Msmas) and manual analysis on WHO guidelines (Mwho) were strongly correlated (Mwho = 1.214 × Msmas; r = 0.89, P < 0.001). Conclusions: The data indicate that the results of SMAS and those of manual microscopic sperm analyses based on WHO guidelines are strongly correlated. SMAS is therefore a promising system for sperm analysis. (Reprod Med Biol 2006; 5: 195–200) PMID:29662398
NASA Astrophysics Data System (ADS)
Zhou, Yu; Chen, Shi
2016-02-01
In this paper, we investigate the high-frequency cross-correlation relationship between Chinese treasury futures contracts and treasury ETF. We analyze the logarithmic return of these two price series, from which we can conclude that both return series are not normally distributed and the futures markets have greater volatility. We find significant cross-correlation between these two series. We further confirm the relationship using the DCCA coefficient and the DMCA coefficient. We quantify the long-range cross-correlation with DCCA method, and we further show that the relationship is multifractal. An arbitrage algorithm based on DFA regression with stable return is proposed in the last part.
Accurate Structural Correlations from Maximum Likelihood Superpositions
Theobald, Douglas L; Wuttke, Deborah S
2008-01-01
The cores of globular proteins are densely packed, resulting in complicated networks of structural interactions. These interactions in turn give rise to dynamic structural correlations over a wide range of time scales. Accurate analysis of these complex correlations is crucial for understanding biomolecular mechanisms and for relating structure to function. Here we report a highly accurate technique for inferring the major modes of structural correlation in macromolecules using likelihood-based statistical analysis of sets of structures. This method is generally applicable to any ensemble of related molecules, including families of nuclear magnetic resonance (NMR) models, different crystal forms of a protein, and structural alignments of homologous proteins, as well as molecular dynamics trajectories. Dominant modes of structural correlation are determined using principal components analysis (PCA) of the maximum likelihood estimate of the correlation matrix. The correlations we identify are inherently independent of the statistical uncertainty and dynamic heterogeneity associated with the structural coordinates. We additionally present an easily interpretable method (“PCA plots”) for displaying these positional correlations by color-coding them onto a macromolecular structure. Maximum likelihood PCA of structural superpositions, and the structural PCA plots that illustrate the results, will facilitate the accurate determination of dynamic structural correlations analyzed in diverse fields of structural biology. PMID:18282091
Model-based reconstruction of synthetic promoter library in Corynebacterium glutamicum.
Zhang, Shuanghong; Liu, Dingyu; Mao, Zhitao; Mao, Yufeng; Ma, Hongwu; Chen, Tao; Zhao, Xueming; Wang, Zhiwen
2018-05-01
To develop an efficient synthetic promoter library for fine-tuned expression of target genes in Corynebacterium glutamicum. A synthetic promoter library for C. glutamicum was developed based on conserved sequences of the - 10 and - 35 regions. The synthetic promoter library covered a wide range of strengths, ranging from 1 to 193% of the tac promoter. 68 promoters were selected and sequenced for correlation analysis between promoter sequence and strength with a statistical model. A new promoter library was further reconstructed with improved promoter strength and coverage based on the results of correlation analysis. Tandem promoter P70 was finally constructed with increased strength by 121% over the tac promoter. The promoter library developed in this study showed a great potential for applications in metabolic engineering and synthetic biology for the optimization of metabolic networks. To the best of our knowledge, this is the first reconstruction of synthetic promoter library based on statistical analysis of C. glutamicum.
Analysis of rocket engine injection combustion processes
NASA Technical Reports Server (NTRS)
Salmon, J. W.
1976-01-01
A critique is given of the JANNAF sub-critical propellant injection/combustion process analysis computer models and application of the models to correlation of well documented hot fire engine data bases. These programs are the distributed energy release (DER) model for conventional liquid propellants injectors and the coaxial injection combustion model (CICM) for gaseous annulus/liquid core coaxial injectors. The critique identifies model inconsistencies while the computer analyses provide quantitative data on predictive accuracy. The program is comprised of three tasks: (1) computer program review and operations; (2) analysis and data correlations; and (3) documentation.
NASA Astrophysics Data System (ADS)
Ryabinin, Gennadiy; Gavrilov, Valeriy; Polyakov, Yuriy; Timashev, Serge
2012-06-01
We propose a new type of earthquake precursor based on the analysis of correlation dynamics between geophysical signals of different nature. The precursor is found using a two-parameter cross-correlation function introduced within the framework of flicker-noise spectroscopy, a general statistical physics approach to the analysis of time series. We consider an example of cross-correlation analysis for water salinity time series, an integral characteristic of the chemical composition of groundwater, and geoacoustic emissions recorded at the G-1 borehole on the Kamchatka peninsula in the time frame from 2001 to 2003, which is characterized by a sequence of three groups of significant seismic events. We found that cross-correlation precursors took place 27, 31, and 35 days ahead of the strongest earthquakes for each group of seismic events, respectively. At the same time, precursory anomalies in the signals themselves were observed only in the geoacoustic emissions for one group of earthquakes.
Joint Blind Source Separation by Multi-set Canonical Correlation Analysis
Li, Yi-Ou; Adalı, Tülay; Wang, Wei; Calhoun, Vince D
2009-01-01
In this work, we introduce a simple and effective scheme to achieve joint blind source separation (BSS) of multiple datasets using multi-set canonical correlation analysis (M-CCA) [1]. We first propose a generative model of joint BSS based on the correlation of latent sources within and between datasets. We specify source separability conditions, and show that, when the conditions are satisfied, the group of corresponding sources from each dataset can be jointly extracted by M-CCA through maximization of correlation among the extracted sources. We compare source separation performance of the M-CCA scheme with other joint BSS methods and demonstrate the superior performance of the M-CCA scheme in achieving joint BSS for a large number of datasets, group of corresponding sources with heterogeneous correlation values, and complex-valued sources with circular and non-circular distributions. We apply M-CCA to analysis of functional magnetic resonance imaging (fMRI) data from multiple subjects and show its utility in estimating meaningful brain activations from a visuomotor task. PMID:20221319
Detection of moisture and moisture related phenomena from Skylab. [Texas and Kansas
NASA Technical Reports Server (NTRS)
Eagleman, J. R. (Principal Investigator); Lin, W. C.
1974-01-01
The author has identified the following significant results. The high correlations between radiometric temperature and soil moisture content are shown to remain quite high for independent footprints of the S194 sensor. Since an analysis based on overlapping footprints had previously been reported with a high correlation, it was necessary to verify that the correlation did not arise from dependent data.
Pradhan, Biswajeet; Chaudhari, Amruta; Adinarayana, J; Buchroithner, Manfred F
2012-01-01
In this paper, an attempt has been made to assess, prognosis and observe dynamism of soil erosion by universal soil loss equation (USLE) method at Penang Island, Malaysia. Multi-source (map-, space- and ground-based) datasets were used to obtain both static and dynamic factors of USLE, and an integrated analysis was carried out in raster format of GIS. A landslide location map was generated on the basis of image elements interpretation from aerial photos, satellite data and field observations and was used to validate soil erosion intensity in the study area. Further, a statistical-based frequency ratio analysis was carried out in the study area for correlation purposes. The results of the statistical correlation showed a satisfactory agreement between the prepared USLE-based soil erosion map and landslide events/locations, and are directly proportional to each other. Prognosis analysis on soil erosion helps the user agencies/decision makers to design proper conservation planning program to reduce soil erosion. Temporal statistics on soil erosion in these dynamic and rapid developments in Penang Island indicate the co-existence and balance of ecosystem.
Joseph, Bellal; Azim, Asad; O'Keeffe, Terence; Ibraheem, Kareem; Kulvatunyou, Narong; Tang, Andrew; Vercruysse, Gary; Friese, Randall; Latifi, Rifat; Rhee, Peter
2017-04-01
The Hospital Consumer Assessment of Healthcare Providers and Systems (HCAHPS) survey is a data collection methodology for measuring a patient's perception of his/her hospital experience, and it has been selected by the Centers of Medicare and Medicaid Services as the validated and transparent national survey tool with publicly available results. Since 2012, hospital reimbursements rates have been linked to HCAHPS data based on patient satisfaction scores. The aim of this study was, therefore, to assess whether HCAHPS scores of Level I trauma centers correlate with actual hospital performance. Retrospective analysis of the latest publicly available HCAHPS data (2014-2015) was performed. American College of Surgeons (ACS) verified Level I trauma centers for each state were identified from the ACS registry and then the following data points were collected for each hospital: HCAHPS linear mean scores regarding cleanliness of the hospital, doctor and nurse communication with the patient, staff responsiveness, pain management, overall hospital rating, and patient willingness to recommend the hospital. Our outcome measure were serious complication scores, failure-to-rescue (FTR) scores and readmission-after-discharge scores. Spearman correlation analysis was performed. A total of 119 ACS verified Level I trauma centers across 46 states were included. The median [IQR] overall hospital rating score for Level I trauma centers was 89 (87-90). The mean ± SD score for serious complication was 0.96 ± 0.266, FTR was 123.06 ± 22.5, and readmission after discharge was 15.71 ± 1.07. The Spearman correlation analysis showed that overall HCAHP-based hospital rating scores did not correlate with serious complications (correlation coefficient = 0.14 p = 0.125), FTR (correlation coefficient = -0.15 p = 0.073), or readmission after discharge (correlation coefficient = -0.18 p = 0.053). The findings of our study suggest that no correlation exists between HCAHPS patient satisfaction scores and hospital performance for Level I trauma centers. Consequently, the Centers of Medicare and Medicaid Services should reconsider hospital reimbursement decisions based on HCAHP patient satisfaction scores. Prognostic/epidemiologic study, level III; therapeutic study, level IV.
NASA Technical Reports Server (NTRS)
Holanda, R.
1984-01-01
The thermoelectric properties alloys of the nickel-base, iron-base, and cobalt-base groups containing from 1% to 25% 106 chromium were compared and correlated with the following material characteristics: atomic percent of the principle alloy constituent; ratio of concentration of two constituents; alloy physical property (electrical resistivity); alloy phase structure (percent precipitate or percent hardener content); alloy electronic structure (electron concentration). For solid-solution-type alloys the most consistent correlation was obtained with electron concentration, for precipitation-hardenable alloys of the nickel-base superalloy group, the thermoelectric potential correlated with hardener content in the alloy structure. For solid-solution-type alloys, no problems were found with thermoelectric stability to 1000; for precipitation-hardenable alloys, thermoelectric stability was dependent on phase stability. The effects of the compositional range of alloy constituents on temperature measurement uncertainty are discussed.
Detrended fluctuation analysis made flexible to detect range of cross-correlated fluctuations
NASA Astrophysics Data System (ADS)
Kwapień, Jarosław; Oświecimka, Paweł; DroŻdŻ, Stanisław
2015-11-01
The detrended cross-correlation coefficient ρDCCA has recently been proposed to quantify the strength of cross-correlations on different temporal scales in bivariate, nonstationary time series. It is based on the detrended cross-correlation and detrended fluctuation analyses (DCCA and DFA, respectively) and can be viewed as an analog of the Pearson coefficient in the case of the fluctuation analysis. The coefficient ρDCCA works well in many practical situations but by construction its applicability is limited to detection of whether two signals are generally cross-correlated, without the possibility to obtain information on the amplitude of fluctuations that are responsible for those cross-correlations. In order to introduce some related flexibility, here we propose an extension of ρDCCA that exploits the multifractal versions of DFA and DCCA: multifractal detrended fluctuation analysis and multifractal detrended cross-correlation analysis, respectively. The resulting new coefficient ρq not only is able to quantify the strength of correlations but also allows one to identify the range of detrended fluctuation amplitudes that are correlated in two signals under study. We show how the coefficient ρq works in practical situations by applying it to stochastic time series representing processes with long memory: autoregressive and multiplicative ones. Such processes are often used to model signals recorded from complex systems and complex physical phenomena like turbulence, so we are convinced that this new measure can successfully be applied in time-series analysis. In particular, we present an example of such application to highly complex empirical data from financial markets. The present formulation can straightforwardly be extended to multivariate data in terms of the q -dependent counterpart of the correlation matrices and then to the network representation.
Image encryption based on a delayed fractional-order chaotic logistic system
NASA Astrophysics Data System (ADS)
Wang, Zhen; Huang, Xia; Li, Ning; Song, Xiao-Na
2012-05-01
A new image encryption scheme is proposed based on a delayed fractional-order chaotic logistic system. In the process of generating a key stream, the time-varying delay and fractional derivative are embedded in the proposed scheme to improve the security. Such a scheme is described in detail with security analyses including correlation analysis, information entropy analysis, run statistic analysis, mean-variance gray value analysis, and key sensitivity analysis. Experimental results show that the newly proposed image encryption scheme possesses high security.
Breast density estimation from high spectral and spatial resolution MRI
Li, Hui; Weiss, William A.; Medved, Milica; Abe, Hiroyuki; Newstead, Gillian M.; Karczmar, Gregory S.; Giger, Maryellen L.
2016-01-01
Abstract. A three-dimensional breast density estimation method is presented for high spectral and spatial resolution (HiSS) MR imaging. Twenty-two patients were recruited (under an Institutional Review Board--approved Health Insurance Portability and Accountability Act-compliant protocol) for high-risk breast cancer screening. Each patient received standard-of-care clinical digital x-ray mammograms and MR scans, as well as HiSS scans. The algorithm for breast density estimation includes breast mask generating, breast skin removal, and breast percentage density calculation. The inter- and intra-user variabilities of the HiSS-based density estimation were determined using correlation analysis and limits of agreement. Correlation analysis was also performed between the HiSS-based density estimation and radiologists’ breast imaging-reporting and data system (BI-RADS) density ratings. A correlation coefficient of 0.91 (p<0.0001) was obtained between left and right breast density estimations. An interclass correlation coefficient of 0.99 (p<0.0001) indicated high reliability for the inter-user variability of the HiSS-based breast density estimations. A moderate correlation coefficient of 0.55 (p=0.0076) was observed between HiSS-based breast density estimations and radiologists’ BI-RADS. In summary, an objective density estimation method using HiSS spectral data from breast MRI was developed. The high reproducibility with low inter- and low intra-user variabilities shown in this preliminary study suggest that such a HiSS-based density metric may be potentially beneficial in programs requiring breast density such as in breast cancer risk assessment and monitoring effects of therapy. PMID:28042590
Grace, Peter M.; Hurley, Daniel; Barratt, Daniel T.; Tsykin, Anna; Watkins, Linda R.; Rolan, Paul E.; Hutchinson, Mark R.
2017-01-01
A quantitative, peripherally accessible biomarker for neuropathic pain has great potential to improve clinical outcomes. Based on the premise that peripheral and central immunity contribute to neuropathic pain mechanisms, we hypothesized that biomarkers could be identified from the whole blood of adult male rats, by integrating graded chronic constriction injury (CCI), ipsilateral lumbar dorsal quadrant (iLDQ) and whole blood transcriptomes, and pathway analysis with pain behavior. Correlational bioinformatics identified a range of putative biomarker genes for allodynia intensity, many encoding for proteins with a recognized role in immune/nociceptive mechanisms. A selection of these genes was validated in a separate replication study. Pathway analysis of the iLDQ transcriptome identified Fcγ and Fcε signaling pathways, among others. This study is the first to employ the whole blood transcriptome to identify pain biomarker panels. The novel correlational bioinformatics, developed here, selected such putative biomarkers based on a correlation with pain behavior and formation of signaling pathways with iLDQ genes. Future studies may demonstrate the predictive ability of these biomarker genes across other models and additional variables. PMID:22697386
Correlation dimension of financial market
NASA Astrophysics Data System (ADS)
Nie, Chun-Xiao
2017-05-01
In this paper, correlation dimension is applied to financial data analysis. We calculate the correlation dimensions of some real market data and find that the dimensions are significantly smaller than those of the simulation data based on geometric Brownian motion. Based on the analysis of the Chinese and US stock market data, the main results are as follows. First, by calculating three data sets for the Chinese and US market, we find that large market volatility leads to a significant decrease in the dimensions. Second, based on 5-min stock price data, we find that the Chinese market dimension is significantly larger than the US market; this shows a significant difference between the two markets for high frequency data. Third, we randomly extract stocks from a stock set and calculate the correlation dimensions, and find that the average value of these dimensions is close to the dimension of the original set. In addition, we analyse the intuitional meaning of the relevant dimensions used in this paper, which are directly related to the average degree of the financial threshold network. The dimension measures the speed of the average degree that varies with the threshold value. A smaller dimension means that the rate of change is slower.
Cross-correlations between crude oil and agricultural commodity markets
NASA Astrophysics Data System (ADS)
Liu, Li
2014-02-01
In this paper, we investigate cross-correlations between crude oil and agricultural commodity markets. Based on a popular statistical test proposed by Podobnik et al. (2009), we find that the linear return cross-correlations are significant at larger lag lengths and the volatility cross-correlations are highly significant at all of the lag lengths under consideration. Using a detrended cross-correlation analysis (DCCA), we find that the return cross-correlations are persistent for corn and soybean and anti-persistent for oat and soybean. The volatility cross-correlations are strongly persistent. Using a nonlinear cross-correlation measure, our results show that cross-correlations are relatively weak but they are significant for smaller time scales. For larger time scales, the cross-correlations are not significant. The reason may be that information transmission from crude oil market to agriculture markets can complete within a certain period of time. Finally, based on multifractal extension of DCCA, we find that the cross-correlations are multifractal and high oil prices partly contribute to food crisis during the period of 2006-mid-2008.
2013-01-01
Background Metabolomics has become increasingly popular in the study of disease phenotypes and molecular pathophysiology. One branch of metabolomics that encompasses the high-throughput screening of cellular metabolism is metabolic profiling. In the present study, the metabolic profiles of different tumour cells from colorectal carcinoma and breast adenocarcinoma were exposed to hypoxic and normoxic conditions and these have been compared to reveal the potential metabolic effects of hypoxia on the biochemistry of the tumour cells; this may contribute to their survival in oxygen compromised environments. In an attempt to analyse the complex interactions between metabolites beyond routine univariate and multivariate data analysis methods, correlation analysis has been integrated with a human metabolic reconstruction to reveal connections between pathways that are associated with normoxic or hypoxic oxygen environments. Results Correlation analysis has revealed statistically significant connections between metabolites, where differences in correlations between cells exposed to different oxygen levels have been highlighted as markers of hypoxic metabolism in cancer. Network mapping onto reconstructed human metabolic models is a novel addition to correlation analysis. Correlated metabolites have been mapped onto the Edinburgh human metabolic network (EHMN) with the aim of interlinking metabolites found to be regulated in a similar fashion in response to oxygen. This revealed novel pathways within the metabolic network that may be key to tumour cell survival at low oxygen. Results show that the metabolic responses to lowering oxygen availability can be conserved or specific to a particular cell line. Network-based correlation analysis identified conserved metabolites including malate, pyruvate, 2-oxoglutarate, glutamate and fructose-6-phosphate. In this way, this method has revealed metabolites not previously linked, or less well recognised, with respect to hypoxia before. Lactate fermentation is one of the key themes discussed in the field of hypoxia; however, malate, pyruvate, 2-oxoglutarate, glutamate and fructose-6-phosphate, which are connected by a single pathway, may provide a more significant marker of hypoxia in cancer. Conclusions Metabolic networks generated for each cell line were compared to identify conserved metabolite pathway responses to low oxygen environments. Furthermore, we believe this methodology will have general application within metabolomics. PMID:24153255
Compositional correlations in the chicken genome.
Musto, H; Romero, H; Zavala, A; Bernardi, G
1999-09-01
This paper analyses the compositional correlations that hold in the chicken genome. Significant linear correlations were found among the regions studied-coding sequences (and their first, second, and third codon positions), flanking regions (5' and 3'), and introns-as is the case in the human genome. We found that these compositional correlations are not limited to global GC levels but even extend to individual bases. Furthermore, an analysis of 1037 coding sequences has confirmed a correlation among GC(3), GC(2), and GC(1). The implications of these results are discussed.
Modified multidimensional scaling approach to analyze financial markets.
Yin, Yi; Shang, Pengjian
2014-06-01
Detrended cross-correlation coefficient (σDCCA) and dynamic time warping (DTW) are introduced as the dissimilarity measures, respectively, while multidimensional scaling (MDS) is employed to translate the dissimilarities between daily price returns of 24 stock markets. We first propose MDS based on σDCCA dissimilarity and MDS based on DTW dissimilarity creatively, while MDS based on Euclidean dissimilarity is also employed to provide a reference for comparisons. We apply these methods in order to further visualize the clustering between stock markets. Moreover, we decide to confront MDS with an alternative visualization method, "Unweighed Average" clustering method, for comparison. The MDS analysis and "Unweighed Average" clustering method are employed based on the same dissimilarity. Through the results, we find that MDS gives us a more intuitive mapping for observing stable or emerging clusters of stock markets with similar behavior, while the MDS analysis based on σDCCA dissimilarity can provide more clear, detailed, and accurate information on the classification of the stock markets than the MDS analysis based on Euclidean dissimilarity. The MDS analysis based on DTW dissimilarity indicates more knowledge about the correlations between stock markets particularly and interestingly. Meanwhile, it reflects more abundant results on the clustering of stock markets and is much more intensive than the MDS analysis based on Euclidean dissimilarity. In addition, the graphs, originated from applying MDS methods based on σDCCA dissimilarity and DTW dissimilarity, may also guide the construction of multivariate econometric models.
A node-wise analysis of the uterine muscle networks for pregnancy monitoring.
Nader, N; Hassan, M; Falou, W; Marque, C; Khalil, M
2016-08-01
The recent past years have seen a noticeable increase of interest in the correlation analysis of electrohysterographic (EHG) signals in the perspective of improving the pregnancy monitoring. Here we propose a new approach based on the functional connectivity between multichannel (4×4 matrix) EHG signals recorded from the women's abdomen. The proposed pipeline includes i) the computation of the statistical couplings between the multichannel EHG signals, ii) the characterization of the connectivity matrices, computed by using the imaginary part of the coherence, based on the graph-theory analysis and iii) the use of these measures for pregnancy monitoring. The method was evaluated on a dataset of EHGs, in order to track the correlation between EHGs collected by each electrode of the matrix (called `node-wise' analysis) and follow their evolution along weeks before labor. Results showed that the strength of each node significantly increases from pregnancy to labor. Electrodes located on the median vertical axis of the uterus seemed to be the more discriminant. We speculate that the network-based analysis can be a very promising tool to improve pregnancy monitoring.
Glerean, Enrico; Salmi, Juha; Lahnakoski, Juha M; Jääskeläinen, Iiro P; Sams, Mikko
2012-01-01
Functional brain activity and connectivity have been studied by calculating intersubject and seed-based correlations of hemodynamic data acquired with functional magnetic resonance imaging (fMRI). To inspect temporal dynamics, these correlation measures have been calculated over sliding time windows with necessary restrictions on the length of the temporal window that compromises the temporal resolution. Here, we show that it is possible to increase temporal resolution by using instantaneous phase synchronization (PS) as a measure of dynamic (time-varying) functional connectivity. We applied PS on an fMRI dataset obtained while 12 healthy volunteers watched a feature film. Narrow frequency band (0.04-0.07 Hz) was used in the PS analysis to avoid artifactual results. We defined three metrics for computing time-varying functional connectivity and time-varying intersubject reliability based on estimation of instantaneous PS across the subjects: (1) seed-based PS, (2) intersubject PS, and (3) intersubject seed-based PS. Our findings show that these PS-based metrics yield results consistent with both seed-based correlation and intersubject correlation methods when inspected over the whole time series, but provide an important advantage of maximal single-TR temporal resolution. These metrics can be applied both in studies with complex naturalistic stimuli (e.g., watching a movie or listening to music in the MRI scanner) and more controlled (e.g., event-related or blocked design) paradigms. A MATLAB toolbox FUNPSY ( http://becs.aalto.fi/bml/software.html ) is openly available for using these metrics in fMRI data analysis.
Percolation analysis for cosmic web with discrete points
NASA Astrophysics Data System (ADS)
Zhang, Jiajun; Cheng, Dalong; Chu, Ming-Chung
2018-01-01
Percolation analysis has long been used to quantify the connectivity of the cosmic web. Most of the previous work is based on density fields on grids. By smoothing into fields, we lose information about galaxy properties like shape or luminosity. The lack of mathematical modeling also limits our understanding for the percolation analysis. To overcome these difficulties, we have studied percolation analysis based on discrete points. Using a friends-of-friends (FoF) algorithm, we generate the S -b b relation, between the fractional mass of the largest connected group (S ) and the FoF linking length (b b ). We propose a new model, the probability cloud cluster expansion theory to relate the S -b b relation with correlation functions. We show that the S -b b relation reflects a combination of all orders of correlation functions. Using N-body simulation, we find that the S -b b relation is robust against redshift distortion and incompleteness in observation. From the Bolshoi simulation, with halo abundance matching (HAM), we have generated a mock galaxy catalog. Good matching of the projected two-point correlation function with observation is confirmed. However, comparing the mock catalog with the latest galaxy catalog from Sloan Digital Sky Survey (SDSS) Data Release (DR)12, we have found significant differences in their S -b b relations. This indicates that the mock galaxy catalog cannot accurately retain higher-order correlation functions than the two-point correlation function, which reveals the limit of the HAM method. As a new measurement, the S -b b relation is applicable to a wide range of data types, fast to compute, and robust against redshift distortion and incompleteness and contains information of all orders of correlation functions.
Kernel-aligned multi-view canonical correlation analysis for image recognition
NASA Astrophysics Data System (ADS)
Su, Shuzhi; Ge, Hongwei; Yuan, Yun-Hao
2016-09-01
Existing kernel-based correlation analysis methods mainly adopt a single kernel in each view. However, only a single kernel is usually insufficient to characterize nonlinear distribution information of a view. To solve the problem, we transform each original feature vector into a 2-dimensional feature matrix by means of kernel alignment, and then propose a novel kernel-aligned multi-view canonical correlation analysis (KAMCCA) method on the basis of the feature matrices. Our proposed method can simultaneously employ multiple kernels to better capture the nonlinear distribution information of each view, so that correlation features learned by KAMCCA can have well discriminating power in real-world image recognition. Extensive experiments are designed on five real-world image datasets, including NIR face images, thermal face images, visible face images, handwritten digit images, and object images. Promising experimental results on the datasets have manifested the effectiveness of our proposed method.
Simulation of random road microprofile based on specified correlation function
NASA Astrophysics Data System (ADS)
Rykov, S. P.; Rykova, O. A.; Koval, V. S.; Vlasov, V. G.; Fedotov, K. V.
2018-03-01
The paper aims to develop a numerical simulation method and an algorithm for a random microprofile of special roads based on the specified correlation function. The paper used methods of correlation, spectrum and numerical analysis. It proves that the transfer function of the generating filter for known expressions of spectrum input and output filter characteristics can be calculated using a theorem on nonnegative and fractional rational factorization and integral transformation. The model of the random function equivalent of the real road surface microprofile enables us to assess springing system parameters and identify ranges of variations.
Carrión-García, Cayetano Javier; Guerra-Hernández, Eduardo J; García-Villanova, Belén; Molina-Montes, Esther
2017-06-01
We aimed to quantify and compare dietary non-enzymatic antioxidant capacity (NEAC), estimated using two dietary assessment methods, and to explore its relationship with plasma NEAC. Fifty healthy subjects volunteer to participate in this study. Two dietary assessment methods [a food frequency questionnaire (FFQ) and a 24-hour recall (24-HR)] were used to collect dietary information. Dietary NEAC, including oxygen radical absorbance capacity (ORAC), total polyphenols, ferric-reducing antioxidant power (FRAP) and trolox equivalent antioxidant capacity, was estimated using several data sources of NEAC content in food. NEAC status was measured in fasting blood samples using the same assays. We performed nonparametric Spearman's correlation analysis between pairs of dietary NEAC (FFQ and 24-HR) and diet-plasma NEAC, with and without the contribution of coffee's NEAC. Partial correlation analysis was used to estimate correlations regardless of variables potentially influencing these relationships. FFQ-based NEAC and 24-HR-based NEAC were moderately correlated, with correlation coefficients ranging from 0.54 to 0.71, after controlling for energy intake, age and sex. Statistically significant positive correlations were found for dietary FRAP, either derived from the FFQ or the 24-HR, with plasma FRAP (r ~ 0.30). This weak, albeit statistically significant, correlation for FRAP was mostly present in the fruits and vegetables food groups. Plasma ORAC without proteins and 24-HR-based total ORAC were also positively correlated (r = 0.35). The relationship between dietary NEAC and plasma FRAP and ORAC suggests the dietary NEAC may reflect antioxidant status despite its weak in vivo potential, supporting further its use in oxidative stress-related disease epidemiology.
Image analysis to evaluate the browning degree of banana (Musa spp.) peel.
Cho, Jeong-Seok; Lee, Hyeon-Jeong; Park, Jung-Hoon; Sung, Jun-Hyung; Choi, Ji-Young; Moon, Kwang-Deog
2016-03-01
Image analysis was applied to examine banana peel browning. The banana samples were divided into 3 treatment groups: no treatment and normal packaging (Cont); CO2 gas exchange packaging (CO); normal packaging with an ethylene generator (ET). We confirmed that the browning of banana peels developed more quickly in the CO group than the other groups based on sensory test and enzyme assay. The G (green) and CIE L(∗), a(∗), and b(∗) values obtained from the image analysis sharply increased or decreased in the CO group. And these colour values showed high correlation coefficients (>0.9) with the sensory test results. CIE L(∗)a(∗)b(∗) values using a colorimeter also showed high correlation coefficients but comparatively lower than those of image analysis. Based on this analysis, browning of the banana occurred more quickly for CO2 gas exchange packaging, and image analysis can be used to evaluate the browning of banana peels. Copyright © 2015 Elsevier Ltd. All rights reserved.
Interpretation of correlations in clinical research.
Hung, Man; Bounsanga, Jerry; Voss, Maren Wright
2017-11-01
Critically analyzing research is a key skill in evidence-based practice and requires knowledge of research methods, results interpretation, and applications, all of which rely on a foundation based in statistics. Evidence-based practice makes high demands on trained medical professionals to interpret an ever-expanding array of research evidence. As clinical training emphasizes medical care rather than statistics, it is useful to review the basics of statistical methods and what they mean for interpreting clinical studies. We reviewed the basic concepts of correlational associations, violations of normality, unobserved variable bias, sample size, and alpha inflation. The foundations of causal inference were discussed and sound statistical analyses were examined. We discuss four ways in which correlational analysis is misused, including causal inference overreach, over-reliance on significance, alpha inflation, and sample size bias. Recent published studies in the medical field provide evidence of causal assertion overreach drawn from correlational findings. The findings present a primer on the assumptions and nature of correlational methods of analysis and urge clinicians to exercise appropriate caution as they critically analyze the evidence before them and evaluate evidence that supports practice. Critically analyzing new evidence requires statistical knowledge in addition to clinical knowledge. Studies can overstate relationships, expressing causal assertions when only correlational evidence is available. Failure to account for the effect of sample size in the analyses tends to overstate the importance of predictive variables. It is important not to overemphasize the statistical significance without consideration of effect size and whether differences could be considered clinically meaningful.
Expert golf instructors' student-teacher interaction patterns.
Schempp, Paul; McCullick, Bryan; St Pierre, Peter; Woorons, Sophie; You, JeongAe; Clark, Betsy
2004-03-01
The purpose of this study was to identify the dominant instructional interaction patterns of expert golf instructors. Instructors (N = 22) were selected by the Ladies Professional Golf Association (LPGA) Teaching based on the following criteria: (a) 10 or more years of golf teaching experience, (b) LPGA certification, (c) awards received for the quality of their instruction, and (d) peer and student recognition for outstanding teaching. The instructors were videotaped teaching a 60-min lesson to a novice college-age woman with no previous golf experience. The tapes were then analyzed using both the Cheffers Adaptation of Flanders' Interaction Analysis System (CAFIAS) and a qualitative analysis. Based on the findings from descriptive statistics and correlation analyses of the CAFIAS data and qualitative data analysis, several trends were identified. First, the dominant instructional behavior of these teachers was providing information to the students using both explanations and demonstrations. Second, the prevailing instructional interaction pattern of the expert teachers included extensive explanations and demonstrations followed by directions. The student followed the directions by practicing skills and received praise for their achievements. Third, high rates of directions and praise from teachers prompted student practice. Fourth, engaging students in subject-related discussion was positively correlated with teachers' questions but negatively correlated with teachers' criticisms. Finally, teacher acceptance was positively correlated with student analytic behavior, while teachers' talk negatively correlated with students initiating discussions.
Matsumoto, Hirotaka; Kiryu, Hisanori
2016-06-08
Single-cell technologies make it possible to quantify the comprehensive states of individual cells, and have the power to shed light on cellular differentiation in particular. Although several methods have been developed to fully analyze the single-cell expression data, there is still room for improvement in the analysis of differentiation. In this paper, we propose a novel method SCOUP to elucidate differentiation process. Unlike previous dimension reduction-based approaches, SCOUP describes the dynamics of gene expression throughout differentiation directly, including the degree of differentiation of a cell (in pseudo-time) and cell fate. SCOUP is superior to previous methods with respect to pseudo-time estimation, especially for single-cell RNA-seq. SCOUP also successfully estimates cell lineage more accurately than previous method, especially for cells at an early stage of bifurcation. In addition, SCOUP can be applied to various downstream analyses. As an example, we propose a novel correlation calculation method for elucidating regulatory relationships among genes. We apply this method to a single-cell RNA-seq data and detect a candidate of key regulator for differentiation and clusters in a correlation network which are not detected with conventional correlation analysis. We develop a stochastic process-based method SCOUP to analyze single-cell expression data throughout differentiation. SCOUP can estimate pseudo-time and cell lineage more accurately than previous methods. We also propose a novel correlation calculation method based on SCOUP. SCOUP is a promising approach for further single-cell analysis and available at https://github.com/hmatsu1226/SCOUP.
NASA Astrophysics Data System (ADS)
Li, Xing; Qiu, Tian; Chen, Guang; Zhong, Li-Xin; Wu, Xiao-Run
2017-04-01
Partial correlation analysis is employed to study the market impact on the Chinese stock market from both the native and external markets. Whereas the native market index is observed to have a great impact on the market correlations for both the Shanghai and Shenzhen stock markets, some external stock indices of the United States, European and Asian stock markets show a slight influence on the Chinese market. The individual stock can be affected by different economic sectors, but the dominant influence is from the sector the stock itself belongs to or closely related to, and the finance and insurance sector shows a weaker correlation with other economic sectors. Moreover, the market structure similarity exhibits a negative correlation with the price return in most time, and the structure similarity decays with the time interval.
Morelli, Maria Sole; Giannoni, Alberto; Passino, Claudio; Landini, Luigi; Emdin, Michele; Vanello, Nicola
2016-01-01
Electroencephalographic (EEG) irreducible artifacts are common and the removal of corrupted segments from the analysis may be required. The present study aims at exploring the effects of different EEG Missing Data Segment (MDS) distributions on cross-correlation analysis, involving EEG and physiological signals. The reliability of cross-correlation analysis both at single subject and at group level as a function of missing data statistics was evaluated using dedicated simulations. Moreover, a Bayesian-based approach for combining the single subject results at group level by considering each subject’s reliability was introduced. Starting from the above considerations, the cross-correlation function between EEG Global Field Power (GFP) in delta band and end-tidal CO2 (PETCO2) during rest and voluntary breath-hold was evaluated in six healthy subjects. The analysis of simulated data results at single subject level revealed a worsening of precision and accuracy in the cross-correlation analysis in the presence of MDS. At the group level, a large improvement in the results’ reliability with respect to single subject analysis was observed. The proposed Bayesian approach showed a slight improvement with respect to simple average results. Real data results were discussed in light of the simulated data tests and of the current physiological findings. PMID:27809243
Inferential Procedures for Correlation Coefficients Corrected for Attenuation.
ERIC Educational Resources Information Center
Hakstian, A. Ralph; And Others
1988-01-01
A model and computation procedure based on classical test score theory are presented for determination of a correlation coefficient corrected for attenuation due to unreliability. Delta and Monte Carlo method applications are discussed. A power analysis revealed no serious loss in efficiency resulting from correction for attentuation. (TJH)
Correlates of Military Satisfaction and Attrition Among Army Personnel.
ERIC Educational Resources Information Center
Allen, John P.; Bell, D. Bruce
A study determined relationships between Army organizational variables and levels of soldier satisfaction and assessed correlates of attrition and battalion effectiveness ratings. It was based on a secondary analysis of data collected in the Army Life-78 Study, which considered relationships of organizational climate and unit effectiveness.…
Inference for High-dimensional Differential Correlation Matrices.
Cai, T Tony; Zhang, Anru
2016-01-01
Motivated by differential co-expression analysis in genomics, we consider in this paper estimation and testing of high-dimensional differential correlation matrices. An adaptive thresholding procedure is introduced and theoretical guarantees are given. Minimax rate of convergence is established and the proposed estimator is shown to be adaptively rate-optimal over collections of paired correlation matrices with approximately sparse differences. Simulation results show that the procedure significantly outperforms two other natural methods that are based on separate estimation of the individual correlation matrices. The procedure is also illustrated through an analysis of a breast cancer dataset, which provides evidence at the gene co-expression level that several genes, of which a subset has been previously verified, are associated with the breast cancer. Hypothesis testing on the differential correlation matrices is also considered. A test, which is particularly well suited for testing against sparse alternatives, is introduced. In addition, other related problems, including estimation of a single sparse correlation matrix, estimation of the differential covariance matrices, and estimation of the differential cross-correlation matrices, are also discussed.
A study of correlations in the stock market
NASA Astrophysics Data System (ADS)
Sharma, Chandradew; Banerjee, Kinjal
2015-08-01
We study the various sectors of the Bombay Stock Exchange (BSE) for a period of 8 years from April 2006 to March 2014. Using the data of daily returns of a period of eight years we make a direct model free analysis of the pattern of the sectorial indices movement and the correlations among them. Our analysis shows significant auto correlation among the individual sectors and also strong cross-correlation among sectors. We also find that auto correlations in some of the sectors persist in time. This is a very significant result and has not been reported so far in Indian context. These findings will be very useful in model building for prediction of price movement of equities, derivatives and portfolio management. We show that the Random Walk Hypothesis is not applicable in modeling the Indian market and mean-variance-skewness-kurtosis based portfolio optimization might be required. We also find that almost all sectors are highly correlated during large fluctuation periods and have only moderate correlation during normal periods.
Fetterhoff, Dustin; Opris, Ioan; Simpson, Sean L.; Deadwyler, Sam A.; Hampson, Robert E.; Kraft, Robert A.
2014-01-01
Background Multifractal analysis quantifies the time-scale-invariant properties in data by describing the structure of variability over time. By applying this analysis to hippocampal interspike interval sequences recorded during performance of a working memory task, a measure of long-range temporal correlations and multifractal dynamics can reveal single neuron correlates of information processing. New method Wavelet leaders-based multifractal analysis (WLMA) was applied to hippocampal interspike intervals recorded during a working memory task. WLMA can be used to identify neurons likely to exhibit information processing relevant to operation of brain–computer interfaces and nonlinear neuronal models. Results Neurons involved in memory processing (“Functional Cell Types” or FCTs) showed a greater degree of multifractal firing properties than neurons without task-relevant firing characteristics. In addition, previously unidentified FCTs were revealed because multifractal analysis suggested further functional classification. The cannabinoid-type 1 receptor partial agonist, tetrahydrocannabinol (THC), selectively reduced multifractal dynamics in FCT neurons compared to non-FCT neurons. Comparison with existing methods WLMA is an objective tool for quantifying the memory-correlated complexity represented by FCTs that reveals additional information compared to classification of FCTs using traditional z-scores to identify neuronal correlates of behavioral events. Conclusion z-Score-based FCT classification provides limited information about the dynamical range of neuronal activity characterized by WLMA. Increased complexity, as measured with multifractal analysis, may be a marker of functional involvement in memory processing. The level of multifractal attributes can be used to differentially emphasize neural signals to improve computational models and algorithms underlying brain–computer interfaces. PMID:25086297
Fatigue reliability of deck structures subjected to correlated crack growth
NASA Astrophysics Data System (ADS)
Feng, G. Q.; Garbatov, Y.; Guedes Soares, C.
2013-12-01
The objective of this work is to analyse fatigue reliability of deck structures subjected to correlated crack growth. The stress intensity factors of the correlated cracks are obtained by finite element analysis and based on which the geometry correction functions are derived. The Monte Carlo simulations are applied to predict the statistical descriptors of correlated cracks based on the Paris-Erdogan equation. A probabilistic model of crack growth as a function of time is used to analyse the fatigue reliability of deck structures accounting for the crack propagation correlation. A deck structure is modelled as a series system of stiffened panels, where a stiffened panel is regarded as a parallel system composed of plates and are longitudinal. It has been proven that the method developed here can be conveniently applied to perform the fatigue reliability assessment of structures subjected to correlated crack growth.
