Fast methods for spatially correlated multilevel functional data
Staicu, Ana-Maria; Crainiceanu, Ciprian M.; Carroll, Raymond J.
2010-01-01
We propose a new methodological framework for the analysis of hierarchical functional data when the functions at the lowest level of the hierarchy are correlated. For small data sets, our methodology leads to a computational algorithm that is orders of magnitude more efficient than its closest competitor (seconds versus hours). For large data sets, our algorithm remains fast and has no current competitors. Thus, in contrast to published methods, we can now conduct routine simulations, leave-one-out analyses, and nonparametric bootstrap sampling. Our methods are inspired by and applied to data obtained from a state-of-the-art colon carcinogenesis scientific experiment. However, our models are general and will be relevant to many new data sets where the object of inference are functions or images that remain dependent even after conditioning on the subject on which they are measured. Supplementary materials are available at Biostatistics online. PMID:20089508
NASA Technical Reports Server (NTRS)
Edelson, R. A.; Krolik, J. H.
1988-01-01
A method of measuring correlation functions without interpolating in the temporal domain, the discrete correlation function, is introduced. It provides an assumption-free representation of the correlation measured in the data, and allows meaningful error estimates. This method does not produce spurious correlations at zero lag due to correlated errors. It is shown that physical interpretation of active galactic nuclei cross-correlation functions requires knowledge of the input function's fluctuation power spectrum, involves model-dependence in the form of symmetry assumptions, and must take into account intrinsic scale bias. This technique was used to find a correlation in published IUE data for NGC 4151, which indicates that the broad C IV feature emanates from a shell 15 to 75 light-days in radius, assuming spherical symmetry.
Vijaya Kumar, B K; Mahalanobis, A; Takessian, A
2000-01-01
Correlation methods are becoming increasingly attractive tools for image recognition and location. This renewed interest in correlation methods is spurred by the availability of high-speed image processors and the emergence of correlation filter designs that can optimize relevant figures of merit. In this paper, a new correlation filter design method is presented that allows one to optimally tradeoff among potentially conflicting correlation output performance criteria while achieving desired correlation peak value behavior in response to in-plane rotation of input images. Such controlled in-plane rotation response is useful in image analysis and pattern recognition applications where the sensor follows a pre-arranged trajectory while imaging an object. Since this new correlation filter design is based on circular harmonic function (CHF) theory, we refer to the resulting filters as optimal tradeoff circular harmonic function (OTCHF) filters. Underlying theory, OTCHF filter design method, and illustrative numerical results are presented.
Orientation function of optical mouse realized by digital speckle correlation method
NASA Astrophysics Data System (ADS)
Zhen, ZhiQiang; Tang, ZhengXin; Yan, Haitao; Lai, Fangming
2008-12-01
Used digital speckle correlation method (DSCM) to realize orientation function of optical mouse is researched. The experiment is designed to obtain the dynamic speckle patterns which are shot by CCD, Then the DSCM is used to process the sequential images and also the experiment is simulated. The experimental results show the DSCM can confirm orientation function of the optical mouse, and have a good agreement with the simulation results, and the resolution we obtained is higher than the resolution of mouse on the market.
Used digital speckle correlation method to realize orientation function of optical mouse
NASA Astrophysics Data System (ADS)
Yan, Haitao; Wang, Ming; Ge, Yixian; Zhou, Junping
2008-09-01
Used digital speckle correlation method (DSCM) to realize orientation function of optical mouse is researched. The experiment is designed to obtain the dynamic speckle patterns which are shot by CCD, then the DSCM is used to process the sequential images and also the experiment is simulated. The experimental results show the DSCM can confirm orientation function of the optical mouse, and have a good agreement with the simulation results, and the resolution we obtained is higher than the resolution of mouse on the market.
A novel joint sparse partial correlation method for estimating group functional networks.
Liang, Xiaoyun; Connelly, Alan; Calamante, Fernando
2016-03-01
Advances in graph theory have provided a powerful tool to characterize brain networks. In particular, functional networks at group-level have great appeal to gain further insight into complex brain function, and to assess changes across disease conditions. These group networks, however, often have two main limitations. First, they are popularly estimated by directly averaging individual networks that are compromised by confounding variations. Secondly, functional networks have been estimated mainly through Pearson cross-correlation, without taking into account the influence of other regions. In this study, we propose a sparse group partial correlation method for robust estimation of functional networks based on a joint graphical models approach. To circumvent the issue of choosing the optimal regularization parameters, a stability selection method is employed to extract networks. The proposed method is, therefore, denoted as JGMSS. By applying JGMSS across simulated datasets, the resulting networks show consistently higher accuracy and sensitivity than those estimated using an alternative approach (the elastic-net regularization with stability selection, ENSS). The robustness of the JGMSS is evidenced by the independence of the estimated networks to choices of the initial set of regularization parameters. The performance of JGMSS in estimating group networks is further demonstrated with in vivo fMRI data (ASL and BOLD), which show that JGMSS can more robustly estimate brain hub regions at group-level and can better control intersubject variability than it is achieved using ENSS.
A new method for improving functional-to-structural MRI alignment using local Pearson correlation.
Saad, Ziad S; Glen, Daniel R; Chen, Gang; Beauchamp, Michael S; Desai, Rutvik; Cox, Robert W
2009-02-01
Accurate registration of Functional Magnetic Resonance Imaging (FMRI) T2-weighted volumes to same-subject high-resolution T1-weighted structural volumes is important for Blood Oxygenation Level Dependent (BOLD) FMRI and crucial for applications such as cortical surface-based analyses and pre-surgical planning. Such registration is generally implemented by minimizing a cost functional, which measures the mismatch between two image volumes over the group of proper affine transformations. Widely used cost functionals, such as mutual information (MI) and correlation ratio (CR), appear to yield decent alignments when visually judged by matching outer brain contours. However, close inspection reveals that internal brain structures are often significantly misaligned. Poor registration is most evident in the ventricles and sulcal folds, where CSF is concentrated. This observation motivated our development of an improved modality-specific cost functional which uses a weighted local Pearson coefficient (LPC) to align T2- and T1-weighted images. In the absence of an alignment gold standard, we used three human observers blinded to registration method to provide an independent assessment of the quality of the registration for each cost functional. We found that LPC performed significantly better (p<0.001) than generic cost functionals including MI and CR. Generic cost functionals were very often not minimal near the best alignment, thereby suggesting that optimization is not the cause of their failure. Lastly, we emphasize the importance of precise visual inspection of alignment quality and present an automated method for generating composite images that help capture errors of misalignment.
Buttgereit, R; Roths, T; Honerkamp, J; Aberle, L B
2001-10-01
Dynamic light scattering experiments have become a powerful tool in order to investigate the dynamical properties of complex fluids. In many applications in both soft matter research and industry so-called "real world" systems are subject of great interest. Here, the dilution of the investigated system often cannot be changed without getting measurement artifacts, so that one often has to deal with highly concentrated and turbid media. The investigation of such systems requires techniques that suppress the influence of multiple scattering, e.g., cross correlation techniques. However, measurements at turbid as well as highly diluted media lead to data with low signal-to-noise ratio, which complicates data analysis and leads to unreliable results. In this article a multiangle regularization method is discussed, which copes with the difficulties arising from such samples and enhances enormously the quality of the estimated solution. In order to demonstrate the efficiency of this multiangle regularization method we applied it to cross correlation functions measured at highly turbid samples.
Hexagonalization of correlation functions
NASA Astrophysics Data System (ADS)
Fleury, Thiago; Komatsu, Shota
2017-01-01
We propose a nonperturbative framework to study general correlation functions of single-trace operators in N = 4 supersymmetric Yang-Mills theory at large N . The basic strategy is to decompose them into fundamental building blocks called the hexagon form factors, which were introduced earlier to study structure constants using integrability. The decomposition is akin to a triangulation of a Riemann surface, and we thus call it hexagonalization. We propose a set of rules to glue the hexagons together based on symmetry, which naturally incorporate the dependence on the conformal and the R-symmetry cross ratios. Our method is conceptually different from the conventional operator product expansion and automatically takes into account multi-trace operators exchanged in OPE channels. To illustrate the idea in simple set-ups, we compute four-point functions of BPS operators of arbitrary lengths and correlation functions of one Konishi operator and three short BPS operators, all at one loop. In all cases, the results are in perfect agreement with the perturbative data. We also suggest that our method can be a useful tool to study conformal integrals, and show it explicitly for the case of ladder integrals.
Scaled density functional theory correlation functionals.
Ghouri, Mohammed M; Singh, Saurabh; Ramachandran, B
2007-10-18
We show that a simple one-parameter scaling of the dynamical correlation energy estimated by the density functional theory (DFT) correlation functionals helps increase the overall accuracy for several local and nonlocal functionals. The approach taken here has been described as the "scaled dynamical correlation" (SDC) method [Ramachandran, J. Phys. Chem. A 2006, 110, 396], and its justification is the same as that of the scaled external correlation (SEC) method of Brown and Truhlar. We examine five local and five nonlocal (hybrid) DFT functionals, the latter group including three functionals developed specifically for kinetics by the Truhlar group. The optimum scale factors are obtained by use of a set of 98 data values consisting of molecules, ions, and transition states. The optimum scale factors, found with a linear regression relationship, are found to differ from unity with a high degree of correlation in nearly every case, indicating that the deviation of calculated results from the experimental values are systematic and proportional to the dynamic correlation energy. As a consequence, the SDC scaling of dynamical correlation decreases the mean errors (signed and unsigned) by significant amounts in an overwhelming majority of cases. These results indicate that there are gains to be realized from further parametrization of several popular exchange-correlation functionals.
NASA Astrophysics Data System (ADS)
Filatov, Michael; Liu, Fang; Kim, Kwang S.; Martínez, Todd J.
2016-12-01
The spin-restricted ensemble-referenced Kohn-Sham (REKS) method is based on an ensemble representation of the density and is capable of correctly describing the non-dynamic electron correlation stemming from (near-)degeneracy of several electronic configurations. The existing REKS methodology describes systems with two electrons in two fractionally occupied orbitals. In this work, the REKS methodology is extended to treat systems with four fractionally occupied orbitals accommodating four electrons and self-consistent implementation of the REKS(4,4) method with simultaneous optimization of the orbitals and their fractional occupation numbers is reported. The new method is applied to a number of molecular systems where simultaneous dissociation of several chemical bonds takes place, as well as to the singlet ground states of organic tetraradicals 2,4-didehydrometaxylylene and 1,4,6,9-spiro[4.4]nonatetrayl.
Kinetic theory of correlated fluids: from dynamic density functional to Lattice Boltzmann methods.
Marconi, Umberto Marini Bettolo; Melchionna, Simone
2009-07-07
Using methods of kinetic theory and liquid state theory we propose a description of the nonequilibrium behavior of molecular fluids, which takes into account their microscopic structure and thermodynamic properties. The present work represents an alternative to the recent dynamic density functional theory, which can only deal with colloidal fluids and is not apt to describe the hydrodynamic behavior of a molecular fluid. The method is based on a suitable modification of the Boltzmann transport equation for the phase space distribution and provides a detailed description of the local structure of the fluid and its transport coefficients. Finally, we propose a practical scheme to solve numerically and efficiently the resulting kinetic equation by employing a discretization procedure analogous to the one used in the Lattice Boltzmann method.
Correlation dynamics of Green functions
NASA Astrophysics Data System (ADS)
Shun-Jin, Wang; Wei, Zuo; Wolfgang, Cassing
1994-06-01
We generalize the methods used in the theory of correlation dynamics and establish a set of equations of motion for many-body correlation Green functions in the nonrelativistic case. These nonlinear and coupled equations of motion describe the dynamical evolution of correlation Green functions of different order and transparently show how many-body correlations are generated by the different interaction terms in a genuine nonperturbative framework. The nonperturbative results of the conventional Green function theory are included in the present formalism as two limiting cases (the so-called ladder-diagram summation and ring-diagram summation) as well as the familiar correlation dynamics of density matrices in the equal-time limit. We present explicit expressions for three- and four-body correlation functions that can be used to dynamically restore the trace relations for spin-symmetric Fermi systems and study numerically the relative importance of two-, three- and four-body correlations for nuclear configurations close to the ground state.
Pisutha-Arnond, N; Chan, V W L; Iyer, M; Gavini, V; Thornton, K
2013-01-01
We introduce a new approach to represent a two-body direct correlation function (DCF) in order to alleviate the computational demand of classical density functional theory (CDFT) and enhance the predictive capability of the phase-field crystal (PFC) method. The approach utilizes a rational function fit (RFF) to approximate the two-body DCF in Fourier space. We use the RFF to show that short-wavelength contributions of the two-body DCF play an important role in determining the thermodynamic properties of materials. We further show that using the RFF to empirically parametrize the two-body DCF allows us to obtain the thermodynamic properties of solids and liquids that agree with the results of CDFT simulations with the full two-body DCF without incurring significant computational costs. In addition, the RFF can also be used to improve the representation of the two-body DCF in the PFC method. Last, the RFF allows for a real-space reformulation of the CDFT and PFC method, which enables descriptions of nonperiodic systems and the use of nonuniform and adaptive grids.
Functional Multiple-Set Canonical Correlation Analysis
ERIC Educational Resources Information Center
Hwang, Heungsun; Jung, Kwanghee; Takane, Yoshio; Woodward, Todd S.
2012-01-01
We propose functional multiple-set canonical correlation analysis for exploring associations among multiple sets of functions. The proposed method includes functional canonical correlation analysis as a special case when only two sets of functions are considered. As in classical multiple-set canonical correlation analysis, computationally, the…
NASA Astrophysics Data System (ADS)
Campana, L. S.; Cavallo, A.; Cesare, L. De; Esposito, U.; Naddeo, A.
2017-04-01
In the present paper we investigate the paramagnetic susceptibility and the short-range order correlation functions of a d-dimensional classical isotropic ferromagnetic Heisenberg model with short-range exchange interactions by employing the two-time Green function method in classical statistical mechanics. Here we use Tyablikov-Callen-like decouplings for higher order Green functions and a formula for magnetization recently obtained by extension of the well known Callen method developed many years ago for the quantum isotropic Heisenberg model. Although our analysis is true for any temperature and dimensionality, we focus on one-, and some two- and three-dimensional lattices of experimental interest and derive asymptotic expressions for susceptibility and correlation functions within the paramagnetic phase close to the phase boundary and in the high-temperature regime. Besides, we present a Fourier series expansion method for deriving the high-temperature behaviors of the correlation functions. Our predictions, as obtained from a genuine classical many-body framework, may constitute a good reference point for the quantum counterparts emerging in the classical limit at the same level of approximation. Of course, although the classical spin models have unrealistic properties at sufficiently low temperatures, our classical analysis provides, in a relatively simple way as compared to a quantum treatment, an experimentally interesting scenario at finite temperature and dimensionalities d ≥ 1.
Causo, Maria Serena; Ciccotti, Giovanni; Bonella, Sara; Vuilleumier, Rodolphe
2006-08-17
Linearized mixed quantum-classical simulations are a promising approach for calculating time-correlation functions. At the moment, however, they suffer from some numerical problems that may compromise their efficiency and reliability in applications to realistic condensed-phase systems. In this paper, we present a method that improves upon the convergence properties of the standard algorithm for linearized calculations by implementing a cumulant expansion of the relevant averages. The effectiveness of the new approach is tested by applying it to the challenging computation of the diffusion of an excess electron in a metal-molten salt solution.
NASA Astrophysics Data System (ADS)
Bodek, K.; Kępka, D.; Rozpędzik, D.; Zejma, J.; Kozela, A.
2017-04-01
A self-calibrating double-Mott polarimeter is proposed for measurement of the spin correlation function of relativistic electron pairs produced in Møller scattering. The polarization of outgoing electrons (appearing when the beam is polarized) is utilized for calibration of effective analyzing powers in the secondary Mott scattering used for spin analysis. The experiment will measure the newly introduced relative spin correlation function. This new observable can be measured with a significantly better accuracy than the regular spin correlation function in a small scale experiment. It is shown that both the spin correlation function and the relative spin correlation function are theoretically equivalent. A specific experimental data analysis scenario is proposed, which effectively eliminates the systematic effects related to the imperfect geometry and detector efficiency.
Iterative method for generating correlated binary sequences
NASA Astrophysics Data System (ADS)
Usatenko, O. V.; Melnik, S. S.; Apostolov, S. S.; Makarov, N. M.; Krokhin, A. A.
2014-11-01
We propose an efficient iterative method for generating random correlated binary sequences with a prescribed correlation function. The method is based on consecutive linear modulations of an initially uncorrelated sequence into a correlated one. Each step of modulation increases the correlations until the desired level has been reached. The robustness and efficiency of the proposed algorithm are tested by generating sequences with inverse power-law correlations. The substantial increase in the strength of correlation in the iterative method with respect to single-step filtering generation is shown for all studied correlation functions. Our results can be used for design of disordered superlattices, waveguides, and surfaces with selective transport properties.
NASA Astrophysics Data System (ADS)
Elward, Jennifer Mary
Semiconductor nanoparticles, or quantum dots (QDs), are well known to have very unique optical and electronic properties. These properties can be controlled and tailored as a function of several influential factors, including but not limited to the particle size and shape, effect of composition and heterojunction as well as the effect of ligand on the particle surface. This customizable nature leads to extensive experimental and theoretical research on the capabilities of these quantum dots for many application purposes. However, in order to be able to understand and thus further the development of these materials, one must first understand the fundamental interaction within these nanoparticles. In this thesis, I have developed a theoretical method which is called electron-hole explicitly correlated Hartee-Fock (eh-XCHF). It is a variational method for solving the electron-hole Schrodinger equation and has been used in this work to study electron-hole interaction in semiconductor quantum dots. The method was benchmarked with respect to a parabolic quantum dot system, and ground state energy and electron-hole recombination probability were computed. Both of these properties were found to be in good agreement with expected results. Upon successful benchmarking, I have applied the eh-XCHF method to study optical properties of several quantum dot systems including the effect of dot size on exciton binding energy and recombination probability in a CdSe quantum dot, the effect of shape on a CdSe quantum dot, the effect of heterojunction on a CdSe/ZnS quantum dot and the effect of quantum dot-biomolecule interaction within a CdSe-firefly Luciferase protein conjugate system. As metrics for assessing the effect of these influencers on the electron-hole interaction, the exciton binding energy, electron-hole recombination probability and the average electron-hole separation distance have been computed. These excitonic properties have been found to be strongly infuenced by the
Basire, Marie; Borgis, Daniel; Vuilleumier, Rodolphe
2013-08-14
Langevin dynamics coupled to a quantum thermal bath (QTB) allows for the inclusion of vibrational quantum effects in molecular dynamics simulations at virtually no additional computer cost. We investigate here the ability of the QTB method to reproduce the quantum Wigner distribution of a variety of model potentials, designed to assess the performances and limits of the method. We further compute the infrared spectrum of a multidimensional model of proton transfer in the gas phase and in solution, using classical trajectories sampled initially from the Wigner distribution. It is shown that for this type of system involving large anharmonicities and strong nonlinear coupling to the environment, the quantum thermal bath is able to sample the Wigner distribution satisfactorily and to account for both zero point energy and tunneling effects. It leads to quantum time correlation functions having the correct short-time behavior, and the correct associated spectral frequencies, but that are slightly too overdamped. This is attributed to the classical propagation approximation rather than the generation of the quantized initial conditions themselves.
Functional CAR models for large spatially correlated functional datasets.
Zhang, Lin; Baladandayuthapani, Veerabhadran; Zhu, Hongxiao; Baggerly, Keith A; Majewski, Tadeusz; Czerniak, Bogdan A; Morris, Jeffrey S
2016-01-01
We develop a functional conditional autoregressive (CAR) model for spatially correlated data for which functions are collected on areal units of a lattice. Our model performs functional response regression while accounting for spatial correlations with potentially nonseparable and nonstationary covariance structure, in both the space and functional domains. We show theoretically that our construction leads to a CAR model at each functional location, with spatial covariance parameters varying and borrowing strength across the functional domain. Using basis transformation strategies, the nonseparable spatial-functional model is computationally scalable to enormous functional datasets, generalizable to different basis functions, and can be used on functions defined on higher dimensional domains such as images. Through simulation studies, we demonstrate that accounting for the spatial correlation in our modeling leads to improved functional regression performance. Applied to a high-throughput spatially correlated copy number dataset, the model identifies genetic markers not identified by comparable methods that ignore spatial correlations.
Chen, Shentan; Raugei, Simone; Rousseau, Roger J.; Dupuis, Michel; Bullock, R. Morris
2010-12-09
A systematic assessment of theoretical methods applicable to the accurate characterization of catalytic cycles of homogeneous catalysts for H2 oxidation and evolution is reported. For these catalysts, H2 bond breaking or formation involve di-hydrogen, di-hydride, hydride-proton, and di-proton complexes. The key elementary steps have heterolytic character. In the context of Density Functional Theory (DFT) we investigated the use of functionals in the generalized gradient approximation (GGA) as well as hybrid functionals. We compared the results with wavefunction theories based on perturbation theory (MP2 and MP4) and on coupled-cluster expansions (CCSD and CCSD(T)). Our findings suggest that DFT results based on Perdew functionals are in semi-quantitative agreement with the CCSD(T) results, with deviations of a few kcal/mol only. On the other hand, the B3LYP functional is not even in qualitative agreement with CCSD[T]. Surprisingly the MP2 results are found to be extremely poor, a finding that we attribute to the limited treatment in MP2 theory of dynamic electron correlation effects in Ni(0) oxidation state. This material is based upon work supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences.
NASA Astrophysics Data System (ADS)
Suhai, Sándor
1995-06-01
Structural and energetic aspects of the Peierls-type lattice dimerization were investigated in infinite, one-dimensional, periodic trans-polyacetylene (t-PA) using many-body perturbation theory (MBPT) and density-functional theory (DFT). Cohesive properties and dimerization parameters were obtained first for the classical Coulomb potential in the Hartree approximation and then by gradually turning on exchange and correlation potentials. Besides the nonlocal Hartree-Fock exchange, several other exchange functionals were used incorporating gradient corrections as well. For MBPT, electron correlation was included up to the fourth order of the Mo/ller-Plesset scheme and the behavior of lattice sums for different PT terms was analyzed in detail. The electrostatic part of the infinite lattice sums was computed by the multipole expansion technique. In solving the polymer Kohn-Sham equations, the performance of several different correlation potentials was studied again including different gradient corrections. Atomic basis sets of systematically increasing size, in the range of double-zeta to triple-zeta (TZ) up to TZ (3df,3p2d), were used in all calculations to construct the symmetry-adapted (Bloch-type) polymer wave functions, to fully optimize the structures, and to extrapolate different physical quantities to the limit of a hypothetical infinite basis set. Comparison of the different DFT results with MBPT and with experiments demonstrated the importance of gradient terms both for exchange and correlation. On the other hand, the best DFT functional, using a medium-size atomic basis set, excellently reproduced the cohesive and dimerization energies obtained for infinite t-PA at the MP4/TZ(3d2f,3p2d) level and provided dimerization parameters close to experiment. The experimentally observed lattice spacing of 2.46+/-0.01 Å will be correctly predicted both at the MBPT and DFT levels with 2.48 and 2.44 Å, respectively.
Nakashima, Hiroyuki; Nakatsuji, Hiroshi
2013-07-28
We propose here fast antisymmetrization procedures for the partially correlated wave functions that appear in the free complement-local Schrödinger equation (FC-LSE) method. Pre-analysis of the correlation diagram, referred to as dot analysis, combined with the determinant update technique based on the Laplace expansion, drastically reduces the orders of the antisymmetrization computations. When the complement functions include only up to single-correlated terms, the order of computations is O(N{sup 3}), which is the same as the non-correlated case. Similar acceleration is obtained for general correlated functions as a result of dot analysis. This algorithm has been successfully used in our laboratory in actual FC-LSE calculations for accurately solving the many-electron Schrödinger equations of atoms and molecules. The proposed method is general and applicable to the sampling-type methodology of other partially correlated wave functions like those in the quantum Monte Carlo and modern Hylleraas-type methods.
Nakashima, Hiroyuki; Nakatsuji, Hiroshi
2013-07-28
We propose here fast antisymmetrization procedures for the partially correlated wave functions that appear in the free complement-local Schrödinger equation (FC-LSE) method. Pre-analysis of the correlation diagram, referred to as dot analysis, combined with the determinant update technique based on the Laplace expansion, drastically reduces the orders of the antisymmetrization computations. When the complement functions include only up to single-correlated terms, the order of computations is O(N(3)), which is the same as the non-correlated case. Similar acceleration is obtained for general correlated functions as a result of dot analysis. This algorithm has been successfully used in our laboratory in actual FC-LSE calculations for accurately solving the many-electron Schrödinger equations of atoms and molecules. The proposed method is general and applicable to the sampling-type methodology of other partially correlated wave functions like those in the quantum Monte Carlo and modern Hylleraas-type methods.
NASA Astrophysics Data System (ADS)
Grabowski, Ireneusz; Fabiano, Eduardo; Teale, Andrew M.; Śmiga, Szymon; Buksztel, Adam; Della Sala, Fabio
2014-07-01
The performance of correlated optimized effective potential (OEP) functionals based on the spin-resolved second-order correlation energy is analysed. The relative importance of singly- and doubly- excited contributions as well as the effect of scaling the same- and opposite- spin components is investigated in detail comparing OEP results with Kohn-Sham (KS) quantities determined via an inversion procedure using accurate ab initio electronic densities. Special attention is dedicated in particular to the recently proposed scaled-opposite-spin OEP functional [I. Grabowski, E. Fabiano, and F. Della Sala, Phys. Rev. B 87, 075103 (2013)] which is the most advantageous from a computational point of view. We find that for high accuracy, a careful, system dependent, selection of the scaling coefficient is required. We analyse several size-extensive approaches for this selection. Finally, we find that a composite approach, named OEP2-SOSh, based on a post-SCF rescaling of the correlation energy can yield high accuracy for many properties, being comparable with the most accurate OEP procedures previously reported in the literature but at substantially reduced computational effort.
Grabowski, Ireneusz; Fabiano, Eduardo; Teale, Andrew M; Śmiga, Szymon; Buksztel, Adam; Della Sala, Fabio
2014-07-14
The performance of correlated optimized effective potential (OEP) functionals based on the spin-resolved second-order correlation energy is analysed. The relative importance of singly- and doubly- excited contributions as well as the effect of scaling the same- and opposite- spin components is investigated in detail comparing OEP results with Kohn-Sham (KS) quantities determined via an inversion procedure using accurate ab initio electronic densities. Special attention is dedicated in particular to the recently proposed scaled-opposite-spin OEP functional [I. Grabowski, E. Fabiano, and F. Della Sala, Phys. Rev. B 87, 075103 (2013)] which is the most advantageous from a computational point of view. We find that for high accuracy, a careful, system dependent, selection of the scaling coefficient is required. We analyse several size-extensive approaches for this selection. Finally, we find that a composite approach, named OEP2-SOSh, based on a post-SCF rescaling of the correlation energy can yield high accuracy for many properties, being comparable with the most accurate OEP procedures previously reported in the literature but at substantially reduced computational effort.
Grabowski, Ireneusz Śmiga, Szymon; Buksztel, Adam; Fabiano, Eduardo; Teale, Andrew M.; Sala, Fabio Della
2014-07-14
The performance of correlated optimized effective potential (OEP) functionals based on the spin-resolved second-order correlation energy is analysed. The relative importance of singly- and doubly- excited contributions as well as the effect of scaling the same- and opposite- spin components is investigated in detail comparing OEP results with Kohn–Sham (KS) quantities determined via an inversion procedure using accurate ab initio electronic densities. Special attention is dedicated in particular to the recently proposed scaled-opposite–spin OEP functional [I. Grabowski, E. Fabiano, and F. Della Sala, Phys. Rev. B 87, 075103 (2013)] which is the most advantageous from a computational point of view. We find that for high accuracy, a careful, system dependent, selection of the scaling coefficient is required. We analyse several size-extensive approaches for this selection. Finally, we find that a composite approach, named OEP2-SOSh, based on a post-SCF rescaling of the correlation energy can yield high accuracy for many properties, being comparable with the most accurate OEP procedures previously reported in the literature but at substantially reduced computational effort.
Pair correlation function integrals: Computation and use
NASA Astrophysics Data System (ADS)
Wedberg, Rasmus; O'Connell, John P.; Peters, Günther H.; Abildskov, Jens
2011-08-01
We describe a method for extending radial distribution functions obtained from molecular simulations of pure and mixed molecular fluids to arbitrary distances. The method allows total correlation function integrals to be reliably calculated from simulations of relatively small systems. The long-distance behavior of radial distribution functions is determined by requiring that the corresponding direct correlation functions follow certain approximations at long distances. We have briefly described the method and tested its performance in previous communications [R. Wedberg, J. P. O'Connell, G. H. Peters, and J. Abildskov, Mol. Simul. 36, 1243 (2010);, 10.1080/08927020903536366 Fluid Phase Equilib. 302, 32 (2011)], 10.1016/j.fluid.2010.10.004, but describe here its theoretical basis more thoroughly and derive long-distance approximations for the direct correlation functions. We describe the numerical implementation of the method in detail, and report numerical tests complementing previous results. Pure molecular fluids are here studied in the isothermal-isobaric ensemble with isothermal compressibilities evaluated from the total correlation function integrals and compared with values derived from volume fluctuations. For systems where the radial distribution function has structure beyond the sampling limit imposed by the system size, the integration is more reliable, and usually more accurate, than simple integral truncation.
Improved Digital Image Correlation method
NASA Astrophysics Data System (ADS)
Mudassar, Asloob Ahmad; Butt, Saira
2016-12-01
Digital Image Correlation (DIC) is a powerful technique which is used to correlate two image segments to determine the similarity between them. A correlation image is formed which gives a peak known as correlation peak. If the two image segments are identical the peak is known as auto-correlation peak otherwise it is known as cross correlation peak. The location of the peak in a correlation image gives the relative displacement between the two image segments. Use of DIC for in-plane displacement and deformation measurements in Electronic Speckle Photography (ESP) is well known. In ESP two speckle images are correlated using DIC and relative displacement is measured. We are presenting background review of ESP and disclosing a technique based on DIC for improved relative measurements which we regard as the improved DIC method. Simulation and experimental results reveal that the proposed improved-DIC method is superior to the conventional DIC method in two aspects, in resolution and in the availability of reference position in displacement measurements.
Multitime correlation functions in nonclassical stochastic processes
NASA Astrophysics Data System (ADS)
Krumm, F.; Sperling, J.; Vogel, W.
2016-06-01
A general method is introduced for verifying multitime quantum correlations through the characteristic function of the time-dependent P functional that generalizes the Glauber-Sudarshan P function. Quantum correlation criteria are derived which identify quantum effects for an arbitrary number of points in time. The Magnus expansion is used to visualize the impact of the required time ordering, which becomes crucial in situations when the interaction problem is explicitly time dependent. We show that the latter affects the multi-time-characteristic function and, therefore, the temporal evolution of the nonclassicality. As an example, we apply our technique to an optical parametric process with a frequency mismatch. The resulting two-time-characteristic function yields full insight into the two-time quantum correlation properties of such a system.
NASA Astrophysics Data System (ADS)
Bai, Ruixiang; Jiang, Hao; Lei, Zhenkun; Li, Weikang
2017-03-01
Compared with the traditional forward compositional matching strategy, the inverse compositional matching strategy has almost the same accuracy, but has an obviously higher efficiency than the former in digital image correlation (DIC) algorithms. Based on the inverse compositional matching strategy and the auxiliary displacement functions, a more accurate inverse compositional Gauss-Newton (IC-GN2) algorithm with a new second-order shape operator is proposed for nonuniform and large deformation measurements. A theoretical deduction showed that the new proposed second-order shape operator is invertible and can steadily attain second-order precision. The result of the numerical simulation showed that the matching accuracy of the new IC-GN2 algorithm is the same as that of the forward compositional Gauss-Newton (FC-GN2) algorithm and is relatively better than in IC-GN2 algorithm. Finally, a rubber tension experiment with a large deformation of 27% was performed to validate the feasibility of the proposed algorithm.
NASA Astrophysics Data System (ADS)
Duguet, T.; Bender, M.; Ebran, J.-P.; Lesinski, T.; Somà, V.
2015-12-01
This programmatic paper lays down the possibility to reconcile the necessity to resum many-body correlations into the energy kernel with the fact that safe multi-reference energy density functional (EDF) calculations cannot be achieved whenever the Pauli principle is not enforced, as is for example the case when many-body correlations are parametrized under the form of empirical density dependencies. Our proposal is to exploit a newly developed ab initio many-body formalism to guide the construction of safe, explicitly correlated and systematically improvable parametrizations of the off-diagonal energy and norm kernels that lie at the heart of the nuclear EDF method. The many-body formalism of interest relies on the concepts of symmetry breaking and restoration that have made the fortune of the nuclear EDF method and is, as such, amenable to this guidance. After elaborating on our proposal, we briefly outline the project we plan to execute in the years to come.
NASA Astrophysics Data System (ADS)
Suhai, Sándor
1994-11-01
Linear equidistant and bond-alternating infinite chains of hydrogen atoms have been investigated by the ab initio crystal-orbital method at the Hartree-Fock (HF) level, by including electron correlation up to the complete fourth order of the Mo/ller-Plesset perturbation theory (MP4-PT), and by using different versions of density-functional theory (DFT). The Bloch functions have been expanded in all cases in a series of high-quality atomic-orbital basis sets and complemented by extended sets of polarization functions up to 6s3p2d1f per H atom. In order to compare the performance of the PT and DFT methods, several physical properties have been computed at all theoretical levels including lattice geometry, cohesive energy, mechanisms of bond alternation (Peierls instability), and energetic features of nonequilibrium configurations (dissociation). For these latter quantities, both spin-restricted (RHF) and unrestricted (UHF) wave functions have been employed in all orders of PT. The methods described have been used parallel to infinite chains and to the H2 molecule, to be able to check their accuracy on experiments. In the case of the DFT, six different functionals (combining Slater and Becke exchange with local and gradient-corrected correlation potentials) have been utilized to test their accuracy in comparison with the MP4 results.
NASA Astrophysics Data System (ADS)
Pérez, Alejandro; Tuckerman, Mark E.; Müser, Martin H.
2009-05-01
The problems of ergodicity and internal consistency in the centroid and ring-polymer molecular dynamics methods are addressed in the context of a comparative study of the two methods. Enhanced sampling in ring-polymer molecular dynamics (RPMD) is achieved by first performing an equilibrium path integral calculation and then launching RPMD trajectories from selected, stochastically independent equilibrium configurations. It is shown that this approach converges more rapidly than periodic resampling of velocities from a single long RPMD run. Dynamical quantities obtained from RPMD and centroid molecular dynamics (CMD) are compared to exact results for a variety of model systems. Fully converged results for correlations functions are presented for several one dimensional systems and para-hydrogen near its triple point using an improved sampling technique. Our results indicate that CMD shows very similar performance to RPMD. The quality of each method is further assessed via a new χ2 descriptor constructed by transforming approximate real-time correlation functions from CMD and RPMD trajectories to imaginary time and comparing these to numerically exact imaginary time correlation functions. For para-hydrogen near its triple point, it is found that adiabatic CMD and RPMD both have similar χ2 error.
Speeding up local correlation methods
Kats, Daniel
2014-12-28
We present two techniques that can substantially speed up the local correlation methods. The first one allows one to avoid the expensive transformation of the electron-repulsion integrals from atomic orbitals to virtual space. The second one introduces an algorithm for the residual equations in the local perturbative treatment that, in contrast to the standard scheme, does not require holding the amplitudes or residuals in memory. It is shown that even an interpreter-based implementation of the proposed algorithm in the context of local MP2 method is faster and requires less memory than the highly optimized variants of conventional algorithms.
Loops in inflationary correlation functions
NASA Astrophysics Data System (ADS)
Tanaka, Takahiro; Urakawa, Yuko
2013-12-01
We review the recent progress regarding the loop corrections to the correlation functions in the inflationary universe. A naive perturbation theory predicts that the loop corrections generated during inflation suffer from various infrared (IR) pathologies. Introducing an IR cutoff by hand is neither satisfactory nor enough to fix the problem of a secular growth, which may ruin the predictive power of inflation models if the inflation lasts sufficiently long. We discuss the origin of the IR divergences and explore the regularity conditions of the loop corrections for the adiabatic perturbation, the iso-curvature perturbation, and the tensor perturbation, in turn. These three kinds of perturbations have qualitative differences, but in discussing the IR regularity there is a feature common to all cases, which is the importance of the proper identification of observable quantities. Genuinely, observable quantities should respect the gauge invariance from the view point of a local observer. Interestingly, we find that the requirement of the IR regularity restricts the allowed quantum states.
Matrix elements from moments of correlation functions
Chang, Chia Cheng; Bouchard, Chris; Orginos, Konstantinos; Richards, David G.
2016-10-01
Momentum-space derivatives of matrix elements can be related to their coordinate-space moments through the Fourier transform. We derive these expressions as a function of momentum transfer Q2 for asymptotic in/out states consisting of a single hadron. We calculate corrections to the finite volume moments by studying the spatial dependence of the lattice correlation functions. This method permits the computation of not only the values of matrix elements at momenta accessible on the lattice, but also the momentum-space derivatives, providing {\\it a priori} information about the Q2 dependence of form factors. As a specific application we use the method, at a single lattice spacing and with unphysically heavy quarks, to directly obtain the slope of the isovector form factor at various Q2, whence the isovector charge radius. The method has potential application in the calculation of any hadronic matrix element with momentum transfer, including those relevant to hadronic weak decays.
Nuclear correlation functions in lattice QCD
Detmold, William; Orginos, Konstantinos
2013-06-01
We consider the problem of calculating the large number of Wick contractions necessary to compute states with the quantum numbers of many baryons in lattice QCD. We consider a constructive approach and a determinant-based approach and show that these methods allow the required contractions to be performed for certain choices of interpolating operators. Examples of correlation functions computed using these techniques are shown for the quantum numbers of the light nuclei, $^4$He, $^8$Be, $^{12}$C, $^{16}$O and $^{28}$Si.
On soft limits of inflationary correlation functions
NASA Astrophysics Data System (ADS)
Assassi, Valentin; Baumann, Daniel; Green, Daniel
2012-11-01
Soft limits of inflationary correlation functions are both observationally relevant and theoretically robust. Various theorems can be proven about them that are insensitive to detailed model-building assumptions. In this paper, we re-derive several of these theorems in a universal way. Our method makes manifest why soft limits are such an interesting probe of the spectrum of additional light fields during inflation. We illustrate these abstract results with a detailed case study of the soft limits of quasi-single-field inflation.
On the use of two-time correlation functions for X-ray photon correlation spectroscopy data analysis
Bikondoa, Oier
2017-01-01
Multi-time correlation functions are especially well suited to study non-equilibrium processes. In particular, two-time correlation functions are widely used in X-ray photon correlation experiments on systems out of equilibrium. One-time correlations are often extracted from two-time correlation functions at different sample ages. However, this way of analysing two-time correlation functions is not unique. Here, two methods to analyse two-time correlation functions are scrutinized, and three illustrative examples are used to discuss the implications for the evaluation of the correlation times and functional shape of the correlations. PMID:28381968
Dynamic functional network connectivity using distance correlation
NASA Astrophysics Data System (ADS)
Rudas, Jorge; Guaje, Javier; Demertzi, Athena; Heine, Lizette; Tshibanda, Luaba; Soddu, Andrea; Laureys, Steven; Gómez, Francisco
2015-01-01
Investigations about the intrinsic brain organization in resting-state are critical for the understanding of healthy, pathological and pharmacological cerebral states. Recent studies on fMRI suggest that resting state activity is organized on large scale networks of coordinated activity, in the so called, Resting State Networks (RSNs). The assessment of the interactions among these functional networks plays an important role for the understanding of different brain pathologies. Current methods to quantify these interactions commonly assume that the underlying coordination mechanisms are stationary and linear through the whole recording of the resting state phenomena. Nevertheless, recent evidence suggests that rather than stationary, these mechanisms may exhibit a rich set of time-varying repertoires. In addition, these approaches do not consider possible non-linear relationships maybe linked to feed-back communication mechanisms between RSNs. In this work, we introduce a novel approach for dynamical functional network connectivity for functional magnetic resonance imaging (fMRI) resting activity, which accounts for non-linear dynamic relationships between RSNs. The proposed method is based on a windowed distance correlations computed on resting state time-courses extracted at single subject level. We showed that this strategy is complementary to the current approaches for dynamic functional connectivity and will help to enhance the discrimination capacity of patients with disorder of consciousness.
Pfaffian Correlation Functions of Planar Dimer Covers
NASA Astrophysics Data System (ADS)
Aizenman, Michael; Valcázar, Manuel Laínz; Warzel, Simone
2017-01-01
The Pfaffian structure of the boundary monomer correlation functions in the dimer-covering planar graph models is rederived through a combinatorial/topological argument. These functions are then extended into a larger family of order-disorder correlation functions which are shown to exhibit Pfaffian structure throughout the bulk. Key tools involve combinatorial switching symmetries which are identified through the loop-gas representation of the double dimer model, and topological implications of planarity.
Dynamical dimer-dimer correlation functions from exact diagonalization
Werner, Ralph
2001-05-01
A regularization method is presented to deduce dynamic correlation functions from exact diagonalization calculations. It is applied to dimer-dimer correlation functions in quantum spin chains relevant for the description of spin-Peierls systems. Exact results for the XY model are presented. The analysis draws into doubt that the dimer-dimer correlation functions show the same scale invariance as spin-spin correlation functions. The results are applied to describe the quasielastic scattering in CuGeO{sub 3} and the hardening of the Peierls-active phonons.
BONNSAI: correlated stellar observables in Bayesian methods
NASA Astrophysics Data System (ADS)
Schneider, F. R. N.; Castro, N.; Fossati, L.; Langer, N.; de Koter, A.
2017-02-01
In an era of large spectroscopic surveys of stars and big data, sophisticated statistical methods become more and more important in order to infer fundamental stellar parameters such as mass and age. Bayesian techniques are powerful methods because they can match all available observables simultaneously to stellar models while taking prior knowledge properly into account. However, in most cases it is assumed that observables are uncorrelated which is generally not the case. Here, we include correlations in the Bayesian code Bonnsai by incorporating the covariance matrix in the likelihood function. We derive a parametrisation of the covariance matrix that, in addition to classical uncertainties, only requires the specification of a correlation parameter that describes how observables co-vary. Our correlation parameter depends purely on the method with which observables have been determined and can be analytically derived in some cases. This approach therefore has the advantage that correlations can be accounted for even if information for them are not available in specific cases but are known in general. Because the new likelihood model is a better approximation of the data, the reliability and robustness of the inferred parameters are improved. We find that neglecting correlations biases the most likely values of inferred stellar parameters and affects the precision with which these parameters can be determined. The importance of these biases depends on the strength of the correlations and the uncertainties. For example, we apply our technique to massive OB stars, but emphasise that it is valid for any type of stars. For effective temperatures and surface gravities determined from atmosphere modelling, we find that masses can be underestimated on average by 0.5σ and mass uncertainties overestimated by a factor of about 2 when neglecting correlations. At the same time, the age precisions are underestimated over a wide range of stellar parameters. We conclude that
Off-forward quark-quark correlation function
Casanova, Sabrina
2006-09-01
The properties of the nonforward quark-quark correlation function are examined. We derive constraints on the correlation function from the transformation properties of the fundamental fields of QCD occurring in its definition. We further develop a method to construct an Ansatz for this correlator. We present the complete leading order set of generalized parton distributions in terms of the amplitudes of the Ansatz. Finally we conclude that the number of independent generalized parton helicity changing distributions is four.
On the measurability of quantum correlation functions
NASA Astrophysics Data System (ADS)
de Lima Bernardo, Bertúlio; Azevedo, Sérgio; Rosas, Alexandre
2015-05-01
The concept of correlation function is widely used in classical statistical mechanics to characterize how two or more variables depend on each other. In quantum mechanics, on the other hand, there are observables that cannot be measured at the same time; the so-called incompatible observables. This prospect imposes a limitation on the definition of a quantum analog for the correlation function in terms of a sequence of measurements. Here, based on the notion of sequential weak measurements, we circumvent this limitation by introducing a framework to measure general quantum correlation functions, in principle, independently of the state of the system and the operators involved. To illustrate, we propose an experimental configuration to obtain explicitly the quantum correlation function between two Pauli operators, in which the input state is an arbitrary mixed qubit state encoded on the polarization of photons.
On the measurability of quantum correlation functions
Lima Bernardo, Bertúlio de Azevedo, Sérgio; Rosas, Alexandre
2015-05-15
The concept of correlation function is widely used in classical statistical mechanics to characterize how two or more variables depend on each other. In quantum mechanics, on the other hand, there are observables that cannot be measured at the same time; the so-called incompatible observables. This prospect imposes a limitation on the definition of a quantum analog for the correlation function in terms of a sequence of measurements. Here, based on the notion of sequential weak measurements, we circumvent this limitation by introducing a framework to measure general quantum correlation functions, in principle, independently of the state of the system and the operators involved. To illustrate, we propose an experimental configuration to obtain explicitly the quantum correlation function between two Pauli operators, in which the input state is an arbitrary mixed qubit state encoded on the polarization of photons.
Accurate method for computing correlated color temperature.
Li, Changjun; Cui, Guihua; Melgosa, Manuel; Ruan, Xiukai; Zhang, Yaoju; Ma, Long; Xiao, Kaida; Luo, M Ronnier
2016-06-27
For the correlated color temperature (CCT) of a light source to be estimated, a nonlinear optimization problem must be solved. In all previous methods available to compute CCT, the objective function has only been approximated, and their predictions have achieved limited accuracy. For example, different unacceptable CCT values have been predicted for light sources located on the same isotemperature line. In this paper, we propose to compute CCT using the Newton method, which requires the first and second derivatives of the objective function. Following the current recommendation by the International Commission on Illumination (CIE) for the computation of tristimulus values (summations at 1 nm steps from 360 nm to 830 nm), the objective function and its first and second derivatives are explicitly given and used in our computations. Comprehensive tests demonstrate that the proposed method, together with an initial estimation of CCT using Robertson's method [J. Opt. Soc. Am. 58, 1528-1535 (1968)], gives highly accurate predictions below 0.0012 K for light sources with CCTs ranging from 500 K to 10^{6} K.
Generalized hydrodynamic correlations and fractional memory functions
NASA Astrophysics Data System (ADS)
Rodríguez, Rosalio F.; Fujioka, Jorge
2015-12-01
A fractional generalized hydrodynamic (GH) model of the longitudinal velocity fluctuations correlation, and its associated memory function, for a complex fluid is analyzed. The adiabatic elimination of fast variables introduces memory effects in the transport equations, and the dynamic of the fluctuations is described by a generalized Langevin equation with long-range noise correlations. These features motivate the introduction of Caputo time fractional derivatives and allows us to calculate analytic expressions for the fractional longitudinal velocity correlation function and its associated memory function. Our analysis eliminates a spurious constant term in the non-fractional memory function found in the non-fractional description. It also produces a significantly slower power-law decay of the memory function in the GH regime that reduces to the well-known exponential decay in the non-fractional Navier-Stokes limit.
From correlation functions to event shapes
NASA Astrophysics Data System (ADS)
Belitsky, A. V.; Hohenegger, S.; Korchemsky, G. P.; Sokatchev, E.; Zhiboedov, A.
2014-07-01
We present a new approach to computing event shape distributions or, more precisely, charge flow correlations in a generic conformal field theory (CFT). These infrared finite observables are familiar from collider physics studies and describe the angular distribution of global charges in outgoing radiation created from the vacuum by some source. The charge flow correlations can be expressed in terms of Wightman correlation functions in a certain limit. We explain how to compute these quantities starting from their Euclidean analogues by means of a nontrivial analytic continuation which, in the framework of CFT, can be performed elegantly in Mellin space. The relation between the charge flow correlations and Euclidean correlation functions can be reformulated directly in configuration space, bypassing the Mellin representation, as a certain Lorentzian double discontinuity of the correlation function integrated along the cuts. We illustrate the general formalism in N=4 SYM, making use of the well-known results on the four-point correlation function of half-BPS scalar operators. We compute the double scalar flow correlation in N=4 SYM, at weak and strong coupling and show that it agrees with known results obtained by different techniques. One of the remarkable features of the N=4 theory is that the scalar and energy flow correlations are proportional to each other. Imposing natural physical conditions on the energy flow correlations (finiteness, positivity and regularity), we formulate additional constraints on the four-point correlation functions in N=4 SYM that should be valid at any coupling and away from the planar limit. presence of intrinsic infrared (IR) divergences; integration over the phase space of the final state and subsequent intricate IR cancellations; necessity for summation over all final states. Let us comment on each of these points. They are very well understood in the context of perturbation theory no IR divergences are present in the correlation
Triplet correlation functions in liquid water
NASA Astrophysics Data System (ADS)
Dhabal, Debdas; Singh, Murari; Wikfeldt, Kjartan Thor; Chakravarty, Charusita
2014-11-01
Triplet correlations have been shown to play a crucial role in the transformation of simple liquids to anomalous tetrahedral fluids [M. Singh, D. Dhabal, A. H. Nguyen, V. Molinero, and C. Chakravarty, Phys. Rev. Lett. 112, 147801 (2014)]. Here we examine triplet correlation functions for water, arguably the most important tetrahedral liquid, under ambient conditions, using configurational ensembles derived from molecular dynamics (MD) simulations and reverse Monte Carlo (RMC) datasets fitted to experimental scattering data. Four different RMC data sets with widely varying hydrogen-bond topologies fitted to neutron and x-ray scattering data are considered [K. T. Wikfeldt, M. Leetmaa, M. P. Ljungberg, A. Nilsson, and L. G. M. Pettersson, J. Phys. Chem. B 113, 6246 (2009)]. Molecular dynamics simulations are performed for two rigid-body effective pair potentials (SPC/E and TIP4P/2005) and the monatomic water (mW) model. Triplet correlation functions are compared with other structural measures for tetrahedrality, such as the O-O-O angular distribution function and the local tetrahedral order distributions. In contrast to the pair correlation functions, which are identical for all the RMC ensembles, the O-O-O triplet correlation function can discriminate between ensembles with different degrees of tetrahedral network formation with the maximally symmetric, tetrahedral SYM dataset displaying distinct signatures of tetrahedrality similar to those obtained from atomistic simulations of the SPC/E model. Triplet correlations from the RMC datasets conform closely to the Kirkwood superposition approximation, while those from MD simulations show deviations within the first two neighbour shells. The possibilities for experimental estimation of triplet correlations of water and other tetrahedral liquids are discussed.
Triplet correlation functions in liquid water
Dhabal, Debdas; Chakravarty, Charusita; Singh, Murari; Wikfeldt, Kjartan Thor
2014-11-07
Triplet correlations have been shown to play a crucial role in the transformation of simple liquids to anomalous tetrahedral fluids [M. Singh, D. Dhabal, A. H. Nguyen, V. Molinero, and C. Chakravarty, Phys. Rev. Lett. 112, 147801 (2014)]. Here we examine triplet correlation functions for water, arguably the most important tetrahedral liquid, under ambient conditions, using configurational ensembles derived from molecular dynamics (MD) simulations and reverse Monte Carlo (RMC) datasets fitted to experimental scattering data. Four different RMC data sets with widely varying hydrogen-bond topologies fitted to neutron and x-ray scattering data are considered [K. T. Wikfeldt, M. Leetmaa, M. P. Ljungberg, A. Nilsson, and L. G. M. Pettersson, J. Phys. Chem. B 113, 6246 (2009)]. Molecular dynamics simulations are performed for two rigid-body effective pair potentials (SPC/E and TIP4P/2005) and the monatomic water (mW) model. Triplet correlation functions are compared with other structural measures for tetrahedrality, such as the O–O–O angular distribution function and the local tetrahedral order distributions. In contrast to the pair correlation functions, which are identical for all the RMC ensembles, the O–O–O triplet correlation function can discriminate between ensembles with different degrees of tetrahedral network formation with the maximally symmetric, tetrahedral SYM dataset displaying distinct signatures of tetrahedrality similar to those obtained from atomistic simulations of the SPC/E model. Triplet correlations from the RMC datasets conform closely to the Kirkwood superposition approximation, while those from MD simulations show deviations within the first two neighbour shells. The possibilities for experimental estimation of triplet correlations of water and other tetrahedral liquids are discussed.
Correlation functions of Coulomb branch operators
NASA Astrophysics Data System (ADS)
Gerchkovitz, Efrat; Gomis, Jaume; Ishtiaque, Nafiz; Karasik, Avner; Komargodski, Zohar; Pufu, Silviu S.
2017-01-01
We consider the correlation functions of Coulomb branch operators in four-dimensional N = 2 Superconformal Field Theories (SCFTs) involving exactly one antichiral operator. These extremal correlators are the "minimal" non-holomorphic local observables in the theory. We show that they can be expressed in terms of certain determinants of derivatives of the four-sphere partition function of an appropriate deformation of the SCFT. This relation between the extremal correlators and the deformed four-sphere partition function is non-trivial due to the presence of conformal anomalies, which lead to operator mixing on the sphere. Evaluating the deformed four-sphere partition function using supersymmetric localization, we compute the extremal correlators explicitly in many interesting examples. Additionally, the representation of the extremal correlators mentioned above leads to a system of integrable differential equations. We compare our exact results with previous perturbative computations and with the four-dimensional tt ∗ equations. We also use our results to study some of the asymptotic properties of the perturbative series expansions we obtain in N = 2 SQCD.
Hierarchy of equations of multiple-time correlation functions
Alonso, Daniel; Vega, Ines de
2007-05-15
In this paper we derive the evolution equations for non-Markovian multiple-time correlation functions of an open quantum system without using any approximation. We find that these equations conform an open hierarchy in which N-time correlation functions are dependent on (N+1)-time correlations. This hierarchy of equations is consistently obtained with two different methods: A first one based on Heisenberg equations of system operators, and a second one based on system propagators. The dependency on higher order correlations, and therefore the open hierarchy structure, only disappears in certain particular cases and when some hypothesis or approximations are considered in the equations. In this paper we consider a perturbative approximation and derive the general evolution equation for N-time correlations. This equation turns to depend only on N-time and lower order correlation functions, conforming a closed hierarchy structure that is useful for computational purposes.
Semiclassical approximations to quantum time correlation functions
NASA Astrophysics Data System (ADS)
Egorov, S. A.; Skinner, J. L.
1998-09-01
Over the last 40 years several ad hoc semiclassical approaches have been developed in order to obtain approximate quantum time correlation functions, using as input only the corresponding classical time correlation functions. The accuracy of these approaches has been tested for several exactly solvable gas-phase models. In this paper we test the accuracy of these approaches by comparing to an exactly solvable many-body condensed-phase model. We show that in the frequency domain the Egelstaff approach is the most accurate, especially at high frequencies, while in the time domain one of the other approaches is more accurate.
SMJ's analysis of Ising model correlation functions
NASA Astrophysics Data System (ADS)
Kadanoff, Leo P.; Kohmoto, Mahito
1980-05-01
In a series of recent publications Sato, Miwa, and Jimbo (SMJ) have shown how to derive multispin correlation functions of the two-dimensional Ising model in the continuum, or scaling, limit by analyzing the behavior of the solutions to the two-dimensional version of the Dirac equation. The major purpose of the present work is to describe SMJ's analysis more discursively and in terms closer to that used in previous studies of the Ising model. In addition, new and more compact expressions for their basic equations are derived. A single new answer is obtained: the form of the three-spin correlation function at criticality.
Group entropies, correlation laws, and zeta functions
NASA Astrophysics Data System (ADS)
Tempesta, Piergiulio
2011-08-01
The notion of group entropy is proposed. It enables the unification and generaliztion of many different definitions of entropy known in the literature, such as those of Boltzmann-Gibbs, Tsallis, Abe, and Kaniadakis. Other entropic functionals are introduced, related to nontrivial correlation laws characterizing universality classes of systems out of equilibrium when the dynamics is weakly chaotic. The associated thermostatistics are discussed. The mathematical structure underlying our construction is that of formal group theory, which provides the general structure of the correlations among particles and dictates the associated entropic functionals. As an example of application, the role of group entropies in information theory is illustrated and generalizations of the Kullback-Leibler divergence are proposed. A new connection between statistical mechanics and zeta functions is established. In particular, Tsallis entropy is related to the classical Riemann zeta function.
Chen, Shentan; Raugei, Simone; Rousseau, Roger; Dupuis, Michel; Bullock, R. Morris
2010-12-09
A systematic assessment of theoretical methods applicable to the accurate characterization of catalytic cycles of homogeneous catalysts for H_{2} oxidation and evolution is reported. The key elementary steps involve heterolytic cleavage of the H-H bond and formation/cleavage of Ni-H and N-H bonds. In the context of density functional theory (DFT), we investigated the use of functionals in the generalized gradient approximation (GGA) as well as hybrid functionals. We compared the results with wave-function theories based on perturbation theory (MP2 and MP4) and on coupled-cluster expansions [CCD, CCSD, and CCSD(T)]. Our findings indicate that DFT results based on Perdew correlation functionals are in semiquantitative agreement with the CCSD(T) results, with deviations of only a few kilocalories/mole. On the other hand, the B3LYP functional is not even in qualitative agreement with CCSD(T). Surprisingly, the MP2 results are found to be extremely poor, in particular for the diproton Ni(0) and dihydride Ni(IV) species on the reaction potential energy surface. The Hartree-Fock reference wave function in MP2 theory gives a poor reference state description for these states that are electron rich on Ni, giving rise to erroneous MP2 energies. Finally, we present a detailed potential-energy diagram for the oxidation of H_{2} by these catalysts after accounting for the effects of solvation, as modeled by a polarizable continuum, and of free energy estimated at the harmonic level of theory.
Correlation Functions Aid Analyses Of Spectra
NASA Technical Reports Server (NTRS)
Beer, Reinhard; Norton, Robert H., Jr.
1989-01-01
New uses found for correlation functions in analyses of spectra. In approach combining elements of both pattern-recognition and traditional spectral-analysis techniques, spectral lines identified in data appear useless at first glance because they are dominated by noise. New approach particularly useful in measurement of concentrations of rare species of molecules in atmosphere.
Garofalo, Matteo; Nieus, Thierry; Massobrio, Paolo; Martinoia, Sergio
2009-01-01
Functional connectivity of in vitro neuronal networks was estimated by applying different statistical algorithms on data collected by Micro-Electrode Arrays (MEAs). First we tested these “connectivity methods” on neuronal network models at an increasing level of complexity and evaluated the performance in terms of ROC (Receiver Operating Characteristic) and PPC (Positive Precision Curve), a new defined complementary method specifically developed for functional links identification. Then, the algorithms better estimated the actual connectivity of the network models, were used to extract functional connectivity from cultured cortical networks coupled to MEAs. Among the proposed approaches, Transfer Entropy and Joint-Entropy showed the best results suggesting those methods as good candidates to extract functional links in actual neuronal networks from multi-site recordings. PMID:19652720
Image Correlation Method for DNA Sequence Alignment
Curilem Saldías, Millaray; Villarroel Sassarini, Felipe; Muñoz Poblete, Carlos; Vargas Vásquez, Asticio; Maureira Butler, Iván
2012-01-01
The complexity of searches and the volume of genomic data make sequence alignment one of bioinformatics most active research areas. New alignment approaches have incorporated digital signal processing techniques. Among these, correlation methods are highly sensitive. This paper proposes a novel sequence alignment method based on 2-dimensional images, where each nucleic acid base is represented as a fixed gray intensity pixel. Query and known database sequences are coded to their pixel representation and sequence alignment is handled as object recognition in a scene problem. Query and database become object and scene, respectively. An image correlation process is carried out in order to search for the best match between them. Given that this procedure can be implemented in an optical correlator, the correlation could eventually be accomplished at light speed. This paper shows an initial research stage where results were “digitally” obtained by simulating an optical correlation of DNA sequences represented as images. A total of 303 queries (variable lengths from 50 to 4500 base pairs) and 100 scenes represented by 100 x 100 images each (in total, one million base pair database) were considered for the image correlation analysis. The results showed that correlations reached very high sensitivity (99.01%), specificity (98.99%) and outperformed BLAST when mutation numbers increased. However, digital correlation processes were hundred times slower than BLAST. We are currently starting an initiative to evaluate the correlation speed process of a real experimental optical correlator. By doing this, we expect to fully exploit optical correlation light properties. As the optical correlator works jointly with the computer, digital algorithms should also be optimized. The results presented in this paper are encouraging and support the study of image correlation methods on sequence alignment. PMID:22761742
Image correlation method for DNA sequence alignment.
Curilem Saldías, Millaray; Villarroel Sassarini, Felipe; Muñoz Poblete, Carlos; Vargas Vásquez, Asticio; Maureira Butler, Iván
2012-01-01
The complexity of searches and the volume of genomic data make sequence alignment one of bioinformatics most active research areas. New alignment approaches have incorporated digital signal processing techniques. Among these, correlation methods are highly sensitive. This paper proposes a novel sequence alignment method based on 2-dimensional images, where each nucleic acid base is represented as a fixed gray intensity pixel. Query and known database sequences are coded to their pixel representation and sequence alignment is handled as object recognition in a scene problem. Query and database become object and scene, respectively. An image correlation process is carried out in order to search for the best match between them. Given that this procedure can be implemented in an optical correlator, the correlation could eventually be accomplished at light speed. This paper shows an initial research stage where results were "digitally" obtained by simulating an optical correlation of DNA sequences represented as images. A total of 303 queries (variable lengths from 50 to 4500 base pairs) and 100 scenes represented by 100 x 100 images each (in total, one million base pair database) were considered for the image correlation analysis. The results showed that correlations reached very high sensitivity (99.01%), specificity (98.99%) and outperformed BLAST when mutation numbers increased. However, digital correlation processes were hundred times slower than BLAST. We are currently starting an initiative to evaluate the correlation speed process of a real experimental optical correlator. By doing this, we expect to fully exploit optical correlation light properties. As the optical correlator works jointly with the computer, digital algorithms should also be optimized. The results presented in this paper are encouraging and support the study of image correlation methods on sequence alignment.
Nonclassicality criteria: Quasiprobability distributions and correlation functions
NASA Astrophysics Data System (ADS)
Alexanian, Moorad
2016-10-01
We use the exact calculation of the quantum mechanical, temporal characteristic function χ (η ) and the degree of second-order coherence g(2 )(τ ) for a single-mode, degenerate parametric amplifier for a system in the Gaussian state, viz., a displaced-squeezed thermal state, to study the different criteria for nonclassicality. In particular, we contrast criteria that involve only one-time functions of the dynamical system, for instance, the quasiprobability distribution P (β ) of the Glauber-Sudarshan coherent or P representation of the density of state and the Mandel QM(τ ) parameter, versus the criteria associated with the two-time correlation function g(2 )(τ ) .
Correlates of functional capacity among centenarians.
Martin, Peter; MacDonald, Maurice; Margrett, Jennifer; Siegler, Ilene; Poon, Leonard W; Jazwinski, S M; Green, R C; Gearing, M; Markesbery, W R; Woodard, J L; Johnson, M A; Tenover, J S; Rodgers, W L; Hausman, D B; Rott, C; Davey, A; Arnold, J
2013-04-01
This study investigated correlates of functional capacity among participants of the Georgia Centenarian Study. Six domains (demographics and health, positive and negative affect, personality, social and economic support, life events and coping, distal influences) were related to functional capacity for 234 centenarians and near centenarians (i.e., 98 years and older). Data were provided by proxy informants. Domain-specific multiple regression analyses suggested that younger centenarians, those living in the community and rated to be in better health were more likely to have higher functional capacity scores. Higher scores in positive affect, conscientiousness, social provisions, religious coping, and engaged lifestyle were also associated with higher levels of functional capacity. The results suggest that functional capacity levels continue to be associated with age after 100 years of life and that positive affect levels and past lifestyle activities as reported by proxies are salient factors of adaptation in very late life.
