Brown, C. Erwin
1993-01-01
Correlation analysis in conjunction with principal-component and multiple-regression analyses were applied to laboratory chemical and petrographic data to assess the usefulness of these techniques in evaluating selected physical and hydraulic properties of carbonate-rock aquifers in central Pennsylvania. Correlation and principal-component analyses were used to establish relations and associations among variables, to determine dimensions of property variation of samples, and to filter the variables containing similar information. Principal-component and correlation analyses showed that porosity is related to other measured variables and that permeability is most related to porosity and grain size. Four principal components are found to be significant in explaining the variance of data. Stepwise multiple-regression analysis was used to see how well the measured variables could predict porosity and (or) permeability for this suite of rocks. The variation in permeability and porosity is not totally predicted by the other variables, but the regression is significant at the 5% significance level. ?? 1993.
Principal component regression analysis with SPSS.
Liu, R X; Kuang, J; Gong, Q; Hou, X L
2003-06-01
The paper introduces all indices of multicollinearity diagnoses, the basic principle of principal component regression and determination of 'best' equation method. The paper uses an example to describe how to do principal component regression analysis with SPSS 10.0: including all calculating processes of the principal component regression and all operations of linear regression, factor analysis, descriptives, compute variable and bivariate correlations procedures in SPSS 10.0. The principal component regression analysis can be used to overcome disturbance of the multicollinearity. The simplified, speeded up and accurate statistical effect is reached through the principal component regression analysis with SPSS.
Temporal evolution of financial-market correlations.
Fenn, Daniel J; Porter, Mason A; Williams, Stacy; McDonald, Mark; Johnson, Neil F; Jones, Nick S
2011-08-01
We investigate financial market correlations using random matrix theory and principal component analysis. We use random matrix theory to demonstrate that correlation matrices of asset price changes contain structure that is incompatible with uncorrelated random price changes. We then identify the principal components of these correlation matrices and demonstrate that a small number of components accounts for a large proportion of the variability of the markets that we consider. We characterize the time-evolving relationships between the different assets by investigating the correlations between the asset price time series and principal components. Using this approach, we uncover notable changes that occurred in financial markets and identify the assets that were significantly affected by these changes. We show in particular that there was an increase in the strength of the relationships between several different markets following the 2007-2008 credit and liquidity crisis.
Temporal evolution of financial-market correlations
NASA Astrophysics Data System (ADS)
Fenn, Daniel J.; Porter, Mason A.; Williams, Stacy; McDonald, Mark; Johnson, Neil F.; Jones, Nick S.
2011-08-01
We investigate financial market correlations using random matrix theory and principal component analysis. We use random matrix theory to demonstrate that correlation matrices of asset price changes contain structure that is incompatible with uncorrelated random price changes. We then identify the principal components of these correlation matrices and demonstrate that a small number of components accounts for a large proportion of the variability of the markets that we consider. We characterize the time-evolving relationships between the different assets by investigating the correlations between the asset price time series and principal components. Using this approach, we uncover notable changes that occurred in financial markets and identify the assets that were significantly affected by these changes. We show in particular that there was an increase in the strength of the relationships between several different markets following the 2007-2008 credit and liquidity crisis.
Principal component analysis of the nonlinear coupling of harmonic modes in heavy-ion collisions
NASA Astrophysics Data System (ADS)
BoŻek, Piotr
2018-03-01
The principal component analysis of flow correlations in heavy-ion collisions is studied. The correlation matrix of harmonic flow is generalized to correlations involving several different flow vectors. The method can be applied to study the nonlinear coupling between different harmonic modes in a double differential way in transverse momentum or pseudorapidity. The procedure is illustrated with results from the hydrodynamic model applied to Pb + Pb collisions at √{sN N}=2760 GeV. Three examples of generalized correlations matrices in transverse momentum are constructed corresponding to the coupling of v22 and v4, of v2v3 and v5, or of v23,v33 , and v6. The principal component decomposition is applied to the correlation matrices and the dominant modes are calculated.
Principal components analysis in clinical studies.
Zhang, Zhongheng; Castelló, Adela
2017-09-01
In multivariate analysis, independent variables are usually correlated to each other which can introduce multicollinearity in the regression models. One approach to solve this problem is to apply principal components analysis (PCA) over these variables. This method uses orthogonal transformation to represent sets of potentially correlated variables with principal components (PC) that are linearly uncorrelated. PCs are ordered so that the first PC has the largest possible variance and only some components are selected to represent the correlated variables. As a result, the dimension of the variable space is reduced. This tutorial illustrates how to perform PCA in R environment, the example is a simulated dataset in which two PCs are responsible for the majority of the variance in the data. Furthermore, the visualization of PCA is highlighted.
QSAR modeling of flotation collectors using principal components extracted from topological indices.
Natarajan, R; Nirdosh, Inderjit; Basak, Subhash C; Mills, Denise R
2002-01-01
Several topological indices were calculated for substituted-cupferrons that were tested as collectors for the froth flotation of uranium. The principal component analysis (PCA) was used for data reduction. Seven principal components (PC) were found to account for 98.6% of the variance among the computed indices. The principal components thus extracted were used in stepwise regression analyses to construct regression models for the prediction of separation efficiencies (Es) of the collectors. A two-parameter model with a correlation coefficient of 0.889 and a three-parameter model with a correlation coefficient of 0.913 were formed. PCs were found to be better than partition coefficient to form regression equations, and inclusion of an electronic parameter such as Hammett sigma or quantum mechanically derived electronic charges on the chelating atoms did not improve the correlation coefficient significantly. The method was extended to model the separation efficiencies of mercaptobenzothiazoles (MBT) and aminothiophenols (ATP) used in the flotation of lead and zinc ores, respectively. Five principal components were found to explain 99% of the data variability in each series. A three-parameter equation with correlation coefficient of 0.985 and a two-parameter equation with correlation coefficient of 0.926 were obtained for MBT and ATP, respectively. The amenability of separation efficiencies of chelating collectors to QSAR modeling using PCs based on topological indices might lead to the selection of collectors for synthesis and testing from a virtual database.
NASA Astrophysics Data System (ADS)
Zhang, Qiong; Peng, Cong; Lu, Yiming; Wang, Hao; Zhu, Kaiguang
2018-04-01
A novel technique is developed to level airborne geophysical data using principal component analysis based on flight line difference. In the paper, flight line difference is introduced to enhance the features of levelling error for airborne electromagnetic (AEM) data and improve the correlation between pseudo tie lines. Thus we conduct levelling to the flight line difference data instead of to the original AEM data directly. Pseudo tie lines are selected distributively cross profile direction, avoiding the anomalous regions. Since the levelling errors of selective pseudo tie lines show high correlations, principal component analysis is applied to extract the local levelling errors by low-order principal components reconstruction. Furthermore, we can obtain the levelling errors of original AEM data through inverse difference after spatial interpolation. This levelling method does not need to fly tie lines and design the levelling fitting function. The effectiveness of this method is demonstrated by the levelling results of survey data, comparing with the results from tie-line levelling and flight-line correlation levelling.
Similarities between principal components of protein dynamics and random diffusion
NASA Astrophysics Data System (ADS)
Hess, Berk
2000-12-01
Principal component analysis, also called essential dynamics, is a powerful tool for finding global, correlated motions in atomic simulations of macromolecules. It has become an established technique for analyzing molecular dynamics simulations of proteins. The first few principal components of simulations of large proteins often resemble cosines. We derive the principal components for high-dimensional random diffusion, which are almost perfect cosines. This resemblance between protein simulations and noise implies that for many proteins the time scales of current simulations are too short to obtain convergence of collective motions.
Das, Atanu; Mukhopadhyay, Chaitali
2007-10-28
We have performed molecular dynamics (MD) simulation of the thermal denaturation of one protein and one peptide-ubiquitin and melittin. To identify the correlation in dynamics among various secondary structural fragments and also the individual contribution of different residues towards thermal unfolding, principal component analysis method was applied in order to give a new insight to protein dynamics by analyzing the contribution of coefficients of principal components. The cross-correlation matrix obtained from MD simulation trajectory provided important information regarding the anisotropy of backbone dynamics that leads to unfolding. Unfolding of ubiquitin was found to be a three-state process, while that of melittin, though smaller and mostly helical, is more complicated.
NASA Astrophysics Data System (ADS)
Das, Atanu; Mukhopadhyay, Chaitali
2007-10-01
We have performed molecular dynamics (MD) simulation of the thermal denaturation of one protein and one peptide—ubiquitin and melittin. To identify the correlation in dynamics among various secondary structural fragments and also the individual contribution of different residues towards thermal unfolding, principal component analysis method was applied in order to give a new insight to protein dynamics by analyzing the contribution of coefficients of principal components. The cross-correlation matrix obtained from MD simulation trajectory provided important information regarding the anisotropy of backbone dynamics that leads to unfolding. Unfolding of ubiquitin was found to be a three-state process, while that of melittin, though smaller and mostly helical, is more complicated.
A Note on McDonald's Generalization of Principal Components Analysis
ERIC Educational Resources Information Center
Shine, Lester C., II
1972-01-01
It is shown that McDonald's generalization of Classical Principal Components Analysis to groups of variables maximally channels the totalvariance of the original variables through the groups of variables acting as groups. An equation is obtained for determining the vectors of correlations of the L2 components with the original variables.…
Finding Planets in K2: A New Method of Cleaning the Data
NASA Astrophysics Data System (ADS)
Currie, Miles; Mullally, Fergal; Thompson, Susan E.
2017-01-01
We present a new method of removing systematic flux variations from K2 light curves by employing a pixel-level principal component analysis (PCA). This method decomposes the light curves into its principal components (eigenvectors), each with an associated eigenvalue, the value of which is correlated to how much influence the basis vector has on the shape of the light curve. This method assumes that the most influential basis vectors will correspond to the unwanted systematic variations in the light curve produced by K2’s constant motion. We correct the raw light curve by automatically fitting and removing the strongest principal components. The strongest principal components generally correspond to the flux variations that result from the motion of the star in the field of view. Our primary method of calculating the strongest principal components to correct for in the raw light curve estimates the noise by measuring the scatter in the light curve after using an algorithm for Savitsy-Golay detrending, which computes the combined photometric precision value (SG-CDPP value) used in classic Kepler. We calculate this value after correcting the raw light curve for each element in a list of cumulative sums of principal components so that we have as many noise estimate values as there are principal components. We then take the derivative of the list of SG-CDPP values and take the number of principal components that correlates to the point at which the derivative effectively goes to zero. This is the optimal number of principal components to exclude from the refitting of the light curve. We find that a pixel-level PCA is sufficient for cleaning unwanted systematic and natural noise from K2’s light curves. We present preliminary results and a basic comparison to other methods of reducing the noise from the flux variations.
Meyer, Karin; Kirkpatrick, Mark
2005-01-01
Principal component analysis is a widely used 'dimension reduction' technique, albeit generally at a phenotypic level. It is shown that we can estimate genetic principal components directly through a simple reparameterisation of the usual linear, mixed model. This is applicable to any analysis fitting multiple, correlated genetic effects, whether effects for individual traits or sets of random regression coefficients to model trajectories. Depending on the magnitude of genetic correlation, a subset of the principal component generally suffices to capture the bulk of genetic variation. Corresponding estimates of genetic covariance matrices are more parsimonious, have reduced rank and are smoothed, with the number of parameters required to model the dispersion structure reduced from k(k + 1)/2 to m(2k - m + 1)/2 for k effects and m principal components. Estimation of these parameters, the largest eigenvalues and pertaining eigenvectors of the genetic covariance matrix, via restricted maximum likelihood using derivatives of the likelihood, is described. It is shown that reduced rank estimation can reduce computational requirements of multivariate analyses substantially. An application to the analysis of eight traits recorded via live ultrasound scanning of beef cattle is given. PMID:15588566
Determining the Number of Components from the Matrix of Partial Correlations
ERIC Educational Resources Information Center
Velicer, Wayne F.
1976-01-01
A method is presented for determining the number of components to retain in a principal components or image components analysis which utilizes a matrix of partial correlations. Advantages and uses of the method are discussed and a comparison of the proposed method with existing methods is presented. (JKS)
Xiao, Keke; Chen, Yun; Jiang, Xie; Zhou, Yan
2017-03-01
An investigation was conducted for 20 different types of sludge in order to identify the key organic compounds in extracellular polymeric substances (EPS) that are important in assessing variations of sludge filterability. The different types of sludge varied in initial total solids (TS) content, organic composition and pre-treatment methods. For instance, some of the sludges were pre-treated by acid, ultrasonic, thermal, alkaline, or advanced oxidation technique. The Pearson's correlation results showed significant correlations between sludge filterability and zeta potential, pH, dissolved organic carbon, protein and polysaccharide in soluble EPS (SB EPS), loosely bound EPS (LB EPS) and tightly bound EPS (TB EPS). The principal component analysis (PCA) method was used to further explore correlations between variables and similarities among EPS fractions of different types of sludge. Two principal components were extracted: principal component 1 accounted for 59.24% of total EPS variations, while principal component 2 accounted for 25.46% of total EPS variations. Dissolved organic carbon, protein and polysaccharide in LB EPS showed higher eigenvector projection values than the corresponding compounds in SB EPS and TB EPS in principal component 1. Further characterization of fractionized key organic compounds in LB EPS was conducted with size-exclusion chromatography-organic carbon detection-organic nitrogen detection (LC-OCD-OND). A numerical multiple linear regression model was established to describe relationship between organic compounds in LB EPS and sludge filterability. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zuendorf, Gerhard; Kerrouche, Nacer; Herholz, Karl; Baron, Jean-Claude
2003-01-01
Principal component analysis (PCA) is a well-known technique for reduction of dimensionality of functional imaging data. PCA can be looked at as the projection of the original images onto a new orthogonal coordinate system with lower dimensions. The new axes explain the variance in the images in decreasing order of importance, showing correlations between brain regions. We used an efficient, stable and analytical method to work out the PCA of Positron Emission Tomography (PET) images of 74 normal subjects using [(18)F]fluoro-2-deoxy-D-glucose (FDG) as a tracer. Principal components (PCs) and their relation to age effects were investigated. Correlations between the projections of the images on the new axes and the age of the subjects were carried out. The first two PCs could be identified as being the only PCs significantly correlated to age. The first principal component, which explained 10% of the data set variance, was reduced only in subjects of age 55 or older and was related to loss of signal in and adjacent to ventricles and basal cisterns, reflecting expected age-related brain atrophy with enlarging CSF spaces. The second principal component, which accounted for 8% of the total variance, had high loadings from prefrontal, posterior parietal and posterior cingulate cortices and showed the strongest correlation with age (r = -0.56), entirely consistent with previously documented age-related declines in brain glucose utilization. Thus, our method showed that the effect of aging on brain metabolism has at least two independent dimensions. This method should have widespread applications in multivariate analysis of brain functional images. Copyright 2002 Wiley-Liss, Inc.
Azilawati, M I; Hashim, D M; Jamilah, B; Amin, I
2015-04-01
The amino acid compositions of bovine, porcine and fish gelatin were determined by amino acid analysis using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate as derivatization reagent. Sixteen amino acids were identified with similar spectral chromatograms. Data pre-treatment via centering and transformation of data by normalization were performed to provide data that are more suitable for analysis and easier to be interpreted. Principal component analysis (PCA) transformed the original data matrix into a number of principal components (PCs). Three principal components (PCs) described 96.5% of the total variance, and 2 PCs (91%) explained the highest variances. The PCA model demonstrated the relationships among amino acids in the correlation loadings plot to the group of gelatins in the scores plot. Fish gelatin was correlated to threonine, serine and methionine on the positive side of PC1; bovine gelatin was correlated to the non-polar side chains amino acids that were proline, hydroxyproline, leucine, isoleucine and valine on the negative side of PC1 and porcine gelatin was correlated to the polar side chains amino acids that were aspartate, glutamic acid, lysine and tyrosine on the negative side of PC2. Verification on the database using 12 samples from commercial products gelatin-based had confirmed the grouping patterns and the variables correlations. Therefore, this quantitative method is very useful as a screening method to determine gelatin from various sources. Copyright © 2014 Elsevier Ltd. All rights reserved.
Jesse, Stephen; Kalinin, Sergei V
2009-02-25
An approach for the analysis of multi-dimensional, spectroscopic-imaging data based on principal component analysis (PCA) is explored. PCA selects and ranks relevant response components based on variance within the data. It is shown that for examples with small relative variations between spectra, the first few PCA components closely coincide with results obtained using model fitting, and this is achieved at rates approximately four orders of magnitude faster. For cases with strong response variations, PCA allows an effective approach to rapidly process, de-noise, and compress data. The prospects for PCA combined with correlation function analysis of component maps as a universal tool for data analysis and representation in microscopy are discussed.
Peterson, Leif E
2002-01-01
CLUSFAVOR (CLUSter and Factor Analysis with Varimax Orthogonal Rotation) 5.0 is a Windows-based computer program for hierarchical cluster and principal-component analysis of microarray-based transcriptional profiles. CLUSFAVOR 5.0 standardizes input data; sorts data according to gene-specific coefficient of variation, standard deviation, average and total expression, and Shannon entropy; performs hierarchical cluster analysis using nearest-neighbor, unweighted pair-group method using arithmetic averages (UPGMA), or furthest-neighbor joining methods, and Euclidean, correlation, or jack-knife distances; and performs principal-component analysis. PMID:12184816
Dynamic of consumer groups and response of commodity markets by principal component analysis
NASA Astrophysics Data System (ADS)
Nobi, Ashadun; Alam, Shafiqul; Lee, Jae Woo
2017-09-01
This study investigates financial states and group dynamics by applying principal component analysis to the cross-correlation coefficients of the daily returns of commodity futures. The eigenvalues of the cross-correlation matrix in the 6-month timeframe displays similar values during 2010-2011, but decline following 2012. A sharp drop in eigenvalue implies the significant change of the market state. Three commodity sectors, energy, metals and agriculture, are projected into two dimensional spaces consisting of two principal components (PC). We observe that they form three distinct clusters in relation to various sectors. However, commodities with distinct features have intermingled with one another and scattered during severe crises, such as the European sovereign debt crises. We observe the notable change of the position of two dimensional spaces of groups during financial crises. By considering the first principal component (PC1) within the 6-month moving timeframe, we observe that commodities of the same group change states in a similar pattern, and the change of states of one group can be used as a warning for other group.
ECOPASS - a multivariate model used as an index of growth performance of poplar clones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ceulemans, R.; Impens, I.
The model (ECOlogical PASSport) reported was constructed by principal component analysis from a combination of biochemical, anatomical/morphological and ecophysiological gas exchange parameters measured on 5 fast growing poplar clones. Productivity data were 10 selected trees in 3 plantations in Belgium and given as m.a.i.(b.a.). The model is shown to be able to reflect not only genetic origin and the relative effects of the different parameters of the clones, but also their production potential. Multiple regression analysis of the 4 principal components showed a high cumulative correlation (96%) between the 3 components related to ecophysiological, biochemical and morphological parameters, and productivity;more » the ecophysiological component alone correlated 85% with productivity.« less
NASA Astrophysics Data System (ADS)
Kim, Young-Pil; Hong, Mi-Young; Shon, Hyun Kyong; Chegal, Won; Cho, Hyun Mo; Moon, Dae Won; Kim, Hak-Sung; Lee, Tae Geol
2008-12-01
Interaction between streptavidin and biotin on poly(amidoamine) (PAMAM) dendrimer-activated surfaces and on self-assembled monolayers (SAMs) was quantitatively studied by using time-of-flight secondary ion mass spectrometry (ToF-SIMS). The surface protein density was systematically varied as a function of protein concentration and independently quantified using the ellipsometry technique. Principal component analysis (PCA) and principal component regression (PCR) were used to identify a correlation between the intensities of the secondary ion peaks and the surface protein densities. From the ToF-SIMS and ellipsometry results, a good linear correlation of protein density was found. Our study shows that surface protein densities are higher on dendrimer-activated surfaces than on SAMs surfaces due to the spherical property of the dendrimer, and that these surface protein densities can be easily quantified with high sensitivity in a label-free manner by ToF-SIMS.
Time series analysis of collective motions in proteins
NASA Astrophysics Data System (ADS)
Alakent, Burak; Doruker, Pemra; ćamurdan, Mehmet C.
2004-01-01
The dynamics of α-amylase inhibitor tendamistat around its native state is investigated using time series analysis of the principal components of the Cα atomic displacements obtained from molecular dynamics trajectories. Collective motion along a principal component is modeled as a homogeneous nonstationary process, which is the result of the damped oscillations in local minima superimposed on a random walk. The motion in local minima is described by a stationary autoregressive moving average model, consisting of the frequency, damping factor, moving average parameters and random shock terms. Frequencies for the first 50 principal components are found to be in the 3-25 cm-1 range, which are well correlated with the principal component indices and also with atomistic normal mode analysis results. Damping factors, though their correlation is less pronounced, decrease as principal component indices increase, indicating that low frequency motions are less affected by friction. The existence of a positive moving average parameter indicates that the stochastic force term is likely to disturb the mode in opposite directions for two successive sampling times, showing the modes tendency to stay close to minimum. All these four parameters affect the mean square fluctuations of a principal mode within a single minimum. The inter-minima transitions are described by a random walk model, which is driven by a random shock term considerably smaller than that for the intra-minimum motion. The principal modes are classified into three subspaces based on their dynamics: essential, semiconstrained, and constrained, at least in partial consistency with previous studies. The Gaussian-type distributions of the intermediate modes, called "semiconstrained" modes, are explained by asserting that this random walk behavior is not completely free but between energy barriers.
Sebro, Ronnie; Hoffman, Thomas J.; Lange, Christoph; Rogus, John J.; Risch, Neil J.
2013-01-01
Population stratification leads to a predictable phenomenon—a reduction in the number of heterozygotes compared to that calculated assuming Hardy-Weinberg Equilibrium (HWE). We show that population stratification results in another phenomenon—an excess in the proportion of spouse-pairs with the same genotypes at all ancestrally informative markers, resulting in ancestrally related positive assortative mating. We use principal components analysis to show that there is evidence of population stratification within the Framingham Heart Study, and show that the first principal component correlates with a North-South European cline. We then show that the first principal component is highly correlated between spouses (r=0.58, p=0.0013), demonstrating that there is ancestrally related positive assortative mating among the Framingham Caucasian population. We also show that the single nucleotide polymorphisms loading most heavily on the first principal component show an excess of homozygotes within the spouses, consistent with similar ancestry-related assortative mating in the previous generation. This nonrandom mating likely affects genetic structure seen more generally in the North American population of European descent today, and decreases the rate of decay of linkage disequilibrium for ancestrally informative markers. PMID:20842694
Mahler, Barbara J.
2008-01-01
The statistical analyses taken together indicate that the geochemistry at the freshwater-zone wells is more variable than that at the transition-zone wells. The geochemical variability at the freshwater-zone wells might result from dilution of ground water by meteoric water. This is indicated by relatively constant major ion molar ratios; a preponderance of positive correlations between SC, major ions, and trace elements; and a principal components analysis in which the major ions are strongly loaded on the first principal component. Much of the variability at three of the four transition-zone wells might result from the use of different laboratory analytical methods or reporting procedures during the period of sampling. This is reflected by a lack of correlation between SC and major ion concentrations at the transition-zone wells and by a principal components analysis in which the variability is fairly evenly distributed across several principal components. The statistical analyses further indicate that, although the transition-zone wells are less well connected to surficial hydrologic conditions than the freshwater-zone wells, there is some connection but the response time is longer.
A Principle Component Analysis of Galaxy Properties from a Large, Gas-Selected Sample
Chang, Yu-Yen; Chao, Rikon; Wang, Wei-Hao; ...
2012-01-01
Disney emore » t al. (2008) have found a striking correlation among global parameters of H i -selected galaxies and concluded that this is in conflict with the CDM model. Considering the importance of the issue, we reinvestigate the problem using the principal component analysis on a fivefold larger sample and additional near-infrared data. We use databases from the Arecibo Legacy Fast Arecibo L -band Feed Array Survey for the gas properties, the Sloan Digital Sky Survey for the optical properties, and the Two Micron All Sky Survey for the near-infrared properties. We confirm that the parameters are indeed correlated where a single physical parameter can explain 83% of the variations. When color ( g - i ) is included, the first component still dominates but it develops a second principal component. In addition, the near-infrared color ( i - J ) shows an obvious second principal component that might provide evidence of the complex old star formation. Based on our data, we suggest that it is premature to pronounce the failure of the CDM model and it motivates more theoretical work.« less
Principal Components Analysis of a JWST NIRSpec Detector Subsystem
NASA Technical Reports Server (NTRS)
Arendt, Richard G.; Fixsen, D. J.; Greenhouse, Matthew A.; Lander, Matthew; Lindler, Don; Loose, Markus; Moseley, S. H.; Mott, D. Brent; Rauscher, Bernard J.; Wen, Yiting;
2013-01-01
We present principal component analysis (PCA) of a flight-representative James Webb Space Telescope NearInfrared Spectrograph (NIRSpec) Detector Subsystem. Although our results are specific to NIRSpec and its T - 40 K SIDECAR ASICs and 5 m cutoff H2RG detector arrays, the underlying technical approach is more general. We describe how we measured the systems response to small environmental perturbations by modulating a set of bias voltages and temperature. We used this information to compute the systems principal noise components. Together with information from the astronomical scene, we show how the zeroth principal component can be used to calibrate out the effects of small thermal and electrical instabilities to produce cosmetically cleaner images with significantly less correlated noise. Alternatively, if one were designing a new instrument, one could use a similar PCA approach to inform a set of environmental requirements (temperature stability, electrical stability, etc.) that enabled the planned instrument to meet performance requirements
Geographic variation in the black bear (Ursus americanus) in the eastern United States and Canada
Kennedy, M.L.; Kennedy, P.K.; Bogan, M.A.; Waits, J.L.
2002-01-01
The pattern of geographic variation in morphologic characters of the black bear (Ursus americanus) was assessed at 13 sites in the eastern United States and Canada. Thirty measurements from 206 males and 207 females were recorded to the nearest 0.01 mm using digital calipers and subjected to principal components analysis. A matrix of correlations among skull characters was computed, and the first 3 principal components were extracted. These accounted for 90.5% of the variation in the character set for males and 87.1% for females. Three-dimensional projection of localities onto principal components showed that, for males and females, largest individuals occurred in the more southern localities (e.g., males--Louisiana-Mississippi, eastern Texas; females--Louisiana-eastern Texas) and the smallest animals occurred in the northernmost locality (Quebec). Generally, bears were similar morphologically to those in nearby geographic areas. For males, correlations between morphologic variation and environmental factors indicated a significant relationship between size variation and mean January temperature, mean July temperature, mean annual precipitation, latitude, and actual evapotranspiration; for females, a significant relationship was observed between morphologic variation and mean annual temperature, mean January temperature, mean July temperature, latitude, and actual evapotranspiration. There was no significant correlation for either sex between environmental factors and projections onto components II and III.
Relationship between regional population and healthcare delivery in Japan.
Niga, Takeo; Mori, Maiko; Kawahara, Kazuo
2016-01-01
In order to address regional inequality in healthcare delivery in Japan, healthcare districts were established in 1985. However, regional healthcare delivery has now become a national issue because of population migration and the aging population. In this study, the state of healthcare delivery at the district level is examined by analyzing population, the number of physicians, and the number of hospital beds. The results indicate a continuing disparity in healthcare delivery among districts. We find that the rate of change in population has a strong positive correlation with that in the number of physicians and a weak positive correlation with that in the number of hospital beds. In addition, principal component analysis is performed on three variables: the rate of change in population, the number of physicians per capita, and the number of hospital beds per capita. This analysis suggests that the two principal components contribute 90.1% of the information. The first principal component is thought to show the effect of the regulations on hospital beds. The second principal component is thought to show the capacity to recruit physicians. This study indicates that an adjustment to the regulations on hospital beds as well as physician allocation by public funds may be key to resolving the impending issue of regionally disproportionate healthcare delivery.
Liu, Hui-lin; Wan, Xia; Yang, Gong-huan
2013-02-01
To explore the relationship between the strength of tobacco control and the effectiveness of creating smoke-free hospital, and summarize the main factors that affect the program of creating smoke-free hospitals. A total of 210 hospitals from 7 provinces/municipalities directly under the central government were enrolled in this study using stratified random sampling method. Principle component analysis and regression analysis were conducted to analyze the strength of tobacco control and the effectiveness of creating smoke-free hospitals. Two principal components were extracted in the strength of tobacco control index, which respectively reflected the tobacco control policies and efforts, and the willingness and leadership of hospital managers regarding tobacco control. The regression analysis indicated that only the first principal component was significantly correlated with the progression in creating smoke-free hospital (P<0.001), i.e. hospitals with higher scores on the first principal component had better achievements in smoke-free environment creation. Tobacco control policies and efforts are critical in creating smoke-free hospitals. The principal component analysis provides a comprehensive and objective tool for evaluating the creation of smoke-free hospitals.
SAS program for quantitative stratigraphic correlation by principal components
Hohn, M.E.
1985-01-01
A SAS program is presented which constructs a composite section of stratigraphic events through principal components analysis. The variables in the analysis are stratigraphic sections and the observational units are range limits of taxa. The program standardizes data in each section, extracts eigenvectors, estimates missing range limits, and computes the composite section from scores of events on the first principal component. Provided is an option of several types of diagnostic plots; these help one to determine conservative range limits or unrealistic estimates of missing values. Inspection of the graphs and eigenvalues allow one to evaluate goodness of fit between the composite and measured data. The program is extended easily to the creation of a rank-order composite. ?? 1985.
Kong, Jessica; Giridharagopal, Rajiv; Harrison, Jeffrey S; Ginger, David S
2018-05-31
Correlating nanoscale chemical specificity with operational physics is a long-standing goal of functional scanning probe microscopy (SPM). We employ a data analytic approach combining multiple microscopy modes, using compositional information in infrared vibrational excitation maps acquired via photoinduced force microscopy (PiFM) with electrical information from conductive atomic force microscopy. We study a model polymer blend comprising insulating poly(methyl methacrylate) (PMMA) and semiconducting poly(3-hexylthiophene) (P3HT). We show that PiFM spectra are different from FTIR spectra, but can still be used to identify local composition. We use principal component analysis to extract statistically significant principal components and principal component regression to predict local current and identify local polymer composition. In doing so, we observe evidence of semiconducting P3HT within PMMA aggregates. These methods are generalizable to correlated SPM data and provide a meaningful technique for extracting complex compositional information that are impossible to measure from any one technique.
Wongchai, C; Chaidee, A; Pfeiffer, W
2012-01-01
Global warming increases plant salt stress via evaporation after irrigation, but how plant cells sense salt stress remains unknown. Here, we searched for correlation-based targets of salt stress sensing in Chenopodium rubrum cell suspension cultures. We proposed a linkage between the sensing of salt stress and the sensing of distinct metabolites. Consequently, we analysed various extracellular pH signals in autotroph and heterotroph cell suspensions. Our search included signals after 52 treatments: salt and osmotic stress, ion channel inhibitors (amiloride, quinidine), salt-sensing modulators (proline), amino acids, carboxylic acids and regulators (salicylic acid, 2,4-dichlorphenoxyacetic acid). Multivariate analyses revealed hirarchical clusters of signals and five principal components of extracellular proton flux. The principal component correlated with salt stress was an antagonism of γ-aminobutyric and salicylic acid, confirming involvement of acid-sensing ion channels (ASICs) in salt stress sensing. Proline, short non-substituted mono-carboxylic acids (C2-C6), lactic acid and amiloride characterised the four uncorrelated principal components of proton flux. The proline-associated principal component included an antagonism of 2,4-dichlorphenoxyacetic acid and a set of amino acids (hydrophobic, polar, acidic, basic). The five principal components captured 100% of variance of extracellular proton flux. Thus, a bias-free, functional high-throughput screening was established to extract new clusters of response elements and potential signalling pathways, and to serve as a core for quantitative meta-analysis in plant biology. The eigenvectors reorient research, associating proline with development instead of salt stress, and the proof of existence of multiple components of proton flux can help to resolve controversy about the acid growth theory. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.
Information extraction from multivariate images
NASA Technical Reports Server (NTRS)
Park, S. K.; Kegley, K. A.; Schiess, J. R.
1986-01-01
An overview of several multivariate image processing techniques is presented, with emphasis on techniques based upon the principal component transformation (PCT). Multiimages in various formats have a multivariate pixel value, associated with each pixel location, which has been scaled and quantized into a gray level vector, and the bivariate of the extent to which two images are correlated. The PCT of a multiimage decorrelates the multiimage to reduce its dimensionality and reveal its intercomponent dependencies if some off-diagonal elements are not small, and for the purposes of display the principal component images must be postprocessed into multiimage format. The principal component analysis of a multiimage is a statistical analysis based upon the PCT whose primary application is to determine the intrinsic component dimensionality of the multiimage. Computational considerations are also discussed.
Psychometric Evaluation of a Triage Decision Making Inventory
2011-06-27
the correlation matrix and inter-item correlations were reviewed. The Bartlett’s test of sphericity and the Kaiser - Meyer Olkin (KMO) were examined to...nursing experience. Principal component factor analysis with Varimax rotation was conducted using SPSS version 16. The Kaiser - Meyer - Olkin Measure of...Component Analysis. Rotation Method: Varimax with Kaiser Normalization. a. Rotation converged in 7 iterations
Halai, Ajay D; Woollams, Anna M; Lambon Ralph, Matthew A
2017-01-01
Individual differences in the performance profiles of neuropsychologically-impaired patients are pervasive yet there is still no resolution on the best way to model and account for the variation in their behavioural impairments and the associated neural correlates. To date, researchers have generally taken one of three different approaches: a single-case study methodology in which each case is considered separately; a case-series design in which all individual patients from a small coherent group are examined and directly compared; or, group studies, in which a sample of cases are investigated as one group with the assumption that they are drawn from a homogenous category and that performance differences are of no interest. In recent research, we have developed a complementary alternative through the use of principal component analysis (PCA) of individual data from large patient cohorts. This data-driven approach not only generates a single unified model for the group as a whole (expressed in terms of the emergent principal components) but is also able to capture the individual differences between patients (in terms of their relative positions along the principal behavioural axes). We demonstrate the use of this approach by considering speech fluency, phonology and semantics in aphasia diagnosis and classification, as well as their unique neural correlates. PCA of the behavioural data from 31 patients with chronic post-stroke aphasia resulted in four statistically-independent behavioural components reflecting phonological, semantic, executive-cognitive and fluency abilities. Even after accounting for lesion volume, entering the four behavioural components simultaneously into a voxel-based correlational methodology (VBCM) analysis revealed that speech fluency (speech quanta) was uniquely correlated with left motor cortex and underlying white matter (including the anterior section of the arcuate fasciculus and the frontal aslant tract), phonological skills with regions in the superior temporal gyrus and pars opercularis, and semantics with the anterior temporal stem. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Hristian, L.; Ostafe, M. M.; Manea, L. R.; Apostol, L. L.
2017-06-01
The work pursued the distribution of combed wool fabrics destined to manufacturing of external articles of clothing in terms of the values of durability and physiological comfort indices, using the mathematical model of Principal Component Analysis (PCA). Principal Components Analysis (PCA) applied in this study is a descriptive method of the multivariate analysis/multi-dimensional data, and aims to reduce, under control, the number of variables (columns) of the matrix data as much as possible to two or three. Therefore, based on the information about each group/assortment of fabrics, it is desired that, instead of nine inter-correlated variables, to have only two or three new variables called components. The PCA target is to extract the smallest number of components which recover the most of the total information contained in the initial data.
[Content of mineral elements of Gastrodia elata by principal components analysis].
Li, Jin-ling; Zhao, Zhi; Liu, Hong-chang; Luo, Chun-li; Huang, Ming-jin; Luo, Fu-lai; Wang, Hua-lei
2015-03-01
To study the content of mineral elements and the principal components in Gastrodia elata. Mineral elements were determined by ICP and the data was analyzed by SPSS. K element has the highest content-and the average content was 15.31 g x kg(-1). The average content of N element was 8.99 g x kg(-1), followed by K element. The coefficient of variation of K and N was small, but the Mn was the biggest with 51.39%. The highly significant positive correlation was found among N, P and K . Three principal components were selected by principal components analysis to evaluate the quality of G. elata. P, B, N, K, Cu, Mn, Fe and Mg were the characteristic elements of G. elata. The content of K and N elements was higher and relatively stable. The variation of Mn content was biggest. The quality of G. elata in Guizhou and Yunnan was better from the perspective of mineral elements.
Reliability and validity of a Swedish language version of the Resilience Scale.
Nygren, Björn; Randström, Kerstin Björkman; Lejonklou, Anna K; Lundman, Beril
2004-01-01
The purpose of this study was to test the reliability and validity of the Swedish language version of the Resilience Scale (RS). Participants were 142 adults between 19-85 years of age. Internal consistency reliability, stability over time, and construct validity were evaluated using Cronbach's alpha, principal components analysis with varimax rotation and correlations with scores on the Sense of Coherence Scale (SOC) and the Rosenberg Self-Esteem Scale (RSE). The mean score on the RS was 142 (SD = 15). The possible scores on the RS range from 25 to 175, and scores higher than 146 are considered high. The test-retest correlation was .78. Correlations with the SOC and the RSE were .41 (p < 0.01) and .37 (p < 0.01), respectively. Personal Assurance and Acceptance of Self and Life emerged as components from the principal components analysis. These findings provide evidence for the reliability and validity of the Swedish language version of the RS.
Hyperspectral Image Denoising Using a Nonlocal Spectral Spatial Principal Component Analysis
NASA Astrophysics Data System (ADS)
Li, D.; Xu, L.; Peng, J.; Ma, J.
2018-04-01
Hyperspectral images (HSIs) denoising is a critical research area in image processing duo to its importance in improving the quality of HSIs, which has a negative impact on object detection and classification and so on. In this paper, we develop a noise reduction method based on principal component analysis (PCA) for hyperspectral imagery, which is dependent on the assumption that the noise can be removed by selecting the leading principal components. The main contribution of paper is to introduce the spectral spatial structure and nonlocal similarity of the HSIs into the PCA denoising model. PCA with spectral spatial structure can exploit spectral correlation and spatial correlation of HSI by using 3D blocks instead of 2D patches. Nonlocal similarity means the similarity between the referenced pixel and other pixels in nonlocal area, where Mahalanobis distance algorithm is used to estimate the spatial spectral similarity by calculating the distance in 3D blocks. The proposed method is tested on both simulated and real hyperspectral images, the results demonstrate that the proposed method is superior to several other popular methods in HSI denoising.
Using principal component analysis to understand the variability of PDS 456
NASA Astrophysics Data System (ADS)
Parker, M. L.; Reeves, J. N.; Matzeu, G. A.; Buisson, D. J. K.; Fabian, A. C.
2018-02-01
We present a spectral-variability analysis of the low-redshift quasar PDS 456 using principal component analysis. In the XMM-Newton data, we find a strong peak in the first principal component at the energy of the Fe absorption line from the highly blueshifted outflow. This indicates that the absorption feature is more variable than the continuum, and that it is responding to the continuum. We find qualitatively different behaviour in the Suzaku data, which is dominated by changes in the column density of neutral absorption. In this case, we find no evidence of the absorption produced by the highly ionized gas being correlated with this variability. Additionally, we perform simulations of the source variability, and demonstrate that PCA can trivially distinguish between outflow variability correlated, anticorrelated and un-correlated with the continuum flux. Here, the observed anticorrelation between the absorption line equivalent width and the continuum flux may be due to the ionization of the wind responding to the continuum. Finally, we compare our results with those found in the narrow-line Seyfert 1 IRAS 13224-3809. We find that the Fe K UFO feature is sharper and more prominent in PDS 456, but that it lacks the lower energy features from lighter elements found in IRAS 13224-3809, presumably due to differences in ionization.
Söhn, Matthias; Alber, Markus; Yan, Di
2007-09-01
The variability of dose-volume histogram (DVH) shapes in a patient population can be quantified using principal component analysis (PCA). We applied this to rectal DVHs of prostate cancer patients and investigated the correlation of the PCA parameters with late bleeding. PCA was applied to the rectal wall DVHs of 262 patients, who had been treated with a four-field box, conformal adaptive radiotherapy technique. The correlated changes in the DVH pattern were revealed as "eigenmodes," which were ordered by their importance to represent data set variability. Each DVH is uniquely characterized by its principal components (PCs). The correlation of the first three PCs and chronic rectal bleeding of Grade 2 or greater was investigated with uni- and multivariate logistic regression analyses. Rectal wall DVHs in four-field conformal RT can primarily be represented by the first two or three PCs, which describe approximately 94% or 96% of the DVH shape variability, respectively. The first eigenmode models the total irradiated rectal volume; thus, PC1 correlates to the mean dose. Mode 2 describes the interpatient differences of the relative rectal volume in the two- or four-field overlap region. Mode 3 reveals correlations of volumes with intermediate doses ( approximately 40-45 Gy) and volumes with doses >70 Gy; thus, PC3 is associated with the maximal dose. According to univariate logistic regression analysis, only PC2 correlated significantly with toxicity. However, multivariate logistic regression analysis with the first two or three PCs revealed an increased probability of bleeding for DVHs with more than one large PC. PCA can reveal the correlation structure of DVHs for a patient population as imposed by the treatment technique and provide information about its relationship to toxicity. It proves useful for augmenting normal tissue complication probability modeling approaches.
Azevedo, C F; Nascimento, M; Silva, F F; Resende, M D V; Lopes, P S; Guimarães, S E F; Glória, L S
2015-10-09
A significant contribution of molecular genetics is the direct use of DNA information to identify genetically superior individuals. With this approach, genome-wide selection (GWS) can be used for this purpose. GWS consists of analyzing a large number of single nucleotide polymorphism markers widely distributed in the genome; however, because the number of markers is much larger than the number of genotyped individuals, and such markers are highly correlated, special statistical methods are widely required. Among these methods, independent component regression, principal component regression, partial least squares, and partial principal components stand out. Thus, the aim of this study was to propose an application of the methods of dimensionality reduction to GWS of carcass traits in an F2 (Piau x commercial line) pig population. The results show similarities between the principal and the independent component methods and provided the most accurate genomic breeding estimates for most carcass traits in pigs.
Phytoplankton across Tropical and Subtropical Regions of the Atlantic, Indian and Pacific Oceans
Estrada, Marta; Delgado, Maximino; Blasco, Dolors; Latasa, Mikel; Cabello, Ana María; Benítez-Barrios, Verónica; Fraile-Nuez, Eugenio; Mozetič, Patricija; Vidal, Montserrat
2016-01-01
We examine the large-scale distribution patterns of the nano- and microphytoplankton collected from 145 oceanic stations, at 3 m depth, the 20% light level and the depth of the subsurface chlorophyll maximum, during the Malaspina-2010 Expedition (December 2010-July 2011), which covered 15 biogeographical provinces across the Atlantic, Indian and Pacific oceans, between 35°N and 40°S. In general, the water column was stratified, the surface layers were nutrient-poor and the nano- and microplankton (hereafter phytoplankton, for simplicity, although it included also heterotrophic protists) community was dominated by dinoflagellates, other flagellates and coccolithophores, while the contribution of diatoms was only important in zones with shallow nutriclines such as the equatorial upwelling regions. We applied a principal component analysis to the correlation matrix among the abundances (after logarithmic transform) of the 76 most frequent taxa to synthesize the information contained in the phytoplankton data set. The main trends of variability identified consisted of: 1) A contrast between the community composition of the upper and the lower parts of the euphotic zone, expressed respectively by positive or negative scores of the first principal component, which was positively correlated with taxa such as the dinoflagellates Oxytoxum minutum and Scrippsiella spp., and the coccolithophores Discosphaera tubifera and Syracosphaera pulchra (HOL and HET), and negatively correlated with taxa like Ophiaster hydroideus (coccolithophore) and several diatoms, 2) a general abundance gradient between phytoplankton-rich regions with high abundances of dinoflagellate, coccolithophore and ciliate taxa, and phytoplankton-poor regions (second principal component), 3) differences in dominant phytoplankton and ciliate taxa among the Atlantic, the Indian and the Pacific oceans (third principal component) and 4) the occurrence of a diatom-dominated assemblage (the fourth principal component assemblage), including several pennate taxa, Planktoniella sol, Hemiaulus hauckii and Pseudo-nitzschia spp., in the divergence regions. Our findings indicate that consistent assemblages of co-occurring phytoplankton taxa can be identified and that their distribution is best explained by a combination in different degrees of both environmental and historical influences. PMID:26982180
Phytoplankton across Tropical and Subtropical Regions of the Atlantic, Indian and Pacific Oceans.
Estrada, Marta; Delgado, Maximino; Blasco, Dolors; Latasa, Mikel; Cabello, Ana María; Benítez-Barrios, Verónica; Fraile-Nuez, Eugenio; Mozetič, Patricija; Vidal, Montserrat
2016-01-01
We examine the large-scale distribution patterns of the nano- and microphytoplankton collected from 145 oceanic stations, at 3 m depth, the 20% light level and the depth of the subsurface chlorophyll maximum, during the Malaspina-2010 Expedition (December 2010-July 2011), which covered 15 biogeographical provinces across the Atlantic, Indian and Pacific oceans, between 35°N and 40°S. In general, the water column was stratified, the surface layers were nutrient-poor and the nano- and microplankton (hereafter phytoplankton, for simplicity, although it included also heterotrophic protists) community was dominated by dinoflagellates, other flagellates and coccolithophores, while the contribution of diatoms was only important in zones with shallow nutriclines such as the equatorial upwelling regions. We applied a principal component analysis to the correlation matrix among the abundances (after logarithmic transform) of the 76 most frequent taxa to synthesize the information contained in the phytoplankton data set. The main trends of variability identified consisted of: 1) A contrast between the community composition of the upper and the lower parts of the euphotic zone, expressed respectively by positive or negative scores of the first principal component, which was positively correlated with taxa such as the dinoflagellates Oxytoxum minutum and Scrippsiella spp., and the coccolithophores Discosphaera tubifera and Syracosphaera pulchra (HOL and HET), and negatively correlated with taxa like Ophiaster hydroideus (coccolithophore) and several diatoms, 2) a general abundance gradient between phytoplankton-rich regions with high abundances of dinoflagellate, coccolithophore and ciliate taxa, and phytoplankton-poor regions (second principal component), 3) differences in dominant phytoplankton and ciliate taxa among the Atlantic, the Indian and the Pacific oceans (third principal component) and 4) the occurrence of a diatom-dominated assemblage (the fourth principal component assemblage), including several pennate taxa, Planktoniella sol, Hemiaulus hauckii and Pseudo-nitzschia spp., in the divergence regions. Our findings indicate that consistent assemblages of co-occurring phytoplankton taxa can be identified and that their distribution is best explained by a combination in different degrees of both environmental and historical influences.
Ferrari, P; Marescot, M R; Moulias, R; Bursztejn, C; Deville Chabrolle, A; Thiollet, M; Lesourd, B; Braconnier, A; Dreux, C; Zarifian, E
1988-01-01
In sixteen autistic children high values of IgG and a high level of lymphocyte stimulation with PHA were observed. Principal component analysis showed: 1) a significant correlation between basic lymphocyte mitogenic activity and the clinical symptoms opposition and hyperactivity, 2) a significant correlation between high Ig levels, high PHA stimulation responses and the main autistic symptoms (withdrawal, inaffectivity, hypoactivity, mannerism, stereotypy and negatively echolalia), 3) a significant correlation with serotonin uptake by platelets and high immunological responses. Such correlations are strongly in favor of an immunologic component in autistic disease.
Factor Analysis and Counseling Research
ERIC Educational Resources Information Center
Weiss, David J.
1970-01-01
Topics discussed include factor analysis versus cluster analysis, analysis of Q correlation matrices, ipsativity and factor analysis, and tests for the significance of a correlation matrix prior to application of factor analytic techniques. Techniques for factor extraction discussed include principal components, canonical factor analysis, alpha…
Villanueva, Cristina M; Castaño-Vinyals, Gemma; Moreno, Víctor; Carrasco-Turigas, Glòria; Aragonés, Nuria; Boldo, Elena; Ardanaz, Eva; Toledo, Estefanía; Altzibar, Jone M; Zaldua, Itziar; Azpiroz, Lourdes; Goñi, Fernando; Tardón, Adonina; Molina, Antonio J; Martín, Vicente; López-Rojo, Concepción; Jiménez-Moleón, José J; Capelo, Rocío; Gómez-Acebo, Inés; Peiró, Rosana; Ripoll, Mónica; Gracia-Lavedan, Esther; Nieuwenhujsen, Mark J; Rantakokko, Panu; Goslan, Emma H; Pollán, Marina; Kogevinas, Manolis
2012-04-01
Although disinfection by-products (DBPs) occur in complex mixtures, studies evaluating health risks have been focused in few chemicals. In the framework of an epidemiological study on cancer in 11 Spanish provinces, we describe the concentration of four trihalomethanes (THMs), nine haloacetic acids (HAA), 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), four haloacetonitries, two haloketones, chloropicrin and chloral hydrate and estimate correlations. A total of 233 tap water samples were collected in 2010. Principal component analyses were conducted to reduce dimensionality of DBPs. Overall median (range) level of THMs and HAAs was 26.4 (0.8-98.1) and 26.4 (0.9-86.9) μg/l, respectively (N=217). MX analysed in a subset (N=36) showed a median (range) concentration of 16.7 (0.8-54.1)ng/l. Haloacetonitries, haloketones, chloropicrin and chloral hydrate were analysed in a subset (N=16), showing levels from unquantifiable (<1 μg/l) to 5.5 μg/l (dibromoacetonitrile). Spearman rank correlation coefficients between DBPs varied between species and across areas, being highest between dibromochloromethane and dibromochloroacetic acid (r(s)=0.87). Principal component analyses of 13 DBPs (4 THMs, 9 HAAs) led 3 components explaining more than 80% of variance. In conclusion, THMs and HAAs have limited value as predictors of other DBPs on a generalised basis. Principal component analysis provides a complementary tool to address the complex nature of the mixture. Copyright © 2012 Elsevier Inc. All rights reserved.
Multiple mechanisms in the perception of face gender: Effect of sex-irrelevant features.
Komori, Masashi; Kawamura, Satoru; Ishihara, Shigekazu
2011-06-01
Effects of sex-relevant and sex-irrelevant facial features on the evaluation of facial gender were investigated. Participants rated masculinity of 48 male facial photographs and femininity of 48 female facial photographs. Eighty feature points were measured on each of the facial photographs. Using a generalized Procrustes analysis, facial shapes were converted into multidimensional vectors, with the average face as a starting point. Each vector was decomposed into a sex-relevant subvector and a sex-irrelevant subvector which were, respectively, parallel and orthogonal to the main male-female axis. Principal components analysis (PCA) was performed on the sex-irrelevant subvectors. One principal component was negatively correlated with both perceived masculinity and femininity, and another was correlated only with femininity, though both components were orthogonal to the male-female dimension (and thus by definition sex-irrelevant). These results indicate that evaluation of facial gender depends on sex-irrelevant as well as sex-relevant facial features.
Principal component analysis for protein folding dynamics.
Maisuradze, Gia G; Liwo, Adam; Scheraga, Harold A
2009-01-09
Protein folding is considered here by studying the dynamics of the folding of the triple beta-strand WW domain from the Formin-binding protein 28. Starting from the unfolded state and ending either in the native or nonnative conformational states, trajectories are generated with the coarse-grained united residue (UNRES) force field. The effectiveness of principal components analysis (PCA), an already established mathematical technique for finding global, correlated motions in atomic simulations of proteins, is evaluated here for coarse-grained trajectories. The problems related to PCA and their solutions are discussed. The folding and nonfolding of proteins are examined with free-energy landscapes. Detailed analyses of many folding and nonfolding trajectories at different temperatures show that PCA is very efficient for characterizing the general folding and nonfolding features of proteins. It is shown that the first principal component captures and describes in detail the dynamics of a system. Anomalous diffusion in the folding/nonfolding dynamics is examined by the mean-square displacement (MSD) and the fractional diffusion and fractional kinetic equations. The collisionless (or ballistic) behavior of a polypeptide undergoing Brownian motion along the first few principal components is accounted for.
Hyperspectral optical imaging of human iris in vivo: characteristics of reflectance spectra
NASA Astrophysics Data System (ADS)
Medina, José M.; Pereira, Luís M.; Correia, Hélder T.; Nascimento, Sérgio M. C.
2011-07-01
We report a hyperspectral imaging system to measure the reflectance spectra of real human irises with high spatial resolution. A set of ocular prosthesis was used as the control condition. Reflectance data were decorrelated by the principal-component analysis. The main conclusion is that spectral complexity of the human iris is considerable: between 9 and 11 principal components are necessary to account for 99% of the cumulative variance in human irises. Correcting image misalignments associated with spontaneous ocular movements did not influence this result. The data also suggests a correlation between the first principal component and different levels of melanin present in the irises. It was also found that although the spectral characteristics of the first five principal components were not affected by the radial and angular position of the selected iridal areas, they affect the higher-order ones, suggesting a possible influence of the iris texture. The results show that hyperspectral imaging in the iris, together with adequate spectroscopic analyses provide more information than conventional colorimetric methods, making hyperspectral imaging suitable for the characterization of melanin and the noninvasive diagnosis of ocular diseases and iris color.
NASA Astrophysics Data System (ADS)
Pompe, L.; Clausen, B. L.; Morton, D. M.
2015-12-01
Multi-component statistical techniques and GIS visualization are emerging trends in understanding large data sets. Our research applies these techniques to a large igneous geochemical data set from southern California to better understand magmatic and plate tectonic processes. A set of 480 granitic samples collected by Baird from this area were analyzed for 39 geochemical elements. Of these samples, 287 are from the Peninsular Ranges Batholith (PRB) and 164 from part of the Transverse Ranges (TR). Principal component analysis (PCA) summarized the 39 variables into 3 principal components (PC) by matrix multiplication and for the PRB are interpreted as follows: PC1 with about 30% of the variation included mainly compatible elements and SiO2 and indicates extent of differentation; PC2 with about 20% of the variation included HFS elements and may indicate crustal contamination as usually identified by Sri; PC3 with about 20% of the variation included mainly HRE elements and may indicate magma source depth as often diplayed using REE spider diagrams and possibly Sr/Y. Several elements did not fit well in any of the three components: Cr, Ni, U, and Na2O.For the PRB, the PC1 correlation with SiO2 was r=-0.85, the PC2 correlation with Sri was r=0.80, and the PC3 correlation with Gd/Yb was r=-0.76 and with Sr/Y was r=-0.66 . Extending this method to the TR, correlations were r=-0.85, -0.21, -0.06, and -0.64, respectively. A similar extent of correlation for both areas was visually evident using GIS interpolation.PC1 seems to do well at indicating differentiation index for both the PRB and TR and correlates very well with SiO2, Al2O3, MgO, FeO*, CaO, K2O, Sc, V, and Co, but poorly with Na2O and Cr. If the crustal component is represented by Sri, PC2 correlates well and less expesively with this indicator in the PRB, but not in the TR. Source depth has been related to the slope on REE spidergrams, and PC3 based on only the HREE and using the Sr/Y ratios gives a reasonable correlation for both PRB and TR, but the Gd/Yb ratio gives a reasonable correlation for only the PRB. The PRB data provide reasonable correlation between principal components and standard geochemical indicators, perhaps because of the well-recognized monotonic variation from SW to NE. Data sets from the TR give similar results in some cases, but poor correlation in others.
Dynamical Analysis of Stock Market Instability by Cross-correlation Matrix
NASA Astrophysics Data System (ADS)
Takaishi, Tetsuya
2016-08-01
We study stock market instability by using cross-correlations constructed from the return time series of 366 stocks traded on the Tokyo Stock Exchange from January 5, 1998 to December 30, 2013. To investigate the dynamical evolution of the cross-correlations, crosscorrelation matrices are calculated with a rolling window of 400 days. To quantify the volatile market stages where the potential risk is high, we apply the principal components analysis and measure the cumulative risk fraction (CRF), which is the system variance associated with the first few principal components. From the CRF, we detected three volatile market stages corresponding to the bankruptcy of Lehman Brothers, the 2011 Tohoku Region Pacific Coast Earthquake, and the FRB QE3 reduction observation in the study period. We further apply the random matrix theory for the risk analysis and find that the first eigenvector is more equally de-localized when the market is volatile.
Giesen, E B W; Ding, M; Dalstra, M; van Eijden, T M G J
2003-09-01
As several morphological parameters of cancellous bone express more or less the same architectural measure, we applied principal components analysis to group these measures and correlated these to the mechanical properties. Cylindrical specimens (n = 24) were obtained in different orientations from embalmed mandibular condyles; the angle of the first principal direction and the axis of the specimen, expressing the orientation of the trabeculae, ranged from 10 degrees to 87 degrees. Morphological parameters were determined by a method based on Archimedes' principle and by micro-CT scanning, and the mechanical properties were obtained by mechanical testing. The principal components analysis was used to obtain a set of independent components to describe the morphology. This set was entered into linear regression analyses for explaining the variance in mechanical properties. The principal components analysis revealed four components: amount of bone, number of trabeculae, trabecular orientation, and miscellaneous. They accounted for about 90% of the variance in the morphological variables. The component loadings indicated that a higher amount of bone was primarily associated with more plate-like trabeculae, and not with more or thicker trabeculae. The trabecular orientation was most determinative (about 50%) in explaining stiffness, strength, and failure energy. The amount of bone was second most determinative and increased the explained variance to about 72%. These results suggest that trabecular orientation and amount of bone are important in explaining the anisotropic mechanical properties of the cancellous bone of the mandibular condyle.
Bett-Garber, Karen L; Lea, Jeanne M; Watson, Michael A; Grimm, Casey C; Lloyd, Steven W; Beaulieu, John C; Stein-Chisholm, Rebecca E; Andrzejewski, Brett P; Marshall, Donna A
2015-04-01
Six cultivars of southern highbush (SHB) and rabbiteye (RE) blueberry samples were harvested on 2 different dates. Each treatment combination was pressed 2 times for repeated measures. Fresh juice was characterized for 18 flavor/taste/feeling factor attributes by a descriptive flavor panel. Each sample was measured for sugars, acids, anthocyanidins, Folin-Ciocalteu, soluble solids (BRIX), titratable acidity (TA), and antioxidant capacity (ORACFL ). Flavors were correlated with the composition and physicochemical data. Blueberry flavor correlated with 3 parameters, and negatively correlated with 2. Strawberry correlated with oxalic acid and negatively correlated with sucrose and quinic acid. Sweet aroma correlated with oxalic and citric acid, but negatively correlated with sucrose, quinic, and total acids. Sweet taste correlated with 11 parameters, including the anthocyanidins; and negatively correlated with 3 parameters. Neither bitter nor astringent correlated with any of the antioxidant parameters, but both correlated with total acids. Sour correlated with total acids and TA, while negatively correlating with pH and BRIX:TA. Throat burn correlated with total acids and TA. Principal component analysis negatively related blueberry, sweet aroma, and sweet to sour, bitter, astringent, tongue tingle, and tongue numbness. The information in this component was related to pH, TA, and BRIX:TA ratio. Another principal component related the nonblueberry fruit flavors to BRIX. This PC, also divided the SHB berries from the RE. This work shows that the impact of juice composition on flavor is very complicated and that estimating flavor with physicochemical parameters is complicated by the composition of the juice. © 2015 Institute of Food Technologists®
A principal components model of soundscape perception.
Axelsson, Östen; Nilsson, Mats E; Berglund, Birgitta
2010-11-01
There is a need for a model that identifies underlying dimensions of soundscape perception, and which may guide measurement and improvement of soundscape quality. With the purpose to develop such a model, a listening experiment was conducted. One hundred listeners measured 50 excerpts of binaural recordings of urban outdoor soundscapes on 116 attribute scales. The average attribute scale values were subjected to principal components analysis, resulting in three components: Pleasantness, eventfulness, and familiarity, explaining 50, 18 and 6% of the total variance, respectively. The principal-component scores were correlated with physical soundscape properties, including categories of dominant sounds and acoustic variables. Soundscape excerpts dominated by technological sounds were found to be unpleasant, whereas soundscape excerpts dominated by natural sounds were pleasant, and soundscape excerpts dominated by human sounds were eventful. These relationships remained after controlling for the overall soundscape loudness (Zwicker's N(10)), which shows that 'informational' properties are substantial contributors to the perception of soundscape. The proposed principal components model provides a framework for future soundscape research and practice. In particular, it suggests which basic dimensions are necessary to measure, how to measure them by a defined set of attribute scales, and how to promote high-quality soundscapes.
Stuckey, Bronwyn G A; Opie, Nicole; Cussons, Andrea J; Watts, Gerald F; Burke, Valerie
2014-08-01
Polycystic ovary syndrome (PCOS) is a prevalent condition with heterogeneity of clinical features and cardiovascular risk factors that implies multiple aetiological factors and possible outcomes. To reduce a set of correlated variables to a smaller number of uncorrelated and interpretable factors that may delineate subgroups within PCOS or suggest pathogenetic mechanisms. We used principal component analysis (PCA) to examine the endocrine and cardiometabolic variables associated with PCOS defined by the National Institutes of Health (NIH) criteria. Data were retrieved from the database of a single clinical endocrinologist. We included women with PCOS (N = 378) who were not taking the oral contraceptive pill or other sex hormones, lipid lowering medication, metformin or other medication that could influence the variables of interest. PCA was performed retaining those factors with eigenvalues of at least 1.0. Varimax rotation was used to produce interpretable factors. We identified three principal components. In component 1, the dominant variables were homeostatic model assessment (HOMA) index, body mass index (BMI), high density lipoprotein (HDL) cholesterol and sex hormone binding globulin (SHBG); in component 2, systolic blood pressure, low density lipoprotein (LDL) cholesterol and triglycerides; in component 3, total testosterone and LH/FSH ratio. These components explained 37%, 13% and 11% of the variance in the PCOS cohort respectively. Multiple correlated variables from patients with PCOS can be reduced to three uncorrelated components characterised by insulin resistance, dyslipidaemia/hypertension or hyperandrogenaemia. Clustering of risk factors is consistent with different pathogenetic pathways within PCOS and/or differing cardiometabolic outcomes. Copyright © 2014 Elsevier Inc. All rights reserved.
Strale, Mathieu; Krysinska, Karolina; Overmeiren, Gaëtan Van; Andriessen, Karl
2017-06-01
This study investigated the geographic distribution of suicide and railway suicide in Belgium over 2008--2013 on local (i.e., district or arrondissement) level. There were differences in the regional distribution of suicide and railway suicides in Belgium over the study period. Principal component analysis identified three groups of correlations among population variables and socio-economic indicators, such as population density, unemployment, and age group distribution, on two components that helped explaining the variance of railway suicide at a local (arrondissement) level. This information is of particular importance to prevent suicides in high-risk areas on the Belgian railway network.
Xiao, Hong; Tian, Huai-Yu; Gao, Li-Dong; Liu, Hai-Ning; Duan, Liang-Song; Basta, Nicole; Cazelles, Bernard; Li, Xiu-Jun; Lin, Xiao-Ling; Wu, Hong-Wei; Chen, Bi-Yun; Yang, Hui-Suo; Xu, Bing; Grenfell, Bryan
2014-01-01
China has the highest incidence of hemorrhagic fever with renal syndrome (HFRS) worldwide. Reported cases account for 90% of the total number of global cases. By 2010, approximately 1.4 million HFRS cases had been reported in China. This study aimed to explore the effect of the rodent reservoir, and natural and socioeconomic variables, on the transmission pattern of HFRS. Data on monthly HFRS cases were collected from 2006 to 2010. Dynamic rodent monitoring data, normalized difference vegetation index (NDVI) data, climate data, and socioeconomic data were also obtained. Principal component analysis was performed, and the time-lag relationships between the extracted principal components and HFRS cases were analyzed. Polynomial distributed lag (PDL) models were used to fit and forecast HFRS transmission. Four principal components were extracted. Component 1 (F1) represented rodent density, the NDVI, and monthly average temperature. Component 2 (F2) represented monthly average rainfall and monthly average relative humidity. Component 3 (F3) represented rodent density and monthly average relative humidity. The last component (F4) represented gross domestic product and the urbanization rate. F2, F3, and F4 were significantly correlated, with the monthly HFRS incidence with lags of 4 months (r = -0.289, P<0.05), 5 months (r = -0.523, P<0.001), and 0 months (r = -0.376, P<0.01), respectively. F1 was correlated with the monthly HFRS incidence, with a lag of 4 months (r = 0.179, P = 0.192). Multivariate PDL modeling revealed that the four principal components were significantly associated with the transmission of HFRS. The monthly trend in HFRS cases was significantly associated with the local rodent reservoir, climatic factors, the NDVI, and socioeconomic conditions present during the previous months. The findings of this study may facilitate the development of early warning systems for the control and prevention of HFRS and similar diseases.
Ibrahim, George M; Morgan, Benjamin R; Macdonald, R Loch
2014-03-01
Predictors of outcome after aneurysmal subarachnoid hemorrhage have been determined previously through hypothesis-driven methods that often exclude putative covariates and require a priori knowledge of potential confounders. Here, we apply a data-driven approach, principal component analysis, to identify baseline patient phenotypes that may predict neurological outcomes. Principal component analysis was performed on 120 subjects enrolled in a prospective randomized trial of clazosentan for the prevention of angiographic vasospasm. Correlation matrices were created using a combination of Pearson, polyserial, and polychoric regressions among 46 variables. Scores of significant components (with eigenvalues>1) were included in multivariate logistic regression models with incidence of severe angiographic vasospasm, delayed ischemic neurological deficit, and long-term outcome as outcomes of interest. Sixteen significant principal components accounting for 74.6% of the variance were identified. A single component dominated by the patients' initial hemodynamic status, World Federation of Neurosurgical Societies score, neurological injury, and initial neutrophil/leukocyte counts was significantly associated with poor outcome. Two additional components were associated with angiographic vasospasm, of which one was also associated with delayed ischemic neurological deficit. The first was dominated by the aneurysm-securing procedure, subarachnoid clot clearance, and intracerebral hemorrhage, whereas the second had high contributions from markers of anemia and albumin levels. Principal component analysis, a data-driven approach, identified patient phenotypes that are associated with worse neurological outcomes. Such data reduction methods may provide a better approximation of unique patient phenotypes and may inform clinical care as well as patient recruitment into clinical trials. http://www.clinicaltrials.gov. Unique identifier: NCT00111085.
NASA Astrophysics Data System (ADS)
Andrade, Fatima; Orsini, Celso; Maenhaut, Willy
Stacked filter units were used to collect atmospheric particles in separate coarse and fine fractions at the Sao Paulo University Campus during the winter of 1989. The samples were analysed by particle-induced X-ray emission (PIXE) and the data were subjected to an absolute principal component analysis (APCA). Five sources were identified for the fine particles: industrial emissions, which accounted for 13% of the fine mass; emissions from residual oil and diesel, explaining 41%; resuspended soil dust, with 28%; and emissions of Cu and of Mg, together with 18%. For the coarse particles, four sources were identified: soil dust, accounting for 59% of the coarse mass; industrial emissions, with 19%; oil burning, with 8%; and sea salt aerosol, with 14% of the coarse mass. A data set with various meteorological parameters was also subjected to APCA, and a correlation analysis was performed between the meteorological "absolute principal component scores" (APCS) and the APCS from the fine and coarse particle data sets. The soil dust sources for the fine and coarse aerosol were highly correlated with each other and were anticorrelated with the sea breeze component. The industrial components in the fine and coarse size fractions were also highly positively correlated. Furthermore, the industrial component was related with the northeasterly wind direction and, to a lesser extent, with the sea breeze component.
Physicochemical properties of quinoa starch.
Li, Guantian; Wang, Sunan; Zhu, Fan
2016-02-10
Physicochemical properties of quinoa starches isolated from 26 commercial samples from a wide range of collection were studied. Swelling power (SP), water solubility index (WSI), amylose leaching (AML), enzyme susceptibility, pasting, thermal and textural properties were analyzed. Apparent amylose contents (AAM) ranged from 7.7 to 25.7%. Great variations in the diverse physicochemical properties were observed. Correlation analysis showed that AAM was the most significant factor related to AML, WSI, and pasting parameters. Correlations among diverse physicochemical parameters were analyzed. Principal component analysis using twenty three variables were used to visualize the difference among samples. Six principal components were extracted which could explain 88.8% of the total difference. The wide variations in physicochemical properties could contribute to innovative utilization of quinoa starch for food and non-food applications. Copyright © 2015 Elsevier Ltd. All rights reserved.
Carbonell, Felix; Bellec, Pierre; Shmuel, Amir
2011-01-01
The influence of the global average signal (GAS) on functional-magnetic resonance imaging (fMRI)-based resting-state functional connectivity is a matter of ongoing debate. The global average fluctuations increase the correlation between functional systems beyond the correlation that reflects their specific functional connectivity. Hence, removal of the GAS is a common practice for facilitating the observation of network-specific functional connectivity. This strategy relies on the implicit assumption of a linear-additive model according to which global fluctuations, irrespective of their origin, and network-specific fluctuations are super-positioned. However, removal of the GAS introduces spurious negative correlations between functional systems, bringing into question the validity of previous findings of negative correlations between fluctuations in the default-mode and the task-positive networks. Here we present an alternative method for estimating global fluctuations, immune to the complications associated with the GAS. Principal components analysis was applied to resting-state fMRI time-series. A global-signal effect estimator was defined as the principal component (PC) that correlated best with the GAS. The mean correlation coefficient between our proposed PC-based global effect estimator and the GAS was 0.97±0.05, demonstrating that our estimator successfully approximated the GAS. In 66 out of 68 runs, the PC that showed the highest correlation with the GAS was the first PC. Since PCs are orthogonal, our method provides an estimator of the global fluctuations, which is uncorrelated to the remaining, network-specific fluctuations. Moreover, unlike the regression of the GAS, the regression of the PC-based global effect estimator does not introduce spurious anti-correlations beyond the decrease in seed-based correlation values allowed by the assumed additive model. After regressing this PC-based estimator out of the original time-series, we observed robust anti-correlations between resting-state fluctuations in the default-mode and the task-positive networks. We conclude that resting-state global fluctuations and network-specific fluctuations are uncorrelated, supporting a Resting-State Linear-Additive Model. In addition, we conclude that the network-specific resting-state fluctuations of the default-mode and task-positive networks show artifact-free anti-correlations.
NASA Astrophysics Data System (ADS)
Chattopadhyay, Goutami; Chattopadhyay, Surajit; Chakraborthy, Parthasarathi
2012-07-01
The present study deals with daily total ozone concentration time series over four metro cities of India namely Kolkata, Mumbai, Chennai, and New Delhi in the multivariate environment. Using the Kaiser-Meyer-Olkin measure, it is established that the data set under consideration are suitable for principal component analysis. Subsequently, by introducing rotated component matrix for the principal components, the predictors suitable for generating artificial neural network (ANN) for daily total ozone prediction are identified. The multicollinearity is removed in this way. Models of ANN in the form of multilayer perceptron trained through backpropagation learning are generated for all of the study zones, and the model outcomes are assessed statistically. Measuring various statistics like Pearson correlation coefficients, Willmott's indices, percentage errors of prediction, and mean absolute errors, it is observed that for Mumbai and Kolkata the proposed ANN model generates very good predictions. The results are supported by the linearly distributed coordinates in the scatterplots.
Principal component analysis of Raman spectra for TiO2 nanoparticle characterization
NASA Astrophysics Data System (ADS)
Ilie, Alina Georgiana; Scarisoareanu, Monica; Morjan, Ion; Dutu, Elena; Badiceanu, Maria; Mihailescu, Ion
2017-09-01
The Raman spectra of anatase/rutile mixed phases of Sn doped TiO2 nanoparticles and undoped TiO2 nanoparticles, synthesised by laser pyrolysis, with nanocrystallite dimensions varying from 8 to 28 nm, was simultaneously processed with a self-written software that applies Principal Component Analysis (PCA) on the measured spectrum to verify the possibility of objective auto-characterization of nanoparticles from their vibrational modes. The photo-excited process of Raman scattering is very sensible to the material characteristics, especially in the case of nanomaterials, where more properties become relevant for the vibrational behaviour. We used PCA, a statistical procedure that performs eigenvalue decomposition of descriptive data covariance, to automatically analyse the sample's measured Raman spectrum, and to interfere the correlation between nanoparticle dimensions, tin and carbon concentration, and their Principal Component values (PCs). This type of application can allow an approximation of the crystallite size, or tin concentration, only by measuring the Raman spectrum of the sample. The study of loadings of the principal components provides information of the way the vibrational modes are affected by the nanoparticle features and the spectral area relevant for the classification.