Personalized Medicine in Veterans with Traumatic Brain Injuries
2013-05-01
Pair-Group Method using Arithmetic averages ( UPGMA ) based on cosine correlation of row mean centered log2 signal values; this was the top 50%-tile...cluster- ing was performed by the UPGMA method using Cosine correlation as the similarity metric. For comparative purposes, clustered heat maps included...non-mTBI cases were subjected to unsupervised hierarchical clustering analysis using the UPGMA algorithm with cosine correlation as the similarity
Personalized Medicine in Veterans with Traumatic Brain Injuries
2014-07-01
9 control cases are subjected to unsupervised hierarchical clustering analysis using the UPGMA algorithm with cosine correlation as the similarity...in unsu- pervised hierarchical clustering by the Un- weighted Pair-Group Method using Arithmetic averages ( UPGMA ) based on cosine correlation of row...of log2 trans- formed MAS5.0 signal values; probe set cluster- ing was performed by the UPGMA method using Cosine correlation as the similarity
NASA Astrophysics Data System (ADS)
Roubidoux, J. A.; Jackson, J. E.; Lasseigne, A. N.; Mishra, B.; Olson, D. L.
2010-02-01
This paper correlates nonlinear material properties to nondestructive electronic measurements by using wave analysis techniques (e.g. Perturbation Methods) and incorporating higher-order phenomena. The correlations suggest that nondestructive electronic property measurements and practices can be used to assess thin films, surface layers, and other advanced materials that exhibit modified behaviors based on their space-charged interfacial behavior.
Lobsien, D; Ettrich, B; Sotiriou, K; Classen, J; Then Bergh, F; Hoffmann, K-T
2014-01-01
Functional correlates of microstructural damage of the brain affected by MS are incompletely understood. The purpose of this study was to evaluate correlations of visual-evoked potentials with microstructural brain changes as determined by DTI in patients with demyelinating central nervous disease. Sixty-one patients with clinically isolated syndrome or MS were prospectively recruited. The mean P100 visual-evoked potential latencies of the right and left eyes of each patient were calculated and used for the analysis. For DTI acquisition, a single-shot echo-planar imaging pulse sequence with 80 diffusion directions was performed at 3T. Fractional anisotropy, radial diffusivity, and axial diffusivity were calculated and correlated with mean P100 visual-evoked potentials by tract-based spatial statistics. Significant negative correlations between mean P100 visual-evoked potentials and fractional anisotropy and significant positive correlations between mean P100 visual-evoked potentials and radial diffusivity were found widespread over the whole brain. The highest significance was found in the optic radiation, frontoparietal white matter, and corpus callosum. Significant positive correlations between mean P100 visual-evoked potentials and axial diffusivity were less widespread, notably sparing the optic radiation. Microstructural changes of the whole brain correlated significantly with mean P100 visual-evoked potentials. The distribution of the correlations showed clear differences among axial diffusivity, fractional anisotropy, and radial diffusivity, notably in the optic radiation. This finding suggests a stronger correlation of mean P100 visual-evoked potentials to demyelination than to axonal damage. © 2014 by American Journal of Neuroradiology.
Functional overestimation due to spatial smoothing of fMRI data.
Liu, Peng; Calhoun, Vince; Chen, Zikuan
2017-11-01
Pearson correlation (simply correlation) is a basic technique for neuroimage function analysis. It has been observed that the spatial smoothing may cause functional overestimation, which however remains a lack of complete understanding. Herein, we present a theoretical explanation from the perspective of correlation scale invariance. For a task-evoked spatiotemporal functional dataset, we can extract the functional spatial map by calculating the temporal correlations (tcorr) of voxel timecourses against the task timecourse. From the relationship between image noise level (changed through spatial smoothing) and the tcorr map calculation, we show that the spatial smoothing causes a noise reduction, which in turn smooths the tcorr map and leads to a spatial expansion on neuroactivity blob estimation. Through numerical simulations and subject experiments, we show that the spatial smoothing of fMRI data may overestimate activation spots in the correlation functional map. Our results suggest a small spatial smoothing (with a smoothing kernel with a full width at half maximum (FWHM) of no more than two voxels) on fMRI data processing for correlation-based functional mapping COMPARISON WITH EXISTING METHODS: In extreme noiselessness, the correlation of scale-invariance property defines a meaningless binary tcorr map. In reality, a functional activity blob in a tcorr map is shaped due to the spoilage of image noise on correlative responses. We may reduce data noise level by smoothing processing, which poses a smoothing effect on correlation. This logic allows us to understand the noise dependence and the smoothing effect of correlation-based fMRI data analysis. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pierson, Kyle D.; Hochhalter, Jacob D.; Spear, Ashley D.
2018-05-01
Systematic correlation analysis was performed between simulated micromechanical fields in an uncracked polycrystal and the known path of an eventual fatigue-crack surface based on experimental observation. Concurrent multiscale finite-element simulation of cyclic loading was performed using a high-fidelity representation of grain structure obtained from near-field high-energy x-ray diffraction microscopy measurements. An algorithm was developed to parameterize and systematically correlate the three-dimensional (3D) micromechanical fields from simulation with the 3D fatigue-failure surface from experiment. For comparison, correlation coefficients were also computed between the micromechanical fields and hypothetical, alternative surfaces. The correlation of the fields with hypothetical surfaces was found to be consistently weaker than that with the known crack surface, suggesting that the micromechanical fields of the cyclically loaded, uncracked microstructure might provide some degree of predictiveness for microstructurally small fatigue-crack paths, although the extent of such predictiveness remains to be tested. In general, gradients of the field variables exhibit stronger correlations with crack path than the field variables themselves. Results from the data-driven approach implemented here can be leveraged in future model development for prediction of fatigue-failure surfaces (for example, to facilitate univariate feature selection required by convolution-based models).
Cross-correlations between West Texas Intermediate crude oil and the stock markets of the BRIC
NASA Astrophysics Data System (ADS)
Ma, Feng; Wei, Yu; Huang, Dengshi; Zhao, Lin
2013-11-01
In this paper, we investigate the cross-correlation properties between West Texas Intermediate crude oil and the stock markets of the BRIC. We use not only the qualitative analysis of the cross-correlation test, but also take the quantitative analysis of the MF-DXA, confirming the cross-correlation relationship between West Texas Intermediate crude oil and the stock markets of the BRIC (Brazil, Russia, India and China) respectively, which have strongly multifractal features, and the cross-correlations are more strongly multifractal in the short term than in the long term. Furthermore, based on the multifractal spectrum, we also find the multifractality strength between the crude oil WTI and Chinese stock market is stronger than the multifractality strength of other pairs. Based on the Iraq war (Mar 20, 2003) and the Financial crisis in 2008, we divide sample period into four segments to research the degree of the multifractal (ΔH) and the market efficiency (and the risk). Finally, we employ the technique of the rolling window to calculate the time-varying EI (efficiency index) and dependent on the EI, we can easily observe the change of stock markets. Furthermore, we explore the relationship between bivariate cross-correlation exponents (Hxy(q)) and the generalized Hurst exponents.
Schram, Ben; Hing, Wayne; Climstein, Mike
2016-01-01
Stand-up paddle boarding (SUP) is a rapidly growing sport and recreational activity for which only anecdotal evidence exists on its proposed health, fitness, and injury-rehabilitation benefits. 10 internationally and nationally ranked elite SUP athletes. Participants were assessed for their maximal aerobic power on an ergometer in a laboratory and compared with other water-based athletes. Field-based assessments were subsequently performed using a portable gas-analysis system, and a correlation between the 2 measures was performed. Maximal aerobic power (relative) was significantly higher (P = .037) when measured in the field with a portable gas-analysis system (45.48 ± 6.96 mL · kg(-1) · min(-1)) than with laboratory-based metabolic-cart measurements (43.20 ± 6.67 mL · kg(-1) · min(-1)). There was a strong, positive correlation (r = .907) between laboratory and field maximal aerobic power results. Significantly higher (P = .000) measures of SUP paddling speed were found in the field than with the laboratory ergometer (+42.39%). There were no significant differences in maximal heart rate between the laboratory and field settings (P = .576). The results demonstrate the maximal aerobic power representative of internationally and nationally ranked SUP athletes and show that SUP athletes can be assessed for maximal aerobic power in the laboratory with high correlation to field-based measures. The field-based portable gas-analysis unit has a tendency to consistently measure higher oxygen consumption. Elite SUP athletes display aerobic power outputs similar to those of other upper-limb-dominant elite water-based athletes (surfing, dragon-boat racing, and canoeing).
NASA Astrophysics Data System (ADS)
Zheng, W.; Gao, J. M.; Wang, R. X.; Chen, K.; Jiang, Y.
2017-12-01
This paper put forward a new method of technical characteristics deployment based on Reliability Function Deployment (RFD) by analysing the advantages and shortages of related research works on mechanical reliability design. The matrix decomposition structure of RFD was used to describe the correlative relation between failure mechanisms, soft failures and hard failures. By considering the correlation of multiple failure modes, the reliability loss of one failure mode to the whole part was defined, and a calculation and analysis model for reliability loss was presented. According to the reliability loss, the reliability index value of the whole part was allocated to each failure mode. On the basis of the deployment of reliability index value, the inverse reliability method was employed to acquire the values of technology characteristics. The feasibility and validity of proposed method were illustrated by a development case of machining centre’s transmission system.
A Query Expansion Framework in Image Retrieval Domain Based on Local and Global Analysis
Rahman, M. M.; Antani, S. K.; Thoma, G. R.
2011-01-01
We present an image retrieval framework based on automatic query expansion in a concept feature space by generalizing the vector space model of information retrieval. In this framework, images are represented by vectors of weighted concepts similar to the keyword-based representation used in text retrieval. To generate the concept vocabularies, a statistical model is built by utilizing Support Vector Machine (SVM)-based classification techniques. The images are represented as “bag of concepts” that comprise perceptually and/or semantically distinguishable color and texture patches from local image regions in a multi-dimensional feature space. To explore the correlation between the concepts and overcome the assumption of feature independence in this model, we propose query expansion techniques in the image domain from a new perspective based on both local and global analysis. For the local analysis, the correlations between the concepts based on the co-occurrence pattern, and the metrical constraints based on the neighborhood proximity between the concepts in encoded images, are analyzed by considering local feedback information. We also analyze the concept similarities in the collection as a whole in the form of a similarity thesaurus and propose an efficient query expansion based on the global analysis. The experimental results on a photographic collection of natural scenes and a biomedical database of different imaging modalities demonstrate the effectiveness of the proposed framework in terms of precision and recall. PMID:21822350
Zhao, Xiao-Mei; Pu, Shi-Biao; Zhao, Qing-Guo; Gong, Man; Wang, Jia-Bo; Ma, Zhi-Jie; Xiao, Xiao-He; Zhao, Kui-Jun
2016-08-01
In this paper, the spectrum-effect correlation analysis method was used to explore the main effective components of Tripterygium wilfordii for liver toxicity, and provide reference for promoting the quality control of T. wilfordii. Chinese medicine T.wilfordii was taken as the study object, and LC-Q-TOF-MS was used to characterize the chemical components in T. wilfordii samples from different areas, and their main components were initially identified after referring to the literature. With the normal human hepatocytes (LO2 cell line)as the carrier, acetaminophen as positive medicine, and cell inhibition rate as testing index, the simple correlation analysis and multivariate linear correlation analysis methods were used to screen the main components of T. wilfordii for liver toxicity. As a result, 10 kinds of main components were identified, and the spectrum-effect correlation analysis showed that triptolide may be the toxic component, which was consistent with previous results of traditional literature. Meanwhile it was found that tripterine and demethylzeylasteral may greatly contribute to liver toxicity in multivariate linear correlation analysis. T. wilfordii samples of different varieties or different origins showed large difference in quality, and the T. wilfordii from southwest China showed lower liver toxicity, while those from Hunan and Anhui province showed higher liver toxicity. This study will provide data support for further rational use of T. wilfordii and research on its liver toxicity ingredients. Copyright© by the Chinese Pharmaceutical Association.
Gemignani, Jessica; Middell, Eike; Barbour, Randall L; Graber, Harry L; Blankertz, Benjamin
2018-04-04
The statistical analysis of functional near infrared spectroscopy (fNIRS) data based on the general linear model (GLM) is often made difficult by serial correlations, high inter-subject variability of the hemodynamic response, and the presence of motion artifacts. In this work we propose to extract information on the pattern of hemodynamic activations without using any a priori model for the data, by classifying the channels as 'active' or 'not active' with a multivariate classifier based on linear discriminant analysis (LDA). This work is developed in two steps. First we compared the performance of the two analyses, using a synthetic approach in which simulated hemodynamic activations were combined with either simulated or real resting-state fNIRS data. This procedure allowed for exact quantification of the classification accuracies of GLM and LDA. In the case of real resting-state data, the correlations between classification accuracy and demographic characteristics were investigated by means of a Linear Mixed Model. In the second step, to further characterize the reliability of the newly proposed analysis method, we conducted an experiment in which participants had to perform a simple motor task and data were analyzed with the LDA-based classifier as well as with the standard GLM analysis. The results of the simulation study show that the LDA-based method achieves higher classification accuracies than the GLM analysis, and that the LDA results are more uniform across different subjects and, in contrast to the accuracies achieved by the GLM analysis, have no significant correlations with any of the demographic characteristics. Findings from the real-data experiment are consistent with the results of the real-plus-simulation study, in that the GLM-analysis results show greater inter-subject variability than do the corresponding LDA results. The results obtained suggest that the outcome of GLM analysis is highly vulnerable to violations of theoretical assumptions, and that therefore a data-driven approach such as that provided by the proposed LDA-based method is to be favored.
Yu, Jing; Huang, Dong-Ya; Xu, Hui-Xin; Li, Yang; Xu, Qing
2016-01-01
The aim of this study was to analyze the correlation between magnetic resonance imaging-based extramural vascular invasion (EMVI) and the prognostic clinical and histological parameters of stage T3 rectal cancers. Eighty-six patients with T3 stage rectal cancer who received surgical resection without neoadjuvant therapy were included. Magnetic resonance imaging-based EMVI scores were determined. Correlations between the scores and pretreatment carcinoembryonic antigen levels, tumor differentiation grade, nodal stage, and vascular endothelial growth factor expression were analyzed using Spearman rank coefficient analysis. Magnetic resonance imaging-based EMVI scores were statistically different (P = 0.001) between histological nodal stages (N0 vs N1 vs N2). Correlations were found between magnetic resonance imaging-based EMVI scores and tumor histological grade (rs = 0.227, P = 0.035), histological nodal stage (rs = 0.524, P < 0.001), and vascular endothelial growth factor expression (rs = 0.422; P = 0.016). Magnetic resonance imaging-based EMVI score is correlated with prognostic parameters of T3 stage rectal cancers and has the potential to become an imaging biomarker of tumor aggressiveness. Magnetic resonance imaging-based EMVI may be useful in helping the multidisciplinary team to stratify T3 rectal cancer patients for neoadjuvant therapies.
Security of statistical data bases: invasion of privacy through attribute correlational modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palley, M.A.
This study develops, defines, and applies a statistical technique for the compromise of confidential information in a statistical data base. Attribute Correlational Modeling (ACM) recognizes that the information contained in a statistical data base represents real world statistical phenomena. As such, ACM assumes correlational behavior among the database attributes. ACM proceeds to compromise confidential information through creation of a regression model, where the confidential attribute is treated as the dependent variable. The typical statistical data base may preclude the direct application of regression. In this scenario, the research introduces the notion of a synthetic data base, created through legitimate queriesmore » of the actual data base, and through proportional random variation of responses to these queries. The synthetic data base is constructed to resemble the actual data base as closely as possible in a statistical sense. ACM then applies regression analysis to the synthetic data base, and utilizes the derived model to estimate confidential information in the actual database.« less
Ozelkan, Emre; Karaman, Muhittin; Candar, Serkan; Coskun, Zafer; Ormeci, Cankut
2015-01-01
The photosynthetic rate of 9 different grapevines were analyzed with simultaneous photosynthesis and spectroradiometric measurements on 08.08.2012 (veraison) and 06.09.2012 (harvest). The wavelengths and spectral regions, which most properly express photosynthetic rate, were determined using correlation and regression analysis. In addition, hyperspectral band ratio (BR) indices sensitive to photosynthesis were developed using optimum band ratio (OBRA) method. The relation of BR results with photosynthesis values are presented with the correlation matrix maps created in this study. The examinations were performed for both specific dates (i.e., veraison and harvest) and also in aggregate (i.e., correlation between total spectra and photosynthesis data). For specific dates wavelength based analysis, the photosynthesis were best determined with -0.929 correlation coefficient (r) 609 nm of yellow region at veraison stage, and -0.870 at 641 nm of red region at harvest stage. For wavelength based aggregate analysis, 640 nm of red region was found to be correlated with 0.921 and -0.867 r values respectively and red edge (RE) (695 nm) was found to be correlated with -0.922 and -0.860 r values, respectively. When BR indices results were analyzed with photosynthetic values for specific dates, -0.987 r with R8../R, at veraison stage and -0.911 r with R696/R944 at harvest stage were found most correlated. For aggregate analysis of BR, common BR presenting great correlation with photosynthesis for both measurements was found to be R632/R971 with -0.974, -0.881 r values, respectively and other R610/R760 with -0.976, -0.879 r values. The final results of this study indicate that the proportion of RE region to a region with direct or indirect correlation with photosynthetic provides information about rate of photosynthesis. With the indices created in this study, the photosynthesis rate of vineyards can be determined using in-situ hyperspectral remote sensing. The findings of this study would enable cost-efficient, rapid and effective control of viticulture activities.
Image correlation method for DNA sequence alignment.
Curilem Saldías, Millaray; Villarroel Sassarini, Felipe; Muñoz Poblete, Carlos; Vargas Vásquez, Asticio; Maureira Butler, Iván
2012-01-01
The complexity of searches and the volume of genomic data make sequence alignment one of bioinformatics most active research areas. New alignment approaches have incorporated digital signal processing techniques. Among these, correlation methods are highly sensitive. This paper proposes a novel sequence alignment method based on 2-dimensional images, where each nucleic acid base is represented as a fixed gray intensity pixel. Query and known database sequences are coded to their pixel representation and sequence alignment is handled as object recognition in a scene problem. Query and database become object and scene, respectively. An image correlation process is carried out in order to search for the best match between them. Given that this procedure can be implemented in an optical correlator, the correlation could eventually be accomplished at light speed. This paper shows an initial research stage where results were "digitally" obtained by simulating an optical correlation of DNA sequences represented as images. A total of 303 queries (variable lengths from 50 to 4500 base pairs) and 100 scenes represented by 100 x 100 images each (in total, one million base pair database) were considered for the image correlation analysis. The results showed that correlations reached very high sensitivity (99.01%), specificity (98.99%) and outperformed BLAST when mutation numbers increased. However, digital correlation processes were hundred times slower than BLAST. We are currently starting an initiative to evaluate the correlation speed process of a real experimental optical correlator. By doing this, we expect to fully exploit optical correlation light properties. As the optical correlator works jointly with the computer, digital algorithms should also be optimized. The results presented in this paper are encouraging and support the study of image correlation methods on sequence alignment.
Hill, W D; Marioni, R E; Maghzian, O; Ritchie, S J; Hagenaars, S P; McIntosh, A M; Gale, C R; Davies, G; Deary, I J
2018-01-11
Intelligence, or general cognitive function, is phenotypically and genetically correlated with many traits, including a wide range of physical, and mental health variables. Education is strongly genetically correlated with intelligence (r g = 0.70). We used these findings as foundations for our use of a novel approach-multi-trait analysis of genome-wide association studies (MTAG; Turley et al. 2017)-to combine two large genome-wide association studies (GWASs) of education and intelligence, increasing statistical power and resulting in the largest GWAS of intelligence yet reported. Our study had four goals: first, to facilitate the discovery of new genetic loci associated with intelligence; second, to add to our understanding of the biology of intelligence differences; third, to examine whether combining genetically correlated traits in this way produces results consistent with the primary phenotype of intelligence; and, finally, to test how well this new meta-analytic data sample on intelligence predicts phenotypic intelligence in an independent sample. By combining datasets using MTAG, our functional sample size increased from 199,242 participants to 248,482. We found 187 independent loci associated with intelligence, implicating 538 genes, using both SNP-based and gene-based GWAS. We found evidence that neurogenesis and myelination-as well as genes expressed in the synapse, and those involved in the regulation of the nervous system-may explain some of the biological differences in intelligence. The results of our combined analysis demonstrated the same pattern of genetic correlations as those from previous GWASs of intelligence, providing support for the meta-analysis of these genetically-related phenotypes.
A method to determine agro-climatic zones based on correlation and cluster analyses
NASA Astrophysics Data System (ADS)
Borges Valeriano, Taynara Tuany; de Souza Rolim, Glauco; de Oliveira Aparecido, Lucas Eduardo
2017-12-01
Determining agro-climatic zones (ACZs) is traditionally made by cross-comparing meteorological elements such as air temperature, rainfall, and water deficit (DEF). This study proposes a new method based on correlations between monthly DEFs during the crop cycle and annual yield and performs a multivariate cluster analysis on these correlations. This `correlation method' was applied to all municipalities in the state of São Paulo to determine ACZs for coffee plantations. A traditional ACZ method for coffee, which is based on temperature and DEF ranges (Evangelista et al.; RBEAA, 6:445-452, 2002), was applied to the study area to compare against the correlation method. The traditional ACZ classified the "Alta Mogina," "Média Mogiana," and "Garça and Marília" regions as traditional coffee regions that were either suitable or even restricted for coffee plantations. These traditional regions have produced coffee since 1800 and should not be classified as restricted. The correlation method classified those areas as high-producing regions and expanded them into other areas. The proposed method is innovative, because it is more detailed than common ACZ methods. Each developmental crop phase was analyzed based on correlations between the monthly DEF and yield, improving the importance of crop physiology in relation to climate.
Deng, Shengming; Wu, Zhifang; Wu, Yiwei; Zhang, Wei; Li, Jihui; Dai, Na
2017-01-01
The objective of this meta-analysis is to explore the correlation between the apparent diffusion coefficient (ADC) on diffusion-weighted MR and the standard uptake value (SUV) of 18F-FDG on PET/CT in patients with cancer. Databases such as PubMed (MEDLINE included), EMBASE, and Cochrane Database of Systematic Review were searched for relevant original articles that explored the correlation between SUV and ADC in English. After applying Fisher's r-to-z transformation, correlation coefficient (r) values were extracted from each study and 95% confidence intervals (CIs) were calculated. Sensitivity and subgroup analyses based on tumor type were performed to investigate the potential heterogeneity. Forty-nine studies were eligible for the meta-analysis, comprising 1927 patients. Pooled r for all studies was −0.35 (95% CI: −0.42–0.28) and exhibited a notable heterogeneity (I2 = 78.4%; P < 0.01). In terms of the cancer type subgroup analysis, combined correlation coefficients of ADC/SUV range from −0.12 (lymphoma, n = 5) to −0.59 (pancreatic cancer, n = 2). We concluded that there is an average negative correlation between ADC and SUV in patients with cancer. Higher correlations were found in the brain tumor, cervix carcinoma, and pancreas cancer. However, a larger, prospective study is warranted to validate these findings in different cancer types. PMID:29097924
Deng, Shengming; Wu, Zhifang; Wu, Yiwei; Zhang, Wei; Li, Jihui; Dai, Na; Zhang, Bin; Yan, Jianhua
2017-01-01
The objective of this meta-analysis is to explore the correlation between the apparent diffusion coefficient (ADC) on diffusion-weighted MR and the standard uptake value (SUV) of 18 F-FDG on PET/CT in patients with cancer. Databases such as PubMed (MEDLINE included), EMBASE, and Cochrane Database of Systematic Review were searched for relevant original articles that explored the correlation between SUV and ADC in English. After applying Fisher's r -to- z transformation, correlation coefficient ( r ) values were extracted from each study and 95% confidence intervals (CIs) were calculated. Sensitivity and subgroup analyses based on tumor type were performed to investigate the potential heterogeneity. Forty-nine studies were eligible for the meta-analysis, comprising 1927 patients. Pooled r for all studies was -0.35 (95% CI: -0.42-0.28) and exhibited a notable heterogeneity ( I 2 = 78.4%; P < 0.01). In terms of the cancer type subgroup analysis, combined correlation coefficients of ADC/SUV range from -0.12 (lymphoma, n = 5) to -0.59 (pancreatic cancer, n = 2). We concluded that there is an average negative correlation between ADC and SUV in patients with cancer. Higher correlations were found in the brain tumor, cervix carcinoma, and pancreas cancer. However, a larger, prospective study is warranted to validate these findings in different cancer types.
NASA Astrophysics Data System (ADS)
Ni, X. Y.; Huang, H.; Du, W. P.
2017-02-01
The PM2.5 problem is proving to be a major public crisis and is of great public-concern requiring an urgent response. Information about, and prediction of PM2.5 from the perspective of atmospheric dynamic theory is still limited due to the complexity of the formation and development of PM2.5. In this paper, we attempted to realize the relevance analysis and short-term prediction of PM2.5 concentrations in Beijing, China, using multi-source data mining. A correlation analysis model of PM2.5 to physical data (meteorological data, including regional average rainfall, daily mean temperature, average relative humidity, average wind speed, maximum wind speed, and other pollutant concentration data, including CO, NO2, SO2, PM10) and social media data (microblog data) was proposed, based on the Multivariate Statistical Analysis method. The study found that during these factors, the value of average wind speed, the concentrations of CO, NO2, PM10, and the daily number of microblog entries with key words 'Beijing; Air pollution' show high mathematical correlation with PM2.5 concentrations. The correlation analysis was further studied based on a big data's machine learning model- Back Propagation Neural Network (hereinafter referred to as BPNN) model. It was found that the BPNN method performs better in correlation mining. Finally, an Autoregressive Integrated Moving Average (hereinafter referred to as ARIMA) Time Series model was applied in this paper to explore the prediction of PM2.5 in the short-term time series. The predicted results were in good agreement with the observed data. This study is useful for helping realize real-time monitoring, analysis and pre-warning of PM2.5 and it also helps to broaden the application of big data and the multi-source data mining methods.
NASA Astrophysics Data System (ADS)
Ouerhani, Y.; Alfalou, A.; Desthieux, M.; Brosseau, C.
2017-02-01
We present a three-step approach based on the commercial VIAPIX® module for road traffic sign recognition and identification. Firstly, detection in a scene of all objects having characteristics of traffic signs is performed. This is followed by a first-level recognition based on correlation which consists in making a comparison between each detected object with a set of reference images of a database. Finally, a second level of identification allows us to confirm or correct the previous identification. In this study, we perform a correlation-based analysis by combining and adapting the Vander Lugt correlator with the nonlinear joint transformation correlator (JTC). Of particular significance, this approach permits to make a reliable decision on road traffic sign identification. We further discuss a robust scheme allowing us to track a detected road traffic sign in a video sequence for the purpose of increasing the decision performance of our system. This approach can have broad practical applications in the maintenance and rehabilitation of transportation infrastructure, or for drive assistance.
Grabowski, Ireneusz; Teale, Andrew M; Śmiga, Szymon; Bartlett, Rodney J
2011-09-21
The framework of ab initio density-functional theory (DFT) has been introduced as a way to provide a seamless connection between the Kohn-Sham (KS) formulation of DFT and wave-function based ab initio approaches [R. J. Bartlett, I. Grabowski, S. Hirata, and S. Ivanov, J. Chem. Phys. 122, 034104 (2005)]. Recently, an analysis of the impact of dynamical correlation effects on the density of the neon atom was presented [K. Jankowski, K. Nowakowski, I. Grabowski, and J. Wasilewski, J. Chem. Phys. 130, 164102 (2009)], contrasting the behaviour for a variety of standard density functionals with that of ab initio approaches based on second-order Møller-Plesset (MP2) and coupled cluster theories at the singles-doubles (CCSD) and singles-doubles perturbative triples [CCSD(T)] levels. In the present work, we consider ab initio density functionals based on second-order many-body perturbation theory and coupled cluster perturbation theory in a similar manner, for a range of small atomic and molecular systems. For comparison, we also consider results obtained from MP2, CCSD, and CCSD(T) calculations. In addition to this density based analysis, we determine the KS correlation potentials corresponding to these densities and compare them with those obtained for a range of ab initio density functionals via the optimized effective potential method. The correlation energies, densities, and potentials calculated using ab initio DFT display a similar systematic behaviour to those derived from electronic densities calculated using ab initio wave function theories. In contrast, typical explicit density functionals for the correlation energy, such as VWN5 and LYP, do not show behaviour consistent with this picture of dynamical correlation, although they may provide some degree of correction for already erroneous explicitly density-dependent exchange-only functionals. The results presented here using orbital dependent ab initio density functionals show that they provide a treatment of exchange and correlation contributions within the KS framework that is more consistent with traditional ab initio wave function based methods.
Prediction of Spatiotemporal Patterns of Neural Activity from Pairwise Correlations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marre, O.; El Boustani, S.; Fregnac, Y.
We designed a model-based analysis to predict the occurrence of population patterns in distributed spiking activity. Using a maximum entropy principle with a Markovian assumption, we obtain a model that accounts for both spatial and temporal pairwise correlations among neurons. This model is tested on data generated with a Glauber spin-glass system and is shown to correctly predict the occurrence probabilities of spatiotemporal patterns significantly better than Ising models only based on spatial correlations. This increase of predictability was also observed on experimental data recorded in parietal cortex during slow-wave sleep. This approach can also be used to generate surrogatesmore » that reproduce the spatial and temporal correlations of a given data set.« less
Brawanski, Alexander
2017-01-01
Multimodal brain monitoring has been utilized to optimize treatment of patients with critical neurological diseases. However, the amount of data requires an integrative tool set to unmask pathological events in a timely fashion. Recently we have introduced a mathematical model allowing the simulation of pathophysiological conditions such as reduced intracranial compliance and impaired autoregulation. Utilizing a mathematical tool set called selected correlation analysis (sca), correlation patterns, which indicate impaired autoregulation, can be detected in patient data sets (scp). In this study we compared the results of the sca with the pressure reactivity index (PRx), an established marker for impaired autoregulation. Mean PRx values were significantly higher in time segments identified as scp compared to segments showing no selected correlations (nsc). The sca based approach predicted cerebral autoregulation failure with a sensitivity of 78.8% and a specificity of 62.6%. Autoregulation failure, as detected by the results of both analysis methods, was significantly correlated with poor outcome. Sca of brain monitoring data detects impaired autoregulation with high sensitivity and sufficient specificity. Since the sca approach allows the simultaneous detection of both major pathological conditions, disturbed autoregulation and reduced compliance, it may become a useful analysis tool for brain multimodal monitoring data. PMID:28255331
Proescholdt, Martin A; Faltermeier, Rupert; Bele, Sylvia; Brawanski, Alexander
2017-01-01
Multimodal brain monitoring has been utilized to optimize treatment of patients with critical neurological diseases. However, the amount of data requires an integrative tool set to unmask pathological events in a timely fashion. Recently we have introduced a mathematical model allowing the simulation of pathophysiological conditions such as reduced intracranial compliance and impaired autoregulation. Utilizing a mathematical tool set called selected correlation analysis (sca), correlation patterns, which indicate impaired autoregulation, can be detected in patient data sets (scp). In this study we compared the results of the sca with the pressure reactivity index (PRx), an established marker for impaired autoregulation. Mean PRx values were significantly higher in time segments identified as scp compared to segments showing no selected correlations (nsc). The sca based approach predicted cerebral autoregulation failure with a sensitivity of 78.8% and a specificity of 62.6%. Autoregulation failure, as detected by the results of both analysis methods, was significantly correlated with poor outcome. Sca of brain monitoring data detects impaired autoregulation with high sensitivity and sufficient specificity. Since the sca approach allows the simultaneous detection of both major pathological conditions, disturbed autoregulation and reduced compliance, it may become a useful analysis tool for brain multimodal monitoring data.
Wang, Fang
2016-06-01
In order to detect and quantify asymmetry of two time series, a novel cross-correlation coefficient is proposed based on recent asymmetric detrended cross-correlation analysis (A-DXA), which we called A-DXA coefficient. The A-DXA coefficient, as an important extension of DXA coefficient ρDXA, contains two directional asymmetric cross-correlated indexes, describing upwards and downwards asymmetric cross-correlations, respectively. By using the information of directional covariance function of two time series and directional variance function of each series itself instead of power-law between the covariance function and time scale, the proposed A-DXA coefficient can well detect asymmetry between the two series no matter whether the cross-correlation is significant or not. By means of the proposed A-DXA coefficient conducted over the asymmetry for California electricity market, we found that the asymmetry between the prices and loads is not significant for daily average data in 1999 yr market (before electricity crisis) but extremely significant for those in 2000 yr market (during the crisis). To further uncover the difference of asymmetry between the years 1999 and 2000, a modified H statistic (MH) and ΔMH statistic are proposed. One of the present contributions is that the high MH values calculated for hourly data exist in majority months in 2000 market. Another important conclusion is that the cross-correlation with downwards dominates over the whole 1999 yr in contrast to the cross-correlation with upwards dominates over the 2000 yr.
Mackay, Michael M
2016-09-01
This article offers a correlation matrix of meta-analytic estimates between various employee job attitudes (i.e., Employee engagement, job satisfaction, job involvement, and organizational commitment) and indicators of employee effectiveness (i.e., Focal performance, contextual performance, turnover intention, and absenteeism). The meta-analytic correlations in the matrix are based on over 1100 individual studies representing over 340,000 employees. Data was collected worldwide via employee self-report surveys. Structural path analyses based on the matrix, and the interpretation of the data, can be found in "Investigating the incremental validity of employee engagement in the prediction of employee effectiveness: a meta-analytic path analysis" (Mackay et al., 2016) [1].
Development of a rapid, simple assay of plasma total carotenoids
2012-01-01
Background Plasma total carotenoids can be used as an indicator of risk of chronic disease. Laboratory analysis of individual carotenoids by high performance liquid chromatography (HPLC) is time consuming, expensive, and not amenable to use beyond a research laboratory. The aim of this research is to establish a rapid, simple, and inexpensive spectrophotometric assay of plasma total carotenoids that has a very strong correlation with HPLC carotenoid profile analysis. Results Plasma total carotenoids from 29 volunteers ranged in concentration from 1.2 to 7.4 μM, as analyzed by HPLC. A linear correlation was found between the absorbance at 448 nm of an alcohol / heptane extract of the plasma and plasma total carotenoids analyzed by HPLC, with a Pearson correlation coefficient of 0.989. The average coefficient of variation for the spectrophotometric assay was 6.5% for the plasma samples. The limit of detection was about 0.3 μM and was linear up to about 34 μM without dilution. Correlations between the integrals of the absorption spectra in the range of carotenoid absorption and total plasma carotenoid concentration gave similar results to the absorbance correlation. Spectrophotometric assay results also agreed with the calculated expected absorbance based on published extinction coefficients for the individual carotenoids, with a Pearson correlation coefficient of 0.988. Conclusion The spectrophotometric assay of total carotenoids strongly correlated with HPLC analysis of carotenoids of the same plasma samples and expected absorbance values based on extinction coefficients. This rapid, simple, inexpensive assay, when coupled with the carotenoid health index, may be useful for nutrition intervention studies, population cohort studies, and public health interventions. PMID:23006902
Estimating Sobol Sensitivity Indices Using Correlations
Sensitivity analysis is a crucial tool in the development and evaluation of complex mathematical models. Sobol's method is a variance-based global sensitivity analysis technique that has been applied to computational models to assess the relative importance of input parameters on...
NASA Astrophysics Data System (ADS)
Mercer, Gary J.
This quantitative study examined the relationship between secondary students with math anxiety and physics performance in an inquiry-based constructivist classroom. The Revised Math Anxiety Rating Scale was used to evaluate math anxiety levels. The results were then compared to the performance on a physics standardized final examination. A simple correlation was performed, followed by a multivariate regression analysis to examine effects based on gender and prior math background. The correlation showed statistical significance between math anxiety and physics performance. The regression analysis showed statistical significance for math anxiety, physics performance, and prior math background, but did not show statistical significance for math anxiety, physics performance, and gender.
NASA Astrophysics Data System (ADS)
Gnyp, Andriy
2009-06-01
Based on the results of application of correlation analysis to records of the 2005 Mukacheve group of recurrent events and their subsequent relocation relative to the reference event of 7 July 2005, a conclusion has been drawn that all the events had most likely occurred on the same rup-ture plane. Station terms have been estimated for seismic stations of the Transcarpathians, accounting for variation of seismic velocities beneath their locations as compared to the travel time tables used in the study. In methodical aspect, potentials and usefulness of correlation analysis of seismic records for a more detailed study of seismic processes, tectonics and geodynamics of the Carpathian region have been demonstrated.
Incorporating scale into digital terrain analysis
NASA Astrophysics Data System (ADS)
Dragut, L. D.; Eisank, C.; Strasser, T.
2009-04-01
Digital Elevation Models (DEMs) and their derived terrain attributes are commonly used in soil-landscape modeling. Process-based terrain attributes meaningful to the soil properties of interest are sought to be produced through digital terrain analysis. Typically, the standard 3 X 3 window-based algorithms are used for this purpose, thus tying the scale of resulting layers to the spatial resolution of the available DEM. But this is likely to induce mismatches between scale domains of terrain information and soil properties of interest, which further propagate biases in soil-landscape modeling. We have started developing a procedure to incorporate scale into digital terrain analysis for terrain-based environmental modeling (Drăguţ et al., in press). The workflow was exemplified on crop yield data. Terrain information was generalized into successive scale levels with focal statistics on increasing neighborhood size. The degree of association between each terrain derivative and crop yield values was established iteratively for all scale levels through correlation analysis. The first peak of correlation indicated the scale level to be further retained. While in a standard 3 X 3 window-based analysis mean curvature was one of the poorest correlated terrain attribute, after generalization it turned into the best correlated variable. To illustrate the importance of scale, we compared the regression results of unfiltered and filtered mean curvature vs. crop yield. The comparison shows an improvement of R squared from a value of 0.01 when the curvature was not filtered, to 0.16 when the curvature was filtered within 55 X 55 m neighborhood size. This indicates the optimum size of curvature information (scale) that influences soil fertility. We further used these results in an object-based image analysis environment to create terrain objects containing aggregated values of both terrain derivatives and crop yield. Hence, we introduce terrain segmentation as an alternative method for generating scale levels in terrain-based environmental modeling. Based on segments, R squared improved up to a value of 0.47. Before integrating the procedure described above into a software application, thorough comparison between the results of different generalization techniques, on different datasets and terrain conditions is necessary. This is the subject of our ongoing research as part of the SCALA project (Scales and Hierarchies in Landform Classification). References: Drăguţ, L., Schauppenlehner, T., Muhar, A., Strobl, J. and Blaschke, T., in press. Optimization of scale and parametrization for terrain segmentation: an application to soil-landscape modeling, Computers & Geosciences.
Correlative weighted stacking for seismic data in the wavelet domain
Zhang, S.; Xu, Y.; Xia, J.; ,
2004-01-01
Horizontal stacking plays a crucial role for modern seismic data processing, for it not only compresses random noise and multiple reflections, but also provides a foundational data for subsequent migration and inversion. However, a number of examples showed that random noise in adjacent traces exhibits correlation and coherence. The average stacking and weighted stacking based on the conventional correlative function all result in false events, which are caused by noise. Wavelet transform and high order statistics are very useful methods for modern signal processing. The multiresolution analysis in wavelet theory can decompose signal on difference scales, and high order correlative function can inhibit correlative noise, for which the conventional correlative function is of no use. Based on the theory of wavelet transform and high order statistics, high order correlative weighted stacking (HOCWS) technique is presented in this paper. Its essence is to stack common midpoint gathers after the normal moveout correction by weight that is calculated through high order correlative statistics in the wavelet domain. Synthetic examples demonstrate its advantages in improving the signal to noise (S/N) ration and compressing the correlative random noise.
Le Pogam, Adrien; Hatt, Mathieu; Descourt, Patrice; Boussion, Nicolas; Tsoumpas, Charalampos; Turkheimer, Federico E; Prunier-Aesch, Caroline; Baulieu, Jean-Louis; Guilloteau, Denis; Visvikis, Dimitris
2011-09-01
Partial volume effects (PVEs) are consequences of the limited spatial resolution in emission tomography leading to underestimation of uptake in tissues of size similar to the point spread function (PSF) of the scanner as well as activity spillover between adjacent structures. Among PVE correction methodologies, a voxel-wise mutual multiresolution analysis (MMA) was recently introduced. MMA is based on the extraction and transformation of high resolution details from an anatomical image (MR/CT) and their subsequent incorporation into a low-resolution PET image using wavelet decompositions. Although this method allows creating PVE corrected images, it is based on a 2D global correlation model, which may introduce artifacts in regions where no significant correlation exists between anatomical and functional details. A new model was designed to overcome these two issues (2D only and global correlation) using a 3D wavelet decomposition process combined with a local analysis. The algorithm was evaluated on synthetic, simulated and patient images, and its performance was compared to the original approach as well as the geometric transfer matrix (GTM) method. Quantitative performance was similar to the 2D global model and GTM in correlated cases. In cases where mismatches between anatomical and functional information were present, the new model outperformed the 2D global approach, avoiding artifacts and significantly improving quality of the corrected images and their quantitative accuracy. A new 3D local model was proposed for a voxel-wise PVE correction based on the original mutual multiresolution analysis approach. Its evaluation demonstrated an improved and more robust qualitative and quantitative accuracy compared to the original MMA methodology, particularly in the absence of full correlation between anatomical and functional information.