Efficient quantum algorithm for computing n-time correlation functions.
Pedernales, J S; Di Candia, R; Egusquiza, I L; Casanova, J; Solano, E
2014-07-11
We propose a method for computing n-time correlation functions of arbitrary spinorial, fermionic, and bosonic operators, consisting of an efficient quantum algorithm that encodes these correlations in an initially added ancillary qubit for probe and control tasks. For spinorial and fermionic systems, the reconstruction of arbitrary n-time correlation functions requires the measurement of two ancilla observables, while for bosonic variables time derivatives of the same observables are needed. Finally, we provide examples applicable to different quantum platforms in the frame of the linear response theory.
Multiple soft limits of cosmological correlation functions
Joyce, Austin; Khoury, Justin; Simonović, Marko E-mail: jkhoury@sas.upenn.edu
2015-01-01
We derive novel identities satisfied by inflationary correlation functions in the limit where two external momenta are taken to be small. We derive these statements in two ways: using background-wave arguments and as Ward identities following from the fixed-time path integral. Interestingly, these identities allow us to constrain some of the O(q{sup 2}) components of the soft limit, in contrast to their single-soft analogues. We provide several nontrivial checks of our identities both in the context of resonant non-Gaussianities and in small sound speed models. Additionally, we extend the relation at lowest order in external momenta to arbitrarily many soft legs, and comment on the many-soft extension at higher orders in the soft momentum. Finally, we consider how higher soft limits lead to identities satisfied by correlation functions in large-scale structure.
The correlation function of galaxy ellipticities produced by gravitational lensing
NASA Technical Reports Server (NTRS)
Miralda-Escude, Jordi
1991-01-01
The correlation of galaxy ellipticities produced by gravitational lensing is calculated as a function of the power spectrum of density fluctuations in the universe by generalizing an analytical method developed by Gunn (1967). The method is applied to a model where identical objects with spherically symmetric density profiles are randomly laid down in space, and to the cold dark matter model. The possibility of detecting this correlation is discussed. Although an ellipticity correlation can also be caused by an intrinsic alignment of the axes of galaxies belonging to a cluster or a supercluster, a method is suggested by which one type of correlation can be distinguished from another. The advantage of this ellipticity correlation is that it is one of the few astronomical observations that can directly probe large-scale mass fluctuations in the universe.
A Kinematically Consistent Two-Point Correlation Function
NASA Technical Reports Server (NTRS)
Ristorcelli, J. R.
1998-01-01
A simple kinematically consistent expression for the longitudinal two-point correlation function related to both the integral length scale and the Taylor microscale is obtained. On the inner scale, in a region of width inversely proportional to the turbulent Reynolds number, the function has the appropriate curvature at the origin. The expression for two-point correlation is related to the nonlinear cascade rate, or dissipation epsilon, a quantity that is carried as part of a typical single-point turbulence closure simulation. Constructing an expression for the two-point correlation whose curvature at the origin is the Taylor microscale incorporates one of the fundamental quantities characterizing turbulence, epsilon, into a model for the two-point correlation function. The integral of the function also gives, as is required, an outer integral length scale of the turbulence independent of viscosity. The proposed expression is obtained by kinematic arguments; the intention is to produce a practically applicable expression in terms of simple elementary functions that allow an analytical evaluation, by asymptotic methods, of diverse functionals relevant to single-point turbulence closures. Using the expression devised an example of the asymptotic method by which functionals of the two-point correlation can be evaluated is given.
Redshift distortions of galaxy correlation functions
NASA Astrophysics Data System (ADS)
Fry, J. N.; Gaztanaga, Enrique
1994-04-01
To examine how peculiar velocities can affect the two-, three-, and four-point redshift correlation functions, we evaluate volume-average correlations for configurations that emphasize and minimize redshift distortions for four different volume-limited samples from each of the CfA, SSRS, and IRAS redshift catalogs. We present the results as the correlation length r0 and power index gamma of the two-point correlations, bar-xi0 = (r0/r)gamma, and as the hierarchical amplitudes of the three- and four-point functions, S3 = bar-xi3/bar-xi22 and S4 = bar-xi4/bar-xi32. We find a characteristic distortion for bar-xi2, the slope gamma is flatter and the correlation length is larger in redshift space than in real space; that is, redshift distortions 'move' correlations from small to large scales. At the largest scales (up to 12 Mpc), the extra power in the redshift distribution is compatible with Omega4/7/b approximately equal to 1. We estimate Omega4/7/b to be 0.53 +/- 0.15, 1.10 +/- 0.16, and 0.84 +/- 0.45 for the CfA, SSRS, and IRAS catalogs. Higher order correlations bar-xi3 and bar-xi4 suffer similar redshift distortions but in such a way that, within the accuracy of our analysis, the normalized amplitudes S3 and S4 are insensitive to this effect. The hierarchical amplitudes S3 and S4 are constant as a function of scale between 1 and 12 Mpc and have similar values in all samples and catalogs, S3 approximately equal to 2 and S4 approximately equal to 6, despite the fact that bar-xi2, bar-xi3, and bar-xi4 differ from one sample to another by large factors (up to a factor of 4 in bar-xi2, 8 for bar-xi3, and 12 for bar-xi4). The agreement between the independent estimations of S3 and S4 is remarkable given the different criteria in the selection of galaxies and also the difference in the resulting range of densities, luminosities, and locations between samples.
Redshift distortions of galaxy correlation functions
NASA Astrophysics Data System (ADS)
Fry, J. N.; Gaztanaga, E.
1993-05-01
To examine how peculiar velocities can affect the 2-, 3-, and 4-point correlation functions, we evaluate volume-average correlations for configurations that emphasize and minimize distortions for four different volume-limited samples from each of the CfA, SSRS, and IRAS redshift catalogs. We present the results as the correlation length r0 and power index gamma of the 2-point correlation, bar-xi2 = (r0/r)gamma), and as the hierarchical amplitudes of the 3- and 4-point functions, S3 = bar-xi3/bar-xi22 and S4 = bar-xi/bar-xi)23. We find a characteristic distortion for bar-xi2: The slope gamma is flatter and the correlation length is larger in redshift space than in real space; that is, redshift distortions 'move' correlations from small to large scales. At the largest scales, extra power in the redshift distribution is compatible with Omega4/7/b approx. 1; we find 0.53 plus/minus 0.15, 1.10 plus/minus 0.16 and 0.84 plus/minus 0.45 for the CfA, SSRS and IRAS catalogs. Higher order correlations bar-xi3 and bar-xi4 suffer similar redshift distortions, but in such a way that, within the accuracy of our analysis, the normalized amplitudes S3 and S4 are insensitive to this effect. The hierarchical amplitudes S3 and S4 are constant as a function of scale between 1-12 h-1 Mpc and have similar values in all samples and catalogues, S3 approx. 2 and S4 approx. 6, despite the fact that bar-xi2, bar-xi3, and bar-xi4 differ from one sample to another by large factors. The agreement between the independent estimations of S3 and S4 is remarkable given the different criteria in the selection of galaxies and also the difference in the resulting range of densities, luminosities and locations between samples.
Correlation Functions of the Magnetization in Thin Films
NASA Astrophysics Data System (ADS)
Rebei, A.; Simionato, M.; Parker, G. J.
2003-05-01
We calculate the correlation functions of uniform magnetization in thin ferromagnetic films for small deviations from equilibrium, by using a functional formalism. To take account of dissipation and fluctuations consistently, the magnetization is coupled to a bosonic heat bath. The correlation functions show strong dependence on the nature of the coupling between the bath and the system. Depending on what coupling we choose, we show how the recent results $(\\text{J. Appl. Phys. 90, 5768 (2001); Phys. Rev. B 65, 172417 (2002)}) $ obtained by macroscopic methods can be related to the microscopic treatment adopted here.
Measuring Omega and the real correlation function from the redshift correlation function
NASA Technical Reports Server (NTRS)
Hamilton, A. J. S.
1992-01-01
Peculiar velocities distort the correlation function of galaxies in redshift space. In the linear regime, the distortion has a characteristic quadrupole plus hexadecapole form. The amplitude of the distortion depends on the cosmological density parameter Omega. Practical formulas are derived here which can be applied to redshift galaxy catalogs to measure Omega in the linear regime. The formulas also yield the real underlying correlation function in the linear regime, corrected for peculiar velocities.
Unified Green's Function Retrieval by Cross Correlation
Wapenaar, Kees; Slob, Evert; Snieder, Roel
2006-12-08
It has been shown by many authors that the cross correlation of two recordings of a diffuse wave field at different receivers yields the Green's function between these receivers. Recently the theory has been extended for situations where time-reversal invariance does not hold (e.g., in attenuating media) and where source-receiver reciprocity breaks down (in moving fluids). Here we present a unified theory for Green's function retrieval that captures all these situations and, because of the unified form, readily extends to more complex situations, such as electrokinetic Green's function retrieval in poroelastic or piezoelectric media. The unified theory has a wide range of applications in ''remote sensing without a source.''.
New angles on energy correlation functions
NASA Astrophysics Data System (ADS)
Moult, Ian; Necib, Lina; Thaler, Jesse
2016-12-01
Jet substructure observables, designed to identify specific features within jets, play an essential role at the Large Hadron Collider (LHC), both for searching for signals beyond the Standard Model and for testing QCD in extreme phase space regions. In this paper, we systematically study the structure of infrared and collinear safe substructure observables, defining a generalization of the energy correlation functions to probe n-particle correlations within a jet. These generalized correlators provide a flexible basis for constructing new substructure observables optimized for specific purposes. Focusing on three major targets of the jet substructure community — boosted top tagging, boosted W/Z/H tagging, and quark/gluon discrimination — we use power-counting techniques to identify three new series of powerful discriminants: M i , N i , and U i . The M i series is designed for use on groomed jets, providing a novel example of observables with improved discrimination power after the removal of soft radiation. The N i series behave parametrically like the N -subjettiness ratio observables, but are defined without respect to subjet axes, exhibiting improved behavior in the unresolved limit. Finally, the U i series improves quark/gluon discrimination by using higher-point correlators to simultaneously probe multiple emissions within a jet. Taken together, these observables broaden the scope for jet substructure studies at the LHC.
A method for detecting complex correlation in time series
NASA Astrophysics Data System (ADS)
Alfi, V.; Petri, A.; Pietronero, L.
2007-06-01
We propose a new method for detecting complex correlations in time series of limited size. The method is derived by the Spitzer's identity and proves to work successfully on different model processes, including the ARCH process, in which pairs of variables are uncorrelated, but the three point correlation function is non zero. The application to financial data allows to discriminate among dependent and independent stock price returns where standard statistical analysis fails.
Two-point correlation functions in inhomogeneous and anisotropic cosmologies
NASA Astrophysics Data System (ADS)
Marcori, Oton H.; Pereira, Thiago S.
2017-02-01
Two-point correlation functions are ubiquitous tools of modern cosmology, appearing in disparate topics ranging from cosmological inflation to late-time astrophysics. When the background spacetime is maximally symmetric, invariance arguments can be used to fix the functional dependence of this function as the invariant distance between any two points. In this paper we introduce a novel formalism which fixes this functional dependence directly from the isometries of the background metric, thus allowing one to quickly assess the overall features of Gaussian correlators without resorting to the full machinery of perturbation theory. As an application we construct the CMB temperature correlation function in one inhomogeneous (namely, an off-center LTB model) and two spatially flat and anisotropic (Bianchi) universes, and derive their covariance matrices in the limit of almost Friedmannian symmetry. We show how the method can be extended to arbitrary N-point correlation functions and illustrate its use by constructing three-point correlation functions in some simple geometries.
Efficient reconstruction of multiphase morphologies from correlation functions
Rozman, M. G.; Utz, Marcel
2001-06-01
A highly efficient algorithm for the reconstruction of microstructures of heterogeneous media from spatial correlation functions is presented. Since many experimental techniques yield two-point correlation functions, the restoration of heterogeneous structures, such as composites, porous materials, microemulsions, ceramics, or polymer blends, is an inverse problem of fundamental importance. Similar to previously proposed algorithms, the new method relies on Monte Carlo optimization, representing the microstructure on a discrete grid. An efficient way to update the correlation functions after local changes to the structure is introduced. In addition, the rate of convergence is substantially enhanced by selective Monte Carlo moves at interfaces. Speedups over prior methods of more than two orders of magnitude are thus achieved. Moreover, an improved minimization protocol leads to additional gains. The algorithm is ideally suited for implementation on parallel computers. The increase in efficiency brings new classes of problems within the realm of the tractable, notably those involving several different structural length scales and/or components.
Effective theory of squeezed correlation functions
Mirbabayi, Mehrdad; Simonović, Marko E-mail: markos@ias.edu
2016-03-01
Various inflationary scenarios can often be distinguished from one another by looking at the squeezed limit behavior of correlation functions. Therefore, it is useful to have a framework designed to study this limit in a more systematic and efficient way. We propose using an expansion in terms of weakly coupled super-horizon degrees of freedom, which is argued to generically exist in a near de Sitter space-time. The modes have a simple factorized form which leads to factorization of the squeezed-limit correlation functions with power-law behavior in k{sub long}/k{sub short}. This approach reproduces the known results in single-, quasi-single-, and multi-field inflationary models. However, it is applicable even if, unlike the above examples, the additional degrees of freedom are not weakly coupled at sub-horizon scales. Stronger results are derived in two-field (or sufficiently symmetric multi-field) inflationary models. We discuss the observability of the non-Gaussian 3-point function in the large-scale structure surveys, and argue that the squeezed limit behavior has a higher detectability chance than equilateral behavior when it scales as (k{sub long}/k{sub short}){sup Δ} with Δ < 1—where local non-Gaussianity corresponds to Δ = 0.
Van Hove correlation functions for identical fermions
NASA Astrophysics Data System (ADS)
Macke, Wilhelm; Miesenböck, Helga M.; Hingerl, Kurt; Bachlechner, Martina E.
1989-02-01
For a quantum system of identical fermions a partition of the density-density correlation function in its ``self'' and ``distinct'' part is presented. These quantities show different properties than their classical counterparts, e.g., they violate the ``detailed balance'' and are not necessarily real. Nevertheless it can be expected that they will provide a good tool for a better description of the self-motion in many-particle systems and are therefore investigated in second-order perturbation theory of the interparticle potential.
Pair correlation function for spin glasses
NASA Astrophysics Data System (ADS)
Fernández, Julio F.; Alonso, Juan J.
2012-10-01
We extract a pair correlation function (PCF) from probability distributions of the spin-overlap parameter q. The distributions come from Monte Carlo simulations. A measure, w, of the thermal fluctuations of magnetic patterns follows from the PCFs. We also obtain rms deviations (over different system samples) δp away from average probabilities for q. For the linear system sizes L that we have studied, w and δp are independent of L in the Edwards-Anderson model but scale as 1/L and L, respectively, in the Sherrington-Kirkpatrick model.
MESON CORRELATION FUNCTIONS AT HIGH TEMPERATURES.
WISSEL, S.; DATTA, S.; KARSCH, F.; LAERMANN, E.; SHCHEREDIN, S.
2005-07-25
We present preliminary results for the correlation- and spectral functions of different meson channels on the lattice. The main focus lies on gaining control over cut-off as well as on the finite-volume effects. Extrapolations of screening masses above the deconfining temperature are guided by the result of the free (T = {infinity}) case on the lattice and in the continuum. We study the quenched non-perturbatively improved Wilson-clover fermion as well as the hypercube fermion action which might show less cut-off effects.
Baryons with functional methods
NASA Astrophysics Data System (ADS)
Fischer, Christian S.
2017-01-01
We summarise recent results on the spectrum of ground-state and excited baryons and their form factors in the framework of functional methods. As an improvement upon similar approaches we explicitly take into account the underlying momentum-dependent dynamics of the quark-gluon interaction that leads to dynamical chiral symmetry breaking. For light octet and decuplet baryons we find a spectrum in very good agreement with experiment, including the level ordering between the positive- and negative-parity nucleon states. Comparing the three-body framework with the quark-diquark approximation, we do not find significant differences in the spectrum for those states that have been calculated in both frameworks. This situation is different in the electromagnetic form factor of the Δ, which may serve to distinguish both pictures by comparison with experiment and lattice QCD.
Two-point correlation function for Dirichlet L-functions
NASA Astrophysics Data System (ADS)
Bogomolny, E.; Keating, J. P.
2013-03-01
The two-point correlation function for the zeros of Dirichlet L-functions at a height E on the critical line is calculated heuristically using a generalization of the Hardy-Littlewood conjecture for pairs of primes in arithmetic progression. The result matches the conjectured random-matrix form in the limit as E → ∞ and, importantly, includes finite-E corrections. These finite-E corrections differ from those in the case of the Riemann zeta-function, obtained in Bogomolny and Keating (1996 Phys. Rev. Lett. 77 1472), by certain finite products of primes which divide the modulus of the primitive character used to construct the L-function in question.
CMB anisotropy in compact hyperbolic universes. I. Computing correlation functions
NASA Astrophysics Data System (ADS)
Bond, J. Richard; Pogosyan, Dmitry; Souradeep, Tarun
2000-08-01
Cosmic microwave background (CMB) anisotropy measurements have brought the issue of global topology of the universe from the realm of theoretical possibility to within the grasp of observations. The global topology of the universe modifies the correlation properties of cosmic fields. In particular, strong correlations are predicted in CMB anisotropy patterns on the largest observable scales if the size of the universe is comparable to the distance to the CMB last scattering surface. We describe in detail our completely general scheme using a regularized method of images for calculating such correlation functions in models with nontrivial topology, and apply it to the computationally challenging compact hyperbolic spaces. Our procedure directly sums over images within a specified radius, ideally many times the diameter of the space, effectively treats more distant images in a continuous approximation, and uses Cesaro resummation to further sharpen the results. At all levels of approximation the symmetries of the space are preserved in the correlation function. This new technique eliminates the need for the difficult task of spatial eigenmode decomposition on these spaces. Although the eigenspectrum can be obtained by this method if desired, at a given level of approximation the correlation functions are more accurately determined. We use the 3-torus example to demonstrate that the method works very well. We apply it to power spectrum as well as correlation function evaluations in a number of compact hyperbolic (CH) spaces. Application to the computation of CMB anisotropy correlations on CH spaces, and the observational constraints following from them, are given in a companion paper.
Toward correlating functional MRI and EEG sources
NASA Astrophysics Data System (ADS)
Singh, Manbir; Khosla, Deepak
1996-04-01
Though excellent spatial resolution (on the order of 1 mm) is obtainable in functional MRI (fMRI), its temporal resolution is limited to about 1 second by hemodynamics. On the other hand, magnetoencephalography (MEG) and electroencephalography (EEG) provide millisecond temporal resolution but a relatively crude (on the order of 1 cm) spatial resolution to localized sources. Thus, techniques that could combine the high temporal resolution of MEG or EEG with the high spatial resolution of fMRI would be of great significance in imaging the spatiotemporal distribution of neuronal activation. With the ultimate objective of combining fMRI and EEG activation studies, we have conducted experiments to determine how pixels activated in fMRI correlate with underlying EEG sources in a given subject during visual stimulation. Results of a three-subject study suggest good correlation between the center-of-gravity of activated pixels seen in fMRI and the center-of-gravity of regions localized through EEG measurements.
Optimization of an exchange-correlation density functional for water
NASA Astrophysics Data System (ADS)
Fritz, Michelle; Fernández-Serra, Marivi; Soler, José M.
2016-06-01
We describe a method, that we call data projection onto parameter space (DPPS), to optimize an energy functional of the electron density, so that it reproduces a dataset of experimental magnitudes. Our scheme, based on Bayes theorem, constrains the optimized functional not to depart unphysically from existing ab initio functionals. The resulting functional maximizes the probability of being the "correct" parameterization of a given functional form, in the sense of Bayes theory. The application of DPPS to water sheds new light on why density functional theory has performed rather poorly for liquid water, on what improvements are needed, and on the intrinsic limitations of the generalized gradient approximation to electron exchange and correlation. Finally, we present tests of our water-optimized functional, that we call vdW-DF-w, showing that it performs very well for a variety of condensed water systems.
Modeling the three-point correlation function
Marin, Felipe; Wechsler, Risa; Frieman, Joshua A.; Nichol, Robert; /Portsmouth U., ICG
2007-04-01
We present new theoretical predictions for the galaxy three-point correlation function (3PCF) using high-resolution dissipationless cosmological simulations of a flat {Lambda}CDM Universe which resolve galaxy-size halos and subhalos. We create realistic mock galaxy catalogs by assigning luminosities and colors to dark matter halos and subhalos, and we measure the reduced 3PCF as a function of luminosity and color in both real and redshift space. As galaxy luminosity and color are varied, we find small differences in the amplitude and shape dependence of the reduced 3PCF, at a level qualitatively consistent with recent measurements from the SDSS and 2dFGRS. We confirm that discrepancies between previous 3PCF measurements can be explained in part by differences in binning choices. We explore the degree to which a simple local bias model can fit the simulated 3PCF. The agreement between the model predictions and galaxy 3PCF measurements lends further credence to the straightforward association of galaxies with CDM halos and subhalos.
Analysis of spectra using correlation functions
NASA Technical Reports Server (NTRS)
Beer, Reinhard; Norton, Robert H.
1988-01-01
A novel method is presented for the quantitative analysis of spectra based on the properties of the cross correlation between a real spectrum and either a numerical synthesis or laboratory simulation. A new goodness-of-fit criterion called the heteromorphic coefficient H is proposed that has the property of being zero when a fit is achieved and varying smoothly through zero as the iteration proceeds, providing a powerful tool for automatic or near-automatic analysis. It is also shown that H can be rendered substantially noise-immune, permitting the analysis of very weak spectra well below the apparent noise level and, as a byproduct, providing Doppler shift and radial velocity information with excellent precision. The technique is in regular use in the Atmospheric Trace Molecule Spectroscopy (ATMOS) project and operates in an interactive, realtime computing environment with turn-around times of a few seconds or less.
Functional Magnetic Resonance Imaging Methods
Chen, Jingyuan E.; Glover, Gary H.
2015-01-01
Since its inception in 1992, Functional Magnetic Resonance Imaging (fMRI) has become an indispensible tool for studying cognition in both the healthy and dysfunctional brain. FMRI monitors changes in the oxygenation of brain tissue resulting from altered metabolism consequent to a task-based evoked neural response or from spontaneous fluctuations in neural activity in the absence of conscious mentation (the “resting state”). Task-based studies have revealed neural correlates of a large number of important cognitive processes, while fMRI studies performed in the resting state have demonstrated brain-wide networks that result from brain regions with synchronized, apparently spontaneous activity. In this article, we review the methods used to acquire and analyze fMRI signals. PMID:26248581
Multi-reference vibration correlation methods
Pfeiffer, Florian; Rauhut, Guntram
2014-02-14
State-specific vibration correlation methods beyond the vibrational multi-configuration self-consistent field (VMCSCF) approximation have been developed, which allow for the accurate calculation of state energies for systems suffering from strong anharmonic resonances. Both variational multi-reference configuration interaction approaches and an implementation of approximate 2nd order vibrational multi-reference perturbation theory are presented. The variational approach can be significantly accelerated by a configuration selection scheme, which leads to negligible deviations in the final results. Relaxation effects due to the partitioning of the correlation space and the performance of a VMCSCF modal basis in contrast to a standard modal basis obtained from vibrational self-consistent field theory have been investigated in detail. Benchmark calculations based on high-level potentials are provided for the propargyl cation and cis-diazene.
Bringing the cross-correlation method up to date
NASA Astrophysics Data System (ADS)
Statler, Thomas
1995-03-01
The cross-correlation (XC) method of Tonry & Davis (1979, AJ, 84, 1511) is generalized to arbitrary parametrized line profiles. In the new algorithm the correlation function itself, rather than the observed galaxy spectrum, is fitted by the model line profile: this removes much of the complication in the error analysis caused by template mismatch. Like the Fourier correlation quotient (FCQ) method of Bender (1990, A&A, 229, 441), the inferred line profiles are, up to a normalization constant, independent of template mismatch as long as there are no blended lines. The standard reduced chi2 is a good measure of the fit of the inferred velocity distribution, largely decoupled from the fit of the spectral template. The updated XC method performs as well as other recently developed methods, with the added virtue of conceptual simplicity.
Bringing the cross-correlation method up to date
NASA Technical Reports Server (NTRS)
Statler, Thomas
1995-01-01
The cross-correlation (XC) method of Tonry & Davis (1979, AJ, 84, 1511) is generalized to arbitrary parametrized line profiles. In the new algorithm the correlation function itself, rather than the observed galaxy spectrum, is fitted by the model line profile: this removes much of the complication in the error analysis caused by template mismatch. Like the Fourier correlation quotient (FCQ) method of Bender (1990, A&A, 229, 441), the inferred line profiles are, up to a normalization constant, independent of template mismatch as long as there are no blended lines. The standard reduced chi(exp 2) is a good measure of the fit of the inferred velocity distribution, largely decoupled from the fit of the spectral template. The updated XC method performs as well as other recently developed methods, with the added virtue of conceptual simplicity.
Charmonium correlators and spectral functions at finite temperature
Ding,H.T.; Kaczmarek, O.; Karsch, F.; Satz, H.
2008-09-01
We present an operational approach to address the in-medium behavior of charmonium and analyze the reliability of maximum entropy method (MEM). We study the dependences of the ratio of correlators to the reconstructed one and the free one on the resonance's width and the continuum's threshold. Furthermore, we discuss the issue of the default model dependence of the spectral function obtained from MEM.
Image features of spectral correlation function for arrhythmia classification.
Khalaf, Aya F; Owis, Mohammed I; Yassine, Inas A
2015-01-01
Recently, computerized arrhythmia classification tools have been intensively used to aid physicians to recognize different irregular heartbeats. In this paper, we introduce arrhythmia CAD system exploiting cyclostationary signal analysis through estimation of the spectral correlation function for 5 different beat types. Two experiments were performed. Raw spectral correlation data were used as features in the first experiment while the other experiment which dealt with the spectral correlation coefficients as image included extraction of wavelet and shape features followed by fisher score for dimensionality reduction. As for the classification task, Support Vector Machine (SVM) with linear kernel was used for both experiments. The experimental results showed that both proposed approaches are superior compared to several state of the art methods. This approach achieved sensitivity, specificity, accuracy, positive predictive value (PPV) and negative predictive value (NPV) of 99.20%, 99.70%, 98.60%, 99.90% and 97.60% respectively.
Isotope correlations for safeguards surveillance and accountancy methods
Persiani, P.J.; Kalimullah
1982-01-01
Isotope correlations corroborated by experiments, coupled with measurement methods for nuclear material in the fuel cycle have the potential as a safeguards surveillance and accountancy system. The ICT allows the verification of: fabricator's uranium and plutonium content specifications, shipper/receiver differences between fabricator output and reactor input, reactor plant inventory changes, reprocessing batch specifications and shipper/receiver differences between reactor output and reprocessing plant input. The investigation indicates that there exist predictable functional relationships (i.e. correlations) between isotopic concentrations over a range of burnup. Several cross-correlations serve to establish the initial fuel assembly-averaged compositions. The selection of the more effective correlations will depend not only on the level of reliability of ICT for verification, but also on the capability, accuracy and difficulty of developing measurement methods. The propagation of measurement errors through the correlations have been examined to identify the sensitivity of the isotope correlations to measurement errors, and to establish criteria for measurement accuracy in the development and selection of measurement methods. 6 figures, 3 tables.
Correlation fluorescence method of amine detection
NASA Astrophysics Data System (ADS)
Myslitsky, Valentin F.; Tkachuk, Svetlana S.; Rudeichuk, Volodimir M.; Strinadko, Miroslav T.; Slyotov, Mikhail M.; Strinadko, Marina M.
1997-12-01
The amines fluorescence spectra stimulated by UV laser radiation are investigated in this paper. The fluorescence is stimulated by the coherent laser beam with the wavelength 0.337 micrometers . At the sufficient energy of laser stimulation the narrow peaks of the fluorescence spectra are detected besides the wide maximum. The relationship between the fluorescence intensity and the concentration of amines solutions are investigated. The fluorescence intensity temporal dependence on wavelength 0.363 micrometers of the norepinephrine solution preliminarily radiated by UV laser with wavelength 0.337 micrometers was found. The computer stimulated and experimental investigations of adrenaline and norepinephrine mixtures fluorescence spectra were done. The correlation fluorescent method of amines detection is proposed.
Density Functional Plus Dynamical Mean Field Theory of Correlated Oxides
NASA Astrophysics Data System (ADS)
Millis, Andrew
2015-03-01
The density functional plus dynamical mean field method is outlined and a few recent successes including applications to spin crossover molecules, oxide superlattices and metal-insulator transitions in bulk transition metals are outlined. Insights from the method into the essential role played by lattice distortions (both rotations and bond length changes) in determining the phase diagrams of correlated materials are presented. The key theoretical issue of the double counting correction is outlined, different approaches are compared, and a connection to the energy level differences between strongly and weakly correlated orbitals is presented. Charge transfer across oxide interfaces shown to depend crucially on the double counting correction, suggesting that experiments on oxide superlattices may provide insights into this important problem. Future directions are discussed. This work is performed in collaboration with Jia Chen, Hung Dang, Hyowon Park and Chris Marianetti. This research supported by the DOE Office of Science, Grant ER 046169.
Structural and functional neural correlates of music perception.
Limb, Charles J
2006-04-01
This review article highlights state-of-the-art functional neuroimaging studies and demonstrates the novel use of music as a tool for the study of human auditory brain structure and function. Music is a unique auditory stimulus with properties that make it a compelling tool with which to study both human behavior and, more specifically, the neural elements involved in the processing of sound. Functional neuroimaging techniques represent a modern and powerful method of investigation into neural structure and functional correlates in the living organism. These methods have demonstrated a close relationship between the neural processing of music and language, both syntactically and semantically. Greater neural activity and increased volume of gray matter in Heschl's gyrus has been associated with musical aptitude. Activation of Broca's area, a region traditionally considered to subserve language, is important in interpreting whether a note is on or off key. The planum temporale shows asymmetries that are associated with the phenomenon of perfect pitch. Functional imaging studies have also demonstrated activation of primitive emotional centers such as ventral striatum, midbrain, amygdala, orbitofrontal cortex, and ventral medial prefrontal cortex in listeners of moving musical passages. In addition, studies of melody and rhythm perception have elucidated mechanisms of hemispheric specialization. These studies show the power of music and functional neuroimaging to provide singularly useful tools for the study of brain structure and function.
Brain structure and function correlates of cognitive subtypes in schizophrenia.
Geisler, Daniel; Walton, Esther; Naylor, Melissa; Roessner, Veit; Lim, Kelvin O; Charles Schulz, S; Gollub, Randy L; Calhoun, Vince D; Sponheim, Scott R; Ehrlich, Stefan
2015-10-30
Stable neuropsychological deficits may provide a reliable basis for identifying etiological subtypes of schizophrenia. The aim of this study was to identify clusters of individuals with schizophrenia based on dimensions of neuropsychological performance, and to characterize their neural correlates. We acquired neuropsychological data as well as structural and functional magnetic resonance imaging from 129 patients with schizophrenia and 165 healthy controls. We derived eight cognitive dimensions and subsequently applied a cluster analysis to identify possible schizophrenia subtypes. Analyses suggested the following four cognitive clusters of schizophrenia: (1) Diminished Verbal Fluency, (2) Diminished Verbal Memory and Poor Motor Control, (3) Diminished Face Memory and Slowed Processing, and (4) Diminished Intellectual Function. The clusters were characterized by a specific pattern of structural brain changes in areas such as Wernicke's area, lingual gyrus and occipital face area, and hippocampus as well as differences in working memory-elicited neural activity in several fronto-parietal brain regions. Separable measures of cognitive function appear to provide a method for deriving cognitive subtypes meaningfully related to brain structure and function. Because the present study identified brain-based neural correlates of the cognitive clusters, the proposed groups of individuals with schizophrenia have some external validity.
Neurobiological correlates of social functioning in autism.
Neuhaus, Emily; Beauchaine, Theodore P; Bernier, Raphael
2010-08-01
Although autism is defined by deficits in three areas of functioning (social, communicative, and behavioral), impairments in social interest and restricted behavioral repertoires are central to the disorder. As a result, a detailed understanding of the neurobiological systems subserving social behavior may have implications for prevention, early identification, and intervention for affected families. In this paper, we review a number of potential neurobiological mechanisms--across several levels of analysis--that subserve normative social functioning. These include neural networks, neurotransmitters, and hormone systems. After describing the typical functioning of each system, we review available empirical findings specific to autism. Among the most promising potential mechanisms of social behavioral deficits in autism are those involving neural networks including the amygdala, the mesocorticolimbic dopamine system, and the oxytocin system. Particularly compelling are explanatory models that integrate mechanisms across biological systems, such as those linking dopamine and oxytocin with brain regions critical to reward processing.
Multichannel correlation recognition method of optical images
NASA Astrophysics Data System (ADS)
Wang, Hongxia; He, Junfa; Sun, Honghui
2000-10-01
In this paper a multi-channel real-time hybrid joint transform correlator is proposed. In this correlator, the computer control is used to divide the screen into several equal size windows, reference images of the windows are all the same one and object images are adopted from different frames of image sequences by CCD, twice Fourier transforms of every channel images are realized by using hololens array. Areas of LCLV and the output light energy can be used effectively. The correlation performance can be improved.
Timing Correlations in Proteins Predict Functional Modules and Dynamic Allostery.
Lin, Milo M
2016-04-20
How protein structure encodes functionality is not fully understood. For example, long-range intraprotein communication can occur without measurable conformational change and is often not captured by existing structural correlation functions. It is shown here that important functional information is encoded in the timing of protein motions, rather than motion itself. I introduce the conditional activity function to quantify such timing correlations among the degrees of freedom within proteins. For three proteins, the conditional activities between side-chain dihedral angles were computed using the output of microseconds-long atomistic simulations. The new approach demonstrates that a sparse fraction of side-chain pairs are dynamically correlated over long distances (spanning protein lengths up to 7 nm), in sharp contrast to structural correlations, which are short-ranged (<1 nm). Regions of high self- and inter-side-chain dynamical correlations are found, corresponding to experimentally determined functional modules and allosteric connections, respectively.
Structure-Function Correlation of the Human Central Retina
Charbel Issa, Peter; Troeger, Eric; Finger, Robert; Holz, Frank G.; Wilke, Robert; Scholl, Hendrik P. N.
2010-01-01
Background The impact of retinal pathology detected by high-resolution imaging on vision remains largely unexplored. Therefore, the aim of the study was to achieve high-resolution structure-function correlation of the human macula in vivo. Methodology/Principal Findings To obtain high-resolution tomographic and topographic images of the macula spectral-domain optical coherence tomography (SD-OCT) and confocal scanning laser ophthalmoscopy (cSLO), respectively, were used. Functional mapping of the macula was obtained by using fundus-controlled microperimetry. Custom software allowed for co-registration of the fundus mapped microperimetry coordinates with both SD-OCT and cSLO datasets. The method was applied in a cross-sectional observational study of retinal diseases and in a clinical trial investigating the effectiveness of intravitreal ranibizumab in macular telangietasia type 2. There was a significant relationship between outer retinal thickness and retinal sensitivity (p<0.001) and neurodegeneration leaving less than about 50 µm of parafoveal outer retinal thickness completely abolished light sensitivity. In contrast, functional preservation was found if neurodegeneration spared the photoreceptors, but caused quite extensive disruption of the inner retina. Longitudinal data revealed that small lesions affecting the photoreceptor layer typically precede functional detection but later cause severe loss of light sensitivity. Ranibizumab was shown to be ineffective to prevent such functional loss in macular telangietasia type 2. Conclusions/Significance Since there is a general need for efficient monitoring of the effectiveness of therapy in neurodegenerative diseases of the retina and since SD-OCT imaging is becoming more widely available, surrogate endpoints derived from such structure-function correlation may become highly relevant in future clinical trials. PMID:20877651
NASA Astrophysics Data System (ADS)
Zhang, Jin-Ping; Cheng, Xin-Lu; Zhang, Hong; Yang, Xiang-Dong
2011-06-01
Three low-lying electronic states (X1Σ+, a3Σ+, and A1Π) of NO+ ion are studied using the complete active space self-consistent-field (CASSCF) method followed by highly accurate valence internally contracted multi-reference configuration interaction (MRCI) approach in combination of the correlation-consistent sextuple basis set augmented with diffuse functions, aug-cc-pV6Z. The potential energy curves (PECs) of the NO+(X1Σ+, a3Σ+, A1Π) are calculated. Based on the PECs, the spectroscopic parameters Re, De, ωe, ωeχe, αe, Be, and D0 are reproduced, which are in excellent agreement with the available measurements. By numerically solving the radial Schrödinger equation of nuclear motion using the Numerov method, the first 20 vibrational levels, inertial rotation and centrifugal distortion constants of NO+(X1Σ+, a3Σ+, A1Π) ion are derived when the rotational quantum number J is equal to zero (J = 0) for the first time, which accord well with the available measurements. Finally, the analytical potential energy functions of these states are fitted, which are used to accurately derive the first 20 classical turning points when J = 0. These results are compared in detail with those of previous investigations reported in the literature.
Method of reflection point correlation seismic surveying
Barbier, M.G.; Staron, P.J.
1982-02-16
A method of seismic exploration comprises transmitting waves from transmission sources into the medium to be explored and picking up signals in a receiver and recording these as traces, the signals being produced by reflection in the medium, the sequential transmission of the sources taking place at intervals less than the reflection time of the longest transmitted waves, the repeated transmission of any one source taking place at intervals at least equal to the said reflection time and therein being an intercorrelation function of a series of transmission instants of all the sources and a series of transmission instants of any one of the sources to give a relationship between the maximum peak amplitude and the secondary residue amplitude greater than a predetermined value and grouping the recorded traces corresponding to the same reflection point, adjusting the traces in relation to the associated source providing the information relating to the reflection point and adding together the adjusted traces relating to the same reflection point.
A Representation for Fermionic Correlation Functions
NASA Astrophysics Data System (ADS)
Feldman, Joel; Knörrer, Horst; Trubowitz, Eugene
Let dμS(a) be a Gaussian measure on the finitely generated Grassmann algebra A. Given an even W(a)∈A, we construct an operator R on A such that
Landau gauge Yang-Mills correlation functions
NASA Astrophysics Data System (ADS)
Cyrol, Anton K.; Fister, Leonard; Mitter, Mario; Pawlowski, Jan M.; Strodthoff, Nils
2016-09-01
We investigate Landau gauge S U (3 ) Yang-Mills theory in a systematic vertex expansion scheme for the effective action with the functional renormalization group. Particular focus is put on the dynamical creation of the gluon mass gap at nonperturbative momenta and the consistent treatment of quadratic divergences. The nonperturbative ghost and transverse gluon propagators as well as the momentum-dependent ghost-gluon, three-gluon and four-gluon vertices are calculated self-consistently with the classical action as the only input. The apparent convergence of the expansion scheme is discussed and within the errors, our numerical results are in quantitative agreement with available lattice results.
Analytical correlation functions for motion through diffusivity landscapes.
Roosen-Runge, Felix; Bicout, Dominique J; Barrat, Jean-Louis
2016-05-28
Diffusion of a particle through an energy and diffusivity landscape is a very general phenomenon in numerous systems of soft and condensed matter. On the one hand, theoretical frameworks such as Langevin and Fokker-Planck equations present valuable accounts to understand these motions in great detail, and numerous studies have exploited these approaches. On the other hand, analytical solutions for correlation functions, as, e.g., desired by experimentalists for data fitting, are only available for special cases. We explore the possibility to use different theoretical methods in the specific picture of time-dependent switching between diffusive states to derive analytical functions that allow to link experimental and simulation results to theoretical calculations. In particular, we present a closed formula for diffusion switching between two states, as well as a general recipe of how to generalize the formula to multiple states.
Bedirian, Ricardo; Neves, Mario Fritsch; Oigman, Wille; Gismondi, Ronaldo Altenburg Odebrecht Curi; Pozzobon, Cesar Romaro; Ladeira, Marcia Cristina Boaventura; Castier, Marcia Bueno
2016-01-01
Background: Endothelial dysfunction may be involved in the pathophysiology of cardiac abnormalities in patients with diabetes mellitus (DM). A correlation between endothelial dysfunction and diastolic dysfunction in patients with type 1 DM has been demonstrated, but this relationship has not been well investigated in type 2 DM. Objective: Compare groups of patients with type 2 DM and hypertension with and without diastolic dysfunction using endothelial function indexes, and to assess whether correlations exist between the diastolic function and the endothelial function indexes. Method: This was a cross-sectional study of 34 men and women with type 2 DM and hypertension who were aged between 40 and 70 years and were categorized based on assessments of their Doppler echocardiographic parameters as having normal (14 patients) and abnormal (20 patients) diastolic function. Flow-mediated dilatation (FMD) assessments of the brachial artery evaluated the patients’ endothelial function. Results: The mean maximum FMD was 7.15 ± 2.80% for the patients with diastolic dysfunction and it was 11.85 ± 4.77% for the patients with normal diastolic function (p = 0.004). Correlations existed between the maximum FMD and the E/e' ratio (p = 0.040, r = -0.354) and the early wave velocity (e') at the lateral mitral annulus (p = 0.002, r = 0.509). Conclusion: The endothelial function assessed by FMD was worse in hypertensive diabetic patients with diastolic dysfunction. There were correlations between the diastolic function indexes and the endothelial function indexes in our sample. PMID:27867429
Understanding volatility correlation behavior with a magnitude cross-correlation function
NASA Astrophysics Data System (ADS)
Jun, Woo Cheol; Oh, Gabjin; Kim, Seunghwan
2006-06-01
We propose an approach for analyzing the basic relation between correlation properties of the original signal and its magnitude fluctuations by decomposing the original signal into its positive and negative fluctuation components. We use this relation to understand the following phenomenon found in many naturally occurring time series: the magnitude of the signal exhibits long-range correlation, whereas the original signal is short-range correlated. The applications of our approach to heart rate variability signals and high-frequency foreign exchange rates reveal that the difference between the correlation properties of the original signal and its magnitude fluctuations is induced by the time organization structure of the correlation function between the magnitude fluctuations of positive and negative components. We show that this correlation function can be described well by a stretched-exponential function and is related to the nonlinearity and the multifractal structure of the signals.
NASA Astrophysics Data System (ADS)
Takeuchi, Tsutomu T.
2010-08-01
We provide an analytic method to construct a bivariate distribution function (DF) with given marginal distributions and correlation coefficient. We introduce a convenient mathematical tool, called a copula, to connect two DFs with any prescribed dependence structure. If the correlation of two variables is weak (Pearson's correlation coefficient |ρ| < 1/3), the Farlie-Gumbel-Morgenstern (FGM) copula provides an intuitive and natural way to construct such a bivariate DF. When the linear correlation is stronger, the FGM copula cannot work anymore. In this case, we propose using a Gaussian copula, which connects two given marginals and is directly related to the linear correlation coefficient between two variables. Using the copulas, we construct the bivariate luminosity function (BLF) and discuss its statistical properties. We focus especially on the far-infrared-far-ulatraviolet (FUV-FIR) BLF, since these two wavelength regions are related to star-formation (SF) activity. Though both the FUV and FIR are related to SF activity, the univariate LFs have a very different functional form: the former is well described by the Schechter function whilst the latter has a much more extended power-law-like luminous end. We construct the FUV-FIR BLFs using the FGM and Gaussian copulas with different strengths of correlation, and examine their statistical properties. We then discuss some further possible applications of the BLF: the problem of a multiband flux-limited sample selection, the construction of the star-formation rate (SFR) function, and the construction of the stellar mass of galaxies (M*)-specific SFR (SFR/M*) relation. The copulas turn out to be a very useful tool to investigate all these issues, especially for including complicated selection effects.
Direct measurement of correlation functions in a lattice Lorentz gas
NASA Technical Reports Server (NTRS)
Binder, P.-M.; Frenkel, D.
1990-01-01
Simulations of a two-dimensional ballistic Lorentz gas on a lattice are reported. A moment-propagation technique allows direct measurements of the velocity correlation function and its moments with low relative errors for all times. The predicted 1/t-sq algebraic tails in the velocity correlation function are observed at all studied scatterer densities, unlike what has been reported for continuous systems. In the square lattice a fast oscillation is observed, consistent with the existence of staggered density modes. For the second-rank tensor correlation function, an extremely slow approach to the expected 1/t exp 3 tail is found.
Correlating Function and Imaging Measures of the Medial Longitudinal Fasciculus
Sakaie, Ken; Takahashi, Masaya; Remington, Gina; Wang, Xiaofeng; Conger, Amy; Conger, Darrel; Dimitrov, Ivan; Jones, Stephen; Frohman, Ashley; Frohman, Teresa; Sagiyama, Koji; Togao, Osamu
2016-01-01
Objective To test the validity of diffusion tensor imaging (DTI) measures of tissue injury by examining such measures in a white matter structure with well-defined function, the medial longitudinal fasciculus (MLF). Injury to the MLF underlies internuclear ophthalmoparesis (INO). Methods 40 MS patients with chronic INO and 15 healthy controls were examined under an IRB-approved protocol. Tissue integrity of the MLF was characterized by DTI parameters: longitudinal diffusivity (LD), transverse diffusivity (TD), mean diffusivity (MD) and fractional anisotropy (FA). Severity of INO was quantified by infrared oculography to measure versional disconjugacy index (VDI). Results LD was significantly lower in patients than in controls in the medulla-pons region of the MLF (p < 0.03). FA was also lower in patients in the same region (p < 0.0004). LD of the medulla-pons region correlated with VDI (R = -0.28, p < 0.05) as did FA in the midbrain section (R = 0.31, p < 0.02). Conclusions This study demonstrates that DTI measures of brain tissue injury can detect injury to a functionally relevant white matter pathway, and that such measures correlate with clinically accepted evaluation indices for INO. The results validate DTI as a useful imaging measure of tissue integrity. PMID:26800522
NASA Technical Reports Server (NTRS)
Mcclelland, J.; Silk, J.
1979-01-01
The evolution of the two-point correlation function for the large-scale distribution of galaxies in an expanding universe is studied on the assumption that the perturbation densities lie in a Gaussian distribution centered on any given mass scale. The perturbations are evolved according to the Friedmann equation, and the correlation function for the resulting distribution of perturbations at the present epoch is calculated. It is found that: (1) the computed correlation function gives a satisfactory fit to the observed function in cosmological models with a density parameter (Omega) of approximately unity, provided that a certain free parameter is suitably adjusted; (2) the power-law slope in the nonlinear regime reflects the initial fluctuation spectrum, provided that the density profile of individual perturbations declines more rapidly than the -2.4 power of distance; and (3) both positive and negative contributions to the correlation function are predicted for cosmological models with Omega less than unity.
Sudomotor innervation in transthyretin amyloid neuropathy: Pathology and functional correlates
Huang, Cho‐Min; Chiang, Hao‐Hua; Luo, Kai‐Ren; Kan, Hung‐Wei; Yang, Naomi Chu‐Chiao; Chiang, Hao; Lin, Whei‐Min; Lai, Shu‐Mei; Lee, Ming‐Jen; Shun, Chia‐Tung; Hsieh, Sung‐Tsang
2015-01-01
Objective Autonomic neuropathy is a major component of familial amyloid polyneuropathy (FAP) due to mutated transthyretin, with sudomotor failure as a common manifestation. This study aimed to investigate the pathology and clinical significance of sudomotor denervation. Methods Skin biopsies were performed on the distal leg of FAP patients with a follow‐up duration of 3.8 ± 1.6 years. Sudomotor innervation was stained with 2 markers: protein gene product 9.5 (PGP 9.5), a general neuronal marker, and vasoactive intestinal peptide (VIP), a sudomotor nerve functional marker, followed by quantitation according to sweat gland innervation index (SGII) for PGP 9.5 (SGIIPGP 9.5) and VIP (SGIIVIP). Results There were 28 patients (25 men) with Ala97Ser transthyretin and late onset (59.9 ± 6.0 years) disabling neuropathy. Autonomic symptoms were present in 22 patients (78.6%) at the time of skin biopsy. The SGIIPGP 9.5 and SGIIVIP of FAP patients were significantly lower than those of age‐ and gender‐matched controls. The reduction of SGIIVIP was more severe than that of SGIIPGP 9.5 (p = 0.002). Patients with orthostatic hypotension or absent sympathetic skin response at palms were associated with lower SGIIPGP 9.5 (p = 0.019 and 0.002, respectively). SGIIPGP 9.5 was negatively correlated with the disability grade at the time of skin biopsy (p = 0.004), and was positively correlated with the interval from the time of skin biopsy to the time of wheelchair usage (p = 0.029). Interpretation This study documented the pathological evidence of sudomotor denervation in FAP. SGIIPGP 9.5 was functionally correlated with autonomic symptoms, autonomic tests, ambulation status, and progression of disability. Ann Neurol 2015;78:272℃283 PMID:25973863
Corrfunc: Blazing fast correlation functions on the CPU
NASA Astrophysics Data System (ADS)
Sinha, Manodeep
2017-03-01
Corrfunc is a suite of high-performance clustering routines. The code can compute a variety of spatial correlation functions on Cartesian geometry as well Landy-Szalay calculations for spatial and angular correlation functions on a spherical geometry and is useful for, for example, exploring the galaxy-halo connection. The code is written in C and can be used on the command-line, through the supplied python extensions, or the C API.
Dynamic Correlation Functions of Adsorption Stochastic Systems with Diffusional Relaxation
NASA Astrophysics Data System (ADS)
Grynberg, Marcelo D.; Stinchcombe, Robin B.
1995-02-01
We investigate the nonequilibrium behavior of dynamic correlation functions of random sequential adsorption processes with diffusional relaxation. Depending on the relative values of the transition probability rates, in one dimension these systems reduce to a soluble problem of many fermions. In contrast to the standard diffusive relaxation of the macroscopic density, the correlation functions exhibit a faster decay. Our results are supported and compared with Monte Carlo simulations.
ZeldovichRecon: Halo correlation function using the Zeldovich approximation
NASA Astrophysics Data System (ADS)
White, Martin
2015-12-01
ZeldovichRecon computes the halo correlation function using the Zeldovich approximation. It includes 3 variants:zelrecon.cpp, which computes the various contributions to the correlation function; zelrecon_ctypes.cpp, which is designed to be called from Python using the ctypes library; and a version which implements the "ZEFT" formalism of "A Lagrangian effective field theory" [arxiv:1506.05264] including the alpha term described in that paper.
Acoustic ship signature measurements by cross-correlation method.
Fillinger, Laurent; Sutin, Alexander; Sedunov, Alexander
2011-02-01
Cross-correlation methods were applied for the estimation of the power spectral density and modulation spectrum of underwater noise generated by moving vessels. The cross-correlation of the signal from two hydrophones allows the separation of vessel acoustic signatures in a busy estuary. Experimental data recorded in the Hudson River are used for demonstration that cross-correlation method measured the same ship noise and ship noise modulation spectra as conventional methods. The cross-correlation method was then applied for the separation of the acoustic signatures of two ships present simultaneously. Presented methods can be useful for ship traffic monitoring and small ship classification, even in noisy harbor environments.
Correlation studies on surface particle detection methods
NASA Technical Reports Server (NTRS)
Peterson, Ronald V.; White, James C.
1988-01-01
The accurate determination of dust levels on optical surfaces is necessary to assess sensor system performance. A comparison study was made on several particle measurement methods including those based on direct imaging and light scattering. The effectiveness of removing the particles from the surface prior to determining particle size distributions was also assessed. These studies revealed that some methods, especially those requiring particle removal before analysis, are subject to large systematic errors affecting particle size distributions. Thus, an understanding of the particle measurement methods employed is necessary before any surface cleanliness or obstruction value assignments are accepted as true representations of an optical surface contamination condition.
Characterization of maximally random jammed sphere packings: Voronoi correlation functions.
Klatt, Michael A; Torquato, Salvatore
2014-11-01
We characterize the structure of maximally random jammed (MRJ) sphere packings by computing the Minkowski functionals (volume, surface area, and integrated mean curvature) of their associated Voronoi cells. The probability distribution functions of these functionals of Voronoi cells in MRJ sphere packings are qualitatively similar to those of an equilibrium hard-sphere liquid and partly even to the uncorrelated Poisson point process, implying that such local statistics are relatively structurally insensitive. This is not surprising because the Minkowski functionals of a single Voronoi cell incorporate only local information and are insensitive to global structural information. To improve upon this, we introduce descriptors that incorporate nonlocal information via the correlation functions of the Minkowski functionals of two cells at a given distance as well as certain cell-cell probability density functions. We evaluate these higher-order functions for our MRJ packings as well as equilibrium hard spheres and the Poisson point process. It is shown that these Minkowski correlation and density functions contain visibly more information than the corresponding standard pair-correlation functions. We find strong anticorrelations in the Voronoi volumes for the hyperuniform MRJ packings, consistent with previous findings for other pair correlations [A. Donev et al., Phys. Rev. Lett. 95, 090604 (2005)PRLTAO0031-900710.1103/PhysRevLett.95.090604], indicating that large-scale volume fluctuations are suppressed by accompanying large Voronoi cells with small cells, and vice versa. In contrast to the aforementioned local Voronoi statistics, the correlation functions of the Voronoi cells qualitatively distinguish the structure of MRJ sphere packings (prototypical glasses) from that of not only the Poisson point process but also the correlated equilibrium hard-sphere liquids. Moreover, while we did not find any perfect icosahedra (the locally densest possible structure in which a
NASA Astrophysics Data System (ADS)
Rogers, Jeremy D.
2016-03-01
Numerous methods have been developed to quantify the light scattering properties of tissue. These properties are of interest in diagnostic and screening applications due to sensitivity to changes in tissue ultrastructure and changes associated with disease such as cancer. Tissue is considered a weak scatterer because that the mean free path is much larger than the correlation length. When this is the case, all scattering properties can be calculated from the refractive index correlation function Bn(r). Direct measurement of Bn(r) is challenging because it requires refractive index measurement at high resolution over a large tissue volume. Instead, a model is usually assumed. One particularly useful model, the Whittle-Matern function includes several realistic function types such as mass fractal and exponential. Optical scattering properties for weakly scattering media can be determined analytically from Bn(r) by applying the Rayleigh-Gans-Debye (RGD) or Born Approximation, and so measured scattering properties are used to fit parameters of the model function. Direct measurement of Bn(r) would provide confirmation that the function is a good representation of tissue or help in identifying the length scale at which changes occur. The RGD approximation relates the scattering phase function to the refractive index correlation function through a Fourier transform. This can be inverted without approximation, so goniometric measurement of the scattering can be converted to Bn(r). However, geometric constraints of the measurement of the phase function, angular resolution, and wavelength result in a band limited measurement of Bn(r). These limits are discussed and example measurements are described.
Kim, Junghi; Wozniak, Jeffrey R.; Mueller, Bryon A.
2015-01-01
Abstract Resting-state functional magnetic resonance imaging allows one to study brain functional connectivity, partly motivated by evidence that patients with complex disorders, such as Alzheimer's disease, may have altered functional brain connectivity patterns as compared with healthy subjects. A functional connectivity network describes statistical associations of the neural activities among distinct and distant brain regions. Recently, there is a major interest in group-level functional network analysis; however, there is a relative lack of studies on statistical inference, such as significance testing for group comparisons. In particular, it is still debatable which statistic should be used to measure pairwise associations as the connectivity weights. Many functional connectivity studies have used either (full or marginal) correlations or partial correlations for pairwise associations. This article investigates the performance of using either correlations or partial correlations for testing group differences in brain connectivity, and how sparsity levels and topological structures of the connectivity would influence statistical power to detect group differences. Our results suggest that, in general, testing group differences in networks deviates from estimating networks. For example, high regularization in both covariance matrices and precision matrices may lead to higher statistical power; in particular, optimally selected regularization (e.g., by cross-validation or even at the true sparsity level) on the precision matrices with small estimation errors may have low power. Most importantly, and perhaps surprisingly, using either correlations or partial correlations may give very different testing results, depending on which of the covariance matrices and the precision matrices are sparse. Specifically, if the precision matrices are sparse, presumably and arguably a reasonable assumption, then using correlations often yields much higher powered and more
Design of exchange-correlation functionals through the correlation factor approach
Pavlíková Přecechtělová, Jana E-mail: Matthias.Ernzerhof@UMontreal.ca
2015-10-14
The correlation factor model is developed in which the spherically averaged exchange-correlation hole of Kohn-Sham theory is factorized into an exchange hole model and a correlation factor. The exchange hole model reproduces the exact exchange energy per particle. The correlation factor is constructed in such a manner that the exchange-correlation energy correctly reduces to exact exchange in the high density and rapidly varying limits. Four different correlation factor models are presented which satisfy varying sets of physical constraints. Three models are free from empirical adjustments to experimental data, while one correlation factor model draws on one empirical parameter. The correlation factor models are derived in detail and the resulting exchange-correlation holes are analyzed. Furthermore, the exchange-correlation energies obtained from the correlation factor models are employed to calculate total energies, atomization energies, and barrier heights. It is shown that accurate, non-empirical functionals can be constructed building on exact exchange. Avenues for further improvements are outlined as well.
Universal Spatial Correlation Functions for Describing and Reconstructing Soil Microstructure
Skvortsova, Elena B.; Mallants, Dirk
2015-01-01
Structural features of porous materials such as soil define the majority of its physical properties, including water infiltration and redistribution, multi-phase flow (e.g. simultaneous water/air flow, or gas exchange between biologically active soil root zone and atmosphere) and solute transport. To characterize soil microstructure, conventional soil science uses such metrics as pore size and pore-size distributions and thin section-derived morphological indicators. However, these descriptors provide only limited amount of information about the complex arrangement of soil structure and have limited capability to reconstruct structural features or predict physical properties. We introduce three different spatial correlation functions as a comprehensive tool to characterize soil microstructure: 1) two-point probability functions, 2) linear functions, and 3) two-point cluster functions. This novel approach was tested on thin-sections (2.21×2.21 cm2) representing eight soils with different pore space configurations. The two-point probability and linear correlation functions were subsequently used as a part of simulated annealing optimization procedures to reconstruct soil structure. Comparison of original and reconstructed images was based on morphological characteristics, cluster correlation functions, total number of pores and pore-size distribution. Results showed excellent agreement for soils with isolated pores, but relatively poor correspondence for soils exhibiting dual-porosity features (i.e. superposition of pores and micro-cracks). Insufficient information content in the correlation function sets used for reconstruction may have contributed to the observed discrepancies. Improved reconstructions may be obtained by adding cluster and other correlation functions into reconstruction sets. Correlation functions and the associated stochastic reconstruction algorithms introduced here are universally applicable in soil science, such as for soil classification
Universal spatial correlation functions for describing and reconstructing soil microstructure.
Karsanina, Marina V; Gerke, Kirill M; Skvortsova, Elena B; Mallants, Dirk
2015-01-01
Structural features of porous materials such as soil define the majority of its physical properties, including water infiltration and redistribution, multi-phase flow (e.g. simultaneous water/air flow, or gas exchange between biologically active soil root zone and atmosphere) and solute transport. To characterize soil microstructure, conventional soil science uses such metrics as pore size and pore-size distributions and thin section-derived morphological indicators. However, these descriptors provide only limited amount of information about the complex arrangement of soil structure and have limited capability to reconstruct structural features or predict physical properties. We introduce three different spatial correlation functions as a comprehensive tool to characterize soil microstructure: 1) two-point probability functions, 2) linear functions, and 3) two-point cluster functions. This novel approach was tested on thin-sections (2.21×2.21 cm2) representing eight soils with different pore space configurations. The two-point probability and linear correlation functions were subsequently used as a part of simulated annealing optimization procedures to reconstruct soil structure. Comparison of original and reconstructed images was based on morphological characteristics, cluster correlation functions, total number of pores and pore-size distribution. Results showed excellent agreement for soils with isolated pores, but relatively poor correspondence for soils exhibiting dual-porosity features (i.e. superposition of pores and micro-cracks). Insufficient information content in the correlation function sets used for reconstruction may have contributed to the observed discrepancies. Improved reconstructions may be obtained by adding cluster and other correlation functions into reconstruction sets. Correlation functions and the associated stochastic reconstruction algorithms introduced here are universally applicable in soil science, such as for soil classification
Pair-correlation function of a metastable helium Bose-Einstein condensate
Zin, Pawel; Trippenbach, Marek; Gajda, Mariusz
2004-02-01
The pair-correlation function is one of the basic quantities to characterize the coherence properties of a Bose-Einstein condensate. We calculate this function in the experimentally important case of a zero temperature Bose-Einstein condensate in a metastable triplet helium state using the variational method with a pair-excitation ansatz. We compare our result with a pair-correlation function obtained for the hard-sphere potential with the same scattering length. Both functions are practically indistinguishable for distances greater than the scattering length. At smaller distances, due to interatomic interactions, the helium condensate shows strong correlations.
Determination of transfer function of COPE correlation interferometer instrument
NASA Technical Reports Server (NTRS)
Twitty, J.; Kindle, E. C.
1976-01-01
The comparison of theoretical and instrument response functions and its use as a procedure for determining the transfer function of the COPE correlation interferometer are summarized. Data show qualitative agreement can be obtained when discrepancies between theory and instrument are investigated and instrument components are analyzed in detail. Data were obtained using a set of calibration data and computer algorithms.
Revealing quantum correlation by negativity of the Wigner function
NASA Astrophysics Data System (ADS)
Taghiabadi, Razieh; Akhtarshenas, Seyed Javad; Sarbishaei, Mohsen
2016-05-01
We analyze two two-mode continuous variable separable states with the same marginal states. We adopt the definition of classicality in the form of well-defined positive Wigner function describing the state and find that although the states possess positive local Wigner functions, they exhibit negative Wigner functions for the global states. Using the negativity of Wigner function as an indicator of nonclassicality, we show that despite these states possess different negativities of the Wigner function, they do not reveal this difference as phase space nonclassicalities such as negativity of the Mandel Q parameter or quadrature squeezing. We then concentrate on quantum correlation of these states and show that quantum discord and local quantum uncertainty, as two well-defined measures of quantum correlation, manifest the difference between negativity of the Wigner functions. The non-Gaussianity of these states is also examined and show that the difference in behavior of their non-Gaussianity is the same as the difference between negativity of their Wigner functions. We also investigate the influence of correlation rank criterion and find that when the states can be produced locally from classical states, the Wigner functions cannot reveal their quantum correlations.
NASA Astrophysics Data System (ADS)
M, Y. Ali; J, Poulter
2013-06-01
In this work we study the correlation function of the ground state of a two-dimensional fully frustrated Ising model as well as spin glass. The Pfaffian method is used to calculate free energy and entropy as well as the correlation function. We estimate the exponent of spin correlation function for the fully frustrated model and spin glass. In this paper an overview of the latest results on the spin correlation function is presented.
Garashchuk, Sophya
2007-04-21
The de Broglie-Bohm formulation of the Schrodinger equation implies conservation of the wave function probability density associated with each quantum trajectory in closed systems. This conservation property greatly simplifies numerical implementations of the quantum trajectory dynamics and increases its accuracy. The reconstruction of a wave function, however, becomes expensive or inaccurate as it requires fitting or interpolation procedures. In this paper we present a method of computing wave packet correlation functions and wave function projections, which typically contain all the desired information about dynamics, without the full knowledge of the wave function by making quadratic expansions of the wave function phase and amplitude near each trajectory similar to expansions used in semiclassical methods. Computation of the quantities of interest in this procedure is linear with respect to the number of trajectories. The introduced approximations are consistent with approximate quantum potential dynamics method. The projection technique is applied to model chemical systems and to the H+H(2) exchange reaction in three dimensions.