Inayama, T; Kashiwazaki, H; Sakamoto, M
1998-12-01
We tried to analyze synthetically teachers' view points associated with health education and roles of school lunch in primary education. For this purpose, a survey using an open-ended questionnaire consisting of eight items relating to health education in the school curriculum was carried out in 100 teachers of ten public primary schools. Subjects were asked to describe their view regarding the following eight items: 1) health and physical guidance education, 2) school lunch guidance education, 3) pupils' attitude toward their own health and nutrition, 4) health education, 5) role of school lunch in education, 6) future subjects of health education, 7) class room lesson related to school lunch, 8) guidance in case of pupil with unbalanced dieting and food avoidance. Subjects described their own opinions on an open-ended questionnaire response sheet. Keywords in individual descriptions were selected, rearranged and classified into categories according to their own meanings, and each of the selected keywords were used as the dummy variable. To assess individual opinions synthetically, a principal component analysis was then applied to the variables collected through the teachers' descriptions, and four factors were extracted. The results were as follows. 1) Four factors obtained from the repeated principal component analysis were summarized as; roles of health education and school lunch program (the first principal component), cooperation with nurse-teachers and those in charge of lunch service (the second principal component), time allocation for health education in home-room activity and lunch time (the third principal component) and contents of health education and school lunch guidance and their future plan (the fourth principal component). 2) Teachers regarded the role of school lunch in primary education as providing daily supply of nutrients, teaching of table manners and building up friendships with classmates, health education and food and nutrition education, and developing food preferences through eating lunch together with classmates. 3) Significant positive correlation was observed between "the teachers' opinion about the role of school lunch of providing opportunity to learn good behavior for food preferences through eating lunch together with classmates" and the first principal component "roles of health education and school lunch program" (r = 0.39, p < 0.01). The variable "the role of school lunch is health education and food and nutrition education" showed positive correlation with the principle component "cooperation with nurse-teachers and those in charge of lunch service" (r = 0.27, p < 0.01). Interesting relationships obtained were that teachers with longer educational experience tended to place importance in health education and food and nutrition education as the role of school lunch, and that male teachers regarded the roles of school lunch more importantly for future education in primary education than female teachers did.
Convergence of sampling in protein simulations
NASA Astrophysics Data System (ADS)
Hess, Berk
2002-03-01
With molecular dynamics protein dynamics can be simulated in atomic detail. Current computers are not fast enough to probe all available conformations, but fluctuations around one conformation can be sampled to a reasonable extent. The motions with the largest fluctuations can be filtered out of a simulation using covariance or principal component analysis. A problem with this analysis is that random diffusion can appear as correlated motion. An analysis is presented of how long a simulation should be to obtain relevant results for global motions. The analysis reveals that the cosine content of the principal components is a good indicator for bad sampling.
Cuthbertson, Daniel; Andrews, Preston K.; Reganold, John P.; Davies, Neal M.; Lange, B. Markus
2012-01-01
A gas chromatography–mass spectrometry approach was employed to evaluate the use of metabolite patterns to differentiate fruit from six commercially grown apple cultivars harvested in 2008. Principal component analysis (PCA) of apple fruit peel and flesh data indicated that individual cultivar replicates clustered together and were separated from all other cultivar samples. An independent metabolomics investigation with fruit harvested in 2003 confirmed the separate clustering of fruit from different cultivars. Further evidence for cultivar separation was obtained using a hierarchical clustering analysis. An evaluation of PCA component loadings revealed specific metabolite classes that contributed the most to each principal component, whereas a correlation analysis demonstrated that specific metabolites correlate directly with quality traits such as antioxidant activity, total phenolics, and total anthocyanins, which are important parameters in the selection of breeding germplasm. These data sets lay the foundation for elucidating the metabolic basis of commercially important fruit quality traits. PMID:22881116
NASA Astrophysics Data System (ADS)
Camacho-Navarro, Jhonatan; Ruiz, Magda; Villamizar, Rodolfo; Mujica, Luis; Moreno-Beltrán, Gustavo; Quiroga, Jabid
2017-05-01
Continuous monitoring for damage detection in structural assessment comprises implementation of low cost equipment and efficient algorithms. This work describes the stages involved in the design of a methodology with high feasibility to be used in continuous damage assessment. Specifically, an algorithm based on a data-driven approach by using principal component analysis and pre-processing acquired signals by means of cross-correlation functions, is discussed. A carbon steel pipe section and a laboratory tower were used as test structures in order to demonstrate the feasibility of the methodology to detect abrupt changes in the structural response when damages occur. Two types of damage cases are studied: crack and leak for each structure, respectively. Experimental results show that the methodology is promising in the continuous monitoring of real structures.
[Study on Commercial Specification of Lonicerae Japonicae Flos].
Zhou, Jie; Zou, Lin; Liu, Wei; Bian, Li-hua; Wang, Xiao; Zhang, Yong-qing; Dan, Staerk
2015-04-01
To provide the basis data for the institute of commercial specification standard of Lonicerae Japonicae Flos. 39 samples of Lonicerae Japonicae Flos commercial of different grades in market were collected, and vernier caliper and electronic balance were used to measure the numbers of flower bud and blooming rate per 0. 5 g, contamination content, browning degree, milden and rot, length, upside diameter, middle diameter and bottom diameter of Lonicerae Japonicae Flos. The content of neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, rutin, galuteolin,3,5-icaffeoylquinic acid and 4,5-dicaffeoylquinic acid were detected by HPLC. Correlation analysis, principal component analysis and cluster analysis were used by SPSS to analyze all index data,and the correlation of appearance characteristics and intrinsic active constituents was discussed. The numbers of flower bud and blooming rate per 0. 5 g, contamination content and browning degree were principal component indexes. The length of flower bud showed a significant correlation with galuteolin content, and the browning degree and upside diameter showed a significant correlation with chlorogenic acid content. Lonicerae Japonicae Flos commercial should be divided into four specification grades by sieved indexes.
The Pregnancy Exposome: Multiple Environmental Exposures in the INMA-Sabadell Birth Cohort.
Robinson, Oliver; Basagaña, Xavier; Agier, Lydiane; de Castro, Montserrat; Hernandez-Ferrer, Carles; Gonzalez, Juan R; Grimalt, Joan O; Nieuwenhuijsen, Mark; Sunyer, Jordi; Slama, Rémy; Vrijheid, Martine
2015-09-01
The "exposome" is defined as "the totality of human environmental exposures from conception onward, complementing the genome" and its holistic approach may advance understanding of disease etiology. We aimed to describe the correlation structure of the exposome during pregnancy to better understand the relationships between and within families of exposure and to develop analytical tools appropriate to exposome data. Estimates on 81 environmental exposures of current health concern were obtained for 728 women enrolled in The INMA (INfancia y Medio Ambiente) birth cohort, in Sabadell, Spain, using biomonitoring, geospatial modeling, remote sensors, and questionnaires. Pair-wise Pearson's and polychoric correlations were calculated and principal components were derived. The median absolute correlation across all exposures was 0.06 (5th-95th centiles, 0.01-0.54). There were strong levels of correlation within families of exposure (median = 0.45, 5th-95th centiles, 0.07-0.85). Nine exposures (11%) had a correlation higher than 0.5 with at least one exposure outside their exposure family. Effectively all the variance in the data set (99.5%) was explained by 40 principal components. Future exposome studies should interpret exposure effects in light of their correlations to other exposures. The weak to moderate correlation observed between exposure families will permit adjustment for confounding in future exposome studies.
Minimum number of measurements for evaluating soursop (Annona muricata L.) yield.
Sánchez, C F B; Teodoro, P E; Londoño, S; Silva, L A; Peixoto, L A; Bhering, L L
2017-05-31
Repeatability studies on fruit species are of great importance to identify the minimum number of measurements necessary to accurately select superior genotypes. This study aimed to identify the most efficient method to estimate the repeatability coefficient (r) and predict the minimum number of measurements needed for a more accurate evaluation of soursop (Annona muricata L.) genotypes based on fruit yield. Sixteen measurements of fruit yield from 71 soursop genotypes were carried out between 2000 and 2016. In order to estimate r with the best accuracy, four procedures were used: analysis of variance, principal component analysis based on the correlation matrix, principal component analysis based on the phenotypic variance and covariance matrix, and structural analysis based on the correlation matrix. The minimum number of measurements needed to predict the actual value of individuals was estimated. Principal component analysis using the phenotypic variance and covariance matrix provided the most accurate estimates of both r and the number of measurements required for accurate evaluation of fruit yield in soursop. Our results indicate that selection of soursop genotypes with high fruit yield can be performed based on the third and fourth measurements in the early years and/or based on the eighth and ninth measurements at more advanced stages.
Dimensionality reduction for the quantitative evaluation of a smartphone-based Timed Up and Go test.
Palmerini, Luca; Mellone, Sabato; Rocchi, Laura; Chiari, Lorenzo
2011-01-01
The Timed Up and Go is a clinical test to assess mobility in the elderly and in Parkinson's disease. Lately instrumented versions of the test are being considered, where inertial sensors assess motion. To improve the pervasiveness, ease of use, and cost, we consider a smartphone's accelerometer as the measurement system. Several parameters (usually highly correlated) can be computed from the signals recorded during the test. To avoid redundancy and obtain the features that are most sensitive to the locomotor performance, a dimensionality reduction was performed through principal component analysis (PCA). Forty-nine healthy subjects of different ages were tested. PCA was performed to extract new features (principal components) which are not redundant combinations of the original parameters and account for most of the data variability. They can be useful for exploratory analysis and outlier detection. Then, a reduced set of the original parameters was selected through correlation analysis with the principal components. This set could be recommended for studies based on healthy adults. The proposed procedure could be used as a first-level feature selection in classification studies (i.e. healthy-Parkinson's disease, fallers-non fallers) and could allow, in the future, a complete system for movement analysis to be incorporated in a smartphone.
Analysis of Hand and Wrist Postural Synergies in Tolerance Grasping of Various Objects
Liu, Yuan; Jiang, Li; Yang, Dapeng; Liu, Hong
2016-01-01
Human can successfully grasp various objects in different acceptable relative positions between human hand and objects. This grasp functionality can be described as the grasp tolerance of human hand, which is a significant functionality of human grasp. To understand the motor control of human hand completely, an analysis of hand and wrist postural synergies in tolerance grasping of various objects is needed. Ten healthy right-handed subjects were asked to perform the tolerance grasping with right hand using 6 objects of different shapes, sizes and relative positions between human hand and objects. Subjects were wearing CyberGlove attaching motion tracker on right hand, allowing a measurement of the hand and wrist postures. Correlation analysis of joints and inter-joint/inter-finger modules were carried on to explore the coordination between joints or modules. As the correlation between hand and wrist module is not obvious in tolerance grasping, individual analysis of wrist synergies would be more practical. In this case, postural synergies of hand and wrist were then presented separately through principal component analysis (PCA), expressed through the principal component (PC) information transmitted ratio, PC elements distribution and reconstructed angle error of joints. Results on correlation comparison of different module movements can be well explained by the influence factors of the joint movement correlation. Moreover, correlation analysis of joints and modules showed the wrist module had the lowest correlation among all inter-finger and inter-joint modules. Hand and wrist postures were both sufficient to be described by a few principal components. In terms of the PC elements distribution of hand postures, compared with previous investigations, there was a greater proportion of movement in the thumb joints especially the interphalangeal (IP) and opposition rotation (ROT) joint. The research could serve to a complete understanding of hand grasp, and the design, control of the anthropomorphic hand and wrist. PMID:27580298
NASA Astrophysics Data System (ADS)
Zha, N.; Capaldi, D. P. I.; Pike, D.; McCormack, D. G.; Cunningham, I. A.; Parraga, G.
2015-03-01
Pulmonary x-ray computed tomography (CT) may be used to characterize emphysema and airways disease in patients with chronic obstructive pulmonary disease (COPD). One analysis approach - parametric response mapping (PMR) utilizes registered inspiratory and expiratory CT image volumes and CT-density-histogram thresholds, but there is no consensus regarding the threshold values used, or their clinical meaning. Principal-component-analysis (PCA) of the CT density histogram can be exploited to quantify emphysema using data-driven CT-density-histogram thresholds. Thus, the objective of this proof-of-concept demonstration was to develop a PRM approach using PCA-derived thresholds in COPD patients and ex-smokers without airflow limitation. Methods: Fifteen COPD ex-smokers and 5 normal ex-smokers were evaluated. Thoracic CT images were also acquired at full inspiration and full expiration and these images were non-rigidly co-registered. PCA was performed for the CT density histograms, from which the components with the highest eigenvalues greater than one were summed. Since the values of the principal component curve correlate directly with the variability in the sample, the maximum and minimum points on the curve were used as threshold values for the PCA-adjusted PRM technique. Results: A significant correlation was determined between conventional and PCA-adjusted PRM with 3He MRI apparent diffusion coefficient (p<0.001), with CT RA950 (p<0.0001), as well as with 3He MRI ventilation defect percent, a measurement of both small airways disease (p=0.049 and p=0.06, respectively) and emphysema (p=0.02). Conclusions: PRM generated using PCA thresholds of the CT density histogram showed significant correlations with CT and 3He MRI measurements of emphysema, but not airways disease.
Agudelo-Gómez, Divier; Pineda-Sierra, Sebastian; Cerón-Muñoz, Mario Fernando
2015-01-01
Genealogy and productive information of 48621 dual-purpose buffaloes born in Colombia between years 1996 and 2014 was used. The following traits were assessed using one-trait models: milk yield at 270 days (MY270), age at first calving (AFC), weaning weight (WW), and weights at the following ages: first year (W12), 18 months (W18), and 2 years (W24). Direct additive genetic and residual random effects were included in all the traits. Maternal permanent environmental and maternal additive genetic effects were included for WW and W12. The fixed effects were: contemporary group (for all traits), sex (for WW, W12, W18, and W24), parity (for WW, W12, and MY270). Age was included as covariate for WW, W12, W18 and W24. Principal component analysis (PCA) was conducted using the genetic values of 133 breeding males whose breeding-value reliability was higher than 50% for all the traits in order to define the number of principal components (PC) which would explain most of the variation. The highest heritabilities were for W18 and MY270, and the lowest for AFC; with 0.53, 0.23, and 0.17, respectively. The first three PCs represented 66% of the total variance. Correlation of the first PC with meat production traits was higher than 0.73, and it was -0.38 with AFC. Correlations of the second PC with maternal genetic component traits for WW and W12 were above 0.75. The third PC had 0.84 correlation with MY270. PCA is an alternative approach for analyzing traits in dual-purpose buffaloes and reduces the dimension of the traits. PMID:26230093
Estimation of surface curvature from full-field shape data using principal component analysis
NASA Astrophysics Data System (ADS)
Sharma, Sameer; Vinuchakravarthy, S.; Subramanian, S. J.
2017-01-01
Three-dimensional digital image correlation (3D-DIC) is a popular image-based experimental technique for estimating surface shape, displacements and strains of deforming objects. In this technique, a calibrated stereo rig is used to obtain and stereo-match pairs of images of the object of interest from which the shapes of the imaged surface are then computed using the calibration parameters of the rig. Displacements are obtained by performing an additional temporal correlation of the shapes obtained at various stages of deformation and strains by smoothing and numerically differentiating the displacement data. Since strains are of primary importance in solid mechanics, significant efforts have been put into computation of strains from the measured displacement fields; however, much less attention has been paid to date to computation of curvature from the measured 3D surfaces. In this work, we address this gap by proposing a new method of computing curvature from full-field shape measurements using principal component analysis (PCA) along the lines of a similar work recently proposed to measure strains (Grama and Subramanian 2014 Exp. Mech. 54 913-33). PCA is a multivariate analysis tool that is widely used to reveal relationships between a large number of variables, reduce dimensionality and achieve significant denoising. This technique is applied here to identify dominant principal components in the shape fields measured by 3D-DIC and these principal components are then differentiated systematically to obtain the first and second fundamental forms used in the curvature calculation. The proposed method is first verified using synthetically generated noisy surfaces and then validated experimentally on some real world objects with known ground-truth curvatures.
Patient feature based dosimetric Pareto front prediction in esophageal cancer radiotherapy.
Wang, Jiazhou; Jin, Xiance; Zhao, Kuaike; Peng, Jiayuan; Xie, Jiang; Chen, Junchao; Zhang, Zhen; Studenski, Matthew; Hu, Weigang
2015-02-01
To investigate the feasibility of the dosimetric Pareto front (PF) prediction based on patient's anatomic and dosimetric parameters for esophageal cancer patients. Eighty esophagus patients in the authors' institution were enrolled in this study. A total of 2928 intensity-modulated radiotherapy plans were obtained and used to generate PF for each patient. On average, each patient had 36.6 plans. The anatomic and dosimetric features were extracted from these plans. The mean lung dose (MLD), mean heart dose (MHD), spinal cord max dose, and PTV homogeneity index were recorded for each plan. Principal component analysis was used to extract overlap volume histogram (OVH) features between PTV and other organs at risk. The full dataset was separated into two parts; a training dataset and a validation dataset. The prediction outcomes were the MHD and MLD. The spearman's rank correlation coefficient was used to evaluate the correlation between the anatomical features and dosimetric features. The stepwise multiple regression method was used to fit the PF. The cross validation method was used to evaluate the model. With 1000 repetitions, the mean prediction error of the MHD was 469 cGy. The most correlated factor was the first principal components of the OVH between heart and PTV and the overlap between heart and PTV in Z-axis. The mean prediction error of the MLD was 284 cGy. The most correlated factors were the first principal components of the OVH between heart and PTV and the overlap between lung and PTV in Z-axis. It is feasible to use patients' anatomic and dosimetric features to generate a predicted Pareto front. Additional samples and further studies are required improve the prediction model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J; Zhao, K; Peng, J
2014-06-15
Purpose: The purpose of this study is to study the feasibility of the dosimetric pareto front (PF) prediction based on patient anatomic and dosimetric parameters for esophagus cancer patients. Methods: Sixty esophagus patients in our institution were enrolled in this study. A total 2920 IMRT plans were created to generated PF for each patient. On average, each patient had 48 plans. The anatomic and dosimetric features were extracted from those plans. The mean lung dose (MLD), mean heart dose (MHD), spinal cord max dose and PTV homogeneous index (PTVHI) were recorded for each plan. The principal component analysis (PCA) wasmore » used to extract overlap volume histogram (OVH) features between PTV and other critical organs. The full dataset was separated into two parts include the training dataset and the validation dataset. The prediction outcomes were the MHD and MLD for the current study. The spearman rank correlation coefficient was used to evaluate the correlation between the anatomical features and dosimetric features. The PF was fit by the the stepwise multiple regression method. The cross-validation method was used to evaluation the model. Results: The mean prediction error of the MHD was 465 cGy with 100 repetitions. The most correlated factors were the first principal components of the OVH between heart and PTV, and the overlap between heart and PTV in Z-axis. The mean prediction error of the MLD was 195 cGy. The most correlated factors were the first principal components of the OVH between lung and PTV, and the overlap between lung and PTV in Z-axis. Conclusion: It is feasible to use patients anatomic and dosimetric features to generate a predicted PF. Additional samples and further studies were required to get a better prediction model.« less
Patient feature based dosimetric Pareto front prediction in esophageal cancer radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jiazhou; Zhao, Kuaike; Peng, Jiayuan
2015-02-15
Purpose: To investigate the feasibility of the dosimetric Pareto front (PF) prediction based on patient’s anatomic and dosimetric parameters for esophageal cancer patients. Methods: Eighty esophagus patients in the authors’ institution were enrolled in this study. A total of 2928 intensity-modulated radiotherapy plans were obtained and used to generate PF for each patient. On average, each patient had 36.6 plans. The anatomic and dosimetric features were extracted from these plans. The mean lung dose (MLD), mean heart dose (MHD), spinal cord max dose, and PTV homogeneity index were recorded for each plan. Principal component analysis was used to extract overlapmore » volume histogram (OVH) features between PTV and other organs at risk. The full dataset was separated into two parts; a training dataset and a validation dataset. The prediction outcomes were the MHD and MLD. The spearman’s rank correlation coefficient was used to evaluate the correlation between the anatomical features and dosimetric features. The stepwise multiple regression method was used to fit the PF. The cross validation method was used to evaluate the model. Results: With 1000 repetitions, the mean prediction error of the MHD was 469 cGy. The most correlated factor was the first principal components of the OVH between heart and PTV and the overlap between heart and PTV in Z-axis. The mean prediction error of the MLD was 284 cGy. The most correlated factors were the first principal components of the OVH between heart and PTV and the overlap between lung and PTV in Z-axis. Conclusions: It is feasible to use patients’ anatomic and dosimetric features to generate a predicted Pareto front. Additional samples and further studies are required improve the prediction model.« less
Cox, Simon R.; MacPherson, Sarah E.; Ferguson, Karen J.; Nissan, Jack; Royle, Natalie A.; MacLullich, Alasdair M.J.; Wardlaw, Joanna M.; Deary, Ian J.
2014-01-01
Both general fluid intelligence (gf) and performance on some ‘frontal tests’ of cognition decline with age. Both types of ability are at least partially dependent on the integrity of the frontal lobes, which also deteriorate with age. Overlap between these two methods of assessing complex cognition in older age remains unclear. Such overlap could be investigated using inter-test correlations alone, as in previous studies, but this would be enhanced by ascertaining whether frontal test performance and gf share neurobiological variance. To this end, we examined relationships between gf and 6 frontal tests (Tower, Self-Ordered Pointing, Simon, Moral Dilemmas, Reversal Learning and Faux Pas tests) in 90 healthy males, aged ~ 73 years. We interpreted their correlational structure using principal component analysis, and in relation to MRI-derived regional frontal lobe volumes (relative to maximal healthy brain size). gf correlated significantly and positively (.24 ≤ r ≤ .53) with the majority of frontal test scores. Some frontal test scores also exhibited shared variance after controlling for gf. Principal component analysis of test scores identified units of gf-common and gf-independent variance. The former was associated with variance in the left dorsolateral (DL) and anterior cingulate (AC) regions, and the latter with variance in the right DL and AC regions. Thus, we identify two biologically-meaningful components of variance in complex cognitive performance in older age and suggest that age-related changes to DL and AC have the greatest cognitive impact. PMID:25278641
Cox, Simon R; MacPherson, Sarah E; Ferguson, Karen J; Nissan, Jack; Royle, Natalie A; MacLullich, Alasdair M J; Wardlaw, Joanna M; Deary, Ian J
2014-09-01
Both general fluid intelligence ( g f ) and performance on some 'frontal tests' of cognition decline with age. Both types of ability are at least partially dependent on the integrity of the frontal lobes, which also deteriorate with age. Overlap between these two methods of assessing complex cognition in older age remains unclear. Such overlap could be investigated using inter-test correlations alone, as in previous studies, but this would be enhanced by ascertaining whether frontal test performance and g f share neurobiological variance. To this end, we examined relationships between g f and 6 frontal tests (Tower, Self-Ordered Pointing, Simon, Moral Dilemmas, Reversal Learning and Faux Pas tests) in 90 healthy males, aged ~ 73 years. We interpreted their correlational structure using principal component analysis, and in relation to MRI-derived regional frontal lobe volumes (relative to maximal healthy brain size). g f correlated significantly and positively (.24 ≤ r ≤ .53) with the majority of frontal test scores. Some frontal test scores also exhibited shared variance after controlling for g f . Principal component analysis of test scores identified units of g f -common and g f -independent variance. The former was associated with variance in the left dorsolateral (DL) and anterior cingulate (AC) regions, and the latter with variance in the right DL and AC regions. Thus, we identify two biologically-meaningful components of variance in complex cognitive performance in older age and suggest that age-related changes to DL and AC have the greatest cognitive impact.
Carbonell, Felix; Bellec, Pierre
2011-01-01
Abstract The influence of the global average signal (GAS) on functional-magnetic resonance imaging (fMRI)–based resting-state functional connectivity is a matter of ongoing debate. The global average fluctuations increase the correlation between functional systems beyond the correlation that reflects their specific functional connectivity. Hence, removal of the GAS is a common practice for facilitating the observation of network-specific functional connectivity. This strategy relies on the implicit assumption of a linear-additive model according to which global fluctuations, irrespective of their origin, and network-specific fluctuations are super-positioned. However, removal of the GAS introduces spurious negative correlations between functional systems, bringing into question the validity of previous findings of negative correlations between fluctuations in the default-mode and the task-positive networks. Here we present an alternative method for estimating global fluctuations, immune to the complications associated with the GAS. Principal components analysis was applied to resting-state fMRI time-series. A global-signal effect estimator was defined as the principal component (PC) that correlated best with the GAS. The mean correlation coefficient between our proposed PC-based global effect estimator and the GAS was 0.97±0.05, demonstrating that our estimator successfully approximated the GAS. In 66 out of 68 runs, the PC that showed the highest correlation with the GAS was the first PC. Since PCs are orthogonal, our method provides an estimator of the global fluctuations, which is uncorrelated to the remaining, network-specific fluctuations. Moreover, unlike the regression of the GAS, the regression of the PC-based global effect estimator does not introduce spurious anti-correlations beyond the decrease in seed-based correlation values allowed by the assumed additive model. After regressing this PC-based estimator out of the original time-series, we observed robust anti-correlations between resting-state fluctuations in the default-mode and the task-positive networks. We conclude that resting-state global fluctuations and network-specific fluctuations are uncorrelated, supporting a Resting-State Linear-Additive Model. In addition, we conclude that the network-specific resting-state fluctuations of the default-mode and task-positive networks show artifact-free anti-correlations. PMID:22444074
Dong, Fengxia; Mitchell, Paul D; Colquhoun, Jed
2015-01-01
Measuring farm sustainability performance is a crucial component for improving agricultural sustainability. While extensive assessments and indicators exist that reflect the different facets of agricultural sustainability, because of the relatively large number of measures and interactions among them, a composite indicator that integrates and aggregates over all variables is particularly useful. This paper describes and empirically evaluates a method for constructing a composite sustainability indicator that individually scores and ranks farm sustainability performance. The method first uses non-negative polychoric principal component analysis to reduce the number of variables, to remove correlation among variables and to transform categorical variables to continuous variables. Next the method applies common-weight data envelope analysis to these principal components to individually score each farm. The method solves weights endogenously and allows identifying important practices in sustainability evaluation. An empirical application to Wisconsin cranberry farms finds heterogeneity in sustainability practice adoption, implying that some farms could adopt relevant practices to improve the overall sustainability performance of the industry. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jha, S. K.; Brockman, R. A.; Hoffman, R. M.; Sinha, V.; Pilchak, A. L.; Porter, W. J.; Buchanan, D. J.; Larsen, J. M.; John, R.
2018-05-01
Principal component analysis and fuzzy c-means clustering algorithms were applied to slip-induced strain and geometric metric data in an attempt to discover unique microstructural configurations and their frequencies of occurrence in statistically representative instantiations of a titanium alloy microstructure. Grain-averaged fatigue indicator parameters were calculated for the same instantiation. The fatigue indicator parameters strongly correlated with the spatial location of the microstructural configurations in the principal components space. The fuzzy c-means clustering method identified clusters of data that varied in terms of their average fatigue indicator parameters. Furthermore, the number of points in each cluster was inversely correlated to the average fatigue indicator parameter. This analysis demonstrates that data-driven methods have significant potential for providing unbiased determination of unique microstructural configurations and their frequencies of occurrence in a given volume from the point of view of strain localization and fatigue crack initiation.
The rate of change in declining steroid hormones: a new parameter of healthy aging in men?
Walther, Andreas; Philipp, Michel; Lozza, Niclà; Ehlert, Ulrike
2016-09-20
Research on healthy aging in men has increasingly focused on age-related hormonal changes. Testosterone (T) decline is primarily investigated, while age-related changes in other sex steroids (dehydroepiandrosterone [DHEA], estradiol [E2], progesterone [P]) are mostly neglected. An integrated hormone parameter reflecting aging processes in men has yet to be identified. 271 self-reporting healthy men between 40 and 75 provided both psychometric data and saliva samples for hormone analysis. Correlation analysis between age and sex steroids revealed negative associations for the four sex steroids (T, DHEA, E2, and P). Principal component analysis including ten salivary analytes identified a principal component mainly unifying the variance of the four sex steroid hormones. Subsequent principal component analysis including the four sex steroids extracted the principal component of declining steroid hormones (DSH). Moderation analysis of the association between age and DSH revealed significant moderation effects for psychosocial factors such as depression, chronic stress and perceived general health. In conclusion, these results provide further evidence that sex steroids decline in aging men and that the integrated hormone parameter DSH and its rate of change can be used as biomarkers for healthy aging in men. Furthermore, the negative association of age and DSH is moderated by psychosocial factors.
The rate of change in declining steroid hormones: a new parameter of healthy aging in men?
Walther, Andreas; Philipp, Michel; Lozza, Niclà; Ehlert, Ulrike
2016-01-01
Research on healthy aging in men has increasingly focused on age-related hormonal changes. Testosterone (T) decline is primarily investigated, while age-related changes in other sex steroids (dehydroepiandrosterone [DHEA], estradiol [E2], progesterone [P]) are mostly neglected. An integrated hormone parameter reflecting aging processes in men has yet to be identified. 271 self-reporting healthy men between 40 and 75 provided both psychometric data and saliva samples for hormone analysis. Correlation analysis between age and sex steroids revealed negative associations for the four sex steroids (T, DHEA, E2, and P). Principal component analysis including ten salivary analytes identified a principal component mainly unifying the variance of the four sex steroid hormones. Subsequent principal component analysis including the four sex steroids extracted the principal component of declining steroid hormones (DSH). Moderation analysis of the association between age and DSH revealed significant moderation effects for psychosocial factors such as depression, chronic stress and perceived general health. In conclusion, these results provide further evidence that sex steroids decline in aging men and that the integrated hormone parameter DSH and its rate of change can be used as biomarkers for healthy aging in men. Furthermore, the negative association of age and DSH is moderated by psychosocial factors. PMID:27589836
Performance evaluation of PCA-based spike sorting algorithms.
Adamos, Dimitrios A; Kosmidis, Efstratios K; Theophilidis, George
2008-09-01
Deciphering the electrical activity of individual neurons from multi-unit noisy recordings is critical for understanding complex neural systems. A widely used spike sorting algorithm is being evaluated for single-electrode nerve trunk recordings. The algorithm is based on principal component analysis (PCA) for spike feature extraction. In the neuroscience literature it is generally assumed that the use of the first two or most commonly three principal components is sufficient. We estimate the optimum PCA-based feature space by evaluating the algorithm's performance on simulated series of action potentials. A number of modifications are made to the open source nev2lkit software to enable systematic investigation of the parameter space. We introduce a new metric to define clustering error considering over-clustering more favorable than under-clustering as proposed by experimentalists for our data. Both the program patch and the metric are available online. Correlated and white Gaussian noise processes are superimposed to account for biological and artificial jitter in the recordings. We report that the employment of more than three principal components is in general beneficial for all noise cases considered. Finally, we apply our results to experimental data and verify that the sorting process with four principal components is in agreement with a panel of electrophysiology experts.
Zhang, Xiaolei; Liu, Fei; He, Yong; Li, Xiaoli
2012-01-01
Hyperspectral imaging in the visible and near infrared (VIS-NIR) region was used to develop a novel method for discriminating different varieties of commodity maize seeds. Firstly, hyperspectral images of 330 samples of six varieties of maize seeds were acquired using a hyperspectral imaging system in the 380–1,030 nm wavelength range. Secondly, principal component analysis (PCA) and kernel principal component analysis (KPCA) were used to explore the internal structure of the spectral data. Thirdly, three optimal wavelengths (523, 579 and 863 nm) were selected by implementing PCA directly on each image. Then four textural variables including contrast, homogeneity, energy and correlation were extracted from gray level co-occurrence matrix (GLCM) of each monochromatic image based on the optimal wavelengths. Finally, several models for maize seeds identification were established by least squares-support vector machine (LS-SVM) and back propagation neural network (BPNN) using four different combinations of principal components (PCs), kernel principal components (KPCs) and textural features as input variables, respectively. The recognition accuracy achieved in the PCA-GLCM-LS-SVM model (98.89%) was the most satisfactory one. We conclude that hyperspectral imaging combined with texture analysis can be implemented for fast classification of different varieties of maize seeds. PMID:23235456
Optical character recognition based on nonredundant correlation measurements.
Braunecker, B; Hauck, R; Lohmann, A W
1979-08-15
The essence of character recognition is a comparison between the unknown character and a set of reference patterns. Usually, these reference patterns are all possible characters themselves, the whole alphabet in the case of letter characters. Obviously, N analog measurements are highly redundant, since only K = log(2)N binary decisions are enough to identify one out of N characters. Therefore, we devised K reference patterns accordingly. These patterns, called principal components, are found by digital image processing, but used in an optical analog computer. We will explain the concept of principal components, and we will describe experiments with several optical character recognition systems, based on this concept.
NASA Astrophysics Data System (ADS)
Aouabdi, Salim; Taibi, Mahmoud; Bouras, Slimane; Boutasseta, Nadir
2017-06-01
This paper describes an approach for identifying localized gear tooth defects, such as pitting, using phase currents measured from an induction machine driving the gearbox. A new tool of anomaly detection based on multi-scale entropy (MSE) algorithm SampEn which allows correlations in signals to be identified over multiple time scales. The motor current signature analysis (MCSA) in conjunction with principal component analysis (PCA) and the comparison of observed values with those predicted from a model built using nominally healthy data. The Simulation results show that the proposed method is able to detect gear tooth pitting in current signals.
Tanaka, Kazuki; Takesue, Nobuyuki; Nishioka, Jun; Kondo, Yoshiko; Ooki, Atsushi; Kuma, Kenshi; Hirawake, Toru; Yamashita, Youhei
2016-01-01
The spatial distribution of dissolved organic carbon (DOC) concentrations and the optical properties of dissolved organic matter (DOM) determined by ultraviolet-visible absorbance and fluorescence spectroscopy were measured in surface waters of the southern Chukchi Sea, western Arctic Ocean, during the early summer of 2013. Neither the DOC concentration nor the optical parameters of the DOM correlated with salinity. Principal component analysis using the DOM optical parameters clearly separated the DOM sources. A significant linear relationship was evident between the DOC and the principal component score for specific water masses, indicating that a high DOC level was related to a terrigenous source, whereas a low DOC level was related to a marine source. Relationships between the DOC and the principal component scores of the surface waters of the southern Chukchi Sea implied that the major factor controlling the distribution of DOC concentrations was the mixing of plural water masses rather than local production and degradation. PMID:27658444
A multifactor approach to forecasting Romanian gross domestic product (GDP) in the short run.
Armeanu, Daniel; Andrei, Jean Vasile; Lache, Leonard; Panait, Mirela
2017-01-01
The purpose of this paper is to investigate the application of a generalized dynamic factor model (GDFM) based on dynamic principal components analysis to forecasting short-term economic growth in Romania. We have used a generalized principal components approach to estimate a dynamic model based on a dataset comprising 86 economic and non-economic variables that are linked to economic output. The model exploits the dynamic correlations between these variables and uses three common components that account for roughly 72% of the information contained in the original space. We show that it is possible to generate reliable forecasts of quarterly real gross domestic product (GDP) using just the common components while also assessing the contribution of the individual variables to the dynamics of real GDP. In order to assess the relative performance of the GDFM to standard models based on principal components analysis, we have also estimated two Stock-Watson (SW) models that were used to perform the same out-of-sample forecasts as the GDFM. The results indicate significantly better performance of the GDFM compared with the competing SW models, which empirically confirms our expectations that the GDFM produces more accurate forecasts when dealing with large datasets.
A multifactor approach to forecasting Romanian gross domestic product (GDP) in the short run
Armeanu, Daniel; Lache, Leonard; Panait, Mirela
2017-01-01
The purpose of this paper is to investigate the application of a generalized dynamic factor model (GDFM) based on dynamic principal components analysis to forecasting short-term economic growth in Romania. We have used a generalized principal components approach to estimate a dynamic model based on a dataset comprising 86 economic and non-economic variables that are linked to economic output. The model exploits the dynamic correlations between these variables and uses three common components that account for roughly 72% of the information contained in the original space. We show that it is possible to generate reliable forecasts of quarterly real gross domestic product (GDP) using just the common components while also assessing the contribution of the individual variables to the dynamics of real GDP. In order to assess the relative performance of the GDFM to standard models based on principal components analysis, we have also estimated two Stock-Watson (SW) models that were used to perform the same out-of-sample forecasts as the GDFM. The results indicate significantly better performance of the GDFM compared with the competing SW models, which empirically confirms our expectations that the GDFM produces more accurate forecasts when dealing with large datasets. PMID:28742100
Choi, Ji Yeh; Hwang, Heungsun; Yamamoto, Michio; Jung, Kwanghee; Woodward, Todd S
2017-06-01
Functional principal component analysis (FPCA) and functional multiple-set canonical correlation analysis (FMCCA) are data reduction techniques for functional data that are collected in the form of smooth curves or functions over a continuum such as time or space. In FPCA, low-dimensional components are extracted from a single functional dataset such that they explain the most variance of the dataset, whereas in FMCCA, low-dimensional components are obtained from each of multiple functional datasets in such a way that the associations among the components are maximized across the different sets. In this paper, we propose a unified approach to FPCA and FMCCA. The proposed approach subsumes both techniques as special cases. Furthermore, it permits a compromise between the techniques, such that components are obtained from each set of functional data to maximize their associations across different datasets, while accounting for the variance of the data well. We propose a single optimization criterion for the proposed approach, and develop an alternating regularized least squares algorithm to minimize the criterion in combination with basis function approximations to functions. We conduct a simulation study to investigate the performance of the proposed approach based on synthetic data. We also apply the approach for the analysis of multiple-subject functional magnetic resonance imaging data to obtain low-dimensional components of blood-oxygen level-dependent signal changes of the brain over time, which are highly correlated across the subjects as well as representative of the data. The extracted components are used to identify networks of neural activity that are commonly activated across the subjects while carrying out a working memory task.
Pintus, M A; Gaspa, G; Nicolazzi, E L; Vicario, D; Rossoni, A; Ajmone-Marsan, P; Nardone, A; Dimauro, C; Macciotta, N P P
2012-06-01
The large number of markers available compared with phenotypes represents one of the main issues in genomic selection. In this work, principal component analysis was used to reduce the number of predictors for calculating genomic breeding values (GEBV). Bulls of 2 cattle breeds farmed in Italy (634 Brown and 469 Simmental) were genotyped with the 54K Illumina beadchip (Illumina Inc., San Diego, CA). After data editing, 37,254 and 40,179 single nucleotide polymorphisms (SNP) were retained for Brown and Simmental, respectively. Principal component analysis carried out on the SNP genotype matrix extracted 2,257 and 3,596 new variables in the 2 breeds, respectively. Bulls were sorted by birth year to create reference and prediction populations. The effect of principal components on deregressed proofs in reference animals was estimated with a BLUP model. Results were compared with those obtained by using SNP genotypes as predictors with either the BLUP or Bayes_A method. Traits considered were milk, fat, and protein yields, fat and protein percentages, and somatic cell score. The GEBV were obtained for prediction population by blending direct genomic prediction and pedigree indexes. No substantial differences were observed in squared correlations between GEBV and EBV in prediction animals between the 3 methods in the 2 breeds. The principal component analysis method allowed for a reduction of about 90% in the number of independent variables when predicting direct genomic values, with a substantial decrease in calculation time and without loss of accuracy. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
[Geographical distribution of left ventricular Tei index based on principal component analysis].
Xu, Jinhui; Ge, Miao; He, Jinwei; Xue, Ranyin; Yang, Shaofang; Jiang, Jilin
2014-11-01
To provide a scientific standard of left ventricular Tei index for healthy people from various region of China, and to lay a reliable foundation for the evaluation of left ventricular diastolic and systolic function. The correlation and principal component analysis were used to explore the left ventricular Tei index, which based on the data of 3 562 samples from 50 regions of China by means of literature retrieval. Th e nine geographical factors were longitude(X₁), latitude(X₂), altitude(X₃), annual sunshine hours (X₄), the annual average temperature (X₅), annual average relative humidity (X₆), annual precipitation (X₇), annual temperature range (X₈) and annual average wind speed (X₉). ArcGIS soft ware was applied to calculate the spatial distribution regularities of left ventricular Tei index. There is a significant correlation between the healthy people's left ventricular Tei index and geographical factors, and the correlation coefficients were -0.107 (r₁), -0.301 (r₂), -0.029 (r₃), -0.277 (r₄), -0.256(r₅), -0.289(r₆), -0.320(r₇), -0.310 (r₈) and -0.117 (r₉), respectively. A linear equation between the Tei index and the geographical factor was obtained by regression analysis based on the three extracting principal components. The geographical distribution tendency chart for healthy people's left Tei index was fitted out by the ArcGIS spatial interpolation analysis. The geographical distribution for left ventricular Tei index in China follows certain pattern. The reference value in North is higher than that in South, while the value in East is higher than that in West.
Effect of noise in principal component analysis with an application to ozone pollution
NASA Astrophysics Data System (ADS)
Tsakiri, Katerina G.
This thesis analyzes the effect of independent noise in principal components of k normally distributed random variables defined by a covariance matrix. We prove that the principal components as well as the canonical variate pairs determined from joint distribution of original sample affected by noise can be essentially different in comparison with those determined from the original sample. However when the differences between the eigenvalues of the original covariance matrix are sufficiently large compared to the level of the noise, the effect of noise in principal components and canonical variate pairs proved to be negligible. The theoretical results are supported by simulation study and examples. Moreover, we compare our results about the eigenvalues and eigenvectors in the two dimensional case with other models examined before. This theory can be applied in any field for the decomposition of the components in multivariate analysis. One application is the detection and prediction of the main atmospheric factor of ozone concentrations on the example of Albany, New York. Using daily ozone, solar radiation, temperature, wind speed and precipitation data, we determine the main atmospheric factor for the explanation and prediction of ozone concentrations. A methodology is described for the decomposition of the time series of ozone and other atmospheric variables into the global term component which describes the long term trend and the seasonal variations, and the synoptic scale component which describes the short term variations. By using the Canonical Correlation Analysis, we show that solar radiation is the only main factor between the atmospheric variables considered here for the explanation and prediction of the global and synoptic scale component of ozone. The global term components are modeled by a linear regression model, while the synoptic scale components by a vector autoregressive model and the Kalman filter. The coefficient of determination, R2, for the prediction of the synoptic scale ozone component was found to be the highest when we consider the synoptic scale component of the time series for solar radiation and temperature. KEY WORDS: multivariate analysis; principal component; canonical variate pairs; eigenvalue; eigenvector; ozone; solar radiation; spectral decomposition; Kalman filter; time series prediction
Paolini, Enrico; Moretti, Patrizia; Compton, Michael T
2016-09-30
Although delusions represent one of the core symptoms of psychotic disorders, it is remarkable that few studies have investigated distinct delusional themes. We analyzed data from a large sample of first-episode psychosis patients (n=245) to understand relations between delusion types and demographic and clinical correlates. First, we conducted a principal component analysis (PCA) of the 12 delusion items within the Scale for the Assessment of Positive Symptoms (SAPS). Then, using the domains derived via PCA, we tested a priori hypotheses and answered exploratory research questions related to delusional content. PCA revealed five distinct components: Delusions of Influence, Grandiose/Religious Delusions, Paranoid Delusions, Negative Affect Delusions (jealousy, and sin or guilt), and Somatic Delusions. The most prevalent type of delusion was Paranoid Delusions, and such delusions were more common at older ages at onset of psychosis. The level of Delusions of Influence was correlated with the severity of hallucinations and negative symptoms. We ascertained a general relationship between different childhood adversities and delusional themes, and a specific relationship between Somatic Delusions and childhood neglect. Moreover, we found higher scores on Delusions of Influence and Negative Affect Delusions among cannabis and stimulant users. Our results support considering delusions as varied experiences with varying prevalences and correlates. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Recuerda, Maximilien; Périé, Delphine; Gilbert, Guillaume; Beaudoin, Gilles
2012-10-12
The treatment planning of spine pathologies requires information on the rigidity and permeability of the intervertebral discs (IVDs). Magnetic resonance imaging (MRI) offers great potential as a sensitive and non-invasive technique for describing the mechanical properties of IVDs. However, the literature reported small correlation coefficients between mechanical properties and MRI parameters. Our hypothesis is that the compressive modulus and the permeability of the IVD can be predicted by a linear combination of MRI parameters. Sixty IVDs were harvested from bovine tails, and randomly separated in four groups (in-situ, digested-6h, digested-18h, digested-24h). Multi-parametric MRI acquisitions were used to quantify the relaxation times T1 and T2, the magnetization transfer ratio MTR, the apparent diffusion coefficient ADC and the fractional anisotropy FA. Unconfined compression, confined compression and direct permeability measurements were performed to quantify the compressive moduli and the hydraulic permeabilities. Differences between groups were evaluated from a one way ANOVA. Multi linear regressions were performed between dependent mechanical properties and independent MRI parameters to verify our hypothesis. A principal component analysis was used to convert the set of possibly correlated variables into a set of linearly uncorrelated variables. Agglomerative Hierarchical Clustering was performed on the 3 principal components. Multilinear regressions showed that 45 to 80% of the Young's modulus E, the aggregate modulus in absence of deformation HA0, the radial permeability kr and the axial permeability in absence of deformation k0 can be explained by the MRI parameters within both the nucleus pulposus and the annulus pulposus. The principal component analysis reduced our variables to two principal components with a cumulative variability of 52-65%, which increased to 70-82% when considering the third principal component. The dendograms showed a natural division into four clusters for the nucleus pulposus and into three or four clusters for the annulus fibrosus. The compressive moduli and the permeabilities of isolated IVDs can be assessed mostly by MT and diffusion sequences. However, the relationships have to be improved with the inclusion of MRI parameters more sensitive to IVD degeneration. Before the use of this technique to quantify the mechanical properties of IVDs in vivo on patients suffering from various diseases, the relationships have to be defined for each degeneration state of the tissue that mimics the pathology. Our MRI protocol associated to principal component analysis and agglomerative hierarchical clustering are promising tools to classify the degenerated intervertebral discs and further find biomarkers and predictive factors of the evolution of the pathologies.
Zhang, Xian; Noah, Jack Adam; Hirsch, Joy
2016-01-01
Abstract. Global systemic effects not specific to a task can be prominent in functional near-infrared spectroscopy (fNIRS) signals and the separation of task-specific fNIRS signals and global nonspecific effects is challenging due to waveform correlations. We describe a principal component spatial filter algorithm for separation of the global and local effects. The effectiveness of the approach is demonstrated using fNIRS signals acquired during a right finger-thumb tapping task where the response patterns are well established. Both the temporal waveforms and the spatial pattern consistencies between oxyhemoglobin and deoxyhemoglobin signals are significantly improved, consistent with the basic physiological basis of fNIRS signals and the expected pattern of activity associated with the task. PMID:26866047
Akbari, Hamed; Macyszyn, Luke; Da, Xiao; Wolf, Ronald L.; Bilello, Michel; Verma, Ragini; O’Rourke, Donald M.
2014-01-01
Purpose To augment the analysis of dynamic susceptibility contrast material–enhanced magnetic resonance (MR) images to uncover unique tissue characteristics that could potentially facilitate treatment planning through a better understanding of the peritumoral region in patients with glioblastoma. Materials and Methods Institutional review board approval was obtained for this study, with waiver of informed consent for retrospective review of medical records. Dynamic susceptibility contrast-enhanced MR imaging data were obtained for 79 patients, and principal component analysis was applied to the perfusion signal intensity. The first six principal components were sufficient to characterize more than 99% of variance in the temporal dynamics of blood perfusion in all regions of interest. The principal components were subsequently used in conjunction with a support vector machine classifier to create a map of heterogeneity within the peritumoral region, and the variance of this map served as the heterogeneity score. Results The calculated principal components allowed near-perfect separability of tissue that was likely highly infiltrated with tumor and tissue that was unlikely infiltrated with tumor. The heterogeneity map created by using the principal components showed a clear relationship between voxels judged by the support vector machine to be highly infiltrated and subsequent recurrence. The results demonstrated a significant correlation (r = 0.46, P < .0001) between the heterogeneity score and patient survival. The hazard ratio was 2.23 (95% confidence interval: 1.4, 3.6; P < .01) between patients with high and low heterogeneity scores on the basis of the median heterogeneity score. Conclusion Analysis of dynamic susceptibility contrast-enhanced MR imaging data by using principal component analysis can help identify imaging variables that can be subsequently used to evaluate the peritumoral region in glioblastoma. These variables are potentially indicative of tumor infiltration and may become useful tools in guiding therapy, as well as individualized prognostication. © RSNA, 2014 PMID:24955928
Ma, Li; Sun, Jing; Yang, Zhaoguang; Wang, Lin
2015-12-01
Heavy metal contamination attracted a wide spread attention due to their strong toxicity and persistence. The Ganxi River, located in Chenzhou City, Southern China, has been severely polluted by lead/zinc ore mining activities. This work investigated the heavy metal pollution in agricultural soils around the Ganxi River. The total concentrations of heavy metals were determined by inductively coupled plasma-mass spectrometry. The potential risk associated with the heavy metals in soil was assessed by Nemerow comprehensive index and potential ecological risk index. In both methods, the study area was rated as very high risk. Multivariate statistical methods including Pearson's correlation analysis, hierarchical cluster analysis, and principal component analysis were employed to evaluate the relationships between heavy metals, as well as the correlation between heavy metals and pH, to identify the metal sources. Three distinct clusters have been observed by hierarchical cluster analysis. In principal component analysis, a total of two components were extracted to explain over 90% of the total variance, both of which were associated with anthropogenic sources.
NASA Astrophysics Data System (ADS)
Liu, Jiachao; Li, Ziyi; Chen, Kewei; Yao, Li; Wang, Zhiqun; Li, Kunchen; Guo, Xiaojuan
2011-03-01
Gray matter volume and cortical thickness are two indices of concern in brain structure magnetic resonance imaging research. Gray matter volume reflects mixed-measurement information of cerebral cortex, while cortical thickness reflects only the information of distance between inner surface and outer surface of cerebral cortex. Using Scaled Subprofile Modeling based on Principal Component Analysis (SSM_PCA) and Pearson's Correlation Analysis, this study further provided quantitative comparisons and depicted both global relevance and local relevance to comprehensively investigate morphometrical abnormalities in cerebral cortex in Alzheimer's disease (AD). Thirteen patients with AD and thirteen age- and gender-matched healthy controls were included in this study. Results showed that factor scores from the first 8 principal components accounted for ~53.38% of the total variance for gray matter volume, and ~50.18% for cortical thickness. Factor scores from the fifth principal component showed significant correlation. In addition, gray matter voxel-based volume was closely related to cortical thickness alterations in most cortical cortex, especially, in some typical abnormal brain regions such as insula and the parahippocampal gyrus in AD. These findings suggest that these two measurements are effective indices for understanding the neuropathology in AD. Studies using both gray matter volume and cortical thickness can separate the causes of the discrepancy, provide complementary information and carry out a comprehensive description of the morphological changes of brain structure.
Liang, Xue; Ji, Hai-yan; Wang, Peng-xin; Rao, Zhen-hong; Shen, Bing-hui
2010-01-01
Preprocess method of multiplicative scatter correction (MSC) was used to reject noises in the original spectra produced by the environmental physical factor effectively, then the principal components of near-infrared spectroscopy were calculated by nonlinear iterative partial least squares (NIPALS) before building the back propagation artificial neural networks method (BP-ANN), and the numbers of principal components were calculated by the method of cross validation. The calculated principal components were used as the inputs of the artificial neural networks model, and the artificial neural networks model was used to find the relation between chlorophyll in winter wheat and reflective spectrum, which can predict the content of chlorophyll in winter wheat. The correlation coefficient (r) of calibration set was 0.9604, while the standard deviation (SD) and relative standard deviation (RSD) was 0.187 and 5.18% respectively. The correlation coefficient (r) of predicted set was 0.9600, and the standard deviation (SD) and relative standard deviation (RSD) was 0.145 and 4.21% respectively. It means that the MSC-ANN algorithm can reject noises in the original spectra produced by the environmental physical factor effectively and set up an exact model to predict the contents of chlorophyll in living leaves veraciously to replace the classical method and meet the needs of fast analysis of agricultural products.
The Motivational Salience of Faces Is Related to Both Their Valence and Dominance.
Wang, Hongyi; Hahn, Amanda C; DeBruine, Lisa M; Jones, Benedict C
2016-01-01
Both behavioral and neural measures of the motivational salience of faces are positively correlated with their physical attractiveness. Whether physical characteristics other than attractiveness contribute to the motivational salience of faces is not known, however. Research with male macaques recently showed that more dominant macaques' faces hold greater motivational salience. Here we investigated whether dominance also contributes to the motivational salience of faces in human participants. Principal component analysis of third-party ratings of faces for multiple traits revealed two orthogonal components. The first component ("valence") was highly correlated with rated trustworthiness and attractiveness. The second component ("dominance") was highly correlated with rated dominance and aggressiveness. Importantly, both components were positively and independently related to the motivational salience of faces, as assessed from responses on a standard key-press task. These results show that at least two dissociable components underpin the motivational salience of faces in humans and present new evidence for similarities in how humans and non-human primates respond to facial cues of dominance.
Tchabo, William; Ma, Yongkun; Kwaw, Emmanuel; Zhang, Haining; Xiao, Lulu; Apaliya, Maurice T
2018-01-15
The four different methods of color measurement of wine proposed by Boulton, Giusti, Glories and Commission International de l'Eclairage (CIE) were applied to assess the statistical relationship between the phytochemical profile and chromatic characteristics of sulfur dioxide-free mulberry (Morus nigra) wine submitted to non-thermal maturation processes. The alteration in chromatic properties and phenolic composition of non-thermal aged mulberry wine were examined, aided by the used of Pearson correlation, cluster and principal component analysis. The results revealed a positive effect of non-thermal processes on phytochemical families of wines. From Pearson correlation analysis relationships between chromatic indexes and flavonols as well as anthocyanins were established. Cluster analysis highlighted similarities between Boulton and Giusti parameters, as well as Glories and CIE parameters in the assessment of chromatic properties of wines. Finally, principal component analysis was able to discriminate wines subjected to different maturation techniques on the basis of their chromatic and phenolics characteristics. Copyright © 2017. Published by Elsevier Ltd.
Cenesthopathy and Subjective Cognitive Complaints: An Exploratory Study in Schizophrenia.
Jimeno, Natalia; Vargas, Martin L
2018-01-01
Cenesthopathy is mainly associated with schizophrenia; however, its neurobiological basis is nowadays unclear. The general objective was to explore clinical correlates of cenesthopathy and subjective cognitive complaints in schizophrenia. Participants (n = 30) meeting DSM-IV criteria for psychotic disorder were recruited from a psychiatry unit and assessed with: Association for Methodology and Documentation in Psychiatry (AMDP) system, Positive and Negative Syndrome Scale, Frankfurt Complaint Questionnaire (FCQ), and the Bonn Scale for the Assessment of Basic Symptoms (BSABS). For quantitative variables, means and Spearman correlation coefficients were calculated. Linear regression following backward method and principal component analysis with varimax rotation were used. 83.3% of subjects (73.3% male, mean age, 31.5 years) presented any type of cenesthopathy; all types of cenesthetic basic symptoms were found. Cenesthetic basic symptoms significantly correlated with the AMDP category "fear and anancasm," FCQ total score, and BSABS cognitive thought disturbances. In the regression analysis only 1 predictor, cognitive thought disturbances, entered the model. In the principal component analysis, a main component which accounted for 22.69% of the variance was found. Cenesthopathy, as assessed with the Bonn Scale (BSABS), is mainly associated with cog-nitive abnormalities including disturbances of thought initiative and mental intentionality, of receptive speech, and subjective retardation or pressure of thoughts. © 2018 S. Karger AG, Basel.
The Use of Principal Components in Long-Range Forecasting
NASA Astrophysics Data System (ADS)
Chern, Jonq-Gong
Large-scale modes of the global sea surface temperatures and the Northern Hemisphere tropospheric circulation are described by principal component analysis. The first and the second SST components well describe the El Nino episodes, and the El Nino index (ENI), suggested in this study, is consistent with the winter Southern Oscillation index (SOI), where this ENI is a composite component of the weighted first and second SST components. The large-scale interactive modes of the coupling ocean-atmosphere system are identified by cross-correlation analysis The result shows that the first SST component is strongly correlated with the first component of geopotential height in lead time of 6 months. In the El Nino-Southern Oscillation (ENSO) evolution, the El Nino mode strongly influences the winter tropospheric circulation in the mid -latitudes for up to three leading seasons. The regional long-range variation of climate is investigated with these major components of the SST and the tropospheric circulation. In the mid-latitude, the climate of the central United States shows a weak linkage with these large-scale circulations, and the climate of the western United States appears to be consistently associated with the ENSO modes. These El Nino modes also show a dominant influence on Eastern Asia as evidenced in Taiwan Mei-Yu patterns. Possible regional long-range forecasting schemes, utilizing the complementary characteristics of the winter El Nino mode and SST anomalies, are examined with the Taiwan Mei-Yu.
Espeland, Mark A; Bray, George A; Neiberg, Rebecca; Rejeski, W Jack; Knowler, William C; Lang, Wei; Cheskin, Lawrence J; Williamson, Don; Lewis, C Beth; Wing, Rena
2009-10-01
To demonstrate how principal components analysis can be used to describe patterns of weight changes in response to an intensive lifestyle intervention. Principal components analysis was applied to monthly percent weight changes measured on 2,485 individuals enrolled in the lifestyle arm of the Action for Health in Diabetes (Look AHEAD) clinical trial. These individuals were 45 to 75 years of age, with type 2 diabetes and body mass indices greater than 25 kg/m(2). Associations between baseline characteristics and weight loss patterns were described using analyses of variance. Three components collectively accounted for 97.0% of total intrasubject variance: a gradually decelerating weight loss (88.8%), early versus late weight loss (6.6%), and a mid-year trough (1.6%). In agreement with previous reports, each of the baseline characteristics we examined had statistically significant relationships with weight loss patterns. As examples, males tended to have a steeper trajectory of percent weight loss and to lose weight more quickly than women. Individuals with higher hemoglobin A(1c) (glycosylated hemoglobin; HbA(1c)) tended to have a flatter trajectory of percent weight loss and to have mid-year troughs in weight loss compared to those with lower HbA(1c). Principal components analysis provided a coherent description of characteristic patterns of weight changes and is a useful vehicle for identifying their correlates and potentially for predicting weight control outcomes.
Exploring the Factor Structure of Neurocognitive Measures in Older Individuals
Santos, Nadine Correia; Costa, Patrício Soares; Amorim, Liliana; Moreira, Pedro Silva; Cunha, Pedro; Cotter, Jorge; Sousa, Nuno
2015-01-01
Here we focus on factor analysis from a best practices point of view, by investigating the factor structure of neuropsychological tests and using the results obtained to illustrate on choosing a reasonable solution. The sample (n=1051 individuals) was randomly divided into two groups: one for exploratory factor analysis (EFA) and principal component analysis (PCA), to investigate the number of factors underlying the neurocognitive variables; the second to test the “best fit” model via confirmatory factor analysis (CFA). For the exploratory step, three extraction (maximum likelihood, principal axis factoring and principal components) and two rotation (orthogonal and oblique) methods were used. The analysis methodology allowed exploring how different cognitive/psychological tests correlated/discriminated between dimensions, indicating that to capture latent structures in similar sample sizes and measures, with approximately normal data distribution, reflective models with oblimin rotation might prove the most adequate. PMID:25880732
Suzuki, Makoto; Yamada, Sumio; Omori, Mikayo; Hatakeyama, Mayumi; Sugimura, Yuko; Matsushita, Kazuhiko; Tagawa, Yoshikatsu
2008-09-01
A patient with poststroke hemiparesis learns to use the nonparetic arm to compensate for the weakness of the paretic arm to achieve independence in dressing. This is the learning process of new component actions on dressing. The purpose of this study was to develop the Upper-Body Dressing Scale (UBDS) for buttoned shirt dressing, which evaluates the component actions of upper-body dressing, and to provide preliminary data on internal consistency of the UBDS, as well as its reproducibility, validity, and sensitivity to clinical change. Correlational study of concurrent validity and reliability in which 63 consecutive stroke patients were enrolled in the study and were assessed repeatedly by the UBDS and the dressing item of Functional Independent Measure (FIM). Fifty-one patients completed the 3-wk study. The Cronbach's coefficient alpha of UBDS was 0.88. The principal component analysis extracted two components, which explained 62.3% of total variance. All items of the scale had high loading on the first component (0.65-0.83). Actions on the paralytic side were the positive loadings and actions on the healthy side were the negative loadings on the second component. Intraclass correlation coefficient was 0.87. The level of correlation between UBDS score and FIM dressing item scores was -0.72. Logistic regression analysis showed that only the score of UBDS on the first day of evaluation was a significant independent predictor of dressing ability (odds ratio, 0.82; 95% confidence interval, 0.71-0.95). The UBDS scores for paralytic hand passed into the sleeve, sleeve pulled up beyond the elbow joint, and sleeve pulled up beyond the shoulder joint were worse than the score for the other components of the task. These component actions had positive loading on the second component, which was identified by the principal component analysis. The UBDS has good internal consistency, reproducibility, validity, and sensitivity to clinical changes of patients with poststroke hemiparesis. This detailed UBDS assessment enables us to document the most difficult stages in dressing and to assess motor and process skills for independence of dressing.
Dettlaff, Alan J; Christopher Graham, J; Holzman, Jesse; Baumann, Donald J; Fluke, John D
2015-11-01
When children come to the attention of the child welfare system, they become involved in a decision-making process in which decisions are made that have a significant effect on their future and well-being. The decision to remove children from their families is particularly complex; yet surprisingly little is understood about this decision-making process. This paper presents the results of a study to develop an instrument to explore, at the caseworker level, the context of the removal decision, with the objective of understanding the influence of the individual and organizational factors on this decision, drawing from the Decision Making Ecology as the underlying rationale for obtaining the measures. The instrument was based on the development of decision-making scales used in prior decision-making studies and administered to child protection caseworkers in several states. Analyses included reliability analyses, principal components analyses, and inter-correlations among the resulting scales. For one scale regarding removal decisions, a principal components analysis resulted in the extraction of two components, jointly identified as caseworkers' decision-making orientation, described as (1) an internal reference to decision-making and (2) an external reference to decision-making. Reliability analyses demonstrated acceptable to high internal consistency for 9 of the 11 scales. Full details of the reliability analyses, principal components analyses, and inter-correlations among the seven scales are discussed, along with implications for practice and the utility of this instrument to support the understanding of decision-making in child welfare. Copyright © 2015 Elsevier Ltd. All rights reserved.
Postconcussive Symptoms in OEF-OIF Veterans: Factor Structure and Impact of Posttraumatic Stress
2009-06-03
correlations between NSI full items are presented in Appendix A. Visual inspection of the correlation matrix, the Kaiser - Meyer - Olkin coefficient of .92, and...Spearman rho correlations between NSI residuals are pre- sented in Appendix B. Again, visual inspection of the correla- tion matrix, the Kaiser - Meyer ... Olkin coefficient of .83, and Bartlett’s test of sphericity (x2 5 1,936.0, p , .01) suggested that the matrix could be factored. Principal-components
Gharekhan, Anita H; Arora, Siddharth; Oza, Ashok N; Sureshkumar, Mundan B; Pradhan, Asima; Panigrahi, Prasanta K
2011-08-01
Using the multiresolution ability of wavelets and effectiveness of singular value decomposition (SVD) to identify statistically robust parameters, we find a number of local and global features, capturing spectral correlations in the co- and cross-polarized channels, at different scales (of human breast tissues). The copolarized component, being sensitive to intrinsic fluorescence, shows different behavior for normal, benign, and cancerous tissues, in the emission domain of known fluorophores, whereas the perpendicular component, being more prone to the diffusive effect of scattering, points out differences in the Kernel-Smoother density estimate employed to the principal components, between malignant, normal, and benign tissues. The eigenvectors, corresponding to the dominant eigenvalues of the correlation matrix in SVD, also exhibit significant differences between the three tissue types, which clearly reflects the differences in the spectral correlation behavior. Interestingly, the most significant distinguishing feature manifests in the perpendicular component, corresponding to porphyrin emission range in the cancerous tissue. The fact that perpendicular component is strongly influenced by depolarization, and porphyrin emissions in cancerous tissue has been found to be strongly depolarized, may be the possible cause of the above observation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuckfield, C; J V Mcarthur
2007-04-16
Sediment bacteria samples were collected from three streams in South Carolina, two contaminated with multiple metals (Four Mile Creek and Castor Creek), one uncontaminated (Meyers Branch), and another metal contaminated stream (Lampert Creek) in northern Washington State. Growth plates inoculated with Four Mile Creek sample extracts show bacteria colony growth after incubation on plates containing either one of two aminoglycosides (kanamycin or streptomycin), tetracycline or chloramphenocol. This study analyzes the spatial pattern of antibiotic resistance in culturable sediment bacteria in all four streams that may be due to metal contamination. We summarize the two aminoglycoside resistance measures and the 10more » metals concentrations by Principal Components Analysis. Respectively, 63% and 58% of the variability was explained in the 1st principal component of each variable set. We used the respective multivariate summary metrics (i.e. 1st principal component scores) as input measures for exploring the spatial correlation between antibiotic resistance and metal concentration for each stream reach sampled. Results show a significant and negative correlation between metals scores versus aminoglycoside resistance scores and suggest that selection for metal tolerance among sediment bacteria may influence selection for antibiotic resistance differently than previously supposed.. In addition, we borrow a method from geostatistics (variography) wherein a spatial cross-correlation analysis shows that decreasing metal concentrations scores are associated with increasing aminoglycoside resistance scores as the separation distance between sediment samples decreases, but for contaminated streams only. Since these results were counter to our initial expectation and to other experimental evidence for water column bacteria, we suspect our field results are influenced by metal bioavailability in the sediments and by a contaminant promoted interaction or ''cocktail effect'' from complex combinations of pollution mediated selection agents.« less
Using Structural Equation Modeling To Fit Models Incorporating Principal Components.
ERIC Educational Resources Information Center
Dolan, Conor; Bechger, Timo; Molenaar, Peter
1999-01-01
Considers models incorporating principal components from the perspectives of structural-equation modeling. These models include the following: (1) the principal-component analysis of patterned matrices; (2) multiple analysis of variance based on principal components; and (3) multigroup principal-components analysis. Discusses fitting these models…
Yin, Yihang; Liu, Fengzheng; Zhou, Xiang; Li, Quanzhong
2015-08-07
Wireless sensor networks (WSNs) have been widely used to monitor the environment, and sensors in WSNs are usually power constrained. Because inner-node communication consumes most of the power, efficient data compression schemes are needed to reduce the data transmission to prolong the lifetime of WSNs. In this paper, we propose an efficient data compression model to aggregate data, which is based on spatial clustering and principal component analysis (PCA). First, sensors with a strong temporal-spatial correlation are grouped into one cluster for further processing with a novel similarity measure metric. Next, sensor data in one cluster are aggregated in the cluster head sensor node, and an efficient adaptive strategy is proposed for the selection of the cluster head to conserve energy. Finally, the proposed model applies principal component analysis with an error bound guarantee to compress the data and retain the definite variance at the same time. Computer simulations show that the proposed model can greatly reduce communication and obtain a lower mean square error than other PCA-based algorithms.
PCA-LBG-based algorithms for VQ codebook generation
NASA Astrophysics Data System (ADS)
Tsai, Jinn-Tsong; Yang, Po-Yuan
2015-04-01
Vector quantisation (VQ) codebooks are generated by combining principal component analysis (PCA) algorithms with Linde-Buzo-Gray (LBG) algorithms. All training vectors are grouped according to the projected values of the principal components. The PCA-LBG-based algorithms include (1) PCA-LBG-Median, which selects the median vector of each group, (2) PCA-LBG-Centroid, which adopts the centroid vector of each group, and (3) PCA-LBG-Random, which randomly selects a vector of each group. The LBG algorithm finds a codebook based on the better vectors sent to an initial codebook by the PCA. The PCA performs an orthogonal transformation to convert a set of potentially correlated variables into a set of variables that are not linearly correlated. Because the orthogonal transformation efficiently distinguishes test image vectors, the proposed PCA-LBG-based algorithm is expected to outperform conventional algorithms in designing VQ codebooks. The experimental results confirm that the proposed PCA-LBG-based algorithms indeed obtain better results compared to existing methods reported in the literature.
State and group dynamics of world stock market by principal component analysis
NASA Astrophysics Data System (ADS)
Nobi, Ashadun; Lee, Jae Woo
2016-05-01
We study the dynamic interactions and structural changes by a principal component analysis (PCA) to cross-correlation coefficients of global financial indices in the years 1998-2012. The variances explained by the first PC increase with time and show a drastic change during the crisis. A sharp change in PC coefficient implies a transition of market state, a situation which occurs frequently in the American and Asian indices. However, the European indices remain stable over time. Using the first two PC coefficients, we identify indices that are similar and more strongly correlated than the others. We observe that the European indices form a robust group over the observation period. The dynamics of the individual indices within the group increase in similarity with time, and the dynamics of indices are more similar during the crises. Furthermore, the group formation of indices changes position in two-dimensional spaces due to crises. Finally, after a financial crisis, the difference of PCs between the European and American indices narrows.
Principal component analysis for fermionic critical points
NASA Astrophysics Data System (ADS)
Costa, Natanael C.; Hu, Wenjian; Bai, Z. J.; Scalettar, Richard T.; Singh, Rajiv R. P.
2017-11-01
We use determinant quantum Monte Carlo (DQMC), in combination with the principal component analysis (PCA) approach to unsupervised learning, to extract information about phase transitions in several of the most fundamental Hamiltonians describing strongly correlated materials. We first explore the zero-temperature antiferromagnet to singlet transition in the periodic Anderson model, the Mott insulating transition in the Hubbard model on a honeycomb lattice, and the magnetic transition in the 1/6-filled Lieb lattice. We then discuss the prospects for learning finite temperature superconducting transitions in the attractive Hubbard model, for which there is no sign problem. Finally, we investigate finite temperature charge density wave (CDW) transitions in the Holstein model, where the electrons are coupled to phonon degrees of freedom, and carry out a finite size scaling analysis to determine Tc. We examine the different behaviors associated with Hubbard-Stratonovich auxiliary field configurations on both the entire space-time lattice and on a single imaginary time slice, or other quantities, such as equal-time Green's and pair-pair correlation functions.
Minimum number of measurements for evaluating Bertholletia excelsa.
Baldoni, A B; Tonini, H; Tardin, F D; Botelho, S C C; Teodoro, P E
2017-09-27
Repeatability studies on fruit species are of great importance to identify the minimum number of measurements necessary to accurately select superior genotypes. This study aimed to identify the most efficient method to estimate the repeatability coefficient (r) and predict the minimum number of measurements needed for a more accurate evaluation of Brazil nut tree (Bertholletia excelsa) genotypes based on fruit yield. For this, we assessed the number of fruits and dry mass of seeds of 75 Brazil nut genotypes, from native forest, located in the municipality of Itaúba, MT, for 5 years. To better estimate r, four procedures were used: analysis of variance (ANOVA), principal component analysis based on the correlation matrix (CPCOR), principal component analysis based on the phenotypic variance and covariance matrix (CPCOV), and structural analysis based on the correlation matrix (mean r - AECOR). There was a significant effect of genotypes and measurements, which reveals the need to study the minimum number of measurements for selecting superior Brazil nut genotypes for a production increase. Estimates of r by ANOVA were lower than those observed with the principal component methodology and close to AECOR. The CPCOV methodology provided the highest estimate of r, which resulted in a lower number of measurements needed to identify superior Brazil nut genotypes for the number of fruits and dry mass of seeds. Based on this methodology, three measurements are necessary to predict the true value of the Brazil nut genotypes with a minimum accuracy of 85%.
Mohamad Asri, Muhammad Naeim; Mat Desa, Wan Nur Syuhaila; Ismail, Dzulkiflee
2018-01-01
The potential combination of two nondestructive techniques, that is, Raman spectroscopy (RS) and attenuated total reflectance-fourier transform infrared (ATR-FTIR) spectroscopy with Pearson's product moment correlation (PPMC) coefficient (r) and principal component analysis (PCA) to determine the actual source of red gel pen ink used to write a simulated threatening note, was examined. Eighteen (18) red gel pens purchased from Japan and Malaysia from November to December 2014 where one of the pens was used to write a simulated threatening note were analyzed using RS and ATR-FTIR spectroscopy, respectively. The spectra of all the red gel pen inks including the ink deposited on the simulated threatening note gathered from the RS and ATR-FTIR analyses were subjected to PPMC coefficient (r) calculation and principal component analysis (PCA). The coefficients r = 0.9985 and r = 0.9912 for pairwise combination of RS and ATR-FTIR spectra respectively and similarities in terms of PC1 and PC2 scores of one of the inks to the ink deposited on the simulated threatening note substantiated the feasibility of combining RS and ATR-FTIR spectroscopy with PPMC coefficient (r) and PCA for successful source determination of red gel pen inks. The development of pigment spectral library had allowed the ink deposited on the threatening note to be identified as XSL Poppy Red (CI Pigment Red 112). © 2017 American Academy of Forensic Sciences.
