Divergent selection for fiber length and bundle strength and correlated responses in cotton
USDA-ARS?s Scientific Manuscript database
Cotton breeders must develop cultivars to meet the demand for longer, stronger, and more uniform fibers. In the current study, two cycles of divergent selection for fiber upper-half mean length (UHML) and bundle strength (Str) were conducted within five diverse parental combinations selected based o...
Patterns and rates of intron divergence between humans and chimpanzees
Gazave, Elodie; Marqués-Bonet, Tomàs; Fernando, Olga; Charlesworth, Brian; Navarro, Arcadi
2007-01-01
Background Introns, which constitute the largest fraction of eukaryotic genes and which had been considered to be neutral sequences, are increasingly acknowledged as having important functions. Several studies have investigated levels of evolutionary constraint along introns and across classes of introns of different length and location within genes. However, thus far these studies have yielded contradictory results. Results We present the first analysis of human-chimpanzee intron divergence, in which differences in the number of substitutions per intronic site (Ki) can be interpreted as the footprint of different intensities and directions of the pressures of natural selection. Our main findings are as follows: there was a strong positive correlation between intron length and divergence; there was a strong negative correlation between intron length and GC content; and divergence rates vary along introns and depending on their ordinal position within genes (for instance, first introns are more GC rich, longer and more divergent, and divergence is lower at the 3' and 5' ends of all types of introns). Conclusion We show that the higher divergence of first introns is related to their larger size. Also, the lower divergence of short introns suggests that they may harbor a relatively greater proportion of regulatory elements than long introns. Moreover, our results are consistent with the presence of functionally relevant sequences near the 5' and 3' ends of introns. Finally, our findings suggest that other parts of introns may also be under selective constraints. PMID:17309804
Granato, Enzo
2008-07-11
Phase coherence and vortex order in a Josephson-junction array at irrational frustration are studied by extensive Monte Carlo simulations using the parallel-tempering method. A scaling analysis of the correlation length of phase variables in the full equilibrated system shows that the critical temperature vanishes with a power-law divergent correlation length and critical exponent nuph, in agreement with recent results from resistivity scaling analysis. A similar scaling analysis for vortex variables reveals a different critical exponent nuv, suggesting that there are two distinct correlation lengths associated with a decoupled zero-temperature phase transition.
Simmons, Leigh W.; Kotiaho, Janne S.
2007-01-01
Sperm show patterns of rapid and divergent evolution that are characteristic of sexual selection. Sperm competition has been proposed as an important selective agent in the evolution of sperm morphology. However, several comparative analyses have revealed evolutionary associations between sperm length and female reproductive tract morphology that suggest patterns of male–female coevolution. In the dung beetle Onthophagus taurus, males with short sperm have a fertilization advantage that depends on the size of the female's sperm storage organ, the spermatheca; large spermathecae select for short sperm. Sperm length is heritable and is genetically correlated with male condition. Here we report significant additive genetic variation and heritability for spermatheca size and genetic covariance between spermatheca size and sperm length predicted by both the “good-sperm” and “sexy-sperm” models of postcopulatory female preference. Our data thus provide quantitative genetic support for the role of a sexually selected sperm process in the evolutionary divergence of sperm morphology, in much the same manner as precopulatory female preferences drive the evolutionary divergence of male secondary sexual traits. PMID:17921254
Sexual dimorphism of head morphology in three-spined stickleback Gasterosteus aculeatus.
Aguirre, W E; Akinpelu, O
2010-09-01
This study examined sexual dimorphism of head morphology in the ecologically diverse three-spined stickleback Gasterosteus aculeatus. Male G. aculeatus had longer heads than female G. aculeatus in all 10 anadromous, stream and lake populations examined, and head length growth rates were significantly higher in males in half of the populations sampled, indicating that differences in head size increased with body size in many populations. Despite consistently larger heads in males, there was significant variation in size-adjusted head length among populations, suggesting that the relationship between head length and body length was flexible. Inter-population differences in head length were correlated between sexes, thus population-level factors influenced head length in both sexes despite the sexual dimorphism present. Head shape variation between lake and anadromous populations was greater than that between sexes. The common divergence in head shape between sexes across populations was about twice as important as the sexual dimorphism unique to each population. Finally, much of the sexual dimorphism in head length was due to divergence in the anterior region of the head, where the primary trophic structures were found. It is unclear whether the sexual dimorphism was due to natural selection for niche divergence between sexes or sexual selection. This study improves knowledge of the magnitude, growth rate divergence, inter-population variation and location of sexual dimorphism in G. aculeatus head morphology. © 2010 The Authors. Journal compilation © 2010 The Fisheries Society of the British Isles.
Divergence of Gene Body DNA Methylation and Evolution of Plant Duplicate Genes
Wang, Jun; Marowsky, Nicholas C.; Fan, Chuanzhu
2014-01-01
It has been shown that gene body DNA methylation is associated with gene expression. However, whether and how deviation of gene body DNA methylation between duplicate genes can influence their divergence remains largely unexplored. Here, we aim to elucidate the potential role of gene body DNA methylation in the fate of duplicate genes. We identified paralogous gene pairs from Arabidopsis and rice (Oryza sativa ssp. japonica) genomes and reprocessed their single-base resolution methylome data. We show that methylation in paralogous genes nonlinearly correlates with several gene properties including exon number/gene length, expression level and mutation rate. Further, we demonstrated that divergence of methylation level and pattern in paralogs indeed positively correlate with their sequence and expression divergences. This result held even after controlling for other confounding factors known to influence the divergence of paralogs. We observed that methylation level divergence might be more relevant to the expression divergence of paralogs than methylation pattern divergence. Finally, we explored the mechanisms that might give rise to the divergence of gene body methylation in paralogs. We found that exonic methylation divergence more closely correlates with expression divergence than intronic methylation divergence. We show that genomic environments (e.g., flanked by transposable elements and repetitive sequences) of paralogs generated by various duplication mechanisms are associated with the methylation divergence of paralogs. Overall, our results suggest that the changes in gene body DNA methylation could provide another avenue for duplicate genes to develop differential expression patterns and undergo different evolutionary fates in plant genomes. PMID:25310342
Kang, K; Dhont, J K G
2009-11-01
Experiments on suspensions of charged colloidal rods (fd-virus particles) in external electric fields are performed, which show that a non-equilibrium critical point can be identified. Several transition lines of field-induced phases and states meet at this point and it is shown that there is a length- and time-scale which diverge at the non-equilibrium critical point. The off-critical and critical behavior is characterized, with both power law and logarithmic divergencies. These experiments show that analogous features of the classical, critical divergence of correlation lengths and relaxation times in equilibrium systems are also exhibited by driven systems that are far out of equilibrium, related to phases/states that do not exist in the absence of the external field.
Ornelas-García, Claudia Patricia; Córdova-Tapia, Fernando; Zambrano, Luis; Bermúdez-González, María Pamela; Mercado-Silva, Norman; Mendoza-Garfias, Berenit; Bautista, Amando
2018-05-01
The association of morphological divergence with ecological segregation among closely related species could be considered as a signal of divergent selection in ecological speciation processes. Environmental signals such as diet can trigger phenotypic evolution, making polymorphic species valuable systems for studying the evolution of trophic-related traits. The main goal of this study was to analyze the association between morphological differences in trophic-related traits and ecological divergence in two sympatric species, Astyanax aeneus and A. caballeroi, inhabiting Lake Catemaco, Mexico. The trophic differences of a total of 70 individuals (35 A. aeneus and 35 A. caballeroi ) were examined using stable isotopes and gut content analysis; a subset of the sample was used to characterize six trophic and six ecomorphological variables. In our results, we recovered significant differences between both species in the values of stable isotopes, with higher values of δ 15 N for A. caballeroi than for A. aeneus . Gut content results were consistent with the stable isotope data, with a higher proportion of invertebrates in A. caballeroi (a consumption of invertebrates ten times higher than that of A. aeneus , which in turn consumed three times more vegetal material than A. caballeroi ). Finally, we found significant relationship between ecomorphology and stable isotopes ( r = .24, p < .01), hence, head length, preorbital length, eye diameter, and δ 15 N were all positively correlated; these characteristics correspond to A. caballeroi . While longer gut and gill rakers, deeper bodies, and vegetal material consumption were positively correlated and corresponded to A. aeneus . Our results are consistent with the hypothesis that morphological divergence in trophic-related traits could be associated with niche partitioning, allowing the coexistence of closely related species and reducing interspecific competition.
Performance Characteristics of Plane-Wall Two-Dimensional Diffusers
NASA Technical Reports Server (NTRS)
Reid, Elliott G
1953-01-01
Experiments have been made at Stanford University to determine the performance characteristics of plane-wall, two-dimensional diffusers which were so proportioned as to insure reasonable approximation of two-dimensional flow. All of the diffusers had identical entrance cross sections and discharged directly into a large plenum chamber; the test program included wide variations of divergence angle and length. During all tests a dynamic pressure of 60 pounds per square foOt was maintained at the diffuser entrance and the boundary layer there was thin and fully turbulent. The most interesting flow characteristics observed were the occasional appearance of steady, unseparated, asymmetric flow - which was correlated with the boundary-layer coalescence - and the rapid deterioration of flow steadiness - which occurred as soon as the divergence angle for maximum static pressure recovery was exceeded. Pressure efficiency was found to be controlled almost exclusively by divergence angle, whereas static pressure recovery was markedly influenced by area ratio (or length) as well as divergence angle. Volumetric efficiency. diminished as area ratio increased, and at a greater rate with small lengths than with large ones. Large values of the static-pressure-recovery coefficient were attained only with long diffusers of large area ratio; under these conditions pressure efficiency was high and. volumetric efficiency low. Auxiliary tests with asymmetric diffusers demonstrated that longitudinal pressure gradient, rather than wall divergence angle, controlled flow separation. Others showed that the addition of even a short exit duct of uniform section augmented pressure recovery. Finally, it was found that the installation of a thin, central, longitudinal partition suppressed flow separation in short diffusers and thereby improved pressure recovery
Divergent alfalfa root system architecture is maintained across environment and nutrient supply
USDA-ARS?s Scientific Manuscript database
Plant root system architecture can alter and be altered by soil fertility and other environmental conditions. In soils with suboptimal fertility, plant root length often is correlated with P and K uptake because these nutrients are supplied by diffusion. We developed alfalfa (Medicago sativa L.) pop...
Strauß, J; Alt, J A; Ekschmitt, K; Schul, J; Lakes-Harlan, R
2017-06-01
Neoconocephalus Tettigoniidae are a model for the evolution of acoustic signals as male calls have diversified in temporal structure during the radiation of the genus. The call divergence and phylogeny in Neoconocephalus are established, but in tettigoniids in general, accompanying evolutionary changes in hearing organs are not studied. We investigated anatomical changes of the tympanal hearing organs during the evolutionary radiation and divergence of intraspecific acoustic signals. We compared the neuroanatomy of auditory sensilla (crista acustica) from nine Neoconocephalus species for the number of auditory sensilla and the crista acustica length. These parameters were correlated with differences in temporal call features, body size, life histories and different phylogenetic positions. By this, adaptive responses to shifting frequencies of male calls and changes in their temporal patterns can be evaluated against phylogenetic constraints and allometry. All species showed well-developed auditory sensilla, on average 32-35 between species. Crista acustica length and sensillum numbers correlated with body size, but not with phylogenetic position or life history. Statistically significant correlations existed also with specific call patterns: a higher number of auditory sensilla occurred in species with continuous calls or slow pulse rates, and a longer crista acustica occurred in species with double pulses or slow pulse rates. The auditory sensilla show significant differences between species despite their recent radiation, and morphological and ecological similarities. This indicates the responses to natural and sexual selection, including divergence of temporal and spectral signal properties. Phylogenetic constraints are unlikely to limit these changes of the auditory systems. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Age-related sex differences in body condition and telomere dynamics of red-sided garter snakes
Rollings, Nicky; Uhrig, Emily J.; Krohmer, Randolph W.; Waye, Heather L.; Mason, Robert T.; Olsson, Mats; Whittington, Camilla M.
2017-01-01
Life-history strategies vary dramatically between the sexes, which may drive divergence in sex-specific senescence and mortality rates. Telomeres are tandem nucleotide repeats that protect the ends of chromosomes from erosion during cell division. Telomeres have been implicated in senescence and mortality because they tend to shorten with stress, growth and age. We investigated age-specific telomere length in female and male red-sided garter snakes, Thamnophis sirtalis parietalis. We hypothesized that age-specific telomere length would differ between males and females given their divergent reproductive strategies. Male garter snakes emerge from hibernation with high levels of corticosterone, which facilitates energy mobilization to fuel mate-searching, courtship and mating behaviours during a two to four week aphagous breeding period at the den site. Conversely, females remain at the dens for only about 4 days and seem to invest more energy in growth and cellular maintenance, as they usually reproduce biennially. As male investment in reproduction involves a yearly bout of physiologically stressful activities, while females prioritize self-maintenance, we predicted male snakes would experience more age-specific telomere loss than females. We investigated this prediction using skeletochronology to determine the ages of individuals and qPCR to determine telomere length in a cross-sectional study. For both sexes, telomere length was positively related to body condition. Telomere length decreased with age in male garter snakes, but remained stable in female snakes. There was no correlation between telomere length and growth in either sex, suggesting that our results are a consequence of divergent selection on life histories of males and females. Different selection on the sexes may be the physiological consequence of the sexual dimorphism and mating system dynamics displayed by this species. PMID:28381620
Age-related sex differences in body condition and telomere dynamics of red-sided garter snakes.
Rollings, Nicky; Uhrig, Emily J; Krohmer, Randolph W; Waye, Heather L; Mason, Robert T; Olsson, Mats; Whittington, Camilla M; Friesen, Christopher R
2017-04-12
Life-history strategies vary dramatically between the sexes, which may drive divergence in sex-specific senescence and mortality rates. Telomeres are tandem nucleotide repeats that protect the ends of chromosomes from erosion during cell division. Telomeres have been implicated in senescence and mortality because they tend to shorten with stress, growth and age. We investigated age-specific telomere length in female and male red-sided garter snakes, Thamnophis sirtalis parietalis We hypothesized that age-specific telomere length would differ between males and females given their divergent reproductive strategies. Male garter snakes emerge from hibernation with high levels of corticosterone, which facilitates energy mobilization to fuel mate-searching, courtship and mating behaviours during a two to four week aphagous breeding period at the den site. Conversely, females remain at the dens for only about 4 days and seem to invest more energy in growth and cellular maintenance, as they usually reproduce biennially. As male investment in reproduction involves a yearly bout of physiologically stressful activities, while females prioritize self-maintenance, we predicted male snakes would experience more age-specific telomere loss than females. We investigated this prediction using skeletochronology to determine the ages of individuals and qPCR to determine telomere length in a cross-sectional study. For both sexes, telomere length was positively related to body condition. Telomere length decreased with age in male garter snakes, but remained stable in female snakes. There was no correlation between telomere length and growth in either sex, suggesting that our results are a consequence of divergent selection on life histories of males and females. Different selection on the sexes may be the physiological consequence of the sexual dimorphism and mating system dynamics displayed by this species. © 2017 The Author(s).
The influence of idealized surface heterogeneity on virtual turbulent flux measurements
NASA Astrophysics Data System (ADS)
De Roo, Frederik; Mauder, Matthias
2018-04-01
The imbalance of the surface energy budget in eddy-covariance measurements is still an unsolved problem. A possible cause is the presence of land surface heterogeneity, which affects the boundary-layer turbulence. To investigate the impact of surface variables on the partitioning of the energy budget of flux measurements in the surface layer under convective conditions, we set up a systematic parameter study by means of large-eddy simulation. For the study we use a virtual control volume approach, which allows the determination of advection by the mean flow, flux-divergence and storage terms of the energy budget at the virtual measurement site, in addition to the standard turbulent flux. We focus on the heterogeneity of the surface fluxes and keep the topography flat. The surface fluxes vary locally in intensity and these patches have different length scales. Intensity and length scales can vary for the two horizontal dimensions but follow an idealized chessboard pattern. Our main focus lies on surface heterogeneity of the kilometer scale, and one order of magnitude smaller. For these two length scales, we investigate the average response of the fluxes at a number of virtual towers, when varying the heterogeneity length within the length scale and when varying the contrast between the different patches. For each simulation, virtual measurement towers were positioned at functionally different positions (e.g., downdraft region, updraft region, at border between domains, etc.). As the storage term is always small, the non-closure is given by the sum of the advection by the mean flow and the flux-divergence. Remarkably, the missing flux can be described by either the advection by the mean flow or the flux-divergence separately, because the latter two have a high correlation with each other. For kilometer scale heterogeneity, we notice a clear dependence of the updrafts and downdrafts on the surface heterogeneity and likewise we also see a dependence of the energy partitioning on the tower location. For the hectometer scale, we do not notice such a clear dependence. Finally, we seek correlators for the energy balance ratio in the simulations. The correlation with the friction velocity is less pronounced than previously found, but this is likely due to our concentration on effectively strongly to freely convective conditions.
Schwartz, Rachel S; Mueller, Rachel L
2010-01-11
Estimates of divergence dates between species improve our understanding of processes ranging from nucleotide substitution to speciation. Such estimates are frequently based on molecular genetic differences between species; therefore, they rely on accurate estimates of the number of such differences (i.e. substitutions per site, measured as branch length on phylogenies). We used simulations to determine the effects of dataset size, branch length heterogeneity, branch depth, and analytical framework on branch length estimation across a range of branch lengths. We then reanalyzed an empirical dataset for plethodontid salamanders to determine how inaccurate branch length estimation can affect estimates of divergence dates. The accuracy of branch length estimation varied with branch length, dataset size (both number of taxa and sites), branch length heterogeneity, branch depth, dataset complexity, and analytical framework. For simple phylogenies analyzed in a Bayesian framework, branches were increasingly underestimated as branch length increased; in a maximum likelihood framework, longer branch lengths were somewhat overestimated. Longer datasets improved estimates in both frameworks; however, when the number of taxa was increased, estimation accuracy for deeper branches was less than for tip branches. Increasing the complexity of the dataset produced more misestimated branches in a Bayesian framework; however, in an ML framework, more branches were estimated more accurately. Using ML branch length estimates to re-estimate plethodontid salamander divergence dates generally resulted in an increase in the estimated age of older nodes and a decrease in the estimated age of younger nodes. Branch lengths are misestimated in both statistical frameworks for simulations of simple datasets. However, for complex datasets, length estimates are quite accurate in ML (even for short datasets), whereas few branches are estimated accurately in a Bayesian framework. Our reanalysis of empirical data demonstrates the magnitude of effects of Bayesian branch length misestimation on divergence date estimates. Because the length of branches for empirical datasets can be estimated most reliably in an ML framework when branches are <1 substitution/site and datasets are > or =1 kb, we suggest that divergence date estimates using datasets, branch lengths, and/or analytical techniques that fall outside of these parameters should be interpreted with caution.
Kim, Eunhye; Lee, Sung Jong; Kim, Bongsoo
2007-02-01
We present an extensive Monte Carlo simulation study on the nonequilibrium kinetics of triangular antiferromagnetic Ising model within the ground state ensemble which consists of sectors, each of which is characterized by a unique value of the string density p through a dimer covering method. Building upon our recent work [Phys. Rev. E 68, 066127 (2003)] where we considered the nonequilibrium relaxation observed within the dominant sector with p=2/3, we here focus on the nonequilibrium kinetics within the minor sectors with p<2/3. The initial configurations are chosen as those in which the strings are straight and evenly distributed. In the minor sectors, we observe a characteristic spatial anisotropy in both equilibrium and nonequilibrium spatial correlations. We observe emergence of a critical relaxation region (in the spatial and temporal domain) which grows as p deviates from p=2/3. Spatial anisotropy appears in the equilibrium spatial correlation with the characteristic length scale xi(e,V)(p) diverging with vanishing string density as xi(e,V)(p) approximately p(-2) along the vertical direction, while along the horizontal direction the spatial length scale diverges as xi(e,H) approximately p(-1). Analytic forms for the anisotropic equilibrium correlation functions are given. We also find that the spin autocorrelation function A(t) shows a simple scaling behavior A(t)=A(t/tau(A)(p)), where the time scale tau(A)(p) shows a power-law divergence with vanishing p as tau(A)(p) approximately p(-phi) with phi approximately or equal to 4. These features can be understood in terms of random walk nature of the fluctuations of the strings within the typical separation between neighboring strings.
Universality from disorder in the random-bond Blume-Capel model
NASA Astrophysics Data System (ADS)
Fytas, N. G.; Zierenberg, J.; Theodorakis, P. E.; Weigel, M.; Janke, W.; Malakis, A.
2018-04-01
Using high-precision Monte Carlo simulations and finite-size scaling we study the effect of quenched disorder in the exchange couplings on the Blume-Capel model on the square lattice. The first-order transition for large crystal-field coupling is softened to become continuous, with a divergent correlation length. An analysis of the scaling of the correlation length as well as the susceptibility and specific heat reveals that it belongs to the universality class of the Ising model with additional logarithmic corrections which is also observed for the Ising model itself if coupled to weak disorder. While the leading scaling behavior of the disordered system is therefore identical between the second-order and first-order segments of the phase diagram of the pure model, the finite-size scaling in the ex-first-order regime is affected by strong transient effects with a crossover length scale L*≈32 for the chosen parameters.
Grzywacz, Piotr; Qin, Jian; Morse, David C
2007-12-01
Attempts to use coarse-grained molecular theories to calculate corrections to the random-phase approximation (RPA) for correlations in polymer mixtures have been plagued by an unwanted sensitivity to the value of an arbitrary cutoff length, i.e., by an ultraviolet (UV) divergence. We analyze the UV divergence of the inverse structure factor S(-1)(k) predicted by a "one-loop" approximation similar to that used in several previous studies. We consider both miscible homopolymer blends and disordered diblock copolymer melts. We show, in both cases, that all UV divergent contributions can be absorbed into a renormalization of the values of the phenomenological parameters of a generalized self-consistent field theory (SCFT). This observation allows the construction of an UV convergent theory of corrections to SCFT phenomenology. The UV-divergent one-loop contribution to S(-1)(k) is shown to be the sum of (i) a k -independent contribution that arises from a renormalization of the effective chi parameter, (ii) a k-dependent contribution that arises from a renormalization of monomer statistical segment lengths, (iii) a contribution proportional to k(2) that arises from a square-gradient contribution to the one-loop fluctuation free energy, and (iv) a k-dependent contribution that is inversely proportional to the degree of polymerization, which arises from local perturbations in fluid structure near chain ends and near junctions between blocks in block copolymers.
Two-dimensional Anderson-Hubbard model in the DMFT + {Sigma} approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuchinskii, E. Z., E-mail: kuchinsk@iep.uran.ru; Kuleeva, N. A.; Nekrasov, I. A.
The density of states, the dynamic (optical) conductivity, and the phase diagram of the paramagnetic two-dimensional Anderson-Hubbard model with strong correlations and disorder are analyzed within the generalized dynamical mean field theory (DMFT + {Sigma} approximation). Strong correlations are accounted by the DMFT, while disorder is taken into account via the appropriate generalization of the self-consistent theory of localization. We consider the two-dimensional system with the rectangular 'bare' density of states (DOS). The DMFT effective single-impurity problem is solved by numerical renormalization group (NRG). The 'correlated metal,' Mott insulator, and correlated Anderson insulator phases are identified from the evolution ofmore » the density of states, optical conductivity, and localization length, demonstrating both Mott-Hubbard and Anderson metal-insulator transitions in two-dimensional systems of finite size, allowing us to construct the complete zero-temperature phase diagram of the paramagnetic Anderson-Hubbard model. The localization length in our approximation is practically independent of the strength of Hubbard correlations. But the divergence of the localization length in a finite-size two-dimensional system at small disorder signifies the existence of an effective Anderson transition.« less
Small queens and big-headed workers in a monomorphic ponerine ant
NASA Astrophysics Data System (ADS)
Kikuchi, Tomonori; Miyazaki, Satoshi; Ohnishi, Hitoshi; Takahashi, Junichi; Nakajima, Yumiko; Tsuji, Kazuki
2008-10-01
Evolution of caste is a central issue in the biology of social insects. Comparative studies on their morphology so far suggest the following three patterns: (1) a positive correlation between queen worker size dimorphism and the divergence in reproductive ability between castes, (2) a negative correlation among workers between morphological diversity and reproductive ability, and (3) a positive correlation between queen worker body shape difference and the diversity in worker morphology. We conducted morphological comparisons between castes in Pachycondyla luteipes, workers of which are monomorphic and lack their reproductive ability. Although the size distribution broadly overlapped, mean head width, head length, and scape length were significantly different between queens and workers. Conversely, in eye length, petiole width, and Weber’s length, the size differences were reversed. The allometries (head length/head width, scape length/head width, and Weber’s length/head width) were also significantly different between queens and workers. Morphological examinations showed that the body shape was different between queens and workers, and the head part of workers was disproportionately larger than that of queens. This pattern of queen worker dimorphism is novel in ants with monomorphic workers and a clear exception to the last pattern. This study suggests that it is possible that the loss of individual-level selection, the lack of reproductive ability, influences morphological modification in ants.
Herrera, Carlos M; Bazaga, Pilar
2010-08-01
*In plants, epigenetic variations based on DNA methylation are often heritable and could influence the course of evolution. Before this hypothesis can be assessed, fundamental questions about epigenetic variation remain to be addressed in a real-world context, including its magnitude, structuring within and among natural populations, and autonomy in relation to the genetic context. *Extent and patterns of cytosine methylation, and the relationship to adaptive genetic divergence between populations, were investigated for wild populations of the southern Spanish violet Viola cazorlensis (Violaceae) using the methylation-sensitive amplified polymorphism (MSAP) technique, a modification of the amplified fragment length polymorphism method (AFLP) based on the differential sensitivity of isoschizomeric restriction enzymes to site-specific cytosine methylation. *The genome of V. cazorlensis plants exhibited extensive levels of methylation, and methylation-based epigenetic variation was structured into distinct between- and within- population components. Epigenetic differentiation of populations was correlated with adaptive genetic divergence revealed by a Bayesian population-genomic analysis of AFLP data. Significant associations existed at the individual genome level between adaptive AFLP loci and the methylation state of methylation-susceptible MSAP loci. *Population-specific, divergent patterns of correlated selection on epigenetic and genetic individual variation could account for the coordinated epigenetic-genetic adaptive population differentiation revealed by this study.
Evans, Jonathan P.; Gasparini, Clelia; Holwell, Gregory I.; Ramnarine, Indar W.; Pitcher, Trevor E.; Pilastro, Andrea
2011-01-01
The role of sexual selection in fuelling genital evolution is becoming increasingly apparent from comparative studies revealing interspecific divergence in male genitalia and evolutionary associations between male and female genital traits. Despite this, we know little about intraspecific variance in male genital morphology, or how male and female reproductive traits covary among divergent populations. Here we address both topics using natural populations of the guppy, Poecilia reticulata, a livebearing fish that exhibits divergent patterns of male sexual behaviour among populations. Initially, we performed a series of mating trials on a single population to examine the relationship between the morphology of the male's copulatory organ (the gonopodium) and the success of forced matings. Using a combination of linear measurements and geometric morphometrics, we found that variation in the length and shape of the gonopodium predicted the success of forced matings in terms of the rate of genital contacts and insemination success, respectively. We then looked for geographical divergence in these traits, since the relative frequency of forced matings tends to be greater in high-predation populations. We found consistent patterns of variation in male genital size and shape in relation to the level of predation, and corresponding patterns of (co)variation in female genital morphology. Together, these data enable us to draw tentative conclusions about the underlying selective pressures causing correlated patterns of divergence in male and female genital traits, which point to a role for sexually antagonistic selection. PMID:21270040
Convergent and Divergent Validity of the Grammaticality and Utterance Length Instrument
ERIC Educational Resources Information Center
Castilla-Earls, Anny; Fulcher-Rood, Katrina
2018-01-01
Purpose: This feasibility study examines the convergent and divergent validity of the Grammaticality and Utterance Length Instrument (GLi), a tool designed to assess the grammaticality and average utterance length of a child's prerecorded story retell. Method: Three raters used the GLi to rate audio-recorded story retells from 100 English-speaking…
He, Nianpeng; Wu, Ling; Zhou, Daowei
2004-12-01
This paper studied the clonal architecture of two divergent Leymus chinensis types (grey-green type and yellow-green type) in Songnen grassland, and compared their internode length, spacer length, interbranching length, interbranching angle, and ramet population density and height under the same habitat. The results showed that there was no significant difference in these clonal characteristics except spacer length and ramet population density between the two types of L. chinensis, and yellow-green type, with less spacer length and more ramet density than grey-green type, should be more adaptable to the resourceful habitat. Moreover, the V-indices of the clonal architecture of two divergent L. chinensis types were all close to 1, and the difference was not significant. Therefore, both of the two types belonged to typical guerilla clonal plant.
Fenner, Jack N
2005-10-01
The length of the human generation interval is a key parameter when using genetics to date population divergence events. However, no consensus exists regarding the generation interval length, and a wide variety of interval lengths have been used in recent studies. This makes comparison between studies difficult, and questions the accuracy of divergence date estimations. Recent genealogy-based research suggests that the male generation interval is substantially longer than the female interval, and that both are greater than the values commonly used in genetics studies. This study evaluates each of these hypotheses in a broader cross-cultural context, using data from both nation states and recent hunter-gatherer societies. Both hypotheses are supported by this study; therefore, revised estimates of male, female, and overall human generation interval lengths are proposed. The nearly universal, cross-cultural nature of the evidence justifies using these proposed estimates in Y-chromosomal, mitochondrial, and autosomal DNA-based population divergence studies.
Hodgins, Kathryn A; Lai, Zhao; Oliveira, Luiz O; Still, David W; Scascitelli, Moira; Barker, Michael S; Kane, Nolan C; Dempewolf, Hannes; Kozik, Alex; Kesseli, Richard V; Burke, John M; Michelmore, Richard W; Rieseberg, Loren H
2014-01-01
Although the Compositae harbours only two major food crops, sunflower and lettuce, many other species in this family are utilized by humans and have experienced various levels of domestication. Here, we have used next-generation sequencing technology to develop 15 reference transcriptome assemblies for Compositae crops or their wild relatives. These data allow us to gain insight into the evolutionary and genomic consequences of plant domestication. Specifically, we performed Illumina sequencing of Cichorium endivia, Cichorium intybus, Echinacea angustifolia, Iva annua, Helianthus tuberosus, Dahlia hybrida, Leontodon taraxacoides and Glebionis segetum, as well 454 sequencing of Guizotia scabra, Stevia rebaudiana, Parthenium argentatum and Smallanthus sonchifolius. Illumina reads were assembled using Trinity, and 454 reads were assembled using MIRA and CAP3. We evaluated the coverage of the transcriptomes using BLASTX analysis of a set of ultra-conserved orthologs (UCOs) and recovered most of these genes (88-98%). We found a correlation between contig length and read length for the 454 assemblies, and greater contig lengths for the 454 compared with the Illumina assemblies. This suggests that longer reads can aid in the assembly of more complete transcripts. Finally, we compared the divergence of orthologs at synonymous sites (Ks) between Compositae crops and their wild relatives and found greater divergence when the progenitors were self-incompatible. We also found greater divergence between pairs of taxa that had some evidence of postzygotic isolation. For several more distantly related congeners, such as chicory and endive, we identified a signature of introgression in the distribution of Ks values. © 2013 John Wiley & Sons Ltd.
Phase transitions in the first-passage time of scale-invariant correlated processes
Carretero-Campos, Concepción; Bernaola-Galván, Pedro; Ch. Ivanov, Plamen
2012-01-01
A key quantity describing the dynamics of complex systems is the first-passage time (FPT). The statistical properties of FPT depend on the specifics of the underlying system dynamics. We present a unified approach to account for the diversity of statistical behaviors of FPT observed in real-world systems. We find three distinct regimes, separated by two transition points, with fundamentally different behavior for FPT as a function of increasing strength of the correlations in the system dynamics: stretched exponential, power-law, and saturation regimes. In the saturation regime, the average length of FPT diverges proportionally to the system size, with important implications for understanding electronic delocalization in one-dimensional correlated-disordered systems. PMID:22400544
Universality of modulation length and time exponents.
Chakrabarty, Saurish; Dobrosavljević, Vladimir; Seidel, Alexander; Nussinov, Zohar
2012-10-01
We study systems with a crossover parameter λ, such as the temperature T, which has a threshold value λ(*) across which the correlation function changes from exhibiting fixed wavelength (or time period) modulations to continuously varying modulation lengths (or times). We introduce a hitherto unknown exponent ν(L) characterizing the universal nature of this crossover and compute its value in general instances. This exponent, similar to standard correlation length exponents, is obtained from motion of the poles of the momentum (or frequency) space correlation functions in the complex k-plane (or ω-plane) as the parameter λ is varied. Near the crossover (i.e., for λ→λ(*)), the characteristic modulation wave vector K(R) in the variable modulation length "phase" is related to that in the fixed modulation length "phase" q via |K(R)-q|[proportionality]|T-T(*)|(νL). We find, in general, that ν(L)=1/2. In some special instances, ν(L) may attain other rational values. We extend this result to general problems in which the eigenvalue of an operator or a pole characterizing general response functions may attain a constant real (or imaginary) part beyond a particular threshold value λ(*). We discuss extensions of this result to multiple other arenas. These include the axial next-nearest-neighbor Ising (ANNNI) model. By extending our considerations, we comment on relations pertaining not only to the modulation lengths (or times), but also to the standard correlation lengths (or times). We introduce the notion of a Josephson time scale. We comment on the presence of aperiodic "chaotic" modulations in "soft-spin" and other systems. These relate to glass-type features. We discuss applications to Fermi systems, with particular application to metal to band insulator transitions, change of Fermi surface topology, divergent effective masses, Dirac systems, and topological insulators. Both regular periodic and glassy (and spatially chaotic behavior) may be found in strongly correlated electronic systems.
Liti, Gianni; Haricharan, Svasti; Cubillos, Francisco A; Tierney, Anna L; Sharp, Sarah; Bertuch, Alison A; Parts, Leopold; Bailes, Elizabeth; Louis, Edward J
2009-09-01
In yeast, as in humans, telomere length varies among individuals and is controlled by multiple loci. In a quest to define the extent of variation in telomere length, we screened 112 wild-type Saccharomyces sensu stricto isolates. We found extensive telomere length variation in S. paradoxus isolates. This phenotype correlated with their geographic origin: European strains were observed to have extremely short telomeres (<150 bp), whereas American isolates had telomeres approximately three times as long (>400 bp). Insertions of a URA3 gene near telomeres allowed accurate analysis of individual telomere lengths and telomere position effect (TPE). Crossing the American and European strains resulted in F1 spores with a continuum of telomere lengths consistent with what would be predicted if many quantitative trait loci (QTLs) were involved in length maintenance. Variation in TPE is similarly quantitative but only weakly correlated with telomere length. Genotyping F1 segregants indicated several QTLs associated with telomere length and silencing variation. These QTLs include likely candidate genes but also map to regions where there are no known genes involved in telomeric properties. We detected transgressive segregation for both phenotypes. We validated by reciprocal hemizygosity that YKU80 and TLC1 are telomere-length QTLs in the two S. paradoxus subpopulations. Furthermore, we propose that sequence divergence within the Ku heterodimer generates negative epistasis within one of the allelic combinations (American-YKU70 and European-YKU80) resulting in very short telomeres.
Segregating YKU80 and TLC1 Alleles Underlying Natural Variation in Telomere Properties in Wild Yeast
Liti, Gianni; Haricharan, Svasti; Cubillos, Francisco A.; Tierney, Anna L.; Sharp, Sarah; Bertuch, Alison A.; Parts, Leopold; Bailes, Elizabeth; Louis, Edward J.
2009-01-01
In yeast, as in humans, telomere length varies among individuals and is controlled by multiple loci. In a quest to define the extent of variation in telomere length, we screened 112 wild-type Saccharomyces sensu stricto isolates. We found extensive telomere length variation in S. paradoxus isolates. This phenotype correlated with their geographic origin: European strains were observed to have extremely short telomeres (<150 bp), whereas American isolates had telomeres approximately three times as long (>400 bp). Insertions of a URA3 gene near telomeres allowed accurate analysis of individual telomere lengths and telomere position effect (TPE). Crossing the American and European strains resulted in F1 spores with a continuum of telomere lengths consistent with what would be predicted if many quantitative trait loci (QTLs) were involved in length maintenance. Variation in TPE is similarly quantitative but only weakly correlated with telomere length. Genotyping F1 segregants indicated several QTLs associated with telomere length and silencing variation. These QTLs include likely candidate genes but also map to regions where there are no known genes involved in telomeric properties. We detected transgressive segregation for both phenotypes. We validated by reciprocal hemizygosity that YKU80 and TLC1 are telomere-length QTLs in the two S. paradoxus subpopulations. Furthermore, we propose that sequence divergence within the Ku heterodimer generates negative epistasis within one of the allelic combinations (American-YKU70 and European-YKU80) resulting in very short telomeres. PMID:19763176
Anisotropic stress correlations in two-dimensional liquids
Wu, Bin; Iwashita, Takuya; Egami, Takeshi
2015-03-01
In this paper we demonstrate the presence of anisotropic stress correlations in the simulated 2D liquids. Whereas the temporal correlation of macroscopic shear stress is known to contribute to viscosity via the Green-Kubo formula, the general question regarding angular dependence of the spatial correlation among atomic level stresses in liquids without external shear has not been explored. Besides the apparent anisotropicity with well-defined symmetry, we found that the characteristic length of shear stress correlation depends on temperature and follows the power law, suggesting divergence around the glass transition temperature. The anisotropy of the stress correlations can be explained in termsmore » of the inclusion model by Eshelby, based upon which we suggest that the mismatch between the atom and its nearest neighbor cage produces the atomic level stress as well as the long-range stress fields.« less
Wolfe, C J; Haygood, M G
1991-08-01
Restriction fragment length polymorphisms within the lux and 16S ribosomal RNA gene regions were used to compare unculturable bacterial light organ symbionts of several anomalopid fish species. The method of Nei and Li (1979) was used to calculate phylogenetic distance from the patterns of restriction fragment lengths of the luxA and 16S rRNA regions. Phylogenetic trees constructed from each distance matrix (luxA and 16S rDNA data) have similar branching orders. The levels of divergence among the symbionts, relative to other culturable luminous bacteria, suggests that the symbionts differ at the level of species among host fish genera. Symbiont relatedness and host geographic location do not seem to be correlated, and the symbionts do not appear to be strains of common, free-living, luminous bacteria. In addition, the small number of hybridizing fragments within the 16S rRNA region of the symbionts, compared with that of the free-living species, suggests a decrease in copy number of rRNA operons relative to free-living species. At this level of investigation, the symbiont phylogeny is consistent with the proposed phylogeny of the host fish family and suggests that each symbiont strain coevolved with its host fish species.
Konuma, Junji; Yamamoto, Satoshi; Sota, Teiji
2014-12-01
The snail-feeding carabid beetle Damaster blaptoides exhibits diverse head and thorax morphologies, and these morphotypes are linked with two alternative feeding behaviours. Stout-shaped beetles feed on snails by crushing the shells, whereas slender-shaped beetles consume snails by inserting their heads into the shells. A trade-off exists between these feeding strategies. Because intermediate-shaped beetles are less proficient in these two behaviours, stout-slender morphological divergence occurs between related species feeding on land snails. To examine the genetic basis of these morphotypes, we conducted morphological analyses and quantitative trait locus (QTL) mapping using backcross offspring between the stout and slender subspecies. The morphological analyses showed that the width and length of the beetle body parts were correlated with each other; in particular, the head width (HW) and thorax length (TL) were strongly negatively correlated. QTL mapping showed that QTLs for HW and TL are located in close proximity to one another on the longest linkage group and that they have positive and negative additive genetic effects. Our results suggest that the adaptive phenotypic sets of a wide head and short thorax and a narrow head and long thorax are based on the closeness of these QTLs. Morphological integration between the head and thorax may play an important role in the adaptive divergence of these beetles. © 2014 John Wiley & Sons Ltd.
Adaptive Genetic Divergence along Narrow Environmental Gradients in Four Stream Insects
Watanabe, Kozo; Kazama, So; Omura, Tatsuo; Monaghan, Michael T.
2014-01-01
A central question linking ecology with evolutionary biology is how environmental heterogeneity can drive adaptive genetic divergence among populations. We examined adaptive divergence of four stream insects from six adjacent catchments in Japan by combining field measures of habitat and resource components with genome scans of non-neutral Amplified Fragment Length Polymorphism (AFLP) loci. Neutral genetic variation was used to measure gene flow and non-neutral genetic variation was used to test for adaptive divergence. We identified the environmental characteristics contributing to divergence by comparing genetic distances at non-neutral loci between sites with Euclidean distances for each of 15 environmental variables. Comparisons were made using partial Mantel tests to control for geographic distance. In all four species, we found strong evidence for non-neutral divergence along environmental gradients at between 6 and 21 loci per species. The relative contribution of these environmental variables to each species' ecological niche was quantified as the specialization index, S, based on ecological data. In each species, the variable most significantly correlated with genetic distance at non-neutral loci was the same variable along which each species was most narrowly distributed (i.e., highest S). These were gradients of elevation (two species), chlorophyll-a, and ammonia-nitrogen. This adaptive divergence occurred in the face of ongoing gene flow (F st = 0.01–0.04), indicating that selection was strong enough to overcome homogenization at the landscape scale. Our results suggest that adaptive divergence is pronounced, occurs along different environmental gradients for different species, and may consistently occur along the narrowest components of species' niche. PMID:24681871
Conversion of energy in cross-sectional divergences under different conditions of inflow
NASA Technical Reports Server (NTRS)
Peters, H
1934-01-01
This investigation treats the conversion of energy in conically divergent channels with constant opening ratio and half included angle of from 2.6 to 90 degrees, the velocity distribution in the entrance section being varied from rectangular distribution to fully developed turbulence by changing the length of the approach. The energy conversion is not completed in the exit section of the diffuser; complete conversion requires a discharge length which depends upon the included angle and the velocity distribution in the entrance section. Lastly, a spiral fan was mounted in the extreme length and the effect of the spiral flow on the energy conversion in the cross-sectional divergence explored.
NASA Astrophysics Data System (ADS)
Kargarian, M.; Jafari, R.; Langari, A.
2007-12-01
We have combined the idea of renormalization group and quantum-information theory. We have shown how the entanglement or concurrence evolve as the size of the system becomes large, i.e., the finite size scaling is obtained. Moreover, we introduce how the renormalization-group approach can be implemented to obtain the quantum-information properties of a many-body system. We have obtained the concurrence as a measure of entanglement, its derivatives and their scaling behavior versus the size of system for the one-dimensional Ising model in transverse field. We have found that the derivative of concurrence between two blocks each containing half of the system size diverges at the critical point with the exponent, which is directly associated with the divergence of the correlation length.
de Verdal, Hugues; Narcy, Agnès; Bastianelli, Denis; Chapuis, Hervé; Même, Nathalie; Urvoix, Séverine; Le Bihan-Duval, Elisabeth; Mignon-Grasteau, Sandrine
2011-07-06
Feed costs represent about 70% of the costs of raising broilers. The main way to decrease these costs is to improve feed efficiency by modification of diet formulation, but one other possibility would be to use genetic selection. Understanding the genetic architecture of the gastro-intestinal tract (GIT) and the impact of the selection criterion on the GIT would be of particular interest. We therefore studied the genetic parameters of AMEn (Apparent metabolisable energy corrected for zero nitrogen balance), feed efficiency, and GIT traits in chickens.Genetic parameters were estimated for 630 broiler chickens of the eighth generation of a divergent selection experiment on AMEn. Birds were reared until 23 d of age and fed a wheat-based diet. The traits measured were body weight (BW), feed conversion ratio (FCR), AMEn, weights of crop, liver, gizzard and proventriculus, and weight, length and density of the duodenum, jejunum and ileum. The heritability estimates of BW, FCR and AMEn were moderate. The heritability estimates were higher for the GIT characteristics except for the weights of the proventriculus and liver. Gizzard weight was negatively correlated with density (weight to length ratio) of duodenum, jejunum and ileum. Proventriculus and gizzard weights were more strongly correlated with AMEn than with FCR, which was not the case for intestine weight and density. GIT traits were largely dependent on genetics and that selecting on AMEn or FCR would modify them. Phenotypic observations carried out in the divergent lines selected on AMEn were consistent with estimated genetic correlations between AMEn and GIT traits.
Study of distorted octahedral structure in 3d transition metal complexes using XAFS
NASA Astrophysics Data System (ADS)
Gaur, A.; Nitin Nair, N.; Shrivastava, B. D.; Das, B. K.; Chakrabortty, Monideepa; Jha, S. N.; Bhattacharyya, D.
2018-01-01
Distortion in octahedral structure of 3d transition metal complexes (Mn, Fe, Co, Ni, Cu, Zn) has been studied using XAFS showing divergent nature of Cu complex. EXAFS analysis showed elongated metal-oxygen bonds for Cu complex leading to more distorted structure. Derivative XANES spectrum at Cu K-edge exhibits splitting of main edge which is correlated to elongated Cu-O bond length. Using these coordination geometry around metal centers, theoretical XANES spectra have been generated and features observed have been correlated to the corresponding metals p-DOS. It has been shown that distorted octahedral field in Cu complex is responsible for splitting of p-DOS.
NASA Technical Reports Server (NTRS)
Krull, H George; Beale, William T
1956-01-01
Internal performance data on a short exhaust nozzle designed by the method of characteristics were obtained over a range of pressure ratios from 1.5 to 22. The peak thrust coefficient was not affected by a shortened divergent section, but it occurred at lower pressure ratios due to reduction in expansion ratio. This nozzle contour based on characteristics solution gave higher thrust coefficients than a conical convergent-divergent nozzle of equivalent length. Abrupt-inlet sections permitted a reduction in nozzle length without a thrust-coefficient reduction.
Foote, Andrew D; Newton, Jason; Piertney, Stuart B; Willerslev, Eske; Gilbert, M Thomas P
2009-12-01
Ecological divergence has a central role in speciation and is therefore an important source of biodiversity. Studying the micro-evolutionary processes of ecological diversification at its early stages provides an opportunity for investigating the causative mechanisms and ecological conditions promoting divergence. Here we use morphological traits, nitrogen stable isotope ratios and tooth wear to characterize two disparate types of North Atlantic killer whale. We find a highly specialist type, which reaches up to 8.5 m in length and a generalist type which reaches up to 6.6 m in length. There is a single fixed genetic difference in the mtDNA control region between these types, indicating integrity of groupings and a shallow divergence. Phylogenetic analysis indicates this divergence is independent of similar ecological divergences in the Pacific and Antarctic. Niche-width in the generalist type is more strongly influenced by between-individual variation rather than within-individual variation in the composition of the diet. This first step to divergent specialization on different ecological resources provides a rare example of the ecological conditions at the early stages of adaptive radiation.
Ellis, Allan G; Weis, Arthur E; Gaut, Brandon S
2006-01-01
Recent phylogenetic evidence suggests that the extraordinary diversity of the Cape Floristic Kingdom in South Africa may be the result of widespread evolutionary radiation. Our understanding of the role of adaptive versus neutral processes in these radiations remains largely speculative. In this study we investigated factors involved in the diversification of Argyroderma, a genus within the most spectacular of the Cape radiations, that of the Ruschioid subfamily of the Aizoaceae. We used amplified fragment length polymorphisms and a suite of morphological traits to elucidate patterns of differentiation within and between species of Argyroderma across the range of the genus. We then used a matrix correlation approach to assess the influence of landscape structure, edaphic gradients, and flowering phenology on phenotypic and neutral genetic divergence in the system. We found evidence for strong spatial genetic isolation at all taxonomic levels. In addition, genetic differentiation occurs along a temporal axis, between sympatric species with divergent flowering times. Morphological differentiation, which previous studies suggest is adaptive, occurs along a habitat axis, between populations occupying different edaphic microenvironments. Morphological differentiation is in turn significantly associated with flowering time shifts. Thus we propose that diversification within Argyroderma has occurred through a process of adaptive speciation in allopatry. Spatially isolated populations diverge phenotypically in response to divergent habitat selection, which in turn leads to the evolution of reproductive isolation through divergence of flowering phenologies, perhaps as a correlated response to morphological divergence. Evidence suggests that diversification of the group has proceeded in two phases: the first involving divergence of allopatric taxa on varied microhabitats within a novel habitat type (the quartz gravel plains), and the second involving range expansion of an early flowering phenotype on the most extreme edaphic habitat and subsequent incomplete differentiation of allopatric populations of the early flowering group. These results point to adaptive speciation in allopatry as a likely model for the spectacular diversification of the ice-plant family in the dissected landscapes of the southern African winter rainfall deserts.
Lloyd, G T; Bapst, D W; Friedman, M; Davis, K E
2016-11-01
Branch lengths-measured in character changes-are an essential requirement of clock-based divergence estimation, regardless of whether the fossil calibrations used represent nodes or tips. However, a separate set of divergence time approaches are typically used to date palaeontological trees, which may lack such branch lengths. Among these methods, sophisticated probabilistic approaches have recently emerged, in contrast with simpler algorithms relying on minimum node ages. Here, using a novel phylogenetic hypothesis for Mesozoic dinosaurs, we apply two such approaches to estimate divergence times for: (i) Dinosauria, (ii) Avialae (the earliest birds) and (iii) Neornithes (crown birds). We find: (i) the plausibility of a Permian origin for dinosaurs to be dependent on whether Nyasasaurus is the oldest dinosaur, (ii) a Middle to Late Jurassic origin of avian flight regardless of whether Archaeopteryx or Aurornis is considered the first bird and (iii) a Late Cretaceous origin for Neornithes that is broadly congruent with other node- and tip-dating estimates. Demonstrating the feasibility of probabilistic time-scaling further opens up divergence estimation to the rich histories of extinct biodiversity in the fossil record, even in the absence of detailed character data. © 2016 The Authors.
The role of ecology, neutral processes and antagonistic coevolution in an apparent sexual arms race.
Perry, Jennifer C; Garroway, Colin J; Rowe, Locke
2017-09-01
Some of the strongest examples of a sexual 'arms race' come from observations of correlated evolution in sexually antagonistic traits among populations. However, it remains unclear whether these cases truly represent sexually antagonistic coevolution; alternatively, ecological or neutral processes might also drive correlated evolution. To investigate these alternatives, we evaluated the contributions of intersex genetic correlations, ecological context, neutral genetic divergence and sexual coevolution in the correlated evolution of antagonistic traits among populations of Gerris incognitus water striders. We could not detect intersex genetic correlations for these sexually antagonistic traits. Ecological variation was related to population variation in the key female antagonistic trait (spine length, a defence against males), as well as body size. Nevertheless, population covariation between sexually antagonistic traits remained substantial and significant even after accounting for all of these processes. Our results therefore provide strong evidence for a contemporary sexual arms race. © 2017 John Wiley & Sons Ltd/CNRS.
Exact extreme-value statistics at mixed-order transitions.
Bar, Amir; Majumdar, Satya N; Schehr, Grégory; Mukamel, David
2016-05-01
We study extreme-value statistics for spatially extended models exhibiting mixed-order phase transitions (MOT). These are phase transitions that exhibit features common to both first-order (discontinuity of the order parameter) and second-order (diverging correlation length) transitions. We consider here the truncated inverse distance squared Ising model, which is a prototypical model exhibiting MOT, and study analytically the extreme-value statistics of the domain lengths The lengths of the domains are identically distributed random variables except for the global constraint that their sum equals the total system size L. In addition, the number of such domains is also a fluctuating variable, and not fixed. In the paramagnetic phase, we show that the distribution of the largest domain length l_{max} converges, in the large L limit, to a Gumbel distribution. However, at the critical point (for a certain range of parameters) and in the ferromagnetic phase, we show that the fluctuations of l_{max} are governed by novel distributions, which we compute exactly. Our main analytical results are verified by numerical simulations.
NASA Astrophysics Data System (ADS)
Pillay, Jason C.; McCulloch, Ian P.
2018-05-01
The effect of a local Kondo coupling and Hubbard interaction on the topological phase of the one-dimensional topological Kondo insulator (TKI) is numerically investigated using the infinite matrix-product state density-matrix renormalization group algorithm. The ground state of the TKI is a symmetry-protected topological (SPT) phase protected by inversion symmetry. It is found that on its own, the Hubbard interaction that tends to force fermions into a one-charge per site order is insufficient to destroy the SPT phase. However, when the local Kondo Hamiltonian term that favors a topologically trivial ground state with a one-charge per site order is introduced, the Hubbard interaction assists in the destruction of the SPT phase. This topological phase transition occurs in the charge sector where the correlation length of the charge excitation diverges while the correlation length of the spin excitation remains finite. The critical exponents, central charge, and the phase diagram separating the SPT phase from the topologically trivial phase are presented.
Energetics of a strongly correlated Fermi gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Shina
2008-12-15
The energy of the two-component Fermi gas with the s-wave contact interaction is a simple linear functional of its momentum distribution: E{sub internal}=h{sup 2}{omega}C/4{pi}am+{sigma}{sub k{sigma}}(h{sup 2}k{sup 2}/2m)(n{sub k{sigma}}= -C/k{sup 4}) where the external potential energy is not included, a is the scattering length, {omega} is the volume, n{sub k{sigma}} is the average number of fermions with wave vector k and spin {sigma}, and C{identical_to}lim{sub k{yields}}{sub {infinity}}k{sup 4}n{sub k{up_arrow}}=lim{sub k{yields}}{sub {infinity}}k{sup 4}n{sub k{down_arrow}}. This result is a universal identity. Its proof is facilitated by a novel mathematical idea, which might be of utility in dealing with ultraviolet divergences in quantum fieldmore » theories. Other properties of this Fermi system, including pair correlations and the dimer-fermion scattering length, are also studied.« less
iGLASS: An Improvement to the GLASS Method for Estimating Species Trees from Gene Trees
Rosenberg, Noah A.
2012-01-01
Abstract Several methods have been designed to infer species trees from gene trees while taking into account gene tree/species tree discordance. Although some of these methods provide consistent species tree topology estimates under a standard model, most either do not estimate branch lengths or are computationally slow. An exception, the GLASS method of Mossel and Roch, is consistent for the species tree topology, estimates branch lengths, and is computationally fast. However, GLASS systematically overestimates divergence times, leading to biased estimates of species tree branch lengths. By assuming a multispecies coalescent model in which multiple lineages are sampled from each of two taxa at L independent loci, we derive the distribution of the waiting time until the first interspecific coalescence occurs between the two taxa, considering all loci and measuring from the divergence time. We then use the mean of this distribution to derive a correction to the GLASS estimator of pairwise divergence times. We show that our improved estimator, which we call iGLASS, consistently estimates the divergence time between a pair of taxa as the number of loci approaches infinity, and that it is an unbiased estimator of divergence times when one lineage is sampled per taxon. We also show that many commonly used clustering methods can be combined with the iGLASS estimator of pairwise divergence times to produce a consistent estimator of the species tree topology. Through simulations, we show that iGLASS can greatly reduce the bias and mean squared error in obtaining estimates of divergence times in a species tree. PMID:22216756
Role of initial correlation in coarsening of a ferromagnet
NASA Astrophysics Data System (ADS)
Chakraborty, Saikat; Das, Subir K.
2015-06-01
We study the dynamics of ordering in ferromagnets via Monte Carlo simulations of the Ising model, employing the Glauber spin-flip mechanism, in space dimensions d = 2 and 3, on square and simple cubic lattices. Results for the persistence probability and the domain growth are discussed for quenches to various temperatures (Tf) below the critical one (Tc), from different initial temperatures Ti ≥ Tc. In long time limit, for Ti>Tc, the persistence probability exhibits power-law decay with exponents θ ≃ 0.22 and ≃ 0.18 in d = 2 and 3, respectively. For finite Ti, the early time behavior is a different power-law whose life-time diverges and exponent decreases as Ti → Tc. The two steps are connected via power-law as a function of domain length and the crossover to the second step occurs when this characteristic length exceeds the equilibrium correlation length at T = Ti. Ti = Tc is expected to provide a new universality class for which we obtain θ ≡ θc ≃ 0.035 in d = 2 and ≃0.105 in d = 3. The time dependence of the average domain size ℓ, however, is observed to be rather insensitive to the choice of Ti.
Anisimov, M A; Kostko, A F; Sengers, J V; Yudin, I K
2005-10-22
The approach to asymptotic critical behavior in polymer solutions is governed by a competition between the correlation length of critical fluctuations diverging at the critical point of phase separation and an additional mesoscopic length scale, the radius of gyration. In this paper we present a theory for crossover between two universal regimes: a regime with Ising (fluctuation-induced) asymptotic critical behavior, where the correlation length prevails, and a mean-field tricritical regime with theta-point behavior controlled by the mesoscopic polymer chain. The theory yields a universal scaled description of existing experimental phase-equilibria data and is in excellent agreement with our light-scattering experiments on polystyrene solutions in cyclohexane with polymer molecular weights ranging from 2 x 10(5) up to 11.4 x 10(6). The experiments demonstrate unambiguously that crossover to theta-point tricriticality is controlled by a competition of the two mesoscales. The critical amplitudes deduced from our experiments depend on the polymer molecular weight as predicted by de Gennes [Phys. Lett. 26A, 313 (1968)]. Experimental evidence for the presence of logarithmic corrections to mean-field tricritical theta-point behavior in the molecular-weight dependence of the critical parameters is also presented.
The temporal evolution of pyroclast ejection velocity and exit trajectory, a laboratory case study.
NASA Astrophysics Data System (ADS)
Cigala, Valeria; Kueppers, Ulrich; José Peña Fernández, Juan; Sesterhenn, Jörn; Taddeucci, Jacopo; Dingwell, Donald Bruce
2017-04-01
Pyroclast ejection dynamics during explosive volcanic eruptions are highly variable. This variability is due to complex interaction among different parameters, which define the boundary conditions for a certain eruption. Scaled and controlled laboratory experiments come in hand to characterize the effect of specific physical parameters on the ejection dynamics. We focus, in particular, on the dynamics of pyroclasts ejection in the region just above the vent, also called gas-thrust region, for the case of impulsively released gas-pyroclast mixtures (i.e., unsteady eruptions). In this study, gas-particle mixtures were released in a series of shock-tube experiments with varying 1) tube length, 2) vent geometry, 3) gas-particle ratio, 4) initial temperature and 5) particle size distribution. The tube length was varied by changing the starting sample load, resulting in a gas-particle ratio of 1, 2.5 and 8, respectively. Thereby, the initial distance of the sample from the exit varied between 320, 230 and 140 mm, respectively, allowing for variable time for accelerating (and possibly decelerating) the particles prior to exit. Moreover, four vent geometries were employed, a nozzle with converging walls (5°), a cylinder and two funnels with walls diverging at 15° and 30° respectively. All of them are characterized by a value h/D=1.07, where h is the length between the throat and the lip of the vent and D is throat diameter. The experiments were performed at both 500°C and room temperature using particles from 2 to 0.125 mm in diameter. In all experiments, initial pressure was 15 MPa. High speed videos of the ejection behaviour were analyzed to obtain the temporal evolution of particle velocity and exit trajectory depending on boundary conditions. Max velocity of 300 m/s was observed together with a non-linear decay of exit velocity over time. The exit trajectories were found to deviate from the vertical by 5° to 45° and also display a non-linear evolution with time. Moreover, the velocity decay was used to investigate the accuracy of the empirical fragmentation depth model from Alatorre-Ibargüengoitia et al. (2011), when different gas-particle ratios are employed. This model is not reproducing all experimental constellations satisfactorily. Further experiments will help to develop this model further. Vent geometry, particle size and temperature show the largest effect on ejection velocity and trajectory. In particular, we observed a positive correlation of velocity with 1) diverging vent walls and 2) temperature and a negative correlation with 1) starting tube length and 2) particle size. On the other hand, exit trajectories show negative correlation with 1) diverging walls, 2) starting tube length, 3) temperature and 4) particle size. Moreover, we found that gas-particle ratio additionally strongly affects the temporal evolution of particle ejection velocity and trajectory. These results highlight the importance of scaled and repeatable laboratory experiments for an enhanced understanding of natural volcanic phenomena that bear direct observability. A closer link will enhance volcanic hazard assessment.
2008-01-01
Background Sperm morphology can be highly variable among species, but less is known about patterns of population differentiation within species. Most studies of sperm morphometric variation are done in species with internal fertilization, where sexual selection can be mediated by complex mating behavior and the environment of the female reproductive tract. Far less is known about patterns of sperm evolution in broadcast spawners, where reproductive dynamics are largely carried out at the gametic level. We investigated variation in sperm morphology of a broadcast spawner, the green sea urchin (Strongylocentrotus droebachiensis), within and among spawnings of an individual, among individuals within a population, and among populations. We also examined population-level variation between two reproductive seasons for one population. We then compared among-population quantitative genetic divergence (QST) for sperm characters to divergence at neutral microsatellite markers (FST). Results All sperm traits except total length showed strong patterns of high diversity among populations, as did overall sperm morphology quantified using multivariate analysis. We also found significant differences in almost all traits among individuals in all populations. Head length, axoneme length, and total length had high within-male repeatability across multiple spawnings. Only sperm head width had significant within-population variation across two reproductive seasons. We found signatures of directional selection on head length and head width, with strong selection possibly acting on head length between the Pacific and West Atlantic populations. We also discuss the strengths and limitations of the QST-FST comparison. Conclusion Sperm morphology in S. droebachiensis is highly variable, both among populations and among individuals within populations, and has low variation within an individual across multiple spawnings. Selective pressures acting among populations may differ from those acting within, with directional selection implicated in driving divergence among populations and balancing selection as a possible mechanism for producing variability among males. Sexual selection in broadcast spawners may be mediated by different processes from those acting on internal fertilizers. Selective divergence in sperm head length among populations is associated with ecological differences among populations that may play a large role in mediating sexual selection in this broadcast spawner. PMID:18851755
Determining the Effect of Natural Selection on Linked Neutral Divergence across Species
Phung, Tanya N.; Lohmueller, Kirk E.
2016-01-01
A major goal in evolutionary biology is to understand how natural selection has shaped patterns of genetic variation across genomes. Studies in a variety of species have shown that neutral genetic diversity (intra-species differences) has been reduced at sites linked to those under direct selection. However, the effect of linked selection on neutral sequence divergence (inter-species differences) remains ambiguous. While empirical studies have reported correlations between divergence and recombination, which is interpreted as evidence for natural selection reducing linked neutral divergence, theory argues otherwise, especially for species that have diverged long ago. Here we address these outstanding issues by examining whether natural selection can affect divergence between both closely and distantly related species. We show that neutral divergence between closely related species (e.g. human-primate) is negatively correlated with functional content and positively correlated with human recombination rate. We also find that neutral divergence between distantly related species (e.g. human-rodent) is negatively correlated with functional content and positively correlated with estimates of background selection from primates. These patterns persist after accounting for the confounding factors of hypermutable CpG sites, GC content, and biased gene conversion. Coalescent models indicate that even when the contribution of ancestral polymorphism to divergence is small, background selection in the ancestral population can still explain a large proportion of the variance in divergence across the genome, generating the observed correlations. Our findings reveal that, contrary to previous intuition, natural selection can indirectly affect linked neutral divergence between both closely and distantly related species. Though we cannot formally exclude the possibility that the direct effects of purifying selection drive some of these patterns, such a scenario would be possible only if more of the genome is under purifying selection than currently believed. Our work has implications for understanding the evolution of genomes and interpreting patterns of genetic variation. PMID:27508305
Determining the Effect of Natural Selection on Linked Neutral Divergence across Species.
Phung, Tanya N; Huber, Christian D; Lohmueller, Kirk E
2016-08-01
A major goal in evolutionary biology is to understand how natural selection has shaped patterns of genetic variation across genomes. Studies in a variety of species have shown that neutral genetic diversity (intra-species differences) has been reduced at sites linked to those under direct selection. However, the effect of linked selection on neutral sequence divergence (inter-species differences) remains ambiguous. While empirical studies have reported correlations between divergence and recombination, which is interpreted as evidence for natural selection reducing linked neutral divergence, theory argues otherwise, especially for species that have diverged long ago. Here we address these outstanding issues by examining whether natural selection can affect divergence between both closely and distantly related species. We show that neutral divergence between closely related species (e.g. human-primate) is negatively correlated with functional content and positively correlated with human recombination rate. We also find that neutral divergence between distantly related species (e.g. human-rodent) is negatively correlated with functional content and positively correlated with estimates of background selection from primates. These patterns persist after accounting for the confounding factors of hypermutable CpG sites, GC content, and biased gene conversion. Coalescent models indicate that even when the contribution of ancestral polymorphism to divergence is small, background selection in the ancestral population can still explain a large proportion of the variance in divergence across the genome, generating the observed correlations. Our findings reveal that, contrary to previous intuition, natural selection can indirectly affect linked neutral divergence between both closely and distantly related species. Though we cannot formally exclude the possibility that the direct effects of purifying selection drive some of these patterns, such a scenario would be possible only if more of the genome is under purifying selection than currently believed. Our work has implications for understanding the evolution of genomes and interpreting patterns of genetic variation.
Taxonomic resolutions based on 18S rRNA genes: a case study of subclass copepoda.
Wu, Shu; Xiong, Jie; Yu, Yuhe
2015-01-01
Biodiversity studies are commonly conducted using 18S rRNA genes. In this study, we compared the inter-species divergence of variable regions (V1-9) within the copepod 18S rRNA gene, and tested their taxonomic resolutions at different taxonomic levels. Our results indicate that the 18S rRNA gene is a good molecular marker for the study of copepod biodiversity, and our conclusions are as follows: 1) 18S rRNA genes are highly conserved intra-species (intra-species similarities are close to 100%); and could aid in species-level analyses, but with some limitations; 2) nearly-whole-length sequences and some partial regions (around V2, V4, and V9) of the 18S rRNA gene can be used to discriminate between samples at both the family and order levels (with a success rate of about 80%); 3) compared with other regions, V9 has a higher resolution at the genus level (with an identification success rate of about 80%); and 4) V7 is most divergent in length, and would be a good candidate marker for the phylogenetic study of Acartia species. This study also evaluated the correlation between similarity thresholds and the accuracy of using nuclear 18S rRNA genes for the classification of organisms in the subclass Copepoda. We suggest that sample identification accuracy should be considered when a molecular sequence divergence threshold is used for taxonomic identification, and that the lowest similarity threshold should be determined based on a pre-designated level of acceptable accuracy.
Taxonomic Resolutions Based on 18S rRNA Genes: A Case Study of Subclass Copepoda
Wu, Shu; Xiong, Jie; Yu, Yuhe
2015-01-01
Biodiversity studies are commonly conducted using 18S rRNA genes. In this study, we compared the inter-species divergence of variable regions (V1–9) within the copepod 18S rRNA gene, and tested their taxonomic resolutions at different taxonomic levels. Our results indicate that the 18S rRNA gene is a good molecular marker for the study of copepod biodiversity, and our conclusions are as follows: 1) 18S rRNA genes are highly conserved intra-species (intra-species similarities are close to 100%); and could aid in species-level analyses, but with some limitations; 2) nearly-whole-length sequences and some partial regions (around V2, V4, and V9) of the 18S rRNA gene can be used to discriminate between samples at both the family and order levels (with a success rate of about 80%); 3) compared with other regions, V9 has a higher resolution at the genus level (with an identification success rate of about 80%); and 4) V7 is most divergent in length, and would be a good candidate marker for the phylogenetic study of Acartia species. This study also evaluated the correlation between similarity thresholds and the accuracy of using nuclear 18S rRNA genes for the classification of organisms in the subclass Copepoda. We suggest that sample identification accuracy should be considered when a molecular sequence divergence threshold is used for taxonomic identification, and that the lowest similarity threshold should be determined based on a pre-designated level of acceptable accuracy. PMID:26107258
Huttunen, Susanna; Aspi, Jouni; Schlötterer, Christian; Routtu, Jarkko; Hoikkala, Anneli
2008-01-01
Genetic and phenotypic divergence of Drosophila virilis laboratory strains originating from different parts of the species range were studied with the aid of microsatellite markers and by analysing male courtship songs. The strains from America, Europe, continental Asia and Japan showed moderate geographic clustering both at the genetic level and in several traits of the male song. The genetic distances and the song divergence of the strains did not show significant association, which suggests that the songs have not diverged solely as a side-effect of genetic divergence. Comparison of the songs of the laboratory strains to those of freshly collected strains showed that pulse characters of the song are quite sensitive to culture conditions. While laboratory rearing of the flies had no effect on the number of pulses in a pulse train or the pulse train length, the tendency of the sound pulses to become longer during laboratory maintenance could explain the lack of geographic variation in pulse length and inter pulse interval. Sensitivity of songs to culturing conditions should be taken in account in studies on song divergence.
Deryabin, Vasily E; Krans, Valentina M; Fedotova, Tatiana K
2005-07-01
Mean values of different body dimensions in different age cohorts of children make it possible to learn a lot about their dynamic changes. Their comparative analysis, as is usually practiced, in fact leads to a simple description of changes in measurement units (mm or cm) at the average level of some body dimension during a shorter or longer period of time. To estimate comparative intensity of the growth process of different body dimensions, the authors use the analogue of Mahalanobis distance, the so-called Kullback divergence (1967), which does not demand stability of dispersion or correlation coefficients of dimensions in compared cohorts of children. Most of the dimensions, excluding skinfolds, demonstrate growth dynamics with gradually reducing increments from birth to 7 years. Body length has the highest integrative increment, leg length about 94% of body length, body mass 77%, and trunk and extremities circumferences 56%. Skinfolds have a non-monotonic pattern of accumulated standardized increments with some increase until 1-2 years of age.
Testing the mutual information expansion of entropy with multivariate Gaussian distributions.
Goethe, Martin; Fita, Ignacio; Rubi, J Miguel
2017-12-14
The mutual information expansion (MIE) represents an approximation of the configurational entropy in terms of low-dimensional integrals. It is frequently employed to compute entropies from simulation data of large systems, such as macromolecules, for which brute-force evaluation of the full configurational integral is intractable. Here, we test the validity of MIE for systems consisting of more than m = 100 degrees of freedom (dofs). The dofs are distributed according to multivariate Gaussian distributions which were generated from protein structures using a variant of the anisotropic network model. For the Gaussian distributions, we have semi-analytical access to the configurational entropy as well as to all contributions of MIE. This allows us to accurately assess the validity of MIE for different situations. We find that MIE diverges for systems containing long-range correlations which means that the error of consecutive MIE approximations grows with the truncation order n for all tractable n ≪ m. This fact implies severe limitations on the applicability of MIE, which are discussed in the article. For systems with correlations that decay exponentially with distance, MIE represents an asymptotic expansion of entropy, where the first successive MIE approximations approach the exact entropy, while MIE also diverges for larger orders. In this case, MIE serves as a useful entropy expansion when truncated up to a specific truncation order which depends on the correlation length of the system.
The nature of the laning transition in two dimensions
NASA Astrophysics Data System (ADS)
Glanz, T.; Löwen, H.
2012-11-01
If a binary colloidal mixture is oppositely driven by an external field, a transition towards a laned state occurs at sufficiently large drives, where particles driven alike form elongated structures (‘lanes’) characterized by a large correlation length ξ along the drive. Here we perform extensive Brownian dynamics computer simulations on a two-dimensional equimolar binary Yukawa system driven by a constant force that acts oppositely on the two species. We systematically address finite-size effects on lane formation by exploring large systems up to 262 144 particles under various boundary conditions. It is found that the correlation length ξ along the field depends exponentially on the driving force (or Peclet number). Conversely, in a finite system, ξ reaches a fraction of the system size at a driving force which is logarithmic in the system size, implying massive finite-size corrections. For a fixed finite drive, ξ does not diverge in the thermodynamic limit. Therefore, though laning has a signature as a sharp transition in a finite system, it is a smooth crossover in the thermodynamic limit.
Artificial selection on male genitalia length alters female brain size.
Buechel, Séverine D; Booksmythe, Isobel; Kotrschal, Alexander; Jennions, Michael D; Kolm, Niclas
2016-11-30
Male harassment is a classic example of how sexual conflict over mating leads to sex-specific behavioural adaptations. Females often suffer significant costs from males attempting forced copulations, and the sexes can be in an arms race over male coercion. Yet, despite recent recognition that divergent sex-specific interests in reproduction can affect brain evolution, sexual conflict has not been addressed in this context. Here, we investigate whether artificial selection on a correlate of male success at coercion, genital length, affects brain anatomy in males and females. We analysed the brains of eastern mosquitofish (Gambusia holbrooki), which had been artificially selected for long or short gonopodium, thereby mimicking selection arising from differing levels of male harassment. By analogy to how prey species often have relatively larger brains than their predators, we found that female, but not male, brain size was greater following selection for a longer gonopodium. Brain subregion volumes remained unchanged. These results suggest that there is a positive genetic correlation between male gonopodium length and female brain size, which is possibly linked to increased female cognitive ability to avoid male coercion. We propose that sexual conflict is an important factor in the evolution of brain anatomy and cognitive ability. © 2016 The Author(s).
NASA Technical Reports Server (NTRS)
Greer, H. D.
1972-01-01
The present paper summarizes the high-angle-of-attack characteristics of a number of high-performance aircraft as determined from model force tests and free-flight model tests and correlates these characteristics with the dynamic directional-stability parameter. This correlation shows that the dynamic directional-stability parameter correlates fairly well with directional divergence. Data are also presented to show the effect of some airframe modifications on the directional divergence potential of the configuration. These results show that leading-edge slates seem to be the most effective airframe modification for reducing or eliminating the directional divergence potential of aircraft with moderately swept wings.
The Evolution of Morphospace in Phytophagous Scarab Chafers: No Competition - No Divergence?
Eberle, Jonas; Myburgh, Renier; Ahrens, Dirk
2014-01-01
Body shape reflects species' evolution and mediates its role in the environment as it integrates gene expression, life style, and structural morphology. Its comparative analysis may reveal insight on what shapes shape, being a useful approach when other evidence is lacking. Here we investigated evolutionary patterns of body shape in the highly diverse phytophagous chafers (Scarabaeidae: Pleurosticti), a polyphagous group utilizing different parts of angiosperms. Because the reasons of their successful diversification are largely unknown, we used a phylogenetic tree and multivariate analysis on twenty linear measurements of body morphology including all major Pleurosticti lineages to infer patterns of morphospace covariation and divergence. The chafer's different feeding types resulted to be not distinguishable in the described morphospace which was largely attributed to large occupancy of the morphospace of some feeding types and to multiple convergences of feeding behavior (particularly of anthophagy). Low correlation between molecular and morphological rates of evolution, including significant rate shifts for some lineages, indicated directed selection within feeding types. This is supported by morphospace divergence within feeding types and convergent evolution in Australian Melolonthinae. Traits driving morphospace divergence were extremities and traits linked with locomotion behavior, but also body size. Being highly adaptive for burrowing and locomotion these traits showed major changes in the evolution of pleurostict scarabs. These activities also affected another trait, the metacoxal length, which is highly influenced by key innovations of the metacoxa (extended mesal process, secondary closure) particularly in one lineage, the Sericini. Significant shape divergence between major lineages and a lack of strong differentiation among closely related lineages indicated that the question about the presence or absence of competition-derived directed selection needs to be addressed for different time scales. Striking divergence between some sister lineages at their origin revealed strong driven selection towards morphospace divergence, possibly linked with resource partitioning. PMID:24875856
Fundamental Parameters Line Profile Fitting in Laboratory Diffractometers
Cheary, R. W.; Coelho, A. A.; Cline, J. P.