Craig, Ian R; Manolopoulos, David E
2004-08-22
We propose an approximate method for calculating Kubo-transformed real-time correlation functions involving position-dependent operators, based on path integral (Parrinello-Rahman) molecular dynamics. The method gives the exact quantum mechanical correlation function at time zero, exactly satisfies the quantum mechanical detailed balance condition, and for correlation functions of the form C(Ax)(t) and C(xB)(t) it gives the exact result for a harmonic potential. It also works reasonably well at short times for more general potentials and correlation functions, as we illustrate with some example calculations. The method provides a consistent improvement over purely classical molecular dynamics that is most apparent in the low-temperature regime.
Correlation Function Analysis of Fiber Networks: Implications for Thermal Conductivity
NASA Technical Reports Server (NTRS)
Martinez-Garcia, Jorge; Braginsky, Leonid; Shklover, Valery; Lawson, John W.
2011-01-01
The heat transport in highly porous fiber structures is investigated. The fibers are supposed to be thin, but long, so that the number of the inter-fiber connections along each fiber is large. We show that the effective conductivity of such structures can be found from the correlation length of the two-point correlation function of the local conductivities. Estimation of the parameters, determining the conductivity, from the 2D images of the structures is analyzed.
Prevalence and correlates of functional dependence among maintenance dialysis patients.
Kavanagh, Niall T; Schiller, Brigitte; Saxena, Anjali B; Thomas, I-Chun; Kurella Tamura, Manjula
2015-10-01
Functional dependence is an important determinant of longevity and quality of life. The purpose of the current study was to determine the prevalence and correlates of functional dependence among patients with end-stage renal disease (ESRD) receiving maintenance dialysis. We enrolled 148 participants with ESRD from five clinics. Functional status, as measured by basic and instrumental activities of daily living (ADL, IADL), was ascertained by validated questionnaires. Functional dependence was defined as needing assistance in at least one of seven IADLs or at least one of four ADLs. Demographic characteristics, chronic health conditions, anthropometric measurements, and laboratories were assessed by a combination of self-report and chart review. Cognitive function was assessed with a neurocognitive battery, and depressive symptoms were assessed by questionnaire. Mean age of the sample was 56.2 ± 14.6 years. Eighty-seven participants (58.8%) demonstrated dependence in ADLs or IADLs, 70 (47.2%) exhibited IADL dependence alone, and 17 (11.5%) exhibited combined IADL and ADL dependence. In a multivariable-adjusted model, stroke, cognitive impairment, and higher systolic blood pressure were independent correlates of functional dependence. We found no significant association between demographic characteristics, chronic health conditions, depressive symptoms or laboratory measurements, and functional dependence. Impairment in executive function was more strongly associated with functional dependence than memory impairment. Functional dependence is common among ESRD patients and independently associated with stroke, systolic blood pressure, and executive function impairment.
Chiral and UA(1) Symmetry in Correlation Functions in Medium
NASA Astrophysics Data System (ADS)
Lee, Su Houng; Cho, Sungtae
2013-03-01
In this review, we will discuss how the chiral symmetry and UA(1) breaking effects are reflected in the correlation functions. Using the Banks-Casher formula, one can identify the density of zero eigenvalues to be the common ingredient that governs the chiral symmetry breaking in correlation functions between currents composed of light quarks with or without a heavy quark. Similarly, the presence of the UA(1) breaking effect is determined through the contribution of the topologically nontrivial configurations that depends on the number of flavors. We also discuss how the symmetry breaking effects are reflected in the gluon correlation functions. Finally, we review the Witten-Veneziano (WV) formula for the η' mass in medium.
Correlation functions of higher-dimensional automatic sequences
NASA Astrophysics Data System (ADS)
Barbé, A.; von Haeseler, F.
2004-11-01
A procedure for calculating the (auto)correlation function \\gamma_f(k), k\\in {\\bb Z}^m , of an m-dimensional complex-valued automatic sequence f:{\\bb Z}^m\\rightarrow {\\bb C} , is presented. This is done by deriving a recursion for the vector correlation function Γker(f)(k) whose components are the (cross)correlation functions between all sequences in the finite set ker(f), the so-called kernel of f which contains all properly defined decimations of f. The existence of Γker(f)(k), which is defined as a limit, for all k\\in {\\bb Z}^m , is shown to depend only on the existence of Γker(f)(0). This is illustrated for the higher-dimensional Thue-Morse, paper folding and Rudin-Shapiro sequences.
Wave function methods for fractional electrons.
Steinmann, Stephan N; Yang, Weitao
2013-08-21
Determining accurate chemical potentials is of considerable interest in various chemical and physical contexts: from small molecular charge-transfer complexes to bandgap in bulk materials such as semi-conductors. Chemical potentials are typically evaluated either by density functional theory, or, alternatively, by computationally more intensive Greens function based GW computations. To calculate chemical potentials, the ground state energy needs to be defined for fractional charges. We thus explore an extension of wave function theories to fractional charges, and investigate the ionization potential and electron affinity as the derivatives of the energy with respect to the electron number. The ultimate aim is to access the chemical potential of correlated wave function methods without the need of explicitly changing the numbers of electrons, making the approach readily applicable to bulk materials. We find that even though second order perturbation theory reduces the fractional charge error considerably compared to Hartree-Fock and standard density functionals, higher order perturbation theory is more accurate and coupled-cluster approaches are even more robust, provided the electrons are bound at the Hartree-Fock level. The success of post-HF approaches to improve over HF relies on two equally important aspects: the integer values are more accurate and the Coulomb correlation between the fractionally occupied orbital and all others improves the straight line behavior significantly as identified by a correction to Hartree-Fock. Our description of fractional electrons is also applicable to fractional spins, illustrating the ability of coupled-cluster singles and doubles to deal with two degenerate fractionally occupied orbitals, but its inadequacy for three and more fractional spins, which occur, for instance, for spherical atoms and when dissociating double bonds. Our approach explores the realm of typical wave function methods that are applied mostly in molecular
Correlation of Two Anthocyanin Quantification Methods: HPLC and Spectrophotometric Methods
Technology Transfer Automated Retrieval System (TEKTRAN)
The pH differential method and HPLC are methods that are commonly used by researchers and the food industry for quantifying anthocyanins in a sample. This study was conducted to establish a relationship between the two analytical methods. Seven juice samples containing an array of different individu...
A new 'Implicit correlation' method for cross-correlation sampling in MCNPX-PoliMi
Marcath, M. J.; Larsen, E. W.; Clarke, S. D.; Pozzi, S. A.
2013-07-01
Monte Carlo particle transport codes used to accurately model detector response are traditionally run in fully analog mode. Analog simulations of cross-correlation measurements with these codes are extremely time-consuming because the probability of correlated detection is extremely small, approximately equal to the product of the probabilities of a single detection in each detector. The new 'implicit correlation' method described here increases the number of correlation event scores thereby reducing variance and required computation times. The cost of the implicit correlation method is comparable to the cost of simulating single event detection for the lowest absolute detector efficiency in the problem. This method is especially useful in the nuclear non-proliferation and safeguards fields for simulating correlation measurements of shielded special nuclear material. The new method was implemented in MCNPX-PoliMi for neutron-neutron cross-correlations with a Cf-252 spontaneous fission source measured by two detectors of variable stand-offs. The method demonstrated good agreement with analog simulation results for multiple measurement geometries. Small differences between non-analog and analog cross-correlation distributions are attributed to known features of the specific problem simulated that will not be present in practical applications. (authors)
Gutzwiller density functional theory for correlated electron systems
Ho, K. M.; Schmalian, J.; Wang, C. Z.
2008-02-04
We develop a density functional theory (DFT) and formalism for correlated electron systems by taking as reference an interacting electron system that has a ground state wave function which exactly obeys the Gutzwiller approximation for all one-particle operators. The solution of the many-electron problem is mapped onto the self-consistent solution of a set of single-particle Schroedinger equations, analogously to standard DFT-local density approximation calculations.
Cross-correlation function of acoustic fields generated by random high-frequency sources.
Godin, Oleg A
2010-08-01
Long-range correlations of noise fields in arbitrary inhomogeneous, moving or motionless fluids are studied in the ray approximation. Using the stationary phase method, two-point cross-correlation function of noise is shown to approximate the sum of the deterministic Green's functions describing sound propagation in opposite directions between the two points. Explicit relations between amplitudes of respective ray arrivals in the noise cross-correlation function and the Green's functions are obtained and verified against specific problems allowing an exact solution. Earlier results are extended by simultaneously accounting for sound absorption, arbitrary distribution of noise sources in a volume and on surfaces, and fluid inhomogeneity and motion. The information content of the noise cross-correlation function is discussed from the viewpoint of passive acoustic characterization of inhomogeneous flows.
Correlative Light Electron Microscopy: Connecting Synaptic Structure and Function
Begemann, Isabell; Galic, Milos
2016-01-01
Many core paradigms of contemporary neuroscience are based on information obtained by electron or light microscopy. Intriguingly, these two imaging techniques are often viewed as complementary, yet separate entities. Recent technological advancements in microscopy techniques, labeling tools, and fixation or preparation procedures have fueled the development of a series of hybrid approaches that allow correlating functional fluorescence microscopy data and ultrastructural information from electron micrographs from a singular biological event. As correlative light electron microscopy (CLEM) approaches become increasingly accessible, long-standing neurobiological questions regarding structure-function relation are being revisited. In this review, we will survey what developments in electron and light microscopy have spurred the advent of correlative approaches, highlight the most relevant CLEM techniques that are currently available, and discuss its potential and limitations with respect to neuronal and synapse-specific applications. PMID:27601992
Functional profiling methods in cancer.
Dopazo, Joaquín
2010-01-01
The introduction of new high-throughput methodologies such as DNA microarrays constitutes a major breakthrough in cancer research. The unprecedented amount of data produced by such technologies has opened new avenues for interrogating living systems although, at the same time, it has demanded of the development of new data analytical methods as well as new strategies for testing hypotheses. A history of early successful applications in cancer boosted the use of microarrays and fostered further applications in other fields. Keeping the pace with these technologies, bioinformatics offers new solutions for data analysis and, what is more important, permits the formulation of a new class of hypotheses inspired in systems biology, more oriented to pathways or, in general, to modules of functionally related genes. Although these analytical methodologies are new, some options are already available and are discussed in this chapter.
Correlation between thoracolumbar curvatures and respiratory function in older adults.
Rahman, Nor Najwatul Akmal Ab; Singh, Devinder Kaur Ajit; Lee, Raymond
2017-01-01
Aging is associated with alterations in thoracolumbar curvatures and respiratory function. Research information regarding the correlation between thoracolumbar curvatures and a comprehensive examination of respiratory function parameters in older adults is limited. The aim of the present study was to examine the correlation between thoracolumbar curvatures and respiratory function in community-dwelling older adults. Thoracolumbar curvatures (thoracic and lumbar) were measured using a motion tracker. Respiratory function parameters such as lung function, respiratory rate, respiratory muscle strength and respiratory muscle thickness (diaphragm and intercostal) were measured using a spirometer, triaxial accelerometer, respiratory pressure meter and ultrasound imaging, respectively. Sixty-eight community-dwelling older males and females from Kuala Lumpur, Malaysia, with mean (standard deviation) age of 66.63 (5.16) years participated in this cross-sectional study. The results showed that mean (standard deviation) thoracic curvature angle and lumbar curvature angles were -46.30° (14.66°) and 14.10° (10.58°), respectively. There was a significant negative correlation between thoracic curvature angle and lung function (forced expiratory volume in 1 second: r=-0.23, P<0.05; forced vital capacity: r=-0.32, P<0.05), quiet expiration intercostal thickness (r=-0.22, P<0.05) and deep expiration diaphragm muscle thickness (r=-0.21, P<0.05). The lumbar curvature angle had a significant negative correlation with respiratory muscle strength (r=-0.29, P<0.05) and diaphragm muscle thickness at deep inspiration (r=-0.22, P<0.05). However, respiratory rate was correlated neither with thoracic nor with lumbar curvatures. The findings of this study suggest that increase in both thoracic and lumbar curvatures is correlated with decrease in respiratory muscle strength, respiratory muscle thickness and some parameters of lung function. Clinically, both thoracic and lumbar curvatures
Correlation between thoracolumbar curvatures and respiratory function in older adults
Rahman, Nor Najwatul Akmal Ab; Singh, Devinder Kaur Ajit; Lee, Raymond
2017-01-01
Aging is associated with alterations in thoracolumbar curvatures and respiratory function. Research information regarding the correlation between thoracolumbar curvatures and a comprehensive examination of respiratory function parameters in older adults is limited. The aim of the present study was to examine the correlation between thoracolumbar curvatures and respiratory function in community-dwelling older adults. Thoracolumbar curvatures (thoracic and lumbar) were measured using a motion tracker. Respiratory function parameters such as lung function, respiratory rate, respiratory muscle strength and respiratory muscle thickness (diaphragm and intercostal) were measured using a spirometer, triaxial accelerometer, respiratory pressure meter and ultrasound imaging, respectively. Sixty-eight community-dwelling older males and females from Kuala Lumpur, Malaysia, with mean (standard deviation) age of 66.63 (5.16) years participated in this cross-sectional study. The results showed that mean (standard deviation) thoracic curvature angle and lumbar curvature angles were −46.30° (14.66°) and 14.10° (10.58°), respectively. There was a significant negative correlation between thoracic curvature angle and lung function (forced expiratory volume in 1 second: r=−0.23, P<0.05; forced vital capacity: r=−0.32, P<0.05), quiet expiration intercostal thickness (r=−0.22, P<0.05) and deep expiration diaphragm muscle thickness (r=−0.21, P<0.05). The lumbar curvature angle had a significant negative correlation with respiratory muscle strength (r=−0.29, P<0.05) and diaphragm muscle thickness at deep inspiration (r=−0.22, P<0.05). However, respiratory rate was correlated neither with thoracic nor with lumbar curvatures. The findings of this study suggest that increase in both thoracic and lumbar curvatures is correlated with decrease in respiratory muscle strength, respiratory muscle thickness and some parameters of lung function. Clinically, both thoracic and lumbar
Upper Limb Assessment in Tetraplegia: Clinical, Functional and Kinematic Correlations
ERIC Educational Resources Information Center
Cacho, Enio Walker Azevedo; de Oliveira, Roberta; Ortolan, Rodrigo L.; Varoto, Renato; Cliquet, Alberto
2011-01-01
The aim of this study was to correlate clinical and functional evaluations with kinematic variables of upper limp reach-to-grasp movement in patients with tetraplegia. Twenty chronic patients were selected to perform reach-to-grasp kinematic assessment using a target placed at a distance equal to the arm's length. Kinematic variables (hand peak…
Finite size effect on the magnon's correlation functions
Lee, Bum-Hoon; Park, Chanyong
2011-10-15
We calculate the finite size correction on the three-point correlation function between two giant magnons and one marginal operator, which is dual to a dilaton field of the bulk gravity theory. We also check that the structure constant in the string setup is exactly the same as one of the renormalization group analyses in the gauge theory.
Spatial Correlation Function of the Chandra Selected Active Galactic Nuclei
NASA Technical Reports Server (NTRS)
Yang, Y.; Mushotzky, R. F.; Barger, A. J.; Cowie, L. L.
2006-01-01
We present the spatial correlation function analysis of non-stellar X-ray point sources in the Chandra Large Area Synoptic X-ray Survey of Lockman Hole Northwest (CLASXS). Our 9 ACIS-I fields cover a contiguous solid angle of 0.4 deg(exp 2) and reach a depth of 3 x 10(exp -15) erg/square cm/s in the 2-8 keV band. We supplement our analysis with data from the Chandra Deep Field North (CDFN). The addition of this field allows better probe of the correlation function at small scales. A total of 233 and 252 sources with spectroscopic information are used in the study of the CLASXS and CDFN fields respectively. We calculate both redshift-space and projected correlation functions in co-moving coordinates, averaged over the redshift range of 0.1 < z < 3.0, for both CLASXS and CDFN fields for a standard cosmology with Omega(sub Lambda) = 0.73,Omega(sub M) = 0.27, and h = 0.71 (H(sub 0) = 100h km/s Mpc(exp -1). The correlation function for the CLASXS field over scales of 3 Mpc< s < 200 Mpc can be modeled as a power-law of the form xi(s) = (S/SO)(exp - gamma), with gamma = 1.6(sup +0.4 sub -0.3) and S(sub o) = 8.0(sup +.14 sub -1.5) Mpc. The redshift-space correlation function for CDFN on scales of 1 Mpc< s < 100 Mpc is found to have a similar correlation length so = 8.55(sup +0.74 sub -0.74) Mpc, but a shallower slope (gamma = 1.3 +/- 0.1). The real-space correlation functions derived from the projected correlation functions, are found to be tau(sub 0 = 8.1(sup +1.2 sub -2.2) Mpc, and gamma = 2.1 +/- 0.5 for the CLASXS field, and tau(sub 0) = 5.8(sup +.1.0 sub -1.5) Mpc, gamma = 1.38(sup +0.12 sub -0.14 for the CDFN field. By comparing the real- and redshift-space correlation functions in the combined CLASXS and CDFN samples, we are able to estimate the redshift distortion parameter Beta = 0.4 +/- 0.2 at an effective redshift z = 0.94. We compare the correlation functions for hard and soft spectra sources in the CLASXS field and find no significant difference between the
Correlation theory-based signal processing method for CMF signals
NASA Astrophysics Data System (ADS)
Shen, Yan-lin; Tu, Ya-qing
2016-06-01
Signal processing precision of Coriolis mass flowmeter (CMF) signals affects measurement accuracy of Coriolis mass flowmeters directly. To improve the measurement accuracy of CMFs, a correlation theory-based signal processing method for CMF signals is proposed, which is comprised of the correlation theory-based frequency estimation method and phase difference estimation method. Theoretical analysis shows that the proposed method eliminates the effect of non-integral period sampling signals on frequency and phase difference estimation. The results of simulations and field experiments demonstrate that the proposed method improves the anti-interference performance of frequency and phase difference estimation and has better estimation performance than the adaptive notch filter, discrete Fourier transform and autocorrelation methods in terms of frequency estimation and the data extension-based correlation, Hilbert transform, quadrature delay estimator and discrete Fourier transform methods in terms of phase difference estimation, which contributes to improving the measurement accuracy of Coriolis mass flowmeters.
Local-hybrid functional based on the correlation length
Johnson, Erin R.
2014-09-28
Local-hybrid functionals involve position-dependent mixing of Hartree-Fock and density-functional exchange, which should allow improved performance relative to conventional hybrids by reducing the inherent delocalization error and improving the long-range behaviour. Herein, the same-spin correlation length, obtained from the Fermi-hole radius, is used as the mixing parameter. The performance of the resulting local-hybrid functional is assessed for standard thermochemical and kinetics benchmarks. The local hybrid is shown to perform significantly better than the corresponding global hybrid in almost all cases.
Spatiotemporal velocity-velocity correlation function in fully developed turbulence
NASA Astrophysics Data System (ADS)
Canet, Léonie; Rossetto, Vincent; Wschebor, Nicolás; Balarac, Guillaume
2017-02-01
Turbulence is a ubiquitous phenomenon in natural and industrial flows. Since the celebrated work of Kolmogorov in 1941, understanding the statistical properties of fully developed turbulence has remained a major quest. In particular, deriving the properties of turbulent flows from a mesoscopic description, that is, from the Navier-Stokes equation, has eluded most theoretical attempts. Here, we provide a theoretical prediction for the functional space and time dependence of the velocity-velocity correlation function of homogeneous and isotropic turbulence from the field theory associated to the Navier-Stokes equation with stochastic forcing. This prediction, which goes beyond Kolmogorov theory, is the analytical fixed point solution of nonperturbative renormalization group flow equations, which are exact in the limit of large wave numbers. This solution is compared to two-point two-times correlation functions computed in direct numerical simulations. We obtain a remarkable agreement both in the inertial and in the dissipative ranges.
Entropy and correlation functions of a driven quantum spin chain
Cherng, R. W.; Levitov, L. S.
2006-04-15
We present an exact solution for a quantum spin chain driven through its critical points. Our approach is based on a many-body generalization of the Landau-Zener transition theory, applied to a fermionized spin Hamiltonian. The resulting nonequilibrium state of the system, while being a pure quantum state, has local properties of a mixed state characterized by finite entropy density associated with Kibble-Zurek defects. The entropy and the finite spin correlation length are functions of the rate of sweep through the critical point. We analyze the anisotropic XY spin-1/2 model evolved with a full many-body evolution operator. With the help of Toeplitz determinant calculus, we obtain an exact form of correlation functions. The properties of the evolved system undergo an abrupt change at a certain critical sweep rate, signaling the formation of ordered domains. We link this phenomenon to the behavior of complex singularities of the Toeplitz generating function.
Extension of local-type inequality for the higher order correlation functions
Suyama, Teruaki; Yokoyama, Shuichiro E-mail: shu@a.phys.nagoya-u.ac.jp
2011-07-01
For the local-type primordial perturbation, it is known that there is an inequality between the bispectrum and the trispectrum. By using the diagrammatic method, we develop a general formalism to systematically construct the similar inequalities up to any order correlation function. As an application, we explicitly derive all the inequalities up to six and eight-point functions.
Correlation Between Vision and Cognitive Function in the Elderly
Spierer, Oriel; Fischer, Naomi; Barak, Adiel; Belkin, Michael
2016-01-01
Abstract The correlation between vision and cognition is not fully understood. Visual impairment in the elderly has been associated with impaired cognitive function, dementia, and Alzheimer disease. The aim was to study the correlation between near visual acuity (VA), refraction, and cognitive state in an elderly population. Subjects ≥75 years were enrolled in this cross-sectional study. Refraction and near VA was tested. Cognitive function was evaluated with a version of the mini-mental state examination for the visually impaired (MMSE-blind). The eye with better VA and no cataract or refractive surgery was analyzed. One-hundred ninety subjects (81.6 ± 5.1 years, 69.5% female) were included. Good VA (≤J3) was associated with high MMSE-blind (>17) (OR = 3.18, 95% CI = 1.57–6.43, P = 0.001). This remained significant adjusting for sex, age, and years of education. Wearing reading glasses correlated significantly with high MMSE-blind after adjustment for sex and age (OR = 2.14, 95% CI = 1.16–3.97, P = 0.016), but reached borderline significance after adjustment for education. There was a trend toward correlation between myopia and better MMSE-blind (r = −0.123, P = 0.09, Pearson correlation). Good VA and wearing glasses seem to correlate with better cognitive function. Reading glasses can serve as a protective factor against cognitive deterioration associated with sensory (visual) deprivation in old age. The association between myopia and cognition requires further investigation. PMID:26817872
Generalized parton correlation functions for a spin-0 hadron
Meissner, Stephan; Metz, Andreas; Schlegel, Marc; Goeke, Klaus
2008-08-01
The fully unintegrated, off-diagonal quark-quark correlator for a spin-0 hadron is parameterized in terms of so-called generalized parton correlation functions. Such objects are of relevance for the phenomenology of certain hard exclusive reactions. In particular, they can be considered as mother distributions of generalized parton distributions on the one hand and transverse momentum dependent parton distributions on the other. Therefore, our study provides new, model-independent insights into the recently proposed nontrivial relations between generalized and transverse momentum dependent parton distributions. As a by-product we obtain the first complete classification of generalized parton distributions beyond leading twist.
Large N correlation functions in superconformal field theories
NASA Astrophysics Data System (ADS)
Rodriguez-Gomez, Diego; Russo, Jorge G.
2016-06-01
We compute correlation functions of chiral primary operators in mathcal{N}=2 super-conformal theories at large N using a construction based on supersymmetric localization recently developed by Gerchkovitz et al. We focus on mathcal{N}=4 SYM as well as on supercon-formal QCD. In the case of mathcal{N}=4 we recover the free field theory results as expected due to non-renormalization theorems. In the case of superconformal QCD we study the planar expansion in the large N limit. The final correlators admit a simple generalization to a finite N formula which exactly matches the various small N results in the literature.
Rangaprakash, D; Hu, Xiaoping; Deshpande, Gopikrishna
2013-04-01
It is increasingly being recognized that resting state brain connectivity derived from functional magnetic resonance imaging (fMRI) data is an important marker of brain function both in healthy and clinical populations. Though linear correlation has been extensively used to characterize brain connectivity, it is limited to detecting first order dependencies. In this study, we propose a framework where in phase synchronization (PS) between brain regions is characterized using a new metric "correlation between probabilities of recurrence" (CPR) and subsequent graph-theoretic analysis of the ensuing networks. We applied this method to resting state fMRI data obtained from human subjects with and without administration of propofol anesthetic. Our results showed decreased PS during anesthesia and a biologically more plausible community structure using CPR rather than linear correlation. We conclude that CPR provides an attractive nonparametric method for modeling interactions in brain networks as compared to standard correlation for obtaining physiologically meaningful insights about brain function.
Long-range correlation energy calculated from coupled atomic response functions
Ambrosetti, Alberto; Reilly, Anthony M.; Tkatchenko, Alexandre; DiStasio, Robert A.
2014-05-14
An accurate determination of the electron correlation energy is an essential prerequisite for describing the structure, stability, and function in a wide variety of systems. Therefore, the development of efficient approaches for the calculation of the correlation energy (and hence the dispersion energy as well) is essential and such methods can be coupled with many density-functional approximations, local methods for the electron correlation energy, and even interatomic force fields. In this work, we build upon the previously developed many-body dispersion (MBD) framework, which is intimately linked to the random-phase approximation for the correlation energy. We separate the correlation energy into short-range contributions that are modeled by semi-local functionals and long-range contributions that are calculated by mapping the complex all-electron problem onto a set of atomic response functions coupled in the dipole approximation. We propose an effective range-separation of the coupling between the atomic response functions that extends the already broad applicability of the MBD method to non-metallic materials with highly anisotropic responses, such as layered nanostructures. Application to a variety of high-quality benchmark datasets illustrates the accuracy and applicability of the improved MBD approach, which offers the prospect of first-principles modeling of large structurally complex systems with an accurate description of the long-range correlation energy.
QSO clustering - II. The correlation function of IRAS seyfert galaxies.
NASA Astrophysics Data System (ADS)
Georgantopoulos, I.; Shanks, T.
1994-12-01
We investigate the clustering properties of 192 Seyfert galaxies from the IRAS all-sky survey. Using the spatial correlation function, we detect evidence of Seyfert clustering at the 2σ confidence level at < 10 h^-1^ Mpc separations, and at the 3{SIGMA} level at < 20 h^-1^ Mpc separations. Comparison of the QSO correlation function amplitude at high redshifts, z = 1.4, with that of Seyferts below 10 h^-1^ comoving Mpc leads us to reject the stable model of AGN clustering evolution at the 4σ level, whereas a comoving model where QSOs randomly sample the galaxy distribution is more consistent. The main uncertainty here now lies in the statistical error on the amplitude of the clustering in the faint QSO surveys at z = 1.4. The Seyfert-QDOT cross-correlation function is measured to be approximately a factor of 2 higher than the QDOT galaxy autocorrelation function, suggesting an enhanced environment for Seyferts with respect to IRAS galaxies, but it is not clear whether this is also the case with respect to optical galaxies. We conclude that the comoving model is probably favoured overall, at least on the r < 10 h^-1^ Mpc scales investigated here, but it is not yet possible to rule out intermediate models: for example, an enhanced-environment, stable model with ξ(r)=(r/3)^-1.8^ at z = 1.4, which is statistically consistent with the faint QSO data.
Analytic height correlation function of rough surfaces derived from light scattering
NASA Astrophysics Data System (ADS)
Zamani, M.; Shafiei, F.; Fazeli, S. M.; Downer, M. C.; Jafari, G. R.
2016-10-01
We derive an analytic expression for the height correlation function of a homogeneous, isotropic rough surface based on the inverse wave scattering method of Kirchhoff theory. The expression directly relates the height correlation function to diffuse scattered intensity along a linear path at fixed polar angle. We test the solution by measuring the angular distribution of light scattered from rough silicon surfaces and comparing extracted height correlation functions to those derived from atomic force microscopy (AFM). The results agree closely with AFM over a wider range of roughness parameters than previous formulations of the inverse scattering problem, while relying less on large-angle scatter data. Our expression thus provides an accurate analytical equation for the height correlation function of a wide range of surfaces based on measurements using a simple, fast experimental procedure.
NASA Astrophysics Data System (ADS)
Wang, Qian; Mei, Hai-Ping; Qian, Xian-Mei; Rao, Rui-Zhong
2016-10-01
A theory about scales in atmospheric optical turbulence vortex from the point view of spatial correlation function is described. Then an experiment is carried out to prove this theory by the fiber optical turbulence sensor array near the ground. Results show that the outer scale has a mean value of 0.62m and varies from 0.34m to 0.95m by doing a nonlinear fitting on spatial correlation functions. With this method, the value of the outer scale can be given directly without any hypothesis when the optical turbulence is well-developed. A question about how the trend of the spatial correlation function show when the displacement approaches the outer scale is solved. This research can be regarded as a progress about understanding the characters of spatial correlation function in optical turbulence.
NASA Astrophysics Data System (ADS)
Gori-Giorgi, Paola
I will present some recent results based on the strictly-correlated electrons (SCE) functional: 1) a rigorous method to set lower bounds to the optimal particle-number dependent constant appearing in the Lieb-Oxford bound, and 2) an investigation of exact properties in the time domain, including an analytical expression for the kernel in one-dimension, with an analysis of its behavior for the case of bond-breaking excitations. ERC Consolidator Grant 648932.
Cheng, Jin; Yu, Kuang; Libisch, Florian; Dieterich, Johannes M; Carter, Emily A
2017-03-14
Quantum mechanical embedding theories partition a complex system into multiple spatial regions that can use different electronic structure methods within each, to optimize trade-offs between accuracy and cost. The present work incorporates accurate but expensive correlated wave function (CW) methods for a subsystem containing the phenomenon or feature of greatest interest, while self-consistently capturing quantum effects of the surroundings using fast but less accurate density functional theory (DFT) approximations. We recently proposed two embedding methods [for a review, see: Acc. Chem. Res. 2014 , 47 , 2768 ]: density functional embedding theory (DFET) and potential functional embedding theory (PFET). DFET provides a fast but non-self-consistent density-based embedding scheme, whereas PFET offers a more rigorous theoretical framework to perform fully self-consistent, variational CW/DFT calculations [as defined in part 1, CW/DFT means subsystem 1(2) is treated with CW(DFT) methods]. When originally presented, PFET was only tested at the DFT/DFT level of theory as a proof of principle within a planewave (PW) basis. Part 1 of this two-part series demonstrated that PFET can be made to work well with mixed Gaussian type orbital (GTO)/PW bases, as long as optimized GTO bases and consistent electron-ion potentials are employed throughout. Here in part 2 we conduct the first PFET calculations at the CW/DFT level and compare them to DFET and full CW benchmarks. We test the performance of PFET at the CW/DFT level for a variety of types of interactions (hydrogen bonding, metallic, and ionic). By introducing an intermediate CW/DFT embedding scheme denoted DFET/PFET, we show how PFET remedies different types of errors in DFET, serving as a more robust type of embedding theory.
NASA Astrophysics Data System (ADS)
Ramos, J. G. G. S.; Barbosa, A. L. R.; Carlson, B. V.; Frederico, T.; Hussein, M. S.
2016-01-01
We derive analytical expressions for the correlation functions of the electronic conductance fluctuations of an open quantum dot under several conditions. Both the variation of energy and that of an external parameter, such as an applied perpendicular or parallel magnetic fields, are considered in the general case of partial openness. These expressions are then used to obtain the ensemble-averaged density of maxima, a measure recently suggested to contain invaluable information concerning the correlation widths of chaotic systems. The correlation width is then calculated for the case of energy variation, and a significant deviation from the Weisskopf estimate is found in the case of two terminals. The results are extended to more than two terminals. All of our results are analytical. The use of these results in other fields, such as nuclei, where the system can only be studied through a variation of the energy, is then discussed.
On the application of correlation function matrices in OMA
NASA Astrophysics Data System (ADS)
Brincker, Rune
2017-03-01
In this paper the theoretical solution for the correlation function matrix of the random response of a structural system is re-visited. It is shown that using the classical definition of the correlation functions, the row space is defined by the mode shapes of the system, whereas the column space is defined by the modal participation vectors. This means that only the rows can be used for unbiased modal identification in operational modal analysis and if the columns are used for identification, then bias will be introduced on the mode shape estimates. It is pointed out that the mode shape bias is strongly dependent on the frequency distance between the modes, i.e. bias will significantly increase in case of closely spaced modes. The identification errors on the estimated biased and unbiased mode shapes are studied in a simulation example.
CFT correlation functions from AdS/CFT correspondence
NASA Astrophysics Data System (ADS)
Matusis, Alec
In this thesis we discuss correlation functions of N = 4, d = 4 Super-Yang-Mills theory in the strong coupling regime. Namely, the recent conjecture of the equivalence of the string theory in AdS5 x S5 background to the N = 4, d = 4 SYM theory with SU( N) gauge group allows to find correlation functions of the CFT in the limit of large t'Hooft coupling and at large N by evaluating relatively simple tree-level supergravity amplitudes. We discuss the basic ideas of the AdS supergravity computations, and establish the techniques for evaluating tree-level AdS supergravity scattering amplitudes with fixed rates of fall-offs of the fields as they approach AdS boundary. We translate these supergravity results into field theory language and learn several interesting things. First, at the level of the two-point correlation functions we learn about the necessity for the introduction of a cut-off in seemingly convergent AdS supergravity computations. Next, we find a non-renormalization property of certain 3-point functions. Finally, we find an explicit expression for certain 4-point functions, which deviate from free-field approximation in perturbation theory, thus providing some new non- perturbative information about SYM. We study various limits of these 4-point functions, with intention to give them an OPE interpretation. We find logarithmic singularities in all limits, and discuss their compatibility with existence of an OPE at strong coupling. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)
Correlated Protein Function Prediction via Maximization of Data-Knowledge Consistency.
Wang, Hua; Huang, Heng; Ding, Chris
2015-06-01
Conventional computational approaches for protein function prediction usually predict one function at a time, fundamentally. As a result, the protein functions are treated as separate target classes. However, biological processes are highly correlated in reality, which makes multiple functions assigned to a protein not independent. Therefore, it would be beneficial to make use of function category correlations when predicting protein functions. In this article, we propose a novel Maximization of Data-Knowledge Consistency (MDKC) approach to exploit function category correlations for protein function prediction. Our approach banks on the assumption that two proteins are likely to have large overlap in their annotated functions if they are highly similar according to certain experimental data. We first establish a new pairwise protein similarity using protein annotations from knowledge perspective. Then by maximizing the consistency between the established knowledge similarity upon annotations and the data similarity upon biological experiments, putative functions are assigned to unannotated proteins. Most importantly, function category correlations are gracefully incorporated into our learning objective through the knowledge similarity. Comprehensive experimental evaluations on the Saccharomyces cerevisiae species have demonstrated promising results that validate the performance of our methods.
Methods of making functionalized nanorods
Gur, Ilan [San Francisco, CA; Milliron, Delia [Berkeley, CA; Alivisatos, A Paul [Oakland, CA; Liu, Haitao [Berkeley, CA
2012-01-10
A process for forming functionalized nanorods. The process includes providing a substrate, modifying the substrate by depositing a self-assembled monolayer of a bi-functional molecule on the substrate, wherein the monolayer is chosen such that one side of the bi-functional molecule binds to the substrate surface and the other side shows an independent affinity for binding to a nanocrystal surface, so as to form a modified substrate. The process further includes contacting the modified substrate with a solution containing nanocrystal colloids, forming a bound monolayer of nanocrystals on the substrate surface, depositing a polymer layer over the monolayer of nanocrystals to partially cover the monolayer of nanocrystals, so as to leave a layer of exposed nanocrystals, functionalizing the exposed nanocrystals, to form functionalized nanocrystals, and then releasing the functionalized nanocrystals from the substrate.
Linearized path integral approach for calculating nonadiabatic time correlation functions.
Bonella, Sara; Montemayor, Daniel; Coker, David F
2005-05-10
We show that quantum time correlation functions including electronically nonadiabatic effects can be computed by using an approach in which their path integral expression is linearized in the difference between forward and backward nuclear paths while the electronic component of the amplitude, represented in the mapping formulation, can be computed exactly, leading to classical-like equations of motion for all degrees of freedom. The efficiency of this approach is demonstrated in some simple model applications.
Statistical Study of Turbulence: Spectral Functions and Correlation Coefficients
NASA Technical Reports Server (NTRS)
Frenkiel, Francois N.
1958-01-01
In reading the publications on turbulence of different authors, one often runs the risk of confusing the various correlation coefficients and turbulence spectra. We have made a point of defining, by appropriate concepts, the differences which exist between these functions. Besides, we introduce in the symbols a few new characteristics of turbulence. In the first chapter, we study some relations between the correlation coefficients and the different turbulence spectra. Certain relations are given by means of demonstrations which could be called intuitive rather than mathematical. In this way we demonstrate that the correlation coefficients between the simultaneous turbulent velocities at two points are identical, whether studied in Lagrange's or in Euler's systems. We then consider new spectra of turbulence, obtained by study of the simultaneous velocities along a straight line of given direction. We determine some relations between these spectra and the correlation coefficients. Examining the relation between the spectrum of the turbulence measured at a fixed point and the longitudinal-correlation curve given by G. I. Taylor, we find that this equation is exact only when the coefficient is very small.
Hydrodynamic Waves and Correlation Functions in Dusty Plasmas
NASA Astrophysics Data System (ADS)
Bhattacharjee, A.; Wang, Xiaogang
1997-11-01
A hydrodynamic description of strongly coupled dusty plasmas is given when physical quantities vary slowly in space and time and the system can be assumed to be in local thermodynamic equilibrium. The linear waves in such a system are analyzed. In particular, a dispersion equation is derived for low-frequency dust acoustic waves, including collisional damping effects, and compared with experimental results. The linear response of the system is calculated from the fluctuation-dissipation theorem and the hydrodynamic equations. The requirement that these two calculations coincide constrains the particle correlation function for slowly varying perturbations [L. P. Kadanoff and P. C. Martin, Ann. Phys. 24, 419 (1963)]. It is shown that in the presence of the slow dust-acoustic waves, the dust auto-correlation function is of the Debye-Hekel form and the shielding distance is the dust Debye length. In the short-wavelength regime, an integral equation is derived from kinetic theory and solved numerically to yield particle correlation functions that display ``liquid-like'' behavior and have been observed experimentally [R. A.. Quinn, C. Cui, J. Goree, J. B. Pieper, H. Thomas and G. E. Morfill, Phys. Rev. E 53, R2049 (1996)].
Trait correlates and functional significance of heteranthery in flowering plants.
Vallejo-Marín, Mario; Da Silva, Elizabeth M; Sargent, Risa D; Barrett, Spencer C H
2010-10-01
• Flowering plants display extraordinary diversity in the morphology of male sexual organs, yet the functional significance of this variation is not well understood. Here, we conducted a comparative analysis of floral correlates of heteranthery - the morphological and functional differentiation of anthers within flowers - among angiosperm families to identify traits associated with this condition. • We performed a phylogenetic analysis of correlated evolution between heteranthery and several floral traits commonly reported from heterantherous taxa. In addition, we quantified the effect of phylogenetic uncertainty in the observed patterns of correlated evolution by comparing trees in which polytomous branches were randomly resolved. • Heteranthery is reported from 12 angiosperm orders and is phylogenetically associated with the absence of floral nectaries, buzz-pollination and enantiostyly (mirror-image flowers). These associations are robust to particularities of the underlying phylogenetic hypothesis. • Heteranthery has probably evolved as a result of pollinator-mediated selection and appears to function to reduce the conflict of relying on pollen both as food to attract pollinators and as the agent of male gamete transfer. The relative scarcity of heteranthery among angiosperm families suggests that the conditions permitting its evolution are not easily met despite the abundance of pollen-collecting bees and nectarless flowers.
Correlation between Pediatric Balance Scale and Functional Test in Children with Cerebral Palsy
Duarte, Natália de A. C.; Grecco, Luanda André Collange; Franco, Renata Calhes; Zanon, Nelci; Oliveira, Cláudia Santos
2014-01-01
[Purpose] To investigate the correlation of functional balance with the functional performance of children with cerebral palsy. [Subjects and Methods] This was a cross-sectional study of children with cerebral palsy with mild to moderate impairment. The children were divided into 3 groups based on motor impairment. The evaluation consisted of the administration of the Pediatric Balance Scale (PBS) and the Pediatric Evaluation Disability Inventory. Correlations between the instruments were determined by calculating Pearson’s correlation coefficients. [Results] In Group 1, a strong positive correlation was found between the PBS and the mobility dimension of the Pediatric Evaluation Disability Inventory (r=0.82), and a moderate correlation was found between the PBS and self-care dimension of the Pediatric Evaluation Disability Inventory (r=0.51). In Group 2, moderate correlations were found between the PBS and both the self-care dimension (r=0.57) and mobility dimension (r=0.41) of the Pediatric Evaluation Disability Inventory. In Group 3, the PBS was weakly correlated with the self-care dimension (r=0.11) and moderately correlated with the mobility dimension (r=0.55). [Conclusion] The PBS proved to be a good auxiliary tool for the evaluation of functional performance with regard to mobility, but cannot be considered a predictor of function in children with cerebral palsy. PMID:25013281
Atmospheric pollution measurement by optical cross correlation methods - A concept
NASA Technical Reports Server (NTRS)
Fisher, M. J.; Krause, F. R.
1971-01-01
Method combines standard spectroscopy with statistical cross correlation analysis of two narrow light beams for remote sensing to detect foreign matter of given particulate size and consistency. Method is applicable in studies of generation and motion of clouds, nuclear debris, ozone, and radiation belts.
Yuan, Naiming; Fu, Zuntao; Zhang, Huan; Piao, Lin; Xoplaki, Elena; Luterbacher, Juerg
2015-01-01
In this paper, a new method, detrended partial-cross-correlation analysis (DPCCA), is proposed. Based on detrended cross-correlation analysis (DCCA), this method is improved by including partial-correlation technique, which can be applied to quantify the relations of two non-stationary signals (with influences of other signals removed) on different time scales. We illustrate the advantages of this method by performing two numerical tests. Test I shows the advantages of DPCCA in handling non-stationary signals, while Test II reveals the “intrinsic” relations between two considered time series with potential influences of other unconsidered signals removed. To further show the utility of DPCCA in natural complex systems, we provide new evidence on the winter-time Pacific Decadal Oscillation (PDO) and the winter-time Nino3 Sea Surface Temperature Anomaly (Nino3-SSTA) affecting the Summer Rainfall over the middle-lower reaches of the Yangtze River (SRYR). By applying DPCCA, better significant correlations between SRYR and Nino3-SSTA on time scales of 6 ~ 8 years are found over the period 1951 ~ 2012, while significant correlations between SRYR and PDO on time scales of 35 years arise. With these physically explainable results, we have confidence that DPCCA is an useful method in addressing complex systems. PMID:25634341
Conformal Window and Correlation Functions in Lattice Conformal QCD
NASA Astrophysics Data System (ADS)
Iwasaki, Y.
We discuss various aspects of Conformal Field Theories on the Lattice. We mainly investigate the SU(3) gauge theory with Nf degenerate fermions in the fundamental representation, employing the one-plaquette gauge action and the Wilson fermion action. First we make a brief review of our previous works on the phase structure of lattice gauge theories in terms of the gauge coupling constant and the quark mass. We thereby clarify the reason why we conjecture that the conformal window is 7 ≤ Nf ≤ 16. Secondly, we introduce a new concept, "conformal theories with IR cutof" and point out that any numerical simulation on a lattice is bounded by an IR cutoff ∧IR. Then we make predictions that when Nf is within the conformal window, the propagator of a meson G(t) behaves at large t, as G(t) = c exp (-mHt)/tα, that is, a modified Yukawa-type decay form, instead of the usual exponential decay form exp (-mHt), in the small quark mass region. This holds on an any lattice for any coupling constant g, as far as g is between 0 and g*, where g* is the IR fixed point. We verify that numerical results really satisfy the predictions for the Nf = 7 case and the Nf = 16 case. Thirdly, we discuss small number of flavors (Nf = 2 ˜ 6) QCD at finite temperatures. We point out theoretically and verify numerically that the correlation functions at T/Tc > 1 exhibit the characteristics of the conformal function with IR cutoff, an exponential decay with power correction. Investigating our numerical data by a new method which we call the "local-analysis" of propagators, we observe that the Nf = 7 case and the Nf = 2 at T ˜ 2Tc case are similar to each other, while the Nf = 16 case and the Nf = 2 at T = 102 ˜ 105Tc cases are similar to each other. Further, we observe our data are consistent with the picture that the Nf = 7 case and the Nf = 2 at T ˜ 2Tc case are close to the meson unparticle model. On the other hand, the Nf = 16 case and the Nf = 2 at T = 102 ˜ 105Tc cases are close to
Distance correlation methods for discovering associations in large astrophysical databases
Martínez-Gómez, Elizabeth; Richards, Mercedes T.; Richards, Donald St. P. E-mail: mrichards@astro.psu.edu
2014-01-20
High-dimensional, large-sample astrophysical databases of galaxy clusters, such as the Chandra Deep Field South COMBO-17 database, provide measurements on many variables for thousands of galaxies and a range of redshifts. Current understanding of galaxy formation and evolution rests sensitively on relationships between different astrophysical variables; hence an ability to detect and verify associations or correlations between variables is important in astrophysical research. In this paper, we apply a recently defined statistical measure called the distance correlation coefficient, which can be used to identify new associations and correlations between astrophysical variables. The distance correlation coefficient applies to variables of any dimension, can be used to determine smaller sets of variables that provide equivalent astrophysical information, is zero only when variables are independent, and is capable of detecting nonlinear associations that are undetectable by the classical Pearson correlation coefficient. Hence, the distance correlation coefficient provides more information than the Pearson coefficient. We analyze numerous pairs of variables in the COMBO-17 database with the distance correlation method and with the maximal information coefficient. We show that the Pearson coefficient can be estimated with higher accuracy from the corresponding distance correlation coefficient than from the maximal information coefficient. For given values of the Pearson coefficient, the distance correlation method has a greater ability than the maximal information coefficient to resolve astrophysical data into highly concentrated horseshoe- or V-shapes, which enhances classification and pattern identification. These results are observed over a range of redshifts beyond the local universe and for galaxies from elliptical to spiral.
Relaxation method of compensation in an optical correlator
NASA Technical Reports Server (NTRS)
Juday, Richard D.; Daiuto, Brian J.
1987-01-01
An iterative method is proposed for the sharpening of programmable filters in a 4-f optical correlator. Continuously variable spatial light modulators (SLMs) permit the fine adjustment of optical processing filters so as to compensate for the departures from ideal behavior of a real optical system. Although motivated by the development of continuously variable phase-only SLMs, the proposed sharpening method is also applicable to amplitude modulators and, with appropriate adjustments, to binary modulators as well. A computer simulation is presented that illustrates the potential effectiveness of the method: an image is placed on the input to the correlator, and its corresponding phase-only filter is adjusted (allowed to relax) so as to produce a progressively brighter and more centralized peak in the correlation plane. The technique is highly robust against the form of the system's departure from ideal behavior.
Exact correlation functions in SU(2) N=2 superconformal QCD.
Baggio, Marco; Niarchos, Vasilis; Papadodimas, Kyriakos
2014-12-19
We report an exact solution of 2- and 3-point functions of chiral primary fields in SU(2) N=2 super-Yang-Mills theory coupled to four hypermultiplets. It is shown that these correlation functions are nontrivial functions of the gauge coupling, obeying differential equations which take the form of the semi-infinite Toda chain. We solve these equations recursively in terms of the Zamolodchikov metric that can be determined exactly from supersymmetric localization on the four-sphere. Our results are verified independently in perturbation theory with a Feynman diagram computation up to 2 loops. This is a short version of a companion paper that contains detailed technical remarks, additional material, and aspects of an extension to the SU(N) gauge group.
Reduced density-matrix functional theory: Correlation and spectroscopy
Di Sabatino, S.; Romaniello, P.; Berger, J. A.; Reining, L.
2015-07-14
In this work, we explore the performance of approximations to electron correlation in reduced density-matrix functional theory (RDMFT) and of approximations to the observables calculated within this theory. Our analysis focuses on the calculation of total energies, occupation numbers, removal/addition energies, and spectral functions. We use the exactly solvable Hubbard dimer at 1/4 and 1/2 fillings as test systems. This allows us to analyze the underlying physics and to elucidate the origin of the observed trends. For comparison, we also report the results of the GW approximation, where the self-energy functional is approximated, but no further hypothesis is made concerning the approximations of the observables. In particular, we focus on the atomic limit, where the two sites of the dimer are pulled apart and electrons localize on either site with equal probability, unless a small perturbation is present: this is the regime of strong electron correlation. In this limit, using the Hubbard dimer at 1/2 filling with or without a spin-symmetry-broken ground state allows us to explore how degeneracies and spin-symmetry breaking are treated in RDMFT. We find that, within the used approximations, neither in RDMFT nor in GW, the signature of strong correlation is present, when looking at the removal/addition energies and spectral function from the spin-singlet ground state, whereas both give the exact result for the spin-symmetry broken case. Moreover, we show how the spectroscopic properties change from one spin structure to the other.
Kumar, B V; Ng, T K
1996-04-10
The circular-harmonic-function correlation filter originally proposed by Hsu and Arsenault [Appl. Opt. 21, 4016 (1982)] for in-plane rotation invariance uses only one harmonic, which results in poor discrimination capability of the filter. Various methods to use multiple harmonics were explored previously by different researchers. We present a new method to combine multiple circular harmonics into a single filter that can provide the desired correlation response to in-plane rotation while minimizing the correlation-plane energy. Since multiple harmonics are included, the filter can discriminate well, and since correlation-plane energy is minimized, correlation peaks tend to be sharp. Since the designer can specify the desired in-plane rotation response, a variety of filter behaviors (including complete invariance to input rotations) can be obtained. Underlying theory is discussed, and simulation results are presented.
Temporal Correlation-Based Spatial Filtering of Rician Noise for Functional MRIs
NASA Astrophysics Data System (ADS)
Amir., A. Khaliq; M. Qureshi, I.; Jawad., A. Shah
2012-01-01
A novel correlation-based filter is presented for de-noising functional magnetic resonance imaging (fMRI) data. Temporal correlation-based exponential weights are defined for spatial smoothing of the data, with bias reduction using estimated noise variance. The proposed scheme is tested on simulated and real fMRI data. Finally, the results are compared with conventional filters. The method is found to be effectively suppressing the Rician noise in fMRI data, while improving the SNR.
The "Mixed" Green's Function Approach to Quantum Kinetics with Initial Correlations
NASA Astrophysics Data System (ADS)
Morozov, V. G.; Röpke, G.
1999-12-01
A method for deriving quantum kinetic equations with initial correlations is developed on the basis of the nonequilibrium Green's function formalism. The method is applicable to a wide range of correlated initial states described by nonequilibrium statistical thermodynamics. Initial correlations and the real-time evolution are treated by a unified technique employing many-component "mixed" Green's functions. The Dyson equation for the mixed Green's function leads to a set of equations for real-time Green's functions and new (cross) components linking initial correlations with dynamical processes. These equations are used to formulate a generalized Kadanoff-Baym ansatz for correlated initial states. A non-Markovian short-time kinetic equation is derived within the T-matrix approximation for the self-energies. The properties of the memory kernels in this equation are considered in detail in Born approximation for the T-matrices. The kinetic equation is demonstrated to conserve the total energy of the system. An explicit expression for the time-dependent correlation energy is obtained.
Casanova, David; Krylov, Anna I.
2016-01-07
A new method for quantifying the contributions of local excitation, charge resonance, and multiexciton configurations in correlated wave functions of multichromophoric systems is presented. The approach relies on fragment-localized orbitals and employs spin correlators. Its utility is illustrated by calculations on model clusters of hydrogen, ethylene, and tetracene molecules using adiabatic restricted-active-space configuration interaction wave functions. In addition to the wave function analysis, this approach provides a basis for a simple state-specific energy correction accounting for insufficient description of electron correlation. The decomposition scheme also allows one to compute energies of the diabatic states of the local excitonic, charge-resonance, and multi-excitonic character. The new method provides insight into electronic structure of multichromophoric systems and delivers valuable reference data for validating excitonic models.
Brains online: structural and functional correlates of habitual Internet use.
Kühn, Simone; Gallinat, Jürgen
2015-03-01
In the past decades, the Internet has become one of the most important tools to gather information and communicate with other people. Excessive use is a growing concern of health practitioners. Based on the assumption that excessive Internet use bears resemblance with addictive behaviour, we hypothesized alterations of the fronto-striatal network in frequent users. On magnetic resonance imaging scans of 62 healthy male adults, we computed voxel-based morphometry to identify grey matter (GM) correlates of excessive Internet use, assessed by means of the Internet Addiction Test (IAT) and functional connectivity analysis and amplitude of low-frequency fluctuation (ALFF) measures on resting state data to explore the functional networks associated with structural alterations. We found a significant negative association between the IAT score and right frontal pole GM volume (P < 0.001, family wise error corrected). Functional connectivity of right frontal pole to left ventral striatum was positively associated with higher IAT scores. Furthermore, the IAT score was positively correlated to ALFF in bilateral ventral striatum. The alterations in the fronto-striatal circuitry associated with growing IAT scores could reflect a reduction of top-down modulation of prefrontal areas, in particular, the ability to maintain long-term goals in face of distraction. The higher activation of ventral striatum at rest may indicate a constant activation in the context of a diminished prefrontal control. The results demonstrate that excessive Internet use may be driven by neuronal circuits relevant for addictive behaviour.
Spectral functions of strongly correlated extended systems via an exact quantum embedding
NASA Astrophysics Data System (ADS)
Booth, George H.; Chan, Garnet Kin-Lic
2015-04-01
Density matrix embedding theory (DMET) [Phys. Rev. Lett. 109, 186404 (2012), 10.1103/PhysRevLett.109.186404], introduced an approach to quantum cluster embedding methods whereby the mapping of strongly correlated bulk problems to an impurity with finite set of bath states was rigorously formulated to exactly reproduce the entanglement of the ground state. The formalism provided similar physics to dynamical mean-field theory at a tiny fraction of the cost but was inherently limited by the construction of a bath designed to reproduce ground-state, static properties. Here, we generalize the concept of quantum embedding to dynamic properties and demonstrate accurate bulk spectral functions at similarly small computational cost. The proposed spectral DMET utilizes the Schmidt decomposition of a response vector, mapping the bulk dynamic correlation functions to that of a quantum impurity cluster coupled to a set of frequency-dependent bath states. The resultant spectral functions are obtained on the real-frequency axis, without bath discretization error, and allows for the construction of arbitrary dynamic correlation functions. We demonstrate the method on the one- (1D) and two-dimensional (2D) Hubbard model, where we obtain zero temperature and thermodynamic limit spectral functions, and show the trivial extension to two-particle Green's functions. This advance therefore extends the scope and applicability of DMET in condensed-matter problems as a computationally tractable route to correlated spectral functions of extended systems and provides a competitive alternative to dynamical mean-field theory for dynamic quantities.
A double-correlation tremor-location method
NASA Astrophysics Data System (ADS)
Li, Ka Lok; Sgattoni, Giulia; Sadeghisorkhani, Hamzeh; Roberts, Roland; Gudmundsson, Olafur
2016-12-01
A double-correlation method is introduced to locate tremor sources based on stacks of complex, doubly-correlated tremor records of multiple triplets of seismographs back projected to hypothetical source locations in a geographic grid. Peaks in the resulting stack of moduli are inferred source locations. The stack of the moduli is a robust measure of energy radiated from a point source or point sources even when the velocity information is imprecise. Application to real data shows how double correlation focuses the source mapping compared to the common single correlation approach. Synthetic tests demonstrate the robustness of the method and its resolution limitations which are controlled by the station geometry, the finite frequency of the signal, the quality of the used velocity information and noise level. Both random noise and signal or noise correlated at time shifts that are inconsistent with the assumed velocity structure can be effectively suppressed. Assuming a surface-wave velocity, we can constrain the source location even if the surface-wave component does not dominate. The method can also in principle be used with body waves in three dimensions, although this requires more data and seismographs placed near the source for depth resolution.
A double-correlation tremor-location method
NASA Astrophysics Data System (ADS)
Li, Ka Lok; Sgattoni, Giulia; Sadeghisorkhani, Hamzeh; Roberts, Roland; Gudmundsson, Olafur
2017-02-01
A double-correlation method is introduced to locate tremor sources based on stacks of complex, doubly-correlated tremor records of multiple triplets of seismographs back projected to hypothetical source locations in a geographic grid. Peaks in the resulting stack of moduli are inferred source locations. The stack of the moduli is a robust measure of energy radiated from a point source or point sources even when the velocity information is imprecise. Application to real data shows how double correlation focuses the source mapping compared to the common single correlation approach. Synthetic tests demonstrate the robustness of the method and its resolution limitations which are controlled by the station geometry, the finite frequency of the signal, the quality of the used velocity information and noise level. Both random noise and signal or noise correlated at time shifts that are inconsistent with the assumed velocity structure can be effectively suppressed. Assuming a surface wave velocity, we can constrain the source location even if the surface wave component does not dominate. The method can also in principle be used with body waves in 3-D, although this requires more data and seismographs placed near the source for depth resolution.
The derivative discontinuity of the exchange-correlation functional.
Mori-Sánchez, Paula; Cohen, Aron J
2014-07-28
The derivative discontinuity is a key concept in electronic structure theory in general and density functional theory in particular. The electronic energy of a quantum system exhibits derivative discontinuities with respect to different degrees of freedom that are a consequence of the integer nature of electrons. The classical understanding refers to the derivative discontinuity of the total energy as a function of the total number of electrons (N), but it can also manifest at constant N. Examples are shown in models including several hydrogen systems with varying numbers of electrons or nuclear charge (Z), as well as the 1-dimensional Hubbard model (1DHM). Two sides of the problem are investigated: first, the failure of currently used approximate exchange-correlation functionals in DFT and, second, the importance of the derivative discontinuity in the exact electronic structure of molecules, as revealed by full configuration interaction (FCI). Currently, all approximate functionals, including hybrids, miss the derivative discontinuity, leading to basic errors that can be seen in many ways: from the complete failure to give the total energy of H2 and H2(+), to the missing gap in Mott insulators such as stretched H2 and the thermodynamic limit of the 1DHM, or a qualitatively incorrect density in the HZ molecule with two electrons and incorrect electron transfer processes. Description of the exact particle behaviour of electrons is emphasised, which is key to many important physical processes in real systems, especially those involving electron transfer, and offers a challenge for the development of new exchange-correlation functionals.
The Shane-Wirtanen counts. [in galaxy correlation function
NASA Technical Reports Server (NTRS)
Geller, M. J.; Kurtz, M. J.; De Lapparent, V.
1984-01-01
It is shown that the 2.5 degree-break in the galaxy correlation function derived from the Shane-Wirtanen star counts is indistinguishable from an artifact introduced by residual systematic variations in the effective magnitude limit from plate to plate. In order to avoid the introduction of a break, the maximum error from plate to plate must be no more than about 0.05 mag. Other large scale features in the data which are also affected by the systematic variations are discussed.
The Intermediate Scattering Function in Fluorescence Correlation Spectroscopy
NASA Astrophysics Data System (ADS)
Guerra, Rodrigo; Andrews, Ballard; Sen, Pabitra
2006-03-01
We formulate the autocorrelation function for Fluorescence Correlation Spectroscopy (FCS) GD(τ) in reciprocal space in terms of the of the Intermediate Scattering Function ISF(k,t) and the fourier transform of the Optical Response Function ORF(k). In this way we may extend the use of FCS to processes that have been studied using NMR, DLS, and neutron scattering. This formalism is useful for the complicated propagators involved in confined systems and in the study of diffusion in cells: where diffusion is either restricted or permeation through membrane is important. Calculations in k-space produce approximate expressions for the ORF using cumulant expansions that are accurate for small wavevectors. This provides descriptions for longer timescales better suited for studying time-dependent diffusion ISF(k,t)->exp[-tD(t)k^2] and provides a natural separation of contributions from system dynamics and from optical artifacts and aberrations. We will show an explicit derivation of a semi-analytical fit function for free diffusion based on standard electromagnetic analysis of a confocal optical apparatus. This fit function is then used to analyze a representative data set and has no free fit parameters other than the diffusion constant.
An Explicitly Correlated Wavelet Method for the Electronic Schroedinger Equation
Bachmayr, Markus
2010-09-30
A discretization for an explicitly correlated formulation of the electronic Schroedinger equation based on hyperbolic wavelets and exponential sum approximations of potentials is described, covering mathematical results as well as algorithmic realization, and discussing in particular the potential of methods of this type for parallel computing.
Insights on why graphic correlation (Shaw's method) works.
Edwards, L.E.
1984-01-01
In 1964 A.B.Shaw presented a method of correlating fossilferous sedimentary rocks based on interpretation of graphic plots of first- and last-occurrences of taxa. Because there is no way to determine the true total ranges of fossil taxa, it is instructive to test the accuracy of the method using hypothetical datasets. The dataset used here consists of 16 taxa in six sections with differing known rates of rock accumulation. In all graphs, a single straight-line correlation was a reasonable interpretation. The resulting ranges after the first and third rounds of compositing reproduce the 'true' ranges but with small errors. Slight errors in the positioning of individual correlation lines are more likely to lengthen ranges artificially than to shorten them. Shaw's method works well because, whereas actually sampled ranges will be shorter than true ranges, errors in correlation will be likely to extend some ranges. This or any exercise using simulated data is useful only if the hypothetical situation resembles real geologic situations and if insights derived from the hypothetical dataset provide insights into real situations. The method is only as good as the available data. -Author
Mantini, Dante; Hasson, Uri; Betti, Viviana; Perrucci, Mauro G; Romani, Gian Luca; Corbetta, Maurizio; Orban, Guy A; Vanduffel, Wim
2012-02-05
Evolution-driven functional changes in the primate brain are typically assessed by aligning monkey and human activation maps using cortical surface expansion models. These models use putative homologous areas as registration landmarks, assuming they are functionally correspondent. For cases in which functional changes have occurred in an area, this assumption prohibits to reveal whether other areas may have assumed lost functions. Here we describe a method to examine functional correspondences across species. Without making spatial assumptions, we assessed similarities in sensory-driven functional magnetic resonance imaging responses between monkey (Macaca mulatta) and human brain areas by temporal correlation. Using natural vision data, we revealed regions for which functional processing has shifted to topologically divergent locations during evolution. We conclude that substantial evolution-driven functional reorganizations have occurred, not always consistent with cortical expansion processes. This framework for evaluating changes in functional architecture is crucial to building more accurate evolutionary models.
Two-Dimensional Correlation Method for Polymer Analysis
Herman, Matthew Joseph
2015-06-08
Since its introduction by Noda in 1986 two-dimension correlation spectroscopy has been offering polymer scientists an opportunity to look more deeply into collected spectroscopic data. When the spectra are recorded in response to an external perturbation, it is possible to correlate the spectra and expand the information over a separate spectra axis allow for enhancement of spectral resolution, the ability to determine synchronous change, and a unique way to organize observed changes in the spectra into sequential order following a set of three simple rules. By organizing the 2D spectra into synchronous change plots and asynchronous change plots it is possible to correlate change between spectral regions and develop their temporal relationships to one another. With the introduction of moving-window correlation-spectroscopy by Thomas and Richardson in 2000, a method of binning and processing data, it became possible to directly correlate relationships generated in the spectra from the change in the perturbation variable. This method takes advantage of the added resolution of two-dimension spectroscopy and has been applied to study very week transitions found in polymer materials. Appling both of these techniques we are beginning to develop an understanding of how polymers decay under radiolytic aging, to develop a stronger understanding of changes in mechanical properties and the service capabilities of materials.