Valero-Cuevas, Francisco J; Klamroth-Marganska, Verena; Winstein, Carolee J; Riener, Robert
2016-10-11
Comparing the efficacy of alternative therapeutic strategies for the rehabilitation of motor function in chronically impaired individuals is often inconclusive. For example, a recent randomized clinical trial (RCT) compared robot-assisted vs. conventional therapy in 77 patients who had had chronic motor impairment after a cerebrovascular accident. While patients assigned to robotic therapy had greater improvements in the primary outcome measure (change in score on the upper extremity section of the Fugl-Meyer assessment), the absolute difference between therapies was small, which left the clinical relevance in question. Here we revisit that study to test whether the multidimensional rehabilitative response of these patients can better distinguish between treatment outcomes. We used principal components analysis to find the correlation of changes across seven outcome measures between the start and end of 8 weeks of therapy. Permutation tests verified the robustness of the principal components found. Each therapy in fact produces different rehabilitative trends of recovery across the clinical, functional, and quality of life domains. A rehabilitative trend is a principal component that quantifies the correlations among changes in outcomes with each therapy. These findings challenge the traditional emphasis of RCTs on using a single primary outcome measure to compare rehabilitative responses that are naturally multidimensional. This alternative approach to, and interpretation of, the results of RCTs may will lead to more effective therapies targeted for the multidimensional mechanisms of recovery. ClinicalTrials.gov number NCT00719433 . Registered July 17, 2008.
Ekdahl, Anja; Johansson, Maria C; Ahnoff, Martin
2013-04-01
Matrix effects on electrospray ionization were investigated for plasma samples analysed by hydrophilic interaction chromatography (HILIC) in gradient elution mode, and HILIC columns of different chemistries were tested for separation of plasma components and model analytes. By combining mass spectral data with post-column infusion traces, the following components of protein-precipitated plasma were identified and found to have significant effect on ionization: urea, creatinine, phosphocholine, lysophosphocholine, sphingomyelin, sodium ion, chloride ion, choline and proline betaine. The observed effect on ionization was both matrix-component and analyte dependent. The separation of identified plasma components and model analytes on eight columns was compared, using pair-wise linear correlation analysis and principal component analysis (PCA). Large changes in selectivity could be obtained by change of column, while smaller changes were seen when the mobile phase buffer was changed from ammonium formate pH 3.0 to ammonium acetate pH 4.5. While results from PCA and linear correlation analysis were largely in accord, linear correlation analysis was judged to be more straight-forward in terms of conduction and interpretation.
Lee, Christina M; Ryan, Joseph J; Kreiner, David S
2007-02-01
Personality ratings of 196 cats were made by their owners using a 5-point Likert scale anchored by 1: not at all and 5: a great deal with 12 items: timid, friendly, curious, sociable, obedient, clever, protective, active, independent, aggressive, bad-tempered, and emotional. A principal components analysis with varimax rotation identified three intepretable components. Component I had high loadings by active, clever, curious, and sociable. Component II had high loadings by emotional, friendly, and protective, Component III by aggressive and bad-tempered, and Component IV by timid. Sex was not associated with any component, but age showed a weak negative correlation with Component I. Older animals were rated less social and curious than younger animals.
Bayesian wavelet PCA methodology for turbomachinery damage diagnosis under uncertainty
NASA Astrophysics Data System (ADS)
Xu, Shengli; Jiang, Xiaomo; Huang, Jinzhi; Yang, Shuhua; Wang, Xiaofang
2016-12-01
Centrifugal compressor often suffers various defects such as impeller cracking, resulting in forced outage of the total plant. Damage diagnostics and condition monitoring of such a turbomachinery system has become an increasingly important and powerful tool to prevent potential failure in components and reduce unplanned forced outage and further maintenance costs, while improving reliability, availability and maintainability of a turbomachinery system. This paper presents a probabilistic signal processing methodology for damage diagnostics using multiple time history data collected from different locations of a turbomachine, considering data uncertainty and multivariate correlation. The proposed methodology is based on the integration of three advanced state-of-the-art data mining techniques: discrete wavelet packet transform, Bayesian hypothesis testing, and probabilistic principal component analysis. The multiresolution wavelet analysis approach is employed to decompose a time series signal into different levels of wavelet coefficients. These coefficients represent multiple time-frequency resolutions of a signal. Bayesian hypothesis testing is then applied to each level of wavelet coefficient to remove possible imperfections. The ratio of posterior odds Bayesian approach provides a direct means to assess whether there is imperfection in the decomposed coefficients, thus avoiding over-denoising. Power spectral density estimated by the Welch method is utilized to evaluate the effectiveness of Bayesian wavelet cleansing method. Furthermore, the probabilistic principal component analysis approach is developed to reduce dimensionality of multiple time series and to address multivariate correlation and data uncertainty for damage diagnostics. The proposed methodology and generalized framework is demonstrated with a set of sensor data collected from a real-world centrifugal compressor with impeller cracks, through both time series and contour analyses of vibration signal and principal components.
ERIC Educational Resources Information Center
Tillyer, Marie Skubak; Tillyer, Rob; Miller, Holly Ventura; Pangrac, Rebekah
2011-01-01
The present study examines the relative contributions of various theoretical constructs to violent victimization by operationalizing multiple measures of exposure to motivated offenders, guardianship, and target characteristics. Using a nationally representative sample of American adolescents, we conducted principal components factor analysis and…
Butler, Rebecca A.
2014-01-01
Stroke aphasia is a multidimensional disorder in which patient profiles reflect variation along multiple behavioural continua. We present a novel approach to separating the principal aspects of chronic aphasic performance and isolating their neural bases. Principal components analysis was used to extract core factors underlying performance of 31 participants with chronic stroke aphasia on a large, detailed battery of behavioural assessments. The rotated principle components analysis revealed three key factors, which we labelled as phonology, semantic and executive/cognition on the basis of the common elements in the tests that loaded most strongly on each component. The phonology factor explained the most variance, followed by the semantic factor and then the executive-cognition factor. The use of principle components analysis rendered participants’ scores on these three factors orthogonal and therefore ideal for use as simultaneous continuous predictors in a voxel-based correlational methodology analysis of high resolution structural scans. Phonological processing ability was uniquely related to left posterior perisylvian regions including Heschl’s gyrus, posterior middle and superior temporal gyri and superior temporal sulcus, as well as the white matter underlying the posterior superior temporal gyrus. The semantic factor was uniquely related to left anterior middle temporal gyrus and the underlying temporal stem. The executive-cognition factor was not correlated selectively with the structural integrity of any particular region, as might be expected in light of the widely-distributed and multi-functional nature of the regions that support executive functions. The identified phonological and semantic areas align well with those highlighted by other methodologies such as functional neuroimaging and neurostimulation. The use of principle components analysis allowed us to characterize the neural bases of participants’ behavioural performance more robustly and selectively than the use of raw assessment scores or diagnostic classifications because principle components analysis extracts statistically unique, orthogonal behavioural components of interest. As such, in addition to improving our understanding of lesion–symptom mapping in stroke aphasia, the same approach could be used to clarify brain–behaviour relationships in other neurological disorders. PMID:25348632
Color enhancement of landsat agricultural imagery: JPL LACIE image processing support task
NASA Technical Reports Server (NTRS)
Madura, D. P.; Soha, J. M.; Green, W. B.; Wherry, D. B.; Lewis, S. D.
1978-01-01
Color enhancement techniques were applied to LACIE LANDSAT segments to determine if such enhancement can assist analysis in crop identification. The procedure involved increasing the color range by removing correlation between components. First, a principal component transformation was performed, followed by contrast enhancement to equalize component variances, followed by an inverse transformation to restore familiar color relationships. Filtering was applied to lower order components to reduce color speckle in the enhanced products. Use of single acquisition and multiple acquisition statistics to control the enhancement were compared, and the effects of normalization investigated. Evaluation is left to LACIE personnel.
Krohn, M.D.; Milton, N.M.; Segal, D.; Enland, A.
1981-01-01
A principal component image enhancement has been effective in applying Landsat data to geologic mapping in a heavily forested area of E Virginia. The image enhancement procedure consists of a principal component transformation, a histogram normalization, and the inverse principal componnet transformation. The enhancement preserves the independence of the principal components, yet produces a more readily interpretable image than does a single principal component transformation. -from Authors
Orthorexia nervosa: Assessment and correlates with gender, BMI, and personality.
Oberle, Crystal D; Samaghabadi, Razieh O; Hughes, Elizabeth M
2017-01-01
This study investigated whether orthorexia nervosa (ON; characterized by an obsessive fixation on eating healthy) may be predicted from the demographics variables of gender and BMI, and from the personality variables of self-esteem, narcissism, and perfectionism. Participants were 459 college students, who completed several online questionnaires that assessed these variables. A principal components analysis confirmed that the Eating Habits Questionnaire (Gleaves, Graham, & Ambwani, 2013) assesses three internally-consistent ON components: healthy eating behaviors, problems resulting from those behaviors, and positive feelings associated with those behaviors. A MANOVA and its tests of between subjects effects then revealed significant interactions between gender and BMI, such that for men but not women, a higher BMI was associated with greater symptomatology for all ON components. Partial correlation analyses, after controlling for gender and BMI, revealed that both narcissism and perfectionism were positively correlated with all aspects of ON symptomatology. Copyright © 2016 Elsevier Ltd. All rights reserved.
Relationships between NIR spectra and sensory attributes of Thai commercial fish sauces.
Ritthiruangdej, Pitiporn; Suwonsichon, Thongchai
2007-07-01
Twenty Thai commercial fish sauces were characterized by sensory descriptive analysis and near-infrared (NIR) spectroscopy. The main objectives were i) to investigate the relationships between sensory attributes and NIR spectra of samples and ii) to characterize the sensory characteristics of fish sauces based on NIR data. A generic descriptive analysis with 12 trained panels was used to characterize the sensory attributes. These attributes consisted of 15 descriptors: brown color, 5 aromatics (sweet, caramelized, fermented, fishy, and musty), 4 tastes (sweet, salty, bitter, and umami), 3 aftertastes (sweet, salty and bitter) and 2 flavors (caramelized and fishy). The results showed that Thai fish sauce samples exhibited significant differences in all of sensory attribute values (p < 0.05). NIR transflectance spectra were obtained from 1100 to 2500 nm. Prior to investigation of the relationships between sensory attributes and NIR spectra, principal component analysis (PCA) was applied to reduce the dimensionality of the spectral data from 622 wavelengths to two uncorrelated components (NIR1 and NIR2) which explained 92 and 7% of the total variation, respectively. NIR1 was highly correlated with the wavelength regions of 1100 - 1544, 1774 - 2062, 2092 - 2308, and 2358 - 2440 nm, while NIR2 was highly correlated with the wavelength regions of 1742 - 1764, 2066 - 2088, and 2312 - 2354 nm. Subsequently, the relationships among these two components and all sensory attributes were also investigated by PCA. The results showed that the first three principal components (PCs) named as fishy flavor component (PC1), sweet component (PC2) and bitterness component (PC3), respectively, explained a total of 66.86% of the variation. NIR1 was mainly correlated to the sensory attributes of fishy aromatic, fishy flavor and sweet aftertaste on PC1. In addition, the PCA using only the factor loadings of NIR1 and NIR2 could be used to classify samples into three groups which showed high, medium and low degrees of fishy aromatic, fishy flavor and sweet aftertaste.
Thavamani, Palanisami; Megharaj, Mallavarapu; Naidu, Ravi
2012-06-01
Principal component analysis (PCA) was used to provide an overview of the distribution pattern of polycyclic aromatic hydrocarbons (PAHs) and heavy metals in former manufactured gas plant (MGP) site soils. PCA is the powerful multivariate method to identify the patterns in data and expressing their similarities and differences. Ten PAHs (naphthalene, acenapthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, chrysene, benzo[a]pyrene) and four toxic heavy metals - lead (Pb), cadmium (Cd), chromium (Cr) and zinc (Zn) - were detected in the site soils. PAH contamination was contributed equally by both low and high molecular weight PAHs. PCA was performed using the varimax rotation method in SPSS, 17.0. Two principal components accounting for 91.7% of the total variance was retained using scree test. Principle component 1 (PC1) substantially explained the dominance of PAH contamination in the MGP site soils. All PAHs, except anthracene, were positively correlated in PC1. There was a common thread in high molecular weight PAHs loadings, where the loadings were inversely proportional to the hydrophobicity and molecular weight of individual PAHs. Anthracene, which was less correlated with other individual PAHs, deviated well from the origin which can be ascribed to its lower toxicity and different origin than its isomer phenanthrene. Among the four major heavy metals studied in MGP sites, Pb, Cd and Cr were negatively correlated in PC1 but showed strong positive correlation in principle component 2 (PC2). Although metals may not have originated directly from gaswork processes, the correlation between PAHs and metals suggests that the materials used in these sites may have contributed to high concentrations of Pb, Cd, Cr and Zn. Thus, multivariate analysis helped to identify the sources of PAHs, heavy metals and their association in MGP site, and thereby better characterise the site risk, which would not be possible if one uses chemical analysis alone.
Pereira, R J; Ayres, D R; El Faro, L; Verneque, R S; Vercesi Filho, A E; Albuquerque, L G
2013-09-27
We analyzed 46,161 monthly test-day records of milk production from 7453 first lactations of crossbred dairy Gyr (Bos indicus) x Holstein cows. The following seven models were compared: standard multivariate model (M10), three reduced rank models fitting the first 2, 3, or 4 genetic principal components, and three models considering a 2-, 3-, or 4-factor structure for the genetic covariance matrix. Full rank residual covariance matrices were considered for all models. The model fitting the first two principal components (PC2) was the best according to the model selection criteria. Similar phenotypic, genetic, and residual variances were obtained with models M10 and PC2. The heritability estimates ranged from 0.14 to 0.21 and from 0.13 to 0.21 for models M10 and PC2, respectively. The genetic correlations obtained with model PC2 were slightly higher than those estimated with model M10. PC2 markedly reduced the number of parameters estimated and the time spent to reach convergence. We concluded that two principal components are sufficient to model the structure of genetic covariances between test-day milk yields.
Modeling vertebrate diversity in Oregon using satellite imagery
NASA Astrophysics Data System (ADS)
Cablk, Mary Elizabeth
Vertebrate diversity was modeled for the state of Oregon using a parametric approach to regression tree analysis. This exploratory data analysis effectively modeled the non-linear relationships between vertebrate richness and phenology, terrain, and climate. Phenology was derived from time-series NOAA-AVHRR satellite imagery for the year 1992 using two methods: principal component analysis and derivation of EROS data center greenness metrics. These two measures of spatial and temporal vegetation condition incorporated the critical temporal element in this analysis. The first three principal components were shown to contain spatial and temporal information about the landscape and discriminated phenologically distinct regions in Oregon. Principal components 2 and 3, 6 greenness metrics, elevation, slope, aspect, annual precipitation, and annual seasonal temperature difference were investigated as correlates to amphibians, birds, all vertebrates, reptiles, and mammals. Variation explained for each regression tree by taxa were: amphibians (91%), birds (67%), all vertebrates (66%), reptiles (57%), and mammals (55%). Spatial statistics were used to quantify the pattern of each taxa and assess validity of resulting predictions from regression tree models. Regression tree analysis was relatively robust against spatial autocorrelation in the response data and graphical results indicated models were well fit to the data.
State-Space Estimation of Soil Organic Carbon Stock
NASA Astrophysics Data System (ADS)
Ogunwole, Joshua O.; Timm, Luis C.; Obidike-Ugwu, Evelyn O.; Gabriels, Donald M.
2014-04-01
Understanding soil spatial variability and identifying soil parameters most determinant to soil organic carbon stock is pivotal to precision in ecological modelling, prediction, estimation and management of soil within a landscape. This study investigates and describes field soil variability and its structural pattern for agricultural management decisions. The main aim was to relate variation in soil organic carbon stock to soil properties and to estimate soil organic carbon stock from the soil properties. A transect sampling of 100 points at 3 m intervals was carried out. Soils were sampled and analyzed for soil organic carbon and other selected soil properties along with determination of dry aggregate and water-stable aggregate fractions. Principal component analysis, geostatistics, and state-space analysis were conducted on the analyzed soil properties. The first three principal components explained 53.2% of the total variation; Principal Component 1 was dominated by soil exchange complex and dry sieved macroaggregates clusters. Exponential semivariogram model described the structure of soil organic carbon stock with a strong dependence indicating that soil organic carbon values were correlated up to 10.8m.Neighbouring values of soil organic carbon stock, all waterstable aggregate fractions, and dithionite and pyrophosphate iron gave reliable estimate of soil organic carbon stock by state-space.
Parallel auto-correlative statistics with VTK.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pebay, Philippe Pierre; Bennett, Janine Camille
2013-08-01
This report summarizes existing statistical engines in VTK and presents both the serial and parallel auto-correlative statistics engines. It is a sequel to [PT08, BPRT09b, PT09, BPT09, PT10] which studied the parallel descriptive, correlative, multi-correlative, principal component analysis, contingency, k-means, and order statistics engines. The ease of use of the new parallel auto-correlative statistics engine is illustrated by the means of C++ code snippets and algorithm verification is provided. This report justifies the design of the statistics engines with parallel scalability in mind, and provides scalability and speed-up analysis results for the autocorrelative statistics engine.
Ding, Haiquan; Lu, Qipeng; Gao, Hongzhi; Peng, Zhongqi
2014-01-01
To facilitate non-invasive diagnosis of anemia, specific equipment was developed, and non-invasive hemoglobin (HB) detection method based on back propagation artificial neural network (BP-ANN) was studied. In this paper, we combined a broadband light source composed of 9 LEDs with grating spectrograph and Si photodiode array, and then developed a high-performance spectrophotometric system. By using this equipment, fingertip spectra of 109 volunteers were measured. In order to deduct the interference of redundant data, principal component analysis (PCA) was applied to reduce the dimensionality of collected spectra. Then the principal components of the spectra were taken as input of BP-ANN model. On this basis we obtained the optimal network structure, in which node numbers of input layer, hidden layer, and output layer was 9, 11, and 1. Calibration and correction sample sets were used for analyzing the accuracy of non-invasive hemoglobin measurement, and prediction sample set was used for testing the adaptability of the model. The correlation coefficient of network model established by this method is 0.94, standard error of calibration, correction, and prediction are 11.29g/L, 11.47g/L, and 11.01g/L respectively. The result proves that there exist good correlations between spectra of three sample sets and actual hemoglobin level, and the model has a good robustness. It is indicated that the developed spectrophotometric system has potential for the non-invasive detection of HB levels with the method of BP-ANN combined with PCA. PMID:24761296
NASA Astrophysics Data System (ADS)
Wei, C. Z.; Blaschke, T.
2016-10-01
With the increasing acceleration of urbanization, the degeneration of the environment and the Urban Heat Island (UHI) has attracted more and more attention. Quantitative delineation of UHI has become crucial for a better understanding of the interregional interaction between urbanization processes and the urban environment system. First of all, our study used medium resolution Chinese satellite data-HJ-1B as the Earth Observation data source to derive parameters, including the percentage of Impervious Surface Areas, Land Surface Temperature, Land Surface Albedo, Normalized Differential Vegetation Index, and object edge detector indicators (Mean of Inner Border, Mean of Outer border) in the city of Guangzhou, China. Secondly, in order to establish a model to delineate the local climate zones of UHI, we used the Principal Component Analysis to explore the correlations between all these parameters, and estimate their contributions to the principal components of UHI zones. Finally, depending on the results of the PCA, we chose the most suitable parameters to classify the urban climate zones based on a Self-Organization Map (SOM). The results show that all six parameters are closely correlated with each other and have a high percentage of cumulative (95%) in the first two principal components. Therefore, the SOM algorithm automatically categorized the city of Guangzhou into five classes of UHI zones using these six spectral, structural and climate parameters as inputs. UHI zones have distinguishable physical characteristics, and could potentially help to provide the basis and decision support for further sustainable urban planning.
Trapped Electron Model 2 (TEM-2)
2010-04-25
density and computes sample correlations : 9t = ft-{ft)T, («6) £T = (stsf)T, («7) RT = {9t9j+i)r- (88) We have made the very safe...such as solar wind correlation studies, initial and boundary conditions for numerical simulations, and principal component analysis. We...O’Brien 19b. TELEPHONE NUMBER (include area code ) 571-307-3978 Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18 Ackmowledgments This work
Desdouits, Nathan; Nilges, Michael; Blondel, Arnaud
2015-02-01
Protein conformation has been recognized as the key feature determining biological function, as it determines the position of the essential groups specifically interacting with substrates. Hence, the shape of the cavities or grooves at the protein surface appears to drive those functions. However, only a few studies describe the geometrical evolution of protein cavities during molecular dynamics simulations (MD), usually with a crude representation. To unveil the dynamics of cavity geometry evolution, we developed an approach combining cavity detection and Principal Component Analysis (PCA). This approach was applied to four systems subjected to MD (lysozyme, sperm whale myoglobin, Dengue envelope protein and EF-CaM complex). PCA on cavities allows us to perform efficient analysis and classification of the geometry diversity explored by a cavity. Additionally, it reveals correlations between the evolutions of the cavities and structures, and can even suggest how to modify the protein conformation to induce a given cavity geometry. It also helps to perform fast and consensual clustering of conformations according to cavity geometry. Finally, using this approach, we show that both carbon monoxide (CO) location and transfer among the different xenon sites of myoglobin are correlated with few cavity evolution modes of high amplitude. This correlation illustrates the link between ligand diffusion and the dynamic network of internal cavities. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Correlations in metal release profiles following sorption by Lemna minor.
Üçüncü Tunca, Esra; Ölmez, Tolga T; Özkan, Alper D; Altındağ, Ahmet; Tunca, Evren; Tekinay, Turgay
2016-08-02
Following the rapid uptake of contaminants in the first few hours of exposure, plants typically attempt to cope with the toxic burden by releasing part of the sorbed material back into the environment. The present study investigates the general trends in the release profiles of different metal(loid)s in the aquatic macrophyte Lemna minor and details the correlations that exist between the release of metal(loid) species. Water samples with distinct contamination profiles were taken from Nilüfer River (Bursa, Turkey), Yeniçağa Lake (Bolu, Turkey), and Beyşehir Lake (Konya, Turkey) and used for release studies; 36 samples were tested in total. Accumulation and release profiles were monitored over five days for 11 metals and a metalloid ((208)Pb, (111)Cd, (52)Cr,(53)Cr,(60)Ni,(63)Cu,(65)Cu,(75)As,(55)Mn, (137)Ba, (27)Al, (57)Fe, (66)Zn,(68)Zn) and correlation, cluster and principal component analyses were employed to determine the factors that affect the release of these elements. Release profiles of the tested metal(loid)s were largely observed to be distinct; however, strong correlations have been observed between certain metal pairs (Cr/Ni, Cr/Cu, Zn/Ni) and principal component analysis was able to separate the metal(loid)s into three well-resolved groups based on their release.
Construct Validity of the MMPI-2 College Maladjustment (Mt) Scale
ERIC Educational Resources Information Center
Barthlow, Deanna L.; Graham, John R.; Ben-Porath, Yossef S.; McNulty, John L
2004-01-01
The construct validity of the MMPI-2 (Minnesota Multiphasic Personality Inventory-2) College Maladjustment (Mt) Scale was examined using 376 student clients at a university psychological clinic. A principal components analysis and correlations of Mt scale scores with clients' and therapists' ratings of symptoms and functioning showed that the Mt…
ERIC Educational Resources Information Center
Ferreira, Aristides I.; Rodrigues, Rosa I.; da Costa Ferreira, Paula
2016-01-01
In this study, we present the development of a vocational interest scale for university students studying psychology. Three dimensions were extracted through principal component analysis, namely, organizational, educational, and clinical psychology. A second study with confirmatory factor analysis replicated the same three factors obtained in the…
Nonparametric regression applied to quantitative structure-activity relationships
Constans; Hirst
2000-03-01
Several nonparametric regressors have been applied to modeling quantitative structure-activity relationship (QSAR) data. The simplest regressor, the Nadaraya-Watson, was assessed in a genuine multivariate setting. Other regressors, the local linear and the shifted Nadaraya-Watson, were implemented within additive models--a computationally more expedient approach, better suited for low-density designs. Performances were benchmarked against the nonlinear method of smoothing splines. A linear reference point was provided by multilinear regression (MLR). Variable selection was explored using systematic combinations of different variables and combinations of principal components. For the data set examined, 47 inhibitors of dopamine beta-hydroxylase, the additive nonparametric regressors have greater predictive accuracy (as measured by the mean absolute error of the predictions or the Pearson correlation in cross-validation trails) than MLR. The use of principal components did not improve the performance of the nonparametric regressors over use of the original descriptors, since the original descriptors are not strongly correlated. It remains to be seen if the nonparametric regressors can be successfully coupled with better variable selection and dimensionality reduction in the context of high-dimensional QSARs.
Multivariate relationships between groundwater chemistry and toxicity in an urban aquifer.
Dewhurst, Rachel E; Wells, N Claire; Crane, Mark; Callaghan, Amanda; Connon, Richard; Mather, John D
2003-11-01
Multivariate statistical methods were used to investigate the causes of toxicity and controls on groundwater chemistry from 274 boreholes in an urban area (London) of the United Kingdom. The groundwater was alkaline to neutral, and chemistry was dominated by calcium, sodium, and sulfate. Contaminants included fuels, solvents, and organic compounds derived from landfill material. The presence of organic material in the aquifer caused decreases in dissolved oxygen, sulfate and nitrate concentrations, and increases in ferrous iron and ammoniacal nitrogen concentrations. Pearson correlations between toxicity results and the concentration of individual analytes indicated that concentrations of ammoniacal nitrogen, dissolved oxygen, ferrous iron, and hydrocarbons were important where present. However, principal component and regression analysis suggested no significant correlation between toxicity and chemistry over the whole area. Multidimensional scaling was used to investigate differences in sites caused by historical use, landfill gas status, or position within the sample area. Significant differences were observed between sites with different historical land use and those with different gas status. Examination of the principal component matrix revealed that these differences are related to changes in the importance of reduced chemical species.
NASA Astrophysics Data System (ADS)
Ma, Jinlong; Li, Fei; Jia, Xiaolin; Zhang, Jingdong
2018-01-01
The total contents of heavy metal elements including Cr, Cd, Cu, Zn, Pb and As were investigated in sediments from the Nantaizi Lake in Hanyang district of Wuhan. The heavy metal pollution level of Nantaizi Lake was calculated by potential ecological risk index and the main sources of pollutants were researched by correlation analysis and principal component analysis. The results show that heavy metal concentration of Nantaizi Lake sediments is within the Chinese Environmental Quality Standard for Soils (GB 15618-1995) level-II standard limitation. According to the result of potential ecological risk index, ecological hazard rank of heavy metal element of Nantaizi Lake sediments is: Cd>Cu>As>Pb>Zn>Cr, and whole water environment of lake is slightly polluted. Through correlation analysis and principal component analysis, it is found that industrial sewage and domestic wastewater in human activities are the main contributors to heavy metal sources of Nantaizi Lake, and chemical processes, such as endogenous microbial activities of lake etc., also affect heavy metal sources in sediments simultaneously.
Study on Hyperspectral Estimation Model of Total Nitrogen Content in Soil of Shaanxi Province
NASA Astrophysics Data System (ADS)
Liu, Jinbao; Dong, Zhenyu; Chen, Xi
2018-01-01
The development of hyperspectral remote sensing technology has been widely used in soil nutrient prediction. The soil is the representative soil type in Shaanxi Province. In this study, the soil total nitrogen content in Shaanxi soil was used as the research target, and the soil samples were measured by reflectance spectroscopy using ASD method. Pre-treatment, the first order differential, second order differential and reflectance logarithmic transformation of the reflected spectrum after pre-treatment, and the hyperspectral estimation model is established by using the least squares regression method and the principal component regression method. The results show that the correlation between the reflectance spectrum and the total nitrogen content of the soil is significantly improved. The correlation coefficient between the original reflectance and soil total nitrogen content is in the range of 350 ~ 2500nm. The correlation coefficient of soil total nitrogen content and first deviation of reflectance is more than 0.5 at 142nm, 1963nm, 2204nm and 2307nm, the second deviation has a significant positive correlation at 1114nm, 1470nm, 1967nm, 2372nm and 2402nm, respectively. After the reciprocal logarithmic transformation of the reflectance with the total nitrogen content of the correlation analysis found that the effect is not obvious. Rc2 = 0.7102, RMSEC = 0.0788; Rv2 = 0.8480, RMSEP = 0.0663, which can achieve the rapid prediction of the total nitrogen content in the region. The results show that the principal component regression model is the best.
A method to map errors in the deformable registration of 4DCT images1
Vaman, Constantin; Staub, David; Williamson, Jeffrey; Murphy, Martin J.
2010-01-01
Purpose: To present a new approach to the problem of estimating errors in deformable image registration (DIR) applied to sequential phases of a 4DCT data set. Methods: A set of displacement vector fields (DVFs) are made by registering a sequence of 4DCT phases. The DVFs are assumed to display anatomical movement, with the addition of errors due to the imaging and registration processes. The positions of physical landmarks in each CT phase are measured as ground truth for the physical movement in the DVF. Principal component analysis of the DVFs and the landmarks is used to identify and separate the eigenmodes of physical movement from the error eigenmodes. By subtracting the physical modes from the principal components of the DVFs, the registration errors are exposed and reconstructed as DIR error maps. The method is demonstrated via a simple numerical model of 4DCT DVFs that combines breathing movement with simulated maps of spatially correlated DIR errors. Results: The principal components of the simulated DVFs were observed to share the basic properties of principal components for actual 4DCT data. The simulated error maps were accurately recovered by the estimation method. Conclusions: Deformable image registration errors can have complex spatial distributions. Consequently, point-by-point landmark validation can give unrepresentative results that do not accurately reflect the registration uncertainties away from the landmarks. The authors are developing a method for mapping the complete spatial distribution of DIR errors using only a small number of ground truth validation landmarks. PMID:21158288
NASA Astrophysics Data System (ADS)
He, Shiyuan; Wang, Lifan; Huang, Jianhua Z.
2018-04-01
With growing data from ongoing and future supernova surveys, it is possible to empirically quantify the shapes of SNIa light curves in more detail, and to quantitatively relate the shape parameters with the intrinsic properties of SNIa. Building such relationships is critical in controlling systematic errors associated with supernova cosmology. Based on a collection of well-observed SNIa samples accumulated in the past years, we construct an empirical SNIa light curve model using a statistical method called the functional principal component analysis (FPCA) for sparse and irregularly sampled functional data. Using this method, the entire light curve of an SNIa is represented by a linear combination of principal component functions, and the SNIa is represented by a few numbers called “principal component scores.” These scores are used to establish relations between light curve shapes and physical quantities such as intrinsic color, interstellar dust reddening, spectral line strength, and spectral classes. These relations allow for descriptions of some critical physical quantities based purely on light curve shape parameters. Our study shows that some important spectral feature information is being encoded in the broad band light curves; for instance, we find that the light curve shapes are correlated with the velocity and velocity gradient of the Si II λ6355 line. This is important for supernova surveys (e.g., LSST and WFIRST). Moreover, the FPCA light curve model is used to construct the entire light curve shape, which in turn is used in a functional linear form to adjust intrinsic luminosity when fitting distance models.
The influence of climate variables on dengue in Singapore.
Pinto, Edna; Coelho, Micheline; Oliver, Leuda; Massad, Eduardo
2011-12-01
In this work we correlated dengue cases with climatic variables for the city of Singapore. This was done through a Poisson Regression Model (PRM) that considers dengue cases as the dependent variable and the climatic variables (rainfall, maximum and minimum temperature and relative humidity) as independent variables. We also used Principal Components Analysis (PCA) to choose the variables that influence in the increase of the number of dengue cases in Singapore, where PC₁ (Principal component 1) is represented by temperature and rainfall and PC₂ (Principal component 2) is represented by relative humidity. We calculated the probability of occurrence of new cases of dengue and the relative risk of occurrence of dengue cases influenced by climatic variable. The months from July to September showed the highest probabilities of the occurrence of new cases of the disease throughout the year. This was based on an analysis of time series of maximum and minimum temperature. An interesting result was that for every 2-10°C of variation of the maximum temperature, there was an average increase of 22.2-184.6% in the number of dengue cases. For the minimum temperature, we observed that for the same variation, there was an average increase of 26.1-230.3% in the number of the dengue cases from April to August. The precipitation and the relative humidity, after analysis of correlation, were discarded in the use of Poisson Regression Model because they did not present good correlation with the dengue cases. Additionally, the relative risk of the occurrence of the cases of the disease under the influence of the variation of temperature was from 1.2-2.8 for maximum temperature and increased from 1.3-3.3 for minimum temperature. Therefore, the variable temperature (maximum and minimum) was the best predictor for the increased number of dengue cases in Singapore.
NASA Astrophysics Data System (ADS)
Ma, Weiwei; Gong, Cailan; Hu, Yong; Meng, Peng; Xu, Feifei
2013-08-01
Hyperspectral data, consisting of hundreds of spectral bands with a high spectral resolution, enables acquisition of continuous spectral characteristic curves, and therefore have served as a powerful tool for vegetation classification. The difficulty of using hyperspectral data is that they are usually redundant, strongly correlated and subject to Hughes phenomenon where classification accuracy increases gradually in the beginning as the number of spectral bands or dimensions increases, but decreases dramatically when the band number reaches some value. In recent years,some algorithms have been proposed to overcome the Hughes phenomenon in classification, such as selecting several bands from full bands, PCA- and MNF-based feature transformations. Up to date, however, few studies have been conducted to investigate the turning point of Hughes phenomenon (i.e., the point at which the classification accuracy begins to decline). In this paper, we firstly analyze reasons for occurrence of Hughes phenomenon, and then based on the Mahalanobis classifier, classify the ground spectrum of several grasslands which were recorded in September 2012 using FieldSpec3 spectrometer in the regions around Qinghai Lake,a important pasturing area in the north of China. Before classification, we extract features from hyperspectral data by bands selecting and PCA- based feature transformations, and In the process of classification, we analyze how the correlation coefficient between wavebands, the number of waveband channels and the number of principal components affect the classification result. The results show that Hushes phenomenon may occur when the correlation coefficient between wavebands is greater than 94%,the number of wavebands is greater than 6, or the number of principal components is greater than 6. Best classification result can be achieved (overall accuracy of grasslands 90%) if the number of wavebands equals to 3 (the band positions are 370nm, 509nm and 886nm respectively) or the number of principal components ranges from 4 to 6.
Mwove, Johnson K; Gogo, Lilian A; Chikamai, Ben N; Omwamba, Mary; Mahungu, Symon M
2018-03-01
Principal component analysis (PCA) was carried out to study the relationship between 24 meat quality measurements taken from beef round samples that were injected with curing brines containing gum arabic (1%, 1.5%, 2%, 2.5%, and 3%) and soy protein concentrate (SPC) (3.5%) at two injection levels (30% and 35%). The measurements used to describe beef round quality were expressible moisture, moisture content, cook yield, possible injection, achieved gum arabic level in beef round, and protein content, as well as descriptive sensory attributes for flavor, texture, basic tastes, feeling factors, color, and overall acceptability. Several significant correlations were found between beef round quality parameters. The highest significant negative and positive correlations were recorded between color intensity and gray color and between color intensity and brown color, respectively. The first seven principal components (PCs) were extracted explaining over 95% of the total variance. The first PC was characterized by texture attributes (hardness and denseness), feeling factors (chemical taste and chemical burn), and two physicochemical properties (expressible moisture and achieved gum arabic level). Taste attribute (saltiness), physicochemical attributes (cook yield and possible injection), and overall acceptability were useful in defining the second PC, while the third PC was characterized by metallic taste, gray color, brown color, and physicochemical attributes (moisture and protein content). The correlation loading plot showed that the distribution of the samples on the axes of the first two PCs allowed for differentiation of samples injected to 30% injection level which were placed on the upper side of the biplot from those injected to 35% which were placed on the lower side. Similarly, beef samples extended with gum arabic and those containing SPC were also visible when scores for the first and third PCs were plotted. Thus, PCA was efficient in analyzing the quality characteristics of beef rounds extended with gum arabic.
Cocco, Simona; Monasson, Remi; Weigt, Martin
2013-01-01
Various approaches have explored the covariation of residues in multiple-sequence alignments of homologous proteins to extract functional and structural information. Among those are principal component analysis (PCA), which identifies the most correlated groups of residues, and direct coupling analysis (DCA), a global inference method based on the maximum entropy principle, which aims at predicting residue-residue contacts. In this paper, inspired by the statistical physics of disordered systems, we introduce the Hopfield-Potts model to naturally interpolate between these two approaches. The Hopfield-Potts model allows us to identify relevant ‘patterns’ of residues from the knowledge of the eigenmodes and eigenvalues of the residue-residue correlation matrix. We show how the computation of such statistical patterns makes it possible to accurately predict residue-residue contacts with a much smaller number of parameters than DCA. This dimensional reduction allows us to avoid overfitting and to extract contact information from multiple-sequence alignments of reduced size. In addition, we show that low-eigenvalue correlation modes, discarded by PCA, are important to recover structural information: the corresponding patterns are highly localized, that is, they are concentrated in few sites, which we find to be in close contact in the three-dimensional protein fold. PMID:23990764
Development of a multimetric index for integrated assessment of salt marsh ecosystem condition
Nagel, Jessica L.; Neckles, Hilary A.; Guntenspergen, Glenn R.; Rocks, Erika N.; Schoolmaster, Donald; Grace, James B.; Skidds, Dennis; Stevens, Sara
2018-01-01
Tools for assessing and communicating salt marsh condition are essential to guide decisions aimed at maintaining or restoring ecosystem integrity and services. Multimetric indices (MMIs) are increasingly used to provide integrated assessments of ecosystem condition. We employed a theory-based approach that considers the multivariate relationship of metrics with human disturbance to construct a salt marsh MMI for five National Parks in the northeastern USA. We quantified the degree of human disturbance for each marsh using the first principal component score from a principal components analysis of physical, chemical, and land use stressors. We then applied a metric selection algorithm to different combinations of about 45 vegetation and nekton metrics (e.g., species abundance, species richness, and ecological and functional classifications) derived from multi-year monitoring data. While MMIs derived from nekton or vegetation metrics alone were strongly correlated with human disturbance (r values from −0.80 to −0.93), an MMI derived from both vegetation and nekton metrics yielded an exceptionally strong correlation with disturbance (r = −0.96). Individual MMIs included from one to five metrics. The metric-assembly algorithm yielded parsimonious MMIs that exhibit the greatest possible correlations with disturbance in a way that is objective, efficient, and reproducible.
Malaquias, José B; Ramalho, Francisco S; Dos S Dias, Carlos T; Brugger, Bruno P; S Lira, Aline Cristina; Wilcken, Carlos F; Pachú, Jéssica K S; Zanuncio, José C
2017-02-09
The relationship between pests and natural enemies using multivariate analysis on cotton in different spacing has not been documented yet. Using multivariate approaches is possible to optimize strategies to control Aphis gossypii at different crop spacings because the possibility of a better use of the aphid sampling strategies as well as the conservation and release of its natural enemies. The aims of the study were (i) to characterize the temporal abundance data of aphids and its natural enemies using principal components, (ii) to analyze the degree of correlation between the insects and between groups of variables (pests and natural enemies), (iii) to identify the main natural enemies responsible for regulating A. gossypii populations, and (iv) to investigate the similarities in arthropod occurrence patterns at different spacings of cotton crops over two seasons. High correlations in the occurrence of Scymnus rubicundus with aphids are shown through principal component analysis and through the important role the species plays in canonical correlation analysis. Clustering the presence of apterous aphids matches the pattern verified for Chrysoperla externa at the three different spacings between rows. Our results indicate that S. rubicundus is the main candidate to regulate the aphid populations in all spacings studied.
Malaquias, José B.; Ramalho, Francisco S.; dos S. Dias, Carlos T.; Brugger, Bruno P.; S. Lira, Aline Cristina; Wilcken, Carlos F.; Pachú, Jéssica K. S.; Zanuncio, José C.
2017-01-01
The relationship between pests and natural enemies using multivariate analysis on cotton in different spacing has not been documented yet. Using multivariate approaches is possible to optimize strategies to control Aphis gossypii at different crop spacings because the possibility of a better use of the aphid sampling strategies as well as the conservation and release of its natural enemies. The aims of the study were (i) to characterize the temporal abundance data of aphids and its natural enemies using principal components, (ii) to analyze the degree of correlation between the insects and between groups of variables (pests and natural enemies), (iii) to identify the main natural enemies responsible for regulating A. gossypii populations, and (iv) to investigate the similarities in arthropod occurrence patterns at different spacings of cotton crops over two seasons. High correlations in the occurrence of Scymnus rubicundus with aphids are shown through principal component analysis and through the important role the species plays in canonical correlation analysis. Clustering the presence of apterous aphids matches the pattern verified for Chrysoperla externa at the three different spacings between rows. Our results indicate that S. rubicundus is the main candidate to regulate the aphid populations in all spacings studied. PMID:28181503
Huang, Meigui; Liu, Ping; Song, Shiqing; Zhang, Xiaoming; Hayat, Khizar; Xia, Shuqin; Jia, Chengsheng; Gu, Fenglin
2011-03-15
Light-coloured and savoury-tasting flavour enhancers are attractive to both consumers and food producers. The aim of this study was to investigate the colour-inhibiting effect of L-cysteine and thiamine during the Maillard reaction of soybean peptide and D-xylose. The correlation between volatile compounds and antioxidant activity of the corresponding products was also studied. Colour formation was markedly suppressed by cysteine. Compared with peptide/xylose (PX), the taste profile of Maillard reaction products (MRPs) derived from peptide/xylose/cysteine (PXC) and peptide/xylose/cysteine/thiamine (PXCT) was stronger, including umami, mouthfulness, continuity, meaty and overall acceptance. PXC and PXCT also exihibited distinctly higher antioxidant activity. Principal component analysis was applied to investigate the correlation between antioxidant activity and volatile compounds. Of 88 volatile compounds identified, 55 were significantly correlated with antioxidant activity by two principal components (accounting for 85.05% of the total variance). Effective colour control of the Maillard reaction by L-cysteine may allow the production of healthier (higher antioxidant activity) and tastier foods to satisfy consumers' and food producers' demands. Light-coloured products might be used as functional flavour enhancers in various food systems. Copyright © 2010 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Malaquias, José B.; Ramalho, Francisco S.; Dos S. Dias, Carlos T.; Brugger, Bruno P.; S. Lira, Aline Cristina; Wilcken, Carlos F.; Pachú, Jéssica K. S.; Zanuncio, José C.
2017-02-01
The relationship between pests and natural enemies using multivariate analysis on cotton in different spacing has not been documented yet. Using multivariate approaches is possible to optimize strategies to control Aphis gossypii at different crop spacings because the possibility of a better use of the aphid sampling strategies as well as the conservation and release of its natural enemies. The aims of the study were (i) to characterize the temporal abundance data of aphids and its natural enemies using principal components, (ii) to analyze the degree of correlation between the insects and between groups of variables (pests and natural enemies), (iii) to identify the main natural enemies responsible for regulating A. gossypii populations, and (iv) to investigate the similarities in arthropod occurrence patterns at different spacings of cotton crops over two seasons. High correlations in the occurrence of Scymnus rubicundus with aphids are shown through principal component analysis and through the important role the species plays in canonical correlation analysis. Clustering the presence of apterous aphids matches the pattern verified for Chrysoperla externa at the three different spacings between rows. Our results indicate that S. rubicundus is the main candidate to regulate the aphid populations in all spacings studied.
Rodriguez, Benjamin F.; Pagano, Maria E.; Keller, Martin B.
2008-01-01
Psychometric characteristics of the Mobility Inventory (MI) were examined in 216 outpatients diagnosed with panic disorder with agoraphobia participating in a longitudinal study of anxiety disorders. An exploratory principal components analysis replicated a three-component solution for the MI reported in prior studies, with components corresponding to avoidance of public spaces, avoidance of enclosed spaces, and avoidance of open spaces. Correlational analyses suggested that the components tap unique but related areas of avoidance that were remarkably stable across periods of 1,3, and 5 years between administrations. Implications of these results for future studies of agoraphobia are discussed. PMID:17079112
On the Fallibility of Principal Components in Research
ERIC Educational Resources Information Center
Raykov, Tenko; Marcoulides, George A.; Li, Tenglong
2017-01-01
The measurement error in principal components extracted from a set of fallible measures is discussed and evaluated. It is shown that as long as one or more measures in a given set of observed variables contains error of measurement, so also does any principal component obtained from the set. The error variance in any principal component is shown…
Newbern, Dorothee; Balikcioglu, Metin; Bain, James; Muehlbauer, Michael; Stevens, Robert; Ilkayeva, Olga; Dolinsky, Diana; Armstrong, Sarah; Irizarry, Krystal; Freemark, Michael
2014-01-01
Objective: Obesity and insulin resistance (IR) predispose to type 2 diabetes mellitus. Yet only half of obese adolescents have IR and far fewer progress to type 2 diabetes mellitus. We hypothesized that amino acid and fatty acid metabolites may serve as biomarkers or determinants of IR in obese teens. Research Design and Methods: Fasting blood samples were analyzed by tandem mass spectrometry in 82 obese adolescents. A principal components analysis and multiple linear regression models were used to correlate metabolic components with surrogate measures of IR: homeostasis model assessment index of insulin resistance (HOMA-IR), adiponectin, and triglyceride (TG) to high-density lipoprotein (HDL) ratio. Results: Branched-chain amino acid (BCAA) levels and products of BCAA catabolism were higher (P < .01) in males than females with comparable body mass index (BMI) z-score. In multivariate analyses, HOMA-IR in males correlated positively with BMI z-score and a metabolic signature containing BCAA, uric acid, and long-chain acylcarnitines and negatively with byproducts of complete fatty acid oxidation (R2 = 0.659, P < .0001). In contrast, only BMI z-score correlated with HOMA-IR in females. Adiponectin correlated inversely with BCAA and uric acid (R2 = 0.268, P = .0212) in males but not females. TG to HDL ratio correlated with BMI z-score and the BCAA signature in females but not males. Conclusions: BCAA levels and byproducts of BCAA catabolism are higher in obese teenage boys than girls of comparable BMI z-score. A metabolic signature comprising BCAA and uric acid correlates positively with HOMA-IR in males and TG to HDL ratio in females and inversely with adiponectin in males but not females. Likewise, byproducts of fatty acid oxidation associate inversely with HOMA-IR in males but not females. Our findings underscore the roles of sex differences in metabolic function and outcomes in pediatric obesity. PMID:25202817
Bignardi, A B; El Faro, L; Rosa, G J M; Cardoso, V L; Machado, P F; Albuquerque, L G
2012-04-01
A total of 46,089 individual monthly test-day (TD) milk yields (10 test-days), from 7,331 complete first lactations of Holstein cattle were analyzed. A standard multivariate analysis (MV), reduced rank analyses fitting the first 2, 3, and 4 genetic principal components (PC2, PC3, PC4), and analyses that fitted a factor analytic structure considering 2, 3, and 4 factors (FAS2, FAS3, FAS4), were carried out. The models included the random animal genetic effect and fixed effects of the contemporary groups (herd-year-month of test-day), age of cow (linear and quadratic effects), and days in milk (linear effect). The residual covariance matrix was assumed to have full rank. Moreover, 2 random regression models were applied. Variance components were estimated by restricted maximum likelihood method. The heritability estimates ranged from 0.11 to 0.24. The genetic correlation estimates between TD obtained with the PC2 model were higher than those obtained with the MV model, especially on adjacent test-days at the end of lactation close to unity. The results indicate that for the data considered in this study, only 2 principal components are required to summarize the bulk of genetic variation among the 10 traits. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
[Relevance and validity of a new French composite index to measure poverty on a geographical level].
Challier, B; Viel, J F
2001-02-01
A number of disease conditions are influenced by deprivation. Geographical measurement of deprivation can provide an independent contribution to individual measures by accounting for the social context. Such a geographical approach, based on deprivation indices, is classical in Great Britain but scarcely used in France. The objective of this work was to build and validate an index readily usable in French municipalities and cantons. Socioeconomic data (unemployment, occupations, housing specifications, income, etc.) were derived from the 1990 census of municipalities and cantons in the Doubs departement. A new index was built by principal components analysis on the municipality data. The validity of the new index was checked and tested for correlations with British deprivation indices. Principal components analysis on municipality data identified four components (explaining 76% of the variance). Only the first component (CP1 explaining 42% of the variance) was retained. Content validity (wide choice of potential deprivation items, correlation between items and CP1: 0.52 to 0.96) and construct validity (CP1 socially relevant; Cronbach's alpha=0.91; correlation between CP1 and three out of four British indices ranging from 0.73 to 0.88) were sufficient. Analysis on canton data supported that on municipality data. The validation of the new index being satisfactory, the user will have to make a choice. The new index, CP1, is closer to the local background and was derived from data from a French departement. It is therefore better adapted to more descriptive approaches such as health care planning. To examine the relationship between deprivation and health with a more etiological approach, the British indices (anteriority, international comparisons) would be more appropriate, but CP1, once validated in various health problem situations, should be most useful for French studies.
Multispectral histogram normalization contrast enhancement
NASA Technical Reports Server (NTRS)
Soha, J. M.; Schwartz, A. A.
1979-01-01
A multispectral histogram normalization or decorrelation enhancement which achieves effective color composites by removing interband correlation is described. The enhancement procedure employs either linear or nonlinear transformations to equalize principal component variances. An additional rotation to any set of orthogonal coordinates is thus possible, while full histogram utilization is maintained by avoiding the reintroduction of correlation. For the three-dimensional case, the enhancement procedure may be implemented with a lookup table. An application of the enhancement to Landsat multispectral scanning imagery is presented.
Quantifying and Reducing Uncertainty in Correlated Multi-Area Short-Term Load Forecasting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yannan; Hou, Zhangshuan; Meng, Da
2016-07-17
In this study, we represent and reduce the uncertainties in short-term electric load forecasting by integrating time series analysis tools including ARIMA modeling, sequential Gaussian simulation, and principal component analysis. The approaches are mainly focusing on maintaining the inter-dependency between multiple geographically related areas. These approaches are applied onto cross-correlated load time series as well as their forecast errors. Multiple short-term prediction realizations are then generated from the reduced uncertainty ranges, which are useful for power system risk analyses.
Pöyhönen, Antti; Häkkinen, Jukka T; Koskimäki, Juha; Hakama, Matti; Tammela, Teuvo L J; Auvinen, Anssi
2013-03-01
WHAT'S KNOWN ON THE SUBJECT? AND WHAT DOES THE STUDY ADD?: The ICS has divided LUTS into three groups: storage, voiding and post-micturition symptoms. The classification is based on anatomical, physiological and urodynamic considerations of a theoretical nature. We used principal component analysis (PCA) to determine the inter-correlations of various LUTS, which is a novel approach to research and can strengthen existing knowledge of the phenomenology of LUTS. After we had completed our analyses, another study was published that used a similar approach and results were very similar to those of the present study. We evaluated the constellation of LUTS using PCA of the data from a population-based study that included >4000 men. In our analysis, three components emerged from the 12 LUTS: voiding, storage and incontinence components. Our results indicated that incontinence may be separate from the other storage symptoms and post-micturition symptoms should perhaps be regarded as voiding symptoms. To determine how lower urinary tract symptoms (LUTS) relate to each other and assess if the classification proposed by the International Continence Society (ICS) is consistent with empirical findings. The information on urinary symptoms for this population-based study was collected using a self-administered postal questionnaire in 2004. The questionnaire was sent to 7470 men, aged 30-80 years, from Pirkanmaa County (Finland), of whom 4384 (58.7%) returned the questionnaire. The Danish Prostatic Symptom Score-1 questionnaire was used to evaluate urinary symptoms. Principal component analysis (PCA) was used to evaluate the inter-correlations among various urinary symptoms. The PCA produced a grouping of 12 LUTS into three categories consisting of voiding, storage and incontinence symptoms. Post-micturition symptoms were related to voiding symptoms, but incontinence symptoms were separate from storage symptoms. In the analyses by age group, similar categorization was found at ages 40, 50, 60 and 80 years, but only two groups of symptoms emerged among men aged 70 years. The prevalence among men aged 30 was too low for meaningful analysis. This population-based study suggests that LUTS can be divided into three subgroups consisting of voiding, storage and incontinence symptoms based on their inter-correlations. Our empirical findings suggest an alternative grouping of LUTS. The potential utility of such an approach requires careful consideration. © 2012 BJU International.
Predictive Validity of National Basketball Association Draft Combine on Future Performance.
Teramoto, Masaru; Cross, Chad L; Rieger, Randall H; Maak, Travis G; Willick, Stuart E
2018-02-01
Teramoto, M, Cross, CL, Rieger, RH, Maak, TG, and Willick, SE. Predictive validity of national basketball association draft combine on future performance. J Strength Cond Res 32(2): 396-408, 2018-The National Basketball Association (NBA) Draft Combine is an annual event where prospective players are evaluated in terms of their athletic abilities and basketball skills. Data collected at the Combine should help NBA teams select right the players for the upcoming NBA draft; however, its value for predicting future performance of players has not been examined. This study investigated predictive validity of the NBA Draft Combine on future performance of basketball players. We performed a principal component analysis (PCA) on the 2010-2015 Combine data to reduce correlated variables (N = 234), a correlation analysis on the Combine data and future on-court performance to examine relationships (maximum pairwise N = 217), and a robust principal component regression (PCR) analysis to predict first-year and 3-year on-court performance from the Combine measures (N = 148 and 127, respectively). Three components were identified within the Combine data through PCA (= Combine subscales): length-size, power-quickness, and upper-body strength. As per the correlation analysis, the individual Combine items for anthropometrics, including height without shoes, standing reach, weight, wingspan, and hand length, as well as the Combine subscale of length-size, had positive, medium-to-large-sized correlations (r = 0.313-0.545) with defensive performance quantified by Defensive Box Plus/Minus. The robust PCR analysis showed that the Combine subscale of length-size was a predictor most significantly associated with future on-court performance (p ≤ 0.05), including Win Shares, Box Plus/Minus, and Value Over Replacement Player, followed by upper-body strength. In conclusion, the NBA Draft Combine has value for predicting future performance of players.
Paddock, L E; Veloski, J; Chatterton, M L; Gevirtz, F O; Nash, D B
2000-07-01
To develop a reliable and valid questionnaire to measure patient satisfaction with diabetes disease management programs. Questions related to structure, process, and outcomes were categorized into 14 domains defining the essential elements of diabetes disease management. Health professionals confirmed the content validity. Face validity was established by a patient focus group. The questionnaire was mailed to 711 patients with diabetes who participated in a disease management program. To reduce the number of questionnaire items, a principal components analysis was performed using a varimax rotation. The Scree test was used to select significant components. To further assess reliability and validity; Cronbach's alpha and product-moment correlations were calculated for components having > or =3 items with loadings >0.50. The validated 73-item mailed satisfaction survey had a 34.1% response rate. Principal components analysis yielded 13 components with eigenvalues > 1.0. The Scree test proposed a 6-component solution (39 items), which explained 59% of the total variation. Internal consistency reliabilities computed for the first 6 components (alpha = 0.79-0.95) were acceptable. The final questionnaire, the Diabetes Management Evaluation Tool (DMET), was designed to assess patient satisfaction with diabetes disease management programs. Although more extensive testing of the questionnaire is appropriate, preliminary reliability and validity of the DMET has been demonstrated.
Is there more to communications technology than just information transfer
NASA Astrophysics Data System (ADS)
Kaltschmidt, H.
1980-02-01
In the present paper, communications is discussed in terms of information transfer among people, among automata, and among people and automata. Communications is treated as a cybernetics problem involving information sources and sinks. The principal signals and components of a communications system are examined, along with frequency- and time-multiplexing, optimal detection, correlators, etc.
NASA Astrophysics Data System (ADS)
Dafu, Shen; Leihong, Zhang; Dong, Liang; Bei, Li; Yi, Kang
2017-07-01
The purpose of this study is to improve the reconstruction precision and better copy the color of spectral image surfaces. A new spectral reflectance reconstruction algorithm based on an iterative threshold combined with weighted principal component space is presented in this paper, and the principal component with weighted visual features is the sparse basis. Different numbers of color cards are selected as the training samples, a multispectral image is the testing sample, and the color differences in the reconstructions are compared. The channel response value is obtained by a Mega Vision high-accuracy, multi-channel imaging system. The results show that spectral reconstruction based on weighted principal component space is superior in performance to that based on traditional principal component space. Therefore, the color difference obtained using the compressive-sensing algorithm with weighted principal component analysis is less than that obtained using the algorithm with traditional principal component analysis, and better reconstructed color consistency with human eye vision is achieved.
Impact of Measurement Uncertainties on Receptor Modeling of Speciated Atmospheric Mercury.
Cheng, I; Zhang, L; Xu, X
2016-02-09
Gaseous oxidized mercury (GOM) and particle-bound mercury (PBM) measurement uncertainties could potentially affect the analysis and modeling of atmospheric mercury. This study investigated the impact of GOM measurement uncertainties on Principal Components Analysis (PCA), Absolute Principal Component Scores (APCS), and Concentration-Weighted Trajectory (CWT) receptor modeling results. The atmospheric mercury data input into these receptor models were modified by combining GOM and PBM into a single reactive mercury (RM) parameter and excluding low GOM measurements to improve the data quality. PCA and APCS results derived from RM or excluding low GOM measurements were similar to those in previous studies, except for a non-unique component and an additional component extracted from the RM dataset. The percent variance explained by the major components from a previous study differed slightly compared to RM and excluding low GOM measurements. CWT results were more sensitive to the input of RM than GOM excluding low measurements. Larger discrepancies were found between RM and GOM source regions than those between RM and PBM. Depending on the season, CWT source regions of RM differed by 40-61% compared to GOM from a previous study. No improvement in correlations between CWT results and anthropogenic mercury emissions were found.
Impact of Measurement Uncertainties on Receptor Modeling of Speciated Atmospheric Mercury
Cheng, I.; Zhang, L.; Xu, X.
2016-01-01
Gaseous oxidized mercury (GOM) and particle-bound mercury (PBM) measurement uncertainties could potentially affect the analysis and modeling of atmospheric mercury. This study investigated the impact of GOM measurement uncertainties on Principal Components Analysis (PCA), Absolute Principal Component Scores (APCS), and Concentration-Weighted Trajectory (CWT) receptor modeling results. The atmospheric mercury data input into these receptor models were modified by combining GOM and PBM into a single reactive mercury (RM) parameter and excluding low GOM measurements to improve the data quality. PCA and APCS results derived from RM or excluding low GOM measurements were similar to those in previous studies, except for a non-unique component and an additional component extracted from the RM dataset. The percent variance explained by the major components from a previous study differed slightly compared to RM and excluding low GOM measurements. CWT results were more sensitive to the input of RM than GOM excluding low measurements. Larger discrepancies were found between RM and GOM source regions than those between RM and PBM. Depending on the season, CWT source regions of RM differed by 40–61% compared to GOM from a previous study. No improvement in correlations between CWT results and anthropogenic mercury emissions were found. PMID:26857835
NASA Astrophysics Data System (ADS)
Kitao, Akio; Hirata, Fumio; Gō, Nobuhiro
1991-12-01
The effects of solvent on the conformation and dynamics of protein is studied by computer simulation. The dynamics is studied by focusing mainly on collective motions of the protein molecule. Three types of simulation, normal mode analysis, molecular dynamics in vacuum, and molecular dynamics in water are applied to melittin, the major component of bee venom. To define collective motions principal, component analysis as well as normal mode analysis has been carried out. The principal components with large fluctuation amplitudes have a very good correspondence with the low-frequency normal modes. Trajectories of the molecular dynamics simulation are projected onto the principal axes. From the projected motions time correlation functions are calculated. The results indicate that the very-low-frequency modes, whose frequencies are less than ≈ 50 cm -1, are overdamping in water with relaxation times roushly twice as long as the period of the oscillatory motion. Effective Langevin mode analysis is carried out by using the friction coefficient matrix determined from the velocity correlation function calculated from the molecular dynamics trajectory in water. This analysis reproduces the results of the simulation in water reasonably well. The presence of the solvent water is found also to affect the shape of the potential energy surface in such a way that it produces many local minima with low-energy barriers in between, the envelope of which is given by the surface in vacuum. Inter-minimum transitions endow the conformational dynamics of proteins in water another diffusive character, which already exists in the intra-minimum collective motions.
Mapping brain activity in gradient-echo functional MRI using principal component analysis
NASA Astrophysics Data System (ADS)
Khosla, Deepak; Singh, Manbir; Don, Manuel
1997-05-01
The detection of sites of brain activation in functional MRI has been a topic of immense research interest and many technique shave been proposed to this end. Recently, principal component analysis (PCA) has been applied to extract the activated regions and their time course of activation. This method is based on the assumption that the activation is orthogonal to other signal variations such as brain motion, physiological oscillations and other uncorrelated noises. A distinct advantage of this method is that it does not require any knowledge of the time course of the true stimulus paradigm. This technique is well suited to EPI image sequences where the sampling rate is high enough to capture the effects of physiological oscillations. In this work, we propose and apply tow methods that are based on PCA to conventional gradient-echo images and investigate their usefulness as tools to extract reliable information on brain activation. The first method is a conventional technique where a single image sequence with alternating on and off stages is subject to a principal component analysis. The second method is a PCA-based approach called the common spatial factor analysis technique (CSF). As the name suggests, this method relies on common spatial factors between the above fMRI image sequence and a background fMRI. We have applied these methods to identify active brain ares during visual stimulation and motor tasks. The results from these methods are compared to those obtained by using the standard cross-correlation technique. We found good agreement in the areas identified as active across all three techniques. The results suggest that PCA and CSF methods have good potential in detecting the true stimulus correlated changes in the presence of other interfering signals.
Principal Component and Linkage Analysis of Cardiovascular Risk Traits in the Norfolk Isolate
Cox, Hannah C.; Bellis, Claire; Lea, Rod A.; Quinlan, Sharon; Hughes, Roger; Dyer, Thomas; Charlesworth, Jac; Blangero, John; Griffiths, Lyn R.
2009-01-01
Objective(s) An individual's risk of developing cardiovascular disease (CVD) is influenced by genetic factors. This study focussed on mapping genetic loci for CVD-risk traits in a unique population isolate derived from Norfolk Island. Methods This investigation focussed on 377 individuals descended from the population founders. Principal component analysis was used to extract orthogonal components from 11 cardiovascular risk traits. Multipoint variance component methods were used to assess genome-wide linkage using SOLAR to the derived factors. A total of 285 of the 377 related individuals were informative for linkage analysis. Results A total of 4 principal components accounting for 83% of the total variance were derived. Principal component 1 was loaded with body size indicators; principal component 2 with body size, cholesterol and triglyceride levels; principal component 3 with the blood pressures; and principal component 4 with LDL-cholesterol and total cholesterol levels. Suggestive evidence of linkage for principal component 2 (h2 = 0.35) was observed on chromosome 5q35 (LOD = 1.85; p = 0.0008). While peak regions on chromosome 10p11.2 (LOD = 1.27; p = 0.005) and 12q13 (LOD = 1.63; p = 0.003) were observed to segregate with principal components 1 (h2 = 0.33) and 4 (h2 = 0.42), respectively. Conclusion(s): This study investigated a number of CVD risk traits in a unique isolated population. Findings support the clustering of CVD risk traits and provide interesting evidence of a region on chromosome 5q35 segregating with weight, waist circumference, HDL-c and total triglyceride levels. PMID:19339786
Correlation between centrality metrics and their application to the opinion model
NASA Astrophysics Data System (ADS)
Li, Cong; Li, Qian; Van Mieghem, Piet; Stanley, H. Eugene; Wang, Huijuan
2015-03-01
In recent decades, a number of centrality metrics describing network properties of nodes have been proposed to rank the importance of nodes. In order to understand the correlations between centrality metrics and to approximate a high-complexity centrality metric by a strongly correlated low-complexity metric, we first study the correlation between centrality metrics in terms of their Pearson correlation coefficient and their similarity in ranking of nodes. In addition to considering the widely used centrality metrics, we introduce a new centrality measure, the degree mass. The mth-order degree mass of a node is the sum of the weighted degree of the node and its neighbors no further than m hops away. We find that the betweenness, the closeness, and the components of the principal eigenvector of the adjacency matrix are strongly correlated with the degree, the 1st-order degree mass and the 2nd-order degree mass, respectively, in both network models and real-world networks. We then theoretically prove that the Pearson correlation coefficient between the principal eigenvector and the 2nd-order degree mass is larger than that between the principal eigenvector and a lower order degree mass. Finally, we investigate the effect of the inflexible contrarians selected based on different centrality metrics in helping one opinion to compete with another in the inflexible contrarian opinion (ICO) model. Interestingly, we find that selecting the inflexible contrarians based on the leverage, the betweenness, or the degree is more effective in opinion-competition than using other centrality metrics in all types of networks. This observation is supported by our previous observations, i.e., that there is a strong linear correlation between the degree and the betweenness, as well as a high centrality similarity between the leverage and the degree.
McLeod, Lianne; Bharadwaj, Lalita; Epp, Tasha; Waldner, Cheryl L.
2017-01-01
Groundwater drinking water supply surveillance data were accessed to summarize water quality delivered as public and private water supplies in southern Saskatchewan as part of an exposure assessment for epidemiologic analyses of associations between water quality and type 2 diabetes or cardiovascular disease. Arsenic in drinking water has been linked to a variety of chronic diseases and previous studies have identified multiple wells with arsenic above the drinking water standard of 0.01 mg/L; therefore, arsenic concentrations were of specific interest. Principal components analysis was applied to obtain principal component (PC) scores to summarize mixtures of correlated parameters identified as health standards and those identified as aesthetic objectives in the Saskatchewan Drinking Water Quality Standards and Objective. Ordinary, universal, and empirical Bayesian kriging were used to interpolate arsenic concentrations and PC scores in southern Saskatchewan, and the results were compared. Empirical Bayesian kriging performed best across all analyses, based on having the greatest number of variables for which the root mean square error was lowest. While all of the kriging methods appeared to underestimate high values of arsenic and PC scores, empirical Bayesian kriging was chosen to summarize large scale geographic trends in groundwater-sourced drinking water quality and assess exposure to mixtures of trace metals and ions. PMID:28914824
Boundary layer noise subtraction in hydrodynamic tunnel using robust principal component analysis.
Amailland, Sylvain; Thomas, Jean-Hugh; Pézerat, Charles; Boucheron, Romuald
2018-04-01
The acoustic study of propellers in a hydrodynamic tunnel is of paramount importance during the design process, but can involve significant difficulties due to the boundary layer noise (BLN). Indeed, advanced denoising methods are needed to recover the acoustic signal in case of poor signal-to-noise ratio. The technique proposed in this paper is based on the decomposition of the wall-pressure cross-spectral matrix (CSM) by taking advantage of both the low-rank property of the acoustic CSM and the sparse property of the BLN CSM. Thus, the algorithm belongs to the class of robust principal component analysis (RPCA), which derives from the widely used principal component analysis. If the BLN is spatially decorrelated, the proposed RPCA algorithm can blindly recover the acoustical signals even for negative signal-to-noise ratio. Unfortunately, in a realistic case, acoustic signals recorded in a hydrodynamic tunnel show that the noise may be partially correlated. A prewhitening strategy is then considered in order to take into account the spatially coherent background noise. Numerical simulations and experimental results show an improvement in terms of BLN reduction in the large hydrodynamic tunnel. The effectiveness of the denoising method is also investigated in the context of acoustic source localization.
McLeod, Lianne; Bharadwaj, Lalita; Epp, Tasha; Waldner, Cheryl L
2017-09-15
Groundwater drinking water supply surveillance data were accessed to summarize water quality delivered as public and private water supplies in southern Saskatchewan as part of an exposure assessment for epidemiologic analyses of associations between water quality and type 2 diabetes or cardiovascular disease. Arsenic in drinking water has been linked to a variety of chronic diseases and previous studies have identified multiple wells with arsenic above the drinking water standard of 0.01 mg/L; therefore, arsenic concentrations were of specific interest. Principal components analysis was applied to obtain principal component (PC) scores to summarize mixtures of correlated parameters identified as health standards and those identified as aesthetic objectives in the Saskatchewan Drinking Water Quality Standards and Objective. Ordinary, universal, and empirical Bayesian kriging were used to interpolate arsenic concentrations and PC scores in southern Saskatchewan, and the results were compared. Empirical Bayesian kriging performed best across all analyses, based on having the greatest number of variables for which the root mean square error was lowest. While all of the kriging methods appeared to underestimate high values of arsenic and PC scores, empirical Bayesian kriging was chosen to summarize large scale geographic trends in groundwater-sourced drinking water quality and assess exposure to mixtures of trace metals and ions.
Zhang, Yuji; Li, Xiaoju; Mao, Lu; Zhang, Mei; Li, Ke; Zheng, Yinxia; Cui, Wangfei; Yin, Hongpo; He, Yanli; Jing, Mingxia
2018-01-01
The analysis of factors affecting the nonadherence to antihypertensive medications is important in the control of blood pressure among patients with hypertension. The purpose of this study was to assess the relationship between factors and medication adherence in Xinjiang community-managed patients with hypertension based on the principal component analysis. A total of 1,916 community-managed patients with hypertension, selected randomly through a multi-stage sampling, participated in the survey. Self-designed questionnaires were used to classify the participants as either adherent or nonadherent to their medication regimen. A principal component analysis was used in order to eliminate the correlation between factors. Factors related to nonadherence were analyzed by using a χ 2 -test and a binary logistic regression model. This study extracted nine common factors, with a cumulative variance contribution rate of 63.6%. Further analysis revealed that the following variables were significantly related to nonadherence: severity of disease, community management, diabetes, and taking traditional medications. Community management plays an important role in improving the patients' medication-taking behavior. Regular medication regimen instruction and better community management services through community-level have the potential to reduce nonadherence. Mild hypertensive patients should be monitored by community health care providers.
2011-01-01
Background Hemorrhagic fever with renal syndrome (HFRS) is an important infectious disease caused by different species of hantaviruses. As a rodent-borne disease with a seasonal distribution, external environmental factors including climate factors may play a significant role in its transmission. The city of Shenyang is one of the most seriously endemic areas for HFRS. Here, we characterized the dynamic temporal trend of HFRS, and identified climate-related risk factors and their roles in HFRS transmission in Shenyang, China. Methods The annual and monthly cumulative numbers of HFRS cases from 2004 to 2009 were calculated and plotted to show the annual and seasonal fluctuation in Shenyang. Cross-correlation and autocorrelation analyses were performed to detect the lagged effect of climate factors on HFRS transmission and the autocorrelation of monthly HFRS cases. Principal component analysis was constructed by using climate data from 2004 to 2009 to extract principal components of climate factors to reduce co-linearity. The extracted principal components and autocorrelation terms of monthly HFRS cases were added into a multiple regression model called principal components regression model (PCR) to quantify the relationship between climate factors, autocorrelation terms and transmission of HFRS. The PCR model was compared to a general multiple regression model conducted only with climate factors as independent variables. Results A distinctly declining temporal trend of annual HFRS incidence was identified. HFRS cases were reported every month, and the two peak periods occurred in spring (March to May) and winter (November to January), during which, nearly 75% of the HFRS cases were reported. Three principal components were extracted with a cumulative contribution rate of 86.06%. Component 1 represented MinRH0, MT1, RH1, and MWV1; component 2 represented RH2, MaxT3, and MAP3; and component 3 represented MaxT2, MAP2, and MWV2. The PCR model was composed of three principal components and two autocorrelation terms. The association between HFRS epidemics and climate factors was better explained in the PCR model (F = 446.452, P < 0.001, adjusted R2 = 0.75) than in the general multiple regression model (F = 223.670, P < 0.000, adjusted R2 = 0.51). Conclusion The temporal distribution of HFRS in Shenyang varied in different years with a distinctly declining trend. The monthly trends of HFRS were significantly associated with local temperature, relative humidity, precipitation, air pressure, and wind velocity of the different previous months. The model conducted in this study will make HFRS surveillance simpler and the control of HFRS more targeted in Shenyang. PMID:22133347
NASA Astrophysics Data System (ADS)
Crighton, David G.
1991-08-01
Current understanding of airframe noise was reviewed as represented by experiment at model and full scale, by theoretical modeling, and by empirical correlation models. The principal component sources are associated with the trailing edges of wing and tail, deflected trailing edge flaps, flap side edges, leading edge flaps or slats, undercarriage gear elements, gear wheel wells, fuselage and wing boundary layers, and panel vibration, together with many minor protrusions like radio antennas and air conditioning intakes which may contribute significantly to perceived noise. There are also possibilities for interactions between the various mechanisms. With current engine technology, the principal airframe noise mechanisms dominate only at low frequencies, typically less than 1 kHz and often much lower, but further reduction of turbomachinery noise in particular may make airframe noise the principal element of approach noise at frequencies in the sensitive range.
Maurer, Christian; Federolf, Peter; von Tscharner, Vinzenz; Stirling, Lisa; Nigg, Benno M
2012-05-01
Changes in gait kinematics have often been analyzed using pattern recognition methods such as principal component analysis (PCA). It is usually just the first few principal components that are analyzed, because they describe the main variability within a dataset and thus represent the main movement patterns. However, while subtle changes in gait pattern (for instance, due to different footwear) may not change main movement patterns, they may affect movements represented by higher principal components. This study was designed to test two hypotheses: (1) speed and gender differences can be observed in the first principal components, and (2) small interventions such as changing footwear change the gait characteristics of higher principal components. Kinematic changes due to different running conditions (speed - 3.1m/s and 4.9 m/s, gender, and footwear - control shoe and adidas MicroBounce shoe) were investigated by applying PCA and support vector machine (SVM) to a full-body reflective marker setup. Differences in speed changed the basic movement pattern, as was reflected by a change in the time-dependent coefficient derived from the first principal. Gender was differentiated by using the time-dependent coefficient derived from intermediate principal components. (Intermediate principal components are characterized by limb rotations of the thigh and shank.) Different shoe conditions were identified in higher principal components. This study showed that different interventions can be analyzed using a full-body kinematic approach. Within the well-defined vector space spanned by the data of all subjects, higher principal components should also be considered because these components show the differences that result from small interventions such as footwear changes. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.