Reduced flexibility associated with metabolic syndrome in community-dwelling elders.
Chang, Ke-Vin; Hung, Chen-Yu; Li, Chia-Ming; Lin, Yu-Hung; Wang, Tyng-Guey; Tsai, Keh-Sung; Han, Der-Sheng
2015-01-01
The ageing process may lead to reductions in physical fitness, a known risk factor in the development of metabolic syndrome. The purpose of the current study was to evaluate cross-sectional and combined associations of metabolic syndrome with body composition and physical fitness in a community based geriatric population. A total of 628 community-dwelling elders attending a geriatric health examination were enrolled in the study. The diagnosis of metabolic syndrome was based on the modified National Cholesterol Education Program Adult Treatment Panel III (NCEP ATP III) criterion with Asian cutoff of waist girth was adopted in this study. Body composition was obtained using bioimpedance analysis, and physical fitness was evaluated through the measurement of muscle strength (handgrip force), lower extremity muscle endurance (sit-to-stand test), flexibility (sit-and-reach test), and cardiorespiratory endurance (2-minute step test). Multivariable logistic regression and correlation analysis were performed to determine the association of metabolic syndrome with body composition and functionality variables. Metabolic syndrome was associated with increased skeletal muscle index (SMI) (odds ratio (OR), 1.61, 95% confidence interval (CI), 1.25-2.07) and decreased flexibility (OR, 0.97, 95% CI, 0.95-0.99) compared with those without metabolic syndrome. When body mass index was accounted for in the analysis, the association of SMI with metabolic syndrome was reduced. Waist circumference was positively correlated with SMI but negatively correlated with flexibility, whereas high density lipoprotein was positively correlated with flexibility but negatively correlated with SMI. Reduced flexibility was positively associated with metabolic syndrome independent of age, gender, body composition, and functionality measurements in a community based geriatric population. Significant associations between metabolic syndrome with muscle strength and cardiorespiratory fitness in the elderly were not observed. Furthermore, flexibility should be included in the complete evaluation for metabolic syndrome.
Le Pogam, Adrien; Hatt, Mathieu; Descourt, Patrice; Boussion, Nicolas; Tsoumpas, Charalampos; Turkheimer, Federico E.; Prunier-Aesch, Caroline; Baulieu, Jean-Louis; Guilloteau, Denis; Visvikis, Dimitris
2011-01-01
Purpose Partial volume effects (PVE) are consequences of the limited spatial resolution in emission tomography leading to under-estimation of uptake in tissues of size similar to the point spread function (PSF) of the scanner as well as activity spillover between adjacent structures. Among PVE correction methodologies, a voxel-wise mutual multi-resolution analysis (MMA) was recently introduced. MMA is based on the extraction and transformation of high resolution details from an anatomical image (MR/CT) and their subsequent incorporation into a low resolution PET image using wavelet decompositions. Although this method allows creating PVE corrected images, it is based on a 2D global correlation model which may introduce artefacts in regions where no significant correlation exists between anatomical and functional details. Methods A new model was designed to overcome these two issues (2D only and global correlation) using a 3D wavelet decomposition process combined with a local analysis. The algorithm was evaluated on synthetic, simulated and patient images, and its performance was compared to the original approach as well as the geometric transfer matrix (GTM) method. Results Quantitative performance was similar to the 2D global model and GTM in correlated cases. In cases where mismatches between anatomical and functional information were present the new model outperformed the 2D global approach, avoiding artefacts and significantly improving quality of the corrected images and their quantitative accuracy. Conclusions A new 3D local model was proposed for a voxel-wise PVE correction based on the original mutual multi-resolution analysis approach. Its evaluation demonstrated an improved and more robust qualitative and quantitative accuracy compared to the original MMA methodology, particularly in the absence of full correlation between anatomical and functional information. PMID:21978037
Comparative Analysis of Languages for Machine Processing. Interim Report.
ERIC Educational Resources Information Center
Zierer, Ernesto; And Others
This report gives the results obtained in the semantic and syntactic analysis of the Japanese particles "de,""ni,""e," and "wo" in comparison to their equivalents in English, German, and Spanish. The study is based on the so-called "Correlational Analysis" as proposed by Ernst von Glaserfeld. The…
SU-F-R-20: Image Texture Features Correlate with Time to Local Failure in Lung SBRT Patients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, M; Abazeed, M; Woody, N
Purpose: To explore possible correlation between CT image-based texture and histogram features and time-to-local-failure in early stage non-small cell lung cancer (NSCLC) patients treated with stereotactic body radiotherapy (SBRT).Methods and Materials: From an IRB-approved lung SBRT registry for patients treated between 2009–2013 we selected 48 (20 male, 28 female) patients with local failure. Median patient age was 72.3±10.3 years. Mean time to local failure was 15 ± 7.1 months. Physician-contoured gross tumor volumes (GTV) on the planning CT images were processed and 3D gray-level co-occurrence matrix (GLCM) based texture and histogram features were calculated in Matlab. Data were exported tomore » R and a multiple linear regression model was used to examine the relationship between texture features and time-to-local-failure. Results: Multiple linear regression revealed that entropy (p=0.0233, multiple R2=0.60) from GLCM-based texture analysis and the standard deviation (p=0.0194, multiple R2=0.60) from the histogram-based features were statistically significantly correlated with the time-to-local-failure. Conclusion: Image-based texture analysis can be used to predict certain aspects of treatment outcomes of NSCLC patients treated with SBRT. We found entropy and standard deviation calculated for the GTV on the CT images displayed a statistically significant correlation with and time-to-local-failure in lung SBRT patients.« less
Sagiyama, Koji; Watanabe, Yuji; Kamei, Ryotaro; Hong, Sungtak; Kawanami, Satoshi; Matsumoto, Yoshihiro; Honda, Hiroshi
2017-12-01
To investigate the usefulness of voxel-based analysis of standardized uptake values (SUVs) and apparent diffusion coefficients (ADCs) for evaluating soft-tissue tumour malignancy with a PET/MR system. Thirty-five subjects with either ten low/intermediate-grade tumours or 25 high-grade tumours were prospectively enrolled. Zoomed diffusion-weighted and fluorodeoxyglucose ( 18 FDG)-PET images were acquired along with fat-suppressed T2-weighted images (FST2WIs). Regions of interest (ROIs) were drawn on FST2WIs including the tumour in all slices. ROIs were pasted onto PET and ADC-maps to measure SUVs and ADCs within tumour ROIs. Tumour volume, SUVmax, ADCminimum, the heterogeneity and the correlation coefficients of SUV and ADC were recorded. The parameters of high- and low/intermediate-grade groups were compared, and receiver operating characteristic (ROC) analysis was also performed. The mean correlation coefficient for SUV and ADC in high-grade sarcomas was lower than that of low/intermediate-grade tumours (-0.41 ± 0.25 vs. -0.08 ± 0.34, P < 0.01). Other parameters did not differ significantly. ROC analysis demonstrated that correlation coefficient showed the best diagnostic performance for differentiating the two groups (AUC 0.79, sensitivity 96.0%, specificity 60%, accuracy 85.7%). SUV and ADC determined via PET/MR may be useful for differentiating between high-grade and low/intermediate-grade soft tissue tumours. • PET/MR allows voxel-based comparison of SUVs and ADCs in soft-tissue tumours. • A comprehensive assessment of internal heterogeneity was performed with scatter plots. • SUVmax or ADCminimum could not differentiate high-grade sarcoma from low/intermediate-grade tumours. • Only the correlation coefficient between SUV and ADC differentiated the two groups. • The correlation coefficient showed the best diagnostic performance by ROC analysis.
Integration of parts in the facial skeleton and cervical vertebrae.
McCane, Brendan; Kean, Martin R
2011-01-01
The purpose of this study was to undertake an exploratory analysis of the relationship among parts in the facial skeleton and cervical vertebrae and their integration as 2-dimensional shapes by determining their individual variations and covariations. The study was motivated by considerations applicable to clinical orthodontics and maxillofacial surgery, in which such relationships bear directly on pretreatment analysis and assessment of posttreatment outcome. Lateral radiographs of 61 adolescents of both sexes without major malocclusions were digitized and marked up by using continuous outline spline curves for 8 defined parts in the facial skeleton, including the cervical vertebrae. Individual part variation was analyzed by using principal components analysis, and paired part covariation was analyzed by using 2-block partial least squares analysis in 2 modes: relative size, position, and shape; and shape only. For individual part variations, cranial base, soft-tissue profile, and mandible had the largest variations across the sample. For covariation of relative size, position, and shape, the cervical vertebrae were highly correlated with the cranial base (r = 0.80), nasomaxillary complex (r = 0.70), mandible (r = 0.74), maxillary dentition (r = 0.70), and mandibular dentition (r = 0.74); the maxillary dentition and mandibular dentition were highly correlated (r = 0.70); the mandible was highly correlated with the bony profile (r = 0.72), soft-tissue profile (r = 0.79), and, to a lesser extent, the cranial base (r = 0.67); the bony profile was highly correlated with the cranial base (r = 0.70) and soft-tissue profile (r = 0.80); the soft-tissue profile was highly correlated with the nasomaxillary dentition (r = 0.81). Covariation of shape only was much weaker with significant covariations found between bony profile and mandible (r = 0.53), bony profile and mandibular dentition (r = 0.65), mandibular dentition and soft-tissue profile (r = 0.54), mandibular dentition and maxillary dentition (r = 0.55), and bony profile and soft-tissue profile (r = 0.69). We found that integration of the shape of parts in the facial skeleton and cervical vertebrae is weak; it is the relative size, position, and orientation of parts that form the strongest correlations. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Metabolite profiling in retinoblastoma identifies novel clinicopathological subgroups
Kohe, Sarah; Brundler, Marie-Anne; Jenkinson, Helen; Parulekar, Manoj; Wilson, Martin; Peet, Andrew C; McConville, Carmel M
2015-01-01
Background: Tumour classification, based on histopathology or molecular pathology, is of value to predict tumour behaviour and to select appropriate treatment. In retinoblastoma, pathology information is not available at diagnosis and only exists for enucleated tumours. Alternative methods of tumour classification, using noninvasive techniques such as magnetic resonance spectroscopy, are urgently required to guide treatment decisions at the time of diagnosis. Methods: High-resolution magic-angle spinning magnetic resonance spectroscopy (HR-MAS MRS) was undertaken on enucleated retinoblastomas. Principal component analysis and cluster analysis of the HR-MAS MRS data was used to identify tumour subgroups. Individual metabolite concentrations were determined and were correlated with histopathological risk factors for each group. Results: Multivariate analysis identified three metabolic subgroups of retinoblastoma, with the most discriminatory metabolites being taurine, hypotaurine, total-choline and creatine. Metabolite concentrations correlated with specific histopathological features: taurine was correlated with differentiation, total-choline and phosphocholine with retrolaminar optic nerve invasion, and total lipids with necrosis. Conclusions: We have demonstrated that a metabolite-based classification of retinoblastoma can be obtained using ex vivo magnetic resonance spectroscopy, and that the subgroups identified correlate with histopathological features. This result justifies future studies to validate the clinical relevance of these subgroups and highlights the potential of in vivo MRS as a noninvasive diagnostic tool for retinoblastoma patient stratification. PMID:26348444
Nonlinear time series analysis of electrocardiograms
NASA Astrophysics Data System (ADS)
Bezerianos, A.; Bountis, T.; Papaioannou, G.; Polydoropoulos, P.
1995-03-01
In recent years there has been an increasing number of papers in the literature, applying the methods and techniques of Nonlinear Dynamics to the time series of electrical activity in normal electrocardiograms (ECGs) of various human subjects. Most of these studies are based primarily on correlation dimension estimates, and conclude that the dynamics of the ECG signal is deterministic and occurs on a chaotic attractor, whose dimension can distinguish between healthy and severely malfunctioning cases. In this paper, we first demonstrate that correlation dimension calculations must be used with care, as they do not always yield reliable estimates of the attractor's ``dimension.'' We then carry out a number of additional tests (time differencing, smoothing, principal component analysis, surrogate data analysis, etc.) on the ECGs of three ``normal'' subjects and three ``heavy smokers'' at rest and after mild exercising, whose cardiac rhythms look very similar. Our main conclusion is that no major dynamical differences are evident in these signals. A preliminary estimate of three to four basic variables governing the dynamics (based on correlation dimension calculations) is updated to five to six, when temporal correlations between points are removed. Finally, in almost all cases, the transition between resting and mild exercising seems to imply a small increase in the complexity of cardiac dynamics.
NASA Technical Reports Server (NTRS)
Sobel, Larry; Buttitta, Claudio; Suarez, James
1993-01-01
Probabilistic predictions based on the Integrated Probabilistic Assessment of Composite Structures (IPACS) code are presented for the material and structural response of unnotched and notched, 1M6/3501-6 Gr/Ep laminates. Comparisons of predicted and measured modulus and strength distributions are given for unnotched unidirectional, cross-ply, and quasi-isotropic laminates. The predicted modulus distributions were found to correlate well with the test results for all three unnotched laminates. Correlations of strength distributions for the unnotched laminates are judged good for the unidirectional laminate and fair for the cross-ply laminate, whereas the strength correlation for the quasi-isotropic laminate is deficient because IPACS did not yet have a progressive failure capability. The paper also presents probabilistic and structural reliability analysis predictions for the strain concentration factor (SCF) for an open-hole, quasi-isotropic laminate subjected to longitudinal tension. A special procedure was developed to adapt IPACS for the structural reliability analysis. The reliability results show the importance of identifying the most significant random variables upon which the SCF depends, and of having accurate scatter values for these variables.
Prospective evaluation of a bivalirudin to warfarin transition nomogram.
Hohlfelder, Benjamin; Sylvester, Katelyn W; Rimsans, Jessica; DeiCicchi, David; Connors, Jean M
2017-05-01
Bivalirudin may cause a falsely prolonged international normalized ratio (INR) that complicates the discontinuation of bivalirudin when used as a bridge to warfarin. To prospectively validate our novel bivalirudin to warfarin transition nomogram, adult patients who received bivalirudin as a bridge to warfarin between July 2015 and June 2016 were prospectively evaluated, utilizing our predictive nomogram. The major outcome of our analysis was the correlation between the predicted change in INR upon bivalirudin discontinuation based on the nomogram, and the actual change in INR upon bivalirudin discontinuation. The major outcome was analyzed using the Pearson's correlation test. A Pearson's correlation coefficient >0.6 was considered to be a strong correlation. Bivalirudin was used as a bridge to warfarin in 29 patients. The majority of patients (86%) included in the analysis had a ventricular assist device. The median initial bivalirudin rate was 0.07 mg/kg/h and the mean increase in INR when starting bivalirudin was 0.6. The mean final weight-based bivalirudin rate was 0.08 mg/kg/h and the mean change in INR after stopping bivalirudin was 0.7. The Pearson correlation coefficient between the predicted change in INR upon bivalirudin discontinuation and the actual change in INR upon bivalirudin discontinuation was 0.86 (p < 0.001). After bivalirudin discontinuation, 68% of patients had a therapeutic INR. The results of this prospective analysis successfully validated our novel bivalirudin to warfarin transition nomogram. There was a very strong correlation between the predicted change and actual change in INR upon bivalirudin discontinuation.
CORRELATION ANALYSIS BETWEEN TIBET AS-γ TeV COSMIC RAY AND WMAP NINE-YEAR DATA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Qian-Qing; Zhang, Shuang-Nan, E-mail: zhangsn@ihep.ac.cn
2015-08-01
The WMAP team subtracted template-based foreground models to produce foreground-reduced maps, and masked point sources and uncertain sky regions directly; however, whether foreground residuals exist in the WMAP foreground-reduced maps is still an open question. Here, we use Pearson correlation coefficient analysis with AS-γ TeV cosmic ray (CR) data to probe possible foreground residuals in the WMAP nine-year data. The correlation results between the CR and foreground-contained maps (WMAP foreground-unreduced maps, WMAP template-based, and Maximum Entropy Method foreground models) suggest that: (1) CRs can trace foregrounds in the WMAP data; (2) at least some TeV CRs originate from the Milkymore » Way; (3) foregrounds may be related to the existence of CR anisotropy (loss-cone and tail-in structures); (4) there exist differences among different types of foregrounds in the decl. range of <15°. Then, we generate 10,000 mock cosmic microwave background (CMB) sky maps to describe the cosmic variance, which is used to measure the effect of the fluctuations of all possible CMB maps to the correlations between CR and CMB maps. Finally, we do correlation analysis between the CR and WMAP foreground-reduced maps, and find that: (1) there are significant anticorrelations; and (2) the WMAP foreground-reduced maps are credible. However, the significant anticorrelations may be accidental, and the higher signal-to-noise ratio Planck SMICA map cannot reject the hypothesis of accidental correlations. We therefore can only conclude that the foreground residuals exist with ∼95% probability.« less
Intensity-based masking: A tool to improve functional connectivity results of resting-state fMRI.
Peer, Michael; Abboud, Sami; Hertz, Uri; Amedi, Amir; Arzy, Shahar
2016-07-01
Seed-based functional connectivity (FC) of resting-state functional MRI data is a widely used methodology, enabling the identification of functional brain networks in health and disease. Based on signal correlations across the brain, FC measures are highly sensitive to noise. A somewhat neglected source of noise is the fMRI signal attenuation found in cortical regions in close vicinity to sinuses and air cavities, mainly in the orbitofrontal, anterior frontal and inferior temporal cortices. BOLD signal recorded at these regions suffers from dropout due to susceptibility artifacts, resulting in an attenuated signal with reduced signal-to-noise ratio in as many as 10% of cortical voxels. Nevertheless, signal attenuation is largely overlooked during FC analysis. Here we first demonstrate that signal attenuation can significantly influence FC measures by introducing false functional correlations and diminishing existing correlations between brain regions. We then propose a method for the detection and removal of the attenuated signal ("intensity-based masking") by fitting a Gaussian-based model to the signal intensity distribution and calculating an intensity threshold tailored per subject. Finally, we apply our method on real-world data, showing that it diminishes false correlations caused by signal dropout, and significantly improves the ability to detect functional networks in single subjects. Furthermore, we show that our method increases inter-subject similarity in FC, enabling reliable distinction of different functional networks. We propose to include the intensity-based masking method as a common practice in the pre-processing of seed-based functional connectivity analysis, and provide software tools for the computation of intensity-based masks on fMRI data. Hum Brain Mapp 37:2407-2418, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Huang, Frank T.; Mayr, Hans G.; Russell, James M., III; Mlynczak, Martin G.
2012-01-01
The analysis of mutual ozone-temperature variations can provide useful information on their interdependencies relative to the photochemistry and dynamics governing their behavior. Previous studies have mostly been based on satellite measurements taken at a fixed local time in the stratosphere and lower mesosphere. For these data, it is shown that the zonal mean ozone amounts and temperatures in the lower stratosphere are mostly positively correlated, while they are mostly negatively correlated in the upper stratosphere and in the lower mesosphere. The negative correlation, due to the dependence of photochemical reaction rates on temperature, indicates that ozone photochemistry is more important than dynamics in determining the ozone amounts. In this study, we provide new results by extending the analysis to include diurnal variations over 24 hrs of local time, and to larger spatial regimes, to include the upper mesosphere and lower thermosphere (MLT). The results are based on measurements by the SABER instrument on the TIMED satellite. For mean variations (i.e., averages over local time and longitude) in the MLT, our results show that there is a sharp reversal in the correlation near 80 km altitude, above which the ozone mixing ratio and temperature are mostly positively correlated, while they are mostly negatively correlated below 80 km. This is consistent with the view that above -80 km, effects due to dynamics are more important compared to photochemistry. For diurnal variations, both the ozone and temperature show phase progressions in local time, as a function of altitude and latitude. For temperature, the phase progression is as expected, as they represent migrating tides. For day time ozone, we also find regular phase progression in local time over the whole altitude range of our analysis, 25 to 105 km, at least for low latitudes. This was not previously known, although phase progressions had been noted by us and by others at lower altitudes. For diurnal variations, we find that between about 40 and 65 km, the ozone amounts and temperatures are mostly negatively correlated or neutral, while below approx. 40 km they are mostly positively correlated or neutral. The correlations are less systematic and less robust than for correlations of the mean. At altitudes above approx.65 km, the correlations are more complex, and depend on the tidal temperature variations. For the diurnal case, consideration needs to be given to transport by thermal tides and to the efficacy of response times of ozone concentrations and temperature to each other.
NASA Astrophysics Data System (ADS)
Hu, Shunren; Chen, Weimin; Liu, Lin; Gao, Xiaoxia
2010-03-01
Bridge structural health monitoring system is a typical multi-sensor measurement system due to the multi-parameters of bridge structure collected from the monitoring sites on the river-spanning bridges. Bridge structure monitored by multi-sensors is an entity, when subjected to external action; there will be different performances to different bridge structure parameters. Therefore, the data acquired by each sensor should exist countless correlation relation. However, complexity of the correlation relation is decided by complexity of bridge structure. Traditionally correlation analysis among monitoring sites is mainly considered from physical locations. unfortunately, this method is so simple that it cannot describe the correlation in detail. The paper analyzes the correlation among the bridge monitoring sites according to the bridge structural data, defines the correlation of bridge monitoring sites and describes its several forms, then integrating the correlative theory of data mining and signal system to establish the correlation model to describe the correlation among the bridge monitoring sites quantificationally. Finally, The Chongqing Mashangxi Yangtze river bridge health measurement system is regards as research object to diagnosis sensors fault, and simulation results verify the effectiveness of the designed method and theoretical discussions.
ERIC Educational Resources Information Center
Bilaver, Lucy A.; Cushing, Lisa S.; Cutler, Ann T.
2016-01-01
This study examined the prevalence and correlates of educational intervention utilization among U.S. preschool aged children with autism spectrum disorder (ASD) prior to recent policy changes. The analysis was based on a nationally representative longitudinal survey of children receiving special education services during the 2003-2004 school year.…
Confidence Intervals for Squared Semipartial Correlation Coefficients: The Effect of Nonnormality
ERIC Educational Resources Information Center
Algina, James; Keselman, H. J.; Penfield, Randall D.
2010-01-01
The increase in the squared multiple correlation coefficient ([delta]R[superscript 2]) associated with a variable in a regression equation is a commonly used measure of importance in regression analysis. Algina, Keselman, and Penfield found that intervals based on asymptotic principles were typically very inaccurate, even though the sample size…
ERIC Educational Resources Information Center
Steel, Piers
2007-01-01
Procrastination is a prevalent and pernicious form of self-regulatory failure that is not entirely understood. Hence, the relevant conceptual, theoretical, and empirical work is reviewed, drawing upon correlational, experimental, and qualitative findings. A meta-analysis of procrastination's possible causes and effects, based on 691 correlations,…
ERIC Educational Resources Information Center
Kpaduwa, Fidelis Iheanyi
2010-01-01
This current quantitative correlational research study evaluated the residential consumers' knowledge of wireless network security and its relationship with identity theft. Data analysis was based on a sample of 254 randomly selected students. All the study participants completed a survey questionnaire designed to measure their knowledge of…
Abstract: A Comparative Analysis of Parent-Child Attitudes Toward the Fine Arts.
ERIC Educational Resources Information Center
Pauler, Donna
The purpose of this study was to correlate parent-child attitudes toward the fine arts. A respondent group was selected from University faculty families to complete a questionnaire based upon the Eisner Art Attitude Inventory. Five hypotheses were tested: (1) A significant positive correlation exists between parents and their children's attitudes…
Analyzing Association Mapping in Pedigree-Based GWAS Using a Penalized Multitrait Mixed Model
Liu, Jin; Yang, Can; Shi, Xingjie; Li, Cong; Huang, Jian; Zhao, Hongyu; Ma, Shuangge
2017-01-01
Genome-wide association studies (GWAS) have led to the identification of many genetic variants associated with complex diseases in the past 10 years. Penalization methods, with significant numerical and statistical advantages, have been extensively adopted in analyzing GWAS. This study has been partly motivated by the analysis of Genetic Analysis Workshop (GAW) 18 data, which have two notable characteristics. First, the subjects are from a small number of pedigrees and hence related. Second, for each subject, multiple correlated traits have been measured. Most of the existing penalization methods assume independence between subjects and traits and can be suboptimal. There are a few methods in the literature based on mixed modeling that can accommodate correlations. However, they cannot fully accommodate the two types of correlations while conducting effective marker selection. In this study, we develop a penalized multitrait mixed modeling approach. It accommodates the two different types of correlations and includes several existing methods as special cases. Effective penalization is adopted for marker selection. Simulation demonstrates its satisfactory performance. The GAW 18 data are analyzed using the proposed method. PMID:27247027
Statistical properties of DNA sequences
NASA Technical Reports Server (NTRS)
Peng, C. K.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Mantegna, R. N.; Simons, M.; Stanley, H. E.
1995-01-01
We review evidence supporting the idea that the DNA sequence in genes containing non-coding regions is correlated, and that the correlation is remarkably long range--indeed, nucleotides thousands of base pairs distant are correlated. We do not find such a long-range correlation in the coding regions of the gene. We resolve the problem of the "non-stationarity" feature of the sequence of base pairs by applying a new algorithm called detrended fluctuation analysis (DFA). We address the claim of Voss that there is no difference in the statistical properties of coding and non-coding regions of DNA by systematically applying the DFA algorithm, as well as standard FFT analysis, to every DNA sequence (33301 coding and 29453 non-coding) in the entire GenBank database. Finally, we describe briefly some recent work showing that the non-coding sequences have certain statistical features in common with natural and artificial languages. Specifically, we adapt to DNA the Zipf approach to analyzing linguistic texts. These statistical properties of non-coding sequences support the possibility that non-coding regions of DNA may carry biological information.
Genome-scale cluster analysis of replicated microarrays using shrinkage correlation coefficient.
Yao, Jianchao; Chang, Chunqi; Salmi, Mari L; Hung, Yeung Sam; Loraine, Ann; Roux, Stanley J
2008-06-18
Currently, clustering with some form of correlation coefficient as the gene similarity metric has become a popular method for profiling genomic data. The Pearson correlation coefficient and the standard deviation (SD)-weighted correlation coefficient are the two most widely-used correlations as the similarity metrics in clustering microarray data. However, these two correlations are not optimal for analyzing replicated microarray data generated by most laboratories. An effective correlation coefficient is needed to provide statistically sufficient analysis of replicated microarray data. In this study, we describe a novel correlation coefficient, shrinkage correlation coefficient (SCC), that fully exploits the similarity between the replicated microarray experimental samples. The methodology considers both the number of replicates and the variance within each experimental group in clustering expression data, and provides a robust statistical estimation of the error of replicated microarray data. The value of SCC is revealed by its comparison with two other correlation coefficients that are currently the most widely-used (Pearson correlation coefficient and SD-weighted correlation coefficient) using statistical measures on both synthetic expression data as well as real gene expression data from Saccharomyces cerevisiae. Two leading clustering methods, hierarchical and k-means clustering were applied for the comparison. The comparison indicated that using SCC achieves better clustering performance. Applying SCC-based hierarchical clustering to the replicated microarray data obtained from germinating spores of the fern Ceratopteris richardii, we discovered two clusters of genes with shared expression patterns during spore germination. Functional analysis suggested that some of the genetic mechanisms that control germination in such diverse plant lineages as mosses and angiosperms are also conserved among ferns. This study shows that SCC is an alternative to the Pearson correlation coefficient and the SD-weighted correlation coefficient, and is particularly useful for clustering replicated microarray data. This computational approach should be generally useful for proteomic data or other high-throughput analysis methodology.
NASA Astrophysics Data System (ADS)
Laib, Mohamed; Telesca, Luciano; Kanevski, Mikhail
2018-03-01
This paper studies the daily connectivity time series of a wind speed-monitoring network using multifractal detrended fluctuation analysis. It investigates the long-range fluctuation and multifractality in the residuals of the connectivity time series. Our findings reveal that the daily connectivity of the correlation-based network is persistent for any correlation threshold. Further, the multifractality degree is higher for larger absolute values of the correlation threshold.
Zhao, W; Busto, R; Truettner, J; Ginsberg, M D
2001-07-30
The analysis of pixel-based relationships between local cerebral blood flow (LCBF) and mRNA expression can reveal important insights into brain function. Traditionally, LCBF and in situ hybridization studies for genes of interest have been analyzed in separate series. To overcome this limitation and to increase the power of statistical analysis, this study focused on developing a double-label method to measure local cerebral blood flow (LCBF) and gene expressions simultaneously by means of a dual-autoradiography procedure. A 14C-iodoantipyrine autoradiographic LCBF study was first performed. Serial brain sections (12 in this study) were obtained at multiple coronal levels and were processed in the conventional manner to yield quantitative LCBF images. Two replicate sections at each bregma level were then used for in situ hybridization. To eliminate the 14C-iodoantipyrine from these sections, a chloroform-washout procedure was first performed. The sections were then processed for in situ hybridization autoradiography for the probes of interest. This method was tested in Wistar rats subjected to 12 min of global forebrain ischemia by two-vessel occlusion plus hypotension, followed by 2 or 6 h of reperfusion (n=4-6 per group). LCBF and in situ hybridization images for heat shock protein 70 (HSP70) were generated for each rat, aligned by disparity analysis, and analyzed on a pixel-by-pixel basis. This method yielded detailed inter-modality correlation between LCBF and HSP70 mRNA expressions. The advantages of this method include reducing the number of experimental animals by one-half; and providing accurate pixel-based correlations between different modalities in the same animals, thus enabling paired statistical analyses. This method can be extended to permit correlation of LCBF with the expression of multiple genes of interest.
NASA Astrophysics Data System (ADS)
Camacho-Navarro, Jhonatan; Ruiz, Magda; Villamizar, Rodolfo; Mujica, Luis; Moreno-Beltrán, Gustavo; Quiroga, Jabid
2017-05-01
Continuous monitoring for damage detection in structural assessment comprises implementation of low cost equipment and efficient algorithms. This work describes the stages involved in the design of a methodology with high feasibility to be used in continuous damage assessment. Specifically, an algorithm based on a data-driven approach by using principal component analysis and pre-processing acquired signals by means of cross-correlation functions, is discussed. A carbon steel pipe section and a laboratory tower were used as test structures in order to demonstrate the feasibility of the methodology to detect abrupt changes in the structural response when damages occur. Two types of damage cases are studied: crack and leak for each structure, respectively. Experimental results show that the methodology is promising in the continuous monitoring of real structures.
NASA Astrophysics Data System (ADS)
Fan, Qingju; Wu, Yonghong
2015-08-01
In this paper, we develop a new method for the multifractal characterization of two-dimensional nonstationary signal, which is based on the detrended fluctuation analysis (DFA). By applying to two artificially generated signals of two-component ARFIMA process and binomial multifractal model, we show that the new method can reliably determine the multifractal scaling behavior of two-dimensional signal. We also illustrate the applications of this method in finance and physiology. The analyzing results exhibit that the two-dimensional signals under investigation are power-law correlations, and the electricity market consists of electricity price and trading volume is multifractal, while the two-dimensional EEG signal in sleep recorded for a single patient is weak multifractal. The new method based on the detrended fluctuation analysis may add diagnostic power to existing statistical methods.
Revealing time bunching effect in single-molecule enzyme conformational dynamics.
Lu, H Peter
2011-04-21
In this perspective, we focus our discussion on how the single-molecule spectroscopy and statistical analysis are able to reveal enzyme hidden properties, taking the study of T4 lysozyme as an example. Protein conformational fluctuations and dynamics play a crucial role in biomolecular functions, such as in enzymatic reactions. Single-molecule spectroscopy is a powerful approach to analyze protein conformational dynamics under physiological conditions, providing dynamic perspectives on a molecular-level understanding of protein structure-function mechanisms. Using single-molecule fluorescence spectroscopy, we have probed T4 lysozyme conformational motions under the hydrolysis reaction of a polysaccharide of E. coli B cell walls by monitoring the fluorescence resonant energy transfer (FRET) between a donor-acceptor probe pair tethered to T4 lysozyme domains involving open-close hinge-bending motions. Based on the single-molecule spectroscopic results, molecular dynamics simulation, a random walk model analysis, and a novel 2D statistical correlation analysis, we have revealed a time bunching effect in protein conformational motion dynamics that is critical to enzymatic functions. Bunching effect implies that conformational motion times tend to bunch in a finite and narrow time window. We show that convoluted multiple Poisson rate processes give rise to the bunching effect in the enzymatic reaction dynamics. Evidently, the bunching effect is likely common in protein conformational dynamics involving in conformation-gated protein functions. In this perspective, we will also discuss a new approach of 2D regional correlation analysis capable of analyzing fluctuation dynamics of complex multiple correlated and anti-correlated fluctuations under a non-correlated noise background. Using this new method, we are able to map out any defined segments along the fluctuation trajectories and determine whether they are correlated, anti-correlated, or non-correlated; after which, a cross correlation analysis can be applied for each specific segment to obtain a detailed fluctuation dynamics analysis.
Chen, Xianglong; Zhang, Bingzhi; Feng, Fuzhou; Jiang, Pengcheng
2017-01-01
The kurtosis-based indexes are usually used to identify the optimal resonant frequency band. However, kurtosis can only describe the strength of transient impulses, which cannot differentiate impulse noises and repetitive transient impulses cyclically generated in bearing vibration signals. As a result, it may lead to inaccurate results in identifying resonant frequency bands, in demodulating fault features and hence in fault diagnosis. In view of those drawbacks, this manuscript redefines the correlated kurtosis based on kurtosis and auto-correlative function, puts forward an improved correlated kurtosis based on squared envelope spectrum of bearing vibration signals. Meanwhile, this manuscript proposes an optimal resonant band demodulation method, which can adaptively determine the optimal resonant frequency band and accurately demodulate transient fault features of rolling bearings, by combining the complex Morlet wavelet filter and the Particle Swarm Optimization algorithm. Analysis of both simulation data and experimental data reveal that the improved correlated kurtosis can effectively remedy the drawbacks of kurtosis-based indexes and the proposed optimal resonant band demodulation is more accurate in identifying the optimal central frequencies and bandwidth of resonant bands. Improved fault diagnosis results in experiment verified the validity and advantage of the proposed method over the traditional kurtosis-based indexes. PMID:28208820
Luo, Gang; Fotidis, Ioannis A; Angelidaki, Irini
2016-01-01
Biogas production is a very complex process due to the high complexity in diversity and interactions of the microorganisms mediating it, and only limited and diffuse knowledge exists about the variation of taxonomic and functional patterns of microbiomes across different biogas reactors, and their relationships with the metabolic patterns. The present study used metagenomic sequencing and radioisotopic analysis to assess the taxonomic, functional, and metabolic patterns of microbiomes from 14 full-scale biogas reactors operated under various conditions treating either sludge or manure. The results from metagenomic analysis showed that the dominant methanogenic pathway revealed by radioisotopic analysis was not always correlated with the taxonomic and functional compositions. It was found by radioisotopic experiments that the aceticlastic methanogenic pathway was dominant, while metagenomics analysis showed higher relative abundance of hydrogenotrophic methanogens. Principal coordinates analysis showed the sludge-based samples were clearly distinct from the manure-based samples for both taxonomic and functional patterns, and canonical correspondence analysis showed that the both temperature and free ammonia were crucial environmental variables shaping the taxonomic and functional patterns. The study further the overall patterns of functional genes were strongly correlated with overall patterns of taxonomic composition across different biogas reactors. The discrepancy between the metabolic patterns determined by metagenomic analysis and metabolic pathways determined by radioisotopic analysis was found. Besides, a clear correlation between taxonomic and functional patterns was demonstrated for biogas reactors, and also the environmental factors that shaping both taxonomic and functional genes patterns were identified.
Study of the propensity for hemorrhage in Hispanic Americans with stroke.
Frey, James L; Jahnke, Heidi K; Goslar, Pamela W
2008-01-01
Multiple sources document a higher proportion of intraparenchymal hemorrhage (HEM) in Hispanic (HIS) than white (WHI) patients with stroke. We sought an explanation for this phenomenon through analysis of multiple variables in our hospital-based stroke population. We performed univariate and multivariate analysis of risk factors in our HIS and WHI patients with stroke to identify differences that might account for a greater propensity for HEM in HIS patients. Multivariate analysis disclosed that the risk of HEM correlated significantly with untreated hypertension (HTN), HIS ethnicity, and heavy alcohol intake. A negative correlation was found for hyperlipidemia and diabetes. Our HIS patients with stroke had a greater prevalence of untreated HTN and heavy alcohol intake, with HIS men being at greatest risk. HIS patients with stroke in our hospital-based population appear relatively more prone to HEM than do WHI patients. This risk correlates with a greater likelihood of having untreated HTN and heavy alcohol intake, more so for HIS men. The explanation appears to be a relative lack of health awareness and involvement in our health care system. The possibility that HIS ethnicity itself constitutes a biological risk factor for HEM remains a matter of speculation. Validation of this work with community data should lead to remediation through a community-based effort.
Beyhun, Nazim Ercument; Can, Gamze; Tiryaki, Ahmet; Karakullukcu, Serdar; Bulut, Bekir; Yesilbas, Sehbal; Kavgaci, Halil; Topbas, Murat
2016-01-01
Background Needs based biopsychosocial distress instrument for cancer patients (CANDI) is a scale based on needs arising due to the effects of cancer. Objectives The aim of this research was to determine the reliability and validity of the CANDI scale in the Turkish language. Patients and Methods The study was performed with the participation of 172 cancer patients aged 18 and over. Factor analysis (principal components analysis) was used to assess construct validity. Criterion validities were tested by computing Spearman correlation between CANDI and hospital anxiety depression scale (HADS), and brief symptom inventory (BSI) (convergent validity) and quality of life scales (FACT-G) (divergent validity). Test-retest reliabilities and internal consistencies were measured with intraclass correlation (ICC) and Cronbach-α. Results A three-factor solution (emotional, physical and social) was found with factor analysis. Internal reliability (α = 0.94) and test-retest reliability (ICC = 0.87) were significantly high. Correlations between CANDI and HADS (rs = 0.67), and BSI (rs = 0.69) and FACT-G (rs = -0.76) were moderate and significant in the expected direction. Conclusions CANDI is a valid and reliable scale in cancer patients with a three-factor structure (emotional, physical and social) in the Turkish language. PMID:27621931
Maheshkumar, K; Dilara, K; Maruthy, K N; Sundareswaren, L
2016-07-01
Heart rate variability (HRV) analysis is a simple and noninvasive technique capable of assessing autonomic nervous system modulation on heart rate (HR) in healthy as well as disease conditions. The aim of the present study was to compare (validate) the HRV using a temporal series of electrocardiograms (ECG) obtained by simple analog amplifier with PC-based sound card (audacity) and Biopac MP36 module. Based on the inclusion criteria, 120 healthy participants, including 72 males and 48 females, participated in the present study. Following standard protocol, 5-min ECG was recorded after 10 min of supine rest by Portable simple analog amplifier PC-based sound card as well as by Biopac module with surface electrodes in Leads II position simultaneously. All the ECG data was visually screened and was found to be free of ectopic beats and noise. RR intervals from both ECG recordings were analyzed separately in Kubios software. Short-term HRV indexes in both time and frequency domain were used. The unpaired Student's t-test and Pearson correlation coefficient test were used for the analysis using the R statistical software. No statistically significant differences were observed when comparing the values analyzed by means of the two devices for HRV. Correlation analysis revealed perfect positive correlation (r = 0.99, P < 0.001) between the values in time and frequency domain obtained by the devices. On the basis of the results of the present study, we suggest that the calculation of HRV values in the time and frequency domains by RR series obtained from the PC-based sound card is probably as reliable as those obtained by the gold standard Biopac MP36.
Grace, Peter M; Hurley, Daniel; Barratt, Daniel T; Tsykin, Anna; Watkins, Linda R; Rolan, Paul E; Hutchinson, Mark R
2012-09-01
A quantitative, peripherally accessible biomarker for neuropathic pain has great potential to improve clinical outcomes. Based on the premise that peripheral and central immunity contribute to neuropathic pain mechanisms, we hypothesized that biomarkers could be identified from the whole blood of adult male rats, by integrating graded chronic constriction injury (CCI), ipsilateral lumbar dorsal quadrant (iLDQ) and whole blood transcriptomes, and pathway analysis with pain behavior. Correlational bioinformatics identified a range of putative biomarker genes for allodynia intensity, many encoding for proteins with a recognized role in immune/nociceptive mechanisms. A selection of these genes was validated in a separate replication study. Pathway analysis of the iLDQ transcriptome identified Fcγ and Fcε signaling pathways, among others. This study is the first to employ the whole blood transcriptome to identify pain biomarker panels. The novel correlational bioinformatics, developed here, selected such putative biomarkers based on a correlation with pain behavior and formation of signaling pathways with iLDQ genes. Future studies may demonstrate the predictive ability of these biomarker genes across other models and additional variables. © 2012 The Authors. Journal of Neurochemistry © 2012 International Society for Neurochemistry.