NASA Astrophysics Data System (ADS)
Rontani, Massimo; Molinari, Elisa; Maruccio, Giuseppe; Janson, Martin; Schramm, Andreas; Meyer, Christian; Matsui, Tomohiro; Heyn, Christian; Hansen, Wolfgang; Wiesendanger, Roland
2007-04-01
We show both theoretically and experimentally that scanning tunneling spectroscopy (STS) images of semiconductor quantum dots may display clear signatures of electron-electron correlation. We apply many-body tunneling theory to a realistic model, which fully takes into account correlation effects and dot anisotropy. Comparing measured STS images of freestanding InAs quantum dots with those calculated by the full configuration interaction method, we explain the wave-function sequence in terms of images of one- and two-electron states. The STS map corresponding to double charging is significantly distorted by electron correlation with respect to the noninteracting case.
Omega from the anisotropy of the redshift correlation function
NASA Technical Reports Server (NTRS)
Hamilton, A. J. S.
1993-01-01
Peculiar velocities distort the correlation function of galaxies observed in redshift space. In the large scale, linear regime, the distortion takes a characteristic quadrupole plus hexadecapole form, with the amplitude of the distortion depending on the cosmological density parameter omega. Preliminary measurements are reported here of the harmonics of the correlation function in the CfA, SSRS, and IRAS 2 Jansky redshift surveys. The observed behavior of the harmonics agrees qualitatively with the predictions of linear theory on large scales in every survey. However, real anisotropy in the galaxy distribution induces large fluctuations in samples which do not yet probe a sufficiently fair volume of the Universe. In the CfA 14.5 sample in particular, the Great Wall induces a large negative quadrupole, which taken at face value implies an unrealistically large omega 20. The IRAS 2 Jy survey, which covers a substantially larger volume than the optical surveys and is less affected by fingers-of-god, yields a more reliable and believable value, omega = 0.5 sup +.5 sub -.25.
The leak location package for assessment of the time-frequency correlation method for leak location
NASA Astrophysics Data System (ADS)
Faerman, V. A.; Cheremnov, A. G.; Avramchuk, V. S.; Shepetovsky, D. V.
2017-01-01
The paper describes the simplest implementation of a software and hardware package for acoustic correlation leak location and results of its performance assessment for location of water leaks from a metallic pipe in laboratory conditions. A distinctive feature of this leak locator is the use of the software based on the time-frequency correlation analysis of signals, which was proposed in our previous papers. Comparative analysis results are given for the information content of classical and time-frequency cross-correlation functions as obtained during processing of experimental data. The results obtained justify comparatively higher efficiency of a time-frequency cross correlation method to solve the leak location task. Improved efficiency is determined by bandpass filtration embedded into the time-frequency cross-correlation function calculation.
Correlation between static balance and functional autonomy in elderly women.
de Noronha Ribeiro Daniel, Fernanda; de Souza Vale, Rodrigo Gomes; Giani, Tania Santos; Bacellar, Silvia; Escobar, Tatiane; Stoutenberg, Mark; Dantas, Estélio Henrique Martin
2011-01-01
The purpose of the present study was to verify the correlation between static balance and functional autonomy in elderly women. The sample was a random selection of 32 sedentary elderly women (mean age=67.47 ± 7.37 years, body mass index=BMI=27.30 ± 5.07 kg/m(2)), who live in the city of Teresina in the state of Piauí, Brazil. Static balance was analyzed by stabilometric assessment using an electronic baropodometer which measured the average of the amplitude of postural oscillations in the right (RLD) and left (LLD) lateral displacements, anterior (AD) and posterior (PD) displacements, and in the elliptical area (EA) formed by the body's center of gravity. Functional autonomy was evaluated by a battery of tests from the LADEG protocol which is composed of: a 10 m walk (10 mW), getting up from a seated position (GSP), getting up from the prone position (GPP), getting up from a chair and movement around the house (GCMH), and putting on and taking off a shirt (PTS). The Spearman's correlation coefficient (r) indicated a positive and significant correlation between GPP and LLD (r=0.382; p=0.031), GPP and PD (r=0.398; p=0.024) and GPP and EA (r=0.368; p=0.038). These results show that sedentary elderly women who spent the greatest amount of time performing the GPP test achieved the largest mean amplitude of displacement leading to greater levels of instability.
Analysis/forecast experiments with a flow-dependent correlation function using FGGE data
NASA Technical Reports Server (NTRS)
Baker, W. E.; Bloom, S. C.; Carus, H.; Nestler, M. S.
1986-01-01
The use of a flow-dependent correlation function to improve the accuracy of an optimum interpolation (OI) scheme is examined. The development of the correlation function for the OI analysis scheme used for numerical weather prediction is described. The scheme uses a multivariate surface analysis over the oceans to model the pressure-wind error cross-correlation and it has the ability to use an error correlation function that is flow- and geographically-dependent. A series of four-day data assimilation experiments, conducted from January 5-9, 1979, were used to investigate the effect of the different features of the OI scheme (error correlation) on forecast skill for the barotropic lows and highs. The skill of the OI was compared with that of a successive correlation method (SCM) of analysis. It is observed that the largest difference in the correlation statistics occurred in barotropic and baroclinic lows and highs. The comparison reveals that the OI forecasts were more accurate than the SCM forecasts.
Functional correlates of distractor suppression during spatial working memory encoding.
Toepper, M; Gebhardt, H; Beblo, T; Thomas, C; Driessen, M; Bischoff, M; Blecker, C R; Vaitl, D; Sammer, G
2010-02-17
Executive working memory operations are related to prefrontal regions in the healthy brain. Moreover, neuroimaging data provide evidence for a functional dissociation of ventrolateral and dorsolateral prefrontal cortex. Most authors either suggest a modality-specific or a function-specific prefrontal cortex organization. In the present study we particularly aimed at the identification of different prefrontal cerebral areas that are involved in executive inhibitory processes during spatial working memory encoding. In an fMRI study (functional magnetic resonance imaging) we examined the neural correlates of spatial working memory processing by varying the amount of executive demands of the task. Twenty healthy volunteers performed the Corsi Block-Tapping test (CBT) during fMRI. The CBT requires the storage and reproduction of spatial target sequences. In a second condition, we presented an adapted version of the Block-Suppression-Test (BST). The BST is based on the original CBT but additionally requires the active suppression of visual distraction within the target sequences. In comparison to the CBT performance, particularly the left dorsolateral prefrontal cortex (BA 9) showed more activity during the BST condition. Our results show that the left dorsolateral prefrontal cortex plays a crucial role for executive controlled inhibition of spatial distraction. Furthermore, our findings are in line with the processing model of a functional dorsolateral-ventrolateral prefrontal cortex organization.
Correlation functions from a unified variational principle: Trial Lie groups
Balian, R.; Vénéroni, M.
2015-11-15
Time-dependent expectation values and correlation functions for many-body quantum systems are evaluated by means of a unified variational principle. It optimizes a generating functional depending on sources associated with the observables of interest. It is built by imposing through Lagrange multipliers constraints that account for the initial state (at equilibrium or off equilibrium) and for the backward Heisenberg evolution of the observables. The trial objects are respectively akin to a density operator and to an operator involving the observables of interest and the sources. We work out here the case where trial spaces constitute Lie groups. This choice reduces the original degrees of freedom to those of the underlying Lie algebra, consisting of simple observables; the resulting objects are labeled by the indices of a basis of this algebra. Explicit results are obtained by expanding in powers of the sources. Zeroth and first orders provide thermodynamic quantities and expectation values in the form of mean-field approximations, with dynamical equations having a classical Lie–Poisson structure. At second order, the variational expression for two-time correlation functions separates–as does its exact counterpart–the approximate dynamics of the observables from the approximate correlations in the initial state. Two building blocks are involved: (i) a commutation matrix which stems from the structure constants of the Lie algebra; and (ii) the second-derivative matrix of a free-energy function. The diagonalization of both matrices, required for practical calculations, is worked out, in a way analogous to the standard RPA. The ensuing structure of the variational formulae is the same as for a system of non-interacting bosons (or of harmonic oscillators) plus, at non-zero temperature, classical Gaussian variables. This property is explained by mapping the original Lie algebra onto a simpler Lie algebra. The results, valid for any trial Lie group, fulfill
Shape determination of unidimensional objects: the virtual image correlation method
NASA Astrophysics Data System (ADS)
Francois, M.; Semin, B.; Auradou, H.; Vatteville, J.
2010-06-01
The proposed method, named Virtual Image Correlation, allows one to identify an analytical expression of the shape of a curvilinear object from its image. It uses a virtual beam, whose curvature field is expressed as a truncated mathematical series. The virtual beam width only needs to be close to the physical one; its gray level (in the transverse direction) is bell-shaped. The method consists in finding the coefficients of the series for which the correlation between physical and virtual beams is the best. The accuracy and the robustness of the method is shown by the mean of two examples. The first details a Young’s modulus identification from a cantilever beam image. The second is relative to a thermal plume image, that have a weak contrast and a lot of noise.
Törnberg, Anna; Wadell, Karin
2016-01-01
Purpose: To examine the correlation between limb muscle function (endurance and strength) and functional capacity in upper limbs (ULs) and lower limbs (LLs) of people with chronic obstructive pulmonary disease (COPD). Method: This article describes a secondary analysis of data from a randomized controlled trial. A stationary dynamometer was used to measure isokinetic muscle strength and endurance; the 6-minute walk test, the 6-minute pegboard and ring test, and the unsupported UL exercise test were used to measure functional capacity. Results: Participants were 44 adults with COPD. Muscle strength and endurance in ULs and LLs demonstrated a moderate to strong correlation with functional capacity. When controlling for muscle strength, muscle endurance was moderately correlated with functional capacity in ULs and LLs, but when controlling for muscle endurance, there was no positive and significant correlation between muscle strength and functional capacity for the ULs or LLs. Conclusions: Functional capacity seems to be more closely related to limb muscle endurance than to limb muscle strength in people with COPD. PMID:27504047
Probing the twist-3 multi-gluon correlation functions by p↑p → DX
NASA Astrophysics Data System (ADS)
Koike, Yuji; Yoshida, Shinsuke
2011-05-01
We study the single spin asymmetry (SSA) for the D-meson production ADN in the pp collision, p↑p → DX in the framework of the collinear factorization. Since the charm quark is mainly produced through the cbar c-pair creation from the gluon-fusion process, this is an ideal process to probe the twist-3 triple-gluon correlation functions in the polarized nucleon. We derive the corresponding cross section formula for the contribution of the triple-gluon correlation function to ADN in p↑p → DX, applying the method developed for ep↑ → eDX in our previous study. As in the case of ep↑ → eDX, our result differs from a previous study in the literature.We will also present a simple estimate of the triple-gluon correlation functions based on the preliminary data on ADN by RHIC.
CORRELATION BETWEEN VISUAL GAIT ANALYSIS AND FUNCTIONAL ASPECTS IN CEREBRAL PALSY
FOLLE, MAIRA RECH; TEDESCO, ANA PAULA; NICOLINI-PANISSON, RENATA D´AGOSTINI
2016-01-01
ABSTRACT Objective: To verify the correlation between visual gait analysis (VGA) by the Edinburgh visual gait score (EVGS) and functional aspects using the Timed Up and Go Test (TUG) and Gross Motor Function Classification System (GMFCS) in individuals with cerebral palsy (CP). Methods: Retrospective cross sectional study of 35 patients with CP. The mean age 12.61 years old, 94.3% were spastic; 34.4% hemiplegic, 54.3% diplegic, 11.4% triplegic; 45.7% were level II GMFCS, 42.9% level I, 5.7% level III and 5.7% level IV. VGA was analyzed by the Edinburgh visual gait score (EVGS), functional mobility was assessed by TUG and functionality through GMFCS. The Spearman correlation was used for statistical analysis. Results: The mean EVGS score was 18.97. The mean TUG was 13.71sec. EVGS showed moderate correlation with TUG (r=0.46, p=0.03) and GMFCS (r=0.45, p=0.00). Conclusion: Worse VGA scores correlate to worse functionality and mobility performance. Due to the observed correlation, it is possible to assert that VGA is a useful tool on evaluation of CP patients. Level of Evidence III, Retrospective Comparative Study. PMID:28149192
Baladandayuthapani, Veerabhadran; Mallick, Bani K.; Hong, Mee Young; Lupton, Joanne R.; Turner, Nancy D.; Carroll, Raymond J.
2009-01-01
Summary In this article, we present new methods to analyze data from an experiment using rodent models to investigate the role of p27, an important cell-cycle mediator, in early colon carcinogenesis. The responses modeled here are essentially functions nested within a two-stage hierarchy. Standard functional data analysis literature focuses on a single stage of hierarchy and conditionally independent functions with near white noise. However, in our experiment, there is substantial biological motivation for the existence of spatial correlation among the functions, which arise from the locations of biological structures called colonic crypts: this possible functional correlation is a phenomenon we term crypt signaling. Thus, as a point of general methodology, we require an analysis that allows for functions to be correlated at the deepest level of the hierarchy. Our approach is fully Bayesian and uses Markov chain Monte Carlo methods for inference and estimation. Analysis of this data set gives new insights into the structure of p27 expression in early colon carcinogenesis and suggests the existence of significant crypt signaling. Our methodology uses regression splines, and because of the hierarchical nature of the data, dimension reduction of the covariance matrix of the spline coefficients is important: we suggest simple methods for overcoming this problem. PMID:17608780
Estimating time-correlation functions by sampling and unbiasing dynamically activated events.
Athènes, Manuel; Marinica, Mihai-Cosmin; Jourdan, Thomas
2012-11-21
Transition path sampling is a rare-event method that estimates state-to-state time-correlation functions in many-body systems from samples of short trajectories. In this framework, it is proposed to bias the importance function using the lowest Jacobian eigenvalue moduli along the dynamical trajectory. A lowest eigenvalue modulus is related to the lowest eigenvalue of the Hessian matrix and is evaluated here using the Lanczos algorithm as in activation-relaxation techniques. This results in favoring the sampling of activated trajectories and enhancing the occurrence of the rare reactive trajectories of interest, those corresponding to transitions between locally stable states. Estimating the time-correlation functions involves unbiasing the sample of simulated trajectories which is done using the multi-state Bennett acceptance ratio (MBAR) method. To assess the performance of our procedure, we compute the time-correlation function associated with the migration of a vacancy in α-iron. The derivative of the estimated time-correlation function yields a migration rate in agreement with the one given by transition state theory. Besides, we show that the information relative to rejected trajectories can be recycled within MBAR, resulting in a substantial speed-up. Unlike original transition path-sampling, our approach does not require computing the reversible work to confine the trajectory endpoints to a reactive state.
Haney, Matthew M.; Mikesell, T. Dylan; van Wijk, Kasper; Nakahara, Hisashi
2012-01-01
Using ambient seismic noise for imaging subsurface structure dates back to the development of the spatial autocorrelation (SPAC) method in the 1950s. We present a theoretical analysis of the SPAC method for multicomponent recordings of surface waves to determine the complete 3 × 3 matrix of correlations between all pairs of three-component motions, called the correlation matrix. In the case of isotropic incidence, when either Rayleigh or Love waves arrive from all directions with equal power, the only non-zero off-diagonal terms in the matrix are the vertical–radial (ZR) and radial–vertical (RZ) correlations in the presence of Rayleigh waves. Such combinations were not considered in the development of the SPAC method. The method originally addressed the vertical–vertical (ZZ), RR and TT correlations, hence the name spatial autocorrelation. The theoretical expressions we derive for the ZR and RZ correlations offer additional ways to measure Rayleigh wave dispersion within the SPAC framework. Expanding on the results for isotropic incidence, we derive the complete correlation matrix in the case of generally anisotropic incidence. We show that the ZR and RZ correlations have advantageous properties in the presence of an out-of-plane directional wavefield compared to ZZ and RR correlations. We apply the results for mixed-component correlations to a data set from Akutan Volcano, Alaska and find consistent estimates of Rayleigh wave phase velocity from ZR compared to ZZ correlations. This work together with the recently discovered connections between the SPAC method and time-domain correlations of ambient noise provide further insights into the retrieval of surface wave Green’s functions from seismic noise.
Spectral methods and cluster structure in correlation-based networks
NASA Astrophysics Data System (ADS)
Heimo, Tapio; Tibély, Gergely; Saramäki, Jari; Kaski, Kimmo; Kertész, János
2008-10-01
We investigate how in complex systems the eigenpairs of the matrices derived from the correlations of multichannel observations reflect the cluster structure of the underlying networks. For this we use daily return data from the NYSE and focus specifically on the spectral properties of weight W=|-δ and diffusion matrices D=W/sj-δ, where C is the correlation matrix and si=∑jW the strength of node j. The eigenvalues (and corresponding eigenvectors) of the weight matrix are ranked in descending order. As in the earlier observations, the first eigenvector stands for a measure of the market correlations. Its components are, to first approximation, equal to the strengths of the nodes and there is a second order, roughly linear, correction. The high ranking eigenvectors, excluding the highest ranking one, are usually assigned to market sectors and industrial branches. Our study shows that both for weight and diffusion matrices the eigenpair analysis is not capable of easily deducing the cluster structure of the network without a priori knowledge. In addition we have studied the clustering of stocks using the asset graph approach with and without spectrum based noise filtering. It turns out that asset graphs are quite insensitive to noise and there is no sharp percolation transition as a function of the ratio of bonds included, thus no natural threshold value for that ratio seems to exist. We suggest that these observations can be of use for other correlation based networks as well.
Fish functional traits correlated with environmental variables in a temperate biodiversity hotspot.
Keck, Benjamin P; Marion, Zachary H; Martin, Derek J; Kaufman, Jason C; Harden, Carol P; Schwartz, John S; Strange, Richard J
2014-01-01
The global biodiversity crisis has invigorated the search for generalized patterns in most disciplines within the natural sciences. Studies based on organismal functional traits attempt to broaden implications of results by identifying the response of functional traits, instead of taxonomic units, to environmental variables. Determining the functional trait responses enables more direct comparisons with, or predictions for, communities of different taxonomic composition. The North American freshwater fish fauna is both diverse and increasingly imperiled through human mediated disturbances, including climate change. The Tennessee River, USA, contains one of the most diverse assemblages of freshwater fish in North America and has more imperiled species than other rivers, but there has been no trait-based study of community structure in the system. We identified 211 localities in the upper Tennessee River that were sampled by the Tennessee Valley Authority between 2009 and 2011 and compiled fish functional traits for the observed species and environmental variables for each locality. Using fourth corner analysis, we identified significant correlations between many fish functional traits and environmental variables. Functional traits associated with an opportunistic life history strategy were correlated with localities subject to greater land use disturbance and less flow regulation, while functional traits associated with a periodic life history strategy were correlated with localities subject to regular disturbance and regulated flow. These are patterns observed at the continental scale, highlighting the generalizability of trait-based methods. Contrary to studies that found no community structure differences when considering riparian buffer zones, we found that fish functional traits were correlated with different environmental variables between analyses with buffer zones vs. entire catchment area land cover proportions. Using existing databases and fourth corner
Fish Functional Traits Correlated with Environmental Variables in a Temperate Biodiversity Hotspot
Keck, Benjamin P.; Marion, Zachary H.; Martin, Derek J.; Kaufman, Jason C.; Harden, Carol P.; Schwartz, John S.; Strange, Richard J.
2014-01-01
The global biodiversity crisis has invigorated the search for generalized patterns in most disciplines within the natural sciences. Studies based on organismal functional traits attempt to broaden implications of results by identifying the response of functional traits, instead of taxonomic units, to environmental variables. Determining the functional trait responses enables more direct comparisons with, or predictions for, communities of different taxonomic composition. The North American freshwater fish fauna is both diverse and increasingly imperiled through human mediated disturbances, including climate change. The Tennessee River, USA, contains one of the most diverse assemblages of freshwater fish in North America and has more imperiled species than other rivers, but there has been no trait-based study of community structure in the system. We identified 211 localities in the upper Tennessee River that were sampled by the Tennessee Valley Authority between 2009 and 2011 and compiled fish functional traits for the observed species and environmental variables for each locality. Using fourth corner analysis, we identified significant correlations between many fish functional traits and environmental variables. Functional traits associated with an opportunistic life history strategy were correlated with localities subject to greater land use disturbance and less flow regulation, while functional traits associated with a periodic life history strategy were correlated with localities subject to regular disturbance and regulated flow. These are patterns observed at the continental scale, highlighting the generalizability of trait-based methods. Contrary to studies that found no community structure differences when considering riparian buffer zones, we found that fish functional traits were correlated with different environmental variables between analyses with buffer zones vs. entire catchment area land cover proportions. Using existing databases and fourth corner
[Correlations of consciousness and the default function of the brain].
Gyulaházi, Judit; Varga, Katalin
2014-01-30
Neural correlation with consciousness represents a main topic of neuroscience studies. New results of consciousness researches proved that based on a coherent function in between its components the default mode network activity is the condition for awake consciousness. The subject of consciousness is self. Tasks related with the self were proving a high default mode network activity. Using connections inside the network, results which were related with self, could be considered to represent a polymodal integration system are they are participating in fine processing of the highly integrated associative information. It could be a result of the convergence of cognitive binding. There is a strong connection between the level of consciousness and praecuneal activation. It was proved that the network activity is changing during sleeping (normal condition), trauma or under drug induced altered consciousness. The default network activity can be considered as the neural correlate of consciousness. Further researches are warranted to answer the question: is the activity of the network the cause or is just accompanying the development of human consciousness?
Functional cortical network in alpha band correlates with social bargaining.
Billeke, Pablo; Zamorano, Francisco; Chavez, Mario; Cosmelli, Diego; Aboitiz, Francisco
2014-01-01
Solving demanding tasks requires fast and flexible coordination among different brain areas. Everyday examples of this are the social dilemmas in which goals tend to clash, requiring one to weigh alternative courses of action in limited time. In spite of this fact, there are few studies that directly address the dynamics of flexible brain network integration during social interaction. To study the preceding, we carried out EEG recordings while subjects played a repeated version of the Ultimatum Game in both human (social) and computer (non-social) conditions. We found phase synchrony (inter-site-phase-clustering) modulation in alpha band that was specific to the human condition and independent of power modulation. The strength and patterns of the inter-site-phase-clustering of the cortical networks were also modulated, and these modulations were mainly in frontal and parietal regions. Moreover, changes in the individuals' alpha network structure correlated with the risk of the offers made only in social conditions. This correlation was independent of changes in power and inter-site-phase-clustering strength. Our results indicate that, when subjects believe they are participating in a social interaction, a specific modulation of functional cortical networks in alpha band takes place, suggesting that phase synchrony of alpha oscillations could serve as a mechanism by which different brain areas flexibly interact in order to adapt ongoing behavior in socially demanding contexts.
Functional neural correlates of social approval in schizophrenia
Lepage, Martin
2016-01-01
Social approval is a reward that uses abstract social reinforcers to guide interpersonal interactions. Few studies have specifically explored social reward processing and its related neural substrates in schizophrenia. Fifteen patients with schizophrenia and fifteen healthy controls participated in a two-part study to explore the functional neural correlates of social approval. In the first session, participants were led to believe their personality would be assessed based on their results from various questionnaires and an interview. Participants were then presented with the results of their supposed evaluation in the scanner, while engaging in a relevant fMRI social approval task. Subjects provided subjective reports of pleasure associated with receiving self-directed positive or negative feedback. Higher activation of the right parietal lobe was found in controls compared with individuals with schizophrenia. Both groups rated traits from the high social reward condition as more pleasurable than the low social reward condition, while intergroup differences emerged in the low social reward condition. Positive correlations were found in patients only between subjective ratings of positive feedback and right insula activation, and a relevant behavioural measure. Evidence suggests potential neural substrates underlying the cognitive representation of social reputation in schizophrenia. PMID:26516171
Functional Cortical Network in Alpha Band Correlates with Social Bargaining
Billeke, Pablo; Zamorano, Francisco; Chavez, Mario; Cosmelli, Diego; Aboitiz, Francisco
2014-01-01
Solving demanding tasks requires fast and flexible coordination among different brain areas. Everyday examples of this are the social dilemmas in which goals tend to clash, requiring one to weigh alternative courses of action in limited time. In spite of this fact, there are few studies that directly address the dynamics of flexible brain network integration during social interaction. To study the preceding, we carried out EEG recordings while subjects played a repeated version of the Ultimatum Game in both human (social) and computer (non-social) conditions. We found phase synchrony (inter-site-phase-clustering) modulation in alpha band that was specific to the human condition and independent of power modulation. The strength and patterns of the inter-site-phase-clustering of the cortical networks were also modulated, and these modulations were mainly in frontal and parietal regions. Moreover, changes in the individuals’ alpha network structure correlated with the risk of the offers made only in social conditions. This correlation was independent of changes in power and inter-site-phase-clustering strength. Our results indicate that, when subjects believe they are participating in a social interaction, a specific modulation of functional cortical networks in alpha band takes place, suggesting that phase synchrony of alpha oscillations could serve as a mechanism by which different brain areas flexibly interact in order to adapt ongoing behavior in socially demanding contexts. PMID:25286240
Functional neural correlates of social approval in schizophrenia.
Makowski, Carolina S; Lepage, Martin; Harvey, Philippe-Olivier
2016-03-01
Social approval is a reward that uses abstract social reinforcers to guide interpersonal interactions. Few studies have specifically explored social reward processing and its related neural substrates in schizophrenia. Fifteen patients with schizophrenia and fifteen healthy controls participated in a two-part study to explore the functional neural correlates of social approval. In the first session, participants were led to believe their personality would be assessed based on their results from various questionnaires and an interview. Participants were then presented with the results of their supposed evaluation in the scanner, while engaging in a relevant fMRI social approval task. Subjects provided subjective reports of pleasure associated with receiving self-directed positive or negative feedback. Higher activation of the right parietal lobe was found in controls compared with individuals with schizophrenia. Both groups rated traits from the high social reward condition as more pleasurable than the low social reward condition, while intergroup differences emerged in the low social reward condition. Positive correlations were found in patients only between subjective ratings of positive feedback and right insula activation, and a relevant behavioural measure. Evidence suggests potential neural substrates underlying the cognitive representation of social reputation in schizophrenia.
An improved image reconstruction method for optical intensity correlation Imaging
NASA Astrophysics Data System (ADS)
Gao, Xin; Feng, Lingjie; Li, Xiyu
2016-12-01
The intensity correlation imaging method is a novel kind of interference imaging and it has favorable prospects in deep space recognition. However, restricted by the low detecting signal-to-noise ratio (SNR), it's usually very difficult to obtain high-quality image of deep space object like high-Earth-orbit (HEO) satellite with existing phase retrieval methods. In this paper, based on the priori intensity statistical distribution model of the object and characteristics of measurement noise distribution, an improved method of Prior Information Optimization (PIO) is proposed to reduce the ambiguous images and accelerate the phase retrieval procedure thus realizing fine image reconstruction. As the simulations and experiments show, compared to previous methods, our method could acquire higher-resolution images with less error in low SNR condition.
A density functional for core-valence correlation energy
NASA Astrophysics Data System (ADS)
Ranasinghe, Duminda S.; Frisch, Michael J.; Petersson, George A.
2015-12-01
A density functional, ɛCV-DFT(ρc, ρv), describing the core-valence correlation energy has been constructed as a linear combination of ɛLY Pcorr(ρc), ɛV WN5corr(ρc, ρv), ɛPBEcorr(ρc, ρv), ɛSlaterex(ρc, ρv), ɛHCTHex(ρc, ρv), ɛHFex(ρc, ρv), and F CV -DFT (" separators=" N i , Z i ) , a function of the nuclear charges. This functional, with 6 adjustable parameters, reproduces (±0.27 kcal/mol rms error) a benchmark set of 194 chemical energy changes including 9 electron affinities, 18 ionization potentials, and 167 total atomization energies covering the first- and second-rows of the periodic table. This is almost twice the rms error (±0.16 kcal/mol) obtained with CCSD(T)/MTsmall calculations, but less than half the rms error (±0.65 kcal/mol) obtained with MP2/GTlargeXP calculations, and somewhat smaller than the rms error (±0.39 kcal/mol) obtained with CCSD/MTsmall calculations. The largest positive and negative errors from ɛCV-DFT(ρc, ρv) were 0.88 and -0.75 kcal/mol with the set of 194 core-valence energy changes ranging from +3.76 kcal/mol for the total atomization energy of propyne to -9.05 kcal/mol for the double ionization of Mg. Evaluation of the ɛCV-DFT(ρc, ρv) functional requires less time than a single SCF iteration, and the accuracy is adequate for any model chemistry based on the CCSD(T) level of theory.
Zhou, Yongxi; Ernzerhof, Matthias; Bahmann, Hilke
2015-09-28
Drawing on the adiabatic connection of density functional theory, exchange-correlation functionals of Kohn-Sham density functional theory are constructed which interpolate between the extreme limits of the electron-electron interaction strength. The first limit is the non-interacting one, where there is only exchange. The second limit is the strong correlated one, characterized as the minimum of the electron-electron repulsion energy. The exchange-correlation energy in the strong-correlation limit is approximated through a model for the exchange-correlation hole that is referred to as nonlocal-radius model [L. O. Wagner and P. Gori-Giorgi, Phys. Rev. A 90, 052512 (2014)]. Using the non-interacting and strong-correlated extremes, various interpolation schemes are presented that yield new approximations to the adiabatic connection and thus to the exchange-correlation energy. Some of them rely on empiricism while others do not. Several of the proposed approximations yield the exact exchange-correlation energy for one-electron systems where local and semi-local approximations often fail badly. Other proposed approximations generalize existing global hybrids by using a fraction of the exchange-correlation energy in the strong-correlation limit to replace an equal fraction of the semi-local approximation to the exchange-correlation energy in the strong-correlation limit. The performance of the proposed approximations is evaluated for molecular atomization energies, total atomic energies, and ionization potentials.
Iutaka, Natalia A.; Grochowski, Rubens A.; Kasahara, Niro
2017-01-01
Purpose: To evaluate the correlation between visual field index (VFI) and both structural and functional measures of the optic disc in primary open angle glaucoma patients and suspects. Methods: In this retrospective study, 162 glaucoma patients and suspects underwent standard automated perimetry (SAP), retinography, and retinal nerve fiber layer (RNFL) measurement. The optic disc was stratified according to the vertical cup/disc ratio (C/D) and sorted by the disc damage likelihood scale (DDLS). RNFL was measured with the optical coherence tomography. The VFI perimetry was correlated with the mean deviation (MD) and pattern standard deviation (PSD) obtained by SAP, and structural parameters by Pearson's correlation coefficients. Results: VFI displayed strong correlation with MD (R = 0.959) and PSD (R = −0.744). The linear correlations between VFI and structural measures including C/D (R = −0.179, P = 0.012), DDLS (R = −0.214, P = 0.006), and RNFL (R = 0.416, P < 0.001) were weak but statistically significant. Conclusion: VFI showed a strong correlation with MD and PSD but demonstrated a weak correlation with structural measures. It can possibly be used as a marker for functional impairment severity in patients with glaucoma. PMID:28299007
Cathodic protection design using the regression and correlation method
Niembro, A.M.; Ortiz, E.L.G.
1997-09-01
A computerized statistical method which calculates the current demand requirement based on potential measurements for cathodic protection systems is introduced. The method uses the regression and correlation analysis of statistical measurements of current and potentials of the piping network. This approach involves four steps: field potential measurements, statistical determination of the current required to achieve full protection, installation of more cathodic protection capacity with distributed anodes around the plant and examination of the protection potentials. The procedure is described and recommendations for the improvement of the existing and new cathodic protection systems are given.
Two-dimensional signal reconstruction: The correlation sampling method
Roman, H. E.
2007-12-15
An accurate approach for reconstructing a time-dependent two-dimensional signal from non-synchronized time series recorded at points located on a grid is discussed. The method, denoted as correlation sampling, improves the standard conditional sampling approach commonly employed in the study of turbulence in magnetoplasma devices. Its implementation is illustrated in the case of an artificial time-dependent signal constructed using a fractal algorithm that simulates a fluctuating surface. A statistical method is also discussed for distinguishing coherent (i.e., collective) from purely random (noisy) behavior for such two-dimensional fluctuating phenomena.
Modeling the Galaxy Three-Point Correlation Function
Marin, Felipe; Wechsler, Risa; Frieman, Joshua A.; Nichol, Robert; /Portsmouth U., ICG
2007-06-05
We present new theoretical predictions for the galaxy three-point correlation function (3PCF) using high-resolution dissipationless cosmological simulations of a flat Lambda CDM Universe which resolve galaxy-size halos and subhalos. We create realistic mock galaxy catalogs by assigning luminosities and colors to dark matter halos and subhalos, and we measure the reduced 3PCF as a function of luminosity and color in both real and redshift space. As galaxy luminosity and color are varied, we find small differences in the amplitude and shape dependence of the reduced 3PCF, at a level qualitatively consistent with recent measurements from the SDSS and 2dFGRS. We confirm that discrepancies between previous 3PCF measurements can be explained in part by differences in binning choices. We explore the degree to which a simple local bias model can fit the simulated 3PCF. The agreement between the model predictions and galaxy 3PCF measurements lends further credence to the straightforward association of galaxies with CDM halos and subhalos.
NASA Astrophysics Data System (ADS)
Shi, F.; Lowe, M. J. S.; Craster, R. V.
2017-02-01
We propose an ultrasonic methodology to reconstruct the height correlation function of remotely inaccessible random rough surfaces in solids. The inverse method is based on the Kirchhoff approximation(KA), and it requires measuring the angular distribution of diffuse scattering intensities by sending in a narrow band incident pulse. Near field scattering effects are also included by considering the Fresnel assumption. The proposed approach is successfully verified by simulating the scattering from multiple realizations of rough surfaces whose correlation function is known, calculating the mean scattering intensities from these received signals, and then deploying the inverse method on these to reconstruct the original correlation function. Very good agreement between the reconstructed correlation function and the original is found, for a wide range of roughness parameters. In addition, the effect of reducing the number of realizations to approximate the mean intensity are investigated, providing confidence bounds for the experiment. An experiment on a corrugated rough surface is performed with a limited number of scans using a phased array, which further validates the proposed inversion algorithm.
A method for correlating performance data of a terrestrial solar cell array
NASA Technical Reports Server (NTRS)
Simon, F. F.
1979-01-01
An analytical method was proposed for characterizing array power output, in the region of maximum power, as a function of environmental variables. The correlation provided a way of evaluating the output of an array under environmental conditions that differ from those encountered during testing. Power data obtained at one location was used to predict array performance at other locations.
Statistical functions and relevant correlation coefficients of clearness index
NASA Astrophysics Data System (ADS)
Pavanello, Diego; Zaaiman, Willem; Colli, Alessandra; Heiser, John; Smith, Scott
2015-08-01
This article presents a statistical analysis of the sky conditions, during years from 2010 to 2012, for three different locations: the Joint Research Centre site in Ispra (Italy, European Solar Test Installation - ESTI laboratories), the site of National Renewable Energy Laboratory in Golden (Colorado, USA) and the site of Brookhaven National Laboratories in Upton (New York, USA). The key parameter is the clearness index kT, a dimensionless expression of the global irradiance impinging upon a horizontal surface at a given instant of time. In the first part, the sky conditions are characterized using daily averages, giving a general overview of the three sites. In the second part the analysis is performed using data sets with a short-term resolution of 1 sample per minute, demonstrating remarkable properties of the statistical distributions of the clearness index, reinforced by a proof using fuzzy logic methods. Successively some time-dependent correlations between different meteorological variables are presented in terms of Pearson and Spearman correlation coefficients, and introducing a new one.
Application of the Graphic Correlation method to Pliocene marine sequences
Dowsett, H.J.
1989-01-01
Biostratigraphy - the use of paleontological evidence to establish relative chronologies, forms the cornerstone of many sedimentary geological investigations. Several different approaches to biochronology are available. Traditional interval zones, defined on lowest and/or highest occurrences of selected taxa, are used to place bodies of rock in a relative chronological framework. Fossil datum levels, which are more numerous than zones, are often used as chronohorizons for correlation purposs. The Graphic Correlation method, like interval zonations, synthesizes information from a number of different taxa but does not assume synchrony of any one taxon. A magnetobiostratigraphic model for deep-sea Pliocene sequences has been constructed by graphic correlation of Deep Sea Drilling project cores from the North Atlantic (606), Caribbean Sea (502), South Atlantic (516), Tasman Sea (590), Equatorial Pacific (573) and North Pacific (577). All cores are hydraulic piston cores which contain abundant planktonic foraminifers, calcareous nannofossils and which record many of the magnetic reversals expected in the Pliocene. The model is based on internally consistent paleontologic data gathered by the author. This study demonstrates the advantages of graphic correlation over conventional biostratigraphic procedures. Accurate inter-regional correlations can be made between core sites without resorting to multiple microfossil zonations and without invoking synchrony of fossil events. Important results of this study are: (1) many Pliocene planktonic foraminifer and calcareous nannofossil events are diachronous by more than 0.20 m.y., (2) Globorotalia truncatulinoides first occurs in the Southwest Pacific Ocean, approximately 0.50 m.y. earlier than previously reported, (3) a previously undetected hiatus of short duration (0.38 m.y.) exists just above the Cochiti subchron at DSDP 577A. ?? 1989.
Song, Linze; Shi, Qiang
2015-11-21
Based on recent findings in the hierarchical equations of motion (HEOM) for correlated initial state [Y. Tanimura, J. Chem. Phys. 141, 044114 (2014)], we propose a new stochastic method to obtain the initial conditions for the real time HEOM propagation, which can be used further to calculate the equilibrium correlation functions and symmetrized correlation functions. The new method is derived through stochastic unraveling of the imaginary time influence functional, where a set of stochastic imaginary time HEOM are obtained. The validity of the new method is demonstrated using numerical examples including the spin-Boson model, and the Holstein model with undamped harmonic oscillator modes.
Song, Linze; Shi, Qiang
2015-11-21
Based on recent findings in the hierarchical equations of motion (HEOM) for correlated initial state [Y. Tanimura, J. Chem. Phys. 141, 044114 (2014)], we propose a new stochastic method to obtain the initial conditions for the real time HEOM propagation, which can be used further to calculate the equilibrium correlation functions and symmetrized correlation functions. The new method is derived through stochastic unraveling of the imaginary time influence functional, where a set of stochastic imaginary time HEOM are obtained. The validity of the new method is demonstrated using numerical examples including the spin-Boson model, and the Holstein model with undamped harmonic oscillator modes.
Speckle correlation method used to detect an object's surface slope
Smid, Petr; Horvath, Pavel; Hrabovsky, Miroslav
2006-09-20
We present a technique employing a speckle pattern correlation method for detection of the slope of an object's surface. Controlled translation of an object under investigation and numerical correlation of speckle patterns recorded during its motion give information used to evaluate the tilt of the object. The proposed optical setup uses a symmetrical arrangement of detection planes in the image field and enables one to detect the tilt of an object's surface within the interval(10 deg. -30 deg. ). Simulation analysis shows how to control the measuring range. The presented theory, simulation analysis, and setup are verified through an experiment by measurement of the slope of a surface of a cube made out of steel.
Speckle correlation method used to detect an object's surface slope.
Smíd, Petr; Horváth, Pavel; Hrabovský, Miroslav
2006-09-20
We present a technique employing a speckle pattern correlation method for detection of the slope of an object's surface. Controlled translation of an object under investigation and numerical correlation of speckle patterns recorded during its motion give information used to evaluate the tilt of the object. The proposed optical setup uses a symmetrical arrangement of detection planes in the image field and enables one to detect the tilt of an object's surface within the interval (10 degrees-30 degrees). Simulation analysis shows how to control the measuring range. The presented theory, simulation analysis, and setup are verified through an experiment by measurement of the slope of a surface of a cube made out of steel.
On the Angular Correlation Functions of the Hubble Deep Field
NASA Astrophysics Data System (ADS)
Roukema, B. F.
Roukema & Valls-Gabaud (1997, RVG) reinforce the conclusion of Colley et al. (1996, 1997) that the Hubble Deep Field (HDF) ``galaxies'' are probably star-forming regions, not ``building-blocks''. Consider a ``building-block'' hypothesis: (1) all (colour-selected high z) HDF galaxy-like objects are galaxies; (2) these objects have a spatial correlation function xi(r,z) = b2 (r0 / r)gamma (1+z)-(3+epsilon-gamma) where b >> 1 is a strong bias factor at high z; and b > = 1, db/dr < 0 for all r,z; such that the projection of xi (3-D) into w (angular correlation; 2-D) (via Limber's equation) matches Figs 1a, 1d of Colley et al. (1996). Since w(1 arcsecond) > approx 1 in Figs 1a,1d of Colley et al. (1996), at least 50% of the 1 arcsecond object pairs can be considered ``excess pairs''. Table 1 of RVG therefore shows, conservatively, that of all the 1 arcsecond object pairs, and under the above hypotheses, 25% are spatially separated by a median of only 3-7h-1 kpc (proper units), and 45% are spatially separated by a median of 12-30h-1 kpc$, taking into account projection effects. Many excess pairs have theta approx 0.25 arcseconds. Hence, for a pure ``building-block'' model, galaxy formation models would have to post-dict the existence of many Rhalo << 2 kpc, very highly biased galaxies, at 2.5 < z < 5. This result is little sensitive to epsilon, Omega0, lambda0 or zmedian.
Temporal discrimination, a cervical dystonia endophenotype: penetrance and functional correlates.
Kimmich, Okka; Molloy, Anna; Whelan, Robert; Williams, Laura; Bradley, David; Balsters, Joshua; Molloy, Fiona; Lynch, Tim; Healy, Daniel G; Walsh, Cathal; O'Riordan, Seán; Reilly, Richard B; Hutchinson, Michael
2014-05-01
The pathogenesis of adult-onset primary dystonia remains poorly understood. There is variable age-related and gender-related expression of the phenotype, the commonest of which is cervical dystonia. Endophenotypes may provide insight into underlying genetic and pathophysiological mechanisms of dystonia. The temporal discrimination threshold (TDT)-the shortest time interval at which two separate stimuli can be detected as being asynchronous-is abnormal both in patients with cervical dystonia and in their unaffected first-degree relatives. Functional magnetic resonance imaging (fMRI) studies have shown that putaminal activation positively correlates with the ease of temporal discrimination between two stimuli in healthy individuals. We hypothesized that abnormal temporal discrimination would exhibit similar age-related and gender-related penetrance as cervical dystonia and that unaffected relatives with an abnormal TDT would have reduced putaminal activation during a temporal discrimination task. TDTs were examined in a group of 192 healthy controls and in 158 unaffected first-degree relatives of 84 patients with cervical dystonia. In 24 unaffected first-degree relatives, fMRI scanning was performed during a temporal discrimination task. The prevalence of abnormal TDTs in unaffected female relatives reached 50% after age 48 years; whereas, in male relatives, penetrance of the endophenotype was reduced. By fMRI, relatives who had abnormal TDTs, compared with relatives who had normal TDTs, had significantly less activation in the putamina and in the middle frontal and precentral gyri. Only the degree of reduction of putaminal activity correlated significantly with worsening of temporal discrimination. These findings further support abnormal temporal discrimination as an endophenotype of cervical dystonia involving disordered basal ganglia circuits.
Galaxy Redshifts from Discrete Optimization of Correlation Functions
NASA Astrophysics Data System (ADS)
Lee, Benjamin C. G.; Budavári, Tamás; Basu, Amitabh; Rahman, Mubdi
2016-12-01
We propose a new method of constraining the redshifts of individual extragalactic sources based on celestial coordinates and their ensemble statistics. Techniques from integer linear programming (ILP) are utilized to optimize simultaneously for the angular two-point cross- and autocorrelation functions. Our novel formalism introduced here not only transforms the otherwise hopelessly expensive, brute-force combinatorial search into a linear system with integer constraints but also is readily implementable in off-the-shelf solvers. We adopt Gurobi, a commercial optimization solver, and use Python to build the cost function dynamically. The preliminary results on simulated data show potential for future applications to sky surveys by complementing and enhancing photometric redshift estimators. Our approach is the first application of ILP to astronomical analysis.
Preparation method: structure-bioactivity correlation in mesoporous bioactive glass
NASA Astrophysics Data System (ADS)
Shih, Shao-Ju; Chou, Yu-Jen; Borisenko, Konstantin B.
2013-06-01
Mesoporous bioactive glasses (MBGs) are receiving increased attention because of their superior bioactive properties and possible applications as drug-releasing carriers, bone implants and sealing materials in dentistry. We report here the results of investigation of structures and bioactivities of two types of MBG particles prepared by two different techniques, the sol-gel method and spray pyrolysis (SP). In this study, we used transmission electron microscopy and selected area electron diffraction to characterize particle morphology and atomistic structures of the particles correlating these observations with nitrogen adsorption measurements to determine surface areas of the particles and in vitro bioactivity tests. It is found that the preparation method can influence the final composition of the particles and that SP method offers a better control over the composition. The SP particles have higher bioactivity than the sol-gel particles due to their higher surface area and possibly more favourable atomistic structure for promoting deposition of pure hydroxyl apatite phase.
Field methods to measure surface displacement and strain with the Video Image Correlation method
NASA Technical Reports Server (NTRS)
Maddux, Gary A.; Horton, Charles M.; Mcneill, Stephen R.; Lansing, Matthew D.
1994-01-01
The objective of this project was to develop methods and application procedures to measure displacement and strain fields during the structural testing of aerospace components using paint speckle in conjunction with the Video Image Correlation (VIC) system.
Bayraktar Bilen, Neslihan; Hepsen, Ibrahim F.; Arce, Carlos G.
2016-01-01
AIM To analyze the relationship between two visual functions and refractive, topographic, pachymetric and aberrometric indicators in eyes with keratoconus. METHODS Corrected distance visual acuity (CDVA), and letter contrast sensitivity (CS) were correlated with refraction, corneal topography, pachymetry, and total corneal wavefront data prospectively in 71 eyes with keratoconus. The topographic indices assessed were simulated keratometry for the flattest and steepest meridians (SimK1 and SimK2), posterior steeper K (Ks), elevation value in best-fit sphere (BFS) maps, squared eccentricity (Є2), aspheric asymmetric index (AAI), pachymetry, thickness progression index (TPI), the amount of pachymetric decentralization (APD), and GalileiTM-keratoconus indices. RESULTS The mean CDVA (expressed as logMAR) were 0.25±0.21. The mean CS was 1.25±0.46. The spherical refraction correlated well with CDVA (r=-0.526, P<0.001). From topographic indices, SRI correlated with CS (r=-0.695), and IAI with CS (r=-0.672) (P<0.001 for all). Root mean square (RMS) was 4.3±1.81 µm, spherical aberration (SA) was -0.4±0.67 µm, vertical and horizontal coma were -2.1±1.47 and -0.4±0.72 µm. All wavefront data (except horizontal coma), AAI, Є2 and maximum BFS correlated significantly with the visual function (P≤0.001 for all). CONCLUSION In this study, CS is more affected than CDVA as a visual function. The quantity and quality of vision is significantly correlated with well-known and new topographic indices. There is not a significant correlation between visual function and pachymetric parameters. The significantly correlated indices can be used in staging keratoconus and to follow the outcome of a treatment. PMID:27588266
Blair, S.C.; Berge, P.A.; Berryman, J.G.
1993-08-01
We have developed an image-processing method for characterizing the microstructure of rock and other porous materials, and for providing a quantitative means for understanding the dependence of physical properties on the pore structure. This method is based upon the statistical properties of the microgeometry as observed in scanning electron micrograph (SEM) images of cross sections of porous materials. The method utilizes a simple statistical function, called the spatial correlation function, which can be used to predict bounds on permeability and other physical properties. We obtain estimates of the porosity and specific surface area of the material from the two-point correlation function. The specific surface area can be related to the permeability of porous materials using a Kozeny-Carman relation, and we show that the specific surface area measured on images of sandstones is consistent with the specific surface area used in a simple flow model for computation of permeability. In this paper, we discuss the two-point spatial correlation function and its use in characterizing microstructure features such as pore and grain sizes. We present estimates of permeabilities found using SEM images of several different synthetic and natural sandstones. Comparison of the estimates to laboratory measurements shows good agreement. Finally, we briefly discuss extension of this technique to two-phase flow.
A new class of methods for functional connectivity estimation
NASA Astrophysics Data System (ADS)
Lin, Wutu
Measuring functional connectivity from neural recordings is important in understanding processing in cortical networks. The covariance-based methods are the current golden standard for functional connectivity estimation. However, the link between the pair-wise correlations and the physiological connections inside the neural network is unclear. Therefore, the power of inferring physiological basis from functional connectivity estimation is limited. To build a stronger tie and better understand the relationship between functional connectivity and physiological neural network, we need (1) a realistic model to simulate different types of neural recordings with known ground truth for benchmarking; (2) a new functional connectivity method that produce estimations closely reflecting the physiological basis. In this thesis, (1) I tune a spiking neural network model to match with human sleep EEG data, (2) introduce a new class of methods for estimating connectivity from different kinds of neural signals and provide theory proof for its superiority, (3) apply it to simulated fMRI data as an application.
a Task-Oriented Disaster Information Correlation Method
NASA Astrophysics Data System (ADS)
Linyao, Q.; Zhiqiang, D.; Qing, Z.
2015-07-01
With the rapid development of sensor networks and Earth observation technology, a large quantity of disaster-related data is available, such as remotely sensed data, historic data, case data, simulated data, and disaster products. However, the efficiency of current data management and service systems has become increasingly difficult due to the task variety and heterogeneous data. For emergency task-oriented applications, the data searches primarily rely on artificial experience based on simple metadata indices, the high time consumption and low accuracy of which cannot satisfy the speed and veracity requirements for disaster products. In this paper, a task-oriented correlation method is proposed for efficient disaster data management and intelligent service with the objectives of 1) putting forward disaster task ontology and data ontology to unify the different semantics of multi-source information, 2) identifying the semantic mapping from emergency tasks to multiple data sources on the basis of uniform description in 1), and 3) linking task-related data automatically and calculating the correlation between each data set and a certain task. The method goes beyond traditional static management of disaster data and establishes a basis for intelligent retrieval and active dissemination of disaster information. The case study presented in this paper illustrates the use of the method on an example flood emergency relief task.
NASA Astrophysics Data System (ADS)
Gould, Tim; Dobson, John F.
2013-01-01
By exploiting freedoms in the definitions of "correlation," "exchange," and "Hartree" physics in ensemble systems, we better generalise the notion of "exact exchange" (EXX) to systems with fractional occupations of the frontier orbitals, arising in the dissociation limit of some molecules. We introduce the linear EXX ("LEXX") theory whose pair distribution and energy are explicitly piecewise linear in the occupations f^{σ }i. We provide explicit expressions for these functions for frontier s and p shells. Used in an optimised effective potential (OEP) approach the LEXX yields energies bounded by the piecewise linear "ensemble EXX" (EEXX) energy and standard fractional optimised EXX energy: EEEXX ⩽ ELEXX ⩽ EEXX. Analysis of the LEXX explains the success of standard OEP methods for diatoms at large spacing, and why they can fail when both spins are allowed to be non-integer so that "ghost" Hartree interactions appear between opposite spin electrons in the usual formula. The energy ELEXX contains a cancellation term for the spin ghost case. It is evaluated for H, Li, and Na fractional ions with clear derivative discontinuities for all cases. The p-shell form reproduces accurate correlation-free energies of B-F and Al-Cl. We further test LEXX plus correlation energy calculations on fractional ions of C and F and again we find both derivative discontinuities and good agreement with exact results.
Gould, Tim; Dobson, John F
2013-01-07
By exploiting freedoms in the definitions of "correlation," "exchange," and "Hartree" physics in ensemble systems, we better generalise the notion of "exact exchange" (EXX) to systems with fractional occupations of the frontier orbitals, arising in the dissociation limit of some molecules. We introduce the linear EXX ("LEXX") theory whose pair distribution and energy are explicitly piecewise linear in the occupations f(i)(σ). We provide explicit expressions for these functions for frontier s and p shells. Used in an optimised effective potential (OEP) approach the LEXX yields energies bounded by the piecewise linear "ensemble EXX" (EEXX) energy and standard fractional optimised EXX energy: E(EEXX) ≤ E(LEXX) ≤ E(EXX). Analysis of the LEXX explains the success of standard OEP methods for diatoms at large spacing, and why they can fail when both spins are allowed to be non-integer so that "ghost" Hartree interactions appear between opposite spin electrons in the usual formula. The energy E(LEXX) contains a cancellation term for the spin ghost case. It is evaluated for H, Li, and Na fractional ions with clear derivative discontinuities for all cases. The p-shell form reproduces accurate correlation-free energies of B-F and Al-Cl. We further test LEXX plus correlation energy calculations on fractional ions of C and F and again we find both derivative discontinuities and good agreement with exact results.
Core Noise Diagnostics of Turbofan Engine Noise Using Correlation and Coherence Functions
NASA Technical Reports Server (NTRS)
Miles, Jeffrey H.
2009-01-01
Cross-correlation and coherence functions are used to look for periodic acoustic components in turbofan engine combustor time histories, to investigate direct and indirect combustion noise source separation based on signal propagation time delays, and to provide information on combustor acoustics. Using the cross-correlation function, time delays were identified in all cases, clearly indicating the combustor is the source of the noise. In addition, unfiltered and low-pass filtered at 400 Hz signals had a cross-correlation time delay near 90 ms, while the low-pass filtered at less than 400 Hz signals had a cross-correlation time delay longer than 90 ms. Low-pass filtering at frequencies less than 400 Hz partially removes the direct combustion noise signals. The remainder includes the indirect combustion noise signal, which travels more slowly because of the dependence on the entropy convection velocity in the combustor. Source separation of direct and indirect combustion noise is demonstrated by proper use of low-pass filters with the cross-correlation function for a range of operating conditions. The results may lead to a better idea about the acoustics in the combustor and may help develop and validate improved reduced-order physics-based methods for predicting direct and indirect combustion noise.
Choi, Ji Yeh; Hwang, Heungsun; Yamamoto, Michio; Jung, Kwanghee; Woodward, Todd S
2016-02-08
Functional principal component analysis (FPCA) and functional multiple-set canonical correlation analysis (FMCCA) are data reduction techniques for functional data that are collected in the form of smooth curves or functions over a continuum such as time or space. In FPCA, low-dimensional components are extracted from a single functional dataset such that they explain the most variance of the dataset, whereas in FMCCA, low-dimensional components are obtained from each of multiple functional datasets in such a way that the associations among the components are maximized across the different sets. In this paper, we propose a unified approach to FPCA and FMCCA. The proposed approach subsumes both techniques as special cases. Furthermore, it permits a compromise between the techniques, such that components are obtained from each set of functional data to maximize their associations across different datasets, while accounting for the variance of the data well. We propose a single optimization criterion for the proposed approach, and develop an alternating regularized least squares algorithm to minimize the criterion in combination with basis function approximations to functions. We conduct a simulation study to investigate the performance of the proposed approach based on synthetic data. We also apply the approach for the analysis of multiple-subject functional magnetic resonance imaging data to obtain low-dimensional components of blood-oxygen level-dependent signal changes of the brain over time, which are highly correlated across the subjects as well as representative of the data. The extracted components are used to identify networks of neural activity that are commonly activated across the subjects while carrying out a working memory task.
Bharadwaj, Atul S; Singh, Swarn L; Singh, Yashwant
2013-08-01
A free-energy functional for a crystal that contains both the symmetry-conserved and symmetry-broken parts of the direct pair-correlation function has been used to investigate the crystallization of fluids in three dimensions. The symmetry-broken part of the direct pair-correlation function has been calculated using a series in ascending powers of the order parameters and which contains three- and higher-body direct correlation functions of the isotropic phase. It is shown that a very accurate description of freezing transitions for a wide class of potentials is found by considering the first two terms of this series. The results found for freezing parameters including the structure of the frozen phase for fluids interacting via the inverse power potential u(r)=ε(σ/r)(n) for n ranging from 4 to ∞ are in very good agreement with simulation results. It is found that for n>6.5 the fluid freezes into a face-centered cubic (fcc) structure while for n≤6 the body-centered cubic (bcc) structure is preferred. The fluid-bcc-fcc triple point is found to be at 1/n=0.158, which is in good agreement with simulation result.
Disorders of Microtubule Function in Neurons: Imaging Correlates
Mutch, Christopher A.; Poduri, Annapurdi; Sahin, Mustafa; Barry, Brenda; Walsh, Christopher A.; Barkovich, A. James
2015-01-01
Background and Significance A number of recent studies have described malformations of cortical development with mutations of components of microtubules and microtubule-associated proteins. Despite examinations of large numbers of MRIs, good phenotype-genotype correlations have been elusive. Additionally, most of these studies focused exclusively on cerebral cortical findings. Materials and Methods MRIs from18 patients with confirmed tubulin mutations (8 TUBA1A, 5 TUBB2B, and 5 TUBB3) and 15 patients with known mutations of the genes encoding microtubule-associated proteins (5 LIS1, 4 DCX, and 6 DYNC1H1) were carefully visually analyzed and compared. Specific note was made of cortical gyral pattern, basal ganglia and white matter to assess internal capsular size, cortical thickness, ventricular and cisternal size, and size and contours of the brain stem, cerebellar hemispheres and vermis, and the corpus callosum of patients with tubulin and microtubule-associated protein gene mutations. Results were determined by unanimous consensus of the authors. Results All patients had abnormal MRI scans. Large proportions of patients with tubulin gene mutations were found to have multiple cortical and subcortical abnormalities including microcephaly, ventriculomegaly, abnormal gyral and sulcal patterns (termed dysgyria), small or absent corpus callosum and small pons. All patients with microtubule-associated proteins mutations also had abnormal cerebral cortices (predominantly pachygyria and agyria), but fewer subcortical abnormalities were noted. Conclusion Comparison of MRIs from patients with known mutations of tubulin genes and microtubule-associated proteins allows for the establishment of some early correlations of phenotype with genotype and may assist in identification and diagnosis of these rare disorders. PMID:26564436
A marked correlation function for constraining modified gravity models
NASA Astrophysics Data System (ADS)
White, Martin
2016-11-01
Future large scale structure surveys will provide increasingly tight constraints on our cosmological model. These surveys will report results on the distance scale and growth rate of perturbations through measurements of Baryon Acoustic Oscillations and Redshift-Space Distortions. It is interesting to ask: what further analyses should become routine, so as to test as-yet-unknown models of cosmic acceleration? Models which aim to explain the accelerated expansion rate of the Universe by modifications to General Relativity often invoke screening mechanisms which can imprint a non-standard density dependence on their predictions. This suggests density-dependent clustering as a `generic' constraint. This paper argues that a density-marked correlation function provides a density-dependent statistic which is easy to compute and report and requires minimal additional infrastructure beyond what is routinely available to such survey analyses. We give one realization of this idea and study it using low order perturbation theory. We encourage groups developing modified gravity theories to see whether such statistics provide discriminatory power for their models.
Analysis of Green functions obtained by cross-correlations for MASE stations
NASA Astrophysics Data System (ADS)
Padilla, G. V. Vera
2012-04-01
We used continuous records of broadband seismic stations of the MASE experiment to obtain observed Green's functions using the method of ambient noise cross-correlations. The experiment consisted of 100 stations distributed along a perpendicular line to the Mesoamerican trench across the Valley of Mexico. The stations recorded continuously at 100 sps for more than two years. The geometry of the array provide a good opportunity to study the attenuation effects along the coast-perpendicular structure. The method we used to compute Green functions involves a strong data pre-processing (temporal normalization and spectral whitening). However, our results show that the amplitude of the cross-correlations still contains information about the surface waves attenuation and probably local amplification effects. Records from two regional earthquakes located close to Acapulco were used for comparison.
The double-soft limit in cosmological correlation functions and graviton exchange effects
NASA Astrophysics Data System (ADS)
Alinea, Allan L.; Kubota, Takahiro; Misumi, Nobuhiko
2017-01-01
The graviton exchange effect on cosmological correlation functions is examined by employing the double-soft limit technique. A new relation among correlation functions that contain the effects due to graviton exchange diagrams in addition to those due to scalar-exchange and scalar-contact-interaction, is derived by using the background field method and independently by the method of Ward identities associated with dilatation symmetry. We compare these three terms, putting small values for the slow-roll parameters and (1‑ns) ≈ 0.042, where ns is the scalar spectral index. It is argued that the graviton exchange effects are more dominant than the other two and could be observed in the trispectrum in the double-soft limit. Our observation strengthens the previous work by Seery, Sloth and Vernizzi, in which it has been argued that the graviton exchange dominates in the counter-collinear limit for single field slow-roll inflation.
Extension of the Nakajima-Zwanzig approach to multitime correlation functions of open systems
NASA Astrophysics Data System (ADS)
Ivanov, Anton; Breuer, Heinz-Peter
2015-09-01
We extend the Nakajima-Zwanzig projection operator technique to the determination of multitime correlation functions of open quantum systems. The correlation functions are expressed in terms of certain multitime homogeneous and inhomogeneous memory kernels for which suitable equations of motion are derived. We show that under the condition of finite memory times, these equations can be used to determine the memory kernels by employing an exact stochastic unraveling of the full system-environment dynamics. The approach thus allows us to combine exact stochastic methods, feasible for short times, with long-time master equation simulations. The applicability of the method is demonstrated by numerical simulations of two-dimensional spectra for a donor-acceptor model, and by comparison of the results with those obtained from the reduced hierarchy equations of motion. We further show that the formalism is also applicable to the time evolution of a periodically driven two-level system initially in equilibrium with its environment.
A Flexible Method of Estimating Luminosity Functions
NASA Astrophysics Data System (ADS)
Kelly, Brandon C.; Fan, Xiaohui; Vestergaard, Marianne
2008-08-01
We describe a Bayesian approach to estimating luminosity functions. We derive the likelihood function and posterior probability distribution for the luminosity function, given the observed data, and we compare the Bayesian approach with maximum likelihood by simulating sources from a Schechter function. For our simulations confidence intervals derived from bootstrapping the maximum likelihood estimate can be too narrow, while confidence intervals derived from the Bayesian approach are valid. We develop our statistical approach for a flexible model where the luminosity function is modeled as a mixture of Gaussian functions. Statistical inference is performed using Markov chain Monte Carlo (MCMC) methods, and we describe a Metropolis-Hastings algorithm to perform the MCMC. The MCMC simulates random draws from the probability distribution of the luminosity function parameters, given the data, and we use a simulated data set to show how these random draws may be used to estimate the probability distribution for the luminosity function. In addition, we show how the MCMC output may be used to estimate the probability distribution of any quantities derived from the luminosity function, such as the peak in the space density of quasars. The Bayesian method we develop has the advantage that it is able to place accurate constraints on the luminosity function even beyond the survey detection limits, and that it provides a natural way of estimating the probability distribution of any quantities derived from the luminosity function, including those that rely on information beyond the survey detection limits.
Explicitly Correlated Methods within the ccCA Methodology.
Mahler, Andrew; Wilson, Angela K
2013-03-12
The prediction of energetic properties within "chemical accuracy" (1 kcal mol(-1) from well-established experiment) can be a major challenge in computational quantum chemistry due to the computational requirements (computer time, memory, and disk space) needed to achieve this level of accuracy. Methodologies such as coupled cluster with single, double, and perturbative triple excitations (CCSD(T)) combined with very large basis sets are often required to reach this level of accuracy. Unfortunately, such calculations quickly become cost prohibitive as system size increases. Our group has developed an ab initio composite method, the correlation consistent Composite Approach (ccCA), which enables such accuracy to be possible, on average, but at reduced computational cost as compared with CCSD(T) in combination with a large basis set. While ccCA has proven quite useful, computational bottlenecks still occur. In this study, the means to reduce the computational cost of ccCA without compromising accuracy by utilizing explicitly correlated methods within ccCA have been considered, and an alternative formulation is described.
NASA Astrophysics Data System (ADS)
Ivantsov, Ilya; Ferraz, Alvaro; Kochetov, Evgenii
2016-12-01
We perform quantum Monte Carlo simulations of the itinerant-localized periodic Kondo-Heisenberg model for the underdoped cuprates to calculate the associated spin correlation functions. The strong electron correlations are shown to play a key role in the abrupt destruction of the quasi-long-range antiferromagnetic order in the lightly doped regime.