Villarrasa-Sapiña, Israel; Álvarez-Pitti, Julio; Cabeza-Ruiz, Ruth; Redón, Pau; Lurbe, Empar; García-Massó, Xavier
2018-02-01
Excess body weight during childhood causes reduced motor functionality and problems in postural control, a negative influence which has been reported in the literature. Nevertheless, no information regarding the effect of body composition on the postural control of overweight and obese children is available. The objective of this study was therefore to establish these relationships. A cross-sectional design was used to establish relationships between body composition and postural control variables obtained in bipedal eyes-open and eyes-closed conditions in twenty-two children. Centre of pressure signals were analysed in the temporal and frequency domains. Pearson correlations were applied to establish relationships between variables. Principal component analysis was applied to the body composition variables to avoid potential multicollinearity in the regression models. These principal components were used to perform a multiple linear regression analysis, from which regression models were obtained to predict postural control. Height and leg mass were the body composition variables that showed the highest correlation with postural control. Multiple regression models were also obtained and several of these models showed a higher correlation coefficient in predicting postural control than simple correlations. These models revealed that leg and trunk mass were good predictors of postural control. More equations were found in the eyes-open than eyes-closed condition. Body weight and height are negatively correlated with postural control. However, leg and trunk mass are better postural control predictors than arm or body mass. Finally, body composition variables are more useful in predicting postural control when the eyes are open. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nagai, Toshiki; Mitsutake, Ayori; Takano, Hiroshi
2013-02-01
A new relaxation mode analysis method, which is referred to as the principal component relaxation mode analysis method, has been proposed to handle a large number of degrees of freedom of protein systems. In this method, principal component analysis is carried out first and then relaxation mode analysis is applied to a small number of principal components with large fluctuations. To reduce the contribution of fast relaxation modes in these principal components efficiently, we have also proposed a relaxation mode analysis method using multiple evolution times. The principal component relaxation mode analysis method using two evolution times has been applied to an all-atom molecular dynamics simulation of human lysozyme in aqueous solution. Slow relaxation modes and corresponding relaxation times have been appropriately estimated, demonstrating that the method is applicable to protein systems.
Tan, Powell Patrick Cheng; French, Leon; Pavlidis, Paul
2013-01-01
An important goal in neuroscience is to understand gene expression patterns in the brain. The recent availability of comprehensive and detailed expression atlases for mouse and human creates opportunities to discover global patterns and perform cross-species comparisons. Recently we reported that the major source of variation in gene transcript expression in the adult normal mouse brain can be parsimoniously explained as reflecting regional variation in glia to neuron ratios, and is correlated with degree of connectivity and location in the brain along the anterior-posterior axis. Here we extend this investigation to two gene expression assays of adult normal human brains that consisted of over 300 brain region samples, and perform comparative analyses of brain-wide expression patterns to the mouse. We performed principal components analysis (PCA) on the regional gene expression of the adult human brain to identify the expression pattern that has the largest variance. As in the mouse, we observed that the first principal component is composed of two anti-correlated patterns enriched in oligodendrocyte and neuron markers respectively. However, we also observed interesting discordant patterns between the two species. For example, a few mouse neuron markers show expression patterns that are more correlated with the human oligodendrocyte-enriched pattern and vice-versa. In conclusion, our work provides insights into human brain function and evolution by probing global relationships between regional cell type marker expression patterns in the human and mouse brain. PMID:23440889
Tan, Powell Patrick Cheng; French, Leon; Pavlidis, Paul
2013-01-01
An important goal in neuroscience is to understand gene expression patterns in the brain. The recent availability of comprehensive and detailed expression atlases for mouse and human creates opportunities to discover global patterns and perform cross-species comparisons. Recently we reported that the major source of variation in gene transcript expression in the adult normal mouse brain can be parsimoniously explained as reflecting regional variation in glia to neuron ratios, and is correlated with degree of connectivity and location in the brain along the anterior-posterior axis. Here we extend this investigation to two gene expression assays of adult normal human brains that consisted of over 300 brain region samples, and perform comparative analyses of brain-wide expression patterns to the mouse. We performed principal components analysis (PCA) on the regional gene expression of the adult human brain to identify the expression pattern that has the largest variance. As in the mouse, we observed that the first principal component is composed of two anti-correlated patterns enriched in oligodendrocyte and neuron markers respectively. However, we also observed interesting discordant patterns between the two species. For example, a few mouse neuron markers show expression patterns that are more correlated with the human oligodendrocyte-enriched pattern and vice-versa. In conclusion, our work provides insights into human brain function and evolution by probing global relationships between regional cell type marker expression patterns in the human and mouse brain.
Ishii, Kotaro; Iwata, Hiroyoshi; Oshika, Tetsuro
2011-11-04
To evaluate changes in eyeball shape in emmetropization and myopic changes using magnetic resonance imaging (MRI) and elliptic Fourier descriptors (EFDs). The subjects were 105 patients (age range, 1 month-19 years) who underwent head MRI. The refractive error was determined in 30 patients, and eyeball shape was expressed numerically by principal components analysis of standardized EFDs. In the first principal component (PC1; the oblate-to-prolate change), the proportion of variance/total variance in the development of the eyeball shape was 76%. In all subjects, PC1 showed a significant correlation with age (Pearson r = -0.314; P = 0.001), axial length (AL, r = -0.378; P < 0.001), width (r = -0.200, P = 0.0401), oblateness (r = 0.657, P < 0.001), and spherical equivalent refraction (SER, r = 0.438; P = 0.0146; n = 30). In the group containing patients aged 1 month to 6 years (n = 49), PC1 showed a significant correlation with age (r = -0.366; P = 0.0093). In the group containing patients aged 7 to 19 years (n = 56), PC1 showed a significant correlation with SER (r = 0.640; P = 0.0063). The main deformation pattern in the development of the eyeball shape from oblate to prolate was clarified by quantitative analysis based on EFDs. The results showed clear differences between age groups with regard to changes in the shape of the eyeball, the correlation between these changes, and refractive status changes.
Stilp, Christian E.; Kluender, Keith R.
2012-01-01
To the extent that sensorineural systems are efficient, redundancy should be extracted to optimize transmission of information, but perceptual evidence for this has been limited. Stilp and colleagues recently reported efficient coding of robust correlation (r = .97) among complex acoustic attributes (attack/decay, spectral shape) in novel sounds. Discrimination of sounds orthogonal to the correlation was initially inferior but later comparable to that of sounds obeying the correlation. These effects were attenuated for less-correlated stimuli (r = .54) for reasons that are unclear. Here, statistical properties of correlation among acoustic attributes essential for perceptual organization are investigated. Overall, simple strength of the principal correlation is inadequate to predict listener performance. Initial superiority of discrimination for statistically consistent sound pairs was relatively insensitive to decreased physical acoustic/psychoacoustic range of evidence supporting the correlation, and to more frequent presentations of the same orthogonal test pairs. However, increased range supporting an orthogonal dimension has substantial effects upon perceptual organization. Connectionist simulations and Eigenvalues from closed-form calculations of principal components analysis (PCA) reveal that perceptual organization is near-optimally weighted to shared versus unshared covariance in experienced sound distributions. Implications of reduced perceptual dimensionality for speech perception and plausible neural substrates are discussed. PMID:22292057
Dong, Jianghu J; Wang, Liangliang; Gill, Jagbir; Cao, Jiguo
2017-01-01
This article is motivated by some longitudinal clinical data of kidney transplant recipients, where kidney function progression is recorded as the estimated glomerular filtration rates at multiple time points post kidney transplantation. We propose to use the functional principal component analysis method to explore the major source of variations of glomerular filtration rate curves. We find that the estimated functional principal component scores can be used to cluster glomerular filtration rate curves. Ordering functional principal component scores can detect abnormal glomerular filtration rate curves. Finally, functional principal component analysis can effectively estimate missing glomerular filtration rate values and predict future glomerular filtration rate values.
NASA Astrophysics Data System (ADS)
Durigon, Angelica; Lier, Quirijn de Jong van; Metselaar, Klaas
2016-10-01
To date, measuring plant transpiration at canopy scale is laborious and its estimation by numerical modelling can be used to assess high time frequency data. When using the model by Jacobs (1994) to simulate transpiration of water stressed plants it needs to be reparametrized. We compare the importance of model variables affecting simulated transpiration of water stressed plants. A systematic literature review was performed to recover existing parameterizations to be tested in the model. Data from a field experiment with common bean under full and deficit irrigation were used to correlate estimations to forcing variables applying principal component analysis. New parameterizations resulted in a moderate reduction of prediction errors and in an increase in model performance. Ags model was sensitive to changes in the mesophyll conductance and leaf angle distribution parameterizations, allowing model improvement. Simulated transpiration could be separated in temporal components. Daily, afternoon depression and long-term components for the fully irrigated treatment were more related to atmospheric forcing variables (specific humidity deficit between stomata and air, relative air humidity and canopy temperature). Daily and afternoon depression components for the deficit-irrigated treatment were related to both atmospheric and soil dryness, and long-term component was related to soil dryness.
Regional patterns of pesticide concentrations in surface waters of New York in 1997
Phillips, P.J.; Eckhardt, D.A.; Freehafer, D.A.; Wall, G.R.; Ingleston, H.H.
2002-01-01
The predominant mixtures of pesticides found in New York surface waters consist of five principal components. First, herbicides commonly used on corn (atrazine, metolachlor, alachlor, cyanazine) and a herbicide degradate (deethylatrazine) were positively correlated to a corn-herbicide component, and watersheds with the highest corn-herbicide component scores were those in which large amounts of row crops are grown. Second, two insecticides (diazinon and carbaryl) and one herbicide (prometon) widely used in urban and residential settings were positively correlated to an urban/residential component. Watersheds with the highest urban/residential component scores were those with large amounts of urban and residential land use. A third component was related to two herbicides (EPTC and cyanazine) used on dry beans and corn, the fourth to an herbicide (simazine) and an insecticide (carbaryl) commonly used in orchards and vineyards, and the fifth to an herbicide (DCPA). Results of this study indicate that this approach can be used to: (1) identify common mixtures of pesticides in surface waters, (2) relate these mixtures to land use and pesticide applications, and (3) indicate regions where these mixtures of pesticides are commonly found.
Correlations among Galaxy Properties from the Sloan Digital Sky Survey
NASA Astrophysics Data System (ADS)
Li, Zhongmu; Mao, Caiyan
2013-07-01
Galaxies are complex systems with many properties. Correlations among galaxy properties can supply important clues for studying the formation and evolution of galaxies. Using principal component analysis and least-squares fitting, this paper investigates the correlations among galactic parameters involving more properties (color, morphology, stellar population, and absolute magnitude) than previous studies. We use a volume-limited sample (whole sample) of 75,423 galaxies that was selected from the Sloan Digital Sky Survey Data Release 2 and divided into two subsamples (blue and red samples) using a critical color of (g - r) = 0.70 mag. In addition to recovering some previous results, we also obtain some new results. First, all separators for dividing galaxies into two groups can be related via good parameter-first principal component (PC1) correlations. A critical PC1 that indicates whether or not stellar age (or the evolution of a stellar population over time) is important can be used to separate galaxies. This suggests that a statistical parameter, PC1, is helpful in understanding the physical separators of galaxies. In addition, stellar age is shown to be unimportant for red galaxies, while both stellar age and mass are dominating parameters of blue galaxies. This suggests that the various numbers of dominating parameters of galaxies may result from the use of different samples. Finally, some parameters are shown to be correlated, and quantitative fits for a few correlations are obtained, e.g., log(t) = 8.57 + 1.65 (g - r) for the age (log t) and color (g - r) of blue galaxies and log (M *) = 4.31 - 0.30 M r for the stellar mass (log M *) and absolute magnitude (M r) of red galaxies. The median relationships between various parameter pairs are also presented for comparison.
Wavelet decomposition based principal component analysis for face recognition using MATLAB
NASA Astrophysics Data System (ADS)
Sharma, Mahesh Kumar; Sharma, Shashikant; Leeprechanon, Nopbhorn; Ranjan, Aashish
2016-03-01
For the realization of face recognition systems in the static as well as in the real time frame, algorithms such as principal component analysis, independent component analysis, linear discriminate analysis, neural networks and genetic algorithms are used for decades. This paper discusses an approach which is a wavelet decomposition based principal component analysis for face recognition. Principal component analysis is chosen over other algorithms due to its relative simplicity, efficiency, and robustness features. The term face recognition stands for identifying a person from his facial gestures and having resemblance with factor analysis in some sense, i.e. extraction of the principal component of an image. Principal component analysis is subjected to some drawbacks, mainly the poor discriminatory power and the large computational load in finding eigenvectors, in particular. These drawbacks can be greatly reduced by combining both wavelet transform decomposition for feature extraction and principal component analysis for pattern representation and classification together, by analyzing the facial gestures into space and time domain, where, frequency and time are used interchangeably. From the experimental results, it is envisaged that this face recognition method has made a significant percentage improvement in recognition rate as well as having a better computational efficiency.
A stochastic model for correlated protein motions
NASA Astrophysics Data System (ADS)
Karain, Wael I.; Qaraeen, Nael I.; Ajarmah, Basem
2006-06-01
A one-dimensional Langevin-type stochastic difference equation is used to find the deterministic and Gaussian contributions of time series representing the projections of a Bovine Pancreatic Trypsin Inhibitor (BPTI) protein molecular dynamics simulation along different eigenvector directions determined using principal component analysis. The deterministic part shows a distinct nonlinear behavior only for eigenvectors contributing significantly to the collective protein motion.
Using Principal Component Analysis to Improve Fallout Characterization
2017-03-23
between actinide location and elemental composition in fallout from historic atmospheric nuclear weapons testing. Fifty spherical fallout samples were...mathematical approach to solving the complex system of elemental variables while establishing correlations to actinide incorporation within the fallout...1. The double hump curve for uranium-235 showing the effective fission yield by mass number for thermal neutrons. Reproduced with permission from
IQ, Skin Color, Crime, HIV/AIDS, and Income in 50 U.S. States
ERIC Educational Resources Information Center
Templer, Donald I.; Rushton, J. Philippe
2011-01-01
In 50 U.S. states, we found a positive manifold across 11 measures including IQ, skin color, birth rate, infant mortality, life expectancy, HIV/AIDS, violent crime, and state income with the first principal component accounting for 33% of the variance (median factor loading = 0.34). The correlation with a composite of total violent crime was…
The Analysis of Dimensionality Reduction Techniques in Cryptographic Object Code Classification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jason L. Wright; Milos Manic
2010-05-01
This paper compares the application of three different dimension reduction techniques to the problem of locating cryptography in compiled object code. A simple classi?er is used to compare dimension reduction via sorted covariance, principal component analysis, and correlation-based feature subset selection. The analysis concentrates on the classi?cation accuracy as the number of dimensions is increased.
ERIC Educational Resources Information Center
Clendenin, Aaron A.; Businelle, Michael S.; Kelley, Mary Lou
2005-01-01
The Sports Behavior Checklist (SBC) is subjected to a principal components analysis, and subscales are correlated with subscales of the Conners' Revised Parent Form and the Social Skills Rating System. Both of these analyses are conducted to determine the construct validity of the instrument. A subsample of lower socioeconomic status individuals…
ERIC Educational Resources Information Center
Smallwood, Jonathan; McSpadden, Merrill; Luus, Bryan; Schooler, Joanthan
2008-01-01
Using principal component analysis, we examined whether structural properties in the time series of response time would identify different mental states during a continuous performance task. We examined whether it was possible to identify regular patterns which were present in blocks classified as lacking controlled processing, either…
Male Choice in the Stream-Anadromous Stickleback Complex
McKinnon, Jeffrey S.; Hamele, Nick; Frey, Nicole; Chou, Jennifer; McAleavey, Leia; Greene, Jess; Paulson, Windi
2012-01-01
Studies of mating preferences and pre-mating reproductive isolation have often focused on females, but the potential importance of male preferences is increasingly appreciated. We investigated male behavior in the context of reproductive isolation between divergent anadromous and stream-resident populations of threespine stickleback, Gasterosteus aculeatus, using size-manipulated females of both ecotypes. Specifically, we asked if male courtship preferences are present, and if they are based on relative body size, non-size aspects of ecotype, or other traits. Because male behaviors were correlated with each other, we conducted a principal components analysis on the correlations and ran subsequent analyses on the principal components. The two male ecotypes differed in overall behavioral frequencies, with stream-resident males exhibiting consistently more vigorous and positive courtship than anadromous males, and an otherwise aggressive behavior playing a more positive role in anadromous than stream-resident courtship. We observed more vigorous courtship toward smaller females by (relatively small) stream-resident males and the reverse pattern for (relatively large) anadromous males. Thus size-assortative male courtship preferences may contribute to reproductive isolation in this system, although preferences are far from absolute. We found little indication of males responding preferentially to females of their own ecotype independent of body size. PMID:22701589
Dietary patterns and socioeconomic position.
Mullie, P; Clarys, P; Hulens, M; Vansant, G
2010-03-01
To test a socioeconomic hypothesis on three dietary patterns and to describe the relation between three commonly used methods to determine dietary patterns, namely Healthy Eating Index, Mediterranean Diet Score and principal component analysis. Cross-sectional design in 1852 military men. Using mailed questionnaires, the food consumption frequency was recorded. The correlation coefficients between the three dietary patterns varied between 0.43 and 0.62. The highest correlation was found between Healthy Eating Index and Healthy Dietary Pattern (principal components analysis). Cohen's kappa coefficient of agreement varied between 0.10 and 0.20. After age-adjustment, education and income remained associated with the most healthy dietary pattern. Even when both socioeconomic indicators were used together in one model, higher income and education were associated with higher scores for Healthy Eating Index, Mediterranean Diet Score and Healthy Dietary Pattern. The least healthy quintiles of dietary pattern as measured by the three methods were associated with a clustering of unhealthy behaviors, that is, smoking, low physical activity, highest intake of total fat and saturated fatty acids, and low intakes of fruits and vegetables. The three dietary patterns used indicated that the most healthy patterns were associated with a higher socioeconomic position, while lower patterns were associated with several unhealthy behaviors.
NASA Astrophysics Data System (ADS)
Hassanzadeh, S.; Hosseinibalam, F.; Omidvari, M.
2008-04-01
Data of seven meteorological variables (relative humidity, wet temperature, dry temperature, maximum temperature, minimum temperature, ground temperature and sun radiation time) and ozone values have been used for statistical analysis. Meteorological variables and ozone values were analyzed using both multiple linear regression and principal component methods. Data for the period 1999-2004 are analyzed jointly using both methods. For all periods, temperature dependent variables were highly correlated, but were all negatively correlated with relative humidity. Multiple regression analysis was used to fit the meteorological variables using the meteorological variables as predictors. A variable selection method based on high loading of varimax rotated principal components was used to obtain subsets of the predictor variables to be included in the linear regression model of the meteorological variables. In 1999, 2001 and 2002 one of the meteorological variables was weakly influenced predominantly by the ozone concentrations. However, the model did not predict that the meteorological variables for the year 2000 were not influenced predominantly by the ozone concentrations that point to variation in sun radiation. This could be due to other factors that were not explicitly considered in this study.
Chen, Lei Tai; Sun, Ai Qing; Yang, Min; Chen, Lu Lu; Ma, Xue Li; Li, Mei Ling; Yin, Yan Ping
2016-09-01
A total of 16 wheat cultivars were selected to detect seed vigor of different genotypes using standard germination test, seed germination test under stress conditions and field emergence test. The adversity resistance indices of seed vigor indices and field emergence percentage under different germination conditions were used as the indices to evaluate adversity resistance. Principal component analysis and cluster analysis were used for the comprehensive evaluation of seed vigor. Results showed that drought stress, artificial aging and cold soaking treatments affected seed vigor to some extent. The adversity resistance indices of the artificial aging and cold soaking tests were significantly positively correlated with the field emergence percentage, while the adversity resistance index of drought stress test had no significant correlation with the field emergence percentage. 16 wheat cultivars were classified as three groups based on the principal component analysis and cluster analysis. Yunong 949, Yumai 49-198, Luyuan 502, Zhengyumai 9987, Shimai 21, Shannong 23, and Shixin 828 belonged to high vigor seeds. Xunong 5, Yunong 982, Tangmai 8, Jimai 20, Jimai 22, Jinan 17, and Shannong 20 belonged to medium vigor seeds. The other two cultivars, Chang 4738 and Lunxuan 061, belonged to low vigor seeds.
NASA Astrophysics Data System (ADS)
Ogruc Ildiz, G.; Arslan, M.; Unsalan, O.; Araujo-Andrade, C.; Kurt, E.; Karatepe, H. T.; Yilmaz, A.; Yalcinkaya, O. B.; Herken, H.
2016-01-01
In this study, a methodology based on Fourier-transform infrared spectroscopy and principal component analysis and partial least square methods is proposed for the analysis of blood plasma samples in order to identify spectral changes correlated with some biomarkers associated with schizophrenia and bipolarity. Our main goal was to use the spectral information for the calibration of statistical models to discriminate and classify blood plasma samples belonging to bipolar and schizophrenic patients. IR spectra of 30 samples of blood plasma obtained from each, bipolar and schizophrenic patients and healthy control group were collected. The results obtained from principal component analysis (PCA) show a clear discrimination between the bipolar (BP), schizophrenic (SZ) and control group' (CG) blood samples that also give possibility to identify three main regions that show the major differences correlated with both mental disorders (biomarkers). Furthermore, a model for the classification of the blood samples was calibrated using partial least square discriminant analysis (PLS-DA), allowing the correct classification of BP, SZ and CG samples. The results obtained applying this methodology suggest that it can be used as a complimentary diagnostic tool for the detection and discrimination of these mental diseases.
Correlation between grade of pearlite spheroidization and laser induced spectra
NASA Astrophysics Data System (ADS)
Yao, Shunchun; Dong, Meirong; Lu, Jidong; Li, Jun; Dong, Xuan
2013-12-01
Laser induced breakdown spectroscopy (LIBS) which is used traditionally as a spectrochemical analytical technique was employed to analyze the grade of pearlite spheroidization. Three 12Cr1MoV steel specimens with different grades of pearlite spheroidization were ablated to produce plasma by pulse laser at 266 nm. In order to determine the optimal temporal condition and plasma parameters for correlating the grade of pearlite spheroidization and laser induced spectra, a set of spectra at different delays were analyzed by the principal component analysis method. Then, the relationship between plasma temperature, intensity ratios of ionic to atomic lines and grade of pearlite spheroidization was studied. The analysis results show that the laser induced spectra of different grades of pearlite spheroidization can be readily identifiable by principal component analysis in the range of 271.941-289.672 nm with 1000 ns delay time. It is also found that a good agreement exists between the Fe ionic to atomic line ratios and the tensile strength, whereas there is no obvious difference in the plasma temperature. Therefore, LIBS may be applied not only as a spectrochemical analytical technique but also as a new way to estimate the grade of pearlite spheroidization.
The Relation between Factor Score Estimates, Image Scores, and Principal Component Scores
ERIC Educational Resources Information Center
Velicer, Wayne F.
1976-01-01
Investigates the relation between factor score estimates, principal component scores, and image scores. The three methods compared are maximum likelihood factor analysis, principal component analysis, and a variant of rescaled image analysis. (RC)
The Butterflies of Principal Components: A Case of Ultrafine-Grained Polyphase Units
NASA Astrophysics Data System (ADS)
Rietmeijer, F. J. M.
1996-03-01
Dusts in the accretion regions of chondritic interplanetary dust particles [IDPs] consisted of three principal components: carbonaceous units [CUs], carbon-bearing chondritic units [GUs] and carbon-free silicate units [PUs]. Among others, differences among chondritic IDP morphologies and variable bulk C/Si ratios reflect variable mixtures of principal components. The spherical shapes of the initially amorphous principal components remain visible in many chondritic porous IDPs but fusion was documented for CUs, GUs and PUs. The PUs occur as coarse- and ultrafine-grained units that include so called GEMS. Spherical principal components preserved in an IDP as recognisable textural units have unique proporties with important implications for their petrological evolution from pre-accretion processing to protoplanet alteration and dynamic pyrometamorphism. Throughout their lifetime the units behaved as closed-systems without chemical exchange with other units. This behaviour is reflected in their mineralogies while the bulk compositions of principal components define the environments wherein they were formed.
How many atoms are required to characterize accurately trajectory fluctuations of a protein?
NASA Astrophysics Data System (ADS)
Cukier, Robert I.
2010-06-01
Large molecules, whose thermal fluctuations sample a complex energy landscape, exhibit motions on an extended range of space and time scales. Principal component analysis (PCA) is often used to extract dominant motions that in proteins are typically domain motions. These motions are captured in the large eigenvalue (leading) principal components. There is also information in the small eigenvalues, arising from approximate linear dependencies among the coordinates. These linear dependencies suggest that instead of using all the atom coordinates to represent a trajectory, it should be possible to use a reduced set of coordinates with little loss in the information captured by the large eigenvalue principal components. In this work, methods that can monitor the correlation (overlap) between a reduced set of atoms and any number of retained principal components are introduced. For application to trajectory data generated by simulations, where the overall translational and rotational motion needs to be eliminated before PCA is carried out, some difficulties with the overlap measures arise and methods are developed to overcome them. The overlap measures are evaluated for a trajectory generated by molecular dynamics for the protein adenylate kinase, which consists of a stable, core domain, and two more mobile domains, referred to as the LID domain and the AMP-binding domain. The use of reduced sets corresponding, for the smallest set, to one-eighth of the alpha carbon (CA) atoms relative to using all the CA atoms is shown to predict the dominant motions of adenylate kinase. The overlap between using all the CA atoms and all the backbone atoms is essentially unity for a sum over PCA modes that effectively capture the exact trajectory. A reduction to a few atoms (three in the LID and three in the AMP-binding domain) shows that at least the first principal component, characterizing a large part of the LID-binding and AMP-binding motion, is well described. Based on these results, the overlap criterion should be applicable as a guide to postulating and validating coarse-grained descriptions of generic biomolecular assemblies.
Benson, Nsikak U.; Asuquo, Francis E.; Williams, Akan B.; Essien, Joseph P.; Ekong, Cyril I.; Akpabio, Otobong; Olajire, Abaas A.
2016-01-01
Trace metals (Cd, Cr, Cu, Ni and Pb) concentrations in benthic sediments were analyzed through multi-step fractionation scheme to assess the levels and sources of contamination in estuarine, riverine and freshwater ecosystems in Niger Delta (Nigeria). The degree of contamination was assessed using the individual contamination factors (ICF) and global contamination factor (GCF). Multivariate statistical approaches including principal component analysis (PCA), cluster analysis and correlation test were employed to evaluate the interrelationships and associated sources of contamination. The spatial distribution of metal concentrations followed the pattern Pb>Cu>Cr>Cd>Ni. Ecological risk index by ICF showed significant potential mobility and bioavailability for Cu, Cu and Ni. The ICF contamination trend in the benthic sediments at all studied sites was Cu>Cr>Ni>Cd>Pb. The principal component and agglomerative clustering analyses indicate that trace metals contamination in the ecosystems was influenced by multiple pollution sources. PMID:27257934
VizieR Online Data Catalog: RR Lyrae in SDSS Stripe 82 (Suveges+, 2012)
NASA Astrophysics Data System (ADS)
Suveges, M.; Sesar, B.; Varadi, M.; Mowlavi, N.; Becker, A. C.; Ivezic, Z.; Beck, M.; Nienartowicz, K.; Rimoldini, L.; Dubath, P.; Bartholdi, P.; Eyer, L.
2013-05-01
We propose a robust principal component analysis framework for the exploitation of multiband photometric measurements in large surveys. Period search results are improved using the time-series of the first principal component due to its optimized signal-to-noise ratio. The presence of correlated excess variations in the multivariate time-series enables the detection of weaker variability. Furthermore, the direction of the largest variance differs for certain types of variable stars. This can be used as an efficient attribute for classification. The application of the method to a subsample of Sloan Digital Sky Survey Stripe 82 data yielded 132 high-amplitude delta Scuti variables. We also found 129 new RR Lyrae variables, complementary to the catalogue of Sesar et al., extending the halo area mapped by Stripe 82 RR Lyrae stars towards the Galactic bulge. The sample also comprises 25 multiperiodic or Blazhko RR Lyrae stars. (8 data files).
Ehresmann, Bernd; de Groot, Marcel J; Alex, Alexander; Clark, Timothy
2004-01-01
New molecular descriptors based on statistical descriptions of the local ionization potential, local electron affinity, and the local polarizability at the surface of the molecule are proposed. The significance of these descriptors has been tested by calculating them for the Maybridge database in addition to our set of 26 descriptors reported previously. The new descriptors show little correlation with those already in use. Furthermore, the principal components of the extended set of descriptors for the Maybridge data show that especially the descriptors based on the local electron affinity extend the variance in our set of descriptors, which we have previously shown to be relevant to physical properties. The first nine principal components are shown to be most significant. As an example of the usefulness of the new descriptors, we have set up a QSPR model for boiling points using both the old and new descriptors.
NASA Astrophysics Data System (ADS)
Fang, Leyuan; Wang, Chong; Li, Shutao; Yan, Jun; Chen, Xiangdong; Rabbani, Hossein
2017-11-01
We present an automatic method, termed as the principal component analysis network with composite kernel (PCANet-CK), for the classification of three-dimensional (3-D) retinal optical coherence tomography (OCT) images. Specifically, the proposed PCANet-CK method first utilizes the PCANet to automatically learn features from each B-scan of the 3-D retinal OCT images. Then, multiple kernels are separately applied to a set of very important features of the B-scans and these kernels are fused together, which can jointly exploit the correlations among features of the 3-D OCT images. Finally, the fused (composite) kernel is incorporated into an extreme learning machine for the OCT image classification. We tested our proposed algorithm on two real 3-D spectral domain OCT (SD-OCT) datasets (of normal subjects and subjects with the macular edema and age-related macular degeneration), which demonstrated its effectiveness.
Climate drivers on malaria transmission in Arunachal Pradesh, India.
Upadhyayula, Suryanaryana Murty; Mutheneni, Srinivasa Rao; Chenna, Sumana; Parasaram, Vaideesh; Kadiri, Madhusudhan Rao
2015-01-01
The present study was conducted during the years 2006 to 2012 and provides information on prevalence of malaria and its regulation with effect to various climatic factors in East Siang district of Arunachal Pradesh, India. Correlation analysis, Principal Component Analysis and Hotelling's T² statistics models are adopted to understand the effect of weather variables on malaria transmission. The epidemiological study shows that the prevalence of malaria is mostly caused by the parasite Plasmodium vivax followed by Plasmodium falciparum. It is noted that, the intensity of malaria cases declined gradually from the year 2006 to 2012. The transmission of malaria observed was more during the rainy season, as compared to summer and winter seasons. Further, the data analysis study with Principal Component Analysis and Hotelling's T² statistic has revealed that the climatic variables such as temperature and rainfall are the most influencing factors for the high rate of malaria transmission in East Siang district of Arunachal Pradesh.
Learning representative features for facial images based on a modified principal component analysis
NASA Astrophysics Data System (ADS)
Averkin, Anton; Potapov, Alexey
2013-05-01
The paper is devoted to facial image analysis and particularly deals with the problem of automatic evaluation of the attractiveness of human faces. We propose a new approach for automatic construction of feature space based on a modified principal component analysis. Input data sets for the algorithm are the learning data sets of facial images, which are rated by one person. The proposed approach allows one to extract features of the individual subjective face beauty perception and to predict attractiveness values for new facial images, which were not included into a learning data set. The Pearson correlation coefficient between values predicted by our method for new facial images and personal attractiveness estimation values equals to 0.89. This means that the new approach proposed is promising and can be used for predicting subjective face attractiveness values in real systems of the facial images analysis.
Preliminary study of soil permeability properties using principal component analysis
NASA Astrophysics Data System (ADS)
Yulianti, M.; Sudriani, Y.; Rustini, H. A.
2018-02-01
Soil permeability measurement is undoubtedly important in carrying out soil-water research such as rainfall-runoff modelling, irrigation water distribution systems, etc. It is also known that acquiring reliable soil permeability data is rather laborious, time-consuming, and costly. Therefore, it is desirable to develop the prediction model. Several studies of empirical equations for predicting permeability have been undertaken by many researchers. These studies derived the models from areas which soil characteristics are different from Indonesian soil, which suggest a possibility that these permeability models are site-specific. The purpose of this study is to identify which soil parameters correspond strongly to soil permeability and propose a preliminary model for permeability prediction. Principal component analysis (PCA) was applied to 16 parameters analysed from 37 sites consist of 91 samples obtained from Batanghari Watershed. Findings indicated five variables that have strong correlation with soil permeability, and we recommend a preliminary permeability model, which is potential for further development.
Schwedhelm, Carolina; Iqbal, Khalid; Knüppel, Sven; Schwingshackl, Lukas; Boeing, Heiner
2018-02-01
Principal component analysis (PCA) is a widely used exploratory method in epidemiology to derive dietary patterns from habitual diet. Such dietary patterns seem to originate from intakes on multiple days and eating occasions. Therefore, analyzing food intake of study populations with different levels of food consumption can provide additional insights as to how habitual dietary patterns are formed. We analyzed the food intake data of German adults in terms of the relations among food groups from three 24-h dietary recalls (24hDRs) on the habitual, single-day, and main-meal levels, and investigated the contribution of each level to the formation of PCA-derived habitual dietary patterns. Three 24hDRs were collected in 2010-2012 from 816 adults for an European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam subcohort study. We identified PCA-derived habitual dietary patterns and compared cross-sectional food consumption data in terms of correlation (Spearman), consistency (intraclass correlation coefficient), and frequency of consumption across all days and main meals. Contribution to the formation of the dietary patterns was obtained through Spearman correlation of the dietary pattern scores. Among the meals, breakfast appeared to be the most consistent eating occasion within individuals. Dinner showed the strongest correlations with "Prudent" (Spearman correlation = 0.60), "Western" (Spearman correlation = 0.59), and "Traditional" (Spearman correlation = 0.60) dietary patterns identified on the habitual level, and lunch showed the strongest correlations with the "Cereals and legumes" (Spearman correlation = 0.60) habitual dietary pattern. Higher meal consistency was related to lower contributions to the formation of PCA-derived habitual dietary patterns. Absolute amounts of food consumption did not strongly conform to the habitual dietary patterns by meals, suggesting that these patterns are formed by complex combinations of variable food consumption across meals. Dinner showed the highest contribution to the formation of habitual dietary patterns. This study provided information about how PCA-derived dietary patterns are formed and how they could be influenced.
Ou, Hua-Se; Wei, Chao-Hai; Deng, Yang; Gao, Nai-Yun
2013-08-01
Qingcaosha Reservoir (QR) is the largest river-embedded reservoir in east China, which receives its source water from the Yangtze River (YR). The temporal and spatial variations in dissolved organic matter (DOM), chromophoric DOM (CDOM), nitrogen, phosphorus and phytoplankton biomass were investigated from June to September in 2012 and were integrated by principal component analysis (PCA). Three PCA factors were identified: (1) phytoplankton related factor 1, (2) total DOM related factor 2, and (3) eutrophication related factor 3. Factor 1 was a lake-type parameter which correlated with chlorophyll-a and protein-like CDOM (r = 0.793 and r = 0.831, respectively). Factor 2 was a river-type parameter which correlated with total DOC and humic-like CDOM (r = 0.668 and r = 0.726, respectively). Factor 3 correlated with total nitrogen and phosphorus (r = 0.864 and r = 0.621, respectively). The low flow speed, self-sedimentation and nutrient accumulation in QR resulted in increases in PCA factor 1 scores (phytoplankton biomass and derived CDOM) in the spatial scale, indicating a change of river-type water (YR) to lake-type water (QR). In summer, the water temperature variation induced a growth-bloom-decay process of phytoplankton combined with the increase of PCA factor 2 (humic-like CDOM) in the QR, which was absent in the YR.
Is Allelopathic Activity of Ipomoea murucoides Induced by Xylophage Damage?
Flores-Palacios, Alejandro; Corona-López, Angélica María; Rios, María Yolanda; Aguilar-Guadarrama, Berenice; Toledo-Hernández, Víctor Hugo; Rodríguez-López, Verónica; Valencia-Díaz, Susana
2015-01-01
Herbivory activates the synthesis of allelochemicals that can mediate plant-plant interactions. There is an inverse relationship between the activity of xylophages and the abundance of epiphytes on Ipomoea murucoides. Xylophagy may modify the branch chemical constitution, which also affects the liberation of allelochemicals with defense and allelopathic properties. We evaluated the bark chemical content and the effect of extracts from branches subjected to treatments of exclusion, mechanical damage and the presence/absence of epiphytes, on the seed germination of the epiphyte Tillandsia recurvata. Principal component analysis showed that branches without any treatment separate from branches subjected to treatments; damaged and excluded branches had similar chemical content but we found no evidence to relate intentional damage with allelopathy; however 1-hexadecanol, a defense volatile compound correlated positively with principal component (PC) 1. The chemical constitution of branches subject to exclusion plus damage or plus epiphytes was similar among them. PC2 indicated that palmitic acid (allelopathic compound) and squalene, a triterpene that attracts herbivore enemies, correlated positively with the inhibition of seed germination of T. recurvata. Inhibition of seed germination of T. recurvata was mainly correlated with the increment of palmitic acid and this compound reached higher concentrations in excluded branches treatments. Then, it is likely that the allelopathic response of I. murucoides would increase to the damage (shade, load) that may be caused by a high load of epiphytes than to damage caused by the xylophages.
Zhang, Xiaobo; Zhao, Yuping; Guo, Lanping; Qiu, Zhidong; Huang, Luqi; Qu, Xiaobo
2017-01-01
Daodi-herb is a part of Chinese culture, which has been naturally selected by traditional Chinese medicine clinical practice for many years. Sweet wormwood herb is a kind of Daodi-herb, and comes from Artemisia annua L. Artemisinin is a kind of effective antimalarial drug being extracted from A. annua. Because of artemisinin, Sweet wormwood herb earns a reputation. Based on the Pharmacopoeia of the People's Republic of China (PPRC), Sweet wormwood herb can be used to resolve summerheat-heat, and prevent malaria. Besides, it also has other medical efficacies. A. annua, a medicinal plant that is widely distributed in the world contains many kinds of chemical composition. Research has shown that compatibility of artemisinin, scopoletin, arteannuin B and arteannuic acid has antimalarial effect. Compatibility of scopoletin, arteannuin B and arteannuic acid is conducive to resolving summerheat-heat. Chemical constituents in A. annua vary significantly according to geographical locations. So, distribution of A. annua may play a key role in the characteristics of efficacy and chemical constituents of Sweet wormwood herb. It is of great significance to study this relationship. We mainly analyzed the relationship between the chemical constituents (arteannuin B, artemisinin, artemisinic acid, and scopoletin) with special efficacy in A. annua that come from different provinces in china, and analyzed the relationship between chemical constituents and spatial distribution, in order to find out the relationship between efficacy, chemical constituents and distribution. A field survey was carried out to collect A. annua plant samples. A global positioning system (GPS) was used for obtaining geographical coordinates of sampling sites. Chemical constituents in A. annua were determined by liquid chromatography tandem an atmospheric pressure ionization-electrospray mass spectrometry. Relationship between chemical constituents including proportions, correlation analysis (CoA), principal component analysis (PCA) and cluster analysis (ClA) was displayed through Excel and R software version2.3.2(R), while the one between efficacy, chemical constituents and spatial distribution was presented through ArcGIS10.0, Excel and R software. According to the results of CoA, arteannuin B content presented a strong positive correlation with artemisinic acid content (p = 0), and a strong negative correlation with artemisinin content (p = 0). Scopoletin content presented a strong positive correlation with artemisinin content (p = 0), and a strong negative correlation with artemisinic acid content (p = 0). According to the results of PCA, the first two principal components accounted for 81.57% of the total accumulation contribution rate. The contribution of the first principal component is about 45.12%, manly including arteannuin B and artemisinic acid. The contribution of the second principal component is 36.45% of the total, manly including artemisinin and scopoletin. According to the ClA by using the principal component scores, 19 provinces could be divided into two groups. In terms of provinces in group one, the proportions of artemisinin are all higher than 80%. Based on the results of PCA, ClA, percentages and scatter plot analysis, chemical types are defined as "QHYS type", "INT type" and "QHS type." As a conclusion, this paper shows the relationship between efficacy, chemical constituents and distribution. Sweet wormwood herb with high arteannuin B and artemisinic acid content, mainly distributes in northern China. Sweet wormwood herb with high artemisinin and scopoletin content has the medical function of preventing malaria, which mainly distributes in southern China. In this paper, it is proved that Sweet wormwood Daodi herb growing in particular geographic regions, has more significant therapeutical effect and higher chemical constituents compared with other same kind of CMM. And also, it has proved the old saying in China that Sweet wormwood Daodi herb which has been used to resolve summerheat-heat and prevent malaria, which distributed in central China. But in modern time, Daodi Sweet wormwood herb mainly has been used to extract artemisinin and prevent malaria, so the Daod-region has transferred to the southern China.
NASA Astrophysics Data System (ADS)
Schelkanova, Irina; Toronov, Vladislav
2011-07-01
Although near infrared spectroscopy (NIRS) is now widely used both in emerging clinical techniques and in cognitive neuroscience, the development of the apparatuses and signal processing methods for these applications is still a hot research topic. The main unresolved problem in functional NIRS is the separation of functional signals from the contaminations by systemic and local physiological fluctuations. This problem was approached by using various signal processing methods, including blind signal separation techniques. In particular, principal component analysis (PCA) and independent component analysis (ICA) were applied to the data acquired at the same wavelength and at multiple sites on the human or animal heads during functional activation. These signal processing procedures resulted in a number of principal or independent components that could be attributed to functional activity but their physiological meaning remained unknown. On the other hand, the best physiological specificity is provided by broadband NIRS. Also, a comparison with functional magnetic resonance imaging (fMRI) allows determining the spatial origin of fNIRS signals. In this study we applied PCA and ICA to broadband NIRS data to distill the components correlating with the breath hold activation paradigm and compared them with the simultaneously acquired fMRI signals. Breath holding was used because it generates blood carbon dioxide (CO2) which increases the blood-oxygen-level-dependent (BOLD) signal as CO2 acts as a cerebral vasodilator. Vasodilation causes increased cerebral blood flow which washes deoxyhaemoglobin out of the cerebral capillary bed thus increasing both the cerebral blood volume and oxygenation. Although the original signals were quite diverse, we found very few different components which corresponded to fMRI signals at different locations in the brain and to different physiological chromophores.
Ferreiro-González, Marta; Barbero, Gerardo F; Álvarez, José A; Ruiz, Antonio; Palma, Miguel; Ayuso, Jesús
2017-04-01
Adulteration of olive oil is not only a major economic fraud but can also have major health implications for consumers. In this study, a combination of visible spectroscopy with a novel multivariate curve resolution method (CR), principal component analysis (PCA) and linear discriminant analysis (LDA) is proposed for the authentication of virgin olive oil (VOO) samples. VOOs are well-known products with the typical properties of a two-component system due to the two main groups of compounds that contribute to the visible spectra (chlorophylls and carotenoids). Application of the proposed CR method to VOO samples provided the two pure-component spectra for the aforementioned families of compounds. A correlation study of the real spectra and the resolved component spectra was carried out for different types of oil samples (n=118). LDA using the correlation coefficients as variables to discriminate samples allowed the authentication of 95% of virgin olive oil samples. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wagner, J A; Schnoll, R A; Gipson, M T
1998-07-01
Adherence to self-monitoring of blood glucose (SMBG) is problematic for many people with diabetes. Self-reports of adherence have been found to be unreliable, and existing paper-and-pencil measures have limitations. This study developed a brief measure of SMBG adherence with good psychometric properties and a useful factor structure that can be used in research and in practice. A total of 216 adults with diabetes responded to 30 items rated on a 9-point Likert scale that asked about blood monitoring habits. In part I of the study, items were evaluated and retained based on their psychometric properties. The sample was divided into exploratory and confirmatory halves. Using the exploratory half, items with acceptable psychometric properties were subjected to a principal components analysis. In part II of the study, structural equation modeling was used to confirm the component solution with the entire sample. Structural modeling was also used to test the relationship between these components. It was hypothesized that the scale would produce four correlated factors. Principal components analysis suggested a two-component solution, and confirmatory factor analysis confirmed this solution. The first factor measures the degree to which patients rely on others to help them test and thus was named "social influence." The second component measures the degree to which patients use physical symptoms of blood glucose levels to help them test and thus was named "physical influence." Results of the structural model show that the components are correlated and make up the higher-order latent variable adherence. The resulting 15-item scale provides a short, reliable way to assess patient adherence to SMBG. Despite the existence of several aspects of adherence, this study indicates that the construct consists of only two components. This scale is an improvement on previous measures of adherence because of its good psychometric properties, its interpretable factor structure, and its rigorous empirical development.
Foch, Eric; Milner, Clare E
2014-01-03
Iliotibial band syndrome (ITBS) is a common knee overuse injury among female runners. Atypical discrete trunk and lower extremity biomechanics during running may be associated with the etiology of ITBS. Examining discrete data points limits the interpretation of a waveform to a single value. Characterizing entire kinematic and kinetic waveforms may provide additional insight into biomechanical factors associated with ITBS. Therefore, the purpose of this cross-sectional investigation was to determine whether female runners with previous ITBS exhibited differences in kinematics and kinetics compared to controls using a principal components analysis (PCA) approach. Forty participants comprised two groups: previous ITBS and controls. Principal component scores were retained for the first three principal components and were analyzed using independent t-tests. The retained principal components accounted for 93-99% of the total variance within each waveform. Runners with previous ITBS exhibited low principal component one scores for frontal plane hip angle. Principal component one accounted for the overall magnitude in hip adduction which indicated that runners with previous ITBS assumed less hip adduction throughout stance. No differences in the remaining retained principal component scores for the waveforms were detected among groups. A smaller hip adduction angle throughout the stance phase of running may be a compensatory strategy to limit iliotibial band strain. This running strategy may have persisted after ITBS symptoms subsided. © 2013 Published by Elsevier Ltd.
Jankovic, Marko; Ogawa, Hidemitsu
2004-10-01
Principal Component Analysis (PCA) and Principal Subspace Analysis (PSA) are classic techniques in statistical data analysis, feature extraction and data compression. Given a set of multivariate measurements, PCA and PSA provide a smaller set of "basis vectors" with less redundancy, and a subspace spanned by them, respectively. Artificial neurons and neural networks have been shown to perform PSA and PCA when gradient ascent (descent) learning rules are used, which is related to the constrained maximization (minimization) of statistical objective functions. Due to their low complexity, such algorithms and their implementation in neural networks are potentially useful in cases of tracking slow changes of correlations in the input data or in updating eigenvectors with new samples. In this paper we propose PCA learning algorithm that is fully homogeneous with respect to neurons. The algorithm is obtained by modification of one of the most famous PSA learning algorithms--Subspace Learning Algorithm (SLA). Modification of the algorithm is based on Time-Oriented Hierarchical Method (TOHM). The method uses two distinct time scales. On a faster time scale PSA algorithm is responsible for the "behavior" of all output neurons. On a slower scale, output neurons will compete for fulfillment of their "own interests". On this scale, basis vectors in the principal subspace are rotated toward the principal eigenvectors. At the end of the paper it will be briefly analyzed how (or why) time-oriented hierarchical method can be used for transformation of any of the existing neural network PSA method, into PCA method.
Maeng, Sung Kyu; Ameda, Emmanuel; Sharma, Saroj K; Grützmacher, Gesche; Amy, Gary L
2010-07-01
Natural treatment systems such as bank filtration (BF) and artificial recharge (via an infiltration basin) are a robust barrier for many organic micropollutants (OMPs) and may represent a low-cost alternative compared to advanced drinking water treatment systems. This study analyzes a comprehensive database of OMPs at BF and artificial recharge (AR) sites located near Lake Tegel in Berlin (Germany). The focus of the study was on the derivation of correlations between the removal efficiencies of OMPs and key factors influencing the performance of BF and AR. At the BF site, shallow monitoring wells located close to the Lake Tegel source exhibited oxic conditions followed by prolonged anoxic conditions in deep monitoring wells and a production well. At the AR site, oxic conditions prevailed from the recharge pond along monitoring wells to the production well. Long residence times of up to 4.5 months at the BF site reduced the temperature variation during soil passage between summer and winter. The temperature variations were greater at the AR site as a consequence of shorter residence times. Deep monitoring wells and the production well located at the BF site were under the influence of ambient groundwater and old bank filtrate (up to several years of age). Thus, it is important to account for mixing with native groundwater and other sources (e.g., old bank filtrate) when estimating the performance of BF with respect to removal of OMPs. Principal component analysis (PCA) was used to investigate correlations between OMP removals and hydrogeochemical conditions with spatial and temporal parameters (e.g., well distance, residence time and depth) from both sites. Principal component-1 (PC1) embodied redox conditions (oxidation-reduction potential and dissolved oxygen), and principal component-2 (PC2) embodied degradation potential (e.g., total organic carbon and dissolved organic carbon) with the calcium carbonate dissolution potential (Ca(2+) and HCO(3)(-)) for the BF site. These two PCs explained a total variance of 55% at the BF site. At the AR site, PCA revealed redox conditions (PC1) and degradation potential with temperature (PC2) as principal components, which explained a total variance of 56%. Copyright 2010 Elsevier Ltd. All rights reserved.
The assessment of facial variation in 4747 British school children.
Toma, Arshed M; Zhurov, Alexei I; Playle, Rebecca; Marshall, David; Rosin, Paul L; Richmond, Stephen
2012-12-01
The aim of this study is to identify key components contributing to facial variation in a large population-based sample of 15.5-year-old children (2514 females and 2233 males). The subjects were recruited from the Avon Longitudinal Study of Parents and Children. Three-dimensional facial images were obtained for each subject using two high-resolution Konica Minolta laser scanners. Twenty-one reproducible facial landmarks were identified and their coordinates were recorded. The facial images were registered using Procrustes analysis. Principal component analysis was then employed to identify independent groups of correlated coordinates. For the total data set, 14 principal components (PCs) were identified which explained 82 per cent of the total variance, with the first three components accounting for 46 per cent of the variance. Similar results were obtained for males and females separately with only subtle gender differences in some PCs. Facial features may be treated as a multidimensional statistical continuum with respect to the PCs. The first three PCs characterize the face in terms of height, width, and prominence of the nose. The derived PCs may be useful to identify and classify faces according to a scale of normality.
NASA Astrophysics Data System (ADS)
Rajab, Jasim M.; MatJafri, M. Z.; Lim, H. S.
2013-06-01
This study encompasses columnar ozone modelling in the peninsular Malaysia. Data of eight atmospheric parameters [air surface temperature (AST), carbon monoxide (CO), methane (CH4), water vapour (H2Ovapour), skin surface temperature (SSKT), atmosphere temperature (AT), relative humidity (RH), and mean surface pressure (MSP)] data set, retrieved from NASA's Atmospheric Infrared Sounder (AIRS), for the entire period (2003-2008) was employed to develop models to predict the value of columnar ozone (O3) in study area. The combined method, which is based on using both multiple regressions combined with principal component analysis (PCA) modelling, was used to predict columnar ozone. This combined approach was utilized to improve the prediction accuracy of columnar ozone. Separate analysis was carried out for north east monsoon (NEM) and south west monsoon (SWM) seasons. The O3 was negatively correlated with CH4, H2Ovapour, RH, and MSP, whereas it was positively correlated with CO, AST, SSKT, and AT during both the NEM and SWM season periods. Multiple regression analysis was used to fit the columnar ozone data using the atmospheric parameter's variables as predictors. A variable selection method based on high loading of varimax rotated principal components was used to acquire subsets of the predictor variables to be comprised in the linear regression model of the atmospheric parameter's variables. It was found that the increase in columnar O3 value is associated with an increase in the values of AST, SSKT, AT, and CO and with a drop in the levels of CH4, H2Ovapour, RH, and MSP. The result of fitting the best models for the columnar O3 value using eight of the independent variables gave about the same values of the R (≈0.93) and R2 (≈0.86) for both the NEM and SWM seasons. The common variables that appeared in both regression equations were SSKT, CH4 and RH, and the principal precursor of the columnar O3 value in both the NEM and SWM seasons was SSKT.
The instrument 'sense of security in care--patients' evaluation': its development and presentation.
Krevers, Barbro; Milberg, Anna
2014-08-01
The aim of this paper is to report the development, construction, and psychometric properties of the new instrument Sense of Security in Care - Patients' Evaluation (SEC-P) in palliative home care. The preliminary instrument was based on a review of the literature and an analysis of qualitative interviews with patients about their sense of security. To test the instrument, 161 patients (58% women) in palliative home care were recruited and participated in a structured interview based on a comprehensive questionnaire (response rate 73%). We used principal component analysis to identify subscales and tested the construction in correlation with other scales and questions representing concepts that we expected to be related to sense of security in care. The principal component analysis resulted in three subscales: Care Interaction, Identity, and Mastery, built on a total of 15 items. The component solution had an explained variance of 55%. Internal consistency of the subscales ranged from 0.84 to 0.69. Inter-scale correlations varied between 0.40 and 0.59. The scales were associated to varying degrees with the quality of the care process, perceived health, quality of life, stress, and general sense of security. The developed SEC-P provides a three-component assessment of palliative home care settings using valid and reliable scales. The scales were associated with other concepts in ways that were expected. The SEC-P is a manageable means of assessment that can be used to improve quality of care and in research focusing on patients' sense of security in care. Copyright © 2014 John Wiley & Sons, Ltd.
Gürgen, Fikret; Gürgen, Nurgül
2003-01-01
This study proposes an intelligent data analysis approach to investigate and interpret the distinctive factors of diabetes mellitus patients with and without ischemic (non-embolic type) stroke in a small population. The database consists of a total of 16 features collected from 44 diabetic patients. Features include age, gender, duration of diabetes, cholesterol, high density lipoprotein, triglyceride levels, neuropathy, nephropathy, retinopathy, peripheral vascular disease, myocardial infarction rate, glucose level, medication and blood pressure. Metric and non-metric features are distinguished. First, the mean and covariance of the data are estimated and the correlated components are observed. Second, major components are extracted by principal component analysis. Finally, as common examples of local and global classification approach, a k-nearest neighbor and a high-degree polynomial classifier such as multilayer perceptron are employed for classification with all the components and major components case. Macrovascular changes emerged as the principal distinctive factors of ischemic-stroke in diabetes mellitus. Microvascular changes were generally ineffective discriminators. Recommendations were made according to the rules of evidence-based medicine. Briefly, this case study, based on a small population, supports theories of stroke in diabetes mellitus patients and also concludes that the use of intelligent data analysis improves personalized preventive intervention. PMID:12685939
Amarasinghe, Nirmalie Champika; De AlwisSenevirathne, Rohini
2016-10-17
Musculoskeletal disorders (MSDs) have been identified as a predisposing factor for lesser productivity, but no validated tool has been developed to assess them in the Sri- Lankan context. To develop a validated tool to assess the neck and upper limb MSDs. It comprises three components: item selections, item reduction using principal component analysis, and validation. A tentative self-administrated questionnaire was developed, translated, and pre-tested. Four important domains - neck, shoulder, elbow and wrist - were identified through principal component analysis. Prevalence of any MSDs was 38.1% and prevalence of neck, shoulder, elbow and wrist MSDs are 12.85%, 13.71%, 12%, 13.71% respectively. Content and criterion validity of the tool was assessed. Separate ROC curves were produced and sensitivity and specificity of neck (83.1%, 71.7%), shoulder (97.6%, 91.9%), elbow (98.2%, 87.2%), and wrist (97.6%, 94.9%) was determined. Cronbach's Alpha and correlation coefficient was above 0.7. The tool has high sensitivity, specificity, internal consistency, and test re-test reliability.
Temperament and problem solving in a population of adolescent guide dogs.
Bray, Emily E; Sammel, Mary D; Seyfarth, Robert M; Serpell, James A; Cheney, Dorothy L
2017-09-01
It is often assumed that measures of temperament within individuals are more correlated to one another than to measures of problem solving. However, the exact relationship between temperament and problem-solving tasks remains unclear because large-scale studies have typically focused on each independently. To explore this relationship, we tested 119 prospective adolescent guide dogs on a battery of 11 temperament and problem-solving tasks. We then summarized the data using both confirmatory factor analysis and exploratory principal components analysis. Results of confirmatory analysis revealed that a priori separation of tests as measuring either temperament or problem solving led to weak results, poor model fit, some construct validity, and no predictive validity. In contrast, results of exploratory analysis were best summarized by principal components that mixed temperament and problem-solving traits. These components had both construct and predictive validity (i.e., association with success in the guide dog training program). We conclude that there is complex interplay between tasks of "temperament" and "problem solving" and that the study of both together will be more informative than approaches that consider either in isolation.
Christoper J. Schmitt; A. Dennis Lemly; Parley V. Winger
1993-01-01
Data from several sources were collated and analyzed by correlation, regression, and principal components analysis to define surrrogate variables for use in the brook trout (Salvelinus fontinalis) habitat suitability index (HSI) model, and to evaluate the applicability of the model for assessing habitat in high elevation streams of the southern Blue Ridge Province (...
NASA Astrophysics Data System (ADS)
Bektasli, Behzat
Graphs have a broad use in science classrooms, especially in physics. In physics, kinematics is probably the topic for which graphs are most widely used. The participants in this study were from two different grade-12 physics classrooms, advanced placement and calculus-based physics. The main purpose of this study was to search for the relationships between student spatial ability, logical thinking, mathematical achievement, and kinematics graphs interpretation skills. The Purdue Spatial Visualization Test, the Middle Grades Integrated Process Skills Test (MIPT), and the Test of Understanding Graphs in Kinematics (TUG-K) were used for quantitative data collection. Classroom observations were made to acquire ideas about classroom environment and instructional techniques. Factor analysis, simple linear correlation, multiple linear regression, and descriptive statistics were used to analyze the quantitative data. Each instrument has two principal components. The selection and calculation of the slope and of the area were the two principal components of TUG-K. MIPT was composed of a component based upon processing text and a second component based upon processing symbolic information. The Purdue Spatial Visualization Test was composed of a component based upon one-step processing and a second component based upon two-step processing of information. Student ability to determine the slope in a kinematics graph was significantly correlated with spatial ability, logical thinking, and mathematics aptitude and achievement. However, student ability to determine the area in a kinematics graph was only significantly correlated with student pre-calculus semester 2 grades. Male students performed significantly better than female students on the slope items of TUG-K. Also, male students performed significantly better than female students on the PSAT mathematics assessment and spatial ability. This study found that students have different levels of spatial ability, logical thinking, and mathematics aptitude and achievement levels. These different levels were related to student learning of kinematics and they need to be considered when kinematics is being taught. It might be easier for students to understand the kinematics graphs if curriculum developers include more activities related to spatial ability and logical thinking.
The reliability and validity of the SF-8 with a conflict-affected population in northern Uganda.
Roberts, Bayard; Browne, John; Ocaka, Kaducu Felix; Oyok, Thomas; Sondorp, Egbert
2008-12-02
The SF-8 is a health-related quality of life instrument that could provide a useful means of assessing general physical and mental health amongst populations affected by conflict. The purpose of this study was to test the validity and reliability of the SF-8 with a conflict-affected population in northern Uganda. A cross-sectional multi-staged, random cluster survey was conducted with 1206 adults in camps for internally displaced persons in Gulu and Amuru districts of northern Uganda. Data quality was assessed by analysing the number of incomplete responses to SF-8 items. Response distribution was analysed using aggregate endorsement frequency. Test-retest reliability was assessed in a separate smaller survey using the intraclass correlation test. Construct validity was measured using principal component analysis, and the Pearson Correlation test for item-summary score correlation and inter-instrument correlations. Known groups validity was assessed using a two sample t-test to evaluates the ability of the SF-8 to discriminate between groups known to have, and not have, physical and mental health problems. The SF-8 showed excellent data quality. It showed acceptable item response distribution based upon analysis of aggregate endorsement frequencies. Test-retest showed a good intraclass correlation of 0.61 for PCS and 0.68 for MCS. The principal component analysis indicated strong construct validity and concurred with the results of the validity tests by the SF-8 developers. The SF-8 also showed strong construct validity between the 8 items and PCS and MCS summary score, moderate inter-instrument validity, and strong known groups validity. This study provides evidence on the reliability and validity of the SF-8 amongst IDPs in northern Uganda.
The reliability and validity of the SF-8 with a conflict-affected population in northern Uganda
Roberts, Bayard; Browne, John; Ocaka, Kaducu Felix; Oyok, Thomas; Sondorp, Egbert
2008-01-01
Background The SF-8 is a health-related quality of life instrument that could provide a useful means of assessing general physical and mental health amongst populations affected by conflict. The purpose of this study was to test the validity and reliability of the SF-8 with a conflict-affected population in northern Uganda. Methods A cross-sectional multi-staged, random cluster survey was conducted with 1206 adults in camps for internally displaced persons in Gulu and Amuru districts of northern Uganda. Data quality was assessed by analysing the number of incomplete responses to SF-8 items. Response distribution was analysed using aggregate endorsement frequency. Test-retest reliability was assessed in a separate smaller survey using the intraclass correlation test. Construct validity was measured using principal component analysis, and the Pearson Correlation test for item-summary score correlation and inter-instrument correlations. Known groups validity was assessed using a two sample t-test to evaluates the ability of the SF-8 to discriminate between groups known to have, and not have, physical and mental health problems. Results The SF-8 showed excellent data quality. It showed acceptable item response distribution based upon analysis of aggregate endorsement frequencies. Test-retest showed a good intraclass correlation of 0.61 for PCS and 0.68 for MCS. The principal component analysis indicated strong construct validity and concurred with the results of the validity tests by the SF-8 developers. The SF-8 also showed strong construct validity between the 8 items and PCS and MCS summary score, moderate inter-instrument validity, and strong known groups validity. Conclusion This study provides evidence on the reliability and validity of the SF-8 amongst IDPs in northern Uganda. PMID:19055716
Goekoop, Rutger; Goekoop, Jaap G
2014-01-01
The vast number of psychopathological syndromes that can be observed in clinical practice can be described in terms of a limited number of elementary syndromes that are differentially expressed. Previous attempts to identify elementary syndromes have shown limitations that have slowed progress in the taxonomy of psychiatric disorders. To examine the ability of network community detection (NCD) to identify elementary syndromes of psychopathology and move beyond the limitations of current classification methods in psychiatry. 192 patients with unselected mental disorders were tested on the Comprehensive Psychopathological Rating Scale (CPRS). Principal component analysis (PCA) was performed on the bootstrapped correlation matrix of symptom scores to extract the principal component structure (PCS). An undirected and weighted network graph was constructed from the same matrix. Network community structure (NCS) was optimized using a previously published technique. In the optimal network structure, network clusters showed a 89% match with principal components of psychopathology. Some 6 network clusters were found, including "Depression", "Mania", "Anxiety", "Psychosis", "Retardation", and "Behavioral Disorganization". Network metrics were used to quantify the continuities between the elementary syndromes. We present the first comprehensive network graph of psychopathology that is free from the biases of previous classifications: a 'Psychopathology Web'. Clusters within this network represent elementary syndromes that are connected via a limited number of bridge symptoms. Many problems of previous classifications can be overcome by using a network approach to psychopathology.
The factor structure of static actuarial items: its relation to prediction.
Barbaree, Howard E; Langton, Calvin M; Peacock, Edward J
2006-04-01
Principal components analysis was conducted on items contained in actuarial instruments used with adult sex offenders, including: the Rapid Assessment of Sex Offender Risk for Recidivism (RASORR), the Static-99, the Violence Risk Appraisal Guide (VRAG), the Sex Offender Risk Appraisal Guide (SORAG), and the Minnesota Sex Offender Screening Tool-Revised (MnSOST-R). In a data set that included child molesters and rapists (N = 311), six interpretable components were identified: Antisocial Behavior, Child Sexual Abuse, Persistence, Detached Predatory Behavior, Young and Single, and Male Victim(s). The RRASOR was highly correlated with Persistence, and the VRAG and SORAG were highly correlated with Antisocial Behavior. Antisocial Behavior was a significant predictor of violent recidivism, while Persistence and Child Sexual Abuse were significant predictors of sexual recidivism.
NASA Astrophysics Data System (ADS)
Nishida, Masahiko
How student evaluations of the teaching of fundamental physics for engineering relate to teaching strategy from academic 2004 to 2006 has been studied, focusing on students‧ earnestness to learn. The teaching emphasized instructing theoretical concepts for 2004 and solving problems for 2005. The instruction during 2006 offered a good balance between the strategy for 2004 and that for 2005. The first and second components produced by principal-component analysis of the evaluation data have indicated the quality of instruction and the scholastic ability of students, respectively, independent of the teaching strategy. While correlation between the second component and the degree of earnestness was positive for 2004 and negative for 2005, the correlation for 2006 has been negligible, as expected. Multiple-regression analysis between the evaluation data and students‧ exam scores has shown little correlation for 2006, in contrast to that for 2004, but similar to that for 2005. Finally, we can say that the teaching strategy for 2006 would lead to educational effects similar to those in 2005 when the exam scores were notably improved.
Tang, Jennifer Yee-Man; Ho, Andy Hau-Yan; Luo, Hao; Wong, Gloria Hoi-Yan; Lau, Bobo Hi-Po; Lum, Terry Yat-Sang; Cheung, Karen Siu-Lan
2016-09-01
The present study aimed to develop and validate a Cantonese short version of the Zarit Burden Interview (CZBI-Short) for Hong Kong Chinese dementia caregivers. The 12-item Zarit Burden Interview (ZBI) was translated into spoken Cantonese and back-translated by two bilingual research assistants and face validated by a panel of experts. Five hundred Chinese dementia caregivers showing signs of stress reported their burden using the translated ZBI and rated their depressive symptoms, overall health, and care recipients' physical functioning and behavioral problems. The factor structure of the translated scale was identified using principal component analysis and confirmatory factor analysis; internal consistency and item-total correlations were assessed; and concurrent validity was tested by correlating the ZBI with depressive symptoms, self-rated health, and care recipients' physical functioning and behavioral problems. The principal component analysis resulted in 11 items loading on a three-factor model comprised role strain, self-criticism, and negative emotion, which accounted for 59% of the variance. The confirmatory factor analysis supported the three-factor model (CZBI-Short) that explained 61% of the total variance. Cronbach's alpha (0.84) and item-total correlations (rho = 0.39-0.71) indicated CZBI-Short had good reliability. CZBI-Short showed correlations with depressive symptoms (r = 0.50), self-rated health (r = -0.26) and care recipients' physical functioning (r = 0.18-0.26) and disruptive behaviors (r = 0.36). The 12-item CZBI-Short is a concise, reliable, and valid instrument to assess burden in Chinese dementia caregivers in clinical and social care settings.
Dong, Yan; Zhong, Zhao-hui; Li, Hong; Li, Jie; Wang, Ying-xiong; Peng, Bin; Zhang, Mao-zhong; Huang, Qiao; Yan, Ju; Xu, Fei-long
2013-10-01
To explore the correlation between the incidence of birth defects and the contents of soil elements so as to provide a scientific basis for screening the related pathogenic factors that inducing birth defects for the development of related preventive and control strategies. MapInfo 7.0 software was used to draw the maps on spatial distribution regarding the incidence rates of birth defects and the contents of 11 chemical elements in soil in the 33 studied areas. Variables on the two maps were superposed for analyzing the spatial correlation. SAS 8.0 software was used to analyze single factor, multi-factors and principal components as well as to comprehensively evaluate the degrees of relevance. Different incidence rates of birth defects showed in the maps of spatial distribution presented certain degrees of negative correlation with anomalies of soil chemical elements, including copper, chrome, iodine, selenium, zinc while positively correlated with the levels of lead. Results from the principal component regression equation indicating that the contents of copper(0.002), arsenic(-0.07), cadmium(0.05), chrome (-0.001), zinc (0.001), iodine(-0.03), lead (0.08), fluorine(-0.002)might serve as important factors that related to the prevalence of birth defects. Through the study on spatial distribution, we noticed that the incidence rates of birth defects were related to the contents of copper, chrome, iodine, selenium, zinc, lead in soil while the contents of chrome, iodine and lead might lead to the occurrence of birth defects.
Zeemering, Stef; Bonizzi, Pietro; Maesen, Bart; Peeters, Ralf; Schotten, Ulrich
2015-01-01
Spatiotemporal complexity of atrial fibrillation (AF) patterns is often quantified by annotated intracardiac contact mapping. We introduce a new approach that applies recurrence plot (RP) construction followed by recurrence quantification analysis (RQA) to epicardial atrial electrograms, recorded with a high-density grid of electrodes. In 32 patients with no history of AF (aAF, n=11), paroxysmal AF (PAF, n=12) and persistent AF (persAF, n=9), RPs were constructed using a phase space electrogram embedding dimension equal to the estimated AF cycle length. Spatial information was incorporated by 1) averaging the recurrence over all electrodes, and 2) by applying principal component analysis (PCA) to the matrix of embedded electrograms and selecting the first principal component as a representation of spatial diversity. Standard RQA parameters were computed on the constructed RPs and correlated to the number of fibrillation waves per AF cycle (NW). Averaged RP RQA parameters showed no correlation with NW. Correlations improved when applying PCA, with maximum correlation achieved between RP threshold and NW (RR1%, r=0.68, p <; 0.001) and RP determinism (DET, r=-0.64, p <; 0.001). All studied RQA parameters based on the PCA RP were able to discriminate between persAF and aAF/PAF (DET persAF 0.40 ± 0.11 vs. 0.59 ± 0.14/0.62 ± 0.16, p <; 0.01). RP construction and RQA combined with PCA provide a quick and reliable tool to visualize dynamical behaviour and to assess the complexity of contact mapping patterns in AF.
Cho, Il Haeng; Park, Kyung S; Lim, Chang Joo
2010-02-01
In this study, we described the characteristics of five different biological age (BA) estimation algorithms, including (i) multiple linear regression, (ii) principal component analysis, and somewhat unique methods developed by (iii) Hochschild, (iv) Klemera and Doubal, and (v) a variant of Klemera and Doubal's method. The objective of this study is to find the most appropriate method of BA estimation by examining the association between Work Ability Index (WAI) and the differences of each algorithm's estimates from chronological age (CA). The WAI was found to be a measure that reflects an individual's current health status rather than the deterioration caused by a serious dependency with the age. Experiments were conducted on 200 Korean male participants using a BA estimation system developed principally under the concept of non-invasive, simple to operate and human function-based. Using the empirical data, BA estimation as well as various analyses including correlation analysis and discriminant function analysis was performed. As a result, it had been confirmed by the empirical data that Klemera and Doubal's method with uncorrelated variables from principal component analysis produces relatively reliable and acceptable BA estimates. 2009 Elsevier Ireland Ltd. All rights reserved.
Characterization of Lake Michigan coastal lakes using zooplankton assemblages
Whitman, Richard L.; Nevers, Meredith B.; Goodrich, Maria L.; Murphy, Paul C.; Davis, Bruce M.
2004-01-01
Zooplankton assemblages and water quality were examined bi-weekly from 17 April to 19 October 1998 in 11 northeastern Lake Michigan coastal lakes of similar origin but varied in trophic status and limnological condition. All lakes were within or adjacent to Sleeping Bear Dunes National Lakeshore, Michigan. Zooplankton (principally microcrustaceans and rotifers) from triplicate Wisconsin net (80 I?m) vertical tows taken at each lake's deepest location were analyzed. Oxygen-temperature-pH-specific conductivity profiles and surface water quality were concurrently measured. Bray-Curtis similarity analysis showed small variations among sample replicates but large temporal differences. The potential use of zooplankton communities for environmental lake comparisons was evaluated by means of BIOENV (Primer 5.1) and principal component analyses. Zooplankton analyzed at the lowest identified taxonomic level yielded greatest sensitivity to limnological variation. Taxonomic and ecological aggregations of zooplankton data performed comparably, but less well than the finest taxonomic analysis. Secchi depth, chlorophyll a, and sulfate concentrations combined to give the best correlation with patterns of variation in the zooplankton data set. Principal component analysis of these variables revealed trophic status as the most influential major limnological gradient among the study lakes. Overall, zooplankton abundance was an excellent indicator of variation in trophic status.