Ding, Wen Hui; Li, Xiu Zhen; Jiang, Jun Yan; Huang, Xing; Zhang, Yun Qing; Zhang, Qian; Zhou, Yun Xuan
2016-05-01
The salt marsh plant communities were investigated with quadrats in the southern Chongming Dongtan. Based on the vegetation coverage and the 2×2 contingency table, 8 common species among the 17 higher plants recorded were analyzed. The variance ratio of overall association, Chi-square test and Spearman rank correlation coefficient were used to describe the relevance and correlations between species pairs. The results showed that W (48.61), a statistical index to test the variance ratio (VR=0.61), fell outside of the range of Chi-square test, indicating that the overall correlation of all vegetation species was significantly negative. According to the environment adaptation mode of dominant species and the main influencing factors, the species were divided into 4 ecological groups, i.e., Phragmites australis, Carex scabrifolia-Scirpus triqueter - Juncellus serotinus, Spartina alterniflora - Scirpus mariqueter, Echinochloa crusgalli - Imperata cylindrica, based on the ranking of Spearman correlation coefficient. The inter-specific relationships in the salt marsh plant community of southern Chongming Dongtan were complicated and extremely unstable with species sensitive to environmental impacts. According to the analysis of relationships between the species and their pre-sent distribution, we suggested using S. mariqueter as target species to provide strategies for protecting native species based habitats.
Basu, Sumanta; Duren, William; Evans, Charles R; Burant, Charles F; Michailidis, George; Karnovsky, Alla
2017-05-15
Recent technological advances in mass spectrometry, development of richer mass spectral libraries and data processing tools have enabled large scale metabolic profiling. Biological interpretation of metabolomics studies heavily relies on knowledge-based tools that contain information about metabolic pathways. Incomplete coverage of different areas of metabolism and lack of information about non-canonical connections between metabolites limits the scope of applications of such tools. Furthermore, the presence of a large number of unknown features, which cannot be readily identified, but nonetheless can represent bona fide compounds, also considerably complicates biological interpretation of the data. Leveraging recent developments in the statistical analysis of high-dimensional data, we developed a new Debiased Sparse Partial Correlation algorithm (DSPC) for estimating partial correlation networks and implemented it as a Java-based CorrelationCalculator program. We also introduce a new version of our previously developed tool Metscape that enables building and visualization of correlation networks. We demonstrate the utility of these tools by constructing biologically relevant networks and in aiding identification of unknown compounds. http://metscape.med.umich.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Non-contact cardiac pulse rate estimation based on web-camera
NASA Astrophysics Data System (ADS)
Wang, Yingzhi; Han, Tailin
2015-12-01
In this paper, we introduce a new methodology of non-contact cardiac pulse rate estimation based on the imaging Photoplethysmography (iPPG) and blind source separation. This novel's approach can be applied to color video recordings of the human face and is based on automatic face tracking along with blind source separation of the color channels into RGB three-channel component. First of all, we should do some pre-processings of the data which can be got from color video such as normalization and sphering. We can use spectrum analysis to estimate the cardiac pulse rate by Independent Component Analysis (ICA) and JADE algorithm. With Bland-Altman and correlation analysis, we compared the cardiac pulse rate extracted from videos recorded by a basic webcam to a Commercial pulse oximetry sensors and achieved high accuracy and correlation. Root mean square error for the estimated results is 2.06bpm, which indicates that the algorithm can realize the non-contact measurements of cardiac pulse rate.
NASA Technical Reports Server (NTRS)
Macwilkinson, D. G.; Blackerby, W. T.; Paterson, J. H.
1974-01-01
The degree of cruise drag correlation on the C-141A aircraft is determined between predictions based on wind tunnel test data, and flight test results. An analysis of wind tunnel tests on a 0.0275 scale model at Reynolds number up to 3.05 x 1 million/MAC is reported. Model support interference corrections are evaluated through a series of tests, and fully corrected model data are analyzed to provide details on model component interference factors. It is shown that predicted minimum profile drag for the complete configuration agrees within 0.75% of flight test data, using a wind tunnel extrapolation method based on flat plate skin friction and component shape factors. An alternative method of extrapolation, based on computed profile drag from a subsonic viscous theory, results in a prediction four percent lower than flight test data.
Design and analysis of coherent OCDM en/decoder based on photonic crystal
NASA Astrophysics Data System (ADS)
Zhang, Chongfu; Qiu, Kun
2008-08-01
The design and performance analysis of a new coherent optical en/decoder based on photonic crystal (PhC) for optical code -division -multiple (OCDM) are presented in this paper. In this scheme, the optical pulse phase and time delay can be flexibly controlled by photonic crystal phase shifter and time delayer by using the appropriate design of fabrication. According to the PhC transmission matrix theorem, combination calculation of the impurity and normal period layers is applied, and performances of the PhC-based optical en/decoder are also analyzed. The reflection, transmission, time delay characteristic and optical spectrum of pulse en/decoded are studied for the waves tuned in the photonic band-gap by numerical calculation. Theoretical analysis and numerical results indicate that the optical pulse is achieved to properly phase modulation and time delay, and an auto-correlation of about 8 dB ration and cross-correlation is gained, which demonstrates the applicability of true pulse phase modulation in a number of applications.
Ranking and averaging independent component analysis by reproducibility (RAICAR).
Yang, Zhi; LaConte, Stephen; Weng, Xuchu; Hu, Xiaoping
2008-06-01
Independent component analysis (ICA) is a data-driven approach that has exhibited great utility for functional magnetic resonance imaging (fMRI). Standard ICA implementations, however, do not provide the number and relative importance of the resulting components. In addition, ICA algorithms utilizing gradient-based optimization give decompositions that are dependent on initialization values, which can lead to dramatically different results. In this work, a new method, RAICAR (Ranking and Averaging Independent Component Analysis by Reproducibility), is introduced to address these issues for spatial ICA applied to fMRI. RAICAR utilizes repeated ICA realizations and relies on the reproducibility between them to rank and select components. Different realizations are aligned based on correlations, leading to aligned components. Each component is ranked and thresholded based on between-realization correlations. Furthermore, different realizations of each aligned component are selectively averaged to generate the final estimate of the given component. Reliability and accuracy of this method are demonstrated with both simulated and experimental fMRI data. Copyright 2007 Wiley-Liss, Inc.
PCAN: Probabilistic Correlation Analysis of Two Non-normal Data Sets
Zoh, Roger S.; Mallick, Bani; Ivanov, Ivan; Baladandayuthapani, Veera; Manyam, Ganiraju; Chapkin, Robert S.; Lampe, Johanna W.; Carroll, Raymond J.
2016-01-01
Summary Most cancer research now involves one or more assays profiling various biological molecules, e.g., messenger RNA and micro RNA, in samples collected on the same individuals. The main interest with these genomic data sets lies in the identification of a subset of features that are active in explaining the dependence between platforms. To quantify the strength of the dependency between two variables, correlation is often preferred. However, expression data obtained from next-generation sequencing platforms are integer with very low counts for some important features. In this case, the sample Pearson correlation is not a valid estimate of the true correlation matrix, because the sample correlation estimate between two features/variables with low counts will often be close to zero, even when the natural parameters of the Poisson distribution are, in actuality, highly correlated. We propose a model-based approach to correlation estimation between two non-normal data sets, via a method we call Probabilistic Correlations ANalysis, or PCAN. PCAN takes into consideration the distributional assumption about both data sets and suggests that correlations estimated at the model natural parameter level are more appropriate than correlations estimated directly on the observed data. We demonstrate through a simulation study that PCAN outperforms other standard approaches in estimating the true correlation between the natural parameters. We then apply PCAN to the joint analysis of a microRNA (miRNA) and a messenger RNA (mRNA) expression data set from a squamous cell lung cancer study, finding a large number of negative correlation pairs when compared to the standard approaches. PMID:27037601
PCAN: Probabilistic correlation analysis of two non-normal data sets.
Zoh, Roger S; Mallick, Bani; Ivanov, Ivan; Baladandayuthapani, Veera; Manyam, Ganiraju; Chapkin, Robert S; Lampe, Johanna W; Carroll, Raymond J
2016-12-01
Most cancer research now involves one or more assays profiling various biological molecules, e.g., messenger RNA and micro RNA, in samples collected on the same individuals. The main interest with these genomic data sets lies in the identification of a subset of features that are active in explaining the dependence between platforms. To quantify the strength of the dependency between two variables, correlation is often preferred. However, expression data obtained from next-generation sequencing platforms are integer with very low counts for some important features. In this case, the sample Pearson correlation is not a valid estimate of the true correlation matrix, because the sample correlation estimate between two features/variables with low counts will often be close to zero, even when the natural parameters of the Poisson distribution are, in actuality, highly correlated. We propose a model-based approach to correlation estimation between two non-normal data sets, via a method we call Probabilistic Correlations ANalysis, or PCAN. PCAN takes into consideration the distributional assumption about both data sets and suggests that correlations estimated at the model natural parameter level are more appropriate than correlations estimated directly on the observed data. We demonstrate through a simulation study that PCAN outperforms other standard approaches in estimating the true correlation between the natural parameters. We then apply PCAN to the joint analysis of a microRNA (miRNA) and a messenger RNA (mRNA) expression data set from a squamous cell lung cancer study, finding a large number of negative correlation pairs when compared to the standard approaches. © 2016, The International Biometric Society.
Correlates of home and neighbourhood-based physical activity in UK 3–4-year-old children
Hesketh, Kathryn R.; van Sluijs, Esther M.F.
2016-01-01
Background: Identifying context-specific correlates of home- and neighbourhood-based physical activity in preschool-aged children may help improve intervention program development for these settings. Methods: A total of 153 3–4-year-old children were recruited through preschool settings in Cambridgeshire (January–July 2013). Children wore Actiheart accelerometers for ≤7 days to assess their sedentary time (ST), light-(LPA) and moderate- to vigorous-intensity physical activity (MVPA). A parent-completed questionnaire assessed correlates across the ecological model and the child’s preschool attendance during the measurement week. Only accelerometer data for times when children were at home were used. Multilevel models (Level 1: days; Level 2: child) examined associations between maternal-reported exposure variables and each outcome (children’s home- and neighbourhood-based ST, LPA and MVPA) (main analysis). Further analyses included the subsample of children with complete paternal correlates data (father analysis). Results: In the main analyses, children with older siblings engaged in less ST. Children whose mothers reported being ‘moderately inactive’ or ‘active’ (vs. inactive) engaged in less LPA, while children whose mothers worked >35 h week−1 engaged in less MVPA. More equipment at home was associated with lower LPA but greater MVPA. In the father analysis, father’s television viewing before 6 pm was associated with greater ST and less MVPA in children; the negative association between mother’s activity and children’s LPA was retained. Conclusion: Family demographics and parental behaviours appear to have the strongest association with children’s home- and neighbourhood-based ST, LPA and MVPA. This study further highlights the importance of examining both maternal and paternal behaviours. PMID:27175002
Correlates of home and neighbourhood-based physical activity in UK 3-4-year-old children.
Hnatiuk, Jill A; Hesketh, Kathryn R; van Sluijs, Esther M F
2016-12-01
Identifying context-specific correlates of home- and neighbourhood-based physical activity in preschool-aged children may help improve intervention program development for these settings. A total of 153 3-4-year-old children were recruited through preschool settings in Cambridgeshire (January-July 2013). Children wore Actiheart accelerometers for ≤7 days to assess their sedentary time (ST), light-(LPA) and moderate- to vigorous-intensity physical activity (MVPA). A parent-completed questionnaire assessed correlates across the ecological model and the child's preschool attendance during the measurement week. Only accelerometer data for times when children were at home were used. Multilevel models (Level 1: days; Level 2: child) examined associations between maternal-reported exposure variables and each outcome (children's home- and neighbourhood-based ST, LPA and MVPA) (main analysis). Further analyses included the subsample of children with complete paternal correlates data (father analysis). In the main analyses, children with older siblings engaged in less ST. Children whose mothers reported being 'moderately inactive' or 'active' (vs. inactive) engaged in less LPA, while children whose mothers worked >35 h week -1 engaged in less MVPA. More equipment at home was associated with lower LPA but greater MVPA. In the father analysis, father's television viewing before 6 pm was associated with greater ST and less MVPA in children; the negative association between mother's activity and children's LPA was retained. Family demographics and parental behaviours appear to have the strongest association with children's home- and neighbourhood-based ST, LPA and MVPA. This study further highlights the importance of examining both maternal and paternal behaviours. © The Author 2016. Published by Oxford University Press on behalf of the European Public Health Association.
Preliminary analysis of cross beam data from the Gun Barrel Hill site
NASA Technical Reports Server (NTRS)
Sandborn, V. A.; Bice, A. R.; Cliff, W. C.; Hablutzel, B. C.
1974-01-01
Preliminary evaluation of cross beam data taken at the Gun Barrell Hill test site of ESSA is presented. The evaluation is made using the analog Princeton Time Correlator. A study of the frequency band width limitations of the Princeton Time Correlator is made. Based on the band width limitations, it is possible to demonstrate that nearly identical correlation is obtained for frequencies from .01 to 3.9 hertz. Difficulty is encountered in that maximums in the correlation curves do not occur at zero time lag for zero beam separations.
Yuan, Naiming; Fu, Zuntao; Zhang, Huan; Piao, Lin; Xoplaki, Elena; Luterbacher, Juerg
2015-01-01
In this paper, a new method, detrended partial-cross-correlation analysis (DPCCA), is proposed. Based on detrended cross-correlation analysis (DCCA), this method is improved by including partial-correlation technique, which can be applied to quantify the relations of two non-stationary signals (with influences of other signals removed) on different time scales. We illustrate the advantages of this method by performing two numerical tests. Test I shows the advantages of DPCCA in handling non-stationary signals, while Test II reveals the “intrinsic” relations between two considered time series with potential influences of other unconsidered signals removed. To further show the utility of DPCCA in natural complex systems, we provide new evidence on the winter-time Pacific Decadal Oscillation (PDO) and the winter-time Nino3 Sea Surface Temperature Anomaly (Nino3-SSTA) affecting the Summer Rainfall over the middle-lower reaches of the Yangtze River (SRYR). By applying DPCCA, better significant correlations between SRYR and Nino3-SSTA on time scales of 6 ~ 8 years are found over the period 1951 ~ 2012, while significant correlations between SRYR and PDO on time scales of 35 years arise. With these physically explainable results, we have confidence that DPCCA is an useful method in addressing complex systems. PMID:25634341
Kim, Sang Hyun
2013-09-01
The purpose of this study was to investigate applicants' behavioral characteristics based on the evaluation of cognitive, affective and social domain shown in self introduction letter and professor's recommendation letter. Self introduction letters and professor's recommendation letters of 109 applicants students who applied to medical school were collected. Frequency analysis and simple correlation were done in self introduction letter and professor's recommendation letter. Frequency analysis showed affective characteristics were most often mentioned in self introduction letter, and cognitive characteristics were most frequently described in professor's recommendation letter. There was a strong correlation between cognitive domains of self introduction letter and cognitive domain of professor's recommendation letter. There was a strong correlation between affective domain of self introduction letter and cognitive domain professor's recommendation letter. It is very important to make full use of self introduction letter and professor's recommendation letter for selecting medical students. Through the frequency analysis and simple correlation, more specific guidelines need to be suggested in order to secure fairness and objectivity in the evaluation of self-introduction letter and professor's recommendation letter.
Determination of melamine of milk based on two-dimensional correlation infrared spectroscopy
NASA Astrophysics Data System (ADS)
Yang, Ren-jie; Liu, Rong; Xu, Kexin
2012-03-01
The adulteration of milk with harmful substances is a threat to public health and beyond question a serious crime. In order to develop a rapid, cost-effective, high-throughput analysis method for detecting of adulterants in milk, the discriminative analysis of melamine is established in milk based on the two-dimensional (2D) correlation infrared spectroscopy in present paper. Pure milk samples and adulterated milk samples with different content of melamine were prepared. Then the Fourier Transform Infrared spectra of all samples were measured at room temperature. The characteristics of pure milk and adulterated milk were studied by one-dimensional spectra. The 2D NIR and 2D IR correlation spectroscopy were calculated under the perturbation of adulteration concentration. In the range from 1400 to 1800 cm-1, two strong autopeaks were aroused by melamine in milk at 1464 cm-1 and 1560 cm-1 in synchronous spectrum. At the same time, the 1560 cm-1 band does not share cross peak with the 1464 cm-1 band, which further confirm that the two bands have the same origin. Also in the range from 4200 to 4800 cm-1, the autopeak was shown at 4648 cm-1 in synchronous spectrum of melamine in milk. 2D NIR-IR hetero-spectral correlation analysis confirmed that the bands at 1464, 1560 and 4648 cm-1 had the same origin. The results demonstrated that the adulterant can be discriminated correctly by 2D correlation infrared spectroscopy.
George, Kevin W; Chen, Amy; Jain, Aakriti; Batth, Tanveer S; Baidoo, Edward E K; Wang, George; Adams, Paul D; Petzold, Christopher J; Keasling, Jay D; Lee, Taek Soon
2014-08-01
The ability to rapidly assess and optimize heterologous pathway function is critical for effective metabolic engineering. Here, we develop a systematic approach to pathway analysis based on correlations between targeted proteins and metabolites and apply it to the microbial production of isopentenol, a promising biofuel. Starting with a seven-gene pathway, we performed a correlation analysis to reduce pathway complexity and identified two pathway proteins as the primary determinants of efficient isopentenol production. Aided by the targeted quantification of relevant pathway intermediates, we constructed and subsequently validated a conceptual model of isopentenol pathway function. Informed by our analysis, we assembled a strain which produced isopentenol at a titer 1.5 g/L, or 46% of theoretical yield. Our engineering approach allowed us to accurately identify bottlenecks and determine appropriate pathway balance. Paired with high-throughput cloning techniques and analytics, this strategy should prove useful for the analysis and optimization of increasingly complex heterologous pathways. © 2014 Wiley Periodicals, Inc.
Multiscale Detrended Cross-Correlation Analysis of STOCK Markets
NASA Astrophysics Data System (ADS)
Yin, Yi; Shang, Pengjian
2014-06-01
In this paper, we employ the detrended cross-correlation analysis (DCCA) to investigate the cross-correlations between different stock markets. We report the results of cross-correlated behaviors in US, Chinese and European stock markets in period 1997-2012 by using DCCA method. The DCCA shows the cross-correlated behaviors of intra-regional and inter-regional stock markets in the short and long term which display the similarities and differences of cross-correlated behaviors simply and roughly and the persistence of cross-correlated behaviors of fluctuations. Then, because of the limitation and inapplicability of DCCA method, we propose multiscale detrended cross-correlation analysis (MSDCCA) method to avoid "a priori" selecting the ranges of scales over which two coefficients of the classical DCCA method are identified, and employ MSDCCA to reanalyze these cross-correlations to exhibit some important details such as the existence and position of minimum, maximum and bimodal distribution which are lost if the scale structure is described by two coefficients only and essential differences and similarities in the scale structures of cross-correlation of intra-regional and inter-regional markets. More statistical characteristics of cross-correlation obtained by MSDCCA method help us to understand how two different stock markets influence each other and to analyze the influence from thus two inter-regional markets on the cross-correlation in detail, thus we get a richer and more detailed knowledge of the complex evolutions of dynamics of the cross-correlations between stock markets. The application of MSDCCA is important to promote our understanding of the internal mechanisms and structures of financial markets and helps to forecast the stock indices based on our current results demonstrated the cross-correlations between stock indices. We also discuss the MSDCCA methods of secant rolling window with different sizes and, lastly, provide some relevant implications and issue.
A Flight Prediction for Performance of the SWAS Solar Array Deployment Mechanism
NASA Technical Reports Server (NTRS)
Seniderman, Gary; Daniel, Walter K.
1999-01-01
The focus of this paper is a comparison of ground-based solar array deployment tests with the on-orbit deployment. The discussion includes a summary of the mechanisms involved and the correlation of a dynamics model with ground based test results. Some of the unique characteristics of the mechanisms are explained through the analysis of force and angle data acquired from the test deployments. The correlated dynamics model is then used to predict the performance of the system in its flight application.
THESEUS: maximum likelihood superpositioning and analysis of macromolecular structures
Theobald, Douglas L.; Wuttke, Deborah S.
2008-01-01
Summary THESEUS is a command line program for performing maximum likelihood (ML) superpositions and analysis of macromolecular structures. While conventional superpositioning methods use ordinary least-squares (LS) as the optimization criterion, ML superpositions provide substantially improved accuracy by down-weighting variable structural regions and by correcting for correlations among atoms. ML superpositioning is robust and insensitive to the specific atoms included in the analysis, and thus it does not require subjective pruning of selected variable atomic coordinates. Output includes both likelihood-based and frequentist statistics for accurate evaluation of the adequacy of a superposition and for reliable analysis of structural similarities and differences. THESEUS performs principal components analysis for analyzing the complex correlations found among atoms within a structural ensemble. PMID:16777907
Understanding the multifractality in portfolio excess returns
NASA Astrophysics Data System (ADS)
Chen, Cheng; Wang, Yudong
2017-01-01
The multifractality in stock returns have been investigated extensively. However, whether the autocorrelations in portfolio returns are multifractal have not been considered in the literature. In this paper, we detect multifractal behavior of returns of portfolios constructed based on two popular trading rules, size and book-to-market (BM) ratio. Using the multifractal detrended fluctuation analysis, we find that the portfolio returns are significantly multifractal and the multifractality is mainly attributed to long-range dependence. We also investigate the multifractal cross-correlation between portfolio return and market average return using the detrended cross-correlation analysis. Our results show that the cross-correlations of small fluctuations are persistent, while those of large fluctuations are anti-persistent.
Copula based prediction models: an application to an aortic regurgitation study
Kumar, Pranesh; Shoukri, Mohamed M
2007-01-01
Background: An important issue in prediction modeling of multivariate data is the measure of dependence structure. The use of Pearson's correlation as a dependence measure has several pitfalls and hence application of regression prediction models based on this correlation may not be an appropriate methodology. As an alternative, a copula based methodology for prediction modeling and an algorithm to simulate data are proposed. Methods: The method consists of introducing copulas as an alternative to the correlation coefficient commonly used as a measure of dependence. An algorithm based on the marginal distributions of random variables is applied to construct the Archimedean copulas. Monte Carlo simulations are carried out to replicate datasets, estimate prediction model parameters and validate them using Lin's concordance measure. Results: We have carried out a correlation-based regression analysis on data from 20 patients aged 17–82 years on pre-operative and post-operative ejection fractions after surgery and estimated the prediction model: Post-operative ejection fraction = - 0.0658 + 0.8403 (Pre-operative ejection fraction); p = 0.0008; 95% confidence interval of the slope coefficient (0.3998, 1.2808). From the exploratory data analysis, it is noted that both the pre-operative and post-operative ejection fractions measurements have slight departures from symmetry and are skewed to the left. It is also noted that the measurements tend to be widely spread and have shorter tails compared to normal distribution. Therefore predictions made from the correlation-based model corresponding to the pre-operative ejection fraction measurements in the lower range may not be accurate. Further it is found that the best approximated marginal distributions of pre-operative and post-operative ejection fractions (using q-q plots) are gamma distributions. The copula based prediction model is estimated as: Post -operative ejection fraction = - 0.0933 + 0.8907 × (Pre-operative ejection fraction); p = 0.00008 ; 95% confidence interval for slope coefficient (0.4810, 1.3003). For both models differences in the predicted post-operative ejection fractions in the lower range of pre-operative ejection measurements are considerably different and prediction errors due to copula model are smaller. To validate the copula methodology we have re-sampled with replacement fifty independent bootstrap samples and have estimated concordance statistics 0.7722 (p = 0.0224) for the copula model and 0.7237 (p = 0.0604) for the correlation model. The predicted and observed measurements are concordant for both models. The estimates of accuracy components are 0.9233 and 0.8654 for copula and correlation models respectively. Conclusion: Copula-based prediction modeling is demonstrated to be an appropriate alternative to the conventional correlation-based prediction modeling since the correlation-based prediction models are not appropriate to model the dependence in populations with asymmetrical tails. Proposed copula-based prediction model has been validated using the independent bootstrap samples. PMID:17573974
Utility of Gram stain for the microbiological analysis of burn wound surfaces.
Elsayed, Sameer; Gregson, Daniel B; Lloyd, Tracie; Crichton, Marilyn; Church, Deirdre L
2003-11-01
Surface swab cultures have attracted attention as a potential alternative to biopsy histology or quantitative culture methods for microbiological burn wound monitoring. To our knowledge, the utility of adding a Gram-stained slide in this context has not been evaluated previously. To determine the degree of correlation of Gram stain with culture for the microbiological analysis of burn wound surfaces. Prospective laboratory analysis. Urban health region/centralized diagnostic microbiology laboratory. Burn patients hospitalized in any Calgary Health Region burn center from November 2000 to September 2001. Gram stain plus culture of burn wound surface swab specimens obtained during routine dressing changes or based on clinical signs of infection. Degree of correlation (complete, high, partial, none), including weighted kappa statistic (kappa(w)), of Gram stain with culture based on quantitative microscopy and degree of culture growth. A total of 375 specimens from 50 burn patients were evaluated. Of these, 239 were negative by culture and Gram stain, 7 were positive by Gram stain only, 89 were positive by culture only, and 40 were positive by both methods. The degree of complete, high, partial, and no correlation of Gram stain with culture was 70.9% (266/375), 1.1% (4/375), 2.4% (9/375), and 25.6% (96/375), respectively. The degree of correlation for all 375 specimens, as expressed by the weighted kappa statistic, was found to be fair (kappa(w) = 0.32).Conclusion.-The Gram stain is not suitable for the microbiological analysis of burn wound surfaces.
Li, Ting; Yan, Xu; Li, Yuan; Wang, Junjie; Li, Qiang; Li, Hong; Li, Junfeng
2017-01-01
There have been many neuroimaging studies of human personality traits, and it have already provided glimpse into the neurobiology of complex traits. And most of previous studies adopt voxel-based morphology (VBM) analysis to explore the brain-personality mechanism from two levels (vertex and regional based), the findings are mixed with great inconsistencies and the brain-personality relations are far from a full understanding. Here, we used a new method of surface-based morphology (SBM) analysis, which provides better alignment of cortical landmarks to generate about the associations between cortical morphology and the personality traits across 120 healthy individuals at both vertex and regional levels. While to further reveal local functional correlates of the morphology-personality relationships, we related surface-based functional homogeneity measures to the regions identified in the regional-based SBM correlation. Vertex-wise analysis revealed that people with high agreeableness exhibited larger areas in the left superior temporal gyrus. Based on regional parcellation we found that extroversion was negatively related with the volume of the left lateral occipito-temporal gyrus and agreeableness was negatively associated with the sulcus depth of the left superior parietal lobule. Moreover, increased regional homogeneity in the left lateral occipito-temporal gyrus is related to the scores of extroversion, and increased regional homogeneity in the left superior parietal lobule is related to the scores of agreeableness. These findings provide supporting evidence of a link between personality and brain structural mysteries with a method of SBM, and further suggest that local functional homogeneity of personality traits has neurobiological relevance that is likely based on anatomical substrates.
ERIC Educational Resources Information Center
Carman, Carol A.
2011-01-01
One of the underutilized tools in gifted identification is personality-based measures. A multiple confirmatory factor analysis was utilized to examine the relationships between traditional identification methods and personality-based measures. The pattern of correlations indicated this model could be measuring two constructs, one related to…
Calibration of Passive Microwave Polarimeters that Use Hybrid Coupler-Based Correlators
NASA Technical Reports Server (NTRS)
Piepmeier, J. R.
2003-01-01
Four calibration algorithms are studied for microwave polarimeters that use hybrid coupler-based correlators: 1) conventional two-look of hot and cold sources, 2) three looks of hot and cold source combinations, 3) two-look with correlated source, and 4) four-look combining methods 2 and 3. The systematic errors are found to depend on the polarimeter component parameters and accuracy of calibration noise temperatures. A case study radiometer in four different remote sensing scenarios was considered in light of these results. Applications for Ocean surface salinity, Ocean surface winds, and soil moisture were found to be sensitive to different systematic errors. Finally, a standard uncertainty analysis was performed on the four-look calibration algorithm, which was found to be most sensitive to the correlated calibration source.
Methane and Hydrogen Production from Anaerobic Fermentation of Municipal Solid Wastes
NASA Astrophysics Data System (ADS)
Kobayashi, Takuro; Lee, Dong-Yeol; Xu, Kaiqin; Li, Yu-You; Inamori, Yuhei
Methane and hydrogen production was investigated in batch experiments of thermophilic methane and hydrogen fermentation, using domestic garbage and food processing waste classified by fat/carbohydrate balance as a base material. Methane production per unit of VS added was significantly positively correlated with fat content and negatively correlated with carbohydrate content in the substrate, and the average value of the methane production per unit of VS added from fat-rich materials was twice as large as that from carbohydrate-rich materials. By contrast, hydrogen production per unit of VS added was significantly positively correlated with carbohydrate content and negatively correlated with fat content. Principal component analysis using the results obtained in this study enable an evaluation of substrates for methane and hydrogen fermentation based on nutrient composition.
Enhanced correlation of received power-signal fluctuations in bidirectional optical links
NASA Astrophysics Data System (ADS)
Minet, Jean; Vorontsov, Mikhail A.; Polnau, Ernst; Dolfi, Daniel
2013-02-01
A study of the correlation between the power signals received at both ends of bidirectional free-space optical links is presented. By use of the quasi-optical approximation, we show that an ideal (theoretically 100%) power-signal correlation can be achieved in optical links with specially designed monostatic transceivers based on single-mode fiber collimators. The theoretical prediction of enhanced correlation is supported both by experiments conducted over a 7 km atmospheric path and wave optics numerical analysis of the corresponding bidirectional optical link. In the numerical simulations, we also compare correlation properties of received power signals for different atmospheric conditions and for optical links with monostatic and bistatic geometries based on single-mode fiber collimator and on power-in-the-bucket transceiver types. Applications of the observed phenomena for signal fading mitigation and turbulence-enhanced communication link security in free-space laser communication links are discussed.
Gamut Volume Index: a color preference metric based on meta-analysis and optimized colour samples.
Liu, Qiang; Huang, Zheng; Xiao, Kaida; Pointer, Michael R; Westland, Stephen; Luo, M Ronnier
2017-07-10
A novel metric named Gamut Volume Index (GVI) is proposed for evaluating the colour preference of lighting. This metric is based on the absolute gamut volume of optimized colour samples. The optimal colour set of the proposed metric was obtained by optimizing the weighted average correlation between the metric predictions and the subjective ratings for 8 psychophysical studies. The performance of 20 typical colour metrics was also investigated, which included colour difference based metrics, gamut based metrics, memory based metrics as well as combined metrics. It was found that the proposed GVI outperformed the existing counterparts, especially for the conditions where correlated colour temperatures differed.
This RARE Project with EPA Region 6 was a spatial analysis study of select volatile organic compounds (VOC) collected using passive air monitors at outdoor residential locations in the Deer Park, Texas area near the Houston Ship Channel. Correlation analysis of VOC species confi...
2009-06-12
the entire Global Reach Laydown (GRL) strategy. Finally, analysis within this paper shows a correlation between political climate , basing, ground...17 Analysis of Literature...study researched Air Mobility Command (AMC) delivery of DoD resources to and through USAFRICOM. Specifically, the research and analysis within
Resting-state low-frequency fluctuations reflect individual differences in spoken language learning.
Deng, Zhizhou; Chandrasekaran, Bharath; Wang, Suiping; Wong, Patrick C M
2016-03-01
A major challenge in language learning studies is to identify objective, pre-training predictors of success. Variation in the low-frequency fluctuations (LFFs) of spontaneous brain activity measured by resting-state functional magnetic resonance imaging (RS-fMRI) has been found to reflect individual differences in cognitive measures. In the present study, we aimed to investigate the extent to which initial spontaneous brain activity is related to individual differences in spoken language learning. We acquired RS-fMRI data and subsequently trained participants on a sound-to-word learning paradigm in which they learned to use foreign pitch patterns (from Mandarin Chinese) to signal word meaning. We performed amplitude of spontaneous low-frequency fluctuation (ALFF) analysis, graph theory-based analysis, and independent component analysis (ICA) to identify functional components of the LFFs in the resting-state. First, we examined the ALFF as a regional measure and showed that regional ALFFs in the left superior temporal gyrus were positively correlated with learning performance, whereas ALFFs in the default mode network (DMN) regions were negatively correlated with learning performance. Furthermore, the graph theory-based analysis indicated that the degree and local efficiency of the left superior temporal gyrus were positively correlated with learning performance. Finally, the default mode network and several task-positive resting-state networks (RSNs) were identified via the ICA. The "competition" (i.e., negative correlation) between the DMN and the dorsal attention network was negatively correlated with learning performance. Our results demonstrate that a) spontaneous brain activity can predict future language learning outcome without prior hypotheses (e.g., selection of regions of interest--ROIs) and b) both regional dynamics and network-level interactions in the resting brain can account for individual differences in future spoken language learning success. Copyright © 2015 Elsevier Ltd. All rights reserved.
Resting-state low-frequency fluctuations reflect individual differences in spoken language learning
Deng, Zhizhou; Chandrasekaran, Bharath; Wang, Suiping; Wong, Patrick C.M.
2016-01-01
A major challenge in language learning studies is to identify objective, pre-training predictors of success. Variation in the low-frequency fluctuations (LFFs) of spontaneous brain activity measured by resting-state functional magnetic resonance imaging (RS-fMRI) has been found to reflect individual differences in cognitive measures. In the present study, we aimed to investigate the extent to which initial spontaneous brain activity is related to individual differences in spoken language learning. We acquired RS-fMRI data and subsequently trained participants on a sound-to-word learning paradigm in which they learned to use foreign pitch patterns (from Mandarin Chinese) to signal word meaning. We performed amplitude of spontaneous low-frequency fluctuation (ALFF) analysis, graph theory-based analysis, and independent component analysis (ICA) to identify functional components of the LFFs in the resting-state. First, we examined the ALFF as a regional measure and showed that regional ALFFs in the left superior temporal gyrus were positively correlated with learning performance, whereas ALFFs in the default mode network (DMN) regions were negatively correlated with learning performance. Furthermore, the graph theory-based analysis indicated that the degree and local efficiency of the left superior temporal gyrus were positively correlated with learning performance. Finally, the default mode network and several task-positive resting-state networks (RSNs) were identified via the ICA. The “competition” (i.e., negative correlation) between the DMN and the dorsal attention network was negatively correlated with learning performance. Our results demonstrate that a) spontaneous brain activity can predict future language learning outcome without prior hypotheses (e.g., selection of regions of interest – ROIs) and b) both regional dynamics and network-level interactions in the resting brain can account for individual differences in future spoken language learning success. PMID:26866283
Analysis on the Correlation of Traffic Flow in Hainan Province Based on Baidu Search
NASA Astrophysics Data System (ADS)
Chen, Caixia; Shi, Chun
2018-03-01
Internet search data records user’s search attention and consumer demand, providing necessary database for the Hainan traffic flow model. Based on Baidu Index, with Hainan traffic flow as example, this paper conduct both qualitative and quantitative analysis on the relationship between search keyword from Baidu Index and actual Hainan tourist traffic flow, and build multiple regression model by SPSS.
Measurement of the Correlation and Coherence Lengths in Boundary Layer Flight Data
NASA Technical Reports Server (NTRS)
Palumbo, Daniel L.
2011-01-01
Wall pressure data acquired during flight tests at several flight conditions are analyzed and the correlation and coherence lengths of the data reported. It is shown how the frequency bandwidth of the analysis biases the correlation length and how the convection of the flow acts to reduce the coherence length. Coherence lengths measured in the streamwise direction appear much longer than would be expected based on classical results for flow over a flat plat.
2018-05-01
the descriptors were correlated to experimental rate constants. The five descriptors fell into one of two categories: whole molecule descriptors or...model based on these correlations . Although that goal was not achieved in full, considerable progress has been made, and there is potential for a...readme.txt) and compiled. We then searched for correlations between the calculated properties from theory and the experimental measurements of reaction rate
Kobayashi, Yoshikazu; Habara, Masaaki; Ikezazki, Hidekazu; Chen, Ronggang; Naito, Yoshinobu; Toko, Kiyoshi
2010-01-01
Effective R&D and strict quality control of a broad range of foods, beverages, and pharmaceutical products require objective taste evaluation. Advanced taste sensors using artificial-lipid membranes have been developed based on concepts of global selectivity and high correlation with human sensory score. These sensors respond similarly to similar basic tastes, which they quantify with high correlations to sensory score. Using these unique properties, these sensors can quantify the basic tastes of saltiness, sourness, bitterness, umami, astringency and richness without multivariate analysis or artificial neural networks. This review describes all aspects of these taste sensors based on artificial lipid, ranging from the response principle and optimal design methods to applications in the food, beverage, and pharmaceutical markets. PMID:22319306
Identifying Node Role in Social Network Based on Multiple Indicators
Huang, Shaobin; Lv, Tianyang; Zhang, Xizhe; Yang, Yange; Zheng, Weimin; Wen, Chao
2014-01-01
It is a classic topic of social network analysis to evaluate the importance of nodes and identify the node that takes on the role of core or bridge in a network. Because a single indicator is not sufficient to analyze multiple characteristics of a node, it is a natural solution to apply multiple indicators that should be selected carefully. An intuitive idea is to select some indicators with weak correlations to efficiently assess different characteristics of a node. However, this paper shows that it is much better to select the indicators with strong correlations. Because indicator correlation is based on the statistical analysis of a large number of nodes, the particularity of an important node will be outlined if its indicator relationship doesn't comply with the statistical correlation. Therefore, the paper selects the multiple indicators including degree, ego-betweenness centrality and eigenvector centrality to evaluate the importance and the role of a node. The importance of a node is equal to the normalized sum of its three indicators. A candidate for core or bridge is selected from the great degree nodes or the nodes with great ego-betweenness centrality respectively. Then, the role of a candidate is determined according to the difference between its indicators' relationship with the statistical correlation of the overall network. Based on 18 real networks and 3 kinds of model networks, the experimental results show that the proposed methods perform quite well in evaluating the importance of nodes and in identifying the node role. PMID:25089823
NASA Astrophysics Data System (ADS)
Gyenge, E. L.
The Quraishi-Fahidy method [Can. J. Chem. Eng. 59 (1981) 563] was employed to derive characteristic dimensionless numbers for the membrane-electrolyte, cathode catalyst layer and gas diffuser, respectively, based on the model presented by Bernardi and Verbrugge for polymer electrolyte fuel cells [AIChE J. 37 (1991) 1151]. Monomial correlations among dimensionless numbers were developed and tested against experimental and mathematical modeling results. Dimensionless numbers comparing the bulk and surface-convective ionic conductivities, the electric and viscous forces and the current density and the fixed surface charges, were employed to describe the membrane ohmic drop and its non-linear dependence on current density due to membrane dehydration. The analysis of the catalyst layer yielded electrode kinetic equivalents of the second Damköhler number and Thiele modulus, influencing the penetration depth of the oxygen reduction front based on the pseudohomogeneous film model. The correlating equations for the catalyst layer could describe in a general analytical form, all the possible electrode polarization scenarios such as electrode kinetic control coupled or not with ionic and/or oxygen mass transport limitation. For the gas diffusion-backing layer correlations are presented in terms of the Nusselt number for mass transfer in electrochemical systems. The dimensionless number-based correlating equations for the membrane electrode assembly (MEA) could provide a practical approach to quantify single-cell polarization results obtained under a variety of experimental conditions and to implement them in models of the fuel cell stack.
Statistical analysis of 4 types of neck whiplash injuries based on classical meridian theory.
Chen, Yemeng; Zhao, Yan; Xue, Xiaolin; Li, Hui; Wu, Xiuyan; Zhang, Qunce; Zheng, Xin; Wang, Tianfang
2015-01-01
As one component of the Chinese medicine meridian system, the meridian sinew (Jingjin, (see text), tendino-musculo) is specially described as being for acupuncture treatment of the musculoskeletal system because of its dynamic attributes and tender point correlations. In recent decades, the therapeutic importance of the sinew meridian has become revalued in clinical application. Based on this theory, the authors have established therapeutic strategies of acupuncture treatment in Whiplash-Associated Disorders (WAD) by categorizing four types of neck symptom presentations. The advantage of this new system is to make it much easier for the clinician to find effective acupuncture points. This study attempts to prove the significance of the proposed therapeutic strategies by analyzing data collected from a clinical survey of various WAD using non-supervised statistical methods, such as correlation analysis, factor analysis, and cluster analysis. The clinical survey data have successfully verified discrete characteristics of four neck syndromes, based upon the range of motion (ROM) and tender point location findings. A summary of the relationships among the symptoms of the four neck syndromes has shown the correlation coefficient as having a statistical significance (P < 0.01 or P < 0.05), especially with regard to ROM. Furthermore, factor and cluster analyses resulted in a total of 11 categories of general symptoms, which implies syndrome factors are more related to the Liver, as originally described in classical theory. The hypothesis of meridian sinew syndromes in WAD is clearly supported by the statistical analysis of the clinical trials. This new discovery should be beneficial in improving therapeutic outcomes.