2004-01-01
The fundamental parameters approach to line profile fitting uses physically based models to generate the line profile shapes. Fundamental parameters profile fitting (FPPF) has been used to synthesize and fit data from both parallel beam and divergent beam diffractometers. The refined parameters are determined by the diffractometer configuration. In a divergent beam diffractometer these include the angular aperture of the divergence slit, the width and axial length of the receiving slit, the angular apertures of the axial Soller slits, the length and projected width of the x-ray source, the absorption coefficient and axial length of the sample. In a parallel beam system the principal parameters are the angular aperture of the equatorial analyser/Soller slits and the angular apertures of the axial Soller slits. The presence of a monochromator in the beam path is normally accommodated by modifying the wavelength spectrum and/or by changing one or more of the axial divergence parameters. Flat analyzer crystals have been incorporated into FPPF as a Lorentzian shaped angular acceptance function. One of the intrinsic benefits of the fundamental parameters approach is its adaptability any laboratory diffractometer. Good fits can normally be obtained over the whole 20 range without refinement using the known properties of the diffractometer, such as the slit sizes and diffractometer radius, and emission profile. PMID:27366594
García-Navas, Vicente; Rodríguez-Rey, Marta; Marki, Petter Z; Christidis, Les
2018-04-01
Interspecific competition is thought to play a key role in determining the coexistence of closely related species within adaptive radiations. Competition for ecological resources can lead to different outcomes from character displacement to, ultimately, competitive exclusion. Accordingly, divergent natural selection should disfavor those species that are the most similar to their competitor in resource use, thereby increasing morphological disparity. Here, we examined ecomorphological variability within an Australo-Papuan bird radiation, the Acanthizidae, which include both allopatric and sympatric complexes. In addition, we investigated whether morphological similarities between species are related to environmental factors at fine scale (foraging niche) and/or large scale (climate). Contrary to that predicted by the competition hypothesis, we did not find a significant correlation between the morphological similarities found between species and their degree of range overlap. Comparative modeling based on both a priori and data-driven identification of selective regimes suggested that foraging niche is a poor predictor of morphological variability in acanthizids. By contrast, our results indicate that climatic conditions were an important factor in the formation of morphological variation. We found a significant negative correlation between species scores for PC1 (positively associated to tarsus length and tail length) and both temperature and precipitation, whereas PC2 (positively associated to bill length and wing length) correlated positively with precipitation. In addition, we found that species inhabiting the same region are closer to each other in morphospace than to species outside that region regardless of genus to which they belong or its foraging strategy. Our results indicate that the conservative body form of acanthizids is one that can work under a wide variety of environments (an all-purpose morphology), and the observed interspecific similarity is probably driven by the common response to environment.
Length divergence of the lattice thermal conductivity in suspended graphene nanoribbons
NASA Astrophysics Data System (ADS)
Majee, Arnab K.; Aksamija, Zlatan
2016-06-01
Thermal properties of graphene have attracted much attention, culminating in a recent measurement of its length dependence in ribbons up to 9 μ m long. In this paper, we use the improved Callaway model to solve the phonon Boltzmann transport equation while capturing both the resistive (umklapp, isotope, and edge roughness) and nonresistive (normal) contributions. We show that for lengths smaller than 100 μ m , scaling the ribbon length while keeping the width constant leads to a logarithmic divergence of thermal conductivity. The length dependence is driven primarily by a ballistic-to-diffusive transition in the in-plane (LA and TA) branches, while in the hydrodynamic regime when 10 μ m
Hemispheric connectivity and the visual-spatial divergent-thinking component of creativity.
Moore, Dana W; Bhadelia, Rafeeque A; Billings, Rebecca L; Fulwiler, Carl; Heilman, Kenneth M; Rood, Kenneth M J; Gansler, David A
2009-08-01
Divergent thinking is an important measurable component of creativity. This study tested the postulate that divergent thinking depends on large distributed inter- and intra-hemispheric networks. Although preliminary evidence supports increased brain connectivity during divergent thinking, the neural correlates of this characteristic have not been entirely specified. It was predicted that visuospatial divergent thinking would correlate with right hemisphere white matter volume (WMV) and with the size of the corpus callosum (CC). Volumetric magnetic resonance imaging (MRI) analyses and the Torrance Tests of Creative Thinking (TTCT) were completed among 21 normal right-handed adult males. TTCT scores correlated negatively with the size of the CC and were not correlated with right or, incidentally, left WMV. Although these results were not predicted, perhaps, as suggested by Bogen and Bogen (1988), decreased callosal connectivity enhances hemispheric specialization, which benefits the incubation of ideas that are critical for the divergent-thinking component of creativity, and it is the momentary inhibition of this hemispheric independence that accounts for the illumination that is part of the innovative stage of creativity. Alternatively, decreased CC size may reflect more selective developmental pruning, thereby facilitating efficient functional connectivity.
Parkash, Chander; Kumar, Sandeep; Singh, Rajender; Kumar, Ajay; Kumar, Satish; Dey, Shyam Sundar; Bhatia, Reeta; Kumar, Raj
2018-01-01
A comprehensive study on characterization and genetic diversity analysis was carried out in 16 'Ogura'-based 'CMS' lines of cabbage using 14 agro-morphological traits and 29 SSR markers. Agro-morphological characterization depicted considerable variations for different horticultural traits studied. The genotype, ZHA-2, performed better for most of the economically important quantitative traits. Further, gross head weight (0.76), head length (0.60) and head width (0.83) revealed significant positive correlation with net head weight. Dendrogram based on 10 quantitative traits exhibited considerable diversity among different CMS lines and principle component analysis (PCA) indicated that net and gross head weight, and head length and width are the main components of divergence between 16 CMS lines of cabbage. In molecular study, a total of 58 alleles were amplified by 29 SSR primers, averaging to 2.0 alleles in each locus. High mean values of Shannon's Information index (0.62), expected (0.45) and observed (0.32) heterozygosity and polymorphic information content (0.35) depicted substantial polymorphism. Dendrogram based on Jaccard's similarity coefficient constructed two major groups and eight sub-groups, which revealed substantial diversity among different CMS lines. In overall, based on agro-morphological and molecular studies genotype RRMA, ZHA-2 and RCA were found most divergent. Hence, they have immense potential in future breeding programs for the high-yielding hybrid development in cabbage.
Investigation of Perforated Convergent-divergent Diffusers with Initial Boundary Layer
NASA Technical Reports Server (NTRS)
Weinstein, Maynard I
1950-01-01
An experimental investigation was made at Mach number 1.90 of the performance of a series of perforated convergent-divergent supersonic diffusers operating with initial boundary layer, which was induced and controlled by lengths of cylindrical inlets affixed to the diffusers. Supercritical mass-flow and peak total-pressure recoveries were decreased slightly by use of the longest inlets (4 inlet diameters in length). Combinations of cylindrical inlets, perforated diffusers, and subsonic diffuser were evaluated as simulated wind tunnels having second throats. Comparisons with noncontracted configurations of similar scale indicated conservatively computed power reductions of 25 percent.
Hemispheric Connectivity and the Visual-Spatial Divergent-Thinking Component of Creativity
ERIC Educational Resources Information Center
Moore, Dana W.; Bhadelia, Rafeeque A.; Billings, Rebecca L.; Fulwiler, Carl; Heilman, Kenneth M.; Rood, Kenneth M. J.; Gansler, David A.
2009-01-01
Background/hypothesis: Divergent thinking is an important measurable component of creativity. This study tested the postulate that divergent thinking depends on large distributed inter- and intra-hemispheric networks. Although preliminary evidence supports increased brain connectivity during divergent thinking, the neural correlates of this…
Thouless energy and multifractality across the many-body localization transition
NASA Astrophysics Data System (ADS)
Serbyn, Maksym; Papić, Z.; Abanin, Dmitry A.
2017-09-01
Thermal and many-body localized phases are separated by a dynamical phase transition of a new kind. We analyze the distribution of off-diagonal matrix elements of local operators across this transition in two different models of disordered spin chains. We show that the behavior of matrix elements can be used to characterize the breakdown of thermalization and to extract the many-body Thouless energy. We find that upon increasing the disorder strength the system enters a critical region around the many-body localization transition. The properties of the system in this region are: (i) the Thouless energy becomes smaller than the level spacing, (ii) the matrix elements show critical dependence on the energy difference, and (iii) the matrix elements, viewed as amplitudes of a fictitious wave function, exhibit strong multifractality. This critical region decreases with the system size, which we interpret as evidence for a diverging correlation length at the many-body localization transition. Our findings show that the correlation length becomes larger than the accessible system sizes in a broad range of disorder strength values and shed light on the critical behavior near the many-body localization transition.
Pollinator Competition as a Driver of Floral Divergence: An Experimental Test.
Temeles, Ethan J; Newman, Julia T; Newman, Jennifer H; Cho, Se Yeon; Mazzotta, Alexandra R; Kress, W John
2016-01-01
Optimal foraging models of floral divergence predict that competition between two different types of pollinators will result in partitioning, increased assortative mating, and divergence of two floral phenotypes. We tested these predictions in a tropical plant-pollinator system using sexes of purple-throated carib hummingbirds (Anthracothorax jugularis) as the pollinators, red and yellow inflorescence morphs of Heliconia caribaea as the plants, and fluorescent dyes as pollen analogs in an enclosed outdoor garden. When foraging alone, males exhibited a significant preference for the yellow morph of H. caribaea, whereas females exhibited no preference. In competition, males maintained their preference for the yellow morph and through aggression caused females to over-visit the red morph, resulting in resource partitioning. Competition significantly increased within-morph dye transfer (assortative mating) relative to non-competitive environments. Competition and partitioning of color morphs by sexes of purple-throated caribs also resulted in selection for floral divergence as measured by dye deposition on stigmas. Red and yellow morphs did not differ significantly in dye deposition in the competition trials, but differences in dye deposition and preferences for morphs when sexes of purple-throated caribs foraged alone implied fixation of one or the other color morph in the absence of competition. Competition also resulted in selection for divergence in corolla length, with the red morph experiencing directional selection for longer corollas and the yellow morph experiencing stabilizing selection on corolla length. Our results thus support predictions of foraging models of floral divergence and indicate that pollinator competition is a viable mechanism for divergence in floral traits of plants.
Pollinator Competition as a Driver of Floral Divergence: An Experimental Test
Temeles, Ethan J.; Newman, Julia T.; Newman, Jennifer H.; Cho, Se Yeon; Mazzotta, Alexandra R.; Kress, W. John
2016-01-01
Optimal foraging models of floral divergence predict that competition between two different types of pollinators will result in partitioning, increased assortative mating, and divergence of two floral phenotypes. We tested these predictions in a tropical plant-pollinator system using sexes of purple-throated carib hummingbirds (Anthracothorax jugularis) as the pollinators, red and yellow inflorescence morphs of Heliconia caribaea as the plants, and fluorescent dyes as pollen analogs in an enclosed outdoor garden. When foraging alone, males exhibited a significant preference for the yellow morph of H. caribaea, whereas females exhibited no preference. In competition, males maintained their preference for the yellow morph and through aggression caused females to over-visit the red morph, resulting in resource partitioning. Competition significantly increased within-morph dye transfer (assortative mating) relative to non-competitive environments. Competition and partitioning of color morphs by sexes of purple-throated caribs also resulted in selection for floral divergence as measured by dye deposition on stigmas. Red and yellow morphs did not differ significantly in dye deposition in the competition trials, but differences in dye deposition and preferences for morphs when sexes of purple-throated caribs foraged alone implied fixation of one or the other color morph in the absence of competition. Competition also resulted in selection for divergence in corolla length, with the red morph experiencing directional selection for longer corollas and the yellow morph experiencing stabilizing selection on corolla length. Our results thus support predictions of foraging models of floral divergence and indicate that pollinator competition is a viable mechanism for divergence in floral traits of plants. PMID:26814810
Shape and size of the body vs. musculoskeletal stress markers.
Myszka, Anna; Piontek, Janusz
2010-01-01
The objective of this paper is to assess the relationship between the degree of development of muscle attachment sites (musculoskeletal stress markers - MSM1) and the length and circumference measurements of long bones and the body build expressed with the reconstructed values of body height (BH) and body mass (BM). The bone material (102 male and 99 female skeletons) used in the study was collected in the medieval burial ground in Cedynia, Poland. The authors analyzed 10 musculoskeletal stress markers located on the scapula (2), humerus (2), radius (2), femur (2) and tibia (2). The frequency and the degree of expression of muscle attachment size was carried out using the scale prepared by Myszka (2007). The scale encompassed three degrees of expression of muscle attachment size. Only changes of robusticity type (nonpathological changes) were taken into account. The assessment of body build of individuals was carried out according to the method proposed by Vancata & Charvátová (2001). Body height was reconstructed from the length of the humerus and femur using eight equations. Body mass was reconstructed from the measurements of the breadth of the proximal and distal sections of the femur and tibia (mechanical method) using twenty one equations. The equations were developed for different reference populations. The same equations were used for men and women. The correlation between the MSM and the length and circumference measurements of the bones was analyzed using the principal components analysis and the Gamma correlation coefficient. The strength of the correlation between the reconstructed body build traits (BH, BM) and the moderate degree of musculoskeletal stress markers expression was studied based on the principal components method and the Pearson correlation coefficient. A linear correlation was found between musculoskeletal stress markers and the circumference measurements and the reconstructed body mass, but no relationship with body height and the length measurements of long bones was revealed. From previous research it is evident that the relationship between the MSM and metric skeletal traits does not occur in every population. Divergent findings necessitate further corroboration of results on diverse skeletal material.
Conceptual issues in Bayesian divergence time estimation
2016-01-01
Bayesian inference of species divergence times is an unusual statistical problem, because the divergence time parameters are not identifiable unless both fossil calibrations and sequence data are available. Commonly used marginal priors on divergence times derived from fossil calibrations may conflict with node order on the phylogenetic tree causing a change in the prior on divergence times for a particular topology. Care should be taken to avoid confusing this effect with changes due to informative sequence data. This effect is illustrated with examples. A topology-consistent prior that preserves the marginal priors is defined and examples are constructed. Conflicts between fossil calibrations and relative branch lengths (based on sequence data) can cause estimates of divergence times that are grossly incorrect, yet have a narrow posterior distribution. An example of this effect is given; it is recommended that overly narrow posterior distributions of divergence times should be carefully scrutinized. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325831
Conceptual issues in Bayesian divergence time estimation.
Rannala, Bruce
2016-07-19
Bayesian inference of species divergence times is an unusual statistical problem, because the divergence time parameters are not identifiable unless both fossil calibrations and sequence data are available. Commonly used marginal priors on divergence times derived from fossil calibrations may conflict with node order on the phylogenetic tree causing a change in the prior on divergence times for a particular topology. Care should be taken to avoid confusing this effect with changes due to informative sequence data. This effect is illustrated with examples. A topology-consistent prior that preserves the marginal priors is defined and examples are constructed. Conflicts between fossil calibrations and relative branch lengths (based on sequence data) can cause estimates of divergence times that are grossly incorrect, yet have a narrow posterior distribution. An example of this effect is given; it is recommended that overly narrow posterior distributions of divergence times should be carefully scrutinized.This article is part of the themed issue 'Dating species divergences using rocks and clocks'. © 2016 The Author(s).
Solenoid transport of beams with current-dependent initial conditions
Harris, J. R.; Poole, B. R.; Lewellen, J. W.
2017-09-06
We present that intense charged particle beams will generally be formed with an initial correlation between their longitudinal properties, including longitudinal variations in current, and their transverse properties, including their radius and divergence. This is due to the competition between the transverse focusing fields in the beam source and the time-varying space charge forces in the beam. In DC electron guns where the current modulation is slow compared to the electron transit time, the nature of these correlations was previously shown to depend on the gun geometry, exhibiting a linear dependence of the beam radius and divergence on the beammore » current at the gun exit. Here, we extend the previous work to study the transport of beams with such correlation in uniform and periodic solenoid channels. For each transport channel configuration studied, the transverse envelope equation is used to calculate the envelope of 101 beam slices differing in their slice currents, as well as initial radius and divergence (due to their dependence on slice current). For each channel configuration, these calculations are performed 546 times, with each of these iterations considering a different degree of correlation between the radius and divergence, and the slice current. It is found that some degree of correlation between the initial radius and slice current actually aids in beam transport, and the required strength of correlation can be estimated with simple models. Finally, increasing the degree of correlation between the initial divergence and slice current is generally counterproductive, and the degree of sensitivity to such correlations depends on the design of the transport channel.« less
Solenoid transport of beams with current-dependent initial conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, J. R.; Poole, B. R.; Lewellen, J. W.
We present that intense charged particle beams will generally be formed with an initial correlation between their longitudinal properties, including longitudinal variations in current, and their transverse properties, including their radius and divergence. This is due to the competition between the transverse focusing fields in the beam source and the time-varying space charge forces in the beam. In DC electron guns where the current modulation is slow compared to the electron transit time, the nature of these correlations was previously shown to depend on the gun geometry, exhibiting a linear dependence of the beam radius and divergence on the beammore » current at the gun exit. Here, we extend the previous work to study the transport of beams with such correlation in uniform and periodic solenoid channels. For each transport channel configuration studied, the transverse envelope equation is used to calculate the envelope of 101 beam slices differing in their slice currents, as well as initial radius and divergence (due to their dependence on slice current). For each channel configuration, these calculations are performed 546 times, with each of these iterations considering a different degree of correlation between the radius and divergence, and the slice current. It is found that some degree of correlation between the initial radius and slice current actually aids in beam transport, and the required strength of correlation can be estimated with simple models. Finally, increasing the degree of correlation between the initial divergence and slice current is generally counterproductive, and the degree of sensitivity to such correlations depends on the design of the transport channel.« less
Vorticity and divergence in the solar photosphere
NASA Technical Reports Server (NTRS)
Wang, YI; Noyes, Robert W.; Tarbell, Theodore D.; Title, Alan M.
1995-01-01
We have studied an outstanding sequence of continuum images of the solar granulation from Pic du Midi Observatory. We have calculated the horizontal vector flow field using a correlation tracking algorithm, and from this determined three scalar field: the vertical component of the curl; the horizontal divergence; and the horizontal flow speed. The divergence field has substantially longer coherence time and more power than does the curl field. Statistically, curl is better correlated with regions of negative divergence - that is, the vertical vorticity is higher in downflow regions, suggesting excess vorticity in intergranular lanes. The average value of the divergence is largest (i.e., outflow is largest) where the horizontal speed is large; we associate these regions with exploding granules. A numerical simulation of general convection also shows similar statistical differences between curl and divergence. Some individual small bright points in the granulation pattern show large local vorticities.
Komatsu, Ken; Yamashita, Kazuo; Sugawara, Kota; Verbeek, Martin; Fujita, Naoko; Hanada, Kaoru; Uehara-Ichiki, Tamaki; Fuji, Shin-Ichi
2017-02-01
Plantago asiatica mosaic virus (PlAMV) is a member of the genus Potexvirus and has an exceptionally wide host range. It causes severe damage to lilies. Here we report on the complete nucleotide sequences of two new Japanese PlAMV isolates, one from the eudicot weed Viola grypoceras (PlAMV-Vi), and the other from the eudicot shrub Nandina domestica Thunb. (PlAMV-NJ). Their genomes contain five open reading frames (ORFs), which is characteristic of potexviruses. Surprisingly, the isolates showed only 76.0-78.0 % sequence identity with each other and with other PlAMV isolates, including isolates from Japanese lily and American nandina. Amino acid alignments of the replicase coding region encoded by ORF1 showed that the regions between the methyltransferase and helicase domains were less conserved than other regions, with several insertions and/or deletions. Phylogenetic analyses of the full-length nucleotide sequences revealed a moderate correlation between phylogenetic clustering and the original host plants of the PlAMV isolates. This study revealed the presence of two highly divergent PlAMV isolates in Japan.
Two fundamental questions about protein evolution.
Penny, David; Zhong, Bojian
2015-12-01
Two basic questions are considered that approach protein evolution from different directions; the problems arising from using Markov models for the deeper divergences, and then the origin of proteins themselves. The real problem for the first question (going backwards in time) is that at deeper phylogenies the Markov models of sequence evolution must lose information exponentially at deeper divergences, and several testable methods are suggested that should help resolve these deeper divergences. For the second question (coming forwards in time) a problem is that most models for the origin of protein synthesis do not give a role for the very earliest stages of the process. From our knowledge of the importance of replication accuracy in limiting the length of a coding molecule, a testable hypothesis is proposed. The length of the code, the code itself, and tRNAs would all have prior roles in increasing the accuracy of RNA replication; thus proteins would have been formed only after the tRNAs and the length of the triplet code are already formed. Both questions lead to testable predictions. Copyright © 2014 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardas, Bartłomiej; Dziarmaga, Jacek; Zurek, Wojciech H.
The ground state of the one-dimensional Bose-Hubbard model at unit filling undergoes the Mott-superfluid quantum phase transition. It belongs to the Kosterlitz-Thouless universality class with an exponential divergence of the correlation length in place of the usual power law. Here, we present numerical simulations of a linear quench both from the Mott insulator to superfluid and back. The results satisfy the scaling hypothesis that follows from the Kibble-Zurek mechanism (KZM). In the superfluid-to-Mott quenches there is no significant excitation in the superfluid phase despite its gaplessness. And since all critical superfluid ground states are qualitatively similar, the excitation begins tomore » build up only after crossing the critical point when the ground state begins to change fundamentally. The last process falls into the KZM framework.« less
Gardas, Bartłomiej; Dziarmaga, Jacek; Zurek, Wojciech H.
2017-03-24
The ground state of the one-dimensional Bose-Hubbard model at unit filling undergoes the Mott-superfluid quantum phase transition. It belongs to the Kosterlitz-Thouless universality class with an exponential divergence of the correlation length in place of the usual power law. Here, we present numerical simulations of a linear quench both from the Mott insulator to superfluid and back. The results satisfy the scaling hypothesis that follows from the Kibble-Zurek mechanism (KZM). In the superfluid-to-Mott quenches there is no significant excitation in the superfluid phase despite its gaplessness. And since all critical superfluid ground states are qualitatively similar, the excitation begins tomore » build up only after crossing the critical point when the ground state begins to change fundamentally. The last process falls into the KZM framework.« less
Mixed-order phase transition in a one-dimensional model.
Bar, Amir; Mukamel, David
2014-01-10
We introduce and analyze an exactly soluble one-dimensional Ising model with long range interactions that exhibits a mixed-order transition, namely a phase transition in which the order parameter is discontinuous as in first order transitions while the correlation length diverges as in second order transitions. Such transitions are known to appear in a diverse classes of models that are seemingly unrelated. The model we present serves as a link between two classes of models that exhibit a mixed-order transition in one dimension, namely, spin models with a coupling constant that decays as the inverse distance squared and models of depinning transitions, thus making a step towards a unifying framework.
Divergence between human populations estimated from linkage disequilibrium.
Sved, John A; McRae, Allan F; Visscher, Peter M
2008-12-01
Observed linkage disequilibrium (LD) between genetic markers in different populations descended independently from a common ancestral population can be used to estimate their absolute time of divergence, because the correlation of LD between populations will be reduced each generation by an amount that, approximately, depends only on the recombination rate between markers. Although drift leads to divergence in allele frequencies, it has less effect on divergence in LD values. We derived the relationship between LD and time of divergence and verified it with coalescent simulations. We then used HapMap Phase II data to estimate time of divergence between human populations. Summed over large numbers of pairs of loci, we find a positive correlation of LD between African and non-African populations at levels of up to approximately 0.3 cM. We estimate that the observed correlation of LD is consistent with an effective separation time of approximately 1,000 generations or approximately 25,000 years before present. The most likely explanation for such relatively low separation times is the existence of substantial levels of migration between populations after the initial separation. Theory and results from coalescent simulations confirm that low levels of migration can lead to a downward bias in the estimate of separation time.
Ahmad, Faiz; Hanafi, Mohamed Musa; Hakim, Md Abdul; Rafii, Mohd Y.; Arolu, Ibrahim Wasiu; Akmar Abdullah, Siti Nor
2015-01-01
Coloured rice genotypes have greater nutritious value and consumer demand for these varieties is now greater than ever. The documentation of these genotypes is important for the improvement of the rice plant. In this study, 42 coloured rice genotypes were selected for determination of their genetic divergence using 25 simple sequence repeat (SSR) primers and 15 agro-morphological traits. Twenty-one out of the 25 SSR primers showed distinct, reproducible polymorphism. A dendrogram constructed using the SSR primers clustered the 42 coloured rice genotypes into 7 groups. Further, principle component analysis showed 75.28% of total variations were explained by the first—three components. All agro-morphological traits showed significant difference at the (p≤0.05) and (p≤0.01) levels. From the dendrogram constructed using the agro-morphological traits, all the genotypes were clustered into four distinct groups. Pearson’s correlation coefficient showed that among the 15 agro-morphological traits, the yield contributing factor had positive correlation with the number of tillers, number of panicles, and panicle length. The heritability of the 15 traits ranged from 17.68 to 99.69%. Yield per plant and harvest index showed the highest value for both heritability and genetic advance. The information on the molecular and agro-morphological traits can be used in rice breeding programmes to improve nutritional value and produce higher yields. PMID:26393807
Many-body localization transition: Schmidt gap, entanglement length, and scaling
NASA Astrophysics Data System (ADS)
Gray, Johnnie; Bose, Sougato; Bayat, Abolfazl
2018-05-01
Many-body localization has become an important phenomenon for illuminating a potential rift between nonequilibrium quantum systems and statistical mechanics. However, the nature of the transition between ergodic and localized phases in models displaying many-body localization is not yet well understood. Assuming that this is a continuous transition, analytic results show that the length scale should diverge with a critical exponent ν ≥2 in one-dimensional systems. Interestingly, this is in stark contrast with all exact numerical studies which find ν ˜1 . We introduce the Schmidt gap, new in this context, which scales near the transition with an exponent ν >2 compatible with the analytical bound. We attribute this to an insensitivity to certain finite-size fluctuations, which remain significant in other quantities at the sizes accessible to exact numerical methods. Additionally, we find that a physical manifestation of the diverging length scale is apparent in the entanglement length computed using the logarithmic negativity between disjoint blocks.
Neto, Júlio M.; Gordinho, Luís; Belda, Eduardo J.; Marín, Marcial; Monrós, Juan S.; Fearon, Peter; Crates, Ross
2013-01-01
Divergent selection and local adaptation are responsible for many phenotypic differences between populations, potentially leading to speciation through the evolution of reproductive barriers. Here we evaluated the morphometric divergence among west European populations of Reed Bunting in order to determine the extent of local adaptation relative to two important selection pressures often associated with speciation in birds: migration and diet. We show that, as expected by theory, migratory E. s. schoeniclus had longer and more pointed wings and a slightly smaller body mass than the resident subspecies, with the exception of E. s. lusitanica, which despite having rounder wings was the smallest of all subspecies. Tail length, however, did not vary according to the expectation (shorter tails in migrants) probably because it is strongly correlated with wing length and might take longer to evolve. E. s. witherbyi, which feed on insects hiding inside reed stems during the winter, had a very thick, stubby bill. In contrast, northern populations, which feed on seeds, had thinner bills. Despite being much smaller, the southern E. s. lusitanica had a significantly thicker, longer bill than migratory E. s. schoeniclus, whereas birds from the UK population had significantly shorter, thinner bills. Geometric morphometric analyses revealed that the southern subspecies have a more convex culmen than E. s. schoeniclus, and E. s. lusitanica differs from the nominate subspecies in bill shape to a greater extent than in linear bill measurements, especially in males. Birds with a more convex culmen are thought to exert a greater strength at the bill tip, which is in agreement with their feeding technique. Overall, the three subspecies occurring in Western Europe differ in a variety of traits following the patterns predicted from their migratory and foraging behaviours, strongly suggesting that these birds have became locally adapted through natural selection. PMID:23667594
ERIC Educational Resources Information Center
Kharkhurin, Anatoliy V.
2008-01-01
The study argues that, in addition to advantages in conscious attention-demanding processing, bilinguals may also exhibit enhanced unconscious divergent thinking. To investigate this issue, the performance of Russian-English bilingual immigrants and English monolingual native speakers was compared on the Abbreviated Torrance Test for Adults, which…
Fitness consequences of artificial selection on relative male genital size
Booksmythe, Isobel; Head, Megan L.; Keogh, J. Scott; Jennions, Michael D.
2016-01-01
Male genitalia often show remarkable differences among related species in size, shape and complexity. Across poeciliid fishes, the elongated fin (gonopodium) that males use to inseminate females ranges from 18 to 53% of body length. Relative genital size therefore varies greatly among species. In contrast, there is often tight within-species allometric scaling, which suggests strong selection against genital–body size combinations that deviate from a species' natural line of allometry. We tested this constraint by artificially selecting on the allometric intercept, creating lines of males with relatively longer or shorter gonopodia than occur naturally for a given body size in mosquitofish, Gambusia holbrooki. We show that relative genital length is heritable and diverged 7.6–8.9% between our up-selected and down-selected lines, with correlated changes in body shape. However, deviation from the natural line of allometry does not affect male success in assays of attractiveness, swimming performance and, crucially, reproductive success (paternity). PMID:27188478
Scale Effects in the Flow of a Shear-Thinning Fluid in Geological Fractures
NASA Astrophysics Data System (ADS)
Meheust, Y.; Roques, C.; Le Borgne, T.; Selker, J. S.
2017-12-01
Subsurface flow processes involving non-Newtonian fluids play a major role in many engineering applications, from in-situ remediation to enhanced oil recovery. The fluids of interest in such applications (f.e., polymers in remediation) often present shear-thinning properties, i.e., their viscosity decreases as a function of the local shear rate. We investigate how fracture wall roughness impacts the flow of a shear-thinning fluid. Numerical simulations of flow in 3D geological fractures are carried out by solving a modified Navier-Stokes equation incorporating the Carreau viscous-shear model. The numerical fractures consist of two isotropic self-affine surfaces which are correlated with each other above a characteristic scale (thecorrelation length of Méheust et al. PAGEOPH 2003). Perfect plastic closing is assumed when the surfaces are in contact. The statistical parameters describing a fracture are the standard deviation of the wall roughness, the mean aperture, the correlation length, and the fracture length, the Hurst exponent being fixed (equal to 0.8). The objective is to investigate how varying the correlation length impacts the flow behavior, for different degrees of closure, and how this behavior diverges from what is known for Newtonian fluids. The results from the 3D simulations are also compared to 2D simulations based on the lubrication theory, which we have developed as an extension of the Reynolds equation for Newtonian fluids. These 2D simulations run orders of magnitude faster, which allows considering a significant statistics of fractures of identical statistical parameters, and therefore draw general conclusions despite the large stochasticity of the media. We also discuss the implications of our results for solute transport by such flows. References:Méheust, Y., & Schmittbuhl, J. (2003). Scale effects related to flow in rough fractures. Pure and Applied Geophysics, 160(5-6), 1023-1050.
Takahashi, Daiki; Teramine, Tsutomu; Sakaguchi, Shota; Setoguchi, Hiroaki
2018-01-25
Clines, the gradual variation in measurable traits along a geographical axis, play a major role in evolution and can contribute to our understanding of the relative roles of selective and neutral process in trait variation. Using genetic and morphological analyses, the relative contributions of neutral and non-neutral processes were explored to infer the evolutionary history of species of the series Sakawanum (genus Asarum), which shows significant clinal variation in calyx lobe length. A total of 27 populations covering the natural geographical distribution of the series Sakawanum were sampled. Six nuclear microsatellite markers were used to investigate genetic structure and genetic diversity. The lengths of calyx lobes of multiple populations were measured to quantify their geographical and taxonomic differentiation. To detect the potential impact of selective pressure, morphological differentiation was compared with genetic differentiation (QCT-FST comparison). Average calyx lobe length of A. minamitanianum was 124.11 mm, while that of A. costatum was 13.80 mm. Though gradually changing along the geographical axis within series, calyx lobe lengths were significantly differentiated among the taxa. Genetic differentiation between taxa was low (FST = 0.099), but a significant geographical structure along the morphological cline was detected. Except for one taxon pair, pairwise QCT values were significantly higher than the neutral genetic measures of FST and G'ST. Divergent selection may have driven the calyx lobe length variation in series Sakawanum taxa, although the underlying mechanism is still not clear. The low genetic differentiation indicates recent divergence and/or gene flows between geographically close taxa. These neutral processes would also affect the clinal variation in calyx lobe lengths. Overall, this study implies the roles of population history and divergent selection in shaping the current cline of a flower trait in the series Sakawanum. © The Author(s) 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
A numerical investigation of the interplay between fireline length, geometry, and rate of spread
J. M. Canfield; R. R. Linn; J. A. Sauer; M. Finney; J. Forthofer
2014-01-01
The current study focuses on coupled dynamics and resultant geometry of fireline segments of various ignition lengths. As an example, for ignition lines of length scales typical for field experiments, fireline curvature is the result of a competition between the head fire and the flanks of the fire. A number of physical features (i.e. buoyancy and wind field divergence...
Recombinant transfer in the basic genome of E. coli
Dixit, Purushottam; Studier, F. William; Pang, Tin Yau; ...
2015-07-07
An approximation to the ~4-Mbp basic genome shared by 32 strains of E. coli representing six evolutionary groups has been derived and analyzed computationally. A multiple-alignment of the 32 complete genome sequences was filtered to remove mobile elements and identify the most reliable ~90% of the aligned length of each of the resulting 496 basic-genome pairs. Patterns of single bp mutations (SNPs) in aligned pairs distinguish clonally inherited regions from regions where either genome has acquired DNA fragments from diverged genomes by homologous recombination since their last common ancestor. Such recombinant transfer is pervasive across the basic genome, mostly betweenmore » genomes in the same evolutionary group, and generates many unique mosaic patterns. The six least-diverged genome-pairs have one or two recombinant transfers of length ~40–115 kbp (and few if any other transfers), each containing one or more gene clusters known to confer strong selective advantage in some environments. Moderately diverged genome pairs (0.4–1% SNPs) show mosaic patterns of interspersed clonal and recombinant regions of varying lengths throughout the basic genome, whereas more highly diverged pairs within an evolutionary group or pairs between evolutionary groups having >1.3% SNPs have few clonal matches longer than a few kbp. Many recombinant transfers appear to incorporate fragments of the entering DNA produced by restriction systems of the recipient cell. A simple computational model can closely fit the data. As a result, most recombinant transfers seem likely to be due to generalized transduction by co-evolving populations of phages, which could efficiently distribute variability throughout bacterial genomes.« less
Recombinant transfer in the basic genome of E. coli
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dixit, Purushottam; Studier, F. William; Pang, Tin Yau
An approximation to the ~4-Mbp basic genome shared by 32 strains of E. coli representing six evolutionary groups has been derived and analyzed computationally. A multiple-alignment of the 32 complete genome sequences was filtered to remove mobile elements and identify the most reliable ~90% of the aligned length of each of the resulting 496 basic-genome pairs. Patterns of single bp mutations (SNPs) in aligned pairs distinguish clonally inherited regions from regions where either genome has acquired DNA fragments from diverged genomes by homologous recombination since their last common ancestor. Such recombinant transfer is pervasive across the basic genome, mostly betweenmore » genomes in the same evolutionary group, and generates many unique mosaic patterns. The six least-diverged genome-pairs have one or two recombinant transfers of length ~40–115 kbp (and few if any other transfers), each containing one or more gene clusters known to confer strong selective advantage in some environments. Moderately diverged genome pairs (0.4–1% SNPs) show mosaic patterns of interspersed clonal and recombinant regions of varying lengths throughout the basic genome, whereas more highly diverged pairs within an evolutionary group or pairs between evolutionary groups having >1.3% SNPs have few clonal matches longer than a few kbp. Many recombinant transfers appear to incorporate fragments of the entering DNA produced by restriction systems of the recipient cell. A simple computational model can closely fit the data. As a result, most recombinant transfers seem likely to be due to generalized transduction by co-evolving populations of phages, which could efficiently distribute variability throughout bacterial genomes.« less
NASA Astrophysics Data System (ADS)
Devade, Kiran D.; Pise, Ashok T.
2017-01-01
Ranque Hilsch vortex tube is a device that can produce cold and hot air streams simultaneously from pressurized air. Performance of vortex tube is influenced by a number of geometrical and operational parameters. In this study parametric analysis of vortex tube is carried out. Air is used as the working fluid and geometrical parameters like length to diameter ratio (15, 16, 17, 18), exit valve angles (30°-90°), orifice diameters (5, 6 and 7 mm), 2 entry nozzles and tube divergence angle 4° is used for experimentation. Operational parameters like pressure (200-600 kPa), cold mass fraction (0-1) is varied and effect of Mach number at the inlet of the tube is investigated. The vortex tube is tested at sub sonic (0 < Ma < 1), sonic (Ma = 1) and supersonic (1 < Ma < 2) Mach number, and its effect on thermal performance is analysed. As a result it is observed that, higher COP and low cold end temperature is obtained at subsonic Ma. As CMF increases, COP rises and cold and temperature drops. Optimum performance of the tube is observed for CMF up to 0.5. Experimental correlations are proposed for optimum COP. Parametric correlation is developed for geometrical and operational parameters.
Predicting Work Activities with Divergent Thinking Tests: A Longitudinal Study
ERIC Educational Resources Information Center
Clapham, Maria M.; Cowdery, Edwina M.; King, Kelly E.; Montang, Melissa A.
2005-01-01
This study examined whether divergent thinking test scores obtained from engineering students during college predicted creative work activities fifteen years later. Results showed that a subscore of the "Owens Creativity Test", which assesses divergent thinking about mechanical objects, correlated significantly with self-ratings of…
Static internal performance of a two-dimensional convergent-divergent nozzle with thrust vectoring
NASA Technical Reports Server (NTRS)
Bare, E. Ann; Reubush, David E.
1987-01-01
A parametric investigation of the static internal performance of multifunction two-dimensional convergent-divergent nozzles has been made in the static test facility of the Langley 16-Foot Transonic Tunnel. All nozzles had a constant throat area and aspect ratio. The effects of upper and lower flap angles, divergent flap length, throat approach angle, sidewall containment, and throat geometry were determined. All nozzles were tested at a thrust vector angle that varied from 5.60 tp 23.00 deg. The nozzle pressure ratio was varied up to 10 for all configurations.
NASA Astrophysics Data System (ADS)
Korenev, Vladimir V.; Savelyev, Artem V.; Zhukov, Alexey E.; Maximov, Mikhail V.; Omelchenko, Alexander V.
2015-05-01
Ways to improve beam divergence and energy consumption of quantum dot lasers emitting via the ground-state optical transitions by optimization of the key parameters of laser active region are discussed. It is shown that there exist an optimal cavity length, dispersion of inhomogeneous broadening and number of QD layers in active region allowing to obtain lasing spectrum of a given width at minimum injection current. The planar dielectric waveguide of the laser is optimized by analytical means for a better trade-off between high Γ-factor and low beam divergence.
Space and time renormalization in phase transition dynamics
Francuz, Anna; Dziarmaga, Jacek; Gardas, Bartłomiej; ...
2016-02-18
Here, when a system is driven across a quantum critical point at a constant rate, its evolution must become nonadiabatic as the relaxation time τ diverges at the critical point. According to the Kibble-Zurek mechanism (KZM), the emerging post-transition excited state is characterized by a finite correlation length ξˆ set at the time tˆ=τˆ when the critical slowing down makes it impossible for the system to relax to the equilibrium defined by changing parameters. This observation naturally suggests a dynamical scaling similar to renormalization familiar from the equilibrium critical phenomena. We provide evidence for such KZM-inspired spatiotemporal scaling by investigatingmore » an exact solution of the transverse field quantum Ising chain in the thermodynamic limit.« less
ERIC Educational Resources Information Center
Furnham, Adrian
2015-01-01
This research examined the personality trait and personality disorder correlates of creative potential, as assessed by a divergent thinking (DT) test. Over 4,000 adult managers attending an assessment center completed a battery of tests including a "bright side," normal personality trait measures (NEO Personality Inventory-Revised, or…
Isolated pores dissected from human two-pore channel 2 are functional
Penny, Christopher J.; Rahman, Taufiq; Sula, Altin; Miles, Andrew J.; Wallace, B. A.; Patel, Sandip
2016-01-01
Multi-domain voltage-gated ion channels appear to have evolved through sequential rounds of intragenic duplication from a primordial one-domain precursor. Whereas modularity within one-domain symmetrical channels is established, little is known about the roles of individual regions within more complex asymmetrical channels where the domains have undergone substantial divergence. Here we isolated and characterised both of the divergent pore regions from human TPC2, a two-domain channel that holds a key intermediate position in the evolution of voltage-gated ion channels. In HeLa cells, each pore localised to the ER and caused Ca2+ depletion, whereas an ER-targeted pore mutated at a residue that inactivates full-length TPC2 did not. Additionally, one of the pores expressed at high levels in E. coli. When purified, it formed a stable, folded tetramer. Liposomes reconstituted with the pore supported Ca2+ and Na+ uptake that was inhibited by known blockers of full-length channels. Computational modelling of the pore corroborated cationic permeability and drug interaction. Therefore, despite divergence, both pores are constitutively active in the absence of their partners and retain several properties of the wild-type pore. Such symmetrical ‘pore-only’ proteins derived from divergent channel domains may therefore provide tractable tools for probing the functional architecture of complex ion channels. PMID:27941820
Isolated pores dissected from human two-pore channel 2 are functional.
Penny, Christopher J; Rahman, Taufiq; Sula, Altin; Miles, Andrew J; Wallace, B A; Patel, Sandip
2016-12-12
Multi-domain voltage-gated ion channels appear to have evolved through sequential rounds of intragenic duplication from a primordial one-domain precursor. Whereas modularity within one-domain symmetrical channels is established, little is known about the roles of individual regions within more complex asymmetrical channels where the domains have undergone substantial divergence. Here we isolated and characterised both of the divergent pore regions from human TPC2, a two-domain channel that holds a key intermediate position in the evolution of voltage-gated ion channels. In HeLa cells, each pore localised to the ER and caused Ca 2+ depletion, whereas an ER-targeted pore mutated at a residue that inactivates full-length TPC2 did not. Additionally, one of the pores expressed at high levels in E. coli. When purified, it formed a stable, folded tetramer. Liposomes reconstituted with the pore supported Ca 2+ and Na + uptake that was inhibited by known blockers of full-length channels. Computational modelling of the pore corroborated cationic permeability and drug interaction. Therefore, despite divergence, both pores are constitutively active in the absence of their partners and retain several properties of the wild-type pore. Such symmetrical 'pore-only' proteins derived from divergent channel domains may therefore provide tractable tools for probing the functional architecture of complex ion channels.
Anisotropic capillary barrier for waste site surface covers
Stormont, J.C.
1996-08-27
Waste sites are capped or covered upon closure. The cover structure incorporates a number of different layers each having a contributory function. One such layer is the barrier layer. Traditionally the barriers have been compacted soil and geosynthetics. These types of barriers have not been successfully implemented in unsaturated ground conditions like those found in dry climates. Capillary barriers have been proposed as barrier layers in dry environments, but the divergence length of these barriers has been found to be inadequate. An alternative to the capillary barrier is a anisotropic capillary barrier. An anisotropic capillary barrier has an increased divergence length which results in more water being diverted laterally preventing the majority of water from percolating in a downward direction through the barrier. 10 figs.
Anisotropic capillary barrier for waste site surface covers
Stormont, John C.
1996-01-01
Waste sites are capped or covered upon closure. The cover structure incorporates a number of different layers each having a contributory function. One such layer is the barrier layer. Traditionally the barriers have been compacted soil and geosynthetics. These types of barriers have not been successfully implemented in unsaturated ground conditions like those found in dry climates. Capillary barriers have been proposed as barrier layers in dry environments, but the divergence length of these barriers has been found to be inadequate. An alternative to the capillary barrier is a anisotropic capillary barrier. An anisotropic capillary barrier has an increased divergence length which results in more water being diverted laterally preventing the majority of water from percolating in a downward direction through the barrier.
Singh, R R P; Young, A P
2017-08-01
We study the ±J transverse-field Ising spin-glass model at zero temperature on d-dimensional hypercubic lattices and in the Sherrington-Kirkpatrick (SK) model, by series expansions around the strong-field limit. In the SK model and in high dimensions our calculated critical properties are in excellent agreement with the exact mean-field results, surprisingly even down to dimension d=6, which is below the upper critical dimension of d=8. In contrast, at lower dimensions we find a rich singular behavior consisting of critical and Griffiths-McCoy singularities. The divergence of the equal-time structure factor allows us to locate the critical coupling where the correlation length diverges, implying the onset of a thermodynamic phase transition. We find that the spin-glass susceptibility as well as various power moments of the local susceptibility become singular in the paramagnetic phase before the critical point. Griffiths-McCoy singularities are very strong in two dimensions but decrease rapidly as the dimension increases. We present evidence that high enough powers of the local susceptibility may become singular at the pure-system critical point.
Colombelli-Négrel, Diane
2016-11-01
Morphological variation between populations of the same species can arise as a response to genetic variation, local environmental conditions, or a combination of both. In this study, I examined small-scale geographic variation in bill size and body mass in little penguins ( Eudyptula minor ) across five breeding colonies in South Australia separated by <150 km. To help understand patterns driving the differences, I investigated these variations in relation to environmental parameters (air temperature, sea surface temperature, and water depth) and geographic distances between the colonies. I found substantial morphological variation among the colonies for body mass and bill measurements (except bill length). Colonies further located from each other showed greater morphological divergence overall than adjacent colonies. In addition, phenotypic traits were somewhat correlated to environmental parameters. Birds at colonies surrounded by hotter sea surface temperatures were heavier with longer and larger bills. Birds with larger and longer bills were also found at colonies surrounded by shallower waters. Overall, the results suggest that both environmental factors (natural selection) and interpopulation distances (isolation by distance) are causes of phenotypic differentiation between South Australian little penguin colonies.
NASA Astrophysics Data System (ADS)
Singh, R. R. P.; Young, A. P.
2017-08-01
We study the ±J transverse-field Ising spin-glass model at zero temperature on d -dimensional hypercubic lattices and in the Sherrington-Kirkpatrick (SK) model, by series expansions around the strong-field limit. In the SK model and in high dimensions our calculated critical properties are in excellent agreement with the exact mean-field results, surprisingly even down to dimension d =6 , which is below the upper critical dimension of d =8 . In contrast, at lower dimensions we find a rich singular behavior consisting of critical and Griffiths-McCoy singularities. The divergence of the equal-time structure factor allows us to locate the critical coupling where the correlation length diverges, implying the onset of a thermodynamic phase transition. We find that the spin-glass susceptibility as well as various power moments of the local susceptibility become singular in the paramagnetic phase before the critical point. Griffiths-McCoy singularities are very strong in two dimensions but decrease rapidly as the dimension increases. We present evidence that high enough powers of the local susceptibility may become singular at the pure-system critical point.
Wittemyer, George; Polansky, Leo; Douglas-Hamilton, Iain; Getz, Wayne M.
2008-01-01
The internal state of an individual—as it relates to thirst, hunger, fear, or reproductive drive—can be inferred by referencing points on its movement path to external environmental and sociological variables. Using time-series approaches to characterize autocorrelative properties of step-length movements collated every 3 h for seven free-ranging African elephants, we examined the influence of social rank, predation risk, and seasonal variation in resource abundance on periodic properties of movement. The frequency domain methods of Fourier and wavelet analyses provide compact summaries of temporal autocorrelation and show both strong diurnal and seasonal based periodicities in the step-length time series. This autocorrelation is weaker during the wet season, indicating random movements are more common when ecological conditions are good. Periodograms of socially dominant individuals are consistent across seasons, whereas subordinate individuals show distinct differences diverging from that of dominants during the dry season. We link temporally localized statistical properties of movement to landscape features and find that diurnal movement correlation is more common within protected wildlife areas, and multiday movement correlations found among lower ranked individuals are typically outside of protected areas where predation risks are greatest. A frequency-related spatial analysis of movement-step lengths reveal that rest cycles related to the spatial distribution of critical resources (i.e., forage and water) are responsible for creating the observed patterns. Our approach generates unique information regarding the spatial-temporal interplay between environmental and individual characteristics, providing an original approach for understanding the movement ecology of individual animals and the spatial organization of animal populations. PMID:19060207
Entanglement scaling at first order quantum phase transitions
NASA Astrophysics Data System (ADS)
Yuste, A.; Cartwright, C.; De Chiara, G.; Sanpera, A.
2018-04-01
First order quantum phase transitions (1QPTs) are signalled, in the thermodynamic limit, by discontinuous changes in the ground state properties. These discontinuities affect expectation values of observables, including spatial correlations. When a 1QPT is crossed in the vicinity of a second order one, due to the correlation length divergence of the latter, the corresponding ground state is modified and it becomes increasingly difficult to determine the order of the transition when the size of the system is finite. Here we show that, in such situations, it is possible to apply finite size scaling (FSS) to entanglement measures, as it has recently been done for the order parameters and the energy gap, in order to recover the correct thermodynamic limit (Campostrini et al 2014 Phys. Rev. Lett. 113 070402). Such a FSS can unambiguously discriminate between first and second order phase transitions in the vicinity of multicritical points even when the singularities displayed by entanglement measures lead to controversial results.
[The facial muscles of insectivora. I. Erinaceus europaeus and Talpa europaea].
Meinertz, T
1978-01-01
This investigation includes the area of n. facialis in Erinaceus europaeus and Talpa europaea. It is indicated that the topography of muscles diverges considerably from the equally conditions in Rodentia, Carnivora, and Ungulata. The dorsal length musculature thus is an almost undivided mass of muscles in the 2 investigated species as also the laterally and ventrally situated musculature at certain points diverges from the conditions within other above mentioned animal groups.
Density profiles of the exclusive queuing process
NASA Astrophysics Data System (ADS)
Arita, Chikashi; Schadschneider, Andreas
2012-12-01
The exclusive queuing process (EQP) incorporates the exclusion principle into classic queuing models. It is characterized by, in addition to the entrance probability α and exit probability β, a third parameter: the hopping probability p. The EQP can be interpreted as an exclusion process of variable system length. Its phase diagram in the parameter space (α,β) is divided into a convergent phase and a divergent phase by a critical line which consists of a curved part and a straight part. Here we extend previous studies of this phase diagram. We identify subphases in the divergent phase, which can be distinguished by means of the shape of the density profile, and determine the velocity of the system length growth. This is done for EQPs with different update rules (parallel, backward sequential and continuous time). We also investigate the dynamics of the system length and the number of customers on the critical line. They are diffusive or subdiffusive with non-universal exponents that also depend on the update rules.
Pauw, Anton; Kahnt, Belinda; Kuhlmann, Michael; Michez, Denis; Montgomery, Graham A; Murray, Elizabeth; Danforth, Bryan N
2017-09-13
Adaptation is evolution in response to natural selection. Hence, an adaptation is expected to originate simultaneously with the acquisition of a particular selective environment. Here we test whether long legs evolve in oil-collecting Rediviva bees when they come under selection by long-spurred, oil-secreting flowers. To quantify the selective environment, we drew a large network of the interactions between Rediviva species and oil-secreting plant species. The selective environment of each bee species was summarized as the average spur length of the interacting plant species weighted by interaction frequency. Using phylogenetically independent contrasts, we calculated divergence in selective environment and evolutionary divergence in leg length between sister species (and sister clades) of Rediviva We found that change in the selective environment explained 80% of evolutionary change in leg length, with change in body size contributing an additional 6% of uniquely explained variance. The result is one of four proposed steps in testing for plant-pollinator coevolution. © 2017 The Author(s).
NASA Astrophysics Data System (ADS)
Feng, Xiao-Li; Li, Yu-Xiao; Gu, Jian-Zhong; Zhuo, Yi-Zhong
2009-10-01
The relaxation property of both Eigen model and Crow-Kimura model with a single peak fitness landscape is studied from phase transition point of view. We first analyze the eigenvalue spectra of the replication mutation matrices. For sufficiently long sequences, the almost crossing point between the largest and second-largest eigenvalues locates the error threshold at which critical slowing down behavior appears. We calculate the critical exponent in the limit of infinite sequence lengths and compare it with the result from numerical curve fittings at sufficiently long sequences. We find that for both models the relaxation time diverges with exponent 1 at the error (mutation) threshold point. Results obtained from both methods agree quite well. From the unlimited correlation length feature, the first order phase transition is further confirmed. Finally with linear stability theory, we show that the two model systems are stable for all ranges of mutation rate. The Eigen model is asymptotically stable in terms of mutant classes, and the Crow-Kimura model is completely stable.
Entanglement entropy in a boundary impurity model.
Levine, G C
2004-12-31
Boundary impurities are known to dramatically alter certain bulk properties of (1+1)-dimensional strongly correlated systems. The entanglement entropy of a zero temperature Luttinger liquid bisected by a single impurity is computed using a novel finite size scaling or bosonization scheme. For a Luttinger liquid of length 2L and UV cutoff epsilon, the boundary impurity correction (deltaSimp) to the logarithmic entanglement entropy (Sent proportional, variant lnL/epsilon scales as deltaSimp approximately yrlnL/epsilon, where yr is the renormalized backscattering coupling constant. In this way, the entanglement entropy within a region is related to scattering through the region's boundary. In the repulsive case (g<1), deltaSimp diverges (negatively) suggesting that the entropy vanishes. Our results are consistent with the recent conjecture that entanglement entropy decreases irreversibly along renormalization group flow.
Rigidity of a Vibrated Amorphous Bi-Dimensional Packing of Grains
NASA Astrophysics Data System (ADS)
Coulais, C.; Dauchot, O.
The Jamming transition can be seen as a general phenomenon occurring whenever a dense assembly of ``things'' gets stuck and resists to an externally applied shear stress. The mechanical response of a vibrated amorphous bi-dimensional packing of grains close to the Jamming transition is investigated. Stress is applied to the media through a constant torque rheometer while surface fraction is tuned around the jamming transition. The rheometer turns, no matter how low is the applied torque. However, its motion is strongly intermittent and displays scale invariance, the fluctuations being maximal at the Jamming transition, where dynamical correlation length had been found to be divergent. We compare our results to previous ones obtained while dragging an intruder at constant force in the same experimental set-up.
LOMBARDO, L.; VERONESI, F.; CANDOTTO, V.; NARDONE, M.; SICILIANI, G.
2017-01-01
SUMMARY Purpose. To determine the existence of any correlation between the degree of divergence and apical and coronal arch form using cone-beam computed tomography (CBCT). Materials and methods. A total of 176 (88 coronal and 88 apical) CBCT scans pertaining to a sample of 44 subjects (16 males and 28 females), of which 26 were Class I, 14 Class II and 4 Class III, were analysed. A lateral projection of the skull was obtained from each VCT and cephalometric tracing was performed (according to Ricketts) so as to divide the sample into subgroups based on the degree of divergence (11 short-faced, 18 norm-faced and 15 long-faced subjects). Dahlberg’s index values were calculated and Student’s t-test for paired data was applied. Results. On the whole, the hyperbolic cosine curve was found to be the most representative of the arch forms considered. Conclusions. A correlation between degree of divergence and the arch form of the apical and, especially, coronal portions of both the upper and lower jaws was revealed. PMID:29682260
A New Species of Microhyla (Anura: Microhylidae) from Nilphamari, Bangladesh
Howlader, Mohammad Sajid Ali; Nair, Abhilash; Gopalan, Sujith V.; Merilä, Juha
2015-01-01
A new species of Microhyla frog from the Nilphamari district of Bangladesh is described and compared with its morphologically similar and geographically proximate congeners. Molecular phylogeny derived from mitochondrial DNA sequences revealed that although the new species – designated here as Microhyla nilphamariensis sp. nov. – forms a clade with M. ornate, it is highly divergent from M. ornata and all of its congeners, with 5.7 – 13.2% sequence divergence at the 16S rRNA gene. The new species can be identified phenotypically on the basis of a set of diagnostic (both qualitative and quantitative) characters as follows: head length is 77% of head width, distance from front of eyes to the nostril is roughly six times greater than nostril–snout length, internarial distance is roughly five times greater than nostril–snout length, interorbital distance is two times greater than internarial distance, and distance from back of mandible to back of the eye is 15% of head length. Furthermore, inner metacarpal tubercle is small and ovoid-shaped, whereas outer metacarpal tubercle is very small and rounded. Toes have rudimentary webbing, digital discs are absent, inner metatarsal tubercle is small and round, outer metatarsal tubercle is ovoid-shaped, minute, and indistinct. PMID:25806804
[Facial muscles of insectivora. ii. pachyura indica and sorex araneus].
Meinertz, T
1978-01-01
The investigation includes the area of facialis in Erinaceus europaeus, Talpa europaea, Pachyura indica and Sorex araneus. It is indicated that the topography of muscles diverges considerably from the equal conditions in Rodentia, Carnivoar and Ungulata . The dorsal length musculature thus is almost an undivided mass of muscles by the 4 species investigated as also the laterally and ventrally situated musculature at certain points diverges from the conditions within other above mentioned animal groups.
Perturbative Normal Form Theory for the 2D Random-Field Ising Model
NASA Astrophysics Data System (ADS)
Hayden, Lorien; Raju, Archishman; Sethna, James
Bifurcation theory is important to explain scaling in many systems. For the equilibrium random-field Ising model (RFIM) in 2D, the exponentially diverging correlation length can be derived directly from the RG flows which form a pitchfork bifurcation: dw/dl = -ɛ/2 w +w3 (Bray and Moore 1985). Our perturbative normal form theory (PNFT) predicts a term w5 to be critical in describing the behavior - it cannot be removed through an analytic change of coordinates. The new form of the correlation length produced has been observed to occur in leading order without explanation (Meinke and Middleton 2005). Performing simulations of the non-equilibrium RFIM on a Voronoi lattice uncovers a transcritical bifurcation of the form dw/dl = -ɛ/2 w +w2 + Bw3 . The RG flows determined by PNFT in this case lead directly to a form for the appropriate invariant scaling combination: s exp (- 1 / σνw) (1/w + B) C + B / σν . Using this scaling combination yields a collapse which was not possible to achieve using standard methods such as Widom scaling arguments. Further, the scaling extends over a decade in the magnitude of the disorder and explains behavior down to avalanche sizes of three, the edge of complexity. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No . DGE-1144153 and a Cornell Fellowship.
Parallel Computation of Flow in Heterogeneous Media Modelled by Mixed Finite Elements
NASA Astrophysics Data System (ADS)
Cliffe, K. A.; Graham, I. G.; Scheichl, R.; Stals, L.
2000-11-01
In this paper we describe a fast parallel method for solving highly ill-conditioned saddle-point systems arising from mixed finite element simulations of stochastic partial differential equations (PDEs) modelling flow in heterogeneous media. Each realisation of these stochastic PDEs requires the solution of the linear first-order velocity-pressure system comprising Darcy's law coupled with an incompressibility constraint. The chief difficulty is that the permeability may be highly variable, especially when the statistical model has a large variance and a small correlation length. For reasonable accuracy, the discretisation has to be extremely fine. We solve these problems by first reducing the saddle-point formulation to a symmetric positive definite (SPD) problem using a suitable basis for the space of divergence-free velocities. The reduced problem is solved using parallel conjugate gradients preconditioned with an algebraically determined additive Schwarz domain decomposition preconditioner. The result is a solver which exhibits a good degree of robustness with respect to the mesh size as well as to the variance and to physically relevant values of the correlation length of the underlying permeability field. Numerical experiments exhibit almost optimal levels of parallel efficiency. The domain decomposition solver (DOUG, http://www.maths.bath.ac.uk/~parsoft) used here not only is applicable to this problem but can be used to solve general unstructured finite element systems on a wide range of parallel architectures.
Fraiman, Daniel; Chialvo, Dante R.
2012-01-01
The study of spontaneous fluctuations of brain activity, often referred as brain noise, is getting increasing attention in functional magnetic resonance imaging (fMRI) studies. Despite important efforts, much of the statistical properties of such fluctuations remain largely unknown. This work scrutinizes these fluctuations looking at specific statistical properties which are relevant to clarify its dynamical origins. Here, three statistical features which clearly differentiate brain data from naive expectations for random processes are uncovered: First, the variance of the fMRI mean signal as a function of the number of averaged voxels remains constant across a wide range of observed clusters sizes. Second, the anomalous behavior of the variance is originated by bursts of synchronized activity across regions, regardless of their widely different sizes. Finally, the correlation length (i.e., the length at which the correlation strength between two regions vanishes) as well as mutual information diverges with the cluster's size considered, such that arbitrarily large clusters exhibit the same collective dynamics than smaller ones. These three properties are known to be exclusive of complex systems exhibiting critical dynamics, where the spatio-temporal dynamics show these peculiar type of fluctuations. Thus, these findings are fully consistent with previous reports of brain critical dynamics, and are relevant for the interpretation of the role of fluctuations and variability in brain function in health and disease. PMID:22934058
NASA Technical Reports Server (NTRS)
Re, R. J.; Leavitt, L. D.
1984-01-01
The effects of geometric design parameters on two dimensional convergent-divergent nozzles were investigated at nozzle pressure ratios up to 12 in the static test facility. Forward flight (dry and afterburning power settings), vectored-thrust (afterburning power setting), and reverse-thrust (dry power setting) nozzles were investigated. The nozzles had thrust vector angles from 0 deg to 20.26 deg, throat aspect ratios of 3.696 to 7.612, throat radii from sharp to 2.738 cm, expansion ratios from 1.089 to 1.797, and various sidewall lengths. The results indicate that unvectored two dimensional convergent-divergent nozzles have static internal performance comparable to axisymmetric nozzles with similar expansion ratios.
Mesoscopic Length Scale Controls the Rheology of Dense Suspensions
NASA Astrophysics Data System (ADS)
Bonnoit, Claire; Lanuza, Jose; Lindner, Anke; Clement, Eric
2010-09-01
From the flow properties of dense granular suspensions on an inclined plane, we identify a mesoscopic length scale strongly increasing with volume fraction. When the flowing layer height is larger than this length scale, a diverging Newtonian viscosity is determined. However, when the flowing layer height drops below this scale, we evidence a nonlocal effective viscosity, decreasing as a power law of the flow height. We establish a scaling relation between this mesoscopic length scale and the suspension viscosity. These results support recent theoretical and numerical results implying collective and clustered granular motion when the jamming point is approached from below.
Mesoscopic length scale controls the rheology of dense suspensions.
Bonnoit, Claire; Lanuza, Jose; Lindner, Anke; Clement, Eric
2010-09-03
From the flow properties of dense granular suspensions on an inclined plane, we identify a mesoscopic length scale strongly increasing with volume fraction. When the flowing layer height is larger than this length scale, a diverging Newtonian viscosity is determined. However, when the flowing layer height drops below this scale, we evidence a nonlocal effective viscosity, decreasing as a power law of the flow height. We establish a scaling relation between this mesoscopic length scale and the suspension viscosity. These results support recent theoretical and numerical results implying collective and clustered granular motion when the jamming point is approached from below.
Lee, Ko-Huan; Shaner, Pei-Jen L; Lin, Yen-Po; Lin, Si-Min
2016-05-01
Acoustic signals for mating are important traits that could drive population differentiation and speciation. Ecology may play a role in acoustic divergence through direct selection (e.g., local adaptation to abiotic environment), constraint of correlated traits (e.g., acoustic traits linked to another trait under selection), and/or interspecific competition (e.g., character displacement). However, genetic drift alone can also drive acoustic divergence. It is not always easy to differentiate the role of ecology versus drift in acoustic divergence. In this study, we tested the role of ecology and drift in shaping geographic variation in the advertisement calls of Microhyla fissipes. We examined three predictions based on ecological processes: (1) the correlation between temperature and call properties across M. fissipes populations; (2) the correlation between call properties and body size across M. fissipes populations; and (3) reproductive character displacement (RCD) in call properties between M. fissipes populations that are sympatric with and allopatric to a congener M. heymonsi. To test genetic drift, we examined correlations among call divergence, geographic distance, and genetic distance across M. fissipes populations. We recorded the advertisement calls from 11 populations of M. fissipes in Taiwan, five of which are sympatrically distributed with M. heymonsi. We found geographic variation in both temporal and spectral properties of the advertisement calls of M. fissipes. However, the call properties were not correlated with local temperature or the callers' body size. Furthermore, we did not detect RCD. By contrast, call divergence, geographic distance, and genetic distance between M. fissipes populations were all positively correlated. The comparisons between phenotypic Q st (P st) and F st values did not show significant differences, suggesting a role of drift. We concluded that genetic drift, rather than ecological processes, is the more likely driver for the geographic variation in the advertisement calls of M. fissipes.
Medeiros, Juliana S; Burns, Jean H; Nicholson, Jaynell; Rogers, Louisa; Valverde-Barrantes, Oscar
2017-06-01
We explored trait-trait and trait-climate relationships for 27 Rhododendron species while accounting for phylogenetic relationships and within-species variation to investigate whether leaf and root traits are coordinated across environments and over evolutionary time, as part of a whole-plant economics spectrum. We examined specific leaf area (SLA) and four root traits: specific root length (SRL), specific root tip abundance (SRTA), first order diameter, and link average length, for plants growing in a cold, seasonal climate (Kirtland, Ohio) and a warmer, less seasonal climate (Federal Way, Washington) in the United States. We estimated a phylogeny and species' climate of origin, determined phylogenetic signal on mean traits and within-species variation, and used phylogenetically informed analysis to compare trait-trait and trait-climate relationships for deciduous and evergreen lineages. Mean SLA and within-species variation in SRL were more similar between close relatives than expected by chance. SLA and root traits differed according to climate of origin and across growth environments, though SLA differed within- and among-species less than roots. A negative SRL-SRTA correlation indicates investment in foraging scale vs. precision as a fundamental trade-off defining the root economic spectrum. Also, the deciduous clade exhibited a strong negative relationship between SLA and SRL, while evergreen clades showed a weaker positive or no relationship. Our work suggests that natural selection has shaped relationships between above- and belowground traits in genus Rhododendron and that leaf and root traits may evolve independently. Morphological decoupling may help explain habitat diversity among Rhododendron species, as well as the changes accompanying the divergence of deciduous and evergreen lineages. © 2017 Botanical Society of America.
Experimental Investigation of 'Transonic Resonance' with Convergent-Divergent Nozzles
NASA Technical Reports Server (NTRS)
Zaman, K. B. M. Q.; Dahl, M. D.; Bencic, T. J.; Zaman, Khairul (Technical Monitor)
2001-01-01
Convergent-divergent nozzles, when run at pressure ratios lower than the design value, often undergo a flow resonance accompanied by the emission of acoustic tones. The phenomenon, different in characteristics from conventional 'screech' tones, has been studied experimentally. Unlike screech, the frequency increases with increasing supply pressure. There is a 'staging' behavior; 'odd harmonic' stages resonate at lower pressures while the fundamental occurs in a range of higher pressures corresponding to a fully expanded Mach number (M(sub j)) around unity. The frequency (f(sub N)) variation with M(sub j) depends on the half angle-of-divergence (theta) of the nozzle. At smaller theta, the slope of f(sub N) versus M(sub j) curve becomes steeper. The resonance involves standing waves and is driven by unsteady shock/boundary layer interaction. The distance between the foot of the shock and the nozzle exit imposes the lengthscale (L'). The fundamental corresponds to a quarterwave resonance, the next stage at a lower supply pressure corresponds to a three-quarter-wave resonance, and so on. The principal trends in the frequency variation are explained simply from the characteristic variation of the length-scale L'. Based on the data, correlation equations are provided for the prediction of f(sub N). A striking feature is that tripping of the boundary layer near the nozzle's throat tends to suppress the resonance. In a practical nozzle a tendency for the occurrence of the phenomenon is thought to be a source of 'internal noise'; thus, there is a potential for noise benefit simply by appropriate boundary layer tripping near the nozzle's throat.
Kropáčková, Lucie; Těšický, Martin; Albrecht, Tomáš; Kubovčiak, Jan; Čížková, Dagmar; Tomášek, Oldřich; Martin, Jean-François; Bobek, Lukáš; Králová, Tereza; Procházka, Petr; Kreisinger, Jakub
2017-10-01
Vertebrate gut microbiota (GM) is comprised of a taxonomically diverse consortium of symbiotic and commensal microorganisms that have a pronounced effect on host physiology, immune system function and health status. Despite much research on interactions between hosts and their GM, the factors affecting inter- and intraspecific GM variation in wild populations are still poorly known. We analysed data on faecal microbiota composition in 51 passerine species (319 individuals) using Illumina MiSeq sequencing of bacterial 16S rRNA (V3-V4 variable region). Despite pronounced interindividual variation, GM composition exhibited significant differences at the interspecific level, accounting for approximately 20%-30% of total GM variation. We also observed a significant correlation between GM composition divergence and host's phylogenetic divergence, with strength of correlation higher than that of GM vs. ecological or life history traits and geographic variation. The effect of host's phylogeny on GM composition was significant, even after statistical control for these confounding factors. Hence, our data do not support codiversification of GM and passerine phylogeny solely as a by-product of their ecological divergence. Furthermore, our findings do not support that GM vs. host's phylogeny codiversification is driven primarily through trans-generational GM transfer as the GM vs. phylogeny correlation does not increase with higher sequence similarity used when delimiting operational taxonomic units. Instead, we hypothesize that the GM vs. phylogeny correlation may arise as a consequence of interspecific divergence of genes that directly or indirectly modulate composition of GM. © 2017 John Wiley & Sons Ltd.
Static internal performance of an axisymmetric nozzle with multiaxis thrust-vectoring capability
NASA Technical Reports Server (NTRS)
Carson, George T., Jr.; Capone, Francis J.
1991-01-01
An investigation was conducted in the static test facility of the Langley 16 Foot Transonic Tunnel in order to determine the internal performance characteristics of a multiaxis thrust vectoring axisymmetric nozzle. Thrust vectoring for this nozzle was achieved by deflection of only the divergent section of this nozzle. The effects of nozzle power setting and divergent flap length were studied at nozzle deflection angles of 0 to 30 at nozzle pressure ratios up to 8.0.
NASA Astrophysics Data System (ADS)
Sanders, Sören; Holthaus, Martin
2017-10-01
We study the connection between the exponent of the order parameter of the Mott insulator-to-superfluid transition occurring in the two-dimensional Bose-Hubbard model, and the divergence exponents of its one- and two-particle correlation functions. We find that at the multicritical points all divergence exponents are related to each other, allowing us to express the critical exponent in terms of one single divergence exponent. This approach correctly reproduces the critical exponent of the three-dimensional XY universality class. Because divergence exponents can be computed in an efficient manner by hypergeometric analytic continuation, our strategy is applicable to a wide class of systems.
Validity of three clinical performance assessments of internal medicine clerks.
Hull, A L; Hodder, S; Berger, B; Ginsberg, D; Lindheim, N; Quan, J; Kleinhenz, M E
1995-06-01
To analyze the construct validity of three methods to assess the clinical performances of internal medicine clerks. A multitrait-multimethod (MTMM) study was conducted at the Case Western Reserve University School of Medicine to determine the convergent and divergent validity of a clinical evaluation form (CEF) completed by faculty and residents, an objective structured clinical examination (OSCE), and the medicine subject test of the National Board of Medical Examiners. Three traits were involved in the analysis: clinical skills, knowledge, and personal characteristics. A correlation matrix was computed for 410 third-year students who completed the clerkship between August 1988 and July 1991. There was a significant (p < .01) convergence of the four correlations that assessed the same traits by using different methods. However, the four convergent correlations were of moderate magnitude (ranging from .29 to .47). Divergent validity was assessed by comparing the magnitudes of the convergence correlations with the magnitudes of correlations among unrelated assessments (i.e., different traits by different methods). Seven of nine possible coefficients were smaller than the convergent coefficients, suggesting evidence of divergent validity. A significant CEF method effect was identified. There was convergent validity and some evidence of divergent validity with a significant method effect. The findings were similar for correlations corrected for attenuation. Four conclusions were reached: (1) the reliability of the OSCE must be improved, (2) the CEF ratings must be redesigned to further discriminate among the specific traits assessed, (3) additional methods to assess personal characteristics must be instituted, and (4) several assessment methods should be used to evaluate individual student performances.
Rates of genomic divergence in humans, chimpanzees and their lice.
Johnson, Kevin P; Allen, Julie M; Olds, Brett P; Mugisha, Lawrence; Reed, David L; Paige, Ken N; Pittendrigh, Barry R
2014-02-22
The rate of DNA mutation and divergence is highly variable across the tree of life. However, the reasons underlying this variation are not well understood. Comparing the rates of genetic changes between hosts and parasite lineages that diverged at the same time is one way to begin to understand differences in genetic mutation and substitution rates. Such studies have indicated that the rate of genetic divergence in parasites is often faster than that of their hosts when comparing single genes. However, the variation in this relative rate of molecular evolution across different genes in the genome is unknown. We compared the rate of DNA sequence divergence between humans, chimpanzees and their ectoparasitic lice for 1534 protein-coding genes across their genomes. The rate of DNA substitution in these orthologous genes was on average 14 times faster for lice than for humans and chimpanzees. In addition, these rates were positively correlated across genes. Because this correlation only occurred for substitutions that changed the amino acid, this pattern is probably produced by similar functional constraints across the same genes in humans, chimpanzees and their ectoparasites.
Rates of genomic divergence in humans, chimpanzees and their lice
Johnson, Kevin P.; Allen, Julie M.; Olds, Brett P.; Mugisha, Lawrence; Reed, David L.; Paige, Ken N.; Pittendrigh, Barry R.
2014-01-01
The rate of DNA mutation and divergence is highly variable across the tree of life. However, the reasons underlying this variation are not well understood. Comparing the rates of genetic changes between hosts and parasite lineages that diverged at the same time is one way to begin to understand differences in genetic mutation and substitution rates. Such studies have indicated that the rate of genetic divergence in parasites is often faster than that of their hosts when comparing single genes. However, the variation in this relative rate of molecular evolution across different genes in the genome is unknown. We compared the rate of DNA sequence divergence between humans, chimpanzees and their ectoparasitic lice for 1534 protein-coding genes across their genomes. The rate of DNA substitution in these orthologous genes was on average 14 times faster for lice than for humans and chimpanzees. In addition, these rates were positively correlated across genes. Because this correlation only occurred for substitutions that changed the amino acid, this pattern is probably produced by similar functional constraints across the same genes in humans, chimpanzees and their ectoparasites. PMID:24403325
Analyzing Fish Condition Factor Index Through Skew-Gaussian Information Theory Quantifiers
NASA Astrophysics Data System (ADS)
Contreras-Reyes, Javier E.
2016-06-01
Biological-fishery indicators have been widely studied. As such the condition factor (CF) index, which interprets the fatness level of a certain species based on length and weight, has been investigated, too. However, CF has been studied without considering its temporal features and distribution. In this paper, we analyze the CF time series via skew-gaussian distributions that consider the asymmetry produced by extreme events. This index is characterized by a threshold autoregressive model and corresponds to a stationary process depending on the shape parameter of the skew-gaussian distribution. Then we use the Jensen-Shannon (JS) distance to compare CF by length classes. This distance has mathematical advantages over other divergences such as Kullback-Leibler and Jeffrey’s, and the triangular inequality property. Our results are applied to a biological catalogue of anchovy (Engraulis ringens) from the northern coast of Chile, for the period 1990-2010 that consider monthly CF time series by length classes and sex. We find that for high values of shape parameter, JS distance tends to be more sensible to detect discrepancies than Jeffrey’s divergence. In addition, the body condition of male anchovies with higher lengths coincides with the ending of the moderate-strong El Niño event 91-92 and for both males and females, the smaller lengths coincide with the beginning of the strong El Niño event 97-98.
Zhang, Honghai; Chen, Lei
2011-03-01
The dhole (Cuon alpinus) is the only existent species in the genus Cuon (Carnivora: Canidae). In the present study, the complete mitochondrial genome of the dhole was sequenced. The total length is 16672 base pairs which is the shortest in Canidae. Sequence analysis revealed that most mitochondrial genomic functional regions were highly consistent among canid animals except the CSB domain of the control region. The difference in length among the Canidae mitochondrial genome sequences is mainly due to the number of short segments of tandem repeated in the CSB domain. Phylogenetic analysis was progressed based on the concatenated data set of 14 mitochondrial genes of 8 canid animals by using maximum parsimony (MP), maximum likelihood (ML) and Bayesian (BI) inference methods. The genera Vulpes and Nyctereutes formed a sister group and split first within Canidae, followed by that in the Cuon. The divergence in the genus Canis was the latest. The divarication of domestic dogs after that of the Canis lupus laniger is completely supported by all the three topologies. Pairwise sequence divergence data of different mitochondrial genes among canid animals were also determined. Except for the synonymous substitutions in protein-coding genes, the control region exhibits the highest sequence divergences. The synonymous rates are approximately two to six times higher than those of the non-synonymous sites except for a slightly higher rate in the non-synonymous substitution between Cuon alpinus and Vulpes vulpes. 16S rRNA genes have a slightly faster sequence divergence than 12S rRNA and tRNA genes. Based on nucleotide substitutions of tRNA genes and rRNA genes, the times since divergence between dhole and other canid animals, and between domestic dogs and three subspecies of wolves were evaluated. The result indicates that Vulpes and Nyctereutes have a close phylogenetic relationship and the divergence of Nyctereutes is a little earlier. The Tibetan wolf may be an archaic pedigree within wolf subspecies. The genetic distance between wolves and domestic dogs is less than that among different subspecies of wolves. The domestication of dogs was about 1.56-1.92 million years ago or even earlier.
Quantum networks in divergence-free circuit QED
NASA Astrophysics Data System (ADS)
Parra-Rodriguez, A.; Rico, E.; Solano, E.; Egusquiza, I. L.