Gordo, E; Dueñas, C; Fernández, M C; Liger, E; Cañete, S
2015-05-01
During a 4-year period (January 2009-December 2012), the (7)Be, (210)Pb, and (40)K activity concentrations in airborne particulate matter were weekly determined at the Málaga (Spain) located in the southern Iberian Peninsula. Totally 209 polypropylene filters were analyzed in the mentioned period. In 100% of the filters, (7)Be and (40)K activity concentrations were detected while (210)Pb activity concentration was detected in 96% of the filters. The results from individual measurements of (7)Be, (210)Pb, and (40)K concentrations were analyzed to derive the statistical estimates characterizing the distributions. Principal components analysis (PCA) was applied to the datasets and the results of the study reveal that aerosol behavior is represented by two principal components which explain 73.2% of total variance. Components PC1 and PC2 respectively explain 46.0 and 27.2% of total variance. PC1 was related positively to dust content, (7)Be and (40)K concentrations and negatively to sunspot numbers. In contrast, PC2 was related positively to temperature and (210)Pb activity and negatively to precipitation and relative humidity. The (7)Be levels showed a significant correlation with sunspot numbers due to the cosmogenic origin. (40)K activities showed a good correlation with dust deposition in filters mainly because it was transported to the air as resuspended particle from the soil. An inverse relationship was observed between the (210)Pb concentrations and monthly rainfall, indicating washout of atmospheric aerosols carrying these radionuclides and a pronounced positive correlation with the average monthly temperature of air.
Nonlinear Principal Components Analysis: Introduction and Application
ERIC Educational Resources Information Center
Linting, Marielle; Meulman, Jacqueline J.; Groenen, Patrick J. F.; van der Koojj, Anita J.
2007-01-01
The authors provide a didactic treatment of nonlinear (categorical) principal components analysis (PCA). This method is the nonlinear equivalent of standard PCA and reduces the observed variables to a number of uncorrelated principal components. The most important advantages of nonlinear over linear PCA are that it incorporates nominal and ordinal…
USDA-ARS?s Scientific Manuscript database
Selective principal component regression analysis (SPCR) uses a subset of the original image bands for principal component transformation and regression. For optimal band selection before the transformation, this paper used genetic algorithms (GA). In this case, the GA process used the regression co...
Directly Reconstructing Principal Components of Heterogeneous Particles from Cryo-EM Images
Tagare, Hemant D.; Kucukelbir, Alp; Sigworth, Fred J.; Wang, Hongwei; Rao, Murali
2015-01-01
Structural heterogeneity of particles can be investigated by their three-dimensional principal components. This paper addresses the question of whether, and with what algorithm, the three-dimensional principal components can be directly recovered from cryo-EM images. The first part of the paper extends the Fourier slice theorem to covariance functions showing that the three-dimensional covariance, and hence the principal components, of a heterogeneous particle can indeed be recovered from two-dimensional cryo-EM images. The second part of the paper proposes a practical algorithm for reconstructing the principal components directly from cryo-EM images without the intermediate step of calculating covariances. This algorithm is based on maximizing the (posterior) likelihood using the Expectation-Maximization algorithm. The last part of the paper applies this algorithm to simulated data and to two real cryo-EM data sets: a data set of the 70S ribosome with and without Elongation Factor-G (EF-G), and a data set of the inluenza virus RNA dependent RNA Polymerase (RdRP). The first principal component of the 70S ribosome data set reveals the expected conformational changes of the ribosome as the EF-G binds and unbinds. The first principal component of the RdRP data set reveals a conformational change in the two dimers of the RdRP. PMID:26049077
Classification of fMRI resting-state maps using machine learning techniques: A comparative study
NASA Astrophysics Data System (ADS)
Gallos, Ioannis; Siettos, Constantinos
2017-11-01
We compare the efficiency of Principal Component Analysis (PCA) and nonlinear learning manifold algorithms (ISOMAP and Diffusion maps) for classifying brain maps between groups of schizophrenia patients and healthy from fMRI scans during a resting-state experiment. After a standard pre-processing pipeline, we applied spatial Independent component analysis (ICA) to reduce (a) noise and (b) spatial-temporal dimensionality of fMRI maps. On the cross-correlation matrix of the ICA components, we applied PCA, ISOMAP and Diffusion Maps to find an embedded low-dimensional space. Finally, support-vector-machines (SVM) and k-NN algorithms were used to evaluate the performance of the algorithms in classifying between the two groups.
Ou, Hua-Se; Wei, Chao-Hai; Deng, Yang; Gao, Nai-Yun; Ren, Yuan; Hu, Yun
2014-02-01
A novel dual coagulant system of polyaluminum chloride sulfate (PACS) and polydiallyldimethylammonium chloride (PDADMAC) was used to treat natural algae-laden water from Meiliang Gulf, Lake Taihu. PACS (Aln(OH)mCl3n-m-2k(SO4)k) has a mass ratio of 10 %, a SO4 (2-)/Al3 (+) mole ratio of 0.0664, and an OH/Al mole ratio of 2. The PDADMAC ([C8H16NCl]m) has a MW which ranges from 5 × 10(5) to 20 × 10(5) Da. The variations of contaminants in water samples during treatments were estimated in the form of principal component analysis (PCA) factor scores and conventional variables (turbidity, DOC, etc.). Parallel factor analysis determined four chromophoric dissolved organic matters (CDOM) components, and PCA identified four integrated principle factors. PCA factor 1 had significant correlations with chlorophyll-a (r=0.718), protein-like CDOM C1 (0.689), and C2 (0.756). Factor 2 correlated with UV254 (0.672), humic-like CDOM component C3 (0.716), and C4 (0.758). Factors 3 and 4 had correlations with NH3-N (0.748) and T-P (0.769), respectively. The variations of PCA factors scores revealed that PACS contributed less aluminum dissolution than PAC to obtain equivalent removal efficiency of contaminants. This might be due to the high cationic charge and pre-hydrolyzation of PACS. Compared with PACS coagulation (20 mg L(-1)), the removal of PCA factors 1, 2, and 4 increased 45, 33, and 12 %, respectively, in combined PACS-PDADMAC treatment (0.8 mg L(-1) +20 mg L(-1)). Since PAC contained more Al (0.053 g/1 g) than PACS (0.028 g/1 g), the results indicated that PACS contributed less Al dissolution into the water to obtain equivalent removal efficiency.
Asymmetric correlation matrices: an analysis of financial data
NASA Astrophysics Data System (ADS)
Livan, G.; Rebecchi, L.
2012-06-01
We analyse the spectral properties of correlation matrices between distinct statistical systems. Such matrices are intrinsically non-symmetric, and lend themselves to extend the spectral analyses usually performed on standard Pearson correlation matrices to the realm of complex eigenvalues. We employ some recent random matrix theory results on the average eigenvalue density of this type of matrix to distinguish between noise and non-trivial correlation structures, and we focus on financial data as a case study. Namely, we employ daily prices of stocks belonging to the American and British stock exchanges, and look for the emergence of correlations between two such markets in the eigenvalue spectrum of their non-symmetric correlation matrix. We find several non trivial results when considering time-lagged correlations over short lags, and we corroborate our findings by additionally studying the asymmetric correlation matrix of the principal components of our datasets.
An Introductory Application of Principal Components to Cricket Data
ERIC Educational Resources Information Center
Manage, Ananda B. W.; Scariano, Stephen M.
2013-01-01
Principal Component Analysis is widely used in applied multivariate data analysis, and this article shows how to motivate student interest in this topic using cricket sports data. Here, principal component analysis is successfully used to rank the cricket batsmen and bowlers who played in the 2012 Indian Premier League (IPL) competition. In…
Least Principal Components Analysis (LPCA): An Alternative to Regression Analysis.
ERIC Educational Resources Information Center
Olson, Jeffery E.
Often, all of the variables in a model are latent, random, or subject to measurement error, or there is not an obvious dependent variable. When any of these conditions exist, an appropriate method for estimating the linear relationships among the variables is Least Principal Components Analysis. Least Principal Components are robust, consistent,…
Identifying apple surface defects using principal components analysis and artifical neural networks
USDA-ARS?s Scientific Manuscript database
Artificial neural networks and principal components were used to detect surface defects on apples in near-infrared images. Neural networks were trained and tested on sets of principal components derived from columns of pixels from images of apples acquired at two wavelengths (740 nm and 950 nm). I...
Effect of Minerals on Intestinal IgA Production Using Deep Sea Water Drinks.
Shiraishi, Hisashi; Fujino, Maho; Shirakawa, Naoki; Ishida, Nanao; Funato, Hiroki; Hirata, Ayumu; Abe, Noriaki; Iizuka, Michiro; Jobu, Kohei; Yokota, Junko; Miyamura, Mitsuhiko
2017-01-01
Minerals are essential for life, as they are a vital part of protein constituents, enzyme cofactors, and other components in living organisms. Deep sea water is characterized by its cleanliness and stable low temperature, and its possible health- and medical benefits are being studied. However, no study has yet evaluated the physical properties of the numerous commercially available deep sea water products, which have varying water sources and production methods. We analyzed these products' mineral content and investigated their effect on living organism, focusing on immune functions, and investigated the relation between physiological immunoactivities and mineral intake. We qualitatively analyzed the mineral compositions of the deep sea water drinks and evaluated the drinks' physical properties using principal component analysis, a type of multivariate analysis, of their mineral content. We create an iron and copper-deficient rat model and administered deep sea water drinks for 8 weeks. We then measured their fecal immunoglobulin A (IgA) to evaluate immune function. Principal component analysis suggested that physical properties of deep sea water drinks could be determined by their sources. Administration of deep sea water drinks increased fecal IgA, thus tending to stimulate immune function, but the extent of this effect varied by drink. Of the minerals contained in deep sea water, iron showed positive correlations with the fecal IgA. The principal component analysis used in this study is suitable for evaluating deep sea water containing many minerals, and our results form a useful basis for comparative evaluations of deep sea water's bioactivity.
Eating quality of UK-style sausages varying in price, meat content, fat level and salt content.
Sheard, P R; Hope, E; Hughes, S I; Baker, A; Nute, G R
2010-05-01
Thirty-six brands of pork sausage were purchased from a total of 10 retailers over a 4 months period and assessed for eating quality. The brands included 5 of the 10 most popular sausages in the UK, 4 basic, 14 standard, 10 premium and 8 healthy eating brands. The average price, meat content, fat content and salt content was 3.31 pounds/kg, 62%, 17% and 1.6%, respectively, but there were wide differences in price (1.08 pound/kg-5.23 pounds/kg), meat content (32-97%), fat content (2.1-29.1%) and salt content (0.5-2.5%). Sausages were assessed by a trained sensory panel using 100mm unstructured line scales and 14 descriptors (skin toughness, firmness, juiciness, pork flavour, fattiness, meatiness, particle size, cohesiveness, saltiness, sweet, acidic, bitter and metallic) including overall liking. The declared meat content was positively correlated with price, skin toughness, firmness, pork flavour, meatiness, particle size and perceived saltiness (r=0.5 or better). The declared fat content was positively correlated with fattiness and sweetness (r=0.42 or better) but not juiciness. There was no significant correlation between declared salt content and perceived saltiness. A principal component analysis showed that the first two principal components accounted for 51% of the variability in the data. Products could be separated into four quadrants according to their price, meat content, fat content and their associated eating quality attributes. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
Is Allelopathic Activity of Ipomoea murucoides Induced by Xylophage Damage?
Flores-Palacios, Alejandro; Corona-López, Angélica María; Rios, María Yolanda; Aguilar-Guadarrama, Berenice; Toledo-Hernández, Víctor Hugo; Rodríguez-López, Verónica; Valencia-Díaz, Susana
2015-01-01
Herbivory activates the synthesis of allelochemicals that can mediate plant-plant interactions. There is an inverse relationship between the activity of xylophages and the abundance of epiphytes on Ipomoea murucoides. Xylophagy may modify the branch chemical constitution, which also affects the liberation of allelochemicals with defense and allelopathic properties. We evaluated the bark chemical content and the effect of extracts from branches subjected to treatments of exclusion, mechanical damage and the presence/absence of epiphytes, on the seed germination of the epiphyte Tillandsia recurvata. Principal component analysis showed that branches without any treatment separate from branches subjected to treatments; damaged and excluded branches had similar chemical content but we found no evidence to relate intentional damage with allelopathy; however 1-hexadecanol, a defense volatile compound correlated positively with principal component (PC) 1. The chemical constitution of branches subject to exclusion plus damage or plus epiphytes was similar among them. PC2 indicated that palmitic acid (allelopathic compound) and squalene, a triterpene that attracts herbivore enemies, correlated positively with the inhibition of seed germination of T. recurvata. Inhibition of seed germination of T. recurvata was mainly correlated with the increment of palmitic acid and this compound reached higher concentrations in excluded branches treatments. Then, it is likely that the allelopathic response of I. murucoides would increase to the damage (shade, load) that may be caused by a high load of epiphytes than to damage caused by the xylophages. PMID:26625350
A metric space for Type Ia supernova spectra: a new method to assess explosion scenarios
NASA Astrophysics Data System (ADS)
Sasdelli, Michele; Hillebrandt, W.; Kromer, M.; Ishida, E. E. O.; Röpke, F. K.; Sim, S. A.; Pakmor, R.; Seitenzahl, I. R.; Fink, M.
2017-04-01
Over the past years, Type Ia supernovae (SNe Ia) have become a major tool to determine the expansion history of the Universe, and considerable attention has been given to, both, observations and models of these events. However, until now, their progenitors are not known. The observed diversity of light curves and spectra seems to point at different progenitor channels and explosion mechanisms. Here, we present a new way to compare model predictions with observations in a systematic way. Our method is based on the construction of a metric space for SN Ia spectra by means of linear principal component analysis, taking care of missing and/or noisy data, and making use of partial least-squares regression to find correlations between spectral properties and photometric data. We investigate realizations of the three major classes of explosion models that are presently discussed: delayed-detonation Chandrasekhar-mass explosions, sub-Chandrasekhar-mass detonations and double-degenerate mergers, and compare them with data. We show that in the principal component space, all scenarios have observed counterparts, supporting the idea that different progenitors are likely. However, all classes of models face problems in reproducing the observed correlations between spectral properties and light curves and colours. Possible reasons are briefly discussed.
del Olmo, Ana; Calzada, Javier; Nuñez, Manuel
2013-11-01
Lipolysis, lipid peroxidation, and colorimetric characteristics of Serrano hams from Duroc and Large White pigs along a 15-mo curing period were investigated. Physicochemical parameters of both types of hams evolved similarly during curing. Twelve of 13 free fatty acids (FFAs) increased during curing, eicosatrienoic acid being the only exception. Linoleic, stearic, and arachidonic acids and the minor heptadecanoic acid reached lower concentrations, and the rest of minor FFAs higher concentrations, in Duroc hams than in Large White hams. The index measuring the early stage of lipid peroxidation declined from month 5 onwards, indicating that the phenomenon had been completed by month 5, while the index of the secondary stage of lipid peroxidation increased with curing time. Higher values were found for the 1st index in Duroc hams. Curing affected color parameters. Lightness decreased and redness increased in both types of hams, while yellowness decreased only in Duroc hams. Lower redness values were found for Duroc hams. Major differences in color parameters were found between muscles. Principal components analysis of FFAs yielded 2 main principal components. The 1st factor, correlated with all FFAs excepting eicosatrienoic acid, allowed discrimination between curing times. The 2nd factor, correlated with eicosatrienoic acid, permitted discrimination between breeds. © 2013 Institute of Food Technologists®
Fadil, Mouhcine; Farah, Abdellah; Ihssane, Bouchaib; Haloui, Taoufik; Lebrazi, Sara; Zghari, Badreddine; Rachiq, Saâd
2016-01-01
To investigate the effect of environmental factors such as light and shade on essential oil yield and morphological traits of Moroccan Myrtus communis, a chemometric study was conducted on 20 individuals growing under two contrasting light environments. The study of individual's parameters by principal component analysis has shown that essential oil yield, altitude, and leaves thickness were positively correlated between them and negatively correlated with plants height, leaves length and leaves width. Principal component analysis and hierarchical cluster analysis have also shown that the individuals of each sampling site were grouped separately. The one-way ANOVA test has confirmed the effect of light and shade on essential oil yield and morphological parameters by showing a statistically significant difference between them from the shaded side to the sunny one. Finally, the multiple linear model containing main, interaction and quadratic terms was chosen for the modeling of essential oil yield in terms of morphological parameters. Sun plants have a small height, small leaves length and width, but they are thicker and richer in essential oil than shade plants which have shown almost the opposite. The highlighted multiple linear model can be used to predict essential oil yield in the studied area.
NASA Astrophysics Data System (ADS)
Anwar, Muhammad Ayaz; Choi, Sangdun
2017-03-01
Toll-like receptor 4 (TLR4), a vital innate immune receptor present on cell surfaces, initiates a signaling cascade during danger and bacterial intrusion. TLR4 needs to form a stable hexamer complex, which is necessary to dimerize the cytoplasmic domain. However, D299G and T399I polymorphism may abrogate the stability of the complex, leading to compromised TLR4 signaling. Crystallography provides valuable insights into the structural aspects of the TLR4 ectodomain; however, the dynamic behavior of polymorphic TLR4 is still unclear. Here, we employed molecular dynamics simulations (MDS), as well as principal component and residue network analyses, to decipher the structural aspects and signaling propagation associated with mutations in TLR4. The mutated complexes were less cohesive, displayed local and global variation in the secondary structure, and anomalous decay in rotational correlation function. Principal component analysis indicated that the mutated complexes also exhibited distinct low-frequency motions, which may be correlated to the differential behaviors of these TLR4 variants. Moreover, residue interaction networks (RIN) revealed that the mutated TLR4/myeloid differentiation factor (MD) 2 complex may perpetuate abnormal signaling pathways. Cumulatively, the MDS and RIN analyses elucidated the mutant-specific conformational alterations, which may help in deciphering the mechanism of loss-of-function mutations.
Haskard-Zolnierek, Kelly B
2012-01-01
This paper describes the development of the 47-item Physician-Patient Communication about Pain (PCAP) scale for use with audiotaped medical visit interactions. Patient pain was assessed with the Medical Outcomes Study SF-36 Bodily Pain Scale. Four raters assessed 181 audiotaped patient interactions with 68 physicians. Descriptive statistics of PCAP items were computed. Principal components analyses with 20 scale items were used to reduce the scale to composite variables for analyses. Validity was assessed through (1) comparing PCAP composite scores for patients with high versus low pain and (2) correlating PCAP composites with a separate communication rating scale. Principal components analyses yielded four physician and five patient communication composites (mean alpha=.77). Some evidence for concurrent validity was provided (5 of 18 correlations with communication validation rating scale were significant). Paired-sample t tests showed significant differences for 4 patient PCAP composites, showing the PCAP scale discriminates between high and low pain patients' communication. The PCAP scale shows partial evidence of reliability and two forms of validity. More research with this scale (developing more reliable and valid composites) is needed to extend these preliminary findings before this scale is applicable for use in practice. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Spatial correlation of auroral zone geomagnetic variations
NASA Astrophysics Data System (ADS)
Jackel, B. J.; Davalos, A.
2016-12-01
Magnetic field perturbations in the auroral zone are produced by a combination of distant ionospheric and local ground induced currents. Spatial and temporal structure of these currents is scientifically interesting and can also have a significant influence on critical infrastructure.Ground-based magnetometer networks are an essential tool for studying these phenomena, with the existing complement of instruments in Canada providing extended local time coverage. In this study we examine the spatial correlation between magnetic field observations over a range of scale lengths. Principal component and canonical correlation analysis are used to quantify relationships between multiple sites. Results could be used to optimize network configurations, validate computational models, and improve methods for empirical interpolation.
General ultrafast pulse measurement using the cross-correlation single-shot sonogram technique.
Reid, Derryck T; Garduno-Mejia, Jesus
2004-03-15
The cross-correlation single-shot sonogram technique offers exact pulse measurement and real-time pulse monitoring via an intuitive time-frequency trace whose shape and orientation directly indicate the spectral chirp of an ultrashort laser pulse. We demonstrate an algorithm that solves a fundamental limitation of the cross-correlation sonogram method, namely, that the time-gating operation is implemented using a replica of the measured pulse rather than the ideal delta-function-like pulse. Using a modified principal-components generalized projections algorithm, we experimentally show accurate pulse retrieval of an asymmetric double pulse, a case that is prone to systematic error when one is using the original sonogram retrieval algorithm.
Patidar, Shailesh Kumar; Chokshi, Kaumeel; George, Basil; Bhattacharya, Sourish; Mishra, Sandhya
2015-01-01
Industrial clusters of Gujarat, India, generate high quantity of effluents which are received by aquatic bodies such as estuary and coastal water. In the present study, microalgal assemblage, heavy metals, and physico-chemical variables were studied from different habitats. Principal component analysis revealed that biovolume of cyanobacterial and cryptophytic community positively correlated with the heavy metal concentration (Hg, As, Zn, Fe, Mo, Ni, and Co) and chromophoric dissolved organic matter (CDOM) under hypoxic environment. Green algae and diatoms dominated at comparatively lower nitrate concentration which was positively associated with Pb and Mn.
Wang, Hui-Mei; Sun, Wei; Zu, Yuan-Gang; Wang, Wen-Jie
2011-12-01
Based on the one-year (2005) observations with a frequency of half hour on the stem sap flow of Larix gmelinii plantation trees planted in 1969 and the related environmental factors air humidity (RH), air temperature (T(air)), photosynthetic components active radiation (PAR), soil temperature (T(soil)), and soil moisture (TDR), principal analysis (PCA) and correction analysis were made on the time lag effect of the stem flow in different seasons (26 days of each season) and in a year via dislocation analysis, with the complexity and its integrative effects of the time lags of environment factors affecting the stem sap flow approached. The results showed that in different seasons and for different environmental factors, the time lag effect varied obviously. In general, the time lag of PAR was 0.5-1 hour ahead of sap flow, that of T(air) and RH was 0-2 hours ahead of or behind the sap flow, and the time lags of T(soil) and TDR were much longer or sometimes undetectable. Because of the complexity of the time lags, no evident improvements were observed in the linear correlations (R2, slope, and intercept) when the time lags based on short-term (20 days) data were used to correct the time lags based on whole year data. However, obvious improvements were found in the standardized and non-standardized correlation coefficients in stepwise multiple regressions, i.e., the time lag corrections could improve the effects of RH, but decreased the effects of PAR, T(air), and T(soil). PCA could be used to simplify the complexity. The first and the second principal components could stand for over 75% information of all the environmental factors in different seasons and in whole year. The time lags of both the first and the second principal components were 1-1.5 hours in advance of the sap flow, except in winter (no time lag effect).
Sisterson, Mark S; Wallis, Christopher M; Stenger, Drake C
2017-04-01
Glassy-winged sharpshooters must feed as adults to produce mature eggs. Cowpea and sunflower are both readily accepted by the glassy-winged sharpshooter for feeding, but egg production on sunflower was reported to be lower than egg production on cowpea. To better understand the role of adult diet in egg production, effects of xylem-sap chemistry on glassy-winged sharpshooter egg maturation was compared for females confined to cowpea and sunflower. Females confined to cowpea consumed more xylem-sap than females held on sunflower. In response, females held on cowpea produced more eggs, had heavier bodies, and greater lipid content than females held on sunflower. Analysis of cowpea and sunflower xylem-sap found that 17 of 19 amino acids were more concentrated in cowpea xylem-sap than in sunflower xylem-sap. Thus, decreased consumption of sunflower xylem-sap was likely owing to perceived lower quality, with decreased egg production owing to a combination of decreased feeding and lower return per unit volume of xylem-sap consumed. Examination of pairwise correlation coefficients among amino acids indicated that concentrations of several amino acids within a plant species were correlated. Principal component analyses identified latent variables describing amino acid composition of xylem-sap. For females held on cowpea, egg maturation was affected by test date, volume of excreta produced, and principal components describing amino acid composition of xylem-sap. Principal component analyses aided in identifying amino acids that were positively or negatively associated with egg production, although determining causality with respect to key nutritional requirements for glassy-winged sharpshooter egg production will require additional testing. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.
NASA Astrophysics Data System (ADS)
Cossement, Damien; Renaux, Fabian; Thiry, Damien; Ligot, Sylvie; Francq, Rémy; Snyders, Rony
2015-11-01
It is accepted that the macroscopic properties of functional plasma polymer films (PPF) are defined by their functional density and their crosslinking degree (χ) which are quantities that most of the time behave in opposite trends. If the PPF chemistry is relatively easy to evaluate, it is much more challenging for χ. This paper reviews the recent work developed in our group on the application of principal component analysis (PCA) to time-of-flight secondary ion mass spectrometric (ToF-SIMS) positive spectra data in order to extract the relative cross-linking degree (χ) of PPF. NH2-, COOR- and SH-containing PPF synthesized in our group by plasma enhanced chemical vapor deposition (PECVD) varying the applied radiofrequency power (PRF), have been used as model surfaces. For the three plasma polymer families, the scores of the first computed principal component (PC1) highlighted significant differences in the chemical composition supported by X-Ray photoelectron spectroscopy (XPS) data. The most important fragments contributing to PC1 (loadings > 90%) were used to compute an average C/H ratio index for samples synthesized at low and high PRF. This ratio being an evaluation of χ, these data, accordingly to the literature, indicates an increase of χ with PRF excepted for the SH-PPF. These results have been cross-checked by the evaluation of functional properties of the plasma polymers namely a linear correlation with the stability of NH2-PPF in ethanol and a correlation with the mechanical properties of the COOR-PPF. For the SH-PPF family, the peculiar evolution of χ is supported by the understanding of the growth mechanism of the PPF from plasma diagnostic. The whole set of data clearly demonstrates the potential of the PCA method for extracting information on the microstructure of plasma polymers from ToF-SIMS measurements.
Development of a scale for attitude toward condom use for migrant workers in India.
Talukdar, Arunansu; Bal, Runa; Sanyal, Debasis; Roy, Krishnendu; Talukdar, Payel Sengupta
2008-02-01
The propaganda for the use of condoms remains one of the mainstay for prevention of human immunodeficiency virus (HIV) transmission. In spite of the proven efficacy of condom, some moral, social and psychological obstacles are still prevalent, hindering the use of condoms. The study tried to construct a short condom-attitude scale for use among the migrant workers, a major bridge population in India. The study was conducted among the male migrant workers who were 18-49 years old, sexually active and had heard about condoms and were engaged in nonformal jobs. We recruited 234 and 280 candidates for Phase 1 and Phase 2 respectively. Ten items from the original 40-item Brown's ATC (attitude towards condom) scale were selected in Phase 1. After analysis of Phase 1 results, using principal component analysis six items were found appropriate for measuring attitude towards condom use. These six items were then administered in another group in Phase 2. Utilizing Pearson's correlations, scale items were examined in terms of their mean response scores and the correlation matrix between items. Cornbach's alpha and construct validity were also assessed for the entire sample. Study subjects were categorized as condom users and nonusers. The scale structure was explored by analyzing response scores with respect to the items, using principal component analysis followed by varimax rotation analysis. Principal component analysis revealed that the first factor accounted for 71% of the variance, with eigenvalue greater than one. Eigenvalues of the second factor was less than one. Application of screen test suggests only one factor was dominant. Mean score of six items among condom users was 20.45 and that among nonusers was 16.67, which was statistically significant (P<0.01). Cornbach's alpha coefficient was 0.92. This tailor-made attitude-toward-condom-use scale, targeted for most vulnerable people in India, can be included in any rapid survey for assessing the existing beliefs and attitudes toward condoms and also for evaluating efficacy of an intervention program.
Directly reconstructing principal components of heterogeneous particles from cryo-EM images.
Tagare, Hemant D; Kucukelbir, Alp; Sigworth, Fred J; Wang, Hongwei; Rao, Murali
2015-08-01
Structural heterogeneity of particles can be investigated by their three-dimensional principal components. This paper addresses the question of whether, and with what algorithm, the three-dimensional principal components can be directly recovered from cryo-EM images. The first part of the paper extends the Fourier slice theorem to covariance functions showing that the three-dimensional covariance, and hence the principal components, of a heterogeneous particle can indeed be recovered from two-dimensional cryo-EM images. The second part of the paper proposes a practical algorithm for reconstructing the principal components directly from cryo-EM images without the intermediate step of calculating covariances. This algorithm is based on maximizing the posterior likelihood using the Expectation-Maximization algorithm. The last part of the paper applies this algorithm to simulated data and to two real cryo-EM data sets: a data set of the 70S ribosome with and without Elongation Factor-G (EF-G), and a data set of the influenza virus RNA dependent RNA Polymerase (RdRP). The first principal component of the 70S ribosome data set reveals the expected conformational changes of the ribosome as the EF-G binds and unbinds. The first principal component of the RdRP data set reveals a conformational change in the two dimers of the RdRP. Copyright © 2015 Elsevier Inc. All rights reserved.
Forensic age estimation by morphometric analysis of the manubrium from 3D MR images.
Martínez Vera, Naira P; Höller, Johannes; Widek, Thomas; Neumayer, Bernhard; Ehammer, Thomas; Urschler, Martin
2017-08-01
Forensic age estimation research based on skeletal structures focuses on patterns of growth and development using different bones. In this work, our aim was to study growth-related evolution of the manubrium in living adolescents and young adults using magnetic resonance imaging (MRI), which is an image acquisition modality that does not involve ionizing radiation. In a first step, individual manubrium and subject features were correlated with age, which confirmed a statistically significant change of manubrium volume (M vol :p<0.01, R 2 ¯=0.50) and surface area (M sur :p<0.01, R 2 ¯=0.53) for the studied age range. Additionally, shapes of the manubria were for the first time investigated using principal component analysis. The decomposition of the data in principal components allowed to analyse the contribution of each component to total shape variation. With 13 principal components, ∼96% of shape variation could be described (M shp :p<0.01, R 2 ¯=0.60). Multiple linear regression analysis modelled the relationship between the statistically best correlated variables and age. Models including manubrium shape, volume or surface area divided by the height of the subject (Y∼M shp M sur /S h :p<0.01, R 2 ¯=0.71; Y∼M shp M vol /S h :p<0.01, R 2 ¯=0.72) presented a standard error of estimate of two years. In order to estimate the accuracy of these two manubrium-based age estimation models, cross validation experiments predicting age on held-out test sets were performed. Median absolute difference of predicted and known chronological age was 1.18 years for the best performing model (Y∼M shp M sur /S h :p<0.01, R p 2 =0.67). In conclusion, despite limitations in determining legal majority age, manubrium morphometry analysis presented statistically significant results for skeletal age estimation, which indicates that this bone structure may be considered as a new candidate in multi-factorial MRI-based age estimation. Copyright © 2017 Elsevier B.V. All rights reserved.
Origins of correlated spiking in the mammalian olfactory bulb
Gerkin, Richard C.; Tripathy, Shreejoy J.; Urban, Nathaniel N.
2013-01-01
Mitral/tufted (M/T) cells of the main olfactory bulb transmit odorant information to higher brain structures. The relative timing of action potentials across M/T cells has been proposed to encode this information and to be critical for the activation of downstream neurons. Using ensemble recordings from the mouse olfactory bulb in vivo, we measured how correlations between cells are shaped by stimulus (odor) identity, common respiratory drive, and other cells’ activity. The shared respiration cycle is the largest source of correlated firing, but even after accounting for all observable factors a residual positive noise correlation was observed. Noise correlation was maximal on a ∼100-ms timescale and was seen only in cells separated by <200 µm. This correlation is explained primarily by common activity in groups of nearby cells. Thus, M/T-cell correlation principally reflects respiratory modulation and sparse, local network connectivity, with odor identity accounting for a minor component. PMID:24082089
40 CFR 60.2998 - What are the principal components of the model rule?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What are the principal components of... December 9, 2004 Model Rule-Use of Model Rule § 60.2998 What are the principal components of the model rule... management plan. (c) Operator training and qualification. (d) Emission limitations and operating limits. (e...
40 CFR 60.2570 - What are the principal components of the model rule?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What are the principal components of... Construction On or Before November 30, 1999 Use of Model Rule § 60.2570 What are the principal components of... (k) of this section. (a) Increments of progress toward compliance. (b) Waste management plan. (c...
Measuring Theory of Mind in Adults with Autism Spectrum Disorder.
Brewer, Neil; Young, Robyn L; Barnett, Emily
2017-07-01
Deficits in Theory of Mind (ToM)-the ability to interpret others' beliefs, intentions and emotions-undermine the ability of individuals with Autism Spectrum Disorder (ASD) to interact in socially normative ways. This study provides psychometric data for the Adult-Theory of Mind (A-ToM) measure using video-scenarios based in part on Happé's (Instructions for theory of mind story task, 1999) Strange Stories test. The final items discriminated IQ-matched adults with ASD from controls on the social but not the physical items. Additional validity data included a two-component principal components solution, correlations with existing ToM scales, and the absence of correlations with self-report measures of empathy and social anxiety (not requiring inferences about the intent of others). The expected group differences in ToM were accompanied by marked variability in the ASD sample.
Contribution of botanical origin and sugar composition of honeys on the crystallization phenomenon.
Escuredo, Olga; Dobre, Irina; Fernández-González, María; Seijo, M Carmen
2014-04-15
The present work provides information regarding the statistical relationships among the palynological characteristics, sugars (fructose, glucose, sucrose, melezitose and maltose), moisture content and sugar ratios (F+G, F/G and G/W) of 136 different honey types (including bramble, chestnut, eucalyptus, heather, acacia, lime, rape, sunflower and honeydew). Results of the statistical analyses (multiple comparison Bonferroni test, Spearman rank correlations and principal components) revealed the valuable significance of the botanical origin on the sugar ratios (F+G, F/G and G/W). Brassica napus and Helianthus annuus pollen were the variables situated near F+G and G/W ratio, while Castanea sativa, Rubus and Eucalyptus pollen were located further away, as shown in the principal component analysis. The F/G ratio of sunflower, rape and lime honeys were lower than those found for the chestnut, eucalyptus, heather, acacia and honeydew honeys (>1.4). A lower value F/G ratio and lower water content were related with a faster crystallization in the honey. Copyright © 2013 Elsevier Ltd. All rights reserved.
Scale for positive aspects of caregiving experience: development, reliability, and factor structure.
Kate, N; Grover, S; Kulhara, P; Nehra, R
2012-06-01
OBJECTIVE. To develop an instrument (Scale for Positive Aspects of Caregiving Experience [SPACE]) that evaluates positive caregiving experience and assess its psychometric properties. METHODS. Available scales which assess some aspects of positive caregiving experience were reviewed and a 50-item questionnaire with a 5-point rating was constructed. In all, 203 primary caregivers of patients with severe mental disorders were asked to complete the questionnaire. Internal consistency, test-retest reliability, cross-language reliability, split-half reliability, and face validity were evaluated. Principal component factor analysis was run to assess the factorial validity of the scale. RESULTS. The scale developed as part of the study was found to have good internal consistency, test-retest reliability, cross-language reliability, split-half reliability, and face validity. Principal component factor analysis yielded a 4-factor structure, which also had good test-retest reliability and cross-language reliability. There was a strong correlation between the 4 factors obtained. CONCLUSION. The SPACE developed as part of this study has good psychometric properties.
Clerici, Nicola; Bodini, Antonio; Ferrarini, Alessandro
2004-10-01
In order to achieve improved sustainability, local authorities need to use tools that adequately describe and synthesize environmental information. This article illustrates a methodological approach that organizes a wide suite of environmental indicators into few aggregated indices, making use of correlation, principal component analysis, and fuzzy sets. Furthermore, a weighting system, which includes stakeholders' priorities and ambitions, is applied. As a case study, the described methodology is applied to the Reggio Emilia Province in Italy, by considering environmental information from 45 municipalities. Principal component analysis is used to condense an initial set of 19 indicators into 6 fundamental dimensions that highlight patterns of environmental conditions at the provincial scale. These dimensions are further aggregated in two indices of environmental performance through fuzzy sets. The simple form of these indices makes them particularly suitable for public communication, as they condensate a wide set of heterogeneous indicators. The main outcomes of the analysis and the potential applications of the method are discussed.
NASA Astrophysics Data System (ADS)
Koczoń, P.; Piekut, J.; Borawska, M.; Lewandowski, W.
2003-06-01
The lithium, sodium, potassium, rubidium and caesium isonicotinates, potassium picolinate and nicotinate (microbiological data) as well as sodium benzoate (as a referee for microbiological tests) were under study. The selected experimental bands occurring in the FT-IR and FT-Raman spectra of studied alkaline metal isonicotinates and potassium picolinate were assigned. The change of wavenumber of those bands was observed along the metal series and along the change of position of nitrogen in the aromatic ring. The linear combination of wavenumber of assigned bands (the principal component analysis) was performed to estimate the change in the electronic properties of the molecule along the metal series. The antimicrobial activity of studied complexes against yeasts Hansenula anomala, Saccharomyces cerevisiae, and bacteria Escherichia coli and Bacillus subtilis was measured after 24 and 48 h of incubation. The attempt was made, to find out if there is any correlation between the first principal component and the degree of growth inhibition exhibited by studied complexes in relation to studied microorganisms.
Fang, Leyuan; Wang, Chong; Li, Shutao; Yan, Jun; Chen, Xiangdong; Rabbani, Hossein
2017-11-01
We present an automatic method, termed as the principal component analysis network with composite kernel (PCANet-CK), for the classification of three-dimensional (3-D) retinal optical coherence tomography (OCT) images. Specifically, the proposed PCANet-CK method first utilizes the PCANet to automatically learn features from each B-scan of the 3-D retinal OCT images. Then, multiple kernels are separately applied to a set of very important features of the B-scans and these kernels are fused together, which can jointly exploit the correlations among features of the 3-D OCT images. Finally, the fused (composite) kernel is incorporated into an extreme learning machine for the OCT image classification. We tested our proposed algorithm on two real 3-D spectral domain OCT (SD-OCT) datasets (of normal subjects and subjects with the macular edema and age-related macular degeneration), which demonstrated its effectiveness. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).
A Principal Component Analysis of the Diffuse Interstellar Bands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ensor, T.; Cami, J.; Bhatt, N. H.
2017-02-20
We present a principal component (PC) analysis of 23 line-of-sight parameters (including the strengths of 16 diffuse interstellar bands, DIBs) for a well-chosen sample of single-cloud sightlines representing a broad range of environmental conditions. Our analysis indicates that the majority (∼93%) of the variations in the measurements can be captured by only four parameters The main driver (i.e., the first PC) is the amount of DIB-producing material in the line of sight, a quantity that is extremely well traced by the equivalent width of the λ 5797 DIB. The second PC is the amount of UV radiation, which correlates wellmore » with the λ 5797/ λ 5780 DIB strength ratio. The remaining two PCs are more difficult to interpret, but are likely related to the properties of dust in the line of sight (e.g., the gas-to-dust ratio). With our PCA results, the DIBs can then be used to estimate these line-of-sight parameters.« less
NASA Astrophysics Data System (ADS)
Sun, Huimin; Meng, Yaoyong; Zhang, Pingli; Li, Yajing; Li, Nan; Li, Caiyun; Guo, Zhiyou
2017-09-01
The age determination of bloodstains is an important and immediate challenge for forensic science. No reliable methods are currently available for estimating the age of bloodstains. Here we report a method for determining the age of bloodstains at different storage temperatures. Bloodstains were stored at 37 °C, 25 °C, 4 °C, and -20 °C for 80 d. Bloodstains were measured using Raman spectroscopy at various time points. The principal component and a back propagation artificial neural network model were then established for estimating the age of the bloodstains. The results were ideal; the square of correlation coefficient was up to 0.99 (R 2 > 0.99) and the root mean square error of the prediction at lowest reached 55.9829 h. This method is real-time, non-invasive, non-destructive and highly efficiency. It may well prove that Raman spectroscopy is a promising tool for the estimation of the age of bloodstains.
Moore, Hannah E; Adam, Craig D; Drijfhout, Falko P
2013-03-01
Previous studies on Diptera have shown the potential for the use of cuticular hydrocarbons' analysis in the determination of larval age and hence the postmortem interval (PMI) for an associated cadaver. In this work, hydrocarbon compounds, extracted daily until pupation from the cuticle of the blowfly Lucilia sericata (Diptera: Calliphoridae), have been analyzed using gas chromatography-mass spectrometry (GC-MS). The results show distinguishing features within the hydrocarbon profile over the period of the larvae life cycle, with significant chemical changes occurring from the younger larvae to the postfeeding larvae. Further interpretation of the chromatograms using principal component analysis revealed a strong correlation between the magnitudes of particular principal components and time. This outcome suggests that, under the conditions of this study, the cuticular hydrocarbons evolve in a systematic fashion with time, thus supporting the potential for GC-MS analysis as a tool for establishing PMI where such a species is present. © 2012 American Academy of Forensic Sciences.
Gouvinhas, Irene; Machado, Nelson; Carvalho, Teresa; de Almeida, José M M M; Barros, Ana I R N A
2015-01-01
Extra virgin olive oils produced from three cultivars on different maturation stages were characterized using Raman spectroscopy. Chemometric methods (principal component analysis, discriminant analysis, principal component regression and partial least squares regression) applied to Raman spectral data were utilized to evaluate and quantify the statistical differences between cultivars and their ripening process. The models for predicting the peroxide value and free acidity of olive oils showed good calibration and prediction values and presented high coefficients of determination (>0.933). Both the R(2), and the correlation equations between the measured chemical parameters, and the values predicted by each approach are presented; these comprehend both PCR and PLS, used to assess SNV normalized Raman data, as well as first and second derivative of the spectra. This study demonstrates that a combination of Raman spectroscopy with multivariate analysis methods can be useful to predict rapidly olive oil chemical characteristics during the maturation process. Copyright © 2014 Elsevier B.V. All rights reserved.
Effects of organic composition on the anaerobic biodegradability of food waste.
Li, Yangyang; Jin, Yiying; Borrion, Aiduan; Li, Hailong; Li, Jinhui
2017-11-01
This work investigated the influence of carbohydrates, proteins and lipids on the anaerobic digestion of food waste (FW) and the relationship between the parameters characterising digestion. Increasing the concentrations of proteins and lipids, and decreasing carbohydrate content in FW, led to high buffering capacity, reduction of proteins (52.7-65.0%) and lipids (57.4-88.2%), and methane production (385-627 mLCH 4 /g volatile solid), while achieving a short retention time. There were no significant correlations between the reduction of organics, hydrolysis rate constant (0.25-0.66d -1 ) and composition of organics. Principal Component Analysis revealed that lipid, C, and N contents as well as the C/N ratio were the principal components for digestion. In addition, methane yield, the final concentrations of total ammonia nitrogen and free ammonia nitrogen, final pH values, and the reduction of proteins and lipids could be predicted by a second-order polynomial model, in terms of the protein and lipid weight fraction. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fry, John C; Webster, Gordon; Cragg, Barry A; Weightman, Andrew J; Parkes, R John
2006-10-01
The aim of this work was to relate depth profiles of prokaryotic community composition with geochemical processes in the deep subseafloor biosphere at two shallow-water sites on the Peru Margin in the Pacific Ocean (ODP Leg 201, sites 1228 and 1229). Principal component analysis of denaturing gradient gel electrophoresis banding patterns of deep-sediment Bacteria, Archaea, Euryarchaeota and the novel candidate division JS1, followed by multiple regression, showed strong relationships with prokaryotic activity and geochemistry (R(2)=55-100%). Further correlation analysis, at one site, between the principal components from the community composition profiles for Bacteria and 12 other variables quantitatively confirmed their relationship with activity and geochemistry, which had previously only been implied. Comparison with previously published cell counts enumerated by fluorescent in situ hybridization with rRNA-targeted probes confirmed that these denaturing gradient gel electrophoresis profiles described an active prokaryotic community.
Relevant principal component analysis applied to the characterisation of Portuguese heather honey.
Martins, Rui C; Lopes, Victor V; Valentão, Patrícia; Carvalho, João C M F; Isabel, Paulo; Amaral, Maria T; Batista, Maria T; Andrade, Paula B; Silva, Branca M
2008-01-01
The main purpose of this study was the characterisation of 'Serra da Lousã' heather honey by using novel statistical methodology, relevant principal component analysis, in order to assess the correlations between production year, locality and composition. Herein, we also report its chemical composition in terms of sugars, glycerol and ethanol, and physicochemical parameters. Sugars profiles from 'Serra da Lousã' heather and 'Terra Quente de Trás-os-Montes' lavender honeys were compared and allowed the discrimination: 'Serra da Lousã' honeys do not contain sucrose, generally exhibit lower contents of turanose, trehalose and maltose and higher contents of fructose and glucose. Different localities from 'Serra da Lousã' provided groups of samples with high and low glycerol contents. Glycerol and ethanol contents were revealed to be independent of the sugars profiles. These data and statistical models can be very useful in the comparison and detection of adulterations during the quality control analysis of 'Serra da Lousã' honey.
Gao, Michael C.; Bellugi, Ursula; Dai, Li; Mills, Debra L.; Sobel, Eric M.; Lange, Kenneth; Korenberg, Julie R.
2010-01-01
Although genetics is the most significant known determinant of human intelligence, specific gene contributions remain largely unknown. To accelerate understanding in this area, we have taken a new approach by studying the relationship between quantitative gene expression and intelligence in a cohort of 65 patients with Williams Syndrome (WS), a neurodevelopmental disorder caused by a 1.5 Mb deletion on chromosome 7q11.23. We find that variation in the transcript levels of the brain gene STX1A correlates significantly with intelligence in WS patients measured by principal component analysis (PCA) of standardized WAIS-R subtests, r = 0.40 (Pearson correlation, Bonferroni corrected p-value = 0.007), accounting for 15.6% of the cognitive variation. These results suggest that syntaxin 1A, a neuronal regulator of presynaptic vesicle release, may play a role in WS and be a component of the cellular pathway determining human intelligence. PMID:20422020
Gaygisiz, Esma
2010-06-01
The correlations among indicators of objective well-being, cultural dimensions, and subjective well-being were investigated using Organisation for Economic Co-operation and Development (OECD) data from 35 countries. The subjective well-being measures included life satisfaction as well as six positive and six negative indexes of experience. Positive and negative experience scores were subjected to principal component analysis, and two positive experience components (labeled as "positive experiences" and "time management") and two negative experience components (labeled as "pain, worry, and sadness" and "anger and boredom") were extracted. Objective well-being included economic indicators, education, and health. The cultural variables included Hofstede's and Schwartz's cultural dimensions, national Big Five personality scores, and national IQs. High life satisfaction was positively related to Gross Domestic Product, life expectancy, education, individualism, affective and intellectual autonomy, egalitarianism, and conscientiousness, whereas low life satisfaction was related to unemployment, unequal income distribution, power distance, masculinity uncertainty avoidance, embeddedness, hierarchy, and neuroticism.
Liao, Jun; Jackson, Todd; Chen, Hong
2014-09-01
We evaluated the structure and validity of the Upward Appearance Comparison Scale (UPACS) and Downward Appearance Comparison Scale (DACS) (O'Brien et al., 2009) in Chinese samples. In Study 1, principal component analysis on an initial sample (427 women, 123 men) and confirmatory factor analysis on another sample (447 women, 121 men) found that a 15-item, two component model had the best overall fit. Derived components had moderate correlations with most conceptually related measures and low correlations with less conceptually related indices. Study 2 participants (310 women, 201 men) completed the UPACS and DACS as well as measures of disordered eating, fatness concern, and negative affect; they were re-assessed one year later. Baseline UPACS scores predicted changes in disordered eating for women and fatness concerns for men, independent of initial disturbances, but DACS responses were not related to outcomes. Findings highlighted the potential utility of derived UPACS and DACS within a Chinese context. Copyright © 2014 Elsevier Ltd. All rights reserved.
Maisuradze, Gia G; Leitner, David M
2007-05-15
Dihedral principal component analysis (dPCA) has recently been developed and shown to display complex features of the free energy landscape of a biomolecule that may be absent in the free energy landscape plotted in principal component space due to mixing of internal and overall rotational motion that can occur in principal component analysis (PCA) [Mu et al., Proteins: Struct Funct Bioinfo 2005;58:45-52]. Another difficulty in the implementation of PCA is sampling convergence, which we address here for both dPCA and PCA using a tetrapeptide as an example. We find that for both methods the sampling convergence can be reached over a similar time. Minima in the free energy landscape in the space of the two largest dihedral principal components often correspond to unique structures, though we also find some distinct minima to correspond to the same structure. 2007 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Abdulla, Hussain A. N.; Minor, Elizabeth C.; Dias, Robert F.; Hatcher, Patrick G.
2013-10-01
In a study of chemical transformations of estuarine high-molecular-weight (HMW, >1000 Da) dissolved organic matter (DOM) collected over a period of two years along a transect through the Elizabeth River/Chesapeake Bay system to the coastal Atlantic Ocean off Virginia, USA, δ13C values, N/C ratios, and principal component analysis (PCA) of the solid-state 13C NMR (nuclear magnetic resonance) spectra of HMW-DOM show an abrupt change in both its sources and chemical structural composition occurring around salinity 20. HMW-DOM in the lower salinity region had lighter isotopic values, higher aromatic and lower carbohydrate contents relative to that in the higher salinity region. These changes around a salinity of 20 are possibly due to introduction of a significant amount of new carbon (autotrophic DOM) to the transect. PC-1 loadings plot shows that spatially differing DOM components are similar to previously reported 13C NMR spectra of heteropolysaccharides (HPS) and carboxyl-rich alicyclic molecules (CRAM). Applying two dimensional correlation spectroscopy techniques to 1H NMR spectra from the same samples reveals increases in the contribution of N-acetyl amino sugars, 6-deoxy sugars, and sulfated polysaccharides to HPS components along the salinity transect, which suggests a transition from plant derived carbohydrates to marine produced carbohydrates within the HMW-DOM pool. In contrast to what has been suggested previously, our combined results from 13C NMR, 1H NMR, and FTIR indicate that CRAM consists of at least two different classes of compounds (aliphatic polycarboxyl compounds and lignin-like compounds).
Current Source Mapping by Spontaneous MEG and ECoG in Piglets Model
Gao, Lin; Wang, Jue; Stephen, Julia; Zhang, Tongsheng
2016-01-01
The previous research reveals the presence of relatively strong spatial correlations from spontaneous activity over cortex in Electroencephalography (EEG) and Magnetoencephalography (MEG) measurement. A critical obstacle in MEG current source mapping is that strong background activity masks the relatively weak local information. In this paper, the hypothesis is that the dominant components of this background activity can be captured by the first Principal Component (PC) after employing Principal Component Analysis (PCA), thus discarding the first PC before the back projection would enhance the exposure of the information carried by a subset of sensors that reflects the local neuronal activity. By detecting MEG signals densely (one measurement per 2×2 mm2) in three piglets neocortical models over an area of 18×26 mm2 with a special shape of lesion by means of a μSQUID, this basic idea was demonstrated by the fact that a strong activity could be imaged in the lesion region after removing the first PC in Delta, Theta and Alpha band, while the original recordings did not show such activity clearly. Thus, the PCA decomposition can be employed to expose the local activity, which is around the lesion in the piglets’ neocortical models, by removing the dominant components of the background activity. PMID:27570537
Krishnan, T; Reddy, B M
1994-01-01
The graphical technique of biplot due to Gabriel and others is explained, and is applied to ten finger ridge-count means of 239 populations, mostly Indian. The biplots, together with concentration ellipses based on them, are used to study geographical, gender and ethnic/social group variability, to compare Indian populations with other populations and to study relations between individual counts and populations. The correlation structure of ridge-counts exhibits a tripartite division of digits demonstrated by many other studies, but with a somewhat different combination of digits. Comparisons are also made with the results of Leguebe and Vrydagh, who used principal components, discriminant functions, Andrews functions, etc., to study geographical and gender variations. There is a great deal of homogeneity in Indian populations when compared to populations from the rest of the world. Although broad geographical contiguity is reflected in the biplots, local (states within India) level contiguity is not maintained. Monogoloids and Caucasoids have distinct ridge-count structures. The higher level of homogeneity in females and on the left side observed by Leguebe and Vrydagh is also observed in the biplots. A comparison with principal component plots indicates that biplots yield a graphical representation similar to component plots, and convey more information than component plots.
Random Matrix Theory in molecular dynamics analysis.
Palese, Luigi Leonardo
2015-01-01
It is well known that, in some situations, principal component analysis (PCA) carried out on molecular dynamics data results in the appearance of cosine-shaped low index projections. Because this is reminiscent of the results obtained by performing PCA on a multidimensional Brownian dynamics, it has been suggested that short-time protein dynamics is essentially nothing more than a noisy signal. Here we use Random Matrix Theory to analyze a series of short-time molecular dynamics experiments which are specifically designed to be simulations with high cosine content. We use as a model system the protein apoCox17, a mitochondrial copper chaperone. Spectral analysis on correlation matrices allows to easily differentiate random correlations, simply deriving from the finite length of the process, from non-random signals reflecting the intrinsic system properties. Our results clearly show that protein dynamics is not really Brownian also in presence of the cosine-shaped low index projections on principal axes. Copyright © 2014 Elsevier B.V. All rights reserved.
Monitoring and evaluation of the water quality of Budeasa Reservoir-Arges River, Romania.
Ion, Antoanela; Vladescu, Luminita; Badea, Irinel Adriana; Comanescu, Laura
2016-09-01
The purpose of this study was to monitor and record the specific characteristics and properties of the Arges River water in the Budeasa Reservoir (the principal water resources of municipal tap water of the big Romanian city Pitesti and surrounding area) for a period of 5 years (2005-2009). The monitored physical and chemical parameters were turbidity, pH, electrical conductivity, chemical oxygen demand, 5 days biochemical oxygen demand, free dissolved oxygen, nitrite, nitrate, ammonia nitrogen, chloride, total dissolved iron ions, sulfate, manganese, phosphate, total alkalinity, and total hardness. The results were discussed in correlation with the precipitation values during the study. Monthly and annual values of each parameter determined in the period January 2005-December 2009 were used as a basis for the classification of Budeasa Reservoir water, according to the European legislation, as well as for assessing its quality as a drinking water supply. Principal component analysis and Pearson correlation coefficients were used as statistical procedures in order to evaluate the data obtained during this study.
Physiological and anthropometric determinants of rhythmic gymnastics performance.
Douda, Helen T; Toubekis, Argyris G; Avloniti, Alexandra A; Tokmakidis, Savvas P
2008-03-01
To identify the physiological and anthropometric predictors of rhythmic gymnastics performance, which was defined from the total ranking score of each athlete in a national competition. Thirty-four rhythmic gymnasts were divided into 2 groups, elite (n = 15) and nonelite (n = 19), and they underwent a battery of anthropometric, physical fitness, and physiological measurements. The principal-components analysis extracted 6 components: anthropometric, flexibility, explosive strength, aerobic capacity, body dimensions, and anaerobic metabolism. These were used in a simultaneous multiple-regression procedure to determine which best explain the variance in rhythmic gymnastics performance. Based on the principal-component analysis, the anthropometric component explained 45% of the total variance, flexibility 12.1%, explosive strength 9.2%, aerobic capacity 7.4%, body dimensions 6.8%, and anaerobic metabolism 4.6%. Components of anthropometric (r = .50) and aerobic capacity (r = .49) were significantly correlated with performance (P < .01). When the multiple-regression model-y = 10.708 + (0.0005121 x VO2max) + (0.157 x arm span) + (0.814 x midthigh circumference) - (0.293 x body mass)-was applied to elite gymnasts, 92.5% of the variation was explained by VO2max (58.9%), arm span (12%), midthigh circumference (13.1%), and body mass (8.5%). Selected anthropometric characteristics, aerobic power, flexibility, and explosive strength are important determinants of successful performance. These findings might have practical implications for both training and talent identification in rhythmic gymnastics.
Fast, Exact Bootstrap Principal Component Analysis for p > 1 million
Fisher, Aaron; Caffo, Brian; Schwartz, Brian; Zipunnikov, Vadim
2015-01-01
Many have suggested a bootstrap procedure for estimating the sampling variability of principal component analysis (PCA) results. However, when the number of measurements per subject (p) is much larger than the number of subjects (n), calculating and storing the leading principal components from each bootstrap sample can be computationally infeasible. To address this, we outline methods for fast, exact calculation of bootstrap principal components, eigenvalues, and scores. Our methods leverage the fact that all bootstrap samples occupy the same n-dimensional subspace as the original sample. As a result, all bootstrap principal components are limited to the same n-dimensional subspace and can be efficiently represented by their low dimensional coordinates in that subspace. Several uncertainty metrics can be computed solely based on the bootstrap distribution of these low dimensional coordinates, without calculating or storing the p-dimensional bootstrap components. Fast bootstrap PCA is applied to a dataset of sleep electroencephalogram recordings (p = 900, n = 392), and to a dataset of brain magnetic resonance images (MRIs) (p ≈ 3 million, n = 352). For the MRI dataset, our method allows for standard errors for the first 3 principal components based on 1000 bootstrap samples to be calculated on a standard laptop in 47 minutes, as opposed to approximately 4 days with standard methods. PMID:27616801
ERIC Educational Resources Information Center
Oplatka, Izhar
2017-01-01
Purpose: In order to fill the gap in theoretical and empirical knowledge about the characteristics of principal workload, the purpose of this paper is to explore the components of principal workload as well as its determinants and the coping strategies commonly used by principals to face this personal state. Design/methodology/approach:…
Zhao, Ruifeng; Zhou, Huarong; Qian, Yibing; Zhang, Jianjun
2006-06-01
A total of 16 quadrants of wetlands and surrounding lands in the mid- and lower reaches of Tarim River were surveyed, and the data about the characteristics of plant communities and environmental factors were collected and counted. By using PCA (principal component analysis) ordination and regression procedure, the distribution patterns of plant communities and the relationships between the characteristics of plant community structure and environmental factors were analyzed. The results showed that the distribution of the plant communities was closely related to soil moisture, salt, and nutrient contents. The accumulative contribution rate of soil moisture and salt contents in the first principal component accounted for 35.70%, and that of soil nutrient content in the second principal component reached 25.97%. There were 4 types of habitats for the plant community distribution, i. e., fenny--light salt--medium nutrient, moist--medium salt--medium nutrient, mesophytic--medium salt--low nutrient, and medium xerophytic-heavy salt--low nutrient. Along these habitats, swamp vegetation, meadow vegetation, riparian sparse forest, halophytic desert, and salinized shrub were distributed. In the wetlands and surrounding lands of mid- and lower reaches of Tarim River, the ecological dominance of the plant communities was markedly and unitary-linearly correlated with the compound gradient of soil moisture and salt contents. The relationships between species diversity, ecological dominance, and compound gradient of soil moisture and salt contents were significantly accorded to binary-linear regression model.
Goekoop, Rutger; Goekoop, Jaap G.
2014-01-01
Introduction The vast number of psychopathological syndromes that can be observed in clinical practice can be described in terms of a limited number of elementary syndromes that are differentially expressed. Previous attempts to identify elementary syndromes have shown limitations that have slowed progress in the taxonomy of psychiatric disorders. Aim To examine the ability of network community detection (NCD) to identify elementary syndromes of psychopathology and move beyond the limitations of current classification methods in psychiatry. Methods 192 patients with unselected mental disorders were tested on the Comprehensive Psychopathological Rating Scale (CPRS). Principal component analysis (PCA) was performed on the bootstrapped correlation matrix of symptom scores to extract the principal component structure (PCS). An undirected and weighted network graph was constructed from the same matrix. Network community structure (NCS) was optimized using a previously published technique. Results In the optimal network structure, network clusters showed a 89% match with principal components of psychopathology. Some 6 network clusters were found, including "DEPRESSION", "MANIA", “ANXIETY”, "PSYCHOSIS", "RETARDATION", and "BEHAVIORAL DISORGANIZATION". Network metrics were used to quantify the continuities between the elementary syndromes. Conclusion We present the first comprehensive network graph of psychopathology that is free from the biases of previous classifications: a ‘Psychopathology Web’. Clusters within this network represent elementary syndromes that are connected via a limited number of bridge symptoms. Many problems of previous classifications can be overcome by using a network approach to psychopathology. PMID:25427156
Cheke, Lucy G; Clayton, Nicola S
2015-09-01
The development of episodic memory in children has been of interest to researchers for more than a century. Current behavioral tests that have been developed to assess episodic memory differ substantially in their surface features. Therefore, it is possible that these tests are assessing different memory processes. In this study, 106 children aged 3 to 6 years were tested on four putative tests of episodic memory. Covariation in performance was investigated in order to address two conflicting hypotheses: (a) that the high level of difference between the tests will result in little covariation in performance despite their being designed to assess the same ability and (b) that the conceptual similarity of these tasks will lead to high levels of covariation despite surface differences. The results indicated a gradual improvement with age on all tests. Performances on many of the tests were related, but not after controlling for age. A principal component analysis found that a single principal component was able to satisfactorily fit the observed data. This principal component produced a marginally stronger correlation with age than any test alone. As such, it might be concluded that different tests of episodic memory are too different to be used in parallel. Nevertheless, if used together, these tests may offer a robust assessment of episodic memory as a complex multifaceted process. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Methane and Hydrogen Production from Anaerobic Fermentation of Municipal Solid Wastes
NASA Astrophysics Data System (ADS)
Kobayashi, Takuro; Lee, Dong-Yeol; Xu, Kaiqin; Li, Yu-You; Inamori, Yuhei
Methane and hydrogen production was investigated in batch experiments of thermophilic methane and hydrogen fermentation, using domestic garbage and food processing waste classified by fat/carbohydrate balance as a base material. Methane production per unit of VS added was significantly positively correlated with fat content and negatively correlated with carbohydrate content in the substrate, and the average value of the methane production per unit of VS added from fat-rich materials was twice as large as that from carbohydrate-rich materials. By contrast, hydrogen production per unit of VS added was significantly positively correlated with carbohydrate content and negatively correlated with fat content. Principal component analysis using the results obtained in this study enable an evaluation of substrates for methane and hydrogen fermentation based on nutrient composition.
A method to estimate the effect of deformable image registration uncertainties on daily dose mapping
Murphy, Martin J.; Salguero, Francisco J.; Siebers, Jeffrey V.; Staub, David; Vaman, Constantin
2012-01-01
Purpose: To develop a statistical sampling procedure for spatially-correlated uncertainties in deformable image registration and then use it to demonstrate their effect on daily dose mapping. Methods: Sequential daily CT studies are acquired to map anatomical variations prior to fractionated external beam radiotherapy. The CTs are deformably registered to the planning CT to obtain displacement vector fields (DVFs). The DVFs are used to accumulate the dose delivered each day onto the planning CT. Each DVF has spatially-correlated uncertainties associated with it. Principal components analysis (PCA) is applied to measured DVF error maps to produce decorrelated principal component modes of the errors. The modes are sampled independently and reconstructed to produce synthetic registration error maps. The synthetic error maps are convolved with dose mapped via deformable registration to model the resulting uncertainty in the dose mapping. The results are compared to the dose mapping uncertainty that would result from uncorrelated DVF errors that vary randomly from voxel to voxel. Results: The error sampling method is shown to produce synthetic DVF error maps that are statistically indistinguishable from the observed error maps. Spatially-correlated DVF uncertainties modeled by our procedure produce patterns of dose mapping error that are different from that due to randomly distributed uncertainties. Conclusions: Deformable image registration uncertainties have complex spatial distributions. The authors have developed and tested a method to decorrelate the spatial uncertainties and make statistical samples of highly correlated error maps. The sample error maps can be used to investigate the effect of DVF uncertainties on daily dose mapping via deformable image registration. An initial demonstration of this methodology shows that dose mapping uncertainties can be sensitive to spatial patterns in the DVF uncertainties. PMID:22320766
NASA Astrophysics Data System (ADS)
Singh, Asha Lata; Singh, Vipin Kumar
2018-06-01
A total of 22 water quality parameters were selected for the analysis of groundwater samples with reference to arsenic contamination. Samples were collected in the pre-monsoon and monsoon seasons of the year 2013. The maximum arsenic concentration in both the pre-monsoon and monsoon seasons was approximately the same, i.e., the maximum arsenic concentration being 75.60 and 74.46 µg/L in pre-monsoon and monsoon, respectively. Out of 72 collected samples, three were below the WHO guideline value of 10 µg/L for arsenic concentration. In 95.83% of the groundwater samples, the arsenic concentration was above the permissible limit. Nickel, manganese, and chromium concentrations were above the permissible limits in nearly all samples except for chromium concentration in a few pre-monsoon samples. However, the total iron concentrations in 23 samples (31.94%) were above the permissible limit. A total of six and seven principal components (PCs) were extracted using principal component analysis during the pre-monsoon and monsoon seasons, respectively, accounting for 76.25 and 78.52% of the total variation during two consecutive seasons. Correlation statistics revealed that the arsenic concentration was positively correlated with phosphate, iron, ammonium, bicarbonate, and manganese concentrations but negatively correlated with oxidation reduction potential (ORP), sulfate concentration, electrical conductivity, and total dissolved solids concentration. The negative correlation of arsenic with ORP suggested reducing conditions prevailing in the groundwater. The trilinear Piper diagram revealed calcium and magnesium enrichment of groundwater with an abundance of chloride ions but no predominance of bicarbonate ions. Thus, the groundwater fell into Ca2+ - Mg2+ - Cl- - SO4 2- category.
Wu, Xia; Zhu, Jian-Cheng; Zhang, Yu; Li, Wei-Min; Rong, Xiang-Lu; Feng, Yi-Fan
2016-08-25
Potential impact of lipid research has been increasingly realized both in disease treatment and prevention. An effective metabolomics approach based on ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UPLC/Q-TOF-MS) along with multivariate statistic analysis has been applied for investigating the dynamic change of plasma phospholipids compositions in early type 2 diabetic rats after the treatment of an ancient prescription of Chinese Medicine Huang-Qi-San. The exported UPLC/Q-TOF-MS data of plasma samples were subjected to SIMCA-P and processed by bioMark, mixOmics, Rcomdr packages with R software. A clear score plots of plasma sample groups, including normal control group (NC), model group (MC), positive medicine control group (Flu) and Huang-Qi-San group (HQS), were achieved by principal-components analysis (PCA), partial least-squares discriminant analysis (PLS-DA) and orthogonal partial least-squares discriminant analysis (OPLS-DA). Biomarkers were screened out using student T test, principal component regression (PCR), partial least-squares regression (PLS) and important variable method (variable influence on projection, VIP). Structures of metabolites were identified and metabolic pathways were deduced by correlation coefficient. The relationship between compounds was explained by the correlation coefficient diagram, and the metabolic differences between similar compounds were illustrated. Based on KEGG database, the biological significances of identified biomarkers were described. The correlation coefficient was firstly applied to identify the structure and deduce the metabolic pathways of phospholipids metabolites, and the study provided a new methodological cue for further understanding the molecular mechanisms of metabolites in the process of regulating Huang-Qi-San for treating early type 2 diabetes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Zainal, Nor Zuraida; Shuib, Norley; Bustam, Anita Zarina; Sabki, Zuraida Ahmad; Guan, Ng Chong
2013-01-01
Body image dissatisfaction among breast cancer survivors has been associated with psychological stress resultant from breast cancer and resultant surgery. This study aimed to examine the psychometric properties of the Malay Version of the Breast-Impact of Treatment Scale (MVBITS) and to investigate the associations of retained factors with the Hospital Anxiety and Depression Scale (HADS) and the Rosenberg Self-Esteem Scale (RSES). The MVBITS was 'forward-backward' translated from English to Malay and then administered to 70 female breast cancer patients who came to the Oncology Clinic of University Malaya Medical Centre, Kuala Lumpur, Malaysia to undergo chemotherapy. Principal component analysis (PCA) with varimax rotation was performed to explore the factor structure of the MVBITS. Associations of retained factors were estimated with reference to Spearman correlation coefficients. The internal consistency reliability of MVBITS was good (Cronbach's alpha 0.945) and showed temporal stability over a 3-week period. Principal component analysis suggested two factors termed as 'Intrusion' and 'Avoidance' domains. These factors explained 70.3% of the variance. Factor 1 comprised the effects of breast cancer treatment on the emotion and thought, while Factor 2 informed attempts to limit exposure of the body to self or others. The Factor 1 of MVBITS was positively correlated with total, depression and anxiety sub-scores of HADS. Factor 2 was positively correlated with total and anxiety sub-scores of HADS. MVBITS was also positively correlated with the RSES scores. The results showed that the Malay Version of Breast-Impact of Treatment Scale possesses satisfactory psychometric properties suggesting that this instrument is appropriate for assessment of body change stress among female breast cancer patients in Malaysia.
NASA Astrophysics Data System (ADS)
de Freitas, Maria Camila Pruper; Figueiredo Neto, Antonio Martins; Giampaoli, Viviane; da Conceição Quintaneiro Aubin, Elisete; de Araújo Lima Barbosa, Milena Maria; Damasceno, Nágila Raquel Teixeira
2016-04-01
The great atherogenic potential of oxidized low-density lipoprotein has been widely described in the literature. The objective of this study was to investigate whether the state of oxidized low-density lipoprotein in human plasma measured by the Z-scan technique has an association with different cardiometabolic biomarkers. Total cholesterol, high-density lipoprotein cholesterol, triacylglycerols, apolipoprotein A-I and apolipoprotein B, paraoxonase-1, and glucose were analyzed using standard commercial kits, and low-density lipoprotein cholesterol was estimated using the Friedewald equation. A sandwich enzyme-linked immunosorbent assay was used to detect electronegative low-density lipoprotein. Low-density lipoprotein and high-density lipoprotein sizes were determined by Lipoprint® system. The Z-scan technique was used to measure the non-linear optical response of low-density lipoprotein solution. Principal component analysis and correlations were used respectively to resize the data from the sample and test association between the θ parameter, measured with the Z-scan technique, and the principal component. A total of 63 individuals, from both sexes, with mean age 52 years (±11), being overweight and having high levels of total cholesterol and low levels of high-density lipoprotein cholesterol, were enrolled in this study. A positive correlation between the θ parameter and more anti-atherogenic pattern for cardiometabolic biomarkers together with a negative correlation for an atherogenic pattern was found. Regarding the parameters related with an atherogenic low-density lipoprotein profile, the θ parameter was negatively correlated with a more atherogenic pattern. By using Z-scan measurements, we were able to find an association between oxidized low-density lipoprotein state and multiple cardiometabolic biomarkers in samples from individuals with different cardiovascular risk factors.
Raspa, Federica; Giribaldi, Marzia; Barbero, Raffaella; Bergagna, Stefania; Antoniazzi, Sara; Mc Lean, Amy K.; Minero, Michela; Cavallarin, Laura
2017-01-01
Background The breeding of lactating donkeys is increasing in Western Europe; with it the evaluation of body condition is growing in importance since it is considered a key principle for their welfare. However, assessment of body condition is a complex task, since several factors are involved. The aim of the present study is to investigate which animal-based indicators are the most reliable to describe the body condition of lactating donkeys. For this purpose, new animal-based indicators, which are easy to measure in field conditions (including body measurements, fatty neck score (FNS), dental score), are recorded and their relationship with BCS (a proxy measure for overall adiposity) was assessed. The ones that reveal an association with the BCS are included in an integrated principal component analysis to understand which are the most related to BCS. Methods Fifty-three healthy lactating donkeys of various breeds, including 7 Martina Franca, 10 Ragusano, 2 Romagnolo and 34 crossbreeds, were evaluated. The animal-based indicators that were recorded were: length (OP, olecranon tuber-pinbone and SH, shoulder-hip), heart girth (HG), abdominal circumference (AC), neck length (NL), neck height (NH) and neck thickness (NT) at 0.50 and neck circumference (NC) at 0.25, 0.50 and 0.75, body condition score (BCS) and fatty neck score (FNS). The owners’ evaluation of the BCS was also considered. A dental assessment was performed and the month of lactation and age of each animal was recorded. Results No correlation was found between BCS and the other morphometric body measurements. On the contrary the FNS was correlated with the morphometric measurements of the neck (positive correlation to 0.50 NH and 0.50 NT, 0.50 NC, 0.75 mean NC, and negative correlation to the mean NC:NH and mean NC:NT, 0.50 NC:NT and 0.50 NC:NH ratios). A significant inverse relationship was identified between BCS and dental score. A Principal Component analysis (PCA) separated the BCS classes on the first principal component (PC1). PC1 revealed a meaningful positive correlation between the BCS and the neck measurements (NT, NH and FNS), with high positive loadings, while a negative correlation was found for dental abnormalities. The owners’ evaluation of BCS was different from the expert evaluator’ assessment, since they tended to give higher score that was slightly but significantly correlated to AC. Discussion A new scoring system, called Fatty Neck Score (FNS), has been proposed for the judgement of the adiposity status of donkey neck. The results suggest that caregivers might use the proposed animal based indicators (BCS, FNS and dental scores) together as a tool for the evaluation of the body condition of lactating donkeys. Our findings highlight that caregivers need to be trained in order to be able to properly record these indicators. Ultimately use of these indicators may help to improve the welfare of lactating donkeys. PMID:28367363
Considering Horn's Parallel Analysis from a Random Matrix Theory Point of View.
Saccenti, Edoardo; Timmerman, Marieke E
2017-03-01
Horn's parallel analysis is a widely used method for assessing the number of principal components and common factors. We discuss the theoretical foundations of parallel analysis for principal components based on a covariance matrix by making use of arguments from random matrix theory. In particular, we show that (i) for the first component, parallel analysis is an inferential method equivalent to the Tracy-Widom test, (ii) its use to test high-order eigenvalues is equivalent to the use of the joint distribution of the eigenvalues, and thus should be discouraged, and (iii) a formal test for higher-order components can be obtained based on a Tracy-Widom approximation. We illustrate the performance of the two testing procedures using simulated data generated under both a principal component model and a common factors model. For the principal component model, the Tracy-Widom test performs consistently in all conditions, while parallel analysis shows unpredictable behavior for higher-order components. For the common factor model, including major and minor factors, both procedures are heuristic approaches, with variable performance. We conclude that the Tracy-Widom procedure is preferred over parallel analysis for statistically testing the number of principal components based on a covariance matrix.