Inference for High-dimensional Differential Correlation Matrices *
Cai, T. Tony; Zhang, Anru
2015-01-01
Motivated by differential co-expression analysis in genomics, we consider in this paper estimation and testing of high-dimensional differential correlation matrices. An adaptive thresholding procedure is introduced and theoretical guarantees are given. Minimax rate of convergence is established and the proposed estimator is shown to be adaptively rate-optimal over collections of paired correlation matrices with approximately sparse differences. Simulation results show that the procedure significantly outperforms two other natural methods that are based on separate estimation of the individual correlation matrices. The procedure is also illustrated through an analysis of a breast cancer dataset, which provides evidence at the gene co-expression level that several genes, of which a subset has been previously verified, are associated with the breast cancer. Hypothesis testing on the differential correlation matrices is also considered. A test, which is particularly well suited for testing against sparse alternatives, is introduced. In addition, other related problems, including estimation of a single sparse correlation matrix, estimation of the differential covariance matrices, and estimation of the differential cross-correlation matrices, are also discussed. PMID:26500380
Chen, L; Liu, J; Xu, T; Long, X; Lin, J
2010-07-01
The study aims were to investigate the correlation between vertebral shape and hand-wrist maturation and to select characteristic parameters of C2-C5 (the second to fifth cervical vertebrae) for cervical vertebral maturation determination by mixed longitudinal data. 87 adolescents (32 males, 55 females) aged 8-18 years with normal occlusion were studied. Sequential lateral cephalograms and hand-wrist radiographs were taken annually for 6 consecutive years. Lateral cephalograms were divided into 11 maturation groups according to Fishman Skeletal Maturity Indicators (SMI). 62 morphological measurements of C2-C5 at 11 different developmental stages (SMI1-11) were measured and analysed. Locally weighted scatterplot smoothing, correlation coefficient analysis and variable cluster analysis were used for statistical analysis. Of the 62 cervical vertebral parameters, 44 were positively correlated with SMI, 6 were negatively correlated and 12 were not correlated. The correlation coefficients between cervical vertebral parameters and SMI were relatively high. Characteristic parameters for quantitative analysis of cervical vertebral maturation were selected. In summary, cervical vertebral maturation could be used reliably to evaluate the skeletal stage instead of the hand-wrist radiographic method. Selected characteristic parameters offered a simple and objective reference for the assessment of skeletal maturity and timing of orthognathic surgery. Copyright 2010 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Correlation between Gray/White Matter Volume and Cognition in Healthy Elderly People
ERIC Educational Resources Information Center
Taki, Yasuyuki; Kinomura, Shigeo; Sato, Kazunori; Goto, Ryoi; Wu, Kai; Kawashima, Ryuta; Fukuda, Hiroshi
2011-01-01
This study applied volumetric analysis and voxel-based morphometry (VBM) of brain magnetic resonance (MR) images to assess whether correlations exist between global and regional gray/white matter volume and the cognitive functions of semantic memory and short-term memory, which are relatively well preserved with aging, using MR image data from 109…
Ippoliti, Matteo; Adams, Lisa C; Winfried, Brenner; Hamm, Bernd; Spincemaille, Pascal; Wang, Yi; Makowski, Marcus R
2018-04-16
Quantitative susceptibility mapping (QSM) is an MRI postprocessing technique that allows quantification of the spatial distribution of tissue magnetic susceptibility in vivo. Contributing sources include iron, blood products, calcium, myelin, and lipid content. To evaluate the reproducibility and consistency of QSM across clinical field strengths of 1.5T and 3T and to optimize the contrast-to-noise ratio (CNR) at 1.5T through bandwidth tuning. Prospective. Sixteen healthy volunteers (10 men, 6 women; age range 24-37; mean age 27.8 ± 3.2 years). 1.5T and 3T systems from the same vendor. Four spoiled gradient echo (SPGR) sequences were designed with different acquisition bandwidths. QSM reconstruction was achieved through a nonlinear morphology-enabled dipole inversion (MEDI) algorithm employing L1 regularization. CNR was calculated in seven regions of interest (ROIs), while reproducibility and consistency of QSM measurements were evaluated through voxel-based and region-specific linear correlation analyses and Bland-Altman plots. Interclass correlation, Wilcoxon rank sum test, linear regression analysis, Bland-Altman analysis, Welch's t-test. CNR analysis showed a statistically significant (P < 0.05) increase in four out of seven ROIs for the lowest bandwidth employed with respect to the highest (25.18% increase in CNR of caudate nucleus). All sequences reported an excellent correlation across field strength and bandwidth variation (R ≥ 0.96, widest limits of agreement from -18.7 to 25.8 ppb) in the ROI-based analysis, while the correlation was found to be good for the voxel-based analysis of averaged maps (R ≥ 0.90, widest limits of agreement from -9.3 to 9.1 ppb). CNR of QSM images reconstructed from 1.5T acquisitions can be enhanced through bandwidth tuning. MEDI-based QSM reconstruction demonstrated to be reproducible and consistent both across field strengths (1.5T and 3T) and bandwidth variation. 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.
Sensitive albuminuria analysis using dye-binding based test strips.
Delanghe, Joris R; Himpe, Jonas; De Cock, Naomi; Delanghe, Sigurd; De Herde, Kevin; Stove, Veronique; Speeckaert, Marijn M
2017-08-01
Populations at increased risk for chronic kidney disease should be screened for albuminuria. Possibilities of advanced urine strip readers based on complementary metal oxide semiconductor (CMOS) sensor technology were investigated for obtaining quantitative albuminuria results. Reflectance data of test strips (Sysmex UFC 3500 reader+CMOS) were compared with albuminuria (BNII) and with proteinuria (Cobas 8000). Urinary creatinine was assayed using a Jaffe-based creatinine assay (Cobas 8000). Calibration curve was made between 11.5 and 121.5mg/L with detection limit of 5.5mg/L. Within-run CV values of reflectance data were 0.21% (UC-Control L; 10mg/L) and 0.37% (UC-Control H; >150mg/L) for albumin, and 0.71%/3.97% for creatinine. Between-run CV values were 0.24%/0.42% for albumin and 0.93%/5.13% for creatinine. A strong correlation (r=0.92) was obtained between albuminuria (BNII) and protein strip reflectance data. Creatinine reflectance data correlated well with Jaffe-based urinary creatinine data (r=0.90). Albumin:creatinine ratio obtained by test strip and by wet chemistry showed a good correlation (r=0.59). Carbamylated, glycated and partially hydrolyzed isoforms of albumin could be detected by test strip. Dye-binding based albumin test strip assay in combination with a CMOS based reader would potentially allow quantitative analysis of albuminuria and determination of albumin:creatinine ratio. Copyright © 2017 Elsevier B.V. All rights reserved.
Analysis of digital communication signals and extraction of parameters
NASA Astrophysics Data System (ADS)
Al-Jowder, Anwar
1994-12-01
The signal classification performance of four types of electronics support measure (ESM) communications detection systems is compared from the standpoint of the unintended receiver (interceptor). Typical digital communication signals considered include binary phase shift keying (BPSK), quadrature phase shift keying (QPSK), frequency shift keying (FSK), and on-off keying (OOK). The analysis emphasizes the use of available signal processing software. Detection methods compared include broadband energy detection, FFT-based narrowband energy detection, and two correlation methods which employ the fast Fourier transform (FFT). The correlation methods utilize modified time-frequency distributions, where one of these is based on the Wigner-Ville distribution (WVD). Gaussian white noise is added to the signal to simulate various signal-to-noise ratios (SNR's).
NASA Astrophysics Data System (ADS)
Jin, Dakai; Lu, Jia; Zhang, Xiaoliu; Chen, Cheng; Bai, ErWei; Saha, Punam K.
2017-03-01
Osteoporosis is associated with increased fracture risk. Recent advancement in the area of in vivo imaging allows segmentation of trabecular bone (TB) microstructures, which is a known key determinant of bone strength and fracture risk. An accurate biomechanical modelling of TB micro-architecture provides a comprehensive summary measure of bone strength and fracture risk. In this paper, a new direct TB biomechanical modelling method using nonlinear manifold-based volumetric reconstruction of trabecular network is presented. It is accomplished in two sequential modules. The first module reconstructs a nonlinear manifold-based volumetric representation of TB networks from three-dimensional digital images. Specifically, it starts with the fuzzy digital segmentation of a TB network, and computes its surface and curve skeletons. An individual trabecula is identified as a topological segment in the curve skeleton. Using geometric analysis, smoothing and optimization techniques, the algorithm generates smooth, curved, and continuous representations of individual trabeculae glued at their junctions. Also, the method generates a geometrically consistent TB volume at junctions. In the second module, a direct computational biomechanical stress-strain analysis is applied on the reconstructed TB volume to predict mechanical measures. The accuracy of the method was examined using micro-CT imaging of cadaveric distal tibia specimens (N = 12). A high linear correlation (r = 0.95) between TB volume computed using the new manifold-modelling algorithm and that directly derived from the voxel-based micro-CT images was observed. Young's modulus (YM) was computed using direct mechanical analysis on the TB manifold-model over a cubical volume of interest (VOI), and its correlation with the YM, computed using micro-CT based conventional finite-element analysis over the same VOI, was examined. A moderate linear correlation (r = 0.77) was observed between the two YM measures. This preliminary results show the accuracy of the new nonlinear manifold modelling algorithm for TB, and demonstrate the feasibility of a new direct mechanical strain-strain analysis on a nonlinear manifold model of a highly complex biological structure.
NASA Astrophysics Data System (ADS)
Wang, Fang
2016-06-01
In order to detect and quantify asymmetry of two time series, a novel cross-correlation coefficient is proposed based on recent asymmetric detrended cross-correlation analysis (A-DXA), which we called A-DXA coefficient. The A-DXA coefficient, as an important extension of DXA coefficient ρ D X A , contains two directional asymmetric cross-correlated indexes, describing upwards and downwards asymmetric cross-correlations, respectively. By using the information of directional covariance function of two time series and directional variance function of each series itself instead of power-law between the covariance function and time scale, the proposed A-DXA coefficient can well detect asymmetry between the two series no matter whether the cross-correlation is significant or not. By means of the proposed A-DXA coefficient conducted over the asymmetry for California electricity market, we found that the asymmetry between the prices and loads is not significant for daily average data in 1999 yr market (before electricity crisis) but extremely significant for those in 2000 yr market (during the crisis). To further uncover the difference of asymmetry between the years 1999 and 2000, a modified H statistic (MH) and ΔMH statistic are proposed. One of the present contributions is that the high MH values calculated for hourly data exist in majority months in 2000 market. Another important conclusion is that the cross-correlation with downwards dominates over the whole 1999 yr in contrast to the cross-correlation with upwards dominates over the 2000 yr.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neal, B; Chen, Q
2015-06-15
Purpose: To correlate ventilation parameters computed from 4D CT to ventilation, profusion, and gas exchange measured with hyperpolarized Xenon-129 MRI for a set of lung cancer patients. Methods: Hyperpolarized Xe-129 MRI lung scans were acquired for lung cancer patients, before and after radiation therapy, measuring ventilation, perfusion, and gas exchange. In the standard clinical workflow, these patients also received 4D CT scans before treatment. Ventilation was computed from 4D CT using deformable image registration (DIR). All phases of the 4D CT scan were registered using a B-spline deformable registration. Ventilation at the voxel level was then computed for each phasemore » based on a Jacobian volume expansion metric, yielding phase sorted ventilation images. Ventilation based upon 4D CT and Xe-129 MRI were co-registered, allowing qualitative visual comparison and qualitative comparison via the Pearson correlation coefficient. Results: Analysis shows a weak correlation between hyperpolarized Xe-129 MRI and 4D CT DIR ventilation, with a Pearson correlation coefficient of 0.17 to 0.22. Further work will refine the DIR parameters to optimize the correlation. The weak correlation could be due to the limitations of 4D CT, registration algorithms, or the Xe-129 MRI imaging. Continued development will refine parameters to optimize correlation. Conclusion: Current analysis yields a minimal correlation between 4D CT DIR and Xe-129 MRI ventilation. Funding provided by the 2014 George Amorino Pilot Grant in Radiation Oncology at the University of Virginia.« less
Cigarette dependence questionnaire: development and psychometric testing with male smokers.
Huang, Chih-Ling; Lin, Hsi-Hui; Wang, Hsiu-Hung
2010-10-01
This paper is a report of a study conducted to develop and test a theoretically derived Cigarette Dependence Questionnaire for adult male smokers. Fagerstrom questionnaires have been used worldwide to assess cigarette dependence. However, these assessments lack any theoretical perspective. A theory-based approach is needed to ensure valid assessment. In 2007, an initial pool of 103 Cigarette Dependence Questionnaire items was distributed to 109 adult smokers in Taiwan. Item analysis was conducted to select items for inclusion in the refined scale. The psychometric properties of the Cigarette Dependence Questionnaire were further evaluated 2007-08, when it was administered to 256 respondents and their saliva was collected and analysed for cotinine levels. Criterion validity was established through the Pearson correlation between the scale and saliva cotinine levels. Exploratory factor analysis was used to test construct validity. Reliability was determined with Cronbach's alpha coefficient and a 2-week test-retest coefficient. The selection of 30 items for seven perspectives was based on item analysis. One factor accounting for 44.9% of the variance emerged from the factor analysis. The factor was named as cigarette dependence. Cigarette Dependence Questionnaire scores were statistically significantly correlated with saliva cotinine levels (r = 0.21, P = 0.01). Cronbach's alpha was 0.95 and test-retest reliability using an intra-class correlation was 0.92. The Cigarette Dependence Questionnaire showed sound reliability and validity and could be used by nurses to set up smoking cessation interventions based on assessment of cigarette dependence. © 2010 Blackwell Publishing Ltd.
Tracking molecular dynamics without tracking: image correlation of photo-activation microscopy
NASA Astrophysics Data System (ADS)
Pandžić, Elvis; Rossy, Jérémie; Gaus, Katharina
2015-03-01
Measuring protein dynamics in the plasma membrane can provide insights into the mechanisms of receptor signaling and other cellular functions. To quantify protein dynamics on the single molecule level over the entire cell surface, sophisticated approaches such as single particle tracking (SPT), photo-activation localization microscopy (PALM) and fluctuation-based analysis have been developed. However, analyzing molecular dynamics of fluorescent particles with intermittent excitation and low signal-to-noise ratio present at high densities has remained a challenge. We overcame this problem by applying spatio-temporal image correlation spectroscopy (STICS) analysis to photo-activated (PA) microscopy time series. In order to determine under which imaging conditions this approach is valid, we simulated PA images of diffusing particles in a homogeneous environment and varied photo-activation, reversible blinking and irreversible photo-bleaching rates. Further, we simulated data with high particle densities that populated mobile objects (such as adhesions and vesicles) that often interfere with STICS and fluctuation-based analysis. We demonstrated in experimental measurements that the diffusion coefficient of the epidermal growth factor receptor (EGFR) fused to PAGFP in live COS-7 cells can be determined in the plasma membrane and revealed differences in the time-dependent diffusion maps between wild-type and mutant Lck in activated T cells. In summary, we have developed a new analysis approach for live cell photo-activation microscopy data based on image correlation spectroscopy to quantify the spatio-temporal dynamics of single proteins.
Tracking molecular dynamics without tracking: image correlation of photo-activation microscopy.
Pandžić, Elvis; Rossy, Jérémie; Gaus, Katharina
2015-03-09
Measuring protein dynamics in the plasma membrane can provide insights into the mechanisms of receptor signaling and other cellular functions. To quantify protein dynamics on the single molecule level over the entire cell surface, sophisticated approaches such as single particle tracking (SPT), photo-activation localization microscopy (PALM) and fluctuation-based analysis have been developed. However, analyzing molecular dynamics of fluorescent particles with intermittent excitation and low signal-to-noise ratio present at high densities has remained a challenge. We overcame this problem by applying spatio-temporal image correlation spectroscopy (STICS) analysis to photo-activated (PA) microscopy time series. In order to determine under which imaging conditions this approach is valid, we simulated PA images of diffusing particles in a homogeneous environment and varied photo-activation, reversible blinking and irreversible photo-bleaching rates. Further, we simulated data with high particle densities that populated mobile objects (such as adhesions and vesicles) that often interfere with STICS and fluctuation-based analysis. We demonstrated in experimental measurements that the diffusion coefficient of the epidermal growth factor receptor (EGFR) fused to PAGFP in live COS-7 cells can be determined in the plasma membrane and revealed differences in the time-dependent diffusion maps between wild-type and mutant Lck in activated T cells. In summary, we have developed a new analysis approach for live cell photo-activation microscopy data based on image correlation spectroscopy to quantify the spatio-temporal dynamics of single proteins.
Washko, George R; Criner, Gerald J; Mohsenifar, Zab; Sciurba, Frank C; Sharafkhaneh, Amir; Make, Barry J; Hoffman, Eric A; Reilly, John J
2008-06-01
Computed tomographic based indices of emphysematous lung destruction may highlight differences in disease pathogenesis and further enable the classification of subjects with Chronic Obstructive Pulmonary Disease. While there are multiple techniques that can be utilized for such radiographic analysis, there is very little published information comparing the performance of these methods in a clinical case series. Our objective was to examine several quantitative and semi-quantitative methods for the assessment of the burden of emphysema apparent on computed tomographic scans and compare their ability to predict lung mechanics and function. Automated densitometric analysis was performed on 1094 computed tomographic scans collected upon enrollment into the National Emphysema Treatment Trial. Trained radiologists performed an additional visual grading of emphysema on high resolution CT scans. Full pulmonary function test results were available for correlation, with a subset of subjects having additional measurements of lung static recoil. There was a wide range of emphysematous lung destruction apparent on the CT scans and univariate correlations to measures of lung function were of modest strength. No single method of CT scan analysis clearly outperformed the rest of the group. Quantification of the burden of emphysematous lung destruction apparent on CT scan is a weak predictor of lung function and mechanics in severe COPD with no uniformly superior method found to perform this analysis. The CT based quantification of emphysema may augment pulmonary function testing in the characterization of COPD by providing complementary phenotypic information.
Needlet estimation of cross-correlation between CMB lensing maps and LSS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bianchini, Federico; Renzi, Alessandro; Marinucci, Domenico, E-mail: fbianchini@sissa.it, E-mail: renzi@mat.uniroma2.it, E-mail: marinucc@mat.uniroma2.it
In this paper we develop a novel needlet-based estimator to investigate the cross-correlation between cosmic microwave background (CMB) lensing maps and large-scale structure (LSS) data. We compare this estimator with its harmonic counterpart and, in particular, we analyze the bias effects of different forms of masking. In order to address this bias, we also implement a MASTER-like technique in the needlet case. The resulting estimator turns out to have an extremely good signal-to-noise performance. Our analysis aims at expanding and optimizing the operating domains in CMB-LSS cross-correlation studies, similarly to CMB needlet data analysis. It is motivated especially by nextmore » generation experiments (such as Euclid) which will allow us to derive much tighter constraints on cosmological and astrophysical parameters through cross-correlation measurements between CMB and LSS.« less
Estimation of stature from sternal lengths. A correlation meta-analysis.
Yammine, Kaissar; Assi, Chahine
2017-01-01
Methods based on the positive linear relationship existing between stature and long bones are most commonly used to estimate living stature in forensic anthropology. The length of the sternum and its parts has been advanced as a plausible alternative to estimate stature when such long bones are missing or damaged. This meta-analysis aims to quantify evidence on the correlation between the sternum/sternal parts length and stature. Nine studies were included with 1118 sternal bones. Analyses showed that the length of the meso-sternum (manubrium + body) yielded the best correlation with stature; 53.5% and 55.42% for men and women, respectively. The second best variable is the total sternal length with correlations of 44.3% and 55% for men and women, respectively. Subgroup analysis of autopsy studies demonstrated even a higher correlation of 58.2% for the meso-sternal length. Manubrium and body lengths showed the least correlation values. Except for the body length, females exhibit a better correlation than man between all other sternal lengths and stature. While the meso-sternal length is found to be the most correlated variable with stature, all sternal lengths are to be considered with caution when estimating stature. The relatively low values of the weighted correlation results should raise the question of reliability and limit the use of sternal length when long bones are available. Future research using larger samples from different populations and taking into account the fusion status of the sternum are needed.
NASA Astrophysics Data System (ADS)
Suresh, Pooja
2014-05-01
Alloy identification of oil-borne wear debris captured on chip detectors, filters and magnetic plugs allows the machinery maintainer to assess the health of the engine or gearbox and identify specific component damage. Today, such identification can be achieved in real time using portable, at-line laser-induced breakdown spectroscopy (LIBS) and Xray fluorescence (XRF) instruments. Both techniques can be utilized in various industries including aviation, marine, railways, heavy diesel and other industrial machinery with, however, some substantial differences in application and instrument performance. In this work, the performances of a LIBS and an XRF instrument are compared based on measurements of a wide range of typical aerospace alloys including steels, titanium, aluminum and nickel alloys. Measurement results were analyzed with a staged correlation technique specifically developed for the purposes of this study - identifying the particle alloy composition using a pre-recorded library of spectral signatures. The analysis is performed in two stages: first, the base element of the alloy is determined by correlation with the stored elemental spectra and then, the alloy is identified by matching the particle's spectral signature using parametric correlation against the stored spectra of all alloys that have the same base element. The correlation analysis has achieved highly repeatable discrimination between alloys of similar composition. Portable LIBS demonstrates higher detection accuracy and better identification of alloys comprising lighter elements as compared to that of the portable XRF system, and reveals a significant reduction in the analysis time over XRF.
On the Analysis of Case-Control Studies in Cluster-correlated Data Settings.
Haneuse, Sebastien; Rivera-Rodriguez, Claudia
2018-01-01
In resource-limited settings, long-term evaluation of national antiretroviral treatment (ART) programs often relies on aggregated data, the analysis of which may be subject to ecological bias. As researchers and policy makers consider evaluating individual-level outcomes such as treatment adherence or mortality, the well-known case-control design is appealing in that it provides efficiency gains over random sampling. In the context that motivates this article, valid estimation and inference requires acknowledging any clustering, although, to our knowledge, no statistical methods have been published for the analysis of case-control data for which the underlying population exhibits clustering. Furthermore, in the specific context of an ongoing collaboration in Malawi, rather than performing case-control sampling across all clinics, case-control sampling within clinics has been suggested as a more practical strategy. To our knowledge, although similar outcome-dependent sampling schemes have been described in the literature, a case-control design specific to correlated data settings is new. In this article, we describe this design, discuss balanced versus unbalanced sampling techniques, and provide a general approach to analyzing case-control studies in cluster-correlated settings based on inverse probability-weighted generalized estimating equations. Inference is based on a robust sandwich estimator with correlation parameters estimated to ensure appropriate accounting of the outcome-dependent sampling scheme. We conduct comprehensive simulations, based in part on real data on a sample of N = 78,155 program registrants in Malawi between 2005 and 2007, to evaluate small-sample operating characteristics and potential trade-offs associated with standard case-control sampling or when case-control sampling is performed within clusters.
Variable Selection through Correlation Sifting
NASA Astrophysics Data System (ADS)
Huang, Jim C.; Jojic, Nebojsa
Many applications of computational biology require a variable selection procedure to sift through a large number of input variables and select some smaller number that influence a target variable of interest. For example, in virology, only some small number of viral protein fragments influence the nature of the immune response during viral infection. Due to the large number of variables to be considered, a brute-force search for the subset of variables is in general intractable. To approximate this, methods based on ℓ1-regularized linear regression have been proposed and have been found to be particularly successful. It is well understood however that such methods fail to choose the correct subset of variables if these are highly correlated with other "decoy" variables. We present a method for sifting through sets of highly correlated variables which leads to higher accuracy in selecting the correct variables. The main innovation is a filtering step that reduces correlations among variables to be selected, making the ℓ1-regularization effective for datasets on which many methods for variable selection fail. The filtering step changes both the values of the predictor variables and output values by projections onto components obtained through a computationally-inexpensive principal components analysis. In this paper we demonstrate the usefulness of our method on synthetic datasets and on novel applications in virology. These include HIV viral load analysis based on patients' HIV sequences and immune types, as well as the analysis of seasonal variation in influenza death rates based on the regions of the influenza genome that undergo diversifying selection in the previous season.
Lahm, Andreas; Mrosek, Eike; Spank, Heiko; Erggelet, Christoph; Kasch, Richard; Esser, Jan; Merk, Harry
2010-04-01
The different cartilage layers vary in synthesis of proteoglycan and of the distinct types of collagen with the predominant collagen Type II with its associated collagens, e.g. types IX and XI, produced by normal chondrocytes. It was demonstrated that proteoglycan decreases in degenerative tissue and a switch from collagen type II to type I occurs. The aim of this study was to evaluate the correlation of real-time (RT)-PCR and Photoshop-based image analysis in detecting such lesions and find new aspects about their distribution. We performed immunohistochemistry and histology with cartilage tissue samples from 20 patients suffering from osteoarthritis compared with 20 healthy biopsies. Furthermore, we quantified our results on the gene expression of collagen type I and II and aggrecan with the help of real-time (RT)-PCR. Proteoglycan content was measured colorimetrically. Using Adobe Photoshop the digitized images of histology and immunohistochemistry stains of collagen type I and II were stored on an external data storage device. The area occupied by any specific colour range can be specified and compared in a relative manner directly from the histogram using the "magic wand tool" in the select similar menu. In the image grow menu gray levels or luminosity (colour) of all pixels within the selected area, including mean, median and standard deviation, etc. are depicted. Statistical Analysis was performed using the t test. With the help of immunohistochemistry, RT-PCR and quantitative RT- PCR we found that not only collagen type II, but also collagen type I is synthesized by the cells of the diseased cartilage tissue, shown by increasing amounts of collagen type I mRNA especially in the later stages of osteoarthritis. A decrease of collagen type II is visible especially in the upper fibrillated area of the advanced osteoarthritic samples, which leads to an overall decrease. Analysis of proteoglycan showed a loss of the overall content and a quite uniform staining in the different zones compared to the healthy cartilage with a classical zonal formation. Correlation analysis of the proteoglycan Photoshop measurements with the RT-PCR using Spearman correlation analysis revealed strong correlation for Safranin O and collagen type I, medium for collagen type II and glycoprotein but weak correlation between PCR aggrecan results. Photoshop-based image analysis might become a valuable supplement for well known histopathological grading systems of lesioned articular cartilage.
Kim, Jun Won; Kim, Bung-Nyun; Kim, Johanna Inhyang; Lee, Young Sik; Min, Kyung Joon; Kim, Hyun-Jin; Lee, Jaewon
2015-01-01
Social network analysis has emerged as a promising tool in modern social psychology. This method can be used to examine friend-based social relationships in terms of network theory, with nodes representing individual students and ties representing relationships between students (e.g., friendships and kinships). Using social network analysis, we investigated whether greater severity of ADHD symptoms is correlated with weaker peer relationships among elementary school students. A total of 562 sixth-graders from two elementary schools (300 males) provided the names of their best friends (maximum 10 names). Their teachers rated each student's ADHD symptoms using an ADHD rating scale. The results showed that 10.2% of the students were at high risk for ADHD. Significant group differences were observed between the high-risk students and other students in two of the three network parameters (degree, centrality and closeness) used to assess friendship quality, with the high-risk group showing significantly lower values of degree and closeness compared to the other students. Moreover, negative correlations were found between the ADHD rating and two social network analysis parameters. Our findings suggest that the severity of ADHD symptoms is strongly correlated with the quality of social and interpersonal relationships in students with ADHD symptoms.
Kim, Jun Won; Kim, Bung-Nyun; Kim, Johanna Inhyang; Lee, Young Sik; Min, Kyung Joon; Kim, Hyun-Jin; Lee, Jaewon
2015-01-01
Introduction Social network analysis has emerged as a promising tool in modern social psychology. This method can be used to examine friend-based social relationships in terms of network theory, with nodes representing individual students and ties representing relationships between students (e.g., friendships and kinships). Using social network analysis, we investigated whether greater severity of ADHD symptoms is correlated with weaker peer relationships among elementary school students. Methods A total of 562 sixth-graders from two elementary schools (300 males) provided the names of their best friends (maximum 10 names). Their teachers rated each student’s ADHD symptoms using an ADHD rating scale. Results The results showed that 10.2% of the students were at high risk for ADHD. Significant group differences were observed between the high-risk students and other students in two of the three network parameters (degree, centrality and closeness) used to assess friendship quality, with the high-risk group showing significantly lower values of degree and closeness compared to the other students. Moreover, negative correlations were found between the ADHD rating and two social network analysis parameters. Conclusion Our findings suggest that the severity of ADHD symptoms is strongly correlated with the quality of social and interpersonal relationships in students with ADHD symptoms. PMID:26562777
Method of Individual Adjustment for 3D CT Analysis: Linear Measurement.
Kim, Dong Kyu; Choi, Dong Hun; Lee, Jeong Woo; Yang, Jung Dug; Chung, Ho Yun; Cho, Byung Chae; Choi, Kang Young
2016-01-01
Introduction . We aim to regularize measurement values in three-dimensional (3D) computed tomography (CT) reconstructed images for higher-precision 3D analysis, focusing on length-based 3D cephalometric examinations. Methods . We measure the linear distances between points on different skull models using Vernier calipers (real values). We use 10 differently tilted CT scans for 3D CT reconstruction of the models and measure the same linear distances from the picture archiving and communication system (PACS). In both cases, each measurement is performed three times by three doctors, yielding nine measurements. The real values are compared with the PACS values. Each PACS measurement is revised based on the display field of view (DFOV) values and compared with the real values. Results . The real values and the PACS measurement changes according to tilt value have no significant correlations ( p > 0.05). However, significant correlations appear between the real values and DFOV-adjusted PACS measurements ( p < 0.001). Hence, we obtain a correlation expression that can yield real physical values from PACS measurements. The DFOV value intervals for various age groups are also verified. Conclusion . Precise confirmation of individual preoperative length and precise analysis of postoperative improvements through 3D analysis is possible, which is helpful for facial-bone-surgery symmetry correction.
van Amerom, Joshua F P; Kellenberger, Christian J; Yoo, Shi-Joon; Macgowan, Christopher K
2009-01-01
An automated method was evaluated to detect blood flow in small pulmonary arteries and classify each as artery or vein, based on a temporal correlation analysis of their blood-flow velocity patterns. The method was evaluated using velocity-sensitive phase-contrast magnetic resonance data collected in vitro with a pulsatile flow phantom and in vivo in 11 human volunteers. The accuracy of the method was validated in vitro, which showed relative velocity errors of 12% at low spatial resolution (four voxels per diameter), but was reduced to 5% at increased spatial resolution (16 voxels per diameter). The performance of the method was evaluated in vivo according to its reproducibility and agreement with manual velocity measurements by an experienced radiologist. In all volunteers, the correlation analysis was able to detect and segment peripheral pulmonary vessels and distinguish arterial from venous velocity patterns. The intrasubject variability of repeated measurements was approximately 10% of peak velocity, or 2.8 cm/s root-mean-variance, demonstrating the high reproducibility of the method. Excellent agreement was obtained between the correlation analysis and radiologist measurements of pulmonary velocities, with a correlation of R2=0.98 (P<.001) and a slope of 0.99+/-0.01.
Relation between brain architecture and mathematical ability in children: a DBM study.
Han, Zhaoying; Davis, Nicole; Fuchs, Lynn; Anderson, Adam W; Gore, John C; Dawant, Benoit M
2013-12-01
Population-based studies indicate that between 5 and 9 percent of US children exhibit significant deficits in mathematical reasoning, yet little is understood about the brain morphological features related to mathematical performances. In this work, deformation-based morphometry (DBM) analyses have been performed on magnetic resonance images of the brains of 79 third graders to investigate whether there is a correlation between brain morphological features and mathematical proficiency. Group comparison was also performed between Math Difficulties (MD-worst math performers) and Normal Controls (NC), where each subgroup consists of 20 age and gender matched subjects. DBM analysis is based on the analysis of the deformation fields generated by non-rigid registration algorithms, which warp the individual volumes to a common space. To evaluate the effect of registration algorithms on DBM results, five nonrigid registration algorithms have been used: (1) the Adaptive Bases Algorithm (ABA); (2) the Image Registration Toolkit (IRTK); (3) the FSL Nonlinear Image Registration Tool; (4) the Automatic Registration Tool (ART); and (5) the normalization algorithm available in SPM8. The deformation field magnitude (DFM) was used to measure the displacement at each voxel, and the Jacobian determinant (JAC) was used to quantify local volumetric changes. Results show there are no statistically significant volumetric differences between the NC and the MD groups using JAC. However, DBM analysis using DFM found statistically significant anatomical variations between the two groups around the left occipital-temporal cortex, left orbital-frontal cortex, and right insular cortex. Regions of agreement between at least two algorithms based on voxel-wise analysis were used to define Regions of Interest (ROIs) to perform an ROI-based correlation analysis on all 79 volumes. Correlations between average DFM values and standard mathematical scores over these regions were found to be significant. We also found that the choice of registration algorithm has an impact on DBM-based results, so we recommend using more than one algorithm when conducting DBM studies. To the best of our knowledge, this is the first study that uses DBM to investigate brain anatomical features related to mathematical performance in a relatively large population of children. © 2013.
Climate impacts of the NAO are sensitive to how the NAO is defined
NASA Astrophysics Data System (ADS)
Pokorná, Lucie; Huth, Radan
2015-02-01
We analyze the sensitivity of the effects the North Atlantic Oscillation (NAO) exerts on surface temperature and precipitation in Europe to the definition of the NAO index. Seven different NAO indices are examined: two based on station sea level pressure (SLP) data, two based on action centers, and three based on correlation/covariance structures described by principal component analysis (PCA). The analysis is based on monthly mean data; winter and summer seasons are analyzed separately. Temporal correlations between indices are weaker in summer than in winter for most pairs of indices. In particular, low correlations are found between station indices on the one hand and PCA-based indices on the other hand. The NAO effects are quantified by correlations between the indices and station data in Europe. Effects of the NAO on precipitation amount and wet day probability are very similar, while NAO effects on maximum temperature are stronger than those on minimum temperature. The sensitivity of the NAO effects on both surface temperature and precipitation to the choice of the NAO index is considerably higher in summer. Correlations differ among the NAO indices not only in their magnitude but in some regions in summer also in their sign. These effects can be explained by a northward shift of the whole NAO pattern and its action centers in summer, away from the sites on which the station indices are based, and by a decoupling of the Azores high and Icelandic low from the centers of high covariability, identified by PCA. Considerable differences in SLP anomaly patterns associated to individual NAO indices also contribute to different responses in temperature and precipitation. Finally, we formulate two recommendations to future analyses of NAO effects on surface climate: use several different NAO indices instead of a single one, and for summer do not use station indices because they do not represent the circulation variability related to the NAO.
Foglia, L.; Hill, Mary C.; Mehl, Steffen W.; Burlando, P.
2009-01-01
We evaluate the utility of three interrelated means of using data to calibrate the fully distributed rainfall‐runoff model TOPKAPI as applied to the Maggia Valley drainage area in Switzerland. The use of error‐based weighting of observation and prior information data, local sensitivity analysis, and single‐objective function nonlinear regression provides quantitative evaluation of sensitivity of the 35 model parameters to the data, identification of data types most important to the calibration, and identification of correlations among parameters that contribute to nonuniqueness. Sensitivity analysis required only 71 model runs, and regression required about 50 model runs. The approach presented appears to be ideal for evaluation of models with long run times or as a preliminary step to more computationally demanding methods. The statistics used include composite scaled sensitivities, parameter correlation coefficients, leverage, Cook's D, and DFBETAS. Tests suggest predictive ability of the calibrated model typical of hydrologic models.
NASA Astrophysics Data System (ADS)
Li, Xuebao; Wang, Jing; Li, Yinfei; Zhang, Qian; Lu, Tiebing; Cui, Xiang
2018-06-01
Corona-generated audible noise is induced by the collisions between space charges and air molecules. It has been proven that there is a close correlation between audible noise and corona current from DC corona discharge. Analysis on the correlation between audible noise and corona current can promote the cognition of the generation mechanism of corona discharge. In this paper, time-domain waveforms of AC corona-generated audible noise and corona current are measured simultaneously. The one-to-one relationship between sound pressure pulses and corona current pulses can be found and is used to remove the interferences from background noise. After the interferences are removed, the linear correlated relationships between sound pressure pulse amplitude and corona current pulse amplitude are obtained through statistical analysis. Besides, frequency components at the harmonics of power frequency (50 Hz) can be found both in the frequency spectrums of audible noise and corona current through frequency analysis. Furthermore, the self-correlation relationships between harmonic components below 400 Hz with the 50 Hz component are analyzed for audible noise and corona current and corresponding empirical formulas are proposed to calculate the harmonic components based on the 50 Hz component. Finally, based on the AC corona discharge process and generation mechanism of audible noise and corona current, the correlation between audible noise and corona current in time domain and frequency domain are interpreted qualitatively. Besides, with the aid of analytical expressions of periodic square waves, sound pressure pulses, and corona current pulses, the modulation effects from the AC voltage on the pulse trains are used to interpret the generation of the harmonic components of audible noise and corona current.
Multifractal detrending moving-average cross-correlation analysis
NASA Astrophysics Data System (ADS)
Jiang, Zhi-Qiang; Zhou, Wei-Xing
2011-07-01
There are a number of situations in which several signals are simultaneously recorded in complex systems, which exhibit long-term power-law cross correlations. The multifractal detrended cross-correlation analysis (MFDCCA) approaches can be used to quantify such cross correlations, such as the MFDCCA based on the detrended fluctuation analysis (MFXDFA) method. We develop in this work a class of MFDCCA algorithms based on the detrending moving-average analysis, called MFXDMA. The performances of the proposed MFXDMA algorithms are compared with the MFXDFA method by extensive numerical experiments on pairs of time series generated from bivariate fractional Brownian motions, two-component autoregressive fractionally integrated moving-average processes, and binomial measures, which have theoretical expressions of the multifractal nature. In all cases, the scaling exponents hxy extracted from the MFXDMA and MFXDFA algorithms are very close to the theoretical values. For bivariate fractional Brownian motions, the scaling exponent of the cross correlation is independent of the cross-correlation coefficient between two time series, and the MFXDFA and centered MFXDMA algorithms have comparative performances, which outperform the forward and backward MFXDMA algorithms. For two-component autoregressive fractionally integrated moving-average processes, we also find that the MFXDFA and centered MFXDMA algorithms have comparative performances, while the forward and backward MFXDMA algorithms perform slightly worse. For binomial measures, the forward MFXDMA algorithm exhibits the best performance, the centered MFXDMA algorithms performs worst, and the backward MFXDMA algorithm outperforms the MFXDFA algorithm when the moment order q<0 and underperforms when q>0. We apply these algorithms to the return time series of two stock market indexes and to their volatilities. For the returns, the centered MFXDMA algorithm gives the best estimates of hxy(q) since its hxy(2) is closest to 0.5, as expected, and the MFXDFA algorithm has the second best performance. For the volatilities, the forward and backward MFXDMA algorithms give similar results, while the centered MFXDMA and the MFXDFA algorithms fail to extract rational multifractal nature.
Assessment of impacts of climate change on gender in the context of Nepal
NASA Astrophysics Data System (ADS)
Paudel, R.; Acharya, A.
2016-12-01
Climate change and its impact on gender in the context of Nepal has not been clearly understood due to lack of proper scientific research in terms of gender and climate change. Climate induced disasters such as droughts, floods, GLOFs, and landslides affect men and women differently. This study is conducted to analyze the scenario of gender equality, and impacts of climate change on gender in Nepal. This study also identifies gender based adaptation approaches through the use of observed climate data, and projected and modeled demographic data such as Adolescent Fertility Rate, Labor Force Participation Rate, and Maternal Mortality Ratio. The major tasks of this project include the calculation of Gender Inequality Index (GII), trend analysis and correlation between GII and temperature, that helps to evaluate the women vulnerability and identify the gender based adaptation interventions in Nepal. The required data on gender and temperature are obtained from World Bank and Department of Hydrology and Meteorology, Nepal. GII is calculated for almost 26 years starting from the year 1990 by utilizing a tool "Calculating the Indices using Excel" provided through the UNDP. The Reproductive Health Index (RHI), Empowerment Index (EI), and Labor Market Index (LMI) that are required to determine GII are also calculated through the use of same tool. The trend analysis shows that GII follows a decreasing trend indicating higher gender equality. The correlation analysis shows the temperature positively correlated with RHI (r=0.64), EI Female (r=0.61), and EI Male (r=0.73). In case of LMI, temperature is positively correlated with female (r=0.14) and negatively correlated with male (r=-0.57). The analysis depicts negative correlation (r=-0.68) between climate change and GII. This research will provide some valuable insights in the research relating to gender and climate change that could help gender advocates and policymakers in developing further plans for women empowerment.