2018-04-01
Superconducting circuits are one of the leading quantum platforms for quantum technologies. With growing system complexity, it is of crucial importance to develop scalable circuit models that contain the minimum information required to predict the behaviour of the physical system. Based on microwave engineering methods, divergent and non-divergent Hamiltonian models in circuit quantum electrodynamics have been proposed to explain the dynamics of superconducting quantum networks coupled to infinite-dimensional systems, such as transmission lines and general impedance environments. Here, we study systematically common linear coupling configurations between networks and infinite-dimensional systems. The main result is that the simple Lagrangian models for these configurations present an intrinsic natural length that provides a natural ultraviolet cutoff. This length is due to the unavoidable dressing of the environment modes by the network. In this manner, the coupling parameters between their components correctly manifest their natural decoupling at high frequencies. Furthermore, we show the requirements to correctly separate infinite-dimensional coupled systems in local bases. We also compare our analytical results with other analytical and approximate methods available in the literature. Finally, we propose several applications of these general methods to analogue quantum simulation of multi-spin-boson models in non-perturbative coupling regimes.
Terrier, Philippe; Dériaz, Olivier
2013-01-01
It has been observed that times series of gait parameters [stride length (SL), stride time (ST), and stride speed (SS)], exhibit long-term persistence and fractal-like properties. Synchronizing steps with rhythmic auditory stimuli modifies the persistent fluctuation pattern to anti-persistence. Another non-linear method estimates the degree of resilience of gait control to small perturbations, i.e., the local dynamic stability (LDS). The method makes use of the maximal Lyapunov exponent, which estimates how fast a non-linear system embedded in a reconstructed state space (attractor) diverges after an infinitesimal perturbation. We propose to use an instrumented treadmill to simultaneously measure basic gait parameters (time series of SL, ST, and SS from which the statistical persistence among consecutive strides can be assessed), and the trajectory of the center of pressure (from which the LDS can be estimated). In 20 healthy participants, the response to rhythmic auditory cueing (RAC) of LDS and of statistical persistence [assessed with detrended fluctuation analysis (DFA)] was compared. By analyzing the divergence curves, we observed that long-term LDS (computed as the reverse of the average logarithmic rate of divergence between the 4th and the 10th strides downstream from nearest neighbors in the reconstructed attractor) was strongly enhanced (relative change +73%). That is likely the indication of a more dampened dynamics. The change in short-term LDS (divergence over one step) was smaller (+3%). DFA results (scaling exponents) confirmed an anti-persistent pattern in ST, SL, and SS. Long-term LDS (but not short-term LDS) and scaling exponents exhibited a significant correlation between them (r = 0.7). Both phenomena probably result from the more conscious/voluntary gait control that is required by RAC. We suggest that LDS and statistical persistence should be used to evaluate the efficiency of cueing therapy in patients with neurological gait disorders.
Closing the gap between rocks and clocks using total-evidence dating
2016-01-01
Total-evidence dating (TED) allows evolutionary biologists to incorporate a wide range of dating information into a unified statistical analysis. One might expect this to improve the agreement between rocks and clocks but this is not necessarily the case. We explore the reasons for such discordance using a mammalian dataset with rich molecular, morphological and fossil information. There is strong conflict in this dataset between morphology and molecules under standard stochastic models. This causes TED to push divergence events back in time when using inadequate models or vague priors, a phenomenon we term ‘deep root attraction’ (DRA). We identify several causes of DRA. Failure to account for diversified sampling results in dramatic DRA, but this can be addressed using existing techniques. Inadequate morphological models also appear to be a major contributor to DRA. The major reason seems to be that current models do not account for dependencies among morphological characters, causing distorted topology and branch length estimates. This is particularly problematic for huge morphological datasets, which may contain large numbers of correlated characters. Finally, diversification and fossil sampling priors that do not incorporate all the available background information can contribute to DRA, but these priors can also be used to compensate for DRA. Specifically, we show that DRA in the mammalian dataset can be addressed by introducing a modest extra penalty for ghost lineages that are unobserved in the fossil record, for instance by assuming rapid diversification, rare extinction or high fossil sampling rate; any of these assumptions produces highly congruent divergence time estimates with a minimal gap between rocks and clocks. Under these conditions, fossils have a stabilizing influence on divergence time estimates and significantly increase the precision of those estimates, which are generally close to the dates suggested by palaeontologists. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325833
Closing the gap between rocks and clocks using total-evidence dating.
Ronquist, Fredrik; Lartillot, Nicolas; Phillips, Matthew J
2016-07-19
Total-evidence dating (TED) allows evolutionary biologists to incorporate a wide range of dating information into a unified statistical analysis. One might expect this to improve the agreement between rocks and clocks but this is not necessarily the case. We explore the reasons for such discordance using a mammalian dataset with rich molecular, morphological and fossil information. There is strong conflict in this dataset between morphology and molecules under standard stochastic models. This causes TED to push divergence events back in time when using inadequate models or vague priors, a phenomenon we term 'deep root attraction' (DRA). We identify several causes of DRA. Failure to account for diversified sampling results in dramatic DRA, but this can be addressed using existing techniques. Inadequate morphological models also appear to be a major contributor to DRA. The major reason seems to be that current models do not account for dependencies among morphological characters, causing distorted topology and branch length estimates. This is particularly problematic for huge morphological datasets, which may contain large numbers of correlated characters. Finally, diversification and fossil sampling priors that do not incorporate all the available background information can contribute to DRA, but these priors can also be used to compensate for DRA. Specifically, we show that DRA in the mammalian dataset can be addressed by introducing a modest extra penalty for ghost lineages that are unobserved in the fossil record, for instance by assuming rapid diversification, rare extinction or high fossil sampling rate; any of these assumptions produces highly congruent divergence time estimates with a minimal gap between rocks and clocks. Under these conditions, fossils have a stabilizing influence on divergence time estimates and significantly increase the precision of those estimates, which are generally close to the dates suggested by palaeontologists.This article is part of the themed issue 'Dating species divergences using rocks and clocks'. © 2016 The Authors.
Whitlock, Steven L.; Campbell, Matthew R.; Quist, Michael C.; Dux, Andrew M.
2018-01-01
Genetic and phenotypic traits of spatially and temporally segregated kokanee Oncorhynchus nerka spawning groups in Lake Pend Oreille, Idaho, were compared to test for evidence of divergence on the basis of ecotype (stream spawners versus shoreline spawners) and spawn timing and to describe morphological, life history, and reproductive variation within and among groups. Early and late spawning runs were found to be reproductively isolated; however, there was no clear evidence of genetic differentiation between ecotypes. Spawning groups within the same ecotype differed in length, age distribution, mean length at age, fecundity, and egg size. Variation in reproductive attributes was due primarily to differences in length distributions. Larger‐bodied shore‐spawning kokanee were located in areas where egg survival is known to be enhanced by downwelling, suggesting that the distribution of shore‐spawning kokanee may be partly structured by competition for spawning habitats with groundwater influence. This study contributes to other research indicating that introduced kokanee populations are unlikely to undergo adaptive divergence if they have a history of population fluctuations and are supplemented regularly.
Runemark, Anna; Sagonas, Kostas; Svensson, Erik I
2015-08-01
Although rapid evolution of body size on islands has long been known, the ecological mechanisms behind this island phenomenon remain poorly understood. Diet is an important selective pressure for morphological divergence. Here we investigate if selection for novel diets has contributed to the multiple independent cases of island gigantism in the Skyros wall lizard (Podarcis gaigeae) and if diet, predation, or both factors best explain island gigantism. We combined data on body size, shape, bite force, and realized and available diets to address this. Several lines of evidence suggest that diet has contributed to the island gigantism. The larger islet lizards have relatively wider heads and higher bite performance in relation to mainland lizards than would be expected from size differences alone. The proportions of consumed and available hard prey are higher on islets than mainland localities, and lizard body size is significantly correlated with the proportion of hard prey. Furthermore, the main axis of divergence in head shape is significantly correlated with dietary divergence. Finally, a model with only diet and one including diet and predation regime explain body size divergence equally well. Our results suggest that diet is an important ecological factor behind insular body size divergence, but could be consistent with an additional role for predation.
Parameter studies on the energy balance closure problem using large-eddy simulation
NASA Astrophysics Data System (ADS)
De Roo, Frederik; Banerjee, Tirtha; Mauder, Matthias
2017-04-01
The imbalance of the surface energy budget in eddy-covariance measurements is still a pending problem. A possible cause is the presence of land surface heterogeneity. Heterogeneities of the boundary layer scale or larger are most effective in influencing the boundary layer turbulence, and large-eddy simulations have shown that secondary circulations within the boundary layer can affect the surface energy budget. However, the precise influence of the surface characteristics on the energy imbalance and its partitioning is still unknown. To investigate the influence of surface variables on all the components of the flux budget under convective conditions, we set up a systematic parameter study by means of large-eddy simulation. For the study we use a virtual control volume approach, and we focus on idealized heterogeneity by considering spatially variable surface fluxes. The surface fluxes vary locally in intensity and these patches have different length scales. The main focus lies on heterogeneities of length scales of the kilometer scale and one decade smaller. For each simulation, virtual measurement towers are positioned at functionally different positions. We discriminate between the locally homogeneous towers, located within land use patches, with respect to the more heterogeneous towers, and find, among others, that the flux-divergence and the advection are strongly linearly related within each class. Furthermore, we seek correlators for the energy balance ratio and the energy residual in the simulations. Besides the expected correlation with measurable atmospheric quantities such as the friction velocity, boundary-layer depth and temperature and moisture gradients, we have also found an unexpected correlation with the temperature difference between sonic temperature and surface temperature. In additional simulations with a large number of virtual towers, we investigate higher order correlations, which can be linked to secondary circulations. In a companion presentation (EGU2017-2130) these correlations are investigated and confirmed with the help of micrometeorological measurements from the TERENO sites where the effects of landscape scale surface heterogeneities are deemed to be important.
Mixed-order phase transition in a colloidal crystal.
Alert, Ricard; Tierno, Pietro; Casademunt, Jaume
2017-12-05
Mixed-order phase transitions display a discontinuity in the order parameter like first-order transitions yet feature critical behavior like second-order transitions. Such transitions have been predicted for a broad range of equilibrium and nonequilibrium systems, but their experimental observation has remained elusive. Here, we analytically predict and experimentally realize a mixed-order equilibrium phase transition. Specifically, a discontinuous solid-solid transition in a 2D crystal of paramagnetic colloidal particles is induced by a magnetic field [Formula: see text] At the transition field [Formula: see text], the energy landscape of the system becomes completely flat, which causes diverging fluctuations and correlation length [Formula: see text] Mean-field critical exponents are predicted, since the upper critical dimension of the transition is [Formula: see text] Our colloidal system provides an experimental test bed to probe the unconventional properties of mixed-order phase transitions.
Mixed-order phase transition in a colloidal crystal
NASA Astrophysics Data System (ADS)
Alert, Ricard; Tierno, Pietro; Casademunt, Jaume
2017-12-01
Mixed-order phase transitions display a discontinuity in the order parameter like first-order transitions yet feature critical behavior like second-order transitions. Such transitions have been predicted for a broad range of equilibrium and nonequilibrium systems, but their experimental observation has remained elusive. Here, we analytically predict and experimentally realize a mixed-order equilibrium phase transition. Specifically, a discontinuous solid-solid transition in a 2D crystal of paramagnetic colloidal particles is induced by a magnetic field H. At the transition field Hs, the energy landscape of the system becomes completely flat, which causes diverging fluctuations and correlation length ξ∝|H2-Hs2|-1/2. Mean-field critical exponents are predicted, since the upper critical dimension of the transition is du=2. Our colloidal system provides an experimental test bed to probe the unconventional properties of mixed-order phase transitions.
Extraordinary Sequence Divergence at Tsga8, an X-linked Gene Involved in Mouse Spermiogenesis
Good, Jeffrey M.; Vanderpool, Dan; Smith, Kimberly L.; Nachman, Michael W.
2011-01-01
The X chromosome plays an important role in both adaptive evolution and speciation. We used a molecular evolutionary screen of X-linked genes potentially involved in reproductive isolation in mice to identify putative targets of recurrent positive selection. We then sequenced five very rapidly evolving genes within and between several closely related species of mice in the genus Mus. All five genes were involved in male reproduction and four of the genes showed evidence of recurrent positive selection. The most remarkable evolutionary patterns were found at Testis-specific gene a8 (Tsga8), a spermatogenesis-specific gene expressed during postmeiotic chromatin condensation and nuclear transformation. Tsga8 was characterized by extremely high levels of insertion–deletion variation of an alanine-rich repetitive motif in natural populations of Mus domesticus and M. musculus, differing in length from the reference mouse genome by up to 89 amino acids (27% of the total protein length). This population-level variation was coupled with striking divergence in protein sequence and length between closely related mouse species. Although no clear orthologs had previously been described for Tsga8 in other mammalian species, we have identified a highly divergent hypothetical gene on the rat X chromosome that shares clear orthology with the 5′ and 3′ ends of Tsga8. Further inspection of this ortholog verified that it is expressed in rat testis and shares remarkable similarity with mouse Tsga8 across several general features of the protein sequence despite no conservation of nucleotide sequence across over 60% of the rat-coding domain. Overall, Tsga8 appears to be one of the most rapidly evolving genes to have been described in rodents. We discuss the potential evolutionary causes and functional implications of this extraordinary divergence and the possible contribution of Tsga8 and the other four genes we examined to reproductive isolation in mice. PMID:21186189
Ground state energies from converging and diverging power series expansions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lisowski, C.; Norris, S.; Pelphrey, R.
2016-10-15
It is often assumed that bound states of quantum mechanical systems are intrinsically non-perturbative in nature and therefore any power series expansion methods should be inapplicable to predict the energies for attractive potentials. However, if the spatial domain of the Schrödinger Hamiltonian for attractive one-dimensional potentials is confined to a finite length L, the usual Rayleigh–Schrödinger perturbation theory can converge rapidly and is perfectly accurate in the weak-binding region where the ground state’s spatial extension is comparable to L. Once the binding strength is so strong that the ground state’s extension is less than L, the power expansion becomes divergent,more » consistent with the expectation that bound states are non-perturbative. However, we propose a new truncated Borel-like summation technique that can recover the bound state energy from the diverging sum. We also show that perturbation theory becomes divergent in the vicinity of an avoided-level crossing. Here the same numerical summation technique can be applied to reproduce the energies from the diverging perturbative sums.« less
hPOC5 is a centrin-binding protein required for assembly of full-length centrioles.
Azimzadeh, Juliette; Hergert, Polla; Delouvée, Annie; Euteneuer, Ursula; Formstecher, Etienne; Khodjakov, Alexey; Bornens, Michel
2009-04-06
Centrin has been shown to be involved in centrosome biogenesis in a variety of eukaryotes. In this study, we characterize hPOC5, a conserved centrin-binding protein that contains Sfi1p-like repeats. hPOC5 is localized, like centrin, in the distal portion of human centrioles. hPOC5 recruitment to procentrioles occurs during G2/M, a process that continues up to the full maturation of the centriole during the next cell cycle and is correlated with hyperphosphorylation of the protein. In the absence of hPOC5, RPE1 cells arrest in G1 phase, whereas HeLa cells show an extended S phase followed by cell death. We show that hPOC5 is not required for the initiation of procentriole assembly but is essential for building the distal half of centrioles. Interestingly, the hPOC5 family reveals an evolutionary divergence between vertebrates and organisms like Drosophila melanogaster or Caenorhabditis elegans, in which the loss of hPOC5 may correlate with the conspicuous differences in centriolar structure.
Disordered Berezinskii-Kosterlitz-Thouless transition and superinsulation
Sankar, S.; Vinokur, V. M.; Tripathi, V.
2018-01-22
Here, we investigate the critical Berezinskii-Kosterlitz-Thouless (BKT) behavior of disordered two-dimensional Josephson-junction arrays (JJA) on the insulating side of the superconductor-insulator transition (SIT) taking into account the effect of hitherto ignored residual random dipole moments of the superconducting grains. We show that for weak Josephson coupling the model is equivalent to a Coulomb gas subjected to a disorder potential with logarithmic correlations. We demonstrate that strong enough disorder transforms the BKT divergence of the correlation length, ξ BKT ∝ exp (const / √T-T BKT), characterizing the average distance between the unbound topological excitations of the opposite signs, into a moremore » singular Vogel-Fulcher-Tamman (VFT) behavior, ξ VFT ∝ exp [const / (T-T VFT)] , which is viewed as a hallmark of glass transitions in glass-forming materials. We further show that the VFT criticality is a precursor of the transition into a nonergodic superinsulating state, while the BKT critical behavior implies freezing into an ergodic confined BKT state. Finally, our finding sheds light on the yet unresolved problem of the origin of the VFT criticality.« less
Interfacial layering and capillary roughness in immiscible liquids.
Geysermans, P; Pontikis, V
2010-08-21
The capillary roughness and the atomic density profiles of extended interfaces between immiscible liquids are determined as a function of the interface area by using molecular dynamics and Lennard-Jones (12-6) potentials. We found that with increasing area, the interface roughness diverges logarithmically, thus fitting the theoretical mean-field prediction. In systems small enough for the interfacial roughness not to blur the structural details, atomic density profiles across the fluid interface are layered with correlation length in the range of molecular correlations in liquids. On increasing the system size, the amplitude of the thermally excited position fluctuations of the interface increases, thus causing layering to rapidly vanish, if density profiles are computed without special care. In this work, we present and validate a simple method, operating in the direct space, for extracting from molecular dynamics trajectories the "intrinsic" structure of a fluid interface that is the local density profile of the interface cleaned from capillary wave effects. Estimated values of interfacial properties such as the tension, the intrinsic width, and the lower wavelength limit of position fluctuations are in agreement with results collected from the literature.
Quantum critical fluctuations in the heavy fermion compound Ce(Ni 0.935Pd 0.065) 2Ge 2
Wang, C. H.; Poudel, L.; Taylor, Alice E.; ...
2014-12-03
Electric resistivity, specific heat, magnetic susceptibility, and inelastic neutron scattering experiments were performed on a single crystal of the heavy fermion compound Ce(Ni 0.935Pd 0.065) 2Ge 2 in order to research the spin fluctuations near an antiferromagnetic (AF) quantum critical point (QCP). The resistivity and the specific heat coefficient for T ≤ 1 K exhibit the power law behavior expected for a 3D itinerant AF QCP (ρ(T) ~ T 3/2 and γ(T) ~ γ 0 - bT 1/2). However, for 2 ≤ T ≤ 10 K, the susceptibility and specific heat vary as log T and the resistivity varies linearlymore » with temperature. In addition, despite the fact that the resistivity and specific heat exhibit the non-Fermi liquid behavior expected at a QCP, the correlation length, correlation time, and staggered susceptibility of the spin fluctuations remain finite at low temperature. In conclusion, we suggest that these deviations from the divergent behavior expected for a QCP may result from alloy disorder.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sankar, S.; Vinokur, V. M.; Tripathi, V.
Here, we investigate the critical Berezinskii-Kosterlitz-Thouless (BKT) behavior of disordered two-dimensional Josephson-junction arrays (JJA) on the insulating side of the superconductor-insulator transition (SIT) taking into account the effect of hitherto ignored residual random dipole moments of the superconducting grains. We show that for weak Josephson coupling the model is equivalent to a Coulomb gas subjected to a disorder potential with logarithmic correlations. We demonstrate that strong enough disorder transforms the BKT divergence of the correlation length, ξ BKT ∝ exp (const / √T-T BKT), characterizing the average distance between the unbound topological excitations of the opposite signs, into a moremore » singular Vogel-Fulcher-Tamman (VFT) behavior, ξ VFT ∝ exp [const / (T-T VFT)] , which is viewed as a hallmark of glass transitions in glass-forming materials. We further show that the VFT criticality is a precursor of the transition into a nonergodic superinsulating state, while the BKT critical behavior implies freezing into an ergodic confined BKT state. Finally, our finding sheds light on the yet unresolved problem of the origin of the VFT criticality.« less
Temunović, Martina; Franjić, Jozo; Satovic, Zlatko; Grgurev, Marin; Frascaria-Lacoste, Nathalie; Fernández-Manjarrés, Juan F
2012-01-01
Tree species with wide distributions often exhibit different levels of genetic structuring correlated to their environment. However, understanding how environmental heterogeneity influences genetic variation is difficult because the effects of gene flow, drift and selection are confounded. We investigated the genetic variation and its ecological correlates in a wind-pollinated Mediterranean tree species, Fraxinus angustifolia Vahl, within a recognised glacial refugium in Croatia. We sampled 11 populations from environmentally divergent habitats within the Continental and Mediterranean biogeographical regions. We combined genetic data analyses based on nuclear microsatellite loci, multivariate statistics on environmental data and ecological niche modelling (ENM). We identified a geographic structure with a high genetic diversity and low differentiation in the Continental region, which contrasted with the significantly lower genetic diversity and higher population divergence in the Mediterranean region. The positive and significant correlation between environmental and genetic distances after controlling for geographic distance suggests an important influence of ecological divergence of the sites in shaping genetic variation. The ENM provided support for niche differentiation between the populations from the Continental and Mediterranean regions, suggesting that contemporary populations may represent two divergent ecotypes. Ecotype differentiation was also supported by multivariate environmental and genetic distance analyses. Our results suggest that despite extensive gene flow in continental areas, long-term stability of heterogeneous environments have likely promoted genetic divergence of ashes in this region and can explain the present-day genetic variation patterns of these ancient populations.
Temunović, Martina; Franjić, Jozo; Satovic, Zlatko; Grgurev, Marin; Frascaria-Lacoste, Nathalie; Fernández-Manjarrés, Juan F.
2012-01-01
Tree species with wide distributions often exhibit different levels of genetic structuring correlated to their environment. However, understanding how environmental heterogeneity influences genetic variation is difficult because the effects of gene flow, drift and selection are confounded. We investigated the genetic variation and its ecological correlates in a wind-pollinated Mediterranean tree species, Fraxinus angustifolia Vahl, within a recognised glacial refugium in Croatia. We sampled 11 populations from environmentally divergent habitats within the Continental and Mediterranean biogeographical regions. We combined genetic data analyses based on nuclear microsatellite loci, multivariate statistics on environmental data and ecological niche modelling (ENM). We identified a geographic structure with a high genetic diversity and low differentiation in the Continental region, which contrasted with the significantly lower genetic diversity and higher population divergence in the Mediterranean region. The positive and significant correlation between environmental and genetic distances after controlling for geographic distance suggests an important influence of ecological divergence of the sites in shaping genetic variation. The ENM provided support for niche differentiation between the populations from the Continental and Mediterranean regions, suggesting that contemporary populations may represent two divergent ecotypes. Ecotype differentiation was also supported by multivariate environmental and genetic distance analyses. Our results suggest that despite extensive gene flow in continental areas, long-term stability of heterogeneous environments have likely promoted genetic divergence of ashes in this region and can explain the present-day genetic variation patterns of these ancient populations. PMID:22905171
Seasonal regional forecast of the minimum sea ice extent in the LapteV Sea
NASA Astrophysics Data System (ADS)
Tremblay, B.; Brunette, C.; Newton, R.
2017-12-01
Late winter anomaly of sea ice export from the peripheral seas of the Atctic Ocean was found to be a useful predictor for the minimum sea ice extent (SIE) in the Arctic Ocean (Williams et al., 2017). In the following, we present a proof of concept for a regional seasonal forecast of the min SIE for the Laptev Sea based on late winter coastal divergence quantified using a Lagrangian Ice Tracking System (LITS) forced with satellite derived sea-ice drifts from the Polar Pathfinder. Following Nikolaeva and Sesterikov (1970), we track an imaginary line just offshore of coastal polynyas in the Laptev Sea from December of the previous year to May 1 of the following year using LITS. Results show that coastal divergence in the Laptev Sea between February 1st and May 1st is best correlated (r = -0.61) with the following September minimum SIE in accord with previous results from Krumpen et al. (2013, for the Laptev Sea) and Williams et a. (2017, for the pan-Arctic). This gives a maximum seasonal predictability of Laptev Sea min SIE anomalies from observations of approximately 40%. Coastal ice divergence leads to formation of thinner ice that melts earlier in early summer, hence creating areas of open water that have a lower albedo and trigger an ice-albedo feedback. In the Laptev Sea, we find that anomalies of coastal divergence in late winter are amplified threefold to result in the September SIE. We also find a correlation coefficient r = 0.49 between February-March-April (FMA) anomalies of coastal divergence with the FMA averaged AO index. Interestingly, the correlation is stronger, r = 0.61, when comparing the FMA coastal divergence anomalies to the DJFMA averaged AO index. It is hypothesized that the AO index at the beginning of the winter (and the associated anomalous sea ice export) also contains information that impact the magnitude of coastal divergence opening later in the winter. Our approach differs from previous approaches (e.g. Krumpen et al and Williams et al) in that the coastal divergence is quantified directly by following the edge of the mobile pack ice in a Lagrangian manner.
Creativity: Educational Necessity for Modern Society.
ERIC Educational Resources Information Center
Kennett, Keith F.
1984-01-01
Examines biological and environmental determinants of creative/divergent thinking in light of two studies--one showing an inverse relationship between serum uric acid and divergent thinking and one showing a positive correlation between family size and creativity in upper socioeconomic status groups. Outlines classroom practices that promote…
NASA Astrophysics Data System (ADS)
Ding, Yongjie; Boyang, Jia; Sun, Hezhi; Wei, Liqiu; Peng, Wuji; Li, Peng; Yu, Daren
2018-02-01
Discharge characteristics of a non-wall-loss Hall thruster were studied under different channel lengths using a design based on pushing a magnetic field through a double permanent magnet ring. The effect of different magnetic field intensities and channel lengths on ionization, efficiency, and plume divergence angle were studied. The experimental results show that propellant utilization is improved for optimal matching between the magnetic field and channel length. While matching the magnetic field and channel length, the ionization position of the neutral gas changes. The ion flow is effectively controlled, allowing the thrust force, specific impulse, and efficiency to be improved. Our study shows that the channel length is an important design parameter to consider for improving the performance of non-wall-loss Hall thrusters.
Man, Orna; Pilpel, Yitzhak
2007-03-01
A major challenge in comparative genomics is to understand how phenotypic differences between species are encoded in their genomes. Phenotypic divergence may result from differential transcription of orthologous genes, yet less is known about the involvement of differential translation regulation in species phenotypic divergence. In order to assess translation effects on divergence, we analyzed approximately 2,800 orthologous genes in nine yeast genomes. For each gene in each species, we predicted translation efficiency, using a measure of the adaptation of its codons to the organism's tRNA pool. Mining this data set, we found hundreds of genes and gene modules with correlated patterns of translational efficiency across the species. One signal encompassed entire modules that are either needed for oxidative respiration or fermentation and are efficiently translated in aerobic or anaerobic species, respectively. In addition, the efficiency of translation of the mRNA splicing machinery strongly correlates with the number of introns in the various genomes. Altogether, we found extensive selection on synonymous codon usage that modulates translation according to gene function and organism phenotype. We conclude that, like factors such as transcription regulation, translation efficiency affects and is affected by the process of species divergence.
NASA Astrophysics Data System (ADS)
Geints, Yu. E.; Ionin, A. A.; Mokrousova, D. V.; Seleznev, L. V.; Sinitsyn, D. V.; Sunchugasheva, E. S.; Zemlyanov, A. A.
2017-01-01
Experimental and theoretical study of the post-filamentation stage of focused high-power Ti:Sa laser pulses in air is presented. Angular divergence of the laser beam, as well as angular and spatial characteristics of specific spatially localized light structures, the post-filament channels (PFCs), under different initial focusing conditions and laser beam energy are investigated. We show that PFC angular divergence is always less than that of the whole laser beam and tends to decrease with laser pulse energy increase and beam focal length elongation.
Inácio, Vera; Rocheta, Margarida; Morais-Cecílio, Leonor
2014-01-01
The 35S ribosomal DNA (rDNA) units, repeated in tandem at one or more chromosomal loci, are separated by an intergenic spacer (IGS) containing functional elements involved in the regulation of transcription of downstream rRNA genes. In the present work, we have compared the IGS molecular organizations in two divergent species of Fagaceae, Fagus sylvatica and Quercus suber, aiming to comprehend the evolution of the IGS sequences within the family. Self- and cross-hybridization FISH was done on representative species of the Fagaceae. The IGS length variability and the methylation level of 18 and 25S rRNA genes were assessed in representatives of three genera of this family: Fagus, Quercus and Castanea. The intergenic spacers in Beech and Cork Oak showed similar overall organizations comprising putative functional elements needed for rRNA gene activity and containing a non-transcribed spacer (NTS), a promoter region, and a 5′-external transcribed spacer. In the NTS: the sub-repeats structure in Beech is more organized than in Cork Oak, sharing some short motifs which results in the lowest sequence similarity of the entire IGS; the AT-rich region differed in both spacers by a GC-rich block inserted in Cork Oak. The 5′-ETS is the region with the higher similarity, having nonetheless different lengths. FISH with the NTS-5′-ETS revealed fainter signals in cross-hybridization in agreement with the divergence between genera. The diversity of IGS lengths revealed variants from ∼2 kb in Fagus, and Quercus up to 5.3 kb in Castanea, and a lack of correlation between the number of variants and the number of rDNA loci in several species. Methylation of 25S Bam HI site was confirmed in all species and detected for the first time in the 18S of Q. suber and Q. faginea. These results provide important clues for the evolutionary trends of the rDNA 25S-18S IGS in the Fagaceae family. PMID:24893289
A Kolmogorov-Smirnov test for the molecular clock based on Bayesian ensembles of phylogenies
Antoneli, Fernando; Passos, Fernando M.; Lopes, Luciano R.
2018-01-01
Divergence date estimates are central to understand evolutionary processes and depend, in the case of molecular phylogenies, on tests of molecular clocks. Here we propose two non-parametric tests of strict and relaxed molecular clocks built upon a framework that uses the empirical cumulative distribution (ECD) of branch lengths obtained from an ensemble of Bayesian trees and well known non-parametric (one-sample and two-sample) Kolmogorov-Smirnov (KS) goodness-of-fit test. In the strict clock case, the method consists in using the one-sample Kolmogorov-Smirnov (KS) test to directly test if the phylogeny is clock-like, in other words, if it follows a Poisson law. The ECD is computed from the discretized branch lengths and the parameter λ of the expected Poisson distribution is calculated as the average branch length over the ensemble of trees. To compensate for the auto-correlation in the ensemble of trees and pseudo-replication we take advantage of thinning and effective sample size, two features provided by Bayesian inference MCMC samplers. Finally, it is observed that tree topologies with very long or very short branches lead to Poisson mixtures and in this case we propose the use of the two-sample KS test with samples from two continuous branch length distributions, one obtained from an ensemble of clock-constrained trees and the other from an ensemble of unconstrained trees. Moreover, in this second form the test can also be applied to test for relaxed clock models. The use of a statistically equivalent ensemble of phylogenies to obtain the branch lengths ECD, instead of one consensus tree, yields considerable reduction of the effects of small sample size and provides a gain of power. PMID:29300759
NASA Astrophysics Data System (ADS)
Monthus, Cécile; Garel, Thomas
2006-07-01
In dimension d⩾3 , the directed polymer in a random medium undergoes a phase transition between a free phase at high temperature and a low-temperature disorder-dominated phase. For the latter phase, Fisher and Huse have proposed a droplet theory based on the scaling of the free-energy fluctuations ΔF(l)˜lθ at scale l . On the other hand, in related growth models belonging to the Kardar-Parisi-Zhang universality class, Forrest and Tang have found that the height-height correlation function is logarithmic at the transition. For the directed polymer model at criticality, this translates into logarithmic free-energy fluctuations ΔFTc(l)˜(lnl)σ with σ=1/2 . In this paper, we propose a droplet scaling analysis exactly at criticality based on this logarithmic scaling. Our main conclusion is that the typical correlation length ξ(T) of the low-temperature phase diverges as lnξ(T)˜[-ln(Tc-T)]1/σ˜[-ln(Tc-T)]2 , instead of the usual power law ξ(T)˜(Tc-T)-ν . Furthermore, the logarithmic dependence of ΔFTc(l) leads to the conclusion that the critical temperature Tc actually coincides with the explicit upper bound T2 derived by Derrida and co-workers, where T2 corresponds to the temperature below which the ratio ZL2¯/(ZL¯)2 diverges exponentially in L . Finally, since the Fisher-Huse droplet theory was initially introduced for the spin-glass phase, we briefly mention the similarities with and differences from the directed polymer model. If one speculates that the free energy of droplet excitations for spin glasses is also logarithmic at Tc , one obtains a logarithmic decay for the mean square correlation function at criticality, C2(r)¯˜1/(lnr)σ , instead of the usual power law 1/rd-2+η .
Zhang, H; Ji, W L; Li, M; Zhou, L Y
2015-10-14
Comprehensive research of genetic variation is crucial in designing conservation strategies for endangered and threatened species. Sinowilsonia henryi Hemsi. is a tertiary relic with a limited geographical distribution in the central and western areas of China. It is endangered because of climate change and habitat fragmentation over the last thousands of years. In this study, amplified fragment length polymorphism markers were utilized to estimate genetic diversity and genetic structure in and among S. henryi. In this study, Nei's genetic diversity and Shannon's information index were found to be 0.192 and 0.325 respectively, indicating a moderate-to-high genetic diversity in species. According to analysis of molecular variation results, 32% of the genetic variation was shown to be partitioned among populations, demonstrating a relatively high genetic divergence; this was supported by principal coordinate analysis and unweighted pair-group method with arithmetic average analysis. Moreover, the Mantel test showed that there was no significant correlation between genetic and geographical distances. The above results can be explained by the effects of habitat fragmentation, history traits, and gene drift. Based on the results, several implications were indicated and suggestions proposed for preservation strategies for this species.
Anderson localization in metamaterials with compositional disorder
NASA Astrophysics Data System (ADS)
Torres-Herrera, E. J.; Izrailev, F. M.; Makarov, N. M.
2011-11-01
We consider one-dimensional periodic-on-average bi-layered models with random perturbations in dielectric constants of both basic slabs composing the structure unit-cell. We show that when the thicknesses da and db of basic layers are essentially nonequal, da ≠ db, the localization length Lloc is described by the universal expression for two cases: (a) both layers are made from right-handed materials (the RH-RH model), (b) the a layers are of a right-handed material while the b layers are of a left-handed material (the RH-LH model). For these models the derived expression for Lloc includes all possible correlations between two disorders. However, when da = db the RH-LH model exhibits a highly nontrivial properties originated from inhomogeneous distribution of the phase of propagating wave, even in the case of white-noise disorder. We analytically show that in this case the localization length diverges in the conventional second order in perturbation parameters. Therefore, recently numerically discovered anomalies in Lloc are due to the next order of approximation. On the other hand, for the RH-RH model the general expression for Lloc remains valid for da = db as well.
Ma, Bo; Jiang, Haiying; Sun, Peng; Chen, Jinping; Li, Linmiao; Zhang, Xiujuan; Yuan, Lihong
2016-09-01
The genus Thymallus has attracted increasing attention in recent years because of its sharp demographic decline. In this study, we reported four complete mitochondrial genomes in the Thymallus genus: Baikal-Lena grayling (T. arcticus baicalolenensis), lower Amur grayling (T. tugarinae), Yalu grayling (T. a. yaluensis), and Mongolian grayling (T. brevirostris). The total length of the four new grayling mtDNAs ranged from 16 658 to 16 663 bp, all of which contained 13 protein-coding genes, 22 tRNA genes, two rRNA genes, and one control region. The results suggested that mitochondrial genomes could be a powerful marker for resolving the phylogeny within Thymallinae. Our study validated that the Yalu grayling should be a synonym of the Amur grayling (T. grubii) at the whole mitogenome level. The phylogenetic and dating analyses placed the Amur grayling at the deepest divergence node within Thymallus, diverging at ∼14.95 Ma. The lower Amur grayling diverged at the next deepest node (∼12.14 Ma). This was followed by T. thymallus, which diverged at ∼9.27 Ma. The Mongolian grayling and the ancestor of the sister species, T. arcticus and T. arcticus baicalolenensis, diverged at ∼7.79 Ma, with T. arcticus and T. arcticus baicalolenensis separating at ∼6.64 Ma. Our study provides far better resolution of the phylogenetic relationships and divergence dates of graylings than previous studies.
NASA Technical Reports Server (NTRS)
Fradenburgh, Evan A; Gorton, Gerald C; Beke, Andrew
1954-01-01
An experimental investigation of a series of four convergent-divergent exhaust nozzles was conducted in the Lewis 8-by-6 foot supersonic wind tunnel at Mach numbers of 0.1, 0.6, 1.6, and 2.0 over a range of nozzle pressure ratios. The thrust characteristics of these nozzles were determined by a pressure-integration technique. From a thrust standpoint, a nozzle designed to give uniform parallel flow at the exit had no advantage over the simple geometric design with conical convergent and divergent sections. The rapid-divergent nozzles might be competitive with the more gradual-divergent nozzles since the relatively short length of these nozzles would be advantageous from a weight standpoint and might result in smaller thrust losses due to friction. The thrusts, with friction losses neglected, were predicted satisfactorily by one-dimensional theory for the nozzles with relatively gradual divergence. The thrusts of the rapid-divergent designs were several percentages below the theoretical values at the design pressure ratio or above, while at low pressure ratios there was a considerable effect of free-stream Mach number, with thrusts considerably above theoretical values at subsonic speeds and somewhat above theoretical values at supersonic speeds. This Mach numb effect appeared to be related to the variation of the model base pressure with free-stream Mach number.
Functional Promiscuity of Two Divergent Paralogs of Type III Plant Polyketide Synthases1
Pandith, Shahzad A.; Dhar, Niha; Bhat, Wajid Waheed; Kushwaha, Manoj; Gupta, Ajai P.; Shah, Manzoor A.; Vishwakarma, Ram
2016-01-01
Plants effectively defend themselves against biotic and abiotic stresses by synthesizing diverse secondary metabolites, including health-protective flavonoids. These display incredible chemical diversity and ubiquitous occurrence and confer impeccable biological and agricultural applications. Chalcone synthase (CHS), a type III plant polyketide synthase, is critical for flavonoid biosynthesis. It catalyzes acyl-coenzyme A thioesters to synthesize naringenin chalcone through a polyketidic intermediate. The functional divergence among the evolutionarily generated members of a gene family is pivotal in driving the chemical diversity. Against this backdrop, this study was aimed to functionally characterize members of the CHS gene family from Rheum emodi, an endangered and endemic high-altitude medicinal herb of northwestern Himalayas. Two full-length cDNAs (1,179 bp each), ReCHS1 and ReCHS2, encoding unique paralogs were isolated and characterized. Heterologous expression and purification in Escherichia coli, bottom-up proteomic characterization, high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry analysis, and enzyme kinetic studies using five different substrates confirmed their catalytic potential. Phylogenetic analysis revealed the existence of higher synonymous mutations in the intronless divergents of ReCHS. ReCHS2 displayed significant enzymatic efficiency (Vmax/Km) with different substrates. There were significant spatial and altitudinal variations in messenger RNA transcript levels of ReCHSs correlating positively with metabolite accumulation. Furthermore, the elicitations in the form of methyl jasmonate, salicylic acid, ultraviolet B light, and wounding, chosen on the basis of identified cis-regulatory promoter elements, presented considerable differences in the transcript profiles of ReCHSs. Taken together, our results demonstrate differential propensities of CHS paralogs in terms of the accumulation of flavonoids and their relative substrate selectivities. PMID:27268960
NASA Astrophysics Data System (ADS)
Abanov, Ar.; Chubukov, Andrey V.; Schmalian, J.
2003-03-01
We present the full analysis of the normal state properties of the spin-fermion model near the antiferromagnetic instability in two dimensions. The model describes low-energy fermions interacting with their own collective spin fluctuations, which soften at the antiferromagnetic transition. We argue that in 2D, the system has two typical energies-an effective spin-fermion interaction bar g and an energy ysf below which the system behaves as a Fermi liquid. The ratio of the two determines the dimensionless coupling constant for spin-fermion interaction lambda (2) alpha /line g /omega _{sf} . We show that u scales with the spin correlation length and diverges at criticality. This divergence implies that the conventional perturbative expansion breaks down. We develop a novel approach to the problem-the expansion in either the inverse number of hot spots in the Brillouin zone, or the inverse number of fermionic flavours-which allows us to explicitly account for all terms which diverge as powers of u, and treat the remaining, O(logu) terms in the RG formalism. We apply this technique to study the properties of the spin-fermion model in various frequency and temperature regimes. We present the results for the fermionic spectral function, spin susceptibility, optical conductivity and other observables. We compare our results in detail with the normal state data for the cuprates, and argue that the spin-fermion model is capable of explaining the anomalous normal state properties of the high Tc materials. We also show that the conventional Ӓ theory of the quantum-critical behaviour is inapplicable in 2D due to the singularity of the Ӓ vertex.
Nichol, Stuart T.; Rowe, Joan E.; Winton, James R.
1995-01-01
Infectious hematopoietic necrosis virus (IHNV) causes a highly lethal, economically important disease of salmon and trout. The virus is enzootic throughout western North America, and has been spread to Asia and Europe. The nucleotide sequences of the glycoprotein (G) and non-virion (NV) genes of 12 diverse IHNV isolates were determined in order to examine the molecular epizootiology of IHN, the primary structure and conservation of NV, and the evolution of the virus. The G and NV genes and their encoded proteins were highly conserved, with a maximum pairwise nucleotide divergence of 3.6 and 4.4.%, and amino acid divergence of 3.7 and 6.2%, respectively. Conservation of NV protein sequence (111 amino acids in length) confirms that the protein is functional and plays an important role in virus replication. The phylogenetic relationship of viruses was found to correlate with the geographic origin of virus isolates rather than with host species or time of isolation. These data are consistent with stable maintenance of virus in enzootic foci. Two main IHNV genetic lineages were identified; one in the Columbia River Basin (Oregon, Washington and Idaho), the other in the Sacramento River Basin (California). The first major IHNV outbreak in chinook salmon in 1973 in the Columbia River was genetically linked to importation of virus-infected fish eggs from the Sacramento River where outbreaks in chinook salmon are common. However, the introduced virus apparently did not persist, subsequent virus outbreaks in Columbia River chinook salmon being associated with Columbia River genetic lineages. In general, virus monoclonal antibody reactivity profiles and phylogenetic relationships correlated well.
The relation between the Gross Pitaevskii and Bogoliubov descriptions of a dilute Bose gas
NASA Astrophysics Data System (ADS)
Leggett, A. J.
2003-07-01
I formulate a 'pseudo-paradox' in the theory of a dilute Bose gas with repulsive interactions: the standard expression for the ground state energy within the Gross-Pitaevskii (GP) approximation is lower than that in the Bogoliubov approximation, and hence, by the standard variational argument, the former should prima facie be a better approximation than the latter to the true ground state—a conclusion which is of course opposite to the established wisdom concerning this problem. It is shown that the pseudo-paradox is (unsurprisingly) resolved by a correct transcription of the two-body scattering theory to the many-body case; however, contrary to what appears to be a widespread belief, the resolution has nothing to do with any spurious ultraviolet divergences which result from the replacement of the true interatomic potential by a delta-function pseudopotential. Rather, it relates to an infrared divergence which has the consequence that (a) the most obvious form of the GP 'approximation' actually does not correspond to any well-defined ansatz for the many-body wavefunction, and (b) that the 'best shot' at such a wavefunction always produces an energy which exceeds, or at best equals, that calculated in the Bogoliubov approximation. In fact, the necessity of the latter may be seen as a consequence of the need to reduce the Fock term in the energy, which is absent in the two-particle problem but dominant in the many-body case; it does this by increasing the density correlations, at distances less than or approximately equal to the correlation length \\xi , above the value extrapolated from the two-body case. As a by-product I devise an alternative formulation of the Bogoliubov approximation which does not require the explicit replacement of the true interatomic potential by a delta-function pseudopotential.
Entropy measure of credit risk in highly correlated markets
NASA Astrophysics Data System (ADS)
Gottschalk, Sylvia
2017-07-01
We compare the single and multi-factor structural models of corporate default by calculating the Jeffreys-Kullback-Leibler divergence between their predicted default probabilities when asset correlations are either high or low. Single-factor structural models assume that the stochastic process driving the value of a firm is independent of that of other companies. A multi-factor structural model, on the contrary, is built on the assumption that a single firm's value follows a stochastic process correlated with that of other companies. Our main results show that the divergence between the two models increases in highly correlated, volatile, and large markets, but that it is closer to zero in small markets, when asset correlations are low and firms are highly leveraged. These findings suggest that during periods of financial instability, when asset volatility and correlations increase, one of the models misreports actual default risk.
Tamura, Koichiro; Tao, Qiqing; Kumar, Sudhir
2018-01-01
Abstract RelTime estimates divergence times by relaxing the assumption of a strict molecular clock in a phylogeny. It shows excellent performance in estimating divergence times for both simulated and empirical molecular sequence data sets in which evolutionary rates varied extensively throughout the tree. RelTime is computationally efficient and scales well with increasing size of data sets. Until now, however, RelTime has not had a formal mathematical foundation. Here, we show that the basis of the RelTime approach is a relative rate framework (RRF) that combines comparisons of evolutionary rates in sister lineages with the principle of minimum rate change between evolutionary lineages and their respective descendants. We present analytical solutions for estimating relative lineage rates and divergence times under RRF. We also discuss the relationship of RRF with other approaches, including the Bayesian framework. We conclude that RelTime will be useful for phylogenies with branch lengths derived not only from molecular data, but also morphological and biochemical traits. PMID:29893954
Initial diversification of living amphibians predated the breakup of Pangaea.
San Mauro, Diego; Vences, Miguel; Alcobendas, Marina; Zardoya, Rafael; Meyer, Axel
2005-05-01
The origin and divergence of the three living orders of amphibians (Anura, Caudata, Gymnophiona) and their main lineages are one of the most hotly debated topics in vertebrate evolution. Here, we present a robust molecular phylogeny based on the nuclear RAG1 gene as well as results from a variety of alternative independent molecular clock calibrations. Our analyses suggest that the origin and early divergence of the three living amphibian orders dates back to the Palaeozoic or early Mesozoic, before the breakup of Pangaea, and soon after the divergence from lobe-finned fishes. The resulting new biogeographic scenario, age estimate, and the inferred rapid divergence of the three lissamphibian orders may account for the lack of fossils that represent plausible ancestors or immediate sister taxa of all three orders and the heretofore paradoxical distribution of some amphibian fossil taxa. Furthermore, the ancient and rapid radiation of the three lissamphibian orders likely explains why branch lengths connecting their early nodes are particularly short, thus rendering phylogenetic inference of implicated relationships especially difficult.
Signatures of criticality arise from random subsampling in simple population models.
Nonnenmacher, Marcel; Behrens, Christian; Berens, Philipp; Bethge, Matthias; Macke, Jakob H
2017-10-01
The rise of large-scale recordings of neuronal activity has fueled the hope to gain new insights into the collective activity of neural ensembles. How can one link the statistics of neural population activity to underlying principles and theories? One attempt to interpret such data builds upon analogies to the behaviour of collective systems in statistical physics. Divergence of the specific heat-a measure of population statistics derived from thermodynamics-has been used to suggest that neural populations are optimized to operate at a "critical point". However, these findings have been challenged by theoretical studies which have shown that common inputs can lead to diverging specific heat. Here, we connect "signatures of criticality", and in particular the divergence of specific heat, back to statistics of neural population activity commonly studied in neural coding: firing rates and pairwise correlations. We show that the specific heat diverges whenever the average correlation strength does not depend on population size. This is necessarily true when data with correlations is randomly subsampled during the analysis process, irrespective of the detailed structure or origin of correlations. We also show how the characteristic shape of specific heat capacity curves depends on firing rates and correlations, using both analytically tractable models and numerical simulations of a canonical feed-forward population model. To analyze these simulations, we develop efficient methods for characterizing large-scale neural population activity with maximum entropy models. We find that, consistent with experimental findings, increases in firing rates and correlation directly lead to more pronounced signatures. Thus, previous reports of thermodynamical criticality in neural populations based on the analysis of specific heat can be explained by average firing rates and correlations, and are not indicative of an optimized coding strategy. We conclude that a reliable interpretation of statistical tests for theories of neural coding is possible only in reference to relevant ground-truth models.
The Inter-relationships between Personality, Divergent Thinking and School Attainment.
ERIC Educational Resources Information Center
Entwistle, Noel J.; Bennett, S. Neville
1977-01-01
Overall correlations between personality/motivation and verbal reasoning, divergent thinking, and creative writing in 1,416 children, aged 10-13 were low, suggesting that classroom climate and teaching methods may affect this relationship. (Tests are appended.) (Available in microfiche from: Carfax Publishing Company, Haddon House,…
Meise, Kristine; Mueller, Birte; Zein, Beate; Trillmich, Fritz
2014-01-01
Morphological features correlate with many life history traits and are therefore of high interest to behavioral and evolutionary biologists. Photogrammetry provides a useful tool to collect morphological data from species for which measurements are otherwise difficult to obtain. This method reduces disturbance and avoids capture stress. Using the Galapagos sea lion (Zalophus wollebaeki) as a model system, we tested the applicability of single-camera photogrammetry in combination with laser distance measurement to estimate morphological traits which may vary with an animal's body position. We assessed whether linear morphological traits estimated by photogrammetry can be used to estimate body length and mass. We show that accurate estimates of body length (males: ±2.0%, females: ±2.6%) and reliable estimates of body mass are possible (males: ±6.8%, females: 14.5%). Furthermore, we developed correction factors that allow the use of animal photos that diverge somewhat from a flat-out position. The product of estimated body length and girth produced sufficiently reliable estimates of mass to categorize individuals into 10 kg-classes of body mass. Data of individuals repeatedly photographed within one season suggested relatively low measurement errors (body length: 2.9%, body mass: 8.1%). In order to develop accurate sex- and age-specific correction factors, a sufficient number of individuals from both sexes and from all desired age classes have to be captured for baseline measurements. Given proper validation, this method provides an excellent opportunity to collect morphological data for large numbers of individuals with minimal disturbance.
Meise, Kristine; Mueller, Birte; Zein, Beate; Trillmich, Fritz
2014-01-01
Morphological features correlate with many life history traits and are therefore of high interest to behavioral and evolutionary biologists. Photogrammetry provides a useful tool to collect morphological data from species for which measurements are otherwise difficult to obtain. This method reduces disturbance and avoids capture stress. Using the Galapagos sea lion (Zalophus wollebaeki) as a model system, we tested the applicability of single-camera photogrammetry in combination with laser distance measurement to estimate morphological traits which may vary with an animal’s body position. We assessed whether linear morphological traits estimated by photogrammetry can be used to estimate body length and mass. We show that accurate estimates of body length (males: ±2.0%, females: ±2.6%) and reliable estimates of body mass are possible (males: ±6.8%, females: 14.5%). Furthermore, we developed correction factors that allow the use of animal photos that diverge somewhat from a flat-out position. The product of estimated body length and girth produced sufficiently reliable estimates of mass to categorize individuals into 10 kg-classes of body mass. Data of individuals repeatedly photographed within one season suggested relatively low measurement errors (body length: 2.9%, body mass: 8.1%). In order to develop accurate sex- and age-specific correction factors, a sufficient number of individuals from both sexes and from all desired age classes have to be captured for baseline measurements. Given proper validation, this method provides an excellent opportunity to collect morphological data for large numbers of individuals with minimal disturbance. PMID:24987983
Ren, Jindong; Du, Xue; Zeng, Tao; Chen, Li; Shen, Junda; Lu, Lizhi; Hu, Jianhong
2017-10-01
Long noncoding RNAs (lncRNAs) and divergently expressed genes exist widely in different tissues of mammals and birds, in which they are involved in various biological processes. However, there is limited information on their role in the regulation of normal biological processes during differentiation, development, and reproduction in birds. In this study, whole transcriptome strand-specific RNA sequencing of the ovary from young ducks (60days), first-laying ducks (160days), and old ducks, i.e., ducks that stopped laying eggs (490days) was performed. The lncRNAs and mRNAs from these ducks were systematically analyzed and identified by duck genome sequencing in the three study groups. The transcriptome from the duck ovary comprised 15,011 protein-coding genes and 2905 lncRNAs; all the lncRNAs were identified as novel long noncoding transcripts. The comparison of transcriptome data from different study groups identified 2240 divergent transcription genes and 135 divergently expressed lncRNAs, which differed among the groups; most of them were significantly downregulated with age. Among the divergent genes, 38 genes were related to the reproductive process and 6 genes were upregulated. Further prediction analysis revealed that 52 lncRNAs were closely correlated with divergent reproductive mRNAs. More importantly, 6 remarkable lncRNAs were correlated significantly with the conversion of the ovary in different phases. Our results aid in the understanding of the divergent transcriptome of duck ovary in different phases and the underlying mechanisms that drive the specificity of protein-coding genes and lncRNAs in duck ovary. Copyright © 2017. Published by Elsevier B.V.
3-Dimensional Reproducibility of Natural Head Position
2012-04-12
the “Six Elements to Orofacial Harmony”. He advocated using his Element II Analysis with natural head orientation for treatment planning, since “it...temporomandibular disorders, neck pain , headache, dentofacial structures, mandibular length, mandibular position, mandibular divergency and overjet (Cuccia, 2009
Budgets of divergent and rotational kinetic energy during two periods of intense convection
NASA Technical Reports Server (NTRS)
Buechler, D. E.; Fuelberg, H. E.
1986-01-01
The derivations of the energy budget equations for divergent and rotational components of kinetic energy are provided. The intense convection periods studied are: (1) synoptic scale data of 3 or 6 hour intervals and (2) mesoalphascale data every 3 hours. Composite energies and averaged budgets for the periods are presented; the effects of random data errors on derived energy parameters is investigated. The divergent kinetic energy and rotational kinetic energy budgets are compared; good correlation of the data is observed. The kinetic energies and budget terms increase with convective development; however, the conversion of the divergent and rotational energies are opposite.
Phylogeny and divergence of the pinnipeds (Carnivora: Mammalia) assessed using a multigene dataset
Higdon, Jeff W; Bininda-Emonds, Olaf RP; Beck, Robin MD; Ferguson, Steven H
2007-01-01
Background Phylogenetic comparative methods are often improved by complete phylogenies with meaningful branch lengths (e.g., divergence dates). This study presents a dated molecular supertree for all 34 world pinniped species derived from a weighted matrix representation with parsimony (MRP) supertree analysis of 50 gene trees, each determined under a maximum likelihood (ML) framework. Divergence times were determined by mapping the same sequence data (plus two additional genes) on to the supertree topology and calibrating the ML branch lengths against a range of fossil calibrations. We assessed the sensitivity of our supertree topology in two ways: 1) a second supertree with all mtDNA genes combined into a single source tree, and 2) likelihood-based supermatrix analyses. Divergence dates were also calculated using a Bayesian relaxed molecular clock with rate autocorrelation to test the sensitivity of our supertree results further. Results The resulting phylogenies all agreed broadly with recent molecular studies, in particular supporting the monophyly of Phocidae, Otariidae, and the two phocid subfamilies, as well as an Odobenidae + Otariidae sister relationship; areas of disagreement were limited to four more poorly supported regions. Neither the supertree nor supermatrix analyses supported the monophyly of the two traditional otariid subfamilies, supporting suggestions for the need for taxonomic revision in this group. Phocid relationships were similar to other recent studies and deeper branches were generally well-resolved. Halichoerus grypus was nested within a paraphyletic Pusa, although relationships within Phocina tend to be poorly supported. Divergence date estimates for the supertree were in good agreement with other studies and the available fossil record; however, the Bayesian relaxed molecular clock divergence date estimates were significantly older. Conclusion Our results join other recent studies and highlight the need for a re-evaluation of pinniped taxonomy, especially as regards the subfamilial classification of otariids and the generic nomenclature of Phocina. Even with the recent publication of new sequence data, the available genetic sequence information for several species, particularly those in Arctocephalus, remains very limited, especially for nuclear markers. However, resolution of parts of the tree will probably remain difficult, even with additional data, due to apparent rapid radiations. Our study addresses the lack of a recent pinniped phylogeny that includes all species and robust divergence dates for all nodes, and will therefore prove indispensable to comparative and macroevolutionary studies of this group of carnivores. PMID:17996107
Mixed-order phase transition of the contact process near multiple junctions.
Juhász, Róbert; Iglói, Ferenc
2017-02-01
We have studied the phase transition of the contact process near a multiple junction of M semi-infinite chains by Monte Carlo simulations. As opposed to the continuous transitions of the translationally invariant (M=2) and semi-infinite (M=1) system, the local order parameter is found to be discontinuous for M>2. Furthermore, the temporal correlation length diverges algebraically as the critical point is approached, but with different exponents on the two sides of the transition. In the active phase, the estimate is compatible with the bulk value, while in the inactive phase it exceeds the bulk value and increases with M. The unusual local critical behavior is explained by a scaling theory with an irrelevant variable, which becomes dangerous in the inactive phase. Quenched spatial disorder is found to make the transition continuous in agreement with earlier renormalization group results.
Unified theory of inertial granular flows and non-Brownian suspensions.
DeGiuli, E; Düring, G; Lerner, E; Wyart, M
2015-06-01
Rheological properties of dense flows of hard particles are singular as one approaches the jamming threshold where flow ceases both for aerial granular flows dominated by inertia and for over-damped suspensions. Concomitantly, the length scale characterizing velocity correlations appears to diverge at jamming. Here we introduce a theoretical framework that proposes a tentative, but potentially complete, scaling description of stationary flows. Our analysis, which focuses on frictionless particles, applies both to suspensions and inertial flows of hard particles. We compare our predictions with the empirical literature, as well as with novel numerical data. Overall, we find a very good agreement between theory and observations, except for frictional inertial flows whose scaling properties clearly differ from frictionless systems. For overdamped flows, more observations are needed to decide if friction is a relevant perturbation. Our analysis makes several new predictions on microscopic dynamical quantities that should be accessible experimentally.
Mixed-order phase transition in a colloidal crystal
Tierno, Pietro; Casademunt, Jaume
2017-01-01
Mixed-order phase transitions display a discontinuity in the order parameter like first-order transitions yet feature critical behavior like second-order transitions. Such transitions have been predicted for a broad range of equilibrium and nonequilibrium systems, but their experimental observation has remained elusive. Here, we analytically predict and experimentally realize a mixed-order equilibrium phase transition. Specifically, a discontinuous solid–solid transition in a 2D crystal of paramagnetic colloidal particles is induced by a magnetic field H. At the transition field Hs, the energy landscape of the system becomes completely flat, which causes diverging fluctuations and correlation length ξ∝|H2−Hs2|−1/2. Mean-field critical exponents are predicted, since the upper critical dimension of the transition is du=2. Our colloidal system provides an experimental test bed to probe the unconventional properties of mixed-order phase transitions. PMID:29158388
Poran, S.; Nguyen-Duc, T.; Auerbach, A.; Dupuis, N.; Frydman, A.; Bourgeois, Olivier
2017-01-01
The superconductor–insulator transition (SIT) is considered an excellent example of a quantum phase transition that is driven by quantum fluctuations at zero temperature. The quantum critical point is characterized by a diverging correlation length and a vanishing energy scale. Low-energy fluctuations near quantum criticality may be experimentally detected by specific heat, cp, measurements. Here we use a unique highly sensitive experiment to measure cp of two-dimensional granular Pb films through the SIT. The specific heat shows the usual jump at the mean field superconducting transition temperature marking the onset of Cooper pairs formation. As the film thickness is tuned towards the SIT, is relatively unchanged, while the magnitude of the jump and low-temperature specific heat increase significantly. This behaviour is taken as the thermodynamic fingerprint of quantum criticality in the vicinity of a quantum phase transition. PMID:28224994
Poran, S; Nguyen-Duc, T; Auerbach, A; Dupuis, N; Frydman, A; Bourgeois, Olivier
2017-02-22
The superconductor-insulator transition (SIT) is considered an excellent example of a quantum phase transition that is driven by quantum fluctuations at zero temperature. The quantum critical point is characterized by a diverging correlation length and a vanishing energy scale. Low-energy fluctuations near quantum criticality may be experimentally detected by specific heat, c p , measurements. Here we use a unique highly sensitive experiment to measure c p of two-dimensional granular Pb films through the SIT. The specific heat shows the usual jump at the mean field superconducting transition temperature marking the onset of Cooper pairs formation. As the film thickness is tuned towards the SIT, is relatively unchanged, while the magnitude of the jump and low-temperature specific heat increase significantly. This behaviour is taken as the thermodynamic fingerprint of quantum criticality in the vicinity of a quantum phase transition.
USDA-ARS?s Scientific Manuscript database
The full-length sequence of a new isolate of Apple chlorotic leaf spot virus (ACLSV) from Korea was divergent, but most closely related to the Japanese isolate A4, at 84% nucleotide identity. The full-length cDNA of the Korean isolate of ACLSV was cloned into a binary vector downstream of the bacter...
Birth-death prior on phylogeny and speed dating
2008-01-01
Background In recent years there has been a trend of leaving the strict molecular clock in order to infer dating of speciations and other evolutionary events. Explicit modeling of substitution rates and divergence times makes formulation of informative prior distributions for branch lengths possible. Models with birth-death priors on tree branching and auto-correlated or iid substitution rates among lineages have been proposed, enabling simultaneous inference of substitution rates and divergence times. This problem has, however, mainly been analysed in the Markov chain Monte Carlo (MCMC) framework, an approach requiring computation times of hours or days when applied to large phylogenies. Results We demonstrate that a hill-climbing maximum a posteriori (MAP) adaptation of the MCMC scheme results in considerable gain in computational efficiency. We demonstrate also that a novel dynamic programming (DP) algorithm for branch length factorization, useful both in the hill-climbing and in the MCMC setting, further reduces computation time. For the problem of inferring rates and times parameters on a fixed tree, we perform simulations, comparisons between hill-climbing and MCMC on a plant rbcL gene dataset, and dating analysis on an animal mtDNA dataset, showing that our methodology enables efficient, highly accurate analysis of very large trees. Datasets requiring a computation time of several days with MCMC can with our MAP algorithm be accurately analysed in less than a minute. From the results of our example analyses, we conclude that our methodology generally avoids getting trapped early in local optima. For the cases where this nevertheless can be a problem, for instance when we in addition to the parameters also infer the tree topology, we show that the problem can be evaded by using a simulated-annealing like (SAL) method in which we favour tree swaps early in the inference while biasing our focus towards rate and time parameter changes later on. Conclusion Our contribution leaves the field open for fast and accurate dating analysis of nucleotide sequence data. Modeling branch substitutions rates and divergence times separately allows us to include birth-death priors on the times without the assumption of a molecular clock. The methodology is easily adapted to take data from fossil records into account and it can be used together with a broad range of rate and substitution models. PMID:18318893
Birth-death prior on phylogeny and speed dating.
Akerborg, Orjan; Sennblad, Bengt; Lagergren, Jens
2008-03-04
In recent years there has been a trend of leaving the strict molecular clock in order to infer dating of speciations and other evolutionary events. Explicit modeling of substitution rates and divergence times makes formulation of informative prior distributions for branch lengths possible. Models with birth-death priors on tree branching and auto-correlated or iid substitution rates among lineages have been proposed, enabling simultaneous inference of substitution rates and divergence times. This problem has, however, mainly been analysed in the Markov chain Monte Carlo (MCMC) framework, an approach requiring computation times of hours or days when applied to large phylogenies. We demonstrate that a hill-climbing maximum a posteriori (MAP) adaptation of the MCMC scheme results in considerable gain in computational efficiency. We demonstrate also that a novel dynamic programming (DP) algorithm for branch length factorization, useful both in the hill-climbing and in the MCMC setting, further reduces computation time. For the problem of inferring rates and times parameters on a fixed tree, we perform simulations, comparisons between hill-climbing and MCMC on a plant rbcL gene dataset, and dating analysis on an animal mtDNA dataset, showing that our methodology enables efficient, highly accurate analysis of very large trees. Datasets requiring a computation time of several days with MCMC can with our MAP algorithm be accurately analysed in less than a minute. From the results of our example analyses, we conclude that our methodology generally avoids getting trapped early in local optima. For the cases where this nevertheless can be a problem, for instance when we in addition to the parameters also infer the tree topology, we show that the problem can be evaded by using a simulated-annealing like (SAL) method in which we favour tree swaps early in the inference while biasing our focus towards rate and time parameter changes later on. Our contribution leaves the field open for fast and accurate dating analysis of nucleotide sequence data. Modeling branch substitutions rates and divergence times separately allows us to include birth-death priors on the times without the assumption of a molecular clock. The methodology is easily adapted to take data from fossil records into account and it can be used together with a broad range of rate and substitution models.
Bergmann's rule is maintained during a rapid range expansion in a damselfly.
Hassall, Christopher; Keat, Simon; Thompson, David J; Watts, Phillip C
2014-02-01
Climate-induced range shifts result in the movement of a sample of genotypes from source populations to new regions. The phenotypic consequences of those shifts depend upon the sample characteristics of the dispersive genotypes, which may act to either constrain or promote phenotypic divergence, and the degree to which plasticity influences the genotype-environment interaction. We sampled populations of the damselfly Erythromma viridulum from northern Europe to quantify the phenotypic (latitude-body size relationship based on seven morphological traits) and genetic (variation at microsatellite loci) patterns that occur during a range expansion itself. We find a weak spatial genetic structure that is indicative of high gene flow during a rapid range expansion. Despite the potentially homogenizing effect of high gene flow, however, there is extensive phenotypic variation among samples along the invasion route that manifests as a strong, positive correlation between latitude and body size consistent with Bergmann's rule. This positive correlation cannot be explained by variation in the length of larval development (voltinism). While the adaptive significance of latitudinal variation in body size remains obscure, geographical patterns in body size in odonates are apparently underpinned by phenotypic plasticity and this permits a response to one or more environmental correlates of latitude during a range expansion. © 2013 John Wiley & Sons Ltd.
Vanden Broeck, An; Van Landuyt, Wouter; Cox, Karen; De Bruyn, Luc; Gyselings, Ralf; Oostermeijer, Gerard; Valentin, Bertille; Bozic, Gregor; Dolinar, Branko; Illyés, Zoltán; Mergeay, Joachim
2014-07-07
Gene flow and adaptive divergence are key aspects of metapopulation dynamics and ecological speciation. Long-distance dispersal is hard to detect and few studies estimate dispersal in combination with adaptive divergence. The aim of this study was to investigate effective long-distance dispersal and adaptive divergence in the fen orchid (Liparis loeselii (L.) Rich.). We used amplified fragment length polymorphism (AFLP)-based assignment tests to quantify effective long-distance dispersal at two different regions in Northwest Europe. In addition, genomic divergence between fen orchid populations occupying two distinguishable habitats, wet dune slacks and alkaline fens, was investigated by a genome scan approach at different spatial scales (continental, landscape and regional) and based on 451 AFLP loci. We expected that different habitats would contribute to strong divergence and restricted gene flow resulting in isolation-by-adaptation. Instead, we found remarkably high levels of effective long-distance seed dispersal and low levels of adaptive divergence. At least 15% of the assigned individuals likely originated from among-population dispersal events with dispersal distances up to 220 km. Six (1.3%) 'outlier' loci, potentially reflecting local adaptation to habitat-type, were identified with high statistical support. Of these, only one (0.22%) was a replicated outlier in multiple independent dune-fen population comparisons and thus possibly reflecting truly parallel divergence. Signals of adaptation in response to habitat type were most evident at the scale of individual populations. The findings of this study suggest that the homogenizing effect of effective long-distance seed dispersal may overwhelm divergent selection associated to habitat type in fen orchids in Northwest Europe.
Numerical Optimization of converging diverging miniature cavitating nozzles
NASA Astrophysics Data System (ADS)
Chavan, Kanchan; Bhingole, B.; Raut, J.; Pandit, A. B.
2015-12-01
The work focuses on the numerical optimization of converging diverging cavitating nozzles through nozzle dimensions and wall shape. The objective is to develop design rules for the geometry of cavitating nozzles for desired end-use. Two main aspects of nozzle design which affects the cavitation have been studied i.e. end dimensions of the geometry (i.e. angle and/or curvature of the inlet, outlet and the throat and the lengths of the converging and diverging sections) and wall curvatures(concave or convex). Angle of convergence at the inlet was found to control the cavity growth whereas angle of divergence of the exit controls the collapse of cavity. CFD simulations were carried out for the straight line converging and diverging sections by varying converging and diverging angles to study its effect on the collapse pressure generated by the cavity. Optimized geometry configurations were obtained on the basis of maximum Cavitational Efficacy Ratio (CER)i.e. cavity collapse pressure generated for a given permanent pressure drop across the system. With increasing capabilities in machining and fabrication, it is possible to exploit the effect of wall curvature to create nozzles with further increase in the CER. Effect of wall curvature has been studied for the straight, concave and convex shapes. Curvature has been varied and effect of concave and convex wall curvatures vis-à-vis straight walls studied for fixed converging and diverging angles.It is concluded that concave converging-diverging nozzles with converging angle of 20° and diverging angle of 5° with the radius of curvature 0.03 m and 0.1530 m respectively gives maximum CER. Preliminary experiments using optimized geometry are indicating similar trends and are currently being carried out. Refinements of the CFD technique using two phase flow simulations are planned.
2014-01-01
Background Gene flow and adaptive divergence are key aspects of metapopulation dynamics and ecological speciation. Long-distance dispersal is hard to detect and few studies estimate dispersal in combination with adaptive divergence. The aim of this study was to investigate effective long-distance dispersal and adaptive divergence in the fen orchid (Liparis loeselii (L.) Rich.). We used amplified fragment length polymorphism (AFLP)-based assignment tests to quantify effective long-distance dispersal at two different regions in Northwest Europe. In addition, genomic divergence between fen orchid populations occupying two distinguishable habitats, wet dune slacks and alkaline fens, was investigated by a genome scan approach at different spatial scales (continental, landscape and regional) and based on 451 AFLP loci. Results We expected that different habitats would contribute to strong divergence and restricted gene flow resulting in isolation-by-adaptation. Instead, we found remarkably high levels of effective long-distance seed dispersal and low levels of adaptive divergence. At least 15% of the assigned individuals likely originated from among-population dispersal events with dispersal distances up to 220 km. Six (1.3%) ‘outlier’ loci, potentially reflecting local adaptation to habitat-type, were identified with high statistical support. Of these, only one (0.22%) was a replicated outlier in multiple independent dune-fen population comparisons and thus possibly reflecting truly parallel divergence. Signals of adaptation in response to habitat type were most evident at the scale of individual populations. Conclusions The findings of this study suggest that the homogenizing effect of effective long-distance seed dispersal may overwhelm divergent selection associated to habitat type in fen orchids in Northwest Europe. PMID:24998243
NASA Astrophysics Data System (ADS)
Wang, Kunpeng; Tan, Handong; Zhang, Zhiyong; Li, Zhiqiang; Cao, Meng
2017-05-01
Resistivity anisotropy and full-tensor controlled-source audio-frequency magnetotellurics (CSAMT) have gradually become hot research topics. However, much of the current anisotropy research for tensor CSAMT only focuses on the one-dimensional (1D) solution. As the subsurface is rarely 1D, it is necessary to study three-dimensional (3D) model response. The staggered-grid finite difference method is an effective simulation method for 3D electromagnetic forward modelling. Previous studies have suggested using the divergence correction to constrain the iterative process when using a staggered-grid finite difference model so as to accelerate the 3D forward speed and enhance the computational accuracy. However, the traditional divergence correction method was developed assuming an isotropic medium. This paper improves the traditional isotropic divergence correction method and derivation process to meet the tensor CSAMT requirements for anisotropy using the volume integral of the divergence equation. This method is more intuitive, enabling a simple derivation of a discrete equation and then calculation of coefficients related to the anisotropic divergence correction equation. We validate the result of our 3D computational results by comparing them to the results computed using an anisotropic, controlled-source 2.5D program. The 3D resistivity anisotropy model allows us to evaluate the consequences of using the divergence correction at different frequencies and for two orthogonal finite length sources. Our results show that the divergence correction plays an important role in 3D tensor CSAMT resistivity anisotropy research and offers a solid foundation for inversion of CSAMT data collected over an anisotropic body.
Morphological and niche divergence of pinyon pines.
Ortiz-Medrano, Alejandra; Scantlebury, Daniel Patrick; Vázquez-Lobo, Alejandra; Mastretta-Yanes, Alicia; Piñero, Daniel
2016-05-01
The environmental variables that define a species ecological niche should be associated with the evolutionary patterns present in the adaptations that resulted from living in these conditions. Thus, when comparing across species, we can expect to find an association between phylogenetically independent phenotypic characters and ecological niche evolution. Few studies have evaluated how organismal phenotypes might mirror patterns of niche evolution if these phenotypes reflect adaptations. Doing so could contribute on the understanding of the origin and maintenance of phenotypic diversity observed in nature. Here, we show the pattern of niche evolution of the pinyon pine lineage (Pinus subsection Cembroides); then, we suggest morphological adaptations possibly related to niche divergence, and finally, we test for correlation between ecological niche and morphology. We demonstrate that niche divergence is the general pattern within the clade and that it is positively correlated with adaptation.
Zhu, Tianqi; Dos Reis, Mario; Yang, Ziheng
2015-03-01
Genetic sequence data provide information about the distances between species or branch lengths in a phylogeny, but not about the absolute divergence times or the evolutionary rates directly. Bayesian methods for dating species divergences estimate times and rates by assigning priors on them. In particular, the prior on times (node ages on the phylogeny) incorporates information in the fossil record to calibrate the molecular tree. Because times and rates are confounded, our posterior time estimates will not approach point values even if an infinite amount of sequence data are used in the analysis. In a previous study we developed a finite-sites theory to characterize the uncertainty in Bayesian divergence time estimation in analysis of large but finite sequence data sets under a strict molecular clock. As most modern clock dating analyses use more than one locus and are conducted under relaxed clock models, here we extend the theory to the case of relaxed clock analysis of data from multiple loci (site partitions). Uncertainty in posterior time estimates is partitioned into three sources: Sampling errors in the estimates of branch lengths in the tree for each locus due to limited sequence length, variation of substitution rates among lineages and among loci, and uncertainty in fossil calibrations. Using a simple but analogous estimation problem involving the multivariate normal distribution, we predict that as the number of loci ([Formula: see text]) goes to infinity, the variance in posterior time estimates decreases and approaches the infinite-data limit at the rate of 1/[Formula: see text], and the limit is independent of the number of sites in the sequence alignment. We then confirmed the predictions by using computer simulation on phylogenies of two or three species, and by analyzing a real genomic data set for six primate species. Our results suggest that with the fossil calibrations fixed, analyzing multiple loci or site partitions is the most effective way for improving the precision of posterior time estimation. However, even if a huge amount of sequence data is analyzed, considerable uncertainty will persist in time estimates. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society of Systematic Biologists.
Smeekens, Bridget A; Kane, Michael J
2016-11-01
Should executive control, as indicated by working memory capacity (WMC) and mind-wandering propensity, help or hinder creativity? Sustained and focused attention should help guide a selective search of solution-relevant information in memory and help inhibit uncreative, yet accessible, ideas. However, unfocused attention and daydreaming should allow mental access to more loosely relevant concepts, remotely linked to commonplace solutions. Three individual-differences studies inserted incubation periods into one or two divergent thinking tasks and tested whether WMC (assessed by complex span tasks) and incubation-period mind wandering (assessed as probed reports of task-unrelated thought [TUT]) predicted post-incubation performance. Retrospective self-reports of Openness (Experiment 2) and mind-wandering and daydreaming propensity (Experiment 3) complemented our thought-probe assessments of TUT. WMC did not correlate with creativity in divergent thinking, whereas only the questionnaire measure of daydreaming, but not probed thought reports, weakly predicted creativity; the fact that in-the-moment TUTs did not correlate divergent creativity is especially problematic for claims that mind-wandering processes contribute to creative cognition. Moreover, the fact that WMC tends to strongly predict analytical problem solving and reasoning, but may not correlate with divergent thinking, provides a useful boundary condition for defining WMC's nomological net. On balance, our data provide no support for either benefits or costs of executive control for at least one component of creativity.
Estimation of stature from sternal lengths. A correlation meta-analysis.