NASA Astrophysics Data System (ADS)
Jukić, Damir; Denić-Jukić, Vesna
2015-11-01
Time series of rainfall and karst-spring discharge are influenced by various space-time-variant processes involved in the transfer of water in hydrological cycle. The effects of these processes can be exhibited in auto-correlation and cross-correlation functions. Consequently, ambiguities with respect to the effects encoded in the correlation functions exist. To solve this problem, a new statistical method for investigating relationships between rainfall and karst-spring discharge is proposed. The method is based on the determination and analysis of higher-order partial correlation functions and their spectral representations. The study area is the catchment of the Jadro Spring in Croatia. The analyzed daily time series are the air temperature, relative humidity, spring discharge, and rainfall at seven rain-gauges over a period of 19 years, from 1995 to 2013. The application results show that the effects of spatial and temporal variations of hydrological time series and the space-time-variant behaviours of the karst system can be separated from the correlation functions. Specifically, the effect of evapotranspiration can be separated to obtain the forms of correlation functions that represent the hydrogeological characteristics of the karst system. Using the proposed method, it is also possible to separate the effects of the process of groundwater recharge that occurs in neighbouring parts of a catchment to identify the specific contribution of each part of the catchment to the karst-spring discharge. The main quantitative results obtained for the Jadro Spring show that the quick-flow duration is 14 days, the intermediate-flow duration is 80 days, and the pure base flow starts after 80 days. The base flow consists of an inter-catchment groundwater flow. The system memory of the spring is 80 days. The presented results indicate the far-reaching applicability of the proposed method in the analyses of relationships between rainfall and karst-spring discharge; e
Ps-Ps scattering via the correlated Gaussian hyperspherical method
NASA Astrophysics Data System (ADS)
Daily, Kevin; von Stecher, Javier; Greene, Chris
2014-05-01
There is renewed interest in systems of electrons and positrons since it may be possible to create a Bose-Einstein condensate of spin-triplet positronium atoms [P. M. Platzman and A. P. Mills, Jr., Phys. Rev. B 49, 454 (1994)]. We study the four-body system consisting of two positrons and two electrons. Using a basis of correlated Gaussians at fixed hyperradius, we utilize a new technique [K. M. Daily and C. H. Greene, Phys. Rev. A 89, 012503 (2014)] to efficiently calculate the adiabatic potentials and non-adiabatic couplings as a function of the hyperradius. The R-matrix is propagated to large hyperradius and scattering properties are derived. We gratefully acknowledge support by the NSF.
NASA Astrophysics Data System (ADS)
Mattsson, Ann E.; Wills, John M.
2013-03-01
The inability to computationally describe the physics governing the properties of actinides and their alloys is the poster child of failure of existing Density Functional Theory exchange-correlation functionals. The intricate competition between localization and delocalization of the electrons, present in these materials, exposes the limitations of functionals only designed to properly describe one or the other situation. We will discuss the manifestation of this competition in real materials and propositions on how to construct a functional able to accurately describe properties of these materials. I addition we will discuss both the importance of using the Dirac equation to describe the relativistic effects in these materials, and the connection to the physics of transition metal oxides. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
NASA Astrophysics Data System (ADS)
Sridhar, Srivatsan; Maurogordato, Sophie; Benoist, Christophe; Cappi, Alberto; Marulli, Federico
2017-03-01
Context. The next generation of galaxy surveys will provide cluster catalogues probing an unprecedented range of scales, redshifts, and masses with large statistics. Their analysis should therefore enable us to probe the spatial distribution of clusters with high accuracy and derive tighter constraints on the cosmological parameters and the dark energy equation of state. However, for the majority of these surveys, redshifts of individual galaxies will be mostly estimated by multiband photometry which implies non-negligible errors in redshift resulting in potential difficulties in recovering the real-space clustering. Aims: We investigate to which accuracy it is possible to recover the real-space two-point correlation function of galaxy clusters from cluster catalogues based on photometric redshifts, and test our ability to detect and measure the redshift and mass evolution of the correlation length r0 and of the bias parameter b(M,z) as a function of the uncertainty on the cluster redshift estimate. Methods: We calculate the correlation function for cluster sub-samples covering various mass and redshift bins selected from a 500 deg2 light-cone limited to H < 24. In order to simulate the distribution of clusters in photometric redshift space, we assign to each cluster a redshift randomly extracted from a Gaussian distribution having a mean equal to the cluster cosmological redshift and a dispersion equal to σz. The dispersion is varied in the range σ(z=0)=\\frac{σz{1+z_c} = 0.005,0.010,0.030} and 0.050, in order to cover the typical values expected in forthcoming surveys. The correlation function in real-space is then computed through estimation and deprojection of wp(rp). Four mass ranges (from Mhalo > 2 × 1013h-1M⊙ to Mhalo > 2 × 1014h-1M⊙) and six redshift slices covering the redshift range [0, 2] are investigated, first using cosmological redshifts and then for the four photometric redshift configurations. Results: From the analysis of the light-cone in
Non-oscillatory flux correlation functions for efficient nonadiabatic rate theory
Richardson, Jeremy O. Thoss, Michael
2014-08-21
There is currently much interest in the development of improved trajectory-based methods for the simulation of nonadiabatic processes in complex systems. An important goal for such methods is the accurate calculation of the rate constant over a wide range of electronic coupling strengths and it is often the nonadiabatic, weak-coupling limit, which being far from the Born-Oppenheimer regime, provides the greatest challenge to current methods. We show that in this limit there is an inherent sign problem impeding further development which originates from the use of the usual quantum flux correlation functions, which can be very oscillatory at short times. From linear response theory, we derive a modified flux correlation function for the calculation of nonadiabatic reaction rates, which still rigorously gives the correct result in the long-time limit regardless of electronic coupling strength, but unlike the usual formalism is not oscillatory in the weak-coupling regime. In particular, a trajectory simulation of the modified correlation function is naturally initialized in a region localized about the crossing of the potential energy surfaces. In the weak-coupling limit, a simple link can be found between the dynamics initialized from this transition-state region and an generalized quantum golden-rule transition-state theory, which is equivalent to Marcus theory in the classical harmonic limit. This new correlation function formalism thus provides a platform on which a wide variety of dynamical simulation methods can be built aiding the development of accurate nonadiabatic rate theories applicable to complex systems.
Non-oscillatory flux correlation functions for efficient nonadiabatic rate theory.
Richardson, Jeremy O; Thoss, Michael
2014-08-21
There is currently much interest in the development of improved trajectory-based methods for the simulation of nonadiabatic processes in complex systems. An important goal for such methods is the accurate calculation of the rate constant over a wide range of electronic coupling strengths and it is often the nonadiabatic, weak-coupling limit, which being far from the Born-Oppenheimer regime, provides the greatest challenge to current methods. We show that in this limit there is an inherent sign problem impeding further development which originates from the use of the usual quantum flux correlation functions, which can be very oscillatory at short times. From linear response theory, we derive a modified flux correlation function for the calculation of nonadiabatic reaction rates, which still rigorously gives the correct result in the long-time limit regardless of electronic coupling strength, but unlike the usual formalism is not oscillatory in the weak-coupling regime. In particular, a trajectory simulation of the modified correlation function is naturally initialized in a region localized about the crossing of the potential energy surfaces. In the weak-coupling limit, a simple link can be found between the dynamics initialized from this transition-state region and an generalized quantum golden-rule transition-state theory, which is equivalent to Marcus theory in the classical harmonic limit. This new correlation function formalism thus provides a platform on which a wide variety of dynamical simulation methods can be built aiding the development of accurate nonadiabatic rate theories applicable to complex systems.
NASA Astrophysics Data System (ADS)
Park, Hyowon; Millis, Andrew J.; Marianetti, Chris A.
2015-07-01
Modern extensions of density functional theory such as the density functional theory plus U and the density functional theory plus dynamical mean field theory require choices, including selection of variable (charge vs spin density) for the density functional and specification of the correlated subspace. This paper examines these issues in the context of the "plus U" extensions of density functional theory, in which additional correlations on specified correlated orbitals are treated using a Hartree-Fock approximation. Differences between using charge-only or spin-density-dependent exchange-correlation functionals and between Wannier and projector-based definitions of the correlated orbitals are considered on the formal level and in the context of the structural energetics of the rare-earth nickelates. It is demonstrated that theories based on spin-dependent exchange-correlation functionals can lead to large and in some cases unphysical effective on-site exchange couplings. Wannier and projector-based definitions of the correlated orbitals lead to similar behavior near ambient pressure, but substantial differences are observed at large pressures. Implications for other beyond density functional methods such as the combination of density functional and dynamical mean field theory are discussed.
TANG, NING; ZHANG, YAPING; LIU, ZEYU; FU, TAO; LIANG, QINGHONG; AI, XUEMEI
2016-01-01
The aim of the present study was to investigate the correlation between four serum biomarkers of liver fibrosis and liver function in infants with cholestasis. A total of 30 infants with cholestasis and 20 healthy infants were included in the study. Biochemical assays based on the initial rate method and colorimetric assays were conducted to determine the levels of liver function markers in the serum [such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), direct bilirubin (DBIL), indirect bilirubin (IBIL), γ-glutamyl transferase (γ-GT), cholinesterase (CHE) and total bile acids (TBA)] and four serum biomarkers of liver fibrosis were measured using radioimmunoassays [hyaluronic acid (HA), procollagen type III (PCIII), laminin (LN) and collagen type IV (cIV)]. The serum levels of ALT, AST, TBIL, DBIL, IBIL, γ-GT and TBA in the infants with cholestasis were significantly higher compared to the healthy infants (P<0.01); the serum levels of CHE in the infants with cholestasis were significantly lower compared to the healthy infants (P<0.01). The serum levels of HA, PCIII, and cIV in the infants with cholestasis were significantly higher compared to the healthy infants (P<0.01). Correlation analyses between liver function and the four biomarkers of liver fibrosis showed that HA was positively correlated with AST and γ-GT (P<0.05) and negatively correlated with ALT, CHE and TBA (P<0.05). cIV was positively correlated with γ-GT (P<0.05) and negatively correlated with CHE (P<0.05). In conclusion, statistically significant differences were identified for the liver function markers (ALT, AST, TBIL, DBIL, IBIL, γ-GT and TBA) and the biomarkers HA, PCIII and cIV of liver fibrosis between infants with cholestasis and healthy infants. Thus, the serum levels of HA, cIV, γ-GT and CHE are sensitive markers for cholestatic liver fibrosis in infants. PMID:27347413
Keijser, Klara; Nowinski, Daniel
2016-01-01
Background: Unilateral cleft lip and palate (UCLP) affects nasal function and appearance. There is a lack of objective measurements to evaluate these features. This study analyzes whether objective measurements on photographs correlate with nasal function and/or appearance among adults treated for UCLP. Methods: All patients with UCLP born from 1960 to 1987 treated at the Uppsala University Hospital were invited (n = 109). Participation rate was 68% (n = 74); mean follow-up was 35 years. An age-matched control group (n = 61) underwent the same tests. Nostril area, nasal tip deviation angle, and width of the nostril were measured on photographs and were compared with functional tests and with appearance as assessed by self-assessment questionnaire, professional panel, or laymen panel. Results: The photographically measured nostril area correlated with nasal volume (acoustic rhinometry) among UCLP patients, both cleft side and noncleft side, and controls (0.331, P = 0.005; 0.338, P = 0.004; and 0.420, P < 0.001, respectively). For the patients’ noncleft side and controls, the area correlated inversely with airflow resistance at inspiration (noncleft side: −0.245, P = 0.043; controls: −0.226, P = 0.013). Laymen assessment of nasal appearance correlated with width ratio of the patients (0.27, P = 0.022) and with nasal tip deviation angle and area ratio of the controls (0.26, P = 0.041, and 0.31, P = 0.015, respectively). Conclusions: Photographic measurements correlate partially with both functional tests of the nose and panel ratings of appearance. No correlation was found with self-assessment of appearance. Evaluation of photographs needs to be combined with patient-reported outcome measures to be a valuable endpoint of nasal appearance. PMID:27579244
A self-constrained inversion of magnetic data based on correlation method
NASA Astrophysics Data System (ADS)
Sun, Shida; Chen, Chao
2016-12-01
Geologically-constrained inversion is a powerful method for producing geologically reasonable solutions in geophysical exploration problems. But in many cases, except the observed geophysical data to be inverted, the geological information is insufficiently available for improving reliability of recovered models. To deal with these situations, self-constraints extracted from preprocessing observed data have been applied to constrain the inversion. In this paper, we present a self-constrained inversion method based on correlation method. In our approach the correlation results are first obtained by calculating the cross-correlation between theoretical data and horizontal gradients of the observed data. Subsequently, we propose two specific strategies to extract the spatial variation from the correlation results and then translate them into spatial weighting functions. Incorporating the spatial weighting functions into the model objective function, we obtain self-constrained solutions with higher reliability. We presented two synthetic and one field magnetic data example to test the validity. All results demonstrate that the solution from our self-constrained inversion can delineate the geological bodies with clearer boundaries and much more concentrated physical property.
NASA Astrophysics Data System (ADS)
Erhard, Jannis; Bleiziffer, Patrick; Görling, Andreas
2016-09-01
A power series approximation for the correlation kernel of time-dependent density-functional theory is presented. Using this approximation in the adiabatic-connection fluctuation-dissipation (ACFD) theorem leads to a new family of Kohn-Sham methods. The new methods yield reaction energies and barriers of unprecedented accuracy and enable a treatment of static (strong) correlation with an accuracy of high-level multireference configuration interaction methods but are single-reference methods allowing for a black-box-like handling of static correlation. The new methods exhibit a better scaling of the computational effort with the system size than rivaling wave-function-based electronic structure methods. Moreover, the new methods do not suffer from the problem of singularities in response functions plaguing previous ACFD methods and therefore are applicable to any type of electronic system.
Correlation of Objective Audiometric and Caloric Function in Ménière's Disease.
McMullen, Kyle P; Lin, Chen; Harris, Michael S; Adunka, Oliver F
2017-02-01
Objective Ménière's disease affects the vestibular and audiologic systems; however, little is known about the relationship between audiometric and caloric function with increasing duration of disease. We employed a novel methodology to understand the longitudinal correlation between audiometric and caloric function in Ménière's patients. Study Design Case series with chart review. Setting Neuro-otologic tertiary care practice. Subjects and Methods Charts of 19 patients with unilateral Ménière's disease, as classified by the 1995 American Academy of Otolaryngology-Head and Neck Foundation criteria, were examined. We included patients with ≥2 videonystagmograms and audiograms. We excluded those with bilateral Ménière's, prior audiovestibular destruction, or symptoms suggesting concomitant vestibular pathology. Spearman's rank correlation of audiometric status (pure tone average [PTA], low PTA, and word recognition score [WRS]) and vestibular function (bithermal calorics) was performed. The study was Institutional Review Board approved (protocol 2015H0266). Results A total of 112 audiograms and 42 videonystagmographies were performed. There was a decline in affected ear hearing PTA and WRS with duration of disease ( r = 0.602, P < .001, and r = -0.573, P < .001, respectively). Similarly, there was a decline in vestibular function with increasing duration of disease ( r = 0.709, P < .001). There were moderate correlations between vestibular weakness and PTA, low PTA, and WRS ( r = 0.464, P = .002; r = 0.498, P = .001; and r = -0.518, P = .001, respectively). Conclusions There is a correlation between decline in objective hearing and horizontal semicircular canal function with time. As expected, this correlation is not 1:1, indicating differential involvement of both systems. Understanding this relationship may assist in counseling patients with regard to prognosis, natural history, and therapeutic interventions.
Genotype-phenotype correlation for pulmonary function in cystic fibrosis
de Gracia, J; Mata, F; Alvarez, A; Casals, T; Gatner, S; Vendrell, M; de la Rosa, D; Guarner, L; Hermosilla, E
2005-01-01
Background: Since the CFTR gene was cloned, more than 1000 mutations have been identified. To date, a clear relationship has not been established between genotype and the progression of lung damage. A study was undertaken of the relationship between genotype, progression of lung disease, and survival in adult patients with cystic fibrosis (CF). Methods: A prospective cohort of adult patients with CF and two CFTR mutations followed up in an adult cystic fibrosis unit was analysed. Patients were classified according to functional effects of classes of CFTR mutations and were grouped based on the CFTR molecular position on the epithelial cell surface (I–II/I–II, I–II/III–V). Spirometric values, progression of lung disease, probability of survival, and clinical characteristics were analysed between groups. Results: Seventy four patients were included in the study. Patients with genotype I–II/I–II had significantly lower current spirometric values (p<0.001), greater loss of pulmonary function (p<0.04), a higher proportion of end-stage lung disease (p<0.001), a higher risk of suffering from moderate to severe lung disease (odds ratio 7.12 (95% CI 1.3 to 40.5)) and a lower probability of survival than patients with genotype I–II/III, I–II/IV and I–II/V (p<0.001). Conclusions: The presence of class I or II mutations on both chromosomes is associated with worse respiratory disease and a lower probability of survival. PMID:15994263
Hierarchical Ensemble Methods for Protein Function Prediction
2014-01-01
Protein function prediction is a complex multiclass multilabel classification problem, characterized by multiple issues such as the incompleteness of the available annotations, the integration of multiple sources of high dimensional biomolecular data, the unbalance of several functional classes, and the difficulty of univocally determining negative examples. Moreover, the hierarchical relationships between functional classes that characterize both the Gene Ontology and FunCat taxonomies motivate the development of hierarchy-aware prediction methods that showed significantly better performances than hierarchical-unaware “flat” prediction methods. In this paper, we provide a comprehensive review of hierarchical methods for protein function prediction based on ensembles of learning machines. According to this general approach, a separate learning machine is trained to learn a specific functional term and then the resulting predictions are assembled in a “consensus” ensemble decision, taking into account the hierarchical relationships between classes. The main hierarchical ensemble methods proposed in the literature are discussed in the context of existing computational methods for protein function prediction, highlighting their characteristics, advantages, and limitations. Open problems of this exciting research area of computational biology are finally considered, outlining novel perspectives for future research. PMID:25937954
Krause, Christine; Werner, Hans-Joachim
2012-06-07
Explicitly correlated local coupled-cluster (LCCSD-F12) methods with pair natural orbitals (PNOs), orbital specific virtual orbitals (OSVs), and projected atomic orbitals (PAOs) are compared. In all cases pair-specific virtual subspaces (domains) are used, and the convergence of the correlation energy as a function of the domain sizes is studied. Furthermore, the performance of the methods for reaction energies of 52 reactions involving 58 small and medium sized molecules is investigated. It is demonstrated that for all choices of virtual orbitals much smaller domains are needed in the explicitly correlated methods than without the explicitly correlated terms, since the latter correct a large part of the domain error, as found previously. For PNO-LCCSD-F12 with VTZ-F12 basis sets on the average only 20 PNOs per pair are needed to obtain reaction energies with a root mean square deviation of less than 1 kJ mol(-1) from complete basis set estimates. With OSVs or PAOs at least 4 times larger domains are needed for the same accuracy. A new hybrid method that combines the advantages of the OSV and PNO methods is proposed and tested. While in the current work the different local methods are only simulated using a conventional CCSD program, the implications for low-order scaling local implementations of the various methods are discussed.
Hybrid star structure with the Field Correlator Method
NASA Astrophysics Data System (ADS)
Burgio, G. F.; Zappalà, D.
2016-03-01
We explore the relevance of the color-flavor locking phase in the equation of state (EoS) built with the Field Correlator Method (FCM) for the description of the quark matter core of hybrid stars. For the hadronic phase, we use the microscopic Brueckner-Hartree-Fock (BHF) many-body theory, and its relativistic counterpart, i.e. the Dirac-Brueckner (DBHF). We find that the main features of the phase transition are directly related to the values of the quark-antiquark potential V1, the gluon condensate G2 and the color-flavor superconducting gap Δ. We confirm that the mapping between the FCM and the CSS (constant speed of sound) parameterization holds true even in the case of paired quark matter. The inclusion of hyperons in the hadronic phase and its effect on the mass-radius relation of hybrid stars is also investigated.
Correlation between head posture and proprioceptive function in the cervical region
Yong, Min-Sik; Lee, Hae-Yong; Lee, Mi-Young
2016-01-01
[Purpose] The aim of the present study was to investigate correlation between head posture and proprioceptive function in the cervical region. [Subjects and Methods] Seventy-two subjects (35 males and 37 females) participated in this study. For measurement of head posture, the craniovertebral angle was calculated based on the angle between a horizontal line passing through C7 and a line extending from the tragus of the ear to C7. The joint position sense was evaluated using a dual digital inclinometer (Acumar, Lafayette Instrument, Lafayette, IN, USA), which was used to measure the joint position error for cervical flexion and extension. [Results] A significant negative correlation was observed between the craniovertebral angle and position sense error for flexion and extension. [Conclusion] Forward head posture is correlated with greater repositioning error than a more upright posture, and further research is needed to determine whether correction of forward head posture has any impact on repositioning error. PMID:27134372
Excited states of boron isoelectronic series from explicitly correlated wave functions.
Gálvez, F J; Buendía, E; Sarsa, A
2005-04-15
The ground state and some low-lying excited states arising from the 1s2 2s2p2 configuration of the boron isoelectronic series are studied starting from explicitly correlated multideterminant wave functions. One- and two-body densities in position space have been calculated and different expectation values such as
Empirical Synthesis of Green functions from the correlation of diffuse waves
NASA Astrophysics Data System (ADS)
Campillo, M.; Larose, E.; Margerin, L.; Paul, A.; van Tiggelen, B.; Derode, A.; Abers, G.
2003-12-01
We show the existence of long range field correlations in the seismic coda of regional records in both Mexico and Alaska. The cross-correlation tensor between the coda records at two points is measured for a set of distant earthquakes. Remarkably, while individual correlations have a random character, the source- averaged correlations exhibit deterministic arrivals that obey the same symmetry rules as the Green tensor between the two points. In addition, the arrival times of these waves coincide with propagating surface waves between the two stations. Thus, we propose to identify the averaged correlation signals with the surface wave part of the Green tensor. However, while time reversal symmetry theoretically imposes that the Green function appears at both negative and positive times, we find experimentally this symmetry to be broken when the distribution of earthquakes is not isotropic around the stations. We explain this observation by the long lasting anisotropy of the diffuse field. This point is further discussed in a companion paper where we prove both experimentally and theoretically that a dominant flux of energy coming from the source can persist in the late coda. Finally, we show that averaged cross-correlations of ambient noise enable the reconstruction of some coherent arrivals. These examples illustrate a novel empirical method that provides synthetic seismograms between two stations, without the knowledge of the precise location and origin times of the sources.
Muscle MRI Findings in Childhood/Adult Onset Pompe Disease Correlate with Muscle Function
Figueroa-Bonaparte, Sebastián; Segovia, Sonia; Llauger, Jaume; Belmonte, Izaskun; Pedrosa, Irene; Alejaldre, Aída; Mayos, Mercè; Suárez-Cuartín, Guillermo; Gallardo, Eduard; Illa, Isabel; Díaz-Manera, Jordi
2016-01-01
Objectives Enzyme replacement therapy has shown to be effective for childhood/adult onset Pompe disease (AOPD). The discovery of biomarkers useful for monitoring disease progression is one of the priority research topics in Pompe disease. Muscle MRI could be one possible test but the correlation between muscle MRI and muscle strength and function has been only partially addressed so far. Methods We studied 34 AOPD patients using functional scales (Manual Research Council scale, hand held myometry, 6 minutes walking test, timed to up and go test, time to climb up and down 4 steps, time to walk 10 meters and Motor Function Measure 20 Scale), respiratory tests (Forced Vital Capacity seated and lying, Maximun Inspiratory Pressure and Maximum Expiratory Pressure), daily live activities scales (Activlim) and quality of life scales (Short Form-36 and Individualized Neuromuscular Quality of Life questionnaire). We performed a whole body muscle MRI using T1w and 3-point Dixon imaging centered on thighs and lower trunk region. Results T1w whole body muscle MRI showed a homogeneous pattern of muscle involvement that could also be found in pre-symptomatic individuals. We found a strong correlation between muscle strength, muscle functional scales and the degree of muscle fatty replacement in muscle MRI analyzed using T1w and 3-point Dixon imaging studies. Moreover, muscle MRI detected mild degree of fatty replacement in paraspinal muscles in pre-symptomatic patients. Conclusion Based on our findings, we consider that muscle MRI correlates with muscle function in patients with AOPD and could be useful for diagnosis and follow-up in pre-symptomatic and symptomatic patients under treatment. Take home message Muscle MRI correlates with muscle function in patients with AOPD and could be useful to follow-up patients in daily clinic. PMID:27711114
Explicitly-correlated coupled cluster method for long-range dispersion coefficients
NASA Astrophysics Data System (ADS)
Bokhan, Denis; Trubnikov, Dmitrii N.; Perera, Ajith; Bartlett, Rodney J.
2017-03-01
A method of calculation of long-range dispersion C6 coefficients with wavefunctions, corresponding to linearly approximated explicitly correlated coupled-cluster singles and doubles [CCSD(F12)] model, has been developed. Designed approach uses CCSD(F12) wave functions for the calculation of dynamic polarizabilities at complex frequencies with further utilization of Casimir-Polder formula. As a part of the algorithm, the explicitly-correlated version of the coupled-perturbed CCSD equations for the case of complex frequencies has also been implemented. Numerical tests, conducted for the set of molecules show good agreement between dispersion coefficients, calculated with developed explicitly-correlated method and corresponding complete basis set results in regular CCSD already at triple- ζ level.
Correlation between upper limb function and oral health impact in stroke survivors
da Silva, Fernanda C.; da Silva, Daniela F. T.; Mesquita-Ferrari, Raquel A.; Fernandes, Kristianne P. S.; Bussadori, Sandra K.
2015-01-01
[Purpose] The aim of the present study was to evaluate the relationship between upper limb impairment and oral health impact in individuals with hemiparesis stemming from a stroke. [Subjects and Methods] The study subjects were conducted with a sample of 27 stroke survivors with complete or partial hemiparesis with brachial or crural predominance. The 14-item short version of the Oral Health Impact Profile was used to evaluate perceptions of oral health. The Brazilian version of the Stroke Specific Quality of Life Scale was used to evaluate perceptions regarding quality of life. [Results] A statistically significant association was found between the upper extremity function subscale of the SSQOL-Brazil and the impact of oral health evaluated using the OHIP-14, with a strong correlation found for the physical pain subscale, moderate correlations with the functional limitation, psychological discomfort, physical disability, social disability and social handicap subscales as well as a weak correlation with the psychological disability subscale. Analyzing the OHIP-14 scores with regard to the impact of oral health on quality of life, the most frequent classification was weak impact, with small rates of moderate and strong impact. [Conclusion] Compromised upper limb function and self-perceived poor oral health, whether due to cultural resignation or functional disability, exert a negative impact on the quality of life of individuals with hemiparesis stemming from a stroke. PMID:26310352
White-Matter Changes Correlate with Cognitive Functioning in Parkinson’s Disease
Theilmann, Rebecca J.; Reed, Jason D.; Song, David D.; Huang, Mingxiong X.; Lee, Roland R.; Litvan, Irene; Harrington, Deborah L.
2013-01-01
Diffusion tensor imaging (DTI) findings from emerging studies of cortical white-matter integrity in Parkinson’s disease (PD) without dementia are inconclusive. When white-matter changes have been found, their relationship to cognitive functioning in PD has not been carefully investigated. To better characterize changes in tissue diffusivity and to understand their functional significance, the present study conducted DTI in 25 PD patients without dementia and 26 controls of similar ages. An automated tract-based DTI method was used. Fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) were analyzed. Neuropsychological measures of executive functioning (working memory, verbal fluency, cognitive flexibility, inhibitory control) and visuospatial ability were then correlated with regions of interest that showed abnormal diffusivity in the PD group. We found widespread reductions in FA and increases in MD in the PD group relative to controls. These changes were predominantly related to an increase in RD. Increased AD in the PD group was limited to specific frontal tracks of the right hemisphere, possibly signifying more significant tissue changes. Motor symptom severity did not correlate with FA. However, different measures of executive functioning and visuospatial ability correlated with FA in different segments of tracts, which contain fiber pathways to cortical regions that are thought to support specific cognitive processes. The findings suggest that abnormal tissue diffusivity may be sensitive to subtle cognitive changes in PD, some of which may be prognostic of future cognitive decline. PMID:23630517
An optimum approximation of n-point correlation functions of random heterogeneous material systems.
Baniassadi, M; Safdari, M; Garmestani, H; Ahzi, S; Geubelle, P H; Remond, Y
2014-02-21
An approximate solution for n-point correlation functions is developed in this study. In the approximate solution, weight functions are used to connect subsets of (n-1)-point correlation functions to estimate the full set of n-point correlation functions. In previous related studies, simple weight functions were introduced for the approximation of three and four-point correlation functions. In this work, the general framework of the weight functions is extended and derived to achieve optimum accuracy for approximate n-point correlation functions. Such approximation can be utilized to construct global n-point correlation functions for a system when there exist limited information about these functions in a subset of space. To verify its accuracy, the new formulation is used to approximate numerically three-point correlation functions from the set of two-point functions directly evaluated from a virtually generated isotropic heterogeneous microstructure representing a particulate composite system. Similarly, three-point functions are approximated for an anisotropic glass fiber/epoxy composite system and compared to their corresponding reference values calculated from an experimental dataset acquired by computational tomography. Results from both virtual and experimental studies confirm the accuracy of the new approximation. The new formulation can be utilized to attain a more accurate approximation to global n-point correlation functions for heterogeneous material systems with a hierarchy of length scales.
An optimum approximation of n-point correlation functions of random heterogeneous material systems
Baniassadi, M.; Garmestani, H.; Ahzi, S.; Remond, Y.
2014-02-21
An approximate solution for n-point correlation functions is developed in this study. In the approximate solution, weight functions are used to connect subsets of (n-1)-point correlation functions to estimate the full set of n-point correlation functions. In previous related studies, simple weight functions were introduced for the approximation of three and four-point correlation functions. In this work, the general framework of the weight functions is extended and derived to achieve optimum accuracy for approximate n-point correlation functions. Such approximation can be utilized to construct global n-point correlation functions for a system when there exist limited information about these functions in a subset of space. To verify its accuracy, the new formulation is used to approximate numerically three-point correlation functions from the set of two-point functions directly evaluated from a virtually generated isotropic heterogeneous microstructure representing a particulate composite system. Similarly, three-point functions are approximated for an anisotropic glass fiber/epoxy composite system and compared to their corresponding reference values calculated from an experimental dataset acquired by computational tomography. Results from both virtual and experimental studies confirm the accuracy of the new approximation. The new formulation can be utilized to attain a more accurate approximation to global n-point correlation functions for heterogeneous material systems with a hierarchy of length scales.
Shankar, R; Vishwanath, Ashvin
2011-09-02
For certain systems, the N-particle ground-state wave functions of the bulk happen to be exactly equal to the N-point spacetime correlation functions at the edge, in the infrared limit. We show why this had to be so for a class of topological superconductors, beginning with the p+ip state in D=2+1. Varying the chemical potential as a function of Euclidean time between weak and strong pairing states is shown to extract the wave function. Then a Euclidean rotation that exchanges time and space and approximate Lorentz invariance lead to the edge connection. This framework readily generalizes to other dimensions. We illustrate it with a D=3+1 example, superfluid 3He- B, and a p-wave superfluid in D=1+1. Our method works only when the particle number is not conserved, as in superconductors.
Fujimoto, Shuhei; Kon, Noriko
2016-04-01
[Purpose] The purpose of this study was to elucidate how well patients' perceptions related to the improvements in their hand function during hospitalization. [Subjects] Sixteen patients who were hospitalized after hand surgery. [Methods] Using the Japanese Society for Surgery of the Hand edition of the Quick-Disabilities of the Arm, Shoulder, and Hand questionnaire; tactile roughness discrimination acuity, motor imagery, motor function, sensory function, and pain of the upper limb were assessed at admission and discharge. Spearman's rank-order correlation coefficients were calculated using the differences in all assessment items at admission and discharge. A multiple regression analysis (stepwise method) was performed to investigate factors that correlated with improvements in Quick-Disabilities of the Arm, Shoulder, and Hand scores. [Results] The improvement of tactile roughness discrimination acuity was significantly associated with patient perception of improved hand function. [Conclusion] The results suggest that an improvement in tactile roughness discrimination acuity was most strongly correlated with patient perception of improved hand function.
Methods for incomplete Bessel function evaluation
NASA Astrophysics Data System (ADS)
Harris, Frank E.; Fripiat, J. G.
Presented here are detailed methods for evaluating the incomplete Bessel functions arising when Gaussian-type orbitals are used for systems periodic in one spatial dimension. The scheme is designed to yield these incomplete Bessel functions with an absolute accuracy of ±1 × 10-10, for the range of integer orders 0 ≤ n ≤ 12 [a range sufficient for a basis whose members have angular momenta of up to three units (s, p, d, or f atomic functions)]. To reach this accuracy level within acceptable computation times, new rational approximations were developed to compute the special functions involved, namely, the exponential integral E1(x) and the modified Bessel functions K0(x) and K1(x), to absolute accuracy ±1 × 10-15.
The Course and Correlates of Everyday Functioning in Schizophrenia
Reichenberg, Abraham; Feo, Concetta; Prestia, Davide; Bowie, Christopher R.; Patterson, Thomas L.; Harvey, Philip D.
2014-01-01
Previously institutionalized older patients with schizophrenia show changes in cognitive and functional capacity over time. This study examined changes in real-world functioning in a sample of people with schizophrenia who varied in their history of long-term institutionalization and related changes in real world functioning to changes in cognition and functional capacity over the follow-up period. Older patients with schizophrenia (n=111) were examined with assessments of cognitive functioning, functional capacity, clinical symptoms, and everyday functioning. They were then followed up to 45 months and examined up to two times. Mixed-model regression was used to examine changes in real-world functioning in social, everyday living, and vocational domains over the follow-up period and identify potential predictors of change. Everyday functioning worsened over time in all three domains. Although length of longest hospitalization predicted worsening, this influence was eliminated when the course of functional capacity was used to predict the course of everyday functioning. For both vocational and everyday living domains, as well as the composite score on functional status, worsening in performance based measures of everyday functioning and social competence predicted worsening in real world functioning. Changes in negative symptoms further predicted worsening in the everyday living domain. Worsening in everyday functioning is found in people with schizophrenia and those with a history of greater chronicity and severity of illness seem more affected. These influences seem to be expressed through worsening in the ability to perform everyday functional skills. Potential causes of these changes and implications for reducing these impairments are discussed. PMID:25045625
Density-Functional Theory Studies of Correlation Energy Effects at Metallic Surfaces.
NASA Astrophysics Data System (ADS)
Mohammed, Abdel-Raouf Eid
In this thesis we study the effects of correlation in the inhomogeneous electron gas at metallic surfaces. These studies are performed within the context of density-functional theory (DFT). Using accurate representations of the electronic density profile, we have estimated variationally the surface correlation energy of jellium metal. The accuracy of these estimates is founded in the assumption that the exchange -correlation energy functional of the density is approximated accurately by the wave-vector analysis method, and by the fact that the non-local exchange energy contributions are treated exactly. In contrast to the previously accepted conclusion that for surfaces correlation effects are as significant as exchange, our results indicate the ratio of these energies to lie between 34% - 97% over the metallic density range, the smaller ratios corresponding to the higher density metals. In this work we have also examined the local density (LDA) and gradient expansion approximations (GEA) (to O((DEL)('2))) for the correlation energy. We have demonstrated for realistic metal surface densities the cancellation of the errors in the LDA for exchange and correlation, and shown that the density profiles at surfaces would have to be unphysically slowly varying for the correlation energy GEA to converge. We have also studied the effects of correlation at surfaces by screening the exchange, and observe that the surface exchange energy for screened-Coulomb interaction decreases as the screening length is reduced. Thus, the more short-ranged the interaction, the easier it is to split the crystal in two. In addition we have derived the DFT first gradient correction coefficient in the GEA for the screened-Coulomb exchange energy, and shown it to be the same as that obtained within Hartree -Fock theory (HFT) for finite screening. This coefficient reduces to the DFT bare-Coulomb interaction value in the limit of no screening in which limit the HFT coefficient is singular. The GEA
Method of making low work function component
Robinson, Vance; Weaver, Stanton Earl; Michael, Joseph Darryl
2011-11-15
A method for fabricating a component is disclosed. The method includes: providing a member having an effective work function of an initial value, disposing a sacrificial layer on a surface of the member, disposing a first agent within the member to obtain a predetermined concentration of the agent at said surface of the member, annealing the member, and removing the sacrificial layer to expose said surface of the member, wherein said surface has a post-process effective work function that is different from the initial value.
Arterial endothelial function measurement method and apparatus
Maltz, Jonathan S; Budinger, Thomas F
2014-03-04
A "relaxoscope" (100) detects the degree of arterial endothelial function. Impairment of arterial endothelial function is an early event in atherosclerosis and correlates with the major risk factors for cardiovascular disease. An artery (115), such as the brachial artery (BA) is measured for diameter before and after several minutes of either vasoconstriction or vasorelaxation. The change in arterial diameter is a measure of flow-mediated vasomodification (FMVM). The relaxoscope induces an artificial pulse (128) at a superficial radial artery (115) via a linear actuator (120). An ultrasonic Doppler stethoscope (130) detects this pulse 10-20 cm proximal to the point of pulse induction (125). The delay between pulse application and detection provides the pulse transit time (PTT). By measuring PTT before (160) and after arterial diameter change (170), FMVM may be measured based on the changes in PTT caused by changes in vessel caliber, smooth muscle tone and wall thickness.
Lacey, R.A.; Elmaani, A.; Lauret, J.; Li, T.; Bauer, W.; Craig, D.; Cronqvist, M.; Gualtieri, E.; Hannuschke, S.; Reposeur, T.; Vander Molen, A.; Westfall, G.D.; Wilson, W.K.; Winfield, J.S.; Yee, J.; Yennello, S.; Nadasen, A.; Tickle, R.S.; Norbeck, E. National Superconducting Cyclotron Laboratory Department of Physics, Michigan State University, East Lansing, Michigan 48824-1321 Department of Physics, University of Michigan at Dearborn, Dearborn, Michigan 48128 Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1120 Department of Physics, University of Iowa, Iowa City, Iowa 52242 )
1993-03-01
Multifragment azimuthal correlation functions have been measured as a function of beam energy and impact parameter for the Ar+Sc system ([ital E]/[ital A]=35 to 115 MeV). The observed azimuthal correlation functions---which do not require corrections for dispersion of the reaction plane---exhibit strong asymmetries which are dependent on impact parameter and beam energy. Rotational collective motion and flow seem to dominate the correlation functions at low beam energies. It is proposed that multifragment azimuthal correlation functions can provide a useful probe for intermediate energy heavy ion reaction dynamics.
NASA Technical Reports Server (NTRS)
Ma, Q.; Tipping, R. H.; Lavrentieva, N. N.
2012-01-01
By adopting a concept from signal processing, instead of starting from the correlation functions which are even, one considers the causal correlation functions whose Fourier transforms become complex. Their real and imaginary parts multiplied by 2 are the Fourier transforms of the original correlations and the subsequent Hilbert transforms, respectively. Thus, by taking this step one can complete the two previously needed transforms. However, to obviate performing the Cauchy principal integrations required in the Hilbert transforms is the greatest advantage. Meanwhile, because the causal correlations are well-bounded within the time domain and band limited in the frequency domain, one can replace their Fourier transforms by the discrete Fourier transforms and the latter can be carried out with the FFT algorithm. This replacement is justified by sampling theory because the Fourier transforms can be derived from the discrete Fourier transforms with the Nyquis rate without any distortions. We apply this method in calculating pressure induced shifts of H2O lines and obtain more reliable values. By comparing the calculated shifts with those in HITRAN 2008 and by screening both of them with the pair identity and the smooth variation rules, one can conclude many of shift values in HITRAN are not correct.
Hybrid functionals and GW approximation in the FLAPW method
NASA Astrophysics Data System (ADS)
Friedrich, Christoph; Betzinger, Markus; Schlipf, Martin; Blügel, Stefan; Schindlmayr, Arno
2012-07-01
We present recent advances in numerical implementations of hybrid functionals and the GW approximation within the full-potential linearized augmented-plane-wave (FLAPW) method. The former is an approximation for the exchange-correlation contribution to the total energy functional in density-functional theory, and the latter is an approximation for the electronic self-energy in the framework of many-body perturbation theory. All implementations employ the mixed product basis, which has evolved into a versatile basis for the products of wave functions, describing the incoming and outgoing states of an electron that is scattered by interacting with another electron. It can thus be used for representing the nonlocal potential in hybrid functionals as well as the screened interaction and related quantities in GW calculations. In particular, the six-dimensional space integrals of the Hamiltonian exchange matrix elements (and exchange self-energy) decompose into sums over vector-matrix-vector products, which can be evaluated easily. The correlation part of the GW self-energy, which contains a time or frequency dependence, is calculated on the imaginary frequency axis with a subsequent analytic continuation to the real axis or, alternatively, by a direct frequency convolution of the Green function G and the dynamically screened Coulomb interaction W along a contour integration path that avoids the poles of the Green function. Hybrid-functional and GW calculations are notoriously computationally expensive. We present a number of tricks that reduce the computational cost considerably, including the use of spatial and time-reversal symmetries, modifications of the mixed product basis with the aim to optimize it for the correlation self-energy and another modification that makes the Coulomb matrix sparse, analytic expansions of the interaction potentials around the point of divergence at k = 0, and a nested density and density-matrix convergence scheme for hybrid-functional
Generalized summability methods of functions using ideals
NASA Astrophysics Data System (ADS)
Savaş, Ekrem
2015-09-01
In this paper, we shall make a new approach to two well known summability methods by using ideals and introduce new notions, namely, ℐ-statistical convergence and ℐ-lacunary statistical convergence by taking a nonnegative real-valued Lebesque measurable function in the interval (1, ∞) and mainly investigate their relationship and also make some observations about these classes.
Park, Gi-Tae; Kim, Mihyun
2016-01-01
[Purpose] The purpose of this study was to investigate the relationship between mobility assessed by the Modified Rivermead Mobility Index and variables associated with physical function in stroke patients. [Subjects and Methods] One hundred stroke patients (35 males and 65 females; age 58.60 ± 13.91 years) participated in this study. Modified Rivermead Mobility Index, muscle strength (manual muscle test), muscle tone (Modified Ashworth Scale), range of motion of lower extremity, sensory function (light touch and proprioception tests), and coordination (heel to shin and lower-extremity motor coordination tests) were assessed. [Results] The Modified Rivermead Mobility Index was correlated with all the physical function variables assessed, except the degree of knee extension. In addition, stepwise linear regression analysis revealed that coordination (heel to shin test) was the explanatory variable closely associated with mobility in stroke patients. [Conclusion] The Modified Rivermead Mobility Index score was significantly correlated with all the physical function variables. Coordination (heel to shin test) was closely related to mobility function. These results may be useful in developing rehabilitation programs for stroke patients. PMID:27630440
NASA Technical Reports Server (NTRS)
Mcclelland, J.; Silk, J.
1978-01-01
Higher-order correlation functions for the large-scale distribution of galaxies in space are investigated. It is demonstrated that the three-point correlation function observed by Peebles and Groth (1975) is not consistent with a distribution of perturbations that at present are randomly distributed in space. The two-point correlation function is shown to be independent of how the perturbations are distributed spatially, and a model of clustered perturbations is developed which incorporates a nonuniform perturbation distribution and which explains the three-point correlation function. A model with hierarchical perturbations incorporating the same nonuniform distribution is also constructed; it is found that this model also explains the three-point correlation function, but predicts different results for the four-point and higher-order correlation functions than does the model with clustered perturbations. It is suggested that the model of hierarchical perturbations might be explained by the single assumption of having density fluctuations or discrete objects all of the same mass randomly placed at some initial epoch.
Pillet, N.; Berger, J.-F.; Caurier, E.
2008-08-15
Applying a variational multiparticle-multihole configuration mixing method whose purpose is to include correlations beyond the mean field in a unified way without particle number and Pauli principle violations, we investigate pairing-like correlations in the ground states of {sup 116}Sn, {sup 106}Sn, and {sup 100}Sn. The same effective nucleon-nucleon interaction, namely, the D1S parametrization of the Gogny force, is used to derive both the mean field and correlation components of nuclear wave functions. Calculations are performed using an axially symmetric representation. The structure of correlated wave functions, their convergence with respect to the number of particle-hole excitations, and the influence of correlations on single-particle level spectra and occupation probabilities are analyzed and compared with results obtained with the same two-body effective interaction from BCS, Hartree-Fock-Bogoliubov, and particle number projected after variation BCS approaches. Calculations of nuclear radii and the first theoretical excited 0{sup +} states are compared with experimental data.
NASA Technical Reports Server (NTRS)
Huang, K.-N.
1977-01-01
A computational procedure for calculating correlated wave functions is proposed for three-particle systems interacting through Coulomb forces. Calculations are carried out for the muonic helium atom. Variational wave functions which explicitly contain interparticle coordinates are presented for the ground and excited states. General Hylleraas-type trial functions are used as the basis for the correlated wave functions. Excited-state energies of the muonic helium atom computed from 1- and 35-term wave functions are listed for four states.
Holland, Jason P; Green, Jennifer C
2010-04-15
The electronic absorption spectra of a range of copper and zinc complexes have been simulated by using time-dependent density functional theory (TD-DFT) calculations implemented in Gaussian03. In total, 41 exchange-correlation (XC) functionals including first-, second-, and third-generation (meta-generalized gradient approximation) DFT methods were compared in their ability to predict the experimental electronic absorption spectra. Both pure and hybrid DFT methods were tested and differences between restricted and unrestricted calculations were also investigated by comparison of analogous neutral zinc(II) and copper(II) complexes. TD-DFT calculated spectra were optimized with respect to the experimental electronic absorption spectra by use of a Matlab script. Direct comparison of the performance of each XC functional was achieved both qualitatively and quantitatively by comparison of optimized half-band widths, root-mean-squared errors (RMSE), energy scaling factors (epsilon(SF)), and overall quality-of-fit (Q(F)) parameters. Hybrid DFT methods were found to outperform all pure DFT functionals with B1LYP, B97-2, B97-1, X3LYP, and B98 functionals providing the highest quantitative and qualitative accuracy in both restricted and unrestricted systems. Of the functionals tested, B1LYP gave the most accurate results with both average RMSE and overall Q(F) < 3.5% and epsilon(SF) values close to unity (>0.990) for the copper complexes. The XC functional performance in spin-restricted TD-DFT calculations on the zinc complexes was found to be slightly worse. PBE1PBE, mPW1PW91 and B1LYP gave the most accurate results with typical RMSE and Q(F) values between 5.3 and 7.3%, and epsilon(SF) around 0.930. These studies illustrate the power of modern TD-DFT calculations for exploring excited state transitions of metal complexes.
Mirage in temporal correlation functions for baryon-baryon interactions in lattice QCD
NASA Astrophysics Data System (ADS)
Iritani, T.; Doi, T.; Aoki, S.; Gongyo, S.; Hatsuda, T.; Ikeda, Y.; Inoue, T.; Ishii, N.; Murano, K.; Nemura, H.; Sasaki, K.
2016-10-01
Single state saturation of the temporal correlation function is a key condition to extract physical observables such as energies and matrix elements of hadrons from lattice QCD simulations. A method commonly employed to check the saturation is to seek for a plateau of the observables for large Euclidean time. Identifying the plateau in the cases having nearby states, however, is non-trivial and one may even be misled by a fake plateau. Such a situation takes place typically for a system with two or more baryons. In this study, we demonstrate explicitly the danger from a possible fake plateau in the temporal correlation functions mainly for two baryons (ΞΞ and N N ), and three and four baryons (3He and 4He) as well, employing (2+1)-flavor lattice QCD at m π = 0 .51GeV on four lattice volumes with L = 2.9, 3.6, 4.3 and 5.8 fm. Caution is required when drawing conclusions about the bound N N , 3 N and 4 N systems based only on the standard plateau fitting of the temporal correlation functions. [Figure not available: see fulltext.
Montoya-Castillo, Andrés; Reichman, David R
2017-02-28
The ability to efficiently and accurately calculate equilibrium time correlation functions of many-body condensed phase quantum systems is one of the outstanding problems in theoretical chemistry. The Nakajima-Zwanzig-Mori formalism coupled to the self-consistent solution of the memory kernel has recently proven to be highly successful for the computation of nonequilibrium dynamical averages. Here, we extend this formalism to treat symmetrized equilibrium time correlation functions for the spin-boson model. Following the first paper in this series [A. Montoya-Castillo and D. R. Reichman, J. Chem. Phys. 144, 184104 (2016)], we use a Dyson-type expansion of the projected propagator to obtain a self-consistent solution for the memory kernel that requires only the calculation of normally evolved auxiliary kernels. We employ the approximate mean-field Ehrenfest method to demonstrate the feasibility of this approach. Via comparison with numerically exact results for the correlation function Czz(t)=Re⟨σz(0)σz(t)⟩, we show that the current scheme affords remarkable boosts in accuracy and efficiency over bare Ehrenfest dynamics. We further explore the sensitivity of the resulting dynamics to the choice of kernel closures and the accuracy of the initial canonical density operator.
Structure of the correlation function at the accumulation points of the logistic map
NASA Astrophysics Data System (ADS)
Karamanos, K.; Mistakidis, I. S.; Mistakidis, S. I.
2017-03-01
The correlation function of the trajectory exactly at the Feigenbaum point of the logistic map is investigated and checked by numerical experiments. Taking advantage of recent closed analytical results on the symbol-to-symbol correlation function of the generating partition, we are in position to justify the deep algorithmic structure of the correlation function apart from numerical constants. A generalization is given for arbitrary $m\\cdot 2^{\\infty}$ Feigenbaum attractors.
Cai, Yangjian; Chen, Yahong; Wang, Fei
2014-09-01
Partially coherent beams with nonconventional correlation functions have displayed many extraordinary properties, such as self-focusing and self-splitting, which are totally different from those of partially coherent beams with conventional Gaussian correlated Schell-model functions and are useful in many applications, such as optical trapping, free-space optical communications, and material thermal processing. In this paper, we present a review of recent developments on generation and propagation of partially coherent beams with nonconventional correlation functions.
A nonlinear correlation function for selecting the delay time in dynamical reconstructions
NASA Astrophysics Data System (ADS)
Aguirre, Luis Antonio
1995-02-01
Numerical results discussed in this paper suggest that a function which detects nonlinear correlations in time series usually indicates shorter correlation times than the linear autocorrelation function which is often used for this purpose. The nonlinear correlation function can also detect changes in the data which cannot be distinguished by the linear counterpart. This affects a number of approaches for the selection of the delay time used in the reconstruction of nonlinear dynamics from a single time series based on time delay coordinates.
The galaxy correlation function as a constraint on galaxy formation physics
NASA Astrophysics Data System (ADS)
van Daalen, Marcel P.; Henriques, Bruno M. B.; Angulo, Raul E.; White, Simon D. M.
2016-05-01
We introduce methods which allow observed galaxy clustering to be used together with observed luminosity or stellar mass functions to constrain the physics of galaxy formation. We show how the projected two-point correlation function of galaxies in a large semi-analytic simulation can be estimated to better than ˜10 per cent using only a very small subsample of the subhalo merger trees. This allows measured correlations to be used as constraints in a Monte Carlo Markov Chain exploration of the astrophysical and cosmological parameter space. An important part of our scheme is an analytic profile which captures the simulated satellite distribution extremely well out to several halo virial radii. This is essential to reproduce the correlation properties of the full simulation at intermediate separations. As a first application, we use low-redshift clustering and abundance measurements to constrain a recent version of the Munich semi-analytic model. The preferred values of most parameters are consistent with those found previously, with significantly improved constraints and somewhat shifted `best' values for parameters that primarily affect spatial distributions. Our methods allow multi-epoch data on galaxy clustering and abundance to be used as joint constraints on galaxy formation. This may lead to significant constraints on cosmological parameters even after marginalizing over galaxy formation physics.
NASA Astrophysics Data System (ADS)
Karsanina, M.; Gerke, K.; Vasilyev, R.; Skvortsova, E. B.; Korost, D. V.; Mallants, D.
2013-12-01
It is now well-established that structure of porous or composite media (i.e., distribution of different materials or phases) defines all physical properties, including multi-phase flow and solute transport. To characterize soil structure conventional soil science uses such metrics as grain size distribution, morphology or numerous classifications. However, all these descriptors provide only limited and often qualitative information about structural properties, cannot be used to reconstruct real structure or predict physical properties. With the progress of modern non-destructive analysis tools we can obtain detailed 3D structure information and use it for calculation of any physical property. Such 3D data is a valuable verification dataset to check the usefulness of soil structure description using stochastic measures such as correlation functions. Any potential soil structure descriptor should possess two main features: 1) represent structure in some mathematical way, 2) reconstruction based on this mathematical function alone should be statistically equal to the original structure (e.g., have similar pore size distributions, physical properties, etc.). To check the applicability to soil science, we choose different 2D and 3D segmented soil images and calculated their correlation function. The modified Yeong-Torquato procedure was then used to reconstruct images based on calculated correlation functions. This method was applied to three different soil datasets: 1) a set of 2D thin-sections, 2) 3D images of soils with known hydraulic properties (Ksat and WRC), 3) 3D images of soils and aggregates from the same soil profile, but different genetic horizons. In the first case, we use conventional morphological descriptors in 2D original and reconstructed images (pore size, shapes and orientations) to quantify reconstructions quality. In the second case, we use pore-network models extracted from original and reconstructed 3D images to calculate Ksat, WRC and relative
Development of Colle-Salvetti type electron-nucleus correlation functional for MC-DFT
Udagawa, Taro; Tsuneda, Takao; Tachikawa, Masanori
2015-12-31
A Colle-Salvetti type electron-nucleus correlation functional for multicomponent density-functional theory is proposed. We demonstrate that our correlation functional quantitatively reproduces the quantum nuclear effects of protons; the mean absolute deviation value is 2.8 millihartrees for the optimized structure of hydrogen-containing molecules. We also show other practical calculations with our new electron-deuteron and electron-triton correlation functionals. Since this functional is derived without any unphysical assumption, the strategy taken in this development will be a promising recipe to make new functionals for the potentials of other particles’ interactions.
Development of Colle-Salvetti type electron-nucleus correlation functional for MC_DFT
NASA Astrophysics Data System (ADS)
Udagawa, Taro; Tsuneda, Takao; Tachikawa, Masanori
2015-12-01
A Colle-Salvetti type electron-nucleus correlation functional for multicomponent density-functional theory is proposed. We demonstrate that our correlation functional quantitatively reproduces the quantum nuclear effects of protons; the mean absolute deviation value is 2.8 millihartrees for the optimized structure of hydrogen-containing molecules. We also show other practical calculations with our new electron-deuteron and electron-triton correlation functionals. Since this functional is derived without any unphysical assumption, the strategy taken in this development will be a promising recipe to make new functionals for the potentials of other particles' interactions.
Correlated wave functions for the ground and some excited states of the iron atom.
Buendía, E; Gálvez, F J; Sarsa, A
2006-04-21
We study the states arising from the [Ar]4s(2)3d6 and [Ar]4s(1)3d7 configurations of iron atom with explicitly correlated wave functions. The variational wave function is the product of the Jastrow correlation factor times a model function obtained within the parametrized optimized effective potential framework. A systematic analysis of the dependence of both the effective potential and the correlation factor on the configuration and on the term is carried out. The ground state of both, the cation, Fe+, and anion, Fe-, are calculated with correlated wave functions and the ionization potential and the electron affinity are obtained.
a Renormalization Group Calculation of the Velocity - and Density-Density Correlation Functions.
NASA Astrophysics Data System (ADS)
Cowan, Mark Timothy
The velocity-velocity correlation function of a free field theory is obtained. The renormalization group, along with a 4-varepsilon expansion, is then used to find the leading order behavior of the velocity-velocity correlation function for an interacting field theory in the high temperature phase near the critical point. The details of the calculation of the density-density correlation function for Hedgehogs, in the context of a free field theory, is presented next. Finally the renormalization group, along with a 4-varepsilon expansion, is used to find the leading order behavior of the density-density correlation function for Hedgehogs in an interacting field theory near the critical point.
Goodpaster, Jason D.; Barnes, Taylor A.; Miller, Thomas F.; Manby, Frederick R.
2014-05-14
We analyze the sources of error in quantum embedding calculations in which an active subsystem is treated using wavefunction methods, and the remainder using density functional theory. We show that the embedding potential felt by the electrons in the active subsystem makes only a small contribution to the error of the method, whereas the error in the nonadditive exchange-correlation energy dominates. We test an MP2 correction for this term and demonstrate that the corrected embedding scheme accurately reproduces wavefunction calculations for a series of chemical reactions. Our projector-based embedding method uses localized occupied orbitals to partition the system; as with other local correlation methods, abrupt changes in the character of the localized orbitals along a reaction coordinate can lead to discontinuities in the embedded energy, but we show that these discontinuities are small and can be systematically reduced by increasing the size of the active region. Convergence of reaction energies with respect to the size of the active subsystem is shown to be rapid for all cases where the density functional treatment is able to capture the polarization of the environment, even in conjugated systems, and even when the partition cuts across a double bond.
Cluster expansions for the correlated basis functions theory
NASA Astrophysics Data System (ADS)
Guardiola, R.
1982-08-01
Four kinds of cluster expansions for the calculation of non-diagonal matrix elements of the hamiltonian between correlated states have been derived. The derivation is based on a linearization mechanism for the standard cluster expansions in a configuration mixed state. Particularly simple formulae result for the multiplicative Factor-Aviles-Hartog-Tolhoek expansion and for the exponential form of the Gaudin-Gillespie-Ripka cluster expansion. The resulting expansions are directly usable in finite nuclei.
Multiconfiguration Pair-Density Functional Theory: A New Way To Treat Strongly Correlated Systems.
Gagliardi, Laura; Truhlar, Donald G; Li Manni, Giovanni; Carlson, Rebecca K; Hoyer, Chad E; Bao, Junwei Lucas
2017-01-17
The electronic energy of a system provides the Born-Oppenheimer potential energy for internuclear motion and thus determines molecular structure and spectra, bond energies, conformational energies, reaction barrier heights, and vibrational frequencies. The development of more efficient and more accurate ways to calculate the electronic energy of systems with inherently multiconfigurational electronic structure is essential for many applications, including transition metal and actinide chemistry, systems with partially broken bonds, many transition states, and most electronically excited states. Inherently multiconfigurational systems are called strongly correlated systems or multireference systems, where the latter name refers to the need for using more than one ("multiple") configuration state function to provide a good zero-order reference wave function. This Account describes multiconfiguration pair-density functional theory (MC-PDFT), which was developed as a way to combine the advantages of wave function theory (WFT) and density functional theory (DFT) to provide a better treatment of strongly correlated systems. First we review background material: the widely used Kohn-Sham DFT (which uses only a single Slater determinant as reference wave function), multiconfiguration WFT methods that treat inherently multiconfigurational systems based on an active space, and previous attempts to combine multiconfiguration WFT with DFT. Then we review the formulation of MC-PDFT. It is a generalization of Kohn-Sham DFT in that the electron kinetic energy and classical electrostatic energy are calculated from a reference wave function, while the rest of the energy is obtained from a density functional. However, there are two main differences with respent to Kohn-Sham DFT: (i) The reference wave function is multiconfigurational rather than being a single Slater determinant. (ii) The density functional is a function of the total density and the on-top pair density rather than
Delta function convolution method (DFCM) for fluorescence decay experiments
NASA Astrophysics Data System (ADS)
Zuker, M.; Szabo, A. G.; Bramall, L.; Krajcarski, D. T.; Selinger, B.
1985-01-01
A rigorous and convenient method of correcting for the wavelength variation of the instrument response function in time correlated photon counting fluorescence decay measurements is described. The method involves convolution of a modified functional form F˜s of the physical model with a reference data set measured under identical conditions as the measurement of the sample. The method is completely general in that an appropriate functional form may be found for any physical model of the excited state decay process. The modified function includes a term which is a Dirac delta function and terms which give the correct decay times and preexponential values in which one is interested. None of the data is altered in any way, permitting correct statistical analysis of the fitting. The method is readily adaptable to standard deconvolution procedures. The paper describes the theory and application of the method together with fluorescence decay results obtained from measurements of a number of different samples including diphenylhexatriene, myoglobin, hemoglobin, 4', 6-diamidine-2-phenylindole (DAPI), and lysine-trytophan-lysine.
Liu, Jian; Miller, William H.
2007-07-10
It is shown how quantum mechanical time correlation functions [defined, e.g., in Eq. (1.1)] can be expressed, without approximation, in the same form as the linearized approximation of the semiclassical initial value representation (LSC-IVR), or classical Wigner model, for the correlation function [cf. Eq. (2.1)], i.e., as a phase space average (over initial conditions for trajectories) of the Wigner functions corresponding to the two operators. The difference is that the trajectories involved in the LSC-IVR evolve classically, i.e., according to the classical equations of motion, while in the exact theory they evolve according to generalized equations of motion that are derived here. Approximations to the exact equations of motion are then introduced to achieve practical methods that are applicable to complex (i.e., large) molecular systems. Four such methods are proposed in the paper--the full Wigner dynamics (full WD) and the 2nd order WD based on 'Winger trajectories', and the full Donoso-Martens dynamics (full DMD) and the 2nd order DMD based on 'Donoso-Martens trajectories'--all of which can be viewed as generalizations of the original LSC-IVR method. Numerical tests of these four versions of this new approach are made for two anharmonic model problems, and for each the momentum autocorrelation function (i.e., operators linear in coordinate or momentum operators) and the force autocorrelation function (non-linear operators) have been calculated. These four new approximate treatments are indeed seen to be significant improvements to the original LSC-IVR approximation.
NASA Astrophysics Data System (ADS)
Antunes, Jose; Borsoi, Laurent; Delaune, Xavier; Piteau, Philippe
2016-02-01
In this paper, we propose analytical and numerical straightforward approximate methods to estimate the unknown terms of incomplete spectral or correlation matrices, when the cross-spectra or cross-correlations available from multiple measurements do not cover all pairs of transducer locations. The proposed techniques may be applied whenever the available data includes the auto-spectra at all measurement locations, as well as selected cross-spectra which implicates all measurement locations. The suggested methods can also be used for checking the consistency between the spectral or correlation functions pertaining to measurement matrices, in cases of suspicious data. After presenting the proposed spectral estimation formulations, we discuss their merits and limitations. Then we illustrate their use on a realistic simulation of a multi-supported tube subjected to turbulence excitation from cross-flow. Finally, we show the effectiveness of the proposed techniques by extracting the modal responses of the simulated flow-excited tube, using the SOBI (Second Order Blind Identification) method, from an incomplete response matrix 1
Site-site direct correlation functions for three popular molecular models of liquid water.
Zhao, Shuangliang; Liu, Yu; Liu, Honglai; Wu, Jianzhong
2013-08-14
Direct correlation functions (DCFs) play a pivotal role in the applications of classical density functional theory (DFT) to addressing the thermodynamic properties of inhomogeneous systems beyond the local-density or mean-field approximations. Whereas numerous studies have been dedicated to the radial distribution functions of liquid water--the most important solvent on earth, relatively little attention has been given to the site-site DCFs. The water DCFs are long-ranged and difficult to calculate directly by simulation, and the predictions from conventional liquid-state theories have been rarely calibrated. Here we report a computational procedure for accurate evaluation of the site-site DCFs of liquid water based on three popular molecular models (viz., SPC, SPC∕E, and TIP3P). The numerical results provide a benchmark for calibration of conventional liquid-state theories and fresh insights into development of new DFT methods. We show that: (1) the long-range behavior of the site-site DCFs depends on both the molecular model and the thermodynamic condition; (2) the asymptotic limit of DCFs at large distance does not follow the mean-spherical approximation (MSA); (3) individual site-site DCFs are long ranged (~40 nm) but a summation of all DCF pairs exhibits only short-range behavior (~1 nm or a few water diameters); (4) the site-site bridge correlation functions behave as the DCFs, i.e., they are also long-ranged while the summation of all bridge correlation functions is short ranged. Our analytical and numerical analyses of the DCFs provide some simple strategies for possible improvement of the numerical performance of conventional liquid-state theories.