Johnson, Quentin R; Lindsay, Richard J; Shen, Tongye
2018-02-21
A computational method which extracts the dominant motions from an ensemble of biomolecular conformations via a correlation analysis of residue-residue contacts is presented. The algorithm first renders the structural information into contact matrices, then constructs the collective modes based on the correlated dynamics of a selected set of dynamic contacts. Associated programs can bridge the results for further visualization using graphics software. The aim of this method is to provide an analysis of conformations of biopolymers from the contact viewpoint. It may assist a systematical uncovering of conformational switching mechanisms existing in proteins and biopolymer systems in general by statistical analysis of simulation snapshots. In contrast to conventional correlation analyses of Cartesian coordinates (such as distance covariance analysis and Cartesian principal component analysis), this program also provides an alternative way to locate essential collective motions in general. Herein, we detail the algorithm in a stepwise manner and comment on the importance of the method as applied to decoding allosteric mechanisms. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Effects of problem-based learning by learning style in medical education.
Chae, Su-Jin
2012-12-01
Although problem-based learning (PBL) has been popularized in many colleges, few studies have analyzed the relationship between individual differences and PBL. The purpose of this study was to analyze the relationship between learning style and the perception on the effects of PBL. Grasha-Riechmann Student Learning Style Scales was used to assess the learning styles of 38 students at Ajou University School of Medicine who were enrolled in a respiratory system course in 2011. The data were analyzed by regression analysis and Spearman correlation analysis. By regression analysis, dependent beta=0.478) and avoidant styles (beta=-0.815) influenced the learner's satisfaction with PBL. By Spearman correlation analysis, there was significant link between independent, dependent, and avoidant styles and the perception of the effect of PBL. There are few significant relationships between learning style and the perception of the effects of PBL. We must determine how to teach students with different learning styles and the factors that influence PBL.
Tang, Rongnian; Chen, Xupeng; Li, Chuang
2018-05-01
Near-infrared spectroscopy is an efficient, low-cost technology that has potential as an accurate method in detecting the nitrogen content of natural rubber leaves. Successive projections algorithm (SPA) is a widely used variable selection method for multivariate calibration, which uses projection operations to select a variable subset with minimum multi-collinearity. However, due to the fluctuation of correlation between variables, high collinearity may still exist in non-adjacent variables of subset obtained by basic SPA. Based on analysis to the correlation matrix of the spectra data, this paper proposed a correlation-based SPA (CB-SPA) to apply the successive projections algorithm in regions with consistent correlation. The result shows that CB-SPA can select variable subsets with more valuable variables and less multi-collinearity. Meanwhile, models established by the CB-SPA subset outperform basic SPA subsets in predicting nitrogen content in terms of both cross-validation and external prediction. Moreover, CB-SPA is assured to be more efficient, for the time cost in its selection procedure is one-twelfth that of the basic SPA.
Structural neural correlates of multitasking: A voxel-based morphometry study.
Zhang, Rui-Ting; Yang, Tian-Xiao; Wang, Yi; Sui, Yuxiu; Yao, Jingjing; Zhang, Chen-Yuan; Cheung, Eric F C; Chan, Raymond C K
2016-12-01
Multitasking refers to the ability to organize assorted tasks efficiently in a short period of time, which plays an important role in daily life. However, the structural neural correlates of multitasking performance remain unclear. The present study aimed at exploring the brain regions associated with multitasking performance using global correlation analysis. Twenty-six healthy participants first underwent structural brain scans and then performed the modified Six Element Test, which required participants to attempt six subtasks in 10 min while obeying a specific rule. Voxel-based morphometry of the whole brain was used to detect the structural correlates of multitasking ability. Grey matter volume of the anterior cingulate cortex (ACC) was positively correlated with the overall performance and time monitoring in multitasking. In addition, white matter volume of the anterior thalamic radiation (ATR) was also positively correlated with time monitoring during multitasking. Other related brain regions associated with multitasking included the superior frontal gyrus, the inferior occipital gyrus, the lingual gyrus, and the inferior longitudinal fasciculus. No significant correlation was found between grey matter volume of the prefrontal cortex (Brodmann Area 10) and multitasking performance. Using a global correlation analysis to examine various aspects of multitasking performance, this study provided new insights into the structural neural correlates of multitasking ability. In particular, the ACC was identified as an important brain region that played both a general and a specific time-monitoring role in multitasking, extending the role of the ACC from lesioned populations to healthy populations. The present findings also support the view that the ATR may influence multitasking performance by affecting time-monitoring abilities. © 2016 The Institute of Psychology, Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
An Analysis LANDSAT-4 Thematic Mapper Geometric Properties
NASA Technical Reports Server (NTRS)
Walker, R. E.; Zobrist, A. L.; Bryant, N. A.; Gokhman, B.; Friedman, S. Z.; Logan, T. L.
1984-01-01
LANDSAT Thematic Mapper P-data of Washington, D. C., Harrisburg, PA, and Salton Sea, CA are analyzed to determine magnitudes and causes of error in the geometric conformity of the data to known Earth surface geometry. Several tests of data geometry are performed. Intraband and interband correlation and registration are investigated, exclusive of map based ground truth. The magnitudes and statistical trends of pixel offsets between a single band's mirror scans (due to processing procedures) are computed, and the inter-band integrity of registration is analyzed. A line to line correlation analysis is included.
[Mathematical exploration of essence of herbal properties based on "Three-Elements" theory].
Jin, Rui; Zhao, Qian; Zhang, Bing
2014-10-01
Herbal property theory of traditional Chinese medicines is the theoretical guidance on authentication of medicinal plants, herborization, preparation of herbal medicines for decoction and clinical application, with important theoretical value and prac- tical significance. Our research team proposed the "three-element" theory for herbal properties for the first time, conducted a study by using combined methods of philology, chemistry, pharmacology and mathematics, and then drew the research conclusion that herbal properties are defined as the chemical compositions-based comprehensive expression with complex and multi-level (positive/negative) biological effects in specific organism state. In this paper, researchers made a systematic mathematical analysis in four aspects--the correlation between herbal properties and chemical component factors, the correlation between herbal properties and organism state fac- tor, the correlation between herbal properties and biological effect factor and the integration study of the three elements, proposed future outlook, and provided reference to mathematical studies and mathematical analysis of herbal properties.
Kong, Jun; Wang, Fusheng; Teodoro, George; Cooper, Lee; Moreno, Carlos S; Kurc, Tahsin; Pan, Tony; Saltz, Joel; Brat, Daniel
2013-12-01
In this paper, we present a novel framework for microscopic image analysis of nuclei, data management, and high performance computation to support translational research involving nuclear morphometry features, molecular data, and clinical outcomes. Our image analysis pipeline consists of nuclei segmentation and feature computation facilitated by high performance computing with coordinated execution in multi-core CPUs and Graphical Processor Units (GPUs). All data derived from image analysis are managed in a spatial relational database supporting highly efficient scientific queries. We applied our image analysis workflow to 159 glioblastomas (GBM) from The Cancer Genome Atlas dataset. With integrative studies, we found statistics of four specific nuclear features were significantly associated with patient survival. Additionally, we correlated nuclear features with molecular data and found interesting results that support pathologic domain knowledge. We found that Proneural subtype GBMs had the smallest mean of nuclear Eccentricity and the largest mean of nuclear Extent, and MinorAxisLength. We also found gene expressions of stem cell marker MYC and cell proliferation maker MKI67 were correlated with nuclear features. To complement and inform pathologists of relevant diagnostic features, we queried the most representative nuclear instances from each patient population based on genetic and transcriptional classes. Our results demonstrate that specific nuclear features carry prognostic significance and associations with transcriptional and genetic classes, highlighting the potential of high throughput pathology image analysis as a complementary approach to human-based review and translational research.
2014-06-17
100 0 2 4 Wigner distribution 0 50 100 0 0.5 1 Auto-correlation function 0 50 100 0 2 4 L- Wigner distribution 0 50 100 0 0.5 1 Auto-correlation function ...bilinear or higher order autocorrelation functions will increase the number of missing samples, the analysis shows that accurate instantaneous...frequency estimation can be achieved even if we deal with only few samples, as long as the auto-correlation function is properly chosen to coincide with
NASA Astrophysics Data System (ADS)
Burns, R. G.; Meyer, R. W.; Cornwell, K.
2003-12-01
In-basin statistical relations allow for development of regional flood frequency and magnitude equations in the Cosumnes River and Mokelumne River drainage basins. Current equations were derived from data collected through 1975, and do not reflect newer data with some significant flooding. Physical basin characteristics (area, mean basin elevation, slope of longest reach, and mean annual precipitation) were correlated against predicted flood discharges for each of the 5, 10, 25, 50, 100, 200, and 500-year recurrence intervals in a multivariate analysis. Predicted maximum instantaneous flood discharges were determined using the PEAKFQ program with default settings, for 24 stream gages within the study area presumed not affected by flow management practices. For numerical comparisons, GIS-based methods using Spatial Analyst and the Arc Hydro Tools extension were applied to derive physical basin characteristics as predictor variables from a 30m digital elevation model (DEM) and a mean annual precipitation raster (PRISM). In a bivariate analysis, examination of Pearson correlation coefficients, F-statistic, and t & p thresholds show good correlation between area and flood discharges. Similar analyses show poor correlation for mean basin elevation, slope and precipitation, with flood discharge. Bivariate analysis suggests slope may not be an appropriate predictor term for use in the multivariate analysis. Precipitation and elevation correlate very well, demonstrating possible orographic effects. From the multivariate analysis, less than 6% of the variability in the correlation is not explained for flood recurrences up to 25 years. Longer term predictions up to 500 years accrue greater uncertainty with as much as 15% of the variability in the correlation left unexplained.
Söhn, Matthias; Alber, Markus; Yan, Di
2007-09-01
The variability of dose-volume histogram (DVH) shapes in a patient population can be quantified using principal component analysis (PCA). We applied this to rectal DVHs of prostate cancer patients and investigated the correlation of the PCA parameters with late bleeding. PCA was applied to the rectal wall DVHs of 262 patients, who had been treated with a four-field box, conformal adaptive radiotherapy technique. The correlated changes in the DVH pattern were revealed as "eigenmodes," which were ordered by their importance to represent data set variability. Each DVH is uniquely characterized by its principal components (PCs). The correlation of the first three PCs and chronic rectal bleeding of Grade 2 or greater was investigated with uni- and multivariate logistic regression analyses. Rectal wall DVHs in four-field conformal RT can primarily be represented by the first two or three PCs, which describe approximately 94% or 96% of the DVH shape variability, respectively. The first eigenmode models the total irradiated rectal volume; thus, PC1 correlates to the mean dose. Mode 2 describes the interpatient differences of the relative rectal volume in the two- or four-field overlap region. Mode 3 reveals correlations of volumes with intermediate doses ( approximately 40-45 Gy) and volumes with doses >70 Gy; thus, PC3 is associated with the maximal dose. According to univariate logistic regression analysis, only PC2 correlated significantly with toxicity. However, multivariate logistic regression analysis with the first two or three PCs revealed an increased probability of bleeding for DVHs with more than one large PC. PCA can reveal the correlation structure of DVHs for a patient population as imposed by the treatment technique and provide information about its relationship to toxicity. It proves useful for augmenting normal tissue complication probability modeling approaches.
Confined detection volume of fluorescence correlation spectroscopy by bare fiber probes.
Lu, Guowei; Lei, Franck H; Angiboust, Jean-François; Manfait, Michel
2010-04-01
A fiber-tip-based near-field fluorescence correlation spectroscopy (FCS) has been developed for confining the detection volume to sub-diffraction-limited dimensions. This near-field FCS is based on near-field illumination by coupling a scanning near-field optical microscope (SNOM) to a conventional confocal FCS. Single-molecule FCS analysis at 100 nM Rhodamine 6G has been achieved by using bare chemically etched, tapered fiber tips. The detection volume under control of the SNOM system has been reduced over one order of magnitude compared to that of the conventional confocal FCS. Related factors influencing the near-field FCS performance are investigated and discussed in detail. In this proof-of-principle study, the preliminary experimental results suggest that the fiber-tip-based near-field FCS might be a good alternative to realize localized analysis at the single-molecule level.
Currin, Joseph M; Hubach, Randolph D; Sanders, Carissa; Hammer, Tonya R
2017-10-03
Since few researchers have analyzed sexting behaviors in nonuniversity-based adult samples, we sought to determine if sexting is associated with negative psychological correlates and risky sexual behaviors in this population. Analysis of individuals who indicated having vaginal or anal sex in the past 12 months and who identified as single (n = 377) showed that condomless sex is independent of sexting behaviors. Results for those in committed relationships (n = 374) and having had vaginal or anal sex in the past 12 months also demonstrated condomless sex and sexting behaviors were not related. Furthermore, alcohol consumption and relational health were predictive of sexting behaviors in adults in committed relationships. These findings demonstrate that while risky sexual behavior and negative psychological correlates are associated with sexting and younger populations, the same might not be true for a nonuniversity-based, older adult sample.
ERIC Educational Resources Information Center
Hsu, Shun-Yi
An instructional model based on a learning cycle including correlation, analysis, and generalization (CAG) was developed and applied to design an instructional module for grade 8 students in Taiwan, Republic of China. The CAG model was based on Piagetian theory and a concept model (Pella, 1975). The module developed for heat and temperature was…
Recent advancement in the field of two-dimensional correlation spectroscopy
NASA Astrophysics Data System (ADS)
Noda, Isao
2008-07-01
The recent advancement in the field of 2D correlation spectroscopy is reviewed with the emphasis on a number of papers published during the last two years. Topics covered by this comprehensive review include books, review articles, and noteworthy developments in the theory and applications of 2D correlation spectroscopy. New 2D correlation techniques are discussed, such as kernel analysis and augmented 2D correlation, model-based correlation, moving window analysis, global phase angle, covariance and correlation coefficient mapping, sample-sample correlation, hybrid and hetero correlation, pretreatment and transformation of data, and 2D correlation combined with other chemometrics techniques. Perturbation methods of both static (e.g., temperature, composition, pressure and stress, spatial distribution and orientation) and dynamic types (e.g., rheo-optical and acoustic, chemical reactions and kinetics, H/D exchange, sorption and diffusion) currently in use are examined. Analytical techniques most commonly employed in 2D correlation spectroscopy are IR, Raman, and NIR, but the growing use of other probes is also noted, including fluorescence, emission, Raman optical activity and vibrational circular dichroism, X-ray absorption and scattering, NMR, mass spectrometry, and even chromatography. The field of applications for 2D correlation spectroscopy is very diverse, encompassing synthetic polymers, liquid crystals, Langmuir-Blodgett films, proteins and peptides, natural polymers and biomaterials, pharmaceuticals, food and agricultural products, water, solutions, inorganic, organic, hybrid or composite materials, and many more.
Bayesian and Phylogenic Approaches for Studying Relationships among Table Olive Cultivars.
Ben Ayed, Rayda; Ennouri, Karim; Ben Amar, Fathi; Moreau, Fabienne; Triki, Mohamed Ali; Rebai, Ahmed
2017-08-01
To enhance table olive tree authentication, relationship, and productivity, we consider the analysis of 18 worldwide table olive cultivars (Olea europaea L.) based on morphological, biological, and physicochemical markers analyzed by bioinformatic and biostatistic tools. Accordingly, we assess the relationships between the studied varieties, on the one hand, and the potential productivity-quantitative parameter links on the other hand. The bioinformatic analysis based on the graphical representation of the matrix of Euclidean distances, the principal components analysis, unweighted pair group method with arithmetic mean, and principal coordinate analysis (PCoA) revealed three major clusters which were not correlated with the geographic origin. The statistical analysis based on Kendall's and Spearman correlation coefficients suggests two highly significant associations with both fruit color and pollinization and the productivity character. These results are confirmed by the multiple linear regression prediction models. In fact, based on the coefficient of determination (R 2 ) value, the best model demonstrated the power of the pollinization on the tree productivity (R 2 = 0.846). Moreover, the derived directed acyclic graph showed that only two direct influences are detected: effect of tolerance on fruit and stone symmetry on side and effect of tolerance on stone form and oil content on the other side. This work provides better understanding of the diversity available in worldwide table olive cultivars and supplies an important contribution for olive breeding and authenticity.
Solid motor aft closure insulation erosion. [heat flux correlation for rate analysis
NASA Technical Reports Server (NTRS)
Stampfl, E.; Landsbaum, E. M.
1973-01-01
The erosion rate of aft closure insulation in a number of large solid propellant motors was empirically analyzed by correlating the average ablation rate with a number of variables that had previously been demonstrated to affect heat flux. The main correlating parameter was a heat flux based on the simplified Bartz heat transfer coefficient corrected for two-dimensional effects. A multiplying group contained terms related to port-to-throat ratio, local wall angle, grain geometry and nozzle cant angle. The resulting equation gave a good correlation and is a useful design tool.
CPT-based probabilistic and deterministic assessment of in situ seismic soil liquefaction potential
Moss, R.E.S.; Seed, R.B.; Kayen, R.E.; Stewart, J.P.; Der Kiureghian, A.; Cetin, K.O.
2006-01-01
This paper presents a complete methodology for both probabilistic and deterministic assessment of seismic soil liquefaction triggering potential based on the cone penetration test (CPT). A comprehensive worldwide set of CPT-based liquefaction field case histories were compiled and back analyzed, and the data then used to develop probabilistic triggering correlations. Issues investigated in this study include improved normalization of CPT resistance measurements for the influence of effective overburden stress, and adjustment to CPT tip resistance for the potential influence of "thin" liquefiable layers. The effects of soil type and soil character (i.e., "fines" adjustment) for the new correlations are based on a combination of CPT tip and sleeve resistance. To quantify probability for performancebased engineering applications, Bayesian "regression" methods were used, and the uncertainties of all variables comprising both the seismic demand and the liquefaction resistance were estimated and included in the analysis. The resulting correlations were developed using a Bayesian framework and are presented in both probabilistic and deterministic formats. The results are compared to previous probabilistic and deterministic correlations. ?? 2006 ASCE.
Analyses of S-Box in Image Encryption Applications Based on Fuzzy Decision Making Criterion
NASA Astrophysics Data System (ADS)
Rehman, Inayatur; Shah, Tariq; Hussain, Iqtadar
2014-06-01
In this manuscript, we put forward a standard based on fuzzy decision making criterion to examine the current substitution boxes and study their strengths and weaknesses in order to decide their appropriateness in image encryption applications. The proposed standard utilizes the results of correlation analysis, entropy analysis, contrast analysis, homogeneity analysis, energy analysis, and mean of absolute deviation analysis. These analyses are applied to well-known substitution boxes. The outcome of these analyses are additional observed and a fuzzy soft set decision making criterion is used to decide the suitability of an S-box to image encryption applications.
McGivney, C L; Gough, K F; McGivney, B A; Farries, G; Hill, E W; Katz, L M
2018-06-23
Conflicting results have been reported for risk factors for recurrent laryngeal neuropathy (RLN) based on resting endoscopic evaluation and comparison of single conformation traits, with many traits correlated to one another. To simplify identification of signalment and conformation traits (i.e. variables) associated with RLN cases and controls diagnosed with exercising overground endoscopy (OGE) using exploratory factor analysis (EFA). Prospective cohort. Pearson's rank correlation was used to establish significance and association between variables collected from n = 188 Thoroughbreds from one stable by observers blinded to OGE results. Exploratory factor analysis was conducted on 9 variables for cases and controls; common elements between variables developed a factor, with variables grouped into 3 factors for cases and controls, respectively. Correlation (loading) between each variable and factor was calculated to rank relationships between variables and cases/controls, with factors retrospectively named based on their underlying correlations with variables. Numerous inter-correlations were present between variables. Most strongly correlated in cases were wither height with body weight (r = 0.70) and ventral neck length (r = 0.68) and in controls body weight with rostral neck circumference (r = 0.58). Wither height (r = 0.61) significantly loaded the top-ranked factor for cases ('height RLN '), explaining 25% of conformational variance. Ventral neck length (r = 0.69) and age (r = 0.57) significantly loaded the second-ranked factor for cases ('neck length RLN '), explaining 16% of conformational variance. Rostral neck circumference (r = 0.86) and body weight (r = 0.6) significantly loaded the top-ranked factor for controls ('body size CON '), explaining 19% of the variance. Wither height (r = 0.84) significantly loaded the second-ranked factor for controls ('height CON '), explaining 13% of the variance. Horses had not reached skeletal maturity. Exploratory factor analysis allowed weightings to be determined for each variable. Wither height was the predominant conformational feature associated with RLN. Exploratory factor analysis confirms aggregated conformational differences exist between RLN cases and controls, suitable for future evaluations. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Chen, G F; Ping, J; Gu, H T; Zhao, Z M; Zhou, Y; Xing, F; Tao, Y Y; Mu, Y P; Liu, P; Liu, C H
2017-02-20
Objective: To investigate the correlation of liver stiffness measured by FibroTouch (FT) and FibroScan (FS) with Ishak fibrosis score in patients with chronic hepatitis B. Methods: A total of 313 patients with chronic hepatitis B who visited Department of Liver Cirrhosis in Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine from November 2014 to May 2016 were enrolled. All the patients underwent liver biopsy, and FT and FS were used to determine liver stiffness measurement (LSM). Serum biochemical parameters were measured, and the aspartate aminotransferase-to-platelet ratio index (APRI) in a multi-parameter model of liver fibrosis and fibrosis-4 (FIB-4) index were calculated. The consistency between the results of four noninvasive examinations and Ishak fibrosis score was compared. The t-test was used for comparison of LSM determined by FT and FS. Pearson correlation analysis was used investigate the correlation between LSM determined by FT and FS; Spearman correlation analysis was used to investigate the correlation of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and Knodell score with LSM determined by FT and FS; the correlation between LSM determined by FT and FS and fibrosis stage was analyzed by partial correlation analysis adjusted by Knodell score for liver inflammatory activity; Spearman correlation analysis was used for APRI, FIB-4, and fibrosis stage. Based on the Ishak fibrosis score, the receiver operating characteristic (ROC) curve was used to analyze the values of four noninvasive methods in the diagnosis of liver fibrosis. Results: There was no significant difference in LSM measured by FT and FS in all patients (15.75±9.42 kPa vs 15.42±10.52 kPa, P > 0.05) and Pearson correlation analysis indicated a significant positive correlation between them ( r = 0.858, P < 0.01); serum ALT and AST levels and liver inflammatory activity were correlated with LSM determined by FT and FS. There was a significant positive correlation between LSM determined by FT and FS and fibrosis stage ( r = 0.501 and 0.526, both P < 0.001), and APRI and FIB-4 were also positively correlated with fibrosis stage ( r = 0.236 and 0.218, both P < 0.001). Based on the Ishak fibrosis score, in the diagnosis of fibrosis stages F3, F4, F5, and F6, the areas under the ROC curve were 0.915/0.856/0.839/0.816 for FT, 0.933/0.883/0.849/0.856 for FS, 0.618/0.630/0.608/0.638 for APRI, and 0.614/0.624/0.595/0.649 for FIB-4, and FT and FS had a significantly larger areas under the ROC curve than APRI and FIB-4. Conclusion: LSM determined by FT or FS has a good correlation with the Ishak fibrosis score, so FT and FS have a significantly better diagnostic performance for liver fibrosis than APRI and FIB-4.
Blanco, S; Bécares, E
2010-03-01
Biotic indices based on macro-invertebrates and diatoms are frequently used to diagnose ecological quality in watercourses, but few published works have assessed their effectiveness as biomonitors of the concentration of micropollutants. A biological survey performed at 188 sites in the basin of the River Duero in north-western Spain. Nineteen diatom and six macro-invertebrate indices were calculated and compared with the concentrations of 37 different toxicants by means of a correlation analysis. Several chemical variables analysed correlated significantly with at least one biotic index. Sládecek's diatom index and the number of macro-invertebrate families exhibited particularly high correlation coefficients. Methods based on macro-invertebrates performed better in detecting biocides, while diatom indices showed stronger correlations with potentially toxic elements such as heavy metals. All biotic indices, and particularly diatom indices, were especially sensitive to the concentration of fats and oils and trichloroethene. Copyright 2010 Elsevier Ltd. All rights reserved.
Zebrafish developmental toxicity testing is an emerging field, which faces considerable challenges regarding data meta-analysis and the establishment of standardized test protocols. Here, we present an initial correlation study on toxicity of 133 chemicals based on data in the li...
Tian, Honglai; Guan, Donghui; Li, Jianmin
2018-06-01
Osteosarcoma (OS), the most common malignant bone tumor, accounts for the heavy healthy threat in the period of children and adolescents. OS occurrence usually correlates with early metastasis and high death rate. This study aimed to better understand the mechanism of OS metastasis.Based on Gene Expression Omnibus (GEO) database, we downloaded 4 expression profile data sets associated with OS metastasis, and selected differential expressed genes. Weighted gene co-expression network analysis (WGCNA) approach allowed us to investigate the most OS metastasis-correlated module. Gene Ontology functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were used to give annotation of selected OS metastasis-associated genes.We select 897 differential expressed genes from OS metastasis and OS non-metastasis groups. Based on these selected genes, WGCNA further explored 142 genes included in the most OS metastasis-correlated module. Gene Ontology functional and KEGG pathway enrichment analyses showed that significantly OS metastasis-associated genes were involved in pathway correlated with insulin-like growth factor binding.Our research figured out several potential molecules participating in metastasis process and factors acting as biomarker. With this study, we could better explore the mechanism of OS metastasis and further discover more therapy targets.
Correlation between external and internal respiratory motion: a validation study.
Ernst, Floris; Bruder, Ralf; Schlaefer, Alexander; Schweikard, Achim
2012-05-01
In motion-compensated image-guided radiotherapy, accurate tracking of the target region is required. This tracking process includes building a correlation model between external surrogate motion and the motion of the target region. A novel correlation method is presented and compared with the commonly used polynomial model. The CyberKnife system (Accuray, Inc., Sunnyvale/CA) uses a polynomial correlation model to relate externally measured surrogate data (optical fibres on the patient's chest emitting red light) to infrequently acquired internal measurements (X-ray data). A new correlation algorithm based on ɛ -Support Vector Regression (SVR) was developed. Validation and comparison testing were done with human volunteers using live 3D ultrasound and externally measured infrared light-emitting diodes (IR LEDs). Seven data sets (5:03-6:27 min long) were recorded from six volunteers. Polynomial correlation algorithms were compared to the SVR-based algorithm demonstrating an average increase in root mean square (RMS) accuracy of 21.3% (0.4 mm). For three signals, the increase was more than 29% and for one signal as much as 45.6% (corresponding to more than 1.5 mm RMS). Further analysis showed the improvement to be statistically significant. The new SVR-based correlation method outperforms traditional polynomial correlation methods for motion tracking. This method is suitable for clinical implementation and may improve the overall accuracy of targeted radiotherapy.
Correlation analysis of the physiological factors controlling fundamental voice frequency.
Atkinson, J E
1978-01-01
A technique has been developed to obtain a quantitative measure of correlation between electromyographic (EMG) activity of various laryngeal muscles, subglottal air pressure, and the fundamental frequency of vibration of the vocal folds (Fo). Data were collected and analyzed on one subject, a native speaker of American English. The results show that an analysis of this type can provide a useful measure of correlation between the physiological and acoustical events in speech and, furthermore, can yield detailed insights into the organization and nature of the speech production process. In particular, based on these results, a model is suggested of Fo control involving laryngeal state functions that seems to agree with present knowledge of laryngeal control and experimental evidence.
Fluctuation correlation models for receptor immobilization
NASA Astrophysics Data System (ADS)
Fourcade, B.
2017-12-01
Nanoscale dynamics with cycles of receptor diffusion and immobilization by cell-external-or-internal factors is a key process in living cell adhesion phenomena at the origin of a plethora of signal transduction pathways. Motivated by modern correlation microscopy approaches, the receptor correlation functions in physical models based on diffusion-influenced reaction is studied. Using analytical and stochastic modeling, this paper focuses on the hybrid regime where diffusion and reaction are not truly separable. The time receptor autocorrelation functions are shown to be indexed by different time scales and their asymptotic expansions are given. Stochastic simulations show that this analysis can be extended to situations with a small number of molecules. It is also demonstrated that this analysis applies when receptor immobilization is coupled to environmental noise.
Correlative and multivariate analysis of increased radon concentration in underground laboratory.
Maletić, Dimitrije M; Udovičić, Vladimir I; Banjanac, Radomir M; Joković, Dejan R; Dragić, Aleksandar L; Veselinović, Nikola B; Filipović, Jelena
2014-11-01
The results of analysis using correlative and multivariate methods, as developed for data analysis in high-energy physics and implemented in the Toolkit for Multivariate Analysis software package, of the relations of the variation of increased radon concentration with climate variables in shallow underground laboratory is presented. Multivariate regression analysis identified a number of multivariate methods which can give a good evaluation of increased radon concentrations based on climate variables. The use of the multivariate regression methods will enable the investigation of the relations of specific climate variable with increased radon concentrations by analysis of regression methods resulting in 'mapped' underlying functional behaviour of radon concentrations depending on a wide spectrum of climate variables. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Relating drug–protein interaction network with drug side effects
Mizutani, Sayaka; Pauwels, Edouard; Stoven, Véronique; Goto, Susumu; Yamanishi, Yoshihiro
2012-01-01
Motivation: Identifying the emergence and underlying mechanisms of drug side effects is a challenging task in the drug development process. This underscores the importance of system–wide approaches for linking different scales of drug actions; namely drug-protein interactions (molecular scale) and side effects (phenotypic scale) toward side effect prediction for uncharacterized drugs. Results: We performed a large-scale analysis to extract correlated sets of targeted proteins and side effects, based on the co-occurrence of drugs in protein-binding profiles and side effect profiles, using sparse canonical correlation analysis. The analysis of 658 drugs with the two profiles for 1368 proteins and 1339 side effects led to the extraction of 80 correlated sets. Enrichment analyses using KEGG and Gene Ontology showed that most of the correlated sets were significantly enriched with proteins that are involved in the same biological pathways, even if their molecular functions are different. This allowed for a biologically relevant interpretation regarding the relationship between drug–targeted proteins and side effects. The extracted side effects can be regarded as possible phenotypic outcomes by drugs targeting the proteins that appear in the same correlated set. The proposed method is expected to be useful for predicting potential side effects of new drug candidate compounds based on their protein-binding profiles. Supplementary information: Datasets and all results are available at http://web.kuicr.kyoto-u.ac.jp/supp/smizutan/target-effect/. Availability: Software is available at the above supplementary website. Contact: yamanishi@bioreg.kyushu-u.ac.jp, or goto@kuicr.kyoto-u.ac.jp PMID:22962476
He, Hong-di; Qiao, Zhong-Xia; Pan, Wei; Lu, Wei-Zhen
2017-07-01
In rural area, due to the reduction of NOx and CO emitted from vehicle exhausts, the ozone photochemical reaction exhibits relatively weak effect and ozone formation presents different pattern with its precursors in contrast to urban situation. Hence, in this study, we apply detrended cross-correlation analysis to investigate the multifractal properties between ozone and its precursors in a rural area in Hong Kong. The observed databases of ozone, NO 2 , NOx and CO levels during 2005-2014 are obtained from a rural monitoring station in Hong Kong. Based on the collected database, the cross-correlation analysis is carried out firstly to examine the cross-correlation patterns and the results indicate that close interactive relations exist between them. Then the detrended cross-correlation analysis is performed for further analysis. The multifractal characters occur between ozone and its precursors. The long-term cross-correlations behaviors in winter are verified to be stronger than that in other seasons. Additionally, the method is extended on daily averaged data to explore the multifractal property on various time scales. The long-term cross-correlation behavior of ozone vs NO 2 and NOx on daily basis becomes weaker while that of ozone vs CO becomes stronger. The multifractal properties for all pairs in summer are found to be the strongest among the whole year. These findings successfully illustrate that the multifractal analysis is a useful tool for describing the temporal scaling behaviors of ozone trends in different time series in rural areas. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, Xiao; Chen, Jiamin; Radcliffe, Tom; LeBrun, Dave P.; Tron, Victor A.; Feilotter, Harriet
2008-01-01
MicroRNAs (miRNAs) are small, noncoding RNAs that suppress gene expression at the posttranscriptional level via an antisense RNA-RNA interaction. miRNAs used for array-based profiling are generally purified from either snap-frozen or fresh samples. Because tissues found in most pathology departments are available only in formalin-fixed and paraffin-embedded (FFPE) states, we sought to evaluate miRNA derived from FFPE samples for microarray analysis. In this study, miRNAs extracted from matched snap-frozen and FFPE samples were profiled using the Agilent miRNA array platform (Agilent, Santa Clara, CA). Each miRNA sample was hybridized to arrays containing probes interrogating 470 human miRNAs. Seven cases were compared in either duplicate or triplicate. Intrachip and interchip analyses demonstrated that the processes of miRNA extraction, labeling, and hybridization from both frozen and FFPE samples are highly reproducible and add little variation to the results; technical replicates showed high correlations with one another (Kendall tau, 0.722 to 0.853; Spearman rank correlation coefficient, 0.891 to 0.954). Our results showed consistent high correlations between matched frozen and FFPE samples (Kendall tau, 0.669 to 0.815; Spearman rank correlation coefficient, 0.847 to 0.948), supporting the use of FFPE-derived miRNAs for array-based, gene expression profiling. PMID:18832457
Lin, Xiaodong; Zhao, Liangcai; Tang, Shengli; Zhou, Qi; Lin, Qiuting; Li, Xiaokun; Zheng, Hong; Gao, Hongchang
2016-11-03
The fibroblast growth factors (FGFs) family shows a great potential in the treatment of diabetes, but little attention is paid to basic FGF (bFGF). In this study, to explore the metabolic effects of bFGF on diabetes, metabolic changes in serum and feces were analyzed in the normal rats, the streptozocin (STZ)-induced diabetic rats and the bFGF-treated diabetic rats using a 1 H nuclear magnetic resonance (NMR)-based metabolomic approach. Interestingly, bFGF treatment significantly decreased glucose, lipid and low density lipoprotein/very low density lipoprotein (LDL/VLDL) levels in serum of diabetic rats. Moreover, bFGF treatment corrected diabetes-induced reductions in citrate, lactate, choline, glycine, creatine, histidine, phenylalanine, tyrosine and glutamine in serum. Fecal propionate was significantly increased after bFGF treatment. Correlation analysis shows that glucose, lipid and LDL/VLDL were significantly negatively correlated with energy metabolites (citrate, creatine and lactate) and amino acids (alanine, glycine, histidine, phenylalanine, tyrosine and glutamine). In addition, a weak but significant correlation was observed between fecal propionate and serum lipid (R = -0.35, P = 0.046). Based on metabolic correlation and pathway analysis, therefore, we suggest that the glucose and lipid lowering effects of bFGF in the STZ-induced diabetic rats may be achieved by activating microbial metabolism, increasing energy metabolism and correcting amino acid metabolism.
Kapucu, Fikret E.; Välkki, Inkeri; Mikkonen, Jarno E.; Leone, Chiara; Lenk, Kerstin; Tanskanen, Jarno M. A.; Hyttinen, Jari A. K.
2016-01-01
Synchrony and asynchrony are essential aspects of the functioning of interconnected neuronal cells and networks. New information on neuronal synchronization can be expected to aid in understanding these systems. Synchronization provides insight in the functional connectivity and the spatial distribution of the information processing in the networks. Synchronization is generally studied with time domain analysis of neuronal events, or using direct frequency spectrum analysis, e.g., in specific frequency bands. However, these methods have their pitfalls. Thus, we have previously proposed a method to analyze temporal changes in the complexity of the frequency of signals originating from different network regions. The method is based on the correlation of time varying spectral entropies (SEs). SE assesses the regularity, or complexity, of a time series by quantifying the uniformity of the frequency spectrum distribution. It has been previously employed, e.g., in electroencephalogram analysis. Here, we revisit our correlated spectral entropy method (CorSE), providing evidence of its justification, usability, and benefits. Here, CorSE is assessed with simulations and in vitro microelectrode array (MEA) data. CorSE is first demonstrated with a specifically tailored toy simulation to illustrate how it can identify synchronized populations. To provide a form of validation, the method was tested with simulated data from integrate-and-fire model based computational neuronal networks. To demonstrate the analysis of real data, CorSE was applied on in vitro MEA data measured from rat cortical cell cultures, and the results were compared with three known event based synchronization measures. Finally, we show the usability by tracking the development of networks in dissociated mouse cortical cell cultures. The results show that temporal correlations in frequency spectrum distributions reflect the network relations of neuronal populations. In the simulated data, CorSE unraveled the synchronizations. With the real in vitro MEA data, CorSE produced biologically plausible results. Since CorSE analyses continuous data, it is not affected by possibly poor spike or other event detection quality. We conclude that CorSE can reveal neuronal network synchronization based on in vitro MEA field potential measurements. CorSE is expected to be equally applicable also in the analysis of corresponding in vivo and ex vivo data analysis. PMID:27803660
Persson, Anna-Karin; Gebauer, Mathias; Jordan, Suzana; Metz-Weidmann, Christiane; Schulte, Anke M; Schneider, Hans-Christoph; Ding-Pfennigdorff, Danping; Thun, Jonas; Xu, Xiao-Jun; Wiesenfeld-Hallin, Zsuzsanna; Darvasi, Ariel; Fried, Kaj; Devor, Marshall
2009-01-01
Background Nerve injury-triggered hyperexcitability in primary sensory neurons is considered a major source of chronic neuropathic pain. The hyperexcitability, in turn, is thought to be related to transcriptional switching in afferent cell somata. Analysis using expression microarrays has revealed that many genes are regulated in the dorsal root ganglion (DRG) following axotomy. But which contribute to pain phenotype versus other nerve injury-evoked processes such as nerve regeneration? Using the L5 spinal nerve ligation model of neuropathy we examined differential changes in gene expression in the L5 (and L4) DRGs in five mouse strains with contrasting susceptibility to neuropathic pain. We sought genes for which the degree of regulation correlates with strain-specific pain phenotype. Results In an initial experiment six candidate genes previously identified as important in pain physiology were selected for in situ hybridization to DRG sections. Among these, regulation of the Na+ channel α subunit Scn11a correlated with levels of spontaneous pain behavior, and regulation of the cool receptor Trpm8 correlated with heat hypersensibility. In a larger scale experiment, mRNA extracted from individual mouse DRGs was processed on Affymetrix whole-genome expression microarrays. Overall, 2552 ± 477 transcripts were significantly regulated in the axotomized L5DRG 3 days postoperatively. However, in only a small fraction of these was the degree of regulation correlated with pain behavior across strains. Very few genes in the "uninjured" L4DRG showed altered expression (24 ± 28). Conclusion Correlational analysis based on in situ hybridization provided evidence that differential regulation of Scn11a and Trpm8 contributes to across-strain variability in pain phenotype. This does not, of course, constitute evidence that the others are unrelated to pain. Correlational analysis based on microarray data yielded a larger "look-up table" of genes whose regulation likely contributes to pain variability. While this list is enriched in genes of potential importance for pain physiology, and is relatively free of the bias inherent in the candidate gene approach, additional steps are required to clarify which transcripts on the list are in fact of functional importance. PMID:19228393
Development and validation of the Smartphone Addiction Inventory (SPAI).
Lin, Yu-Hsuan; Chang, Li-Ren; Lee, Yang-Han; Tseng, Hsien-Wei; Kuo, Terry B J; Chen, Sue-Huei
2014-01-01
The aim of this study was to develop a self-administered scale based on the special features of smartphone. The reliability and validity of the Smartphone Addiction Inventory (SPAI) was demonstrated. A total of 283 participants were recruited from Dec. 2012 to Jul. 2013 to complete a set of questionnaires, including a 26-item SPAI modified from the Chinese Internet Addiction Scale and phantom vibration and ringing syndrome questionnaire. There were 260 males and 23 females, with ages 22.9 ± 2.0 years. Exploratory factor analysis, internal-consistency test, test-retest, and correlation analysis were conducted to verify the reliability and validity of the SPAI. Correlations between each subscale and phantom vibration and ringing were also explored. Exploratory factor analysis yielded four factors: compulsive behavior, functional impairment, withdrawal and tolerance. Test-retest reliabilities (intraclass correlations = 0.74-0.91) and internal consistency (Cronbach's α = 0.94) were all satisfactory. The four subscales had moderate to high correlations (0.56-0.78), but had no or very low correlation to phantom vibration/ringing syndrome. This study provides evidence that the SPAI is a valid and reliable, self-administered screening tool to investigate smartphone addiction. Phantom vibration and ringing might be independent entities of smartphone addiction.