Yammine, Kaissar; Assi, Chahine
2017-01-01
Methods based on the positive linear relationship existing between stature and long bones are most commonly used to estimate living stature in forensic anthropology. The length of the sternum and its parts has been advanced as a plausible alternative to estimate stature when such long bones are missing or damaged. This meta-analysis aims to quantify evidence on the correlation between the sternum/sternal parts length and stature. Nine studies were included with 1118 sternal bones. Analyses showed that the length of the meso-sternum (manubrium + body) yielded the best correlation with stature; 53.5% and 55.42% for men and women, respectively. The second best variable is the total sternal length with correlations of 44.3% and 55% for men and women, respectively. Subgroup analysis of autopsy studies demonstrated even a higher correlation of 58.2% for the meso-sternal length. Manubrium and body lengths showed the least correlation values. Except for the body length, females exhibit a better correlation than man between all other sternal lengths and stature. While the meso-sternal length is found to be the most correlated variable with stature, all sternal lengths are to be considered with caution when estimating stature. The relatively low values of the weighted correlation results should raise the question of reliability and limit the use of sternal length when long bones are available. Future research using larger samples from different populations and taking into account the fusion status of the sternum are needed.
A Maximum Entropy Test for Evaluating Higher-Order Correlations in Spike Counts
Onken, Arno; Dragoi, Valentin; Obermayer, Klaus
2012-01-01
Evaluating the importance of higher-order correlations of neural spike counts has been notoriously hard. A large number of samples are typically required in order to estimate higher-order correlations and resulting information theoretic quantities. In typical electrophysiology data sets with many experimental conditions, however, the number of samples in each condition is rather small. Here we describe a method that allows to quantify evidence for higher-order correlations in exactly these cases. We construct a family of reference distributions: maximum entropy distributions, which are constrained only by marginals and by linear correlations as quantified by the Pearson correlation coefficient. We devise a Monte Carlo goodness-of-fit test, which tests - for a given divergence measure of interest - whether the experimental data lead to the rejection of the null hypothesis that it was generated by one of the reference distributions. Applying our test to artificial data shows that the effects of higher-order correlations on these divergence measures can be detected even when the number of samples is small. Subsequently, we apply our method to spike count data which were recorded with multielectrode arrays from the primary visual cortex of anesthetized cat during an adaptation experiment. Using mutual information as a divergence measure we find that there are spike count bin sizes at which the maximum entropy hypothesis can be rejected for a substantial number of neuronal pairs. These results demonstrate that higher-order correlations can matter when estimating information theoretic quantities in V1. They also show that our test is able to detect their presence in typical in-vivo data sets, where the number of samples is too small to estimate higher-order correlations directly. PMID:22685392
Recent development of a jet-diffuser ejector
NASA Technical Reports Server (NTRS)
Alperin, M.; Wu, J. J.
1980-01-01
The paper considers thrust augmenting ejectors in which the processes of mixing and diffusion are partly carried out downstream of the ejector solid surfaces. A jet sheet surrounding the periphery of a widely diverging diffuser prevents separation and forms a gaseous, curved surface to provide effective diffuser ratio and additional length for mixing of primary and induced flows. Three-dimensional potential flow methods achieved a large reduction in the length of the associated solid surface; primary nozzle design further reduced the volume required by the jet-diffuser ejectors, resulting in thrust augmentation in excess of two, and an overall length of about 2 1/2 times the throat width.
Modeling of Ceiling Fire Spread and Thermal Radiation.
1981-10-01
under a PMMA ceiling and flame lengths under an inert ceiling are found to be in reasonable agreement with full-scale behavior. Although fire spread...5 3 Flame Lengths under Full-Scale Ceilings 12 4 Correlation of Flame Length under Inert Ceilings 16 5 Correlation of Flame Length under No 234 Model...Ceilings 17 6 Correlation of Flame Length under No B8811 Model Ceilings 18 7 Correlation of Flame Length under No. 223 Model Ceilings 19 8
Mitogenomic analysis of the genus Panthera.
Wei, Lei; Wu, Xiaobing; Zhu, Lixin; Jiang, Zhigang
2011-10-01
The complete sequences of the mitochondrial DNA genomes of Panthera tigris, Panthera pardus, and Panthera uncia were determined using the polymerase chain reaction method. The lengths of the complete mitochondrial DNA sequences of the three species were 16990, 16964, and 16773 bp, respectively. Each of the three mitochondrial DNA genomes included 13 protein-coding genes, 22 tRNA, two rRNA, one O(L)R, and one control region. The structures of the genomes were highly similar to those of Felis catus, Acinonyx jubatus, and Neofelis nebulosa. The phylogenies of the genus Panthera were inferred from two combined mitochondrial sequence data sets and the complete mitochondrial genome sequences, by MP (maximum parsimony), ML (maximum likelihood), and Bayesian analysis. The results showed that Panthera was composed of Panthera leo, P. uncia, P. pardus, Panthera onca, P. tigris, and N. nebulosa, which was included as the most basal member. The phylogeny within Panthera genus was N. nebulosa (P. tigris (P. onca (P. pardus, (P. leo, P. uncia)))). The divergence times for Panthera genus were estimated based on the ML branch lengths and four well-established calibration points. The results showed that at about 11.3 MYA, the Panthera genus separated from other felid species and then evolved into the several species of the genus. In detail, N. nebulosa was estimated to be founded about 8.66 MYA, P. tigris about 6.55 MYA, P. uncia about 4.63 MYA, and P. pardus about 4.35 MYA. All these estimated times were older than those estimated from the fossil records. The divergence event, evolutionary process, speciation, and distribution pattern of P. uncia, a species endemic to the central Asia with core habitats on the Qinghai-Tibetan Plateau and surrounding highlands, mostly correlated with the geological tectonic events and intensive climate shifts that happened at 8, 3.6, 2.5, and 1.7 MYA on the plateau during the late Cenozoic period.
Evolutionary consequences of human disturbance in a rainforest bird species from Central Africa.
Smith, Thomas B; Milá, Borja; Grether, Gregory F; Slabbekoorn, Hans; Sepil, Irem; Buermann, Wolfgang; Saatchi, Sassan; Pollinger, John P
2008-01-01
Relatively little attention has been directed towards understanding the impacts of human disturbance on evolutionary processes that produce and maintain biodiversity. Here, we examine the influence of anthropogenic habitat changes on traits typically associated with natural and sexual selection in the little greenbul (Andropadus virens), an African rainforest bird species. Using satellite remote-sensing and field survey data, we classified habitats into nonhuman-altered mature and human-altered secondary forest. Mature rainforest consisted of pristine rainforest, with little or no human influence, and secondary forest was characterized by plantations of coffee and cacao and high human impacts. Andropadus virens abundance was higher in secondary forest, and populations inhabiting mature rainforest were significantly larger in wing and tarsus length and bill size; characters often correlated with fitness. To assess the extent to which characters important in sexual section and mate choice might be influenced by habitat change, we also examined differences in plumage colour and song. Plumage colour and the variance in plumage luminance were found to differ between forest types, and song duration was found to be significantly longer in mature forest. The possible adaptive significance of these differences in traits is discussed. Despite relatively high levels of gene flow across habitats, amplified fragment length polymorphism analysis revealed that a small proportion of high-F(ST) loci differentiated mature from secondary forest populations. These loci were significant outliers against neutral expectations in a simulation analysis, suggesting a role for divergent selection in differentiation across habitats. A distance-based redundancy analysis further showed that forest type as defined by remote-sensing variables was significantly associated with genetic dissimilarities between habitats, even when controlling for distance. The observed shifts in morphology, plumage and song were consistent with divergent selection on heritable variation, but a role for plasticity cannot be ruled out. Results suggest that anthropogenic habitat changes may have evolutionary consequences, with implications for conservation and restoration.
Changes in divergence-free grid turbulence interacting with a weak spherical shock wave
NASA Astrophysics Data System (ADS)
Kitamura, T.; Nagata, K.; Sakai, Y.; Sasoh, A.; Ito, Y.
2017-06-01
The characteristics of divergence-free grid turbulence interacting with a weak spherical shock wave with a Mach number of 1.05 are experimentally investigated. Turbulence-generating grids are used to generate nearly isotropic, divergence-free turbulence. The turbulent Reynolds number based on the Taylor microscale R eλ and the turbulent Mach number Mt are 49 ≤R eλ≤159 and 0.709 × 1 0-3≤Mt≤2.803 ×1 0-3, respectively. A spherical shock wave is generated by a diaphragmless shock tube. The instantaneous streamwise velocity before and after the interaction is measured by a hot wire probe. The results show that the root-mean-square value of streamwise velocity fluctuations (r.m.s velocity) increases and the streamwise integral length scale decreases after the interaction. The changes in the r.m.s velocity become small with the increase in R eλ and Mt for the same strength of the shock wave. This tendency is similar to that of the streamwise integral length scale. The continuous wavelet analysis shows that high intensity appears mainly in the low-frequency region and positive and negative wavelet coefficients appear periodically in time before the interaction, whereas such high intensity appears in both the low- and high-frequency regions after the interaction. The spectral analysis reveals that the energy at high wavenumbers increases after the interaction. The change in turbulence after the interaction is explained from the viewpoint of the initial turbulent Mach number. It is suggested that the change is more significant for initial divergence-free turbulence than for curl-free turbulence.
2013-01-01
Background Radiation in some plant groups has occurred on islands and due to the characteristic rapid pace of phenotypic evolution, standard molecular markers often provide insufficient variation for phylogenetic reconstruction. To resolve relationships within a clade of 21 closely related New Caledonian Diospyros species and evaluate species boundaries we analysed genome-wide DNA variation via amplified fragment length polymorphisms (AFLP). Results A neighbour-joining (NJ) dendrogram based on Dice distances shows all species except D. minimifolia, D. parviflora and D. vieillardii to form unique clusters of genetically similar accessions. However, there was little variation between these species clusters, resulting in unresolved species relationships and a star-like general NJ topology. Correspondingly, analyses of molecular variance showed more variation within species than between them. A Bayesian analysis with BEAST produced a similar result. Another Bayesian method, this time a clustering method, Structure, demonstrated the presence of two groups, highly congruent with those observed in a principal coordinate analysis (PCO). Molecular divergence between the two groups is low and does not correspond to any hypothesised taxonomic, ecological or geographical patterns. Conclusions We hypothesise that such a pattern could have been produced by rapid and complex evolution involving a widespread progenitor for which an initial split into two groups was followed by subsequent fragmentation into many diverging populations, which was followed by range expansion of then divergent entities. Overall, this process resulted in an opportunistic pattern of phenotypic diversification. The time since divergence was probably insufficient for some species to become genetically well-differentiated, resulting in progenitor/derivative relationships being exhibited in a few cases. In other cases, our analyses may have revealed evidence for the existence of cryptic species, for which more study of morphology and ecology are now required. PMID:24330478
Training in the Adolescent Brain: An FMRI Training Study on Divergent Thinking
ERIC Educational Resources Information Center
Kleibeuker, Sietske W.; Stevenson, Claire E.; van der Aar, Laura; Overgaauw, Sandy; van Duijvenvoorde, Anna C.; Crone, Eveline A.
2017-01-01
Prior research suggests that adolescence is a time of enhanced sensitivity for practice and learning. In this study we tested the neural correlates of divergent thinking training in 15- to 16-year-old adolescents relative to an age-matched active control group. All participants performed an alternative uses task, a valid measure to test divergent…
The contribution of alu elements to mutagenic DNA double-strand break repair.
Morales, Maria E; White, Travis B; Streva, Vincent A; DeFreece, Cecily B; Hedges, Dale J; Deininger, Prescott L
2015-03-01
Alu elements make up the largest family of human mobile elements, numbering 1.1 million copies and comprising 11% of the human genome. As a consequence of evolution and genetic drift, Alu elements of various sequence divergence exist throughout the human genome. Alu/Alu recombination has been shown to cause approximately 0.5% of new human genetic diseases and contribute to extensive genomic structural variation. To begin understanding the molecular mechanisms leading to these rearrangements in mammalian cells, we constructed Alu/Alu recombination reporter cell lines containing Alu elements ranging in sequence divergence from 0%-30% that allow detection of both Alu/Alu recombination and large non-homologous end joining (NHEJ) deletions that range from 1.0 to 1.9 kb in size. Introduction of as little as 0.7% sequence divergence between Alu elements resulted in a significant reduction in recombination, which indicates even small degrees of sequence divergence reduce the efficiency of homology-directed DNA double-strand break (DSB) repair. Further reduction in recombination was observed in a sequence divergence-dependent manner for diverged Alu/Alu recombination constructs with up to 10% sequence divergence. With greater levels of sequence divergence (15%-30%), we observed a significant increase in DSB repair due to a shift from Alu/Alu recombination to variable-length NHEJ which removes sequence between the two Alu elements. This increase in NHEJ deletions depends on the presence of Alu sequence homeology (similar but not identical sequences). Analysis of recombination products revealed that Alu/Alu recombination junctions occur more frequently in the first 100 bp of the Alu element within our reporter assay, just as they do in genomic Alu/Alu recombination events. This is the first extensive study characterizing the influence of Alu element sequence divergence on DNA repair, which will inform predictions regarding the effect of Alu element sequence divergence on both the rate and nature of DNA repair events.
Stochastic mixing of protons from chaotic orbits in the nightside geomagnetosphere
NASA Technical Reports Server (NTRS)
Horton, W.; Liu, C.; Hernandez, J.; Tajima, T.
1991-01-01
The stochastic mixing of protons in the energy range from 1 to 30 keV in the nightside magnetosphere is studied by calculating the local divergence rate of neighboring orbits and the two-time velocity correlation function. The rate of divergence of neighboring bundles of trajectories is shown to have large bursts with average separation times of order 1 minute per e-folding during the crossing of the central plasma sheet in the region beyond -50 Re. For the Tsyganenko magnetosphere the net amount of orbit divergence is 15 to 20 e-foldings in one hour. The velocity correlations are shown to decay as power laws r-m with a distribution of m values. These results indicate that for short time (less than 1 hour) there is reversibility and memory for the protons but for longer times there is no memory for protons in the nightside magnetosphere.
Pereira, Ricardo J; Monahan, William B; Wake, David B
2011-07-06
Reproductive isolation (RI) is widely accepted as an important "check point" in the diversification process, since it defines irreversible evolutionary trajectories. Much less consensus exists about the processes that might drive RI. Here, we employ a formal quantitative analysis of genetic interactions at several stages of divergence within the ring species complex Ensatina eschscholtzii in order to assess the relative contribution of genetic and ecological divergence for the development of RI. By augmenting previous genetic datasets and adding new ecological data, we quantify levels of genetic and ecological divergence between populations and test how they correlate with a restriction of genetic admixture upon secondary contact. Our results indicate that the isolated effect of ecological divergence between parental populations does not result in reproductively isolated taxa, even when genetic transitions between parental taxa are narrow. Instead, processes associated with overall genetic divergence are the best predictors of reproductive isolation, and when parental taxa diverge in nuclear markers we observe a complete cessation of hybridization, even to sympatric occurrence of distinct evolutionary lineages. Although every parental population has diverged in mitochondrial DNA, its degree of divergence does not predict the extent of RI. These results show that in Ensatina, the evolutionary outcomes of ecological divergence differ from those of genetic divergence. While evident properties of taxa may emerge via ecological divergence, such as adaptation to local environment, RI is likely to be a byproduct of processes that contribute to overall genetic divergence, such as time in geographic isolation, rather than being a direct outcome of local adaptation.
Tu, Pei-Chi; Kuan, Yi-Hsuan; Li, Cheng-Ta; Su, Tung-Ping
2017-06-01
This study investigated the structural correlates of creative thinking in patients with bipolar disorder (BD) to understand the possible neural mechanism of creative thinking in BD. We recruited 59 patients with BD I or BD II (35.3±8.5 y) and 56 age- and sex-matched controls (HCs; 34±7.4 y). Each participant underwent structural magnetic resonance imaging and evaluation of creative thinking, which was assessed using two validated tools: the Chinese version of the Abbreviated Torrance Test for Adults for divergent thinking and the Chinese Word Remote Associates Test for remote association. Voxel-based morphometry was performed using SPM12. In patients with BD, divergent thinking positively correlated with the gray matter volume (GMV) in right medial frontal gyrus (Brodmann area [BA] 9), and remote association positively correlated with the GMV in the medial prefrontal gyrus (BA 10). In the HCs, divergent thinking negatively correlated with the GMV in left superior frontal gyrus (BA 8) and positively correlated with the GMV in the precuneus and occipital regions, and remote association positively correlated with the GMV in the hippocampus. Patients with BD were receiving various dosages of antipsychotics, antidepressants and mood stabilizer. These medications may confound the GMV-creative thinking relationship in patients with BD. Our findings indicate that medial prefrontal cortex plays a major and positive role in creative thinking in patients with BD. By contrary, creative thinking involves more diverse structures, and the prefrontal cortex may have an opposite effect in HCs. Copyright © 2017 Elsevier B.V. All rights reserved.
Morphological and Genetic Analysis of Four Color Morphs of Bean Leaf Beetle.
Tiroesele, Bamphitlhi; Skoda, Steven R; Hunt, Thomas E; Lee, Donald J; Ullah, Muhammad Irfan; Molina-Ochoa, Jaime; Foster, John E
2018-03-01
Bean leaf beetle (BLB), Cerotoma trifurcata (Forster; Coleoptera: Chrysomelidae), exhibits considerable color variation but little is known about the underlying genetic structure and gene flow among color phenotypes. Genetic and morphological variation among four color phenotypes-green with spots (G+S), green without spots (G-S), red with spots (R+S) and red without spots (R-S)-were analyzed using amplified fragment length polymorphisms (AFLP) and morphometrics, respectively. AFLP generated 175 markers that showed ≥80% polymorphism. Analysis of molecular variance (AMOVA) indicated that genetic variation was greatest within phenotypes (82.6-84.0%); gene flow among the four phenotypes was relatively high (Nm = 3.82). The dendrogram and STRUCTURE analysis indicated some population divergence of G-S from the other phenotypes. Morphological parameters were similar among phenotypes except that R+S showed significant differences in weight and body-length. Canonical variables 1 and 2, based on average morphometric characters, accounted for 98% of the total variation; some divergence was indicated between G+S and R+S from each other and from the G-S/R-S BLB color morphs. The pattern of genetic variation indicated potential divergence of G-S and G+S from each other and from R-S and R+S. Although these results indicate that the four different color morphs are not genetically or reproductively isolated, there is some genetic differentiation/structure and morphological dissimilarity suggesting weak/incomplete isolation.
Cephalometric analysis of the middle part of the face in patients with mandibular prognathism.
Cutović Tatjana; Jović, Nebojsa; Kozomara, Ruzica; Radojicić, Julija; Janosević, Mirjana; Mladenović, Irena; Matijević, Stevo
2014-11-01
The middle part of the face, that is the maxilla, has always been mentioned as a possible etiologic factor of skeletal Class III. However, the importance of the relationship of maxillary retroposition towards the cranial base is still unclear, although it has been examined many times. The aim of this study was to conduct cephalometric analysis of the morphology of maxilla, including the whole middle part of the face in patients with divergent and convergent facial types of mandibular prognathism, as well as to determine differences betweeen them. Lateral cephalometric teleradiograph images of 90 patients were analyzed at the Dental Clinic of the Military Medical Academy, Belgrade, Serbia. All the patients were male, aged 18-35 years, not previously treated orthodontically. On the basis of dentalskeletal relations of jaws and teeth, the patients were divided into three groups: the group P1 (patients with divergent facial type of mandibular prognathism), P2 (patients with convergent facial type of mandibular pragmathism) and the group E (control group or eugnathic patients). A total of 9 cephalometric parameters related to the middle face were measured and analyzed: the length of the hard palate--SnaSnp, the length of the maxillary corpus--AptmPP, the length of the soft palate, the angle between the hard and soft palate--SnaSnpUt, the angle of inclination of the maxillary alveolar process, the angle of inclination of the upper front teeth, the effective maxillary length--CoA, the posterior maxillary alveolar hyperplasia--U6PP and the angle of maxillary prognathism. The obtained results showed that the CoA, AptmPP and SnaSnp were significally shorter in patients with divergent facial type of mandibular prognathism compared to patients with convergent facial type of the mandibular prognathism and also in both experimental groups of patients compared to the control group. SnaSnp was significantly shorter in patients with divergent facial type of mandibular prognathism compared to the control group, whereas SnaSnp was significantly smaller in patients with convergent facial type of mandibular prognathism compared to the control group. Additionally, there was a pronounced incisor dentoalveolar compensation of skeletal discrepancy in both groups of patients with mandibular prognathism manifested in the form of a significant upper front teeth protrusion, but without significant differences among the groups, while the maxillary retrognathism was present in most patients of both experimental groups. A pronounced UGPP was found only in the patients with divergent type of mandibular prognathism. The maxilla is certainly one of the key factors which contributes to making the diagnosis, but primarily to making a plan for mandibular prognathism treatment Accurate assessment of the manifestation of abnormality, localization of skeletal problems and understanding of the biological potential are key factors of the stability of/the results of surgical-orthodontic treatment of this abnormality.
Riesch, R; Plath, M; Schlupp, I
2011-03-01
Chronic environmental stress is known to induce evolutionary change. Here, we assessed male life-history trait divergence in the neotropical fish Poecilia mexicana from a system that has been described to undergo incipient ecological speciation in adjacent, but reproductively isolated toxic/nontoxic and surface/cave habitats. Examining both field-caught and common garden-reared specimens, we investigated the extent of differentiation and plasticity of life-history strategies employed by male P. mexicana. We found strong site-specific life-history divergence in traits such as fat content, standard length and gonadosomatic index. The majority of site-specific life-history differences were also expressed under common garden-rearing conditions. We propose that apparent conservatism of male life histories is the result of other (genetically based) changes in physiology and behaviour between populations. Together with the results from previous studies, this is strong evidence for local adaptation as a result of ecologically based divergent selection. © 2010 The Authors. Journal of Evolutionary Biology © 2010 European Society For Evolutionary Biology.
Hydraulic conductance and the maintenance of water balance in flowers.
Roddy, Adam B; Brodersen, Craig R; Dawson, Todd E
2016-10-01
Flowers face desiccating conditions, yet little is known about their ability to transport water. We quantified variability in floral hydraulic conductance (Kflower ) for 20 species from 10 families and related it to traits hypothesized to be associated with liquid and vapour phase water transport. Basal angiosperm flowers had trait values associated with higher water and carbon costs than monocot and eudicot flowers. Kflower was coordinated with water supply (vein length per area, VLA) and loss (minimum epidermal conductance, gmin ) traits among the magnoliids, but was insensitive to variation in these traits among the monocots and eudicots. Phylogenetic independent contrast (PIC) correlations revealed that few traits had undergone coordinated evolution. However, VLA and the desiccation time (Tdes ), the quotient of water content and gmin , had significant trait and PIC correlations. The near absence of stomata from monocot and eudicot flowers may have been critical in minimizing water loss rates among these clades. Early divergent, basal angiosperm flowers maintain higher Kflower because of traits associated with high rates water loss and water supply, while monocot and eudicot flowers employ a more conservative strategy of limiting water loss and may rely on stored water to maintain turgor and delay desiccation. © 2016 John Wiley & Sons Ltd.
The Dynein Gene Family in Chlamydomonas Reinhardtii
Porter, M. E.; Knott, J. A.; Myster, S. H.; Farlow, S. J.
1996-01-01
To correlate dynein heavy chain (Dhc) genes with flagellar mutations and gain insight into the function of specific dynein isoforms, we placed eight members of the Dhc gene family on the genetic map of Chlamydomonas. Using a PCR-based strategy, we cloned 11 Dhc genes from Chlamydomonas. Comparisons with other Dhc genes indicate that two clones correspond to genes encoding the alpha and beta heavy chains of the outer dynein arm. Alignment of the predicted amino acid sequences spanning the nucleotide binding site indicates that the remaining nine clones can be subdivided into three groups that are likely to include representatives of the inner-arm Dhc isoforms. Gene-specific probes reveal that each clone represents a single-copy gene that is expressed as a transcript of the appropriate size (>13 kb) sufficient to encode a high molecular weight Dhc polypeptide. The expression of all nine genes is upregulated in response to deflagellation, suggesting a role in axoneme assembly or motility. Restriction fragment length polymorphisms between divergent C. reinhardtii strains have been used to place each Dhc gene on the genetic map of Chlamydomonas. These studies lay the groundwork for correlating defects in different Dhc genes with specific flagellar mutations. PMID:8889521
Scaling and percolation in the small-world network model
NASA Astrophysics Data System (ADS)
Newman, M. E. J.; Watts, D. J.
1999-12-01
In this paper we study the small-world network model of Watts and Strogatz, which mimics some aspects of the structure of networks of social interactions. We argue that there is one nontrivial length-scale in the model, analogous to the correlation length in other systems, which is well-defined in the limit of infinite system size and which diverges continuously as the randomness in the network tends to zero, giving a normal critical point in this limit. This length-scale governs the crossover from large- to small-world behavior in the model, as well as the number of vertices in a neighborhood of given radius on the network. We derive the value of the single critical exponent controlling behavior in the critical region and the finite size scaling form for the average vertex-vertex distance on the network, and, using series expansion and Padé approximants, find an approximate analytic form for the scaling function. We calculate the effective dimension of small-world graphs and show that this dimension varies as a function of the length-scale on which it is measured, in a manner reminiscent of multifractals. We also study the problem of site percolation on small-world networks as a simple model of disease propagation, and derive an approximate expression for the percolation probability at which a giant component of connected vertices first forms (in epidemiological terms, the point at which an epidemic occurs). The typical cluster radius satisfies the expected finite size scaling form with a cluster size exponent close to that for a random graph. All our analytic results are confirmed by extensive numerical simulations of the model.
Divergent unprotected peptide macrocyclisation by palladium-mediated cysteine arylation.
Rojas, Anthony J; Zhang, Chi; Vinogradova, Ekaterina V; Buchwald, Nathan H; Reilly, John; Pentelute, Bradley L; Buchwald, Stephen L
2017-06-01
Macrocyclic peptides are important therapeutic candidates due to their improved physicochemical properties in comparison to their linear counterparts. Here we detail a method for a divergent macrocyclisation of unprotected peptides by crosslinking two cysteine residues with bis-palladium organometallic reagents. These synthetic intermediates are prepared in a single step from commercially available aryl bis-halides. Two bioactive linear peptides with cysteine residues at i , i + 4 and i , i + 7 positions, respectively, were cyclised to introduce a diverse array of aryl and bi-aryl linkers. These two series of macrocyclic peptides displayed similar linker-dependent lipophilicity, phospholipid affinity, and unique volume of distributions. Additionally, one of the bioactive peptides showed target binding affinity that was predominantly affected by the length of the linker. Collectively, this divergent strategy allowed rapid and convenient access to various aryl linkers, enabling the systematic evaluation of the effect of appending unit on the medicinal properties of macrocyclic peptides.
Dubuc-Messier, Gabrielle; Caro, Samuel P; Perrier, Charles; van Oers, Kees; Réale, Denis; Charmantier, Anne
2018-05-23
Understanding the causes and consequences of population phenotypic divergence is a central goal in ecology and evolution. Phenotypic divergence among populations can result from genetic divergence, phenotypic plasticity or a combination of the two. However, few studies have deciphered these mechanisms for populations geographically close and connected by gene flow, especially in the case of personality traits. In this study, we used a common garden experiment to explore the genetic basis of the phenotypic divergence observed between two blue tit (Cyanistes caeruleus) populations inhabiting contrasting habitats separated by 25 km, for two personality traits (exploration speed and handling aggression), one physiological trait (heart rate during restraint) and two morphological traits (tarsus length and body mass). Blue tit nestlings were removed from their population and raised in a common garden for up to five years. We then compared adult phenotypes between the two populations, as well as trait-specific Q st and F st . Our results revealed differences between populations similar to those found in the wild, suggesting a genetic divergence for all traits. Q st - F st comparisons revealed that the traits divergences likely result from dissimilar selection patterns rather than from genetic drift. Our study is one of the first to report a Q st - F st comparison for personality traits and adds to the growing body of evidence that population genetic divergence is possible at a small scale for a variety of traits including behavioural traits. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Investigation of installation effects of single-engine convergent-divergent nozzles
NASA Technical Reports Server (NTRS)
Burley, J. R., II; Berrier, B. L.
1982-01-01
An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine installation effects on single-engine convergent-divergent nozzles applicable to reduced-power supersonic cruise aircraft. Tests were conducted at Mach numbers from 0.50 to 1.20, at angles of attack from -3 degrees to 9 degrees, and at nozzle pressure ratios from 1.0 (jet off) to 8.0. The effects of empennage arrangement, nozzle length, a cusp fairing, and afterbody closure on total aft-end drag coefficient and component drag coefficients were investigated. Basic lift- and drag-coefficient data and external static-pressure distributions on the nozzle and afterbody are presented and discussed.
Particle accelerators inside spinning black holes.
Lake, Kayll
2010-05-28
On the basis of the Kerr metric as a model for a spinning black hole accreting test particles from rest at infinity, I show that the center-of-mass energy for a pair of colliding particles is generically divergent at the inner horizon. This shows not only that classical black holes are internally unstable, but also that Planck-scale physics is a characteristic feature within black holes at scales much larger that the Planck length. The novel feature of the divergence discussed here is that the phenomenon is present only for black holes with rotation, and in this sense it is distinct from the well-known Cauchy horizon instability.
Low-light divergence in photovoltaic parameter fluctuations
NASA Astrophysics Data System (ADS)
Shvydka, Diana; Karpov, V. G.; Compaan, A. D.
2003-03-01
We study statistics of the major photovoltaic (PV) parameters, such as open-circuit voltage, short-circuit current, etc., versus light intensity on a set of nominally identical thin-film CdTe/CdS solar cells. A crossover light intensity is found, below which the relative fluctuations of the PV parameters diverge inversely proportional to the square root of the light intensity. We propose a model in which the observed fluctuations are due to lateral nonuniformities in the device structure. The crossover is attributed to the lateral nonuniformity screening length exceeding the device size. From the practical standpoint, our study introduces a simple uniformity diagnostic technique.
He, Yungang; Wang, Wei R.; Li, Ran; Wang, Sijia; Jin, Li
2012-01-01
An accurate estimate of the divergence time between Native Americans is important for understanding the initial entry and early dispersion of human beings in the New World. Current methods for estimating the genetic divergence time of populations could seriously depart from a linear relationship with the true divergence for multiple populations of a different population size and significant population expansion. Here, to address this problem, we propose a novel measure to estimate the genetic divergence time of populations. Computer simulation revealed that the new measure maintained an excellent linear correlation with the population divergence time in complicated multi-population scenarios with population expansion. Utilizing the new measure and microsatellite data of 21 Native American populations, we investigated the genetic divergences of the Native American populations. The results indicated that genetic divergences between North American populations are greater than that between Central and South American populations. None of the divergences, however, were large enough to constitute convincing evidence supporting the two-wave or multi-wave migration model for the initial entry of human beings into America. The genetic affinity of the Native American populations was further explored using Neighbor-Net and the genetic divergences suggested that these populations could be categorized into four genetic groups living in four different ecologic zones. The divergence of the population groups suggests that the early dispersion of human beings in America was a multi-step procedure. Further, the divergences suggest the rapid dispersion of Native Americans in Central and South Americas after a long standstill period in North America. PMID:22970308
Karlsson Green, K; Eroukhmanoff, F; Harris, S; Pettersson, L B; Svensson, E I
2016-01-01
Behavioural syndromes, that is correlated behaviours, may be a result from adaptive correlational selection, but in a new environmental setting, the trait correlation might act as an evolutionary constraint. However, knowledge about the quantitative genetic basis of behavioural syndromes, and the stability and evolvability of genetic correlations under different ecological conditions, is limited. We investigated the quantitative genetic basis of correlated behaviours in the freshwater isopod Asellus aquaticus. In some Swedish lakes, A. aquaticus has recently colonized a novel habitat and diverged into two ecotypes, presumably due to habitat-specific selection from predation. Using a common garden approach and animal model analyses, we estimated quantitative genetic parameters for behavioural traits and compared the genetic architecture between the ecotypes. We report that the genetic covariance structure of the behavioural traits has been altered in the novel ecotype, demonstrating divergence in behavioural correlations. Thus, our study confirms that genetic correlations behind behaviours can change rapidly in response to novel selective environments. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Jin, Haofei; Yonezawa, Takahiro; Zhong, Yang; Kishino, Hirohisa; Hasegawa, Masami
2017-03-17
The giant rhinoceros beetles (Dynastini, Scarabaeidae, Coleoptera) are distributed in tropical and temperate regions in Asia, America and Africa. Recent molecular phylogenetic studies have revealed that the giant rhinoceros beetles can be divided into three clades representing Asia, America and Africa. Although a correlation between their evolution and the continental drift during the Pangean breakup was suggested, there is no accurate divergence time estimation among the three clades based on molecular data. Moreover, there is a long chronological gap between the timing of the Pangean breakup (Cretaceous: 110-148 Ma) and the emergence of the oldest fossil record (Oligocene: 33 Ma). In this study, we estimated their divergence times based on molecular data, using several combinations of fossil calibration sets, and obtained robust estimates. The inter-continental divergence events among the clades were estimated to have occurred about 99 Ma (Asian clade and others) and 78 Ma (American clade and African clade), both of which are after the Pangean breakup. These estimates suggest their inter-continental divergences occurred by overseas sweepstakes dispersal, rather than by vicariances of the population caused by the Pangean breakup.
Divergent Task Performance in Older Adults: Declarative Memory or Creative Potential?
Leon, Susan A; Altmann, Lori JP; Abrams, Lise; Rothi, Leslie J Gonzalez; Heilman, Kenneth M
2016-01-01
Divergent thinking is the ability to produce a range of responses or solutions and is an element of creative processing. Divergent thinking requires disengagement, the ability to associate between words or ideas, and the production of responses. Lesion and imaging studies have shown frontal-lobe involvement for these activities, and frontal lobe function is highly dependent on white matter pathways. Normal aging often results in deficits in functions controlled by the frontal lobes as well as decrements in white matter connectivity. The objectives of this study were to compare non time-constrained tasks of verbal divergent processing in young adults (YAs) and older adults (OAs) and correlate performance with tasks of working memory, language ability, and disengagement/inhibition. Participants were 30 YAs and 30 OAs. Contrary to the a priori hypothesis, OAs produced significantly more unique responses than YAs, although total fluency was not significantly different. Correlational analyses examining the groups together and separately revealed a number of differences suggesting that the groups were utilizing different underlying cognitive abilities to complete these tasks. The authors propose that the primary factor resulting in higher uniqueness scores for the OAs was a greater wealth of experience as well as longer exposure to language use. PMID:28446859
Smeekens, Bridget A.; Kane, Michael J.
2015-01-01
Should executive control, as indicated by working memory capacity (WMC) and mind-wandering propensity, help or hinder creativity? Sustained and focused attention should help guide a selective search of solution-relevant information in memory and help inhibit uncreative, yet accessible, ideas. However, unfocused attention and daydreaming should allow mental access to more loosely relevant concepts, remotely linked to commonplace solutions. Three individual-differences studies inserted incubation periods into one or two divergent thinking tasks and tested whether WMC (assessed by complex span tasks) and incubation-period mind wandering (assessed as probed reports of task-unrelated thought [TUT]) predicted post-incubation performance. Retrospective self-reports of Openness (Experiment 2) and mind-wandering and daydreaming propensity (Experiment 3) complemented our thought-probe assessments of TUT. WMC did not correlate with creativity in divergent thinking, whereas only the questionnaire measure of daydreaming, but not probed thought reports, weakly predicted creativity; the fact that in-the-moment TUTs did not correlate divergent creativity is especially problematic for claims that mind-wandering processes contribute to creative cognition. Moreover, the fact that WMC tends to strongly predict analytical problem solving and reasoning, but may not correlate with divergent thinking, provides a useful boundary condition for defining WMC’s nomological net. On balance, our data provide no support for either benefits or costs of executive control for at least one component of creativity. PMID:28458764
Karvonen, Anssi; Lucek, Kay; Marques, David A.; Seehausen, Ole
2015-01-01
Spatial heterogeneity in diversity and intensity of parasitism is a typical feature of most host-parasite interactions, but understanding of the evolutionary implications of such variation is limited. One possible outcome of infection heterogeneities is parasite-mediated divergent selection between host populations, ecotypes or species which may facilitate the process of ecological speciation. However, very few studies have described infections in population-pairs along the speciation continuum from low to moderate or high degree of genetic differentiation that would address the possibility of parasite-mediated divergent selection in the early stages of the speciation process. Here we provide an example of divergent parasitism in freshwater fish ecotypes by examining macroparasite infections in threespine stickleback (Gasterosteus aculeatus) of four Swiss lake systems each harbouring parapatric lake-stream ecotype pairs. We demonstrate significant differences in infections within and between the pairs that are driven particularly by the parasite taxa transmitted to fish from benthic invertebrates. The magnitude of the differences tended to correlate positively with the extent of neutral genetic differentiation between the parapatric lake and stream populations of stickleback, whereas no such correlation was found among allopatric populations from similar or contrasting habitats. This suggests that genetic differentiation is unrelated to the magnitude of parasite infection contrasts when gene flow is constrained by geographical barriers while in the absence of physical barriers, genetic differentiation and the magnitude of differences in infections tend to be positively correlated. PMID:26086778
Karvonen, Anssi; Lucek, Kay; Marques, David A; Seehausen, Ole
2015-01-01
Spatial heterogeneity in diversity and intensity of parasitism is a typical feature of most host-parasite interactions, but understanding of the evolutionary implications of such variation is limited. One possible outcome of infection heterogeneities is parasite-mediated divergent selection between host populations, ecotypes or species which may facilitate the process of ecological speciation. However, very few studies have described infections in population-pairs along the speciation continuum from low to moderate or high degree of genetic differentiation that would address the possibility of parasite-mediated divergent selection in the early stages of the speciation process. Here we provide an example of divergent parasitism in freshwater fish ecotypes by examining macroparasite infections in threespine stickleback (Gasterosteus aculeatus) of four Swiss lake systems each harbouring parapatric lake-stream ecotype pairs. We demonstrate significant differences in infections within and between the pairs that are driven particularly by the parasite taxa transmitted to fish from benthic invertebrates. The magnitude of the differences tended to correlate positively with the extent of neutral genetic differentiation between the parapatric lake and stream populations of stickleback, whereas no such correlation was found among allopatric populations from similar or contrasting habitats. This suggests that genetic differentiation is unrelated to the magnitude of parasite infection contrasts when gene flow is constrained by geographical barriers while in the absence of physical barriers, genetic differentiation and the magnitude of differences in infections tend to be positively correlated.
A comparison of VLBI with the ICE-3G glacial rebound model
NASA Technical Reports Server (NTRS)
James, Thomas S.; Lambert, Anthony
1993-01-01
Crustal motion predicted by the ICE-3G glacial rebound model exhibits a pattern of tangential (horizontal) divergence away from the centers of uplift, which in North America and Europe are located around Hudson Bay and the Gulf of Bothnia. Tangential velocities reach peak magnitudes of 1-2 mm/yr, and must be included when predicting VLBI baseline length change rates due to postglacial rebound. Out of 18 observed VLBI baselines examined three are situated such that their predicted length rates are around their 2 sigma uncertainties or greater. It is encouraging that two of these baselines exhibit predicted length rates within 2 sigma of the observed rates.
DNA barcoding for molecular identification of Demodex based on mitochondrial genes.
Hu, Li; Yang, YuanJun; Zhao, YaE; Niu, DongLing; Yang, Rui; Wang, RuiLing; Lu, Zhaohui; Li, XiaoQi
2017-12-01
There has been no widely accepted DNA barcode for species identification of Demodex. In this study, we attempted to solve this issue. First, mitochondrial cox1-5' and 12S gene fragments of Demodex folloculorum, D. brevis, D. canis, and D. caprae were amplified, cloned, and sequenced for the first time; intra/interspecific divergences were computed and phylogenetic trees were reconstructed. Then, divergence frequency distribution plots of those two gene fragments were drawn together with mtDNA cox1-middle region and 16S obtained in previous studies. Finally, their identification efficiency was evaluated by comparing barcoding gap. Results indicated that 12S had the higher identification efficiency. Specifically, for cox1-5' region of the four Demodex species, intraspecific divergences were less than 2.0%, and interspecific divergences were 21.1-31.0%; for 12S, intraspecific divergences were less than 1.4%, and interspecific divergences were 20.8-26.9%. The phylogenetic trees demonstrated that the four Demodex species clustered separately, and divergence frequency distribution plot showed that the largest intraspecific divergence of 12S (1.4%) was less than cox1-5' region (2.0%), cox1-middle region (3.1%), and 16S (2.8%). The barcoding gap of 12S was 19.4%, larger than cox1-5' region (19.1%), cox1-middle region (11.3%), and 16S (13.0%); the interspecific divergence span of 12S was 6.2%, smaller than cox1-5' region (10.0%), cox1-middle region (14.1%), and 16S (11.4%). Moreover, 12S has a moderate length (517 bp) for sequencing at once. Therefore, we proposed mtDNA 12S was more suitable than cox1 and 16S to be a DNA barcode for classification and identification of Demodex at lower category level.
Abolafia, J.; Peña-Santiago, R.
2003-01-01
A new species of the genus Nothacrobeles is described from natural areas (a salt lake) in the Southeast Iberian Peninsula. Nothacrobeles lanceolatus sp. n. is characterized by its body length, two rows of cuticular punctations per annulus, labial probolae bifurcate with divergent prongs, pharyngeal corpus 2.4 to 3.5 times isthmus length, spermatheca length, postuterine sac 0.5 to 1.1 times the corresponding body diameter ratio, female tail conical and bearing a spindle-shaped or conical mucro with acute terminus, phasmid at 8 to 17 µm posterior to the anus, male tail conical with acute mucro, spicules length, and gubernaculum length. In addition, Nothacrobeles cf. lunensis and Zeldia punctata are studied. Cervidellus capricornis is transferred to genus Nothacrobeles. A key to species of Nothacrobeles is also provided. PMID:19262756
Characterization of a long-focal-length polycapillary optic for high-energy x-rays
NASA Astrophysics Data System (ADS)
Cari, Padiyar; Suparmi, -; Padiyar, Sushil D.; Gibson, Walter M.; MacDonald, Carolyn A.; Alexander, Cheryl D.; Joy, Marshall K.; Russell, Christine H.; Chen, Zewu
2000-11-01
Polycapillary fibers and a prototype collector for high energy x rays with a 2 m focal length have been fabricated and characterized. Measurements of a prototype collector, performed in collimating mode, show that the optic has high transmission, good uniformity, and small exit divergence. The transmission as a function of energy was analyzed using an extended single fiber geometrical optic simulation and the result shows that the simulation fits the data fairly well. Scatter transmission and contrast enhancement were measured in focusing mode using a parallel beam input.
Renzette, Nicholas; Kowalik, Timothy F; Jensen, Jeffrey D
2016-01-01
A central focus of population genetics has been examining the contribution of selective and neutral processes in shaping patterns of intraspecies diversity. In terms of selection specifically, surveys of higher organisms have shown considerable variation in the relative contributions of background selection and genetic hitchhiking in shaping the distribution of polymorphisms, although these analyses have rarely been extended to bacteria and viruses. Here, we study the evolution of a ubiquitous, viral pathogen, human cytomegalovirus (HCMV), by analysing the relationship among intraspecies diversity, interspecies divergence and rates of recombination. We show that there is a strong correlation between diversity and divergence, consistent with expectations of neutral evolution. However, after correcting for divergence, there remains a significant correlation between intraspecies diversity and recombination rates, with additional analyses suggesting that this correlation is largely due to the effects of background selection. In addition, a small number of loci, centred on long noncoding RNAs, also show evidence of selective sweeps. These data suggest that HCMV evolution is dominated by neutral mechanisms as well as background selection, expanding our understanding of linked selection to a novel class of organisms. © 2015 John Wiley & Sons Ltd.
Ford, Antonia G P; Rüber, Lukas; Newton, Jason; Dasmahapatra, Kanchon K; Balarin, John D; Bruun, Kristoffer; Day, Julia J
2016-12-01
Ecomorphological differentiation is a key feature of adaptive radiations, with a general trend for specialization and niche expansion following divergence. Ecological opportunity afforded by invasion of a new habitat is thought to act as an ecological release, facilitating divergence, and speciation. Here, we investigate trophic adaptive morphology and ecology of an endemic clade of oreochromine cichlid fishes (Alcolapia) that radiated along a herbivorous trophic axis following colonization of an isolated lacustrine environment, and demonstrate phenotype-environment correlation. Ecological and morphological divergence of the Alcolapia species flock are examined in a phylogenomic context, to infer ecological niche occupation within the radiation. Species divergence is observed in both ecology and morphology, supporting the importance of ecological speciation within the radiation. Comparison with an outgroup taxon reveals large-scale ecomorphological divergence but shallow genomic differentiation within the Alcolapia adaptive radiation. Ancestral morphological reconstruction suggests lake colonization by a generalist oreochromine phenotype that diverged in Lake Natron to varied herbivorous morphologies akin to specialist herbivores in Lakes Tanganyika and Malawi. © 2016 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
Liu, Gui-Feng; Zang, Run-Guo; Liu, Hua; Bai, Zhi-Qiang; Guo, Zhong-Jun; Ding, Yi
2012-06-01
Taking the Picea schrenkiana var. tianschanica forests at three sites with different longitudes (Zhaosu, Tianchi, and Qitai) in Tianshan Mountains as the objects, the cones were collected along an altitudinal gradient to analyze the variation of their seed morphological traits (seed scale length and width, seed scale length/width ratio, seed wing length and width, seed wing length/ width ratio, seed length and width, and seed length/width ratio). All the seed traits except seed width tended to decrease with increasing altitude. The seed traits except seed wing width, seed width, and seed length/width ratio all had significant negative correlations with altitude. Seed scale length and width and seed scale length/width ratio had significant positive correlations with longitude. Seed scale length, seed scale length/width ratio, and seed wing length/width ratio had significant negative correlations with slope degree. No significant correlations were observed between the seed traits except seed wing width and the slope aspect. Altitude was the main factor affecting the seed scale length, seed scale length/width ratio, and seed wing length/width ratio.
Sonographic Measurement of Fetal Ear Length in Turkish Women with a Normal Pregnancy
Özdemir, Mucize Eriç; Uzun, Işıl; Karahasanoğlu, Ayşe; Aygün, Mehmet; Akın, Hale; Yazıcıoğlu, Fehmi
2014-01-01
Background: Abnormal fetal ear length is a feature of chromosomal disorders. Fetal ear length measurement is a simple measurement that can be obtained during ultrasonographic examinations. Aims: To develop a nomogram for fetal ear length measurements in our population and investigate the correlation between fetal ear length, gestational age, and other standard fetal biometric measurements. Study Design: Cohort study. Methods: Ear lengths of the fetuses were measured in normal singleton pregnancies. The relationship between gestational age and fetal ear length in millimetres was analysed by simple linear regression. In addition, the correlation of fetal ear length measurements with biparietal diameter, head circumference, abdominal circumference, and femur length were evaluated.Ear length measurements were obtained from fetuses in 389 normal singleton pregnancies ranging between 16 and 28 weeks of gestation. Results: A nomogram was developed by linear regression analysis of the parameters ear length and gestational age. Fetal ear length (mm) = y = (1.348 X gestational age)−12.265), where gestational ages is in weeks. A high correlation was found between fetal ear length and gestational age, and a significant correlation was also found between fetal ear length and the biparietal diameter (r=0.962; p<0.001). Similar correlations were found between fetal ear length and head circumference, and fetal ear length and femur length. Conclusion: The results of this study provide a nomogram for fetal ear length. The study also demonstrates the relationship between ear length and other biometric measurements. PMID:25667783
Fietz, Katharina; Rye Hintze, Christian Olaf; Skovrind, Mikkel; Kjærgaard Nielsen, Tue; Limborg, Morten T; Krag, Marcus A; Palsbøll, Per J; Hestbjerg Hansen, Lars; Rask Møller, Peter; Gilbert, M Thomas P
2018-05-02
Deciphering the mechanisms governing population genetic divergence and local adaptation across heterogeneous environments is a central theme in marine ecology and conservation. While population divergence and ecological adaptive potential are classically viewed at the genetic level, it has recently been argued that their microbiomes may also contribute to population genetic divergence. We explored whether this might be plausible along the well-described environmental gradient of the Baltic Sea in two species of sand lance (Ammodytes tobianus and Hyperoplus lanceolatus). Specifically, we assessed both their population genetic and gut microbial composition variation and investigated not only which environmental parameters correlate with the observed variation, but whether host genome also correlates with microbiome variation. We found a clear genetic structure separating the high-salinity North Sea from the low-salinity Baltic Sea sand lances. The observed genetic divergence was not simply a function of isolation by distance, but correlated with environmental parameters, such as salinity, sea surface temperature, and, in the case of A. tobianus, possibly water microbiota. Furthermore, we detected two distinct genetic groups in Baltic A. tobianus that might represent sympatric spawning types. Investigation of possible drivers of gut microbiome composition variation revealed that host species identity was significantly correlated with the microbial community composition of the gut. A potential influence of host genetic factors on gut microbiome composition was further confirmed by the results of a constrained analysis of principal coordinates. The host genetic component was among the parameters that best explain observed variation in gut microbiome composition. Our findings have relevance for the population structure of two commercial species but also provide insights into potentially relevant genomic and microbial factors with regards to sand lance adaptation across the North Sea-Baltic Sea environmental gradient. Furthermore, our findings support the hypothesis that host genetics may play a role in regulating the gut microbiome at both the interspecific and intraspecific levels. As sequencing costs continue to drop, we anticipate that future studies that include full genome and microbiome sequencing will be able to explore the full relationship and its potential adaptive implications for these species.
Philip M. Wargo
1978-01-01
Correlations of leaf area with length, width, and length times width of leaves of black oak, white oak, and sugar maple were determined to see if length and/or width could be used as accurate estimators of leaf area. The correlation of length times width with leaf area was high (r > + .95) for all three species. The linear equation Y = a + bX, where X = length times...
Soularue, J-P; Kremer, A
2014-01-01
The timing of bud burst (TBB) in temperate trees is a key adaptive trait, the expression of which is triggered by temperature gradients across the landscape. TBB is strongly correlated with flowering time and is therefore probably mediated by assortative mating. We derived theoretical predictions and realized numerical simulations of evolutionary changes in TBB in response to divergent selection and gene flow in a metapopulation. We showed that the combination of the environmental gradient of TBB and assortative mating creates contrasting genetic clines, depending on the direction of divergent selection. If divergent selection acts in the same direction as the environmental gradient (cogradient settings), genetic clines are established and inflated by assortative mating. Conversely, under divergent selection of the same strength but acting in the opposite direction (countergradient selection), genetic clines are slightly constrained. We explored the consequences of these dynamics for population maladaptation, by monitoring pollen swamping. Depending on the direction of divergent selection with respect to the environmental gradient, pollen filtering owing to assortative mating either facilitates or impedes adaptation in peripheral populations. PMID:24924591
Cruz, R; Vilas, C; Mosquera, J; García, C
2004-11-01
To study the role of divergent selection in the differentiation of the two morphs in a hybrid zone of the intertidal snail Littorina saxatilis, we compared the strength of the divergent selection acting on a series of shell characters (as estimated by the viability of snails in a reciprocal transplant experiment) with the contribution of these characters to the phenotypic differences between the morphs. We found a close correlation between selection and differentiation, which suggests a cause-effect relationship, i.e. that all present differentiation is the result of past divergent selection. In addition, divergent selection was a very important component of the total natural selection acting on shell measures. These novel results support previous evidence, based on allozyme analysis, of a parapatric origin for this hybrid zone. We discuss possible limitations of this interpretation and the circumstances under which allopatric differentiation would produce the same results. Phenotypic analysis of divergent selection may be a useful method of investigating the evolutionary mechanisms involved in differentiation processes.
Co-expression network analysis of duplicate genes in maize (Zea mays L.) reveals no subgenome bias.
Li, Lin; Briskine, Roman; Schaefer, Robert; Schnable, Patrick S; Myers, Chad L; Flagel, Lex E; Springer, Nathan M; Muehlbauer, Gary J
2016-11-04
Gene duplication is prevalent in many species and can result in coding and regulatory divergence. Gene duplications can be classified as whole genome duplication (WGD), tandem and inserted (non-syntenic). In maize, WGD resulted in the subgenomes maize1 and maize2, of which maize1 is considered the dominant subgenome. However, the landscape of co-expression network divergence of duplicate genes in maize is still largely uncharacterized. To address the consequence of gene duplication on co-expression network divergence, we developed a gene co-expression network from RNA-seq data derived from 64 different tissues/stages of the maize reference inbred-B73. WGD, tandem and inserted gene duplications exhibited distinct regulatory divergence. Inserted duplicate genes were more likely to be singletons in the co-expression networks, while WGD duplicate genes were likely to be co-expressed with other genes. Tandem duplicate genes were enriched in the co-expression pattern where co-expressed genes were nearly identical for the duplicates in the network. Older gene duplications exhibit more extensive co-expression variation than younger duplications. Overall, non-syntenic genes primarily from inserted duplications show more co-expression divergence. Also, such enlarged co-expression divergence is significantly related to duplication age. Moreover, subgenome dominance was not observed in the co-expression networks - maize1 and maize2 exhibit similar levels of intra subgenome correlations. Intriguingly, the level of inter subgenome co-expression was similar to the level of intra subgenome correlations, and genes from specific subgenomes were not likely to be the enriched in co-expression network modules and the hub genes were not predominantly from any specific subgenomes in maize. Our work provides a comprehensive analysis of maize co-expression network divergence for three different types of gene duplications and identifies potential relationships between duplication types, duplication ages and co-expression consequences.
Best Stent Length Predicted by Simple CT Measurement Rather than Patient Height.
Barrett, Keith; Foell, Kirsten; Lantz, Andrea; Ordon, Michael; Lee, Jason Y; Pace, Kenneth T; Honey, R John D'A
2016-09-01
Ureteral stent length is important, as stents that are too long might worsen symptoms and too short are at higher risk of migration. The purpose of this study was to determine if patient or radiologic parameters correlate with directly measured ureteral length and if directly measured ureteral length predicts proper stent positioning. During stent placement, ureteral length (ureteropelvic junction to ureterovesical junction distance) was directly measured by endoscopically viewing a ureteral catheter (with 1-cm marking) emanating from the ureteral orifice. A 22, 24, or 26 cm stent was chosen to be closest to the measured ureteral length. For ureters >26 cm, a 26 cm stent was chosen. Ends of an "ideally positioned" stent were fully curled in the renal pelvis and bladder, without crossing the bladder midline. Rates of ideal stent position were compared between patients with matching stent and ureteral lengths and those with stent lengths differing by ≥1 cm (mismatched). The measured ureteral length was correlated with patient height, L1-L5 height, and length measured on CT. Fifty-nine ureters from 57 patients were included. Height was reasonably correlated with L1-L5 height (Spearman correlation coefficient [rho] = 0.79), although both were poorly correlated with directly measured ureteral length (rho = 0.18 for height and 0.32 for lumbar height). Ureteral lengths measured on CT correlated well with direct measurement (rho = 0.63 for axial cuts and rho = 0.64 for coronal cuts). Matched stent length was associated with higher rates of ideal stent position than mismatched (100% vs 70.9%, p = 0.006). CT measurements, rather than height, correlate well with measured length and could be used to choose the appropriate stent length. Stents matching directly measured ureteral lengths are associated with high rates of ideal stent position.
NASA Astrophysics Data System (ADS)
Pixley, J. H.; Cole, William S.; Spielman, I. B.; Rizzi, Matteo; Das Sarma, S.
2017-10-01
We study the odd-integer filled Mott phases of a spin-1 Bose-Hubbard chain and determine their fate in the presence of a Raman induced spin-orbit coupling which has been achieved in ultracold atomic gases; this system is described by a quantum spin-1 chain with a spiral magnetic field. The spiral magnetic field initially induces helical order with either ferromagnetic or dimer order parameters, giving rise to a spiral paramagnet at large field. The spiral ferromagnet-to-paramagnet phase transition is in a universality class with critical exponents associated with the divergence of the correlation length ν ≈2 /3 and the order-parameter susceptibility γ ≈1 /2 . We solve the effective spin model exactly using the density-matrix renormalization group, and compare with both a large-S classical solution and a phenomenological Landau theory. We discuss how these exotic bosonic magnetic phases can be produced and probed in ultracold atomic experiments in optical lattices.
Critical Slowing Down in Time-to-Extinction: An Example of Critical Phenomena in Ecology
NASA Technical Reports Server (NTRS)
Gandhi, Amar; Levin, Simon; Orszag, Steven
1998-01-01
We study a model for two competing species that explicitly accounts for effects due to discreteness, stochasticity and spatial extension of populations. The two species are equally preferred by the environment and do better when surrounded by others of the same species. We observe that the final outcome depends on the initial densities (uniformly distributed in space) of the two species. The observed phase transition is a continuous one and key macroscopic quantities like the correlation length of clusters and the time-to-extinction diverge at a critical point. Away from the critical point, the dynamics can be described by a mean-field approximation. Close to the critical point, however, there is a crossover to power-law behavior because of the gross mismatch between the largest and smallest scales in the system. We have developed a theory based on surface effects, which is in good agreement with the observed behavior. The course-grained reaction-diffusion system obtained from the mean-field dynamics agrees well with the particle system.
High efficiency single transverse mode photonic band crystal lasers with low vertical divergence
NASA Astrophysics Data System (ADS)
Zhao, Shaoyu; Qu, Hongwei; Liu, Yun; Li, Lunhua; Chen, Yang; Zhou, Xuyan; Lin, Yuzhe; Liu, Anjin; Qi, Aiyi; Zheng, Wanhua
2016-10-01
High efficiency 980 nm longitudinal photonic band crystal (PBC) edge emitting laser diodes are designed and fabricated. The calculated results show that eight periods of Al0.1Ga0.9As and Al0.25Ga0.75As layer pairs can reduce the vertical far field divergence to 10.6° full width at half maximum (FWHM). The broad area (BA) lasers show a very high internal quantum efficiency ηi of 98% and low internal loss αi of 1.92 cm-1. Ridge waveguide (RW) lasers with 3 mm cavity length and 5um strip width provide 430 mW stable single transverse mode output at 500 mA injection current with power conversion efficiency (PCE) of 47% under continuous wave (CW) mode. A maximum PCE of 50% is obtained at the 300 mA injection current. A very low vertical far field divergence of 9.4° is obtained at 100 mA injection. At 500 mA injection, the vertical far field divergence increases to 11°, the beam quality factors M2 values are 1.707 in vertical direction and 1.769 in lateral direction.
NASA Astrophysics Data System (ADS)
Vereshchaka, A. L.
1997-11-01
Four populations (a total of 677 specimens) of the hydrothermal shrimp species Rimicaris exoculata from three Mid-Atlantic Ridge vent fields were studied: Broken Spur (29°N), TAG (26°N), and "14-45" (14°N). Five morphological characters were analysed: number of dorsolateral spines on telson, telative carapace width, relative abdominal length, presence of "abnormal telson", and fat content. Dependences of each character upon shrimp size were analysed. Division of the shrimp ontogenesis on the basis of general morphology is proposed. Phenotypic analysis based upon five selected characters revealed statistically significant divergence between two populations within the same vent field TAG. Probable causes of observed divergence are discussed.
High peak current acceleration of narrow divergence ions beams with the BELLA-PW laser
NASA Astrophysics Data System (ADS)
Steinke, Sven; Ji, Qing; Treffert, Franziska; Bulanov, Stepan; Bin, Jianhui; Nakamura, Kei; Gonsalves, Anthony; Toth, Csaba; Park, Jaehong; Roth, Markus; Esarey, Eric; Schenkel, Thomas; Leemans, Wim
2017-10-01
We present a parameter study of ion acceleration driven by the BELLA-PW laser. The laser repetition rate of 1Hz allowed for scanning the laser pulse duration, relative focus location and target thickness for the first time at laser peak powers of above 1 petawatt. Further, the long focal length geometry of the experiment (f\\65) and hence, large focus size provided ion beams of reduced divergence and unprecedented charge density. This work was supported by Office of Science, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and Laboratory Directed Research and Development (LDRD) funding from Lawrence Berkeley National Laboratory.
Eddy Current Minimizing Flow Plug for Use in Flow Conditioning and Flow Metering
NASA Technical Reports Server (NTRS)
England, John Dwight (Inventor); Kelley, Anthony R. (Inventor)
2015-01-01
An eddy-current-minimizing flow plug has open flow channels formed between the plug's inlet and outlet. Each open flow channel includes (i) a first portion that originates at the inlet face and converges to a location within the plug that is downstream of the inlet, and (ii) a second portion that originates within the plug and diverges to the outlet. The diverging second portion is approximately twice the length of the converging first portion. The plug is devoid of planar surface regions at its inlet and outlet, and in fluid flow planes of the plug that are perpendicular to the given direction of a fluid flowing therethrough.
Smectic order induced at homeotropically aligned nematic surfaces: A neutron reflection study
NASA Astrophysics Data System (ADS)
Lau, Y. G. J.; Richardson, Robert M.; Cubitt, R.
2006-06-01
Neutron reflection was used to measure the buildup of layers at a solid surface as the smectic phase is approached from higher temperatures in a nematic liquid crystal. The liquid crystal was 4-octyl-4'-cyanobiphenyl (8CB), and the solid was silicon with one of five different surface treatments that induce homeotropic alignment: (i) silicon oxide; (ii) a cetyltrimethylammonium bromide coating; (iii) an octadecyltrichlorosilane monolayer; (iv) an n-n-dimethyl-n-octadecyl-3- aminopropyltrimethyloxysilyl chloride monolayer; and (v) a lecithin coating. The development of surface smectic layers in the nematic phase of 8CB was followed by measuring specular reflectivity and monitoring the pseudo-Bragg peak from the layers. The scattering data were processed to remove the scattering from short-ranged smecticlike fluctuations in the bulk nematic phase from the specular reflection. The pseudo-Bragg peak at scattering vector Q ˜0.2Å-1 therefore corresponded to the formation of long-range smectic layers at the surface. The amplitude of the smectic density wave decayed with increasing distance from the surface, and the characteristic thickness of this smectic region diverged as the transition temperature was approached. It was found that the characteristic thickness for some of the surface treatments was greater than the correlation length in the bulk nematic. The different surfaces gave different values of the smectic order parameter at the surface. This suggests that the interaction with the surface is significantly different from a "hard wall" which would give the same values of the smectic order parameter and penetration depths similar to the bulk correlation length. Comparison of the different surfaces also suggested that the strength and range of the surface smectic ordering may be varied independently.
Hallemans, Ann; Verbecque, Evi; Dumas, Raphael; Cheze, Laurence; Van Hamme, Angèle; Robert, Thomas
2018-06-01
Immature balance control is considered an important rate limiter for maturation of gait. The spatial margin of stability (MoS) is a biomechanical measure of dynamic balance control that might provide insights into balance control strategies used by children during the developmental course of gait. We hypothesize there will be an age-dependent decrease in MoS in children with typical development. To understand the mechanics, relations between MoS and spatio-temporal parameters of gait are investigated. Total body gait analysis of typically developing children (age 1-10, n = 84) were retrospectively selected from available databases. MoS is defined as the minimum distance between the center of pressure and the extrapolated center of mass along the mediolateral axis during the single support phases. MoS shows a moderate negative correlation with stride length (rho = -0.510), leg length (rho = -0.440), age (rho = -0.368) and swing duration (rho = -0.350). A weak correlation was observed between MoS and walking speed (rho = -0.243) and step width (rho = 0.285). A stepwise linear regression model showed only one predictor, swing duration, explaining 18% of the variance in MoS. MoS decreases with increasing duration of swing (β = -0.422). This relation is independent of age. A larger MoS induces a larger lateral divergence of the CoM that could be compensated by a quicker step. Future research should compare the observed strategies in children to those used in adults and in children with altered balance control related to pathology. Copyright © 2018 Elsevier B.V. All rights reserved.
Ishii, Naohiro; Ando, Jiro; Harao, Michiko; Takemae, Masaru; Kishi, Kazuo
2018-05-07
In nipple reconstruction, the width, length, and thickness of modified star flaps are concerns for long-term reconstructed nipple projection. However, the flap's projection has not been analyzed, based on its thickness. The aim of the present study was to investigate how flap thickness in a modified star flap influences the resulting reconstructed nipple and achieves an appropriate flap width in design. Sixty-three patients who underwent nipple reconstruction using a modified star flap following implant-based breast reconstruction between August 2014 and July 2016 were included in this case-controlled study. The length of laterally diverging flaps was 1.5 times their width. The thickness of each flap was measured using ultrasonography, and the average thickness was defined as the flap thickness. We investigated the correlation between the resulting reconstructed nipple and flap thickness, and the difference of the change in the reconstructed nipple projection after using a thin or thick flap. The average flap thickness was 3.8 ± 1.7 (range 2.5-6.0) mm. There was a significant, linear correlation between the flap thickness and resulting reconstructed nipple projection (β = 0.853, p < 0.01). Furthermore, the difference between the thin and thick flaps in the resulting reconstructed nipple projection was significant (p < 0.01). Measuring the flap thickness preoperatively may allow surgeons to achieve an appropriate flap width; otherwise, alternative methods for higher projection might be used. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Genetic determinism of bone and mineral metabolism in meat-type chickens: A QTL mapping study.
Mignon-Grasteau, Sandrine; Chantry-Darmon, Céline; Boscher, Marie-Yvonne; Sellier, Nadine; Chabault-Dhuit, Marie; Le Bihan-Duval, Elisabeth; Narcy, Agnès
2016-12-01
Skeletal integrity in meat-type chickens is affected by many factors including rapid growth rate, nutrition and genetics. To investigate the genetic basis of bone and mineral metabolism, a QTL detection study was conducted in an intercross between two lines of meat-type chickens divergently selected for their high (D +) or low (D -) digestive efficiency. Tibia size (length, diameter, volume) and ash content were determined at 3 weeks of age as well as phosphorus (P) retention and plasma concentration. Heritability of these traits and their genetic correlations with digestive efficiency were estimated. A QTL mapping study was performed using 3379 SNP markers. Tibia size, weight, ash content and breaking strength were highly heritable (0.42 to 0.61). Relative tibia diameter and volume as well as P retention were strongly and positively genetically correlated with digestive efficiency (0.57 to 0.80). A total of 35 QTL were identified (9 for tibia weight, 13 for tibia size, 5 for bone strength, 5 for bone mineralization, 2 for plasma P concentration and 1 for P retention). Six QTL were genome-wide significant, and 3 QTL for tibia relative volume, weight and ash weight on chromosome 6 were fixed, the positive allele coming from the D-line. For two QTL for ash content on chromosome 18 and relative tibia length on chromosome 26, the confidence intervals were small enough to identify potential candidate genes. These findings support the evidence of multiple genetic loci controlling bone and mineral metabolism. The identification of candidate genes may provide new perspectives in the understanding of bone regulation, even beyond avian species.
The Proximate Causes of Sexual Size Dimorphism in Phrynocephalus przewalskii
Zhao, Wei; Liu, Nai-fa
2014-01-01
Sexual size dimorphism (SSD) is a common phenomenon and is a central topic in evolutionary biology. Recently, the importance of pursuing an ontogenetic perspective of SSD has been emphasized, to elucidate the proximate physiological mechanisms leading to its evolution. However, such research has seldom focused on the critical periods when males and females diverge. Using mark-recapture data, we investigated the development of SSD, sex-specific survivorship, and growth rates in Phrynocephalus przewalskii (Agamidae). We demonstrated that both male and female lizards are reproductively mature at age 10–11 months (including 5 months hibernation). Male-biased SSD in snout-vent length (SVL) was only found in adults and was fully expressed at age 11 months (June of the first full season of activity), just after sexual maturation. However, male-biased SSD in tail length (TL), hind-limb length (LL), and head width (HW) were fully expressed at age 9–10 months, just before sexual maturation. Analysis of age-specific linear growth rates identified sexually dimorphic growth during the fifth growth month (age 10–11 months) as the proximate cause of SSD in SVL. The males experienced higher mortality than females in the first 2 years and only survived better than females after SSD was well developed. This suggests that the critical period of divergence in the sizes of male and female P. przewalskii occurs between 10 and 11 months of age (May to June during the first full season of activity), and that the sexual difference in growth during this period is the proximate cause. However, the sexual difference in survivorship cannot explain the male-biased SSD in SVL. Our results indicate that performance-related characteristics, such as TL, HW, and LL diverged earlier than SVL. The physiological mechanisms underlying the different growth patterns of males and females may reflect different energy allocations associated with their different reproductive statuses. PMID:24465815
Jang, Yikweon; Won, Yong-Jin; Choe, Jae Chun
2009-01-01
Background In ecological character displacement, traits involved in reproductive isolation may not evolve in arbitrary directions when changes in these traits are by-products of adaptation to an ecological niche. In reproductive character displacement, however, selection acts directly on reproductive characters to enhance the degree of reproductive isolation between sympatric populations. Thus, the direction of change in reproductive characters may be arbitrary in relation to changes in other morphological characters. We characterized both tegminal characters and characters indicative of body size in sympatric and allopatric populations of Gryllus fultoni, a species displaying character displacement in its calling song characters in areas of sympatry with G. vernalis populations, to infer the nature and direction of selection acting on reproductive and morphological characters in sympatry. Results Except for mirror area, the number of teeth in a file, and ovipositor length of G. fultoni, all male and female morphological characters in G. fultoni and G. vernalis exhibited a uniform tendency to decrease in size with increasing latitude. There was no significant variation in female morphological characters between sympatric and allopatric G. fultoni populations. However, males of sympatric and allopatric G. fultoni populations significantly differed in head width, hind femur length, and mirror area even after controlling for clinal factors. Head width and hind femur length of G. fultoni were more similar to those of G. vernalis in sympatric populations than in allopatric populations, resulting in morphological convergence of G. fultoni and G. vernalis in sympatry. However, the mirror area of G. fultoni displayed the divergent pattern in relation to the sympatric G. vernalis populations. Conclusion Divergence-enhancing selection may be acting on mirror area as well as calling song characters, whereas local adaptation or clinal effects may explain variation in other morphological characters in sympatric populations of G. fultoni. This study also suggests that structures and behaviors that directly enhance reproductive isolation may evolve together, independently of other morphological traits. PMID:19183503
Jang, Yikweon; Won, Yong-Jin; Choe, Jae Chun
2009-02-01
In ecological character displacement, traits involved in reproductive isolation may not evolve in arbitrary directions when changes in these traits are by-products of adaptation to an ecological niche. In reproductive character displacement, however, selection acts directly on reproductive characters to enhance the degree of reproductive isolation between sympatric populations. Thus, the direction of change in reproductive characters may be arbitrary in relation to changes in other morphological characters. We characterized both tegminal characters and characters indicative of body size in sympatric and allopatric populations of Gryllus fultoni, a species displaying character displacement in its calling song characters in areas of sympatry with G. vernalis populations, to infer the nature and direction of selection acting on reproductive and morphological characters in sympatry. Except for mirror area, the number of teeth in a file, and ovipositor length of G. fultoni, all male and female morphological characters in G. fultoni and G. vernalis exhibited a uniform tendency to decrease in size with increasing latitude. There was no significant variation in female morphological characters between sympatric and allopatric G. fultoni populations. However, males of sympatric and allopatric G. fultoni populations significantly differed in head width, hind femur length, and mirror area even after controlling for clinal factors. Head width and hind femur length of G. fultoni were more similar to those of G. vernalis in sympatric populations than in allopatric populations, resulting in morphological convergence of G. fultoni and G. vernalis in sympatry. However, the mirror area of G. fultoni displayed the divergent pattern in relation to the sympatric G. vernalis populations. Divergence-enhancing selection may be acting on mirror area as well as calling song characters, whereas local adaptation or clinal effects may explain variation in other morphological characters in sympatric populations of G. fultoni. This study also suggests that structures and behaviors that directly enhance reproductive isolation may evolve together, independently of other morphological traits.
Allison, Beth J.; Kaandorp, Joepe J.; Kane, Andrew D.; Camm, Emily J.; Lusby, Ciara; Cross, Christine M.; Nevin-Dolan, Rhianon; Thakor, Avnesh S.; Derks, Jan B.; Tarry-Adkins, Jane L.; Ozanne, Susan E.; Giussani, Dino A.
2016-01-01
Aging and developmental programming are both associated with oxidative stress and endothelial dysfunction, suggesting common mechanistic origins. However, their interrelationship has been little explored. In a rodent model of programmed cardiovascular dysfunction we determined endothelial function and vascular telomere length in young (4 mo) and aged (15 mo) adult offspring of normoxic or hypoxic pregnancy with or without maternal antioxidant treatment. We show loss of endothelial function [maximal arterial relaxation to acetylcholine (71 ± 3 vs. 55 ± 3%) and increased vascular short telomere abundance (4.2–1.3 kb) 43.0 ± 1.5 vs. 55.1 ± 3.8%) in aged vs. young offspring of normoxic pregnancy (P < 0.05). Hypoxic pregnancy in young offspring accelerated endothelial dysfunction (maximal arterial relaxation to acetylcholine: 42 ± 1%, P < 0.05) but this was dissociated from increased vascular short telomere length abundance. Maternal allopurinol rescued maximal arterial relaxation to acetylcholine in aged offspring of normoxic or hypoxic pregnancy but not in young offspring of hypoxic pregnancy. Aged offspring of hypoxic allopurinol pregnancy compared with aged offspring of untreated hypoxic pregnancy had lower levels of short telomeres (vascular short telomere length abundance 35.1 ± 2.5 vs. 48.2 ± 2.6%) and of plasma proinflammatory chemokine (24.6 ± 2.8 vs. 36.8 ± 5.5 pg/ml, P < 0.05). These data provide evidence for divergence of mechanistic pathways mediating cardiovascular aging and developmental programming of cardiovascular disease, and aging being decelerated by antioxidants even prior to birth.—Allison, B. J., Kaandorp, J. J., Kane, A. D., Camm, E. J., Lusby, C., Cross, C. M., Nevin-Dolan, R., Thakor, A. S., Derks, J. B., Tarry-Adkins, J. L., Ozanne, S. E., Giussani, D. A. Divergence of mechanistic pathways mediating cardiovascular aging and developmental programming of cardiovascular disease. PMID:26932929
Allison, Beth J; Kaandorp, Joepe J; Kane, Andrew D; Camm, Emily J; Lusby, Ciara; Cross, Christine M; Nevin-Dolan, Rhianon; Thakor, Avnesh S; Derks, Jan B; Tarry-Adkins, Jane L; Ozanne, Susan E; Giussani, Dino A
2016-05-01
Aging and developmental programming are both associated with oxidative stress and endothelial dysfunction, suggesting common mechanistic origins. However, their interrelationship has been little explored. In a rodent model of programmed cardiovascular dysfunction we determined endothelial function and vascular telomere length in young (4 mo) and aged (15 mo) adult offspring of normoxic or hypoxic pregnancy with or without maternal antioxidant treatment. We show loss of endothelial function [maximal arterial relaxation to acetylcholine (71 ± 3 vs. 55 ± 3%) and increased vascular short telomere abundance (4.2-1.3 kb) 43.0 ± 1.5 vs. 55.1 ± 3.8%) in aged vs. young offspring of normoxic pregnancy (P < 0.05). Hypoxic pregnancy in young offspring accelerated endothelial dysfunction (maximal arterial relaxation to acetylcholine: 42 ± 1%, P < 0.05) but this was dissociated from increased vascular short telomere length abundance. Maternal allopurinol rescued maximal arterial relaxation to acetylcholine in aged offspring of normoxic or hypoxic pregnancy but not in young offspring of hypoxic pregnancy. Aged offspring of hypoxic allopurinol pregnancy compared with aged offspring of untreated hypoxic pregnancy had lower levels of short telomeres (vascular short telomere length abundance 35.1 ± 2.5 vs. 48.2 ± 2.6%) and of plasma proinflammatory chemokine (24.6 ± 2.8 vs. 36.8 ± 5.5 pg/ml, P < 0.05). These data provide evidence for divergence of mechanistic pathways mediating cardiovascular aging and developmental programming of cardiovascular disease, and aging being decelerated by antioxidants even prior to birth.-Allison, B. J., Kaandorp, J. J., Kane, A. D., Camm, E. J., Lusby, C., Cross, C. M., Nevin-Dolan, R., Thakor, A. S., Derks, J. B., Tarry-Adkins, J. L., Ozanne, S. E., Giussani, D. A. Divergence of mechanistic pathways mediating cardiovascular aging and developmental programming of cardiovascular disease. © FASEB.
Environmental harshness is positively correlated with intraspecific divergence in mammals and birds.