Functional-anatomic correlates of individual differences in memory.
Kirchhoff, Brenda A; Buckner, Randy L
2006-07-20
Memory abilities differ greatly across individuals. To explore a source of these differences, we characterized the varied strategies people adopt during unconstrained encoding. Participants intentionally encoded object pairs during functional MRI. Principal components analysis applied to a strategy questionnaire revealed that participants variably used four main strategies to aid learning. Individuals' use of verbal elaboration and visual inspection strategies independently correlated with their memory performance. Verbal elaboration correlated with activity in a network of regions that included prefrontal regions associated with controlled verbal processing, while visual inspection correlated with activity in a network of regions that included an extrastriate region associated with object processing. Activity in regions associated with use of these strategies was also correlated with memory performance. This study reveals functional-anatomic correlates of verbal and perceptual strategies that are variably used by individuals during encoding. These strategies engage distinct brain regions and may separately influence memory performance.
Cocco, S; Monasson, R; Sessak, V
2011-05-01
We consider the problem of inferring the interactions between a set of N binary variables from the knowledge of their frequencies and pairwise correlations. The inference framework is based on the Hopfield model, a special case of the Ising model where the interaction matrix is defined through a set of patterns in the variable space, and is of rank much smaller than N. We show that maximum likelihood inference is deeply related to principal component analysis when the amplitude of the pattern components ξ is negligible compared to √N. Using techniques from statistical mechanics, we calculate the corrections to the patterns to the first order in ξ/√N. We stress the need to generalize the Hopfield model and include both attractive and repulsive patterns in order to correctly infer networks with sparse and strong interactions. We present a simple geometrical criterion to decide how many attractive and repulsive patterns should be considered as a function of the sampling noise. We moreover discuss how many sampled configurations are required for a good inference, as a function of the system size N and of the amplitude ξ. The inference approach is illustrated on synthetic and biological data.
Sumbele, Sally; Fotelli, Mariangela N.; Nikolopoulos, Dimosthenis; Tooulakou, Georgia; Liakoura, Vally; Liakopoulos, Georgios; Bresta, Panagiota; Dotsika, Elissavet; Adams, Mark A.; Karabourniotis, George
2012-01-01
Background and aims Phenolic compounds are the most commonly studied of all secondary metabolites because of their significant protective–defensive roles and their significant concentration in plant tissues. However, there has been little study on relationships between gas exchange parameters and the concentration of leaf phenolic compounds (total phenolics (TP) and condensed tannins (CT)) across a range of species. Therefore, we addressed the question: is there any correlation between photosynthetic capacity (Amax) and TP and CT across species from different ecosystems in different continents? Methodology A plethora of functional and structural parameters were measured in 49 plant species following different growth strategies from five sampling sites located in Greece and Australia. The relationships between several leaf traits were analysed by means of regression and principal component analysis. Principal results The results revealed a negative relationship between TP and CT and Amax among the different plant species, growth strategies and sampling sites, irrespective of expression (with respect to mass, area or nitrogen content). Principal component analysis showed that high concentrations of TP and CT are associated with thick, dense leaves with low nitrogen. This leaf type is characterized by low growth, Amax and transpiration rates, and is common in environments with low water and nutrient availability, high temperatures and high light intensities. Therefore, the high TP and CT in such leaves are compatible with the protective and defensive functions ascribed to them. Conclusions Our results indicate a functional integration between carbon gain and the concentration of leaf phenolic compounds that reflects the trade-off between growth and defence/protection demands, depending on the growth strategy adopted by each species. PMID:23050073
Noel, Sabrina E.; Newby, P. K.; Ordovas, Jose M.; Tucker, Katherine L.
2010-01-01
Combinations of fatty acids may affect risk of metabolic syndrome. Puerto Ricans have a disproportionate number of chronic conditions compared with other Hispanic groups. We aimed to characterize fatty acid intake patterns of Puerto Rican adults aged 45–75 y and living in the Greater Boston area (n = 1207) and to examine associations between these patterns and metabolic syndrome. Dietary fatty acids, as a percentage of total fat, were entered into principle components analysis. Spearman correlation coefficients were used to examine associations between fatty acid intake patterns, nutrients, and food groups. Associations with metabolic syndrome were analyzed by using logistic regression and general linear models with quintiles of principal component scores. Four principal components (factors) emerged: factor 1, short- and medium-chain SFA/dairy; factor 2, (n-3) fatty acid/fish; factor 3, very long-chain (VLC) SFA and PUFA/oils; and factor 4, monounsaturated fatty acid/trans fat. The SFA/dairy factor was inversely associated with fasting serum glucose concentrations (P = 0.02) and the VLC SFA/oils factor was negatively related to waist circumference (P = 0.008). However, these associations were no longer significant after additional adjustment for BMI. The (n-3) fatty acid/fish factor was associated with a lower likelihood of metabolic syndrome (Q5 vs. Q1: odds ratio: 0.54, 95% CI: 0.34, 0.86). In summary, principal components analysis of fatty acid intakes revealed 4 dietary fatty acid patterns in this population. Identifying optimal combinations of fatty acids may be beneficial for understanding relationships with health outcomes given their diverse effects on metabolism. PMID:20702744
Todhunter, Fern
2015-07-01
To report on the relationship between competence and confidence in nursing students as users of information and communication technologies, using principal components analysis. In nurse education, learning about and learning using information and communication technologies is well established. Nursing students are one of the undergraduate populations in higher education required to use these resources for academic work and practice learning. Previous studies showing mixed experiences influenced the choice of an exploratory study to find out about information and communication technologies competence and confidence. A 48-item survey questionnaire was administered to a volunteer sample of first- and second-year nursing students between July 2008-April 2009. The cohort ( N = 375) represented 18·75% of first- and second-year undergraduates. A comparison between this work and subsequent studies reveal some similar ongoing issues and ways to address them. A principal components analysis (PCA) was carried out to determine the strength of the correlation between information and communication technologies competence and confidence. The aim was to show the presence of any underlying dimensions in the transformed data that would explain any variations in information and communication technologies competence and confidence. Cronbach's alpha values showed fair to good internal consistency. The five component structure gave medium to high results and explained 44·7% of the variance in the original data. Confidence had a high representation. The findings emphasized the shift towards social learning approaches for information and communication technologies. Informal social collaboration found favour with nursing students. Learning through talking, watching and listening all play a crucial role in the development of computing skills.
The Influence Function of Principal Component Analysis by Self-Organizing Rule.
Higuchi; Eguchi
1998-07-28
This article is concerned with a neural network approach to principal component analysis (PCA). An algorithm for PCA by the self-organizing rule has been proposed and its robustness observed through the simulation study by Xu and Yuille (1995). In this article, the robustness of the algorithm against outliers is investigated by using the theory of influence function. The influence function of the principal component vector is given in an explicit form. Through this expression, the method is shown to be robust against any directions orthogonal to the principal component vector. In addition, a statistic generated by the self-organizing rule is proposed to assess the influence of data in PCA.
Santos, J L; Aparicio, I; Callejón, M; Alonso, E
2009-05-30
Several pharmaceutically active compounds have been monitored during 1-year period in influent and effluent wastewater from wastewater treatment plants (WWTPs) to evaluate their temporal evolution and removal from wastewater and to know which variables have influence in their removal rates. Pharmaceutical compounds monitored were four antiinflammatory drugs (diclofenac, ibuprofen, ketoprofen and naproxen), an antiepileptic drug (carbamazepine) and a nervous stimulant (caffeine). All of the pharmaceutically active compounds monitored, except diclofenac, were detected in influent and effluent wastewater. Mean concentrations measured in influent wastewater were 6.17, 0.48, 93.6, 1.83 and 5.41 microg/L for caffeine, carbamazepine, ibuprofen, ketoprofen and naproxen, respectively. Mean concentrations measured in effluent wastewater were 2.02, 0.56, 8.20, 0.84 and 2.10 microg/L for caffeine, carbamazepine, ibuprofen, ketoprofen and naproxen, respectively. Mean removal rates of the pharmaceuticals varied from 8.1% (carbamazepine) to 87.5% (ibuprofen). The existence of relationships between the concentrations of the pharmaceutical compounds, their removal rates, the characterization parameters of influent wastewaters and the WWTP control design parameters has been studied by means of statistical analysis (correlation and principal component analysis). With both statistical analyses, high correlations were obtained between the concentration of the pharmaceutical compounds and the characterization parameters of influent wastewaters; and between the removal rates of the pharmaceutical compounds, the removal rates of the characterization parameters of influent wastewaters and the WWTP hydraulic retention times. Principal component analysis showed the existence of two main components accounting for 76% of the total variability.
Essential oils and chemical diversity of southeast European populations of Salvia officinalis L.
Cvetkovikj, Ivana; Stefkov, Gjoshe; Karapandzova, Marija; Kulevanova, Svetlana; Satović, Zlatko
2015-07-01
The essential oils of 25 populations of Dalmatian sage (Salvia officinalis L.) from nine Balkan countries, including 17 indigenous populations (representing almost the entire native distribution area) and eight non-indigenous (cultivated or naturalized) populations were analyzed. Their essential-oil yield ranged from 0.25 to 3.48%. Within the total of 80 detected compounds, ten (β-pinene, 1,8-cineole, cis-thujone, trans-thujone, camphor, borneol, trans-caryophyllene, α-humulene, viridiflorol, and manool) represented 42.60 to 85.70% of the components in the analyzed essential oils. Strong positive correlations were observed between the contents of trans-caryophyllene and α-humulene, α-humulene and viridiflorol, and viridiflorol and manool. Principal component analysis (PCA) on the basis of the contents of the ten main compounds showed that four principal components had an eigenvalue greater than 1 and explained 79.87% of the total variation. Performing cluster analysis (CA), the sage populations could be grouped into four distinct chemotypes (A-D). The essential oils of 14 out of the 25 populations of Dalmatian sage belonged to Chemotype A and were rich in cis-thujone and camphor, with low contents of trans-thujone. The correlation between the essential-oil composition and geographic variables of the indigenous populations was not significant; hence, the similarities in the essential-oil profile among populations could not be explained by the physical proximity of the populations. Additionally, the southeastern populations tended to have higher EO yields than the northwestern ones. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.
Zhang, Shan; Xu, Lu; Liu, Yang-Xi; Fu, Hai-Yan; Xiao, Zuo-Bing; She, Yuan-Bin
2018-04-01
E-jiao (Colla Corii Asini, CCA) has been widely used as a healthy food and Chinese medicine. Although authentic CCA is characterized by its typical sweet and neutral fragrance, its aroma components have been rarely investigated. This work investigated the aroma-active components and antioxidant activity of 19 CCAs from different geographical origins. CCA extracts obtained by simultaneous distillation and extraction were analyzed by gas chromatography-mass spectrometry (GC-MS), gas chromatography-olfactometry (GC-O) and sensory analysis. The antioxidant activity of CCAs was determined by ABTS and DPPH assays. A total of 65 volatile compounds were identified and quantified by GC-MS and 23 aroma-active compounds were identified by GC-O and aroma extract dilution analysis. The most powerful aroma-active compounds were identified based on the flavor dilution factor and their contents were compared among the 19 CCAs. Principal component analysis of the 23 aroma-active components showed 3 significant clusters. Canonical correlation analysis between antioxidant assays and the 23 aroma-active compounds indicates strong correlation (r = 0.9776, p = 0.0281). Analysis of aroma-active components shows potential for quality evaluation and discrimination of CCAs from different geographical origins.
Liu, Wei; Wang, Dongmei; Hou, Xiaogai; Yang, Yueqin; Xue, Xian; Jia, Qishi; Zhang, Lixia; Zhao, Wei; Yin, Dongxue
2018-05-17
Traditional Chinese medicine (TCM) plays a very important role in the health system of China. The content and activity of active component are main indexes that evaluate the quality of TCM, however they may vary with environmental factors in their growing locations. In this study, effects of environmental factors on the contents of active components and antioxidant activity of Dasiphora fruticosa from the five main production areas of China were investigated. The contents of tannin, total flavonoid and rutin were determined and varied within the range of 7.65-10.69%, 2.30-5.39% and 0.18-0.81%, respectively. Antioxidant activity was determined by DPPH assay, with the DPPH IC 50 values ranged from 8.791 to 32.534μg mL -1 . In order to further explore the cause of these significant geographical variations, the chemometric methods including correlation analysis, principal component analysis, gray correlation analysis, and path analysis were conducted. The results showed environmental factors had significant effect on the active component contents and antioxidant activity. Rapidly available phosphorus (RAP) and rapidly available nitrogen (RAN) were common dominant factors, and a significant positive correlation was observed between RAP and active components and antioxidant activity (P<0.05). Contributed by their high active components and strong antioxidant activity, Bange in Tibet and Geermu in Qinghai Province was selected as a favorable growing location, respectively. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Hemmateenejad, Bahram; Akhond, Morteza; Miri, Ramin; Shamsipur, Mojtaba
2003-01-01
A QSAR algorithm, principal component-genetic algorithm-artificial neural network (PC-GA-ANN), has been applied to a set of newly synthesized calcium channel blockers, which are of special interest because of their role in cardiac diseases. A data set of 124 1,4-dihydropyridines bearing different ester substituents at the C-3 and C-5 positions of the dihydropyridine ring and nitroimidazolyl, phenylimidazolyl, and methylsulfonylimidazolyl groups at the C-4 position with known Ca(2+) channel binding affinities was employed in this study. Ten different sets of descriptors (837 descriptors) were calculated for each molecule. The principal component analysis was used to compress the descriptor groups into principal components. The most significant descriptors of each set were selected and used as input for the ANN. The genetic algorithm (GA) was used for the selection of the best set of extracted principal components. A feed forward artificial neural network with a back-propagation of error algorithm was used to process the nonlinear relationship between the selected principal components and biological activity of the dihydropyridines. A comparison between PC-GA-ANN and routine PC-ANN shows that the first model yields better prediction ability.
Chan, Ching W; Deadman, Benjamin J; Manley-Harris, Merilyn; Wilkins, Alistair L; Alber, Dagmar G; Harry, Elizabeth
2013-12-01
The flavonoid components of New Zealand mānuka (Leptospermum scoparium) honey have been quantified in a series of 31 honeys of varying non-peroxide antibacterial activity to clarify discrepancies between previous studies reported in the literature. Total flavonoid content was 1.16 mg/100 g honey. The principal flavonoids present were pinobanksin, pinocembrin, luteolin and chrysin and together these represented 61% of the total flavonoid content. 1, 2-formyl-5-(2-methoxyphenyl)-pyrrole, which was weakly correlated with the non-peroxide antibacterial activity, was isolated from the flavonoid fraction and separately synthesised. 1 did not display inhibitory activity against Staphylococcus aureus in vitro and thus the origin of the correlation, which is still unknown, is not a direct contribution. Copyright © 2013 Elsevier Ltd. All rights reserved.
Feature Extraction and Selection Strategies for Automated Target Recognition
NASA Technical Reports Server (NTRS)
Greene, W. Nicholas; Zhang, Yuhan; Lu, Thomas T.; Chao, Tien-Hsin
2010-01-01
Several feature extraction and selection methods for an existing automatic target recognition (ATR) system using JPLs Grayscale Optical Correlator (GOC) and Optimal Trade-Off Maximum Average Correlation Height (OT-MACH) filter were tested using MATLAB. The ATR system is composed of three stages: a cursory region of-interest (ROI) search using the GOC and OT-MACH filter, a feature extraction and selection stage, and a final classification stage. Feature extraction and selection concerns transforming potential target data into more useful forms as well as selecting important subsets of that data which may aide in detection and classification. The strategies tested were built around two popular extraction methods: Principal Component Analysis (PCA) and Independent Component Analysis (ICA). Performance was measured based on the classification accuracy and free-response receiver operating characteristic (FROC) output of a support vector machine(SVM) and a neural net (NN) classifier.
Feature extraction and selection strategies for automated target recognition
NASA Astrophysics Data System (ADS)
Greene, W. Nicholas; Zhang, Yuhan; Lu, Thomas T.; Chao, Tien-Hsin
2010-04-01
Several feature extraction and selection methods for an existing automatic target recognition (ATR) system using JPLs Grayscale Optical Correlator (GOC) and Optimal Trade-Off Maximum Average Correlation Height (OT-MACH) filter were tested using MATLAB. The ATR system is composed of three stages: a cursory regionof- interest (ROI) search using the GOC and OT-MACH filter, a feature extraction and selection stage, and a final classification stage. Feature extraction and selection concerns transforming potential target data into more useful forms as well as selecting important subsets of that data which may aide in detection and classification. The strategies tested were built around two popular extraction methods: Principal Component Analysis (PCA) and Independent Component Analysis (ICA). Performance was measured based on the classification accuracy and free-response receiver operating characteristic (FROC) output of a support vector machine(SVM) and a neural net (NN) classifier.
Bos, Nanne; Sturms, Leontien M; Stellato, Rebecca K; Schrijvers, Augustinus J P; van Stel, Henk F
2015-10-01
Patients' experiences are an indicator of health-care performance in the accident and emergency department (A&E). The Consumer Quality Index for the Accident and Emergency department (CQI A&E), a questionnaire to assess the quality of care as experienced by patients, was investigated. The internal consistency, construct validity and discriminative capacity of the questionnaire were examined. In the Netherlands, twenty-one A&Es participated in a cross-sectional survey, covering 4883 patients. The questionnaire consisted of 78 questions. Principal components analysis determined underlying domains. Internal consistency was determined by Cronbach's alpha coefficients, construct validity by Pearson's correlation coefficients and the discriminative capacity by intraclass correlation coefficients and reliability of A&E-level mean scores (G-coefficient). Seven quality domains emerged from the principal components analysis: information before treatment, timeliness, attitude of health-care professionals, professionalism of received care, information during treatment, environment and facilities, and discharge management. Domains were internally consistent (range: 0.67-0.84). Five domains and the 'global quality rating' had the capacity to discriminate among A&Es (significant intraclass correlation coefficient). Four domains and the 'global quality rating' were close to or above the threshold for reliably demonstrating differences among A&Es. The patients' experiences score on the domain timeliness showed the largest range between the worst- and best-performing A&E. The CQI A&E is a validated survey to measure health-care performance in the A&E from patients' perspective. Five domains regarding quality of care aspects and the 'global quality rating' had the capacity to discriminate among A&Es. © 2013 John Wiley & Sons Ltd.
Paschou, Peristera
2010-01-01
Recent large-scale studies of European populations have demonstrated the existence of population genetic structure within Europe and the potential to accurately infer individual ancestry when information from hundreds of thousands of genetic markers is used. In fact, when genomewide genetic variation of European populations is projected down to a two-dimensional Principal Components Analysis plot, a surprising correlation with actual geographic coordinates of self-reported ancestry has been reported. This substructure can hamper the search of susceptibility genes for common complex disorders leading to spurious correlations. The identification of genetic markers that can correct for population stratification becomes therefore of paramount importance. Analyzing 1,200 individuals from 11 populations genotyped for more than 500,000 SNPs (Population Reference Sample), we present a systematic exploration of the extent to which geographic coordinates of origin within Europe can be predicted, with small panels of SNPs. Markers are selected to correlate with the top principal components of the dataset, as we have previously demonstrated. Performing thorough cross-validation experiments we show that it is indeed possible to predict individual ancestry within Europe down to a few hundred kilometers from actual individual origin, using information from carefully selected panels of 500 or 1,000 SNPs. Furthermore, we show that these panels can be used to correctly assign the HapMap Phase 3 European populations to their geographic origin. The SNPs that we propose can prove extremely useful in a variety of different settings, such as stratification correction or genetic ancestry testing, and the study of the history of European populations. PMID:20805874
A novel approach to identify genes that determine grain protein deviation in cereals.
Mosleth, Ellen F; Wan, Yongfang; Lysenko, Artem; Chope, Gemma A; Penson, Simon P; Shewry, Peter R; Hawkesford, Malcolm J
2015-06-01
Grain yield and protein content were determined for six wheat cultivars grown over 3 years at multiple sites and at multiple nitrogen (N) fertilizer inputs. Although grain protein content was negatively correlated with yield, some grain samples had higher protein contents than expected based on their yields, a trait referred to as grain protein deviation (GPD). We used novel statistical approaches to identify gene transcripts significantly related to GPD across environments. The yield and protein content were initially adjusted for nitrogen fertilizer inputs and then adjusted for yield (to remove the negative correlation with protein content), resulting in a parameter termed corrected GPD. Significant genetic variation in corrected GPD was observed for six cultivars grown over a range of environmental conditions (a total of 584 samples). Gene transcript profiles were determined in a subset of 161 samples of developing grain to identify transcripts contributing to GPD. Principal component analysis (PCA), analysis of variance (ANOVA) and means of scores regression (MSR) were used to identify individual principal components (PCs) correlating with GPD alone. Scores of the selected PCs, which were significantly related to GPD and protein content but not to the yield and significantly affected by cultivar, were identified as reflecting a multivariate pattern of gene expression related to genetic variation in GPD. Transcripts with consistent variation along the selected PCs were identified by an approach hereby called one-block means of scores regression (one-block MSR). © 2014 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Salvatore, Stefania; Bramness, Jørgen G; Røislien, Jo
2016-07-12
Wastewater-based epidemiology (WBE) is a novel approach in drug use epidemiology which aims to monitor the extent of use of various drugs in a community. In this study, we investigate functional principal component analysis (FPCA) as a tool for analysing WBE data and compare it to traditional principal component analysis (PCA) and to wavelet principal component analysis (WPCA) which is more flexible temporally. We analysed temporal wastewater data from 42 European cities collected daily over one week in March 2013. The main temporal features of ecstasy (MDMA) were extracted using FPCA using both Fourier and B-spline basis functions with three different smoothing parameters, along with PCA and WPCA with different mother wavelets and shrinkage rules. The stability of FPCA was explored through bootstrapping and analysis of sensitivity to missing data. The first three principal components (PCs), functional principal components (FPCs) and wavelet principal components (WPCs) explained 87.5-99.6 % of the temporal variation between cities, depending on the choice of basis and smoothing. The extracted temporal features from PCA, FPCA and WPCA were consistent. FPCA using Fourier basis and common-optimal smoothing was the most stable and least sensitive to missing data. FPCA is a flexible and analytically tractable method for analysing temporal changes in wastewater data, and is robust to missing data. WPCA did not reveal any rapid temporal changes in the data not captured by FPCA. Overall the results suggest FPCA with Fourier basis functions and common-optimal smoothing parameter as the most accurate approach when analysing WBE data.
40 CFR 62.14505 - What are the principal components of this subpart?
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 8 2010-07-01 2010-07-01 false What are the principal components of this subpart? 62.14505 Section 62.14505 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... components of this subpart? This subpart contains the eleven major components listed in paragraphs (a...
NASA Technical Reports Server (NTRS)
Ford, G. E. (Principal Investigator)
1984-01-01
Principal components transformations was applied to a Walnut Creek, Texas subscene to reduce the dimensionality of the multispectral sensor data. This transformation was also applied to a LANDSAT 3 MSS subscene of the same area acquired in a different season and year. Results of both procedures are tabulated and allow for comparisons between TM and MSS data. The TM correlation matrix shows that visible bands 1 to 3 exhibit a high degree of correlation in the range 0.92 to 0.96. Correlation for bands 5 to 7 is 0.93. Band 4 is not highly correlated with any other band, with corrections in the range 0.13 to 0.52. The thermal band (6) is not highly correlated with other bands in the range 0.13 to 0.46. The MSS correlation matrix shows that bands 4 and 5 are highly correlated (0.96) as are bands 6 and 7 with a correlation of 0.92.
Aznar, Margarita; Arroyo, Teresa
2007-09-21
The purge-and-trap extraction method, coupled to a gas chromatograph with mass spectrometry detection, has been applied to the determination of 26 aromatic volatiles in wine. The method was optimized, validated and applied to the analyses of 40 red and white wines from 7 different Spanish regions. Principal components analyses of data showed the correlation between wines of similar origin.
Rapid screening of guar gum using portable Raman spectral identification methods.
Srivastava, Hirsch K; Wolfgang, Steven; Rodriguez, Jason D
2016-01-25
Guar gum is a well-known inactive ingredient (excipient) used in a variety of oral pharmaceutical dosage forms as a thickener and stabilizer of suspensions and as a binder of powders. It is also widely used as a food ingredient in which case alternatives with similar properties, including chemically similar gums, are readily available. Recent supply shortages and price fluctuations have caused guar gum to come under increasing scrutiny for possible adulteration by substitution of cheaper alternatives. One way that the U.S. FDA is attempting to screen pharmaceutical ingredients at risk for adulteration or substitution is through field-deployable spectroscopic screening. Here we report a comprehensive approach to evaluate two field-deployable Raman methods--spectral correlation and principal component analysis--to differentiate guar gum from other gums. We report a comparison of the sensitivity of the spectroscopic screening methods with current compendial identification tests. The ability of the spectroscopic methods to perform unambiguous identification of guar gum compared to other gums makes them an enhanced surveillance alternative to the current compendial identification tests, which are largely subjective in nature. Our findings indicate that Raman spectral identification methods perform better than compendial identification methods and are able to distinguish guar gum from other gums with 100% accuracy for samples tested by spectral correlation and principal component analysis. Published by Elsevier B.V.
Validated scales to assess adult self-efficacy to eat fruits and vegetables.
Mainvil, Louise A; Lawson, Rob; Horwath, Caroline C; McKenzie, Joanne E; Reeder, Anthony I
2009-01-01
An audience-centered approach was used to develop valid and reliable scales to measure adult self-efficacy to eat fruit and vegetables. Cross-sectional survey of a national population. New Zealand. A sample of 350 adults ages 25 to 60 years was randomly selected from a nationally representative sampling frame. Overall, 231 questionnaires were returned, producing a 72% response rate. The mean age of subjects was 42.7years; 58% were female; 80% were of European descent; 11% were indigenous Maori. The 76-item, self-administered questionnaire collected data on demographics, fruit and vegetable intakes, stages of change, decisional balance, and self-efficacy (24 items). Principal components analysis with oblimin rotation was performed. Principal components analysis yielded three distinct and reliable scales for self-efficacy to eat "vegetables," "fruit," and "fruit and vegetables" (Cronbach alpha = .80, .85, and .73, respectively). These scales were correlated, but only the "vegetable" scale was positively correlated with the "fruit and vegetable" scale (Kendall tau r = 0.30, -0.26 [fruit, "fruit and vegetables"], -0.38 [fruit, vegetable]). As predicted, self-efficacy was associated with intake (r = 0.30 [fruit], 0.34 [vegetables]). Assuming the factor structure is confirmed in independent samples, these brief psychometrically sound scales may be used to assess adult self-efficacy to eat fruit and to eat vegetables (separately) but not self-efficacy to eat "fruit and vegetables."
A search for stability gradients in North American breeding bird communities
Noon, B.R.; Dawson, D.K.; Kelly, J.P.
1985-01-01
To search for the existence of stability gradients in North American breeding land bird communities we operationally defined stability (after Jarvinen 1979) as year-to-year persistence in species composition and distribution of species abundances. From the census data for 174 study plots we derived nine indices that estimate the annual variability of species composition, the species abundance distribution, diversity, and breeding density. The resulting matrix of study plot by stability indices was used to estimate the correlation structure of the stability indices. The correlation matrix was, in turn, subjected to a principal components analysis to derive synthetic gradients of variation. We then searched for patterns of variation in these stability gradients associated with either geographic location or habitat type. Three independent principal component axes reproduced most of the variation in the initial data and were interpreted as gradients of variation in species turnover, diversity, and breeding abundance. Thus, the annual stability of community structure apparently responds independently to species and abundance variation. Despite the clarity of the derived gradients, few patterns emerged when the plots were ordinated by either habitat or geographic location. In general, grasslands showed greater annual variation in diversity than forested habitats, and, for some habitats, northern communities were less stable than more southern communities. However, few of these patterns were very strong, and we interpret them cautiously.
Zhou, Jin J.; Cho, Michael H.; Lange, Christoph; Lutz, Sharon; Silverman, Edwin K.; Laird, Nan M.
2015-01-01
Many correlated disease variables are analyzed jointly in genetic studies in the hope of increasing power to detect causal genetic variants. One approach involves assessing the relationship between each phenotype and each single nucleotide polymorphism (SNP) individually and using a Bonferroni correction for the effective number of tests conducted. Alternatively, one can apply a multivariate regression or a dimension reduction technique, such as principal component analysis (PCA), and test for the association with the principal components (PC) of the phenotypes rather than the individual phenotypes. Inspired by the previous approaches of combining phenotypes to maximize heritability at individual SNPs, in this paper, we propose to construct a maximally heritable phenotype (MaxH) by taking advantage of the estimated total heritability and co-heritability. The heritability and co-heritability only need to be estimated once, therefore our method is applicable to genome-wide scans. MaxH phenotype is a linear combination of the individual phenotypes with increased heritability and power over the phenotypes being combined. Simulations show that the heritability and power achieved agree well with the theory for large samples and two phenotypes. We compare our approach with commonly used methods and assess both the heritability and the power of the MaxH phenotype. Moreover we provide suggestions for how to choose the phenotypes for combination. An application of our approach to a COPD genome-wide association study shows the practical relevance. PMID:26111731
Multidigit movement synergies of the human hand in an unconstrained haptic exploration task.
Thakur, Pramodsingh H; Bastian, Amy J; Hsiao, Steven S
2008-02-06
Although the human hand has a complex structure with many individual degrees of freedom, joint movements are correlated. Studies involving simple tasks (grasping) or skilled tasks (typing or finger spelling) have shown that a small number of combined joint motions (i.e., synergies) can account for most of the variance in observed hand postures. However, those paradigms evoked a limited set of hand postures and as such the reported correlation patterns of joint motions may be task-specific. Here, we used an unconstrained haptic exploration task to evoke a set of hand postures that is representative of most naturalistic postures during object manipulation. Principal component analysis on this set revealed that the first seven principal components capture >90% of the observed variance in hand postures. Further, we identified nine eigenvectors (or synergies) that are remarkably similar across multiple subjects and across manipulations of different sets of objects within a subject. We then determined that these synergies are used broadly by showing that they account for the changes in hand postures during other tasks. These include hand motions such as reach and grasp of objects that vary in width, curvature and angle, and skilled motions such as precision pinch. Our results demonstrate that the synergies reported here generalize across tasks, and suggest that they represent basic building blocks underlying natural human hand motions.
Multivariate methods for indoor PM10 and PM2.5 modelling in naturally ventilated schools buildings
NASA Astrophysics Data System (ADS)
Elbayoumi, Maher; Ramli, Nor Azam; Md Yusof, Noor Faizah Fitri; Yahaya, Ahmad Shukri Bin; Al Madhoun, Wesam; Ul-Saufie, Ahmed Zia
2014-09-01
In this study the concentrations of PM10, PM2.5, CO and CO2 concentrations and meteorological variables (wind speed, air temperature, and relative humidity) were employed to predict the annual and seasonal indoor concentration of PM10 and PM2.5 using multivariate statistical methods. The data have been collected in twelve naturally ventilated schools in Gaza Strip (Palestine) from October 2011 to May 2012 (academic year). The bivariate correlation analysis showed that the indoor PM10 and PM2.5 were highly positive correlated with outdoor concentration of PM10 and PM2.5. Further, Multiple linear regression (MLR) was used for modelling and R2 values for indoor PM10 were determined as 0.62 and 0.84 for PM10 and PM2.5 respectively. The Performance indicators of MLR models indicated that the prediction for PM10 and PM2.5 annual models were better than seasonal models. In order to reduce the number of input variables, principal component analysis (PCA) and principal component regression (PCR) were applied by using annual data. The predicted R2 were 0.40 and 0.73 for PM10 and PM2.5, respectively. PM10 models (MLR and PCR) show the tendency to underestimate indoor PM10 concentrations as it does not take into account the occupant's activities which highly affect the indoor concentrations during the class hours.
Hierarchical Regularity in Multi-Basin Dynamics on Protein Landscapes
NASA Astrophysics Data System (ADS)
Matsunaga, Yasuhiro; Kostov, Konstatin S.; Komatsuzaki, Tamiki
2004-04-01
We analyze time series of potential energy fluctuations and principal components at several temperatures for two kinds of off-lattice 46-bead models that have two distinctive energy landscapes. The less-frustrated "funnel" energy landscape brings about stronger nonstationary behavior of the potential energy fluctuations at the folding temperature than the other, rather frustrated energy landscape at the collapse temperature. By combining principal component analysis with an embedding nonlinear time-series analysis, it is shown that the fast fluctuations with small amplitudes of 70-80% of the principal components cause the time series to become almost "random" in only 100 simulation steps. However, the stochastic feature of the principal components tends to be suppressed through a wide range of degrees of freedom at the transition temperature.
Quinn, Casey; Hercz, Daniel; Gillespie, James A
2013-01-01
Background Human immunodeficiency virus (HIV) is a serious health problem in the Russian Federation. However, the true scale of HIV in Russia has long been the subject of considerable debate. Using digital surveillance to monitor diseases has become increasingly popular in high income countries. But Internet users may not be representative of overall populations, and the characteristics of the Internet-using population cannot be directly ascertained from search pattern data. This exploratory infoveillance study examined if Internet search patterns can be used for disease surveillance in a large middle-income country with a dispersed population. Objective This study had two main objectives: (1) to validate Internet search patterns against national HIV prevalence data, and (2) to investigate the relationship between search patterns and the determinants of Internet access. Methods We first assessed whether online surveillance is a valid and reliable method for monitoring HIV in the Russian Federation. Yandex and Google both provided tools to study search patterns in the Russian Federation. We evaluated the relationship between both Yandex and Google aggregated search patterns and HIV prevalence in 2011 at national and regional tiers. Second, we analyzed the determinants of Internet access to determine the extent to which they explained regional variations in searches for the Russian terms for “HIV” and “AIDS”. We sought to extend understanding of the characteristics of Internet searching populations by data matching the determinants of Internet access (age, education, income, broadband access price, and urbanization ratios) and searches for the term “HIV” using principal component analysis (PCA). Results We found generally strong correlations between HIV prevalence and searches for the terms “HIV” and “AIDS”. National correlations for Yandex searches for “HIV” were very strongly correlated with HIV prevalence (Spearman rank-order coefficient [rs]=.881, P≤.001) and strongly correlated for “AIDS” (rs=.714, P≤.001). The strength of correlations varied across Russian regions. National correlations in Google for the term “HIV” (rs=.672, P=.004) and “AIDS” (rs=.584, P≤.001) were weaker than for Yandex. Second, we examined the relationship between the determinants of Internet access and search patterns for the term “HIV” across Russia using PCA. At the national level, we found Principal Component 1 loadings, including age (-0.56), HIV search (-0.533), and education (-0.479) contributed 32% of the variance. Principal Component 2 contributed 22% of national variance (income, -0.652 and broadband price, -0.460). Conclusions This study contributes to the methodological literature on search patterns in public health. Based on our preliminary research, we suggest that PCA may be used to evaluate the relationship between the determinants of Internet access and searches for health problems beyond high-income countries. We believe it is in middle-income countries that search methods can make the greatest contribution to public health. PMID:24220250
What Aspects of Principal Leadership Are Most Highly Correlated with School Outcomes in China?
ERIC Educational Resources Information Center
Zheng, Qiao; Li, Lingyan; Chen, Huijuan; Loeb, Susanna
2017-01-01
Purpose: The purpose of this study is to build a broader framework for Chinese principal leadership and to determine what aspects of principal leadership correlate most highly with school outcomes from the perspectives of both principals and teachers. Method: The data come from a 2013 national student achievement assessment in China comprising…
Principals' Perceptions Regarding Their Supervision and Evaluation
ERIC Educational Resources Information Center
Hvidston, David J.; Range, Bret G.; McKim, Courtney Ann
2015-01-01
This study examined the perceptions of principals concerning principal evaluation and supervisory feedback. Principals were asked two open-ended questions. Respondents included 82 principals in the Rocky Mountain region. The emerging themes were "Superintendent Performance," "Principal Evaluation Components," "Specific…
Grilo, C M
2004-01-01
To examine the factor structure of DSM-IV criteria for obsessive compulsive personality disorder (OCPD) in patients with binge eating disorder (BED). Two hundred and eleven consecutive out-patients with axis I diagnoses of BED were reliably assessed with semi-structured diagnostic interviews. The eight criteria for the OCPD diagnosis were examined with reliability and correlational analyses. Exploratory factor analysis was performed to identify potential components. Cronbach's coefficient alpha for the OCPD criteria was 0.77. Principal components factor analysis with varimax rotation revealed a three-factor solution (rigidity, perfectionism, and miserliness), which accounted for 65% of variance. The DSM-IV criteria for OCPD showed good internal consistency. Exploratory factor analysis, however, revealed three components that may reflect distinct interpersonal, intrapersonal (cognitive), and behavioral features.
Influence of extractable soil manganese on oxidation capacity of different soils in Korea
NASA Astrophysics Data System (ADS)
Chon, Chul-Min; Kim, Jae Gon; Lee, Gyoo Ho; Kim, Tack Hyun
2008-08-01
We examined the relationship between soil oxidation capacity and extractable soil manganese, iron oxides, and other soil properties. The Korean soils examined in this study exhibited low to medium Cr oxidation capacities, oxidizing 0.00-0.47 mmol/kg, except for TG-4 soils, which had the highest capacity for oxidizing added Cr(III) [>1.01 mmol/kg of oxidized Cr(VI)]. TG and US soils, with high Mn contents, had relatively high oxidation capacities. The Mn amounts extracted by dithionite-citrate-bicarbonate (DCB) (Mnd), NH2OH·HCl (Mnh), and hydroquinone (Mnr) were generally very similar, except for the YS1 soils, and were well correlated. Only small proportions of either total Mn or DCB-extractable Mn were extracted by NH2OH·HCl and hydroquinone in the YS1 soils, suggesting inclusion of NH2OH·HCl and hydroquinone-resistant Mn oxides, because these extractants are weaker reductants than DCB. No Cr oxidation test results were closely related to total Mn concentrations, but Mnd, Mnh, and Mnr showed a relatively high correlation with the Cr tests ( r = 0.655-0.851; P < 0.01). The concentrations of Mnd and Mnh were better correlated with the Cr oxidation tests than was the Mnr concentration, suggesting that the oxidation capacity of our soil samples can be better explained by Mnd and Mnh than by Mnr. The first component in principal components analysis indicated that extractable soil Mn was a main factor controlling net Cr oxidation in the soils. Total soil Mn, Fe oxides, and the clay fraction are crucial for predicting the mobility of pollutants and heavy metals in soils. The second principal component indicated that the presence of Fe oxides in soils had a significant relationship with the clay fraction and total Mn oxide, and was also related to heavy-metal concentrations (Zn, Cd, and Cu, but not Pb).
Vasilaki, V; Volcke, E I P; Nandi, A K; van Loosdrecht, M C M; Katsou, E
2018-04-26
Multivariate statistical analysis was applied to investigate the dependencies and underlying patterns between N 2 O emissions and online operational variables (dissolved oxygen and nitrogen component concentrations, temperature and influent flow-rate) during biological nitrogen removal from wastewater. The system under study was a full-scale reactor, for which hourly sensor data were available. The 15-month long monitoring campaign was divided into 10 sub-periods based on the profile of N 2 O emissions, using Binary Segmentation. The dependencies between operating variables and N 2 O emissions fluctuated according to Spearman's rank correlation. The correlation between N 2 O emissions and nitrite concentrations ranged between 0.51 and 0.78. Correlation >0.7 between N 2 O emissions and nitrate concentrations was observed at sub-periods with average temperature lower than 12 °C. Hierarchical k-means clustering and principal component analysis linked N 2 O emission peaks with precipitation events and ammonium concentrations higher than 2 mg/L, especially in sub-periods characterized by low N 2 O fluxes. Additionally, the highest ranges of measured N 2 O fluxes belonged to clusters corresponding with NO 3 -N concentration less than 1 mg/L in the upstream plug-flow reactor (middle of oxic zone), indicating slow nitrification rates. The results showed that the range of N 2 O emissions partially depends on the prior behavior of the system. The principal component analysis validated the findings from the clustering analysis and showed that ammonium, nitrate, nitrite and temperature explained a considerable percentage of the variance in the system for the majority of the sub-periods. The applied statistical methods, linked the different ranges of emissions with the system variables, provided insights on the effect of operating conditions on N 2 O emissions in each sub-period and can be integrated into N 2 O emissions data processing at wastewater treatment plants. Copyright © 2018. Published by Elsevier Ltd.
Nguyen, Phuong H
2007-05-15
Principal component analysis is a powerful method for projecting multidimensional conformational space of peptides or proteins onto lower dimensional subspaces in which the main conformations are present, making it easier to reveal the structures of molecules from e.g. molecular dynamics simulation trajectories. However, the identification of all conformational states is still difficult if the subspaces consist of more than two dimensions. This is mainly due to the fact that the principal components are not independent with each other, and states in the subspaces cannot be visualized. In this work, we propose a simple and fast scheme that allows one to obtain all conformational states in the subspaces. The basic idea is that instead of directly identifying the states in the subspace spanned by principal components, we first transform this subspace into another subspace formed by components that are independent of one other. These independent components are obtained from the principal components by employing the independent component analysis method. Because of independence between components, all states in this new subspace are defined as all possible combinations of the states obtained from each single independent component. This makes the conformational analysis much simpler. We test the performance of the method by analyzing the conformations of the glycine tripeptide and the alanine hexapeptide. The analyses show that our method is simple and quickly reveal all conformational states in the subspaces. The folding pathways between the identified states of the alanine hexapeptide are analyzed and discussed in some detail. 2007 Wiley-Liss, Inc.
Ronald, Angelica; Sieradzka, Dominika; Cardno, Alastair G.; Haworth, Claire M. A.; McGuire, Philip; Freeman, Daniel
2014-01-01
We aimed to characterize multiple psychotic experiences, each assessed on a spectrum of severity (ie, quantitatively), in a general population sample of adolescents. Over five thousand 16-year-old twins and their parents completed the newly devised Specific Psychotic Experiences Questionnaire (SPEQ); a subsample repeated it approximately 9 months later. SPEQ was investigated in terms of factor structure, intersubscale correlations, frequency of endorsement and reported distress, reliability and validity, associations with traits of anxiety, depression and personality, and sex differences. Principal component analysis revealed a 6-component solution: paranoia, hallucinations, cognitive disorganization, grandiosity, anhedonia, and parent-rated negative symptoms. These components formed the basis of 6 subscales. Correlations between different experiences were low to moderate. All SPEQ subscales, except Grandiosity, correlated significantly with traits of anxiety, depression, and neuroticism. Scales showed good internal consistency, test-retest reliability, and convergent validity. Girls endorsed more paranoia, hallucinations, and cognitive disorganization; boys reported more grandiosity and anhedonia and had more parent-rated negative symptoms. As in adults at high risk for psychosis and with psychotic disorders, psychotic experiences in adolescents are characterized by multiple components. The study of psychotic experiences as distinct dimensional quantitative traits is likely to prove an important strategy for future research, and the SPEQ is a self- and parent-report questionnaire battery that embodies this approach. PMID:24062593
NASA Astrophysics Data System (ADS)
Waugh, Rachael C.; Dulieu-Barton, Janice M.; Quinn, S.
2015-03-01
Thermoelastic stress analysis (TSA) is an established active thermographic approach which uses the thermoelastic effect to correlate the temperature change that occurs as a material is subjected to elastic cyclic loading to the sum of the principal stresses on the surface of the component. Digital image correlation (DIC) tracks features on the surface of a material to establish a displacement field of a component subjected to load, which can then be used to calculate the strain field. The application of both DIC and TSA on a composite plate representative of aircraft secondary structure subject to resonant frequency loading using a portable loading device, i.e. `remote loading' is described. Laboratory based loading for TSA and DIC is typically imparted using a test machine, however in the current work a vibration loading system is used which is able to excite the component of interest at resonant frequency which enables TSA and DIC to be carried out. The accuracy of the measurements made under remote loading of both of the optical techniques applied is discussed. The data are compared to extract complimentary information from the two techniques. This work forms a step towards a combined strain based non-destructive evaluation procedure able to identify and quantify the effect of defects more fully, particularly when examining component performance in service applications.
Climatic niche evolution in New World monkeys (Platyrrhini).
Duran, Andressa; Meyer, Andreas L S; Pie, Marcio R
2013-01-01
Despite considerable interest in recent years on species distribution modeling and phylogenetic niche conservatism, little is known about the way in which climatic niches change over evolutionary time. This knowledge is of major importance to understand the mechanisms underlying limits of species distributions, as well as to infer how different lineages might be affected by anthropogenic climate change. In this study we investigate the tempo and mode climatic niche evolution in New World monkeys (Platyrrhini). Climatic conditions found throughout the distribution of 140 primate species were investigated using a principal component analysis, which indicated that mean temperature (particularly during the winter) is the most important climatic correlate of platyrrhine geographical distributions, accounting for nearly half of the interspecific variation in climatic niches. The effects of precipitation were associated with the second principal component, particularly with respect to the dry season. When models of trait evolution were fit to scores on each of the principal component axes, significant phylogenetic signal was detected for PC1 scores, but not for PC2 scores. Interestingly, although all platyrrhine families occupied comparable regions of climatic space, some aotid species such as Aotus lemurinus, A. jorgehernandezi, and A. miconax show highly distinctive climatic niches associated with drier conditions (high PC2 scores). This shift might have been made possible by their nocturnal habits, which could serve as an exaptation that allow them to be less constrained by humidity during the night. These results underscore the usefulness of investigating explicitly the tempo and mode of climatic niche evolution and its role in determining species distributions.
Oliveira, Tássia Boeno de; Azevedo Peixoto, Leonardo de; Teodoro, Paulo Eduardo; Alvarenga, Amauri Alves de; Bhering, Leonardo Lopes; Campo, Clara Beatriz Hoffmann
2018-01-01
Asian rust affects the physiology of soybean plants and causes losses in yield. Repeatability coefficients may help breeders to know how many measurements are needed to obtain a suitable reliability for a target trait. Therefore, the objectives of this study were to determine the repeatability coefficients of 14 traits in soybean plants inoculated with Phakopsora pachyrhizi and to establish the minimum number of measurements needed to predict the breeding value with high accuracy. Experiments were performed in a 3x2 factorial arrangement with three treatments and two inoculations in a random block design. Repeatability coefficients, coefficients of determination and number of measurements needed to obtain a certain reliability were estimated using ANOVA, principal component analysis based on the covariance matrix and the correlation matrix, structural analysis and mixed model. It was observed that the principal component analysis based on the covariance matrix out-performed other methods for almost all traits. Significant differences were observed for all traits except internal CO2 concentration for the treatment effects. For the measurement effects, all traits were significantly different. In addition, significant differences were found for all Treatment x Measurement interaction traits except coumestrol, chitinase and chlorophyll content. Six measurements were suitable to obtain a coefficient of determination higher than 0.7 for all traits based on principal component analysis. The information obtained from this research will help breeders and physiologists determine exactly how many measurements are needed to evaluate each trait in soybean plants infected by P. pachyrhizi with a desirable reliability.
de Oliveira, Tássia Boeno; Teodoro, Paulo Eduardo; de Alvarenga, Amauri Alves; Bhering, Leonardo Lopes; Campo, Clara Beatriz Hoffmann
2018-01-01
Asian rust affects the physiology of soybean plants and causes losses in yield. Repeatability coefficients may help breeders to know how many measurements are needed to obtain a suitable reliability for a target trait. Therefore, the objectives of this study were to determine the repeatability coefficients of 14 traits in soybean plants inoculated with Phakopsora pachyrhizi and to establish the minimum number of measurements needed to predict the breeding value with high accuracy. Experiments were performed in a 3x2 factorial arrangement with three treatments and two inoculations in a random block design. Repeatability coefficients, coefficients of determination and number of measurements needed to obtain a certain reliability were estimated using ANOVA, principal component analysis based on the covariance matrix and the correlation matrix, structural analysis and mixed model. It was observed that the principal component analysis based on the covariance matrix out-performed other methods for almost all traits. Significant differences were observed for all traits except internal CO2 concentration for the treatment effects. For the measurement effects, all traits were significantly different. In addition, significant differences were found for all Treatment x Measurement interaction traits except coumestrol, chitinase and chlorophyll content. Six measurements were suitable to obtain a coefficient of determination higher than 0.7 for all traits based on principal component analysis. The information obtained from this research will help breeders and physiologists determine exactly how many measurements are needed to evaluate each trait in soybean plants infected by P. pachyrhizi with a desirable reliability. PMID:29438380
Critical Factors Explaining the Leadership Performance of High-Performing Principals
ERIC Educational Resources Information Center
Hutton, Disraeli M.
2018-01-01
The study explored critical factors that explain leadership performance of high-performing principals and examined the relationship between these factors based on the ratings of school constituents in the public school system. The principal component analysis with the use of Varimax Rotation revealed that four components explain 51.1% of the…
Molecular dynamics in principal component space.
Michielssens, Servaas; van Erp, Titus S; Kutzner, Carsten; Ceulemans, Arnout; de Groot, Bert L
2012-07-26
A molecular dynamics algorithm in principal component space is presented. It is demonstrated that sampling can be improved without changing the ensemble by assigning masses to the principal components proportional to the inverse square root of the eigenvalues. The setup of the simulation requires no prior knowledge of the system; a short initial MD simulation to extract the eigenvectors and eigenvalues suffices. Independent measures indicated a 6-7 times faster sampling compared to a regular molecular dynamics simulation.
Optimized principal component analysis on coronagraphic images of the fomalhaut system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meshkat, Tiffany; Kenworthy, Matthew A.; Quanz, Sascha P.
We present the results of a study to optimize the principal component analysis (PCA) algorithm for planet detection, a new algorithm complementing angular differential imaging and locally optimized combination of images (LOCI) for increasing the contrast achievable next to a bright star. The stellar point spread function (PSF) is constructed by removing linear combinations of principal components, allowing the flux from an extrasolar planet to shine through. The number of principal components used determines how well the stellar PSF is globally modeled. Using more principal components may decrease the number of speckles in the final image, but also increases themore » background noise. We apply PCA to Fomalhaut Very Large Telescope NaCo images acquired at 4.05 μm with an apodized phase plate. We do not detect any companions, with a model dependent upper mass limit of 13-18 M {sub Jup} from 4-10 AU. PCA achieves greater sensitivity than the LOCI algorithm for the Fomalhaut coronagraphic data by up to 1 mag. We make several adaptations to the PCA code and determine which of these prove the most effective at maximizing the signal-to-noise from a planet very close to its parent star. We demonstrate that optimizing the number of principal components used in PCA proves most effective for pulling out a planet signal.« less
Land use and quality of life in 45 Israeli cities
NASA Astrophysics Data System (ADS)
Becker, Sarah Jeanette
This research tested the hypothesis that a latent construct of quality of life (QOL) in Israel is predictable from key socioeconomic and environmental variables associated with land use across 45 cities. Data were acquired from the Israel Central Bureau of Statistics, the International Policy Institute for Counter-Terrorism, and Landsat 7. The environmental variables included the Normalized Difference Vegetation Index (NDVI) and percent of built land. Demographic and socioeconomic variables included average income per capita (between 672 and 4,569 shekels/month), percent of new motor vehicles (12.24 -- 41.15%), median age (12 -- 38 years of age), percent of students in each city between 20 and 29 years of age (0.10 -- 34.57%), percent of families with 4 or more children (2.32 -- 49.38%), population (9,302 -- 646,279 inhabitants), and the number of violent terrorist attacks per city (0 -- 52 attacks in 1999). The socioeconomic and environmental data were evaluated using correlation coefficients and principal components analysis to characterize QOL. The NDVI showed a weak positive correlation with percent of built land (r = 0.130; p = 0.361) and strong correlations with average income per capita ( r = 0.579; p = 0.000), median age (r = .388; p = 0.008), percent of new motor vehicles ( r = 0.472, p = 0.001), percent of families with 4 or more children (r = -0.480; p = 0.001), and percent of people in each city between 20 and 29 years who are students (r = 0.532; p = 0.000). Percent of built land showed a significant relationship with median age (r = 0.352; p = 0.018) and percent of new motor vehicles ( r = 0.337; p = 0.024). Principal components analysis supported the grouping of all socioeconomic variables, but interestingly, NDVI did not cluster with this group. Although NDVI correlates with specific socioeconomic variables, NDVI was not found in this study to be a predictor of QOL in the Israeli cities. These results demonstrate a quantifiable relationship between components of QOL and environmental characteristics that can aid policymakers in planning for emerging problems that impact human lives, such as climate change and drought within the context of variable socioeconomic factors.
Independent component analysis decomposition of hospital emergency department throughput measures
NASA Astrophysics Data System (ADS)
He, Qiang; Chu, Henry
2016-05-01
We present a method adapted from medical sensor data analysis, viz. independent component analysis of electroencephalography data, to health system analysis. Timely and effective care in a hospital emergency department is measured by throughput measures such as median times patients spent before they were admitted as an inpatient, before they were sent home, before they were seen by a healthcare professional. We consider a set of five such measures collected at 3,086 hospitals distributed across the U.S. One model of the performance of an emergency department is that these correlated throughput measures are linear combinations of some underlying sources. The independent component analysis decomposition of the data set can thus be viewed as transforming a set of performance measures collected at a site to a collection of outputs of spatial filters applied to the whole multi-measure data. We compare the independent component sources with the output of the conventional principal component analysis to show that the independent components are more suitable for understanding the data sets through visualizations.
Sirunyan, A.M.; et al.
2017-12-05
For the first time a principle-component analysis is used to separate out different orthogonal modes of the two-particle correlation matrix from heavy ion collisions. The analysis uses data from sNN=2.76TeV PbPb and sNN=5.02TeV pPb collisions collected by the CMS experiment at the CERN Large Hadron Collider. Two-particle azimuthal correlations have been extensively used to study hydrodynamic flow in heavy ion collisions. Recently it was shown that the expected factorization of two-particle results into a product of the constituent single-particle anisotropies is broken. The new information provided by these modes may shed light on the breakdown of flow factorization in heavymore » ion collisions. The first two modes (“leading” and “subleading”) of two-particle correlations are presented for elliptical and triangular anisotropies in PbPb and pPb collisions as a function of pT over a wide range of event activity. The leading mode is found to be essentially equivalent to the anisotropy harmonic previously extracted from two-particle correlation methods. The subleading mode represents a new experimental observable and is shown to account for a large fraction of the factorization breaking recently observed at high transverse momentum. The principle-component analysis technique was also applied to multiplicity fluctuations. These also show a subleading mode. The connection of these new results to previous studies of factorization is discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sirunyan, Albert M; et al.
2017-08-23
For the first time a principle-component analysis is used to separate out different orthogonal modes of the two-particle correlation matrix from heavy ion collisions. The analysis uses data from sqrt(s[NN]) = 2.76 TeV PbPb and sqrt(s[NN]) = 5.02 TeV pPb collisions collected by the CMS experiment at the LHC. Two-particle azimuthal correlations have been extensively used to study hydrodynamic flow in heavy ion collisions. Recently it has been shown that the expected factorization of two-particle results into a product of the constituent single-particle anisotropies is broken. The new information provided by these modes may shed light on the breakdown ofmore » flow factorization in heavy ion collisions. The first two modes ("leading" and "subleading") of two-particle correlations are presented for elliptical and triangular anisotropies in PbPb and pPb collisions as a function of pt over a wide range of event activity. The leading mode is found to be essentially equivalent to the anisotropy harmonic previously extracted from two-particle correlation methods. The subleading mode represents a new experimental observable and is shown to account for a large fraction of the factorization breaking recently observed at high transverse momentum. The principle-component analysis technique has also been applied to multiplicity fluctuations. These also show a subleading mode. The connection of these new results to previous studies of factorization is discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sirunyan, A. M.; Tumasyan, A.; Adam, W.
For the first time a principle-component analysis is used to separate out different orthogonal modes of the two-particle correlation matrix from heavy ion collisions. The analysis uses data from √ sNN = 2.76TeV PbPb and √ sNN = 5.02TeV pPb collisions collected by the CMS experiment at the CERN Large Hadron Collider. Two-particle azimuthal correlations have been extensively used to study hydrodynamic flow in heavy ion collisions. Recently it was shown that the expected factorization of two-particle results into a product of the constituent single-particle anisotropies is broken. The new information provided by these modes may shed light on themore » breakdown of flow factorization in heavy ion collisions. The first two modes (“leading” and “subleading”) of two-particle correlations are presented for elliptical and triangular anisotropies in PbPb and pPb collisions as a function of p T over a wide range of event activity. The leading mode is found to be essentially equivalent to the anisotropy harmonic previously extracted from two-particle correlation methods. The subleading mode represents a new experimental observable and is shown to account for a large fraction of the factorization breaking recently observed at high transverse momentum. The principle-component analysis technique was also applied to multiplicity fluctuations. These also show a subleading mode. As a result, the connection of these new results to previous studies of factorization is discussed.« less
NASA Astrophysics Data System (ADS)
Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Grossmann, J.; Hrubec, J.; Jeitler, M.; König, A.; Krammer, N.; Krätschmer, I.; Liko, D.; Madlener, T.; Mikulec, I.; Pree, E.; Rabady, D.; Rad, N.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Spanring, M.; Spitzbart, D.; Strauss, J.; Waltenberger, W.; Wittmann, J.; Wulz, C.-E.; Zarucki, M.; Chekhovsky, V.; Mossolov, V.; Suarez Gonzalez, J.; De Wolf, E. A.; Janssen, X.; Lauwers, J.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; De Bruyn, I.; De Clercq, J.; Deroover, K.; Flouris, G.; Lowette, S.; Moortgat, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Skovpen, K.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Parijs, I.; Brun, H.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Luetic, J.; Maerschalk, T.; Marinov, A.; Randle-conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Vannerom, D.; Yonamine, R.; Zenoni, F.; Zhang, F.; Cimmino, A.; Cornelis, T.; Dobur, D.; Fagot, A.; Gul, M.; Khvastunov, I.; Poyraz, D.; Roskas, C.; Salva, S.; Tytgat, M.; Verbeke, W.; Zaganidis, N.; Bakhshiansohi, H.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; De Visscher, S.; Delaere, C.; Delcourt, M.; Francois, B.; Giammanco, A.; Jafari, A.; Komm, M.; Krintiras, G.; Lemaitre, V.; Magitteri, A.; Mertens, A.; Musich, M.; Piotrzkowski, K.; Quertenmont, L.; Vidal Marono, M.; Wertz, S.; Beliy, N.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; Da Silveira, G. G.; De Jesus Damiao, D.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Melo De Almeida, M.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Torres Da Silva De Araujo, F.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Misheva, M.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Fang, W.; Gao, X.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Chen, Y.; Jiang, C. H.; Leggat, D.; Liu, Z.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Yazgan, E.; Zhang, H.; Zhao, J.; Ban, Y.; Chen, G.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; González Hernández, C. F.; Ruiz Alvarez, J. D.; Courbon, B.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Sculac, T.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Ferencek, D.; Kadija, K.; Mesic, B.; Susa, T.; Ather, M. W.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Finger, M.; Finger, M.; Carrera Jarrin, E.; Abdelalim, A. A.; Mohammed, Y.; Salama, E.; Dewanjee, R. K.; Kadastik, M.; Perrini, L.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Järvinen, T.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Faure, J. L.; Ferri, F.; Ganjour, S.; Ghosh, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Kucher, I.; Locci, E.; Machet, M.; Malcles, J.; Negro, G.; Rander, J.; Rosowsky, A.; Sahin, M. Ã.-.; Titov, M.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Charlot, C.; Davignon, O.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Lobanov, A.; Martin Blanco, J.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Stahl Leiton, A. G.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Zghiche, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Jansová, M.; Le Bihan, A.-C.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Finco, L.; Gascon, S.; Gouzevitch, M.; Grenier, G.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Popov, A.; Sordini, V.; Vander Donckt, M.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Feld, L.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Preuten, M.; Schomakers, C.; Schulz, J.; Verlage, T.; Albert, A.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hamer, M.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Teyssier, D.; Thüer, S.; Flügge, G.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Müller, T.; Nehrkorn, A.; Nowack, A.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Arndt, T.; Asawatangtrakuldee, C.; Beernaert, K.; Behnke, O.; Behrens, U.; Bin Anuar, A. A.; Borras, K.; Botta, V.; Campbell, A.; Connor, P.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Eren, E.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Grados Luyando, J. M.; Grohsjean, A.; Gunnellini, P.; Harb, A.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Keaveney, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Lelek, A.; Lenz, T.; Leonard, J.; Lipka, K.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Ntomari, E.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Savitskyi, M.; Saxena, P.; Shevchenko, R.; Spannagel, S.; Stefaniuk, N.; Van Onsem, G. P.; Walsh, R.; Wen, Y.; Wichmann, K.; Wissing, C.; Zenaiev, O.; Bein, S.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Dreyer, T.; Garutti, E.; Gonzalez, D.; Haller, J.; Hoffmann, M.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Kurz, S.; Lapsien, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Niedziela, M.; Nowatschin, D.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Scharf, C.; Schleper, P.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sonneveld, J.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Stöver, M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Akbiyik, M.; Barth, C.; Baur, S.; Butz, E.; Caspart, R.; Chwalek, T.; Colombo, F.; De Boer, W.; Dierlamm, A.; Freund, B.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Kassel, F.; Kudella, S.; Mildner, H.; Mozer, M. U.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Schröder, M.; Shvetsov, I.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Topsis-Giotis, I.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Triantis, F. A.; Csanad, M.; Filipovic, N.; Pasztor, G.; Bencze, G.; Hajdu, C.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Makovec, A.; Molnar, J.; Szillasi, Z.; Bartók, M.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Komaragiri, J. R.; Bahinipati, S.; Bhowmik, S.; Mal, P.; Mandal, K.; Nayak, A.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Bhawandeep, U.; Chawla, R.; Dhingra, N.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Kumari, P.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Shah, Aashaq; Bhardwaj, A.; Chauhan, S.; Choudhary, B. C.; Garg, R. B.; Keshri, S.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhardwaj, R.; Bhattacharya, R.; Bhattacharya, S.; Dey, S.; Dutt, S.; Dutta, S.; Ghosh, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Nandan, S.; Purohit, A.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Thakur, S.; Behera, P. K.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Netrakanti, P. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Dugad, S.; Mahakud, B.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sur, N.; Sutar, B.; Banerjee, S.; Bhattacharya, S.; Chatterjee, S.; Das, P.; Guchait, M.; Jain, Sa.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Sarkar, T.; Wickramage, N.; Chauhan, S.; Dube, S.; Hegde, V.; Kapoor, A.; Kothekar, K.; Pandey, S.; Rane, A.; Sharma, S.; Chenarani, S.; Eskandari Tadavani, E.; Etesami, S. M.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Errico, F.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Guiducci, L.; Marcellini, S.; Masetti, G.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Albergo, S.; Costa, S.; Di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Chatterjee, K.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Lenzi, P.; Meschini, M.; Paoletti, S.; Russo, L.; Sguazzoni, G.; Strom, D.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Robutti, E.; Tosi, S.; Brianza, L.; Brivio, F.; Ciriolo, V.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Govoni, P.; Malberti, M.; Malvezzi, S.; Manzoni, R. A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pauwels, K.; Pedrini, D.; Pigazzini, S.; Ragazzi, S.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Fienga, F.; Iorio, A. O. M.; Khan, W. A.; Lista, L.; Meola, S.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Checchia, P.; Dall'Osso, M.; De Castro Manzano, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Michelotto, M.; Montecassiano, F.; Pantano, D.; Pozzobon, N.; Ronchese, P.; Rossin, R.; Simonetto, F.; Torassa, E.; Zanetti, M.; Zotto, P.; Zumerle, G.; Braghieri, A.; Fallavollita, F.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Ressegotti, M.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Leonardi, R.; Mantovani, G.; Mariani, V.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiga, D.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Borrello, L.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Fedi, G.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Cipriani, M.; Daci, N.; Del Re, D.; Diemoz, M.; Gelli, S.; Longo, E.; Margaroli, F.; Marzocchi, B.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bartosik, N.; Bellan, R.; Biino, C.; Cartiglia, N.; Cenna, F.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Monteno, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Shchelina, K.; Sola, V.; Solano, A.; Staiano, A.; Traczyk, P.; Belforte, S.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Zanetti, A.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Lee, J.; Lee, S.; Lee, S. W.; Oh, Y. D.; Sekmen, S.; Son, D. C.; Yang, Y. C.; Lee, A.; Kim, H.; Moon, D. H.; Oh, G.; Brochero Cifuentes, J. A.; Goh, J.; Kim, T. J.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Ha, S.; Hong, B.; Jo, Y.; Kim, Y.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Almond, J.; Kim, J.; Kim, J. S.; Lee, H.; Lee, K.; Nam, K.; Oh, S. B.; Radburn-Smith, B. C.; Seo, S. h.; Yang, U. K.; Yoo, H. D.; Yu, G. B.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Choi, Y.; Hwang, C.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-De La Cruz, I.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Oropeza Barrera, C.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Saddique, A.; Shah, M. A.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Pyskir, A.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Calpas, B.; Di Francesco, A.; Faccioli, P.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nemallapudi, M. V.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Voytishin, N.; Zarubin, A.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Stepennov, A.; Toms, M.; Vlasov, E.; Zhokin, A.; Aushev, T.; Bylinkin, A.; Chadeeva, M.; Popova, E.; Rusinov, V.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Terkulov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Demiyanov, A.; Ershov, A.; Gribushin, A.; Kodolova, O.; Korotkikh, V.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Vardanyan, I.; Blinov, V.; Skovpen, Y.; Shtol, D.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Elumakhov, D.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Dordevic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Barrio Luna, M.; Cerrada, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Álvarez Fernández, A.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Erice, C.; Fernandez Menendez, J.; Gonzalez Caballero, I.; González Fernández, J. R.; Palencia Cortezon, E.; Sanchez Cruz, S.; Suárez Andrés, I.; Vischia, P.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Chazin Quero, B.; Curras, E.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Martinez Rivero, C.; Martinez Ruiz del Arbol, P.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Baillon, P.; Ball, A. H.; Barney, D.; Bianco, M.; Bloch, P.; Bocci, A.; Botta, C.; Camporesi, T.; Castello, R.; Cepeda, M.; Cerminara, G.; Chapon, E.; Chen, Y.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Roeck, A.; Di Marco, E.; Dobson, M.; Dorney, B.; du Pree, T.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Everaerts, P.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Glege, F.; Gulhan, D.; Gundacker, S.; Guthoff, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Karacheban, O.; Kieseler, J.; Kirschenmann, H.; Knünz, V.; Kornmayer, A.; Kortelainen, M. J.; Krammer, M.; Lange, C.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Malgeri, L.; Mannelli, M.; Martelli, A.; Meijers, F.; Merlin, J. A.; Mersi, S.; Meschi, E.; Milenovic, P.; Moortgat, F.; Mulders, M.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Selvaggi, M.; Sharma, A.; Silva, P.; Sphicas, P.; Steggemann, J.; Stoye, M.; Tosi, M.; Treille, D.; Triossi, A.; Tsirou, A.; Veckalns, V.; Veres, G. I.; Verweij, M.; Wardle, N.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Wiederkehr, S. A.; Bachmair, F.; Bäni, L.; Berger, P.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Klijnsma, T.; Lustermann, W.; Mangano, B.; Marionneau, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrin, G.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Shchutska, L.; Starodumov, A.; Tavolaro, V. R.; Theofilatos, K.; Vesterbacka Olsson, M. L.; Wallny, R.; Zagozdzinska, A.; Zhu, D. H.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; De Cosa, A.; Donato, S.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Seitz, C.; Zucchetta, A.; Candelise, V.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chao, Y.; Chen, K. F.; Chen, P. H.; Fiori, F.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Paganis, E.; Psallidas, A.; Tsai, J. f.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Adiguzel, A.; Bakirci, M. N.; Boran, F.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Hos, I.; Kangal, E. E.; Kara, O.; Kayis Topaksu, A.; Kiminsu, U.; Oglakci, M.; Onengut, G.; Ozdemir, K.; Tali, B.; Turkcapar, S.; Zorbakir, I. S.; Zorbilmez, C.; Bilin, B.; Karapinar, G.; Ocalan, K.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Tekten, S.; Yetkin, E. A.; Agaras, M. N.; Atay, S.; Cakir, A.; Cankocak, K.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Burns, D.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Smith, D.; Smith, V. J.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Baber, M.; Bainbridge, R.; Breeze, S.; Buchmuller, O.; Bundock, A.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Di Maria, R.; Dunne, P.; Elwood, A.; Futyan, D.; Haddad, Y.; Hall, G.; Iles, G.; James, T.; Lane, R.; Laner, C.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mastrolorenzo, L.; Matsushita, T.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Scott, E.; Seez, C.; Shtipliyski, A.; Summers, S.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Winterbottom, D.; Wright, J.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Bartek, R.; Dominguez, A.; Buccilli, A.; Cooper, S. I.; Henderson, C.; Rumerio, P.; West, C.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Benelli, G.; Cutts, D.; Garabedian, A.; Hakala, J.; Heintz, U.; Hogan, J. M.; Kwok, K. H. M.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Pazzini, J.; Piperov, S.; Sagir, S.; Syarif, R.; Yu, D.; Band, R.; Brainerd, C.; Burns, D.; Calderon De La Barca Sanchez, M.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Flores, C.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; Mclean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Shalhout, S.; Shi, M.; Smith, J.; Squires, M.; Stolp, D.; Tos, K.; Tripathi, M.; Wang, Z.; Bachtis, M.; Bravo, C.; Cousins, R.; Dasgupta, A.; Florent, A.; Hauser, J.; Ignatenko, M.; Mccoll, N.; Saltzberg, D.; Schnaible, C.; Valuev, V.; Bouvier, E.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Ghiasi Shirazi, S. M. A.; Hanson, G.; Heilman, J.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Olmedo Negrete, M.; Paneva, M. I.; Shrinivas, A.; Si, W.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Derdzinski, M.; Gerosa, R.; Hashemi, B.; Holzner, A.; Klein, D.; Kole, G.; Krutelyov, V.; Letts, J.; Macneill, I.; Masciovecchio, M.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Wood, J.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Amin, N.; Bhandari, R.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Franco Sevilla, M.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Heller, R.; Incandela, J.; Mullin, S. D.; Ovcharova, A.; Qu, H.; Richman, J.; Stuart, D.; Suarez, I.; Yoo, J.; Anderson, D.; Bendavid, J.; Bornheim, A.; Lawhorn, J. M.; Newman, H. B.; Nguyen, T.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhang, Z.; Zhu, R. Y.; Andrews, M. B.; Ferguson, T.; Mudholkar, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Weinberg, M.; Cumalat, J. P.; Ford, W. T.; Jensen, F.; Johnson, A.; Krohn, M.; Leontsinis, S.; Mulholland, T.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chaves, J.; Chu, J.; Dittmer, S.; Mcdermott, K.; Mirman, N.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Tan, S. M.; Tao, Z.; Thom, J.; Tucker, J.; Wittich, P.; Zientek, M.; Abdullin, S.; Albrow, M.; Apollinari, G.; Apresyan, A.; Apyan, A.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Canepa, A.; Cheung, H. W. K.; Chlebana, F.; Cremonesi, M.; Duarte, J.; Elvira, V. D.; Freeman, J.; Gecse, Z.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Lincoln, D.; Lipton, R.; Liu, M.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Magini, N.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Ristori, L.; Schneider, B.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strait, J.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Mitselmakher, G.; Rank, D.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Joshi, Y. R.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, T.; Askew, A.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Kolberg, T.; Perry, T.; Prosper, H.; Santra, A.; Yohay, R.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Cavanaugh, R.; Chen, X.; Evdokimov, O.; Gerber, C. E.; Hangal, D. A.; Hofman, D. J.; Jung, K.; Kamin, J.; Sandoval Gonzalez, I. D.; Tonjes, M. B.; Trauger, H.; Varelas, N.; Wang, H.; Wu, Z.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Al-bataineh, A.; Baringer, P.; Bean, A.; Boren, S.; Bowen, J.; Castle, J.; Khalil, S.; Kropivnitskaya, A.; Majumder, D.; Mcbrayer, W.; Murray, M.; Royon, C.; Sanders, S.; Schmitz, E.; Stringer, R.; Tapia Takaki, J. D.; Wang, Q.; Ivanov, A.; Kaadze, K.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Hadley, N. J.; Jabeen, S.; Jeng, G. Y.; Kellogg, R. G.; Kunkle, J.; Mignerey, A. C.; Ricci-Tam, F.; Shin, Y. H.; Skuja, A.; Tonwar, S. C.; Abercrombie, D.; Allen, B.; Azzolini, V.; Barbieri, R.; Baty, A.; Bi, R.; Brandt, S.; Busza, W.; Cali, I. A.; D'Alfonso, M.; Demiragli, Z.; Gomez Ceballos, G.; Goncharov, M.; Hsu, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Maier, B.; Marini, A. C.; Mcginn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Tatar, K.; Velicanu, D.; Wang, J.; Wang, T. W.; Wyslouch, B.; Benvenuti, A. C.; Chatterjee, R. M.; Evans, A.; Hansen, P.; Kalafut, S.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Claes, D. R.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Kravchenko, I.; Monroy, J.; Siado, J. E.; Snow, G. R.; Stieger, B.; Alyari, M.; Dolen, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Nguyen, D.; Parker, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Bhattacharya, S.; Charaf, O.; Hahn, K. A.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M. H.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Hurtado Anampa, K.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Loukas, N.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Wayne, M.; Wolf, M.; Woodard, A.; Alimena, J.; Antonelli, L.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Francis, B.; Hart, A.; Hill, C.; Ji, W.; Liu, B.; Luo, W.; Puigh, D.; Winer, B. L.; Wulsin, H. W.; Benaglia, A.; Cooperstein, S.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Lange, D.; Luo, J.; Marlow, D.; Mei, K.; Ojalvo, I.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Svyatkovskiy, A.; Tully, C.; Malik, S.; Norberg, S.; Barker, A.; Barnes, V. E.; Folgueras, S.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Khatiwada, A.; Miller, D. H.; Neumeister, N.; Schulte, J. F.; Sun, J.; Wang, F.; Xie, W.; Cheng, T.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Bodek, A.; de Barbaro, P.; Demina, R.; Duh, Y. t.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Ciesielski, R.; Goulianos, K.; Mesropian, C.; Agapitos, A.; Chou, J. P.; Gershtein, Y.; Gómez Espinosa, T. A.; Halkiadakis, E.; Heindl, M.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Kyriacou, S.; Lath, A.; Montalvo, R.; Nash, K.; Osherson, M.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Heideman, J.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Mueller, R.; Pakhotin, Y.; Patel, R.; Perloff, A.; Perniè, L.; Rathjens, D.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Damgov, J.; De Guio, F.; Dudero, P. R.; Faulkner, J.; Gurpinar, E.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Peltola, T.; Undleeb, S.; Volobouev, I.; Wang, Z.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Barria, P.; Cox, B.; Hirosky, R.; Ledovskoy, A.; Li, H.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Sturdy, J.; Zaleski, S.; Buchanan, J.; Caillol, C.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Hussain, U.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Pierro, G. A.; Polese, G.; Ruggles, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.; CMS Collaboration
2017-12-01
For the first time a principle-component analysis is used to separate out different orthogonal modes of the two-particle correlation matrix from heavy ion collisions. The analysis uses data from √{sNN}=2.76 TeV PbPb and √{sNN}=5.02 TeV p Pb collisions collected by the CMS experiment at the CERN Large Hadron Collider. Two-particle azimuthal correlations have been extensively used to study hydrodynamic flow in heavy ion collisions. Recently it was shown that the expected factorization of two-particle results into a product of the constituent single-particle anisotropies is broken. The new information provided by these modes may shed light on the breakdown of flow factorization in heavy ion collisions. The first two modes ("leading" and "subleading") of two-particle correlations are presented for elliptical and triangular anisotropies in PbPb and p Pb collisions as a function of pT over a wide range of event activity. The leading mode is found to be essentially equivalent to the anisotropy harmonic previously extracted from two-particle correlation methods. The subleading mode represents a new experimental observable and is shown to account for a large fraction of the factorization breaking recently observed at high transverse momentum. The principle-component analysis technique was also applied to multiplicity fluctuations. These also show a subleading mode. The connection of these new results to previous studies of factorization is discussed.