Percolation analysis for cosmic web with discrete points
NASA Astrophysics Data System (ADS)
Zhang, Jiajun; Cheng, Dalong; Chu, Ming-Chung
2016-03-01
Percolation analysis has long been used to quantify the connectivity of the cosmic web. Unlike most of the previous works using density field on grids, we have studied percolation analysis based on discrete points. Using a Friends-of-Friends (FoF) algorithm, we generate the S-bb relation, between the fractional mass of the largest connected group (S) and the FoF linking length (bb). We propose a new model, the Probability Cloud Cluster Expansion Theory (PCCET) to relate the S-bb relation with correlation functions. We show that the S-bb relation reflects a combination of all orders of correlation functions. We have studied the S-bb relation with simulation and find that the S-bb relation is robust against redshift distortion and incompleteness in observation. From the Bolshoi simulation, with Halo Abundance Matching (HAM), we have generated a mock galaxy catalogue. Good matching of the projected two-point correlation function with observation is confirmed. However, comparing the mock catalogue with the latest galaxy catalogue from SDSS DR12, we have found significant differences in their S-bb relations. This indicates that the mock catalogue cannot accurately recover higher order correlation functions than the two-point correlation function, which reveals the limit of HAM method.
On the interpretation of domain averaged Fermi hole analyses of correlated wavefunctions.
Francisco, E; Martín Pendás, A; Costales, Aurora
2014-03-14
Few methods allow for a physically sound analysis of chemical bonds in cases where electron correlation may be a relevant factor. The domain averaged Fermi hole (DAFH) analysis, a tool firstly proposed by Robert Ponec in the 1990's to provide interpretations of the chemical bonding existing between two fragments Ω and Ω' that divide the real space exhaustively, is one of them. This method allows for a partition of the delocalization index or bond order between Ω and Ω' into one electron contributions, but the chemical interpretation of its parameters has been firmly established only for single determinant wavefunctions. In this paper we report a general interpretation based on the concept of excluded density that is also valid for correlated descriptions. Both analytical models and actual computations on a set of simple molecules (H2, N2, LiH, and CO) are discussed, and a classification of the possible DAFH situations is presented. Our results show that this kind of analysis may reveal several correlated assisted bonding patterns that might be difficult to detect using other methods. In agreement with previous knowledge, we find that the effective bond order in covalent links decreases due to localization of electrons driven by Coulomb correlation.
A combined method for correlative 3D imaging of biological samples from macro to nano scale
NASA Astrophysics Data System (ADS)
Kellner, Manuela; Heidrich, Marko; Lorbeer, Raoul-Amadeus; Antonopoulos, Georgios C.; Knudsen, Lars; Wrede, Christoph; Izykowski, Nicole; Grothausmann, Roman; Jonigk, Danny; Ochs, Matthias; Ripken, Tammo; Kühnel, Mark P.; Meyer, Heiko
2016-10-01
Correlative analysis requires examination of a specimen from macro to nano scale as well as applicability of analytical methods ranging from morphological to molecular. Accomplishing this with one and the same sample is laborious at best, due to deformation and biodegradation during measurements or intermediary preparation steps. Furthermore, data alignment using differing imaging techniques turns out to be a complex task, which considerably complicates the interconnection of results. We present correlative imaging of the accessory rat lung lobe by combining a modified Scanning Laser Optical Tomography (SLOT) setup with a specially developed sample preparation method (CRISTAL). CRISTAL is a resin-based embedding method that optically clears the specimen while allowing sectioning and preventing degradation. We applied and correlated SLOT with Multi Photon Microscopy, histological and immunofluorescence analysis as well as Transmission Electron Microscopy, all in the same sample. Thus, combining CRISTAL with SLOT enables the correlative utilization of a vast variety of imaging techniques.
NASA Astrophysics Data System (ADS)
Suproniuk, M.; Pawłowski, M.; Wierzbowski, M.; Majda-Zdancewicz, E.; Pawłowski, Ma.
2018-04-01
The procedure for determination of trap parameters by photo-induced transient spectroscopy is based on the Arrhenius plot that illustrates a thermal dependence of the emission rate. In this paper, we show that the Arrhenius plot obtained by the correlation method is shifted toward lower temperatures as compared to the one obtained with the inverse Laplace transformation. This shift is caused by the model adequacy error of the correlation method and introduces errors to a calculation procedure of defect center parameters. The effect is exemplified by comparing the results of the determination of trap parameters with both methods based on photocurrent transients for defect centers observed in tin-doped neutron-irradiated silicon crystals and in gallium arsenide grown with the Vertical Gradient Freeze method.
The Delicate Analysis of Short-Term Load Forecasting
NASA Astrophysics Data System (ADS)
Song, Changwei; Zheng, Yuan
2017-05-01
This paper proposes a new method for short-term load forecasting based on the similar day method, correlation coefficient and Fast Fourier Transform (FFT) to achieve the precision analysis of load variation from three aspects (typical day, correlation coefficient, spectral analysis) and three dimensions (time dimension, industry dimensions, the main factors influencing the load characteristic such as national policies, regional economic, holidays, electricity and so on). First, the branch algorithm one-class-SVM is adopted to selection the typical day. Second, correlation coefficient method is used to obtain the direction and strength of the linear relationship between two random variables, which can reflect the influence caused by the customer macro policy and the scale of production to the electricity price. Third, Fourier transform residual error correction model is proposed to reflect the nature of load extracting from the residual error. Finally, simulation result indicates the validity and engineering practicability of the proposed method.
Larance, Mark; Kirkwood, Kathryn J.; Tinti, Michele; Brenes Murillo, Alejandro; Ferguson, Michael A. J.; Lamond, Angus I.
2016-01-01
We present a methodology using in vivo crosslinking combined with HPLC-MS for the global analysis of endogenous protein complexes by protein correlation profiling. Formaldehyde crosslinked protein complexes were extracted with high yield using denaturing buffers that maintained complex solubility during chromatographic separation. We show this efficiently detects both integral membrane and membrane-associated protein complexes,in addition to soluble complexes, allowing identification and analysis of complexes not accessible in native extracts. We compare the protein complexes detected by HPLC-MS protein correlation profiling in both native and formaldehyde crosslinked U2OS cell extracts. These proteome-wide data sets of both in vivo crosslinked and native protein complexes from U2OS cells are freely available via a searchable online database (www.peptracker.com/epd). Raw data are also available via ProteomeXchange (identifier PXD003754). PMID:27114452
Utility of correlation techniques in gravity and magnetic interpretation
NASA Technical Reports Server (NTRS)
Chandler, V. W.; Koski, J. S.; Braice, L. W.; Hinze, W. J.
1977-01-01
Internal correspondence uses Poisson's Theorem in a moving-window linear regression analysis between the anomalous first vertical derivative of gravity and total magnetic field reduced to the pole. The regression parameters provide critical information on source characteristics. The correlation coefficient indicates the strength of the relation between magnetics and gravity. Slope value gives delta j/delta sigma estimates of the anomalous source. The intercept furnishes information on anomaly interference. Cluster analysis consists of the classification of subsets of data into groups of similarity based on correlation of selected characteristics of the anomalies. Model studies are used to illustrate implementation and interpretation procedures of these methods, particularly internal correspondence. Analysis of the results of applying these methods to data from the midcontinent and a transcontinental profile shows they can be useful in identifying crustal provinces, providing information on horizontal and vertical variations of physical properties over province size zones, validating long wavelength anomalies, and isolating geomagnetic field removal problems.
NASA Astrophysics Data System (ADS)
Zhang, Lei; Sun, Jinyan; Sun, Bailei; Luo, Qingming; Gong, Hui
2014-05-01
Near-infrared spectroscopy (NIRS) is a developing and promising functional brain imaging technology. Developing data analysis methods to effectively extract meaningful information from collected data is the major bottleneck in popularizing this technology. In this study, we measured hemodynamic activity of the prefrontal cortex (PFC) during a color-word matching Stroop task using NIRS. Hemispheric lateralization was examined by employing traditional activation and novel NIRS-based connectivity analyses simultaneously. Wavelet transform coherence was used to assess intrahemispheric functional connectivity. Spearman correlation analysis was used to examine the relationship between behavioral performance and activation/functional connectivity, respectively. In agreement with activation analysis, functional connectivity analysis revealed leftward lateralization for the Stroop effect and correlation with behavioral performance. However, functional connectivity was more sensitive than activation for identifying hemispheric lateralization. Granger causality was used to evaluate the effective connectivity between hemispheres. The results showed increased information flow from the left to the right hemispheres for the incongruent versus the neutral task, indicating a leading role of the left PFC. This study demonstrates that the NIRS-based connectivity can reveal the functional architecture of the brain more comprehensively than traditional activation, helping to better utilize the advantages of NIRS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, Shiraj; Ganguly, Auroop R; Bandyopadhyay, Sharba
Cross-spectrum analysis based on linear correlations in the time domain suggested a coupling between large river flows and the El Nino-Southern Oscillation (ENSO) cycle. A nonlinear measure based on mutual information (MI) reveals extrabasinal connections between ENSO and river flows in the tropics and subtropics, that are 20-70% higher than those suggested so far by linear correlations. The enhanced dependence observed for the Nile, Amazon, Congo, Paran{acute a}, and Ganges rivers, which affect large, densely populated regions of the world, has significant impacts on inter-annual river flow predictabilities and, hence, on water resources and agricultural planning.
Patient-based outcomes in patients with primary tinnitus undergoing tinnitus retraining therapy.
Berry, Julie A; Gold, Susan L; Frederick, Ellen Alvarez; Gray, William C; Staecker, Hinrich
2002-10-01
To determine whether the Tinnitus Handicap Inventory (THI), a validated patient-based outcomes measure, may improve our ability to quantify impact and assess therapy for patients with tinnitus. Nonrandomized, prospective analysis of 32 patients undergoing tinnitus retraining therapy (TRT). Assessment tools included comprehensive audiology, a subjective self-assessment survey of tinnitus characteristics, and the THI. Tinnitus Handicap Inventory scores were assessed at baseline and 6 months following TRT. Baseline analysis revealed significant correlation between the subjective presence of hyperacusis and higher total, emotional, and catastrophic THI scores. Tinnitus Handicap Inventory scores correlated with subjective perception of overall tinnitus effect (P<.001). Mean pure-tone threshold average was 17.4 dB, and mean speech discrimination was 97.0%. There were no consistent correlations between baseline audiologic parameters and THI scores. Following 6 months of TRT, the total, emotional, functional, and catastrophic THI scores significantly improved (P<.001). Loudness discomfort levels also significantly improved (P< or =.02). There is significant improvement in self-perceived disability following TRT as measured by the THI. The results confirm the utility of the THI as a patient-based outcomes measure for quantifying treatment status in patients with primary tinnitus.
Windowed multitaper correlation analysis of multimodal brain monitoring parameters.
Faltermeier, Rupert; Proescholdt, Martin A; Bele, Sylvia; Brawanski, Alexander
2015-01-01
Although multimodal monitoring sets the standard in daily practice of neurocritical care, problem-oriented analysis tools to interpret the huge amount of data are lacking. Recently a mathematical model was presented that simulates the cerebral perfusion and oxygen supply in case of a severe head trauma, predicting the appearance of distinct correlations between arterial blood pressure and intracranial pressure. In this study we present a set of mathematical tools that reliably detect the predicted correlations in data recorded at a neurocritical care unit. The time resolved correlations will be identified by a windowing technique combined with Fourier-based coherence calculations. The phasing of the data is detected by means of Hilbert phase difference within the above mentioned windows. A statistical testing method is introduced that allows tuning the parameters of the windowing method in such a way that a predefined accuracy is reached. With this method the data of fifteen patients were examined in which we found the predicted correlation in each patient. Additionally it could be shown that the occurrence of a distinct correlation parameter, called scp, represents a predictive value of high quality for the patients outcome.
NASA Astrophysics Data System (ADS)
Yang, Liansheng; Zhu, Yingming; Wang, Yudong; Wang, Yiqi
2016-11-01
Based on the daily price data of spot prices of West Texas Intermediate (WTI) crude oil and ten CSI300 sector indices in China, we apply multifractal detrended cross-correlation analysis (MF-DCCA) method to investigate the cross-correlations between crude oil and Chinese sector stock markets. We find that the strength of multifractality between WTI crude oil and energy sector stock market is the highest, followed by the strength of multifractality between WTI crude oil and financial sector market, which reflects a close connection between energy and financial market. Then we do vector autoregression (VAR) analysis to capture the interdependencies among the multiple time series. By comparing the strength of multifractality for original data and residual errors of VAR model, we get a conclusion that vector auto-regression (VAR) model could not be used to describe the dynamics of the cross-correlations between WTI crude oil and the ten sector stock markets.
Quantitative analysis of spatial variability of geotechnical parameters
NASA Astrophysics Data System (ADS)
Fang, Xing
2018-04-01
Geotechnical parameters are the basic parameters of geotechnical engineering design, while the geotechnical parameters have strong regional characteristics. At the same time, the spatial variability of geotechnical parameters has been recognized. It is gradually introduced into the reliability analysis of geotechnical engineering. Based on the statistical theory of geostatistical spatial information, the spatial variability of geotechnical parameters is quantitatively analyzed. At the same time, the evaluation of geotechnical parameters and the correlation coefficient between geotechnical parameters are calculated. A residential district of Tianjin Survey Institute was selected as the research object. There are 68 boreholes in this area and 9 layers of mechanical stratification. The parameters are water content, natural gravity, void ratio, liquid limit, plasticity index, liquidity index, compressibility coefficient, compressive modulus, internal friction angle, cohesion and SP index. According to the principle of statistical correlation, the correlation coefficient of geotechnical parameters is calculated. According to the correlation coefficient, the law of geotechnical parameters is obtained.
NASA Astrophysics Data System (ADS)
Julius, Musa, Admiral; Pribadi, Sugeng; Muzli, Muzli
2018-03-01
Sulawesi, one of the biggest island in Indonesia, located on the convergence of two macro plate that is Eurasia and Pacific. NOAA and Novosibirsk Tsunami Laboratory show more than 20 tsunami data recorded in Sulawesi since 1820. Based on this data, determination of correlation between tsunami and earthquake parameter need to be done to proved all event in the past. Complete data of magnitudes, fault sizes and tsunami heights on this study sourced from NOAA and Novosibirsk Tsunami database, completed with Pacific Tsunami Warning Center (PTWC) catalog. This study aims to find correlation between moment magnitude, fault size and tsunami height by simple regression. The step of this research are data collecting, processing, and regression analysis. Result shows moment magnitude, fault size and tsunami heights strongly correlated. This analysis is enough to proved the accuracy of historical tsunami database in Sulawesi on NOAA, Novosibirsk Tsunami Laboratory and PTWC.
ERIC Educational Resources Information Center
De Putter-Smits, Lesley G. A.; Taconis, Ruurd; Jochems, Wim; Van Driel, Jan
2012-01-01
The committees for the current Dutch context-based innovation in secondary science education employed teachers to design context-based curriculum materials. A study on the learning of science teachers in design teams for context-based curriculum materials is presented in this paper. In a correlation study, teachers with (n = 5 and 840 students)…
Ground reaction force analysed with correlation coefficient matrix in group of stroke patients.
Szczerbik, Ewa; Krawczyk, Maciej; Syczewska, Małgorzata
2014-01-01
Stroke is the third cause of death in contemporary society and causes many disorders. Clinical scales, ground reaction force (GRF) and objective gait analysis are used for assessment of patient's rehabilitation progress during treatment. The goal of this paper is to assess whether signal correlation coefficient matrix applied to GRF can be used for evaluation of the status of post-stroke patients. A group of patients underwent clinical assessment and instrumented gait analysis simultaneously three times. The difference between components of patient's GRF (vertical, fore/aft, med/lat) and normal ones (reference GRF of healthy subjects) was calculated as correlation coefficient. Patients were divided into two groups ("worse" and "better") based on the clinical functional scale tests done at the beginning of rehabilitation process. The results obtained by these two groups were compared using statistical analysis. An increase of median value of correlation coefficient is observed in all components of GRF, but only in non-paretic leg. Analysis of GRF signal can be helpful in assessment of post-stroke patients during rehabilitation. Improvement in stroke patients was observed in non-paretic leg of the "worse" group. GRF analysis should not be the only tool for objective validation of patient's improvement, but could be used as additional source of information.
Accuracy Evaluation of the Unified P-Value from Combining Correlated P-Values
Alves, Gelio; Yu, Yi-Kuo
2014-01-01
Meta-analysis methods that combine -values into a single unified -value are frequently employed to improve confidence in hypothesis testing. An assumption made by most meta-analysis methods is that the -values to be combined are independent, which may not always be true. To investigate the accuracy of the unified -value from combining correlated -values, we have evaluated a family of statistical methods that combine: independent, weighted independent, correlated, and weighted correlated -values. Statistical accuracy evaluation by combining simulated correlated -values showed that correlation among -values can have a significant effect on the accuracy of the combined -value obtained. Among the statistical methods evaluated those that weight -values compute more accurate combined -values than those that do not. Also, statistical methods that utilize the correlation information have the best performance, producing significantly more accurate combined -values. In our study we have demonstrated that statistical methods that combine -values based on the assumption of independence can produce inaccurate -values when combining correlated -values, even when the -values are only weakly correlated. Therefore, to prevent from drawing false conclusions during hypothesis testing, our study advises caution be used when interpreting the -value obtained from combining -values of unknown correlation. However, when the correlation information is available, the weighting-capable statistical method, first introduced by Brown and recently modified by Hou, seems to perform the best amongst the methods investigated. PMID:24663491
Han, Fang; Liu, Han
2017-02-01
Correlation matrix plays a key role in many multivariate methods (e.g., graphical model estimation and factor analysis). The current state-of-the-art in estimating large correlation matrices focuses on the use of Pearson's sample correlation matrix. Although Pearson's sample correlation matrix enjoys various good properties under Gaussian models, its not an effective estimator when facing heavy-tail distributions with possible outliers. As a robust alternative, Han and Liu (2013b) advocated the use of a transformed version of the Kendall's tau sample correlation matrix in estimating high dimensional latent generalized correlation matrix under the transelliptical distribution family (or elliptical copula). The transelliptical family assumes that after unspecified marginal monotone transformations, the data follow an elliptical distribution. In this paper, we study the theoretical properties of the Kendall's tau sample correlation matrix and its transformed version proposed in Han and Liu (2013b) for estimating the population Kendall's tau correlation matrix and the latent Pearson's correlation matrix under both spectral and restricted spectral norms. With regard to the spectral norm, we highlight the role of "effective rank" in quantifying the rate of convergence. With regard to the restricted spectral norm, we for the first time present a "sign subgaussian condition" which is sufficient to guarantee that the rank-based correlation matrix estimator attains the optimal rate of convergence. In both cases, we do not need any moment condition.
Wang, Shijun; Yao, Jianhua; Liu, Jiamin; Petrick, Nicholas; Van Uitert, Robert L.; Periaswamy, Senthil; Summers, Ronald M.
2009-01-01
Purpose: In computed tomographic colonography (CTC), a patient will be scanned twice—Once supine and once prone—to improve the sensitivity for polyp detection. To assist radiologists in CTC reading, in this paper we propose an automated method for colon registration from supine and prone CTC scans. Methods: We propose a new colon centerline registration method for prone and supine CTC scans using correlation optimized warping (COW) and canonical correlation analysis (CCA) based on the anatomical structure of the colon. Four anatomical salient points on the colon are first automatically distinguished. Then correlation optimized warping is applied to the segments defined by the anatomical landmarks to improve the global registration based on local correlation of segments. The COW method was modified by embedding canonical correlation analysis to allow multiple features along the colon centerline to be used in our implementation. Results: We tested the COW algorithm on a CTC data set of 39 patients with 39 polyps (19 training and 20 test cases) to verify the effectiveness of the proposed COW registration method. Experimental results on the test set show that the COW method significantly reduces the average estimation error in a polyp location between supine and prone scans by 67.6%, from 46.27±52.97 to 14.98 mm±11.41 mm, compared to the normalized distance along the colon centerline algorithm (p<0.01). Conclusions: The proposed COW algorithm is more accurate for the colon centerline registration compared to the normalized distance along the colon centerline method and the dynamic time warping method. Comparison results showed that the feature combination of z-coordinate and curvature achieved lowest registration error compared to the other feature combinations used by COW. The proposed method is tolerant to centerline errors because anatomical landmarks help prevent the propagation of errors across the entire colon centerline. PMID:20095272
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Shijun; Yao Jianhua; Liu Jiamin
Purpose: In computed tomographic colonography (CTC), a patient will be scanned twice--Once supine and once prone--to improve the sensitivity for polyp detection. To assist radiologists in CTC reading, in this paper we propose an automated method for colon registration from supine and prone CTC scans. Methods: We propose a new colon centerline registration method for prone and supine CTC scans using correlation optimized warping (COW) and canonical correlation analysis (CCA) based on the anatomical structure of the colon. Four anatomical salient points on the colon are first automatically distinguished. Then correlation optimized warping is applied to the segments defined bymore » the anatomical landmarks to improve the global registration based on local correlation of segments. The COW method was modified by embedding canonical correlation analysis to allow multiple features along the colon centerline to be used in our implementation. Results: We tested the COW algorithm on a CTC data set of 39 patients with 39 polyps (19 training and 20 test cases) to verify the effectiveness of the proposed COW registration method. Experimental results on the test set show that the COW method significantly reduces the average estimation error in a polyp location between supine and prone scans by 67.6%, from 46.27{+-}52.97 to 14.98 mm{+-}11.41 mm, compared to the normalized distance along the colon centerline algorithm (p<0.01). Conclusions: The proposed COW algorithm is more accurate for the colon centerline registration compared to the normalized distance along the colon centerline method and the dynamic time warping method. Comparison results showed that the feature combination of z-coordinate and curvature achieved lowest registration error compared to the other feature combinations used by COW. The proposed method is tolerant to centerline errors because anatomical landmarks help prevent the propagation of errors across the entire colon centerline.« less
Biostatistics Series Module 6: Correlation and Linear Regression.
Hazra, Avijit; Gogtay, Nithya
2016-01-01
Correlation and linear regression are the most commonly used techniques for quantifying the association between two numeric variables. Correlation quantifies the strength of the linear relationship between paired variables, expressing this as a correlation coefficient. If both variables x and y are normally distributed, we calculate Pearson's correlation coefficient ( r ). If normality assumption is not met for one or both variables in a correlation analysis, a rank correlation coefficient, such as Spearman's rho (ρ) may be calculated. A hypothesis test of correlation tests whether the linear relationship between the two variables holds in the underlying population, in which case it returns a P < 0.05. A 95% confidence interval of the correlation coefficient can also be calculated for an idea of the correlation in the population. The value r 2 denotes the proportion of the variability of the dependent variable y that can be attributed to its linear relation with the independent variable x and is called the coefficient of determination. Linear regression is a technique that attempts to link two correlated variables x and y in the form of a mathematical equation ( y = a + bx ), such that given the value of one variable the other may be predicted. In general, the method of least squares is applied to obtain the equation of the regression line. Correlation and linear regression analysis are based on certain assumptions pertaining to the data sets. If these assumptions are not met, misleading conclusions may be drawn. The first assumption is that of linear relationship between the two variables. A scatter plot is essential before embarking on any correlation-regression analysis to show that this is indeed the case. Outliers or clustering within data sets can distort the correlation coefficient value. Finally, it is vital to remember that though strong correlation can be a pointer toward causation, the two are not synonymous.
Biostatistics Series Module 6: Correlation and Linear Regression
Hazra, Avijit; Gogtay, Nithya
2016-01-01
Correlation and linear regression are the most commonly used techniques for quantifying the association between two numeric variables. Correlation quantifies the strength of the linear relationship between paired variables, expressing this as a correlation coefficient. If both variables x and y are normally distributed, we calculate Pearson's correlation coefficient (r). If normality assumption is not met for one or both variables in a correlation analysis, a rank correlation coefficient, such as Spearman's rho (ρ) may be calculated. A hypothesis test of correlation tests whether the linear relationship between the two variables holds in the underlying population, in which case it returns a P < 0.05. A 95% confidence interval of the correlation coefficient can also be calculated for an idea of the correlation in the population. The value r2 denotes the proportion of the variability of the dependent variable y that can be attributed to its linear relation with the independent variable x and is called the coefficient of determination. Linear regression is a technique that attempts to link two correlated variables x and y in the form of a mathematical equation (y = a + bx), such that given the value of one variable the other may be predicted. In general, the method of least squares is applied to obtain the equation of the regression line. Correlation and linear regression analysis are based on certain assumptions pertaining to the data sets. If these assumptions are not met, misleading conclusions may be drawn. The first assumption is that of linear relationship between the two variables. A scatter plot is essential before embarking on any correlation-regression analysis to show that this is indeed the case. Outliers or clustering within data sets can distort the correlation coefficient value. Finally, it is vital to remember that though strong correlation can be a pointer toward causation, the two are not synonymous. PMID:27904175
Price-volume multifractal analysis and its application in Chinese stock markets
NASA Astrophysics Data System (ADS)
Yuan, Ying; Zhuang, Xin-tian; Liu, Zhi-ying
2012-06-01
An empirical research on Chinese stock markets is conducted using statistical tools. First, the multifractality of stock price return series, ri(ri=ln(Pt+1)-ln(Pt)) and trading volume variation series, vi(vi=ln(Vt+1)-ln(Vt)) is confirmed using multifractal detrended fluctuation analysis. Furthermore, a multifractal detrended cross-correlation analysis between stock price return and trading volume variation in Chinese stock markets is also conducted. It is shown that the cross relationship between them is also found to be multifractal. Second, the cross-correlation between stock price Pi and trading volume Vi is empirically studied using cross-correlation function and detrended cross-correlation analysis. It is found that both Shanghai stock market and Shenzhen stock market show pronounced long-range cross-correlations between stock price and trading volume. Third, a composite index R based on price and trading volume is introduced. Compared with stock price return series ri and trading volume variation series vi, R variation series not only remain the characteristics of original series but also demonstrate the relative correlation between stock price and trading volume. Finally, we analyze the multifractal characteristics of R variation series before and after three financial events in China (namely, Price Limits, Reform of Non-tradable Shares and financial crisis in 2008) in the whole period of sample to study the changes of stock market fluctuation and financial risk. It is found that the empirical results verified the validity of R.
Abnormal subcortical nuclei shapes in patients with type 2 diabetes mellitus.
Chen, Ji; Zhang, Junxiang; Liu, Xuebing; Wang, Xiaoyang; Xu, Xiangjin; Li, Hui; Cao, Bo; Yang, Yanqiu; Lu, Jingjing; Chen, Ziqian
2017-10-01
Type 2 diabetes mellitus (T2DM) increases the risk of brain atrophy and dementia. We aimed to elucidate deep grey matter (GM) structural abnormalities and their relationships with T2DM cognitive deficits by combining region of interest (ROI)-based volumetry, voxel-based morphometry (VBM) and shape analysis. We recruited 23 T2DM patients and 24 age-matched healthy controls to undergo T1-weighted structural MRI scanning. Images were analysed using the three aforementioned methods to obtain deep GM structural shapes and volumes. Biochemical and cognitive assessments were made and were correlated with the resulting metrics. Shape analysis revealed that T2DM is associated with focal atrophy in the bilateral caudate head and dorso-medial part of the thalamus. ROI-based volumetry only detected thalamic volume reduction in T2DM when compared to the controls. No significant between-group differences were found by VBM. Furthermore, a worse performance of cognitive processing speed correlated with more severe GM atrophy in the bilateral dorso-medial part of the thalamus. Also, the GM volume in the bilateral dorso-medial part of the thalamus changed negatively with HbA 1c . Shape analysis is sensitive in identifying T2DM deep GM structural abnormalities and their relationships with cognitive impairments, which may greatly assist in clarifying the neural substrate of T2DM cognitive dysfunction. • Type 2 diabetes mellitus is accompanied with brain atrophy and cognitive dysfunction • Deep grey matter structures are essential for multiple cognitive processes • Shape analysis revealed local atrophy in the dorso-medial thalamus and caudatum in patients • Dorso-medial thalamic atrophy correlated to cognitive processing speed slowing and high HbA1c. • Shape analysis has advantages in unraveling neural substrates of diabetic cognitive deficits.
Kalpathy-Cramer, Jayashree; Campbell, J Peter; Erdogmus, Deniz; Tian, Peng; Kedarisetti, Dharanish; Moleta, Chace; Reynolds, James D; Hutcheson, Kelly; Shapiro, Michael J; Repka, Michael X; Ferrone, Philip; Drenser, Kimberly; Horowitz, Jason; Sonmez, Kemal; Swan, Ryan; Ostmo, Susan; Jonas, Karyn E; Chan, R V Paul; Chiang, Michael F
2016-11-01
To determine expert agreement on relative retinopathy of prematurity (ROP) disease severity and whether computer-based image analysis can model relative disease severity, and to propose consideration of a more continuous severity score for ROP. We developed 2 databases of clinical images of varying disease severity (100 images and 34 images) as part of the Imaging and Informatics in ROP (i-ROP) cohort study and recruited expert physician, nonexpert physician, and nonphysician graders to classify and perform pairwise comparisons on both databases. Six participating expert ROP clinician-scientists, each with a minimum of 10 years of clinical ROP experience and 5 ROP publications, and 5 image graders (3 physicians and 2 nonphysician graders) who analyzed images that were obtained during routine ROP screening in neonatal intensive care units. Images in both databases were ranked by average disease classification (classification ranking), by pairwise comparison using the Elo rating method (comparison ranking), and by correlation with the i-ROP computer-based image analysis system. Interexpert agreement (weighted κ statistic) compared with the correlation coefficient (CC) between experts on pairwise comparisons and correlation between expert rankings and computer-based image analysis modeling. There was variable interexpert agreement on diagnostic classification of disease (plus, preplus, or normal) among the 6 experts (mean weighted κ, 0.27; range, 0.06-0.63), but good correlation between experts on comparison ranking of disease severity (mean CC, 0.84; range, 0.74-0.93) on the set of 34 images. Comparison ranking provided a severity ranking that was in good agreement with ranking obtained by classification ranking (CC, 0.92). Comparison ranking on the larger dataset by both expert and nonexpert graders demonstrated good correlation (mean CC, 0.97; range, 0.95-0.98). The i-ROP system was able to model this continuous severity with good correlation (CC, 0.86). Experts diagnose plus disease on a continuum, with poor absolute agreement on classification but good relative agreement on disease severity. These results suggest that the use of pairwise rankings and a continuous severity score, such as that provided by the i-ROP system, may improve agreement on disease severity in the future. Copyright © 2016 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
The Mathematical Analysis of Style: A Correlation-Based Approach.
ERIC Educational Resources Information Center
Oppenheim, Rosa
1988-01-01
Examines mathematical models of style analysis, focusing on the pattern in which literary characteristics occur. Describes an autoregressive integrated moving average model (ARIMA) for predicting sentence length in different works by the same author and comparable works by different authors. This technique is valuable in characterizing stylistic…
Regularized Generalized Structured Component Analysis
ERIC Educational Resources Information Center
Hwang, Heungsun
2009-01-01
Generalized structured component analysis (GSCA) has been proposed as a component-based approach to structural equation modeling. In practice, GSCA may suffer from multi-collinearity, i.e., high correlations among exogenous variables. GSCA has yet no remedy for this problem. Thus, a regularized extension of GSCA is proposed that integrates a ridge…
USDA-ARS?s Scientific Manuscript database
Nondestructive methods based on fluorescence hyperspectral imaging (HSI) techniques were developed in order to detect worms on fresh-cut lettuce. The optimal wavebands for detecting worms on fresh-cut lettuce were investigated using the one-way ANOVA analysis and correlation analysis. The worm detec...
Dynamic Singularity Spectrum Distribution of Sea Clutter
NASA Astrophysics Data System (ADS)
Xiong, Gang; Yu, Wenxian; Zhang, Shuning
2015-12-01
The fractal and multifractal theory have provided new approaches for radar signal processing and target-detecting under the background of ocean. However, the related research mainly focuses on fractal dimension or multifractal spectrum (MFS) of sea clutter. In this paper, a new dynamic singularity analysis method of sea clutter using MFS distribution is developed, based on moving detrending analysis (DMA-MFSD). Theoretically, we introduce the time information by using cyclic auto-correlation of sea clutter. For transient correlation series, the instantaneous singularity spectrum based on multifractal detrending moving analysis (MF-DMA) algorithm is calculated, and the dynamic singularity spectrum distribution of sea clutter is acquired. In addition, we analyze the time-varying singularity exponent ranges and maximum position function in DMA-MFSD of sea clutter. For the real sea clutter data, we analyze the dynamic singularity spectrum distribution of real sea clutter in level III sea state, and conclude that the radar sea clutter has the non-stationary and time-varying scale characteristic and represents the time-varying singularity spectrum distribution based on the proposed DMA-MFSD method. The DMA-MFSD will also provide reference for nonlinear dynamics and multifractal signal processing.
Anomalous Quantum Correlations of Squeezed Light
NASA Astrophysics Data System (ADS)
Kühn, B.; Vogel, W.; Mraz, M.; Köhnke, S.; Hage, B.
2017-04-01
Three different noise moments of field strength, intensity, and their correlations are simultaneously measured. For this purpose a homodyne cross-correlation measurement [1] is implemented by superimposing the signal field and a weak local oscillator on an unbalanced beam splitter. The relevant information is obtained via the intensity noise correlation of the output modes. Detection details like quantum efficiencies or uncorrelated dark noise are meaningless for our technique. Yet unknown insight in the quantumness of a squeezed signal field is retrieved from the anomalous moment, correlating field strength with intensity noise. A classical inequality including this moment is violated for almost all signal phases. Precognition on quantum theory is superfluous, as our analysis is solely based on classical physics.
Validation of a Smartphone Image-Based Dietary Assessment Method for Pregnant Women
Ashman, Amy M.; Collins, Clare E.; Brown, Leanne J.; Rae, Kym M.; Rollo, Megan E.
2017-01-01
Image-based dietary records could lower participant burden associated with traditional prospective methods of dietary assessment. They have been used in children, adolescents and adults, but have not been evaluated in pregnant women. The current study evaluated relative validity of the DietBytes image-based dietary assessment method for assessing energy and nutrient intakes. Pregnant women collected image-based dietary records (via a smartphone application) of all food, drinks and supplements consumed over three non-consecutive days. Intakes from the image-based method were compared to intakes collected from three 24-h recalls, taken on random days; once per week, in the weeks following the image-based record. Data were analyzed using nutrient analysis software. Agreement between methods was ascertained using Pearson correlations and Bland-Altman plots. Twenty-five women (27 recruited, one withdrew, one incomplete), median age 29 years, 15 primiparas, eight Aboriginal Australians, completed image-based records for analysis. Significant correlations between the two methods were observed for energy, macronutrients and fiber (r = 0.58–0.84, all p < 0.05), and for micronutrients both including (r = 0.47–0.94, all p < 0.05) and excluding (r = 0.40–0.85, all p < 0.05) supplements in the analysis. Bland-Altman plots confirmed acceptable agreement with no systematic bias. The DietBytes method demonstrated acceptable relative validity for assessment of nutrient intakes of pregnant women. PMID:28106758
Reduced Flexibility Associated with Metabolic Syndrome in Community-Dwelling Elders
Chang, Ke-Vin; Hung, Chen-Yu; Li, Chia-Ming; Lin, Yu-Hung; Wang, Tyng-Guey; Tsai, Keh-Sung; Han, Der-Sheng
2015-01-01
Background The ageing process may lead to reductions in physical fitness, a known risk factor in the development of metabolic syndrome. The purpose of the current study was to evaluate cross-sectional and combined associations of metabolic syndrome with body composition and physical fitness in a community based geriatric population. Methods A total of 628 community-dwelling elders attending a geriatric health examination were enrolled in the study. The diagnosis of metabolic syndrome was based on the modified National Cholesterol Education Program Adult Treatment Panel III (NCEP ATP III) criterion with Asian cutoff of waist girth was adopted in this study. Body composition was obtained using bioimpedance analysis, and physical fitness was evaluated through the measurement of muscle strength (handgrip force), lower extremity muscle endurance (sit-to-stand test), flexibility (sit-and-reach test), and cardiorespiratory endurance (2-minute step test). Multivariable logistic regression and correlation analysis were performed to determine the association of metabolic syndrome with body composition and functionality variables. Results Metabolic syndrome was associated with increased skeletal muscle index (SMI) (odds ratio (OR), 1.61, 95% confidence interval (CI), 1.25–2.07) and decreased flexibility (OR, 0.97, 95% CI, 0.95–0.99) compared with those without metabolic syndrome. When body mass index was accounted for in the analysis, the association of SMI with metabolic syndrome was reduced. Waist circumference was positively correlated with SMI but negatively correlated with flexibility, whereas high density lipoprotein was positively correlated with flexibility but negatively correlated with SMI. Conclusion Reduced flexibility was positively associated with metabolic syndrome independent of age, gender, body composition, and functionality measurements in a community based geriatric population. Significant associations between metabolic syndrome with muscle strength and cardiorespiratory fitness in the elderly were not observed. Furthermore, flexibility should be included in the complete evaluation for metabolic syndrome. PMID:25614984
Hu, Lufeng; Li, Huaizhong; Cai, Zhennao; Lin, Feiyan; Hong, Guangliang; Chen, Huiling; Lu, Zhongqiu
2017-01-01
The prognosis of paraquat (PQ) poisoning is highly correlated to plasma PQ concentration, which has been identified as the most important index in PQ poisoning. This study investigated the predictive value of coagulation, liver, and kidney indices in prognosticating PQ-poisoning patients, when aligned with plasma PQ concentrations. Coagulation, liver, and kidney indices were first analyzed by variance analysis, receiver operating characteristic curves, and Fisher discriminant analysis. Then, a new, intelligent, machine learning-based system was established to effectively provide prognostic analysis of PQ-poisoning patients based on a combination of the aforementioned indices. In the proposed system, an enhanced extreme learning machine wrapped with a grey wolf-optimization strategy was developed to predict the risk status from a pool of 103 patients (56 males and 47 females); of these, 52 subjects were deceased and 51 alive. The proposed method was rigorously evaluated against this real-life dataset, in terms of accuracy, Matthews correlation coefficients, sensitivity, and specificity. Additionally, the feature selection was investigated to identify correlating factors for risk status. The results demonstrated that there were significant differences in the coagulation, liver, and kidney indices between deceased and surviving subjects (p<0.05). Aspartate aminotransferase, prothrombin time, prothrombin activity, total bilirubin, direct bilirubin, indirect bilirubin, alanine aminotransferase, urea nitrogen, and creatinine were the most highly correlated indices in PQ poisoning and showed statistical significance (p<0.05) in predicting PQ-poisoning prognoses. According to the feature selection, the most important correlated indices were found to be associated with aspartate aminotransferase, the aspartate aminotransferase to alanine ratio, creatinine, prothrombin time, and prothrombin activity. The method proposed here showed excellent results that were better than that produced based on blood-PQ concentration alone. These promising results indicated that the combination of these indices can provide a new avenue for prognosticating the outcome of PQ poisoning.
NASA Astrophysics Data System (ADS)
Camilo, Ana E. F.; Grégio, André; Santos, Rafael D. C.
2016-05-01
Malware detection may be accomplished through the analysis of their infection behavior. To do so, dynamic analysis systems run malware samples and extract their operating system activities and network traffic. This traffic may represent malware accessing external systems, either to steal sensitive data from victims or to fetch other malicious artifacts (configuration files, additional modules, commands). In this work, we propose the use of visualization as a tool to identify compromised systems based on correlating malware communications in the form of graphs and finding isomorphisms between them. We produced graphs from over 6 thousand distinct network traffic files captured during malware execution and analyzed the existing relationships among malware samples and IP addresses.
Web-based visual analysis for high-throughput genomics
2013-01-01
Background Visualization plays an essential role in genomics research by making it possible to observe correlations and trends in large datasets as well as communicate findings to others. Visual analysis, which combines visualization with analysis tools to enable seamless use of both approaches for scientific investigation, offers a powerful method for performing complex genomic analyses. However, there are numerous challenges that arise when creating rich, interactive Web-based visualizations/visual analysis applications for high-throughput genomics. These challenges include managing data flow from Web server to Web browser, integrating analysis tools and visualizations, and sharing visualizations with colleagues. Results We have created a platform simplifies the creation of Web-based visualization/visual analysis applications for high-throughput genomics. This platform provides components that make it simple to efficiently query very large datasets, draw common representations of genomic data, integrate with analysis tools, and share or publish fully interactive visualizations. Using this platform, we have created a Circos-style genome-wide viewer, a generic scatter plot for correlation analysis, an interactive phylogenetic tree, a scalable genome browser for next-generation sequencing data, and an application for systematically exploring tool parameter spaces to find good parameter values. All visualizations are interactive and fully customizable. The platform is integrated with the Galaxy (http://galaxyproject.org) genomics workbench, making it easy to integrate new visual applications into Galaxy. Conclusions Visualization and visual analysis play an important role in high-throughput genomics experiments, and approaches are needed to make it easier to create applications for these activities. Our framework provides a foundation for creating Web-based visualizations and integrating them into Galaxy. Finally, the visualizations we have created using the framework are useful tools for high-throughput genomics experiments. PMID:23758618
Fish functional traits correlated with environmental variables in a temperate biodiversity hotspot.