Botero, Carlos A; Dor, Roi; McCain, Christy M; Safran, Rebecca J
2014-02-01
Life on Earth is conspicuously more diverse in the tropics. Although this intriguing geographical pattern has been linked to many biotic and abiotic factors, their relative importance and potential interactions are still poorly understood. The way in which latitudinal changes in ecological conditions influence evolutionary processes is particularly controversial, as there is evidence for both a positive and a negative latitudinal gradient in speciation rates. Here, we identify and address some methodological issues (how patterns are analysed and how latitude is quantified) that could lead to such conflicting results. To address these issues, we assemble a comprehensive data set of the environmental correlates of latitude (including climate, net primary productivity and habitat heterogeneity) and combine it with biological, historical and molecular data to explore global patterns in recent divergence events (subspeciation). Surprisingly, we find that the harsher conditions that typify temperate habitats (lower primary productivity, decreased rainfall and more variable and unpredictable temperatures) are positively correlated with greater subspecies richness in terrestrial mammals and birds. Thus, our findings indicate that intraspecific divergence is greater in regions with lower biodiversity, a pattern that is robust to both sampling variation and latitudinal biases in taxonomic knowledge. We discuss possible causal mechanisms for the link between environmental harshness and subspecies richness (faster rates of evolution, greater likelihood of range discontinuities and more opportunities for divergence) and conclude that this pattern supports recent indications that latitudinal gradients of diversity are maintained by simultaneously higher potentials for both speciation and extinction in temperate than tropical regions. © 2013 John Wiley & Sons Ltd.
Crater lake cichlids individually specialize along the benthic–limnetic axis
Kusche, Henrik; Recknagel, Hans; Elmer, Kathryn Rebecca; Meyer, Axel
2014-01-01
A common pattern of adaptive diversification in freshwater fishes is the repeated evolution of elongated open water (limnetic) species and high-bodied shore (benthic) species from generalist ancestors. Studies on phenotype-diet correlations have suggested that population-wide individual specialization occurs at an early evolutionary and ecological stage of divergence and niche partitioning. This variable restricted niche use across individuals can provide the raw material for earliest stages of sympatric divergence. We investigated variation in morphology and diet as well as their correlations along the benthic-limnetic axis in an extremely young Midas cichlid species, Amphilophus tolteca, endemic to the Nicaraguan crater lake Asososca Managua. We found that A. tolteca varied continuously in ecologically relevant traits such as body shape and lower pharyngeal jaw morphology. The correlation of these phenotypes with niche suggested that individuals are specialized along the benthic-limnetic axis. No genetic differentiation within the crater lake was detected based on genotypes from 13 microsatellite loci. Overall, we found that individual specialization in this young crater lake species encompasses the limnetic-as well as the benthic macro-habitat. Yet there is no evidence for any diversification within the species, making this a candidate system for studying what might be the early stages preceding sympatric divergence. A common pattern of adaptive diversification in freshwater fishes is the repeated evolution of open water (limnetic) species and of shore (benthic) species. Individual specialization can reflect earliest stages of evolutionary and ecological divergence. We here demonstrate individual specialization along the benthic–limnetic axis in a young adaptive radiation of crater lake cichlid fishes. PMID:24772288
Geographically multifarious phenotypic divergence during speciation
Gompert, Zachariah; Lucas, Lauren K; Nice, Chris C; Fordyce, James A; Alex Buerkle, C; Forister, Matthew L
2013-01-01
Speciation is an important evolutionary process that occurs when barriers to gene flow evolve between previously panmictic populations. Although individual barriers to gene flow have been studied extensively, we know relatively little regarding the number of barriers that isolate species or whether these barriers are polymorphic within species. Herein, we use a series of field and lab experiments to quantify phenotypic divergence and identify possible barriers to gene flow between the butterfly species Lycaeides idas and Lycaeides melissa. We found evidence that L. idas and L. melissa have diverged along multiple phenotypic axes. Specifically, we identified major phenotypic differences in female oviposition preference and diapause initiation, and more moderate divergence in mate preference. Multiple phenotypic differences might operate as barriers to gene flow, as shown by correlations between genetic distance and phenotypic divergence and patterns of phenotypic variation in admixed Lycaeides populations. Although some of these traits differed primarily between species (e.g., diapause initiation), several traits also varied among conspecific populations (e.g., male mate preference and oviposition preference). PMID:23532669
Pasco, Paul Matthew D; Jamora, Roland Dominic G; Rosales, Raymond L; Diesta, Cid Czarina E; Ng, Arlene R; Teleg, Rosalia A; Go, Criscely L; Lee, Lillian; Fernandez, Hubert H
2017-01-01
X-linked dystonia-parkinsonism(XDP) is a neurodegenerative disorder endemic to the Philippines. A rating scale was developed by the authors under the guidance of the Movement Disorder Society of the Philippines (MDSP) to assess XDP severity and progression, functional impact, and response to treatment in future clinical trials. Our main objective was to validate our new scale, the XDP-MDSP scale. The initial validation process included pragmatic testing to XDP patients followed by a modified Delphi procedure with an international advisory panel of dystonia, parkinsonism and scale development experts. Pearson correlation was used to assess construct validity of our new scale versus the assess construct validity of our new scale versus standard dystonia, parkinsonism, non-motor and functional scales; and also to assess divergent validity against behavioral and cognitive scales. The 37-item XDP-MDSP scale has five parts: I-dystonia, II-parkinsonism, III-non-motor features, IV-ADL, and V-global impression. After initial validation, the scale was administered to 204 XDP patients. Inter-domain correlation for the first four parts was acceptable. The correlation between these domains and the global rating was slightly lower. Correlations between Parts I, II, III, and IV versus standard dystonia, parkinsonism, non-motor and functional scales were acceptable with values ranging from 0.323 to 0.428. For divergent validity, a significant correlation was seen with behavioral scales. No significant correlation was noted with the cognitive scale. The proposed XDP-MDSP scale is internally valid but the global rating subscale may need to be modified or eliminated. While there is convergent validity, divergent validation was successful only on cognitive and not behavioral scales. The frequent co-occurrence of anxiety and depression, and its effect on the motor and functional state, may explain this finding.
Determining Correlation and Coherence Lengths in Turbulent Boundary Layer Flight Data
NASA Technical Reports Server (NTRS)
Palumbo, Dan
2012-01-01
Wall pressure data acquired during flight tests at several flight conditions are analysed and the correlation and coherence lengths of the data reported. It is found that the correlation and coherence lengths are influenced by the origin of the structure producing the pressure and the frequency bandwidth over which the analyses are performed. It is shown how the frequency bandwidth biases the correlation length and how the convection of the pressure field might reduce the coherence measured between sensors. A convected form of the cross correlation and cross spectrum is introduced to compensate for the effects of convection. Coherence lengths measured in the streamwise direction appear much longer than expected. Coherent structures detected using the convected cross correlation do not exhibit an exponential coherent power decay.
[Length of stay in maternity wards after normal delivery: diverging point of views].
Vautrin, E; Fontaine, A; Lanba, P; Guérin, V; Engelmann, P
2000-02-01
To compare maternity ward professionals' and patients' views regarding the length of stay in the maternity after a normal delivery and to explore working relationships with ambulatory health professionals. Three surveys General professional agreement on a minimum of 4 days; few contacts with ambulatory health professionals. One third of the women found their length of stay excessive. Most did not appear to gain new skills after 3 days, nor to encounter major difficulties once they returned to their home. and conclusion. It will be essential to organize effective working relationships between the maternity ward and ambulatory health professionals to ensure appropriate follow-up after an earlier discharge from the hospital, in agreement with the capabilities and expectations of a majority of women.
Lischer, Heidi E L; Excoffier, Laurent; Heckel, Gerald
2014-04-01
Phylogenetic reconstruction of the evolutionary history of closely related organisms may be difficult because of the presence of unsorted lineages and of a relatively high proportion of heterozygous sites that are usually not handled well by phylogenetic programs. Genomic data may provide enough fixed polymorphisms to resolve phylogenetic trees, but the diploid nature of sequence data remains analytically challenging. Here, we performed a phylogenomic reconstruction of the evolutionary history of the common vole (Microtus arvalis) with a focus on the influence of heterozygosity on the estimation of intraspecific divergence times. We used genome-wide sequence information from 15 voles distributed across the European range. We provide a novel approach to integrate heterozygous information in existing phylogenetic programs by repeated random haplotype sampling from sequences with multiple unphased heterozygous sites. We evaluated the impact of the use of full, partial, or no heterozygous information for tree reconstructions on divergence time estimates. All results consistently showed four deep and strongly supported evolutionary lineages in the vole data. These lineages undergoing divergence processes split only at the end or after the last glacial maximum based on calibration with radiocarbon-dated paleontological material. However, the incorporation of information from heterozygous sites had a significant impact on absolute and relative branch length estimations. Ignoring heterozygous information led to an overestimation of divergence times between the evolutionary lineages of M. arvalis. We conclude that the exclusion of heterozygous sites from evolutionary analyses may cause biased and misleading divergence time estimates in closely related taxa.
NASA Astrophysics Data System (ADS)
Rastorguev, A. S.; Utkin, N. D.; Chumak, O. V.
2017-08-01
Agekyan's λ-factor that allows for the effect of multiplicity of stellar encounters with large impact parameters has been used for the first time to directly calculate the diffusion coefficients in the phase space of a stellar system. Simple estimates show that the cumulative effect, i.e., the total contribution of distant encounters to the change in the velocity of a test star, given the multiplicity of stellar encounters, is finite, and the logarithmic divergence inherent in the classical description of diffusion is removed, as was shown previously byKandrup using a different, more complex approach. In this case, the expressions for the diffusion coefficients, as in the classical description, contain the logarithm of the ratio of two independent quantities: the mean interparticle distance and the impact parameter of a close encounter. However, the physical meaning of this logarithmic factor changes radically: it reflects not the divergence but the presence of two characteristic length scales inherent in the stellar medium.
Delineating closely related dinoflagellate lineages using phylotranscriptomics.
Annenkova, Nataliia V; Ahrén, Dag; Logares, Ramiro; Kremp, Anke; Rengefors, Karin
2018-04-20
Recently radiated dinoflagellates Apocalathium aciculiferum (collected in Lake Erken, Sweden), A. malmogiense (Baltic Sea) and Apocalathium aff. malmogiense (Highway Lake, Antarctica) represent a lineage with an unresolved phylogeny. We determined their phylogenetic relationships using phylotranscriptomics based on 792 amino acid sequences. Our results showed that A. aciculiferum diverged from the other two closely related lineages, consistent with their different morphologies in cell size, relative cell length and presence of spines. We hypothesized that A. aff. malmogiense and A. malmogiense, which inhabit different hemispheres, are evolutionarily more closely related because they diverged from a marine common ancestor, adapting to a wide salinity range, while A. aciculiferum colonized a freshwater habitat, by acquiring adaptations to this environment, in particular, salinity intolerance. We show that phylotranscriptomics can resolve the phylogeny of recently diverged protists. This has broad relevance, given that many phytoplankton species are morphologically very similar, and single genes sometimes lack the information to determine species' relationships. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
First Results from a Microfocus X-Ray System for Macromolecular Crystallography
NASA Technical Reports Server (NTRS)
Gubarev, Mikhail; Ciszak, Ewa; Ponomarev, Igor; Gibson, Walter; Joy, Marshall
1999-01-01
The design and performance of a 40 Watt laboratory crystallography system optimized for the structure determination of small protein crystals are described. This system combines a microfocus x-ray generator (40 microns FWHM spot size at a power level of 40 Watts) and a short focal length (F = 2.6 mm) polycapillary collimating optic, and produces a small diameter quasi-parallel x-ray beam. Measurements of x-ray flux, divergence and spectral purity of the resulting x-ray beam are presented. The x-ray flux in a 250 microns diameter aperture produced by the microfocus system is 14.7 times higher .than that from a 3.15 kW rotating anode generator equipped with graphite monochromator. Crystallography data taken with the microfocus system are presented, and indicate that the divergence and spectral purity of the x-ray are sufficient to refine the diffraction data using a standard crystallographic software. Significant additional improvements in flux and beam divergence are possible, and plans for achieving these coals are discussed.
Measurement of the Correlation and Coherence Lengths in Boundary Layer Flight Data
NASA Technical Reports Server (NTRS)
Palumbo, Daniel L.
2011-01-01
Wall pressure data acquired during flight tests at several flight conditions are analyzed and the correlation and coherence lengths of the data reported. It is shown how the frequency bandwidth of the analysis biases the correlation length and how the convection of the flow acts to reduce the coherence length. Coherence lengths measured in the streamwise direction appear much longer than would be expected based on classical results for flow over a flat plat.
Kaeuffer, Renaud; Peichel, Catherine L.; Bolnick, Daniel I.; Hendry, Andrew P.
2015-01-01
Convergent (or parallel) evolution provides strong evidence for a deterministic role of natural selection: similar phenotypes evolve when independent populations colonize similar environments. In reality, however, independent populations in similar environments always show some differences: some non-convergent evolution is present. It is therefore important to explicitly quantify the convergent and non-convergent aspects of trait variation, and to investigate the ecological and genetic explanations for each. We performed such an analysis for threespine stickleback (Gasterosteus aculeatus) populations inhabiting lake and stream habitats in independent watersheds. Morphological traits differed in the degree to which lake-stream divergence was convergent across watersheds. Some aspects of this variation were correlated with ecological variables related to diet, presumably reflecting the strength and specifics of divergent selection. Furthermore, a genetic scan revealed some markers that diverged between lakes and streams in many of the watersheds and some that diverged in only a few watersheds. Moreover, some of the lake-stream divergence in genetic markers was associated within some of the lake-stream divergence in morphological traits. Our results suggest that convergent evolution, and deviations from it, are primarily the result of natural selection, which corresponds in only some respect to the dichotomous habitat classifications frequently used in such studies. PMID:22276537
Morphology and Length Correlated in Terminal Flushes of Longleaf Pine Saplings
R.M. Allen; N.M. Scarbrough
1970-01-01
In longleafpine (Pinuspalustris Mill.) saplings growing in southern Mississippi the length of the first or spring flush was significantly correlated with that of the second flush; the correlation of length between flushes two and three was also statistically significant. The correlations were due more to similarities in internode elongation than to node number. Flush...
Integration of length and curvature in haptic perception.
Panday, Virjanand; Tiest, Wouter M Bergmann; Kappers, Astrid M L
2014-01-24
We investigated if and how length and curvature information are integrated when an object is explored in one hand. Subjects were asked to explore four types of objects between thumb and index finger. Objects differed in either length, curvature, both length and curvature correlated as in a circle, or anti-correlated. We found that when both length and curvature are present, performance is significantly better than when only one of the two cues is available. Therefore, we conclude that there is integration of length and curvature. Moreover, if the two cues are correlated in a circular cross-section instead of in an anti-correlated way, performance is better than predicted by a combination of two independent cues. We conclude that integration of curvature and length is highly efficient when the cues in the object are combined as in a circle, which is the most common combination of curvature and length in daily life.
2011-01-01
Background An important objective of evolutionary biology is to understand the processes that govern phenotypic variation in natural populations. We assessed patterns of morphological and genetic divergence among coastal and inland lake populations of nine-spined stickleback in northern Sweden. Coastal populations are either from the Baltic coast (n = 5) or from nearby coastal lakes (n = 3) that became isolated from the Baltic Sea (< 100 years before present, ybp). Inland populations are from freshwater lakes that became isolated from the Baltic approximately 10,000 ybp; either single species lakes without predators (n = 5), or lakes with a recent history of predation (n = 5) from stocking of salmonid predators (~50 ybp). Results Coastal populations showed little variation in 11 morphological traits and had longer spines per unit of body length than inland populations. Inland populations were larger, on average, and showed greater morphological variation than coastal populations. A principal component analysis (PCA) across all populations revealed two major morphological axes related to spine length (PC1, 47.7% variation) and body size (PC2, 32.9% variation). Analysis of PCA scores showed marked similarity in coastal (Baltic coast and coastal lake) populations. PCA scores indicate that inland populations with predators have higher within-group variance in spine length and lower within-group variance in body size than inland populations without predators. Estimates of within-group PST (a proxy for QST) from PCA scores are similar to estimates of FST for coastal lake populations but PST >FST for Baltic coast populations. PST >FST for PC1 and PC2 for inland predator and inland no predator populations, with the exception that PST
Disordered Berezinskii-Kosterlitz-Thouless transition and superinsulation
NASA Astrophysics Data System (ADS)
Sankar, S.; Vinokur, V. M.; Tripathi, V.
2018-01-01
We investigate the critical Berezinskii-Kosterlitz-Thouless (BKT) behavior of disordered two-dimensional Josephson-junction arrays (JJA) on the insulating side of the superconductor-insulator transition (SIT) taking into account the effect of hitherto ignored residual random dipole moments of the superconducting grains. We show that for weak Josephson coupling the model is equivalent to a Coulomb gas subjected to a disorder potential with logarithmic correlations. We demonstrate that strong enough disorder transforms the BKT divergence of the correlation length, ξ
Genome-Wide Specific Selection in Three Domestic Sheep Breeds.
Wang, Huihua; Zhang, Li; Cao, Jiaxve; Wu, Mingming; Ma, Xiaomeng; Liu, Zhen; Liu, Ruizao; Zhao, Fuping; Wei, Caihong; Du, Lixin
2015-01-01
Commercial sheep raised for mutton grow faster than traditional Chinese sheep breeds. Here, we aimed to evaluate genetic selection among three different types of sheep breed: two well-known commercial mutton breeds and one indigenous Chinese breed. We first combined locus-specific branch lengths and di statistical methods to detect candidate regions targeted by selection in the three different populations. The results showed that the genetic distances reached at least medium divergence for each pairwise combination. We found these two methods were highly correlated, and identified many growth-related candidate genes undergoing artificial selection. For production traits, APOBR and FTO are associated with body mass index. For meat traits, ALDOA, STK32B and FAM190A are related to marbling. For reproduction traits, CCNB2 and SLC8A3 affect oocyte development. We also found two well-known genes, GHR (which affects meat production and quality) and EDAR (associated with hair thickness) were associated with German mutton merino sheep. Furthermore, four genes (POL, RPL7, MSL1 and SHISA9) were associated with pre-weaning gain in our previous genome-wide association study. Our results indicated that combine locus-specific branch lengths and di statistical approaches can reduce the searching ranges for specific selection. And we got many credible candidate genes which not only confirm the results of previous reports, but also provide a suite of novel candidate genes in defined breeds to guide hybridization breeding.
A new genus of miniaturized and pug-nosed gecko from South America (Sphaerodactylidae: Gekkota)
Gamble, Tony; Daza, Juan D; Colli, Guarino R; Vitt, Laurie J; Bauer, Aaron M
2011-01-01
Sphaerodactyl geckos comprise five genera distributed across Central and South America and the Caribbean. We estimated phylogenetic relationships among sphaerodactyl genera using both separate and combined analyses of seven nuclear genes. Relationships among genera were incongruent at different loci and phylogenies were characterized by short, in some cases zero length, internal branches and poor phylogenetic support at most nodes. We recovered a polyphyletic Coleodactylus, with Coleodactylus amazonicus being deeply divergent from the remaining Coleodactylus species sampled. The C. amazonicus lineage possessed unique codon deletions in the genes PTPN12 and RBMX while the remaining Coleodactylus species had unique codon deletions in RAG1. Topology tests could not reject a monophyletic Coleodactylus, but we show that short internal branch lengths decreased the accuracy of topology tests because there were not enough data along short branches to support one phylogenetic hypothesis over another. Morphological data corroborated results of the molecular phylogeny, with Coleodactylus exhibiting substantial morphological heterogeneity. We identified a suite of unique craniofacial features that differentiate C. amazonicus not only from other Coleodactylus species, but also from all other geckos. We describe this novel sphaerodactyl lineage as a new genus, Chatogekko gen. nov. We present a detailed osteology of Chatogekko, characterizing osteological correlates of miniaturization that provide a framework for future studies in sphaerodactyl systematics and biology. PMID:22125341
Wetlands explain most in the genetic divergence pattern of Oncomelania hupensis.
Liang, Lu; Liu, Yang; Liao, Jishan; Gong, Peng
2014-10-01
Understanding the divergence patterns of hosts could shed lights on the prediction of their parasite transmission. No effort has been devoted to understand the drivers of genetic divergence pattern of Oncomelania hupensis, the only intermediate host of Schistosoma japonicum. Based on a compilation of two O. hupensis gene datasets covering a wide geographic range in China and an array of geographical distance and environmental dissimilarity metrics built from earth observation data and ecological niche modeling, we conducted causal modeling analysis via simple, partial Mantel test and local polynomial fitting to understand the interactions among isolation-by-distance, isolation-by-environment, and genetic divergence. We found that geography contributes more to genetic divergence than environmental isolation, and among all variables involved, wetland showed the strongest correlation with the genetic pairwise distances. These results suggested that in China, O. hupensis dispersal is strongly linked to the distribution of wetlands, and the current divergence pattern of both O. hupensis and schistosomiasis might be altered due to the changed wetland pattern with the accomplishment of the Three Gorges Dam and the South-to-North water transfer project. Copyright © 2014 Elsevier B.V. All rights reserved.
Divergent morphological and acoustic traits in sympatric communities of Asian barbets
Tamma, Krishnapriya
2016-01-01
The opposing effects of environmental filtering and competitive interactions may influence community assembly and coexistence of related species. Competition, both in the domain of ecological resources, and in the sensory domain (for example, acoustic interference) may also result in sympatric species evolving divergent traits and niches. Delineating these scenarios within communities requires understanding trait distributions and phylogenetic structure within the community, as well as patterns of trait evolution. We report that sympatric assemblages of Asian barbets (frugivorous canopy birds) consist of a random phylogenetic sample of species, but are divergent in both morphological and acoustic traits. Additionally, we find that morphology is more divergent than expected under Brownian evolution, whereas vocal frequency evolution is close to the pattern expected under Brownian motion (i.e. a random walk). Together, these patterns are consistent with a role for competition or competitive exclusion in driving community assembly. Phylogenetic patterns of morphological divergence between related species suggest that these traits are key in species coexistence. Because vocal frequency and size are correlated in barbets, we therefore hypothesize that frequency differences between sympatric barbets are a by-product of their divergent morphologies. PMID:27853589
Lake Malawi cichlid evolution along a benthic/limnetic axis.
Hulsey, C D; Roberts, R J; Loh, Y-H E; Rupp, M F; Streelman, J T
2013-07-01
Divergence along a benthic to limnetic habitat axis is ubiquitous in aquatic systems. However, this type of habitat divergence has largely been examined in low diversity, high latitude lake systems. In this study, we examined the importance of benthic and limnetic divergence within the incredibly species-rich radiation of Lake Malawi cichlid fishes. Using novel phylogenetic reconstructions, we provided a series of hypotheses regarding the evolutionary relationships among 24 benthic and limnetic species that suggests divergence along this axis has occurred multiple times within Lake Malawi cichlids. Because pectoral fin morphology is often associated with divergence along this habitat axis in other fish groups, we investigated divergence in pectoral fin muscles in these benthic and limnetic cichlid species. We showed that the eight pectoral fin muscles and fin area generally tended to evolve in a tightly correlated manner in the Lake Malawi cichlids. Additionally, we found that larger pectoral fin muscles are strongly associated with the independent evolution of the benthic feeding habit across this group of fish. Evolutionary specialization along a benthic/limnetic axis has occurred multiple times within this tropical lake radiation and has produced repeated convergent matching between exploitation of water column habitats and locomotory morphology.
Statistical model of a flexible inextensible polymer chain: The effect of kinetic energy.
Pergamenshchik, V M; Vozniak, A B
2017-01-01
Because of the holonomic constraints, the kinetic energy contribution in the partition function of an inextensible polymer chain is difficult to find, and it has been systematically ignored. We present the first thermodynamic calculation incorporating the kinetic energy of an inextensible polymer chain with the bending energy. To explore the effect of the translation-rotation degrees of freedom, we propose and solve a statistical model of a fully flexible chain of N+1 linked beads which, in the limit of smooth bending, is equivalent to the well-known wormlike chain model. The partition function with the kinetic and bending energies and correlations between orientations of any pair of links and velocities of any pair of beads are found. This solution is precise in the limits of small and large rigidity-to-temperature ratio b/T. The last exact solution is essential as even very "harmless" approximation results in loss of the important effects when the chain is very rigid. For very high b/T, the orientations of different links become fully correlated. Nevertheless, the chain does not go over into a hard rod even in the limit b/T→∞: While the velocity correlation length diverges, the correlations themselves remain weak and tend to the value ∝T/(N+1). The N dependence of the partition function is essentially determined by the kinetic energy contribution. We demonstrate that to obtain the correct energy and entropy in a constrained system, the T derivative of the partition function has to be applied before integration over the constraint-setting variable.
Statistical model of a flexible inextensible polymer chain: The effect of kinetic energy
NASA Astrophysics Data System (ADS)
Pergamenshchik, V. M.; Vozniak, A. B.
2017-01-01
Because of the holonomic constraints, the kinetic energy contribution in the partition function of an inextensible polymer chain is difficult to find, and it has been systematically ignored. We present the first thermodynamic calculation incorporating the kinetic energy of an inextensible polymer chain with the bending energy. To explore the effect of the translation-rotation degrees of freedom, we propose and solve a statistical model of a fully flexible chain of N +1 linked beads which, in the limit of smooth bending, is equivalent to the well-known wormlike chain model. The partition function with the kinetic and bending energies and correlations between orientations of any pair of links and velocities of any pair of beads are found. This solution is precise in the limits of small and large rigidity-to-temperature ratio b /T . The last exact solution is essential as even very "harmless" approximation results in loss of the important effects when the chain is very rigid. For very high b /T , the orientations of different links become fully correlated. Nevertheless, the chain does not go over into a hard rod even in the limit b /T →∞ : While the velocity correlation length diverges, the correlations themselves remain weak and tend to the value ∝T /(N +1 ). The N dependence of the partition function is essentially determined by the kinetic energy contribution. We demonstrate that to obtain the correct energy and entropy in a constrained system, the T derivative of the partition function has to be applied before integration over the constraint-setting variable.
Evaluating Multispectral Snowpack Reflectivity With Changing Snow Correlation Lengths
NASA Technical Reports Server (NTRS)
Kang, Do Hyuk; Barros, Ana P.; Kim, Edward J.
2016-01-01
This study investigates the sensitivity of multispectral reflectivity to changing snow correlation lengths. Matzler's ice-lamellae radiative transfer model was implemented and tested to evaluate the reflectivity of snow correlation lengths at multiple frequencies from the ultraviolet (UV) to the microwave bands. The model reveals that, in the UV to infrared (IR) frequency range, the reflectivity and correlation length are inversely related, whereas reflectivity increases with snow correlation length in the microwave frequency range. The model further shows that the reflectivity behavior can be mainly attributed to scattering rather than absorption for shallow snowpacks. The largest scattering coefficients and reflectivity occur at very small correlation lengths (approximately 10(exp -5 m) for frequencies higher than the IR band. In the microwave range, the largest scattering coefficients are found at millimeter wavelengths. For validation purposes, the ice-lamella model is coupled with a multilayer snow physics model to characterize the reflectivity response of realistic snow hydrological processes. The evolution of the coupled model simulated reflectivities in both the visible and the microwave bands is consistent with satellite-based reflectivity observations in the same frequencies. The model results are also compared with colocated in situ snow correlation length measurements (Cold Land Processes Field Experiment 2002-2003). The analysis and evaluation of model results indicate that the coupled multifrequency radiative transfer and snow hydrology modeling system can be used as a forward operator in a data-assimilation framework to predict the status of snow physical properties, including snow correlation length.
Finite-size scaling above the upper critical dimension in Ising models with long-range interactions
NASA Astrophysics Data System (ADS)
Flores-Sola, Emilio J.; Berche, Bertrand; Kenna, Ralph; Weigel, Martin
2015-01-01
The correlation length plays a pivotal role in finite-size scaling and hyperscaling at continuous phase transitions. Below the upper critical dimension, where the correlation length is proportional to the system length, both finite-size scaling and hyperscaling take conventional forms. Above the upper critical dimension these forms break down and a new scaling scenario appears. Here we investigate this scaling behaviour by simulating one-dimensional Ising ferromagnets with long-range interactions. We show that the correlation length scales as a non-trivial power of the linear system size and investigate the scaling forms. For interactions of sufficiently long range, the disparity between the correlation length and the system length can be made arbitrarily large, while maintaining the new scaling scenarios. We also investigate the behavior of the correlation function above the upper critical dimension and the modifications imposed by the new scaling scenario onto the associated Fisher relation.
Frustrated quantum magnetism in the Kondo lattice on the zigzag ladder
NASA Astrophysics Data System (ADS)
Peschke, Matthias; Rausch, Roman; Potthoff, Michael
2018-03-01
The interplay between the Kondo effect, indirect magnetic interaction, and geometrical frustration is studied in the Kondo lattice on the one-dimensional zigzag ladder. Using the density-matrix renormalization group, the ground-state and various short- and long-range spin- and density-correlation functions are calculated for the model at half filling as a function of the antiferromagnetic Kondo interaction down to J =0.3 t , where t is the nearest-neighbor hopping on the zigzag ladder. Geometrical frustration is shown to lead to at least two critical points: Starting from the strong-J limit, where almost local Kondo screening dominates and where the system is a nonmagnetic Kondo insulator, antiferromagnetic correlations between nearest-neighbor and next-nearest-neighbor local spins become stronger and stronger, until at Jcdim≈0.89 t frustration is alleviated by a spontaneous breaking of translational symmetry and a corresponding transition to a dimerized state. This is characterized by antiferromagnetic correlations along the legs and by alternating antiferro- and ferromagnetic correlations on the rungs of the ladder. A mechanism of partial Kondo screening that has been suggested for the Kondo lattice on the two-dimensional triangular lattice is not realized in the one-dimensional case. Furthermore, within the symmetry-broken dimerized state, there is a magnetic transition to a 90∘ quantum spin spiral with quasi-long-range order at Jcmag≈0.84 t . The quantum-critical point is characterized by a closure of the spin gap (with decreasing J ) and a divergence of the spin-correlation length and of the spin-structure factor S (q ) at wave vector q =π /2 . This is opposed to the model on the one-dimensional bipartite chain, which is known to have a finite spin gap for all J >0 at half filling.
NASA Astrophysics Data System (ADS)
Sanders, Sören; Holthaus, Martin
2017-11-01
We explore in detail how analytic continuation of divergent perturbation series by generalized hypergeometric functions is achieved in practice. Using the example of strong-coupling perturbation series provided by the two-dimensional Bose-Hubbard model, we compare hypergeometric continuation to Shanks and Padé techniques, and demonstrate that the former yields a powerful, efficient and reliable alternative for computing the phase diagram of the Mott insulator-to-superfluid transition. In contrast to Shanks transformations and Padé approximations, hypergeometric continuation also allows us to determine the exponents which characterize the divergence of correlation functions at the transition points. Therefore, hypergeometric continuation constitutes a promising tool for the study of quantum phase transitions.
Wang, Jun-Sheng; Olszewski, Emily; Devine, Erin E; Hoffman, Matthew R; Zhang, Yu; Shao, Jun; Jiang, Jack J
2016-08-01
To evaluate the spatiotemporal correlation of vocal fold vibration using eigenmode analysis before and after polyp removal and explore the potential clinical relevance of spatiotemporal analysis of correlation length and entropy as quantitative voice parameters. We hypothesized that increased order in the vibrating signal after surgical intervention would decrease the eigenmode-based entropy and increase correlation length. Prospective case series. Forty subjects (23 males, 17 females) with unilateral (n = 24) or bilateral (n = 16) polyps underwent polyp removal. High-speed videoendoscopy was performed preoperatively and 2 weeks postoperatively. Spatiotemporal analysis was performed to determine entropy, quantification of signal disorder, correlation length, size, and spatially ordered structure of vocal fold vibration in comparison to full spatial consistency. The signal analyzed consists of the vibratory pattern in space and time derived from the high-speed video glottal area contour. Entropy decreased (Z = -3.871, P < .001) and correlation length increased (t = -8.913, P < .001) following polyp excision. The intraclass correlation coefficients (ICC) for correlation length and entropy were 0.84 and 0.93. Correlation length and entropy are sensitive to mass lesions. These parameters could potentially be used to augment subjective visualization after polyp excision when evaluating procedural efficacy. © The Author(s) 2016.
2010-01-01
Background Patterns of spatial variation in discrete phenotypic traits can be used to draw inferences about the adaptive significance of traits and evolutionary processes, especially when compared to patterns of neutral genetic variation. Population divergence in adaptive traits such as color morphs can be influenced by both local ecology and stochastic factors such as genetic drift or founder events. Here, we use quantitative color measurements of males and females of Skyros wall lizard, Podarcis gaigeae, to demonstrate that this species is polymorphic with respect to throat color, and the morphs form discrete phenotypic clusters with limited overlap between categories. We use divergence in throat color morph frequencies and compare that to neutral genetic variation to infer the evolutionary processes acting on islet- and mainland populations. Results Geographically close islet- and mainland populations of the Skyros wall lizard exhibit strong divergence in throat color morph frequencies. Population variation in throat color morph frequencies between islets was higher than that between mainland populations, and the effective population sizes on the islets were small (Ne:s < 100). Population divergence (FST) for throat color morph frequencies fell within the neutral FST-distribution estimated from microsatellite markers, and genetic drift could thus not be rejected as an explanation for the pattern. Moreover, for both comparisons among mainland-mainland population pairs and between mainland-islet population pairs, morph frequency divergence was significantly correlated with neutral divergence, further pointing to some role for genetic drift in divergence also at the phenotypic level of throat color morphs. Conclusions Genetic drift could not be rejected as an explanation for the pattern of population divergence in morph frequencies. In spite of an expected stabilising selection, throat color frequencies diverged in the islet populations. These results suggest that there is an interaction between selection and genetic drift causing divergence even at a phenotypic level in these small, subdivided populations. PMID:20813033
Improved quasi parton distribution through Wilson line renormalization
Chen, Jiunn-Wei; Ji, Xiangdong; Zhang, Jian-Hui
2016-12-09
Some recent developments showed that hadron light-cone parton distributions could be directly extracted from spacelike correlators, known as quasi parton distributions, in the large hadron momentum limit. Unlike the normal light-cone parton distribution, a quasi parton distribution contains ultraviolet (UV) power divergence associated with the Wilson line self energy. Here, we show that to all orders in the coupling expansion, the power divergence can be removed by a “mass” counterterm in the auxiliary z-field formalism, in the same way as the renormalization of power divergence for an open Wilson line. After adding this counterterm, the quasi quark distribution is improvedmore » such that it contains at most logarithmic divergences. Based on a simple version of discretized gauge action, we also present the one-loop matching kernel between the improved non-singlet quasi quark distribution with a lattice regulator and the corresponding quark distribution in dimensional regularization.« less
Improved quasi parton distribution through Wilson line renormalization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jiunn-Wei; Ji, Xiangdong; Zhang, Jian-Hui
Some recent developments showed that hadron light-cone parton distributions could be directly extracted from spacelike correlators, known as quasi parton distributions, in the large hadron momentum limit. Unlike the normal light-cone parton distribution, a quasi parton distribution contains ultraviolet (UV) power divergence associated with the Wilson line self energy. Here, we show that to all orders in the coupling expansion, the power divergence can be removed by a “mass” counterterm in the auxiliary z-field formalism, in the same way as the renormalization of power divergence for an open Wilson line. After adding this counterterm, the quasi quark distribution is improvedmore » such that it contains at most logarithmic divergences. Based on a simple version of discretized gauge action, we also present the one-loop matching kernel between the improved non-singlet quasi quark distribution with a lattice regulator and the corresponding quark distribution in dimensional regularization.« less
Computational Investigations in Rectangular Convergent and Divergent Ribbed Channels
NASA Astrophysics Data System (ADS)
Sivakumar, Karthikeyan; Kulasekharan, N.; Natarajan, E.
2018-05-01
Computational investigations on the rib turbulated flow inside a convergent and divergent rectangular channel with square ribs of different rib heights and different Reynolds numbers (Re=20,000, 40,000 and 60,000). The ribs were arranged in a staggered fashion between the upper and lower surfaces of the test section. Computational investigations are carried out using computational fluid dynamic software ANSYS Fluent 14.0. Suitable solver settings like turbulence models were identified from the literature and the boundary conditions for the simulations on a solution of independent grid. Computations were carried out for both convergent and divergent channels with 0 (smooth duct), 1.5, 3, 6, 9 and 12 mm rib heights, to identify the ribbed channel with optimal performance, assessed using a thermo hydraulic performance parameter. The convergent and divergent rectangular channels show higher Nu values than the standard correlation values.
On the Lamb vector divergence as a momentum field diagnostic employed in turbulent channel flow
NASA Astrophysics Data System (ADS)
Hamman, Curtis W.; Kirby, Robert M.; Klewicki, Joseph C.
2006-11-01
Vorticity, enstrophy, helicity, and other derived field variables provide invaluable information about the kinematics and dynamics of fluids. However, whether or not derived field variables exist that intrinsically identify spatially localized motions having a distinct capacity to affect a time rate of change of linear momentum is seldom addressed in the literature. The purpose of the present study is to illustrate the unique attributes of the divergence of the Lamb vector in order to qualify its potential for characterizing such spatially localized motions. Toward this aim, we describe the mathematical properties, near-wall behavior, and scaling characteristics of the divergence of the Lamb vector for turbulent channel flow. When scaled by inner variables, the mean divergence of the Lamb vector merges to a single curve in the inner layer, and the fluctuating quantities exhibit a strong correlation with the Bernoulli function throughout much of the inner layer.
Expression Divergence Is Correlated with Sequence Evolution but Not Positive Selection in Conifers.
Hodgins, Kathryn A; Yeaman, Sam; Nurkowski, Kristin A; Rieseberg, Loren H; Aitken, Sally N
2016-06-01
The evolutionary and genomic determinants of sequence evolution in conifers are poorly understood, and previous studies have found only limited evidence for positive selection. Using RNAseq data, we compared gene expression profiles to patterns of divergence and polymorphism in 44 seedlings of lodgepole pine (Pinus contorta) and 39 seedlings of interior spruce (Picea glauca × engelmannii) to elucidate the evolutionary forces that shape their genomes and their plastic responses to abiotic stress. We found that rapidly diverging genes tend to have greater expression divergence, lower expression levels, reduced levels of synonymous site diversity, and longer proteins than slowly diverging genes. Similar patterns were identified for the untranslated regions, but with some exceptions. We found evidence that genes with low expression levels had a larger fraction of nearly neutral sites, suggesting a primary role for negative selection in determining the association between evolutionary rate and expression level. There was limited evidence for differences in the rate of positive selection among genes with divergent versus conserved expression profiles and some evidence supporting relaxed selection in genes diverging in expression between the species. Finally, we identified a small number of genes that showed evidence of site-specific positive selection using divergence data alone. However, estimates of the proportion of sites fixed by positive selection (α) were in the range of other plant species with large effective population sizes suggesting relatively high rates of adaptive divergence among conifers. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Micro-cone targets for producing high energy and low divergence particle beams
Le Galloudec, Nathalie
2013-09-10
The present invention relates to micro-cone targets for producing high energy and low divergence particle beams. In one embodiment, the micro-cone target includes a substantially cone-shaped body including an outer surface, an inner surface, a generally flat and round, open-ended base, and a tip defining an apex. The cone-shaped body tapers along its length from the generally flat and round, open-ended base to the tip defining the apex. In addition, the outer surface and the inner surface connect the base to the tip, and the tip curves inwardly to define an outer surface that is concave, which is bounded by a rim formed at a juncture where the outer surface meets the tip.
Synthesizing and databasing fossil calibrations: divergence dating and beyond
Ksepka, Daniel T.; Benton, Michael J.; Carrano, Matthew T.; Gandolfo, Maria A.; Head, Jason J.; Hermsen, Elizabeth J.; Joyce, Walter G.; Lamm, Kristin S.; Patané, José S. L.; Phillips, Matthew J.; Polly, P. David; Van Tuinen, Marcel; Ware, Jessica L.; Warnock, Rachel C. M.; Parham, James F.
2011-01-01
Divergence dating studies, which combine temporal data from the fossil record with branch length data from molecular phylogenetic trees, represent a rapidly expanding approach to understanding the history of life. National Evolutionary Synthesis Center hosted the first Fossil Calibrations Working Group (3–6 March, 2011, Durham, NC, USA), bringing together palaeontologists, molecular evolutionists and bioinformatics experts to present perspectives from disciplines that generate, model and use fossil calibration data. Presentations and discussions focused on channels for interdisciplinary collaboration, best practices for justifying, reporting and using fossil calibrations and roadblocks to synthesis of palaeontological and molecular data. Bioinformatics solutions were proposed, with the primary objective being a new database for vetted fossil calibrations with linkages to existing resources, targeted for a 2012 launch. PMID:21525049
Time-resolved measurements of the angular distribution of lasing at 23.6 nm in Ne-like germanium
NASA Astrophysics Data System (ADS)
Kodama, R.; Neely, D.; Dwivedi, L.; Key, M. H.; Krishnan, J.; Lewis, C. L. S.; O'Neill, D.; Norreys, P.; Pert, G. J.; Ramsden, S. A.; Tallents, G. J.; Uhomoibhi, J.; Zhang, J.
1992-06-01
The time dependence of the angular distribution of soft X-ray lasing at 23.6 nm in Ne-like germanium has been measured using a streak camera. Slabs of germanium have been irradiated over ≈ 22 mm length × 100 μm width with three line focussed beams of the SERC Rutherford Appleton Laboratory VULCAN laser at 1.06 μm wavelength. The laser beam sweeps in time towards the target surface plane and the divergence broadens with time. The change of the peak intensity pointing and the broadening of the profile with time are consistent with expectations of the time dependence of refraction and divergence due to density gradients in the plasma.
Guillet-Claude, Carine; Isabel, Nathalie; Pelgas, Betty; Bousquet, Jean
2004-12-01
Class I knox genes code for transcription factors that play an essential role in plant growth and development as central regulators of meristem cell identity. Based on the analysis of new cDNA sequences from various tissues and genomic DNA sequences, we identified a highly diversified group of class I knox genes in conifers. Phylogenetic analyses of complete amino acid sequences from various seed plants indicated that all conifer sequences formed a monophyletic group. Within conifers, four subgroups here named genes KN1 to KN4 were well delineated, each regrouping pine and spruce sequences. KN4 was sister group to KN3, which was sister group to KN1 and KN2. Genetic mapping on the genomes of two divergent Picea species indicated that KN1 and KN2 are located close to each other on the same linkage group, whereas KN3 and KN4 mapped on different linkage groups, correlating the more ancient divergence of these two genes. The proportion of synonymous and nonsynonymous substitutions suggested intense purifying selection for the four genes. However, rates of substitution per year indicated an evolution in two steps: faster rates were noted after gene duplications, followed subsequently by lower rates. Positive directional selection was detected for most of the internal branches harboring an accelerated rate of evolution. In addition, many sites with highly significant amino acid rate shift were identified between these branches. However, the tightly linked KN1 and KN2 did not diverge as much from each other. The implications of the correlation between phylogenetic, structural, and functional information are discussed in relation to the diversification of the knox-I gene family in conifers.
X-Ray Microdiffraction as a Probe to Reveal Flux Divergences in Interconnects
NASA Astrophysics Data System (ADS)
Spolenak, R.; Tamura, N.; Patel, J. R.
2006-02-01
Most reliability issues in interconnect systems occur at a local scale and many of them include the local build-up of stresses. Typical failure mechanisms are electromigration and stress voiding in interconnect lines and fatigue in surface acoustic wave devices. Thus a local probe is required for the investigation of these phenomena. In this paper the application of the Laue microdiffraction technique to investigate flux divergences in interconnect systems will be described. The deviatoric strain tensor of single grains can be correlated with the local microstructure, orientation and defect density. Especially the latter led to recent results about the correlation of stress build-up and orientation in Cu lines and electromigration-induced grain rotation in Cu and Al lines.
Evolution and coexistence of pollination ecotypes in an African Gladiolus (Iridaceae).
Anderson, Bruce; Alexandersson, Ronny; Johnson, Steven D
2010-04-01
Pollinator-mediated selection has been suggested as a key driver of speciation in plants. We examined the potential role of hawkmoth pollinators in driving allopatric divergence and maintaining sympatric coexistence of morphotypes in the African iris Gladiolus longicollis. Floral tube length in this species varies from 35 mm to 130 mm across its geographic range and reflects the prevailing tongue lengths of local hawkmoth assemblages. The distribution of floral tube lengths is bimodal with two relatively discrete categories--long (about 90 mm) or short (about 50 mm)--that match the bimodal distribution of hawkmoth tongue lengths in eastern South Africa. At a contact site between these two floral morphs, we found few individuals of intermediate length, suggesting limited gene flow between morphs despite their interfertility. A difference in flowering phenology appears to be the main isolating barrier between morphs at this site. Long- and short-tubed morphs differed markedly in the chemical composition of their floral fragrance, a trait that could be used as a cue for morph-specific foraging by hawkmoths. Positive directional selection on tube length was found to occur in both morphs.
Infinities in Quantum Field Theory and in Classical Computing: Renormalization Program
NASA Astrophysics Data System (ADS)
Manin, Yuri I.
Introduction. The main observable quantities in Quantum Field Theory, correlation functions, are expressed by the celebrated Feynman path integrals. A mathematical definition of them involving a measure and actual integration is still lacking. Instead, it is replaced by a series of ad hoc but highly efficient and suggestive heuristic formulas such as perturbation formalism. The latter interprets such an integral as a formal series of finite-dimensional but divergent integrals, indexed by Feynman graphs, the list of which is determined by the Lagrangian of the theory. Renormalization is a prescription that allows one to systematically "subtract infinities" from these divergent terms producing an asymptotic series for quantum correlation functions. On the other hand, graphs treated as "flowcharts", also form a combinatorial skeleton of the abstract computation theory. Partial recursive functions that according to Church's thesis exhaust the universe of (semi)computable maps are generally not everywhere defined due to potentially infinite searches and loops. In this paper I argue that such infinities can be addressed in the same way as Feynman divergences. More details can be found in [9,10].
Biogeography of thermophilic phototrophic bacteria belonging to Roseiflexus genus.
Gaisin, Vasil A; Grouzdev, Denis S; Namsaraev, Zorigto B; Sukhacheva, Marina V; Gorlenko, Vladimir M; Kuznetsov, Boris B
2016-03-01
Isolated environments such as hot springs are particularly interesting for studying the microbial biogeography. These environments create an 'island effect' leading to genetic divergence. We studied the phylogeographic pattern of thermophilic anoxygenic phototrophic bacteria, belonging to the Roseiflexus genus. The main characteristic of the observed pattern was geographic and geochronologic fidelity to the hot springs within Circum-Pacific and Alpine-Himalayan-Indonesian orogenic belts. Mantel test revealed a correlation between genetic divergence and geographic distance among the phylotypes. Cluster analysis revealed a regional differentiation of the global phylogenetic pattern. The phylogeographic pattern is in correlation with geochronologic events during the break up of Pangaea that led to the modern configuration of continents. To our knowledge this is the first geochronological scenario of intercontinental prokaryotic taxon divergence. The existence of the modern phylogeographic pattern contradicts with the existence of the ancient evolutionary history of the Roseiflexus group proposed on the basis of its deep-branching phylogenetic position. These facts indicate that evolutionary rates in Roseiflexus varied over a wide range. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Taylor, John G.
1990-01-01
An investigation was conducted in the Static Test Facility of the NASA Langley 16-Foot Transonic Tunnel to determine the internal performance of two-dimensional convergent-divergent nozzles designed to have simultaneous pitch and yaw thrust vectoring capability. This concept utilized divergent flap rotation of thrust vectoring in the pitch plane and deflection of flat yaw flaps hinged at the end of the sidewalls for yaw thrust vectoring. The hinge location of the yaw flaps was varied at four positions from the nozzle exit plane to the throat plane. The yaw flaps were designed to contain the flow laterally independent of power setting. In order to eliminate any physical interference between the yaw flap deflected into the exhaust stream and the divergent flaps, the downstream corners of both upper and lower divergent flaps were cut off to allow for up to 30 deg of yaw flap deflection. The impact of varying the nozzle pitch vector angle, throat area, yaw flap hinge location, yaw flap length, and yaw flap deflection angle on nozzle internal performance characteristics, was studied. High-pressure air was used to simulate jet exhaust at nozzle pressure ratios up to 7.0. Static results indicate that configurations with the yaw flap hinge located upstream of the exit plane provide relatively high levels of thrust vectoring efficiency without causing large losses in resultant thrust ratio. Therefore, these configurations represent a viable concept for providing simultaneous pitch and yaw thrust vectoring.
Vortical structures and development of laminar flow over convergent-divergent riblets
NASA Astrophysics Data System (ADS)
Xu, Fang; Zhong, Shan; Zhang, Shanying
2018-05-01
In this work, the development of a laminar boundary layer over a rectangular convergent-divergent riblet section with a finite streamwise length is studied experimentally using dye visualization and particle image velocimetry in a water flume. The flow topology over this highly directional spanwise roughness is established from this study. It is shown that convergent-divergent riblets generate a spanwise flow above the riblets from the diverging line toward the adjacent converging line. This consequently leads to the formation of a weak recirculating secondary flow in cross-stream planes across the boundary layer that creates a downwash motion over the diverging line and an upwash motion over the converging line. It is found that the fluid inside the riblet valley follows a helicoidal path and it also interacts with the crossflow boundary layer hence playing a key role in determining the structure of the secondary flow across the boundary layer. The impact of riblet wavelength on vortical structures is also revealed for the first time. A larger riblet wavelength is seen to produce a stronger upwash/downwash and hence a more intense secondary flow as well as a stronger deceleration effect on the crossflow. Furthermore, the streamwise development of the flow over the riblet section can be divided into a developing stage followed by a developed stage. In the developing stage, the magnitude of induced streamwise velocity and vorticity over the converging line continues to increase, whereas in the developed stage the values of these parameters remain essentially unchanged.
Elastogranular Mechanics: Buckling, Jamming, and Structure Formation.
Schunter, David J; Brandenbourger, Martin; Perriseau, Sophia; Holmes, Douglas P
2018-02-16
Confinement of a slender body into a granular array induces stress localization in the geometrically nonlinear structure, and jamming, reordering, and vertical dislodging of the surrounding granular medium. By varying the initial packing density of grains and the length of a confined elastica, we identify the critical length necessary to induce jamming, and demonstrate how folds couple with the granular medium to localize along grain boundaries. Above the jamming threshold, the characteristic length of elastica deformation is shown to diverge in a manner that is coupled with the motion and rearrangement of the grains, suggesting the ordering of the granular array governs the deformation of the slender structure. However, overconfinement of the elastica will vertically dislodge grains, a form of stress relaxation in the granular medium that illustrates the intricate coupling in elastogranular interactions.
Elastogranular Mechanics: Buckling, Jamming, and Structure Formation
NASA Astrophysics Data System (ADS)
Schunter, David J.; Brandenbourger, Martin; Perriseau, Sophia; Holmes, Douglas P.
2018-02-01
Confinement of a slender body into a granular array induces stress localization in the geometrically nonlinear structure, and jamming, reordering, and vertical dislodging of the surrounding granular medium. By varying the initial packing density of grains and the length of a confined elastica, we identify the critical length necessary to induce jamming, and demonstrate how folds couple with the granular medium to localize along grain boundaries. Above the jamming threshold, the characteristic length of elastica deformation is shown to diverge in a manner that is coupled with the motion and rearrangement of the grains, suggesting the ordering of the granular array governs the deformation of the slender structure. However, overconfinement of the elastica will vertically dislodge grains, a form of stress relaxation in the granular medium that illustrates the intricate coupling in elastogranular interactions.
Relationship between photoreceptor outer segment length and visual acuity in diabetic macular edema.
Forooghian, Farzin; Stetson, Paul F; Meyer, Scott A; Chew, Emily Y; Wong, Wai T; Cukras, Catherine; Meyerle, Catherine B; Ferris, Frederick L
2010-01-01
The purpose of this study was to quantify photoreceptor outer segment (PROS) length in 27 consecutive patients (30 eyes) with diabetic macular edema using spectral domain optical coherence tomography and to describe the correlation between PROS length and visual acuity. Three spectral domain-optical coherence tomography scans were performed on all eyes during each session using Cirrus HD-OCT. A prototype algorithm was developed for quantitative assessment of PROS length. Retinal thicknesses and PROS lengths were calculated for 3 parameters: macular grid (6 x 6 mm), central subfield (1 mm), and center foveal point (0.33 mm). Intrasession repeatability was assessed using coefficient of variation and intraclass correlation coefficient. The association between retinal thickness and PROS length with visual acuity was assessed using linear regression and Pearson correlation analyses. The main outcome measures include intrasession repeatability of macular parameters and correlation of these parameters with visual acuity. Mean retinal thickness and PROS length were 298 mum to 381 microm and 30 microm to 32 mum, respectively, for macular parameters assessed in this study. Coefficient of variation values were 0.75% to 4.13% for retinal thickness and 1.97% to 14.01% for PROS length. Intraclass correlation coefficient values were 0.96 to 0.99 and 0.73 to 0.98 for retinal thickness and PROS length, respectively. Slopes from linear regression analyses assessing the association of retinal thickness and visual acuity were not significantly different from 0 (P > 0.20), whereas the slopes of PROS length and visual acuity were significantly different from 0 (P < 0.0005). Correlation coefficients for macular thickness and visual acuity ranged from 0.13 to 0.22, whereas coefficients for PROS length and visual acuity ranged from -0.61 to -0.81. Photoreceptor outer segment length can be quantitatively assessed using Cirrus HD-OCT. Although the intrasession repeatability of PROS measurements was less than that of macular thickness measurements, the stronger correlation of PROS length with visual acuity suggests that the PROS measures may be more directly related to visual function. Photoreceptor outer segment length may be a useful physiologic outcome measure, both clinically and as a direct assessment of treatment effects.
Moore, Jonathan D; Kollar, Leslie M; McLetchie, D Nicholas
2016-08-01
Differences in male and female reproductive function can lead to selection for sex-specific gamete dispersal and capture traits. These traits have been explored from shoot to whole plant levels in wind-pollinated species. While shoot traits have been explored in water-fertilized species, little is known about how whole plant morphology affects gamete dispersal and capture. We used the dioecious, water-fertilized plant Bryum argenteum to test for differences in clump morphology and water-holding characteristics consistent with divergent selection. We hypothesized that sex-specific clump morphology, arising at maturity, produces relatively low male water-holding capacity for gamete dispersal and high female capacity for gamete capture. We measured isolated young shoot and clump water-holding capacity and clump morphological characteristics on greenhouse-grown plants. Young shoot capacity was used to predict clump capacity, which was compared with actual clump capacity. Young male shoots held more water per unit length, and male clumps had higher shoot density, which extrapolated to higher clump water-holding capacity. However, female clumps held more water and were taller with more robust shoots. Actual clump capacity correlated positively with clump height and shoot cross-sectional area. The sex difference in actual clump capacity and its unpredictability from younger shoots are consistent with our hypothesis that males should hold less water than females to facilitate sexual reproduction. These results provide conceptual connections to other plant groups and implications for connecting divergent selection to female-biased sex ratios in B. argenteum and other bryophytes. © 2016 Botanical Society of America.
Gilchrist, A S; Partridge, L
1999-01-01
Body size clines in Drosophila melanogaster have been documented in both Australia and South America, and may exist in Southern Africa. We crossed flies from the northern and southern ends of each of these clines to produce F(1), F(2), and first backcross generations. Our analysis of generation means for wing area and wing length produced estimates of the additive, dominance, epistatic, and maternal effects underlying divergence within each cline. For both females and males of all three clines, the generation means were adequately described by these parameters, indicating that linkage and higher order interactions did not contribute significantly to wing size divergence. Marked differences were apparent between the clines in the occurrence and magnitude of the significant genetic parameters. No cline was adequately described by a simple additive-dominance model, and significant epistatic and maternal effects occurred in most, but not all, of the clines. Generation variances were also analyzed. Only one cline was described sufficiently by a simple additive variance model, indicating significant epistatic, maternal, or linkage effects in the remaining two clines. The diversity in genetic architecture of the clines suggests that natural selection has produced similar phenotypic divergence by different combinations of gene action and interaction. PMID:10581284
Krutchinsky, Andrew N.; Padovan, Júlio C.; Cohen, Herbert; Chait, Brian T.
2015-01-01
We have discovered that an electrode containing a conical channel with a small angular divergence can transmit into the vacuum almost 100% of an electrospray ion current produced at atmospheric pressure. Our first implementation of such a conical duct, which we term “ConDuct”, uses a conductive plastic pipette tip containing a ≈1.6° divergent channel at its entrance. We observed that the beam formed by the ConDuct electrode has a very low divergence (< 1°) and persisted for long distances in vacuum. Intrigued by these properties, we incorporated this electrode into a novel atmosphere-to-vacuum ion transmission interface, and devised a technique for evaluating its performance relative to commercial reference interfaces that contain heated metal capillaries. We determined that our new interface transmits at least 400 times more ions than the commercial Thermo LCQ DECA XP atmosphere-to-vacuum interface and 2–3 times more than the commercial interface in the Thermo Velos Orbitrap and the Q Exactive mass spectrometers. We conclude that it might be possible to optimize the properties of the transmitted ions further by manufacturing ConDuct inlet electrodes from metal rather than conductive plastic and by determining the optimum angle of channel divergence and channel length. PMID:25588722
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ju, Guangxu; Highland, Matthew J.; Thompson, Carol
In anticipation of the increased use of coherent X-ray methods and the need to upgrade beamlines to match improved source quality, here the coherence properties of the X-rays delivered by beamline 12ID-D at the Advanced Photon Source have been characterized. The measured X-ray divergence, beam size, brightness and coherent flux at energies up to 26 keV are compared with the calculated values from the undulator source, and the effects of beamline optics such as a mirror, monochromator and compound refractive lenses are evaluated. Diffraction patterns from slits as a function of slit width are analyzed using wave propagation theory tomore » obtain the beam divergence and thus coherence length. Imaging of the source using a compound refractive lens was found to be the most accurate method for determining the vertical divergence. While the brightness and coherent flux obtained without a monochromator ('pink beam') agree well with those calculated for the source, those measured with the monochromator were a factor of three to six lower than the source, primarily because of vertical divergence introduced by the monochromator. As a result, the methods described herein should be widely applicable for measuring the X-ray coherence properties of synchrotron beamlines.« less
Ju, Guangxu; Highland, Matthew J.; Thompson, Carol; ...
2018-06-13
In anticipation of the increased use of coherent X-ray methods and the need to upgrade beamlines to match improved source quality, here the coherence properties of the X-rays delivered by beamline 12ID-D at the Advanced Photon Source have been characterized. The measured X-ray divergence, beam size, brightness and coherent flux at energies up to 26 keV are compared with the calculated values from the undulator source, and the effects of beamline optics such as a mirror, monochromator and compound refractive lenses are evaluated. Diffraction patterns from slits as a function of slit width are analyzed using wave propagation theory tomore » obtain the beam divergence and thus coherence length. Imaging of the source using a compound refractive lens was found to be the most accurate method for determining the vertical divergence. While the brightness and coherent flux obtained without a monochromator ('pink beam') agree well with those calculated for the source, those measured with the monochromator were a factor of three to six lower than the source, primarily because of vertical divergence introduced by the monochromator. As a result, the methods described herein should be widely applicable for measuring the X-ray coherence properties of synchrotron beamlines.« less
Brownlee, Annalis H; Sullivan, Patrick F; Csank, Adam Z; Sveinbjörnsson, Bjartmar; Ellison, Sarah B Z
2016-01-01
Increment cores from the boreal forest have long been used to reconstruct past climates. However, in recent years, numerous studies have revealed a deterioration of the correlation between temperature and tree growth that is commonly referred to as divergence. In the Brooks Range of northern Alaska, USA, studies of white spruce (Picea glauca) revealed that trees in the west generally showed positive growth trends, while trees in the central and eastern Brooks Range showed mixed and negative trends during late 20th century warming. The growing season climate of the eastern Brooks Range is thought to be drier than the west. On this basis, divergent tree growth in the eastern Brooks Range has been attributed to drought stress. To investigate the hypothesis that drought-induced stomatal closure can explain divergence in the Brooks Range, we synthesized all of the Brooks Range white spruce data available in the International Tree Ring Data Bank (ITRDB) and collected increment cores from our primary sites in each of four watersheds along a west-to-east gradient near the Arctic treeline. For cores from our sites, we measured ring widths and calculated carbon isotope discrimination (δ13C), intrinsic water-use efficiency (iWUE), and needle intercellular CO2 concentration (C(i)) from δ13C in tree-ring alpha-cellulose. We hypothesized that trees exhibiting divergence would show a corresponding decline in δ13C, a decline in C(i), and a strong increase in iWUE. Consistent with the ITRDB data, trees at our western and central sites generally showed an increase in the strength of the temperature-growth correlation during late 20th century warming, while trees at our eastern site showed strong divergence. Divergent tree growth was not, however, associated with declining δ13C. Meanwhile, estimates of C(i) showed a strong increase at all of our study sites, indicating that more substrate was available for photosynthesis in the early 21st than in the early 20th century. Our results, which are corroborated by measurements of xylem sap flux density, needle gas exchange, and measurements of growth and δ13C along moisture gradients within each watershed, suggest that drought-induced stomatal closure is probably not the cause of 20th century divergence in the Brooks Range.
Having a First versus a Second Child: Comparing Women's Maternity Leave Choices and Concerns
ERIC Educational Resources Information Center
Barnes, Medora W.
2013-01-01
There are good reasons to suspect that the transition parents go through when having their second child may be different from when having their first, yet these differences remain understudied. This study focuses on one specific area of possible divergence by looking at how first-time versus second-time mothers decide on maternity leave length. To…
An MDOE Investigation of Chevrons for Supersonic Jet Noise Reduction
NASA Technical Reports Server (NTRS)
Henderson, Brenda; Bridges, James
2010-01-01
The impact of chevron design on the noise radiated from heated, overexpanded, supersonic jets is presented. The experiments used faceted bi-conic convergent-divergent nozzles with design Mach numbers equal to 1.51 and 1.65. The purpose of the facets was to simulate divergent seals on a military style nozzle. The nozzle throat diameter was equal to 4.5 inches. Modern Design of Experiment (MDOE) techniques were used to investigate the impact of chevron penetration, length, and width on the resulting acoustic radiation. All chevron configurations used 12 chevrons to match the number of facets in the nozzle. Most chevron designs resulted in increased broadband shock noise relative to the baseline nozzle. In the peak jet noise direction, the optimum chevron design reduced peak sound pressure levels by 4 dB relative to the baseline nozzle. The penetration was the parameter having the greatest impact on radiated noise at all observation angles. While increasing chevron penetration decreased acoustic radiation in the peak jet noise direction, broadband shock noise was adversely impacted. Decreasing chevron length increased noise at most observation angles. The impact of chevron width on radiated noise depended on frequency and observation angle.
LIGHT - from laser ion acceleration to future applications
NASA Astrophysics Data System (ADS)
Roth, Markus; Light Collaboration
2013-10-01
Creation of high intensity multi-MeV ion bunches by high power lasers became a reliable tool during the last 15 years. The laser plasma source provides for TV/m accelerating field gradients and initially sub-ps bunch lengths. However, the large envelope divergence and the continuous exponential energy spectrum are substential drawbacks for many possible applications. To face this problem, the LIGHT collaboration was founded (Laser Ion Generation, Handling and Transport). The collaboration consists of several university groups and research centers, namely TU Darmstadt, JWGU Frankfurt, HI Jena, HZDR Dresden and GSI Darmstadt. The central goal is building a test beamline for merging laser ion acceleration with conventional accelerator infrastructure at the GSI facility. In the latest experiments, low divergent proton bunches with a central energy of up to 10 MeV and containing >109 particles could be provided at up to 2.2 m behind the plasma source, using a pulsed solenoid. In a next step, a radiofrequency cavity will be added to the beamline for phase rotation of these bunches, giving access to sub-ns bunch lengths and reaching highest intensities. An overview of the LIGHT objectives and the recent experimental results will be given. This work was supported by HIC4FAIR.
Sarkar, Jaya; Poruri, Kiranmai; Boniecki, Michal T.; McTavish, Katherine K.; Martinis, Susan A.
2012-01-01
The yeast mitochondrial leucyl-tRNA synthetase (ymLeuRS) performs dual essential roles in group I intron splicing and protein synthesis. A specific LeuRS domain called CP1 is responsible for clearing noncognate amino acids that are misactivated during aminoacylation. The ymLeuRS CP1 domain also plays a critical role in splicing. Herein, the ymLeuRS CP1 domain was isolated from the full-length enzyme and was active in RNA splicing in vitro. Unlike its Escherichia coli LeuRS CP1 domain counterpart, it failed to significantly hydrolyze misaminoacylated tRNALeu. In addition and in stark contrast to the yeast domain, the editing-active E. coli LeuRS CP1 domain failed to recapitulate the splicing activity of the full-length E. coli enzyme. Although LeuRS-dependent splicing activity is rooted in an ancient adaptation for its aminoacylation activity, these results suggest that the ymLeuRS has functionally diverged to confer a robust splicing activity. This adaptation could have come at some expense to the protein's housekeeping role in aminoacylation and editing. PMID:22383526
Enhanced laser radiation pressure acceleration of protons with a gold cone-capillary
NASA Astrophysics Data System (ADS)
Lv, Chong; Xie, Bai-Song; Wan, Feng; Hou, Ya-Juan; Jia, Mo-Ran; Sang, Hai-Bo; Hong, Xue-Ren; Liu, Shi-Bing
2017-03-01
A scheme with a gold cone-capillary is proposed to improve the protons acceleration, and involved problems are investigated by using the two-dimensional particle-in-cell simulations. It is demonstrated that the cone-capillary can efficiently guide and collimate the protons to a longer distance and result in a better beam quality with a dense density ≥ 10 n c , monoenergetic peak energy E k ˜ 1.51 GeV , spatial emittance ˜ 0.0088 mm mrad with divergence angle θ ˜ 1.0 ° and diameter ˜ 0.5 μ m . The enhancement is mainly attributed to the focusing effect by the transverse electric field generated by the cone as well as the capillary, which can prevent greatly the protons from expanding in the transverse direction. Comparable to without the capillary, the protons energy spectra have a stable monoenergetic peak and divergence angle nearby 1.0 ° in longer time. Besides, the efficiency of acceleration depending on the capillary length is explored, and the optimal capillary length is also achieved. Such a target may be beneficial to many applications such as ion fast ignition in inertial fusion, proton therapy and so on.
Beam Characterization at the Neutron Radiography Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarah Morgan; Jeffrey King
The quality of a neutron imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam’s effective length-to-diameter ratio, neutron flux profile, energy spectrum, image quality, and beam divergence, is vital for producing quality radiographic images. This project characterized the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam’s effective length-to-diameter ratio and image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured themore » beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. Improvement of the existing NRAD MCNP beamline model includes validation of the model’s energy spectrum and the development of enhanced image simulation methods. The image simulation methods predict the radiographic image of an object based on the foil reaction rate data obtained by placing a model of the object in front of the image plane in an MCNP beamline model.« less
Blob, Richard W; Kawano, Sandy M; Moody, Kristine N; Bridges, William C; Maie, Takashi; Ptacek, Margaret B; Julius, Matthew L; Schoenfuss, Heiko L
2010-12-01
Environmental pressures may vary over the geographic range of a species, exposing subpopulations to divergent functional demands. How does exposure to competing demands shape the morphology of species and influence the divergence of populations? We explored these questions by performing selection experiments on juveniles of the Hawaiian goby Sicyopterus stimpsoni, an amphidromous fish that exhibits morphological differences across portions of its geographic range where different environmental pressures predominate. Juvenile S. stimpsoni face two primary and potentially opposing selective pressures on body shape as they return from the ocean to freshwater streams on islands: (1) avoiding predators in the lower reaches of a stream; and (2) climbing waterfalls to reach the habitats occupied by adults. These pressures differ in importance across the Hawaiian Islands. On the youngest island, Hawai'i, waterfalls are close to shore, thereby minimizing exposure to predators and placing a premium on climbing performance. In contrast, on the oldest major island, Kaua'i, waterfalls have eroded further inland, lengthening the exposure of juveniles to predators before migrating juveniles begin climbing. Both juvenile and adult fish show differences in body shape between these islands that would be predicted to improve evasion of predators by fish from Kaua'i (e.g., taller bodies that improve thrust) and climbing performance for fish from Hawai'i (e.g., narrower bodies that reduce drag), matching the prevailing environmental demand on each island. To evaluate how competing selection pressures and functional tradeoffs contribute to the divergence in body shape observed in S. stimpsoni, we compared selection imposed on juvenile body shape by (1) predation by the native fish Eleotris sandwicensis versus (2) climbing an artificial waterfall (∼100 body lengths). Some variables showed opposing patterns of selection that matched predictions: for example, survivors of predation had lower fineness ratios than did control fish (i.e., greater body depth for a given length), whereas successful climbers had higher fineness ratios (reducing drag) than did fish that failed. However, most morphological variables showed significant selection in only one treatment rather than opposing selection across both. Thus, functional tradeoffs between evasion of predators and minimizing drag during climbing might influence divergence in body shape across subpopulations, but even when selection is an important contributing mechanism, directly opposite patterns of selection across environmental demands are not required to generate morphological divergence.
Two new species of shovel-jaw carp Onychostoma (Teleostei: Cyprinidae) from southern Vietnam.
Hoang, Huy Duc; Pham, Hung Manh; Tran, Ngan Trong
2015-05-22
Two new species of large shovel-jaw carps in the genus Onychostoma are described from the upper Krong No and middle Dong Nai drainages of the Langbiang Plateau in southern Vietnam. These new species are known from streams in montane mixed pine and evergreen forests between 140 and 1112 m. Their populations are isolated in the headwaters of the upper Sre Pok River of the Mekong basin and in the middle of the Dong Nai basin. Both species are differentiated from their congeners by a combination of the following characters: transverse mouth opening width greater than head width, 14-17 predorsal scales, caudal-peduncle length 3.9-4.2 times in SL, no barbels in adults and juveniles, a strong serrated last simple ray of the dorsal fin, and small eye diameter (20.3-21.5% HL). Onychostoma krongnoensis sp. nov. is differentiated from Onychostoma dongnaiensis sp. nov. by body depth (4.0 vs. 3.2 times in SL), predorsal scale number (14-17 vs. 14-15), dorsal-fin length (4.5 vs. 4.2 times in SL), caudal-peduncle length (3.9 vs. 4.2 times in SL), colour in life (dark vs. bright), and by mitochondrial DNA (0.2% sequence divergence). Molecular evidence indicates that both species are members of Onychostoma and are distinct from all congeners sampled (uncorrected sequence divergences at the 16S rRNA gene of >2.0% for all Onychostoma for which homologous 16S rRNA sequences are available).
Henry, Gerard; Karpman, Edward; Brant, William; Jones, LeRoy; Khera, Mohit; Kohler, Tobias; Christine, Brian; Rhee, Eugene; Kansas, Bryan; Bella, Anthony J.
2017-01-01
Background “Prospective Registry of Outcomes with Penile Prosthesis for Erectile Restoration” (PROPPER) is a large, multi-institutional, prospective clinical study to collect, analyze, and report real-world outcomes for men implanted with penile prosthetic devices. We prospectively correlated co-morbid conditions and demographic data with implanted penile prosthesis size to enable clinicians to better predict implanted penis size following penile implantation. We present many new data points for the first time in the literature and postulate that radical prostatectomy (RP) is negatively correlated with penile corporal length. Methods Patient demographics, medical history, baseline characteristics and surgical details were compiled prospectively. Pearson correlation coefficient was generated for the correlation between demographic, etiology of ED, duration of ED, co-morbid conditions, pre-operative penile length (flaccid and stretched) and length of implanted penile prosthesis. Multivariate analysis was performed to define predictors of implanted prosthesis length. Results From June 2011 to June 2017, 1,135 men underwent primary implantation of penile prosthesis at a total of 11 study sites. Malleable (Spectra), 2-piece Ambicor, and 3-piece AMS 700 CX/LGX were included in the analysis. The most common patient comorbidities were CV disease (26.1%), DM (11.1%), and PD (12.4%). Primary etiology of ED: RP (27.4%), DM (20.3%), CVD (18.0%), PD (10.3%), and Priapism (1.4%), others (22.6%). Mean duration of ED is 6.2¡À4.1 years. Implant length was weakly negatively correlated with White/Caucasian (r=−0.18; P<0.01), history of RP (r=−0.13; P<0.01), PD as comorbidity (r=−0.16; P<0.01), venous leak (r=−0.08; P<0.01), and presence of stress incontinence (r=−0.13; P<0.01). Analyses showed weak positive correlations with Black/AA (r=0.32; P<0.01), CV disease as primary ED etiology (r=0.08; P<0.01) and pre-operative stretched penile length (r=0.18; P<0.01). There is a moderate correlation with pre-operative flaccid penile length (r=0.30; P<0.01). Conclusions Implanted penile prosthesis length is negatively correlated with some ethnic groups, prostatectomy, and incontinence. Positive correlates include CV disease, preoperative stretched penile length, and flaccid penile length. PMID:29354506
Youth Baseball Pitching Stride Length: Normal Values and Correlation With Field Testing
Fry, Karl E.; Pipkin, Andrew; Wittman, Kelcie; Hetzel, Scott; Sherry, Marc
2016-01-01
Background: Pitching biomechanical analysis has been recommended as an important component of performance, injury prevention, and rehabilitation. Normal values for youth pitching stride length have not been established, leading to application of normative values found among professional pitchers to youth pitchers. Hypotheses: The average youth pitching stride length will be significantly less than that of college and professional pitchers. There will be a positive correlation between stride length, lower extremity power, balance, and pitching experience. Study Design: Prospective cohort study. Level of Evidence: Level 3. Methods: Ninety-two youth baseball pitchers (aged 9-14 years) met the inclusion/exclusion criteria and completed the study. Stride length was recorded using a Dartfish video system over 3 maximal effort pitches. Both intra- and interrater reliability was calculated for the assessment of stride length. Double-leg vertical jump, single-leg stance time, leg length, weight, age, and pitching experience were also recorded. Results: Mean (SD) stride length was 66.0% (7.1%) of height. Stride length was correlated (P < 0.01) with vertical jump (0.38), pitching experience (0.36), and single-leg balance (0.28), with excellent intra- and interrater reliability (0.985 or higher). No significant correlations between stride length and body weight, leg length, or age existed. Conclusions: There was a significant difference between youth pitching stride length and the current published norms for older and more elite throwers. There was a positive correlation between stride length and lower extremity power, pitching experience, and single-leg balance. Clinical Relevance: Two-dimensional analysis of stride length allows for the assessment of pitching biomechanics in a practical manner. These values can be used for return to pitching parameters after an injury and designing injury prevention and performance programs. PMID:27864504
Youth Baseball Pitching Stride Length: Normal Values and Correlation With Field Testing.
Fry, Karl E; Pipkin, Andrew; Wittman, Kelcie; Hetzel, Scott; Sherry, Marc
Pitching biomechanical analysis has been recommended as an important component of performance, injury prevention, and rehabilitation. Normal values for youth pitching stride length have not been established, leading to application of normative values found among professional pitchers to youth pitchers. The average youth pitching stride length will be significantly less than that of college and professional pitchers. There will be a positive correlation between stride length, lower extremity power, balance, and pitching experience. Prospective cohort study. Level 3. Ninety-two youth baseball pitchers (aged 9-14 years) met the inclusion/exclusion criteria and completed the study. Stride length was recorded using a Dartfish video system over 3 maximal effort pitches. Both intra- and interrater reliability was calculated for the assessment of stride length. Double-leg vertical jump, single-leg stance time, leg length, weight, age, and pitching experience were also recorded. Mean (SD) stride length was 66.0% (7.1%) of height. Stride length was correlated ( P < 0.01) with vertical jump (0.38), pitching experience (0.36), and single-leg balance (0.28), with excellent intra- and interrater reliability (0.985 or higher). No significant correlations between stride length and body weight, leg length, or age existed. There was a significant difference between youth pitching stride length and the current published norms for older and more elite throwers. There was a positive correlation between stride length and lower extremity power, pitching experience, and single-leg balance. Two-dimensional analysis of stride length allows for the assessment of pitching biomechanics in a practical manner. These values can be used for return to pitching parameters after an injury and designing injury prevention and performance programs.