Maximum-likelihood analysis of the COBE angular correlation function
NASA Technical Reports Server (NTRS)
Seljak, Uros; Bertschinger, Edmund
1993-01-01
We have used maximum-likelihood estimation to determine the quadrupole amplitude Q(sub rms-PS) and the spectral index n of the density fluctuation power spectrum at recombination from the COBE DMR data. We find a strong correlation between the two parameters of the form Q(sub rms-PS) = (15.7 +/- 2.6) exp (0.46(1 - n)) microK for fixed n. Our result is slightly smaller than and has a smaller statistical uncertainty than the 1992 estimate of Smoot et al.
NASA Astrophysics Data System (ADS)
Xue, Qian; Wang, Huaxiang; Yang, Chengyi; Cui, Ziqiang
2012-08-01
In a twin-plane electrical capacitance tomography (ECT) system, velocity measurement of two-phase flow is transformed into the time delay estimation problem, while the nongaussianity and nonstationarity of two-phase flow signals have put the validity of the conventional cross-correlation algorithm in jeopardy. To improve the robustness and reliability of flow velocity measurement, an alternative method is proposed based on the dynamical lag correlation exponent and applied to coal ash measurement in a pneumatic pipeline. Different from the cross-correlation method which picks the peak point of the cross-correlation function as the delayed frames between the upstream and downstream signals, the proposed method determines the delayed frames by finding the minimum point of the dynamical lag correlation exponent. The preliminary results of flow velocity measurement indicate that the proposed method is capable of detecting various velocities (8-25 m s-1), which is useful for monitoring and predicting flow instability.
Finite difference methods for approximating Heaviside functions
NASA Astrophysics Data System (ADS)
Towers, John D.
2009-05-01
We present a finite difference method for discretizing a Heaviside function H(u(x→)), where u is a level set function u:Rn ↦ R that is positive on a bounded region Ω⊂Rn. There are two variants of our algorithm, both of which are adapted from finite difference methods that we proposed for discretizing delta functions in [J.D. Towers, Two methods for discretizing a delta function supported on a level set, J. Comput. Phys. 220 (2007) 915-931; J.D. Towers, Discretizing delta functions via finite differences and gradient normalization, Preprint at http://www.miracosta.edu/home/jtowers/; J.D. Towers, A convergence rate theorem for finite difference approximations to delta functions, J. Comput. Phys. 227 (2008) 6591-6597]. We consider our approximate Heaviside functions as they are used to approximate integrals over Ω. We prove that our first approximate Heaviside function leads to second order accurate quadrature algorithms. Numerical experiments verify this second order accuracy. For our second algorithm, numerical experiments indicate at least third order accuracy if the integrand f and ∂Ω are sufficiently smooth. Numerical experiments also indicate that our approximations are effective when used to discretize certain singular source terms in partial differential equations. We mostly focus on smooth f and u. By this we mean that f is smooth in a neighborhood of Ω, u is smooth in a neighborhood of ∂Ω, and the level set u(x)=0 is a manifold of codimension one. However, our algorithms still give reasonable results if either f or u has jumps in its derivatives. Numerical experiments indicate approximately second order accuracy for both algorithms if the regularity of the data is reduced in this way, assuming that the level set u(x)=0 is a manifold. Numerical experiments indicate that dependence on the placement of Ω with respect to the grid is quite small for our algorithms. Specifically, a grid shift results in an O(hp) change in the computed solution
Disc Degeneration Assessed by Quantitative T2* (T2 star) Correlated with Functional Lumbar Mechanics
Ellingson, Arin M.; Mehta, Hitesh; Polly, David W.; Ellermann, Jutta; Nuckley, David J.
2013-01-01
Study Design Experimental correlation study design to quantify features of disc health, including signal intensity and distinction between the annulus fibrosus (AF) and nucleus pulposus (NP), with T2* magnetic resonance imaging (MRI) and correlate with the functional mechanics in corresponding motion segments. Objective Establish the relationship between disc health assessed by quantitative T2* MRI and functional lumbar mechanics. Summary of Background Data Degeneration leads to altered biochemistry in the disc, affecting the mechanical competence. Clinical routine MRI sequences are not adequate in detecting early changes in degeneration and fails to correlate with pain or improve patient stratification. Quantitative T2* relaxation time mapping probes biochemical features and may offer more sensitivity in assessing disc degeneration. Methods Cadaveric lumbar spines were imaged using quantitative T2* mapping, as well as conventional T2-weighted MRI sequences. Discs were graded by the Pfirrmann scale and features of disc health, including signal intensity (T2* Intensity Area) and distinction between the AF and NP (Transition Zone Slope), were quantified by T2*. Each motion segment was subjected to pure moment bending to determine range of motion (ROM), neutral zone (NZ), and bending stiffness. Results T2* Intensity Area and Transition Zone Slope were significantly correlated with flexion ROM (p=0.015; p=0.002), ratio of NZ/ROM (p=0.010; p=0.028), and stiffness (p=0.044; p=0.026), as well as lateral bending NZ/ROM (p=0.005; p=0.010) and stiffness (p=0.022; p=0.029). T2* Intensity Area was also correlated with LB ROM (p=0.023). Pfirrmann grade was only correlated with lateral bending NZ/ROM (p=0.001) and stiffness (p=0.007). Conclusions T2* mapping is a sensitive quantitative method capable of detecting changes associated with disc degeneration. Features of disc health quantified with T2* predicted altered functional mechanics of the lumbar spine better than
NASA Astrophysics Data System (ADS)
Aldegunde, Manuel; Kermode, James R.; Zabaras, Nicholas
2016-04-01
This paper presents the development of a new exchange-correlation functional from the point of view of machine learning. Using atomization energies of solids and small molecules, we train a linear model for the exchange enhancement factor using a Bayesian approach which allows for the quantification of uncertainties in the predictions. A relevance vector machine is used to automatically select the most relevant terms of the model. We then test this model on atomization energies and also on bulk properties. The average model provides a mean absolute error of only 0.116 eV for the test points of the G2/97 set but a larger 0.314 eV for the test solids. In terms of bulk properties, the prediction for transition metals and monovalent semiconductors has a very low test error. However, as expected, predictions for types of materials not represented in the training set such as ionic solids show much larger errors.
Aldegunde, Manuel Kermode, James R. Zabaras, Nicholas
2016-04-15
This paper presents the development of a new exchange–correlation functional from the point of view of machine learning. Using atomization energies of solids and small molecules, we train a linear model for the exchange enhancement factor using a Bayesian approach which allows for the quantification of uncertainties in the predictions. A relevance vector machine is used to automatically select the most relevant terms of the model. We then test this model on atomization energies and also on bulk properties. The average model provides a mean absolute error of only 0.116 eV for the test points of the G2/97 set but a larger 0.314 eV for the test solids. In terms of bulk properties, the prediction for transition metals and monovalent semiconductors has a very low test error. However, as expected, predictions for types of materials not represented in the training set such as ionic solids show much larger errors.
2010-01-01
Introduction Nonsteroidal anti-inflammatory drugs are recommended for the relief of pain associated with hand osteoarthritis (OA) but do not alter the underlying structural changes that contribute to impaired physical function. The current analysis examined the relationship of pain relief with measures of function and global rating of disease in patients with hand OA. Methods This was a combined analysis of 2 prospective, randomized, double-blind, 8-week, multicenter, parallel-group studies comparing diclofenac sodium 1% gel with placebo gel (vehicle) in patients with radiographically confirmed mild to moderate hand OA. Patients (n = 783) aged ≥ 40 years applied diclofenac sodium 1% gel (2 g) or vehicle to each hand 4 times daily for 8 weeks. Outcome measures included pain intensity assessed on a 100-mm Visual Analog Scale (VAS); the Australian/Canadian Osteoarthritis Hand Index (AUSCAN) subscales for pain, stiffness, and physical function (100-mm VAS); and a global rating of disease (100-mm VAS). Change in VAS pain intensity from baseline to week 8 was categorized (<0%, 0%-<15%, 15%-<30%, 30%-<50%, 50%-<70%, and ≥ 70%) without regard to treatment and compared in each category with the mean change from baseline in each AUSCAN subindex and the global rating of disease. Pearson correlations between changes in outcome measures from baseline to week 8 were calculated. Results Changes in VAS pain intensity were accompanied by similar changes in AUSCAN scores and global rating of disease. Pearson correlations confirmed significant associations (P < 0.001) between change in VAS pain intensity and changes in AUSCAN pain (correlation coefficient [r] = 0.81), AUSCAN function (r = 0.75), AUSCAN stiffness (r = 0.66), and global rating of disease (r = 0.76). Conclusions Pain relief correlated with improvements in physical function, stiffness, and global rating of disease in patients with hand OA, irrespective of treatment. This suggests that pain or anticipation of pain
Executive Functions after Age 5: Changes and Correlates
ERIC Educational Resources Information Center
Best, John R.; Miller, Patricia H.; Jones, Lara L.
2009-01-01
Research and theorizing on executive function (EF) in childhood has been disproportionately focused on preschool age children. This review paper outlines the importance of examining EF throughout childhood, and even across the lifespan. First, examining EF in older children can address the question of whether EF is a unitary construct. The…
Giger, Maryellen L.; Chen, Chin-Tu; Armato, Samuel; Doi, Kunio
1999-10-26
A method and system for the computerized registration of radionuclide images with radiographic images, including generating image data from radiographic and radionuclide images of the thorax. Techniques include contouring the lung regions in each type of chest image, scaling and registration of the contours based on location of lung apices, and superimposition after appropriate shifting of the images. Specific applications are given for the automated registration of radionuclide lungs scans with chest radiographs. The method in the example given yields a system that spatially registers and correlates digitized chest radiographs with V/Q scans in order to correlate V/Q functional information with the greater structural detail of chest radiographs. Final output could be the computer-determined contours from each type of image superimposed on any of the original images, or superimposition of the radionuclide image data, which contains high activity, onto the radiographic chest image.
The Correlation between NK Cell and Liver Function in Patients with Primary Hepatocellular Carcinoma
Zeng, Xiao-Hui; Min, Lu
2014-01-01
Background/Aims This study aimed to detect the expression of natural killer (NK) cell receptor natural killer group 2D (NKG2D) in the peripheral blood of patients with primary hepatocellular carcinoma and to discuss the correlation between NK cell cytotoxicity and liver function. Methods The number of NK cells and the expression of NK cell receptor NKG2D in peripheral blood were determined by flow cytometry in patients with primary hepatocellular carcinoma, hepatitis B cirrhosis, chronic hepatitis B, and healthy controls. Results When compared with patients in the healthy and the chronic hepatitis B groups, the primary hepatocellular carcinoma group showed significant decreases in all parameters, including the cytotoxicity of NK cells on K562 cells, expression rate of NKG2D in NK cells, number of NKG2D+ NK cells, expression level of NKG2D, and number of NK cells (p<0.05). The activity of NK cells showed a positive correlation, whereas the Child-Pugh scores in the primary hepatocellular carcinoma and the hepatitis B cirrhosis groups showed a negative correlation with all parameters detected above. Conclusions The decrease of NK cell activity in patients with primary hepatocellular carcinoma is closely related to their lower expression of NKG2D. Liver function affects the expression of NKG2D and the activity of NK cells. PMID:24827627
Large covariance matrices: smooth models from the two-point correlation function
NASA Astrophysics Data System (ADS)
O'Connell, Ross; Eisenstein, Daniel; Vargas, Mariana; Ho, Shirley; Padmanabhan, Nikhil
2016-11-01
We introduce a new method for estimating the covariance matrix for the galaxy correlation function in surveys of large-scale structure. Our method combines simple theoretical results with a realistic characterization of the survey to dramatically reduce noise in the covariance matrix. For example, with an investment of only ≈1000 CPU hours we can produce a model covariance matrix with noise levels that would otherwise require ˜35 000 mocks. Non-Gaussian contributions to the model are calibrated against mock catalogues, after which the model covariance is found to be in impressive agreement with the mock covariance matrix. Since calibration of this method requires fewer mocks than brute force approaches, we believe that it could dramatically reduce the number of mocks required to analyse future surveys.
Cuenca, Nicolás; Fernández-Sánchez, Laura; Sauvé, Yves; Segura, Francisco J.; Martínez-Navarrete, Gema; Tamarit, José Manuel; Fuentes-Broto, Lorena; Sanchez-Cano, Ana; Pinilla, Isabel
2014-01-01
Purpose: The P23H rhodopsin mutation is an autosomal dominant cause of retinitis pigmentosa (RP). The degeneration can be tracked using different anatomical and functional methods. In our case, we evaluated the anatomical changes using Spectral-Domain Optical Coherence Tomography (SD-OCT) and correlated the findings with retinal thickness values determined by immunocytochemistry.Methods: Pigmented rats heterozygous for the P23H mutation, with ages between P18 and P180 were studied. Function was assessed by means of optomotor testing and ERGs. Retinal thicknesses measurements, autofluorescence and fluorescein angiography were performed using Spectralis OCT. Retinas were studied by means of immunohistochemistry. Results: Between P30 and P180, visual acuity decreased from 0.500 to 0.182 cycles per degree (cyc/deg) and contrast sensitivity decreased from 54.56 to 2.98 for a spatial frequency of 0.089 cyc/deg. Only cone-driven b-wave responses reached developmental maturity. Flicker fusions were also comparable at P29 (42 Hz). Double flash-isolated rod-driven responses were already affected at P29. Photopic responses revealed deterioration after P29.A reduction in retinal thicknesses and morphological modifications were seen in OCT sections. Statistically significant differences were found in all evaluated thicknesses. Autofluorescence was seen in P23H rats as sparse dots. Immunocytochemistry showed a progressive decrease in the outer nuclear layer (ONL), and morphological changes. Although anatomical thickness measures were significantly lower than OCT values, there was a very strong correlation between the values measured by both techniques.Conclusions: In pigmented P23H rats, a progressive deterioration occurs in both retinal function and anatomy. Anatomical changes can be effectively evaluated using SD-OCT and immunocytochemistry, with a good correlation between their values, thus making SD-OCT an important tool for research in retinal degeneration. PMID:25565976
Executive Functions after Age 5: Changes and Correlates
Best, John R.; Miller, Patricia H.; Jones, Lara L.
2009-01-01
Research and theorizing on executive function (EF) in childhood has been disproportionately focused on preschool age children. This review paper outlines the importance of examining EF throughout childhood, and even across the lifespan. First, examining EF in older children can address the question of whether EF is a unitary construct. The relations among the EF components, particularly as they are recruited for complex tasks, appear to change over the course of development. Second, much of the development of EF, especially working memory, shifting, and planning, occurs after age 5. Third, important applications of EF research concern the role of school-age children’s EF in various aspects of school performance, as well as social functioning and emotional control. Future research needs to examine a more complete developmental span, from early childhood through late adulthood, in order to address developmental issues adequately. PMID:20161467
Jung, J.; Alvarellos, J.E.; Garcia-Gonzalez, P.; Godby, R.W.
2004-05-01
The complex nature of electron-electron correlations is made manifest in the very simple but nontrivial problem of two electrons confined within a sphere. The description of highly nonlocal correlation and self-interaction effects by widely used local and semilocal exchange-correlation energy density functionals is shown to be unsatisfactory in most cases. Even the best such functionals exhibit significant errors in the Kohn-Sham potentials and density profiles.
Evaluation of Test/Analysis Correlation Methods for Crash Applications
NASA Technical Reports Server (NTRS)
Lyle, Karen H.; Bark, Lindley W.; Jackson, Karen E.
2001-01-01
A project has been initiated to improve crash test and analysis correlation. The work in this paper concentrated on the test and simulation results for a fuselage section. Two drop tests of the section were conducted. The first test was designed to excite the linear structural response for comparison with finite element modal analysis results. The second test was designed to provide data for correlation with crash simulations. An MSC.Dytran model was developed to generate nonlinear transient dynamic results. Following minor modifications, the same model was executed in MSC.Nastran to generate modal analysis results. The results presented in this paper concentrate on evaluation of correlation methodologies for crash test data and finite element simulation results.
PHREATOPHYTE WATER USE ESTIMATED BY EDDY-CORRELATION METHODS.
Weaver, H.L.; Weeks, E.P.; Campbell, G.S.; Stannard, D.I.; Tanner, B.D.
1986-01-01
Water-use was estimated for three phreatophyte communities: a saltcedar community and an alkali-Sacaton grass community in New Mexico, and a greasewood rabbit-brush-saltgrass community in Colorado. These water-use estimates were calculated from eddy-correlation measurements using three different analyses, since the direct eddy-correlation measurements did not satisfy a surface energy balance. The analysis that seems to be most accurate indicated the saltcedar community used from 58 to 87 cm (23 to 34 in. ) of water each year. The other two communities used about two-thirds this quantity.
Quantitative methods in assessment of neurologic function.
Potvin, A R; Tourtellotte, W W; Syndulko, K; Potvin, J
1981-01-01
Traditionally, neurologists have emphasized qualitative techniques for assessing results of clinical trials. However, in recent years qualitative evaluations have been increasingly augmented by quantitative tests for measuring neurologic functions pertaining to mental state, strength, steadiness, reactions, speed, coordination, sensation, fatigue, gait, station, and simulated activities of daily living. Quantitative tests have long been used by psychologists for evaluating asymptomatic function, assessing human information processing, and predicting proficiency in skilled tasks; however, their methodology has never been directly assessed for validity in a clinical environment. In this report, relevant contributions from the literature on asymptomatic human performance and that on clinical quantitative neurologic function are reviewed and assessed. While emphasis is focused on tests appropriate for evaluating clinical neurologic trials, evaluations of tests for reproducibility, reliability, validity, and examiner training procedures, and for effects of motivation, learning, handedness, age, and sex are also reported and interpreted. Examples of statistical strategies for data analysis, scoring systems, data reduction methods, and data display concepts are presented. Although investigative work still remains to be done, it appears that carefully selected and evaluated tests of sensory and motor function should be an essential factor for evaluating clinical trials in an objective manner.
Modified Interior Distance Functions (Theory and Methods)
NASA Technical Reports Server (NTRS)
Polyak, Roman A.
1995-01-01
In this paper we introduced and developed the theory of Modified Interior Distance Functions (MIDF's). The MIDF is a Classical Lagrangian (CL) for a constrained optimization problem which is equivalent to the initial one and can be obtained from the latter by monotone transformation both the objective function and constraints. In contrast to the Interior Distance Functions (IDF's), which played a fundamental role in Interior Point Methods (IPM's), the MIDF's are defined on an extended feasible set and along with center, have two extra tools, which control the computational process: the barrier parameter and the vector of Lagrange multipliers. The extra tools allow to attach to the MEDF's very important properties of Augmented Lagrangeans. One can consider the MIDFs as Interior Augmented Lagrangeans. It makes MIDF's similar in spirit to Modified Barrier Functions (MBF's), although there is a fundamental difference between them both in theory and methods. Based on MIDF's theory, Modified Center Methods (MCM's) have been developed and analyzed. The MCM's find an unconstrained minimizer in primal space and update the Lagrange multipliers, while both the center and the barrier parameter can be fixed or updated at each step. The MCM's convergence was investigated, and their rate of convergence was estimated. The extension of the feasible set and the special role of the Lagrange multipliers allow to develop MCM's, which produce, in case of nondegenerate constrained optimization, a primal and dual sequences that converge to the primal-dual solutions with linear rate, even when both the center and the barrier parameter are fixed. Moreover, every Lagrange multipliers update shrinks the distance to the primal dual solution by a factor 0 less than gamma less than 1 which can be made as small as one wants by choosing a fixed interior point as a 'center' and a fixed but large enough barrier parameter. The numericai realization of MCM leads to the Newton MCM (NMCM). The
Alexithymia in personality disorders: correlations with symptoms and interpersonal functioning.
Nicolò, Giuseppe; Semerari, Antonio; Lysaker, Paul H; Dimaggio, Giancarlo; Conti, Laura; D'Angerio, Stefania; Procacci, Michele; Popolo, Raffaele; Carcione, Antonino
2011-11-30
Impairment in the ability to recognize and make sense of emotions has been hypothesized to be present in a sub-sample of people suffering from personality disorder (PD). In particular it is possible that difficulty recognizing and expressing feelings, or alexithymia, is related to many of the symptoms and problems in making sense of social interactions which are hallmarks of PD. In this study we measured levels of alexithymia with the Toronto Alexithymia Scale-20 and explored its correlations with the overall presence of PD and different PD diagnoses, symptoms, and interpersonal difficulties. Results were largely consistent with the hypothesis. Higher levels of alexithymia were related to high levels of global psychopathology and with dysfunctional representation of interpersonal relations. A sub-sample of patients, mostly suffering from avoidant, dependent, passive-aggressive and depressive PD, had alexithymic features and, in particular reported difficulties describing their feelings to others. A patient with cluster B PD featured no alexithymia. Implications of this study for future research and treatment are discussed.
IVBT-documented platelet function correlates with flow cytometric data.
Hoffmann, J; Bonacker, G; Kretschmer, V; Schulzki, T; Heimanns, J
1996-12-01
Thrombocytopenic patients with identical platelet counts often show different bleeding tendencies owing to significant differences in the platelet function. This could be demonstrated by the in vitro bleeding test (IVBT). Using flow cytometry, we tried to find characteristics of platelet antigen expression in order to explain these differences in function. Thirty patients with bone marrow hypoplasia receiving 65 platelet transfusions (mainly from a cell separator) were observed for 3 to 29 days. Size, granulation and fluorescence of platelet-rich plasma (n = 522 samples) were evaluated using monoclonal antibodies against GP IIIb (collagen receptor), GP IIb/IIIa (fibrinogen receptor) and GP Ib (thrombin receptor). We defined separate gates for each antibody using the results from 50 normals and by laying an orthograde cross over the gate to divide the gate into four equal quadrants. The platelet populations were divided into four different groups according to the occlusion time (OT) of the IVBT and the Simplate time (ST). The thrombocytes with the most impaired function (OT > or = 485 s/ST > 30 min) had significantly less platelet fluorescence when marked with antibodies against GP IIIb and GP Ib than those with short OT and ST (OT < 100 s/ST < 15 min). Similar results were obtained when evaluating the data relative to the bone marrow status: patients with < 1000 WBC/microliters showed significantly less platelet fluorescence when marked with anti-GP IIIb and anti-GP Ib than thrombocytopenic patients, who had a spontaneous platelet rise beyond 30,000 platelets/microliters a few days later. One day after platelet transfusion, significantly more platelets with high GP IIIb and Ib expression could be found. We were also able to document better transfusion efficacy of platelet concentrates with high GP IIIb and Ib expression. Finally, patients with high bleeding scores showed less GP Ib expression on the platelets than patients with low bleeding scores. In summary, the
Correlation functions in hard and (semi-)inclusive processes
Schlegel, Marc; Meissner, Stephan; Metz, Andreas
2009-01-01
Possible relations between two a priori different classes of parton distributions, the Generalized Parton Distributions (GPDs) and the Transverse Momentum Dependent parton distributions (TMDs), are discussed in this note. Although these relations were proven to hold exactly only in simple models they imply an appealingly simple and intuitive explanation for single-spin asymmetries in semi-inclusive deep-inelastic scattering. In this context we perform a first classification of common mother functions of GPDs and TMDs, so-called Generalized Transverse Momentum Dependent parton distributions (GTMDs), investigate their GPD- and TMD-limits, and gain new insight into the nature of these relations.
Song, L N; Cao, A D; Niu, Y J; Liu, N
2014-08-07
The aim of this study was to determine the impact of multi-slice computed tomography (MSCT) evaluation of coronary artery stenosis on left heart structure and systolic function. Coronary artery CT angiography was performed in 200 patients diagnosed with coronary heart disease, and then according to the AHA coronary artery 17-segment fractionation method, the Gensini score (GS) was determined for every narrow segment, and one-stop assessment of the correlation between left heart structure and function was performed. After the grouping of GS quartiles from low to high, there were differences between different patients with regard to LVDD, LADD, LVEDV, LVESV, MM, LVEF, and FS, while no difference in SV and CO. GS showed linear negative correlation with LVEF and FS, and linear positive correlation with LVDD, LADD, LVEDV, LVESV, and MM, while no correlation with SV and CO. That is, GS of coronary artery stenosis was negatively correlated with left ventricular systolic function and positively correlated with myocardial mass. The narrower the coronary artery, the worse the cardiac function and the higher the myocardial hypertrophy. Coronary artery stenosis was one of the important causes of the decrease in left ventricular systolic function and cardiac remodeling.
Methods of Assessing Replicability in Canonical Correlation Analysis (CCA).
ERIC Educational Resources Information Center
King, Jason E.
Theoretical hypotheses generated from data analysis of a single sample should not be advanced until the replicability issue is treated. At least one of three questions usually arises when evaluating the invariance of results obtained from a canonical correlation analysis (CCA): (1) "Will an effect occur in subsequent studies?"; (2)…
Optimal gene partition into operons correlates with gene functional order
NASA Astrophysics Data System (ADS)
Zaslaver, Alon; Mayo, Avi; Ronen, Michal; Alon, Uri
2006-09-01
Gene arrangement into operons varies between bacterial species. Genes in a given system can be on one operon in some organisms and on several operons in other organisms. Existing theories explain why genes that work together should be on the same operon, since this allows for advantageous lateral gene transfer and accurate stoichiometry. But what causes the frequent separation into multiple operons of co-regulated genes that act together in a pathway? Here we suggest that separation is due to benefits made possible by differential regulation of each operon. We present a simple mathematical model for the optimal distribution of genes into operons based on a balance of the cost of operons and the benefit of regulation that provides 'just-when-needed' temporal order. The analysis predicts that genes are arranged such that genes on the same operon do not skip functional steps in the pathway. This prediction is supported by genomic data from 137 bacterial genomes. Our work suggests that gene arrangement is not only the result of random historical drift, genome re-arrangement and gene transfer, but has elements that are solutions of an evolutionary optimization problem. Thus gene functional order may be inferred by analyzing the operon structure across different genomes.
Correlation between videogame mechanics and executive functions through EEG analysis.
Mondéjar, Tania; Hervás, Ramón; Johnson, Esperanza; Gutierrez, Carlos; Latorre, José Miguel
2016-10-01
This paper addresses a different point of view of videogames, specifically serious games for health. This paper contributes to that area with a multidisciplinary perspective focus on neurosciences and computation. The experiment population has been pre-adolescents between the ages of 8 and 12 without any cognitive issues. The experiment consisted in users playing videogames as well as performing traditional psychological assessments; during these tasks the frontal brain activity was evaluated. The main goal was to analyse how the frontal lobe of the brain (executive function) works in terms of prominent cognitive skills during five types of game mechanics widely used in commercial videogames. The analysis was made by collecting brain signals during the two phases of the experiment, where the signals were analysed with an electroencephalogram neuroheadset. The validated hypotheses were whether videogames can develop executive functioning and if it was possible to identify which kind of cognitive skills are developed during each kind of typical videogame mechanic. The results contribute to the design of serious games for health purposes on a conceptual level, particularly in support of the diagnosis and treatment of cognitive-related pathologies.
Rogers, Jeremy D.; Radosevich, Andrew J.; Yi, Ji; Backman, Vadim
2014-01-01
Optical interactions with biological tissue provide powerful tools for study, diagnosis, and treatment of disease. When optical methods are used in applications involving tissue, scattering of light is an important phenomenon. In imaging modalities, scattering provides contrast, but also limits imaging depth, so models help optimize an imaging technique. Scattering can also be used to collect information about the tissue itself providing diagnostic value. Therapies involving focused beams require scattering models to assess dose distribution. In all cases, models of light scattering in tissue are crucial to correctly interpreting the measured signal. Here, we review a versatile model of light scattering that uses the Whittle–Matérn correlation family to describe the refractive index correlation function Bn (rd). In weakly scattering media such as tissue, Bn (rd) determines the shape of the power spectral density from which all other scattering characteristics are derived. This model encompasses many forms such as mass fractal and the Henyey–Greenstein function as special cases. We discuss normalization and calculation of optical properties including the scattering coefficient and anisotropy factor. Experimental methods using the model are also described to quantify tissue properties that depend on length scales of only a few tens of nanometers. PMID:25587211
Murg, V; Verstraete, F; Schneider, R; Nagy, P R; Legeza, Ö
2015-03-10
We study the tree-tensor-network-state (TTNS) method with variable tensor orders for quantum chemistry. TTNS is a variational method to efficiently approximate complete active space (CAS) configuration interaction (CI) wave functions in a tensor product form. TTNS can be considered as a higher order generalization of the matrix product state (MPS) method. The MPS wave function is formulated as products of matrices in a multiparticle basis spanning a truncated Hilbert space of the original CAS-CI problem. These matrices belong to active orbitals organized in a one-dimensional array, while tensors in TTNS are defined upon a tree-like arrangement of the same orbitals. The tree-structure is advantageous since the distance between two arbitrary orbitals in the tree scales only logarithmically with the number of orbitals N, whereas the scaling is linear in the MPS array. It is found to be beneficial from the computational costs point of view to keep strongly correlated orbitals in close vicinity in both arrangements; therefore, the TTNS ansatz is better suited for multireference problems with numerous highly correlated orbitals. To exploit the advantages of TTNS a novel algorithm is designed to optimize the tree tensor network topology based on quantum information theory and entanglement. The superior performance of the TTNS method is illustrated on the ionic-neutral avoided crossing of LiF. It is also shown that the avoided crossing of LiF can be localized using only ground state properties, namely one-orbital entanglement.
Correlation functions of the Aharony-Bergman-Jafferis-Maldacena model
NASA Astrophysics Data System (ADS)
Lee, Bum-Hoon; Gwak, Bogeun; Park, Chanyong
2013-04-01
In the Aharony-Bergman-Jafferis-Maldacena model, we study the three-point function of two heavy operators and an (ir)relevant one. Following the AdS/CFT correspondence, the structure constant in the large ’t Hooft coupling limit can be factorized into two parts. One is the structure constant with a marginal operator, which is fully determined by the physical quantities of heavy operators and gives rise to a result that is consistent with the renormalization-group analysis. The other can be expressed as the universal form depending only on the conformal dimension of an (ir)relevant operator. We also investigate the new size effect of a circular string dual to a certain closed spin chain.
Binocular function in unilateral aphakia. Correlation with aniseikonia and stereoacuity.
Katsumi, O; Miyanaga, Y; Hirose, T; Okuno, H; Asaoka, I
1988-08-01
Aniseikonia and stereoacuity were measured in patients with unilateral aphakia, most of whom were postoperative senile cataract cases. The New Aniseikonia test was used to evaluate aniseikonia and the Titmus Stereotest to measure stereoacuity. Ninety cases were studied, 57 (63.3%) of which had intraocular lens (IOL) implants; 27 (30%) had extended-wear soft contact lenses; and six (6.7%) had spectacle lenses. In the IOL group, aniseikonia averaged 2.8%, and 39 patients (68.4%) had good stereoacuity. In the contact lens group, aniseikonia averaged 4.6%, and 11 (40.7%) had good stereoacuity. In the spectacle lens group, aniseikonia averaged 17.8%; none of the patients had good stereoacuity. The authors concluded that in cases with unilateral aphakia, correction with an IOL implant is superior to the other alternatives in achieving good binocular function.
Correlated electron-nuclear dynamics with conditional wave functions.
Albareda, Guillermo; Appel, Heiko; Franco, Ignacio; Abedi, Ali; Rubio, Angel
2014-08-22
The molecular Schrödinger equation is rewritten in terms of nonunitary equations of motion for the nuclei (or electrons) that depend parametrically on the configuration of an ensemble of generally defined electronic (or nuclear) trajectories. This scheme is exact and does not rely on the tracing out of degrees of freedom. Hence, the use of trajectory-based statistical techniques can be exploited to circumvent the calculation of the computationally demanding Born-Oppenheimer potential-energy surfaces and nonadiabatic coupling elements. The concept of the potential-energy surface is restored by establishing a formal connection with the exact factorization of the full wave function. This connection is used to gain insight from a simplified form of the exact propagation scheme.
Cluster pair correlation function of simple fluids: energetic connectivity criteria.
Pugnaloni, Luis A; Zarragoicoechea, Guillermo J; Vericat, Fernando
2006-11-21
We consider the clustering of Lennard-Jones particles by using an energetic connectivity criterion proposed long ago by Hill [J. Chem. Phys. 32, 617 (1955)] for the bond between pairs of particles. The criterion establishes that two particles are bonded (directly connected) if their relative kinetic energy is less than minus their relative potential energy. Thus, in general, it depends on the direction as well as on the magnitude of the velocities and positions of the particles. An integral equation for the pair connectedness function, proposed by two of the authors [Phys. Rev. E 61, R6067 (2000)], is solved for this criterion and the results are compared with those obtained from molecular dynamics simulations and from a connectedness Percus-Yevick-type integral equation for a velocity-averaged version of Hill's energetic criterion.
Ultrasonic velocity measurement using phase-slope cross-correlation methods
NASA Technical Reports Server (NTRS)
Hull, D. R.; Kautz, H. E.; Vary, A.
1984-01-01
Computer implemented phase-slope and cross-correlation methods are introduced for measuring time delays between pairs of broadband ultrasonic pulse-echo signals for determining velocity in engineering materials. The phase-slope and cross-correlation methods are compared with the overlap method which is currently in wide use. Comparison of digital versions of the three methods shows similar results for most materials having low ultrasonic attenuation. However, the cross-correlation method is preferred for highly attenuating materials. An analytical basis for the cross-correlation method is presented. Examples are given for the three methods investigated to measure velocity in representative materials in the megahertz range.
Measurement of the dipole in the cross-correlation function of galaxies
NASA Astrophysics Data System (ADS)
Gaztanaga, Enrique; Bonvin, Camille; Hui, Lam
2017-01-01
It is usually assumed that in the linear regime the two-point correlation function of galaxies contains only a monopole, quadrupole and hexadecapole. Looking at cross-correlations between different populations of galaxies, this turns out not to be the case. In particular, the cross-correlations between a bright and a faint population of galaxies contain also a dipole. In this paper we present the first attempt to measure this dipole. We discuss the four types of effects that contribute to the dipole: relativistic distortions, evolution effect, wide-angle effect and large-angle effect. We show that the first three contributions are intrinsic anti-symmetric contributions that do not depend on the choice of angle used to measure the dipole. On the other hand the large-angle effect appears only if the angle chosen to extract the dipole breaks the symmetry of the problem. We show that the relativistic distortions, the evolution effect and the wide-angle effect are too small to be detected in the LOWz and CMASS sample of the BOSS survey. On the other hand with a specific combination of angles we are able to measure the large-angle effect with high significance. We emphasise that this large-angle dipole does not contain new physical information, since it is just a geometrical combination of the monopole and the quadrupole. However this measurement, which is in excellent agreement with theoretical predictions, validates our method for extracting the dipole from the two-point correlation function and it opens the way to the detection of relativistic effects in future surveys like e.g. DESI.
Mocelin, Helena; Bueno, Gilberto; Irion, Klaus; Marchiori, Edson; Sarria, Edgar; Watte, Guilherme; Hochhegger, Bruno
2013-01-01
OBJECTIVE: To determine whether air trapping (expressed as the percentage of air trapping relative to total lung volume [AT%]) correlates with clinical and functional parameters in children with obliterative bronchiolitis (OB). METHODS: CT scans of 19 children with OB were post-processed for AT% quantification with the use of a fixed threshold of −950 HU (AT%950) and of thresholds selected with the aid of density masks (AT%DM). Patients were divided into three groups by AT% severity. We examined AT% correlations with oxygen saturation (SO2) at rest, six-minute walk distance (6MWD), minimum SO2 during the six-minute walk test (6MWT_SO2), FVC, FEV1, FEV1/FVC, and clinical parameters. RESULTS: The 6MWD was longer in the patients with larger normal lung volumes (r = 0.53). We found that AT%950 showed significant correlations (before and after the exclusion of outliers, respectively) with the clinical score (r = 0.72; 0.80), FVC (r = 0.24; 0.59), FEV1 (r = −0.58; −0.67), and FEV1/FVC (r = −0.53; r = −0.62), as did AT%DM with the clinical score (r = 0.58; r = 0.63), SO2 at rest (r = −0.40; r = −0.61), 6MWT_SO2 (r = −0.24; r = −0.55), FVC (r = −0.44; r = −0.80), FEV1 (r = −0.65; r = −0.71), and FEV1/FVC (r = −0.41; r = −0.52). CONCLUSIONS: Our results show that AT% correlates significantly with clinical scores and pulmonary function test results in children with OB. PMID:24473764
Structural and Function Correlation of Cone Packing Utilizing Adaptive Optics and Microperimetry
Supriya, Dabir; Shwetha, Mangalesh; Kiran Anupama, Kumar; Kummelil Mathew, Kurian; Berendschot, Tos T. J. M.; Schouten, Jan S. A. G.; Bharamshetter, Roopa; Naresh, Yadav K.; Rohit, Shetty; Hegde, Bharath
2015-01-01
Aim. To assess the functional aspects of cone mosaic and correlate cone packing with retinal sensitivity utilizing microperimetry in emmetropes at different eccentricities. Methods. Twenty-four healthy volunteers underwent microperimetry (MAIA Centervue, Italy) and assessment of photoreceptors using adaptive optics retinal camera, rtx1 (Imagine Eyes, Orsay, France), at 2 and 3 degrees from the foveal centre in 4 quadrants: superior, inferior, temporal, and nasal. Data was analyzed using SPSS version 17 (IBM). Spearman's correlation tests were used to establish correlation between mean cone packing density and retinal sensitivity at different quadrants. Results. Thirteen females and 11 males (age range 20–40 years) were included. The cone density was found to be significantly different among all quadrants (temporal = 25786.68/mm2 ± 4367.07/mm2, superior = 23009.35/mm2 ± 5415.81/mm2, nasal = 22838.09/mm2 ± 4166.22/mm2, and inferior = 21097.53/mm2 ± 4235.84/mm2). A statistical significance (P < 0.008) was found between orthogonal meridians, that is, temporal, nasal (48624.77/mm2)> superior, inferior (44106.88/mm2). A drop in retinal sensitivity was observed as the eccentricity increased (P < 0.05). It was also found that as cone packing density decreased retinal sensitivity also decreased (P < 0.05) in all quadrants. This was observed at both 2 and 3 degrees. Conclusion. It is of crucial importance to establish normative variations in cone structure-function correlation. This may help in detection of subtle pathology and its early intervention. PMID:26167509
Correlation functions for Elekta aSi EPIDs used as transit dosimeter for open fields.
Cilla, Savino; Fidanzio, Andrea; Greco, Francesca; Sabatino, Domenico; Russo, Aniello; Gargiulo, Laura; Azario, Luigi; Piermattei, Angelo
2010-10-27
In-vivo dosimetry techniques are currently being applied only by a few Centers because they require time-consuming implementation measurements, and workload for detector positioning and data analysis. The transit in-vivo dosimetry performed by the electronic portal imaging device (EPID) avoids the problem of solid-state detector positioning on the patient. Moreover, the dosimetric characterization of the recent Elekta aSi EPIDs in terms of signal stability and linearity make these detectors useful for the transit in-vivo dosimetry with 6, 10 and 15 MV photon beams. However, the implementation of the EPID transit dosimetry requires several measurements. Recently, the present authors have developed an in-vivo dosimetry method for 3D CRT based on correlation functions defined by the ratios between the transit signal, st (w,L), by the EPID and the phantom midplane dose, Dm(w,L), at the source to axis distance (SAD) as a function of the phantom thickness, w, and the square field dimensions, L. When the phantom midplane was positioned at distance, d, from the SAD, the ratios st(w,L)/s't(d,w,L) were used to take into account the variation of the scattered photon contributions on the EPID as a function of d and L.The aim of this paper is the implementation of a procedure that uses generalized correlation functions obtained by nine Elekta Precise linac beams. The procedure can be used by other Elekta Precise linacs equipped with the same aSi EPIDs, assuming the stabilities of the beam output factors and the EPID signals. The procedure here reported avoids measurements in solid water equivalent phantoms needed to implement the in-vivo dosimetry method in the radiotherapy department. A tolerance level ranging between ± 5% and ± 6% (depending on the type of tumor) was estimated for the comparison between the reconstructed isocenter dose, Diso, and the computed dose, Diso,TPS, by the treatment planning system (TPS).
Salini, K.; Prabhu, R.; Sen, Aditi; Sen, Ujjwal
2014-09-15
Monogamy of quantum correlation measures puts restrictions on the sharability of quantum correlations in multiparty quantum states. Multiparty quantum states can satisfy or violate monogamy relations with respect to given quantum correlations. We show that all multiparty quantum states can be made monogamous with respect to all measures. More precisely, given any quantum correlation measure that is non-monogamic for a multiparty quantum state, it is always possible to find a monotonically increasing function of the measure that is monogamous for the same state. The statement holds for all quantum states, whether pure or mixed, in all finite dimensions and for an arbitrary number of parties. The monotonically increasing function of the quantum correlation measure satisfies all the properties that are expected for quantum correlations to follow. We illustrate the concepts by considering a thermodynamic measure of quantum correlation, called the quantum work deficit.
Kinetic correlation in the final-state wave function in photo-double-ionization of He
Otranto, S.; Garibotti, C. R.
2003-06-01
We evaluate the triply differential cross section (TDCS) for photo-double-ionization of helium. We use a final continuum wave function which correlates the motion of the three particles, through an expansion in products of two-body Coulomb functions. This function satisfies a set of appropriate physical conditions in the coalescence points, in addition to the correct asymptotic behavior condition. We analyze the effect of this correlation in the TDCS and compare our results with experimental data.
The correlation function for density perturbations in an expanding universe. II - Nonlinear theory
NASA Technical Reports Server (NTRS)
Mcclelland, J.; Silk, J.
1977-01-01
A formalism is developed to find the two-point and higher-order correlation functions for a given distribution of sizes and shapes of perturbations which are randomly placed in three-dimensional space. The perturbations are described by two parameters such as central density and size, and the two-point correlation function is explicitly related to the luminosity function of groups and clusters of galaxies
Correlation of Theory and Function in Well-Defined Bimetallic Electrocatalysts - Final Report
Crooks, Richard M.
2014-06-05
The objective of this research proposal was to correlate the structure of nanoparticles that are comprised of ~100-200 atoms to their electrocatalytic function. This objective was based on the growing body of evidence suggesting that catalytic properties can be tailored through controlled synthesis of nanoparticles. What has been missing from many of these studies, and what we are contributing, is a model catalyst that is sufficiently small, structurally well-defined, and well-characterized that its function can be directly predicted by theory. Specifically, our work seeks to develop a fundamental and detailed understanding of the relationship between the structure of nanoscopic oxygen-reduction catalysts and their function. We assembled a team with expertise in theory, synthesis, and advanced characterization methods to address the primary objective of this project. We anticipated the outcomes of the study to be: (1) a better theoretical understanding of how nanoparticle structure affects catalytic properties; (2) the development of advanced, in-situ and ex-situ, atomic-scale characterization methods that are appropriate for particles containing about 100 atoms; and (3) improved synthetic methods that produce unique nanoparticle structures that can be used to test theoretical predictions. During the project period, we have made excellent progress on all three fronts.
Bessel function output from an optical correlator with a phase-only encoded inverse filter.
Davis, J A; Cottrell, D M; Campos, J; Yzuel, M J; Moreno, I
1999-11-10
We report on a technique for producing a Bessel function correlation output for an arbitrary input pattern. The central dark spot at the center of the Bessel function correlator output is narrower than the width of the normal correlation spot and can be extremely useful for locating the center of the correlation signal. The Bessel function is produced by convolution of the extremely sharp correlation produced by an inverse filter with the Bessel function and is encoded with a single phase-only liquid-crystal spatial light modulator. To encode amplitude information on the filter, we spatially modulate the phase encoded on the filter. Amplitude modulation is obtained by modulation of the diffraction efficiency of the phase grating. Experimental results are presented.
Multi-Nucleon Short-Range Correlation Model for Nuclear Spectral Functions.
NASA Astrophysics Data System (ADS)
Artiles, Oswaldo; Sargsian, Misak
2017-01-01
We develop a theoretical model for nuclear spectral functions at high missing momenta and energies based on the multi-nucleon short-range correlation (SRC) model aimed at probing nuclear structure at short-distances. The model is based on the effective Feynman diagram method which allows us to account for the relativistic effects in the SRC domain. We derive the contribution of two-nucleon SRC with center of mass motion, and three-nucleon SRCs to the nuclear spectral functions. The spectral functions are based on two theoretical approaches in evaluating covariant Feynman diagrams: In the first, referred to as virtual nucleon approximation, we reduce Feynman diagrams to the time ordered non-covariant diagrams by evaluating nucleon spectators on the SRC at their positive energy poles, neglecting the contribution from vacuum diagrams. In the second approach, referred to as light-front approximation, we formulate the boost invariant nuclear spectral function on the light-front reference frame, on which the vacuum diagrams are suppressed. Numerical calculations and parametrization of spectral functions and momentum distributions are presented. This work is supported by U.S. Department of Energy grant under contract DE- FG02-01ER41172.
Performance of internal covariance estimators for cosmic shear correlation functions
NASA Astrophysics Data System (ADS)
Friedrich, O.; Seitz, S.; Eifler, T. F.; Gruen, D.
2016-03-01
Data re-sampling methods such as delete-one jackknife, bootstrap or the sub-sample covariance are common tools for estimating the covariance of large-scale structure probes. We investigate different implementations of these methods in the context of cosmic shear two-point statistics. Using lognormal simulations of the convergence field and the corresponding shear field we generate mock catalogues of a known and realistic covariance. For a survey of {˜ } 5000 ° ^2 we find that jackknife, if implemented by deleting sub-volumes of galaxies, provides the most reliable covariance estimates. Bootstrap, in the common implementation of drawing sub-volumes of galaxies, strongly overestimates the statistical uncertainties. In a forecast for the complete 5-yr Dark Energy Survey, we show that internally estimated covariance matrices can provide a large fraction of the true uncertainties on cosmological parameters in a 2D cosmic shear analysis. The volume inside contours of constant likelihood in the Ωm-σ8 plane as measured with internally estimated covariance matrices is on average ≳85 per cent of the volume derived from the true covariance matrix. The uncertainty on the parameter combination Σ _8 ˜ σ _8 Ω _m^{0.5} derived from internally estimated covariances is ˜90 per cent of the true uncertainty.
Lei, Yu; Li, Yan-Jiang; Guo, Qi-Hao; Liu, Xing-Dang; Liu, Zhuang; Ni, Wei; Su, Jia-Bin; Yang, Heng; Jiang, Han-Qiang; Xu, Bin; Gu, Yu-Xiang; Mao, Ying
2017-02-01
OBJECTIVE Chronic frontal hemodynamic disturbances are associated with executive dysfunction in adult patients with moyamoya disease (MMD). However, the impact of surgical revascularization on executive dysfunction and its underlying mechanism remains unclear. The aim of the present study was to examine the postoperative radiological correlates of cognitive improvement and thereby explore its underlying mechanism. METHODS Fourteen patients who met the inclusion criteria were identified at Huashan Hospital, were operated on, and were successfully followed up for 6 months. Postoperative changes in cortical perfusion and regional amplitude of low-frequency fluctuations (ALFF) were examined by SPECT and resting-state functional MRI, respectively. Executive function was evaluated by 2 tests (Trail Making Test Part B and the summation of executive subtests of Memory and Executive Screening [MES-EX]). Follow-up neuropsychological outcomes were then correlated with radiological changes to identify nodes functioning as leading contributors to postoperative executive outcomes. RESULTS All patients underwent successful unilateral bypass procedures, with some operations performed on the left side and some on the right side. At the 6-month follow-up, the baseline and follow-up test scores for the different sides did not differ significantly. The group with good collaterals (Matsushima Grade A, 9 patients) exhibited significantly increased postoperative perfusion (change in [△] hemodynamics) in bilateral frontal (left, p = 0.009; right, p = 0.003) and left parietal lobe (p = 0.014). The Spearman's correlation test suggested that only the right frontal lobe exhibited significant positive postoperative radiological correlates with cognitive performance (△MES-EX vs △hemodynamics, r = 0.620, p = 0.018; △MES-EX vs △ALFF, r = 0.676, p = 0.008; △hemodynamics vs △ALFF, r = 0.547, p = 0.043). Subsequent regional ALFF analysis revealed that the right dorsolateral prefrontal
Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI?
Hindriks, R; Adhikari, M H; Murayama, Y; Ganzetti, M; Mantini, D; Logothetis, N K; Deco, G
2016-02-15
During the last several years, the focus of research on resting-state functional magnetic resonance imaging (fMRI) has shifted from the analysis of functional connectivity averaged over the duration of scanning sessions to the analysis of changes of functional connectivity within sessions. Although several studies have reported the presence of dynamic functional connectivity (dFC), statistical assessment of the results is not always carried out in a sound way and, in some studies, is even omitted. In this study, we explain why appropriate statistical tests are needed to detect dFC, we describe how they can be carried out and how to assess the performance of dFC measures, and we illustrate the methodology using spontaneous blood-oxygen level-dependent (BOLD) fMRI recordings of macaque monkeys under general anesthesia and in human subjects under resting-state conditions. We mainly focus on sliding-window correlations since these are most widely used in assessing dFC, but also consider a recently proposed non-linear measure. The simulations and methodology, however, are general and can be applied to any measure. The results are twofold. First, through simulations, we show that in typical resting-state sessions of 10 min, it is almost impossible to detect dFC using sliding-window correlations. This prediction is validated by both the macaque and the human data: in none of the individual recording sessions was evidence for dFC found. Second, detection power can be considerably increased by session- or subject-averaging of the measures. In doing so, we found that most of the functional connections are in fact dynamic. With this study, we hope to raise awareness of the statistical pitfalls in the assessment of dFC and how they can be avoided by using appropriate statistical methods.
Ayers, Lisa; Harrison, Paul; Kohler, Malcolm; Ferry, Berne
2014-01-01
Background Flow cytometry is the most commonly used technology to measure microvesicles (MVs). Despite reported limitations of this technique, MV levels obtained using conventional flow cytometry have yielded many clinically relevant findings, such as associations with disease severity and ability to predict clinical outcomes. This study aims to determine if MV enumeration by flow cytometry correlates with a measurement of their functional capacity, as this may explain how flow cytometry generates clinically relevant results. Methods One hundred samples from healthy individuals and patients with obstructive sleep apnoea were analysed by conventional flow cytometry (FACSCalibur) and by three functional MV assays: Zymuphen MP-activity in which data were given as phosphatidylserine equivalent, STA® Phospholipid Procoag Assay expressed as clotting time and Endogenous Thrombin Potential (ETP) reflecting in vitro thrombin generation. Correlations were determined by Spearman correlation. Results Absolute counts of lactadherin+ procoagulant MVs generated by flow cytometry weakly correlated with the results obtained from the Zymuphen MP-activity (r=0.5370, p<0.0001); correlated with ETP (r=0.7444, p<0.0001); negatively correlated with STA® Phospholipid Procoag Assay clotting time (−0.7872, p<0.0001), reflecting a positive correlation between clotting activity and flow cytometry. Levels of Annexin V+ procoagulant and platelet-derived MVs were also associated with functional assays. Absolute counts of MVs derived from other cell types were not correlated with the functional results. Conclusions Quantitative results of procoagulant and platelet-derived MVs from conventional flow cytometry are associated with the functional capability of the MVs, as defined by three functional MV assays. Flow cytometry is a valuable technique for the quantification of MVs from different cellular origins; however, a combination of several analytical techniques may give the most comprehensive
Vector correlators in lattice QCD: Methods and applications
NASA Astrophysics Data System (ADS)
Bernecker, David; Meyer, Harvey B.
2011-11-01
We discuss the calculation of the leading hadronic vacuum polarization in lattice QCD. Exploiting the excellent quality of the compiled experimental data for the e + e - → hadrons cross-section, we predict the outcome of large-volume lattice calculations at the physical pion mass, and design computational strategies for the lattice to have an impact on important phenomenological quantities such as the leading hadronic contribution to ( g - 2) μ and the running of the electromagnetic coupling constant. First, the R( s) ratio can be calculated directly on the lattice in the threshold region, and we provide the formulae to do so with twisted boundary conditions. Second, the current correlator projected onto zero spatial momentum, in a Euclidean time interval where it can be calculated accurately, provides a potentially critical test of the experimental R( s) ratio in the region that is most relevant for ( g - 2) μ . This observation can also be turned around: the vector correlator at intermediate distances can be used to determine the lattice spacing in fm, and we make a concrete proposal in this direction. Finally, we quantify the finite-size effects on the current correlator coming from low-energy two-pion states and provide a general parametrization of the vacuum polarization on the torus.
NASA Technical Reports Server (NTRS)
Westinskow, Dwayne (Inventor); Agutter, James (Inventor); Syroid, Noah (Inventor); Strayer, David (Inventor); Albert, Robert (Inventor); Wachter, S. Blake (Inventor); Drews, Frank (Inventor)
2010-01-01
A method, system, apparatus and device for the monitoring, diagnosis and evaluation of the state of a dynamic pulmonary system is disclosed. This method and system provides the processing means for receiving sensed and/or simulated data, converting such data into a displayable object format and displaying such objects in a manner such that the interrelationships between the respective variables can be correlated and identified by a user. This invention provides for the rapid cognitive grasp of the overall state of a pulmonary critical function with respect to a dynamic system.
Physical rehabilitation of paralysed facial muscles: functional and morphological correlates.
Angelov, Doychin N
2011-01-01
Using a combined morphofunctional approach, we recently found that polyinnervation of the neuromuscular junction (NMJ) is the critical factor for recovery of function after transection and suture of the facial nerve. Since polyinnervation is activity-dependent and can be manipulated, we tried to design a clinically feasible therapy by electrical stimulation or by soft tissue massage. First, electrical stimulation was applied to the transected facial nerve or to paralyzed facial muscles. Both procedures did not improve vibrissal motor performance (video-based motion analysis of whisking), failed to diminish polyinnervation, and even reduced the number of innervated NMJ to one-fifth of normal values. In contrast, gentle stroking of the paralyzed vibrissal muscles by hand resulted in full recovery of whisking. Manual stimulation depended on the intact sensory supply of the denervated muscle targets and was also effective after hypoglossal-facial anastomosis, after interpositional nerve grafting, when applied to the orbicularis oculi muscle and after transection and suture of the hypoglossal nerve. From these results, we conclude that manual stimulation is a noninvasive procedure with immediate potential for clinical rehabilitation following facial nerve reconstruction.
Functional Connectivity Homogeneity Correlates with Duration of Temporal Lobe Epilepsy
Haneef, Zulfi; Chiang, Sharon; Yeh, Hsiang J.; Engel, Jerome; Stern, John M.
2015-01-01
Temporal lobe epilepsy (TLE) often is associated with progressive changes to seizures, memory, and mood during its clinical course. However, the cerebral changes related to this progression are not well understood. Because the changes may be related to changes in brain networks, we used functional connectivity MRI (fcMRI) to determine whether brain network parameters relate to the duration of TLE. Graph theory based analysis of the sites of reported regions of TLE abnormality, was performed on resting state fMRI data in 48 subjects: 24 controls, 13 patients with left TLE, and 11 patients with right TLE. Various network parameters were analyzed including betweenness centrality (BC), clustering coefficient (CC), path length (PL), small-world index (SWI), global efficiency (GE), connectivity strength (CS), and connectivity diversity (CD). These were compared for TLE as a group, compared to controls, and for left and right TLE separately. Association of changes in network parameters with epilepsy duration was also evaluated. We found that CC, CS and CD were decreased in TLE, compared to control subjects. Analyzed according to epilepsy duration, TLE showed a progressive reduction in CD. In conclusion, we found that several network parameters were decreased in TLE compared to controls, which suggested reduced connectivity in TLE. Reduction in CD associated with epilepsy duration suggests a homogenization of connections over time in TLE, indicating a reduction of the normal repertoire of stronger and weaker connections to other brain regions. PMID:25873437
The intrapair electron correlation in natural orbital functional theory
Piris, M.; Matxain, J. M.; Lopez, X.
2013-12-21
A previously proposed [M. Piris, X. Lopez, F. Ruipérez, J. M. Matxain, and J. M. Ugalde, J. Chem. Phys. 134, 164102 (2011)] formulation of the two-particle cumulant, based on an orbital-pairing scheme, is extended here for including more than two natural orbitals. This new approximation is used to reconstruct the two-particle reduced density matrix (2-RDM) constrained to the D, Q, and G positivity necessary conditions of the N-representable 2-RDM. In this way, we have derived an extended version of the Piris natural orbital functional 5 (PNOF5e). An antisymmetrized product of strongly orthogonal geminals with the expansion coefficients explicitly expressed by the occupation numbers is also used to generate the PNOF5e. The theory is applied to the homolytic dissociation of selected diatomic molecules: H{sub 2}, LiH, and Li{sub 2}. The Bader's theory of atoms in molecules is used to analyze the electron density and the presence of non-nuclear maxima in the case of a set of light atomic clusters: Li{sub 2}, Li {sub 3}{sup +}, Li {sub 4}{sup 2+}, and H{sub 3}{sup +}. The improvement of PNOF5e over PNOF5 was observed by visualizing the electron densities.
Fractional Brownian motions: memory, diffusion velocity, and correlation functions
NASA Astrophysics Data System (ADS)
Fuliński, A.
2017-02-01
Fractional Brownian motions (FBMs) have been observed recently in the measured trajectories of individual molecules or small particles in the cytoplasm of living cells and in other dense composite systems, among others. Various types of FBMs differ in a number of ways, including the strength, range and type of damping of the memory encoded in their definitions, but share several basic characteristics: distributions, non-ergodic properties, and scaling of the second moment, which makes it difficult to determine which type of Brownian motion (fractional or normal) the measured trajectory belongs to. Here, we show, by introducing FBMs with regulated range and strength of memory, that it is the structure of memory which determines their physical properties, including mean velocity of diffusion; therefore, the course and kinetics of several processes (including coagulation and some chemical reactions). We also show that autocorrelation functions possess characteristic features which enable identification of an observed FBM, and of the type of memory governing its trajectory. In memoriam Marian Smoluchowski, on the 100th anniversary of the publication of his seminal papers on Brownian motion and diffusion-limited kinetics.
Correlation of the summary method with learning styles.
Sarikcioglu, Levent; Senol, Yesim; Yildirim, Fatos B; Hizay, Arzu
2011-09-01
The summary is the last part of the lesson but one of the most important. We aimed to study the relationship between the preference of the summary method (video demonstration, question-answer, or brief review of slides) and learning styles. A total of 131 students were included in the present study. An inventory was prepared to understand the students' learning styles, and a satisfaction questionnaire was provided to determine the summary method selection. The questionnaire and inventory were collected and analyzed. A comparison of the data revealed that the summary method with video demonstration received the highest score among all the methods tested. Additionally, there were no significant differences between learning styles and summary method with video demonstration. We suggest that such a summary method should be incorporated into neuroanatomy lessons. Since anatomy has a large amount of visual material, we think that it is ideally suited for this summary method.
Shear wave elastography results correlate with liver fibrosis histology and liver function reserve
Feng, Yan-Hong; Hu, Xiang-Dong; Zhai, Lin; Liu, Ji-Bin; Qiu, Lan-Yan; Zu, Yuan; Liang, Si; Gui, Yu; Qian, Lin-Xue
2016-01-01
AIM: To evaluate the correlation of shear wave elastography (SWE) results with liver fibrosis histology and quantitative function reserve. METHODS: Weekly subcutaneous injection of 60% carbon tetrachloride (1.5 mL/kg) was given to 12 canines for 24 wk to induce experimental liver fibrosis, with olive oil given to 2 control canines. At 24 wk, liver condition was evaluated using clinical biochemistry assays, SWE imaging, lidocaine metabolite monoethylglycine-xylidide (MEGX) test, and histologic fibrosis grading. Clinical biochemistry assays were performed at the institutional central laboratory for routine liver function evaluation. Liver stiffness was measured in triplicate from three different intercostal spaces and expressed as mean liver stiffness modulus (LSM). Plasma concentrations of lidocaine and its metabolite MEGX were determined using high-performance liquid chromatography repeated in duplicate. Liver biopsy samples were fixed in 10% formaldehyde, and liver fibrosis was graded using the modified histological activity index Knodell score (F0-F4). Correlations among histologic grading, LSM, and MEGX measures were analyzed with the Pearson linear correlation coefficient. RESULTS: At 24 wk liver fibrosis histologic grading was as follows: F0, n = 2 (control); F1, n = 0; F2, n = 3; F3, n = 7; and F4, n = 2. SWE LSM was positively correlated with histologic grading (r = 0.835, P < 0.001). Specifically, the F4 group had a significantly higher elastic modulus than the F3, F2, and F0 groups (P = 0.002, P = 0.003, and P = 0.006, respectively), and the F3 group also had a significantly higher modulus than the control F0 group (P = 0.039). LSM was negatively associated with plasma MEGX concentrations at 30 min (r = -0.642; P = 0.013) and 60 min (r = -0.651; P = 0.012), time to ½ of the maximum concentration (r = -0.538; P = 0.047), and the area under the curve (r = -0.636; P = 0.014). Multiple comparisons showed identical differences in these three measures
Performance of internal covariance estimators for cosmic shear correlation functions
Friedrich, O.; Seitz, S.; Eifler, T. F.; Gruen, D.
2015-12-31
Data re-sampling methods such as the delete-one jackknife are a common tool for estimating the covariance of large scale structure probes. In this paper we investigate the concepts of internal covariance estimation in the context of cosmic shear two-point statistics. We demonstrate how to use log-normal simulations of the convergence field and the corresponding shear field to carry out realistic tests of internal covariance estimators and find that most estimators such as jackknife or sub-sample covariance can reach a satisfactory compromise between bias and variance of the estimated covariance. In a forecast for the complete, 5-year DES survey we show that internally estimated covariance matrices can provide a large fraction of the true uncertainties on cosmological parameters in a 2D cosmic shear analysis. The volume inside contours of constant likelihood in the $\\Omega_m$-$\\sigma_8$ plane as measured with internally estimated covariance matrices is on average $\\gtrsim 85\\%$ of the volume derived from the true covariance matrix. The uncertainty on the parameter combination $\\Sigma_8 \\sim \\sigma_8 \\Omega_m^{0.5}$ derived from internally estimated covariances is $\\sim 90\\%$ of the true uncertainty.
Performance of internal covariance estimators for cosmic shear correlation functions
Friedrich, O.; Seitz, S.; Eifler, T. F.; ...