Keck, Benjamin P; Marion, Zachary H; Martin, Derek J; Kaufman, Jason C; Harden, Carol P; Schwartz, John S; Strange, Richard J
2014-01-01
The global biodiversity crisis has invigorated the search for generalized patterns in most disciplines within the natural sciences. Studies based on organismal functional traits attempt to broaden implications of results by identifying the response of functional traits, instead of taxonomic units, to environmental variables. Determining the functional trait responses enables more direct comparisons with, or predictions for, communities of different taxonomic composition. The North American freshwater fish fauna is both diverse and increasingly imperiled through human mediated disturbances, including climate change. The Tennessee River, USA, contains one of the most diverse assemblages of freshwater fish in North America and has more imperiled species than other rivers, but there has been no trait-based study of community structure in the system. We identified 211 localities in the upper Tennessee River that were sampled by the Tennessee Valley Authority between 2009 and 2011 and compiled fish functional traits for the observed species and environmental variables for each locality. Using fourth corner analysis, we identified significant correlations between many fish functional traits and environmental variables. Functional traits associated with an opportunistic life history strategy were correlated with localities subject to greater land use disturbance and less flow regulation, while functional traits associated with a periodic life history strategy were correlated with localities subject to regular disturbance and regulated flow. These are patterns observed at the continental scale, highlighting the generalizability of trait-based methods. Contrary to studies that found no community structure differences when considering riparian buffer zones, we found that fish functional traits were correlated with different environmental variables between analyses with buffer zones vs. entire catchment area land cover proportions. Using existing databases and fourth corner analysis, our results support the broad application potential for trait-based methods and indicate trait-based methods can detect environmental filtering by riparian zone land cover.
Fish Functional Traits Correlated with Environmental Variables in a Temperate Biodiversity Hotspot
Keck, Benjamin P.; Marion, Zachary H.; Martin, Derek J.; Kaufman, Jason C.; Harden, Carol P.; Schwartz, John S.; Strange, Richard J.
2014-01-01
The global biodiversity crisis has invigorated the search for generalized patterns in most disciplines within the natural sciences. Studies based on organismal functional traits attempt to broaden implications of results by identifying the response of functional traits, instead of taxonomic units, to environmental variables. Determining the functional trait responses enables more direct comparisons with, or predictions for, communities of different taxonomic composition. The North American freshwater fish fauna is both diverse and increasingly imperiled through human mediated disturbances, including climate change. The Tennessee River, USA, contains one of the most diverse assemblages of freshwater fish in North America and has more imperiled species than other rivers, but there has been no trait-based study of community structure in the system. We identified 211 localities in the upper Tennessee River that were sampled by the Tennessee Valley Authority between 2009 and 2011 and compiled fish functional traits for the observed species and environmental variables for each locality. Using fourth corner analysis, we identified significant correlations between many fish functional traits and environmental variables. Functional traits associated with an opportunistic life history strategy were correlated with localities subject to greater land use disturbance and less flow regulation, while functional traits associated with a periodic life history strategy were correlated with localities subject to regular disturbance and regulated flow. These are patterns observed at the continental scale, highlighting the generalizability of trait-based methods. Contrary to studies that found no community structure differences when considering riparian buffer zones, we found that fish functional traits were correlated with different environmental variables between analyses with buffer zones vs. entire catchment area land cover proportions. Using existing databases and fourth corner analysis, our results support the broad application potential for trait-based methods and indicate trait-based methods can detect environmental filtering by riparian zone land cover. PMID:24676053
NASA Astrophysics Data System (ADS)
Sulistyo, A.; Purwantoro; Sari, K. P.
2018-01-01
Selection is a routine activity in plant breeding programs that must be done by plant breeders in obtaining superior plant genotypes. The use of appropriate selection criteria will determine the effectiveness of selection activities. The purpose of this study was to analysis the inheritable agronomic traits that contribute to soybean yield. A total of 91 soybean lines were planted in Muneng Experimental Station, Probolinggo District, East Java Province, Indonesia in 2016. All soybean lines were arranged in randomized complete block design with two replicates. Correlation analysis, path analysis and heritability estimation were performed on days to flowering, days to maturing, plant height, number of branches, number of fertile nodes, number of filled pods, weight of 100 seeds, and yield to determine selection criteria on soybean breeding program. The results showed that the heritability value of almost all agronomic traits observed is high except for the number of fertile nodes with low heritability. The result of correlation analysis shows that days to flowering, plant height and number of fertile nodes have positive correlation with seed yield per plot (0.056, 0.444, and 0.100, respectively). In addition, path analysis showed that plant height and number of fertile nodes have highest positive direct effect on soybean yield. Based on this result, plant height can be selected as one of selection criteria in soybean breeding program to obtain high yielding soybean variety.
NASA Astrophysics Data System (ADS)
Ferreira, Paulo; Kristoufek, Ladislav
2017-11-01
We analyse the covered interest parity (CIP) using two novel regression frameworks based on cross-correlation analysis (detrended cross-correlation analysis and detrending moving-average cross-correlation analysis), which allow for studying the relationships at different scales and work well under non-stationarity and heavy tails. CIP is a measure of capital mobility commonly used to analyse financial integration, which remains an interesting feature of study in the context of the European Union. The importance of this features is related to the fact that the adoption of a common currency is associated with some benefits for countries, but also involves some risks such as the loss of economic instruments to face possible asymmetric shocks. While studying the Eurozone members could explain some problems in the common currency, studying the non-Euro countries is important to analyse if they are fit to take the possible benefits. Our results point to the CIP verification mainly in the Central European countries while in the remaining countries, the verification of the parity is only residual.
Emotional intelligence and the relationship to resident performance: a multi-institutional study.
Talarico, Joseph F; Varon, Albert J; Banks, Shawn E; Berger, Jeffrey S; Pivalizza, Evan G; Medina-Rivera, Glorimar; Rimal, Jyotsna; Davidson, Melissa; Dai, Feng; Qin, Li; Ball, Ryan D; Loudd, Cheryl; Schoenberg, Catherine; Wetmore, Amy L; Metro, David G
2013-05-01
To test the hypothesis that emotional intelligence, as measured by a BarOn Emotional Quotient Inventory (EQ-i), the 125-item version personal inventory (EQ-i:125), correlates with resident performance. Survey (personal inventory) instrument. Five U.S. academic anesthesiology residency programs. Postgraduate year (PGY) 2, 3, and 4 residents enrolled in university-based anesthesiology residency programs. Residents confidentially completed the BarOn EQ-i:125 personal inventory. The deidentified resident evaluations were sent to the principal investigator of a separate data collection study for data analysis. Data collected from the inventory were correlated with daily evaluations of the residents by residency program faculty. Results of the individual BarOn EQ-i:125 and daily faculty evaluations of the residents were compiled and analyzed. Univariate correlation analysis and multivariate canonical analysis showed that some aspects of the BarOn EQ-i:125 were significantly correlated with, and likely to be predictors of, resident performance. Emotional intelligence, as measured by the BarOn EQ-i personal inventory, has considerable promise as an independent indicator of performance as an anesthesiology resident. Copyright © 2013 Elsevier Inc. All rights reserved.
[Geographical distribution of left ventricular Tei index based on principal component analysis].
Xu, Jinhui; Ge, Miao; He, Jinwei; Xue, Ranyin; Yang, Shaofang; Jiang, Jilin
2014-11-01
To provide a scientific standard of left ventricular Tei index for healthy people from various region of China, and to lay a reliable foundation for the evaluation of left ventricular diastolic and systolic function. The correlation and principal component analysis were used to explore the left ventricular Tei index, which based on the data of 3 562 samples from 50 regions of China by means of literature retrieval. Th e nine geographical factors were longitude(X₁), latitude(X₂), altitude(X₃), annual sunshine hours (X₄), the annual average temperature (X₅), annual average relative humidity (X₆), annual precipitation (X₇), annual temperature range (X₈) and annual average wind speed (X₉). ArcGIS soft ware was applied to calculate the spatial distribution regularities of left ventricular Tei index. There is a significant correlation between the healthy people's left ventricular Tei index and geographical factors, and the correlation coefficients were -0.107 (r₁), -0.301 (r₂), -0.029 (r₃), -0.277 (r₄), -0.256(r₅), -0.289(r₆), -0.320(r₇), -0.310 (r₈) and -0.117 (r₉), respectively. A linear equation between the Tei index and the geographical factor was obtained by regression analysis based on the three extracting principal components. The geographical distribution tendency chart for healthy people's left Tei index was fitted out by the ArcGIS spatial interpolation analysis. The geographical distribution for left ventricular Tei index in China follows certain pattern. The reference value in North is higher than that in South, while the value in East is higher than that in West.
Research on software behavior trust based on hierarchy evaluation
NASA Astrophysics Data System (ADS)
Long, Ke; Xu, Haishui
2017-08-01
In view of the correlation software behavior, we evaluate software behavior credibility from two levels of control flow and data flow. In control flow level, method of the software behavior of trace based on support vector machine (SVM) is proposed. In data flow level, behavioral evidence evaluation based on fuzzy decision analysis method is put forward.
The Analysis of Dimensionality Reduction Techniques in Cryptographic Object Code Classification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jason L. Wright; Milos Manic
2010-05-01
This paper compares the application of three different dimension reduction techniques to the problem of locating cryptography in compiled object code. A simple classi?er is used to compare dimension reduction via sorted covariance, principal component analysis, and correlation-based feature subset selection. The analysis concentrates on the classi?cation accuracy as the number of dimensions is increased.
COSMOLOGY WITH THE Ep,i - Eiso CORRELATION OF GAMMA-RAY BURSTS
NASA Astrophysics Data System (ADS)
Amati, Lorenzo
2012-03-01
Gamma-Ray Bursts (GRBs) are the brightest sources in the universe, emit mostly in the hard X-ray energy band and have been detected at redshifts up to about 8.2. Thus, they are in principle very powerful probes for cosmology. I shortly review the researches aimed to use GRBs for the measurement of cosmological parameters, which are mainly based on the correlation between spectral peak photon energy and total radiated energy or luminosity. In particular, based on an enriched sample of 120 GRBs, I will provide an update of the analysis by Amati et al. (2008) aimed at extracting information on ΩM and, to a less extent, on ΩΛ, from the Ep,i - Eiso correlation.
Wear Detection of Drill Bit by Image-based Technique
NASA Astrophysics Data System (ADS)
Sukeri, Maziyah; Zulhilmi Paiz Ismadi, Mohd; Rahim Othman, Abdul; Kamaruddin, Shahrul
2018-03-01
Image processing for computer vision function plays an essential aspect in the manufacturing industries for the tool condition monitoring. This study proposes a dependable direct measurement method to measure the tool wear using image-based analysis. Segmentation and thresholding technique were used as the means to filter and convert the colour image to binary datasets. Then, the edge detection method was applied to characterize the edge of the drill bit. By using cross-correlation method, the edges of original and worn drill bits were correlated to each other. Cross-correlation graphs were able to detect the difference of the worn edge despite small difference between the graphs. Future development will focus on quantifying the worn profile as well as enhancing the sensitivity of the technique.
Estimation of Handgrip Force from SEMG Based on Wavelet Scale Selection.
Wang, Kai; Zhang, Xianmin; Ota, Jun; Huang, Yanjiang
2018-02-24
This paper proposes a nonlinear correlation-based wavelet scale selection technology to select the effective wavelet scales for the estimation of handgrip force from surface electromyograms (SEMG). The SEMG signal corresponding to gripping force was collected from extensor and flexor forearm muscles during the force-varying analysis task. We performed a computational sensitivity analysis on the initial nonlinear SEMG-handgrip force model. To explore the nonlinear correlation between ten wavelet scales and handgrip force, a large-scale iteration based on the Monte Carlo simulation was conducted. To choose a suitable combination of scales, we proposed a rule to combine wavelet scales based on the sensitivity of each scale and selected the appropriate combination of wavelet scales based on sequence combination analysis (SCA). The results of SCA indicated that the scale combination VI is suitable for estimating force from the extensors and the combination V is suitable for the flexors. The proposed method was compared to two former methods through prolonged static and force-varying contraction tasks. The experiment results showed that the root mean square errors derived by the proposed method for both static and force-varying contraction tasks were less than 20%. The accuracy and robustness of the handgrip force derived by the proposed method is better than that obtained by the former methods.
Automated modal parameter estimation using correlation analysis and bootstrap sampling
NASA Astrophysics Data System (ADS)
Yaghoubi, Vahid; Vakilzadeh, Majid K.; Abrahamsson, Thomas J. S.
2018-02-01
The estimation of modal parameters from a set of noisy measured data is a highly judgmental task, with user expertise playing a significant role in distinguishing between estimated physical and noise modes of a test-piece. Various methods have been developed to automate this procedure. The common approach is to identify models with different orders and cluster similar modes together. However, most proposed methods based on this approach suffer from high-dimensional optimization problems in either the estimation or clustering step. To overcome this problem, this study presents an algorithm for autonomous modal parameter estimation in which the only required optimization is performed in a three-dimensional space. To this end, a subspace-based identification method is employed for the estimation and a non-iterative correlation-based method is used for the clustering. This clustering is at the heart of the paper. The keys to success are correlation metrics that are able to treat the problems of spatial eigenvector aliasing and nonunique eigenvectors of coalescent modes simultaneously. The algorithm commences by the identification of an excessively high-order model from frequency response function test data. The high number of modes of this model provides bases for two subspaces: one for likely physical modes of the tested system and one for its complement dubbed the subspace of noise modes. By employing the bootstrap resampling technique, several subsets are generated from the same basic dataset and for each of them a model is identified to form a set of models. Then, by correlation analysis with the two aforementioned subspaces, highly correlated modes of these models which appear repeatedly are clustered together and the noise modes are collected in a so-called Trashbox cluster. Stray noise modes attracted to the mode clusters are trimmed away in a second step by correlation analysis. The final step of the algorithm is a fuzzy c-means clustering procedure applied to a three-dimensional feature space to assign a degree of physicalness to each cluster. The proposed algorithm is applied to two case studies: one with synthetic data and one with real test data obtained from a hammer impact test. The results indicate that the algorithm successfully clusters similar modes and gives a reasonable quantification of the extent to which each cluster is physical.
DiBartola, Alex C; Everhart, Joshua S; Magnussen, Robert A; Carey, James L; Brophy, Robert H; Schmitt, Laura C; Flanigan, David C
2016-06-01
Compare histological outcomes after microfracture (MF), autologous chondrocyte implantation (ACI), and osteochondral autograft transfer (OATS). Literature review using PubMed MEDLINE, SCOPUS, Cumulative Index for Nursing and Allied Health Literature (CINAHL), and Cochrane Collaboration Library. Inclusion criteria limited to English language studies International Cartilage Repair Society (ICRS) grading criteria for cartilage analysis after ACI (autologous chondrocyte implantation), MF (microfracture), or OATS (osteochondral autografting) repair techniques. Thirty-three studies investigating 1511 patients were identified. Thirty evaluated ACI or one of its subtypes, six evaluated MF, and seven evaluated OATS. There was no evidence of publication bias (Begg's p=0.48). No statistically significant correlation was found between percent change in clinical outcome and percent biopsies showing ICRS Excellent scores (R(2)=0.05, p=0.38). Percent change in clinical outcome and percent of biopsies showing only hyaline cartilage were significantly associated (R(2)=0.24, p=0.024). Mean lesion size and histological outcome were not correlated based either on percent ICRS Excellent (R(2)=0.03, p=0.50) or percent hyaline cartilage only (R(2)=0.01, p=0.67). Most common lesion location and histological outcome were not correlated based either on percent ICRS Excellent (R(2)=0.03, p=0.50) or percent hyaline cartilage only (R(2)=0.01, p=0.67). Microfracture has poorer histologic outcomes than other cartilage repair techniques. OATS repairs primarily are comprised of hyaline cartilage, followed closely by cell-based techniques, but no significant difference was found cartilage quality using ICRS grading criteria among OATS, ACI-C, MACI, and ACI-P. IV, meta-analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Phillips, E. P.
1993-01-01
A second experimental Round Robin on the measurement of the crack opening load in fatigue crack growth tests has been completed by the ASTM Task Group E24.04.04 on Crack Closure Measurement and Analysis. Fourteen laboratories participated in the testing of aluminum alloy compact tension specimens. Opening-load measurements were made at three crack lengths during constant Delta K, constant stress ratio tests by most of the participants. Four participants made opening-load measurements during threshold tests. All opening-load measurements were based on the analysis of specimens compliance behavior, where the displacement/strain was measured either at the crack mouth or the mid-height back face location. The Round Robin data were analyzed for opening load using two non-subjective analysis methods: the compliance offset and the correlation coefficient methods. The scatter in the opening load results was significantly reduced when some of the results were excluded from the analysis population based on an accept/reject criterion for raw data quality. The compliance offset and correlation coefficient opening load analysis methods produced similar results for data populations that had been screened to eliminate poor quality data.
Tchistiakova, Ekaterina; Crane, David E; Mikulis, David J; Anderson, Nicole D; Greenwood, Carol E; Black, Sandra E; MacIntosh, Bradley J
2015-11-01
White matter hyperintensities (WMH) are prevalent among older adults and are often associated with cognitive decline and increased risk of stroke and dementia. Vascular risk factors (VRFs) are linked to WMH, yet the impact of multiple VRFs on gray matter function is still unclear. The goal of this study was to test for associations between the number of VRFs and cerebrovascular reactivity (CVR) and resting state (RS) coactivation among individuals with WMH. Twenty-nine participants with suspected WMH were grouped based on the number of VRFs (subgroups: 0, 1, or ≥2). CVR and RS coactivation were measured with blood oxygenation level-dependent (BOLD) imaging on a 3T magnetic resonance imaging (MRI) system during hypercapnia and rest, respectively. Default-mode (DMN), sensory-motor, and medial-visual networks, generated using independent component analysis of RS-BOLD, were selected as networks of interest (NOIs). CVR-BOLD was analyzed using two methods: 1) a model-based approach using CO2 traces, and 2) a dual-regression (DR) approach using NOIs as spatial inputs. Average CVR and RS coactivations within NOIs were compared between VRF subgroups. A secondary analysis investigated the correlation between CVR and RS coactivation. VRF subgroup differences were detected using DR-based CVR in the DMN (F20,2 = 5.17, P = 0.015) but not the model-based CVR nor RS coactivation. DR-based CVR was correlated with RS coactivation in the DMN (r(2) = 0.28, P = 0.006) but not the sensory-motor nor medial-visual NOIs. In individuals with WMH, CVR in the DMN was inversely associated with the number of VRFs and correlated with RS coactivation. © 2015 Wiley Periodicals, Inc.
Cunnington, Ross; Boyd, Roslyn N.; Rose, Stephen E.
2016-01-01
Diffusion MRI (dMRI) tractography analyses are difficult to perform in the presence of brain pathology. Automated methods that rely on cortical parcellation for structural connectivity studies often fail, while manually defining regions is extremely time consuming and can introduce human error. Both methods also make assumptions about structure-function relationships that may not hold after cortical reorganisation. Seeding tractography with functional-MRI (fMRI) activation is an emerging method that reduces these confounds, but inherent smoothing of fMRI signal may result in the inclusion of irrelevant pathways. This paper describes a novel fMRI-seeded dMRI-analysis pipeline based on surface-meshes that reduces these issues and utilises machine-learning to generate task specific white matter pathways, minimising the requirement for manually-drawn ROIs. We directly compared this new strategy to a standard voxelwise fMRI-dMRI approach, by investigating correlations between clinical scores and dMRI metrics of thalamocortical and corticomotor tracts in 31 children with unilateral cerebral palsy. The surface-based approach successfully processed more participants (87%) than the voxel-based approach (65%), and provided significantly more-coherent tractography. Significant correlations between dMRI metrics and five clinical scores of function were found for the more superior regions of these tracts. These significant correlations were stronger and more frequently found with the surface-based method (15/20 investigated were significant; R2 = 0.43–0.73) than the voxelwise analysis (2 sig. correlations; 0.38 & 0.49). More restricted fMRI signal, better-constrained tractography, and the novel track-classification method all appeared to contribute toward these differences. PMID:27487011
NASA Astrophysics Data System (ADS)
Nakahara, Hisashi
2015-02-01
For monitoring temporal changes in subsurface structures I propose to use auto correlation functions of coda waves from local earthquakes recorded at surface receivers, which probably contain more body waves than surface waves. Use of coda waves requires earthquakes resulting in decreased time resolution for monitoring. Nonetheless, it may be possible to monitor subsurface structures in sufficient time resolutions in regions with high seismicity. In studying the 2011 Tohoku-Oki, Japan earthquake (Mw 9.0), for which velocity changes have been previously reported, I try to validate the method. KiK-net stations in northern Honshu are used in this analysis. For each moderate earthquake normalized auto correlation functions of surface records are stacked with respect to time windows in the S-wave coda. Aligning the stacked, normalized auto correlation functions with time, I search for changes in phases arrival times. The phases at lag times of <1 s are studied because changes at shallow depths are focused. Temporal variations in the arrival times are measured at the stations based on the stretching method. Clear phase delays are found to be associated with the mainshock and to gradually recover with time. The amounts of the phase delays are 10 % on average with the maximum of about 50 % at some stations. The deconvolution analysis using surface and subsurface records at the same stations is conducted for validation. The results show the phase delays from the deconvolution analysis are slightly smaller than those from the auto correlation analysis, which implies that the phases on the auto correlations are caused by larger velocity changes at shallower depths. The auto correlation analysis seems to have an accuracy of about several percent, which is much larger than methods using earthquake doublets and borehole array data. So this analysis might be applicable in detecting larger changes. In spite of these disadvantages, this analysis is still attractive because it can be applied to many records on the surface in regions where no boreholes are available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziatdinov, Maxim A.; Fujii, Shintaro; Kiguchi, Manabu
The link between changes in the material crystal structure and its mechanical, electronic, magnetic, and optical functionalities known as the structure-property relationship is the cornerstone of the contemporary materials science research. The recent advances in scanning transmission electron and scanning probe microscopies (STEM and SPM) have opened an unprecedented path towards examining the materials structure property relationships on the single-impurity and atomic-configuration levels. Lacking, however, are the statistics-based approaches for cross-correlation of structure and property variables obtained in different information channels of the STEM and SPM experiments. Here we have designed an approach based on a combination of sliding windowmore » Fast Fourier Transform, Pearson correlation matrix, linear and kernel canonical correlation, to study a relationship between lattice distortions and electron scattering from the SPM data on graphene with defects. Our analysis revealed that the strength of coupling to strain is altered between different scattering channels which can explain coexistence of several quasiparticle interference patterns in the nanoscale regions of interest. In addition, the application of the kernel functions allowed us extracting a non-linear component of the relationship between the lattice strain and scattering intensity in graphene. Lastly, the outlined approach can be further utilized to analyzing correlations in various multi-modal imaging techniques where the information of interest is spatially distributed and has usually a complex multidimensional nature.« less
Ziatdinov, Maxim A.; Fujii, Shintaro; Kiguchi, Manabu; ...
2016-11-09
The link between changes in the material crystal structure and its mechanical, electronic, magnetic, and optical functionalities known as the structure-property relationship is the cornerstone of the contemporary materials science research. The recent advances in scanning transmission electron and scanning probe microscopies (STEM and SPM) have opened an unprecedented path towards examining the materials structure property relationships on the single-impurity and atomic-configuration levels. Lacking, however, are the statistics-based approaches for cross-correlation of structure and property variables obtained in different information channels of the STEM and SPM experiments. Here we have designed an approach based on a combination of sliding windowmore » Fast Fourier Transform, Pearson correlation matrix, linear and kernel canonical correlation, to study a relationship between lattice distortions and electron scattering from the SPM data on graphene with defects. Our analysis revealed that the strength of coupling to strain is altered between different scattering channels which can explain coexistence of several quasiparticle interference patterns in the nanoscale regions of interest. In addition, the application of the kernel functions allowed us extracting a non-linear component of the relationship between the lattice strain and scattering intensity in graphene. Lastly, the outlined approach can be further utilized to analyzing correlations in various multi-modal imaging techniques where the information of interest is spatially distributed and has usually a complex multidimensional nature.« less
NASA Astrophysics Data System (ADS)
Chen, Xiaogang; Wang, Yijun; Gao, Shangkai; Jung, Tzyy-Ping; Gao, Xiaorong
2015-08-01
Objective. Recently, canonical correlation analysis (CCA) has been widely used in steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs) due to its high efficiency, robustness, and simple implementation. However, a method with which to make use of harmonic SSVEP components to enhance the CCA-based frequency detection has not been well established. Approach. This study proposed a filter bank canonical correlation analysis (FBCCA) method to incorporate fundamental and harmonic frequency components to improve the detection of SSVEPs. A 40-target BCI speller based on frequency coding (frequency range: 8-15.8 Hz, frequency interval: 0.2 Hz) was used for performance evaluation. To optimize the filter bank design, three methods (M1: sub-bands with equally spaced bandwidths; M2: sub-bands corresponding to individual harmonic frequency bands; M3: sub-bands covering multiple harmonic frequency bands) were proposed for comparison. Classification accuracy and information transfer rate (ITR) of the three FBCCA methods and the standard CCA method were estimated using an offline dataset from 12 subjects. Furthermore, an online BCI speller adopting the optimal FBCCA method was tested with a group of 10 subjects. Main results. The FBCCA methods significantly outperformed the standard CCA method. The method M3 achieved the highest classification performance. At a spelling rate of ˜33.3 characters/min, the online BCI speller obtained an average ITR of 151.18 ± 20.34 bits min-1. Significance. By incorporating the fundamental and harmonic SSVEP components in target identification, the proposed FBCCA method significantly improves the performance of the SSVEP-based BCI, and thereby facilitates its practical applications such as high-speed spelling.
NASA Astrophysics Data System (ADS)
Molina-Viedma, Ángel J.; López-Alba, Elías; Felipe-Sesé, Luis; Díaz, Francisco A.
2017-10-01
In recent years, many efforts have been made to exploit full-field measurement optical techniques for modal identification. Three-dimensional digital image correlation using high-speed cameras has been extensively employed for this purpose. Modal identification algorithms are applied to process the frequency response functions (FRF), which relate the displacement response of the structure to the excitation force. However, one of the most common tests for modal analysis involves the base motion excitation of a structural element instead of force excitation. In this case, the relationship between response and excitation is typically based on displacements, which are known as transmissibility functions. In this study, a methodology for experimental modal analysis using high-speed 3D digital image correlation and base motion excitation tests is proposed. In particular, a cantilever beam was excited from its base with a random signal, using a clamped edge join. Full-field transmissibility functions were obtained through the beam and converted into FRF for proper identification, considering a single degree-of-freedom theoretical conversion. Subsequently, modal identification was performed using a circle-fit approach. The proposed methodology facilitates the management of the typically large amounts of data points involved in the DIC measurement during modal identification. Moreover, it was possible to determine the natural frequencies, damping ratios and full-field mode shapes without requiring any additional tests. Finally, the results were experimentally validated by comparing them with those obtained by employing traditional accelerometers, analytical models and finite element method analyses. The comparison was performed by using the quantitative indicator modal assurance criterion. The results showed a high level of correspondence, consolidating the proposed experimental methodology.
GOEAST: a web-based software toolkit for Gene Ontology enrichment analysis.
Zheng, Qi; Wang, Xiu-Jie
2008-07-01
Gene Ontology (GO) analysis has become a commonly used approach for functional studies of large-scale genomic or transcriptomic data. Although there have been a lot of software with GO-related analysis functions, new tools are still needed to meet the requirements for data generated by newly developed technologies or for advanced analysis purpose. Here, we present a Gene Ontology Enrichment Analysis Software Toolkit (GOEAST), an easy-to-use web-based toolkit that identifies statistically overrepresented GO terms within given gene sets. Compared with available GO analysis tools, GOEAST has the following improved features: (i) GOEAST displays enriched GO terms in graphical format according to their relationships in the hierarchical tree of each GO category (biological process, molecular function and cellular component), therefore, provides better understanding of the correlations among enriched GO terms; (ii) GOEAST supports analysis for data from various sources (probe or probe set IDs of Affymetrix, Illumina, Agilent or customized microarrays, as well as different gene identifiers) and multiple species (about 60 prokaryote and eukaryote species); (iii) One unique feature of GOEAST is to allow cross comparison of the GO enrichment status of multiple experiments to identify functional correlations among them. GOEAST also provides rigorous statistical tests to enhance the reliability of analysis results. GOEAST is freely accessible at http://omicslab.genetics.ac.cn/GOEAST/
Voxel-based statistical analysis of uncertainties associated with deformable image registration
NASA Astrophysics Data System (ADS)
Li, Shunshan; Glide-Hurst, Carri; Lu, Mei; Kim, Jinkoo; Wen, Ning; Adams, Jeffrey N.; Gordon, James; Chetty, Indrin J.; Zhong, Hualiang
2013-09-01
Deformable image registration (DIR) algorithms have inherent uncertainties in their displacement vector fields (DVFs).The purpose of this study is to develop an optimal metric to estimate DIR uncertainties. Six computational phantoms have been developed from the CT images of lung cancer patients using a finite element method (FEM). The FEM generated DVFs were used as a standard for registrations performed on each of these phantoms. A mechanics-based metric, unbalanced energy (UE), was developed to evaluate these registration DVFs. The potential correlation between UE and DIR errors was explored using multivariate analysis, and the results were validated by landmark approach and compared with two other error metrics: DVF inverse consistency (IC) and image intensity difference (ID). Landmark-based validation was performed using the POPI-model. The results show that the Pearson correlation coefficient between UE and DIR error is rUE-error = 0.50. This is higher than rIC-error = 0.29 for IC and DIR error and rID-error = 0.37 for ID and DIR error. The Pearson correlation coefficient between UE and the product of the DIR displacements and errors is rUE-error × DVF = 0.62 for the six patients and rUE-error × DVF = 0.73 for the POPI-model data. It has been demonstrated that UE has a strong correlation with DIR errors, and the UE metric outperforms the IC and ID metrics in estimating DIR uncertainties. The quantified UE metric can be a useful tool for adaptive treatment strategies, including probability-based adaptive treatment planning.
Haimerl, Michael; Probst, Ute; Poelsterl, Stefanie; Beyer, Lukas; Fellner, Claudia; Selgrad, Michael; Hornung, Matthias; Stroszczynski, Christian; Wiggermann, Philipp
2018-06-13
Gadoxetic acid (Gd-EOB-DTPA) is a paramagnetic MRI contrast agent with raising popularity and has been used for evaluation of imaging-based liver function in recent years. In order to verify whether liver function as determined by real-time breath analysis using the intravenous administration of 13 C-methacetin can be estimated quantitatively from Gd-EOB-DTPA-enhanced MRI using signal intensity (SI) values. 110 patients underwent Gd-EOB-DTPA-enhanced 3-T MRI and, for the evaluation of liver function, a 13 C-methacetin breath test ( 13 C-MBT). SI values from before (SI pre ) and 20 min after (SI post ) contrast media injection were acquired by T1-weighted volume-interpolated breath-hold examination (VIBE) sequences with fat suppression. The relative enhancement (RE) between the plain and contrast-enhanced SI values was calculated and evaluated in a correlation analysis of 13 C-MBT values to SI post and RE to obtain a SI-based estimation of 13 C-MBT values. The simple regression model showed a log-linear correlation of 13 C-MBT values with SI post and RE (p < 0.001). Stratified by 3 different categories of 13 C-MBT readouts, there was a constant significant decrease in both SI post (p ≤ 0.002) and RE (p ≤ 0.033) with increasing liver disease progression as assessed by the 13 C-MBT. Liver function as determined using real-time 13 C-methacetin breath analysis can be estimated quantitatively from Gd-EOB-DTPA-enhanced MRI using SI-based indices.
CoMSIA and Docking Study of Rhenium Based Estrogen Receptor Ligand Analogs
Wolohan, Peter; Reichert, David E.
2007-01-01
OPLS all atom force field parameters were developed in order to model a diverse set of novel rhenium based estrogen receptor ligands whose relative binding affinities (RBA) to the estrogen receptor alpha isoform (ERα) with respect to 17β-Estradiol were available. The binding properties of these novel rhenium based organometallic complexes were studied with a combination of Comparative Molecular Similarity Indices Analysis (CoMSIA) and docking. A total of 29 estrogen receptor ligands consisting of 11 rhenium complexes and 18 organic ligands were docked inside the ligand-binding domain (LBD) of ERα utilizing the program Gold. The top ranked pose was used to construct CoMSIA models from a training set of 22 of the estrogen receptor ligands which were selected at random. In addition scoring functions from the docking runs and the polar volume (PV) were also studied to investigate their ability to predict RBA ERα. A partial least-squares analysis consisting of the CoMSIA steric, electrostatic and hydrophobic indices together with the polar volume proved sufficiently predictive having a correlation coefficient, r2, of 0.94 and a cross-validated correlation coefficient, q2, utilizing the leave one out method of 0.68. Analysis of the scoring functions from Gold showed particularly poor correlation to RBA ERα which did not improve when the rhenium complexes were extracted to leave the organic ligands. The combined CoMSIA and polar volume model ranked correctly the ligands in order of increasing RBA ERα, illustrating the utility of this method as a prescreening tool in the development of novel rhenium based estrogen receptor ligands. PMID:17280694
Currency co-movement and network correlation structure of foreign exchange market
NASA Astrophysics Data System (ADS)
Mai, Yong; Chen, Huan; Zou, Jun-Zhong; Li, Sai-Ping
2018-02-01
We study the correlations of exchange rate volatility in the global foreign exchange(FX) market based on complex network graphs. Correlation matrices (CM) and the theoretical information flow method (Infomap) are employed to analyze the modular structure of the global foreign exchange network. The analysis demonstrates that there exist currency modules in the network, which is consistent with the geographical nature of currencies. The European and the East Asian currency modules in the FX network are most significant. We introduce a measure of the impact of individual currency based on its partial correlations with other currencies. We further incorporate an impact elimination method to filter out the impact of core nodes and construct subnetworks after the removal of these core nodes. The result reveals that (i) the US Dollar has prominent global influence on the FX market while the Euro has great impact on European currencies; (ii) the East Asian currency module is more strongly correlated than the European currency module. The strong correlation is a result of the strong co-movement of currencies in the region. The co-movement of currencies is further used to study the formation of international monetary bloc and the result is in good agreement with the consideration based on international trade.
NASA Technical Reports Server (NTRS)
Yang, H. Q.; West, Jeff
2015-01-01
Current reduced-order thermal model for cryogenic propellant tanks is based on correlations built for flat plates collected in the 1950's. The use of these correlations suffers from: inaccurate geometry representation; inaccurate gravity orientation; ambiguous length scale; and lack of detailed validation. The work presented under this task uses the first-principles based Computational Fluid Dynamics (CFD) technique to compute heat transfer from tank wall to the cryogenic fluids, and extracts and correlates the equivalent heat transfer coefficient to support reduced-order thermal model. The CFD tool was first validated against available experimental data and commonly used correlations for natural convection along a vertically heated wall. Good agreements between the present prediction and experimental data have been found for flows in laminar as well turbulent regimes. The convective heat transfer between tank wall and cryogenic propellant, and that between tank wall and ullage gas were then simulated. The results showed that commonly used heat transfer correlations for either vertical or horizontal plate over predict heat transfer rate for the cryogenic tank, in some cases by as much as one order of magnitude. A characteristic length scale has been defined that can correlate all heat transfer coefficients for different fill levels into a single curve. This curve can be used for the reduced-order heat transfer model analysis.
Hill, W David
2018-04-01
Intelligence and educational attainment are strongly genetically correlated. This relationship can be exploited by Multi-Trait Analysis of GWAS (MTAG) to add power to Genome-wide Association Studies (GWAS) of intelligence. MTAG allows the user to meta-analyze GWASs of different phenotypes, based on their genetic correlations, to identify association's specific to the trait of choice. An MTAG analysis using GWAS data sets on intelligence and education was conducted by Lam et al. (2017). Lam et al. (2017) reported 70 loci that they described as 'trait specific' to intelligence. This article examines whether the analysis conducted by Lam et al. (2017) has resulted in genetic information about a phenotype that is more similar to education than intelligence.
Nonlinear dynamics of laser systems with elements of a chaos: Advanced computational code
NASA Astrophysics Data System (ADS)
Buyadzhi, V. V.; Glushkov, A. V.; Khetselius, O. Yu; Kuznetsova, A. A.; Buyadzhi, A. A.; Prepelitsa, G. P.; Ternovsky, V. B.
2017-10-01
A general, uniform chaos-geometric computational approach to analysis, modelling and prediction of the non-linear dynamics of quantum and laser systems (laser and quantum generators system etc) with elements of the deterministic chaos is briefly presented. The approach is based on using the advanced generalized techniques such as the wavelet analysis, multi-fractal formalism, mutual information approach, correlation integral analysis, false nearest neighbour algorithm, the Lyapunov’s exponents analysis, and surrogate data method, prediction models etc There are firstly presented the numerical data on the topological and dynamical invariants (in particular, the correlation, embedding, Kaplan-York dimensions, the Lyapunov’s exponents, Kolmogorov’s entropy and other parameters) for laser system (the semiconductor GaAs/GaAlAs laser with a retarded feedback) dynamics in a chaotic and hyperchaotic regimes.
Gas detection by correlation spectroscopy employing a multimode diode laser.
Lou, Xiutao; Somesfalean, Gabriel; Zhang, Zhiguo
2008-05-01
A gas sensor based on the gas-correlation technique has been developed using a multimode diode laser (MDL) in a dual-beam detection scheme. Measurement of CO(2) mixed with CO as an interfering gas is successfully demonstrated using a 1570 nm tunable MDL. Despite overlapping absorption spectra and occasional mode hops, the interfering signals can be effectively excluded by a statistical procedure including correlation analysis and outlier identification. The gas concentration is retrieved from several pair-correlated signals by a linear-regression scheme, yielding a reliable and accurate measurement. This demonstrates the utility of the unsophisticated MDLs as novel light sources for gas detection applications.
Biological Parametric Mapping: A Statistical Toolbox for Multi-Modality Brain Image Analysis
Casanova, Ramon; Ryali, Srikanth; Baer, Aaron; Laurienti, Paul J.; Burdette, Jonathan H.; Hayasaka, Satoru; Flowers, Lynn; Wood, Frank; Maldjian, Joseph A.
2006-01-01
In recent years multiple brain MR imaging modalities have emerged; however, analysis methodologies have mainly remained modality specific. In addition, when comparing across imaging modalities, most researchers have been forced to rely on simple region-of-interest type analyses, which do not allow the voxel-by-voxel comparisons necessary to answer more sophisticated neuroscience questions. To overcome these limitations, we developed a toolbox for multimodal image analysis called biological parametric mapping (BPM), based on a voxel-wise use of the general linear model. The BPM toolbox incorporates information obtained from other modalities as regressors in a voxel-wise analysis, thereby permitting investigation of more sophisticated hypotheses. The BPM toolbox has been developed in MATLAB with a user friendly interface for performing analyses, including voxel-wise multimodal correlation, ANCOVA, and multiple regression. It has a high degree of integration with the SPM (statistical parametric mapping) software relying on it for visualization and statistical inference. Furthermore, statistical inference for a correlation field, rather than a widely-used T-field, has been implemented in the correlation analysis for more accurate results. An example with in-vivo data is presented demonstrating the potential of the BPM methodology as a tool for multimodal image analysis. PMID:17070709
Okato, Ayumi; Hashimoto, Tasuku; Tanaka, Mami; Tachibana, Masumi; Machizawa, Akira; Okayama, Jun; Endo, Mamiko; Senda, Masayoshi; Saito, Naoki; Iyo, Masaomi
2018-01-01
Child abuse and/or neglect is a serious issue, and in many cases, parents are the perpetrators. Hospital-based child protection teams (CPTs) play pivotal roles in the management of not only abused and/or neglected children but also of their parents; this is generally conducted through multidisciplinary practice. The aim of this study is to survey hospital-based CPT members to determine the professions they perceive to be most applicable to participation in CPTs. The participants were members of CPTs affiliated with hospitals that had pediatric emergency departments and which were located in Chiba Prefecture; specifically, 114 CPT members from 23 hospitals responded to this survey. The two main questionnaire items concerned are as follows: 1) each respondent's evaluation of conducting assessments, providing support, and implementing multidisciplinary collaborative practice in the treatment of abusive and negligent parents, and 2) each CPT member's opinion on the professions that are most important for CPT activities. An exploratory factor analysis (EFA) was performed to explore the factor structure of the data, and a correlation analysis was performed using the result obtained. The EFA returned two factors: multidisciplinary collaborative practice (α = 0.84) and assessment and support (α = 0.89). A correlational analysis showed that multidisciplinary collaborative practice had a positive correlation for obstetricians ( r = 0.315, p = 0.001), neonatologists ( r = 0.261, p = 0.007), midwives ( r = 0.248, p = 0.011), and psychiatrists ( r = 0.194, p = 0.048); however, assessment and support was only significantly correlated with midwives ( r = 0.208, p = 0.039). This study showed that hospital-based CPT members highly evaluate multidisciplinary collaborative practice for the management of abusive and/or negligent parents, and they believe that, in addition to pediatric physicians and nurses, perinatal care and mental health professionals are the most important participants in advanced CPT activities.