SAW correlator spread spectrum receiver
Brocato, Robert W
2014-04-01
A surface acoustic wave (SAW) correlator spread-spectrum (SS) receiver is disclosed which utilizes a first demodulation stage with a chip length n and a second demodulation stage with a chip length m to decode a transmitted SS signal having a code length l=n.times.m which can be very long (e.g. up to 2000 chips or more). The first demodulation stage utilizes a pair of SAW correlators which demodulate the SS signal to generate an appropriate code sequence at an intermediate frequency which can then be fed into the second demodulation stage which can be formed from another SAW correlator, or by a digital correlator. A compound SAW correlator comprising two input transducers and a single output transducer is also disclosed which can be used to form the SAW correlator SS receiver, or for use in processing long code length signals.
Prediction of anthropometric measurements from tooth length--A Dravidian study.
Sunitha, J; Ananthalakshmi, R; Sathiya, Jeeva J; Nadeem, Jeddy; Dhanarathnam, Shanmugam
2015-12-01
Anthropometric measurement is essential for identification of both victims and suspects. Often, this data is not readily available in a crime scene situation. The availability of one data set should help in predicting the other. This study was hypothesised on the basis of a correlation and geometry between the tooth length and various body measurements. To correlate face, palm, foot and stature measurements with tooth length. To derive a regression formula to estimate the various measurements from tooth length. The present study was conducted on Dravidian dental students in the age group 18 - 25 with a sample size of 372. All of the dental and physical parameters were measured using standard anthropometric equipments and techniques. The data was analysed using SPSS software and the methods used for statistical analysis were linear regression analysis and Pearson correlation. The parameters (incisor height (IH), face height (FH), palm length (PL), foot length (FL) and stature (S) showed nil to mild correlation (R = 0.2 ≤ 0.4) except for palm length (PL) and foot length (FL). (R>0.6). It is concluded that odontometric data is not a reliable source for estimating the face height (FH), palm length (PL), foot length (FL) and stature (S).
Landscape genetic approaches to guide native plant restoration in the Mojave Desert
Shryock, Daniel F.; Havrilla, Caroline A.; DeFalco, Lesley; Esque, Todd C.; Custer, Nathan; Wood, Troy E.
2016-01-01
Restoring dryland ecosystems is a global challenge due to synergistic drivers of disturbance coupled with unpredictable environmental conditions. Dryland plant species have evolved complex life-history strategies to cope with fluctuating resources and climatic extremes. Although rarely quantified, local adaptation is likely widespread among these species and potentially influences restoration outcomes. The common practice of reintroducing propagules to restore dryland ecosystems, often across large spatial scales, compels evaluation of adaptive divergence within these species. Such evaluations are critical to understanding the consequences of large-scale manipulation of gene flow and to predicting success of restoration efforts. However, genetic information for species of interest can be difficult and expensive to obtain through traditional common garden experiments. Recent advances in landscape genetics offer marker-based approaches for identifying environmental drivers of adaptive genetic variability in non-model species, but tools are still needed to link these approaches with practical aspects of ecological restoration. Here, we combine spatially-explicit landscape genetics models with flexible visualization tools to demonstrate how cost-effective evaluations of adaptive genetic divergence can facilitate implementation of different seed sourcing strategies in ecological restoration. We apply these methods to Amplified Fragment Length Polymorphism (AFLP) markers genotyped in two Mojave Desert shrub species of high restoration importance: the long-lived, wind-pollinated gymnosperm Ephedra nevadensis, and the short-lived, insect-pollinated angiosperm Sphaeralcea ambigua. Mean annual temperature was identified as an important driver of adaptive genetic divergence for both species. Ephedra showed stronger adaptive divergence with respect to precipitation variability, while temperature variability and precipitation averages explained a larger fraction of adaptive divergence in Sphaeralcea. We describe multivariate statistical approaches for interpolating spatial patterns of adaptive divergence while accounting for potential bias due to neutral genetic structure. Through a spatial bootstrapping procedure, we also visualize patterns in the magnitude of model uncertainty. Finally, we introduce an interactive, distance-based mapping approach that explicitly links marker-based models of adaptive divergence with local or admixture seed sourcing strategies, promoting effective native plant restoration.
Sella size and jaw bases - Is there a correlation???
Neha; Mogra, Subraya; Shetty, Vorvady Surendra; Shetty, Siddarth
2016-01-01
Sella turcica is an important cephalometric structure and attempts have been made in the past to correlate its dimensions to the malocclusion. However, no study has so far compared the size of sella to the jaw bases that determine the type of malocclusion. The present study was undertaken to find out any such correlation if it exists. Lateral cephalograms of 110 adults consisting of 40 Class I, 40 Class II, and 30 Class III patients were assessed for the measurement of sella length, width, height, and area. The maxillary length, mandibular ramus height, and body length were also measured. The sella dimensions were compared among three malocclusion types by one-way ANOVA. Pearson correlation was calculated between the jaw size and sella dimensions. Furthermore, the ratio of jaw base lengths and sella area were calculated. Mean sella length, width and area were found to be greatest in Class III, followed by Class I and least in Class II though the results were not statistically significant. 3 out of 4 measured dimensions of sella, correlated significantly with mandibular ramus and body length each. However, only one dimension of sella showed significant correlation with maxilla. The mandibular ramus and body length show a nearly constant ratio to sella area (0.83-0.85, 0.64-0.65, respectively) in all the three malocclusions. Thus, mandible has a definite and better correlation to the size of sella turcica.
Floral trait variation and integration as a function of sexual deception in Gorteria diffusa
Ellis, Allan G.; Brockington, Samuel F.; de Jager, Marinus L.; Mellers, Gregory; Walker, Rachel H.; Glover, Beverley J.
2014-01-01
Phenotypic integration, the coordinated covariance of suites of morphological traits, is critical for proper functioning of organisms. Angiosperm flowers are complex structures comprising suites of traits that function together to achieve effective pollen transfer. Floral integration could reflect shared genetic and developmental control of these traits, or could arise through pollinator-imposed stabilizing correlational selection on traits. We sought to expose mechanisms underlying floral trait integration in the sexually deceptive daisy, Gorteria diffusa, by testing the hypothesis that stabilizing selection imposed by male pollinators on floral traits involved in mimicry has resulted in tighter integration. To do this, we quantified patterns of floral trait variance and covariance in morphologically divergent G. diffusa floral forms representing a continuum in the levels of sexual deception. We show that integration of traits functioning in visual attraction of male pollinators increases with pollinator deception, and is stronger than integration of non-mimicry trait modules. Consistent patterns of within-population trait variance and covariance across floral forms suggest that integration has not been built by stabilizing correlational selection on genetically independent traits. Instead pollinator specialization has selected for tightened integration within modules of linked traits. Despite potentially strong constraint on morphological evolution imposed by developmental genetic linkages between traits, we demonstrate substantial divergence in traits across G. diffusa floral forms and show that divergence has often occurred without altering within-population patterns of trait correlations. PMID:25002705
Evidence for Divergent Evolution of Growth Temperature Preference in Sympatric Saccharomyces Species
Gonçalves, Paula; Valério, Elisabete; Correia, Cláudia; de Almeida, João M. G. C. F.; Sampaio, José Paulo
2011-01-01
The genus Saccharomyces currently includes eight species in addition to the model yeast Saccharomyces cerevisiae, most of which can be consistently isolated from tree bark and soil. We recently found sympatric pairs of Saccharomyces species, composed of one cryotolerant and one thermotolerant species in oak bark samples of various geographic origins. In order to contribute to explain the occurrence in sympatry of Saccharomyces species, we screened Saccharomyces genomic data for protein divergence that might be correlated to distinct growth temperature preferences of the species, using the dN/dS ratio as a measure of protein evolution rates and pair-wise species comparisons. In addition to proteins previously implicated in growth at suboptimal temperatures, we found that glycolytic enzymes were among the proteins exhibiting higher than expected divergence when one cryotolerant and one thermotolerant species are compared. By measuring glycolytic fluxes and glycolytic enzymatic activities in different species and at different temperatures, we subsequently show that the unusual divergence of glycolytic genes may be related to divergent evolution of the glycolytic pathway aligning its performance to the growth temperature profiles of the different species. In general, our results support the view that growth temperature preference is a trait that may have undergone divergent selection in the course of ecological speciation in Saccharomyces. PMID:21674061
Exploring Individual Differences in Workload Assessment
2014-12-26
83 Question 3: Do the physiological measures: blinks, saccades, HR, HRV , correlate with the objective workload profile for all...Electrooculography (EOG) signals, and heart rate (HR) and heart rate variability ( HRV ) as determined from Electrocardiography (ECG...3) Do the physiological measures blinks, saccades, HR, and HRV , correlate with the objective workload profile for all divergent participants and
Dey, Priyankar; Dutta, Somit; Chowdhury, Anurag; Das, Abhaya Prasad; Chaudhuri, Tapas Kumar
2017-01-01
In the present study, we have phytochemically characterized 5 different abundant Aloe species, including Aloe vera (L.) Burm.f., using silylation followed by Gas Chromatography-Mass Spectrometry technique and compared the data using multivariate statistical analysis. The results demonstrated clear distinction of the overall phytochemical profile of A vera, highlighted by its divergent spatial arrangement in the component plot. Lowest correlation of the phytochemical profiles were found between A vera and A aristata Haw. (−0.626), whereas highest correlation resided between A aristata and A aspera Haw. (0.899). Among the individual phytochemicals, palmitic acid was identified in highest abundance cumulatively, and carboxylic acids were the most predominant phytochemical species in all the Aloe species. Compared to A vera, linear correlation analysis revealed highest and lowest correlation with A aspera (R 2 = 0.9162) and A aristata (R 2 = 0.6745), respectively. Therefore, A vera demonstrated distinct spatial allocation, reflecting its greater phytochemical variability. PMID:29228808
NASA Astrophysics Data System (ADS)
Prisiazhniuk, D.; Conway, G. D.; Krämer-Flecken, A.; Stroth, U.; the ASDEX Upgrade Team
2018-07-01
The poloidal correlation reflectometry diagnostic operated in ordinary mode with additional radial correlation channel is applied in this paper to investigate the correlation of the turbulent density fluctuations. The perpendicular and radial correlation lengths, l ⊥ and l r , the perpendicular velocity v⊥ and the dissipation (mutation) time τ d are measured simultaneously from the outer core to edge in the L-mode plasmas of ASDEX Upgrade. It is shown that in the outer core region (0.6 < ρ pol < 0.9) the measured correlation lengths scale with the drift wave length, l ⊥ ≈ 5ρ s and l r ≈ 10ρ s , while the dissipation time is inversely correlated with the velocity τ d ≈ 40/v ⊥(τ d is in μs and v ⊥ in km s–1). In the pedestal region (0.925 < ρ pol < 0.98), where the E × B shear flows are present, a loss of measured correlation is observed which can be explained by a combination of small propagation velocity and an additional reduction of τ d . In the E r well region (ρ pol ≈ 0.99), the measured perpendicular correlation length increases {l}\\perp ≈ 13{ρ }s and the radial correlation length decreases l r ≈ 4ρ s compared to the outer core values. The correlation measurements are interpreted in the frame of the linear regime of reflectometry (applied only to ρ pol < 0.9). Using the Born approximation we show that the finite wavenumber sensitivity of the reflectometer increases the measured l ⊥and l r , but does not affect the measured τ d . By the including diagnostic correction the real correlation lengths l ⊥ ≈ l r ≈ 3ρ s are estimated.
Desert bird associations with broad-scale boundary length: Applications in avian conservation
Gutzwiller, K.J.; Barrow, W.C.
2008-01-01
1. Current understanding regarding the effects of boundaries on bird communities has originated largely from studies of forest-non-forest boundaries in mesic systems. To assess whether broad-scale boundary length can affect bird community structure in deserts, and to identify patterns and predictors of species' associations useful in avian conservation, we studied relations between birds and boundary-length variables in Chihuahuan Desert landscapes. Operationally, a boundary was the border between two adjoining land covers, and broad-scale boundary length was the total length of such borders in a large area. 2. Within 2-km radius areas, we measured six boundary-length variables. We analysed bird-boundary relations for 26 species, tested for assemblage-level patterns in species' associations with boundary-length variables, and assessed whether body size, dispersal ability and cowbird-host status were correlates of these associations. 3. The abundances or occurrences of a significant majority of species were associated with boundary-length variables, and similar numbers of species were related positively and negatively to boundary-length variables. 4. Disproportionately small numbers of species were correlated with total boundary length, land-cover boundary length and shrubland-grassland boundary length (variables responsible for large proportions of boundary length). Disproportionately large numbers of species were correlated with roadside boundary length and riparian vegetation-grassland boundary length (variables responsible for small proportions of boundary length). Roadside boundary length was associated (positively and negatively) with the most species. 5. Species' associations with boundary-length variables were not correlated with body size, dispersal ability or cowbird-host status. 6. Synthesis and applications. For the species we studied, conservationists can use the regressions we report as working models to anticipate influences of boundary-length changes on bird abundance and occurrence, and to assess avifaunal composition for areas under consideration for protection. Boundary-length variables associated with a disproportionate or large number of species can be used as foci for landscape management. Assessing the underlying causes of bird-boundary relations may improve the prediction accuracy of associated models. We therefore advocate local- and broad-scale manipulative experiments involving the boundary types with which species were correlated, as indicated by the regressions. ?? 2008 The Authors.
2010-01-01
Background Multiple sequence alignments are used to study gene or protein function, phylogenetic relations, genome evolution hypotheses and even gene polymorphisms. Virtually without exception, all available tools focus on conserved segments or residues. Small divergent regions, however, are biologically important for specific quantitative polymerase chain reaction, genotyping, molecular markers and preparation of specific antibodies, and yet have received little attention. As a consequence, they must be selected empirically by the researcher. AlignMiner has been developed to fill this gap in bioinformatic analyses. Results AlignMiner is a Web-based application for detection of conserved and divergent regions in alignments of conserved sequences, focusing particularly on divergence. It accepts alignments (protein or nucleic acid) obtained using any of a variety of algorithms, which does not appear to have a significant impact on the final results. AlignMiner uses different scoring methods for assessing conserved/divergent regions, Entropy being the method that provides the highest number of regions with the greatest length, and Weighted being the most restrictive. Conserved/divergent regions can be generated either with respect to the consensus sequence or to one master sequence. The resulting data are presented in a graphical interface developed in AJAX, which provides remarkable user interaction capabilities. Users do not need to wait until execution is complete and can.even inspect their results on a different computer. Data can be downloaded onto a user disk, in standard formats. In silico and experimental proof-of-concept cases have shown that AlignMiner can be successfully used to designing specific polymerase chain reaction primers as well as potential epitopes for antibodies. Primer design is assisted by a module that deploys several oligonucleotide parameters for designing primers "on the fly". Conclusions AlignMiner can be used to reliably detect divergent regions via several scoring methods that provide different levels of selectivity. Its predictions have been verified by experimental means. Hence, it is expected that its usage will save researchers' time and ensure an objective selection of the best-possible divergent region when closely related sequences are analysed. AlignMiner is freely available at http://www.scbi.uma.es/alignminer. PMID:20525162
Turner, Alan H; Pritchard, Adam C; Matzke, Nicholas J
2017-01-01
Estimating divergence times on phylogenies is critical in paleontological and neontological studies. Chronostratigraphically-constrained fossils are the only direct evidence of absolute timing of species divergence. Strict temporal calibration of fossil-only phylogenies provides minimum divergence estimates, and various methods have been proposed to estimate divergences beyond these minimum values. We explore the utility of simultaneous estimation of tree topology and divergence times using BEAST tip-dating on datasets consisting only of fossils by using relaxed morphological clocks and birth-death tree priors that include serial sampling (BDSS) at a constant rate through time. We compare BEAST results to those from the traditional maximum parsimony (MP) and undated Bayesian inference (BI) methods. Three overlapping datasets were used that span 250 million years of archosauromorph evolution leading to crocodylians. The first dataset focuses on early Sauria (31 taxa, 240 chars.), the second on early Archosauria (76 taxa, 400 chars.) and the third on Crocodyliformes (101 taxa, 340 chars.). For each dataset three time-calibrated trees (timetrees) were calculated: a minimum-age timetree with node ages based on earliest occurrences in the fossil record; a 'smoothed' timetree using a range of time added to the root that is then averaged over zero-length internodes; and a tip-dated timetree. Comparisons within datasets show that the smoothed and tip-dated timetrees provide similar estimates. Only near the root node do BEAST estimates fall outside the smoothed timetree range. The BEAST model is not able to overcome limited sampling to correctly estimate divergences considerably older than sampled fossil occurrence dates. Conversely, the smoothed timetrees consistently provide node-ages far older than the strict dates or BEAST estimates for morphologically conservative sister-taxa when they sit on long ghost lineages. In this latter case, the relaxed-clock model appears to be correctly moderating the node-age estimate based on the limited morphological divergence. Topologies are generally similar across analyses, but BEAST trees for crocodyliforms differ when clades are deeply nested but contain very old taxa. It appears that the constant-rate sampling assumption of the BDSS tree prior influences topology inference by disfavoring long, unsampled branches.
Turner, Alan H.; Pritchard, Adam C.; Matzke, Nicholas J.
2017-01-01
Estimating divergence times on phylogenies is critical in paleontological and neontological studies. Chronostratigraphically-constrained fossils are the only direct evidence of absolute timing of species divergence. Strict temporal calibration of fossil-only phylogenies provides minimum divergence estimates, and various methods have been proposed to estimate divergences beyond these minimum values. We explore the utility of simultaneous estimation of tree topology and divergence times using BEAST tip-dating on datasets consisting only of fossils by using relaxed morphological clocks and birth-death tree priors that include serial sampling (BDSS) at a constant rate through time. We compare BEAST results to those from the traditional maximum parsimony (MP) and undated Bayesian inference (BI) methods. Three overlapping datasets were used that span 250 million years of archosauromorph evolution leading to crocodylians. The first dataset focuses on early Sauria (31 taxa, 240 chars.), the second on early Archosauria (76 taxa, 400 chars.) and the third on Crocodyliformes (101 taxa, 340 chars.). For each dataset three time-calibrated trees (timetrees) were calculated: a minimum-age timetree with node ages based on earliest occurrences in the fossil record; a ‘smoothed’ timetree using a range of time added to the root that is then averaged over zero-length internodes; and a tip-dated timetree. Comparisons within datasets show that the smoothed and tip-dated timetrees provide similar estimates. Only near the root node do BEAST estimates fall outside the smoothed timetree range. The BEAST model is not able to overcome limited sampling to correctly estimate divergences considerably older than sampled fossil occurrence dates. Conversely, the smoothed timetrees consistently provide node-ages far older than the strict dates or BEAST estimates for morphologically conservative sister-taxa when they sit on long ghost lineages. In this latter case, the relaxed-clock model appears to be correctly moderating the node-age estimate based on the limited morphological divergence. Topologies are generally similar across analyses, but BEAST trees for crocodyliforms differ when clades are deeply nested but contain very old taxa. It appears that the constant-rate sampling assumption of the BDSS tree prior influences topology inference by disfavoring long, unsampled branches. PMID:28187191
Wang, Xiao-Wei; Zhao, Qiong-Yi; Luan, Jun-Bo; Wang, Yu-Jun; Yan, Gen-Hong; Liu, Shu-Sheng
2012-10-04
Genomic divergence between invasive and native species may provide insight into the molecular basis underlying specific characteristics that drive the invasion and displacement of closely related species. In this study, we sequenced the transcriptome of an indigenous species, Asia II 3, of the Bemisia tabaci complex and compared its genetic divergence with the transcriptomes of two invasive whiteflies species, Middle East Asia Minor 1 (MEAM1) and Mediterranean (MED), respectively. More than 16 million reads of 74 base pairs in length were obtained for the Asia II 3 species using the Illumina sequencing platform. These reads were assembled into 52,535 distinct sequences (mean size: 466 bp) and 16,596 sequences were annotated with an E-value above 10-5. Protein family comparisons revealed obvious diversification among the transcriptomes of these species suggesting species-specific adaptations during whitefly evolution. On the contrary, substantial conservation of the whitefly transcriptomes was also evident, despite their differences. The overall divergence of coding sequences between the orthologous gene pairs of Asia II 3 and MEAM1 is 1.73%, which is comparable to the average divergence of Asia II 3 and MED transcriptomes (1.84%) and much higher than that of MEAM1 and MED (0.83%). This is consistent with the previous phylogenetic analyses and crossing experiments suggesting these are distinct species. We also identified hundreds of highly diverged genes and compiled sequence identify data into gene functional groups and found the most divergent gene classes are Cytochrome P450, Glutathione metabolism and Oxidative phosphorylation. These results strongly suggest that the divergence of genes related to metabolism might be the driving force of the MEAM1 and Asia II 3 differentiation. We also analyzed single nucleotide polymorphisms within the orthologous gene pairs of indigenous and invasive whiteflies which are helpful for the investigation of association between allelic and phenotypes. Our data present the most comprehensive sequences for the indigenous whitefly species Asia II 3. The extensive comparisons of Asia II 3, MEAM1 and MED transcriptomes will serve as an invaluable resource for revealing the genetic basis of whitefly invasion and the molecular mechanisms underlying their biological differences.
2012-01-01
Background Genomic divergence between invasive and native species may provide insight into the molecular basis underlying specific characteristics that drive the invasion and displacement of closely related species. In this study, we sequenced the transcriptome of an indigenous species, Asia II 3, of the Bemisia tabaci complex and compared its genetic divergence with the transcriptomes of two invasive whiteflies species, Middle East Asia Minor 1 (MEAM1) and Mediterranean (MED), respectively. Results More than 16 million reads of 74 base pairs in length were obtained for the Asia II 3 species using the Illumina sequencing platform. These reads were assembled into 52,535 distinct sequences (mean size: 466 bp) and 16,596 sequences were annotated with an E-value above 10-5. Protein family comparisons revealed obvious diversification among the transcriptomes of these species suggesting species-specific adaptations during whitefly evolution. On the contrary, substantial conservation of the whitefly transcriptomes was also evident, despite their differences. The overall divergence of coding sequences between the orthologous gene pairs of Asia II 3 and MEAM1 is 1.73%, which is comparable to the average divergence of Asia II 3 and MED transcriptomes (1.84%) and much higher than that of MEAM1 and MED (0.83%). This is consistent with the previous phylogenetic analyses and crossing experiments suggesting these are distinct species. We also identified hundreds of highly diverged genes and compiled sequence identify data into gene functional groups and found the most divergent gene classes are Cytochrome P450, Glutathione metabolism and Oxidative phosphorylation. These results strongly suggest that the divergence of genes related to metabolism might be the driving force of the MEAM1 and Asia II 3 differentiation. We also analyzed single nucleotide polymorphisms within the orthologous gene pairs of indigenous and invasive whiteflies which are helpful for the investigation of association between allelic and phenotypes. Conclusions Our data present the most comprehensive sequences for the indigenous whitefly species Asia II 3. The extensive comparisons of Asia II 3, MEAM1 and MED transcriptomes will serve as an invaluable resource for revealing the genetic basis of whitefly invasion and the molecular mechanisms underlying their biological differences. PMID:23036081
Gaitán-Espitia, Juan Diego; Nespolo, Roberto F.; Opazo, Juan C.
2013-01-01
The complete sequences of three mitochondrial genomes from the land snail Cornu aspersum were determined. The mitogenome has a length of 14050 bp, and it encodes 13 protein-coding genes, 22 transfer RNA genes and two ribosomal RNA genes. It also includes nine small intergene spacers, and a large AT-rich intergenic spacer. The intra-specific divergence analysis revealed that COX1 has the lower genetic differentiation, while the most divergent genes were NADH1, NADH3 and NADH4. With the exception of Euhadra herklotsi, the structural comparisons showed the same gene order within the family Helicidae, and nearly identical gene organization to that found in order Pulmonata. Phylogenetic reconstruction recovered Basommatophora as polyphyletic group, whereas Eupulmonata and Pulmonata as paraphyletic groups. Bayesian and Maximum Likelihood analyses showed that C. aspersum is a close relative of Cepaea nemoralis, and with the other Helicidae species form a sister group of Albinaria caerulea, supporting the monophyly of the Stylommatophora clade. PMID:23826260
The role of habitat shift in the evolution of lizard morphology: evidence from tropical Tropidurus
Vitt, Laurie J.; Caldwell, Janalee P.; Zani, Peter A.; Titus, Tom A.
1997-01-01
We compared morphology of two geographically close populations of the tropical lizard Tropidurus hispidus to test the hypothesis that habitat structure influences the evolution of morphology and ecology at the population level. T. hispidus isolated on a rock outcrop surrounded by tropical forest use rock crevices for refuge and appear dorsoventrally compressed compared with those in open savanna. A principal components analysis revealed that the populations were differentially distributed along an axis representing primarily three components of shape: body width, body height, and hind-leg length. Morphological divergence was supported by a principal components analysis of size-free morphological variables. Mitochondrial DNA sequences of ATPase 6 indicate that these populations are closely related relative to other T. hispidus, the rock outcrop morphology and ecology are derived within T. hispidus, and morphological and ecological divergence has occurred more rapidly than genetic divergence. This suggests that natural selection can rapidly adjust morphology and ecology in response to a recent history of exposure to habitats differing in structure, a result heretofore implied from comparative studies among lizard species. PMID:9108063
The role of habitat shift in the evolution of lizard morphology: evidence from tropical Tropidurus.
Vitt, L J; Caldwell, J P; Zani, P A; Titus, T A
1997-04-15
We compared morphology of two geographically close populations of the tropical lizard Tropidurus hispidus to test the hypothesis that habitat structure influences the evolution of morphology and ecology at the population level. T. hispidus isolated on a rock outcrop surrounded by tropical forest use rock crevices for refuge and appear dorsoventrally compressed compared with those in open savanna. A principal components analysis revealed that the populations were differentially distributed along an axis representing primarily three components of shape: body width, body height, and hind-leg length. Morphological divergence was supported by a principal components analysis of size-free morphological variables. Mitochondrial DNA sequences of ATPase 6 indicate that these populations are closely related relative to other T. hispidus, the rock outcrop morphology and ecology are derived within T. hispidus, and morphological and ecological divergence has occurred more rapidly than genetic divergence. This suggests that natural selection can rapidly adjust morphology and ecology in response to a recent history of exposure to habitats differing in structure, a result heretofore implied from comparative studies among lizard species.
Craniofacial divergence and ongoing adaptation via the hedgehog pathway.
Roberts, Reade B; Hu, Yinan; Albertson, R Craig; Kocher, Thomas D
2011-08-09
Adaptive variation in craniofacial structure contributes to resource specialization and speciation, but the genetic loci that underlie craniofacial adaptation remain unknown. Here we show that alleles of the hedgehog pathway receptor Patched1 (Ptch1) gene are responsible for adaptive variation in the shape of the lower jaw both within and among genera of Lake Malawi cichlid fish. The evolutionarily derived allele of Ptch1 reduces the length of the retroarticular (RA) process of the lower jaw, a change predicted to increase speed of jaw rotation for improved suction-feeding. The alternate allele is associated with a longer RA and a more robustly mineralized jaw, typical of species that use a biting mode of feeding. Genera with the most divergent feeding morphologies are nearly fixed for different Ptch1 alleles, whereas species with intermediate morphologies still segregate variation at Ptch1. Thus, the same alleles that help to define macroevolutionary divergence among genera also contribute to microevolutionary fine-tuning of adaptive traits within some species. Variability of craniofacial morphology mediated by Ptch1 polymorphism has likely contributed to niche partitioning and ecological speciation of these fishes.
Large-scale parent–child comparison confirms a strong paternal influence on telomere length
Nordfjäll, Katarina; Svenson, Ulrika; Norrback, Karl-Fredrik; Adolfsson, Rolf; Roos, Göran
2010-01-01
Telomere length is documented to have a hereditary component, and both paternal and X-linked inheritance have been proposed. We investigated blood cell telomere length in 962 individuals with an age range between 0 and 102 years. Telomere length correlations were analyzed between parent–child pairs in different age groups and between grandparent–grandchild pairs. A highly significant correlation between the father's and the child's telomere length was observed (r=0.454, P<0.001), independent of the sex of the offspring (father–son: r=0.465, P<0.001; father–daughter: r=0.484, P<0.001). For mothers, the correlations were weaker (mother–child: r=0.148, P=0.098; mother–son: r=0.080, P=0.561; mother–daughter: r=0.297, P=0.013). A positive telomere length correlation was also observed for grandparent–grandchild pairs (r=0.272, P=0.013). Our findings indicate that fathers contribute significantly stronger to the telomere length of the offspring compared with mothers (P=0.012), but we cannot exclude a maternal influence on the daughter's telomeres. Interestingly, the father–child correlations diminished with increasing age (P=0.022), suggesting that nonheritable factors have an impact on telomere length dynamics during life. PMID:19826452
Electromagnetic scattering laws in Weyl systems.
Zhou, Ming; Ying, Lei; Lu, Ling; Shi, Lei; Zi, Jian; Yu, Zongfu
2017-11-09
Wavelength determines the length scale of the cross section when electromagnetic waves are scattered by an electrically small object. The cross section diverges for resonant scattering, and diminishes for non-resonant scattering, when wavelength approaches infinity. This scattering law explains the colour of the sky as well as the strength of a mobile phone signal. We show that such wavelength scaling comes from the conical dispersion of free space at zero frequency. Emerging Weyl systems, offering similar dispersion at non-zero frequencies, lead to new laws of electromagnetic scattering that allow cross sections to be decoupled from the wavelength limit. Diverging and diminishing cross sections can be realized at any target wavelength in a Weyl system, providing the ability to tailor the strength of wave-matter interactions for radiofrequency and optical applications.
Mean bond-length variations in crystals for ions bonded to oxygen
2017-01-01
Variations in mean bond length are examined in oxide and oxysalt crystals for 55 cation configurations bonded to O2−. Stepwise multiple regression analysis shows that mean bond length is correlated to bond-length distortion in 42 ion configurations at the 95% confidence level, with a mean coefficient of determination (〈R 2〉) of 0.35. Previously published correlations between mean bond length and mean coordination number of the bonded anions are found not to be of general applicability to inorganic oxide and oxysalt structures. For two of 11 ions tested for the 95% confidence level, mean bond lengths predicted using a fixed radius for O2− are significantly more accurate as those predicted using an O2− radius dependent on coordination number, and are statistically identical otherwise. As a result, the currently accepted ionic radii for O2− in different coordinations are not justified by experimental data. Previously reported correlation between mean bond length and the mean electronegativity of the cations bonded to the oxygen atoms of the coordination polyhedron is shown to be statistically insignificant; similar results are obtained with regard to ionization energy. It is shown that a priori bond lengths calculated for many ion configurations in a single structure-type leads to a high correlation between a priori and observed mean bond lengths, but a priori bond lengths calculated for a single ion configuration in many different structure-types leads to negligible correlation between a priori and observed mean bond lengths. This indicates that structure type has a major effect on mean bond length, the magnitude of which goes beyond that of the other variables analyzed here.
The complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza.
Qian, Jun; Song, Jingyuan; Gao, Huanhuan; Zhu, Yingjie; Xu, Jiang; Pang, Xiaohui; Yao, Hui; Sun, Chao; Li, Xian'en; Li, Chuyuan; Liu, Juyan; Xu, Haibin; Chen, Shilin
2013-01-01
Salvia miltiorrhiza is an important medicinal plant with great economic and medicinal value. The complete chloroplast (cp) genome sequence of Salvia miltiorrhiza, the first sequenced member of the Lamiaceae family, is reported here. The genome is 151,328 bp in length and exhibits a typical quadripartite structure of the large (LSC, 82,695 bp) and small (SSC, 17,555 bp) single-copy regions, separated by a pair of inverted repeats (IRs, 25,539 bp). It contains 114 unique genes, including 80 protein-coding genes, 30 tRNAs and four rRNAs. The genome structure, gene order, GC content and codon usage are similar to the typical angiosperm cp genomes. Four forward, three inverted and seven tandem repeats were detected in the Salvia miltiorrhiza cp genome. Simple sequence repeat (SSR) analysis among the 30 asterid cp genomes revealed that most SSRs are AT-rich, which contribute to the overall AT richness of these cp genomes. Additionally, fewer SSRs are distributed in the protein-coding sequences compared to the non-coding regions, indicating an uneven distribution of SSRs within the cp genomes. Entire cp genome comparison of Salvia miltiorrhiza and three other Lamiales cp genomes showed a high degree of sequence similarity and a relatively high divergence of intergenic spacers. Sequence divergence analysis discovered the ten most divergent and ten most conserved genes as well as their length variation, which will be helpful for phylogenetic studies in asterids. Our analysis also supports that both regional and functional constraints affect gene sequence evolution. Further, phylogenetic analysis demonstrated a sister relationship between Salvia miltiorrhiza and Sesamum indicum. The complete cp genome sequence of Salvia miltiorrhiza reported in this paper will facilitate population, phylogenetic and cp genetic engineering studies of this medicinal plant.
A Divergence Statistics Extension to VTK for Performance Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pebay, Philippe Pierre; Bennett, Janine Camille
This report follows the series of previous documents ([PT08, BPRT09b, PT09, BPT09, PT10, PB13], where we presented the parallel descriptive, correlative, multi-correlative, principal component analysis, contingency, k -means, order and auto-correlative statistics engines which we developed within the Visualization Tool Kit ( VTK ) as a scalable, parallel and versatile statistics package. We now report on a new engine which we developed for the calculation of divergence statistics, a concept which we hereafter explain and whose main goal is to quantify the discrepancy, in a stasticial manner akin to measuring a distance, between an observed empirical distribution and a theoretical,more » "ideal" one. The ease of use of the new diverence statistics engine is illustrated by the means of C++ code snippets. Although this new engine does not yet have a parallel implementation, it has already been applied to HPC performance analysis, of which we provide an example.« less
Griffiths phase and long-range correlations in a biologically motivated visual cortex model
NASA Astrophysics Data System (ADS)
Girardi-Schappo, M.; Bortolotto, G. S.; Gonsalves, J. J.; Pinto, L. T.; Tragtenberg, M. H. R.
2016-07-01
Activity in the brain propagates as waves of firing neurons, namely avalanches. These waves’ size and duration distributions have been experimentally shown to display a stable power-law profile, long-range correlations and 1/f b power spectrum in vivo and in vitro. We study an avalanching biologically motivated model of mammals visual cortex and find an extended critical-like region - a Griffiths phase - characterized by divergent susceptibility and zero order parameter. This phase lies close to the expected experimental value of the excitatory postsynaptic potential in the cortex suggesting that critical be-havior may be found in the visual system. Avalanches are not perfectly power-law distributed, but it is possible to collapse the distributions and define a cutoff avalanche size that diverges as the network size is increased inside the critical region. The avalanches present long-range correlations and 1/f b power spectrum, matching experiments. The phase transition is analytically determined by a mean-field approximation.
Zabelina, Darya L; O'Leary, Daniel; Pornpattananangkul, Narun; Nusslock, Robin; Beeman, Mark
2015-03-01
Creativity has previously been linked with atypical attention, but it is not clear what aspects of attention, or what types of creativity are associated. Here we investigated specific neural markers of a very early form of attention, namely sensory gating, indexed by the P50 ERP, and how it relates to two measures of creativity: divergent thinking and real-world creative achievement. Data from 84 participants revealed that divergent thinking (assessed with the Torrance Test of Creative Thinking) was associated with selective sensory gating, whereas real-world creative achievement was associated with "leaky" sensory gating, both in zero-order correlations and when controlling for academic test scores in a regression. Thus both creativity measures related to sensory gating, but in opposite directions. Additionally, divergent thinking and real-world creative achievement did not interact in predicting P50 sensory gating, suggesting that these two creativity measures orthogonally relate to P50 sensory gating. Finally, the ERP effect was specific to the P50 - neither divergent thinking nor creative achievement were related to later components, such as the N100 and P200. Overall results suggest that leaky sensory gating may help people integrate ideas that are outside of focus of attention, leading to creativity in the real world; whereas divergent thinking, measured by divergent thinking tests which emphasize numerous responses within a limited time, may require selective sensory processing more than previously thought. Copyright © 2015 Elsevier Ltd. All rights reserved.
Sadhukhan, Debasis; Roy, Sudipto Singha; Rakshit, Debraj; Prabhu, R; Sen De, Aditi; Sen, Ujjwal
2016-01-01
Classical correlation functions of ground states typically decay exponentially and polynomially, respectively, for gapped and gapless short-range quantum spin systems. In such systems, entanglement decays exponentially even at the quantum critical points. However, quantum discord, an information-theoretic quantum correlation measure, survives long lattice distances. We investigate the effects of quenched disorder on quantum correlation lengths of quenched averaged entanglement and quantum discord, in the anisotropic XY and XYZ spin glass and random field chains. We find that there is virtually neither reduction nor enhancement in entanglement length while quantum discord length increases significantly with the introduction of the quenched disorder.
NASA Technical Reports Server (NTRS)
Asbury, Scott C.
1993-01-01
An investigation was conducted in the static test facility of the Langley 16-Foot Transonic Tunnel to evaluate the internal performance of a nonaxisymmetric convergent divergent nozzle designed to have simultaneous pitch and yaw thrust vectoring capability. This concept utilized divergent flap deflection for thrust vectoring in the pitch plane and flow-turning deflectors installed within the divergent flaps for yaw thrust vectoring. Modifications consisting of reducing the sidewall length and deflecting the sidewall outboard were investigated as means to increase yaw-vectoring performance. This investigation studied the effects of multiaxis (pitch and yaw) thrust vectoring on nozzle internal performance characteristics. All tests were conducted with no external flow, and nozzle pressure ratio was varied from 2.0 to approximately 13.0. The results indicate that this nozzle concept can successfully generate multiaxis thrust vectoring. Deflection of the divergent flaps produced resultant pitch vector angles that, although dependent on nozzle pressure ratio, were nearly equal to the geometric pitch vector angle. Losses in resultant thrust due to pitch vectoring were small or negligible. The yaw deflectors produced resultant yaw vector angles up to 21 degrees that were controllable by varying yaw deflector rotation. However, yaw deflector rotation resulted in significant losses in thrust ratios and, in some cases, nozzle discharge coefficient. Either of the sidewall modifications generally reduced these losses and increased maximum resultant yaw vector angle. During multiaxis (simultaneous pitch and yaw) thrust vectoring, little or no cross coupling between the thrust vectoring processes was observed.
980 nm tapered lasers with photonic crystal structure for low vertical divergence
NASA Astrophysics Data System (ADS)
Ma, Xiaolong; Qu, Hongwei; Zhao, Pengchao; Liu, Yun; Zheng, Wanhua
2016-10-01
High power tapered lasers with nearly diffraction-limited beam quality have attracted much attention in numerous applications such as nonlinear frequency conversion, optical pumping of solid-state and fiber lasers, medical treatment and others. However, the large vertical divergence of conventional tapered lasers is a disadvantage, which makes beam shaping difficult and expensive in applications. Diode lasers with photonic crystal structure can achieve a large mode size and a narrow vertical divergence. In this paper, we present tapered lasers with photonic crystal structure emitting at 980 nm. The epitaxial layer is grown using metal organic chemical vapor deposition. The device has a total cavity length of 2 mm, which consists of a 400-um long ridge-waveguide section and a 1600-um long tapered section. The taper angle is 4°. An output power of 3.3 W is achieved with a peak conversion efficiency of 35% in pulsed mode. The threshold current is 240 mA and the slope efficiency is 0.78 W/A. In continuous wave mode, the output power is 2.87 W, which is limited by a suddenly failure resulting from catastrophic optical mirror damage. The far field divergences with full width at half maximum are 12.3° in the vertical direction and 2.9° in the lateral direction at 0.5 A. At high injection level the vertical divergence doesn't exceed 16°. Beam quality factor M2 is measured based on second moment definition in CW mode. High beam quality is demonstrated by M2 value of less than 2 in both vertical and lateral directions.
Lower airway dimensions in pediatric patients-A computed tomography study.
Szelloe, Patricia; Weiss, Markus; Schraner, Thomas; Dave, Mital H
2017-10-01
The aim of this study was to obtain lower airway dimensions in children by means of computed tomography (CT). Chest CT scans from 195 pediatric patients (118 boys/77 girls) aged 0.04-15.99 years were analyzed. Tracheal and bronchial lengths, anterior-posterior and lateral diameters, as well as cross-sectional area were assessed at the following levels: mid trachea, right proximal and distal bronchus, proximal bronchus intermedius, and left proximal and distal bronchus. Mediastinal angles of tracheal bifurcation were measured. Data were analyzed by means of linear and polynomial regression plots. The strongest correlations were found between tracheal and bronchial diameters and age as well as between tracheal and bronchial lengths and body length. All measured airway parameters correlated poorly to body weight. Bronchial angles revealed no association with patient's age, body length, or weight. This comprehensive anatomical database of lower airway dimensions demonstrates that tracheal and bronchial diameters correlate better to age, and that tracheal and bronchial length correlate better to body length. All measured airway parameters correlated poorly to body weight. © 2017 John Wiley & Sons Ltd.
Phase transition with trivial quantum criticality in an anisotropic Weyl semimetal
NASA Astrophysics Data System (ADS)
Li, Xin; Wang, Jing-Rong; Liu, Guo-Zhu
2018-05-01
When a metal undergoes continuous quantum phase transition, the correlation length diverges at the critical point and the quantum fluctuation of order parameter behaves as a gapless bosonic mode. Generically, the coupling of this boson to fermions induces a variety of unusual quantum critical phenomena, such as non-Fermi liquid behavior and various emergent symmetries. Here, we perform a renormalization group analysis of the semimetal-superconductor quantum criticality in a three-dimensional anisotropic Weyl semimetal. Surprisingly, distinct from previously studied quantum critical systems, the anomalous dimension of anisotropic Weyl fermions flows to zero very quickly with decreasing energy, and the quasiparticle residue takes a nonzero value. These results indicate that the quantum fluctuation of superconducting order parameter is irrelevant at low energies, and a simple mean-field calculation suffices to capture the essential physics of the superconducting transition. We thus obtain a phase transition that exhibits trivial quantum criticality, which is unique comparing to other invariably nontrivial quantum critical systems. Our theoretical prediction can be experimentally verified by measuring the fermion spectral function and specific heat.
Nonlinear Dynamics of the Superfluid Transition: What may We learn on orbit?
NASA Technical Reports Server (NTRS)
Duncan, Rob
2003-01-01
Linear response (specifically, Fourier's Law) in He-4 has been observed to fail in heat flow experiments near the superfluid transition. A detailed analysis of the data suggests that the hydrostatic pressure gradient across the helium column limits the divergence of the correlation length in our earth-based experiments. This is consistent with other observations, such as the surprising lack of mutual friction and hysteresis near the superfluid transition, and a 'rounding' of the transition that appears to be independent of heat flux in the low heat flux limit. I will discuss these unusual results from earth-based measurements, and will show predictions for the very different results that may result when we make our measurements on orbit as part of the M1 Mission of the Low- Temperature, Microgravity Physics Facility. This work has been funded by the Fundamental Physics Discipline within the Physical Sciences Research Office of NASA, and is conducted by the DYNAMX (UNM) and CQ (Caltech) Groups, with assistance from the Low Temperature Science and Quantum Sensors Group at JPL.
A study of air breathing rockets. 3: Supersonic mode combustors
NASA Astrophysics Data System (ADS)
Masuya, G.; Chinzel, N.; Kudo, K.; Murakami, A.; Komuro, T.; Ishii, S.
An experimental study was made on supersonic mode combustors of an air breathing rocket engine. Supersonic streams of room-temperature air and hot fuel-rich rocket exhaust were coaxially mixed and burned in a concially diverging duct of 2 deg half-angle. The effect of air inlet Mach number and excess air ratio was investigated. Axial wall pressure distribution was measured to calculate one dimensional change of Mach number and stagnation temperature. Calculated results showed that supersonic combustion occurred in the duct. At the exit of the duct, gas sampling and Pitot pressure measurement was made, from which radial distributions of various properties were deduced. The distribution of mass fraction of elements from rocket exhaust showed poor mixing performance in the supersonic mode combustors compared with the previously investigated cylindrical subsonic mode combustors. Secondary combustion efficiency correlated well with the centerline mixing parameter, but not with Annushkin's non-dimensional combustor length. No major effect of air inlet Mach number or excess air ratio was seen within the range of conditions under which the experiment was conducted.
NASA Astrophysics Data System (ADS)
Checkelsky, Joseph G.; Li, Lu; Ong, N. P.
2009-03-01
We have investigated the behavior of the resistance of graphene at the n=0 Landau level in an intense magnetic field H . Employing a low-dissipation technique (with power P<3fW ), we find that at low temperature T , the resistance at the Dirac point R0(H) undergoes a 1000-fold increase from ˜10kΩ to 40MΩ within a narrow interval of field. The abruptness of the increase suggests that a transition to an insulating ordered state occurs at the critical field Hc . Results from five samples show that Hc depends systematically on the disorder, as measured by the offset gate voltage V0 . Samples with small V0 display a smaller critical field Hc . Empirically, the steep increase in R0 fits accurately a Kosterlitz-Thouless-type correlation length over three decades. The curves of R0 vs T at fixed H approach the thermal-activation form with a gap Δ˜15K as H→Hc- , consistent with a field-induced insulating state.
Anzai, Wataru; Omura, Ayano; Diaz, Antonio Cadiz; Kawata, Masakado; Endo, Hideki
2014-07-01
We examined the diversity of the musculoskeletal morphology in the limbs of Anolis lizards with different habitats and identified variations in functional and morphological adaptations to different ecologies or behaviors. Dissection and isolation of 40 muscles from the fore- and hindlimbs of five species of Anolis were performed, and the muscle mass and length of the moment arm were compared after body size effects were removed. Ecologically and behaviorally characteristic morphological differences were observed in several muscles. Well-developed hindlimb extensors were observed in ground-dwelling species, A. sagrei and A. bremeri, and were considered advantageous for running, whereas adept climber species possessed expanded femoral retractors for weight-bearing during climbing. Moreover, morphological variations were observed among arboreal species. Wider excursions of the forelimb joint characterized A. porcatus, presumably enabling branch-to-branch locomotion, while A. equestris and A. angusticeps possessed highly developed adductor muscles for grasping thick branches or twigs. These findings suggest divergent evolution of musculoskeletal characteristic in the limbs within the genus Anolis, with correlations observed among morphological traits, locomotor performance, and habitat uses.
Pan, Zhangyuan; Li, Shengdi; Liu, Qiuyue; Wang, Zhen; Zhou, Zhengkui; Di, Ran; Miao, Benpeng; Hu, Wenping; Wang, Xiangyu; Hu, Xiaoxiang; Xu, Ze; Wei, Dongkai; He, Xiaoyun; Yuan, Liyun; Guo, Xiaofei; Liang, Benmeng; Wang, Ruichao; Li, Xiaoyu; Cao, Xiaohan; Dong, Xinlong; Xia, Qing; Shi, Hongcai; Hao, Geng; Yang, Jean; Luosang, Cuicheng; Zhao, Yiqiang; Jin, Mei; Zhang, Yingjie; Lv, Shenjin; Li, Fukuan; Ding, Guohui; Chu, Mingxing; Li, Yixue
2018-04-01
Animal domestication has been extensively studied, but the process of feralization remains poorly understood. Here, we performed whole-genome sequencing of 99 sheep and identified a primary genetic divergence between 2 heterogeneous populations in the Tibetan Plateau, including 1 semi-feral lineage. Selective sweep and candidate gene analysis revealed local adaptations of these sheep associated with sensory perception, muscle strength, eating habit, mating process, and aggressive behavior. In particular, a horn-related gene, RXFP2, showed signs of rapid evolution specifically in the semi-feral breeds. A unique haplotype and repressed horn-related tissue expression of RXFP2 were correlated with higher horn length, as well as spiral and horizontally extended horn shape. Semi-feralization has an extensive impact on diverse phenotypic traits of sheep. By acquiring features like those of their wild ancestors, semi-feral sheep were able to regain fitness while in frequent contact with wild surroundings and rare human interventions. This study provides a new insight into the evolution of domestic animals when human interventions are no longer dominant.
Ménard, Richard; Deshaies-Jacques, Martin; Gasset, Nicolas
2016-09-01
An objective analysis is one of the main components of data assimilation. By combining observations with the output of a predictive model we combine the best features of each source of information: the complete spatial and temporal coverage provided by models, with a close representation of the truth provided by observations. The process of combining observations with a model output is called an analysis. To produce an analysis requires the knowledge of observation and model errors, as well as its spatial correlation. This paper is devoted to the development of methods of estimation of these error variances and the characteristic length-scale of the model error correlation for its operational use in the Canadian objective analysis system. We first argue in favor of using compact support correlation functions, and then introduce three estimation methods: the Hollingsworth-Lönnberg (HL) method in local and global form, the maximum likelihood method (ML), and the [Formula: see text] diagnostic method. We perform one-dimensional (1D) simulation studies where the error variance and true correlation length are known, and perform an estimation of both error variances and correlation length where both are non-uniform. We show that a local version of the HL method can capture accurately the error variances and correlation length at each observation site, provided that spatial variability is not too strong. However, the operational objective analysis requires only a single and globally valid correlation length. We examine whether any statistics of the local HL correlation lengths could be a useful estimate, or whether other global estimation methods such as by the global HL, ML, or [Formula: see text] should be used. We found in both 1D simulation and using real data that the ML method is able to capture physically significant aspects of the correlation length, while most other estimates give unphysical and larger length-scale values. This paper describes a proposed improvement of the objective analysis of surface pollutants at Environment and Climate Change Canada (formerly known as Environment Canada). Objective analyses are essentially surface maps of air pollutants that are obtained by combining observations with an air quality model output, and are thought to provide a complete and more accurate representation of the air quality. The highlight of this study is an analysis of methods to estimate the model (or background) error correlation length-scale. The error statistics are an important and critical component to the analysis scheme.
ERIC Educational Resources Information Center
Edens, John F.; Poythress, Norman G.; Lilienfeld, Scott O.; Patrick, Christopher J.; Test, Amy
2008-01-01
Recent evidence suggests that 2 largely orthogonal dimensions underpin the latent construct assessed by the Psychopathic Personality Inventory (PPI; Lilienfeld & Andrews, 1996): Fearless Dominance (PPI-I) and Impulsive Antisociality (PPI-II). Relatively few data exist on the correlates of these 2 dimensions in offender samples, however. The…
Genetic and Genomic Response to Selection for Food Consumption in Drosophila melanogaster.
Garlapow, Megan E; Everett, Logan J; Zhou, Shanshan; Gearhart, Alexander W; Fay, Kairsten A; Huang, Wen; Morozova, Tatiana V; Arya, Gunjan H; Turlapati, Lavanya; St Armour, Genevieve; Hussain, Yasmeen N; McAdams, Sarah E; Fochler, Sophia; Mackay, Trudy F C
2017-03-01
Food consumption is an essential component of animal fitness; however, excessive food intake in humans increases risk for many diseases. The roles of neuroendocrine feedback loops, food sensing modalities, and physiological state in regulating food intake are well understood, but not the genetic basis underlying variation in food consumption. Here, we applied ten generations of artificial selection for high and low food consumption in replicate populations of Drosophila melanogaster. The phenotypic response to selection was highly asymmetric, with significant responses only for increased food consumption and minimal correlated responses in body mass and composition. We assessed the molecular correlates of selection responses by DNA and RNA sequencing of the selection lines. The high and low selection lines had variants with significantly divergent allele frequencies within or near 2081 genes and 3526 differentially expressed genes in one or both sexes. A total of 519 genes were both genetically divergent and differentially expressed between the divergent selection lines. We performed functional analyses of the effects of RNAi suppression of gene expression and induced mutations for 27 of these candidate genes that have human orthologs and the strongest statistical support, and confirmed that 25 (93 %) affected the mean and/or variance of food consumption.
Correlated evolution of thermal niches and functional physiology in tropical freshwater fishes.
Culumber, Zachary W; Tobler, Michael
2018-05-01
The role of ecology in phenotypic and species diversification is widely documented. Nonetheless, numerous nonadaptive processes can shape realized niches and phenotypic variation in natural populations, complicating inferences about adaptive evolution at macroevolutionary scales. We tested for evolved differences in thermal tolerances and their association with the realized thermal niche (including metrics describing diurnal and seasonal patterns of temperature extremes and variability) across a genus of tropical freshwater fishes reared in a standardized environment. There was limited evolution along the thermal niche axis associated with variation in maximum temperature and in upper thermal limits. In contrast, there was considerable diversification along the first major axis of the thermal niche associated with minimum temperatures and in lower thermal limits. Across our adaptive landscape analyses, 70% of species exhibited evidence of divergence in thermal niches. Most importantly, the first two major axes of thermal niche variation were significantly correlated with variation in lower thermal limits. Our results indicate adaptation to divergent thermal niches and adaptive evolution of related functional traits, and highlight the importance of divergence in lower thermal limits for the evolution of tropical biodiversity. © 2018 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2018 European Society For Evolutionary Biology.
Andrews, Kimberly R; Williams, Ashley J; Fernandez-Silva, Iria; Newman, Stephen J; Copus, Joshua M; Wakefield, Corey B; Randall, John E; Bowen, Brian W
2016-07-01
Evolutionary genetic patterns in shallow coastal fishes are documented with dozens of studies, but corresponding surveys of deepwater fishes (>200m) are scarce. Here we investigate the evolutionary history of deepwater snappers (genus Etelis), comprised of three recognized Indo-Pacific species and one Atlantic congener, by constructing a phylogeny of the genus with two mtDNA loci and two nuclear introns. Further, we apply range-wide Indo-Pacific sampling to test for the presence and distribution of a putative cryptic species pair within E. carbunculus using morphological analyses and mtDNA cytochrome b sequences from 14 locations across the species range (N=1696). These analyses indicate that E. carbunculus is comprised of two distinct, non-interbreeding lineages separated by deep divergence (d=0.081 in cytochrome b). Although these species are morphologically similar, we identified qualitative differences in coloration of the upper-caudal fin tip and the shape of the opercular spine, as well as significant differences in adult body length, body depth, and head length. These two species have overlapping Indo-Pacific distributions, but one species is more widespread across the Indo-Pacific, whereas the other species is documented in the Indian Ocean and Western Central Pacific. The dated Etelis phylogeny places the cryptic species divergence in the Pliocene, indicating that the biogeographic barrier between the Indian and Pacific Oceans played a role in speciation. Based on historic taxonomy and nomenclature, the species more widespread in the Pacific Ocean is E. carbunculus, and the other species is previously undescribed (referred to here as E. sp.). The Atlantic congener E. oculatus has only recently (∼0.5Ma) diverged from E. coruscans in the Indo-Pacific, indicating colonization via southern Africa. The pattern of divergence at the Indo-Pacific barrier, and Pleistocene colonization from the Indian Ocean into the Atlantic, is concordant with patterns observed in shallow coastal fishes, indicating similar drivers of evolutionary processes. Copyright © 2016 Elsevier Inc. All rights reserved.
A vadose zone water fluxmeter with divergence control
NASA Astrophysics Data System (ADS)
Gee, G. W.; Ward, A. L.; Caldwell, T. G.; Ritter, J. C.
2002-08-01
Unsaturated water flux densities are needed to quantify water and contaminant transfer within the vadose zone. However, water flux densities are seldom measured directly and often are predicted with uncertainties of an order or magnitude or more. A water fluxmeter was designed, constructed, and tested to directly measure drainage fluxes in field soils. The fluxmeter was designed to minimize divergence. It concentrates flow into a narrow sensing region filled with a fiberglass wick. The wick applies suction, proportional to its length, and passively drains the meter. The meter can be installed in an augured borehole at almost any depth below the root zone. Water flux through the meter is measured with a self-calibrating tipping bucket, with a sensitivity of ~4 mL tip-1. For our meter this is equivalent to detection limit of ~0.1 mm. Passive-wick devices previously have not properly corrected for flow divergence. Laboratory measurements supported predictions of a two-dimensional (2-D) numerical model, which showed that control of the collector height H and knowledge of soil hydraulic properties are required for improving divergence control, particularly at fluxes below 1000 mm yr-1. The water fluxmeter is simple in concept, is inexpensive, and has the capability of providing continuous and reliable monitoring of unsaturated water fluxes ranging from less than 1 mm yr-1 to more than 1000 mm yr-1.
A vadose zone water fluxmeter with divergence control
Gee, G.W.; Ward, A.L.; Caldwell, T.G.; Ritter, J.C.
2002-01-01
Unsaturated water flux densities are needed to quantify water and contaminant transfer within the vadose zone. However, water flux densities are seldom measured directly and often are predicted with uncertainties of an order or magnitude or more. A water fluxmeter was designed, constructed, and tested to directly measure drainage fluxes in field soils. The fluxmeter was designed to minimize divergence. It concentrates flow into a narrow sensing region filled with a fiberglass wick. The wick applies suction, proportional to its length, and passively drains the meter. The meter can be installed in an augured borehole at almost any depth below the root zone. Water flux through the meter is measured with a self‐calibrating tipping bucket, with a sensitivity of ∼4 mL tip−1. For our meter this is equivalent to detection limit of ∼0.1 mm. Passive‐wick devices previously have not properly corrected for flow divergence. Laboratory measurements supported predictions of a two‐dimensional (2‐D) numerical model, which showed that control of the collector height H and knowledge of soil hydraulic properties are required for improving divergence control, particularly at fluxes below 1000 mm yr−1. The water fluxmeter is simple in concept, is inexpensive, and has the capability of providing continuous and reliable monitoring of unsaturated water fluxes ranging from less than 1 mm yr−1 to more than 1000 mm yr−1.
Directed evolution of multiple genomic loci allows the prediction of antibiotic resistance.
Nyerges, Ákos; Csörgő, Bálint; Draskovits, Gábor; Kintses, Bálint; Szili, Petra; Ferenc, Györgyi; Révész, Tamás; Ari, Eszter; Nagy, István; Bálint, Balázs; Vásárhelyi, Bálint Márk; Bihari, Péter; Számel, Mónika; Balogh, Dávid; Papp, Henrietta; Kalapis, Dorottya; Papp, Balázs; Pál, Csaba
2018-06-19
Antibiotic development is frequently plagued by the rapid emergence of drug resistance. However, assessing the risk of resistance development in the preclinical stage is difficult. Standard laboratory evolution approaches explore only a small fraction of the sequence space and fail to identify exceedingly rare resistance mutations and combinations thereof. Therefore, new rapid and exhaustive methods are needed to accurately assess the potential of resistance evolution and uncover the underlying mutational mechanisms. Here, we introduce directed evolution with random genomic mutations (DIvERGE), a method that allows an up to million-fold increase in mutation rate along the full lengths of multiple predefined loci in a range of bacterial species. In a single day, DIvERGE generated specific mutation combinations, yielding clinically significant resistance against trimethoprim and ciprofloxacin. Many of these mutations have remained previously undetected or provide resistance in a species-specific manner. These results indicate pathogen-specific resistance mechanisms and the necessity of future narrow-spectrum antibacterial treatments. In contrast to prior claims, we detected the rapid emergence of resistance against gepotidacin, a novel antibiotic currently in clinical trials. Based on these properties, DIvERGE could be applicable to identify less resistance-prone antibiotics at an early stage of drug development. Finally, we discuss potential future applications of DIvERGE in synthetic and evolutionary biology. Copyright © 2018 the Author(s). Published by PNAS.
De Winter, Gunnar; Martins, Henrique Ramalho; Trovo, Rafael Arnoni; Chapman, Ben B
2016-01-01
Behavioural variation among individuals has received a lot of attention by behavioural ecologists in the past few years. Its causes and consequences are becoming vast areas of research. The origin and maintenance of individual variation in behaviour within and among populations is affected by many facets of the biotic and abiotic environment. Here, two populations of lab-reared juvenile three-spined sticklebacks (Gasterosteus aculeatus) are tested for three behaviours (boldness, exploration, and sociability). Given the identical rearing conditions, the only difference between these populations is the parental habitat. In both populations, correlations between behaviour and body length are found. Interestingly, these differ between the populations. In one population body length was negatively correlated with exploratory behaviour, while in the other one body length correlated negatively with sociability. Considering the identical environment these juvenile fish were exposed to, these findings suggest a potential (epi)genetic foundation for these correlations and shows that, in three-spined sticklebacks, the proximate basis for correlations between body length and behaviour appears quite malleable. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Nese, Jon M.; Dutton, John A.
1993-01-01
The predictability of the weather and climatic states of a low-order moist general circulation model is quantified using a dynamic systems approach, and the effect of incorporating a simple oceanic circulation on predictability is evaluated. The predictability and the structure of the model attractors are compared using Liapunov exponents, local divergence rates, and the correlation and Liapunov dimensions. It was found that the activation of oceanic circulation increases the average error doubling time of the atmosphere and the coupled ocean-atmosphere system by 10 percent and decreases the variance of the largest local divergence rate by 20 percent. When an oceanic circulation develops, the average predictability of annually averaged states is improved by 25 percent and the variance of the largest local divergence rate decreases by 25 percent.
Life-history variation and allometry for sexual size dimorphism in Pacific salmon and trout
Young, Kyle A.
2005-01-01
Allometry for sexual size dimorphism (SSD) is common in animals, but how different evolutionary processes interact to determine allometry remains unclear. Among related species SSD (male:female) typically increases with average body size, resulting in slopes of less than 1 when female size is regressed on male size: an allometric relationship formalized as ‘Rensch's rule’ . Empirical studies show that taxa with male-biased SSD are more likely to satisfy Rensch's rule and that a taxon's mean SSD is negatively correlated with allometric slope, implicating sexual selection on male size as an important mechanism promoting allometry for SSD. I use body length (and life-history) data from 628 (259) populations of seven species of anadromous Pacific salmon and trout (Oncorhynchus spp.) to show that in this genus life-history variation appears to regulate patterns of allometry both within and between species. Although all seven species have intraspecific allometric slopes of less than 1, contrary to expectation slope is unrelated to species' mean SSD, but is instead negatively correlated with two life-history variables: the species' mean marine age and variation in marine age. Second, because differences in marine age among species render SSD and body size uncorrelated, the interspecific slope is isometric. Together, these results provide an example of how evolutionary divergence in life history among related species can affect patterns of allometry for SSD across taxonomic scales. PMID:15695207
Basnet, Bishal Babu; Parajuli, Prakash Kumar; Singh, Raj Kumar; Suwal, Pramita; Shrestha, Pragya; Baral, Dharanidhar
2015-01-01
Establishment of proper occlusal vertical dimension (OVD) is one of the important tasks for successful prosthodontic therapy. An ideal method for determining OVD in terms of cost, time, and instrument requirements has been sought in prosthodontics by various investigators. However, no such single method has been formulated. In the current anthropometric study, the relationship of the length of the thumb to the OVD was tested in two ethnic groups of Nepal, Aryans, and Mongoloids. The result of this study can be useful in determining proper OVD in edentulous patients. The primary aim of the present study was to evaluate the correlation between the length of the thumb and OVD in Aryan and Mongoloid ethnic groups. The secondary aim was to compare the correlation between OVD and other anatomic measurements (eye-ear distance and pupil-to-rima oris distance) in these ethnicities. The OVD, thumb length, eye-ear distance and distance between pupil of eye and rima oris were measured in a total of 500 adult dentulous volunteers. The correlation between OVD and thumb length as well as other anatomic measurements was checked with Pearson's product moment correlation coefficient. Linear regression analysis was performed to determine the relationship of OVD to the length of the thumb. The thumb length was significantly (P≤0.05) correlated with strong and positive values (Pearson's coefficient =0.874 in the whole population, 0.826 in Aryans, and 0.944 in Mongoloids). Regression analysis showed that thumb length was significantly related to OVD in both ethnic groups. Within the limitations of the present study, the result implies that thumb length can be used as an adjunct for establishing OVD in the edentulous patients.
Rohini; Hemalatha; Chander, Gopi Naveen; Anitha, Kuttae Viswanathan
2017-02-01
Complete denture therapy is one such modality where science and art goes hand in hand. Selection of artificial teeth for completely edentulous patients is not easy in the absence of pre extraction records, because till date concrete guidelines do not exist. The purpose of this study was to determine if a correlation existed between the visible length of the iris and the length of the maxillary central incisor to potentially provide a guide for teeth selection. A total of 20 Indian dental students consented to participate in the pilot study. Standardized digital images of the face revealing the eyes and component of teeth on smiling was captured using a digital camera. The digital measurements of the visible iris length (medial aperture height, tangential to iris) and the length of the maxillary central incisor from the zenith to the incisal edge were analysed using Adobe Photoshop creative cloud software. The data was statistically evaluated and results were tabulated. Karl Pearson's Coefficient of Correlation was utilized to detect if any association existed between the two variables. The mean value of length of central incisor was 10.39 mm and the mean value of the visible length of iris was found to be 12.9 mm. A Pearson correlation analysis revealed an r-value <0.3 indicating minimal association between the two variables with a p-value >0.01 (.322). On inference, the correlation between the visible iris length and that of maxillary central incisor were unable to produce a strong positive statistical association. However, an association factor between the two has been obtained. Deduction of 2.5 mm from the dimension of visible iris length will help in attaining the length of artificial maxillary central incisor tooth.
Hartman, C. Alex; Ackerman, Joshua T.; Eagles-Smith, Collin A.; Herzog, Mark
2016-01-01
In birds where males and females are similar in size and plumage, sex determination by alternative means is necessary. Discriminant function analysis based on external morphometrics was used to distinguish males from females in two closely related species: Western Grebe (Aechmophorus occidentalis) and Clark's Grebe (A. clarkii). Additionally, discriminant function analysis was used to evaluate morphometric divergence between Western and Clark's grebe adults and eggs. Aechmophorus grebe adults (n = 576) and eggs (n = 130) were sampled across 29 lakes and reservoirs throughout California, USA, and adult sex was determined using molecular analysis. Both Western and Clark's grebes exhibited considerable sexual size dimorphism. Males averaged 6–26% larger than females among seven morphological measurements, with the greatest sexual size dimorphism occurring for bill morphometrics. Discriminant functions based on bill length, bill depth, and short tarsus length correctly assigned sex to 98% of Western Grebes, and a function based on bill length and bill depth correctly assigned sex to 99% of Clark's Grebes. Further, a simplified discriminant function based only on bill depth correctly assigned sex to 96% of Western Grebes and 98% of Clark's Grebes. In contrast, external morphometrics were not suitable for differentiating between Western and Clark's grebe adults or their eggs, with correct classification rates of discriminant functions of only 60%, 63%, and 61% for adult males, adult females, and eggs, respectively. Our results indicate little divergence in external morphology between species of Aechmophorus grebes, and instead separation is much greater between males and females.
Relationship between hamstring length and gluteus maximus strength with and without normalization.
Lee, Dong-Kyu; Oh, Jae-Seop
2018-01-01
[Purpose] This study assessed the relationship between hamstring length and gluteus maximus (GM) strength with and without normalization by body weight and height. [Subjects and Methods] In total, 34 healthy male subjects volunteered for this study. To measure GM strength, subjects performed maximal hip joint extension with the knee joints flexed to 90° in the prone position. GM strength was normalized for body weight and height. [Results] GM strength with normalization was positively correlated with hamstring length, whereas GM strength without normalization was negatively correlated with hamstring length. [Conclusion] The normalization of GM strength by body weight and height has the potential to lead to more appropriate conclusions and interpretations about its correlation with hamstring length. Hamstring length may be related to GM strength.
Sly, Nicholas D; Townsend, Andrea K; Rimmer, Christopher C; Townsend, Jason M; Latta, Steven C; Lovette, Irby J
2011-12-01
With its large size, complex topography and high number of avian endemics, Hispaniola appears to be a likely candidate for the in situ speciation of its avifauna, despite the worldwide rarity of avian speciation within single islands. We used multilocus comparative phylogeography techniques to examine the pattern and history of divergence in 11 endemic birds representing potential within-island speciation events. Haplotype and allele networks from mitochondrial ND2 and nuclear intron loci reveal a consistent pattern: phylogeographic divergence within or between closely related species is correlated with the likely distribution of ancient sea barriers that once divided Hispaniola into several smaller paleo-islands. Coalescent and mitochondrial clock dating of divergences indicate species-specific response to different geological events over the wide span of the island's history. We found no evidence that ecological or topographical complexity generated diversity, either by creating open niches or by restricting long-term gene flow. Thus, no true within-island speciation appears to have occurred among the species sampled on Hispaniola. Divergence events predating the merging of Hispaniola's paleo-island blocks cannot be considered in situ divergence, and postmerging divergence in response to episodic island segmentation by marine flooding probably represents in situ vicariance or interarchipelago speciation by dispersal. Our work highlights the necessity of considering island geologic history while investigating the speciation-area relationship in birds and other taxa. © 2011 Blackwell Publishing Ltd.
Critical telomerase activity for uncontrolled cell growth
NASA Astrophysics Data System (ADS)
Wesch, Neil L.; Burlock, Laura J.; Gooding, Robert J.
2016-08-01
The lengths of the telomere regions of chromosomes in a population of cells are modelled using a chemical master equation formalism, from which the evolution of the average number of cells of each telomere length is extracted. In particular, the role of the telomere-elongating enzyme telomerase on these dynamics is investigated. We show that for biologically relevant rates of cell birth and death, one finds a critical rate, R crit, of telomerase activity such that the total number of cells diverges. Further, R crit is similar in magnitude to the rates of mitosis and cell death. The possible relationship of this result to replicative immortality and its associated hallmark of cancer is discussed.
Patel, Chirag J; Manrai, Arjun K; Corona, Erik; Kohane, Isaac S
2017-02-01
It is hypothesized that environmental exposures and behaviour influence telomere length, an indicator of cellular ageing. We systematically associated 461 indicators of environmental exposures, physiology and self-reported behaviour with telomere length in data from the US National Health and Nutrition Examination Survey (NHANES) in 1999-2002. Further, we tested whether factors identified in the NHANES participants are also correlated with gene expression of telomere length modifying genes. We correlated 461 environmental exposures, behaviours and clinical variables with telomere length, using survey-weighted linear regression, adjusting for sex, age, age squared, race/ethnicity, poverty level, education and born outside the USA, and estimated the false discovery rate to adjust for multiple hypotheses. We conducted a secondary analysis to investigate the correlation between identified environmental variables and gene expression levels of telomere-associated genes in publicly available gene expression samples. After correlating 461 variables with telomere length, we found 22 variables significantly associated with telomere length after adjustment for multiple hypotheses. Of these varaibales, 14 were associated with longer telomeres, including biomarkers of polychlorinated biphenyls([PCBs; 0.1 to 0.2 standard deviation (SD) increase for 1 SD increase in PCB level, P < 0.002] and a form of vitamin A, retinyl stearate. Eight variables associated with shorter telomeres, including biomarkers of cadmium, C-reactive protein and lack of physical activity. We could not conclude that PCBs are correlated with gene expression of telomere-associated genes. Both environmental exposures and chronic disease-related risk factors may play a role in telomere length. Our secondary analysis found no evidence of association between PCBs/smoking and gene expression of telomere-associated genes. All correlations between exposures, behaviours and clinical factors and changes in telomere length will require further investigation regarding biological influence of exposure. © The Author 2016. Published by Oxford University Press on behalf of the International Epidemiological Association
Marroig, G; Cheverud, J M
2001-12-01
Similarity of genetic and phenotypic variation patterns among populations is important for making quantitative inferences about past evolutionary forces acting to differentiate populations and for evaluating the evolution of relationships among traits in response to new functional and developmental relationships. Here, phenotypic co variance and correlation structure is compared among Platyrrhine Neotropical primates. Comparisons range from among species within a genus to the superfamily level. Matrix correlation followed by Mantel's test and vector correlation among responses to random natural selection vectors (random skewers) were used to compare correlation and variance/covariance matrices of 39 skull traits. Sampling errors involved in matrix estimates were taken into account in comparisons using matrix repeatability to set upper limits for each pairwise comparison. Results indicate that covariance structure is not strictly constant but that the amount of variance pattern divergence observed among taxa is generally low and not associated with taxonomic distance. Specific instances of divergence are identified. There is no correlation between the amount of divergence in covariance patterns among the 16 genera and their phylogenetic distance derived from a conjoint analysis of four already published nuclear gene datasets. In contrast, there is a significant correlation between phylogenetic distance and morphological distance (Mahalanobis distance among genus centroids). This result indicates that while the phenotypic means were evolving during the last 30 millions years of New World monkey evolution, phenotypic covariance structures of Neotropical primate skulls have remained relatively consistent. Neotropical primates can be divided into four major groups based on their feeding habits (fruit-leaves, seed-fruits, insect-fruits, and gum-insect-fruits). Differences in phenotypic covariance structure are correlated with differences in feeding habits, indicating that to some extent changes in interrelationships among skull traits are associated with changes in feeding habits. Finally, common patterns and levels of morphological integration are found among Platyrrhine primates, suggesting that functional/developmental integration could be one major factor keeping covariance structure relatively stable during evolutionary diversification of South American monkeys.
Soria-Carrasco, Víctor; Talavera, Gerard; Igea, Javier; Castresana, Jose
2007-11-01
We introduce a new phylogenetic comparison method that measures overall differences in the relative branch length and topology of two phylogenetic trees. To do this, the algorithm first scales one of the trees to have a global divergence as similar as possible to the other tree. Then, the branch length distance, which takes differences in topology and branch lengths into account, is applied to the two trees. We thus obtain the minimum branch length distance or K tree score. Two trees with very different relative branch lengths get a high K score whereas two trees that follow a similar among-lineage rate variation get a low score, regardless of the overall rates in both trees. There are several applications of the K tree score, two of which are explained here in more detail. First, this score allows the evaluation of the performance of phylogenetic algorithms, not only with respect to their topological accuracy, but also with respect to the reproduction of a given branch length variation. In a second example, we show how the K score allows the selection of orthologous genes by choosing those that better follow the overall shape of a given reference tree. http://molevol.ibmb.csic.es/Ktreedist.html
Floral trait variation and integration as a function of sexual deception in Gorteria diffusa.
Ellis, Allan G; Brockington, Samuel F; de Jager, Marinus L; Mellers, Gregory; Walker, Rachel H; Glover, Beverley J
2014-08-19
Phenotypic integration, the coordinated covariance of suites of morphological traits, is critical for proper functioning of organisms. Angiosperm flowers are complex structures comprising suites of traits that function together to achieve effective pollen transfer. Floral integration could reflect shared genetic and developmental control of these traits, or could arise through pollinator-imposed stabilizing correlational selection on traits. We sought to expose mechanisms underlying floral trait integration in the sexually deceptive daisy, Gorteria diffusa, by testing the hypothesis that stabilizing selection imposed by male pollinators on floral traits involved in mimicry has resulted in tighter integration. To do this, we quantified patterns of floral trait variance and covariance in morphologically divergent G. diffusa floral forms representing a continuum in the levels of sexual deception. We show that integration of traits functioning in visual attraction of male pollinators increases with pollinator deception, and is stronger than integration of non-mimicry trait modules. Consistent patterns of within-population trait variance and covariance across floral forms suggest that integration has not been built by stabilizing correlational selection on genetically independent traits. Instead pollinator specialization has selected for tightened integration within modules of linked traits. Despite potentially strong constraint on morphological evolution imposed by developmental genetic linkages between traits, we demonstrate substantial divergence in traits across G. diffusa floral forms and show that divergence has often occurred without altering within-population patterns of trait correlations. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Jung, Rex E.; Segall, Judith M.; Bockholt, H. Jeremy; Flores, Ranee A.; Smith, Shirley M.; Chavez, Robert S.; Haier, Richard J.
2009-01-01
Creativity has long been a construct of interest to philosophers, psychologists and, more recently, neuroscientists. Recent efforts have focused on cognitive processes likely to be important to the manifestation of novelty and usefulness within a given social context. One such cognitive process – divergent thinking – is the process by which one extrapolates many possible answers to an initial stimulus or target data set. We sought to link well established measures of divergent thinking and creative achievement (Creative Achievement Questionnaire – CAQ) to cortical thickness in a cohort of young (23.7 ± 4.2 years), healthy subjects. Three independent judges ranked the creative products of each subject using the consensual assessment technique (Amabile, 1982) from which a “composite creativity index” (CCI) was derived. Structural magnetic resonance imaging was obtained at 1.5 Tesla Siemens scanner. Cortical reconstruction and volumetric segmentation were performed with the FreeSurfer image analysis suite. A region within the lingual gyrus was negatively correlated with CCI; the right posterior cingulate correlated positively with the CCI. For the CAQ, lower left lateral orbitofrontal volume correlated with higher creative achievement; higher cortical thickness was related to higher scores on the CAQ in the right angular gyrus. This is the first study to link cortical thickness measures to psychometric measures of creativity. The distribution of brain regions, associated with both divergent thinking and creative achievement, suggests that cognitive control of information flow among brain areas may be critical to understanding creative cognition. PMID:19722171
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sangeetha, C. R.; Rajaguru, S. P., E-mail: crsangeetha@iiap.res.in
We derive horizontal fluid motions on the solar surface over large areas covering the quiet-Sun magnetic network from local correlation tracking of convective granules imaged in continuum intensity and Doppler velocity by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory . From these we calculate the horizontal divergence, the vertical component of vorticity, and the kinetic helicity of fluid motions. We study the correlations between fluid divergence and vorticity, and between vorticity (kinetic helicity) and the magnetic field. We find that the vorticity (kinetic helicity) around small-scale fields exhibits a hemispherical pattern (in sign) similar tomore » that followed by the magnetic helicity of large-scale active regions (containing sunspots). We identify this pattern to be a result of the Coriolis force acting on supergranular-scale flows (both the outflows and inflows), consistent with earlier studies using local helioseismology. Furthermore, we show that the magnetic fields cause transfer of vorticity from supergranular inflow regions to outflow regions, and that they tend to suppress the vortical motions around them when magnetic flux densities exceed about 300 G (from HMI). We also show that such an action of the magnetic fields leads to marked changes in the correlations between fluid divergence and vorticity. These results are speculated to be of importance to local dynamo action (if present) and to the dynamical evolution of magnetic helicity at the small-scale.« less
Parameter Estimation for the Four Parameter Beta Distribution.