2015-12-31
Data re-sampling methods such as the delete-one jackknife are a common tool for estimating the covariance of large scale structure probes. In this paper we investigate the concepts of internal covariance estimation in the context of cosmic shear two-point statistics. We demonstrate how to use log-normal simulations of the convergence field and the corresponding shear field to carry out realistic tests of internal covariance estimators and find that most estimators such as jackknife or sub-sample covariance can reach a satisfactory compromise between bias and variance of the estimated covariance. In a forecast for the complete, 5-year DES survey we show that internally estimated covariance matrices can provide a large fraction of the true uncertainties on cosmological parameters in a 2D cosmic shear analysis. The volume inside contours of constant likelihood in themore » $$\\Omega_m$$-$$\\sigma_8$$ plane as measured with internally estimated covariance matrices is on average $$\\gtrsim 85\\%$$ of the volume derived from the true covariance matrix. The uncertainty on the parameter combination $$\\Sigma_8 \\sim \\sigma_8 \\Omega_m^{0.5}$$ derived from internally estimated covariances is $$\\sim 90\\%$$ of the true uncertainty.« less
Gangwar, Deepti; Kalita, Mridul K; Gupta, Dinesh; Chauhan, Virander S; Mohmmed, Asif
2009-01-01
Background The P-loop NTPases constitute one of the largest groups of globular protein domains that play highly diverse functional roles in most of the organisms. Even with the availability of nearly 300 different Hidden Markov Models representing the P-loop NTPase superfamily, not many P-loop NTPases are known in Plasmodium falciparum. A number of characteristic attributes of the genome have resulted into the lack of knowledge about this functionally diverse, but important class of proteins. Method In the study, protein sequences with characteristic motifs of NTPase domain (Walker A and Walker B) are computationally extracted from the P. falciparum database. A detailed secondary structure analysis, functional classification, phylogenetic and orthology studies of the NTPase domain of repertoire of 97 P. falciparum P-loop NTPases is carried out. Results Based upon distinct sequence features and secondary structure profile of the P-loop domain of obtained sequences, a cladistic classification is also conceded: nucleotide kinases and GTPases, ABC and SMC family, SF1/2 helicases, AAA+ and AAA protein families. Attempts are made to identify any ortholog(s) for each of these proteins in other Plasmodium sp. as well as its vertebrate host, Homo sapiens. A number of P. falciparum P-loop NTPases that have no homologue in the host, as well as those annotated as hypothetical proteins and lack any characteristic functional domain are identified. Conclusion The study suggests a strong correlation between sequence and secondary structure profile of P-loop domains and functional roles of these proteins and thus provides an opportunity to speculate the role of many hypothetical proteins. The study provides a methodical framework for the characterization of biologically diverse NTPases in the P. falciparum genome. The efforts made in the analysis are first of its kind; and the results augment to explore the functional role of many of these proteins from the parasite that could
Normalization methods in time series of platelet function assays
Van Poucke, Sven; Zhang, Zhongheng; Roest, Mark; Vukicevic, Milan; Beran, Maud; Lauwereins, Bart; Zheng, Ming-Hua; Henskens, Yvonne; Lancé, Marcus; Marcus, Abraham
2016-01-01
Abstract Platelet function can be quantitatively assessed by specific assays such as light-transmission aggregometry, multiple-electrode aggregometry measuring the response to adenosine diphosphate (ADP), arachidonic acid, collagen, and thrombin-receptor activating peptide and viscoelastic tests such as rotational thromboelastometry (ROTEM). The task of extracting meaningful statistical and clinical information from high-dimensional data spaces in temporal multivariate clinical data represented in multivariate time series is complex. Building insightful visualizations for multivariate time series demands adequate usage of normalization techniques. In this article, various methods for data normalization (z-transformation, range transformation, proportion transformation, and interquartile range) are presented and visualized discussing the most suited approach for platelet function data series. Normalization was calculated per assay (test) for all time points and per time point for all tests. Interquartile range, range transformation, and z-transformation demonstrated the correlation as calculated by the Spearman correlation test, when normalized per assay (test) for all time points. When normalizing per time point for all tests, no correlation could be abstracted from the charts as was the case when using all data as 1 dataset for normalization. PMID:27428217
2014-01-01
Introduction The aim of the present study was to evaluate color perception thresholds and relate them to the degree of motor impairment in children with spastic cerebral palsy (SCP). Methods Binocular and monocular chromaticity discrimination thresholds were estimated for the protan, deutan, and tritan color confusion axes in 43 SCP children aged 6–15 years who were classified as tetraplegic (n = 12), diplegic (n = 16), and hemiplegic (n = 15) without ophthalmological complaints. Motor impairment was rated according to the Gross Motor Function Classification System (GMFCS) in five levels of severity. Results Analysis of variance showed significantly reduced discrimination in tetraplegic children (p < 0.001) compared with the diplegic, hemiplegic, and control groups. We also found a positive correlation between chromaticity discrimination thresholds and GMFCS ratings in all of the groups. Discussion Chromaticity discrimination thresholds measured psychophysically were reduced for all three color confusion axis in tetraplegic children compared with normal children. Diplegic and hemiplegic children had similar results as normal children. The finding of a correlation between quantified motor impairment and color discrimination losses in SCP patients is a new observation that might help elucidate the causes of color perception loss in these patients. Visual information is essential for the rehabilitation of CP children. Knowledge of the degree of correlation between vision and motor impairment is valuable when planning a rehabilitation program. PMID:24961924
Heart Rate Variability Correlates to Functional Aerobic Impairment in Hemodialysis Patients
Carreira, Maria Angela Magalhães de Queiroz; Nogueira, André Barros; Pena, Felipe Montes; Kiuchi, Marcio Galindo; Rodrigues, Ronaldo Campos; Rodrigues, Rodrigo da Rocha; de Matos, Jorge Paulo Strogoff; Lugon, Jocemir Ronaldo
2015-01-01
Background Autonomic dysfunction (AD) is highly prevalent in hemodialysis (HD) patients and has been implicated in their increased risk of cardiovascular mortality. Objective To correlate heart rate variability (HRV) during exercise treadmill test (ETT) with the values obtained when measuring functional aerobic impairment (FAI) in HD patients and controls. Methods Cross-sectional study involving HD patients and a control group. Clinical examination, blood sampling, transthoracic echocardiogram, 24-hour Holter, and ETT were performed. A symptom-limited ramp treadmill protocol with active recovery was employed. Heart rate variability was evaluated in time domain at exercise and recovery periods. Results Forty-one HD patients and 41 controls concluded the study. HD patients had higher FAI and lower HRV than controls (p<0.001 for both). A correlation was found between exercise HRV (SDNN) and FAI in both groups. This association was independent of age, sex, smoking, body mass index, diabetes, and clonidine or beta-blocker use, but not of hemoglobin levels. Conclusion No association was found between FAI and HRV on 24-hour Holter or at the recovery period of ETT. Of note, exercise HRV was inversely correlated with FAI in HD patients and controls. PMID:26131705
Gillespie, Dirk; Khair, Aditya S; Bardhan, Jaydeep P; Pennathur, Sumita
2011-07-15
The electrokinetic behavior of nanofluidic devices is dominated by the electrical double layers at the device walls. Therefore, accurate, predictive models of double layers are essential for device design and optimization. In this paper, we demonstrate that density functional theory (DFT) of electrolytes is an accurate and computationally efficient method for computing finite ion size effects and the resulting ion-ion correlations that are neglected in classical double layer theories such as Poisson-Boltzmann. Because DFT is derived from liquid-theory thermodynamic principles, it is ideal for nanofluidic systems with small spatial dimensions, high surface charge densities, high ion concentrations, and/or large ions. Ion-ion correlations are expected to be important in these regimes, leading to nonlinear phenomena such as charge inversion, wherein more counterions adsorb at the wall than is necessary to neutralize its surface charge, leading to a second layer of co-ions. We show that DFT, unlike other theories that do not include ion-ion correlations, can predict charge inversion and other nonlinear phenomena that lead to qualitatively different current densities and ion velocities for both pressure-driven and electro-osmotic flows. We therefore propose that DFT can be a valuable modeling and design tool for nanofluidic devices as they become smaller and more highly charged.
Nonlocal field correlation functions on a lattice in the HP{sub 1{sigma}} model
Orlovsky, V. D. Shevchenko, V. I.
2010-11-15
Connected two-point field-strength correlation functions are measured on a lattice in the quaternionic projective {sigma} model within pure SU(2) theory. The correlation lengths extracted from exponential fits for these correlation functions, {lambda}{sub 1}{sup -1} = 1.40(3) GeV and {lambda}{sup -1} = 1.51(3) GeV, are found to be in good agreement with the results of other known calculations. The dependence of bilocal functions on the connector shape is also studied.
Michael, Andrew M; Baum, Stefi A; White, Tonya; Demirci, Oguz; Andreasen, Nancy C; Segall, Judith M; Jung, Rex E; Pearlson, Godfrey; Clark, Vince P; Gollub, Randy L; Schulz, S Charles; Roffman, Joshua L; Lim, Kelvin O; Ho, Beng-Choon; Bockholt, H Jeremy; Calhoun, Vince D
2010-02-01
When both structural magnetic resonance imaging (sMRI) and functional MRI (fMRI) data are collected they are typically analyzed separately and the joint information is not examined. Techniques that examine joint information can help to find hidden traits in complex disorders such as schizophrenia. The brain is vastly interconnected, and local brain morphology may influence functional activity at distant regions. In this paper we introduce three methods to identify inter-correlations among sMRI and fMRI voxels within the whole brain. We apply these methods to examine sMRI gray matter data and fMRI data derived from an auditory sensorimotor task from a large study of schizophrenia. In Method 1 the sMRI-fMRI cross-correlation matrix is reduced to a histogram and results show that healthy controls (HC) have stronger correlations than do patients with schizophrenia (SZ). In Method 2 the spatial information of sMRI-fMRI correlations is retained. Structural regions in the cerebellum and frontal regions show more positive and more negative correlations, respectively, with functional regions in HC than in SZ. In Method 3 significant sMRI-fMRI inter-regional links are detected, with regions in the cerebellum showing more significant positive correlations with functional regions in HC relative to SZ. Results from all three methods indicate that the linkage between gray matter and functional activation is stronger in HC than SZ. The methods introduced can be easily extended to comprehensively correlate large data sets.
Entropy correlation distance method. The Euro introduction effect on the Consumer Price Index
NASA Astrophysics Data System (ADS)
Miśkiewicz, Janusz
2010-04-01
The idea of entropy was introduced in thermodynamics, but it can be used in time series analysis. There are various ways to define and measure the entropy of a system. Here the so called Theil index, which is often used in economy and finance, is applied as it were an entropy measure. In this study the time series are remapped through the Theil index. Then the linear correlation coefficient between the remapped time series is evaluated as a function of time and time window size and the corresponding statistical distance is defined. The results are compared with the the usual correlation distance measure for the time series themselves. As an example this entropy correlation distance method (ECDM) is applied to several series, as those of the Consumer Price Index (CPI) in order to test some so called globalisation processes. Distance matrices are calculated in order to construct two network structures which are next analysed. The role of two different time scales introduced by the Theil index and a correlation coefficient is also discussed. The evolution of the mean distance between the most developed countries is presented and the globalisation periods of the prices discussed. It is finally shown that the evolution of mean distance between the most developed countries on several networks follows the process of introducing the European currency - the Euro. It is contrasted to the GDP based analysis. It is stressed that the entropy correlation distance measure is more suitable in detecting significant changes, like a globalisation process than the usual statistical (correlation based) measure.
Fast Electron Correlation Methods for Molecular Clusters without Basis Set Superposition Errors
Kamiya, Muneaki; Hirata, So; Valiev, Marat
2008-02-19
Two critical extensions to our fast, accurate, and easy-to-implement binary or ternary interaction method for weakly-interacting molecular clusters [Hirata et al. Mol. Phys. 103, 2255 (2005)] have been proposed, implemented, and applied to water hexamers, hydrogen fluoride chains and rings, and neutral and zwitterionic glycine–water clusters with an excellent result for an initial performance assessment. Our original method included up to two- or three-body Coulomb, exchange, and correlation energies exactly and higher-order Coulomb energies in the dipole–dipole approximation. In this work, the dipole moments are replaced by atom-centered point charges determined so that they reproduce the electrostatic potentials of the cluster subunits as closely as possible and also self-consistently with one another in the cluster environment. They have been shown to lead to dramatic improvement in the description of short-range electrostatic potentials not only of large, charge-separated subunits like zwitterionic glycine but also of small subunits. Furthermore, basis set superposition errors (BSSE) known to plague direct evaluation of weak interactions have been eliminated by com-bining the Valiron–Mayer function counterpoise (VMFC) correction with our binary or ternary interaction method in an economical fashion (quadratic scaling n2 with respect to the number of subunits n when n is small and linear scaling when n is large). A new variant of VMFC has also been proposed in which three-body and all higher-order Coulomb effects on BSSE are estimated approximately. The BSSE-corrected ternary interaction method with atom-centered point charges reproduces the VMFC-corrected results of conventional electron correlation calculations within 0.1 kcal/mol. The proposed method is significantly more accurate and also efficient than conventional correlation methods uncorrected of BSSE.
Determination of the Time-Space Magnetic Correlation Functions in the Solar Wind
NASA Astrophysics Data System (ADS)
Weygand, J. M.; Matthaeus, W. H.; Kivelson, M.; Dasso, S.
2013-12-01
Magnetic field data from many different intervals and 7 different solar wind spacecraft are employed to estimate the scale-dependent time decorrelation function in the interplanetary magnetic field in both the slow and fast solar wind. This estimation requires correlations varying with both space and time lags. The two point correlation function with no time lag is determined by correlating time series data from multiple spacecraft separated in space and for complete coverage of length scales relies on many intervals with different spacecraft spatial separations. In addition we employ single spacecraft time-lagged correlations, and two spacecraft time lagged correlations to access different spatial and temporal correlation data. Combining these data sets gives estimates of the scale-dependent time decorrelation function, which in principle tells us how rapidly time decorrelation occurs at a given wavelength. For static fields the scale-dependent time decorrelation function is trivially unity, but in turbulence the nonlinear cascade process induces time-decorrelation at a given length scale that occurs more rapidly with decreasing scale. The scale-dependent time decorrelation function is valuable input to theories as well as various applications such as scattering, transport, and study of predictability. It is also a fundamental element of formal turbulence theory. Our results are extension of the Eulerian correlation functions estimated in Matthaeus et al. [2010], Weygand et al [2012; 2013].
NASA Astrophysics Data System (ADS)
Skornyakov, S. L.; Anisimov, V. I.
2015-04-01
In this review, we describe general ideas of the LDA+DMFT method which merges dynamical mean-field theory (DMFT) and density functional theory (in particular the local density approximation (LDA)). Nowadays, the LDA+DMFT computational scheme is the most powerful numerical tool for studying physical properties of real materials and chemical compounds. It incorporates the advantage of DMFT to treat the full range of local dynamical Coulomb correlations and the ability of band methods to describe material-specific band dispersion caused by the lattice periodicity. We briefly discuss underlying physical ideas of LDA+DMFT and its mathematical implementation. Then different algorithms applied to solution of the DMFT impurity problem are briefly described. We then give examples of successful applications of the LDA+DMFT method to study spectral and magnetic properties of recently synthesized compounds like pnictide superconductors as well as classic charge-transfer systems NiO and MnO.
Boltzmann-conserving classical dynamics in quantum time-correlation functions: “Matsubara dynamics”
Hele, Timothy J. H.; Willatt, Michael J.; Muolo, Andrea; Althorpe, Stuart C.
2015-04-07
We show that a single change in the derivation of the linearized semiclassical-initial value representation (LSC-IVR or “classical Wigner approximation”) results in a classical dynamics which conserves the quantum Boltzmann distribution. We rederive the (standard) LSC-IVR approach by writing the (exact) quantum time-correlation function in terms of the normal modes of a free ring-polymer (i.e., a discrete imaginary-time Feynman path), taking the limit that the number of polymer beads N → ∞, such that the lowest normal-mode frequencies take their “Matsubara” values. The change we propose is to truncate the quantum Liouvillian, not explicitly in powers of ħ{sup 2} at ħ{sup 0} (which gives back the standard LSC-IVR approximation), but in the normal-mode derivatives corresponding to the lowest Matsubara frequencies. The resulting “Matsubara” dynamics is inherently classical (since all terms O(ħ{sup 2}) disappear from the Matsubara Liouvillian in the limit N → ∞) and conserves the quantum Boltzmann distribution because the Matsubara Hamiltonian is symmetric with respect to imaginary-time translation. Numerical tests show that the Matsubara approximation to the quantum time-correlation function converges with respect to the number of modes and gives better agreement than LSC-IVR with the exact quantum result. Matsubara dynamics is too computationally expensive to be applied to complex systems, but its further approximation may lead to practical methods.
Peterson, K.A. ); Dunning, T.H. Jr. )
1995-02-01
The hydrogen bond energy and geometry of the HF dimer have been investigated using the series of correlation consistent basis sets from aug-cc-pVDZ to aug-cc-pVQZ and several theoretical methods including Moller--Plesset perturbation and coupled cluster theories. Estimates of the complete basis set (CBS) limit have been derived for the binding energy of (HF)[sub 2] at each level of theory by utilizing the regular convergence characteristics of the correlation consistent basis sets. CBS limit hydrogen bond energies of 3.72, 4.53, 4.55, and 4.60 kcal/mol are estimated at the SCF, MP2, MP4, and CCSD(T) levels of theory, respectively. CBS limits for the intermolecular F--F distance are estimated to be 2.82, 2.74, 2.73, and 2.73 A, respectively, for the same correlation methods. The effects of basis set superposition error (BSSE) on both the binding energies and structures have also been investigated for each basis set using the standard function counterpoise (CP) method. While BSSE has a negligible effect on the intramolecular geometries, the CP-corrected F--F distance and binding energy differ significantly from the uncorrected values for the aug-cc-pVDZ basis set; these differences decrease regularly with increasing basis set size, yielding the same limits in the CBS limit. Best estimates for the equilibrium properties of the HF dimer from CCSD(T) calculations are [ital D][sub [ital e
Correlation study of knee joint proprioception test results using common test methods.
Li, Lin; Ji, Zhong-Qiu; Li, Yan-Xia; Liu, Wei-Tong
2016-01-01
[Purpose] To study the correlation of the results obtained from different proprioception test methods, namely, the joint angle reset method, the motion minimum threshold measurement method, and the force sense reproduction method, performed on the same subjects' knees. [Subjects and Methods] Different proprioception test methods, the joint angle reset method, the motion minimum threshold measurement method and the force sense reproduction method were used to test the knees of 30 healthy young men. [Results] Correlations were found in the following descending order from strong to weak: the correlation between the joint angle reset method and the force sense reproduction method (correlation coefficient of 0.41), the correlation between the joint angle reset method and the motion minimum threshold measurement method (correlation coefficient of 0.29), the correlation between the motion minimum threshold measurement method and the force sense reproduce method (correlation coefficient of 0.15). [Conclusion] No correlation was found among the results obtained using the joint angle reset method, the motion minimum threshold measurement method and the force sense reproduction method. Therefore, no correlation was found among the position sense, the motion sense and the force sense represented by these methods. Using the results of only one of the test methods to represent proprioception is one-sided. Force sensation depends more on the sensory input of information from the Golgi tendon organs, motion sense depends more on the input information of the muscle spindles, and position sense relies on the double input information of the muscle spindles and the Golgi tendon organs.
Correlation functions of twist fields from Ward identities in the massive Dirac theory
NASA Astrophysics Data System (ADS)
Doyon, Benjamin; Silk, James
2011-07-01
We derive non-linear differential equations for correlation functions of U(1) twist fields in the two-dimensional massive Dirac theory. Primary U(1) twist fields correspond to exponential fields in the sine-Gordon model at the free-fermion point, and it is well-known that their vacuum two-point functions are determined by integrable differential equations. We extend part of this result to more general quantum states (pure or mixed) and to certain descendents, showing that some two-point functions are determined by the sinh-Gordon differential equations whenever there is translation and parity invariance, and the density matrix is the exponential of a bilinear expression in fermions. We use methods involving Ward identities associated to the copy-rotation symmetry in a model with two independent, anti-commuting copies. Such methods were used in the context of the thermally perturbed Ising quantum field theory model. We show that they are applicable to the Dirac theory as well, and we suggest that they are likely to have a much wider applicability to free fermion models in general. Finally, we note that our form-factor study of descendents twist fields combined with a CFT analysis provides a new way of evaluating vacuum expectation values of primary U(1) twist fields: by deriving and solving a recursion relation.
Garza, Alejandro J.; Jiménez-Hoyos, Carlos A.; Scuseria, Gustavo E.
2014-06-28
Several schemes to avoid the double counting of correlations in methods that merge multireference wavefunctions with density functional theory (DFT) are studied and here adapted to a combination of spin-projected Hartree-Fock (SUHF) and DFT. The advantages and limitations of the new method, denoted SUHF+f{sub c}DFT, are explored through calculations on benchmark sets in which the accounting of correlations is challenging for pure SUHF or DFT. It is shown that SUHF+f{sub c}DFT can greatly improve the description of certain molecular properties (e.g., singlet-triplet energy gaps) which are not improved by simple addition of DFT dynamical correlation to SUHF. However, SUHF+f{sub c}DFT is also shown to have difficulties dissociating certain types of bonds and describing highly charged ions with static correlation. Possible improvements to the current SUHF+f{sub c}DFT scheme are discussed in light of these results.
Neuwald, Andrew F
2016-06-01
The availability of vast amounts of protein sequence data facilitates detection of subtle statistical correlations due to imposed structural and functional constraints. Recent breakthroughs using Direct Coupling Analysis (DCA) and related approaches have tapped into correlations believed to be due to compensatory mutations. This has yielded some remarkable results, including substantially improved prediction of protein intra- and inter-domain 3D contacts, of membrane and globular protein structures, of substrate binding sites, and of protein conformational heterogeneity. A complementary approach is Bayesian Partitioning with Pattern Selection (BPPS), which partitions related proteins into hierarchically-arranged subgroups based on correlated residue patterns. These correlated patterns are presumably due to structural and functional constraints associated with evolutionary divergence rather than to compensatory mutations. Hence joint application of DCA- and BPPS-based approaches should help sort out the structural and functional constraints contributing to sequence correlations.
Choi, Stacey S.; Doble, Nathan; Hardy, Joseph L.; Jones, Steven M.; Keltner, John L.; Olivier, Scot S.; Werner, John S.
2008-01-01
Purpose To relate in vivo microscopic retinal changes to visual function in patients who have various forms of retinal dystrophy. Methods The UC Davis Adaptive Optics (AO) fundus camera was used to acquire in vivo retinal images at the cellular level. Visual function tests consisting of visual fields, multifocal electroretinography (mfERG), and contrast sensitivity were measured in all subjects by using stimuli that were coincident with areas imaged. Five patients with different forms of retinal dystrophy and three control subjects were recruited. Cone densities were quantified for all retinal images. Results In all images of diseased retinas, there were extensive areas of dark space between groups of photoreceptors, where no cone photoreceptors were evident. These irregular features were not seen in healthy retinas, but were apparent in patients with retinal dystrophy. There were significant correlations between functional vision losses and the extent to which these irregularities, quantified by cone density, occurred in retinal images. Conclusions AO fundus imaging is a reliable technique for assessing and quantifying the changes in the photoreceptor layer as disease progresses. Furthermore, this technique can be useful in cases where visual function tests provide borderline or ambiguous results, as it allows visualization of individual photoreceptors. PMID:16639019
Structure-function correlation of human programmed cell death 5 protein.
Yao, Hongwei; Xu, Lanjun; Feng, Yingang; Liu, Dongsheng; Chen, Yingyu; Wang, Jinfeng
2009-06-15
Human programmed cell death 5 (PDCD5) is a translocatory protein playing an important role in the apoptotic process of cells. Although there are accumulated data about PDCD5 function, the correlation of the structure with the function of PDCD5 has not been investigated. Here, we report the studies of structure-function relationship of PDCD5 by multidimensional NMR methods and by FACScan flow cytometer and fluorescence microscope. The 3D structure of intact PDCD5 and the internal motions of PDCD5 have been determined. PDCD5 has a compact core structure of low flexibility with two mobile alpha-helices at N-terminal region and a flexible unstructured C-terminal region. The flow cytometry and internalization measurements of different PDCD5 fragments indicate that the charged residues are crucial for the ability of apoptosis-promoting and cell translocation of the protein. Combined analyses reveal a fact that the regions that seem to be most involved in the function also are more flexible in PDCD5.
Zhang, Linghao; Zhang, Lu; Zhang, Chun-Hong; Fang, Xiao-Bi; Huang, Zhen-Xiao; Shi, Qing-Yuan; Wu, Li-Ping; Wu, Peng; Wang, Zhen-Zhen; Liao, Zhi-Su
2016-01-01
Objectives Chronic rhinosinusitis (CRS) is common disease in otorhinolaryngology and will lead to lower airway abnormality. However, the only lung function in CRS patients and associated factors have not been much studied. Methods One hundred patients with CRS with nasal polyps (CRSwNP group), 40 patients with CRS without nasal polyps (CRSsNP group), and 100 patients without CRS were enrolled. The difference in lung function was compared. Meanwhile, CRSwNP and CRSsNP group were required to undergo a bronchial provocation or dilation test. Additionally, subjective and objective outcomes were measured by the visual analogue scale (VAS), 20-item Sino-Nasal Outcome Test (SNOT-20), Lund-Mackay score, Lund-Kennedy endoscopic score. The correlation and regression methods were used to analyze the relationship between their lung function and the above parameters. Results The forced expiratory volume in 1 second (FEV1) and forced expiratory flow between 25% and 75% of forced vital capacity (FEF25-75) of CRSwNP group were significantly lower than other groups (P<0.05). On peak expiratory flow, there was no difference between three groups. In CRSwNP group, FEV1 was negatively correlated with peripheral blood eosinophil count (PBEC) and duration of disease (r=–0.348, P=0.013 and r=–0.344, P=0.014, respectively), FEF25-75 negatively with VAS, SNOT-20 (r=–0.490, P=0.028 and r=–0.478, P=0.033, respectively) in CRSsNP group. The incidence of positive bronchial provocation and dilation test was lower in CRSwNP group (10% and 0%, respectively), with both 0% in CRSsNP group. The multiple linear regression analysis indicated that change ratio of FEV1 before and after bronchial provocation or dilation test were correlated with PBEC in CRSwNP group (β=0.403, P=0.006). Conclusion CRS leading to impaired maximum ventilation and small airway is associated with the existence of nasal polyp. Lung function impairments can be reflected by PBEC, duration, VAS, and SNOT-20. In CRSw
Correlation mapping method of OCT for visualization blood vessels in brain
NASA Astrophysics Data System (ADS)
Izotova, O. A.; Kalyanov, A. L.; Lychagov, V. V.; Semyachkina-Glushkovskaya, O. V.
2013-11-01
The burning issue in modern medicine is the diagnosis and treatment of various life-threatening diseases, in particular the diseases of brain. One of them is intracranial hemorrhage (ICH). It occurs especially among newborn babies and is hard-diagnosed. In order to understand the nature of the ICH, the microcirculation of blood, which serves key functions within the body, is analyzed. On this basis a series of experiments was done, in the results of which it was showed, that latent stage of ICH is characterized by decrease of venous blood outflow and the loss of sensitivity of sagittal vein to vasoconstrictor effect of adrenaline. So, stress-related changes of the cerebral venous blood flow (CVBF) can be the source of this disease. In this paper registration CVBF was made with the help of commercially available Thorlabs Swept Source OCT System, using the correlation mapping method. In this method values of correlation coefficient of several images are analyzed. In the result of the algorithm the correlation map was obtained. By the resulting map the diameter of vessels was calculated, which is necessary for examination of effects of adrenalin to the vessels and identification symptoms of ICH.
NASA Technical Reports Server (NTRS)
Scargle, Jeffrey D.
1989-01-01
This paper develops techniques to evaluate the discrete Fourier transform (DFT), the autocorrelation function (ACF), and the cross-correlation function (CCF) of time series which are not evenly sampled. The series may consist of quantized point data (e.g., yes/no processes such as photon arrival). The DFT, which can be inverted to recover the original data and the sampling, is used to compute correlation functions by means of a procedure which is effectively, but not explicitly, an interpolation. The CCF can be computed for two time series not even sampled at the same set of times. Techniques for removing the distortion of the correlation functions caused by the sampling, determining the value of a constant component to the data, and treating unequally weighted data are also discussed. FORTRAN code for the Fourier transform algorithm and numerical examples of the techniques are given.
Kang, Jian; Bowman, F DuBois; Mayberg, Helen; Liu, Han
2016-11-01
To establish brain network properties associated with major depressive disorder (MDD) using resting-state functional magnetic resonance imaging (Rs-fMRI) data, we develop a multi-attribute graph model to construct a region-level functional connectivity network that uses all voxel level information. For each region pair, we define the strength of the connectivity as the kernel canonical correlation coefficient between voxels in the two regions; and we develop a permutation test to assess the statistical significance. We also construct a network based classifier for making predictions on the risk of MDD. We apply our method to Rs-fMRI data from 20 MDD patients and 20 healthy control subjects in the Predictors of Remission in Depression to Individual and Combined Treatments (PReDICT) study. Using this method, MDD patients can be distinguished from healthy control subjects based on significant differences in the strength of regional connectivity. We also demonstrate the performance of the proposed method using simulationstudies.
Mapping the current–current correlation function near a quantum critical point
Prodan, Emil; Bellissard, Jean
2016-05-15
The current–current correlation function is a useful concept in the theory of electron transport in homogeneous solids. The finite-temperature conductivity tensor as well as Anderson’s localization length can be computed entirely from this correlation function. Based on the critical behavior of these two physical quantities near the plateau–insulator or plateau–plateau transitions in the integer quantum Hall effect, we derive an asymptotic formula for the current–current correlation function, which enables us to make several theoretical predictions about its generic behavior. For the disordered Hofstadter model, we employ numerical simulations to map the current–current correlation function, obtain its asymptotic form near a critical point and confirm the theoretical predictions.
Four-body correlation embedded in antisymmetrized geminal power wave function.
Kawasaki, Airi; Sugino, Osamu
2016-12-28
We extend the Coleman's antisymmetrized geminal power (AGP) to develop a wave function theory that can incorporate up to four-body correlation in a region of strong correlation. To facilitate the variational determination of the wave function, the total energy is rewritten in terms of the traces of geminals. This novel trace formula is applied to a simple model system consisting of one dimensional Hubbard ring with a site of strong correlation. Our scheme significantly improves the result obtained by the AGP-configuration interaction scheme of Uemura et al. and also achieves more efficient compression of the degrees of freedom of the wave function. We regard the result as a step toward a first-principles wave function theory for a strongly correlated point defect or adsorbate embedded in an AGP-based mean-field medium.
Paternal Correlates of Cognitive and Behavioral Functioning in Children with Myelomeningocele
ERIC Educational Resources Information Center
Wohlfeiler, Melissa M.; Macias, Michelle M.; Saylor, Conway F.
2008-01-01
This study examined paternal correlates of the cognitive and behavioral functioning of children with myelomeningocele, when controlling for maternal and biological/child correlates as possible sources of variance. Participants were 48 parent dyads of children with myelomeningocele (21 males, 27 females) between the ages of 4 and 12 years (mean 8y,…
Momtaz, Hossein-Emad; Dehghan, Arash; Karimian, Mohammad
2016-01-01
Introduction: The use of a simple and accurate glomerular filtration rate (GFR) estimating method aiming minute assessment of renal function can be of great clinical importance. Objectives: This study aimed to determine the association of a GFR estimating by equation that includes only cystatin C (Gentian equation) to equation that include only creatinine (Schwartz equation) among children. Patients and Methods: A total of 31 children aged from 1 day to 5 years with the final diagnosis of unilateral or bilateral hydronephrosis referred to Besat hospital in Hamadan, between March 2010 and February 2011 were consecutively enrolled. Schwartz and Gentian equations were employed to determine GFR based on plasma creatinine and cystatin C levels, respectively. Results: The proportion of GFR based on Schwartz equation was 70.19± 24.86 ml/min/1.73 m2, while the level of this parameter based on Gentian method and using cystatin C was 86.97 ± 21.57 ml/min/1.73 m2. The Pearson correlation coefficient analysis showed a strong direct association between the two levels of GFR measured by Schwartz equation based on serum creatinine level and Gentian method and using cystatin C (r = 0.594, P < 0.001). The linear association between GFR values measured with the two methods included cystatin C based GFR = 50.8+ 0.515 × Schwartz GFR. The correlation between GFR values measured by using serum creatinine and serum cystatin C measurements remained meaningful even after adjustment for patients’ gender and age (r = 0.724, P < 0.001). Conclusion: The equation developed based on cystatin C level is comparable with another equation, based on serum creatinine (Schwartz formula) to estimate GFR in children. PMID:27069964
NASA Astrophysics Data System (ADS)
Zhou, Chenyi; Guo, Hong
2017-01-01
We report a diagrammatic method to solve the general problem of calculating configurationally averaged Green's function correlators that appear in quantum transport theory for nanostructures containing disorder. The theory treats both equilibrium and nonequilibrium quantum statistics on an equal footing. Since random impurity scattering is a problem that cannot be solved exactly in a perturbative approach, we combine our diagrammatic method with the coherent potential approximation (CPA) so that a reliable closed-form solution can be obtained. Our theory not only ensures the internal consistency of the diagrams derived at different levels of the correlators but also satisfies a set of Ward-like identities that corroborate the conserving consistency of transport calculations within the formalism. The theory is applied to calculate the quantum transport properties such as average ac conductance and transmission moments of a disordered tight-binding model, and results are numerically verified to high precision by comparing to the exact solutions obtained from enumerating all possible disorder configurations. Our formalism can be employed to predict transport properties of a wide variety of physical systems where disorder scattering is important.
Method of frequency dependent correlations: investigating the variability of total solar irradiance
NASA Astrophysics Data System (ADS)
Pelt, J.; Käpylä, M. J.; Olspert, N.
2017-03-01
Context. This paper contributes to the field of modeling and hindcasting of the total solar irradiance (TSI) based on different proxy data that extend further back in time than the TSI that is measured from satellites. Aims: We introduce a simple method to analyze persistent frequency-dependent correlations (FDCs) between the time series and use these correlations to hindcast missing historical TSI values. We try to avoid arbitrary choices of the free parameters of the model by computing them using an optimization procedure. The method can be regarded as a general tool for pairs of data sets, where correlating and anticorrelating components can be separated into non-overlapping regions in frequency domain. Methods: Our method is based on low-pass and band-pass filtering with a Gaussian transfer function combined with de-trending and computation of envelope curves. Results: We find a major controversy between the historical proxies and satellite-measured targets: a large variance is detected between the low-frequency parts of targets, while the low-frequency proxy behavior of different measurement series is consistent with high precision. We also show that even though the rotational signal is not strongly manifested in the targets and proxies, it becomes clearly visible in FDC spectrum. A significant part of the variability can be explained by a very simple model consisting of two components: the original proxy describing blanketing by sunspots, and the low-pass-filtered curve describing the overall activity level. The models with the full library of the different building blocks can be applied to hindcasting with a high level of confidence, Rc ≈ 0.90. The usefulness of these models is limited by the major target controversy. Conclusions: The application of the new method to solar data allows us to obtain important insights into the different TSI modeling procedures and their capabilities for hindcasting based on the directly observed time intervals.
2012-01-01
Background The aim of this study was to perform a longitudinal assessment using Quantitative Muscle Testing (QMT) in a cohort of ambulant boys affected by Duchenne muscular dystrophy (DMD) and to correlate the results of QMT with functional measures. This study is to date the most thorough long-term evaluation of QMT in a cohort of DMD patients correlated with other measures, such as the North Star Ambulatory Assessment (NSAA) or thee 6-min walk test (6MWT). Methods This is a single centre, prospective, non-randomised, study assessing QMT using the Kin Com® 125 machine in a study cohort of 28 ambulant DMD boys, aged 5 to 12 years. This cohort was assessed longitudinally over a 12 months period of time with 3 monthly assessments for QMT and with assessment of functional abilities, using the NSAA and the 6MWT at baseline and at 12 months only. QMT was also used in a control group of 13 healthy age-matched boys examined at baseline and at 12 months. Results There was an increase in QMT over 12 months in boys below the age of 7.5 years while in boys above the age of 7.5 years, QMT showed a significant decrease. All the average one-year changes were significantly different than those experienced by healthy controls. We also found a good correlation between quantitative tests and the other measures that was more obvious in the stronger children. Conclusion Our longitudinal data using QMT in a cohort of DMD patients suggest that this could be used as an additional tool to monitor changes, providing additional information on segmental strength. PMID:22974002
Uga, Minako; Dan, Ippeita; Dan, Haruka; Kyutoku, Yasushi; Taguchi, Y-h; Watanabe, Eiju
2015-01-01
Abstract. Recent advances in multichannel functional near-infrared spectroscopy (fNIRS) allow wide coverage of cortical areas while entailing the necessity to control family-wise errors (FWEs) due to increased multiplicity. Conventionally, the Bonferroni method has been used to control FWE. While Type I errors (false positives) can be strictly controlled, the application of a large number of channel settings may inflate the chance of Type II errors (false negatives). The Bonferroni-based methods are especially stringent in controlling Type I errors of the most activated channel with the smallest p value. To maintain a balance between Types I and II errors, effective multiplicity (Meff) derived from the eigenvalues of correlation matrices is a method that has been introduced in genetic studies. Thus, we explored its feasibility in multichannel fNIRS studies. Applying the Meff method to three kinds of experimental data with different activation profiles, we performed resampling simulations and found that Meff was controlled at 10 to 15 in a 44-channel setting. Consequently, the number of significantly activated channels remained almost constant regardless of the number of measured channels. We demonstrated that the Meff approach can be an effective alternative to Bonferroni-based methods for multichannel fNIRS studies. PMID:26157982
COMPUTER ’EXPERIMENTS’ ON CLASSICAL FLUIDS. II. EQUILIBRIUM CORRELATION FUNCTIONS,
Lennard - Jones potential. The behaviour of the correlation function at large distance, and that of its Fourier transform at large wave number are discussed in detail and shown to be related to the existence of a strong repulsion in the potential. A simple hard sphere model is shown to reproduce very well the Fourier transform of those correlations functions at high density, the only parameter of the model being the diameter a of the hard spheres.
Caracciolo, Sergio; Sicuro, Gabriele
2014-10-01
We discuss the equivalence relation between the Euclidean bipartite matching problem on the line and on the circumference and the Brownian bridge process on the same domains. The equivalence allows us to compute the correlation function and the optimal cost of the original combinatorial problem in the thermodynamic limit; moreover, we solve also the minimax problem on the line and on the circumference. The properties of the average cost and correlation functions are discussed.
Omega from the anisotropy of the redshift correlation function in the IRAS 2 Jansky survey
NASA Technical Reports Server (NTRS)
Hamilton, A. J. S.
1993-01-01
Peculiar velocities distort the correlation function of galaxies in redshift space. In the linear regime, the distortion has a characteristic quadrupole plus hexadecapole form, with amplitude depending on the cosmological density parameter Omega. I report here measurements of the anisotropy of the correlation function in the IRAS 2 Jy redshift survey. The inferred value of Omega is Omega = 0.5 + 0.5 or - 0.25.
Assessment of Thematic Mapper Band-to-band Registration by the Block Correlation Method
NASA Technical Reports Server (NTRS)
Card, D. H.; Wrigley, R. C.; Mertz, F. C.; Hall, J. R.
1984-01-01
The design of the Thematic Mapper (TM) multispectral radiometer makes it susceptible to band-to-band misregistration. To estimate band-to-band misregistration a block correlation method is employed. This method is chosen over other possible techniques (band differencing and flickering) because quantitative results are produced. The method correlates rectangular blocks of pixels from one band against blocks centered on identical pixels from a second band. The block pairs are shifted in pixel increments both vertically and horizontally with respect to each other and the correlation coefficient for each shift position is computed. The displacement corresponding to the maximum correlation is taken as the best estimate of registration error for each block pair. Subpixel shifts are estimated by a bi-quadratic interpolation of the correlation values surrounding the maximum correlation. To obtain statistical summaries for each band combination post processing of the block correlation results performed. The method results in estimates of registration error that are consistent with expectations.
Method for numerical simulation of two-term exponentially correlated colored noise
Yilmaz, B.; Ayik, S.; Abe, Y.; Gokalp, A.; Yilmaz, O.
2006-04-15
A method for numerical simulation of two-term exponentially correlated colored noise is proposed. The method is an extension of traditional method for one-term exponentially correlated colored noise. The validity of the algorithm is tested by comparing numerical simulations with analytical results in two physical applications.
Multinucleon short-range correlation model for nuclear spectral functions: Theoretical framework
NASA Astrophysics Data System (ADS)
Artiles, Oswaldo; Sargsian, Misak M.
2016-12-01
We develop a theoretical approach for nuclear spectral functions at high missing momenta and removal energies based on the multinucleon short-range correlation (SRC) model. The approach is based on the effective Feynman diagrammatic method which allows us to account for the relativistic effects important in the SRC domain. In addition to two-nucleon (2N) SRC with center of mass motion we also derive the contribution of three-nucleon SRCs to the nuclear spectral functions. The latter is modeled based on the assumption that 3N SRCs are a product of two sequential short-range nucleon-nucleon (NN) interactions. This approach allows us to express the 3N SRC part of the nuclear spectral function as a convolution of two NN SRCs. Thus the knowledge of 2N SRCs allows us to model both two- and three-nucleon SRC contributions to the spectral function. The derivations of the spectral functions are based on two theoretical frameworks for evaluating covariant Feynman diagrams: In the first, referred to as virtual nucleon approximation, we reduce Feynman diagrams to the time ordered noncovariant diagrams by evaluating nucleon spectators in the SRC at their positive energy poles, neglecting explicitly the contribution from vacuum diagrams. In the second approach, referred to as light-front approximation, we formulate the boost invariant nuclear spectral function in the light-front reference frame in which case the vacuum diagrams are generally suppressed and the bound nucleon is described by its light-front variables such as momentum fraction, transverse momentum, and invariant mass.
Modeling the two-point correlation of the vector stream function
NASA Technical Reports Server (NTRS)
Oberlack, M.; Rogers, M. M.; Reynolds, W. C.
1994-01-01
A new model for the two-point vector stream function correlation has been developed using tensor invariant arguments and evaluated by the comparison of model predictions with DNS data for incompressible homogeneous turbulent shear flow. This two-point vector stream function model correlation can then be used to calculate the two-point velocity correlation function and other quantities useful in turbulence modeling. The model assumes that the two-point vector stream function correlation can be written in terms of the separation vector and a new tensor function that depends only on the magnitude of the separation vector. The model has a single free model coefficient, which has been chosen by comparison with the DNS data. The relative error of the model predictions of the two-point vector stream function correlation is only a few percent for a broad range of the model coefficient. Predictions of the derivatives of this correlation, which are of interest in turbulence modeling, may not be this accurate.
The geriatric hand: correlation of hand-muscle function and activity restriction in elderly.
Incel, Nurgul Arinci; Sezgin, Melek; As, Ismet; Cimen, Ozlem Bolgen; Sahin, Gunsah
2009-09-01
On the basis of the importance of hand manipulation in activities of daily living (ADL), deterioration of hand function because of various factors reduces quality and independence of life of the geriatric population. The aim of this study was to identify age-induced changes in manual function and to quantify the correlations between hand-muscle function and activity restriction in the geriatric age group, through grip and pinch measurements and a set of questionnaires. Twenty-four geriatric (aged 65-79 years) volunteers participated in the study. Bilateral grip and pinch strengths have been recorded. To document impairment of manual functions, self-estimated hand function, Duruöz and Dreiser hand indices, Geriatrics-Arthritis Impact Measurement Scale (GERI-AIMS) manual dexterity questionnaires have been completed. Activity restriction and quality of life of these patients were inquired with short form (SF)-36 and Instrumental Activities of Daily Living (IADL) scores. Grip and pinch strengths correlated best with Duruöz and Dreiser indices. Similarly, SF-36 and IADL had higher correlation coefficients for Duruöz and Dreiser indices. A very good correlation between IADL and SF-36 was calculated too. Male and female participants revealed statistically significant differences for grip and pinch strengths as well as self-estimated hand function and SF-36. Another result was that none of our parameters, including grip strength and SF-36 had differed significantly between the 65-70 and 70-79 years age subgroups. However, grip strength displayed statistically significant lower values when compared with young adult mean values of a previous study. Our data in this study support the hypothesis that hand-muscle function correlates with functional dependency in the elderly. Manual function can be determined by grip strength in addition to multiple available functional tools. In this study, Dreiser and Duruöz hand function indices were the best to correlate with ADL and
Correlation of the Summary Method with Learning Styles
ERIC Educational Resources Information Center
Sarikcioglu, Levent; Senol, Yesim; Yildirim, Fatos B.; Hizay, Arzu
2011-01-01
The summary is the last part of the lesson but one of the most important. We aimed to study the relationship between the preference of the summary method (video demonstration, question-answer, or brief review of slides) and learning styles. A total of 131 students were included in the present study. An inventory was prepared to understand the…
Correlates of the Rosenberg Self-Esteem Scale Method Effects
ERIC Educational Resources Information Center
Quilty, Lena C.; Oakman, Jonathan M.; Risko, Evan
2006-01-01
Investigators of personality assessment are becoming aware that using positively and negatively worded items in questionnaires to prevent acquiescence may negatively impact construct validity. The Rosenberg Self-Esteem Scale (RSES) has demonstrated a bifactorial structure typically proposed to result from these method effects. Recent work suggests…
Mass spectrum and correlation functions of non-Abelian quantum magnetic monopoles
NASA Astrophysics Data System (ADS)
Marino, E. C.; Ramos, Rudnei O.
1994-01-01
The method of quantization of magnetic monopoles based on the order-disorder duality existing between the monopole operator and the Lagrangian fields is applied to the description of the quantum magnetic monopoles of 't Hooft and Polyakov in the SO(3) Georgi-Glashow model. The commutator of the monopole operator with the magnetic charge is computed explicitly, indicating that indeed the quantum monopole carries 4π/g units of magnetic charge. An explicit expression for the asymptotic behavior of the monopole correlation function is derived. From this, the mass of the quantum monopole is obtained. The tree-level result for the quantum monopole mass is shown to satisfy the Bogomol'nyi bound (Mmon>=4πM/g2) and to be within the range of values found for the energy of the classical monopole solution.
Correlation of firing pin impressions based on congruent matching cross-sections (CMX) method.
Zhang, Hao; Song, John; Tong, Mingsi; Chu, Wei
2016-06-01
Comparison of firing pin impressions of cartridge cases is an important part of firearms evidence identification. However, compared with breach face impressions, there is only a limited surface area over which firing pin impressions can be compared. Furthermore, the curvature of firing pin impressions makes it difficult to perform automatic correlations of the surfaces. In this study, a new method and related algorithm named congruent matching cross-sections (CMX) are proposed. Each firing pin impression is sliced into layers and the resulting circular cross-sections are converted to two dimensional linear profiles by a polar coordinate transformation. The differential profile extraction method is used for extracting the high frequency micro-features, or the individual characteristics, for accurate correlation. Three parameters are proposed for determining whether these pairwise firing pin impressions are fired from the same firearm. The cross-correlation function (CCF) is used for quantifying similarity of the pairwise profiles which represent the two correlated firing pin images. If the correlated cartridge pair is fired from the same firearm, the maximum CCF value between each of the profile pairs from the reference and the correlated firing pin impressions will be high. The other two parameters relate to the horizontal (or angular) and vertical range of relative shifts that the profiles undergo to obtain the maximum CCF. These shifts are the phase angle θ which corresponds to a horizontal shift of the 2D profiles and the vertical shift distance of slice section, i.e. where the profiles match in the depth of the impression. These shift parameters are used to determine the congruency of the pairwise profile patterns. When these parameter values and their statistical distributions are collected for analysis, the CMX number is derived as a key parameter for a conclusive identification or exclusion. Validation tests using 40 cartridge cases of three different
NASA Technical Reports Server (NTRS)
Bhatia, A. K.; Temkin, A.; Fisher, Richard R. (Technical Monitor)
2001-01-01
We report on the first part of a study of electron-hydrogen scattering, using a method which allows for the ab initio calculation of total and elastic cross sections at higher energies. In its general form the method uses complex 'radial' correlation functions, in a (Kohn) T-matrix formalism. The titled method, abbreviated Complex Correlation Kohn T (CCKT) method, is reviewed, in the context of electron-hydrogen scattering, including the derivation of the equation for the (complex) scattering function, and the extraction of the scattering information from the latter. The calculation reported here is restricted to S-waves in the elastic region, where the correlation functions can be taken, without loss of generality, to be real. Phase shifts are calculated using Hylleraas-type correlation functions with up to 95 terms. Results are rigorous lower bounds; they are in general agreement with those of Schwartz, but they are more accurate and outside his error bounds at a couple of energies,
Correlation Function Approach for Estimating Thermal Conductivity in Highly Porous Fibrous Materials
NASA Technical Reports Server (NTRS)
Martinez-Garcia, Jorge; Braginsky, Leonid; Shklover, Valery; Lawson, John W.
2011-01-01
Heat transport in highly porous fiber networks is analyzed via two-point correlation functions. Fibers are assumed to be long and thin to allow a large number of crossing points per fiber. The network is characterized by three parameters: the fiber aspect ratio, the porosity and the anisotropy of the structure. We show that the effective thermal conductivity of the system can be estimated from knowledge of the porosity and the correlation lengths of the correlation functions obtained from a fiber structure image. As an application, the effects of the fiber aspect ratio and the network anisotropy on the thermal conductivity is studied.
Towards prediction of correlated material properties using quantum Monte Carlo methods
NASA Astrophysics Data System (ADS)
Wagner, Lucas
Correlated electron systems offer a richness of physics far beyond noninteracting systems. If we would like to pursue the dream of designer correlated materials, or, even to set a more modest goal, to explain in detail the properties and effective physics of known materials, then accurate simulation methods are required. Using modern computational resources, quantum Monte Carlo (QMC) techniques offer a way to directly simulate electron correlations. I will show some recent results on a few extremely challenging materials including the metal-insulator transition of VO2, the ground state of the doped cuprates, and the pressure dependence of magnetic properties in FeSe. By using a relatively simple implementation of QMC, at least some properties of these materials can be described truly from first principles, without any adjustable parameters. Using the QMC platform, we have developed a way of systematically deriving effective lattice models from the simulation. This procedure is particularly attractive for correlated electron systems because the QMC methods treat the one-body and many-body components of the wave function and Hamiltonian on completely equal footing. I will show some examples of using this downfolding technique and the high accuracy of QMC to connect our intuitive ideas about interacting electron systems with high fidelity simulations. The work in this presentation was supported in part by NSF DMR 1206242, the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Scientific Discovery through Advanced Computing (SciDAC) program under Award Number FG02-12ER46875, and the Center for Emergent Superconductivity, Department of Energy Frontier Research Center under Grant No. DEAC0298CH1088. Computing resources were provided by a Blue Waters Illinois grant and INCITE PhotSuper and SuperMatSim allocations.
Dente, Federico L.; Bilotta, Marta; Bartoli, Maria Laura; Bacci, Elena; Cianchetti, Silvana; Latorre, Manuela; Malagrinò, Laura; Nieri, Dario; Roggi, Maria Adelaide; Vagaggini, Barbara; Paggiaro, Pierluigi
2015-01-01
Background. Neutrophilic bronchial inflammation is a main feature of bronchiectasis, but not much is known about its relationship with other disease features. Aim. To compare airway inflammatory markers with clinical and functional findings in subjects with stable noncystic fibrosis bronchiectasis (NCFB). Methods. 152 NFCB patients (62.6 years; females: 57.2%) underwent clinical and functional cross-sectional evaluation, including microbiologic and inflammatory cell profile in sputum, and exhaled breath condensate malondialdehyde (EBC-MDA). NFCB severity was assessed using BSI and FACED criteria. Results. Sputum neutrophil percentages inversely correlated with FEV1 (P < 0.0001; rho = −0.428), weakly with Leicester Cough Questionnaire score (P = 0.068; rho = −0.58), and directly with duration of the disease (P = 0.004; rho = 0.3) and BSI severity score (P = 0.005; rho = 0.37), but not with FACED. Sputum neutrophilia was higher in colonized subjects, P. aeruginosa colonized subjects showing greater sputum neutrophilia and lower FEV1. Patients with ≥3 exacerbations in the last year showed a significantly greater EBC-MDA than the remaining patients. Conclusions. Sputum neutrophilic inflammation and biomarkers of oxidative stress in EBC can be considered good biomarkers of disease severity in NCFB patients, as confirmed by pulmonary function, disease duration, bacterial colonization, BSI score, and exacerbation rate. PMID:26819500
NASA Astrophysics Data System (ADS)
Krieger, J. B.; Chen, Jiqiang; Iafrate, G. J.; Savin, A.
1998-03-01
We have obtained an analytic approximation to E_c(r_g, ζ,G) where G is an energy gap separating the occupied and unoccupied states of a homogeneous electron gas for ζ=3D0 and ξ=3D1. When G=3D0, E_c(r_g, ζ) reduces to the usual LSD result. This functional is employed in calculating correlation energies for unpolarized atoms and ions for Z <= 18 by taking G[n]=3D1/8|nabla ln n|^2, which reduces to the ionization energy in the large r limit in an exact Kohn-Sham (KS) theory. The resulting functional is self-interaction-corrected employing a method which is invariant under a unitary transformation. We find that the application of this approach to the calculation of the Ec functional reduces the error in the LSD result by more than 95%. When the value of G is approximately corrected to include the effect of higher lying unoccupied localized states, the resulting values of Ec are within a few percent of the exact results.
Goikolea, José M.; Bonnin, Caterina M.; Sarró, Salvador; Segura, Barbara; Amann, Benedikt L.; Monté, Gemma C.; Moro, Noemi; Fernandez-Corcuera, Paloma; Maristany, Teresa; Salvador, Raymond; Vieta, Eduard; Pomarol-Clotet, Edith; McKenna, Peter J.
2016-01-01
Introduction Cognitive impairment in the euthymic phase is a well-established finding in bipolar disorder. However, its brain structural and/or functional correlates are uncertain. Methods Thirty-three euthymic bipolar patients with preserved memory and executive function and 28 euthymic bipolar patients with significant memory and/or executive impairment, as defined using two test batteries, the Rivermead Behavioural Memory Test (RBMT) and the Behavioural Assessment of the Dysexecutive Syndrome (BADS), plus 28 healthy controls underwent structural MRI using voxel-based morphometry (VBM). Twenty-seven of the cognitively preserved patients, 23 of the cognitively impaired patients and 28 controls also underwent fMRI during performance of the n-back working memory task. Results No clusters of grey or white matter volume difference were found between the two patient groups. During n-back performance, the cognitively impaired patients showed hypoactivation compared to the cognitively preserved patients in a circumscribed region in the right dorsolateral prefrontal cortex. Both patient groups showed failure of de-activation in the medial frontal cortex compared to the healthy controls. Conclusions Cognitive impairment in euthymic bipolar patients appears from this study to be unrelated to structural brain abnormality, but there was some evidence for an association with altered prefrontal function. PMID:27448153
Quiroga-Lombard, Claudio S; Hass, Joachim; Durstewitz, Daniel
2013-07-01
Correlations among neurons are supposed to play an important role in computation and information coding in the nervous system. Empirically, functional interactions between neurons are most commonly assessed by cross-correlation functions. Recent studies have suggested that pairwise correlations may indeed be sufficient to capture most of the information present in neural interactions. Many applications of correlation functions, however, implicitly tend to assume that the underlying processes are stationary. This assumption will usually fail for real neurons recorded in vivo since their activity during behavioral tasks is heavily influenced by stimulus-, movement-, or cognition-related processes as well as by more general processes like slow oscillations or changes in state of alertness. To address the problem of nonstationarity, we introduce a method for assessing stationarity empirically and then "slicing" spike trains into stationary segments according to the statistical definition of weak-sense stationarity. We examine pairwise Pearson cross-correlations (PCCs) under both stationary and nonstationary conditions and identify another source of covariance that can be differentiated from the covariance of the spike times and emerges as a consequence of residual nonstationarities after the slicing process: the covariance of the firing rates defined on each segment. Based on this, a correction of the PCC is introduced that accounts for the effect of segmentation. We probe these methods both on simulated data sets and on in vivo recordings from the prefrontal cortex of behaving rats. Rather than for removing nonstationarities, the present method may also be used for detecting significant events in spike trains.
Automatic determination of important mode-mode correlations in many-mode vibrational wave functions.
König, Carolin; Christiansen, Ove
2015-04-14
We introduce new automatic procedures for parameterizing vibrational coupled cluster (VCC) and vibrational configuration interaction wave functions. Importance measures for individual mode combinations in the wave function are derived based on upper bounds to Hamiltonian matrix elements and/or the size of perturbative corrections derived in the framework of VCC. With a threshold, this enables an automatic, system-adapted way of choosing which mode-mode correlations are explicitly parameterized in the many-mode wave function. The effect of different importance measures and thresholds is investigated for zero-point energies and infrared spectra for formaldehyde and furan. Furthermore, the direct link between important mode-mode correlations and coordinates is illustrated employing water clusters as examples: Using optimized coordinates, a larger number of mode combinations can be neglected in the correlated many-mode vibrational wave function than with normal coordinates for the same accuracy. Moreover, the fraction of important mode-mode correlations compared to the total number of correlations decreases with system size. This underlines the potential gain in efficiency when using optimized coordinates in combination with a flexible scheme for choosing the mode-mode correlations included in the parameterization of the correlated many-mode vibrational wave function. All in all, it is found that the introduced schemes for parameterizing correlated many-mode vibrational wave functions lead to at least as systematic and accurate calculations as those using more standard and straightforward excitation level definitions. This new way of defining approximate calculations offers potential for future calculations on larger systems.
Site-resolved measurement of the spin-correlation function in the Fermi-Hubbard model
NASA Astrophysics Data System (ADS)
Parsons, Maxwell F.; Mazurenko, Anton; Chiu, Christie S.; Ji, Geoffrey; Greif, Daniel; Greiner, Markus
2016-09-01
Exotic phases of matter can emerge from strong correlations in quantum many-body systems. Quantum gas microscopy affords the opportunity to study these correlations with unprecedented detail. Here, we report site-resolved observations of antiferromagnetic correlations in a two-dimensional, Hubbard-regime optical lattice and demonstrate the ability to measure the spin-correlation function over any distance. We measure the in situ distributions of the particle density and magnetic correlations, extract thermodynamic quantities from comparisons to theory, and observe statistically significant correlations over three lattice sites. The temperatures that we reach approach the limits of available numerical simulations. The direct access to many-body physics at the single-particle level demonstrated by our results will further our understanding of how the interplay of motion and magnetism gives rise to new states of matter.
Dipion decays of heavy quarkonium in the field correlator method
Simonov, Yu. A.
2008-06-15
The mechanism of dipion transitions nS {sup {yields}}n'S {pi}{pi} (n = 3, 2; n' = 2, 1) in bottomonium and charmonium is studied with the use of the chiral string-breaking Lagrangian allowing for the emission of any number of {pi}(K, {nu}), and not containing fitting parameters. The transition amplitude contains two terms: M = a - b, where the first term (a) refers to subsequent one-pion emission, {Gamma} (nS) {yields} {pi} B bar B {yields} {pi} {Gamma} (n'S){pi} , and the second term (b) refers to two-pion emission, {Gamma} (nS) {yields} {pi} {pi} B bar B {yields} {pi} {pi} {Gamma} (n'S). The one parameter formula for the dipion mass distribution is derived, dw/dq {approx} (phase space) x vertical bar {eta} - x vertical bar {sup 2}, where x = (q{sup 2} - 4m{sub {pi}}{sup 2})/(q{sub max}{sup 2} - 4m{sub {pi}}{sup 2}), q{sup 2} m= M{sub {pi}{pi}}{sup 2}. The parameter {nu} dependent on the process is calculated, using SHO wave functions and imposing PCAC restrictions (Adler zero) on amplitudes a and b. The resulting dipion mass distributions are in agreement with experimental data.
Wicker, B; Fonlupt, P
2003-03-01
Functional magnetic resonance imaging (fMRI) time series analysis and statistical inferences about the effect of a cognitive task on the regional cerebral blood flow (rCBF) are largely based on the linear model. However, this method requires that the error vector is a gaussian variable with an identity correlation matrix. When this assumption cannot be accepted, statistical inferences can be made using generalized least squares. In this case, knowledge of the covariance matrix of the error vector is needed. In the present report, we propose a method that needs stationarity of the autocorrelation function but is more flexible than autoregressive model of order p (AR(p)) models because it is not necessary to predefine a relation between coefficients of the correlation matrix. We tested this method on sets of simulated data (with presence of an effect of interest or not) representing a time series with a monotonically decreasing autocorrelation function. This time series mimicked an experiment using a random event-related design that does not create correlation between scans. The autocorrelation function is empirically determined and used to reconstitute the correlation matrix as the toeplitz matrix built from the autocorrelation function. When applied to simulated time series with no effect of interest, this method allows the determination of F values corresponding to the accurate false positive level. Moreover, when applied to time series with an effect of interest, this method gives a density function of F values which allows the rejection of the null hypothesis. This method provides a flexible but interpretable time domain noise model.
NASA Astrophysics Data System (ADS)
Göltl, Florian; Sautet, Philippe
2014-04-01
The inclusion of non-local interactions is one of the large challenges in density functional theory. Very promising methods are the vdW-DF2 and BEEF-vdW functionals, which combine a semi-local approximation for exchange interactions and a non-local correlation expression. In this work we apply those functionals to model the adsorption of short alkanes in the zeolite SSZ-13. Even though results for energetics are improved with respect to other vdW-DF based methods, we still find a comparatively large error compared to high-level calculations. These errors result from approximations in the determination of the dielectric function and of the van der Waals kernel. The insights presented in this work will help to understand the performance not only of vdW-DF2 and BEEF-vdW, but all vdW-DF based functionals in various chemically or physically important systems.
The Geriatric Hand: Correlation of Hand-Muscle Function and Activity Restriction in Elderly
ERIC Educational Resources Information Center
Incel, Nurgul Arinci; Sezgin, Melek; As, Ismet; Cimen, Ozlem Bolgen; Sahin, Gunsah
2009-01-01
On the basis of the importance of hand manipulation in activities of daily living (ADL), deterioration of hand function because of various factors reduces quality and independence of life of the geriatric population. The aim of this study was to identify age-induced changes in manual function and to quantify the correlations between hand-muscle…
COX-2 gene expression is correlated with cognitive function in recurrent depressive disorder.
Gałecki, Piotr; Talarowska, Monika; Bobińska, Kinga; Szemraj, Janusz
2014-02-28
Cyclooxygenase-2(COX-2) may be a key inflammatory enzyme involved in recurrent depressive disorder(rDD). In rDD group, COX-2 expression were higher and significant correlations occurred between COX-2 expression and cognitive functions. In controls there was no significant association between analysed variables. Thus, the COX-2 enzyme may be important for cognitive functioning in rDD.
Correlation between denial of illness and executive function following stroke: a pilot study.
Narushima, Kenji; Moser, David J; Robinson, Robert G
2008-01-01
Executive function and denial of illness were examined among 24 patients who received double-blind antidepressant treatment following stroke. Between end-of-treatment at 3 months and follow-up at 2 years, significant correlation was found between improvement in executive function and decrease in denial of illness.
Description of correlated densities for few-electron atoms by simple functional forms
Porras, I.; Arias de Saavedra, F.
1999-02-20
Simple analytical functional forms for the electron density of two- and three-electron atoms which reproduce fairly the correlated (exact) values are presented. The procedure is based on the fitting of an auxiliary f(r) function which has adequate properties for this purpose and can be extended to more complex atoms.
Visualizing confusion matrices for multidimensional signal detection correlational methods
NASA Astrophysics Data System (ADS)
Zhou, Yue; Wischgoll, Thomas; Blaha, Leslie M.; Smith, Ross; Vickery, Rhonda J.
2013-12-01
Advances in modeling and simulation for General Recognition Theory have produced more data than can be easily visualized using traditional techniques. In this area of psychological modeling, domain experts are struggling to find effective ways to compare large-scale simulation results. This paper describes methods that adapt the web-based D3 visualization framework combined with pre-processing tools to enable domain specialists to more easily interpret their data. The D3 framework utilizes Javascript and scalable vector graphics (SVG) to generate visualizations that can run readily within the web browser for domain specialists. Parallel coordinate plots and heat maps were developed for identification-confusion matrix data, and the results were shown to a GRT expert for an informal evaluation of their utility. There is a clear benefit to model interpretation from these visualizations when researchers need to interpret larger amounts of simulated data.