Sirunyan, A. M.; Tumasyan, A.; Adam, W.; ...
2017-12-05
For the first time a principle-component analysis is used to separate out different orthogonal modes of the two-particle correlation matrix from heavy ion collisions. The analysis uses data from √ sNN = 2.76TeV PbPb and √ sNN = 5.02TeV pPb collisions collected by the CMS experiment at the CERN Large Hadron Collider. Two-particle azimuthal correlations have been extensively used to study hydrodynamic flow in heavy ion collisions. Recently it was shown that the expected factorization of two-particle results into a product of the constituent single-particle anisotropies is broken. The new information provided by these modes may shed light on themore » breakdown of flow factorization in heavy ion collisions. The first two modes (“leading” and “subleading”) of two-particle correlations are presented for elliptical and triangular anisotropies in PbPb and pPb collisions as a function of p T over a wide range of event activity. The leading mode is found to be essentially equivalent to the anisotropy harmonic previously extracted from two-particle correlation methods. The subleading mode represents a new experimental observable and is shown to account for a large fraction of the factorization breaking recently observed at high transverse momentum. The principle-component analysis technique was also applied to multiplicity fluctuations. These also show a subleading mode. As a result, the connection of these new results to previous studies of factorization is discussed.« less
[A study of Boletus bicolor from different areas using Fourier transform infrared spectrometry].
Zhou, Zai-Jin; Liu, Gang; Ren, Xian-Pei
2010-04-01
It is hard to differentiate the same species of wild growing mushrooms from different areas by macromorphological features. In this paper, Fourier transform infrared (FTIR) spectroscopy combined with principal component analysis was used to identify 58 samples of boletus bicolor from five different areas. Based on the fingerprint infrared spectrum of boletus bicolor samples, principal component analysis was conducted on 58 boletus bicolor spectra in the range of 1 350-750 cm(-1) using the statistical software SPSS 13.0. According to the result, the accumulated contributing ratio of the first three principal components accounts for 88.87%. They included almost all the information of samples. The two-dimensional projection plot using first and second principal component is a satisfactory clustering effect for the classification and discrimination of boletus bicolor. All boletus bicolor samples were divided into five groups with a classification accuracy of 98.3%. The study demonstrated that wild growing boletus bicolor at species level from different areas can be identified by FTIR spectra combined with principal components analysis.
Bravo, Ignacio; Mazo, Manuel; Lázaro, José L.; Gardel, Alfredo; Jiménez, Pedro; Pizarro, Daniel
2010-01-01
This paper presents a complete implementation of the Principal Component Analysis (PCA) algorithm in Field Programmable Gate Array (FPGA) devices applied to high rate background segmentation of images. The classical sequential execution of different parts of the PCA algorithm has been parallelized. This parallelization has led to the specific development and implementation in hardware of the different stages of PCA, such as computation of the correlation matrix, matrix diagonalization using the Jacobi method and subspace projections of images. On the application side, the paper presents a motion detection algorithm, also entirely implemented on the FPGA, and based on the developed PCA core. This consists of dynamically thresholding the differences between the input image and the one obtained by expressing the input image using the PCA linear subspace previously obtained as a background model. The proposal achieves a high ratio of processed images (up to 120 frames per second) and high quality segmentation results, with a completely embedded and reliable hardware architecture based on commercial CMOS sensors and FPGA devices. PMID:22163406
Humidity profiles over the ocean
NASA Technical Reports Server (NTRS)
Liu, W. T.; Tang, Wenqing; Niiler, Pearn P.
1991-01-01
The variabilities of atmospheric humidity profile over oceans from daily to interannual time scales were examined using 9 years of daily and semidaily radiosonde soundings at island stations extending from the Arctic to the South Pacific. The relative humidity profiles were found to have considerable temporal and geographic variabilities, contrary to the prevalent assumption. Principal component analysis on the profiles of specific humidity were used to examine the applicability of a relation between the surface-level humidity and the integrated water vapor; this relation has been used to estimate large-scale evaporation from satellite data. The first principal component was found to correlate almost perfectly with the integrated water vapor. The fractional variance represented by this mode increases with increasing period. It reaches approximately 90 percent at two weeks and decreases sharply, below one week, down to approximately 60 percent at the daily period. At low frequencies, the integrated water vapor appeared to be an adequate estimator of the humidity profile and the surface-level humidity. At periods shorter than a week, more than one independent estimator is needed.
NASA Astrophysics Data System (ADS)
Yang, Haiqing; Wu, Di; He, Yong
2007-11-01
Near-infrared spectroscopy (NIRS) with the characteristics of high speed, non-destructiveness, high precision and reliable detection data, etc. is a pollution-free, rapid, quantitative and qualitative analysis method. A new approach for variety discrimination of brown sugars using short-wave NIR spectroscopy (800-1050nm) was developed in this work. The relationship between the absorbance spectra and brown sugar varieties was established. The spectral data were compressed by the principal component analysis (PCA). The resulting features can be visualized in principal component (PC) space, which can lead to discovery of structures correlative with the different class of spectral samples. It appears to provide a reasonable variety clustering of brown sugars. The 2-D PCs plot obtained using the first two PCs can be used for the pattern recognition. Least-squares support vector machines (LS-SVM) was applied to solve the multivariate calibration problems in a relatively fast way. The work has shown that short-wave NIR spectroscopy technique is available for the brand identification of brown sugar, and LS-SVM has the better identification ability than PLS when the calibration set is small.
Bravo, Ignacio; Mazo, Manuel; Lázaro, José L; Gardel, Alfredo; Jiménez, Pedro; Pizarro, Daniel
2010-01-01
This paper presents a complete implementation of the Principal Component Analysis (PCA) algorithm in Field Programmable Gate Array (FPGA) devices applied to high rate background segmentation of images. The classical sequential execution of different parts of the PCA algorithm has been parallelized. This parallelization has led to the specific development and implementation in hardware of the different stages of PCA, such as computation of the correlation matrix, matrix diagonalization using the Jacobi method and subspace projections of images. On the application side, the paper presents a motion detection algorithm, also entirely implemented on the FPGA, and based on the developed PCA core. This consists of dynamically thresholding the differences between the input image and the one obtained by expressing the input image using the PCA linear subspace previously obtained as a background model. The proposal achieves a high ratio of processed images (up to 120 frames per second) and high quality segmentation results, with a completely embedded and reliable hardware architecture based on commercial CMOS sensors and FPGA devices.
NASA Astrophysics Data System (ADS)
Serrano, Francisco; Guerra-Merchán, Antonio; Lozano-Francisco, Carmen; Vera-Peláez, José Luis
1997-09-01
Nerja Cave is a karstic cavity used by humans from Late Paleolithic to post-Chalcolithic times. Remains of molluscan foods in the uppermost Pleistocene and Holocene sediments were studied with cluster analysis and principal components analysis, in both Qand Rmodes. The results from cluster analysis distinguished interval groups mainly in accordance with chronology and distinguished assemblages of species mainly according to habitat. Significant changes in the shellfish diet through time were revealed. In the Late Magdalenian, most molluscs consumed consisted of pulmonate gastropods and species from sandy sea bottoms. The Epipaleolithic diet was more varied and included species from rocky shorelines. From the Neolithic onward most molluscs consumed were from rocky shorelines. From the principal components analysis in Qmode, the first factor reflected mainly changes in the predominant capture environment, probably because of major paleogeographic changes. The second factor may reflect selective capture along rocky coastlines during certain times. The third factor correlated well with the sea-surface temperature curve in the western Mediterranean (Alboran Sea) during the late Quaternary.
Understanding the pattern of the BSE Sensex
NASA Astrophysics Data System (ADS)
Mukherjee, I.; Chatterjee, Soumya; Giri, A.; Barat, P.
2017-09-01
An attempt is made to understand the pattern of behaviour of the BSE Sensex by analysing the tick-by-tick Sensex data for the years 2006 to 2012 on yearly as well as cumulative basis using Principal Component Analysis (PCA) and its nonlinear variant Kernel Principal Component Analysis (KPCA). The latter technique ensures that the nonlinear character of the interactions present in the system gets captured in the analysis. The analysis is carried out by constructing vector spaces of varying dimensions. The size of the data set ranges from a minimum of 360,000 for one year to a maximum of 2,520,000 for seven years. In all cases the prices appear to be highly correlated and restricted to a very low dimensional subspace of the original vector space. An external perturbation is added to the system in the form of noise. It is observed that while standard PCA is unable to distinguish the behaviour of the noise-mixed data from that of the original, KPCA clearly identifies the effect of the noise. The exercise is extended in case of daily data of other stock markets and similar results are obtained.
Szabo, J.K.; Fedriani, E.M.; Segovia-Gonzalez, M. M.; Astheimer, L.B.; Hooper, M.J.
2010-01-01
This paper introduces a new technique in ecology to analyze spatial and temporal variability in environmental variables. By using simple statistics, we explore the relations between abiotic and biotic variables that influence animal distributions. However, spatial and temporal variability in rainfall, a key variable in ecological studies, can cause difficulties to any basic model including time evolution. The study was of a landscape scale (three million square kilometers in eastern Australia), mainly over the period of 19982004. We simultaneously considered qualitative spatial (soil and habitat types) and quantitative temporal (rainfall) variables in a Geographical Information System environment. In addition to some techniques commonly used in ecology, we applied a new method, Functional Principal Component Analysis, which proved to be very suitable for this case, as it explained more than 97% of the total variance of the rainfall data, providing us with substitute variables that are easier to manage and are even able to explain rainfall patterns. The main variable came from a habitat classification that showed strong correlations with rainfall values and soil types. ?? 2010 World Scientific Publishing Company.
Controlling factors for infiltration on undisturbed hillslopes in unmanaged plantation forests
NASA Astrophysics Data System (ADS)
Hiraoka, Marino; Onda, Yuichi; Gomi, Takashi; Mizugaki, Shigeru; Nanko, Kazuki; Kato, Hiroaki
2017-04-01
Infiltration into the soil is a crucial factor for predicting overland flow generation. Infiltration capacity strongly relates to ground vegetation, soil characteristics, or both. For revealing controlling factors for infiltration capacity, we conducted in-situ rainfall simulation using an oscillating-nozzle type rainfall simulator at 26 plots with different ground cover conditions of unmanaged Japanese cypress (Chamaecyparis obtusa) plantations. For wide-ranging vegetation cover condition (0-100%), infiltration capacity widely varied (5-322 mm/h) and had positive correlations with indices of ground vegetation and ground litter (p < 0.01). For a limited vegetation cover condition (0-20%), the range of infiltration capacity (7-114 mm/h) was associated with ground litter thickness (p < 0.05), and difference in soil organic matter and difference in soil bulk density. Principal component analysis showed that the first and second principal components (70% of total variation) related to changes in above- and below-ground biomass and changes in pores in soil. Our findings showed that development of ground vegetation alters hydrological processes of surface soil through changes in soil characteristics via the propagation of belowground biomass development.
Correlation between the pattern volatiles and the overall aroma of wild edible mushrooms.
de Pinho, P Guedes; Ribeiro, Bárbara; Gonçalves, Rui F; Baptista, Paula; Valentão, Patrícia; Seabra, Rosa M; Andrade, Paula B
2008-03-12
Volatile and semivolatile components of 11 wild edible mushrooms, Suillus bellini, Suillus luteus, Suillus granulatus, Tricholomopsis rutilans, Hygrophorus agathosmus, Amanita rubescens, Russula cyanoxantha, Boletus edulis, Tricholoma equestre, Fistulina hepatica, and Cantharellus cibarius, were determined by headspace solid-phase microextraction (HS-SPME) and by liquid extraction combined with gas chromatography-mass spectrometry (GC-MS). Fifty volatiles and nonvolatiles components were formally identified and 13 others were tentatively identified. Using sensorial analysis, the descriptors "mushroomlike", "farm-feed", "floral", "honeylike", "hay-herb", and "nutty" were obtained. A correlation between sensory descriptors and volatiles was observed by applying multivariate analysis (principal component analysis and agglomerative hierarchic cluster analysis) to the sensorial and chemical data. The studied edible mushrooms can be divided in three groups. One of them is rich in C8 derivatives, such as 3-octanol, 1-octen-3-ol, trans-2-octen-1-ol, 3-octanone, and 1-octen-3-one; another one is rich in terpenic volatile compounds; and the last one is rich in methional. The presence and contents of these compounds give a considerable contribution to the sensory characteristics of the analyzed species.
Independent component analysis applied to long bunch beams in the Los Alamos Proton Storage Ring
NASA Astrophysics Data System (ADS)
Kolski, Jeffrey S.; Macek, Robert J.; McCrady, Rodney C.; Pang, Xiaoying
2012-11-01
Independent component analysis (ICA) is a powerful blind source separation (BSS) method. Compared to the typical BSS method, principal component analysis, ICA is more robust to noise, coupling, and nonlinearity. The conventional ICA application to turn-by-turn position data from multiple beam position monitors (BPMs) yields information about cross-BPM correlations. With this scheme, multi-BPM ICA has been used to measure the transverse betatron phase and amplitude functions, dispersion function, linear coupling, sextupole strength, and nonlinear beam dynamics. We apply ICA in a new way to slices along the bunch revealing correlations of particle motion within the beam bunch. We digitize beam signals of the long bunch at the Los Alamos Proton Storage Ring with a single device (BPM or fast current monitor) for an entire injection-extraction cycle. ICA of the digitized beam signals results in source signals, which we identify to describe varying betatron motion along the bunch, locations of transverse resonances along the bunch, measurement noise, characteristic frequencies of the digitizing oscilloscopes, and longitudinal beam structure.
Chemical, instrumental and sensory characteristics of cooked pork ham.
Válková, V; Saláková, A; Buchtová, H; Tremlová, B
2007-12-01
Instrumental, chemical and sensory parameters of cooked pork ham were evaluated. Principal component analysis was carried out on the basis of the instrumental variables related to colour and texture. The four PCs account for almost 94% of the total variance in the data set. The PCA only separated 3 hams with a(∗)>10. Hardness was correlated with non-collagen muscle protein (P⩽0.01), gumminess (P⩽0.01) and ash (P⩽0.05). Sensory evaluated tenderness showed positive significant correlation with L(∗) (P⩽0.01). The most important colour parameter seems to be a(∗), which was negatively correlated with sensory evaluated parameter colour (P⩽0.01). The PCA performed on all parameters (sensory, chemical and textural) discriminated two groups of hams differing in non-collagen muscle protein content and hardness.
Climatic impact on community of filamentous macroalgae in the Neva estuary (eastern Baltic Sea).
Gubelit, Yulia I
2015-02-15
In presented study the impact of climatic factors and North Atlantic Oscillation (NAO) on macroalgal community was analysed. Also the factors influencing algal community were defined with help of Principal Component and Classification analysis. It was found that climatic impact may depend on habitat features and that on different sites biomass of macroalgae correlated with different weather factors. Wind and surf may affect biomass of macroalgae adversely on some sites and at the same time on other sites they may accumulate biomass, transferring it is from adjacent areas. High direct correlation with temperature was found on sites which were protected from surf and had no stagnant events. Seasonal biomass inversely significantly correlated with average seasonal wind speed and annual NAO-index. Copyright © 2014 Elsevier Ltd. All rights reserved.
Petridis, Dimitris; Ritzoulis, Christos; Tzivanos, Iakovos; Vlazakis, Eleuterios; Derlikis, Emmanuel; Patroklos, Vareltzis
2013-01-01
The effect of two important nonmeat constituents (starch and sodium caseinate) and fat content on the sensory perception of frankfurter sausages has been assessed for two mixture amounts (17% and 27%). A strong correlation among objective fattiness, elasticity, and chewiness has been established; these correlate negatively to consistency and hardness. This has been attributed to the protein gel disruption arising from local phase separations. Hedonic consistency, elasticity, and chewiness showed a very strong positive correlation to one another. Contour plots, based on responses of principal component axes, show that lard is important in increasing the objective sensory intensities of fattiness, chewiness, and elasticity, and for decreasing hardness and consistency. In higher lard proportions, caseinate and starch decrease the red color intensity and the acceptability of chewiness, elasticity, and consistency. Optimization of the component amounts was performed using response trace plots. After redundancy analysis, sensory and instrumental variables were found in very good mutual agreement; hardness was assessed as the most important mechanical variable, followed by chewiness. PMID:24804012
Petridis, Dimitris; Ritzoulis, Christos; Tzivanos, Iakovos; Vlazakis, Eleuterios; Derlikis, Emmanuel; Patroklos, Vareltzis
2013-01-01
The effect of two important nonmeat constituents (starch and sodium caseinate) and fat content on the sensory perception of frankfurter sausages has been assessed for two mixture amounts (17% and 27%). A strong correlation among objective fattiness, elasticity, and chewiness has been established; these correlate negatively to consistency and hardness. This has been attributed to the protein gel disruption arising from local phase separations. Hedonic consistency, elasticity, and chewiness showed a very strong positive correlation to one another. Contour plots, based on responses of principal component axes, show that lard is important in increasing the objective sensory intensities of fattiness, chewiness, and elasticity, and for decreasing hardness and consistency. In higher lard proportions, caseinate and starch decrease the red color intensity and the acceptability of chewiness, elasticity, and consistency. Optimization of the component amounts was performed using response trace plots. After redundancy analysis, sensory and instrumental variables were found in very good mutual agreement; hardness was assessed as the most important mechanical variable, followed by chewiness.
How multi segmental patterns deviate in spastic diplegia from typical developed.
Zago, Matteo; Sforza, Chiarella; Bona, Alessia; Cimolin, Veronica; Costici, Pier Francesco; Condoluci, Claudia; Galli, Manuela
2017-10-01
The relationship between gait features and coordination in children with Cerebral Palsy is not sufficiently analyzed yet. Principal Component Analysis can help in understanding motion patterns decomposing movement into its fundamental components (Principal Movements). This study aims at quantitatively characterizing the functional connections between multi-joint gait patterns in Cerebral Palsy. 65 children with spastic diplegia aged 10.6 (SD 3.7) years participated in standardized gait analysis trials; 31 typically developing adolescents aged 13.6 (4.4) years were also tested. To determine if posture affects gait patterns, patients were split into Crouch and knee Hyperextension group according to knee flexion angle at standing. 3D coordinates of hips, knees, ankles, metatarsal joints, pelvis and shoulders were submitted to Principal Component Analysis. Four Principal Movements accounted for 99% of global variance; components 1-3 explained major sagittal patterns, components 4-5 referred to movements on frontal plane and component 6 to additional movement refinements. Dimensionality was higher in patients than in controls (p<0.01), and the Crouch group significantly differed from controls in the application of components 1 and 4-6 (p<0.05), while the knee Hyperextension group in components 1-2 and 5 (p<0.05). Compensatory strategies of children with Cerebral Palsy (interactions between main and secondary movement patterns), were objectively determined. Principal Movements can reduce the effort in interpreting gait reports, providing an immediate and quantitative picture of the connections between movement components. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Williams, D. L.; Borden, F. Y.
1977-01-01
Methods to accurately delineate the types of land cover in the urban-rural transition zone of metropolitan areas were considered. The application of principal components analysis to multidate LANDSAT imagery was investigated as a means of reducing the overlap between residential and agricultural spectral signatures. The statistical concepts of principal components analysis were discussed, as well as the results of this analysis when applied to multidate LANDSAT imagery of the Washington, D.C. metropolitan area.
Constrained Principal Component Analysis: Various Applications.
ERIC Educational Resources Information Center
Hunter, Michael; Takane, Yoshio
2002-01-01
Provides example applications of constrained principal component analysis (CPCA) that illustrate the method on a variety of contexts common to psychological research. Two new analyses, decompositions into finer components and fitting higher order structures, are presented, followed by an illustration of CPCA on contingency tables and the CPCA of…
A PCA-Based method for determining craniofacial relationship and sexual dimorphism of facial shapes.
Shui, Wuyang; Zhou, Mingquan; Maddock, Steve; He, Taiping; Wang, Xingce; Deng, Qingqiong
2017-11-01
Previous studies have used principal component analysis (PCA) to investigate the craniofacial relationship, as well as sex determination using facial factors. However, few studies have investigated the extent to which the choice of principal components (PCs) affects the analysis of craniofacial relationship and sexual dimorphism. In this paper, we propose a PCA-based method for visual and quantitative analysis, using 140 samples of 3D heads (70 male and 70 female), produced from computed tomography (CT) images. There are two parts to the method. First, skull and facial landmarks are manually marked to guide the model's registration so that dense corresponding vertices occupy the same relative position in every sample. Statistical shape spaces of the skull and face in dense corresponding vertices are constructed using PCA. Variations in these vertices, captured in every principal component (PC), are visualized to observe shape variability. The correlations of skull- and face-based PC scores are analysed, and linear regression is used to fit the craniofacial relationship. We compute the PC coefficients of a face based on this craniofacial relationship and the PC scores of a skull, and apply the coefficients to estimate a 3D face for the skull. To evaluate the accuracy of the computed craniofacial relationship, the mean and standard deviation of every vertex between the two models are computed, where these models are reconstructed using real PC scores and coefficients. Second, each PC in facial space is analysed for sex determination, for which support vector machines (SVMs) are used. We examined the correlation between PCs and sex, and explored the extent to which the choice of PCs affects the expression of sexual dimorphism. Our results suggest that skull- and face-based PCs can be used to describe the craniofacial relationship and that the accuracy of the method can be improved by using an increased number of face-based PCs. The results show that the accuracy of the sex classification is related to the choice of PCs. The highest sex classification rate is 91.43% using our method. Copyright © 2017 Elsevier Ltd. All rights reserved.
Classifying U.S. Army Military Occupational Specialties Using the Occupational Information Network
Gadermann, Anne M.; Heeringa, Steven G.; Stein, Murray B.; Ursano, Robert J.; Colpe, Lisa J.; Fullerton, Carol S.; Gilman, Stephen E.; Gruber, Michael J.; Nock, Matthew K.; Rosellini, Anthony J.; Sampson, Nancy A.; Schoenbaum, Michael; Zaslavsky, Alan M.; Kessler, Ronald C.
2016-01-01
Objectives To derive job condition scales for future studies of the effects of job conditions on soldier health and job functioning across Army Military Occupation Specialties (MOSs) and Areas of Concentration (AOCs) using Department of Labor (DoL) Occupational Information Network (O*NET) ratings. Methods A consolidated administrative dataset was created for the “Army Study to Assess Risk and Resilience in Servicemembers” (Army STARRS) containing all soldiers on active duty between 2004 and 2009. A crosswalk between civilian occupations and MOS/AOCs (created by DoL and the Defense Manpower Data Center) was augmented to assign scores on all 246 O*NET dimensions to each soldier in the dataset. Principal components analysis was used to summarize these dimensions. Results Three correlated components explained the majority of O*NET dimension variance: “physical demands” (20.9% of variance), “interpersonal complexity” (17.5%), and “substantive complexity” (15.0%). Although broadly consistent with civilian studies, several discrepancies were found with civilian results reflecting potentially important differences in the structure of job conditions in the Army versus the civilian labor force. Conclusions Principal components scores for these scales provide a parsimonious characterization of key job conditions that can be used in future studies of the effects of MOS/AOC job conditions on diverse outcomes. PMID:25003860
The care dependency scale for measuring basic human needs: an international comparison.
Dijkstra, Ate; Yönt, Gülendam Hakverdioğlu; Korhan, Esra Akin; Muszalik, Marta; Kędziora-Kornatowska, Kornelia; Suzuki, Mizue
2012-10-01
To report a study conducted to compare the utility of the care dependency scale across four countries. The care dependency scale provides a framework for assessing the needs of institutionalized patients for nursing care. Henderson's components of nursing care have been used to specify the variable aspects of the concept of care dependency and to develop the care dependency scale items. The study used a cross-cultural survey design. Patients were recruited from four different countries: Japan, The Netherlands, Poland and Turkey. In each of the participating countries, basic human needs were assessed by nurses using a translated version of the original Dutch care dependency scale. Psychometric properties in terms of reliability and validity of the care dependency scale have been assessed using Cronbach's alpha, Guttman's lambda-2, inter-item correlation and principal components analysis. Data were collected in 2008 and 2009. High internal consistency values were demonstrated. Principal component analysis confirmed the one-factor model reported in earlier studies. Outcomes confirm Henderson's idea that human needs are fundamental appearing in every patient-nurse relationship, independent of the patient's age, the type of care setting and/or cultural background. The psychometric characteristics of the care dependency scale make this instrument very useful for comparative research across countries. © 2012 Blackwell Publishing Ltd.
Classifying U.S. Army Military Occupational Specialties using the Occupational Information Network.
Gadermann, Anne M; Heeringa, Steven G; Stein, Murray B; Ursano, Robert J; Colpe, Lisa J; Fullerton, Carol S; Gilman, Stephen E; Gruber, Michael J; Nock, Matthew K; Rosellini, Anthony J; Sampson, Nancy A; Schoenbaum, Michael; Zaslavsky, Alan M; Kessler, Ronald C
2014-07-01
To derive job condition scales for future studies of the effects of job conditions on soldier health and job functioning across Army Military Occupation Specialties (MOSs) and Areas of Concentration (AOCs) using Department of Labor (DoL) Occupational Information Network (O*NET) ratings. A consolidated administrative dataset was created for the "Army Study to Assess Risk and Resilience in Servicemembers" (Army STARRS) containing all soldiers on active duty between 2004 and 2009. A crosswalk between civilian occupations and MOS/AOCs (created by DoL and the Defense Manpower Data Center) was augmented to assign scores on all 246 O*NET dimensions to each soldier in the dataset. Principal components analysis was used to summarize these dimensions. Three correlated components explained the majority of O*NET dimension variance: "physical demands" (20.9% of variance), "interpersonal complexity" (17.5%), and "substantive complexity" (15.0%). Although broadly consistent with civilian studies, several discrepancies were found with civilian results reflecting potentially important differences in the structure of job conditions in the Army versus the civilian labor force. Principal components scores for these scales provide a parsimonious characterization of key job conditions that can be used in future studies of the effects of MOS/AOC job conditions on diverse outcomes. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.
NASA Technical Reports Server (NTRS)
Revilock, Duane M., Jr.; Thesken, John C.; Schmidt, Timothy E.
2007-01-01
Ambient temperature hydrostatic pressurization tests were conducted on a composite overwrapped pressure vessel (COPV) to understand the fiber stresses in COPV components. Two three-dimensional digital image correlation systems with high speed cameras were used in the evaluation to provide full field displacement and strain data for each pressurization test. A few of the key findings will be discussed including how the principal strains provided better insight into system behavior than traditional gauges, a high localized strain that was measured where gages were not present and the challenges of measuring curved surfaces with the use of a 1.25 in. thick layered polycarbonate panel that protected the cameras.
NASA Astrophysics Data System (ADS)
Ginanjar, Irlandia; Pasaribu, Udjianna S.; Indratno, Sapto W.
2017-03-01
This article presents the application of the principal component analysis (PCA) biplot for the needs of data mining. This article aims to simplify and objectify the methods for objects clustering in PCA biplot. The novelty of this paper is to get a measure that can be used to objectify the objects clustering in PCA biplot. Orthonormal eigenvectors, which are the coefficients of a principal component model representing an association between principal components and initial variables. The existence of the association is a valid ground to objects clustering based on principal axes value, thus if m principal axes used in the PCA, then the objects can be classified into 2m clusters. The inter-city buses are clustered based on maintenance costs data by using two principal axes PCA biplot. The buses are clustered into four groups. The first group is the buses with high maintenance costs, especially for lube, and brake canvass. The second group is the buses with high maintenance costs, especially for tire, and filter. The third group is the buses with low maintenance costs, especially for lube, and brake canvass. The fourth group is buses with low maintenance costs, especially for tire, and filter.
Rahman, Md. Jahanur; Shamim, Abu Ahmed; Klemm, Rolf D. W.; Labrique, Alain B.; Rashid, Mahbubur; Christian, Parul; West, Keith P.
2017-01-01
Birth weight, length and circumferences of the head, chest and arm are key measures of newborn size and health in developing countries. We assessed maternal socio-demographic factors associated with multiple measures of newborn size in a large rural population in Bangladesh using partial least squares (PLS) regression method. PLS regression, combining features from principal component analysis and multiple linear regression, is a multivariate technique with an ability to handle multicollinearity while simultaneously handling multiple dependent variables. We analyzed maternal and infant data from singletons (n = 14,506) born during a double-masked, cluster-randomized, placebo-controlled maternal vitamin A or β-carotene supplementation trial in rural northwest Bangladesh. PLS regression results identified numerous maternal factors (parity, age, early pregnancy MUAC, living standard index, years of education, number of antenatal care visits, preterm delivery and infant sex) significantly (p<0.001) associated with newborn size. Among them, preterm delivery had the largest negative influence on newborn size (Standardized β = -0.29 − -0.19; p<0.001). Scatter plots of the scores of first two PLS components also revealed an interaction between newborn sex and preterm delivery on birth size. PLS regression was found to be more parsimonious than both ordinary least squares regression and principal component regression. It also provided more stable estimates than the ordinary least squares regression and provided the effect measure of the covariates with greater accuracy as it accounts for the correlation among the covariates and outcomes. Therefore, PLS regression is recommended when either there are multiple outcome measurements in the same study, or the covariates are correlated, or both situations exist in a dataset. PMID:29261760
Chen, Hongwei; An, Jing; Wei, Shuhe; Gu, Jian
2015-01-01
Northeast China is an intensive area of resource-exhausted city, which is facing the challenges of industry conversion and sustainable development. In order to evaluate the soil environmental quality influenced by mining activities over decades, the concentration and spatial distribution of arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), and Zinc (Zn) in surface soils (0-20cm) of a typical resource-exhausted city were investigated by analyzing 306 soil samples. The results showed that the average concentrations in the samples were 6.17 mg/kg for As, 0.19 mg/kg for Cd, 51.08 mg/kg for Cr, 23.27 mg/kg for Cu, 31.15 mg/kg for Ni, 22.17 mg/kg for Pb, and 54.21 mg/kg for Zn. Metals distribution maps produced by using the inverse distance weighted interpolation method and results revealed that all investigated metals showed distinct geographical patterns, and the concentrations were higher in urban and industrial areas than in farmland. Pearson correlation and principal component analysis showed that there were significant positive correlations (p<0.05) between all of the metals, and As, Cd, Cr, Mn, Ni, Pb, and Zn were closely associated with the first principal component (PC1), which explained 39.81% of the total variance. Cu and As were mainly associated with the second component (PC2). Based on the calculated Nemerow pollution index, percentage for slightly polluted (1
Kabir, Alamgir; Rahman, Md Jahanur; Shamim, Abu Ahmed; Klemm, Rolf D W; Labrique, Alain B; Rashid, Mahbubur; Christian, Parul; West, Keith P
2017-01-01
Birth weight, length and circumferences of the head, chest and arm are key measures of newborn size and health in developing countries. We assessed maternal socio-demographic factors associated with multiple measures of newborn size in a large rural population in Bangladesh using partial least squares (PLS) regression method. PLS regression, combining features from principal component analysis and multiple linear regression, is a multivariate technique with an ability to handle multicollinearity while simultaneously handling multiple dependent variables. We analyzed maternal and infant data from singletons (n = 14,506) born during a double-masked, cluster-randomized, placebo-controlled maternal vitamin A or β-carotene supplementation trial in rural northwest Bangladesh. PLS regression results identified numerous maternal factors (parity, age, early pregnancy MUAC, living standard index, years of education, number of antenatal care visits, preterm delivery and infant sex) significantly (p<0.001) associated with newborn size. Among them, preterm delivery had the largest negative influence on newborn size (Standardized β = -0.29 - -0.19; p<0.001). Scatter plots of the scores of first two PLS components also revealed an interaction between newborn sex and preterm delivery on birth size. PLS regression was found to be more parsimonious than both ordinary least squares regression and principal component regression. It also provided more stable estimates than the ordinary least squares regression and provided the effect measure of the covariates with greater accuracy as it accounts for the correlation among the covariates and outcomes. Therefore, PLS regression is recommended when either there are multiple outcome measurements in the same study, or the covariates are correlated, or both situations exist in a dataset.
Kakio, Tomoko; Nagase, Hitomi; Takaoka, Takashi; Yoshida, Naoko; Hirakawa, Junichi; Macha, Susan; Hiroshima, Takashi; Ikeda, Yukihiro; Tsuboi, Hirohito; Kimura, Kazuko
2018-06-01
The World Health Organization has warned that substandard and falsified medical products (SFs) can harm patients and fail to treat the diseases for which they were intended, and they affect every region of the world, leading to loss of confidence in medicines, health-care providers, and health systems. Therefore, development of analytical procedures to detect SFs is extremely important. In this study, we investigated the quality of pharmaceutical tablets containing the antihypertensive candesartan cilexetil, collected in China, Indonesia, Japan, and Myanmar, using the Japanese pharmacopeial analytical procedures for quality control, together with principal component analysis (PCA) of Raman spectrum obtained with handheld Raman spectrometer. Some samples showed delayed dissolution and failed to meet the pharmacopeial specification, whereas others failed the assay test. These products appeared to be substandard. Principal component analysis showed that all Raman spectra could be explained in terms of two components: the amount of the active pharmaceutical ingredient and the kinds of excipients. Principal component analysis score plot indicated one substandard, and the falsified tablets have similar principal components in Raman spectra, in contrast to authentic products. The locations of samples within the PCA score plot varied according to the source country, suggesting that manufacturers in different countries use different excipients. Our results indicate that the handheld Raman device will be useful for detection of SFs in the field. Principal component analysis of that Raman data clarify the difference in chemical properties between good quality products and SFs that circulate in the Asian market.
Principal component analysis and the locus of the Fréchet mean in the space of phylogenetic trees.
Nye, Tom M W; Tang, Xiaoxian; Weyenberg, Grady; Yoshida, Ruriko
2017-12-01
Evolutionary relationships are represented by phylogenetic trees, and a phylogenetic analysis of gene sequences typically produces a collection of these trees, one for each gene in the analysis. Analysis of samples of trees is difficult due to the multi-dimensionality of the space of possible trees. In Euclidean spaces, principal component analysis is a popular method of reducing high-dimensional data to a low-dimensional representation that preserves much of the sample's structure. However, the space of all phylogenetic trees on a fixed set of species does not form a Euclidean vector space, and methods adapted to tree space are needed. Previous work introduced the notion of a principal geodesic in this space, analogous to the first principal component. Here we propose a geometric object for tree space similar to the [Formula: see text]th principal component in Euclidean space: the locus of the weighted Fréchet mean of [Formula: see text] vertex trees when the weights vary over the [Formula: see text]-simplex. We establish some basic properties of these objects, in particular showing that they have dimension [Formula: see text], and propose algorithms for projection onto these surfaces and for finding the principal locus associated with a sample of trees. Simulation studies demonstrate that these algorithms perform well, and analyses of two datasets, containing Apicomplexa and African coelacanth genomes respectively, reveal important structure from the second principal components.
Statistical analysis of aerosol species, trace gasses, and meteorology in Chicago.
Binaku, Katrina; O'Brien, Timothy; Schmeling, Martina; Fosco, Tinamarie
2013-09-01
Both canonical correlation analysis (CCA) and principal component analysis (PCA) were applied to atmospheric aerosol and trace gas concentrations and meteorological data collected in Chicago during the summer months of 2002, 2003, and 2004. Concentrations of ammonium, calcium, nitrate, sulfate, and oxalate particulate matter, as well as, meteorological parameters temperature, wind speed, wind direction, and humidity were subjected to CCA and PCA. Ozone and nitrogen oxide mixing ratios were also included in the data set. The purpose of statistical analysis was to determine the extent of existing linear relationship(s), or lack thereof, between meteorological parameters and pollutant concentrations in addition to reducing dimensionality of the original data to determine sources of pollutants. In CCA, the first three canonical variate pairs derived were statistically significant at the 0.05 level. Canonical correlation between the first canonical variate pair was 0.821, while correlations of the second and third canonical variate pairs were 0.562 and 0.461, respectively. The first canonical variate pair indicated that increasing temperatures resulted in high ozone mixing ratios, while the second canonical variate pair showed wind speed and humidity's influence on local ammonium concentrations. No new information was uncovered in the third variate pair. Canonical loadings were also interpreted for information regarding relationships between data sets. Four principal components (PCs), expressing 77.0 % of original data variance, were derived in PCA. Interpretation of PCs suggested significant production and/or transport of secondary aerosols in the region (PC1). Furthermore, photochemical production of ozone and wind speed's influence on pollutants were expressed (PC2) along with overall measure of local meteorology (PC3). In summary, CCA and PCA results combined were successful in uncovering linear relationships between meteorology and air pollutants in Chicago and aided in determining possible pollutant sources.
Black, Bryan A.; Dunham, Jason B.; Blundon, Brett W.; Brim-Box, Jayne; Tepley, Alan J.
2015-01-01
Analyses of how organisms are likely to respond to a changing climate have focused largely on the direct effects of warming temperatures, though changes in other variables may also be important, particularly the amount and timing of precipitation. Here, we develop a network of eight growth-increment width chronologies for freshwater mussel species in the Pacific Northwest, United States and integrate them with tree-ring data to evaluate how terrestrial and aquatic indicators respond to hydroclimatic variability, including river discharge and precipitation. Annual discharge averaged across water years (October 1–September 30) was highly synchronous among river systems and imparted a coherent pattern among mussel chronologies. The leading principal component of the five longest mussel chronologies (1982–2003; PC1mussel) accounted for 47% of the dataset variability and negatively correlated with the leading principal component of river discharge (PC1discharge; r = −0.88; P < 0.0001). PC1mussel and PC1discharge were closely linked to regional wintertime precipitation patterns across the Pacific Northwest, the season in which the vast majority of annual precipitation arrives. Mussel growth was also indirectly related to tree radial growth, though the nature of the relationships varied across the landscape. Negative correlations occurred in forests where tree growth tends to be limited by drought while positive correlations occurred in forests where tree growth tends to be limited by deep or lingering snowpack. Overall, this diverse assemblage of chronologies illustrates the importance of winter precipitation to terrestrial and freshwater ecosystems and suggests that a complexity of climate responses must be considered when estimating the biological impacts of climate variability and change.
Bioclimatic Classification of Northeast Asia for climate change response
NASA Astrophysics Data System (ADS)
Choi, Y.; Jeon, S. W.; Lim, C. H.
2016-12-01
As climate change has been getting worse, we should monitor the change of biodiversity, and distribution of species to handle the crisis and take advantage of climate change. The development of bioclimatic map which classifies land into homogenous zones by similar environment properties is the first step to establish a strategy. Statistically derived classifications of land provide useful spatial frameworks to support ecosystem research, monitoring and policy decisions. Many countries are trying to make this kind of map and actively utilize it to ecosystem conservation and management. However, the Northeast Asia including North Korea doesn't have detailed environmental information, and has not built environmental classification map. Therefore, this study presents a bioclimatic map of Northeast Asia based on statistical clustering of bioclimate data. Bioclim data ver1.4 which provided by WorldClim were considered for inclusion in a model. Eight of the most relevant climate variables were selected by correlation analysis, based on previous studies. Principal Components Analysis (PCA) was used to explain 86% of the variation into three independent dimensions, which were subsequently clustered using an ISODATA clustering. The bioclimatic zone of Northeast Asia could consist of 29, 35, and 50 zones. This bioclimatic map has a 30' resolution. To assess the accuracy, the correlation coefficient was calculated between the first principal component values of the classification variables and the vegetation index, Gross Primary Production (GPP). It shows about 0.5 Pearson correlation coefficient. This study constructed Northeast Asia bioclimatic map by statistical method with high resolution, but in order to better reflect the realities, the variety of climate variables should be considered. Also, further studies should do more quantitative and qualitative validation in various ways. Then, this could be used more effectively to support decision making on climate change adaptation.
Describing temperament in an ungulate: a multidimensional approach.
Graunke, Katharina L; Nürnberg, Gerd; Repsilber, Dirk; Puppe, Birger; Langbein, Jan
2013-01-01
Studies on animal temperament have often described temperament using a one-dimensional scale, whereas theoretical framework has recently suggested two or more dimensions using terms like "valence" or "arousal" to describe these dimensions. Yet, the valence or assessment of a situation is highly individual. The aim of this study was to provide support for the multidimensional framework with experimental data originating from an economically important species (Bos taurus). We tested 361 calves at 90 days post natum (dpn) in a novel-object test. Using a principal component analysis (PCA), we condensed numerous behaviours into fewer variables to describe temperament and correlated these variables with simultaneously measured heart rate variability (HRV) data. The PCA resulted in two behavioural dimensions (principal components, PC): novel-object-related (PC 1) and exploration-activity-related (PC 2). These PCs explained 58% of the variability in our data. The animals were distributed evenly within the two behavioural dimensions independent of their sex. Calves with different scores in these PCs differed significantly in HRV, and thus in the autonomous nervous system's activity. Based on these combined behavioural and physiological data we described four distinct temperament types resulting from two behavioural dimensions: "neophobic/fearful--alert", "interested--stressed", "subdued/uninterested--calm", and "neoophilic/outgoing--alert". Additionally, 38 calves were tested at 90 and 197 dpn. Using the same PCA-model, they correlated significantly in PC 1 and tended to correlate in PC 2 between the two test ages. Of these calves, 42% expressed a similar behaviour pattern in both dimensions and 47% in one. No differences in temperament scores were found between sexes or breeds. In conclusion, we described distinct temperament types in calves based on behavioural and physiological measures emphasising the benefits of a multidimensional approach.
Vercelli, Marina; Lillini, Roberto; Capocaccia, Riccardo; Quaglia, Alberto
2012-12-01
The main aim of this work is to compute expected cancer survival for Italian provinces by Socio-Economic and health Resources and Technologic Supplies (SERTS) models, based on demographic, socioeconomic variables and information describing the health care system (SEH). Five-year age-standardised relative survival rates by gender for 11 cancer sites and all cancers combined of patients diagnosed in 1995-1999, were obtained from the Italian Association of Cancer Registries (CRs) database. The SEH variables describe at provincial level macro-economy, demography, labour market, health resources in 1995-2005. A principal components factor analysis was applied to the SEH variables to control their strong mutual correlation. For every considered cancer site, linear regression models were estimated considering the 5-RS% as dependent variable and the principal components factors of the SEH variables as independent variables. The model composition was correlated to the characteristics of take in charge of patients. SEH factors were correlated with the observed survival for all cancer combined and colon-rectum in both sexes, prostate, kidney and non Hodgkin's lymphomas in men, breast, corpus uteri and melanoma in women (R(2) from 40% to 85%). In the provinces without any CR the survival was very similar with that of neighbouring provinces with analogous social, economic and health characteristics. The SERTS models allowed us to interpret the survival outcome of oncologic patients with respect to the role of the socio-economic and health related system characteristics, stressing how the peculiarities of the take in charge at the province level could address the decisions regarding the allocation of resources. Copyright © 2012 Elsevier Ltd. All rights reserved.
Narrow band quantitative and multivariate electroencephalogram analysis of peri-adolescent period.
Martinez, E I Rodríguez; Barriga-Paulino, C I; Zapata, M I; Chinchilla, C; López-Jiménez, A M; Gómez, C M
2012-08-24
The peri-adolescent period is a crucial developmental moment of transition from childhood to emergent adulthood. The present report analyses the differences in Power Spectrum (PS) of the Electroencephalogram (EEG) between late childhood (24 children between 8 and 13 years old) and young adulthood (24 young adults between 18 and 23 years old). The narrow band analysis of the Electroencephalogram was computed in the frequency range of 0-20 Hz. The analysis of mean and variance suggested that six frequency ranges presented a different rate of maturation at these ages, namely: low delta, delta-theta, low alpha, high alpha, low beta and high beta. For most of these bands the maturation seems to occur later in anterior sites than posterior sites. Correlational analysis showed a lower pattern of correlation between different frequencies in children than in young adults, suggesting a certain asynchrony in the maturation of different rhythms. The topographical analysis revealed similar topographies of the different rhythms in children and young adults. Principal Component Analysis (PCA) demonstrated the same internal structure for the Electroencephalogram of both age groups. Principal Component Analysis allowed to separate four subcomponents in the alpha range. All these subcomponents peaked at a lower frequency in children than in young adults. The present approaches complement and solve some of the incertitudes when the classical brain broad rhythm analysis is applied. Children have a higher absolute power than young adults for frequency ranges between 0-20 Hz, the correlation of Power Spectrum (PS) with age and the variance age comparison showed that there are six ranges of frequencies that can distinguish the level of EEG maturation in children and adults. The establishment of maturational order of different frequencies and its possible maturational interdependence would require a complete series including all the different ages.
Chatzigianni, Athina; Halazonetis, Demetrios J
2009-10-01
Cervical vertebrae shape has been proposed as a diagnostic factor for assessing skeletal maturation in orthodontic patients. However, evaluation of vertebral shape is mainly based on qualitative criteria. Comprehensive quantitative measurements of shape and assessments of its predictive power have not been reported. Our aims were to measure vertebral shape by using the tools of geometric morphometrics and to evaluate the correlation and predictive power of vertebral shape on skeletal maturation. Pretreatment lateral cephalograms and corresponding hand-wrist radiographs of 98 patients (40 boys, 58 girls; ages, 8.1-17.7 years) were used. Skeletal age was estimated from the hand-wrist radiographs. The first 4 vertebrae were traced, and 187 landmarks (34 fixed and 153 sliding semilandmarks) were used. Sliding semilandmarks were adjusted to minimize bending energy against the average of the sample. Principal components analysis in shape and form spaces was used for evaluating shape patterns. Shape measures, alone and combined with centroid size and age, were assessed as predictors of skeletal maturation. Shape alone could not predict skeletal maturation better than chronologic age. The best prediction was achieved with the combination of form space principal components and age, giving 90% prediction intervals of approximately 200 maturation units in the girls and 300 units in the boys. Similar predictive power could be obtained by using centroid size and age. Vertebrae C2, C3, and C4 gave similar results when examined individually or combined. C1 showed lower correlations, signifying lower integration with hand-wrist maturation. Vertebral shape is strongly correlated to skeletal age but does not offer better predictive value than chronologic age.
Liu, Huayun; Yu, Juping; Chen, Yongyi; He, Pingping; Zhou, Lianqing; Tang, Xinhui; Liu, Xiangyu; Li, Xuying; Wu, Yanping; Wang, Yuhua
2016-02-01
This study aimed to examine the psychometric properties and performance of a Chinese version of the Female Sexual Function Index (FSFI) among a sample of Chinese women with cervical cancer. A cross-sectional survey design was used. The respondents included 215 women with cervical cancer in an oncology hospital in China. A translated Chinese version of the FSFI was used to investigate their sexual functioning. Psychometric testing included internal consistency reliability (Cronbach's alpha coefficient and item-total correlations), test-retest reliability, construct validity (principal component analysis via oblique rotation and confirmatory factor analysis), and variability (floor and ceiling effects). The mean score of the total scale was 20.65 ± 4.77. The Cronbach values were .94 for the total scale, .72-.90 for the domains. Test-retest correlation coefficients over 2-4 weeks were .84 (p < .05) for the total scale, .68-.83 for the subscales. Item-total correlation coefficients ranged between .47 and .83 (p < .05). A five-factor model was identified via principal component analysis and established by confirmatory factor analysis, including desire/arousal, lubrication, orgasm, satisfaction, and pain. There was no evidence of floor or ceiling effects. With good psychometric properties similar to its original English version, this Chinese version of the FSFI is demonstrated to be a reliable and valid instrument that can be used to assess sexual functioning of women with cervical cancer in China. Future research is still needed to confirm its psychometric properties and performance among a large sample. Copyright © 2015 Elsevier Ltd. All rights reserved.
McAlinden, Colm; Pesudovs, Konrad; Moore, Jonathan E
2010-11-01
To develop an instrument to measure subjective quality of vision: the Quality of Vision (QoV) questionnaire. A 30-item instrument was designed with 10 symptoms rated in each of three scales (frequency, severity, and bothersome). The QoV was completed by 900 subjects in groups of spectacle wearers, contact lens wearers, and those having had laser refractive surgery, intraocular refractive surgery, or eye disease and investigated with Rasch analysis and traditional statistics. Validity and reliability were assessed by Rasch fit statistics, principal components analysis (PCA), person separation, differential item functioning (DIF), item targeting, construct validity (correlation with visual acuity, contrast sensitivity, total root mean square [RMS] higher order aberrations [HOA]), and test-retest reliability (two-way random intraclass correlation coefficients [ICC] and 95% repeatability coefficients [R(c)]). Rasch analysis demonstrated good precision, reliability, and internal consistency for all three scales (mean square infit and outfit within 0.81-1.27; PCA >60% variance explained by the principal component; person separation 2.08, 2.10, and 2.01 respectively; and minimal DIF). Construct validity was indicated by strong correlations with visual acuity, contrast sensitivity and RMS HOA. Test-retest reliability was evidenced by a minimum ICC of 0.867 and a minimum 95% R(c) of 1.55 units. The QoV Questionnaire consists of a Rasch-tested, linear-scaled, 30-item instrument on three scales providing a QoV score in terms of symptom frequency, severity, and bothersome. It is suitable for measuring QoV in patients with all types of refractive correction, eye surgery, and eye disease that cause QoV problems.
Black, Bryan A; Dunham, Jason B; Blundon, Brett W; Brim-Box, Jayne; Tepley, Alan J
2015-02-01
Analyses of how organisms are likely to respond to a changing climate have focused largely on the direct effects of warming temperatures, though changes in other variables may also be important, particularly the amount and timing of precipitation. Here, we develop a network of eight growth-increment width chronologies for freshwater mussel species in the Pacific Northwest, United States and integrate them with tree-ring data to evaluate how terrestrial and aquatic indicators respond to hydroclimatic variability, including river discharge and precipitation. Annual discharge averaged across water years (October 1-September 30) was highly synchronous among river systems and imparted a coherent pattern among mussel chronologies. The leading principal component of the five longest mussel chronologies (1982-2003; PC1(mussel)) accounted for 47% of the dataset variability and negatively correlated with the leading principal component of river discharge (PC1(discharge); r = -0.88; P < 0.0001). PC1(mussel) and PC1(discharge) were closely linked to regional wintertime precipitation patterns across the Pacific Northwest, the season in which the vast majority of annual precipitation arrives. Mussel growth was also indirectly related to tree radial growth, though the nature of the relationships varied across the landscape. Negative correlations occurred in forests where tree growth tends to be limited by drought while positive correlations occurred in forests where tree growth tends to be limited by deep or lingering snowpack. Overall, this diverse assemblage of chronologies illustrates the importance of winter precipitation to terrestrial and freshwater ecosystems and suggests that a complexity of climate responses must be considered when estimating the biological impacts of climate variability and change. © 2014 John Wiley & Sons Ltd.
Phytogeographical Analysis of Seed Plant Genera in China
QIAN, HONG; WANG, SILONG; HE, JIN-SHENG; ZHANG, JUNLI; WANG, LISONG; WANG, XIANLI; GUO, KE
2006-01-01
• Background and Aims A central goal of biogeography and ecology is to uncover and understand distributional patterns of organisms. China has long been a focus of attention because of its rich biota, especially with respect to plants. Using 290 floras from across China, this paper quantitatively characterizes the composition of floristic elements at multiple scales (i.e. national, provincial and local), and explores the extent to which climatic and geographical factors associated with each flora can jointly and independently explain the variation in floristic elements in local floras. • Methods A study was made of 261 local floras, 28 province-level floras and one national-level flora across China. Genera of seed plants in each flora were assigned to 14 floristic elements according to their worldwide geographical distributions. The composition of floristic elements was related to climatic and geographical factors. • Key Results and Conclusions Variations in percentages of cosmopolitan, tropical and temperate genera among local floras tend to be greater at higher latitudes than at lower latitudes. Latitude is strongly correlated with the proportions of 13 of the 14 floristic elements. Correlations of the proportions of floristic elements with longitude are much weaker than those with latitude. Climate represented by the first principal component of a principal component analysis was strongly correlated with the proportions of floristic elements in local floras (|r| = 0·75 ± 0·18). Geographical coordinates independently explained about four times as much variation in floristic elements as did climate. Further research is necessary to examine the roles of water–energy dynamics, geology, soils, biotic interactions, and historical factors such as land connections between continents in the past and at present in creating observed floristic patterns. PMID:16945946
ERIC Educational Resources Information Center
Leapley-Portscheller, Claudia Iris
2008-01-01
Principals are responsible for leading efforts to reach increasingly higher levels of student academic proficiency in schools associated with adequate yearly progress (AYP) requirements. The purpose of this quantitative, correlational study was to identify the degree to which perceptions of principal transformational, transactional, and…
Morin, R.H.
1997-01-01
Returns from drilling in unconsolidated cobble and sand aquifers commonly do not identify lithologic changes that may be meaningful for Hydrogeologic investigations. Vertical resolution of saturated, Quaternary, coarse braided-slream deposits is significantly improved by interpreting natural gamma (G), epithermal neutron (N), and electromagnetically induced resistivity (IR) logs obtained from wells at the Capital Station site in Boise, Idaho. Interpretation of these geophysical logs is simplified because these sediments are derived largely from high-gamma-producing source rocks (granitics of the Boise River drainage), contain few clays, and have undergone little diagenesis. Analysis of G, N, and IR data from these deposits with principal components analysis provides an objective means to determine if units can be recognized within the braided-stream deposits. In particular, performing principal components analysis on G, N, and IR data from eight wells at Capital Station (1) allows the variable system dimensionality to be reduced from three to two by selecting the two eigenvectors with the greatest variance as axes for principal component scatterplots, (2) generates principal components with interpretable physical meanings, (3) distinguishes sand from cobble-dominated units, and (4) provides a means to distinguish between cobble-dominated units.
Analysis and Evaluation of the Characteristic Taste Components in Portobello Mushroom.
Wang, Jinbin; Li, Wen; Li, Zhengpeng; Wu, Wenhui; Tang, Xueming
2018-05-10
To identify the characteristic taste components of the common cultivated mushroom (brown; Portobello), Agaricus bisporus, taste components in the stipe and pileus of Portobello mushroom harvested at different growth stages were extracted and identified, and principal component analysis (PCA) and taste active value (TAV) were used to reveal the characteristic taste components during the each of the growth stages of Portobello mushroom. In the stipe and pileus, 20 and 14 different principal taste components were identified, respectively, and they were considered as the principal taste components of Portobello mushroom fruit bodies, which included most amino acids and 5'-nucleotides. Some taste components that were found at high levels, such as lactic acid and citric acid, were not detected as Portobello mushroom principal taste components through PCA. However, due to their high content, Portobello mushroom could be used as a source of organic acids. The PCA and TAV results revealed that 5'-GMP, glutamic acid, malic acid, alanine, proline, leucine, and aspartic acid were the characteristic taste components of Portobello mushroom fruit bodies. Portobello mushroom was also found to be rich in protein and amino acids, so it might also be useful in the formulation of nutraceuticals and functional food. The results in this article could provide a theoretical basis for understanding and regulating the characteristic flavor components synthesis process of Portobello mushroom. © 2018 Institute of Food Technologists®.
NASA Astrophysics Data System (ADS)
Kistenev, Yu. V.; Shapovalov, A. V.; Borisov, A. V.; Vrazhnov, D. A.; Nikolaev, V. V.; Nikiforova, O. Y.
2015-12-01
The results of numerical simulation of application principal component analysis to absorption spectra of breath air of patients with pulmonary diseases are presented. Various methods of experimental data preprocessing are analyzed.
Dascălu, Cristina Gena; Antohe, Magda Ecaterina
2009-01-01
Based on the eigenvalues and the eigenvectors analysis, the principal component analysis has the purpose to identify the subspace of the main components from a set of parameters, which are enough to characterize the whole set of parameters. Interpreting the data for analysis as a cloud of points, we find through geometrical transformations the directions where the cloud's dispersion is maximal--the lines that pass through the cloud's center of weight and have a maximal density of points around them (by defining an appropriate criteria function and its minimization. This method can be successfully used in order to simplify the statistical analysis on questionnaires--because it helps us to select from a set of items only the most relevant ones, which cover the variations of the whole set of data. For instance, in the presented sample we started from a questionnaire with 28 items and, applying the principal component analysis we identified 7 principal components--or main items--fact that simplifies significantly the further data statistical analysis.
Wijenayake, Udaya; Park, Soon-Yong
2017-01-01
Accurate tracking and modeling of internal and external respiratory motion in the thoracic and abdominal regions of a human body is a highly discussed topic in external beam radiotherapy treatment. Errors in target/normal tissue delineation and dose calculation and the increment of the healthy tissues being exposed to high radiation doses are some of the unsolicited problems caused due to inaccurate tracking of the respiratory motion. Many related works have been introduced for respiratory motion modeling, but a majority of them highly depend on radiography/fluoroscopy imaging, wearable markers or surgical node implanting techniques. We, in this article, propose a new respiratory motion tracking approach by exploiting the advantages of an RGB-D camera. First, we create a patient-specific respiratory motion model using principal component analysis (PCA) removing the spatial and temporal noise of the input depth data. Then, this model is utilized for real-time external respiratory motion measurement with high accuracy. Additionally, we introduce a marker-based depth frame registration technique to limit the measuring area into an anatomically consistent region that helps to handle the patient movements during the treatment. We achieved a 0.97 correlation comparing to a spirometer and 0.53 mm average error considering a laser line scanning result as the ground truth. As future work, we will use this accurate measurement of external respiratory motion to generate a correlated motion model that describes the movements of internal tumors. PMID:28792468
ERIC Educational Resources Information Center
Mugrage, Beverly; And Others
Three ridge regression solutions are compared with ordinary least squares regression and with principal components regression using all components. Ridge regression, particularly the Lawless-Wang solution, out-performed ordinary least squares regression and the principal components solution on the criteria of stability of coefficient and closeness…
Barreira, S.; Compagnucci, R.
2007-01-01
Principal Components Analysis (PCA) in S-Mode (correlation between temporal series) was performed on sea ice monthly anomalies, in order to investigate which are the main temporal patterns, where are the homogenous areas located and how are they related to the sea surface temperature (SST). This analysis provides 9 patterns (4 in the Amundsen and Bellingshausen Seas and 5 in the Weddell Sea) that represent the most important temporal features that dominated sea ice concentration anomalies (SICA) variability in the Weddell, Amundsen and Bellingshausen Seas over the 1979-2000 period. Monthly Polar Gridded Sea Ice Concentrations data set derived from satellite information generated by NASA Team algorithm and acquired from the National Snow and Ice Data Center (NSIDC) were used. Monthly means SST are provided by the National Center for Environmental Prediction reanalysis. The first temporal pattern series obtained by PCA has its homogeneous area located at the external region of the Weddell and Bellingshausen Seas and Drake Passage, mostly north of 60°S. The second region is centered in 30°W and located at the southeast of the Weddell. The third area is localized east of 30°W and north of 60°S. South of the first area, the fourth PC series has its homogenous region, between 30° and 60°W. The last area is centered at 0° W and south of 60°S. Correlation charts between the five Principal Components series and SST were performed. Positive correlations over the Tropical Pacific Ocean were found for the five PCs when SST series preceded SICA PC series. The sign of the correlation could relate the occurrence of an El Niño/Southern Oscillation (ENSO) warm (cold) event with posterior positive (negative) anomalies of sea ice concentration over the Weddell Sea.
The Complexity of Human Walking: A Knee Osteoarthritis Study
Kotti, Margarita; Duffell, Lynsey D.; Faisal, Aldo A.; McGregor, Alison H.
2014-01-01
This study proposes a framework for deconstructing complex walking patterns to create a simple principal component space before checking whether the projection to this space is suitable for identifying changes from the normality. We focus on knee osteoarthritis, the most common knee joint disease and the second leading cause of disability. Knee osteoarthritis affects over 250 million people worldwide. The motivation for projecting the highly dimensional movements to a lower dimensional and simpler space is our belief that motor behaviour can be understood by identifying a simplicity via projection to a low principal component space, which may reflect upon the underlying mechanism. To study this, we recruited 180 subjects, 47 of which reported that they had knee osteoarthritis. They were asked to walk several times along a walkway equipped with two force plates that capture their ground reaction forces along 3 axes, namely vertical, anterior-posterior, and medio-lateral, at 1000 Hz. Data when the subject does not clearly strike the force plate were excluded, leaving 1–3 gait cycles per subject. To examine the complexity of human walking, we applied dimensionality reduction via Probabilistic Principal Component Analysis. The first principal component explains 34% of the variance in the data, whereas over 80% of the variance is explained by 8 principal components or more. This proves the complexity of the underlying structure of the ground reaction forces. To examine if our musculoskeletal system generates movements that are distinguishable between normal and pathological subjects in a low dimensional principal component space, we applied a Bayes classifier. For the tested cross-validated, subject-independent experimental protocol, the classification accuracy equals 82.62%. Also, a novel complexity measure is proposed, which can be used as an objective index to facilitate clinical decision making. This measure proves that knee osteoarthritis subjects exhibit more variability in the two-dimensional principal component space. PMID:25232949
Biomineralogy of human urinary calculi (kidney stones) from some geographic regions of Sri Lanka.
Chandrajith, Rohana; Wijewardana, Geethika; Dissanayake, C B; Abeygunasekara, Anurudha
2006-08-01
Kidney stones (urinary calculi) have become a global scourge since it has been recognized as one of the most painful medical problems. Primary causative factors for the formation of these stones are not clearly understood, though they are suspected to have a direct relationship to the composition of urine, which is mainly governed by diet and drinking water. Sixty nine urinary calculi samples which were collected from stone removal surgeries were analyzed chemically for their Na, K, Ca, Mg, Cu, Zn, Pb, Fe and phosphate contents. Structural and mineralogical properties of stones were studied by XRD and FT-IR methods. The mean contents of trace elements were 1348 mg kg(-1) (Na); 294 mg kg(-1) (K); 32% (Ca); 1426 mg kg(-1) (Mg); 8.39 mg kg(-1) (Mn); 258 mg kg(-1) (Fe); 67 mg kg(-1) (Cu); 675 mg kg(-1) (Zn); 69 mg kg(-1) (Pb); and 1.93% (PO (4) (3-) ). The major crystalline constituent in the calculi of Sri Lanka is calcium oxalate monohydrate. Principal component analysis was used to identify the multi element relationships in kidney stones. Three components were extracted and the first component represents positively correlated Na-K-Mg-PO (4) (3-) whereas the second components represent the larger positively weighted Fe-Cu-Pb. Ca-Zn correlated positively in the third component in which Mn-Cu correlated negatively. This study indicates that during the crystallization of human urinary stones, Ca shows more affinity towards oxalates whereas other alkali and alkaline earths precipitate with phosphates.
Ghosh, Debasree; Chattopadhyay, Parimal
2012-06-01
The objective of the work was to use the method of quantitative descriptive analysis (QDA) to describe the sensory attributes of the fermented food products prepared with the incorporation of lactic cultures. Panellists were selected and trained to evaluate various attributes specially color and appearance, body texture, flavor, overall acceptability and acidity of the fermented food products like cow milk curd and soymilk curd, idli, sauerkraut and probiotic ice cream. Principal component analysis (PCA) identified the six significant principal components that accounted for more than 90% of the variance in the sensory attribute data. Overall product quality was modelled as a function of principal components using multiple least squares regression (R (2) = 0.8). The result from PCA was statistically analyzed by analysis of variance (ANOVA). These findings demonstrate the utility of quantitative descriptive analysis for identifying and measuring the fermented food product attributes that are important for consumer acceptability.
Conformational dynamics and ligand binding in the multi-domain protein PDC109.
Kim, Hyun Jin; Choi, Moo Young; Kim, Hyung J; Llinás, Miguel
2010-02-18
PDC109 is a modular multi-domain protein with two fibronectin type II (Fn2) repeats joined by a linker. It plays a major role in bull sperm binding to the oviductal epithelium through its interactions with phosphorylcholines (PhCs), a head group of sperm cell membrane lipids. The crystal structure of the PDC109-PhC complex shows that each PhC binds to the corresponding Fn2 domain, while the two domains are on the same face of the protein. Long timescale explicit solvent molecular dynamics (MD) simulations of PDC109, in the presence and absence of PhC, suggest that PhC binding strongly correlates with the relative orientation of choline-phospholipid binding sites of the two Fn2 domains; unless the two domains tightly bind PhCs, they tend to change their relative orientation by deforming the flexible linker. The effective PDC109-PhC association constant of 28 M(-1), estimated from their potential of mean force is consistent with the experimental result. Principal component analysis of the long timescale MD simulations was compared to the significantly less expensive normal mode analysis of minimized structures. The comparison indicates that difference between relative domain motions of PDC109 with bound and unbound PhC is captured by the first principal component in the principal component analysis as well as the three lowest normal modes in the normal mode analysis. The present study illustrates the use of detailed MD simulations to clarify the energetics of specific ligand-domain interactions revealed by a static crystallographic model, as well as their influence on relative domain motions in a multi-domain protein.
NASA Astrophysics Data System (ADS)
Voss, B. M.; Pereira, M. P.; Rolfe, B. F.; Doolan, M. C.
2017-09-01
The growth in use of Advanced High Strength Steels in the automotive industry for light-weighting and safety has increased the rates of tool wear in sheet metal stamping. This is an issue that adds significant costs to production in terms of manual inspection and part refinishing. To reduce these costs, a tool condition monitoring system is required and a firm understanding of process signal variation must form the foundation for any such monitoring system. Punch force is a stamping process signal that is widely collected by industrial presses and has been linked closely to part quality and tool condition, making it an ideal candidate as a tool condition monitoring signal. In this preliminary investigation, the variation of punch force due to different lubrication conditions and progressive wear are examined. Linking specific punch force signature changes to developing lubrication and wear events is valuable for die wear and stamping condition monitoring. A series of semi-industrial channel forming trials were conducted under different lubrication regimes and progressive die wear. Punch force signatures were captured for each part and Principal Component Analysis (PCA) was applied to determine the key Principal Components of the signature data sets. These Principal Components were linked to the evolution of friction conditions over the course of the stroke for the different lubrication regimes and mechanism of galling wear. As a result, variation in punch force signatures were correlated to the current mechanism of wear dominant on the formed part; either abrasion or adhesion, and to changes in lubrication mechanism. The outcomes of this study provide important insights into punch force signature variation, that will provide a foundation for future work into the development of die wear and lubrication monitoring systems for sheet metal stamping.
Aggarwal, Vikram; Thakor, Nitish V.; Schieber, Marc H.
2014-01-01
A few kinematic synergies identified by principal component analysis (PCA) account for most of the variance in the coordinated joint rotations of the fingers and wrist used for a wide variety of hand movements. To examine the possibility that motor cortex might control the hand through such synergies, we collected simultaneous kinematic and neurophysiological data from monkeys performing a reach-to-grasp task. We used PCA, jPCA and isomap to extract kinematic synergies from 18 joint angles in the fingers and wrist and analyzed the relationships of both single-unit and multiunit spike recordings, as well as local field potentials (LFPs), to these synergies. For most spike recordings, the maximal absolute cross-correlations of firing rates were somewhat stronger with an individual joint angle than with any principal component (PC), any jPC or any isomap dimension. In decoding analyses, where spikes and LFP power in the 100- to 170-Hz band each provided better decoding than other LFP-based signals, the first PC was decoded as well as the best decoded joint angle. But the remaining PCs and jPCs were predicted with lower accuracy than individual joint angles. Although PCs, jPCs or isomap dimensions might provide a more parsimonious description of kinematics, our findings indicate that the kinematic synergies identified with these techniques are not represented in motor cortex more strongly than the original joint angles. We suggest that the motor cortex might act to sculpt the synergies generated by subcortical centers, superimposing an ability to individuate finger movements and adapt the hand to grasp a wide variety of objects. PMID:24990564
Model based approach to UXO imaging using the time domain electromagnetic method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavely, E.M.
1999-04-01
Time domain electromagnetic (TDEM) sensors have emerged as a field-worthy technology for UXO detection in a variety of geological and environmental settings. This success has been achieved with commercial equipment that was not optimized for UXO detection and discrimination. The TDEM response displays a rich spatial and temporal behavior which is not currently utilized. Therefore, in this paper the author describes a research program for enhancing the effectiveness of the TDEM method for UXO detection and imaging. Fundamental research is required in at least three major areas: (a) model based imaging capability i.e. the forward and inverse problem, (b) detectormore » modeling and instrument design, and (c) target recognition and discrimination algorithms. These research problems are coupled and demand a unified treatment. For example: (1) the inverse solution depends on solution of the forward problem and knowledge of the instrument response; (2) instrument design with improved diagnostic power requires forward and inverse modeling capability; and (3) improved target recognition algorithms (such as neural nets) must be trained with data collected from the new instrument and with synthetic data computed using the forward model. Further, the design of the appropriate input and output layers of the net will be informed by the results of the forward and inverse modeling. A more fully developed model of the TDEM response would enable the joint inversion of data collected from multiple sensors (e.g., TDEM sensors and magnetometers). Finally, the author suggests that a complementary approach to joint inversions is the statistical recombination of data using principal component analysis. The decomposition into principal components is useful since the first principal component contains those features that are most strongly correlated from image to image.« less
NASA Astrophysics Data System (ADS)
Otero, Federico; Norte, Federico; Araneo, Diego
2018-01-01
The aim of this work is to obtain an index for predicting the probability of occurrence of zonda event at surface level from sounding data at Mendoza city, Argentine. To accomplish this goal, surface zonda wind events were previously found with an objective classification method (OCM) only considering the surface station values. Once obtained the dates and the onset time of each event, the prior closest sounding for each event was taken to realize a principal component analysis (PCA) that is used to identify the leading patterns of the vertical structure of the atmosphere previously to a zonda wind event. These components were used to construct the index model. For the PCA an entry matrix of temperature ( T) and dew point temperature (Td) anomalies for the standard levels between 850 and 300 hPa was build. The analysis yielded six significant components with a 94 % of the variance explained and the leading patterns of favorable weather conditions for the development of the phenomenon were obtained. A zonda/non-zonda indicator c can be estimated by a logistic multiple regressions depending on the PCA component loadings, determining a zonda probability index \\widehat{c} calculable from T and Td profiles and it depends on the climatological features of the region. The index showed 74.7 % efficiency. The same analysis was performed by adding surface values of T and Td from Mendoza Aero station increasing the index efficiency to 87.8 %. The results revealed four significantly correlated PCs with a major improvement in differentiating zonda cases and a reducing of the uncertainty interval.