1983-12-01
060 1,000 ,033 -,027 -+046 -. 047 .042 1,000 ITERATIONS FCN2 USED FCN4 USED DIVERGED 4,9260 0.0000 . 4640 o0460 SAMPLE SIZE+ 10 ESTIMATOR: MME1 SEED ; 1...903 .278 1.000 -. 271 .882 .538 1.000 -. 078 -. 202 .038 - 1.000 .050 .228 -o050 .086 .019 1.000 ITERATIONS FCN2 USED FCN4 USED DIVERGED...5.6575 33.2908 .0507 1.1332 .0002 .0000 .0000 .0007 CORRELATION COEFFICIENTS: 1.000 -. 058 1.000 -.914 . 262 1.000 -. 270 .895 .534 1.000 .021 .030 -,045
NASA Astrophysics Data System (ADS)
Silva, Thiago Christiano; Tabak, Benjamin Miranda; Cajueiro, Daniel Oliveira; Dias, Marina Villas Boas
2017-03-01
This study investigates to which extent results produced by a single frontier model are reliable, based on the application of data envelopment analysis and stochastic frontier approach to a sample of Chinese local banks. Our findings show they produce a consistent trend on global efficiency scores over the years. However, rank correlations indicate they diverge with respect to individual performance diagnoses. Therefore, these models provide steady information on the efficiency of the banking system as a whole, but they become divergent at the individual level.
NASA Technical Reports Server (NTRS)
Axelson, John A.; Crown, J. Conrad
1948-01-01
An analysis is presented of the influence of wing aspect ratio and tail location on the effects of compressibility upon static longitudinal stability. The investigation showed that the use of reduced wing aspect ratios or short tail lengths leads to serious reductions in high-speed stability and the possibility of high-speed instability.
Mineralogic correlates of fibrosis in chrysotile miners and millers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Churg, A.; Wright, J.L.; DePaoli, L.
1989-04-01
To determine which mineral parameters relate to the degree of interstitial fibrosis (asbestosis) in the lungs of chrysotile miners and millers, we graded fibrosis histologically and correlated fibrosis grades with fiber concentration and mean size, surface area, and mass, and with total sample fiber length, surface area, and mass in 21 cases. A positive correlation of fibrosis grade with tremolite concentration and a lesser correlation with chrysotile concentration was found for whole lungs, specific sites within lungs, and, for tremolite, single microscopic fields. No correlations were found for measures of chrysotile fiber size, surface area, or mass, but tremolite meanmore » fiber length, aspect ratio, and surface area were, surprisingly, negatively correlated with fibrosis grade. Measures based on total rather than on mean case or site parameters failed to show correlations with fibrosis. We conclude that: (1) degree of pulmonary fibrosis reflects fiber concentration at both a bulk and a microscopic level; (2) mean fiber length and parameters related to mean fiber length also correlate with fibrosis grade, but, contrary to predictions from animal studies, this correlation is negative, suggesting that short fibers may be more important in the genesis of pulmonary fibrosis than is commonly believed; (3) there is no evidence that parameters such as total fiber length, surface area, or mass provide predictors of degree of fibrosis.« less
NASA Technical Reports Server (NTRS)
Deere, Karen A.; Flamm, Jeffrey D.; Berrier, Bobby L.; Johnson, Stuart K.
2007-01-01
A computational investigation of an axisymmetric Dual Throat Nozzle concept has been conducted. This fluidic thrust-vectoring nozzle was designed with a recessed cavity to enhance the throat shifting technique for improved thrust vectoring. The structured-grid, unsteady Reynolds- Averaged Navier-Stokes flow solver PAB3D was used to guide the nozzle design and analyze performance. Nozzle design variables included extent of circumferential injection, cavity divergence angle, cavity length, and cavity convergence angle. Internal nozzle performance (wind-off conditions) and thrust vector angles were computed for several configurations over a range of nozzle pressure ratios from 1.89 to 10, with the fluidic injection flow rate equal to zero and up to 4 percent of the primary flow rate. The effect of a variable expansion ratio on nozzle performance over a range of freestream Mach numbers up to 2 was investigated. Results indicated that a 60 circumferential injection was a good compromise between large thrust vector angles and efficient internal nozzle performance. A cavity divergence angle greater than 10 was detrimental to thrust vector angle. Shortening the cavity length improved internal nozzle performance with a small penalty to thrust vector angle. Contrary to expectations, a variable expansion ratio did not improve thrust efficiency at the flight conditions investigated.
Demonstration of passive plasma lensing of a laser wakefield accelerated electron bunch
Kuschel, S.; Hollatz, D.; Heinemann, T.; ...
2016-07-20
We report on the first demonstration of passive all-optical plasma lensing using a two-stage setup. An intense femtosecond laser accelerates electrons in a laser wakefield accelerator (LWFA) to 100 MeV over millimeter length scales. By adding a second gas target behind the initial LWFA stage we introduce a robust and independently tunable plasma lens. We observe a density dependent reduction of the LWFA electron beam divergence from an initial value of 2.3 mrad, down to 1.4 mrad (rms), when the plasma lens is in operation. Such a plasma lens provides a simple and compact approach for divergence reduction well matchedmore » to the mm-scale length of the LWFA accelerator. The focusing forces are provided solely by the plasma and driven by the bunch itself only, making this a highly useful and conceptually new approach to electron beam focusing. Possible applications of this lens are not limited to laser plasma accelerators. Since no active driver is needed the passive plasma lens is also suited for high repetition rate focusing of electron bunches. As a result, its understanding is also required for modeling the evolution of the driving particle bunch in particle driven wake field acceleration.« less
Genome-wide analysis of WRKY gene family in Cucumis sativus
2011-01-01
Background WRKY proteins are a large family of transcriptional regulators in higher plant. They are involved in many biological processes, such as plant development, metabolism, and responses to biotic and abiotic stresses. Prior to the present study, only one full-length cucumber WRKY protein had been reported. The recent publication of the draft genome sequence of cucumber allowed us to conduct a genome-wide search for cucumber WRKY proteins, and to compare these positively identified proteins with their homologs in model plants, such as Arabidopsis. Results We identified a total of 55 WRKY genes in the cucumber genome. According to structural features of their encoded proteins, the cucumber WRKY (CsWRKY) genes were classified into three groups (group 1-3). Analysis of expression profiles of CsWRKY genes indicated that 48 WRKY genes display differential expression either in their transcript abundance or in their expression patterns under normal growth conditions, and 23 WRKY genes were differentially expressed in response to at least one abiotic stresses (cold, drought or salinity). The expression profile of stress-inducible CsWRKY genes were correlated with those of their putative Arabidopsis WRKY (AtWRKY) orthologs, except for the group 3 WRKY genes. Interestingly, duplicated group 3 AtWRKY genes appear to have been under positive selection pressure during evolution. In contrast, there was no evidence of recent gene duplication or positive selection pressure among CsWRKY group 3 genes, which may have led to the expressional divergence of group 3 orthologs. Conclusions Fifty-five WRKY genes were identified in cucumber and the structure of their encoded proteins, their expression, and their evolution were examined. Considering that there has been extensive expansion of group 3 WRKY genes in angiosperms, the occurrence of different evolutionary events could explain the functional divergence of these genes. PMID:21955985
Jian, Hongying; Zhang, Yonghong; Qiu, Xianqin; Yan, Huijun; Wang, Qigang; Zhang, Hao; Sun, Hang
2016-01-01
The Hengduan Mountains are the core of the Sino-Himalayan Floristic Region. Rosa soulieana Crép. is an important wild rose species that is widely distributed in the Hengduan Mountains. To provide better future utilization of this wild rose, and also to add some possible proof of the effect of geomorphological and ecological characteristics of the Hengduan Mountains on the current spatial distribution and genetic diversity of local species, the genetic diversity and genetic structure of 556 individuals from 37 populations of R. soulieana were studied using fluorescent amplified fragment length polymorphisms (AFLPs). R. soulieana showed a moderately high level of genetic diversity and a high level of genetic differentiation at the species level. The total percentage of polymorphic loci, total heterozygosity (Ht), Shannon index (I), and heterozygosity value within populations (Hs) were 97.8%, 0.253, 0.339, and 0.139, respectively. More than half of the total genetic variation (54.0%) occurred within populations, and the overall gene differentiation coefficient (Gst) was 0.451. The genetic differentiation among populations was positively and significantly correlated with geographic distance. The neighbor-joining cluster and the Bayesian analysis divided all the populations and individuals into 3 groups, and did not support the morphology based intraspecific varieties. The results confirmed that the ancient R. soulieana of the third group survived in northwestern Yunnan and Yalongjiang valley and then moved upnorth along the valley. The spatial distribution of the other two groups was the result of allopatric divergence due to long period of adaptation to the different climatic conditions of its distribution at either side of the Yalongjiang River.
Herrera, C M; Pozo, M I; Bazaga, P
2011-11-01
Vast amounts of effort have been devoted to investigate patterns of genetic diversity and structuring in plants and animals, but similar information is scarce for organisms of other kingdoms. The study of the genetic structure of natural populations of wild yeasts can provide insights into the ecological and genetic correlates of clonality, and into the generality of recent hypotheses postulating that microbial populations lack the potential for genetic divergence and allopatric speciation. Ninety-one isolates of the flower-living yeast Metschnikowia gruessii from southeastern Spain were DNA fingerprinted using amplified fragment length polymorphism (AFLP) markers. Genetic diversity and structuring was investigated with band-based methods and model- and nonmodel-based clustering. Linkage disequilibrium tests were used to assess reproduction mode. Microsite-dependent, diversifying selection was tested by comparing genetic characteristics of isolates from bumble bee vectors and different floral microsites. AFLP polymorphism (91%) and genotypic diversity were very high. Genetic diversity was spatially structured, as shown by amova (Φ(st) = 0.155) and clustering. The null hypothesis of random mating was rejected, clonality seeming the prevailing reproductive mode in the populations studied. Genetic diversity of isolates declined from bumble bee mouthparts to floral microsites, and frequency of five AFLP markers varied significantly across floral microsites, thus supporting the hypothesis of diversifying selection on clonal lineages. Wild populations of clonal fungal microbes can exhibit levels of genetic diversity and spatial structuring that are not singularly different from those shown by sexually reproducing plants or animals. Microsite-dependent, divergent selection can maintain high local and regional genetic diversity in microbial populations despite extensive clonality. © 2011 Blackwell Publishing Ltd.
Genomic Correlates of Relationship QTL Involved in Fore- versus Hind Limb Divergence in Mice
Pavlicev, Mihaela; Wagner, Günter P.; Noonan, James P.; Hallgrímsson, Benedikt; Cheverud, James M.
2013-01-01
Divergence of serially homologous elements of organisms is a common evolutionary pattern contributing to increased phenotypic complexity. Here, we study the genomic intervals affecting the variational independence of fore- and hind limb traits within an experimental mouse population. We use an advanced intercross of inbred mouse strains to map the loci associated with the degree of autonomy between fore- and hind limb long bone lengths (loci affecting the relationship between traits, relationship quantitative trait loci [rQTL]). These loci have been proposed to interact locally with the products of pleiotropic genes, thereby freeing the local trait from the variational constraint due to pleiotropic mutations. Using the known polymorphisms (single nucleotide polymorphisms [SNPs]) between the parental strains, we characterized and compared the genomic regions in which the rQTL, as well as their interaction partners (intQTL), reside. We find that these two classes of QTL intervals harbor different kinds of molecular variation. SNPs in rQTL intervals more frequently reside in limb-specific cis-regulatory regions than SNPs in intQTL intervals. The intQTL loci modified by the rQTL, in contrast, show the signature of protein-coding variation. This result is consistent with the widely accepted view that protein-coding mutations have broader pleiotropic effects than cis-regulatory polymorphisms. For both types of QTL intervals, the underlying candidate genes are enriched for genes involved in protein binding. This finding suggests that rQTL effects are caused by local interactions among the products of the causal genes harbored in rQTL and intQTL intervals. This is the first study to systematically document the population-level molecular variation underlying the evolution of character individuation. PMID:24065733
Genome-wide analysis of WRKY gene family in Cucumis sativus.
Ling, Jian; Jiang, Weijie; Zhang, Ying; Yu, Hongjun; Mao, Zhenchuan; Gu, Xingfang; Huang, Sanwen; Xie, Bingyan
2011-09-28
WRKY proteins are a large family of transcriptional regulators in higher plant. They are involved in many biological processes, such as plant development, metabolism, and responses to biotic and abiotic stresses. Prior to the present study, only one full-length cucumber WRKY protein had been reported. The recent publication of the draft genome sequence of cucumber allowed us to conduct a genome-wide search for cucumber WRKY proteins, and to compare these positively identified proteins with their homologs in model plants, such as Arabidopsis. We identified a total of 55 WRKY genes in the cucumber genome. According to structural features of their encoded proteins, the cucumber WRKY (CsWRKY) genes were classified into three groups (group 1-3). Analysis of expression profiles of CsWRKY genes indicated that 48 WRKY genes display differential expression either in their transcript abundance or in their expression patterns under normal growth conditions, and 23 WRKY genes were differentially expressed in response to at least one abiotic stresses (cold, drought or salinity). The expression profile of stress-inducible CsWRKY genes were correlated with those of their putative Arabidopsis WRKY (AtWRKY) orthologs, except for the group 3 WRKY genes. Interestingly, duplicated group 3 AtWRKY genes appear to have been under positive selection pressure during evolution. In contrast, there was no evidence of recent gene duplication or positive selection pressure among CsWRKY group 3 genes, which may have led to the expressional divergence of group 3 orthologs. Fifty-five WRKY genes were identified in cucumber and the structure of their encoded proteins, their expression, and their evolution were examined. Considering that there has been extensive expansion of group 3 WRKY genes in angiosperms, the occurrence of different evolutionary events could explain the functional divergence of these genes.
You, Jianling; Qi, Danhui; Zhou, Yin; Chen, Jiakuan; Song, Zhiping
2016-01-01
Estimating the potential of species to cope with rapid environmental climatic modifications is of vital importance for determining their future viability and conservation. The variation between existing populations along a climatic gradient may predict how a species will respond to future climate change. Stipa purpurea is a dominant grass species in the alpine steppe and meadow of the Qinghai-Tibetan Plateau (QTP). Ecological niche modelling was applied to S. purpurea, and its distribution was found to be most strongly correlated with the annual precipitation and the mean temperature of the warmest quarter. We established a north-to-south transect over 2000 km long on the QTP reflecting the gradients of temperature and precipitation, and then we estimated the morphological by sampling fruited tussocks and genetic divergence by using 11 microsatellite markers between 20 populations along the transect. Reproductive traits (the number of seeds and reproductive shoots), the reproductive-vegetative growth ratio and the length of roots in the S. purpurea populations varied significantly with climate variables. S. purpurea has high genetic diversity (He = 0.585), a large effective population size (Ne >1,000), and a considerable level of gene flow between populations. The S. purpurea populations have a mosaic genetic structure: some distant populations (over 1000 km apart) clustered genetically, whereas closer populations (< 100 km apart) had diverged significantly, suggesting local adaptation. Asymmetrical long-distance inter-population gene flow occurs along the sampling transect and might be mediated by seed dispersal via migratory herbivores, such as the chiru (Pantholops hodgsonii). These findings suggest that population performance variation and gene flow both facilitate the response of S. purpurea to climate change. PMID:27580056
Liu, Wensheng; Zhao, Yao; You, Jianling; Qi, Danhui; Zhou, Yin; Chen, Jiakuan; Song, Zhiping
2016-01-01
Estimating the potential of species to cope with rapid environmental climatic modifications is of vital importance for determining their future viability and conservation. The variation between existing populations along a climatic gradient may predict how a species will respond to future climate change. Stipa purpurea is a dominant grass species in the alpine steppe and meadow of the Qinghai-Tibetan Plateau (QTP). Ecological niche modelling was applied to S. purpurea, and its distribution was found to be most strongly correlated with the annual precipitation and the mean temperature of the warmest quarter. We established a north-to-south transect over 2000 km long on the QTP reflecting the gradients of temperature and precipitation, and then we estimated the morphological by sampling fruited tussocks and genetic divergence by using 11 microsatellite markers between 20 populations along the transect. Reproductive traits (the number of seeds and reproductive shoots), the reproductive-vegetative growth ratio and the length of roots in the S. purpurea populations varied significantly with climate variables. S. purpurea has high genetic diversity (He = 0.585), a large effective population size (Ne >1,000), and a considerable level of gene flow between populations. The S. purpurea populations have a mosaic genetic structure: some distant populations (over 1000 km apart) clustered genetically, whereas closer populations (< 100 km apart) had diverged significantly, suggesting local adaptation. Asymmetrical long-distance inter-population gene flow occurs along the sampling transect and might be mediated by seed dispersal via migratory herbivores, such as the chiru (Pantholops hodgsonii). These findings suggest that population performance variation and gene flow both facilitate the response of S. purpurea to climate change.
Lupše, Nik; Cheng, Ren-Chung; Kuntner, Matjaž
2016-08-17
In most animal groups, it is unclear how body size variation relates to genital size differences between the sexes. While most morphological features tend to scale with total somatic size, this does not necessarily hold for genitalia because divergent evolution in somatic size between the sexes would cause genital size mismatches. Theory predicts that the interplay of female-biased sexual size dimorphism (SSD) and sexual genital size dimorphism (SGD) should adhere to the 'positive genital divergence', the 'constant genital divergence', or the 'negative genital divergence' model, but these models remain largely untested. We test their validity in the spider family Nephilidae known for the highest degrees of SSD among terrestrial animals. Through comparative analyses of sex-specific somatic and genital sizes, we first demonstrate that 99 of the 351 pairs of traits are phylogenetically correlated. Through factor analyses we then group these traits for MCMCglmm analyses that test broader correlation patterns, and these reveal significant correlations in 10 out of the 36 pairwise comparisons. Both types of analyses agree that female somatic and internal genital sizes evolve independently. While sizes of non-intromittent male genital parts coevolve with male body size, the size of the intromittent male genital parts is independent of the male somatic size. Instead, male intromittent genital size coevolves with female (external and, in part, internal) genital size. All analyses also agree that SGD and SSD evolve independently. Internal dimensions of female genitalia evolve independently of female body size in nephilid spiders, and similarly, male intromittent genital size evolves independently of the male body size. The size of the male intromittent organ (the embolus) and the sizes of female internal and external genital components thus seem to respond to selection against genital size mismatches. In accord with these interpretations, we reject the validity of the existing theoretical models of genital and somatic size dimorphism in spiders.
Schultz, Luciana; Albadine, Roula; Hicks, Jessica; Jadallah, Sana; DeMarzo, Angelo M; Chen, Ying-Bei; Nielsen, Matthew E; Neilsen, Matthew E; Gonzalgo, Mark L; Sidransky, David; Schoenberg, Mark; Netto, George J
2010-12-01
Bladder urothelial carcinoma has high rates of mortality and morbidity. Identifying novel molecular prognostic factors and targets of therapy is crucial. Mammalian target of rapamycin (mTOR) pathway plays a pivotal role in establishing cell shape, migration, and proliferation. Tissue microarrays were constructed from 132 cystectomies (1994-2002). Immunohistochemistry was performed for Pten, c-myc, p27, phosphorylated (phos)Akt, phosS6, and 4E-BP1. Markers were evaluated for pattern, percentage, and intensity of staining. Mean length of follow-up was 62.6 months (range, 1-182 months). Disease progression, overall survival (OS), and disease-specific survival (DSS) rates were 42%, 60%, and 68%, respectively. Pten showed loss of expression in 35% of bladder urothelial carcinoma. All markers showed lower expression in invasive bladder urothelial carcinoma compared with benign urothelium with the exception of 4E-BP1. Pten, p27, phosAkt, phosS6, and 4E-BP1 expression correlated with pathologic stage (pathological stage; P<.03). Pten, 4E-BP1, and phosAkt expression correlated with divergent aggressive histology and invasion. phosS6 expression inversely predicted OS (P=.01), DSS (P=.001), and progression (P=.05). c-myc expression inversely predicted progression (P=.01). In a multivariate analysis model that included TNM stage grouping, divergent aggressive histology, concomitant carcinoma in situ, phosS6, and c-myc expression, phosS6 was an independent predictor of DSS (P=.03; hazard ratio [HR], -0.19), whereas c-myc was an independent predictor of progression (P=.02; HR, -0.38). In a second model substituting organ-confined disease and lymph node status for TNM stage grouping, phosS6 and c-myc remained independent predictors of DSS (P=.03; HR, -0.21) and progression (P=.03; HR, -0.34), respectively. We found an overall down-regulation of mTOR pathway in bladder urothelial carcinoma. phosS6 independently predicted DSS, and c-myc independently predicted progression. Copyright © 2010 American Cancer Society.
Gomez-Uchida, Daniel; Seeb, James E; Smith, Matt J; Habicht, Christopher; Quinn, Thomas P; Seeb, Lisa W
2011-02-18
Disentangling the roles of geography and ecology driving population divergence and distinguishing adaptive from neutral evolution at the molecular level have been common goals among evolutionary and conservation biologists. Using single nucleotide polymorphism (SNP) multilocus genotypes for 31 sockeye salmon (Oncorhynchus nerka) populations from the Kvichak River, Alaska, we assessed the relative roles of geography (discrete boundaries or continuous distance) and ecology (spawning habitat and timing) driving genetic divergence in this species at varying spatial scales within the drainage. We also evaluated two outlier detection methods to characterize candidate SNPs responding to environmental selection, emphasizing which mechanism(s) may maintain the genetic variation of outlier loci. For the entire drainage, Mantel tests suggested a greater role of geographic distance on population divergence than differences in spawn timing when each variable was correlated with pairwise genetic distances. Clustering and hierarchical analyses of molecular variance indicated that the largest genetic differentiation occurred between populations from distinct lakes or subdrainages. Within one population-rich lake, however, Mantel tests suggested a greater role of spawn timing than geographic distance on population divergence when each variable was correlated with pairwise genetic distances. Variable spawn timing among populations was linked to specific spawning habitats as revealed by principal coordinate analyses. We additionally identified two outlier SNPs located in the major histocompatibility complex (MHC) class II that appeared robust to violations of demographic assumptions from an initial pool of eight candidates for selection. First, our results suggest that geography and ecology have influenced genetic divergence between Alaskan sockeye salmon populations in a hierarchical manner depending on the spatial scale. Second, we found consistent evidence for diversifying selection in two loci located in the MHC class II by means of outlier detection methods; yet, alternative scenarios for the evolution of these loci were also evaluated. Both conclusions argue that historical contingency and contemporary adaptation have likely driven differentiation between Kvichak River sockeye salmon populations, as revealed by a suite of SNPs. Our findings highlight the need for conservation of complex population structure, because it provides resilience in the face of environmental change, both natural and anthropogenic.
2011-01-01
Background Disentangling the roles of geography and ecology driving population divergence and distinguishing adaptive from neutral evolution at the molecular level have been common goals among evolutionary and conservation biologists. Using single nucleotide polymorphism (SNP) multilocus genotypes for 31 sockeye salmon (Oncorhynchus nerka) populations from the Kvichak River, Alaska, we assessed the relative roles of geography (discrete boundaries or continuous distance) and ecology (spawning habitat and timing) driving genetic divergence in this species at varying spatial scales within the drainage. We also evaluated two outlier detection methods to characterize candidate SNPs responding to environmental selection, emphasizing which mechanism(s) may maintain the genetic variation of outlier loci. Results For the entire drainage, Mantel tests suggested a greater role of geographic distance on population divergence than differences in spawn timing when each variable was correlated with pairwise genetic distances. Clustering and hierarchical analyses of molecular variance indicated that the largest genetic differentiation occurred between populations from distinct lakes or subdrainages. Within one population-rich lake, however, Mantel tests suggested a greater role of spawn timing than geographic distance on population divergence when each variable was correlated with pairwise genetic distances. Variable spawn timing among populations was linked to specific spawning habitats as revealed by principal coordinate analyses. We additionally identified two outlier SNPs located in the major histocompatibility complex (MHC) class II that appeared robust to violations of demographic assumptions from an initial pool of eight candidates for selection. Conclusions First, our results suggest that geography and ecology have influenced genetic divergence between Alaskan sockeye salmon populations in a hierarchical manner depending on the spatial scale. Second, we found consistent evidence for diversifying selection in two loci located in the MHC class II by means of outlier detection methods; yet, alternative scenarios for the evolution of these loci were also evaluated. Both conclusions argue that historical contingency and contemporary adaptation have likely driven differentiation between Kvichak River sockeye salmon populations, as revealed by a suite of SNPs. Our findings highlight the need for conservation of complex population structure, because it provides resilience in the face of environmental change, both natural and anthropogenic. PMID:21332997
Design of laser afocal zoom expander system
NASA Astrophysics Data System (ADS)
Jiang, Lian; Zeng, Chun-Mei; Hu, Tian-Tian
2018-01-01
Laser afocal zoom expander system due to the beam diameter variable, can be used in the light sheet illumination microscope to observe the samples of different sizes. Based on the principle of afocal zoom system, the laser collimation and beam expander system with a total length of less than 110mm, 6 pieces of spherical lens and a beam expander ratio of 10 is designed by using Zemax software. The system is focused on laser with a wavelength of 532nm, divergence angle of less than 4mrad and incident diameter of 4mm. With the combination of 6 spherical lens, the beam divergence angle is 0.4mrad at the maximum magnification ratio, and the RMS values at different rates are less than λ/4. This design is simple in structure and easy to process and adjust. It has certain practical value.
Criticality in the Approach to Failure in Amorphous Solids
NASA Astrophysics Data System (ADS)
Lin, Jie; Gueudré, Thomas; Rosso, Alberto; Wyart, Matthieu
2015-10-01
Failure of amorphous solids is fundamental to various phenomena, including landslides and earthquakes. Recent experiments indicate that highly plastic regions form elongated structures that are especially apparent near the maximal shear stress Σmax where failure occurs. This observation suggested that Σmax acts as a critical point where the length scale of those structures diverges, possibly causing macroscopic transient shear bands. Here, we argue instead that the entire solid phase (Σ <Σmax) is critical, that plasticity always involves system-spanning events, and that their magnitude diverges at Σmax independently of the presence of shear bands. We relate the statistics and fractal properties of these rearrangements to an exponent θ that captures the stability of the material, which is observed to vary continuously with stress, and we confirm our predictions in elastoplastic models.
Can insertion length for a double-lumen endobronchial tube be predicted?
Dyer, R A; Heijke, S A; Russell, W J; Bloch, M B; James, M F
2000-12-01
It has been suggested that the appropriate length of insertion for double-lumen tubes can be estimated by external measurement. This study examined the accuracy of external measurement in estimating the actual length of insertion required in 130 patients. It also examined the relationship between the length inserted and the patient's height in 126 patients and their weight in 125 patients. Although there was a fair correlation between the measured external length and the final inserted length (r = 0.61), the 95% confidence intervals of slope and intercept allowed a large variation and the prediction was too wide to be clinically useful. Height was reasonably well correlated with the final length (r = 0.51) but an equally wide 95% confidence interval rendered it of little clinical value. There was no correlation between weight and final tube length. It is concluded that external measurement alone is not adequate to predict a clinically acceptable position of the double-lumen tube.
Analogies Between Colloidal Sedimentation and Turbulent Convection at High Prandtl Numbers
NASA Technical Reports Server (NTRS)
Tong, P.; Ackerson, B. J.
1999-01-01
A new set of coarse-grained equations of motion is proposed to describe concentration and velocity fluctuations in a dilute sedimenting suspension of non-Brownian particles. With these equations, colloidal sedimentation is found to be analogous to turbulent convection at high Prandtl numbers. Using Kraichnan's mixing-length theory, we obtain scaling relations for the diffusive dissipation length delta(sub theta), the velocity variance delta u, and the concentration variance delta phi. The obtained scaling laws over varying particle radius alpha and volume fraction phi(sub ) are in excellent agreement with the recent experiment by Segre, Herbolzheimer, and Chaikin. The analogy between colloidal sedimentation and turbulent convection gives a simple interpretation for the existence of a velocity cut-off length, which prevents hydrodynamic dispersion coefficients from being divergent. It also provides a coherent framework for the study of sedimentation dynamics in different colloidal systems.
Gobert, Alain P; Al-Greene, Nicole T; Singh, Kshipra; Coburn, Lori A; Sierra, Johanna C; Verriere, Thomas G; Luis, Paula B; Schneider, Claus; Asim, Mohammad; Allaman, Margaret M; Barry, Daniel P; Cleveland, John L; Destefano Shields, Christina E; Casero, Robert A; Washington, M Kay; Piazuelo, M Blanca; Wilson, Keith T
2018-01-01
Polyamines have been implicated in numerous biological processes, including inflammation and carcinogenesis. Homeostatic regulation leads to interconversion of the polyamines putrescine and the downstream metabolites spermidine and spermine. The enzyme spermine oxidase (SMOX), which back-converts spermine to spermidine, contributes to regulation of polyamine levels, but can also have other effects. We have implicated SMOX in gastric inflammation and carcinogenesis due to infection by the pathogen Helicobacter pylori . In addition, we reported that SMOX can be upregulated in humans with inflammatory bowel disease. Herein, we utilized Smox -deficient mice to examine the role of SMOX in two murine colitis models, Citrobacter rodentium infection and dextran sulfate sodium (DSS)-induced epithelial injury. In C. rodentium -infected wild-type (WT) mice, there were marked increases in colon weight/length and histologic injury, with mucosal hyperplasia and inflammatory cell infiltration; these changes were ameliorated in Smox -/- mice. In contrast, with DSS, Smox -/- mice exhibited substantial mortality, and increased body weight loss, colon weight/length, and histologic damage. In C. rodentium -infected WT mice, there were increased colonic levels of the chemokines CCL2, CCL3, CCL4, CXCL1, CXCL2, and CXCL10, and the cytokines IL-6, TNF-α, CSF3, IFN-γ, and IL-17; each were downregulated in Smox -/- mice. In DSS colitis, increased levels of IL-6, CSF3, and IL-17 were further increased in Smox -/- mice. In both models, putrescine and spermidine were increased in WT mice; in Smox -/- mice, the main effect was decreased spermidine and spermidine/spermine ratio. With C. rodentium , polyamine levels correlated with histologic injury, while with DSS, spermidine was inversely correlated with injury. Our studies indicate that SMOX has immunomodulatory effects in experimental colitis via polyamine flux. Thus, SMOX contributes to the immunopathogenesis of C. rodentium infection, but is protective in DSS colitis, indicating the divergent effects of spermidine.
Gobert, Alain P.; Al-Greene, Nicole T.; Singh, Kshipra; Coburn, Lori A.; Sierra, Johanna C.; Verriere, Thomas G.; Luis, Paula B.; Schneider, Claus; Asim, Mohammad; Allaman, Margaret M.; Barry, Daniel P.; Cleveland, John L.; Destefano Shields, Christina E.; Casero, Robert A.; Washington, M. Kay; Piazuelo, M. Blanca; Wilson, Keith T.
2018-01-01
Polyamines have been implicated in numerous biological processes, including inflammation and carcinogenesis. Homeostatic regulation leads to interconversion of the polyamines putrescine and the downstream metabolites spermidine and spermine. The enzyme spermine oxidase (SMOX), which back-converts spermine to spermidine, contributes to regulation of polyamine levels, but can also have other effects. We have implicated SMOX in gastric inflammation and carcinogenesis due to infection by the pathogen Helicobacter pylori. In addition, we reported that SMOX can be upregulated in humans with inflammatory bowel disease. Herein, we utilized Smox-deficient mice to examine the role of SMOX in two murine colitis models, Citrobacter rodentium infection and dextran sulfate sodium (DSS)-induced epithelial injury. In C. rodentium-infected wild-type (WT) mice, there were marked increases in colon weight/length and histologic injury, with mucosal hyperplasia and inflammatory cell infiltration; these changes were ameliorated in Smox−/− mice. In contrast, with DSS, Smox−/− mice exhibited substantial mortality, and increased body weight loss, colon weight/length, and histologic damage. In C. rodentium-infected WT mice, there were increased colonic levels of the chemokines CCL2, CCL3, CCL4, CXCL1, CXCL2, and CXCL10, and the cytokines IL-6, TNF-α, CSF3, IFN-γ, and IL-17; each were downregulated in Smox−/− mice. In DSS colitis, increased levels of IL-6, CSF3, and IL-17 were further increased in Smox−/− mice. In both models, putrescine and spermidine were increased in WT mice; in Smox−/− mice, the main effect was decreased spermidine and spermidine/spermine ratio. With C. rodentium, polyamine levels correlated with histologic injury, while with DSS, spermidine was inversely correlated with injury. Our studies indicate that SMOX has immunomodulatory effects in experimental colitis via polyamine flux. Thus, SMOX contributes to the immunopathogenesis of C. rodentium infection, but is protective in DSS colitis, indicating the divergent effects of spermidine.
ERIC Educational Resources Information Center
Rutter, Barbara; Kroger, Soren; Stark, Rudolf; Schweckendiek, Jan; Windmann, Sabine; Hermann, Christiane; Abraham, Anna
2012-01-01
Creativity has emerged in the focus of neurocognitive research in the past decade. However, a heterogeneous pattern of brain areas has been implicated as underpinning the neural correlates of creativity. One explanation for these divergent findings lies in the fact that creativity is not usually investigated in terms of its many underlying…
Mito-nuclear discord in six congeneric lineages of Holarctic ducks (genus Anas).
Peters, Jeffrey L; Winker, Kevin; Millam, Kendra C; Lavretsky, Philip; Kulikova, Irina; Wilson, Robert E; Zhuravlev, Yuri N; McCracken, Kevin G
2014-06-01
Many species have Holarctic distributions that extend across Europe, Asia and North America. Most genetics research on these species has examined only mitochondrial (mt) DNA, which has revealed wide variance in divergence between Old World (OW) and New World (NW) populations, ranging from shallow, unstructured genealogies to deeply divergent lineages. In this study, we sequenced 20 nuclear introns to test for concordant patterns of OW-NW differentiation between mtDNA and nuclear (nu) DNA for six lineages of Holarctic ducks (genus Anas). Genetic differentiation for both marker types varied widely among these lineages (idiosyncratic population histories), but mtDNA and nuDNA divergence within lineages was not significantly correlated. Moreover, compared with the association between mtDNA and nuDNA divergence observed among different species, OW-NW nuDNA differentiation was generally lower than mtDNA divergence, at least for lineages with deeply divergent mtDNA. Furthermore, coalescent estimates indicated significantly higher rates of gene flow for nuDNA than mtDNA for four of the six lineages. Thus, Holarctic ducks show prominent mito-nuclear discord between OW and NW populations, and we reject differences in sorting rates as the sole cause of the within-species discord. Male-mediated intercontinental gene flow is likely a leading contributor to this discord, although selection could also cause increased mtDNA divergence relative to weak nuDNA differentiation. The population genetics of these ducks contribute to growing evidence that mtDNA can be an unreliable indicator of stage of speciation and that more holistic approaches are needed for species delimitation. © 2014 John Wiley & Sons Ltd.
Herath, B; Dochtermann, N A; Johnson, J I; Leonard, Z; Bowsher, J H
2015-12-01
Many exaggerated and novel traits are strongly influenced by sexual selection. Although sexual selection is a powerful evolutionary force, underlying genetic interactions can constrain evolutionary outcomes. The relative strength of selection vs. constraint has been a matter of debate for the evolution of male abdominal appendages in sepsid flies. These abdominal appendages are involved in courtship and mating, but their function has not been directly tested. We performed mate choice experiments to determine whether sexual selection acts on abdominal appendages in the sepsid Themira biloba. We tested whether appendage bristle length influenced successful insemination by surgically trimming the bristles. Females paired with males that had shortened bristles laid only unfertilized eggs, indicating that long bristles are necessary for successful insemination. We also tested whether the evolution of bristle length was constrained by phenotypic correlations with other traits. Analyses of phenotypic covariation indicated that bristle length was highly correlated with other abdominal appendage traits, but was not correlated with abdominal sternite size. Thus, abdominal appendages are not exaggerated traits like many sexual ornaments, but vary independently from body size. At the same time, strong correlations between bristle length and appendage length suggest that selection on bristle length is likely to result in a correlated increase in appendage length. Bristle length is under sexual selection in T. biloba and has the potential to evolve independently from abdomen size. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.
Skarzynski, Piotr H; Raj-Koziak, Danuta; J Rajchel, Joanna; Pilka, Adam; Wlodarczyk, Andrzej W; Skarzynski, Henryk
2017-10-01
To describe how the Tinnitus Handicap Inventory (THI) was translated into Polish (THI-POL) and to present psychometric data on how well it performed in a clinical population of tinnitus sufferers. The original version of THI was adapted into Polish. The reliability of THI-POL was investigated using test-retest, Cronbach's alpha, endorsement rate and item-total correlation. Construct validity and convergent validity were also assessed based on confirmatory factor analysis, inter-item correlation and Pearson product-moment correlations using subscale A (Tinnitus) of the Tinnitus and Hearing Survey (THS-POL); divergent validity was checked using subscale B (Hearing) of THS-POL. A group of 167 adults filled in THI-POL twice over their three-day hospitalisation period. Test-retest reliability for the total THI-POL scores was strong (r = 0.91). Cronbach's alpha coefficient for the total score was high (r = 0.95), confirming the questionnaire's stability. Confirmatory factor analysis (CFA) and inter-item correlation did not confirm the three-factor model. Convergent validity from the Tinnitus subscale of THS showed a positive strong (r = 0.75) correlation. Divergent validity showed only a moderate correlation. All analyses were statistically significant (p < 0.01). THI-POL is a valid and reliable self-administered tool, which allows the overall tinnitus handicap of Polish-speaking patients to be effectively assessed.
Herrera, Carlos M; Bazaga, Pilar
2016-06-01
Little is known on the potential of ecological disturbance to cause genetic and epigenetic changes in plant populations. We take advantage of a long-term field experiment initiated in 1986 to study the demography of the shrub Lavandula latifolia , and compare genetic and epigenetic characteristics of plants in two adjacent subplots, one experimentally disturbed and one left undisturbed, 20 years after disturbance. Experimental setup was comparable to an unreplicated 'Before-After-Control-Impact' (BACI) design where a single pair of perturbed and control areas were compared. When sampled in 2005, plants in the two subplots had roughly similar ages, but they had established in contrasting environments: dense conspecific population ('Undisturbed' subpopulation) versus open area with all conspecifics removed ('Disturbed' subpopulation). Plants were characterized genetically and epigenetically using amplified fragment length polymorphism (AFLP) and two classes of methylation-sensitive AFLP (MSAP) markers. Subpopulations were similar in genetic diversity but differed in epigenetic diversity and multilocus genetic and epigenetic characteristics. Epigenetic divergence between subpopulations was statistically unrelated to genetic divergence. Bayesian clustering revealed an abrupt linear boundary between subpopulations closely coincident with the arbitrary demarcation line between subplots drawn 20 years back, which supports that genetic and epigenetic divergence between subpopulations was caused by artificial disturbance. There was significant fine-scale spatial structuring of MSAP markers in both subpopulations, which in the Undisturbed one was indistinguishable from that of AFLP markers. Genetic differences between subpopulations could be explained by divergent selection alone, while the concerted action of divergent selection and disturbance-driven appearance of new methylation variants in the Disturbed subpopulation is proposed to explain epigenetic differences. This study provides the first empirical evidence to date suggesting that relatively mild disturbances could leave genetic and epigenetic signatures on the next adult generation of long-lived plants.
Stange, Madlen; Sánchez-Villagra, Marcelo R; Salzburger, Walter; Matschiner, Michael
2018-01-27
The closure of the Isthmus of Panama has long been considered to be one of the best defined biogeographic calibration points for molecular divergence-time estimation. However, geological and biological evidence has recently cast doubt on the presumed timing of the initial isthmus closure around 3 Ma but has instead suggested the existence of temporary land bridges as early as the Middle or Late Miocene. The biological evidence supporting these earlier land bridges was based either on only few molecular markers or on concatenation of genome-wide sequence data, an approach that is known to result in potentially misleading branch lengths and divergence times, which could compromise the reliability of this evidence. To allow divergence-time estimation with genomic data using the more appropriate multi-species coalescent model, we here develop a new method combining the SNP-based Bayesian species-tree inference of the software SNAPP with a molecular clock model that can be calibrated with fossil or biogeographic constraints. We validate our approach with simulations and use our method to reanalyze genomic data of Neotropical army ants (Dorylinae) that previously supported divergence times of Central and South American populations before the isthmus closure around 3 Ma. Our reanalysis with the multi-species coalescent model shifts all of these divergence times to ages younger than 3 Ma, suggesting that the older estimates supporting the earlier existence of temporary land bridges were artifacts resulting at least partially from the use of concatenation. We then apply our method to a new RAD-sequencing data set of Neotropical sea catfishes (Ariidae) and calibrate their species tree with extensive information from the fossil record. We identify a series of divergences between groups of Caribbean and Pacific sea catfishes around 10 Ma, indicating that processes related to the emergence of the isthmus led to vicariant speciation already in the Late Miocene, millions of years before the final isthmus closure. © The Author(s) 2018. Published by Oxford University Press, on behalf of the Society of Systematic Biologists.
Jaros, Ursula; Tribsch, Andreas; Comes, Hans Peter
2018-02-12
Disentangling the relative roles of past fragmentation (vicariance), colonization (dispersal) and post-divergence gene flow in the genetic divergence of continental island organisms remains a formidable challenge. Amplified fragment length polymorphisms (AFLPs) were used to (1) gain further insights into the biogeographical processes underlying the Pleistocene diversification of the Aegean Nigella arvensis complex; (2) evaluate the role of potential key factors driving patterns of population genetic variability (mating system, geographical isolation and historical contingencies); and (3) test the robustness of conclusions previously drawn from chloroplast (cp) DNA. Genetic diversity was analysed for 235 AFLP markers from 48 populations (497 individuals) representing 11 taxa of the complex using population genetic methods and Bayesian assignment tests. Most designated taxa are identifiable as genetically distinct units. Both fragmentation and dispersal-driven diversification processes occurred at different geological time scales, from Early to Late Pleistocene, specifically (1) sea barrier-induced vicariant speciation in the Cyclades, the Western Cretan Strait and Ikaria; and (2) bi-regional colonizations of the 'Southern Aegean Island Arc' from the Western vs. Eastern Aegean mainland, followed by allopatric divergences in Crete vs. Rhodos and Karpathos/Kasos. Outcrossing island taxa experienced drift-related demographic processes that are magnified in the two insular selfing species. Population genetic differentiation on the mainland seems largely driven by dispersal limitation, while in the Central Aegean it may still be influenced by historical events (island fragmentation and sporadic long-distance colonization). The biogeographical history of Aegean Nigella is more complex than expected for a strictly allopatric vicariant model of divergence. Nonetheless, the major phylogeographical boundaries of this radiation are largely congruent with the geography and history of islands, with little evidence for ongoing gene exchange between divergent taxa. The present results emphasize the need to investigate further biological and landscape features and contemporary vs. historical processes in driving population divergence and taxon diversification in Aegean plant radiations. © The Author(s) 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Correlation between Angle Kappa and Ocular Biometry in Koreans
Choi, Se Rang
2013-01-01
Purpose To investigate normative angle kappa data and to examine whether correlations exist between angle kappa and ocular biometric measurements (e.g., refractive error, axial length) and demographic features in Koreans. Methods Data from 436 eyes (213 males and 223 females) were analyzed in this study. The angle kappa was measured using Orbscan II. We used ocular biometric measurements, including refractive spherical equivalent, interpupillary distance and axial length, to investigate the correlations between angle kappa and ocular biometry. The IOL Master ver. 5.02 was used to obtain axial length. Results The mean patient age was 57.5 ± 12.0 years in males and 59.4 ± 12.4 years in females (p = 0.11). Angle kappa averaged 4.70 ± 2.70 degrees in men and 4.89 ± 2.14 degrees in women (p = 0.48). Axial length and spherical equivalent were correlated with angle kappa (r = -0.342 and r = 0.197, respectively). The correlation between axial length and spherical equivalent had a negative correlation (r = -0.540, p < 0.001). Conclusions Angle kappa increased with spherical equivalent and age. Thus, careful manipulation should be considered in older and hyperopic patients when planning refractive or strabismus surgery. PMID:24311927
Amazonian waters harbour an ancient freshwater Ceratomyxa lineage (Cnidaria: Myxosporea).
Zatti, Suellen A; Atkinson, Stephen D; Bartholomew, Jerri L; Maia, Antônio A M; Adriano, Edson A
2017-05-01
A new species of Ceratomyxa parasitizing the gall bladder of Cichla monoculus, an endemic cichlid fish from the Amazon basin in Brazil, is described using morphological and molecular data. In the bile, both immature and mature myxospores were found floating freely or inside elongated plasmodia: length 304 (196-402) μm and width 35.7 (18.3-55.1) μm. Mature spores were elongated and only slightly crescent-shaped in frontal view with a prominent sutural line between two valve cells, which had rounded ends. Measurements of formalin-fixed myxospores: length 6.3±0.6 (5.1-7.5) μm, thickness 41.2±2.9 (37.1-47.6) μm, posterior angle 147°. Lateral projections slightly asymmetric, with lengths 19.3±1.4μm and 20.5±1.3μm. Two ovoid, equal size polar capsules, length 2.6±0.3 (2-3.3) μm, width 2.5±0.4 (1.8-3.7) μm, located adjacent to the suture and containing polar filaments with 3-4 turns. The small subunit ribosomal DNA sequence of 1605 nt was no more than 97% similar to any other sequence in GenBank, and together with the host, locality and morphometric data, supports diagnosis of the parasite as a new species, Ceratomyxa brasiliensis n. sp. Maximum parsimony and maximum likelihood analyses showed that C. brasiliensis n. sp. clustered within the marine Ceratomyxa clade, but was in a basally divergent lineage with two other freshwater species from the Amazon basin. Our results are consistent with previous studies that show Ceratomyxa species can cluster according to both geography and host ecotype, and that the few known freshwater species diverged from marine cousins relatively early in evolution of the genus, possibly driven by marine incursions into riverine environments. Copyright © 2017 Elsevier B.V. All rights reserved.
Quantum Monte Carlo study of spin correlations in the one-dimensional Hubbard model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandvik, A.W.; Scalapino, D.J.; Singh, C.
1993-07-15
The one-dimensional Hubbard model is studied at and close to half-filling using a generalization of Handscomb's quantum Monte Carlo method. Results for spin-correlation functions and susceptibilities are presented for systems of up to 128 sites. The spin-correlation function at low temperature is well described by a recently introduced formula relating the correlation function of a finite periodic system to the corresponding [ital T]=0 correlation function of the infinite system. For the [ital T][r arrow]0 divergence of the [ital q]=2[ital k][sub [ital F
Zhong, Suyu; He, Yong; Gong, Gaolang
2015-05-01
Using diffusion MRI, a number of studies have investigated the properties of whole-brain white matter (WM) networks with differing network construction methods (node/edge definition). However, how the construction methods affect individual differences of WM networks and, particularly, if distinct methods can provide convergent or divergent patterns of individual differences remain largely unknown. Here, we applied 10 frequently used methods to construct whole-brain WM networks in a healthy young adult population (57 subjects), which involves two node definitions (low-resolution and high-resolution) and five edge definitions (binary, FA weighted, fiber-density weighted, length-corrected fiber-density weighted, and connectivity-probability weighted). For these WM networks, individual differences were systematically analyzed in three network aspects: (1) a spatial pattern of WM connections, (2) a spatial pattern of nodal efficiency, and (3) network global and local efficiencies. Intriguingly, we found that some of the network construction methods converged in terms of individual difference patterns, but diverged with other methods. Furthermore, the convergence/divergence between methods differed among network properties that were adopted to assess individual differences. Particularly, high-resolution WM networks with differing edge definitions showed convergent individual differences in the spatial pattern of both WM connections and nodal efficiency. For the network global and local efficiencies, low-resolution and high-resolution WM networks for most edge definitions consistently exhibited a highly convergent pattern in individual differences. Finally, the test-retest analysis revealed a decent temporal reproducibility for the patterns of between-method convergence/divergence. Together, the results of the present study demonstrated a measure-dependent effect of network construction methods on the individual difference of WM network properties. © 2015 Wiley Periodicals, Inc.
STAUFFER, TIMOTHY W.; HATLE, JOHN D.; WHITMAN, DOUGLAS W.
2013-01-01
We compared egg survivorship and egg development time at different soil moistures for two closely related grasshopper species from divergent habitats: marsh-inhabiting Romalea microptera (Beauvois) versus desert-inhabiting Taeniopoda eques (Burmeister). These two species can interbreed and produce viable offspring. In nature, both species have a similar 8–9 mo subterranean egg stage, but their soil environments differ dramatically in water content. We predicted that the eggs of the two species would exhibit differential survivorship and development times under different moisture levels. Our laboratory results show that the eggs of both species survived a wide range of soil moistures (≈ 0.5 to 90%), maintained for 3 mo. However, the eggs of the marsh grasshopper, R. microptera, better tolerated the highest soil moistures (95 and 100%), whereas the eggs of the desert species, T. eques, better tolerated the lowest soil moistures (0.0 and 0.1%). Sixty-five percent of marsh-inhabiting R. microptera eggs, but no desert T. eques eggs, survived 3 mo submersion under water. In contrast, 49% of desert T. eques eggs, but only 3.5% of R. microptera eggs, survived after being laid into oven-dried sand and then maintained with no additional water until hatch. In the laboratory at 26°C, the two species differed significantly in the mean length of the oviposition-to-hatch interval: 176 d for R. microptera versus 237 d for T. eques. These divergent traits presumably benefit these insects in their divergent habitats. Our results suggest the evolution of physiological divergence that is consistent with adaptations to local environments. PMID:22182625
[Ultrasonographic evaluation of the uterine cervix length remaining after LOOP-excision].
Robert, A-L; Nicolas, F; Lavoué, V; Henno, S; Mesbah, H; Porée, P; Levêque, J
2014-04-01
To assess whether there is a correlation between the length of a conization specimen and the length of the cervix measured by vaginal ultrasonography after the operation Prospective observational study including patients less than 45 years with measurement of cervical length before and the day of the conization, and measuring the histological length of the specimen. Among the 40 patients enrolled, the average ultrasound measurements before conization was 26.9 mm (± 4.9 mm) against 18.1mm (± 4.4mm) after conization with a mean difference of 8.8mm (± 2.4mm) (difference statistically significant P<.0001). The extent of histological specimen was 9 mm (± 2.2mm) on average. A correlation between ultrasound and histological measurements with a correlation coefficient R=0.85 was found statistically significant (P<0.0001). Moreover, the rate of cervix length remove by loop-excision in our series is 33% (± 8.5%). A good correlation between the measurements of the specimen and the cervical ultrasound length before and after conization was found, as a significant reduction in cervical length after conization. The precise length of the specimen should be known in case of pregnancy and the prevention of prematurity due to conization rests on selected indications and efficient surgical technique. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Evolutionary divergency of giant tortoises in Gal?pagos
Fritts, T.H.
1984-01-01
The giant tortoises in the Galapagos Archipelago diverge considerably in size, and in shape and other carapace characteristics. The saddleback morphotype is known only from insular faunas lacking large terrestrial predators (i.e. Galapagos and Mauritius) and in Galapagos is associated with xeric habitats where vertical feeding range and vertical reach in agonistic encounters are adaptive. The large domed morphotype is associated with relatively cool, mesic habitats where intraspecific competition for food and other resources may be less intense than in xeric habitats. Other external characteristics that differ between tortoise populations are also correlated with ecological variation. Tortoises have radiated into a mosaic of ecological conditions in the Galapagos but critical data are lacking on the role of genetic and environmental controls on phenotypic variation. Morphological divergence in tortoises is potentially a better indicator of present ecological conditions than of evolutionary relationships.
Reck-Kortmann, Maikel; Silva-Arias, Gustavo Adolfo; Segatto, Ana Lúcia Anversa; Mäder, Geraldo; Bonatto, Sandro Luis; de Freitas, Loreta Brandão
2014-12-01
The phylogeny of Petunia species has been difficult to resolve, primarily due to the recent diversification of the genus. Several studies have included molecular data in phylogenetic reconstructions of this genus, but all of them have failed to include all taxa and/or analyzed few genetic markers. In the present study, we employed the most inclusive genetic and taxonomic datasets for the genus, aiming to reconstruct the evolutionary history of Petunia based on molecular phylogeny, biogeographic distribution, and character evolution. We included all 20 Petunia morphological species or subspecies in these analyses. Based on nine nuclear and five plastid DNA markers, our phylogenetic analysis reinforces the monophyly of the genus Petunia and supports the hypothesis that the basal divergence is more related to the differentiation of corolla tube length, whereas the geographic distribution of species is more related to divergences within these main clades. Ancestral area reconstructions suggest the Pampas region as the area of origin and earliest divergence in Petunia. The state reconstructions suggest that the ancestor of Petunia might have had a short corolla tube and a bee pollination floral syndrome. Copyright © 2014 Elsevier Inc. All rights reserved.
Transcutaneous vagus nerve stimulation (tVNS) enhances divergent thinking.
Colzato, Lorenza S; Ritter, Simone M; Steenbergen, Laura
2018-03-01
Creativity is one of the most important cognitive skills in our complex and fast-changing world. Previous correlative evidence showed that gamma-aminobutyric acid (GABA) is involved in divergent but not convergent thinking. In the current study, a placebo/sham-controlled, randomized between-group design was used to test a causal relation between vagus nerve and creativity. We employed transcutaneous vagus nerve stimulation (tVNS), a novel non-invasive brain stimulation technique to stimulate afferent fibers of the vagus nerve and speculated to increase GABA levels, in 80 healthy young volunteers. Creative performance was assessed in terms of divergent thinking (Alternate Uses Task) and convergent thinking tasks (Remote Associates Test, Creative Problem Solving Task, Idea Selection Task). Results demonstrate active tVNS, compared to sham stimulation, enhanced divergent thinking. Bayesian analysis reported the data to be inconclusive regarding a possible effect of tVNS on convergent thinking. Therefore, our findings corroborate the idea that the vagus nerve is causally involved in creative performance. Even thought we did not directly measure GABA levels, our results suggest that GABA (likely to be increased in active tVNS condition) supports the ability to select among competing options in high selection demand (divergent thinking) but not in low selection demand (convergent thinking). Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Performance of Several Conical Convergent-Divergent Rocket-Type Exhaust Nozzles
NASA Technical Reports Server (NTRS)
Campbell, C. E.; Farley, J. M.
1960-01-01
An investigation was conducted to obtain nozzle performance data with relatively large-scale models at pressure ratios as high as 120. Conical convergent-divergent nozzles with divergence angles alpha of 15, 25, and 29 deg. were each tested at area ratios of approximately 10, 25, and 40. Heated air (1200 F) was supplied at the nozzle inlet at pressures up to 145 pounds per square inch absolute and was exhausted into quiescent air at pressures as low as 1.2 pounds per square inch absolute. Thrust ratios for all nozzle configurations are presented over the range of pressure ratios attainable and were extrapolated when possible to design pressure ratio and beyond. Design thrust ratios decreased with increasing nozzle divergence angle according to the trend predicted by the (1 + cos alpha)/2 parameter. Decreasing the nozzle divergence angle resulted in sizable increases in thrust ratio for a given surface-area ratio (nozzle weight), particularly at low nozzle pressure ratios. Correlations of the nozzle static pressure at separation and of the average static pressure downstream of separation with various nozzle parameters permitted the calculation of thrust in the separated-flow region from unseparated static-pressure distributions. Thrust ratios calculated by this method agreed with measured values within about 1 percent.
Adaptation to local ultraviolet radiation conditions among neighbouring Daphnia populations
Miner, Brooks E.; Kerr, Benjamin
2011-01-01
Understanding the historical processes that generated current patterns of phenotypic diversity in nature is particularly challenging in subdivided populations. Populations often exhibit heritable genetic differences that correlate with environmental variables, but the non-independence among neighbouring populations complicates statistical inference of adaptation. To understand the relative influence of adaptive and non-adaptive processes in generating phenotypes requires joint evaluation of genetic and phenotypic divergence in an integrated and statistically appropriate analysis. We investigated phenotypic divergence, population-genetic structure and potential fitness trade-offs in populations of Daphnia melanica inhabiting neighbouring subalpine ponds of widely differing transparency to ultraviolet radiation (UVR). Using a combination of experimental, population-genetic and statistical techniques, we separated the effects of shared population ancestry and environmental variables in predicting phenotypic divergence among populations. We found that native water transparency significantly predicted divergence in phenotypes among populations even after accounting for significant population structure. This result demonstrates that environmental factors such as UVR can at least partially account for phenotypic divergence. However, a lack of evidence for a hypothesized trade-off between UVR tolerance and growth rates in the absence of UVR prevents us from ruling out the possibility that non-adaptive processes are partially responsible for phenotypic differentiation in this system. PMID:20943691
Sexual selection and the evolution of genital shape and complexity in water striders.
Rowe, Locke; Arnqvist, Göran
2012-01-01
Animal genitalia show two striking but incompletely understood evolutionary trends: a great evolutionary divergence in the shape of genitalic structures, and characteristic structural complexity. Both features are thought to result from sexual selection, but explicit comparative tests are hampered by the fact that it is difficult to quantify both morphological complexity and divergence in shape. We undertake a comparative study of multiple nongenitalic and male genital traits in a clade of 15 water strider species to quantify complexity and shape divergence. We show that genital structures are more complex and their shape more divergent among species than nongenital traits. Further, intromittent genital traits are more complex and have evolved more divergently than nonintromittent genital traits. More importantly, shape and complexity of nonintromittent genital traits show correlated evolution with indices of premating sexual selection and intromittent genital traits with postmating sexual selection, suggesting that the evolution of different components of genital morphology are shaped independently by distinct forms of sexual selection. Our quantitative results provide direct comparative support for the hypothesis that sexual selection is associated with morphological complexity in genitalic traits and highlight the importance of quantifying morphological shape and complexity, rather than size in studies of genital evolution. © 2011 The Author(s). Evolution © 2011 The Society for the Study of Evolution.
Angle amplifying optics using plane and ellipsoidal reflectors
Glass, Alexander J.
1977-01-01
An optical system for providing a wide angle input beam into ellipsoidal laser fusion target illumination systems. The optical system comprises one or more pairs of centrally apertured plane and ellipsoidal mirrors disposed to accept the light input from a conventional lens of modest focal length and thickness, to increase the angular divergence thereof to a value equivalent to that of fast lenses, and to direct the light into the ellipsoidal target illumination system.
Diffusion in biased turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vlad, M.; Spineanu, F.; Misguich, J. H.
2001-06-01
Particle transport in two-dimensional divergence-free stochastic velocity fields with constant average is studied. Analytical expressions for the Lagrangian velocity correlation and for the time-dependent diffusion coefficients are obtained. They apply to stationary and homogeneous Gaussian velocity fields.
Strategies for improving approximate Bayesian computation tests for synchronous diversification.
Overcast, Isaac; Bagley, Justin C; Hickerson, Michael J
2017-08-24
Estimating the variability in isolation times across co-distributed taxon pairs that may have experienced the same allopatric isolating mechanism is a core goal of comparative phylogeography. The use of hierarchical Approximate Bayesian Computation (ABC) and coalescent models to infer temporal dynamics of lineage co-diversification has been a contentious topic in recent years. Key issues that remain unresolved include the choice of an appropriate prior on the number of co-divergence events (Ψ), as well as the optimal strategies for data summarization. Through simulation-based cross validation we explore the impact of the strategy for sorting summary statistics and the choice of prior on Ψ on the estimation of co-divergence variability. We also introduce a new setting (β) that can potentially improve estimation of Ψ by enforcing a minimal temporal difference between pulses of co-divergence. We apply this new method to three empirical datasets: one dataset each of co-distributed taxon pairs of Panamanian frogs and freshwater fishes, and a large set of Neotropical butterfly sister-taxon pairs. We demonstrate that the choice of prior on Ψ has little impact on inference, but that sorting summary statistics yields substantially more reliable estimates of co-divergence variability despite violations of assumptions about exchangeability. We find the implementation of β improves estimation of Ψ, with improvement being most dramatic given larger numbers of taxon pairs. We find equivocal support for synchronous co-divergence for both of the Panamanian groups, but we find considerable support for asynchronous divergence among the Neotropical butterflies. Our simulation experiments demonstrate that using sorted summary statistics results in improved estimates of the variability in divergence times, whereas the choice of hyperprior on Ψ has negligible effect. Additionally, we demonstrate that estimating the number of pulses of co-divergence across co-distributed taxon-pairs is improved by applying a flexible buffering regime over divergence times. This improves the correlation between Ψ and the true variability in isolation times and allows for more meaningful interpretation of this hyperparameter. This will allow for more accurate identification of the number of temporally distinct pulses of co-divergence that generated the diversification pattern of a given regional assemblage of sister-taxon-pairs.
Neural correlates of the divergence of instrumental probability distributions.
Liljeholm, Mimi; Wang, Shuo; Zhang, June; O'Doherty, John P
2013-07-24
Flexible action selection requires knowledge about how alternative actions impact the environment: a "cognitive map" of instrumental contingencies. Reinforcement learning theories formalize this map as a set of stochastic relationships between actions and states, such that for any given action considered in a current state, a probability distribution is specified over possible outcome states. Here, we show that activity in the human inferior parietal lobule correlates with the divergence of such outcome distributions-a measure that reflects whether discrimination between alternative actions increases the controllability of the future-and, further, that this effect is dissociable from those of other information theoretic and motivational variables, such as outcome entropy, action values, and outcome utilities. Our results suggest that, although ultimately combined with reward estimates to generate action values, outcome probability distributions associated with alternative actions may be contrasted independently of valence computations, to narrow the scope of the action selection problem.
The Multidimensional Loss Scale: validating a cross-cultural instrument for measuring loss.
Vromans, Lyn; Schweitzer, Robert D; Brough, Mark
2012-04-01
The Multidimensional Loss Scale (MLS) represents the first instrument designed specifically to index Experience of Loss Events and Loss Distress across multiple domains (cultural, social, material, and intrapersonal) relevant to refugee settlement. Recently settled Burmese adult refugees (N = 70) completed a questionnaire battery, including MLS items. Analyses explored MLS internal consistency, convergent and divergent validity, and factor structure. Cronbach alphas indicated satisfactory internal consistency for Experience of Loss Events (0.85) and Loss Distress (0.92), reflecting a unitary construct of multidimensional loss. Loss Distress did not correlate with depression or anxiety symptoms and correlated moderately with interpersonal grief and trauma symptoms, supporting divergent and convergent validity. Factor analysis provided preliminary support for a five-factor model: Loss of Symbolic Self, Loss of Interdependence, Loss of Home, Interpersonal Loss, and Loss of Intrapersonal Integrity. Received well by participants, the new scale shows promise for application in future research and practice.
Chan, Yvonne H.; Venev, Sergey V.; Zeldovich, Konstantin B.; Matthews, C. Robert
2017-01-01
Sequence divergence of orthologous proteins enables adaptation to environmental stresses and promotes evolution of novel functions. Limits on evolution imposed by constraints on sequence and structure were explored using a model TIM barrel protein, indole-3-glycerol phosphate synthase (IGPS). Fitness effects of point mutations in three phylogenetically divergent IGPS proteins during adaptation to temperature stress were probed by auxotrophic complementation of yeast with prokaryotic, thermophilic IGPS. Analysis of beneficial mutations pointed to an unexpected, long-range allosteric pathway towards the active site of the protein. Significant correlations between the fitness landscapes of distant orthologues implicate both sequence and structure as primary forces in defining the TIM barrel fitness landscape and suggest that fitness landscapes can be translocated in sequence space. Exploration of fitness landscapes in the context of a protein fold provides a strategy for elucidating the sequence-structure-fitness relationships in other common motifs. PMID:28262665
Neural Correlates of the Divergence of Instrumental Probability Distributions
Wang, Shuo; Zhang, June; O'Doherty, John P.
2013-01-01
Flexible action selection requires knowledge about how alternative actions impact the environment: a “cognitive map” of instrumental contingencies. Reinforcement learning theories formalize this map as a set of stochastic relationships between actions and states, such that for any given action considered in a current state, a probability distribution is specified over possible outcome states. Here, we show that activity in the human inferior parietal lobule correlates with the divergence of such outcome distributions–a measure that reflects whether discrimination between alternative actions increases the controllability of the future–and, further, that this effect is dissociable from those of other information theoretic and motivational variables, such as outcome entropy, action values, and outcome utilities. Our results suggest that, although ultimately combined with reward estimates to generate action values, outcome probability distributions associated with alternative actions may be contrasted independently of valence computations, to narrow the scope of the action selection problem. PMID:23884955
A comparison of Kodak Ultraspeed and Ektaspeed Plus dental X-ray films for use in endodontics.
Moule, A J; Wong, A; Monsour, P A; Basford, K E
2001-06-01
The advantage of using a faster film for length determination in endodontic therapy is obvious. However, for such a film to be generally accepted, it must demonstrate comparable diagnostic quality to traditionally used films. The comparative accuracy of canal length determination of Ultraspeed and Ektaspeed Plus dental X-ray films was assessed in maxillary first and second molars; for different canals, for different teeth, for different exposures, and for different examiners (five general dentists and three endodontic specialists). In general, there were no significant differences between films, among examiners, or any interaction between films and exposures. That is, an assessor's ability to estimate lengths was not significantly influenced by the film type or by exposure used. There was a wide divergence in the individual assessor's ability to estimate lengths. Specialists estimated lengths more accurately than general practitioners and estimated lengths more accurately with Ektaspeed Plus film. Length determination in distobuccal and mesiobuccal canals was more accurate than in palatal canals. Most palatal canals were underestimated in length by more than 1mm. The use of file sizes larger in number than size 15 is recommended in these canals. For length determination, Ektaspeed Plus dental X-ray film is as effective as Ultraspeed film. Given the acceptable quality and accuracy of Ektaspeed Plus film, there seems to be no clinical reason to subject patients to greater radiation by using a slower film during endodontic therapy.
Gut microbiota may predict host divergence time during Glires evolution.
Li, Huan; Qu, Jiapeng; Li, Tongtong; Yao, Minjie; Li, Jiaying; Li, Xiangzhen
2017-03-01
The gut microbial communities of animals play key roles in host evolution. However, the possible relationship between gut microbiota and host divergence time remains unknown. Here, we investigated the gut microbiota of eight Glires species (four lagomorph species and four rodent species) distributed throughout the Qinghai-Tibet plateau and Inner Mongolia grassland. Lagomorphs and rodents had distinct gut microbial compositions. Three out of four lagomorph species were dominated by Firmicutes, while rodents were dominated by Bacteroidetes in general. The alpha diversity values (Shannon diversity and evenness) exhibited significant differences between any two species within the lagomorphs, whereas there were no significant differences among rodents. The structure of the gut microbiota showed significant differences between lagomorphs and rodents. In addition, we calculated host phylogeny and divergence times, and used a phylogenetic approach to reconstruct how the animal gut microbiota has diverged from their ancestral species. Some core bacterial genera (e.g. Prevotella and Clostridium) shared by more than nine-tenths of all the Glires individuals associated with plant polysaccharide degradation showed marked changes within lagomorphs. Differences in Glires gut microbiota (based on weighted UniFrac and Bray-Curtis dissimilarity metrics) were positively correlated with host divergence time. Our results thus suggest the gut microbial composition is associated with host phylogeny, and further suggest that dissimilarity of animal gut microbiota may predict host divergence time. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Genetic correlations and sex-specific adaptation in changing environments.
Connallon, Tim; Hall, Matthew D
2016-10-01
Females and males have conflicting evolutionary interests. Selection favors the evolution of different phenotypes within each sex, yet divergence between the sexes is constrained by the shared genetic basis of female and male traits. Current theory predicts that such "sexual antagonism" should be common: manifesting rapidly during the process of adaptation, and slow in its resolution. However, these predictions apply in temporally stable environments. Environmental change has been shown empirically to realign the direction of selection acting on shared traits and thereby alleviate signals of sexually antagonistic selection. Yet there remains no theory for how common sexual antagonism should be in changing environments. Here, we analyze models of sex-specific evolutionary divergence under directional and cyclic environmental change, and consider the impact of genetic correlations on long-run patterns of sex-specific adaptation. We find that environmental change often aligns directional selection between the sexes, even when they have divergent phenotypic optima. Nevertheless, some forms of environmental change generate persistent sexually antagonistic selection that is difficult to resolve. Our results reinforce recent empirical observations that changing environmental conditions alleviate conflict between males and females. They also generate new predictions regarding the scope for sexually antagonistic selection and its resolution in changing environments. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Fuchs, Jérôme; Johnson, Jeff A; Mindell, David P
2015-01-01
Understanding how and why lineages diversify is central to understanding the origins of biological diversity. The avian family Falconidae (caracaras, forest-falcons, falcons) has an uneven distribution of species among multiple well-supported clades, and provides a useful system for testing hypotheses about diversification rate and correlation with environmental changes. We analyzed eight independent loci for 1-7 individuals from each of the 64 currently recognized Falconidae species, together with two fossil falconid temporal calibrations, to assess phylogeny, absolute divergence times and potential shifts in diversification rate. Our analyses supported similar diversification ages in the Early to Middle Miocene for the three traditional subfamilies, Herpetotherinae, Polyborinae and Falconinae. We estimated that divergences within the subfamily Falconinae began about 16mya and divergences within the most species-rich genus, Falco, including about 60% of all Falconidae species, began about 7.5mya. We found evidence for a significant increase in diversification rate at the basal phylogenetic node for the genus Falco, and the timing for this rate shift correlates generally with expansion of C4 grasslands beginning around the Miocene/Pliocene transition. Concomitantly, Falco lineages that are distributed primarily in grassland or savannah habitats, as opposed to woodlands, and exhibit migratory, as opposed to sedentary, behavior experienced a higher diversification rate. Published by Elsevier Inc.
Crema, Enrico R; Habu, Junko; Kobayashi, Kenichi; Madella, Marco
2016-01-01
Recent advances in the use of summed probability distribution (SPD) of calibrated 14C dates have opened new possibilities for studying prehistoric demography. The degree of correlation between climate change and population dynamics can now be accurately quantified, and divergences in the demographic history of distinct geographic areas can be statistically assessed. Here we contribute to this research agenda by reconstructing the prehistoric population change of Jomon hunter-gatherers between 7,000 and 3,000 cal BP. We collected 1,433 14C dates from three different regions in Eastern Japan (Kanto, Aomori and Hokkaido) and established that the observed fluctuations in the SPDs were statistically significant. We also introduced a new non-parametric permutation test for comparing multiple sets of SPDs that highlights point of divergences in the population history of different geographic regions. Our analyses indicate a general rise-and-fall pattern shared by the three regions but also some key regional differences during the 6th millennium cal BP. The results confirm some of the patterns suggested by previous archaeological studies based on house and site counts but offer statistical significance and an absolute chronological framework that will enable future studies aiming to establish potential correlation with climatic changes.
Habu, Junko; Kobayashi, Kenichi; Madella, Marco
2016-01-01
Recent advances in the use of summed probability distribution (SPD) of calibrated 14C dates have opened new possibilities for studying prehistoric demography. The degree of correlation between climate change and population dynamics can now be accurately quantified, and divergences in the demographic history of distinct geographic areas can be statistically assessed. Here we contribute to this research agenda by reconstructing the prehistoric population change of Jomon hunter-gatherers between 7,000 and 3,000 cal BP. We collected 1,433 14C dates from three different regions in Eastern Japan (Kanto, Aomori and Hokkaido) and established that the observed fluctuations in the SPDs were statistically significant. We also introduced a new non-parametric permutation test for comparing multiple sets of SPDs that highlights point of divergences in the population history of different geographic regions. Our analyses indicate a general rise-and-fall pattern shared by the three regions but also some key regional differences during the 6th millennium cal BP. The results confirm some of the patterns suggested by previous archaeological studies based on house and site counts but offer statistical significance and an absolute chronological framework that will enable future studies aiming to establish potential correlation with climatic changes. PMID:27128032
Genetic and Genomic Response to Selection for Food Consumption in Drosophila melanogaster
Garlapow, Megan E.; Everett, Logan J.; Zhou, Shanshan; Gearhart, Alexander W.; Fay, Kairsten A.; Huang, Wen; Morozova, Tatiana V.; Arya, Gunjan H.; Turlapati, Lavanya; Armour, Genevieve St.; Hussain, Yasmeen N.; McAdams, Sarah E.; Fochler, Sophia; Mackay, Trudy F. C.
2016-01-01
Food consumption is an essential component of animal fitness; however, excessive food intake in humans increases risk for many diseases. The roles of neuroendocrine feedback loops, food sensing modalities, and physiological state in regulating food intake are well understood, but not the genetic basis underlying variation in food consumption. Here, we applied ten generations of artificial selection for high and low food consumption in replicate populations of Drosophila melanogaster. The phenotypic response to selection was highly asymmetric, with significant responses only for increased food consumption and minimal correlated responses in body mass and composition. We assessed the molecular correlates of selection responses by DNA and RNA sequencing of the selection lines. The high and low selection lines had variants with significantly divergent allele frequencies within or near 2,081 genes and 3,526 differentially expressed genes in one or both sexes. A total of 519 genes were both genetically divergent and differentially expressed between the divergent selection lines. We performed functional analyses of the effects of RNAi suppression of gene expression and induced mutations for 27 of these candidate genes that have human orthologs and the strongest statistical support, and confirmed that 25 (93%) affected the mean and/or variance of food consumption. PMID:27704301
The neural coding of creative idea generation across adolescence and early adulthood
Kleibeuker, Sietske W.; Koolschijn, P. Cédric M. P.; Jolles, Dietsje D.; De Dreu, Carsten K. W.; Crone, Eveline A.
2013-01-01
Creativity is considered key to human prosperity, yet the neurocognitive principles underlying creative performance, and their development, are still poorly understood. To fill this void, we examined the neural correlates of divergent thinking in adults (25–30 years) and adolescents (15–17 years). Participants generated alternative uses (AU) or ordinary characteristics (OC) for common objects while brain activity was assessed using fMRI. Adults outperformed adolescents on the number of solutions for AU and OC trials. Contrasting neural activity for AU with OC trials revealed increased recruitment of left angular gyrus, left supramarginal gyrus, and bilateral middle temporal gyrus in both adults and adolescents. When only trials with multiple AU were included in the analysis, participants showed additional left inferior frontal gyrus (IFG)/middle frontal gyrus (MFG) activation for AU compared to OC trials. Correspondingly, individual difference analyses showed a positive correlation between activations for AU relative to OC trials in left IFG/MFG and divergent thinking performance and activations were more pronounced in adults than in adolescents. Taken together, the results of this study demonstrated that creative idea generation involves recruitment of mainly left lateralized parietal and temporal brain regions. Generating multiple creative ideas, a hallmark of divergent thinking, shows additional lateral PFC activation that is not yet optimized in adolescence. PMID:24416008
Consequence Assessment Methods for Incidents Involving Releases From Liquefied Natural Gas Carriers
2004-05-13
the downwind direction. The Thomas (1965) correlation is used to calculate flame length . Flame tilt is estimated using an empirical correlation from...follows: From TNO (1997) • Thomas (1963) correlation for flame length • For an experimental LNG pool fire of 16.8-m diameter, a mass burning flux of...m, flame length ranged from 50 to 78 m, and tilt angle from 27 to 35 degrees From Rew (1996) • Work included a review of recent developments in
Penny, D; Hasegawa, M; Waddell, P J; Hendy, M D
1999-03-01
We explore the tree of mammalian mtDNA sequences, using particularly the LogDet transform on amino acid sequences, the distance Hadamard transform, and the Closest Tree selection criterion. The amino acid composition of different species show significant differences, even within mammals. After compensating for these differences, nearest-neighbor bootstrap results suggest that the tree is locally stable, though a few groups show slightly greater rearrangements when a large proportion of the constant sites are removed. Many parts of the trees we obtain agree with those on published protein ML trees. Interesting results include a preference for rodent monophyly. The detection of a few alternative signals to those on the optimal tree were obtained using the distance Hadamard transform (with results expressed as a Lento plot). One rearrangement suggested was the interchange of the position of primates and rodents on the optimal tree. The basic stability of the tree, combined with two calibration points (whale/cow and horse/rhinoceros), together with a distant secondary calibration from the mammal/bird divergence, allows inferences of the times of divergence of putative clades. Allowing for sampling variances due to finite sequence length, most major divergences amongst lineages leading to modern orders, appear to occur well before the Cretaceous/Tertiary (K/T) boundary. Implications arising from these early divergences are discussed, particularly the possibility of competition between the small dinosaurs and the new mammal clades.