NASA Astrophysics Data System (ADS)
Xi, Caiping; Zhang, Shuning; Xiong, Gang; Zhao, Huichang; Yang, Yonghong
2017-02-01
Many complex systems generate multifractal time series which are long-range cross-correlated. This paper introduces three multifractal cross-correlation analysis methods, such as multifractal cross-correlation analysis based on the partition function approach (MFXPF), multifractal detrended cross-correlation analysis (MFDCCA) methods based on detrended fluctuation analysis (MFXDFA) and detrended moving average analysis (MFXDMA), which only consider one moment order. We do comparative analysis of the artificial time series (binomial multiplicative cascades and Cantor sets with different probabilities) by these methods. Then we do a feasibility test of the fixed threshold target detection within sea clutter by applying the multifractal cross-correlation analysis methods to the IPIX radar sea clutter data. The results show that it is feasible to use the method of the fixed threshold based on the multifractal feature parameter Δf(α) by the MFXPF and MFXDFA-1 methods. At last, we give the main conclusions and provide a valuable reference on how to choose the multifractal algorithms, the detection parameters and the target detection methods within sea clutter in practice.
Assessing Accuracy of Exchange-Correlation Functionals for the Description of Atomic Excited States
NASA Astrophysics Data System (ADS)
Makowski, Marcin; Hanas, Martyna
2016-09-01
The performance of exchange-correlation functionals for the description of atomic excitations is investigated. A benchmark set of excited states is constructed and experimental data is compared to Time-Dependent Density Functional Theory (TDDFT) calculations. The benchmark results show that for the selected group of functionals good accuracy may be achieved and the quality of predictions provided is competitive to computationally more demanding coupled-cluster approaches. Apart from testing the standard TDDFT approaches, also the role of self-interaction error plaguing DFT calculations and the adiabatic approximation to the exchange-correlation kernels is given some insight.
Fa, Kwok Sau
2015-02-15
An integro-differential diffusion equation with linear force, based on the continuous time random walk model, is considered. The equation generalizes the ordinary and fractional diffusion equations, which includes short, intermediate and long-time memory effects described by the waiting time probability density function. Analytical expression for the correlation function is obtained and analyzed, which can be used to describe, for instance, internal motions of proteins. The result shows that the generalized diffusion equation has a broad application and it may be used to describe different kinds of systems. - Highlights: • Calculation of the correlation function. • The correlation function is connected to the survival probability. • The model can be applied to the internal dynamics of proteins.
Panda, Ananya; Bhalla, Ashu Seith; Sharma, Raju; Mohan, Anant; Sreenivas, Vishnu; Kalaimannan, Umasankar; Upadhyay, Ashish Dutt
2016-01-01
Aims: To study the correlation between dyspnea, radiological findings, and pulmonary function tests (PFTs) in patients with sequelae of pulmonary tuberculosis (TB). Materials and Methods: Clinical history, chest computed tomography (CT), and PFT of patients with post-TB sequelae were recorded. Dyspnea was graded according to the Modified Medical Research Council (mMRC) scale. CT scans were analyzed for fibrosis, cavitation, bronchiectasis, consolidation, nodules, and aspergilloma. Semi-quantitative analysis was done for these abnormalities. Scores were added to obtain a total morphological score (TMS). The lungs were also divided into three zones and scores added to obtain the total lung score (TLS). Spirometry was done for forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), and FEV1/FVC. Results: Dyspnea was present in 58/101 patients. A total of 22/58 patients had mMRC Grade 1, and 17/58 patients had Grades 2 and 3 dyspnea each. There was a significant difference in median fibrosis, bronchiectasis, nodules (P < 0.01) scores, TMS, and TLS (P < 0.0001) between dyspnea and nondyspnea groups. Significant correlations were obtained between grades of dyspnea and fibrosis (r = 0.34, P = 0.006), bronchiectasis (r = 0.35, P = 0.004), nodule (r = 0.24, P = 0.016) scores, TMS (r = 0.398, P = 0.000), and TLS (r = 0.35, P = 0.0003). PFTs were impaired in 78/101 (77.2%) patients. Restrictive defect was most common in 39.6% followed by mixed in 34.7%. There was a negative but statistically insignificant trend between PFT and fibrosis, bronchiectasis, nodule scores, TMS, and TLS. However, there were significant differences in median fibrosis, cavitation, and bronchiectasis scores in patients with normal, mild to moderate, and severe respiratory defects. No difference was seen in TMS and TLS according to the severity of the respiratory defect. Conclusion: Both fibrosis and bronchiectasis correlated with dyspnea and with PFT. However, this correlation was not
Lee, Lloyd L
2013-10-21
We develop the potential distributions of several test particles to obtain a hierarchy of the nonuniform singlet direct correlation functions (s-DCFs). These correlation functions are interpreted as the segmental chemical potentials or works of insertion of successive test particles in a classical fluid. The development has several interesting consequences: (i) it extends the Widom particle insertion formula to higher-order theorems, the first member gives the chemical potential as in the original theorem, the second member gives the incremental energy for dimer formation, with higher members giving the energies for forming trimers, tetramers, etc. (ii) The second and third order s-DCFs can be related to the cavity distribution functions y((2)) and y((3)) in the liquid-state theory. Thus we can express the triplet cavity function y((3)) in terms of these s-DCFs in an exact form. This enables us to calculate, as an illustration of the above theoretical developments, the numerical values of the s-DCFs via Monte Carlo (MC) simulation data on hard spheres. We use these data to critically analyze the commonly used approximations, the Kirkwood superposition (KSA) and the linear approximation (LA) for triplet correlation functions. An improved rule over KSA and LA is proposed for triplet hard spheres in the rolling-contact configurations. (iii) The s-DCFs are naturally suited for analyzing the chain-incremental Ansatz or hypothesis in the calculation of the chemical potentials of polymeric chain molecules. The first few segments of a polymer chain have been shown from extensive Monte Carlo simulations to not obey this Ansatz. By examining the insertion energies of successive segments through the s-DCFs, we are able to quantitatively decipher the decay of the segmental chemical potentials for at least the first three segments. Comparison with MC data on 4-mer and 8-mer hard-sphere fluids shows commensurate behavior with the s-DCFs. In addition, an analytical density
da Silva, Silvia Maria Doria; Paschoal, Ilma Aparecida; De Capitani, Eduardo Mello; Moreira, Marcos Mello; Palhares, Luciana Campanatti; Pereira, Mônica Corso
2016-01-01
Background Computed tomography (CT) phenotypic characterization helps in understanding the clinical diversity of chronic obstructive pulmonary disease (COPD) patients, but its clinical relevance and its relationship with functional features are not clarified. Volumetric capnography (VC) uses the principle of gas washout and analyzes the pattern of CO2 elimination as a function of expired volume. The main variables analyzed were end-tidal concentration of carbon dioxide (ETCO2), Slope of phase 2 (Slp2), and Slope of phase 3 (Slp3) of capnogram, the curve which represents the total amount of CO2 eliminated by the lungs during each breath. Objective To investigate, in a group of patients with severe COPD, if the phenotypic analysis by CT could identify different subsets of patients, and if there was an association of CT findings and functional variables. Subjects and methods Sixty-five patients with COPD Gold III–IV were admitted for clinical evaluation, high-resolution CT, and functional evaluation (spirometry, 6-minute walk test [6MWT], and VC). The presence and profusion of tomography findings were evaluated, and later, the patients were identified as having emphysema (EMP) or airway disease (AWD) phenotype. EMP and AWD groups were compared; tomography findings scores were evaluated versus spirometric, 6MWT, and VC variables. Results Bronchiectasis was found in 33.8% and peribronchial thickening in 69.2% of the 65 patients. Structural findings of airways had no significant correlation with spirometric variables. Air trapping and EMP were strongly correlated with VC variables, but in opposite directions. There was some overlap between the EMP and AWD groups, but EMP patients had signicantly lower body mass index, worse obstruction, and shorter walked distance on 6MWT. Concerning VC, EMP patients had signicantly lower ETCO2, Slp2 and Slp3. Increases in Slp3 characterize heterogeneous involvement of the distal air spaces, as in AWD. Conclusion Visual assessment and
Fujimoto, Shuhei; Kon, Noriko
2016-01-01
[Purpose] The purpose of this study was to elucidate how well patients’ perceptions related to the improvements in their hand function during hospitalization. [Subjects] Sixteen patients who were hospitalized after hand surgery. [Methods] Using the Japanese Society for Surgery of the Hand edition of the Quick-Disabilities of the Arm, Shoulder, and Hand questionnaire; tactile roughness discrimination acuity, motor imagery, motor function, sensory function, and pain of the upper limb were assessed at admission and discharge. Spearman’s rank-order correlation coefficients were calculated using the differences in all assessment items at admission and discharge. A multiple regression analysis (stepwise method) was performed to investigate factors that correlated with improvements in Quick-Disabilities of the Arm, Shoulder, and Hand scores. [Results] The improvement of tactile roughness discrimination acuity was significantly associated with patient perception of improved hand function. [Conclusion] The results suggest that an improvement in tactile roughness discrimination acuity was most strongly correlated with patient perception of improved hand function. PMID:27190473
NASA Astrophysics Data System (ADS)
Max-Moerbeck, W.; Richards, J. L.; Hovatta, T.; Pavlidou, V.; Pearson, T. J.; Readhead, A. C. S.
2014-11-01
We present a practical implementation of a Monte Carlo method to estimate the significance of cross-correlations in unevenly sampled time series of data, whose statistical properties are modelled with a simple power-law power spectral density. This implementation builds on published methods; we introduce a number of improvements in the normalization of the cross-correlation function estimate and a bootstrap method for estimating the significance of the cross-correlations. A closely related matter is the estimation of a model for the light curves, which is critical for the significance estimates. We present a graphical and quantitative demonstration that uses simulations to show how common it is to get high cross-correlations for unrelated light curves with steep power spectral densities. This demonstration highlights the dangers of interpreting them as signs of a physical connection. We show that by using interpolation and the Hanning sampling window function we are able to reduce the effects of red-noise leakage and to recover steep simple power-law power spectral densities. We also introduce the use of a Neyman construction for the estimation of the errors in the power-law index of the power spectral density. This method provides a consistent way to estimate the significance of cross-correlations in unevenly sampled time series of data.
NASA Astrophysics Data System (ADS)
Dakin, John P.; Chambers, Paul
This chapter reviews the development of optical gas sensors, starting with an initial emphasis on optical-fibre remoted techniques and finishing with a particular focus on our own group's work on highly selective methods using correlation spectroscopy. This latter section includes extensive theoretical modelling of a correlation spectroscopy method, and compares theory with practice for a CO2 sensor.
Pulmonary function tests correlated with thoracic volumes in adolescent idiopathic scoliosis.
Ledonio, Charles Gerald T; Rosenstein, Benjamin E; Johnston, Charles E; Regelmann, Warren E; Nuckley, David J; Polly, David W
2017-01-01
Scoliosis deformity has been linked with deleterious changes in the thoracic cavity that affect pulmonary function. The causal relationship between spinal deformity and pulmonary function has yet to be fully defined. It has been hypothesized that deformity correction improves pulmonary function by restoring both respiratory muscle efficiency and increasing the space available to the lungs. This research aims to correlate pulmonary function and thoracic volume before and after scoliosis correction. Retrospective correlational analysis between thoracic volume modeling from plain x-rays and pulmonary function tests was conducted. Adolescent idiopathic scoliosis patients enrolled in a multicenter database were sorted by pre-operative Total Lung Capacities (TLC) % predicted values from their Pulmonary Function Tests (PFT). Ten patients with the best and ten patients with the worst TLC values were included. Modeled thoracic volume and TLC values were compared before and 2 years after surgery. Scoliosis correction resulted in an increase in the thoracic volume for patients with the worst initial TLCs (11.7%) and those with the best initial TLCs (12.5%). The adolescents with the most severe pulmonary restriction prior to surgery strongly correlated with post-operative change in total lung capacity and thoracic volume (r(2) = 0.839; p < 0.001). The mean increase in thoracic volume in this group was 373.1 cm(3) (11.7%) which correlated with a 21.2% improvement in TLC. Scoliosis correction in adolescents was found to increase thoracic volume and is strongly correlated with improved TLC in cases with severe restrictive pulmonary function, but no correlation was found in cases with normal pulmonary function. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:175-182, 2017.
Song, Young Dong; Jain, Nimash; Kang, Yeon Gwi; Kim, Tae Yune
2016-01-01
Purpose Correlations between maximum flexion and functional outcomes in total knee arthroplasty (TKA) patients are reportedly weak. We investigated whether there are differences between passive maximum flexion in nonweight bearing and other types of maximum flexion and whether the type of maximum flexion correlates with functional outcomes. Materials and Methods A total of 210 patients (359 knees) underwent preoperative evaluation and postoperative follow-up evaluations (6, 12, and 24 months) for the assessment of clinical outcomes including maximum knee flexion. Maximum flexion was measured under five conditions: passive nonweight bearing, passive weight bearing, active nonweight bearing, and active weight bearing with or without arm support. Data were analyzed for relationships between passive maximum flexion in nonweight bearing by Pearson correlation analyses, and a variance comparison between measurement techniques via paired t test. Results We observed substantial differences between passive maximum flexion in nonweight bearing and the other four maximum flexion types. At all time points, passive maximum flexion in nonweight bearing correlated poorly with active maximum flexion in weight bearing with or without arm support. Active maximum flexion in weight bearing better correlated with functional outcomes than the other maximum flexion types. Conclusions Our study suggests active maximum flexion in weight bearing should be reported together with passive maximum flexion in nonweight bearing in research on the knee motion arc after TKA. PMID:27274468
An improved correlation method for determining the period of a torsion pendulum
Luo Jie; Wang Dianhong
2008-09-15
Considering variation of environment temperature and unhomogeneity of background gravitational field, an improved correlation method was proposed to determine the variational period of a torsion pendulum with high precision. The result of processing experimental data shows that the uncertainty of determining the period with this method has been improved about twofolds than traditional correlation method, which is significant for the determination of gravitational constant with time-of-swing method.
NASA Astrophysics Data System (ADS)
Walczak, Zbigniew; Wintrowicz, Iwona
2017-03-01
Recently, Brodutch and Modi proposed a general method of constructing meaningful measures of classical and quantum correlations. We systematically apply this method to obtain geometric classical and quantum correlations based on the Bures and the trace distances for two-qubit Bell diagonal states. Moreover, we argue that in general the Brodutch and Modi method may provide non-unique results, and we show how to modify this method to avoid this issue.
Green's function methods in heavy ion shielding
NASA Technical Reports Server (NTRS)
Wilson, John W.; Costen, Robert C.; Shinn, Judy L.; Badavi, Francis F.
1993-01-01
An analytic solution to the heavy ion transport in terms of Green's function is used to generate a highly efficient computer code for space applications. The efficiency of the computer code is accomplished by a nonperturbative technique extending Green's function over the solution domain. The computer code can also be applied to accelerator boundary conditions to allow code validation in laboratory experiments.
Yamagata, Momoko; Ikezoe, Tome; Kamiya, Midori; Masaki, Mitsuhiro; Ichihashi, Noriaki
2017-01-01
Purpose Sample entropy (SampEn) is an analysis to evaluate movement complexity of the center of pressure (COP). A lower value of SampEn indicates lower complexity of COP variability, that is, rigidity, and lower degrees of freedom. Previous studies reported the association of increased SampEn with improved standing balance ability in young subjects. However, no studies have examined these relationships among older adults. Thus, we aimed to investigate the relationship between SampEn and standing balance ability in older adults. Subjects and methods The subjects were 33 institutionalized older adults (aged 82.2±6.5 years). COP during static standing was measured. The standard deviation (SD) values of COP and SampEn in the sagittal and frontal planes were calculated using time series data. One-leg standing test (OLST), functional reach (FR) test, and lateral reach (LR) test were also measured to evaluate standing balance ability. Results OLST, FR, and LR were 6.5±8.3 s, 19.8±5.9 cm, and 18.2±6.4 cm, respectively. Pearson correlation analysis revealed that SampEn in the sagittal plane significantly correlated with OLST (r=−0.35) and FR (r=−0.36). However, SampEn in the frontal plane and SD of COP in both sagittal and frontal planes had no relationship with any of the clinical balance tests. Conclusion Lower SampEn implies rigidity for postural control. In the present study, it was found that lower SampEn in the sagittal plane was related to a higher balance function, which suggests that older adults utilized body rigidity to maintain postural stability as a compensative strategy. PMID:28331301
High Statistics Analysis using Anisotropic Clover Lattices: (I) Single Hadron Correlation Functions
Will Detmold,Konstantinos Orginos,Silas R. Beane,Will Detmold,William Detmold,Thomas C. Luu,Konstantinos Orginos,Assumpta Parreno,Martin J. Savage,Aaron Torok,Andre Walker-Loud
2009-06-01
We present the results of high-statistics calculations of correlation functions generated with single-baryon interpolating operators on an ensemble of dynamical anisotropic gauge-field configurations generated by the Hadron Spectrum Collaboration using a tadpole-improved clover fermion action and Symanzik-improved gauge action. A total of 292,500 sets of measurements are made using 1194 gauge configurations of size 20^3 x 128 with an anisotropy parameter \\xi= b_s/b_t = 3.5, a spatial lattice spacing of b_s=0.1227\\pm 0.0008 fm, and pion mass of m_\\pi ~ 390 MeV. Ground state baryon masses are extracted with fully quantified uncertainties that are at or below the ~0.2%-level in lattice units. The lowest-lying negative-parity states are also extracted albeit with a somewhat lower level of precision. In the case of the nucleon, this negative-parity state is above the N\\pi threshold and, therefore, the isospin-1/2 \\pi N s-wave scattering phase-shift can be extracted using Luescher's method. The disconnected contributions to this process are included indirectly in the gauge-field configurations and do not require additional calculations. The signal-to-noise ratio in the various correlation functions is explored and is found to degrade exponentially faster than naive expectations on many time-slices. This is due to backward propagating states arising from the anti-periodic boundary conditions imposed on the quark-propagators in the time-direction. We explore how best to distribute computational resources between configuration generation and propagator measurements in order to optimize the extraction of single baryon observables.
Svenšek, Daniel; Podgornik, Rudolf
2015-09-21
We present and analyze correlation functions of a main-chain polymer nematic in a continuum worm-like chain description for two types of constraints formalized by the tensorial and vectorial conservation laws, both originating in the microscopic chain integrity, i.e., the connectivity of the polymer chains. In particular, our aim is to identify the features of the correlation functions that are most susceptible to the differences between the two constraints. Besides the density and director autocorrelations in both the tensorial and vectorial cases, we calculate also the density-director correlation functions, the latter being a direct signature of the presence of a specific constraint. Its amplitude is connected to the strength of the constraint and is zero if none of the constraints are present, i.e., for a standard non-polymeric nematic. Generally, the correlation functions with the constraints differ substantially from the correlation functions in the non-polymeric case, if the constraints are strong which in practice requires long chains. Moreover, for the tensorial conservation law to be well distinguishable from the vectorial one, the chain persistence length should be much smaller than the total length of the chain, so that hairpins (chain backfolding) are numerous and the polar order is small.
Feng, Dai; Svetnik, Vladimir; Coimbra, Alexandre; Baumgartner, Richard
2014-01-01
The intraclass correlation coefficient (ICC) with fixed raters or, equivalently, the concordance correlation coefficient (CCC) for continuous outcomes is a widely accepted aggregate index of agreement in settings with small number of raters. Quantifying the precision of the CCC by constructing its confidence interval (CI) is important in early drug development applications, in particular in qualification of biomarker platforms. In recent years, there have been several new methods proposed for construction of CIs for the CCC, but their comprehensive comparison has not been attempted. The methods consisted of the delta method and jackknifing with and without Fisher's Z-transformation, respectively, and Bayesian methods with vague priors. In this study, we carried out a simulation study, with data simulated from multivariate normal as well as heavier tailed distribution (t-distribution with 5 degrees of freedom), to compare the state-of-the-art methods for assigning CI to the CCC. When the data are normally distributed, the jackknifing with Fisher's Z-transformation (JZ) tended to provide superior coverage and the difference between it and the closest competitor, the Bayesian method with the Jeffreys prior was in general minimal. For the nonnormal data, the jackknife methods, especially the JZ method, provided the coverage probabilities closest to the nominal in contrast to the others which yielded overly liberal coverage. Approaches based upon the delta method and Bayesian method with conjugate prior generally provided slightly narrower intervals and larger lower bounds than others, though this was offset by their poor coverage. Finally, we illustrated the utility of the CIs for the CCC in an example of a wake after sleep onset (WASO) biomarker, which is frequently used in clinical sleep studies of drugs for treatment of insomnia.
McKechnie, Scott; Booth, George H.; Cohen, Aron J.; Cole, Jacqueline M.
2015-05-21
The best practice in computational methods for determining vertical ionization energies (VIEs) is assessed, via reference to experimentally determined VIEs that are corroborated by highly accurate coupled-cluster calculations. These reference values are used to benchmark the performance of density functional theory (DFT) and wave function methods: Hartree-Fock theory, second-order Møller-Plesset perturbation theory, and Electron Propagator Theory (EPT). The core test set consists of 147 small molecules. An extended set of six larger molecules, from benzene to hexacene, is also considered to investigate the dependence of the results on molecule size. The closest agreement with experiment is found for ionization energies obtained from total energy difference calculations. In particular, DFT calculations using exchange-correlation functionals with either a large amount of exact exchange or long-range correction perform best. The results from these functionals are also the least sensitive to an increase in molecule size. In general, ionization energies calculated directly from the orbital energies of the neutral species are less accurate and more sensitive to an increase in molecule size. For the single-calculation approach, the EPT calculations are in closest agreement for both sets of molecules. For the orbital energies from DFT functionals, only those with long-range correction give quantitative agreement with dramatic failing for all other functionals considered. The results offer a practical hierarchy of approximations for the calculation of vertical ionization energies. In addition, the experimental and computational reference values can be used as a standardized set of benchmarks, against which other approximate methods can be compared.
[Pulmonary function testing before ablative methods].
Ewert, R; Opitz, C
2004-07-01
Laser-induced thermotherapy (LITT) and radiofrequency thermoablation (RFTA) are increasingly used for pulmonary interventions. Primarily patients with severe functional limitations precluding a surgical approach are selected for these procedures. In this patient group a valid preinterventional risk assessment is of paramount importance. The occurrence of a pneumothorax is one of the most important complications associated with these procedures. Therefore, the functional capacity and pulmonary reserve of these patients should allow for at least short periods of lung collapse. The periinterventional risk of these patients can be estimated from basic lung function studies when certain comorbidities are excluded.
NASA Astrophysics Data System (ADS)
Ochi, Masayuki; Arita, Ryotaro; Tsuneyuki, Shinji
2017-01-01
Obtaining accurate band structures of correlated solids has been one of the most important and challenging problems in first-principles electronic structure calculation. There have been promising recent active developments of wave function theory for condensed matter, but its application to band-structure calculation remains computationally expensive. In this Letter, we report the first application of the biorthogonal transcorrelated (BITC) method: self-consistent, free from adjustable parameters, and systematically improvable many-body wave function theory, to solid-state calculations with d electrons: wurtzite ZnO. We find that the BITC band structure better reproduces the experimental values of the gaps between the bands with different characters than several other conventional methods. This study paves the way for reliable first-principles calculations of the properties of strongly correlated materials.
Structural Correlates of Functional Language Dominance: A Voxel-Based Morphometry Study
Deppe, Michael; Kanowski, Martin; Ölschläger, Christian; Albers, Johannes M.; Schlaug, Gottfried; Knecht, Stefan
2015-01-01
BACKGROUND AND PURPOSE The goal of this study was to explore the structural correlates of functional language dominance by directly comparing the brain morphology of healthy subjects with left- and right-hemisphere language dominance. METHODS Twenty participants were selected based on their language dominance from a cohort of subjects with known language lateralization. Structural differences between both groups were assessed by voxel-based morphometry, a technique that automatically identifies differences in the local gray matter volume between groups using high-resolution T1-weighted magnetic resonance images. RESULTS The main findings can be summarized as follows: (1) Subjects with right-hemisphere language dominance had significantly larger gray matter volume in the right hippocampus than subjects with left-hemisphere language dominance. (2) Leftward structural asymmetries in the posterior superior temporal cortex, including the planum temporale (PT), were observed in both groups. CONCLUSIONS Our study does not support the still prevalent view that asymmetries of the PT are related in a direct way to functional language lateralization. The structural differences found in the hippocampus underline the importance of the medial temporal lobe in the neural language network. They are discussed in the context of recent findings attributing a critical role of the hippocampus in the development of language lateralization. PMID:19453831
Methods for Assessing Mitochondrial Function in Diabetes
Kane, Daniel A.; Lanza, Ian R.; Neufer, P. Darrell
2013-01-01
A growing body of research is investigating the potential contribution of mitochondrial function to the etiology of type 2 diabetes. Numerous in vitro, in situ, and in vivo methodologies are available to examine various aspects of mitochondrial function, each requiring an understanding of their principles, advantages, and limitations. This review provides investigators with a critical overview of the strengths, limitations and critical experimental parameters to consider when selecting and conducting studies on mitochondrial function. In vitro (isolated mitochondria) and in situ (permeabilized cells/tissue) approaches provide direct access to the mitochondria, allowing for study of mitochondrial bioenergetics and redox function under defined substrate conditions. Several experimental parameters must be tightly controlled, including assay media, temperature, oxygen concentration, and in the case of permeabilized skeletal muscle, the contractile state of the fibers. Recently developed technology now offers the opportunity to measure oxygen consumption in intact cultured cells. Magnetic resonance spectroscopy provides the most direct way of assessing mitochondrial function in vivo with interpretations based on specific modeling approaches. The continuing rapid evolution of these technologies offers new and exciting opportunities for deciphering the potential role of mitochondrial function in the etiology and treatment of diabetes. PMID:23520284
Method and apparatus for the simultaneous display and correlation of independently generated images
Vaitekunas, Jeffrey J.; Roberts, Ronald A.
1991-01-01
An apparatus and method for location by location correlation of multiple images from Non-Destructive Evaluation (NDE) and other sources. Multiple images of a material specimen are displayed on one or more monitors of an interactive graphics system. Specimen landmarks are located in each image and mapping functions from a reference image to each other image are calcuated using the landmark locations. A location selected by positioning a cursor in the reference image is mapped to the other images and location identifiers are simultaneously displayed in those images. Movement of the cursor in the reference image causes simultaneous movement of the location identifiers in the other images to positions corresponding to the location of the reference image cursor.
Measuring a hidden coordinate: Rate-exchange kinetics from 3D correlation functions.
Berg, Mark A; Darvin, Jason R
2016-08-07
Nonexponential kinetics imply the existence of at least one slow variable other than the observable, that is, the system has a "hidden" coordinate. We develop a simple, but general, model that allows multidimensional correlation functions to be calculated for these systems. Homogeneous and heterogeneous mechanisms are both included, and slow exchange of the rates is allowed. This model shows that 2D and 3D correlation functions of the observable measure the distribution and kinetics of the hidden coordinate controlling the rate exchange. Both the mean exchange time and the shape of the exchange relaxation are measurable. However, complications arise because higher correlation functions are sums of multiple "pathways," each of which measures different dynamics. Only one 3D pathway involves exchange dynamics. Care must be used to extract exchange dynamics without contamination from other processes.
Wavelet treatment of the intrachain correlation functions of homopolymers in dilute solutions
NASA Astrophysics Data System (ADS)
Fedorov, M. V.; Chuev, G. N.; Kuznetsov, Yu. A.; Timoshenko, E. G.
2004-11-01
Discrete wavelets are applied to the parametrization of the intrachain two-point correlation functions of homopolymers in dilute solutions obtained from Monte Carlo simulations. Several orthogonal and biorthogonal basis sets have been investigated for use in the truncated wavelet approximation. The quality of the approximation has been assessed by calculation of the scaling exponents obtained from the des Cloizeaux ansatz for the correlation functions of homopolymers with different connectivities in a good solvent. The resulting exponents are in better agreement with those from recent renormalization group calculations as compared to the data without the wavelet denoising. We also discuss how the wavelet treatment improves the quality of data for correlation functions from simulations of homopolymers at varied solvent conditions and of heteropolymers.
Bergin, C.J.; Bell, D.Y.; Coblentz, C.L.; Chiles, C.; Gamsu, G.; MacIntyre, N.R.; Coleman, R.E.; Putman, C.E.
1989-06-01
The appearances of the lungs on radiographs and computed tomographic (CT) scans were correlated with degree of uptake on gallium scans and results of pulmonary function tests (PFTs) in 27 patients with sarcoidosis. CT scans were evaluated both qualitatively and quantitatively. Patients were divided into five categories on the basis of the pattern of abnormality at CT: 1 = normal (n = 4); 2 = segmental air-space disease (n = 4); 3 = spherical (alveolar) masslike opacities (n = 4); 4 = multiple, discrete, small nodules (n = 6); and 5 = distortion of parenchymal structures (fibrotic end-stage sarcoidosis) (n = 9). The percentage of the volume judged to be abnormal (CT grade) was correlated with PFT results for each CT and radiographic category. CT grades were also correlated with gallium scanning results and percentage of lymphocytes recovered from bronchoalveolar lavage (BAL). Patients in CT categories 1 and 2 had normal lung function, those in category 3 had mild functional impairment, and those in categories 4 and 5 showed moderate to severe dysfunction. The overall CT grade correlated well with PFT results expressed as a percentage of the predicted value. In five patients, CT scans showed extensive parenchymal disease not seen on radiographs. CT grades did not correlate with the results of gallium scanning or BAL lymphocytes. The authors conclude that patterns of parenchymal sarcoidosis seen at CT correlate with the PFT results and can be used to indicate respiratory impairment.
Wang, Peng; Barajas-Solano, David A.; Constantinescu, Emil; Abhyankar, S.; Ghosh, Donetta L.; Smith, Barry; Huang, Zhenyu; Tartakovsky, Alexandre M.
2015-09-22
Wind and solar power generators are commonly described by a system of stochastic ordinary differential equations (SODEs) where random input parameters represent uncertainty in wind and solar energy. The existing methods for SODEs are mostly limited to delta-correlated random parameters (white noise). Here we use the Probability Density Function (PDF) method for deriving a closed-form deterministic partial differential equation (PDE) for the joint probability density function of the SODEs describing a power generator with time-correlated power input. The resulting PDE is solved numerically. A good agreement with Monte Carlo Simulations shows accuracy of the PDF method.
Functional network connectivity analysis based on partial correlation in Alzheimer's disease
NASA Astrophysics Data System (ADS)
Zhang, Nan; Guan, Xiaoting; Zhang, Yumei; Li, Jingjing; Chen, Hongyan; Chen, Kewei; Fleisher, Adam; Yao, Li; Wu, Xia
2009-02-01
Functional network connectivity (FNC) measures the temporal dependency among the time courses of functional networks. However, the marginal correlation between two networks used in the classic FNC analysis approach doesn't separate the FNC from the direct/indirect effects of other networks. In this study, we proposed an alternative approach based on partial correlation to evaluate the FNC, since partial correlation based FNC can reveal the direct interaction between a pair of networks, removing dependencies or influences from others. Previous studies have demonstrated less task-specific activation and less rest-state activity in Alzheimer's disease (AD). We applied present approach to contrast FNC differences of resting state network (RSN) between AD and normal controls (NC). The fMRI data under resting condition were collected from 15 AD and 16 NC. FNC was calculated for each pair of six RSNs identified using Group ICA, thus resulting in 15 (2 out of 6) pairs for each subject. Partial correlation based FNC analysis indicated 6 pairs significant differences between groups, while marginal correlation only revealed 2 pairs (involved in the partial correlation results). Additionally, patients showed lower correlation than controls among most of the FNC differences. Our results provide new evidences for the disconnection hypothesis in AD.
42 CFR 476.86 - Correlation of Title XI functions with Title XVIII functions.
Code of Federal Regulations, 2010 CFR
2010-10-01
... functions. 476.86 Section 476.86 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) QUALITY IMPROVEMENT ORGANIZATIONS UTILIZATION AND QUALITY CONTROL REVIEW Review Responsibilities of Utilization and Quality Control Quality Improvement Organizations...
Kozel, F Andrew; Rao, Uma; Lu, Hanzhang; Nakonezny, Paul A; Grannemann, Bruce; McGregor, Tamara; Croarkin, Paul E; Mapes, Kimberly S; Tamminga, Carol A; Trivedi, Madhukar H
2011-01-01
Identifying biosignatures to assess the probability of response to an antidepressant for patients with major depressive disorder (MDD) is critically needed. Functional connectivity MRI (fcMRI) offers the promise to provide such a measure. Previous work with fcMRI demonstrated that the correlation in signal from one region to another is a measure of functional connectivity. In this pilot work, a baseline non-task fcMRI was acquired in 14 adults with MDD who were free of all medications. Participants were then treated for 8 weeks with an antidepressant and then clinically re-evaluated. Probabilistic anatomic regions of interest (ROI) were defined for 16 brain regions (eight for each hemisphere) previously identified as being important in mood disorders. These ROIs were used to determine mean time courses for each individual's baseline non-task fcMRI. The correlations in time courses between 16 brain regions were calculated. These calculated correlations were considered to signify measures of functional connectivity. The degree of connectivity for each participant was correlated with treatment outcome. Among 13 participants with 8 weeks follow-up data, connectivity measures in several regions, especially the subcallosal cortex, were highly correlated with treatment outcome. These connectivity measures could provide a means to evaluate how likely a patient is to respond to an antidepressant treatment. Further work using larger samples is required to confirm these findings and to assess if measures of functional connectivity can be used to predict differential outcomes between antidepressant treatments.
THEORETICAL ESTIMATES OF TWO-POINT SHEAR CORRELATION FUNCTIONS USING TANGLED MAGNETIC FIELDS
Pandey, Kanhaiya L.; Sethi, Shiv K.
2012-03-20
The existence of primordial magnetic fields can induce matter perturbations with additional power at small scales as compared to the usual {Lambda}CDM model. We study its implication within the context of a two-point shear correlation function from gravitational lensing. We show that a primordial magnetic field can leave its imprints on the shear correlation function at angular scales {approx}< a few arcminutes. The results are compared with CFHTLS data, which yield some of the strongest known constraints on the parameters (strength and spectral index) of the primordial magnetic field. We also discuss the possibility of detecting sub-nano Gauss fields using future missions such as SNAP.
High Interleukin 17 Expression Is Correlated With Better Cardiac Function in Human Chagas Disease
Magalhães, Luisa M. D.; Villani, Fernanda N. A.; Nunes, Maria do Carmo P.; Gollob, Kenneth J.; Rocha, Manoel O. C.; Dutra, Walderez O.
2013-01-01
This study was designed to investigate whether the expression of interleukin 17 (IL-17) is associated with the indeterminate or cardiac clinical forms of Chagas disease and whether IL-17 expression can be correlated with patients' cardiac function. Our results demonstrated that cardiac Chagas patients have a lower intensity of expression of IL-17 by total lymphocytes and lower frequency of circulating T helper 17 cells. Correlative analysis showed that high IL-17 expression was associated with better cardiac function, as determined by left ventricular ejection fraction and left ventricular diastolic diameter values. Therefore, IL-17 expression can be a protective factor to prevent myocardial damage in human Chagas disease. PMID:23204182
Computing Correlations with Q-Sort Data for McQuitty's Pattern-Analytic Methods
ERIC Educational Resources Information Center
Lee, Jae-Won
1977-01-01
McQuitty has developed a number of pattern analytic methods that can be computed by hand, but the matrices of associations used in these methods cannot be so readily computed. A simplified but exact method of computing product moment correlations based on Q sort data for McQuitty's methods is described. (Author/JKS)
NASA Astrophysics Data System (ADS)
Duan, Yabo; Song, Chengtian
2016-12-01
Empirical mode decomposition (EMD) is a recently proposed nonlinear and nonstationary laser signal denoising method. A noisy signal is broken down using EMD into oscillatory components that are called intrinsic mode functions (IMFs). Thresholding-based denoising and correlation-based partial reconstruction of IMFs are the two main research directions for EMD-based denoising. Similar to other decomposition-based denoising approaches, EMD-based denoising methods require a reliable threshold to determine which IMFs are noise components and which IMFs are noise-free components. In this work, we propose a new approach in which each IMF is first denoised using EMD interval thresholding (EMD-IT), and then a robust thresholding process based on Spearman correlation coefficient is used for relevant modes selection. The proposed method tackles the problem using a thresholding-based denoising approach coupled with partial reconstruction of the relevant IMFs. Other traditional denoising methods, including correlation-based EMD partial reconstruction (EMD-Correlation), discrete Fourier transform and wavelet-based methods, are investigated to provide a comparison with the proposed technique. Simulation and test results demonstrate the superior performance of the proposed method when compared with the other methods.
NASA Astrophysics Data System (ADS)
Ueno, T.; Saito, T.; Shiomi, K.; Enescu, B.; Hirose, H.
2010-12-01
Seismic swarms accompanied by crustal deformation have repeatedly occurred in the off-Izu peninsula region, central part of Japan. In the case of the recent 2006 and 2009 earthquake swarms, the NIED Hi-net stations detected clear accompanying tilt changes, which were interpreted as magma intrusions into the shallower crust, based on a dyke model (e.g., Okada et al., 2000). Recently, seismic noise Auto-Correlation Function (ACF) studies have been carried out intensively to detect possible temporal changes of crustal properties in regions of large earthquakes or at volcanoes (e.g., Wegler and Sens-Schonfelder, 2007). In this study we obtained ACFs by processing continuous seismic waveform data recorded by the Hi-net ITOH station, located closely to the Izu swarm area, and correlated the temporal changes of ACFs with the tilt records at the same station. We also investigated the possibility of continuous monitoring using ACFs and tilt records. We divided the continuous waveform data of 100 Hz sampling into segments of 5 minutes length, removed the mean and trend, and applied band-pass filtering and one-bit normalization, followed by auto-correlation. After that, we stacked the ACFs for a day to obtain stable ACF records. The temporal changes of ACFs versus time are analyzed by considering a reference ACF, which is the mean of ACFs for the time period without major seismic swarms. The tilt records were corrected for the tidal elements using the BAYTAP-G software (Tamura et al., 1991). After this processing, we determined the coherency between the temporal changes of ACF and tilt records. Usually the ACFs and the tilt records had separate, uncorrelated changes. The variety of changes suggests that the ACFs amplitudes and the tilt records were sensitive not only to crustal changes caused by seismic swarms or magma intrusion. However, just before the seismic swarm in December 2009, the coherency between the temporal changes of ACFs and tilt records started to be higher
NASA Astrophysics Data System (ADS)
Klatt, Michael A.; Torquato, Salvatore
2016-08-01
In the first paper of this series, we introduced Voronoi correlation functions to characterize the structure of maximally random jammed (MRJ) sphere packings across length scales. In the present paper, we determine a variety of different correlation functions that arise in rigorous expressions for the effective physical properties of MRJ sphere packings and compare them to the corresponding statistical descriptors for overlapping spheres and equilibrium hard-sphere systems. Such structural descriptors arise in rigorous bounds and formulas for effective transport properties, diffusion and reactions constants, elastic moduli, and electromagnetic characteristics. First, we calculate the two-point, surface-void, and surface-surface correlation functions, for which we derive explicit analytical formulas for finite hard-sphere packings. We show analytically how the contact Dirac delta function contribution to the pair correlation function g2(r ) for MRJ packings translates into distinct functional behaviors of these two-point correlation functions that do not arise in the other two models examined here. Then we show how the spectral density distinguishes the MRJ packings from the other disordered systems in that the spectral density vanishes in the limit of infinite wavelengths; i.e., these packings are hyperuniform, which means that density fluctuations on large length scales are anomalously suppressed. Moreover, for all model systems, we study and compute exclusion probabilities and pore size distributions, as well as local density fluctuations. We conjecture that for general disordered hard-sphere packings, a central limit theorem holds for the number of points within an spherical observation window. Our analysis links problems of interest in material science, chemistry, physics, and mathematics. In the third paper of this series, we will evaluate bounds and estimates of a host of different physical properties of the MRJ sphere packings that are based on the
Lensing corrections to features in the angular two-point correlation function and power spectrum
LoVerde, Marilena; Hui, Lam; Gaztanaga, Enrique
2008-01-15
It is well known that magnification bias, the modulation of galaxy or quasar source counts by gravitational lensing, can change the observed angular correlation function. We investigate magnification-induced changes to the shape of the observed correlation function w({theta}), and the angular power spectrum C{sub l}, paying special attention to the matter-radiation equality peak and the baryon wiggles. Lensing effectively mixes the correlation function of the source galaxies with that of the matter correlation at the lower redshifts of the lenses distorting the observed correlation function. We quantify how the lensing corrections depend on the width of the selection function, the galaxy bias b, and the number count slope s. The lensing correction increases with redshift and larger corrections are present for sources with steep number count slopes and/or broad redshift distributions. The most drastic changes to C{sub l} occur for measurements at high redshifts (z > or approx. 1.5) and low multipole moment (l < or approx. 100). For the source distributions we consider, magnification bias can shift the location of the matter-radiation equality scale by 1%-6% at z{approx}1.5 and by z{approx}3.5 the shift can be as large as 30%. The baryon bump in {theta}{sup 2}w({theta}) is shifted by < or approx. 1% and the width is typically increased by {approx}10%. Shifts of > or approx. 0.5% and broadening > or approx. 20% occur only for very broad selection functions and/or galaxies with (5s-2)/b > or approx. 2. However, near the baryon bump the magnification correction is not constant but is a gently varying function which depends on the source population. Depending on how the w({theta}) data is fitted, this correction may need to be accounted for when using the baryon acoustic scale for precision cosmology.
Method to fabricate functionalized conical nanopores
Small, Leo J.; Spoerke, Erik David; Wheeler, David R.
2016-07-12
A pressure-based chemical etch method is used to shape polymer nanopores into cones. By varying the pressure, the pore tip diameter can be controlled, while the pore base diameter is largely unaffected. The method provides an easy, low-cost approach for conically etching high density nanopores.
Correlation function analysis of the COBE differential microwave radiometer sky maps
Lineweaver, Charles Howe
1994-08-01
The Differential Microwave Radiometer (DMR) aboard the COBE satellite has detected anisotropies in the cosmic microwave background (CMB) radiation. A two-point correlation function analysis which helped lead to this discovery is presented in detail. The results of a correlation function analysis of the two year DMR data set is presented. The first and second year data sets are compared and found to be reasonably consistent. The positive correlation for separation angles less than ~20° is robust to Galactic latitude cuts and is very stable from year to year. The Galactic latitude cut independence of the correlation function is strong evidence that the signal is not Galactic in origin. The statistical significance of the structure seen in the correlation function of the first, second and two year maps is respectively > 9σ, > 10σ and > 18σ above the noise. The noise in the DMR sky maps is correlated at a low level. The structure of the pixel temperature covariance matrix is given. The noise covariance matrix of a DMR sky map is diagonal to an accuracy of better than 1%. For a given sky pixel, the dominant noise covariance occurs with the ring of pixels at an angular separation of 60° due to the 60° separation of the DMR horns. The mean covariance of 60° is 0.45%$+0.18\\atop{-0.14}$ of the mean variance. The noise properties of the DMR maps are thus well approximated by the noise properties of maps made by a single-beam experiment. Previously published DMR results are not significantly affected by correlated noise.
Tao, Jianmin; Perdew, John P; Staroverov, Viktor N; Scuseria, Gustavo E
2008-01-01
We construct a nonlocal density functional approximation with full exact exchange, while preserving the constraint-satisfaction approach and justified error cancellations of simpler semilocal functionals. This is achieved by interpolating between different approximations suitable for two extreme regions of the electron density. In a 'normal' region, the exact exchange-correlation hole density around an electron is semilocal because its spatial range is reduced by correlation and because it integrates over a narrow range to -1. These regions are well described by popular semilocal approximations (many of which have been constructed nonempirically), because of proper accuracy for a slowly-varying density or because of error cancellation between exchange and correlation. 'Abnormal' regions, where non locality is unveiled, include those in which exchange can dominate correlation (one-electron, nonuniform high-density, and rapidly-varying limits), and those open subsystems of fluctuating electron number over which the exact exchange-correlation hole integrates to a value greater than -1. Regions between these extremes are described by a hybrid functional mixing exact and semi local exchange energy densities locally (i.e., with a mixing fraction that is a function of position r and a functional of the density). Because our mixing fraction tends to 1 in the high-density limit, we employ full exact exchange according to the rigorous definition of the exchange component of any exchange-correlation energy functional. Use of full exact exchange permits the satisfaction of many exact constraints, but the nonlocality of exchange also requires balanced nonlocality of correlation. We find that this nonlocality can demand at least five empirical parameters (corresponding roughly to the four kinds of abnormal regions). Our local hybrid functional is perhaps the first accurate size-consistent density functional with full exact exchange. It satisfies other known exact constraints
Iteration of Complex Functions and Newton's Method
ERIC Educational Resources Information Center
Dwyer, Jerry; Barnard, Roger; Cook, David; Corte, Jennifer
2009-01-01
This paper discusses some common iterations of complex functions. The presentation is such that similar processes can easily be implemented and understood by undergraduate students. The aim is to illustrate some of the beauty of complex dynamics in an informal setting, while providing a couple of results that are not otherwise readily available in…
Harslof, Torben; Sikjaer, Tanja; Mosekilde, Leif; Langdahl, Bente L.; Rejnmark, Lars
2016-01-01
Background Muscles and bones are interconnected. Recent studies suggest that undercarboxylated osteocalcin from bone may affect muscle mass and strength. There are, however, no prospective human data on this relationship. Methods We previously treated patients with hypoparathyroidism with intact Parathyroid Hormone (PTH) or placebo in a six-month randomized, placebo-controlled trial and demonstrated a marked increase in undercarboxylated osteocalcin (ucOC) in the PTH-treated group. We therefore investigated if this increase correlated with changes in muscle mass, strength or function. Primarily, the muscle mass using Dual energy X-ray Absorptiometry (DXA) was measured and the maximal voluntary isometric muscle strength at the upper and lower extremities, using dynamometry, was assessed. Furthermore, repeated chair stands test, Timed Up and Go test were performed and postural stability using a stadiometer was assessed. Finally, the relationship between change in ucOC or the ratio of the changes in ucOC and total OC (ucOC%/OC%) and different measures of muscle function were analyzed, using regression analyses. Results The findings indicated that ucOC%/OC% was positively and significantly associated with percentage change in max force production during elbow extension (β = 0.28, P = 0.034), however, all other associations were non-significant. Conclusions Given the number of statistical tests that were carried out, our one significant finding may represent a false positive. Thus the results do not support the role of ucOC in muscle function in humans with hypoparathyroidism. Our results are inconsistent with previous data from a human cross-sectional study; however, cross-sectional studies, do not allow for inference of causality. The analyses should be repeated in larger, randomized trials including healthy individuals. PMID:27942265
Takikawa, S.; Dhawan, V.; Chaly, T.; Robeson, W.; Dahl, R.; Zanzi, I.; Mandel, F.; Spetsieris, P.; Eidelberg, D.
1994-06-01
PET has been used to quantify striatal 6-[{sup 18}F]fluro-L-dopa (FDOPA) uptake as a measure of presynaptic dopaminergic function. Striatal FDOPA uptake rate constants (K{sub 1}) can be calculated using dynamic PET imaging with measurements of the plasma FDOPA input function determined either directly or by several estimation procedures. The authors assessed the comparative clinical utility of these methods by calculating the striato-occipital ratio (SOR) and striatal K{sub 1} values in 12 patients with mild to moderate PD and 12 age-matched normal volunteers. The plasma FDOPA time-activity curve (K{sub 1}{sup FD}); the plasma {sup 18}F time-activity curve (K{sub i}{sup P}); the occipital time-activity curve (K{sub i}{sup OCC}); and a simplified population-derived FDOPA input function (K{sub i}{sup EFD}) were used to calculate striatal K{sub i}. Mean values for all striatal K{sub i} estimates and SOR were significantly lower in the PD group. Although all measured parameters discriminated PD patients with normals, K{sub i}{sup FD} and K{sub i}{sup EFD} provided the best between-group separation. K{sub i}{sup FD}, K{sub i}{sup EFD}, and K{sub i}{sup OCC} measures correlated significantly with quantitative disease severity ratings, although K{sub i}{sup FD} predicted quantitative clinical disability most accurately. These results suggest that K{sub i}{sup FD} may be an optimal marker of the parkinsonian disease process. K{sub i}{sup EFD} may be a useful alternative to K{sub i}{sup FD} for most clinical research applications. 40 refs., 4 figs., 7 tabs.
Wang, Xu; Song, Yiying; Zhen, Zonglei; Liu, Jia
2016-05-01
Face perception is essential for daily and social activities. Neuroimaging studies have revealed a distributed face network (FN) consisting of multiple regions that exhibit preferential responses to invariant or changeable facial information. However, our understanding about how these regions work collaboratively to facilitate facial information processing is limited. Here, we focused on changeable facial information processing, and investigated how the functional integration of the FN is related to the performance of facial expression recognition. To do so, we first defined the FN as voxels that responded more strongly to faces than objects, and then used a voxel-based global brain connectivity method based on resting-state fMRI to characterize the within-network connectivity (WNC) of each voxel in the FN. By relating the WNC and performance in the "Reading the Mind in the Eyes" Test across participants, we found that individuals with stronger WNC in the right posterior superior temporal sulcus (rpSTS) were better at recognizing facial expressions. Further, the resting-state functional connectivity (FC) between the rpSTS and right occipital face area (rOFA), early visual cortex (EVC), and bilateral STS were positively correlated with the ability of facial expression recognition, and the FCs of EVC-pSTS and OFA-pSTS contributed independently to facial expression recognition. In short, our study highlights the behavioral significance of intrinsic functional integration of the FN in facial expression processing, and provides evidence for the hub-like role of the rpSTS for facial expression recognition. Hum Brain Mapp 37:1930-1940, 2016. © 2016 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Drapeau, M.; Perry, J.C.
2004-01-01
Objective: This study aimed to examine the long-term correlates of childhood trauma in regard to interpersonal functioning in adulthood. Method: One hundred and nineteen (N=119) subjects from the Austen Riggs Follow-along Study were included in the study. The Traumatic Antecedent Interview scoring method was used to assess 10 types of childhood…
NASA Astrophysics Data System (ADS)
DeVane, Russell; Ridley, Christina; Space, Brian; Keyes, T.
2005-11-01
Multidimensional spectroscopy has the ability to provide great insight into the complex dynamics and time-resolved structure of liquids. Theoretically describing these experiments requires calculating the nonlinear-response function, which is a combination of quantum-mechanical time correlation functions (TCFs), making it extremely difficult to calculate. Recently, a new theory was presented in which the two-dimensional Raman quantum response function R(5)(t1,t2) was expressed with a two-time, computationally tractable, classical TCF. Writing the response function in terms of classical TCFs brings the full power of atomistically detailed molecular dynamics to the problem. In this paper, the new TCF theory is employed to calculate the fifth-order Raman response function for liquid xenon and investigate several of the polarization conditions for which experiments can be performed on an isotropic system. The theory is shown to reproduce line-shape characteristics predicted by earlier theoretical work.
A correlation based fault detection method for short circuits in battery packs
NASA Astrophysics Data System (ADS)
Xia, Bing; Shang, Yunlong; Nguyen, Truong; Mi, Chris
2017-01-01
This paper presents a fault detection method for short circuits based on the correlation coefficient of voltage curves. The proposed method utilizes the direct voltage measurements from the battery cells, and does not require any additional hardware or effort in modeling during fault detection. Moreover, the inherent mathematical properties of the correlation coefficient ensure the robustness of this method as the battery pack ages or is imbalanced in real applications. In order to apply this method online, the recursive moving window correlation coefficient calculation is adopted to maintain the detection sensitivity to faults during operation. An additive square wave is designed to prevent false positive detections when the batteries are at rest. The fault isolation can be achieved by identifying the overlapped cell in the correlation coefficients with fault flags. Simulation and experimental results validated the feasibility and demonstrated the advantages of this method.
Correlation of thiamine metabolite levels with cognitive function in the non-demented elderly.
Lu, Jingwen; Pan, Xiaoli; Fei, Guoqiang; Wang, Changpeng; Zhao, Lei; Sang, Shaoming; Liu, Huimin; Liu, Meng; Wang, Hui; Wang, Zhiliang; Zhong, Chunjiu
2015-12-01
Thiamine metabolism is critical for glucose metabolism and also vital for brain function, which is susceptible to decline in the elderly. This study aimed to investigate whether thiamine metabolites correlate with cognitive function in the non-demented elderly and their impact factors. Volunteers >60 years old were recruited and their blood thiamine metabolites and Mini-Mental State Examination (MMSE) scores were measured. The apolipoprotein E (APOE) genotype, routine blood parameters, liver and kidney function, and levels of fasting blood glucose and triglycerides were also measured. The results showed that the thiamine diphosphate (TDP) level weakly correlated with MMSE score in the non-demented elderly. Participants with high TDP levels performed better in Recall and Attention and Calculation than those with low TDP. TDP levels were associated with the APOE ε2 allele, body mass index, hemoglobin level, fasting blood glucose, and triglycerides. Our results suggest that TDP, which is easily affected by many factors, impacts cognitive function in the elderly.
Maps of current density using density-functional methods
NASA Astrophysics Data System (ADS)
Soncini, A.; Teale, A. M.; Helgaker, T.; de Proft, F.; Tozer, D. J.
2008-08-01
The performance of several density-functional theory (DFT) methods for the calculation of current densities induced by a uniform magnetic field is examined. Calculations are performed using the BLYP and KT3 generalized-gradient approximations, together with the B3LYP hybrid functional. For the latter, both conventional and optimized effective potential (OEP) approaches are used. Results are also determined from coupled-cluster singles-and-doubles (CCSD) electron densities by a DFT constrained search procedure using the approach of Wu and Yang (WY). The current densities are calculated within the CTOCD-DZ2 distributed origin approach. Comparisons are made with results from Hartree-Fock (HF) theory. Several small molecules for which correlation is known to be especially important in the calculation of magnetic response properties are considered-namely, O3, CO, PN, and H2CO. As examples of aromatic and antiaromatic systems, benzene and planarized cyclooctatetraene molecules are considered, with specific attention paid to the ring current phenomenon and its Kohn-Sham orbital origin. Finally, the o-benzyne molecule is considered as a computationally challenging case. The HF and DFT induced current maps show qualitative differences, while among the DFT methods the maps show a similar qualitative structure. To assess quantitative differences in the calculated current densities with different methods, the maximal moduli of the induced current densities are compared and integration of the current densities to yield shielding constants is performed. In general, the maximal modulus is reduced in moving from HF to B3LYP and BLYP, and further reduced in moving to KT3, OEP(B3LYP), and WY(CCSD). The latter three methods offer the most accurate shielding constants in comparison with both experimental and ab initio data and hence the more reliable route to DFT calculation of induced current density in molecules.
Getting full control of canonical correlation analysis with the AutoBiplot.CCA function
NASA Astrophysics Data System (ADS)
Alves, M. Rui
2016-06-01
Function AutoBiplot.CCA was built in R language. Given two multivariate data sets, this function carries out a conventional canonical correlation analysis, followed by the automatic production of predictive biplots based on the accuracy of readings as assessed by a mean standard predictive error and a user defined tolerance value. As the user's intervention is mainly restricted to the choice of the magnitude of the t.axis value, common misinterpretations, overestimations and adjustments between outputs and personal beliefs are avoided.
Neural reconstruction methods of restoring bladder function
Gomez-Amaya, Sandra M.; Barbe, Mary F.; de Groat, William C.; Brown, Justin M.; Tuite, Gerald F.; Corcos, Jacques; Fecho, Susan B.; Braverman, Alan S.; Ruggieri, Michael R.
2015-01-01
During the past century, diverse studies have focused on the development of surgical strategies to restore function of a decentralized bladder after spinal cord or spinal root injury via repair of the original roots or by transferring new axonal sources. The techniques included end-to-end sacral root repairs, transfer of roots from other spinal segments to sacral roots, transfer of intercostal nerves to sacral roots, transfer of various somatic nerves to the pelvic or pudendal nerve, direct reinnervation of the detrusor muscle, or creation of an artificial reflex pathway between the skin and the bladder via the central nervous system. All of these surgical techniques have demonstrated specific strengths and limitations. The findings made to date already indicate appropriate patient populations for each procedure, but a comprehensive assessment of the effectiveness of each technique to restore urinary function after bladder decentralization is required to guide future research and potential clinical application. PMID:25666987
Efficient resampling methods for nonsmooth estimating functions
ZENG, DONGLIN
2009-01-01
Summary We propose a simple and general resampling strategy to estimate variances for parameter estimators derived from nonsmooth estimating functions. This approach applies to a wide variety of semiparametric and nonparametric problems in biostatistics. It does not require solving estimating equations and is thus much faster than the existing resampling procedures. Its usefulness is illustrated with heteroscedastic quantile regression and censored data rank regression. Numerical results based on simulated and real data are provided. PMID:17925303
NASA Astrophysics Data System (ADS)
Eom, J.; Seo, K. W.
2015-12-01
Since its launch in March 2002, the Gravity Recovery And Climate Experiment (GRACE) has provided monthly geopotential fields represented by Stokes coefficients of spherical harmonics (SH). Nominally, GRACE gravity solutions exclude effects from tides, ocean dynamics and barometric pressure by incorporating geophysical models for them. However, those models are imperfect, and thus GRACE solutions include the residual gravity effects. Particularly, unmodeled gravity variations of sub-monthly or shorter time scale cause aliasing error, which produces peculiar longitudinal stripes. Those north-south patterns are removed by spatial filtering, but caution is necessary for the aliasing correction because signals with longitudinal patterns are possibly removed during the procedure. This would be particularly problematic for studies associated with Greenland ice mass balance since large ice mass variations are expected in the West and South-West coast of Greenland that are elongated along the longitudinal direction. In this study, we develop a novel method to remove the correlation error using extended Empirical Orthogonal Function (extended EOF). The extended EOF is useful to separate spatially and temporally coherent signal from high frequency variations. Since temporal variability of the correlation error is high, the error is possibly removed via the extended EOF. Ice mass variations reduced by the extended EOF show more detail patterns of ice mass loss/gain than those from the conventional spatial filtering. Large amount of ice loss has occurred along the West, South-West and East coastal area during summer. The extended EOF is potentially useful to enhance signal to noise ratio and increase spatial resolution of GRACE data.
Paternal correlates of cognitive and behavioral functioning in children with myelomeningocele.
Wohlfeiler, Melissa M; Macias, Michelle M; Saylor, Conway F
2008-11-01
This study examined paternal correlates of the cognitive and behavioral functioning of children with myelomeningocele, when controlling for maternal and biological/child correlates as possible sources of variance. Participants were 48 parent dyads of children with myelomeningocele (21 males, 27 females) between the ages of 4 and 12 years (mean 8y, 2mo, SD 2y 3mo). Lesion levels of participants ranged from the thoracic to sacral (thoracic-L3: n=15; L4-L5: n=15; sacral or lipomeningocele: n=18), of whom 38 had been shunted for hydrocephalus. Half of the participants (n=24) were community ambulators. Potential predictors of cognitive and behavioral functioning included paternal and maternal parenting stress, as assessed by the Parenting Stress Index - Short Form paternal, and maternal perceptions of support and resources, as assessed by the Family Resource Scale and the Family Support Scale, and child medical severity. Paternal variables significantly correlated with behavioral functioning but not with cognitive functioning. Regression analyses revealed that paternal personal distress and maternal perceived adequacy of social support accounted for significant variance in overall child behavioral functioning. Only child medical severity and annual household income explained significant variance in overall child cognitive functioning. These findings add to the growing body of theory and research documenting that fathers make unique and significant contributions to child adjustment in children with myelomeningocele. Both fathers and mothers need to be considered in interventions supporting development and adjustment of children with myelomeningocele and their families.
ISOTROPY IN THE TWO-POINT ANGULAR CORRELATION FUNCTION OF THE COSMIC MICROWAVE BACKGROUND
Zhang, Sophie
2012-04-01
We study the directional dependence of the angular two-point correlation function in maps of the cosmic microwave background (CMB). We propose two new statistics: one which measures the correlation of each point in the sky with a ring of points separated an angle {theta} away, and a second one that measures the missing angular correlation above 60 deg as a function of direction. Using these statistics, we find that most of the low power in cut-sky maps measured by the Wilkinson Microwave Anisotropy Probe experiment comes from unusually low contributions from the directions of the lobes of the quadrupole and the octupole. These findings may aid a future explanation of why the CMB exhibits low power at large angular scales.
Topologically massive gravity and galilean conformal algebra: a study of correlation functions
NASA Astrophysics Data System (ADS)
Bagchi, Arjun
2011-02-01
The Galilean Conformal Algebra (GCA) arises from the conformal algebra in the non-relativistic limit. In two dimensions, one can view it as a limit of linear combinations of the two copies Virasoro algebra. Recently, it has been argued that Topologically Massive Gravity (TMG) realizes the quantum 2d GCA in a particular scaling limit of the gravitational Chern-Simons term. To add strength to this claim, we demonstrate a matching of correlation functions on both sides of this correspondence. A priori looking for spatially dependent correlators seems to force us to deal with high spin operators in the bulk. We get around this difficulty by constructing the non-relativistic Energy-Momentum tensor and considering its correlation functions. On the gravity side, our analysis makes heavy use of recent results of Holographic Renormalization in Topologically Massive Gravity.
Accurate and efficient calculation of discrete correlation functions and power spectra
NASA Astrophysics Data System (ADS)
Xu, Y. F.; Liu, J. M.; Zhu, W. D.
2015-07-01
Operational modal analysis (OMA), or output-only modal analysis, has been widely conducted especially when excitation applied on a structure is unknown or difficult to measure. Discrete cross-correlation functions and cross-power spectra between a reference data series and measured response data series are bases for OMA to identify modal properties of a structure. Such functions and spectra can be efficiently transformed from each other using the discrete Fourier transform (DFT) and inverse DFT (IDFT) based on the cross-correlation theorem. However, a direct application of the theorem and transforms, including the DFT and IDFT, can yield physically erroneous results due to periodic extension of the DFT on a function of a finite length to be transformed, which is false most of the time. Padding zero series to ends of data series before applying the theorem and transforms can reduce the errors, but the results are still physically erroneous. A new methodology is developed in this work to calculate discrete cross-correlation functions of non-negative time delays and associated cross-power spectra, referred to as half spectra, for OMA. The methodology can be extended to cross-correlation functions of any time delays and associated cross-power spectra, referred to as full spectra. The new methodology is computationally efficient due to use of the transforms. Data series are properly processed to avoid the errors caused by the periodic extension, and the resulting cross-correlation functions and associated cross-power spectra perfectly comply with their definitions. A coherence function, a convergence function, and a convergence index are introduced to evaluate qualities of measured cross-correlation functions and associated cross-power spectra. The new methodology was numerically and experimentally applied to an ideal two-degree-of-freedom (2-DOF) mass-spring-damper system and a damaged aluminum beam, respectively, and OMA was conducted using half spectra to estimate
ERIC Educational Resources Information Center
Facao, M.; Lopes, A.; Silva, A. L.; Silva, P.
2011-01-01
We propose an undergraduate numerical project for simulating the results of the second-order correlation function as obtained by an intensity interference experiment for two kinds of light, namely bunched light with Gaussian or Lorentzian power density spectrum and antibunched light obtained from single-photon sources. While the algorithm for…
Correlation functions of the electric and magnetic fields in the vicinity of a metal surface
NASA Astrophysics Data System (ADS)
Langsjoen, Luke; Joynt, Robert; Vavilov, Maxim; Poudel, Amrit
2012-02-01
The Johnson noise-induced relaxation rate of a charge or spin qubit for a transition at a particular frequency in the vicinity of a metal boundary is proportional to the temporal Fourier component at that frequency of the electric or magnetic correlation function evaluated at the position of the qubit. These correlation functions are shown to be greatly enhanced compared to the blackbody result in the near vicinity of the metal due to the contribution of evanescent waves. As such, we expect a measurable enhancement of qubit decoherence due to the contribution of evanescent waves. We use a Green's dyadic approach to calculate the correlation functions of the fluctuating electric and magnetic fields in the vicinity of a conducting surface. In a local treatment of the dielectric properties of the metal this enhancement diverges as the inverse cube of the distance from the boundary, and for distances less than the order of the Fermi wavelength of the metal a nonlocal treatment is necessary to obt