Barik, Suvakanta; Kumar, Ashutosh; Sarkar Das, Shabari; Yadav, Sandeep; Gautam, Vibhav; Singh, Archita; Singh, Sharmila; Sarkar, Ananda K.
2015-01-01
microRNAs (miRNAs), a class of endogenously produced small non-coding RNAs of 20–21 nt length, processed from precursor miRNAs, regulate many developmental processes by negatively regulating the target genes in both animals and plants. The coevolutionary pattern of a miRNA family and their targets underscores its functional conservation or diversification. The miR167 regulates various aspects of plant development in Arabidopsis by targeting ARF6 and ARF8. The evolutionary conservation or divergence of miR167s and their target genes are poorly understood till now. Here we show the evolutionary relationship among 153 MIR167 genes obtained from 33 diverse plant species. We found that out of the 153 of miR167 sequences retrieved from the “miRBase”, 27 have been annotated to be processed from the 3′ end, and have diverged distinctively from the other miR167s produced from 5′ end. Our analysis reveals that gma-miR167h/i and mdm-miR167a are processed from 3′ end and have evolved separately, diverged most resulting in novel targets other than their known ones, and thus led to functional diversification, especially in apple and soybean. We also show that mostly conserved miR167 sequences and their target AUXIN RESPONSE FACTORS (ARFs) have gone through parallel evolution leading to functional diversification among diverse plant species. PMID:26459056
Barik, Suvakanta; Kumar, Ashutosh; Sarkar Das, Shabari; Yadav, Sandeep; Gautam, Vibhav; Singh, Archita; Singh, Sharmila; Sarkar, Ananda K
2015-10-13
microRNAs (miRNAs), a class of endogenously produced small non-coding RNAs of 20-21 nt length, processed from precursor miRNAs, regulate many developmental processes by negatively regulating the target genes in both animals and plants. The coevolutionary pattern of a miRNA family and their targets underscores its functional conservation or diversification. The miR167 regulates various aspects of plant development in Arabidopsis by targeting ARF6 and ARF8. The evolutionary conservation or divergence of miR167s and their target genes are poorly understood till now. Here we show the evolutionary relationship among 153 MIR167 genes obtained from 33 diverse plant species. We found that out of the 153 of miR167 sequences retrieved from the "miRBase", 27 have been annotated to be processed from the 3' end, and have diverged distinctively from the other miR167s produced from 5' end. Our analysis reveals that gma-miR167h/i and mdm-miR167a are processed from 3' end and have evolved separately, diverged most resulting in novel targets other than their known ones, and thus led to functional diversification, especially in apple and soybean. We also show that mostly conserved miR167 sequences and their target AUXIN RESPONSE FACTORS (ARFs) have gone through parallel evolution leading to functional diversification among diverse plant species.
NASA Astrophysics Data System (ADS)
Wang, Weizhou; Zhang, Yu; Ji, Baoming; Tian, Anmin
2011-06-01
The C-Hal (Hal = Cl, Br, or I) bond-length change and the corresponding vibrational frequency shift of the C-Hal stretch upon the C-Hal ⋯Y (Y is the electron donor) halogen bond formation have been determined by using density functional theory computations. Plots of the C-Hal bond-length change versus the corresponding vibrational frequency shift of the C-Hal stretch all give straight lines. The coefficients of determination range from 0.94366 to 0.99219, showing that the correlation between the C-Hal bond-length change and the corresponding frequency shift is very good in the halogen-bonded complexes. The possible effects of vibrational coupling, computational method, and anharmonicity on the bond-length change-frequency shift correlation are discussed in detail.
NASA Astrophysics Data System (ADS)
He, Yuan; Cremer, Dieter
For 30 molecules and two atoms, MP n correlation energies up to n = 6 are computed and used to analyse higher order correlation effects and the initial convergence behaviour of the MP n series. Particularly useful is the analysis of correlation contributions E(n)XY ...( n = 4,5,6; X , Y ,... = S, D, T, Q denoting single, double, triple, and quadruple excitations) in the form of correlation energy spectra. Two classes of system are distinguished, namely class A systems possessing well separated electron pairs and class B systems which are characterized by electron clustering in certain regions of atomic and molecular space. For class A systems, electron pair correlation effects as described by D, Q, DD, DQ, QQ, DDD, etc., contributions are most important, which are stepwise included at MP n with n = 2,... ,6. Class A systems are reasonably described by MP n theory, which is reflected by the fact that convergence of the MP n series is monotonic (but relatively slow) for class A systems. The description of class B systems is difficult since three- and four-electron correlation effects and couplings between two-, three-, and four-electron correlation effects missing for lower order perturbation theory are significant. MP n methods, which do not cover these effects, simulate higher order with lower order correlation effects thus exaggerating the latter, which has to be corrected with increasing n. Consequently, the MP n series oscillates for class B systems at low orders. A possible divergence of the MP n series is mostly a consequence of an unbalanced basis set. For example, diffuse functions added to an unsaturated sp basis lead to an exaggeration of higher order correlation effects, which can cause enhanced oscillations and divergence of the MP n series.
Gain and saturation energy measurements in low pressure longitudinally excited N 2-lasers
NASA Astrophysics Data System (ADS)
Ghoreyshi, S.; Rahimian, K.; Hariri, Akbar
2004-08-01
A flat-plate Blumlein circuit has been used for operating a low pressure longitudinally excited oscillator-amplifier N 2-laser at 14 kV input voltage (LE-LE type). For investigating the effect of the excitation length on the laser performances, various amplifiers made of glass tubes of different lengths ranging from 15.5 to 35 cm with 4 mm inner bore diameters have been used. The measurements have been carried out for the laser parameters: small signal gain, and saturation energy density; and the laser beam divergence. Details of our measurements are presented. The results of our measurements have also been compared with the reported values of laser parameters in TE-TEA and LE N 2-laser configurations.
The influence of ignoring secondary structure on divergence time estimates from ribosomal RNA genes.
Dohrmann, Martin
2014-02-01
Genes coding for ribosomal RNA molecules (rDNA) are among the most popular markers in molecular phylogenetics and evolution. However, coevolution of sites that code for pairing regions (stems) in the RNA secondary structure can make it challenging to obtain accurate results from such loci. While the influence of ignoring secondary structure on multiple sequence alignment and tree topology has been investigated in numerous studies, its effect on molecular divergence time estimates is still poorly known. Here, I investigate this issue in Bayesian Markov Chain Monte Carlo (BMCMC) and penalized likelihood (PL) frameworks, using empirical datasets from dragonflies (Odonata: Anisoptera) and glass sponges (Porifera: Hexactinellida). My results indicate that highly biased inferences under substitution models that ignore secondary structure only occur if maximum-likelihood estimates of branch lengths are used as input to PL dating, whereas in a BMCMC framework and in PL dating based on Bayesian consensus branch lengths, the effect is far less severe. I conclude that accounting for coevolution of paired sites in molecular dating studies is not as important as previously suggested, as long as the estimates are based on Bayesian consensus branch lengths instead of ML point estimates. This finding is especially relevant for studies where computational limitations do not allow the use of secondary-structure specific substitution models, or where accurate consensus structures cannot be predicted. I also found that the magnitude and direction (over- vs. underestimating node ages) of bias in age estimates when secondary structure is ignored was not distributed randomly across the nodes of the phylogenies, a phenomenon that requires further investigation. Copyright © 2013 Elsevier Inc. All rights reserved.
Cusped magnetic field mercury ion thruster. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Beattie, J. R.
1976-01-01
The importance of a uniform current density profile in the exhaust beam of an electrostatic ion thruster is discussed in terms of thrust level and accelerator system lifetime. A residence time approach is used to explain the nonuniform beam current density profile of the divergent magnetic field thruster. Mathematical expressions are derived which relate the thruster discharge power loss, propellant utilization, and double to single ion density ratio to the geometry and plasma properties of the discharge chamber. These relationships are applied to a cylindrical discharge chamber model of the thruster. Experimental results are presented for a wide range of the discharge chamber length. The thruster designed for this investigation was operated with a cusped magnetic field as well as a divergent field geometry, and the cusped field geometry is shown to be superior from the standpoint of beam profile uniformity, performance, and double ion population.
Effect of slow energy releasing on divergent detonation of Insensitive High Explosives
NASA Astrophysics Data System (ADS)
Hu, Xiaomian; Pan, Hao; Huang, Yong; Wu, Zihui
2014-03-01
There exists a slow energy releasing (SER) process in the slow reaction zone located behind the detonation wave due to the carbon cluster in the detonation products of Insensitive High Explosives (IHEs), and the process will affect the divergent detonation wave's propagation and the driving process of the explosives. To study the potential effect, a new artificial burn model including the SER process based on the programmed burn model is proposed in the paper. Quasi-steady analysis of the new model indicates that the nonlinearity of the detonation speed as a function of front curvature owes to the significant change of the reaction rate and the reaction zone length at the sonic state. What's more, in simulating the detonation of IHE JB-9014, the new model including the slow reaction can predict a slower jump-off velocity, in good agreement with the result of the test.
Microfluidic converging/diverging channels optimised for homogeneous extensional deformation.
Zografos, K; Pimenta, F; Alves, M A; Oliveira, M S N
2016-07-01
In this work, we optimise microfluidic converging/diverging geometries in order to produce constant strain-rates along the centreline of the flow, for performing studies under homogeneous extension. The design is examined for both two-dimensional and three-dimensional flows where the effects of aspect ratio and dimensionless contraction length are investigated. Initially, pressure driven flows of Newtonian fluids under creeping flow conditions are considered, which is a reasonable approximation in microfluidics, and the limits of the applicability of the design in terms of Reynolds numbers are investigated. The optimised geometry is then used for studying the flow of viscoelastic fluids and the practical limitations in terms of Weissenberg number are reported. Furthermore, the optimisation strategy is also applied for electro-osmotic driven flows, where the development of a plug-like velocity profile allows for a wider region of homogeneous extensional deformation in the flow field.
Rader, Jonathan A.; Dillon, Michael E.; Chesser, R. Terry; Sabat, Pablo; Martinez del Rio, Carlos
2015-01-01
Cinclodes is an ecologically diverse genus of South American passerine birds and represents a case of continental adaptive radiation along multiple axes. We investigated morphological diversification in Cinclodes using a comprehensive set of morphometric measurements of study skins. Principal component analysis identified 2 primary axes of morphological variation: one describing body size and a second capturing differences in wing-tip shape and toe length. Phylogenetic analyses of the first principal component suggest an early divergence ofCinclodes into 2 main clades characterized by large and small body sizes. We suggest that 2 morphological outliers within these main clades (C. antarcticus and C. palliatus) may be cases of island gigantism and that a third (C. patagonicus) may reflect ecological character displacement. Despite its ecological and physiological diversity, the genus Cinclodes does not appear to show morphological diversity beyond what is typical of other avian genera.
NASA Astrophysics Data System (ADS)
Olson, C. L.; Cuneo, M. E.; Desjarlais, M. P.; Filuk, A. B.; Greenly, J. B.; Hanson, D. L.; Hinshelwood, D. D.; Hubbard, R. F.; Lampe, M.; Lockner, T. R.
Present Light Ion Fusion (LIF) target experiments on PBFA 2 use a barrel diode in which the total transport length from the anode to the target is less than or equal to 15 cm. Future LIF development includes high yield applications (LMF) and energy production (ETF and LIBRA power plants) that require standoff - the generation of extracted ion beams and transport of these beams over distances of several meters. Standoff research includes the development of high efficiency extraction diodes (single stage and two-stage), improvements in beam quality (divergence, purity, uniformity, etc.), and the efficient transport and focusing of these beams over distances of several meters to a fusion target. Progress in all of these areas is discussed, as well as a strategy to reduce the divergence from the present 17 mrad for 5 MeV protons on SABRE to the required mrad for 35 MeV Li ions for LMF. The status of experiments is summarized, and future directions are indicated.
ATF neutral beam injection: optimization of beam alignment and aperturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, R.N.; Fowler, R.H.; Rome, J.A.
1985-12-01
The application of the existing Impurity Study Experiment (ISX-B) neutral beam injectors for the Advanced Toroidal Facility (ATF) is studied. It is determined that with the practical considerations of beam aperturing, ATF vacuum vessel complexity, and realistic beam modeling, the power absorbed by the plasma will be approximately 57% of the extracted neutral beam power, which corresponds to an injected power of about 1.5 MW. By reducing the beam divergence to a 1/sup 0/ Gaussian distribution, the absorbed power could be increased to 93%. The power delivered to the plasma is found to be a strong function of the beammore » divergence but only a weak function of the beam focal length. Shinethrough can be a serious problem if very low density startups are necessary. Preliminary calculations indicate that there will be no excessive fast-ion losses. 12 refs., 17 figs., 1 tab.« less
Microfluidic converging/diverging channels optimised for homogeneous extensional deformation
Zografos, K.; Oliveira, M. S. N.
2016-01-01
In this work, we optimise microfluidic converging/diverging geometries in order to produce constant strain-rates along the centreline of the flow, for performing studies under homogeneous extension. The design is examined for both two-dimensional and three-dimensional flows where the effects of aspect ratio and dimensionless contraction length are investigated. Initially, pressure driven flows of Newtonian fluids under creeping flow conditions are considered, which is a reasonable approximation in microfluidics, and the limits of the applicability of the design in terms of Reynolds numbers are investigated. The optimised geometry is then used for studying the flow of viscoelastic fluids and the practical limitations in terms of Weissenberg number are reported. Furthermore, the optimisation strategy is also applied for electro-osmotic driven flows, where the development of a plug-like velocity profile allows for a wider region of homogeneous extensional deformation in the flow field. PMID:27478523
Parametric study of solar thermal rocket nozzle performance
NASA Technical Reports Server (NTRS)
Pearson, J. Boise; Landrum, D. Brian; Hawk, Clark W.
1995-01-01
This paper details a numerical investigation of performance losses in low-thrust solar thermal rocket nozzles. The effects of nozzle geometry on three types of losses were studied; finite rate dissociation-recombination kinetic losses, two dimensional axisymmetric divergence losses, and compressible viscous boundary layer losses. Short nozzle lengths and supersonic flow produce short residence times in the nozzle and a nearly frozen flow, resulting in large kinetic losses. Variations in geometry have a minimal effect on kinetic losses. Divergence losses are relatively small, and careful shaping of the nozzle can nearly eliminate them. The boundary layer in these small nozzles can grow to a major fraction of nozzle radius, and cause large losses. These losses are attributed to viscous drag on the nozzle walls and flow blockage by the boundary layer, especially in the throat region. Careful shaping of the nozzle can produce a significant reduction in viscous losses.
Rhodnius barretti, a new species of Triatominae (Hemiptera: Reduviidae) from western Amazonia
Abad-Franch, Fernando; Pavan, Márcio G; Jaramillo-O, Nicolás; Palomeque, Francisco S; Dale, Carolina; Chaverra, Duverney; Monteiro, Fernando A
2013-01-01
Rhodnius barretti , a new triatomine species, is described based on adult specimens collected in rainforest environments within the Napo ecoregion of western Amazonia (Colombia and Ecuador). R. barretti resembles Rhodnius robustus s.l. , but mitochondrial cytochrome b gene sequences reveal that it is a strongly divergent member of the “robustus lineage”, i.e., basal to the clade encompassing Rhodnius nasutus , Rhodnius neglectus , Rhodnius prolixus and five members of the R. robustus species complex. Morphometric analyses also reveal consistent divergence from R. robustus s.l. , including head and, as previously shown, wing shape and the length ratios of some anatomical structures. R. barretti occurs, often at high densities, in Attalea butyracea and Oenocarpus bataua palms. It is strikingly aggressive and adults may invade houses flying from peridomestic palms. R. barretti must therefore be regarded as a potential Trypanosoma cruzi vector in the Napo ecoregion, where Chagas disease is endemic. PMID:24473808
Zhao, Yao; Vrieling, Klaas; Liao, Hui; Xiao, Manqiu; Zhu, Yongqing; Rong, Jun; Zhang, Wenju; Wang, Yuguo; Yang, Ji; Chen, Jiakuan; Song, Zhiping
2013-11-01
Habitat fragmentation weakens the connection between populations and is accompanied with isolation by distance (IBD) and local adaptation (isolation by adaptation, IBA), both leading to genetic divergence between populations. To understand the evolutionary potential of a population and to formulate proper conservation strategies, information on the roles of IBD and IBA in driving population divergence is critical. The putative ancestor of Asian cultivated rice (Oryza sativa) is endangered in China due to habitat loss and fragmentation. We investigated the genetic variation in 11 Chinese Oryza rufipogon populations using 79 microsatellite loci to infer the effects of habitat fragmentation, IBD and IBA on genetic structure. Historical and current gene flows were found to be rare (mh = 0.0002-0.0013, mc = 0.007-0.029), indicating IBD and resulting in a high level of population divergence (FST = 0.343). High within-population genetic variation (HE = 0.377-0.515), relatively large effective population sizes (Ne = 96-158), absence of bottlenecks and limited gene flow were found, demonstrating little impact of recent habitat fragmentation on these populations. Eleven gene-linked microsatellite loci were identified as outliers, indicating local adaptation. Hierarchical AMOVA and partial Mantel tests indicated that population divergence of Chinese O. rufipogon was significantly correlated with environmental factors, especially habitat temperature. Common garden trials detected a significant adaptive population divergence associated with latitude. Collectively, these findings imply that IBD due to historical rather than recent fragmentation, followed by local adaptation, has driven population divergence in O. rufipogon. © 2013 John Wiley & Sons Ltd.
Ozdemir, Ozdemir; Tunay, Zuhal Ozen; Acar, Damla Erginturk; Erol, Muhammet Kazım; Sener, Ender; Acar, Ugur
2015-01-01
To analyze ocular biometry parameters and evaluate their relationship with gestational age, birth weight, and postmenstrual age in prematurely born infants. The right eyes of 361 premature infants born before the 36th gestational week were evaluated. Birth weight, gestational week, and gender were recorded. An A-scan Biometer was used for obtaining axial measurements, including anterior chamber depth, lens thickness, vitreous length, and total axial length. Gestational age and birth weight values ranged from 23 to 36 weeks and from 560 to 2,670 g, respectively. The mean gestational age and birth weight were 30.8 ± 2.8 weeks and 1,497.9 ± 483.6 g, respectively. During the first examination (4-5 weeks of postnatal age), birth weight and gestational age of the infants correlated significantly and positively with lens thickness, vitreous length, and axial length (r>0.5, p<0.001), but not with anterior chamber depth (r<0.5). Increased vitreous and axial lengths correlated significantly with increasing postmenstrual age of the infants (r=0.669, p<0.001; r=0.845, p<0.001, respectively). Lens thickness, vitreous length, and axial length, but not anterior chamber depth, were significantly correlated with birth weight and gestational age. All four parameters increased with increasing postmenstrual age, with higher correlations for vitreous and axial lengths than for anterior chamber depth and lens thickness. It was concluded that axial elongation resulted primarily from increasing posterior chamber length.
Polguj, M; Jędrzejewski, K S; Podgórski, M; Topol, M
2011-05-01
The concept of the study was to find the correlation between the morphometry of the suprascapular notch and basic anthropometric measurements of the human scapula. The measurements of the human scapulae included: morphological length and width, maximal width and length projection of scapular spine, length of acromion, and maximal length of the coracoid process. The glenoid cavity was measured in two perpendicular directions to evaluate its width and length. The width-length scapular and glenoid cavity indexes were calculated for every bone. In addition to standard anthropometric measurements two other measurements were defined and evaluated for every suprascapular notch: maximal depth (MD) and superior transverse diameter (STD). The superior transverse suprascapular ligament was completely ossified in 7% of cases. Ten (11.6%) scapulae had a discrete notch. In the studied material, in 21 (24.4%) scapulae the MD was longer than the STD. Two (2.3%) scapulae had equal maximal depth and superior transverse diameter. In 47 (57.7%) scapulae the superior transverse diameter was longer than the maximal depth. There was no statistically significant difference between anthropometric measurements in the group with higher MD and the group with higher STD. The maximal depth of the suprascapular notch negatively correlated with the scapular width-length index. The maximal depth of the scapular notch correlated with the morphological length of the scapulae.
Entropically Stabilized Colloidal Crystals Hold Entropy in Collective Modes
NASA Astrophysics Data System (ADS)
Antonaglia, James; van Anders, Greg; Glotzer, Sharon
Ordered structures can be stabilized by entropy if the system has more ordered microstates available than disordered ones. However, ``locating'' the entropy in an ordered system is challenging because entropic ordering is necessarily a collective effort emerging from the interactions of large numbers of particles. Yet, we can characterize these crystals using simple traditional tools, because entropically stabilized crystals exhibit collective motion and effective stiffness. For a two-dimensional system of hard hexagons, we calculate the dispersion relations of both vibrational and librational collective modes. We find the librational mode is gapped, and the gap provides an emergent, macroscopic, and density-dependent length scale. We quantify the entropic contribution of each collective mode and find that below this length scale, the dominant entropic contributions are librational, and above this length scale, vibrations dominate. This length scale diverges in the high-density limit, so entropy is found predominantly in libration near dense packing. National Science Foundation Graduate Research Fellowship Program Grant No. DGE 1256260, Advanced Research Computing at the University of Michigan, Ann Arbor, and the Simons Foundation.
Henderson, James B.; Wall, Jeffrey D.; Emerling, Christopher A.; Fuchs, Jérôme; Runckel, Charles; Mindell, David P.; Bowie, Rauri C. K.; DeRisi, Joseph L.; Dumbacher, John P.
2017-01-01
Abstract We report here the assembly of a northern spotted owl (Strix occidentalis caurina) genome. We generated Illumina paired-end sequence data at 90× coverage using nine libraries with insert lengths ranging from ∼250 to 9,600 nt and read lengths from 100 to 375 nt. The genome assembly is comprised of 8,108 scaffolds totaling 1.26 × 109 nt in length with an N50 length of 3.98 × 106 nt. We calculated the genome-wide fixation index (FST) of S. o. caurina with the closely related barred owl (Strix varia) as 0.819. We examined 19 genes that encode proteins with light-dependent functions in our genome assembly as well as in that of the barn owl (Tyto alba). We present genomic evidence for loss of three of these in S. o. caurina and four in T. alba. We suggest that most light-associated gene functions have been maintained in owls and their loss has not proceeded to the same extent as in other dim-light-adapted vertebrates. PMID:28992302
Divergence of perturbation theory in large scale structures
NASA Astrophysics Data System (ADS)
Pajer, Enrico; van der Woude, Drian
2018-05-01
We make progress towards an analytical understanding of the regime of validity of perturbation theory for large scale structures and the nature of some non-perturbative corrections. We restrict ourselves to 1D gravitational collapse, for which exact solutions before shell crossing are known. We review the convergence of perturbation theory for the power spectrum, recently proven by McQuinn and White [1], and extend it to non-Gaussian initial conditions and the bispectrum. In contrast, we prove that perturbation theory diverges for the real space two-point correlation function and for the probability density function (PDF) of the density averaged in cells and all the cumulants derived from it. We attribute these divergences to the statistical averaging intrinsic to cosmological observables, which, even on very large and "perturbative" scales, gives non-vanishing weight to all extreme fluctuations. Finally, we discuss some general properties of non-perturbative effects in real space and Fourier space.
NASA Astrophysics Data System (ADS)
Mihálka, Zsuzsanna É.; Surján, Péter R.
2017-12-01
The method of analytic continuation is applied to estimate eigenvalues of linear operators from finite order results of perturbation theory even in cases when the latter is divergent. Given a finite number of terms E(k ),k =1 ,2 ,⋯M resulting from a Rayleigh-Schrödinger perturbation calculation, scaling these numbers by μk (μ being the perturbation parameter) we form the sum E (μ ) =∑kμkE(k ) for small μ values for which the finite series is convergent to a certain numerical accuracy. Extrapolating the function E (μ ) to μ =1 yields an estimation of the exact solution of the problem. For divergent series, this procedure may serve as resummation tool provided the perturbation problem has a nonzero radius of convergence. As illustrations, we treat the anharmonic (quartic) oscillator and an example from the many-electron correlation problem.
Keskin, Emre; Atar, Hasan Huseyin
2012-04-01
Mitochondrial DNA sequence variation in 655 bpfragments of the cytochrome oxidase c subunit I gene, known as the DNA barcode, of European anchovy (Engraulis encrasicolus) was evaluated by analyzing 1529 individuals representing 16 populations from the Black Sea, through the Marmara Sea and the Aegean Sea to the Mediterranean Sea. A total of 19 (2.9%) variable sites were found among individuals, and these defined 10 genetically diverged populations with an overall mean distance of 1.2%. The highest nucleotide divergence was found between samples of eastern Mediterranean and northern Aegean (2.2%). Evolutionary history analysis among 16 populations clustered the Mediterranean Sea clades in one main branch and the other clades in another branch. Diverging pattern of the European anchovy populations correlated with geographic dispersion supports the genetic structuring through the Black Sea-Marmara Sea-Aegean Sea-Mediterranean Sea quad.
Universal and idiosyncratic characteristic lengths in bacterial genomes
NASA Astrophysics Data System (ADS)
Junier, Ivan; Frémont, Paul; Rivoire, Olivier
2018-05-01
In condensed matter physics, simplified descriptions are obtained by coarse-graining the features of a system at a certain characteristic length, defined as the typical length beyond which some properties are no longer correlated. From a physics standpoint, in vitro DNA has thus a characteristic length of 300 base pairs (bp), the Kuhn length of the molecule beyond which correlations in its orientations are typically lost. From a biology standpoint, in vivo DNA has a characteristic length of 1000 bp, the typical length of genes. Since bacteria live in very different physico-chemical conditions and since their genomes lack translational invariance, whether larger, universal characteristic lengths exist is a non-trivial question. Here, we examine this problem by leveraging the large number of fully sequenced genomes available in public databases. By analyzing GC content correlations and the evolutionary conservation of gene contexts (synteny) in hundreds of bacterial chromosomes, we conclude that a fundamental characteristic length around 10–20 kb can be defined. This characteristic length reflects elementary structures involved in the coordination of gene expression, which are present all along the genome of nearly all bacteria. Technically, reaching this conclusion required us to implement methods that are insensitive to the presence of large idiosyncratic genomic features, which may co-exist along these fundamental universal structures.
Inference of Functionally-Relevant N-acetyltransferase Residues Based on Statistical Correlations.
Neuwald, Andrew F; Altschul, Stephen F
2016-12-01
Over evolutionary time, members of a superfamily of homologous proteins sharing a common structural core diverge into subgroups filling various functional niches. At the sequence level, such divergence appears as correlations that arise from residue patterns distinct to each subgroup. Such a superfamily may be viewed as a population of sequences corresponding to a complex, high-dimensional probability distribution. Here we model this distribution as hierarchical interrelated hidden Markov models (hiHMMs), which describe these sequence correlations implicitly. By characterizing such correlations one may hope to obtain information regarding functionally-relevant properties that have thus far evaded detection. To do so, we infer a hiHMM distribution from sequence data using Bayes' theorem and Markov chain Monte Carlo (MCMC) sampling, which is widely recognized as the most effective approach for characterizing a complex, high dimensional distribution. Other routines then map correlated residue patterns to available structures with a view to hypothesis generation. When applied to N-acetyltransferases, this reveals sequence and structural features indicative of functionally important, yet generally unknown biochemical properties. Even for sets of proteins for which nothing is known beyond unannotated sequences and structures, this can lead to helpful insights. We describe, for example, a putative coenzyme-A-induced-fit substrate binding mechanism mediated by arginine residue switching between salt bridge and π-π stacking interactions. A suite of programs implementing this approach is available (psed.igs.umaryland.edu).
Lim, Ju-Shin; Lee, Jae Woo; Han, Chun; Kwon, Jang-Woo
2018-06-01
Our aim in this study was to analyze whether soft palate length and velum obstruction during sleep are correlated and to determine the effects of related parameters on obstructive sleep apnea syndrome (OSAS) severity. We used computed tomography to measure soft palate length and drug-induced sleep endoscopy (DISE) to evaluate velum obstruction severity. Patients also underwent polysomnography (PSG) for evaluation of OSAS severity. A retrospective cohort of 67 patients with OSAS treated between May 1st, 2013 and July 31st, 2016 was analyzed. Each patient underwent DISE, PSG, and computed tomography. Using DISE, velum obstruction was categorized by the VOTE classification method. Using computed tomography, soft palate length was measured as the length of the posterior nasal spine to the uvula. Correlations of velum obstruction in DISE and PSG parameters (obstructive apnea, hypopnea, apnea hypopnea index (AHI), respiratory effort related arousal (RERA), respiratory disturbance index (RDI), baseline SaO 2 , and minimum SaO 2 ) with soft palate length were also analyzed. Among the 67 patients, the average PNS-U length was 39.90±4.19mm. Length was significantly different by age but not by other demographic characteristics such as sex, past history, or BMI. DISE revealed a statistically significant difference of velum obstruction degree; the cutoff value for PNS-U was 39.47mm. The PSG results, obstructive apnea, AHI, RDI, baseline SaO 2 , and minimum SaO 2 were correlated with PNS-U length, while other results such as hypopnea and RERA showed no correlation. Analysis of soft palate length showed that increased PNS-U length was associated with higher rates of obstructive apnea, AHI, and RDI as assessed by PSG. In contrast, lower baseline SaO 2 and minimum SaO 2 values were seen by PSG; more severe velum obstruction was seen by DISE. We propose that when a soft palate is suspected in OSAS, computed tomography measurement of soft palate length is a valid method for estimating the degree of velum obstruction and the severity of OSAS. Copyright © 2017 Elsevier B.V. All rights reserved.
Dopamine-dependent non-linear correlation between subthalamic rhythms in Parkinson's disease.
Marceglia, S; Foffani, G; Bianchi, A M; Baselli, G; Tamma, F; Egidi, M; Priori, A
2006-03-15
The basic information architecture in the basal ganglia circuit is under debate. Whereas anatomical studies quantify extensive convergence/divergence patterns in the circuit, suggesting an information sharing scheme, neurophysiological studies report an absence of linear correlation between single neurones in normal animals, suggesting a segregated parallel processing scheme. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys and in parkinsonian patients single neurones become linearly correlated, thus leading to a loss of segregation between neurones. Here we propose a possible integrative solution to this debate, by extending the concept of functional segregation from the cellular level to the network level. To this end, we recorded local field potentials (LFPs) from electrodes implanted for deep brain stimulation (DBS) in the subthalamic nucleus (STN) of parkinsonian patients. By applying bispectral analysis, we found that in the absence of dopamine stimulation STN LFP rhythms became non-linearly correlated, thus leading to a loss of segregation between rhythms. Non-linear correlation was particularly consistent between the low-beta rhythm (13-20 Hz) and the high-beta rhythm (20-35 Hz). Levodopa administration significantly decreased these non-linear correlations, therefore increasing segregation between rhythms. These results suggest that the extensive convergence/divergence in the basal ganglia circuit is physiologically necessary to sustain LFP rhythms distributed in large ensembles of neurones, but is not sufficient to induce correlated firing between neurone pairs. Conversely, loss of dopamine generates pathological linear correlation between neurone pairs, alters the patterns within LFP rhythms, and induces non-linear correlation between LFP rhythms operating at different frequencies. The pathophysiology of information processing in the human basal ganglia therefore involves not only activities of individual rhythms, but also interactions between rhythms.
Dopamine-dependent non-linear correlation between subthalamic rhythms in Parkinson's disease
Marceglia, S; Foffani, G; Bianchi, A M; Baselli, G; Tamma, F; Egidi, M; Priori, A
2006-01-01
The basic information architecture in the basal ganglia circuit is under debate. Whereas anatomical studies quantify extensive convergence/divergence patterns in the circuit, suggesting an information sharing scheme, neurophysiological studies report an absence of linear correlation between single neurones in normal animals, suggesting a segregated parallel processing scheme. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys and in parkinsonian patients single neurones become linearly correlated, thus leading to a loss of segregation between neurones. Here we propose a possible integrative solution to this debate, by extending the concept of functional segregation from the cellular level to the network level. To this end, we recorded local field potentials (LFPs) from electrodes implanted for deep brain stimulation (DBS) in the subthalamic nucleus (STN) of parkinsonian patients. By applying bispectral analysis, we found that in the absence of dopamine stimulation STN LFP rhythms became non-linearly correlated, thus leading to a loss of segregation between rhythms. Non-linear correlation was particularly consistent between the low-beta rhythm (13–20 Hz) and the high-beta rhythm (20–35 Hz). Levodopa administration significantly decreased these non-linear correlations, therefore increasing segregation between rhythms. These results suggest that the extensive convergence/divergence in the basal ganglia circuit is physiologically necessary to sustain LFP rhythms distributed in large ensembles of neurones, but is not sufficient to induce correlated firing between neurone pairs. Conversely, loss of dopamine generates pathological linear correlation between neurone pairs, alters the patterns within LFP rhythms, and induces non-linear correlation between LFP rhythms operating at different frequencies. The pathophysiology of information processing in the human basal ganglia therefore involves not only activities of individual rhythms, but also interactions between rhythms. PMID:16410285
Cubic law with aperture-length correlation: implications for network scale fluid flow
NASA Astrophysics Data System (ADS)
Klimczak, Christian; Schultz, Richard A.; Parashar, Rishi; Reeves, Donald M.
2010-06-01
Previous studies have computed and modeled fluid flow through fractured rock with the parallel plate approach where the volumetric flow per unit width normal to the direction of flow is proportional to the cubed aperture between the plates, referred to as the traditional cubic law. When combined with the square root relationship of displacement to length scaling of opening-mode fractures, total flow rates through natural opening-mode fractures are found to be proportional to apertures to the fifth power. This new relationship was explored by examining a suite of flow simulations through fracture networks using the discrete fracture network model (DFN). Flow was modeled through fracture networks with the same spatial distribution of fractures for both correlated and uncorrelated fracture length-to-aperture relationships. Results indicate that flow rates are significantly higher for correlated DFNs. Furthermore, the length-to-aperture relations lead to power-law distributions of network hydraulic conductivity which greatly influence equivalent permeability tensor values. These results confirm the importance of the correlated square root relationship of displacement to length scaling for total flow through natural opening-mode fractures and, hence, emphasize the role of these correlations for flow modeling.
Vogel, J.R.; Brown, G.O.
2003-01-01
Semivariograms of samples of Culebra Dolomite have been determined at two different resolutions for gamma ray computed tomography images. By fitting models to semivariograms, small-scale and large-scale correlation lengths are determined for four samples. Different semivariogram parameters were found for adjacent cores at both resolutions. Relative elementary volume (REV) concepts are related to the stationarity of the sample. A scale disparity factor is defined and is used to determine sample size required for ergodic stationarity with a specified correlation length. This allows for comparison of geostatistical measures and representative elementary volumes. The modifiable areal unit problem is also addressed and used to determine resolution effects on correlation lengths. By changing resolution, a range of correlation lengths can be determined for the same sample. Comparison of voxel volume to the best-fit model correlation length of a single sample at different resolutions reveals a linear scaling effect. Using this relationship, the range of the point value semivariogram is determined. This is the range approached as the voxel size goes to zero. Finally, these results are compared to the regularization theory of point variables for borehole cores and are found to be a better fit for predicting the volume-averaged range.
Ravinet, Mark; Hynes, Rosaleen; Poole, Russell; Cross, Tom F; McGinnity, Phil; Harrod, Chris; Prodöhl, Paulo A
2015-01-01
Contact zones between divergent forms of the same species are often characterised by high levels of phenotypic diversity over small geographic distances. What processes are involved in generating such high phenotypic diversity? One possibility is that introgression and recombination between divergent forms in contact zones results in greater phenotypic and genetic polymorphism. Alternatively, strong reproductive isolation between forms may maintain distinct phenotypes, preventing homogenisation by gene flow. Contact zones between divergent freshwater-resident and anadromous stickleback (Gasterosteus aculeatus L.) forms are numerous and common throughout the species distribution, offering an opportunity to examine these contrasting hypotheses in greater detail. This study reports on an interesting new contact zone located in a tidally influenced lake catchment in western Ireland, characterised by high polymorphism for lateral plate phenotypes. Using neutral and QTL-linked microsatellite markers, we tested whether the high diversity observed in this contact zone arose as a result of introgression or reproductive isolation between divergent forms: we found strong support for the latter hypothesis. Three phenotypic and genetic clusters were identified, consistent with two divergent resident forms and a distinct anadromous completely plated population that migrates in and out of the system. Given the strong neutral differentiation detected between all three morphotypes (mean FST = 0.12), we hypothesised that divergent selection between forms maintains reproductive isolation. We found a correlation between neutral genetic and adaptive genetic differentiation that support this. While strong associations between QTL linked markers and phenotypes were also observed in this wild population, our results support the suggestion that such associations may be more complex in some Atlantic populations compared to those in the Pacific. These findings provide an important foundation for future work investigating the dynamics of gene flow and adaptive divergence in this newly discovered stickleback contact zone.
Ravinet, Mark; Hynes, Rosaleen; Poole, Russell; Cross, Tom F.; McGinnity, Phil; Harrod, Chris; Prodöhl, Paulo A.
2015-01-01
Contact zones between divergent forms of the same species are often characterised by high levels of phenotypic diversity over small geographic distances. What processes are involved in generating such high phenotypic diversity? One possibility is that introgression and recombination between divergent forms in contact zones results in greater phenotypic and genetic polymorphism. Alternatively, strong reproductive isolation between forms may maintain distinct phenotypes, preventing homogenisation by gene flow. Contact zones between divergent freshwater-resident and anadromous stickleback (Gasterosteus aculeatus L.) forms are numerous and common throughout the species distribution, offering an opportunity to examine these contrasting hypotheses in greater detail. This study reports on an interesting new contact zone located in a tidally influenced lake catchment in western Ireland, characterised by high polymorphism for lateral plate phenotypes. Using neutral and QTL-linked microsatellite markers, we tested whether the high diversity observed in this contact zone arose as a result of introgression or reproductive isolation between divergent forms: we found strong support for the latter hypothesis. Three phenotypic and genetic clusters were identified, consistent with two divergent resident forms and a distinct anadromous completely plated population that migrates in and out of the system. Given the strong neutral differentiation detected between all three morphotypes (mean FST = 0.12), we hypothesised that divergent selection between forms maintains reproductive isolation. We found a correlation between neutral genetic and adaptive genetic differentiation that support this. While strong associations between QTL linked markers and phenotypes were also observed in this wild population, our results support the suggestion that such associations may be more complex in some Atlantic populations compared to those in the Pacific. These findings provide an important foundation for future work investigating the dynamics of gene flow and adaptive divergence in this newly discovered stickleback contact zone. PMID:25874617
Alternative RNA splicing of leucocyte tissue transglutaminase in coeliac disease.
Arbildi, P; Sóñora, C; Del Río, N; Marqués, J M; Hernández, A
2018-05-01
Tissue transglutaminase is a ubiquitous and multifunctional protein that contributes to several processes such as apoptosis/survival, efferocytosis, inflammation and tissue repairing under physiological and pathological conditions. Several activities can be associated with well-established functional domains; in addition, four RNA alternative splice variants have been described, characterized by sequence divergences and residues deletion at the C-terminal domains. Tissue transglutaminase is recognized as the central player in the physiopathology of coeliac disease (CD) mainly through calcium-dependent enzymatic activities. It can be hypothesized that differential regulation of tissue transglutaminase splice variants expression in persons with CD contributes to pathology by altering the protein functionality. We characterized the expression pattern of RNA alternative splice variants by RT-PCR in peripheral cells from patients with CD under free gluten diet adhesion; we considered inflammatory parameters and specific antibodies as markers of the stage of disease. We found significant higher expression of both the full length and the shortest C-truncated splice variants in leucocytes from patients with CD in comparison with healthy individuals. As tissue transglutaminase expression and canonical enzymatic activity are linked to inflammation, we studied the RNA expression of inflammatory cytokines in peripheral leucocytes of persons with CD in relation with splice variants expression; interestingly, we found that recently diagnosed patients showed significant correlation between both the full length and the shortest alternative spliced variants with IL-1 expression. Our results points that regulation of alternative splicing of tissue transglutaminase could account for the complex physiopathology of CD. © 2018 The Foundation for the Scandinavian Journal of Immunology.
Frontiers of beam diagnostics in plasma accelerators: Measuring the ultra-fast and ultra-cold
NASA Astrophysics Data System (ADS)
Cianchi, A.; Anania, M. P.; Bisesto, F.; Chiadroni, E.; Curcio, A.; Ferrario, M.; Giribono, A.; Marocchino, A.; Pompili, R.; Scifo, J.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Mostacci, A.; Bacci, A.; Rossi, A. R.; Serafini, L.; Zigler, A.
2018-05-01
Advanced diagnostics are essential tools in the development of plasma-based accelerators. The accurate measurement of the quality of beams at the exit of the plasma channel is crucial to optimize the parameters of the plasma accelerator. 6D electron beam diagnostics will be reviewed with emphasis on emittance measurement, which is particularly complex due to large energy spread and divergence of the emerging beams, and on femtosecond bunch length measurements.
NASA Technical Reports Server (NTRS)
Spradley, L. W.; Dean, W. G.; Karu, Z. S.
1976-01-01
The thermal acoustic oscillations (TAO) data base was expanded by running a large number of tubes over a wide range of parameters known to affect the TAO phenomenon. These parameters include tube length, wall thickness, diameter, material, insertion length and length-to-diameter ratio. Emphasis was placed on getting good boiloff data. A large quantity of data was obtained, reduced, correlated and analyzed and is presented. Also presented are comparisons with previous types of correlations. These comparisons show that the boiloff data did not correlate with intensity. The data did correlate in the form used by Rott, that is boiloff versus TAO pressure squared times frequency to the one-half power. However, this latter correlation required a different set of correlation constants, slope and intercept, for each tube tested.
Environmental effects on the structure of the G-matrix.
Wood, Corlett W; Brodie, Edmund D
2015-11-01
Genetic correlations between traits determine the multivariate response to selection in the short term, and thereby play a causal role in evolutionary change. Although individual studies have documented environmentally induced changes in genetic correlations, the nature and extent of environmental effects on multivariate genetic architecture across species and environments remain largely uncharacterized. We reviewed the literature for estimates of the genetic variance-covariance (G) matrix in multiple environments, and compared differences in G between environments to the divergence in G between conspecific populations (measured in a common garden). We found that the predicted evolutionary trajectory differed as strongly between environments as it did between populations. Between-environment differences in the underlying structure of G (total genetic variance and the relative magnitude and orientation of genetic correlations) were equal to or greater than between-population differences. Neither environmental novelty, nor the difference in mean phenotype predicted these differences in G. Our results suggest that environmental effects on multivariate genetic architecture may be comparable to the divergence that accumulates over dozens or hundreds of generations between populations. We outline avenues of future research to address the limitations of existing data and characterize the extent to which lability in genetic correlations shapes evolution in changing environments. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.
Gómez, J. M.; Muñoz-Pajares, A. J.; Abdelaziz, M.; Lorite, J.; Perfectti, F.
2014-01-01
Background and Aims How generalist plants diverge in response to pollinator selection without becoming specialized is still unknown. This study explores this question, focusing on the evolution of the pollination system in the pollination generalist Erysimum mediohispanicum (Brassicaceae). Methods Pollinator assemblages were surveyed from 2001 to 2010 in 48 geo-referenced populations covering the entire geographic distribution of E. mediohispanicum. Bipartite modularity, a complex network tool, was used to find the pollination niche of each population. Evolution of the pollination niches and the correlated evolution of floral traits and pollination niches were explored using within-species comparative analyses. Key Results Despite being generalists, the E. mediohispanicum populations studied can be classified into five pollination niches. The boundaries between niches were not sharp, the niches differing among them in the relative frequencies of the floral visitor functional groups. The absence of spatial autocorrelation and phylogenetic signal indicates that the niches were distributed in a phylogeographic mosaic. The ancestral E. mediohispanicum populations presumably belonged to the niche defined by a high number of beetle and ant visits. A correlated evolution was found between pollination niches and some floral traits, suggesting the existence of generalist pollination ecotypes. Conclusions It is conjectured that the geographic variation in pollination niches has contributed to the observed floral divergence in E. mediohispanicum. The process mediating this floral divergence presumably has been adaptive wandering, but the adaptation to the local pollinator faunas has been not universal. The outcome is a landscape where a few populations locally adapted to their pollination environment (generalist pollination ecotypes) coexist with many populations where this local adaptation has failed and where the plant phenotype is not primarily shaped by pollinators. PMID:23965614
Hossain, Md Kamal; Jena, Kshirod Kumar; Bhuiyan, Md Atiqur Rahman; Wickneswari, Ratnam
2016-01-01
Sheath blight is considered the most significant disease of rice and causes enormous yield losses over the world. Breeding for resistant varieties is the only viable option to combat the disease efficiently. Seventeen diverged rice genotypes along with 17 QTL-linked SSR markers were evaluated under greenhouse conditions. Pearson’s correlation showed only the flag leaf angle had a significant correlation with sheath blight resistance under greenhouse screening. Multivariate analysis based on UPGMA clustering and principal component analysis (PCA) indicated that the flag leaf angle, flag leaf length, and plant compactness were significantly associated with the following SSR marker alleles: RM209 (116,130), RM202 (176), RM224 (126), RM257 (156), RM426 (175), and RM6971 (196), which are linked to the SB QTLs: QRlh11, qSBR11-3, qSBR11-1, qSBR9-1, qShB3-2, and qSB-9. A Mantel test suggested a weak relationship between the observed phenotypes and allelic variation patterns, implying the independent nature of morphological and molecular variations. Teqing and Tetep were found to be the most resistant cultivars. IR65482-4-136-2-2, MR219-4, and MR264 showed improved resistance potentials. These results suggest that the morphological traits and QTLs which have been found to associate with sheath blight resistance are a good choice to enhance resistance through pyramiding either 2 QTLs or QTLs and traits in susceptible rice cultivars. PMID:27795687
Critical fluid light scattering
NASA Technical Reports Server (NTRS)
Gammon, Robert W.
1988-01-01
The objective is to measure the decay rates of critical density fluctuations in a simple fluid (xenon) very near its liquid-vapor critical point using laser light scattering and photon correlation spectroscopy. Such experiments were severely limited on Earth by the presence of gravity which causes large density gradients in the sample when the compressibility diverges approaching the critical point. The goal is to measure fluctuation decay rates at least two decades closer to the critical point than is possible on earth, with a resolution of 3 microK. This will require loading the sample to 0.1 percent of the critical density and taking data as close as 100 microK to the critical temperature. The minimum mission time of 100 hours will allow a complete range of temperature points to be covered, limited by the thermal response of the sample. Other technical problems have to be addressed such as multiple scattering and the effect of wetting layers. The experiment entails measurement of the scattering intensity fluctuation decay rate at two angles for each temperature and simultaneously recording the scattering intensities and sample turbidity (from the transmission). The analyzed intensity and turbidity data gives the correlation length at each temperature and locates the critical temperature. The fluctuation decay rate data from these measurements will provide a severe test of the generalized hydrodynamic theories of transport coefficients in the critical regions. When compared to equivalent data from binary liquid critical mixtures they will test the universality of critical dynamics.
The use of tibial tuberosity-trochlear groove indices based on joint size in lower limb evaluation.
Ferlic, Peter Wilhelm; Runer, Armin; Dirisamer, Florian; Balcarek, Peter; Giesinger, Johannes; Biedermann, Rainer; Liebensteiner, Michael Christian
2018-05-01
The correlation between tibial tuberosity-trochlear groove distance (TT-TG) and joint size, taking into account several different parameters of knee joint size as well as lower limb dimensions, is evaluated in order to assess whether TT-TG indices should be used in instead of absolute TT-TG values. This study comprised a retrospective analysis of knee CT scans, including 36 cases with patellofemoral instability (PFI) and 30 controls. Besides TT-TG, five measures of knee joint size were evaluated in axial CT slices: medio-lateral femur width, antero-posterior lateral condylar height, medio-lateral width of the tibia, width of the patella and the proximal-distal joint size (TT-TE). Furthermore, the length of the femur, the tibia and the total leg length were measured in the CT scanogram. Correlation analysis of TT-TG and the other parameters was done by calculating the Spearman correlation coefficient. In the PFI group lateral condylar height (r = 0.370), tibia width (r = 0.406) and patella width (r = 0.366) showed significant moderate correlations (p < 0.03) with TT-TG. Furthermore, we found a significant correlation between TT-TG and tibia length (r = 0.371) and total leg length (r = 381). The control group showed no significant correlation between TT-TG and knee joint size or between TT-TG and measures of lower limb length. Tibial tuberosity-trochlear groove distance correlates with several parameters of knee joint size and leg length in patients with patellofemoral instability. Application of indices determining TT-TG as a ratio of joint size could be helpful in establishing the indication for medial transfer of the tibial tuberosity in patients with PFI. Level III.
Leporace, Gustavo; Batista, Luiz Alberto; Serra Cruz, Raphael; Zeitoune, Gabriel; Cavalin, Gabriel Armondi; Metsavaht, Leonardo
2018-03-01
The purpose of this study was to test the validity of dynamic leg length discrepancy (DLLD) during gait as a radiation-free screening method for measuring anatomic leg length discrepancy (ALLD). Thirty-three subjects with mild leg length discrepancy walked along a walkway and the dynamic leg length discrepancy (DLLD) was calculated using a motion analysis system. Pearson correlation and paired Student t -tests were applied to calculate the correlation and compare the differences between DLLD and ALLD (α = 0.05). The results of our study showed DLLD is not a valid method to predict ALLD in subjects with mild limb discrepancy.
Computing Critical Properties with Yang-Yang Anomalies
NASA Astrophysics Data System (ADS)
Orkoulas, Gerassimos; Cerdeirina, Claudio; Fisher, Michael
2017-01-01
Computation of the thermodynamics of fluids in the critical region is a challenging task owing to divergence of the correlation length and lack of particle-hole symmetries found in Ising or lattice-gas models. In addition, analysis of experiments and simulations reveals a Yang-Yang (YY) anomaly which entails sharing of the specific heat singularity between the pressure and the chemical potential. The size of the YY anomaly is measured by the YY ratio Rμ =C μ /CV of the amplitudes of C μ = - T d2 μ /dT2 and of the total specific heat CV. A ``complete scaling'' theory, in which the pressure mixes into the scaling fields, accounts for the YY anomaly. In Phys. Rev. Lett. 116, 040601 (2016), compressible cell gas (CCG) models which exhibit YY and singular diameter anomalies, have been advanced for near-critical fluids. In such models, the individual cell volumes are allowed to fluctuate. The thermodynamics of CCGs can be computed through mapping onto the Ising model via the seldom-used great grand canonical ensemble. The computations indicate that local free volume fluctuations are the origins of the YY effects. Furthermore, local energy-volume coupling (to model water) is another crucial factor underlying the phenomena.
Pan, Zhangyuan; Li, Shengdi; Liu, Qiuyue; Wang, Zhen; Zhou, Zhengkui; Di, Ran; Miao, Benpeng; Hu, Wenping; Wang, Xiangyu; Hu, Xiaoxiang; Xu, Ze; Wei, Dongkai; He, Xiaoyun; Yuan, Liyun; Guo, Xiaofei; Liang, Benmeng; Wang, Ruichao; Li, Xiaoyu; Cao, Xiaohan; Dong, Xinlong; Xia, Qing; Shi, Hongcai; Hao, Geng; Yang, Jean; Luosang, Cuicheng; Zhao, Yiqiang; Jin, Mei; Zhang, Yingjie; Lv, Shenjin; Li, Fukuan; Ding, Guohui; Chu, Mingxing; Li, Yixue
2018-01-01
Abstract Background Animal domestication has been extensively studied, but the process of feralization remains poorly understood. Results Here, we performed whole-genome sequencing of 99 sheep and identified a primary genetic divergence between 2 heterogeneous populations in the Tibetan Plateau, including 1 semi-feral lineage. Selective sweep and candidate gene analysis revealed local adaptations of these sheep associated with sensory perception, muscle strength, eating habit, mating process, and aggressive behavior. In particular, a horn-related gene, RXFP2, showed signs of rapid evolution specifically in the semi-feral breeds. A unique haplotype and repressed horn-related tissue expression of RXFP2 were correlated with higher horn length, as well as spiral and horizontally extended horn shape. Conclusions Semi-feralization has an extensive impact on diverse phenotypic traits of sheep. By acquiring features like those of their wild ancestors, semi-feral sheep were able to regain fitness while in frequent contact with wild surroundings and rare human interventions. This study provides a new insight into the evolution of domestic animals when human interventions are no longer dominant. PMID:29668959
Dalsgaard, A; Serichantalergs, O; Shimada, T; Sethabutr, O; Echeverria, P
1995-09-01
A total of 148 Vibrio cholerae isolates from a major shrimp production area in Southern Thailand were examined by colony hybridisation for genes encoding heat-stable enterotoxin (NAG-ST) and cholera toxin (CT). Only non-O1 V. cholerae strains were found to harbour NAG-ST (14 of 146) whereas no strains hybridised with the CT probe. NAG-ST-positive V. cholerae non-O1 strains were isolated from shrimp farms situated close to urban areas. Five different O serogroups were found among NAG-ST positive non-O1 strains. Southern blot and restriction endonuclease analysis of NAG-ST-positive strains revealed a high degree of genetic divergence. A total of seven classes of enterotoxin gene patterns were found with HindIII and EcoRI restriction endonucleases. Enterotoxin gene patterns correlated with O-antigen expression in 84% of isolates tested. In combination with other molecular techniques Southern blot analysis with an NAG-ST oligonucleotide probe could be useful for studying the molecular epidemiology of V. cholerae non-O1 strains.
Mignon-Grasteau, Sandrine; Chantry-Darmon, Céline; Boscher, Marie-Yvonne; Sellier, Nadine; Le Bihan-Duval, Elisabeth; Bertin, Aline
2017-01-01
The genetic relationships between behavior and digestive efficiency were studied in 860 chickens from a cross between two lines divergently selected on digestive efficiency. At 2 weeks of age each chick was video-recorded in the home pen to characterize general activity and feeding behavior. Tonic immobility and open-field tests were also carried out individually to evaluate emotional reactivity (i.e. the propensity to express fear responses). Digestive efficiency was measured at 3 weeks. Genetic parameters of behavior traits were estimated. Birds were genotyped on 3379 SNP markers to detect QTLs. Heritabilities of behavioral traits were low, apart from tonic immobility (0.17-0.18) and maximum meal length (0.14). The genetic correlations indicated that the most efficient birds fed more frequently and were less fearful. We detected 14 QTL (9 for feeding behavior, 3 for tonic immobility, 2 for frequency of lying). Nine of them co-localized with QTL for efficiency, anatomy of the digestive tract, feed intake or microbiota composition. Four genes involved in fear reactions were identified in the QTL for tonic immobility on GGA1.
Kim, Young-Kyu; Park, Chong-wook; Kim, Ki-Joong
2009-03-31
The chloroplast DNA sequences of Megaleranthis saniculifolia, an endemic and monotypic endangered plant species, were completed in this study (GenBank FJ597983). The genome is 159,924 bp in length. It harbors a pair of IR regions consisting of 26,608 bp each. The lengths of the LSC and SSC regions are 88,326 bp and 18,382 bp, respectively. The structural organizations, gene and intron contents, gene orders, AT contents, codon usages, and transcription units of the Megaleranthis chloroplast genome are similar to those of typical land plant cp DNAs. However, the detailed features of Megaleranthis chloroplast genomes are substantially different from that of Ranunculus, which belongs to the same family, the Ranunculaceae. First, the Megaleranthis cp DNA was 4,797 bp longer than that of Ranunculus due to an expanded IR region into the SSC region and duplicated sequence elements in several spacer regions of the Megaleranthis cp genome. Second, the chloroplast genomes of Megaleranthis and Ranunculus evidence 5.6% sequence divergence in the coding regions, 8.9% sequence divergence in the intron regions, and 18.7% sequence divergence in the intergenic spacer regions, respectively. In both the coding and noncoding regions, average nucleotide substitution rates differed markedly, depending on the genome position. Our data strongly implicate the positional effects of the evolutionary modes of chloroplast genes. The genes evidencing higher levels of base substitutions also have higher incidences of indel mutations and low Ka/Ks ratios. A total of 54 simple sequence repeat loci were identified from the Megaleranthis cp genome. The existence of rich cp SSR loci in the Megaleranthis cp genome provides a rare opportunity to study the population genetic structures of this endangered species. Our phylogenetic trees based on the two independent markers, the nuclear ITS and chloroplast matK sequences, strongly support the inclusion of the Megaleranthis to the Trollius. Therefore, our molecular trees support Ohwi's original treatment of Megaleranthis saniculiforia to Trollius chosenensis Ohwi.
Fetal kidney length as a useful adjunct parameter for better determination of gestational age.
Ugur, Mete G; Mustafa, Aynur; Ozcan, Huseyin C; Tepe, Neslihan B; Kurt, Huseyin; Akcil, Emre; Gunduz, Reyhan
2016-05-01
To determine the validity of fetal kidney length and amniotic fluid index (AFI) in labor dating. This prospective study included 180 pregnant women followed up in the outpatient clinic at the Department of Obstetrics and Gynecology, Gaziantep University, Turkey, between January 2014 and January 2015. The gestational age (GA) was estimated by early fetal ultrasound measures and last menstrual period. Routine fetal biometric parameters, fetal kidney length, and amniotic fluid index were measured. We studied the correlation between fetal kidney length, amniotic fluid index, and gestational age. The mean gestational age depending on last menstrual period and early ultrasound was 31.98±4.29 (24-39 weeks). The mean kidney length was 35.66±6.61 (19-49 mm). There was a significant correlation between gestational age and fetal kidney length (r=0.947, p=0.001). However, there was a moderate negative correlation between GA and AFI. Adding fetal kidney length to the routine biometrics improved the effectiveness of the model used to estimate GA (R2=0.965 to R2=0.987). Gestational age can be better predicted by adding fetal kidney length to other routine parameters.
Uncertainty in the Timing of Origin of Animals and the Limits of Precision in Molecular Timescales
dos Reis, Mario; Thawornwattana, Yuttapong; Angelis, Konstantinos; Telford, Maximilian J.; Donoghue, Philip C.J.; Yang, Ziheng
2015-01-01
Summary The timing of divergences among metazoan lineages is integral to understanding the processes of animal evolution, placing the biological events of species divergences into the correct geological timeframe. Recent fossil discoveries and molecular clock dating studies have suggested a divergence of bilaterian phyla >100 million years before the Cambrian, when the first definite crown-bilaterian fossils occur. Most previous molecular clock dating studies, however, have suffered from limited data and biases in methodologies, and virtually all have failed to acknowledge the large uncertainties associated with the fossil record of early animals, leading to inconsistent estimates among studies. Here we use an unprecedented amount of molecular data, combined with four fossil calibration strategies (reflecting disparate and controversial interpretations of the metazoan fossil record) to obtain Bayesian estimates of metazoan divergence times. Our results indicate that the uncertain nature of ancient fossils and violations of the molecular clock impose a limit on the precision that can be achieved in estimates of ancient molecular timescales. For example, although we can assert that crown Metazoa originated during the Cryogenian (with most crown-bilaterian phyla diversifying during the Ediacaran), it is not possible with current data to pinpoint the divergence events with sufficient accuracy to test for correlations between geological and biological events in the history of animals. Although a Cryogenian origin of crown Metazoa agrees with current geological interpretations, the divergence dates of the bilaterians remain controversial. Thus, attempts to build evolutionary narratives of early animal evolution based on molecular clock timescales appear to be premature. PMID:26603774
NASA Technical Reports Server (NTRS)
Venkatakrishnan, P.
1987-01-01
A physical length scale in the wavefront corresponding to the parameter (r sub 0) characterizing the loss in detail in a long exposure image is identified, and the influence of the correlation scale of turbulence as r sub 0 approaches this scale is shown. Allowing for the effect of 2-point correlations in the fluctuations of the refractive index, Venkatakrishnan and Chatterjee (1987) proposed a modified law for the phase structure function. It is suggested that the departure of the phase structure function from the 5/3 power law for length scales in the wavefront approaching the correlation scale of turbulence may lead to better 'seeing' at longer wavelengths.
Recombination rate predicts inversion size in Diptera.
Cáceres, M; Barbadilla, A; Ruiz, A
1999-01-01
Most species of the Drosophila genus and other Diptera are polymorphic for paracentric inversions. A common observation is that successful inversions are of intermediate size. We test here the hypothesis that the selected property is the recombination length of inversions, not their physical length. If so, physical length of successful inversions should be negatively correlated with recombination rate across species. This prediction was tested by a comprehensive statistical analysis of inversion size and recombination map length in 12 Diptera species for which appropriate data are available. We found that (1) there is a wide variation in recombination map length among species; (2) physical length of successful inversions varies greatly among species and is inversely correlated with the species recombination map length; and (3) neither the among-species variation in inversion length nor the correlation are observed in unsuccessful inversions. The clear differences between successful and unsuccessful inversions point to natural selection as the most likely explanation for our results. Presumably the selective advantage of an inversion increases with its length, but so does its detrimental effect on fertility due to double crossovers. Our analysis provides the strongest and most extensive evidence in favor of the notion that the adaptive value of inversions stems from their effect on recombination. PMID:10471710
Detecting many-body-localization lengths with cold atoms
NASA Astrophysics Data System (ADS)
Guo, Xuefei; Li, Xiaopeng
2018-03-01
Considering ultracold atoms in optical lattices, we propose experimental protocols to study many-body-localization (MBL) length and criticality in quench dynamics. Through numerical simulations with exact diagonalization, we show that in the MBL phase the perturbed density profile following a local quench remains exponentially localized in postquench dynamics. The size of this density profile after long-time-dynamics defines a localization length, which tends to diverge at the MBL-to-ergodic transition as we increase the system size. The determined localization transition point agrees with previous exact diagonalization calculations using other diagnostics. Our numerical results provide evidence for violation of the Harris-Chayes bound for the MBL criticality. The critical exponent ν can be extracted from our proposed dynamical procedure, which can then be used directly in experiments to determine whether the Harris-Chayes-bound holds for the MBL transition. These proposed protocols to detect localization criticality are justified by benchmarking to the well-established results for the noninteracting three-dimensional Anderson localization.
Herrera, Carlos M; Medrano, Mónica; Bazaga, Pilar
2017-08-16
Epigenetic variation can play a role in local adaptation; thus, there should be associations among epigenetic variation, environmental variation, and functional trait variation across populations. This study examines these relationships in the perennial herb Helleborus foetidus (Ranunculaceae). Plants from 10 subpopulations were characterized genetically (AFLP, SSR markers), epigenetically (MSAP markers), and phenotypically (20 functional traits). Habitats were characterized using six environmental variables. Isolation-by-distance (IBD) and isolation-by-environment (IBE) patterns of genetic and epigenetic divergence were assessed, as was the comparative explanatory value of geographical and environmental distance as predictors of epigenetic, genetic, and functional differentiation. Subpopulations were differentiated genetically, epigenetically, and phenotypically. Genetic differentiation was best explained by geographical distance, while epigenetic differentiation was best explained by environmental distance. Divergence in functional traits was correlated with environmental and epigenetic distances, but not with geographical and genetic distances. Results are compatible with the hypothesis that epigenetic IBE and functional divergence reflected responses to environmental variation. Spatial analyses simultaneously considering epigenetic, genetic, phenotypic and environmental information provide a useful tool to evaluate the role of environmental features as drivers of natural epigenetic variation between populations. © 2017 Botanical Society of America.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Cheng; Hong, Kyung -Han; Lin, C. D.
2016-12-08
Here, we numerically demonstrate the generation of intense, low-divergence soft X-ray isolated attosecond pulses in a gas-filled hollow waveguide using synthesized few-cycle two-color laser waveforms. The waveform is a superposition of a fundamental and its second harmonic optimized such that highest harmonic yields are emitted from each atom. We then optimize the gas pressure and the length and radius of the waveguide such that bright coherent high-order harmonics with angular divergence smaller than 1 mrad are generated, for photon energy from the extreme ultraviolet to soft X-rays. By selecting a proper spectral range enhanced isolated attosecond pulses are generated. Wemore » study how dynamic phase matching caused by the interplay among waveguide mode, neutral atomic dispersion, and plasma effect is achieved at the optimal macroscopic conditions, by performing time-frequency analysis and by analyzing the evolution of the driving laser’s electric field during the propagation. Our results, when combined with the on-going push of high-repetition-rate lasers (sub- to few MHz’s) may eventually lead to the generation of high-flux, low-divergence soft X-ray tabletop isolated attosecond pulses for applications.« less
Alvarez-Ponce, David; Guirao-Rico, Sara; Orengo, Dorcas J; Segarra, Carmen; Rozas, Julio; Aguadé, Montserrat
2012-01-01
The IT-insulin/target of rapamycin (TOR)-signal transduction pathway is a relatively well-characterized pathway that plays a central role in fundamental biological processes. Network-level analyses of DNA divergence in Drosophila and vertebrates have revealed a clear gradient in the levels of purifying selection along this pathway, with the downstream genes being the most constrained. Remarkably, this feature does not result from factors known to affect selective constraint such as gene expression, codon bias, protein length, and connectivity. The present work aims to establish whether the selective constraint gradient detected along the IT pathway at the between-species level can also be observed at a shorter time scale. With this purpose, we have surveyed DNA polymorphism in Drosophila melanogaster and divergence from D. simulans along the IT pathway. Our network-level analysis shows that DNA polymorphism exhibits the same polarity in the strength of purifying selection as previously detected at the divergence level. This equivalent feature detected both within species and between closely and distantly related species points to the action of a general mechanism, whose action is neither organism specific nor evolutionary time dependent. The detected polarity would be, therefore, intrinsic to the IT pathway architecture and function.
Directional selection has shaped the oral jaws of Lake Malawi cichlid fishes.
Albertson, R Craig; Streelman, J Todd; Kocher, Thomas D
2003-04-29
East African cichlid fishes represent one of the most striking examples of rapid and convergent evolutionary radiation among vertebrates. Models of ecological speciation would suggest that functional divergence in feeding morphology has contributed to the origin and maintenance of cichlid species diversity. However, definitive evidence for the action of natural selection has been missing. Here we use quantitative genetics to identify regions of the cichlid genome responsible for functionally important shape differences in the oral jaw apparatus. The consistent direction of effects for individual quantitative trait loci suggest that cichlid jaws and teeth evolved in response to strong, divergent selection. Moreover, several chromosomal regions contain a disproportionate number of quantitative trait loci, indicating a prominent role for pleiotropy or genetic linkage in the divergence of this character complex. Of particular interest are genomic intervals with concerted effects on both the length and height of the lower jaw. Coordinated changes in this area of the oral jaw apparatus are predicted to have direct consequences for the speed and strength of jaw movement. Taken together, our results imply that the rapid and replicative nature of cichlid trophic evolution is the result of directional selection on chromosomal packages that encode functionally linked aspects of the craniofacial skeleton.
NASA Astrophysics Data System (ADS)
Xu, Jiajie; Jiang, Bo; Chai, Sanming; He, Yuan; Zhu, Jianyi; Shen, Zonggen; Shen, Songdong
2016-09-01
Filamentous Bangia, which are distributed extensively throughout the world, have simple and similar morphological characteristics. Scientists can classify these organisms using molecular markers in combination with morphology. We successfully sequenced the complete nuclear ribosomal DNA, approximately 13 kb in length, from a marine Bangia population. We further analyzed the small subunit ribosomal DNA gene (nrSSU) and the internal transcribed spacer (ITS) sequence regions along with nine other marine, and two freshwater Bangia samples from China. Pairwise distances of the nrSSU and 5.8S ribosomal DNA gene sequences show the marine samples grouping together with low divergences (00.003; 0-0.006, respectively) from each other, but high divergences (0.123-0.126; 0.198, respectively) from freshwater samples. An exception is the marine sample collected from Weihai, which shows high divergence from both other marine samples (0.063-0.065; 0.129, respectively) and the freshwater samples (0.097; 0.120, respectively). A maximum likelihood phylogenetic tree based on a combined SSU-ITS dataset with maximum likelihood method shows the samples divided into three clades, with the two marine sample clades containing Bangia spp. from North America, Europe, Asia, and Australia; and one freshwater clade, containing Bangia atropurpurea from North America and China.
Safran, Rebecca J; Vortman, Yoni; Jenkins, Brittany R; Hubbard, Joanna K; Wilkins, Matthew R; Bradley, Rachel J; Lotem, Arnon
2016-09-01
Previous studies have shown that sexual signals can rapidly diverge among closely related species. However, we lack experimental studies to demonstrate that differences in trait-associated reproductive performance maintain sexual trait differences between closely related populations, in support for a role of sexual selection in speciation. Populations of Northern Hemisphere distributed barn swallows Hirundo rustica are closely related, yet differ in two plumage-based traits: ventral color and length of the outermost tail feathers (streamers). Here we provide experimental evidence that manipulations of these traits result in different reproductive consequences in two subspecies of barn swallow: (H. r. erythrogaster in North America and H. r. transitiva in the East Mediterranean). Experimental results in Colorado, USA, demonstrate that males with (1) darkened ventral coloration and (2) shortened streamers gained paternity between two successive reproductive bouts. In contrast, exaggeration of both traits improved reproductive performance within H. r. transitiva in Israel: males with a combination treatment of darkened ventral coloration and elongated streamers gained paternity between two successive reproductive bouts. Collectively, these experimental results fill an important gap in our understanding for how divergent sexual selection maintains phenotype differentiation in closely related populations, an important aspect of the speciation process. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
Measuring Work Functioning: Validity of a Weighted Composite Work Functioning Approach.
Boezeman, Edwin J; Sluiter, Judith K; Nieuwenhuijsen, Karen
2015-09-01
To examine the construct validity of a weighted composite work functioning measurement approach. Workers (health-impaired/healthy) (n = 117) completed a composite measure survey that recorded four central work functioning aspects with existing scales: capacity to work, quality of work performance, quantity of work, and recovery from work. Previous derived weights reflecting the relative importance of these aspects of work functioning were used to calculate the composite weighted work functioning score of the workers. Work role functioning, productivity, and quality of life were used for validation. Correlations were calculated and norms applied to examine convergent and divergent construct validity. A t test was conducted and a norm applied to examine discriminative construct validity. Overall the weighted composite work functioning measure demonstrated construct validity. As predicted, the weighted composite score correlated (p < .001) strongly (r > .60) with work role functioning and productivity (convergent construct validity), and moderately (.30 < r < .60) with physical quality of life and less strongly than work role functioning and productivity with mental quality of life (divergent validity). Further, the weighted composite measure detected that health-impaired workers show with a large effect size (Cohen's d > .80) significantly worse work functioning than healthy workers (discriminative validity). The weighted composite work functioning measurement approach takes into account the relative importance of the different work functioning aspects and demonstrated good convergent, fair divergent, and good discriminative construct validity.
The right time to happen: play developmental divergence in the two Pan species.
Palagi, Elisabetta; Cordoni, Giada
2012-01-01
Bonobos, compared to chimpanzees, are highly motivated to play as adults. Therefore, it is interesting to compare the two species at earlier developmental stages to determine how and when these differences arise. We measured and compared some play parameters between the two species including frequency, number of partners (solitary, dyadic, and polyadic play), session length, and escalation into overt aggression. Since solitary play has a role in developing cognitive and physical skills, it is not surprising that chimpanzees and bonobos share similar developmental trajectories in the motivation to engage in this activity. The striking divergence in play developmental pathways emerged for social play. Infants of the two species showed comparable social play levels, which began to diverge during the juvenile period, a 'timing hotspot' for play development. Compared to chimpanzees, social play sessions in juvenile bonobos escalated less frequently into overt aggression, lasted longer, and frequently involved more than two partners concurrently (polyadic play). In this view, play fighting in juvenile bonobos seems to maintain a cooperative mood, whereas in juvenile chimpanzees it acquires more competitive elements. The retention of juvenile traits into adulthood typical of bonobos can be due to a developmental delay in social inhibition. Our findings show that the divergence of play ontogenetic pathways between the two Pan species and the relative emergence of play neotenic traits in bonobos can be detected before individuals reach sexual maturity. The high play motivation showed by adult bonobos compared to chimpanzees is probably the result of a long developmental process, rooted in the delicate transitional phase, which leads subjects from infancy to juvenility.
Longitudinal analyses of correlated response efficiencies of fillet traits in Nile tilapia.
Turra, E M; Fernandes, A F A; de Alvarenga, E R; Teixeira, E A; Alves, G F O; Manduca, L G; Murphy, T W; Silva, M A
2018-03-01
Recent studies with Nile tilapia have shown divergent results regarding the possibility of selecting on morphometric measurements to promote indirect genetic gains in fillet yield (FY). The use of indirect selection for fillet traits is important as these traits are only measurable after harvesting. Random regression models are a powerful tool in association studies to identify the best time point to measure and select animals. Random regression models can also be applied in a multiple trait approach to analyze indirect response to selection, which would avoid the need to sacrifice candidate fish. Therefore, the aim of this study was to investigate the genetic relationships between several body measurements, weight and fillet traits throughout the growth period and to evaluate the possibility of indirect selection for fillet traits in Nile tilapia. Data were collected from 2042 fish and was divided into two subsets. The first subset was used to estimate genetic parameters, including the permanent environmental effect for BW and body measurements (8758 records for each body measurement, as each fish was individually weighed and measured a maximum of six times). The second subset (2042 records for each trait) was used to estimate genetic correlations and heritabilities, which enabled the calculation of correlated response efficiencies between body measurements and the fillet traits. Heritability estimates across ages ranged from 0.05 to 0.5 for height, 0.02 to 0.48 for corrected length (CL), 0.05 to 0.68 for width, 0.08 to 0.57 for fillet weight (FW) and 0.12 to 0.42 for FY. All genetic correlation estimates between body measurements and FW were positive and strong (0.64 to 0.98). The estimates of genetic correlation between body measurements and FY were positive (except for CL at some ages), but weak to moderate (-0.08 to 0.68). These estimates resulted in strong and favorable correlated response efficiencies for FW and positive, but moderate for FY. These results indicate the possibility of achieving indirect genetic gains for FW and by selecting for morphometric traits, but low efficiency for FY when compared with direct selection.
Length of the solar cycle influence on the relationship NAO-Northern Hemisphere Temperature
NASA Astrophysics Data System (ADS)
de La Torre, L.; Gimeno, L.; Tesouro, M.; Añel, J. A.; Nieto, R.; Ribera, P.; García, R.; Hernández, E.
2003-04-01
The influence of the length of the solar cycle on the relationship North Atlantic Oscillation (NAO)-Northern Hemisphere Temperature (NHT) is investigated. The results suggest that this relationship is different according to the length of the solar cycle. When the sunspot cycle is 10 or 11 years long, wintertime NAO and NHT are positively correlated, being the signal more intense during 11 years period, but when the sunspot cycle is longer (12 years) correlations between wintertime NAO and NHT are not significant. In fact there are significant negative correlations between wintertime NAO and spring NHT, with predictive potential.
Design of a Paraxial Inverse Compton Scattering Diagnostic for an Intense Relativistic Electron Beam
2013-06-01
with a 50 cm focal length plano-convex lens (Fig. 4). Prior to entering the vacuum the laser light passes through a Brewster angled window, which...1/γ ~ 25 mrad. Brewster angled windows Beam dump Spectra Physics 5J Nd:YAG Focusing lens Insertable power meter z x y 37.8 cm Figure 4...visible green light is upscattered into the soft X-ray range and diverges from the interception point downstream at an angle θs = 1/γ ~ 25 mrad