Faburé, Juliette; Dufour, Marine; Autret, Armelle; Uher, Emmanuelle; Fechner, Lise C
2015-02-01
The aim of this study was to investigate the repeatability and seasonal variability of the biological response of river biofilms chronically exposed to a multi-metal pressure in an urban contamination gradient. Biofilms were grown on immersed plastic membranes at three sites on the Seine river upstream (site 1) and downstream (sites 2 and 3) from Paris (France). They were collected in four different seasons (autumn, spring, summer and winter). Biofilm tolerance to Cu, Ni, Pb and Zn was measured using a PICT (Pollution-Induced Community Tolerance) approach with a previously developed short-term toxicity test based on β-glucosidase (heterotrophic) activity. Metal concentrations in the river and also in the biofilm samples (total and non-exchangeable bioaccumulated metals) were also monitored. Biofilm-accumulated metal concentrations reflected the increase of the multi-metal exposure along the urban gradient. These concentrations were strongly correlated with dissolved and particulate organic carbon and with the total metal fraction in the river water, which recalls the significant influence of the environmental parameters on metal uptake processes in river biofilms. Overall, natural biofilms allow monitoring water quality by integrating the variations of a diffuse metal contamination overtime. Tolerance levels globally increased from site 1 to site 3 reflecting the metal pollution gradient measured in the river water collected at the three sites. Cu tolerance tended to increase during warm seasons but no clear seasonal tendency could be found for Ni, Pb and Zn. Furthermore, principal component analysis clearly discriminated samples collected upstream (site 1) from samples collected downstream (sites 2 and 3) along the first principal component which was correlated to the metal gradient. Samples collected in winter were also separated from the others along the second principal component correlated to parameters like water temperature and Total Suspended Solids concentration. This study shows that chronic in situ exposure to environmental metal concentrations has a significant impact on natural biofilms. Biofilm tolerance to metals and biofilm metal bioaccumulation both reflect metal exposure levels although they remain low when compared to Environmental Quality Standards from the European Water Framework Directive. Yet temperature appears as an important environmental variable shaping community structure and response to toxic exposure which shows that the sampling date is an important parameter to consider when using natural river biofilms to assess the impacts of urban pressure. Copyright © 2014 Elsevier B.V. All rights reserved.
Ronald, Angelica; Sieradzka, Dominika; Cardno, Alastair G; Haworth, Claire M A; McGuire, Philip; Freeman, Daniel
2014-07-01
We aimed to characterize multiple psychotic experiences, each assessed on a spectrum of severity (ie, quantitatively), in a general population sample of adolescents. Over five thousand 16-year-old twins and their parents completed the newly devised Specific Psychotic Experiences Questionnaire (SPEQ); a subsample repeated it approximately 9 months later. SPEQ was investigated in terms of factor structure, intersubscale correlations, frequency of endorsement and reported distress, reliability and validity, associations with traits of anxiety, depression and personality, and sex differences. Principal component analysis revealed a 6-component solution: paranoia, hallucinations, cognitive disorganization, grandiosity, anhedonia, and parent-rated negative symptoms. These components formed the basis of 6 subscales. Correlations between different experiences were low to moderate. All SPEQ subscales, except Grandiosity, correlated significantly with traits of anxiety, depression, and neuroticism. Scales showed good internal consistency, test-retest reliability, and convergent validity. Girls endorsed more paranoia, hallucinations, and cognitive disorganization; boys reported more grandiosity and anhedonia and had more parent-rated negative symptoms. As in adults at high risk for psychosis and with psychotic disorders, psychotic experiences in adolescents are characterized by multiple components. The study of psychotic experiences as distinct dimensional quantitative traits is likely to prove an important strategy for future research, and the SPEQ is a self- and parent-report questionnaire battery that embodies this approach. © The Author 2013. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center.
Mueller, Gerhard; Mylonas, Demetrius; Schumacher, Petra
2018-07-01
Within nursing education, the clinical learning environment is of a high importance in regards to the development of competencies and abilities. The organization, atmosphere, and supervision in the clinical learning environment are only a few factors that influence this development. In Austria there is currently no valid instrument available for the evaluation of influencing factors. The aim of the study was to test the construct validity with principal component analysis as well as the internal consistency of the German Clinical Learning Environment, Supervision and Teacher Scale (CLES+T scale) in Austria. The present validation study has a descriptive-quantitative cross-sectional design. The sample consisted of 385 nursing students from thirteen training institutions in Austria. The data collection was carried out online between March and April 2016. Starting with a polychoric correlation matrix, a parallel analysis with principal component extraction and promax rotation was carried out due to the ordinal data. The exploratory ordinal factor analysis supported a four-component solution and explained 73% of the total variance. The internal consistency of all 25 items reached a Cronbach's α of 0.95 and the four components ranged between 0.83 and 0.95. The German version of the CLES+T scale seems to be a useful instrument for identifying potential areas of improvement in clinical practice in order to derive specific quality measures for the practical learning environment. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lim, Hoong-Ta; Murukeshan, Vadakke Matham
2017-06-01
Hyperspectral imaging combines imaging and spectroscopy to provide detailed spectral information for each spatial point in the image. This gives a three-dimensional spatial-spatial-spectral datacube with hundreds of spectral images. Probe-based hyperspectral imaging systems have been developed so that they can be used in regions where conventional table-top platforms would find it difficult to access. A fiber bundle, which is made up of specially-arranged optical fibers, has recently been developed and integrated with a spectrograph-based hyperspectral imager. This forms a snapshot hyperspectral imaging probe, which is able to form a datacube using the information from each scan. Compared to the other configurations, which require sequential scanning to form a datacube, the snapshot configuration is preferred in real-time applications where motion artifacts and pixel misregistration can be minimized. Principal component analysis is a dimension-reducing technique that can be applied in hyperspectral imaging to convert the spectral information into uncorrelated variables known as principal components. A confidence ellipse can be used to define the region of each class in the principal component feature space and for classification. This paper demonstrates the use of the snapshot hyperspectral imaging probe to acquire data from samples of different colors. The spectral library of each sample was acquired and then analyzed using principal component analysis. Confidence ellipse was then applied to the principal components of each sample and used as the classification criteria. The results show that the applied analysis can be used to perform classification of the spectral data acquired using the snapshot hyperspectral imaging probe.
Pepper seed variety identification based on visible/near-infrared spectral technology
NASA Astrophysics Data System (ADS)
Li, Cuiling; Wang, Xiu; Meng, Zhijun; Fan, Pengfei; Cai, Jichen
2016-11-01
Pepper is a kind of important fruit vegetable, with the expansion of pepper hybrid planting area, detection of pepper seed purity is especially important. This research used visible/near infrared (VIS/NIR) spectral technology to detect the variety of single pepper seed, and chose hybrid pepper seeds "Zhuo Jiao NO.3", "Zhuo Jiao NO.4" and "Zhuo Jiao NO.5" as research sample. VIS/NIR spectral data of 80 "Zhuo Jiao NO.3", 80 "Zhuo Jiao NO.4" and 80 "Zhuo Jiao NO.5" pepper seeds were collected, and the original spectral data was pretreated with standard normal variable (SNV) transform, first derivative (FD), and Savitzky-Golay (SG) convolution smoothing methods. Principal component analysis (PCA) method was adopted to reduce the dimension of the spectral data and extract principal components, according to the distribution of the first principal component (PC1) along with the second principal component(PC2) in the twodimensional plane, similarly, the distribution of PC1 coupled with the third principal component(PC3), and the distribution of PC2 combined with PC3, distribution areas of three varieties of pepper seeds were divided in each twodimensional plane, and the discriminant accuracy of PCA was tested through observing the distribution area of samples' principal components in validation set. This study combined PCA and linear discriminant analysis (LDA) to identify single pepper seed varieties, results showed that with the FD preprocessing method, the discriminant accuracy of pepper seed varieties was 98% for validation set, it concludes that using VIS/NIR spectral technology is feasible for identification of single pepper seed varieties.
Long, J.M.; Fisher, W.L.
2006-01-01
We present a method for spatial interpretation of environmental variation in a reservoir that integrates principal components analysis (PCA) of environmental data with geographic information systems (GIS). To illustrate our method, we used data from a Great Plains reservoir (Skiatook Lake, Oklahoma) with longitudinal variation in physicochemical conditions. We measured 18 physicochemical features, mapped them using GIS, and then calculated and interpreted four principal components. Principal component 1 (PC1) was readily interpreted as longitudinal variation in water chemistry, but the other principal components (PC2-4) were difficult to interpret. Site scores for PC1-4 were calculated in GIS by summing weighted overlays of the 18 measured environmental variables, with the factor loadings from the PCA as the weights. PC1-4 were then ordered into a landscape hierarchy, an emergent property of this technique, which enabled their interpretation. PC1 was interpreted as a reservoir scale change in water chemistry, PC2 was a microhabitat variable of rip-rap substrate, PC3 identified coves/embayments and PC4 consisted of shoreline microhabitats related to slope. The use of GIS improved our ability to interpret the more obscure principal components (PC2-4), which made the spatial variability of the reservoir environment more apparent. This method is applicable to a variety of aquatic systems, can be accomplished using commercially available software programs, and allows for improved interpretation of the geographic environmental variability of a system compared to using typical PCA plots. ?? Copyright by the North American Lake Management Society 2006.
Integrated Central-Autonomic Multifractal Complexity in the Heart Rate Variability of Healthy Humans
Lin, D. C.; Sharif, A.
2012-01-01
Purpose of Study: The aim of this study was to characterize the central-autonomic interaction underlying the multifractality in heart rate variability (HRV) of healthy humans. Materials and Methods: Eleven young healthy subjects participated in two separate ~40 min experimental sessions, one in supine (SUP) and one in, head-up-tilt (HUT), upright (UPR) body positions. Surface scalp electroencephalography (EEG) and electrocardiogram (ECG) were collected and fractal correlation of brain and heart rate data was analyzed based on the idea of relative multifractality. The fractal correlation was further examined with the EEG, HRV spectral measures using linear regression of two variables and principal component analysis (PCA) to find clues for the physiological processing underlying the central influence in fractal HRV. Results: We report evidence of a central-autonomic fractal correlation (CAFC) where the HRV multifractal complexity varies significantly with the fractal correlation between the heart rate and brain data (P = 0.003). The linear regression shows significant correlation between CAFC measure and EEG Beta band spectral component (P = 0.01 for SUP and P = 0.002 for UPR positions). There is significant correlation between CAFC measure and HRV LF component in the SUP position (P = 0.04), whereas the correlation with the HRV HF component approaches significance (P = 0.07). The correlation between CAFC measure and HRV spectral measures in the UPR position is weak. The PCA results confirm these findings and further imply multiple physiological processes underlying CAFC, highlighting the importance of the EEG Alpha, Beta band, and the HRV LF, HF spectral measures in the supine position. Discussion and Conclusion: The findings of this work can be summarized into three points: (i) Similar fractal characteristics exist in the brain and heart rate fluctuation and the change toward stronger fractal correlation implies the change toward more complex HRV multifractality. (ii) CAFC is likely contributed by multiple physiological mechanisms, with its central elements mainly derived from the EEG Alpha, Beta band dynamics. (iii) The CAFC in SUP and UPR positions is qualitatively different, with a more predominant central influence in the fractal HRV of the UPR position. PMID:22403548
2017-01-01
Introduction This research paper aims to assess factors reported by parents associated with the successful transition of children with complex additional support requirements that have undergone a transition between school environments from 8 European Union member states. Methods Quantitative data were collected from 306 parents within education systems from 8 EU member states (Bulgaria, Cyprus, Greece, Ireland, the Netherlands, Romania, Spain and the UK). The data were derived from an online questionnaire and consisted of 41 questions. Information was collected on: parental involvement in their child’s transition, child involvement in transition, child autonomy, school ethos, professionals’ involvement in transition and integrated working, such as, joint assessment, cooperation and coordination between agencies. Survey questions that were designed on a Likert-scale were included in the Principal Components Analysis (PCA), additional survey questions, along with the results from the PCA, were used to build a logistic regression model. Results Four principal components were identified accounting for 48.86% of the variability in the data. Principal component 1 (PC1), ‘child inclusive ethos,’ contains 16.17% of the variation. Principal component 2 (PC2), which represents child autonomy and involvement, is responsible for 8.52% of the total variation. Principal component 3 (PC3) contains questions relating to parental involvement and contributed to 12.26% of the overall variation. Principal component 4 (PC4), which involves transition planning and coordination, contributed to 11.91% of the overall variation. Finally, the principal components were included in a logistic regression to evaluate the relationship between inclusion and a successful transition, as well as whether other factors that may have influenced transition. All four principal components were significantly associated with a successful transition, with PC1 being having the most effect (OR: 4.04, CI: 2.43–7.18, p<0.0001). Discussion To support a child with complex additional support requirements through transition from special school to mainstream, governments and professionals need to ensure children with additional support requirements and their parents are at the centre of all decisions that affect them. It is important that professionals recognise the educational, psychological, social and cultural contexts of a child with additional support requirements and their families which will provide a holistic approach and remove barriers for learning. PMID:28636649
Ravenscroft, John; Wazny, Kerri; Davis, John M
2017-01-01
This research paper aims to assess factors reported by parents associated with the successful transition of children with complex additional support requirements that have undergone a transition between school environments from 8 European Union member states. Quantitative data were collected from 306 parents within education systems from 8 EU member states (Bulgaria, Cyprus, Greece, Ireland, the Netherlands, Romania, Spain and the UK). The data were derived from an online questionnaire and consisted of 41 questions. Information was collected on: parental involvement in their child's transition, child involvement in transition, child autonomy, school ethos, professionals' involvement in transition and integrated working, such as, joint assessment, cooperation and coordination between agencies. Survey questions that were designed on a Likert-scale were included in the Principal Components Analysis (PCA), additional survey questions, along with the results from the PCA, were used to build a logistic regression model. Four principal components were identified accounting for 48.86% of the variability in the data. Principal component 1 (PC1), 'child inclusive ethos,' contains 16.17% of the variation. Principal component 2 (PC2), which represents child autonomy and involvement, is responsible for 8.52% of the total variation. Principal component 3 (PC3) contains questions relating to parental involvement and contributed to 12.26% of the overall variation. Principal component 4 (PC4), which involves transition planning and coordination, contributed to 11.91% of the overall variation. Finally, the principal components were included in a logistic regression to evaluate the relationship between inclusion and a successful transition, as well as whether other factors that may have influenced transition. All four principal components were significantly associated with a successful transition, with PC1 being having the most effect (OR: 4.04, CI: 2.43-7.18, p<0.0001). To support a child with complex additional support requirements through transition from special school to mainstream, governments and professionals need to ensure children with additional support requirements and their parents are at the centre of all decisions that affect them. It is important that professionals recognise the educational, psychological, social and cultural contexts of a child with additional support requirements and their families which will provide a holistic approach and remove barriers for learning.
Principal components of wrist circumduction from electromagnetic surgical tracking.
Rasquinha, Brian J; Rainbow, Michael J; Zec, Michelle L; Pichora, David R; Ellis, Randy E
2017-02-01
An electromagnetic (EM) surgical tracking system was used for a functionally calibrated kinematic analysis of wrist motion. Circumduction motions were tested for differences in subject gender and for differences in the sense of the circumduction as clockwise or counter-clockwise motion. Twenty subjects were instrumented for EM tracking. Flexion-extension motion was used to identify the functional axis. Subjects performed unconstrained wrist circumduction in a clockwise and counter-clockwise sense. Data were decomposed into orthogonal flexion-extension motions and radial-ulnar deviation motions. PCA was used to concisely represent motions. Nonparametric Wilcoxon tests were used to distinguish the groups. Flexion-extension motions were projected onto a direction axis with a root-mean-square error of [Formula: see text]. Using the first three principal components, there was no statistically significant difference in gender (all [Formula: see text]). For motion sense, radial-ulnar deviation distinguished the sense of circumduction in the first principal component ([Formula: see text]) and in the third principal component ([Formula: see text]); flexion-extension distinguished the sense in the second principal component ([Formula: see text]). The clockwise sense of circumduction could be distinguished by a multifactorial combination of components; there were no gender differences in this small population. These data constitute a baseline for normal wrist circumduction. The multifactorial PCA findings suggest that a higher-dimensional method, such as manifold analysis, may be a more concise way of representing circumduction in human joints.
Evidence from paranoid schizophrenia for more than one component of theory of mind
Scherzer, Peter; Achim, André; Léveillé, Edith; Boisseau, Emilie; Stip, Emmanuel
2015-01-01
We previously reported finding that performance was impaired on four out of five theory of mind (ToM) tests in a group of 21 individuals diagnosed with paranoid schizophrenia (pScz), relative to a non-clinical group of 29 individuals (Scherzer et al., 2012). Only the Reading the Mind in the Eyes Test did not distinguish between groups. A principal components analysis revealed that the results on the ToM battery could be explained by one general ToM factor with the possibility of a latent second factor. As well, the tests were not equally sensitive to the pathology. There was also overmentalization in some ToM tests and under-mentalisation in others. These results led us to postulate that there is more than one component to ToM. We hypothesized that correlations between the different EF measures and ToM tests would differ sufficiently within and between groups to support this hypothesis. We considered the relationship between the performance on eight EF tests and five ToM tests in the same diagnosed and non-clinical individuals as in the first study. The ToM tests shared few EF correlates and each had its own best EF predictor. These findings support the hypothesis of multiple ToM components. PMID:26579026
Validation of the Finnegan neonatal abstinence syndrome tool-short form.
Maguire, Denise; Cline, Genieveve J; Parnell, Lisa; Tai, Chun-Yi
2013-12-01
The purpose of this study was to reduce the number of items in the Modified Finnegan Neonatal Abstinence Syndrome Tool (M-FNAST) to the minimum possible while retaining or improving its validity in a short version. All infants with a diagnosis of neonatal abstinence syndrome (171) who were admitted to a large neonatal intensive care unit in southwest Florida between September 2010 and October 2012 comprised the sample. This was a psychometric evaluation of 33 856 M-FNAST assessments that were downloaded from the electronic medical record. Principal axis factoring extraction with varimax rotation was performed on the M-FNAST data. Principal components extraction was used before principal factors extraction to estimate the number of factors with the scree test and factorability of the correlation matrices with Bartlett's chi-square test, and Kaiser-Meyer-Olkin Measure of Sampling Adequacy. The M-FNAST scores ranged from 0 to 29, with a mean of 3.5 (SD = 2.5). Less than 1% (21) of infants had scores of 17 or more. Nearly all (97.7%) scores fell between 0 and 9. Most subjects were full-term gestation, but 11 were preterm between 28 and 37 weeks' gestational age. The 2-factor solution explained 23.74% of the total variance and consists of 2 factors, mild/early and moderate/advanced signs. The 2-factor solution was significantly correlated with the total score on the MFNAST (r = 0.917; P < .001). Among infants who scored 8 or greater, the total score on the 2-factor solution short form FNAST was significantly correlated with the total score on the M-FNAST (r = 0.629; P < .001).
THESEUS: maximum likelihood superpositioning and analysis of macromolecular structures
Theobald, Douglas L.; Wuttke, Deborah S.
2008-01-01
Summary THESEUS is a command line program for performing maximum likelihood (ML) superpositions and analysis of macromolecular structures. While conventional superpositioning methods use ordinary least-squares (LS) as the optimization criterion, ML superpositions provide substantially improved accuracy by down-weighting variable structural regions and by correcting for correlations among atoms. ML superpositioning is robust and insensitive to the specific atoms included in the analysis, and thus it does not require subjective pruning of selected variable atomic coordinates. Output includes both likelihood-based and frequentist statistics for accurate evaluation of the adequacy of a superposition and for reliable analysis of structural similarities and differences. THESEUS performs principal components analysis for analyzing the complex correlations found among atoms within a structural ensemble. PMID:16777907
Bondi, Mark W; Serody, Adam B; Chan, Agnes S; Eberson-Shumate, Sonja C; Delis, Dean C; Hansen, Lawrence A; Salmon, David P
2002-07-01
The Stroop Color-Word Test (SCWT; C. Golden, 1978) was examined in 59 patients with probable Alzheimer's disease (AD) and in 51 demographically comparable normal control (NC) participants. AD patients produced significantly larger Stroop interference effects than NC participants, and level of dementia severity significantly influenced SCWT performance. Principal-components analyses demonstrated a dissociation in the factor structure of the Stroop trials between NC participants and AD patients, suggesting that disruption of semantic knowledge and speeded verbal processing in AD may be a major contributor to impairment on the incongruent trial. Results of clinicopathologic correlations in an autopsy-confirmed AD subgroup further suggest the invocation of a broad network of integrated cortical regions and executive and language processes underlying successful SCWT performance.
The health of glaciers: Recent changes in glacier regime
Meier, M.F.; Dyurgerov, M.B.; McCabe, G.J.
2003-01-01
Glacier wastage has been pervasive during the last century; small glaciers and those in marginal environments are disappearing, large mid-latitude glaciers are shrinking slightly, and arctic glaciers are warming. Net mass balances during the last 40 years are predominately negative and both winter and summer balances (accumulation and ablation) and mass turnover are increasing, especially after 1988. Two principal components of winter balance time-series explain about 50% of the variability in the data. Glacier winter balances in north and central Europe correlate with the Arctic Oscillation, and glaciers in western North America correlate with the Southern Oscillation and Northern Hemisphere air temperature. The degree of synchronization for distant glaciers relates to changes in time of atmospheric circulation patterns as well as differing dynamic responses.
The power of exact conditions in electronic structure theory
NASA Astrophysics Data System (ADS)
Bartlett, Rodney J.; Ranasinghe, Duminda S.
2017-02-01
Once electron correlation is included in an effective one-particle operator, one has a correlated orbital theory (COT). One such theory is Kohn-Sham density functional theory (KS-DFT), but there are others. Such methods have the prospect to redefine traditional Molecular Orbital (MO) theory by building a quantitative component upon its conceptual framework. This paper asks the question what conditions should such a theory satisfy and can this be accomplished? One such condition for a COT is that the orbital eigenvalues should satisfy an ionization theorem that generalizes Koopmans' approximation to the exact principal ionization potentials for every electron in a molecule. Guided by this principle, minimal parameterizations of KS-DFT are made that provide a good approximation to a quantitative MO theory.
Introduction to uses and interpretation of principal component analyses in forest biology.
J. G. Isebrands; Thomas R. Crow
1975-01-01
The application of principal component analysis for interpretation of multivariate data sets is reviewed with emphasis on (1) reduction of the number of variables, (2) ordination of variables, and (3) applications in conjunction with multiple regression.
Principal component analysis of phenolic acid spectra
USDA-ARS?s Scientific Manuscript database
Phenolic acids are common plant metabolites that exhibit bioactive properties and have applications in functional food and animal feed formulations. The ultraviolet (UV) and infrared (IR) spectra of four closely related phenolic acid structures were evaluated by principal component analysis (PCA) to...
Optimal pattern synthesis for speech recognition based on principal component analysis
NASA Astrophysics Data System (ADS)
Korsun, O. N.; Poliyev, A. V.
2018-02-01
The algorithm for building an optimal pattern for the purpose of automatic speech recognition, which increases the probability of correct recognition, is developed and presented in this work. The optimal pattern forming is based on the decomposition of an initial pattern to principal components, which enables to reduce the dimension of multi-parameter optimization problem. At the next step the training samples are introduced and the optimal estimates for principal components decomposition coefficients are obtained by a numeric parameter optimization algorithm. Finally, we consider the experiment results that show the improvement in speech recognition introduced by the proposed optimization algorithm.
NASA Astrophysics Data System (ADS)
Gao, Yang; Chen, Maomao; Wu, Junyu; Zhou, Yuan; Cai, Chuangjian; Wang, Daliang; Luo, Jianwen
2017-09-01
Fluorescence molecular imaging has been used to target tumors in mice with xenograft tumors. However, tumor imaging is largely distorted by the aggregation of fluorescent probes in the liver. A principal component analysis (PCA)-based strategy was applied on the in vivo dynamic fluorescence imaging results of three mice with xenograft tumors to facilitate tumor imaging, with the help of a tumor-specific fluorescent probe. Tumor-relevant features were extracted from the original images by PCA and represented by the principal component (PC) maps. The second principal component (PC2) map represented the tumor-related features, and the first principal component (PC1) map retained the original pharmacokinetic profiles, especially of the liver. The distribution patterns of the PC2 map of the tumor-bearing mice were in good agreement with the actual tumor location. The tumor-to-liver ratio and contrast-to-noise ratio were significantly higher on the PC2 map than on the original images, thus distinguishing the tumor from its nearby fluorescence noise of liver. The results suggest that the PC2 map could serve as a bioimaging marker to facilitate in vivo tumor localization, and dynamic fluorescence molecular imaging with PCA could be a valuable tool for future studies of in vivo tumor metabolism and progression.
NASA Astrophysics Data System (ADS)
Ueki, Kenta; Iwamori, Hikaru
2017-10-01
In this study, with a view of understanding the structure of high-dimensional geochemical data and discussing the chemical processes at work in the evolution of arc magmas, we employed principal component analysis (PCA) to evaluate the compositional variations of volcanic rocks from the Sengan volcanic cluster of the Northeastern Japan Arc. We analyzed the trace element compositions of various arc volcanic rocks, sampled from 17 different volcanoes in a volcanic cluster. The PCA results demonstrated that the first three principal components accounted for 86% of the geochemical variation in the magma of the Sengan region. Based on the relationships between the principal components and the major elements, the mass-balance relationships with respect to the contributions of minerals, the composition of plagioclase phenocrysts, geothermal gradient, and seismic velocity structure in the crust, the first, the second, and the third principal components appear to represent magma mixing, crystallizations of olivine/pyroxene, and crystallizations of plagioclase, respectively. These represented 59%, 20%, and 6%, respectively, of the variance in the entire compositional range, indicating that magma mixing accounted for the largest variance in the geochemical variation of the arc magma. Our result indicated that crustal processes dominate the geochemical variation of magma in the Sengan volcanic cluster.
Kernel PLS-SVC for Linear and Nonlinear Discrimination
NASA Technical Reports Server (NTRS)
Rosipal, Roman; Trejo, Leonard J.; Matthews, Bryan
2003-01-01
A new methodology for discrimination is proposed. This is based on kernel orthonormalized partial least squares (PLS) dimensionality reduction of the original data space followed by support vector machines for classification. Close connection of orthonormalized PLS and Fisher's approach to linear discrimination or equivalently with canonical correlation analysis is described. This gives preference to use orthonormalized PLS over principal component analysis. Good behavior of the proposed method is demonstrated on 13 different benchmark data sets and on the real world problem of the classification finger movement periods versus non-movement periods based on electroencephalogram.
Development of a brief measure of college stress: the college student stress scale.
Feldt, Ronald C
2008-06-01
The study included assessment of the psychometric properties of an 11-item measure of perceived stress and control in 273 first-year college students. Results indicated good internal consistency and stability over a 5-week interval, and the total score was highly correlated with another measure of perceived stress. Principal components analysis with varimax rotation indicated two possible factors which explained 55% of the variance. However, given the small number of items and low internal consistency of the second factor (alpha=.60), use of the Total score is recommended.
Wavelength dependence of the bidirectional reflectance distribution function (BRDF) of beach sands.
Doctor, Katarina Z; Bachmann, Charles M; Gray, Deric J; Montes, Marcos J; Fusina, Robert A
2015-11-01
The wavelength dependence of the dominant directional reflective properties of beach sands was demonstrated using principal component analysis and the related correlation matrix. In general, we found that the hyperspectral bidirectional reflectance distribution function (BRDF) of beach sands has weak wavelength dependence. Its BRDF varies slightly in three broad wavelength regions. The variations are more evident in surfaces of greater visual roughness than in smooth surfaces. The weak wavelength dependence of the BRDF of beach sand can be captured using three broad wavelength regions instead of hundreds of individual wavelengths.
Identifying Crucial Parameter Correlations Maintaining Bursting Activity
Doloc-Mihu, Anca; Calabrese, Ronald L.
2014-01-01
Recent experimental and computational studies suggest that linearly correlated sets of parameters (intrinsic and synaptic properties of neurons) allow central pattern-generating networks to produce and maintain their rhythmic activity regardless of changing internal and external conditions. To determine the role of correlated conductances in the robust maintenance of functional bursting activity, we used our existing database of half-center oscillator (HCO) model instances of the leech heartbeat CPG. From the database, we identified functional activity groups of burster (isolated neuron) and half-center oscillator model instances and realistic subgroups of each that showed burst characteristics (principally period and spike frequency) similar to the animal. To find linear correlations among the conductance parameters maintaining functional leech bursting activity, we applied Principal Component Analysis (PCA) to each of these four groups. PCA identified a set of three maximal conductances (leak current, Leak; a persistent K current, K2; and of a persistent Na+ current, P) that correlate linearly for the two groups of burster instances but not for the HCO groups. Visualizations of HCO instances in a reduced space suggested that there might be non-linear relationships between these parameters for these instances. Experimental studies have shown that period is a key attribute influenced by modulatory inputs and temperature variations in heart interneurons. Thus, we explored the sensitivity of period to changes in maximal conductances of Leak, K2, and P, and we found that for our realistic bursters the effect of these parameters on period could not be assessed because when varied individually bursting activity was not maintained. PMID:24945358
NASA Astrophysics Data System (ADS)
Dyar, M. D.; Carmosino, M. L.; Breves, E. A.; Ozanne, M. V.; Clegg, S. M.; Wiens, R. C.
2012-04-01
A remote laser-induced breakdown spectrometer (LIBS) designed to simulate the ChemCam instrument on the Mars Science Laboratory Rover Curiosity was used to probe 100 geologic samples at a 9-m standoff distance. ChemCam consists of an integrated remote LIBS instrument that will probe samples up to 7 m from the mast of the rover and a remote micro-imager (RMI) that will record context images. The elemental compositions of 100 igneous and highly-metamorphosed rocks are determined with LIBS using three variations of multivariate analysis, with a goal of improving the analytical accuracy. Two forms of partial least squares (PLS) regression are employed with finely-tuned parameters: PLS-1 regresses a single response variable (elemental concentration) against the observation variables (spectra, or intensity at each of 6144 spectrometer channels), while PLS-2 simultaneously regresses multiple response variables (concentrations of the ten major elements in rocks) against the observation predictor variables, taking advantage of natural correlations between elements. Those results are contrasted with those from the multivariate regression technique of the least absolute shrinkage and selection operator (lasso), which is a penalized shrunken regression method that selects the specific channels for each element that explain the most variance in the concentration of that element. To make this comparison, we use results of cross-validation and of held-out testing, and employ unscaled and uncentered spectral intensity data because all of the input variables are already in the same units. Results demonstrate that the lasso, PLS-1, and PLS-2 all yield comparable results in terms of accuracy for this dataset. However, the interpretability of these methods differs greatly in terms of fundamental understanding of LIBS emissions. PLS techniques generate principal components, linear combinations of intensities at any number of spectrometer channels, which explain as much variance in the response variables as possible while avoiding multicollinearity between principal components. When the selected number of principal components is projected back into the original feature space of the spectra, 6144 correlation coefficients are generated, a small fraction of which are mathematically significant to the regression. In contrast, the lasso models require only a small number (< 24) of non-zero correlation coefficients (β values) to determine the concentration of each of the ten major elements. Causality between the positively-correlated emission lines chosen by the lasso and the elemental concentration was examined. In general, the higher the lasso coefficient (β), the greater the likelihood that the selected line results from an emission of that element. Emission lines with negative β values should arise from elements that are anti-correlated with the element being predicted. For elements except Fe, Al, Ti, and P, the lasso-selected wavelength with the highest β value corresponds to the element being predicted, e.g. 559.8 nm for neutral Ca. However, the specific lines chosen by the lasso with positive β values are not always those from the element being predicted. Other wavelengths and the elements that most strongly correlate with them to predict concentration are obviously related to known geochemical correlations or close overlap of emission lines, while others must result from matrix effects. Use of the lasso technique thus directly informs our understanding of the underlying physical processes that give rise to LIBS emissions by determining which lines can best represent concentration, and which lines from other elements are causing matrix effects.
Bronchial abnormalities found in a consecutive series of 40 brachycephalic dogs.
De Lorenzi, Davide; Bertoncello, Diana; Drigo, Michele
2009-10-01
To detect abnormalities of the lower respiratory tract (trachea, principal bronchi, and lobar bronchi) in brachycephalic dogs by use of endoscopy, evaluate the correlation between laryngeal collapse and bronchial abnormalities, and determine whether dogs with bronchial abnormalities have a less favorable postsurgical long-term outcome following correction of brachycephalic syndrome. Prospective case series study. 40 client-owned brachycephalic dogs with stertorous breathing and clinical signs of respiratory distress. Brachycephalic dogs anesthetized for pharyngoscopy and laryngoscopy between January 2007 and June 2008 underwent flexible bronchoscopy for systematic evaluation of the principal and lobar bronchi. For dogs that underwent surgical correction of any component of brachycephalic syndrome, owners rated surgical outcome during a follow-up telephone survey. Correlation between laryngeal collapse and bronchial abnormalities and association between bronchial abnormalities and long-term outcome were assessed. Pugs (n = 20), English Bulldogs (13), and French Bulldogs (7) were affected. A fixed bronchial collapse was recognized in 35 of 40 dogs with a total of 94 bronchial stenoses. Abnormalities were irregularly distributed between hemithoraces; 15 of 94 bronchial abnormalities were detected in the right bronchial system, and 79 of 94 were detected in the left. The left cranial bronchus was the most commonly affected structure, and Pugs were the most severely affected breed. Laryngeal collapse was significantly correlated with severe bronchial collapse; no significant correlation was found between severity of bronchial abnormalities and postsurgical outcome. Bronchial collapse was a common finding in brachycephalic dogs, and long-term postsurgical outcome was not affected by bronchial stenosis.
Learning Style Scales: a valid and reliable questionnaire.
Abdollahimohammad, Abdolghani; Ja'afar, Rogayah
2014-01-01
Learning-style instruments assist students in developing their own learning strategies and outcomes, in eliminating learning barriers, and in acknowledging peer diversity. Only a few psychometrically validated learning-style instruments are available. This study aimed to develop a valid and reliable learning-style instrument for nursing students. A cross-sectional survey study was conducted in two nursing schools in two countries. A purposive sample of 156 undergraduate nursing students participated in the study. Face and content validity was obtained from an expert panel. The LSS construct was established using principal axis factoring (PAF) with oblimin rotation, a scree plot test, and parallel analysis (PA). The reliability of LSS was tested using Cronbach's α, corrected item-total correlation, and test-retest. Factor analysis revealed five components, confirmed by PA and a relatively clear curve on the scree plot. Component strength and interpretability were also confirmed. The factors were labeled as perceptive, solitary, analytic, competitive, and imaginative learning styles. Cronbach's α was >0.70 for all subscales in both study populations. The corrected item-total correlations were >0.30 for the items in each component. The LSS is a valid and reliable inventory for evaluating learning style preferences in nursing students in various multicultural environments.
Wang, Yiwen; Zhang, Zhen; Jing, Yiming; Valadez, Emilio A.
2016-01-01
This study investigates the brain correlates of decision making and outcome evaluation of generalized trust (i.e. trust in unfamiliar social agents)—a core component of social capital which facilitates civic cooperation and economic exchange. We measured 18 (9 male) Chinese participants’ event-related potentials while they played the role of the trustor in a one-shot trust game with unspecified social agents (trustees) allegedly selected from a large representative sample. At the decision-making phase, greater N2 amplitudes were found for trustors’ distrusting decisions compared to trusting decisions, which may reflect greater cognitive control exerted to distrust. Source localization identified the precentral gyrus as one possible neuronal generator of this N2 component. At the outcome evaluation phase, principal components analysis revealed that the so called feedback-related negativity was in fact driven by a reward positivity, which was greater in response to gain feedback compared to loss feedback. This reduced reward positivity following loss feedback may indicate that the absence of reward for trusting decisions was unexpected by the trustor. In addition, we found preliminary evidence suggesting that the decision-making processes may differ between high trustors and low trustors. PMID:27317927
ERIC Educational Resources Information Center
Kronenberger, William G.; Thompson, Robert J., Jr.; Morrow, Catherine
1997-01-01
A principal components analysis of the Family Environment Scale (FES) (R. Moos and B. Moos, 1994) was performed using 113 undergraduates. Research supported 3 broad components encompassing the 10 FES subscales. These results supported previous research and the generalization of the FES to college samples. (SLD)
Shape and size of the body vs. musculoskeletal stress markers.
Myszka, Anna; Piontek, Janusz
2010-01-01
The objective of this paper is to assess the relationship between the degree of development of muscle attachment sites (musculoskeletal stress markers - MSM1) and the length and circumference measurements of long bones and the body build expressed with the reconstructed values of body height (BH) and body mass (BM). The bone material (102 male and 99 female skeletons) used in the study was collected in the medieval burial ground in Cedynia, Poland. The authors analyzed 10 musculoskeletal stress markers located on the scapula (2), humerus (2), radius (2), femur (2) and tibia (2). The frequency and the degree of expression of muscle attachment size was carried out using the scale prepared by Myszka (2007). The scale encompassed three degrees of expression of muscle attachment size. Only changes of robusticity type (nonpathological changes) were taken into account. The assessment of body build of individuals was carried out according to the method proposed by Vancata & Charvátová (2001). Body height was reconstructed from the length of the humerus and femur using eight equations. Body mass was reconstructed from the measurements of the breadth of the proximal and distal sections of the femur and tibia (mechanical method) using twenty one equations. The equations were developed for different reference populations. The same equations were used for men and women. The correlation between the MSM and the length and circumference measurements of the bones was analyzed using the principal components analysis and the Gamma correlation coefficient. The strength of the correlation between the reconstructed body build traits (BH, BM) and the moderate degree of musculoskeletal stress markers expression was studied based on the principal components method and the Pearson correlation coefficient. A linear correlation was found between musculoskeletal stress markers and the circumference measurements and the reconstructed body mass, but no relationship with body height and the length measurements of long bones was revealed. From previous research it is evident that the relationship between the MSM and metric skeletal traits does not occur in every population. Divergent findings necessitate further corroboration of results on diverse skeletal material.
A single determinant dominates the rate of yeast protein evolution.
Drummond, D Allan; Raval, Alpan; Wilke, Claus O
2006-02-01
A gene's rate of sequence evolution is among the most fundamental evolutionary quantities in common use, but what determines evolutionary rates has remained unclear. Here, we carry out the first combined analysis of seven predictors (gene expression level, dispensability, protein abundance, codon adaptation index, gene length, number of protein-protein interactions, and the gene's centrality in the interaction network) previously reported to have independent influences on protein evolutionary rates. Strikingly, our analysis reveals a single dominant variable linked to the number of translation events which explains 40-fold more variation in evolutionary rate than any other, suggesting that protein evolutionary rate has a single major determinant among the seven predictors. The dominant variable explains nearly half the variation in the rate of synonymous and protein evolution. We show that the two most commonly used methods to disentangle the determinants of evolutionary rate, partial correlation analysis and ordinary multivariate regression, produce misleading or spurious results when applied to noisy biological data. We overcome these difficulties by employing principal component regression, a multivariate regression of evolutionary rate against the principal components of the predictor variables. Our results support the hypothesis that translational selection governs the rate of synonymous and protein sequence evolution in yeast.
NASA Astrophysics Data System (ADS)
Pournamdari, Mohsen; Hashim, Mazlan; Pour, Amin Beiranvand
2014-08-01
Spectral transformation methods, including correlation coefficient (CC) and Optimum Index Factor (OIF), band ratio (BR) and principal component analysis (PCA) were applied to ASTER and Landsat TM bands for lithological mapping of Soghan ophiolitic complex in south of Iran. The results indicated that the methods used evidently showed superior outputs for detecting lithological units in ophiolitic complexes. CC and OIF methods were used to establish enhanced Red-Green-Blue (RGB) color combination bands for discriminating lithological units. A specialized band ratio (4/1, 4/5, 4/7 in RGB) was developed using ASTER bands to differentiate lithological units in ophiolitic complexes. The band ratio effectively detected serpentinite dunite as host rock of chromite ore deposits from surrounding lithological units in the study area. Principal component images derived from first three bands of ASTER and Landsat TM produced well results for lithological mapping applications. ASTER bands contain improved spectral characteristics and higher spatial resolution for detecting serpentinite dunite in ophiolitic complexes. The developed approach used in this study offers great potential for lithological mapping using ASTER and Landsat TM bands, which contributes in economic geology for prospecting chromite ore deposits associated with ophiolitic complexes.
Zhang, Wanfeng; Zhu, Shukui; He, Sheng; Wang, Yanxin
2015-02-06
Using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC/TOFMS), volatile and semi-volatile organic compounds in crude oil samples from different reservoirs or regions were analyzed for the development of a molecular fingerprint database. Based on the GC×GC/TOFMS fingerprints of crude oils, principal component analysis (PCA) and cluster analysis were used to distinguish the oil sources and find biomarkers. As a supervised technique, the geological characteristics of crude oils, including thermal maturity, sedimentary environment etc., are assigned to the principal components. The results show that tri-aromatic steroid (TAS) series are the suitable marker compounds in crude oils for the oil screening, and the relative abundances of individual TAS compounds have excellent correlation with oil sources. In order to correct the effects of some other external factors except oil sources, the variables were defined as the content ratio of some target compounds and 13 parameters were proposed for the screening of oil sources. With the developed model, the crude oils were easily discriminated, and the result is in good agreement with the practical geological setting. Copyright © 2014 Elsevier B.V. All rights reserved.
A SAR and QSAR study of new artemisinin compounds with antimalarial activity.
Santos, Cleydson Breno R; Vieira, Josinete B; Lobato, Cleison C; Hage-Melim, Lorane I S; Souto, Raimundo N P; Lima, Clarissa S; Costa, Elizabeth V M; Brasil, Davi S B; Macêdo, Williams Jorge C; Carvalho, José Carlos T
2013-12-30
The Hartree-Fock method and the 6-31G** basis set were employed to calculate the molecular properties of artemisinin and 20 derivatives with antimalarial activity. Maps of molecular electrostatic potential (MEPs) and molecular docking were used to investigate the interaction between ligands and the receptor (heme). Principal component analysis and hierarchical cluster analysis were employed to select the most important descriptors related to activity. The correlation between biological activity and molecular properties was obtained using the partial least squares and principal component regression methods. The regression PLS and PCR models built in this study were also used to predict the antimalarial activity of 30 new artemisinin compounds with unknown activity. The models obtained showed not only statistical significance but also predictive ability. The significant molecular descriptors related to the compounds with antimalarial activity were the hydration energy (HE), the charge on the O11 oxygen atom (QO11), the torsion angle O1-O2-Fe-N2 (D2) and the maximum rate of R/Sanderson Electronegativity (RTe+). These variables led to a physical and structural explanation of the molecular properties that should be selected for when designing new ligands to be used as antimalarial agents.
Receptor modeling for source apportionment of polycyclic aromatic hydrocarbons in urban atmosphere.
Singh, Kunwar P; Malik, Amrita; Kumar, Ranjan; Saxena, Puneet; Sinha, Sarita
2008-01-01
This study reports source apportionment of polycyclic aromatic hydrocarbons (PAHs) in particulate depositions on vegetation foliages near highway in the urban environment of Lucknow city (India) using the principal components analysis/absolute principal components scores (PCA/APCS) receptor modeling approach. The multivariate method enables identification of major PAHs sources along with their quantitative contributions with respect to individual PAH. The PCA identified three major sources of PAHs viz. combustion, vehicular emissions, and diesel based activities. The PCA/APCS receptor modeling approach revealed that the combustion sources (natural gas, wood, coal/coke, biomass) contributed 19-97% of various PAHs, vehicular emissions 0-70%, diesel based sources 0-81% and other miscellaneous sources 0-20% of different PAHs. The contributions of major pyrolytic and petrogenic sources to the total PAHs were 56 and 42%, respectively. Further, the combustion related sources contribute major fraction of the carcinogenic PAHs in the study area. High correlation coefficient (R2 > 0.75 for most PAHs) between the measured and predicted concentrations of PAHs suggests for the applicability of the PCA/APCS receptor modeling approach for estimation of source contribution to the PAHs in particulates.
NASA Astrophysics Data System (ADS)
Zhao, Fengjun; Liu, Junting; Qu, Xiaochao; Xu, Xianhui; Chen, Xueli; Yang, Xiang; Cao, Feng; Liang, Jimin; Tian, Jie
2014-12-01
To solve the multicollinearity issue and unequal contribution of vascular parameters for the quantification of angiogenesis, we developed a quantification evaluation method of vascular parameters for angiogenesis based on in vivo micro-CT imaging of hindlimb ischemic model mice. Taking vascular volume as the ground truth parameter, nine vascular parameters were first assembled into sparse principal components (PCs) to reduce the multicolinearity issue. Aggregated boosted trees (ABTs) were then employed to analyze the importance of vascular parameters for the quantification of angiogenesis via the loadings of sparse PCs. The results demonstrated that vascular volume was mainly characterized by vascular area, vascular junction, connectivity density, segment number and vascular length, which indicated they were the key vascular parameters for the quantification of angiogenesis. The proposed quantitative evaluation method was compared with both the ABTs directly using the nine vascular parameters and Pearson correlation, which were consistent. In contrast to the ABTs directly using the vascular parameters, the proposed method can select all the key vascular parameters simultaneously, because all the key vascular parameters were assembled into the sparse PCs with the highest relative importance.
How Many Environmental Impact Indicators Are Needed in the Evaluation of Product Life Cycles?
Steinmann, Zoran J N; Schipper, Aafke M; Hauck, Mara; Huijbregts, Mark A J
2016-04-05
Numerous indicators are currently available for environmental impact assessments, especially in the field of Life Cycle Impact Assessment (LCIA). Because decision-making on the basis of hundreds of indicators simultaneously is unfeasible, a nonredundant key set of indicators representative of the overall environmental impact is needed. We aimed to find such a nonredundant set of indicators based on their mutual correlations. We have used Principal Component Analysis (PCA) in combination with an optimization algorithm to find an optimal set of indicators out of 135 impact indicators calculated for 976 products from the ecoinvent database. The first four principal components covered 92% of the variance in product rankings, showing the potential for indicator reduction. The same amount of variance (92%) could be covered by a minimal set of six indicators, related to climate change, ozone depletion, the combined effects of acidification and eutrophication, terrestrial ecotoxicity, marine ecotoxicity, and land use. In comparison, four commonly used resource footprints (energy, water, land, materials) together accounted for 84% of the variance in product rankings. We conclude that the plethora of environmental indicators can be reduced to a small key set, representing the major part of the variation in environmental impacts between product life cycles.
Savio, Marianela; Ortiz, María S; Almeida, César A; Olsina, Roberto A; Martinez, Luis D; Gil, Raúl A
2014-09-15
Trace metals have negative effects on the oxidative stability of edible oils and they are important because of possibility for oils characterisation. A single-step procedure for trace elemental analysis of edible oils is presented. To this aim, a solubilisation with tetramethylammonium hydroxide (TMAH) was assayed prior to inductively coupled plasma mass spectrometry detection. Small amounts of TMAH were used, resulting in high elemental concentrations. This method was applied to edible oils commercially available in Argentine. Elements present in small amounts (Cu, Ge, Mn, Mo, Ni, Sb, Sr, Ti, and V) were determined in olive, corn, almond and sunflower oils. The limits of detection were between 0.004 μg g(-1) for Mn and Sr, and 0.32 μg g(-1) for Sb. Principal components analysis was used to correlate the content of trace metals with the type of oils. The two first principal components retained 91.6% of the variability of the system. This is a relatively simple and safe procedure, and could be an attractive alternative for quality control, traceability and routine analysis of edible oils. Copyright © 2014 Elsevier Ltd. All rights reserved.
Spectroscopic study of honey from Apis mellifera from different regions in Mexico
NASA Astrophysics Data System (ADS)
Frausto-Reyes, C.; Casillas-Peñuelas, R.; Quintanar-Stephano, JL; Macías-López, E.; Bujdud-Pérez, JM; Medina-Ramírez, I.
2017-05-01
The objective of this study was to analyze by Raman and UV-Vis-NIR Spectroscopic techniques, Mexican honey from Apis Mellífera, using representative samples with different botanic origins (unifloral and multifloral) and diverse climates. Using Raman spectroscopy together with principal components analysis, the results obtained represent the possibility to use them for determination of floral origin of honey, independently of the region of sampling. For this, the effect of heat up the honey was analyzed in relation that it was possible to greatly reduce the fluorescence background in Raman spectra, which allowed the visualization of fructose and glucose peaks. Using UV-Vis-NIR, spectroscopy, a characteristic spectrum profile of transmittance was obtained for each honey type. In addition, to have an objective characterization of color, a CIE Yxy and CIE L*a*b* colorimetric register was realized for each honey type. Applying the principal component analysis and their correlation with chromaticity coordinates allowed classifying the honey samples in one plot as: cutoff wavelength, maximum transmittance, tones and lightness. The results show that it is possible to obtain a spectroscopic record of honeys with specific characteristics by reducing the effects of fluorescence.
Chemical composition and sensory profile of pomelo (Citrus grandis (L.) Osbeck) juice.
Cheong, Mun Wai; Liu, Shao Quan; Zhou, Weibiao; Curran, Philip; Yu, Bin
2012-12-15
Two cultivars (Citrus grandis (L.) Osbeck PO 51 and PO 52) of Malaysian pomelo juices were studied by examining their physicochemical properties (i.e. pH, °Brix and titratable acidity), volatile and non-volatile components (sugars and organic acids). Using solvent extraction and headspace solid-phase microextraction, 49 and 65 volatile compounds were identified by gas chromatography-mass spectrometer/flame ionisation detector, respectively. Compared to pink pomelo juice (cultivar PO 52), white pomelo juice (cultivar PO 51) contained lower amount of total volatiles but higher terpenoids. Descriptive sensory evaluation indicated that white pomelo juice was milder in taste especially acidity. Furthermore, principal component analysis and partial least square regression revealed a strong correlation in pomelo juices between their chemical components and some flavour attributes (i.e. acidic, fresh, peely and sweet). Hence, this research enabled a deeper insight into the flavour of this unique citrus fruit. Copyright © 2012 Elsevier Ltd. All rights reserved.
Jella; Rouseff; Goodner; Widmer
1998-01-19
The relative correlation of 52 aroma and 5 taste components in commercial not-from-concentrate grapefruit juices with flavor panel preference was determined. Methylene chloride extracts of juice were analyzed using GC/MS with a DB-5 column. Nonvolatiles determined included limonin and naringin by HPLC, degrees Brix, total acids, and degrees Brix/acid ratio. Juice samples were classified into low, medium, or high categories, based on average taste panel preference scores (nine-point hedonic scale). Principal component analysis demonstrated that highest quality juices were tightly clustered. Discriminant analysis indicated that 82% of the samples could be identified in the correct preference category using only myrcene, beta-caryophyllene, linalool, nootkatone, and degrees Brix. Nootkatone alone was not strongly associated with preference scores. The most preferred juices were strongly associated with low myrcene, low linalool, and intermediate levels of beta-caryophyllene.
ERIC Educational Resources Information Center
Waruwu, Binahati
2015-01-01
This study is aimed at finding out the significant correlation between: (1) teachers' perceptions about principal's emotional intelligence and job satisfaction of teachers, (2) organizational climate and job satisfaction of teachers, and (3) teachers' perceptions about principal's emotional intelligence and organizational climate and job…
Akama, Hiroyuki; Miyake, Maki; Jung, Jaeyoung; Murphy, Brian
2015-01-01
In this study, we introduce an original distance definition for graphs, called the Markov-inverse-F measure (MiF). This measure enables the integration of classical graph theory indices with new knowledge pertaining to structural feature extraction from semantic networks. MiF improves the conventional Jaccard and/or Simpson indices, and reconciles both the geodesic information (random walk) and co-occurrence adjustment (degree balance and distribution). We measure the effectiveness of graph-based coefficients through the application of linguistic graph information for a neural activity recorded during conceptual processing in the human brain. Specifically, the MiF distance is computed between each of the nouns used in a previous neural experiment and each of the in-between words in a subgraph derived from the Edinburgh Word Association Thesaurus of English. From the MiF-based information matrix, a machine learning model can accurately obtain a scalar parameter that specifies the degree to which each voxel in (the MRI image of) the brain is activated by each word or each principal component of the intermediate semantic features. Furthermore, correlating the voxel information with the MiF-based principal components, a new computational neurolinguistics model with a network connectivity paradigm is created. This allows two dimensions of context space to be incorporated with both semantic and neural distributional representations.
NASA Astrophysics Data System (ADS)
Tian, Yunfeng; Shen, Zheng-Kang
2016-02-01
We develop a spatial filtering method to remove random noise and extract the spatially correlated transients (i.e., common-mode component (CMC)) that deviate from zero mean over the span of detrended position time series of a continuous Global Positioning System (CGPS) network. The technique utilizes a weighting scheme that incorporates two factors—distances between neighboring sites and their correlations of long-term residual position time series. We use a grid search algorithm to find the optimal thresholds for deriving the CMC that minimizes the root-mean-square (RMS) of the filtered residual position time series. Comparing to the principal component analysis technique, our method achieves better (>13% on average) reduction of residual position scatters for the CGPS stations in western North America, eliminating regional transients of all spatial scales. It also has advantages in data manipulation: less intervention and applicable to a dense network of any spatial extent. Our method can also be used to detect CMC irrespective of its origins (i.e., tectonic or nontectonic), if such signals are of particular interests for further study. By varying the filtering distance range, the long-range CMC related to atmospheric disturbance can be filtered out, uncovering CMC associated with transient tectonic deformation. A correlation-based clustering algorithm is adopted to identify stations cluster that share the common regional transient characteristics.
Burst and Principal Components Analyses of MEA Data Separates Chemicals by Class
Microelectrode arrays (MEAs) detect drug and chemical induced changes in action potential "spikes" in neuronal networks and can be used to screen chemicals for neurotoxicity. Analytical "fingerprinting," using Principal Components Analysis (PCA) on spike trains recorded from prim...
EVALUATION OF ACID DEPOSITION MODELS USING PRINCIPAL COMPONENT SPACES
An analytical technique involving principal components analysis is proposed for use in the evaluation of acid deposition models. elationships among model predictions are compared to those among measured data, rather than the more common one-to-one comparison of predictions to mea...
Tomaiuolo, Giovanna; Rusciano, Giulia; Caserta, Sergio; Carciati, Antonio; Carnovale, Vincenzo; Abete, Pasquale; Sasso, Antonio; Guido, Stefano
2014-01-01
In cystic fibrosis (CF) patients airways mucus shows an increased viscoelasticity due to the concentration of high molecular weight components. Such mucus thickening eventually leads to bacterial overgrowth and prevents mucus clearance. The altered rheological behavior of mucus results in chronic lung infection and inflammation, which causes most of the cases of morbidity and mortality, although the cystic fibrosis complications affect other organs as well. Here, we present a quantitative study on the correlation between cystic fibrosis mucus viscoelasticity and patients clinical status. In particular, a new diagnostic parameter based on the correlation between CF sputum viscoelastic properties and the severity of the disease, expressed in terms of FEV1 and bacterial colonization, was developed. By using principal component analysis, we show that the types of colonization and FEV1 classes are significantly correlated to the elastic modulus, and that the latter can be used for CF severity classification with a high predictive efficiency (88%). The data presented here show that the elastic modulus of airways mucus, given the high predictive efficiency, could be used as a new clinical parameter in the prognostic evaluation of cystic fibrosis.
Functional Data Analysis in NTCP Modeling: A New Method to Explore the Radiation Dose-Volume Effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benadjaoud, Mohamed Amine, E-mail: mohamedamine.benadjaoud@gustaveroussy.fr; Université Paris sud, Le Kremlin-Bicêtre; Institut Gustave Roussy, Villejuif
2014-11-01
Purpose/Objective(s): To describe a novel method to explore radiation dose-volume effects. Functional data analysis is used to investigate the information contained in differential dose-volume histograms. The method is applied to the normal tissue complication probability modeling of rectal bleeding (RB) for patients irradiated in the prostatic bed by 3-dimensional conformal radiation therapy. Methods and Materials: Kernel density estimation was used to estimate the individual probability density functions from each of the 141 rectum differential dose-volume histograms. Functional principal component analysis was performed on the estimated probability density functions to explore the variation modes in the dose distribution. The functional principalmore » components were then tested for association with RB using logistic regression adapted to functional covariates (FLR). For comparison, 3 other normal tissue complication probability models were considered: the Lyman-Kutcher-Burman model, logistic model based on standard dosimetric parameters (LM), and logistic model based on multivariate principal component analysis (PCA). Results: The incidence rate of grade ≥2 RB was 14%. V{sub 65Gy} was the most predictive factor for the LM (P=.058). The best fit for the Lyman-Kutcher-Burman model was obtained with n=0.12, m = 0.17, and TD50 = 72.6 Gy. In PCA and FLR, the components that describe the interdependence between the relative volumes exposed at intermediate and high doses were the most correlated to the complication. The FLR parameter function leads to a better understanding of the volume effect by including the treatment specificity in the delivered mechanistic information. For RB grade ≥2, patients with advanced age are significantly at risk (odds ratio, 1.123; 95% confidence interval, 1.03-1.22), and the fits of the LM, PCA, and functional principal component analysis models are significantly improved by including this clinical factor. Conclusion: Functional data analysis provides an attractive method for flexibly estimating the dose-volume effect for normal tissues in external radiation therapy.« less
Complexity of free energy landscapes of peptides revealed by nonlinear principal component analysis.
Nguyen, Phuong H
2006-12-01
Employing the recently developed hierarchical nonlinear principal component analysis (NLPCA) method of Saegusa et al. (Neurocomputing 2004;61:57-70 and IEICE Trans Inf Syst 2005;E88-D:2242-2248), the complexities of the free energy landscapes of several peptides, including triglycine, hexaalanine, and the C-terminal beta-hairpin of protein G, were studied. First, the performance of this NLPCA method was compared with the standard linear principal component analysis (PCA). In particular, we compared two methods according to (1) the ability of the dimensionality reduction and (2) the efficient representation of peptide conformations in low-dimensional spaces spanned by the first few principal components. The study revealed that NLPCA reduces the dimensionality of the considered systems much better, than did PCA. For example, in order to get the similar error, which is due to representation of the original data of beta-hairpin in low dimensional space, one needs 4 and 21 principal components of NLPCA and PCA, respectively. Second, by representing the free energy landscapes of the considered systems as a function of the first two principal components obtained from PCA, we obtained the relatively well-structured free energy landscapes. In contrast, the free energy landscapes of NLPCA are much more complicated, exhibiting many states which are hidden in the PCA maps, especially in the unfolded regions. Furthermore, the study also showed that many states in the PCA maps are mixed up by several peptide conformations, while those of the NLPCA maps are more pure. This finding suggests that the NLPCA should be used to capture the essential features of the systems. (c) 2006 Wiley-Liss, Inc.
Jović, Ozren; Smolić, Tomislav; Primožič, Ines; Hrenar, Tomica
2016-04-19
The aim of this study was to investigate the feasibility of FTIR-ATR spectroscopy coupled with the multivariate numerical methodology for qualitative and quantitative analysis of binary and ternary edible oil mixtures. Four pure oils (extra virgin olive oil, high oleic sunflower oil, rapeseed oil, and sunflower oil), as well as their 54 binary and 108 ternary mixtures, were analyzed using FTIR-ATR spectroscopy in combination with principal component and discriminant analysis, partial least-squares, and principal component regression. It was found that the composition of all 166 samples can be excellently represented using only the first three principal components describing 98.29% of total variance in the selected spectral range (3035-2989, 1170-1140, 1120-1100, 1093-1047, and 930-890 cm(-1)). Factor scores in 3D space spanned by these three principal components form a tetrahedral-like arrangement: pure oils being at the vertices, binary mixtures at the edges, and ternary mixtures on the faces of a tetrahedron. To confirm the validity of results, we applied several cross-validation methods. Quantitative analysis was performed by minimization of root-mean-square error of cross-validation values regarding the spectral range, derivative order, and choice of method (partial least-squares or principal component regression), which resulted in excellent predictions for test sets (R(2) > 0.99 in all cases). Additionally, experimentally more demanding gas chromatography analysis of fatty acid content was carried out for all specimens, confirming the results obtained by FTIR-ATR coupled with principal component analysis. However, FTIR-ATR provided a considerably better model for prediction of mixture composition than gas chromatography, especially for high oleic sunflower oil.
NASA Astrophysics Data System (ADS)
Li, Jiangtong; Luo, Yongdao; Dai, Honglin
2018-01-01
Water is the source of life and the essential foundation of all life. With the development of industrialization, the phenomenon of water pollution is becoming more and more frequent, which directly affects the survival and development of human. Water quality detection is one of the necessary measures to protect water resources. Ultraviolet (UV) spectral analysis is an important research method in the field of water quality detection, which partial least squares regression (PLSR) analysis method is becoming predominant technology, however, in some special cases, PLSR's analysis produce considerable errors. In order to solve this problem, the traditional principal component regression (PCR) analysis method was improved by using the principle of PLSR in this paper. The experimental results show that for some special experimental data set, improved PCR analysis method performance is better than PLSR. The PCR and PLSR is the focus of this paper. Firstly, the principal component analysis (PCA) is performed by MATLAB to reduce the dimensionality of the spectral data; on the basis of a large number of experiments, the optimized principal component is extracted by using the principle of PLSR, which carries most of the original data information. Secondly, the linear regression analysis of the principal component is carried out with statistic package for social science (SPSS), which the coefficients and relations of principal components can be obtained. Finally, calculating a same water spectral data set by PLSR and improved PCR, analyzing and comparing two results, improved PCR and PLSR is similar for most data, but improved PCR is better than PLSR for data near the detection limit. Both PLSR and improved PCR can be used in Ultraviolet spectral analysis of water, but for data near the detection limit, improved PCR's result better than PLSR.
Vargas-Bello-Pérez, Einar; Toro-Mujica, Paula; Enriquez-Hidalgo, Daniel; Fellenberg, María Angélica; Gómez-Cortés, Pilar
2017-06-01
We used a multivariate chemometric approach to differentiate or associate retail bovine milks with different fat contents and non-dairy beverages, using fatty acid profiles and statistical analysis. We collected samples of bovine milk (whole, semi-skim, and skim; n = 62) and non-dairy beverages (n = 27), and we analyzed them using gas-liquid chromatography. Principal component analysis of the fatty acid data yielded 3 significant principal components, which accounted for 72% of the total variance in the data set. Principal component 1 was related to saturated fatty acids (C4:0, C6:0, C8:0, C12:0, C14:0, C17:0, and C18:0) and monounsaturated fatty acids (C14:1 cis-9, C16:1 cis-9, C17:1 cis-9, and C18:1 trans-11); whole milk samples were clearly differentiated from the rest using this principal component. Principal component 2 differentiated semi-skim milk samples by n-3 fatty acid content (C20:3n-3, C20:5n-3, and C22:6n-3). Principal component 3 was related to C18:2 trans-9,trans-12 and C20:4n-6, and its lower scores were observed in skim milk and non-dairy beverages. A cluster analysis yielded 3 groups: group 1 consisted of only whole milk samples, group 2 was represented mainly by semi-skim milks, and group 3 included skim milk and non-dairy beverages. Overall, the present study showed that a multivariate chemometric approach is a useful tool for differentiating or associating retail bovine milks and non-dairy beverages using their fatty acid profile. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Use of multivariate statistics to identify unreliable data obtained using CASA.
Martínez, Luis Becerril; Crispín, Rubén Huerta; Mendoza, Maximino Méndez; Gallegos, Oswaldo Hernández; Martínez, Andrés Aragón
2013-06-01
In order to identify unreliable data in a dataset of motility parameters obtained from a pilot study acquired by a veterinarian with experience in boar semen handling, but without experience in the operation of a computer assisted sperm analysis (CASA) system, a multivariate graphical and statistical analysis was performed. Sixteen boar semen samples were aliquoted then incubated with varying concentrations of progesterone from 0 to 3.33 µg/ml and analyzed in a CASA system. After standardization of the data, Chernoff faces were pictured for each measurement, and a principal component analysis (PCA) was used to reduce the dimensionality and pre-process the data before hierarchical clustering. The first twelve individual measurements showed abnormal features when Chernoff faces were drawn. PCA revealed that principal components 1 and 2 explained 63.08% of the variance in the dataset. Values of principal components for each individual measurement of semen samples were mapped to identify differences among treatment or among boars. Twelve individual measurements presented low values of principal component 1. Confidence ellipses on the map of principal components showed no statistically significant effects for treatment or boar. Hierarchical clustering realized on two first principal components produced three clusters. Cluster 1 contained evaluations of the two first samples in each treatment, each one of a different boar. With the exception of one individual measurement, all other measurements in cluster 1 were the same as observed in abnormal Chernoff faces. Unreliable data in cluster 1 are probably related to the operator inexperience with a CASA system. These findings could be used to objectively evaluate the skill level of an operator of a CASA system. This may be particularly useful in the quality control of semen analysis using CASA systems.
Liu, Xiang; Guo, Ling-Peng; Zhang, Fei-Yun; Ma, Jie; Mu, Shu-Yong; Zhao, Xin; Li, Lan-Hai
2015-02-01
Eight physical and chemical indicators related to water quality were monitored from nineteen sampling sites along the Kunes River at the end of snowmelt season in spring. To investigate the spatial distribution characteristics of water physical and chemical properties, cluster analysis (CA), discriminant analysis (DA) and principal component analysis (PCA) are employed. The result of cluster analysis showed that the Kunes River could be divided into three reaches according to the similarities of water physical and chemical properties among sampling sites, representing the upstream, midstream and downstream of the river, respectively; The result of discriminant analysis demonstrated that the reliability of such a classification was high, and DO, Cl- and BOD5 were the significant indexes leading to this classification; Three principal components were extracted on the basis of the principal component analysis, in which accumulative variance contribution could reach 86.90%. The result of principal component analysis also indicated that water physical and chemical properties were mostly affected by EC, ORP, NO3(-) -N, NH4(+) -N, Cl- and BOD5. The sorted results of principal component scores in each sampling sites showed that the water quality was mainly influenced by DO in upstream, by pH in midstream, and by the rest of indicators in downstream. The order of comprehensive scores for principal components revealed that the water quality degraded from the upstream to downstream, i.e., the upstream had the best water quality, followed by the midstream, while the water quality at downstream was the worst. This result corresponded exactly to the three reaches classified using cluster analysis. Anthropogenic activity and the accumulation of pollutants along the river were probably the main reasons leading to this spatial difference.
Putilov, Arcady A; Donskaya, Olga G
2016-01-01
Age-associated changes in different bandwidths of the human electroencephalographic (EEG) spectrum are well documented, but their functional significance is poorly understood. This spectrum seems to represent summation of simultaneous influences of several sleep-wake regulatory processes. Scoring of its orthogonal (uncorrelated) principal components can help in separation of the brain signatures of these processes. In particular, the opposite age-associated changes were documented for scores on the two largest (1st and 2nd) principal components of the sleep EEG spectrum. A decrease of the first score and an increase of the second score can reflect, respectively, the weakening of the sleep drive and disinhibition of the opposing wake drive with age. In order to support the suggestion of age-associated disinhibition of the wake drive from the antagonistic influence of the sleep drive, we analyzed principal component scores of the resting EEG spectra obtained in sleep deprivation experiments with 81 healthy young adults aged between 19 and 26 and 40 healthy older adults aged between 45 and 66 years. At the second day of the sleep deprivation experiments, frontal scores on the 1st principal component of the EEG spectrum demonstrated an age-associated reduction of response to eyes closed relaxation. Scores on the 2nd principal component were either initially increased during wakefulness or less responsive to such sleep-provoking conditions (frontal and occipital scores, respectively). These results are in line with the suggestion of disinhibition of the wake drive with age. They provide an explanation of why older adults are less vulnerable to sleep deprivation than young adults.
Yuan, Zijiao; Liu, Guijian; Wang, Ruwei; Da, Chunnian
2014-11-01
The levels of 16 USEPA priority PAHs were determined in surface sediments and one dated sediment core from the abandoned Old Yellow River Estuary, China. Total PAH concentrations in the surface sediments ranged from 100.4 to 197.3 ng g(-1) dry weight and the total toxic equivalent quantity (TEQ(carc)) values of the carcinogenic PAHs were very low. An evaluation of PAH sources based on diagnostic ratios and principal component analysis suggested that PAHs in the surface sediments mainly derived from combustion sources. The total PAH concentrations altered significantly with year of deposition and showed quite different patterns of change compared with other studies: it is hypothesized that the principal cause of these changes is the relocation of the course of the Yellow River to the sea in 1976 and 1996. Copyright © 2014 Elsevier Inc. All rights reserved.
Correlation, Cost Risk, and Geometry
NASA Technical Reports Server (NTRS)
Dean, Edwin B.
1992-01-01
The geometric viewpoint identifies the choice of a correlation matrix for the simulation of cost risk with the pairwise choice of data vectors corresponding to the parameters used to obtain cost risk. The correlation coefficient is the cosine of the angle between the data vectors after translation to an origin at the mean and normalization for magnitude. Thus correlation is equivalent to expressing the data in terms of a non orthogonal basis. To understand the many resulting phenomena requires the use of the tensor concept of raising the index to transform the measured and observed covariant components into contravariant components before vector addition can be applied. The geometric viewpoint also demonstrates that correlation and covariance are geometric properties, as opposed to purely statistical properties, of the variates. Thus, variates from different distributions may be correlated, as desired, after selection from independent distributions. By determining the principal components of the correlation matrix, variates with the desired mean, magnitude, and correlation can be generated through linear transforms which include the eigenvalues and the eigenvectors of the correlation matrix. The conversion of the data to a non orthogonal basis uses a compound linear transformation which distorts or stretches the data space. Hence, the correlated data does not have the same properties as the uncorrelated data used to generate it. This phenomena is responsible for seemingly strange observations such as the fact that the marginal distributions of the correlated data can be quite different from the distributions used to generate the data. The joint effect of statistical distributions and correlation remains a fertile area for further research. In terms of application to cost estimating, the geometric approach demonstrates that the estimator must have data and must understand that data in order to properly choose the correlation matrix appropriate for a given estimate. There is a general feeling by employers and managers that the field of cost requires little technical or mathematical background. Contrary to that opinion, this paper demonstrates that a background in mathematics equivalent to that needed for typical engineering and scientific disciplines at the masters or doctorate level is appropriate within the field of cost risk.
Metal-backed versus all-polyethylene unicompartmental knee arthroplasty
Eaton, M. J.; Nutton, R. W.; Wade, F. A.; Evans, S. L.; Pankaj, P.
2017-01-01
Objectives Up to 40% of unicompartmental knee arthroplasty (UKA) revisions are performed for unexplained pain which may be caused by elevated proximal tibial bone strain. This study investigates the effect of tibial component metal backing and polyethylene thickness on bone strain in a cemented fixed-bearing medial UKA using a finite element model (FEM) validated experimentally by digital image correlation (DIC) and acoustic emission (AE). Materials and Methods A total of ten composite tibias implanted with all-polyethylene (AP) and metal-backed (MB) tibial components were loaded to 2500 N. Cortical strain was measured using DIC and cancellous microdamage using AE. FEMs were created and validated and polyethylene thickness varied from 6 mm to 10 mm. The volume of cancellous bone exposed to < -3000 µε (pathological loading) and < -7000 µε (yield point) minimum principal (compressive) microstrain and > 3000 µε and > 7000 µε maximum principal (tensile) microstrain was computed. Results Experimental AE data and the FEM volume of cancellous bone with compressive strain < -3000 µε correlated strongly: R = 0.947, R2 = 0.847, percentage error 12.5% (p < 0.001). DIC and FEM data correlated: R = 0.838, R2 = 0.702, percentage error 4.5% (p < 0.001). FEM strain patterns included MB lateral edge concentrations; AP concentrations at keel, peg and at the region of load application. Cancellous strains were higher in AP implants at all loads: 2.2- (10 mm) to 3.2-times (6 mm) the volume of cancellous bone compressively strained < -7000 µε. Conclusion AP tibial components display greater volumes of pathologically overstrained cancellous bone than MB implants of the same geometry. Increasing AP thickness does not overcome these pathological forces and comes at the cost of greater bone resection. Cite this article: C. E. H. Scott, M. J. Eaton, R. W. Nutton, F. A. Wade, S. L. Evans, P. Pankaj. Metal-backed versus all-polyethylene unicompartmental knee arthroplasty: Proximal tibial strain in an experimentally validated finite element model. Bone Joint Res 2017;6:22–30. DOI:10.1302/2046-3758.61.BJR-2016-0142.R1 PMID:28077394
Scott, C E H; Eaton, M J; Nutton, R W; Wade, F A; Evans, S L; Pankaj, P
2017-01-01
Up to 40% of unicompartmental knee arthroplasty (UKA) revisions are performed for unexplained pain which may be caused by elevated proximal tibial bone strain. This study investigates the effect of tibial component metal backing and polyethylene thickness on bone strain in a cemented fixed-bearing medial UKA using a finite element model (FEM) validated experimentally by digital image correlation (DIC) and acoustic emission (AE). A total of ten composite tibias implanted with all-polyethylene (AP) and metal-backed (MB) tibial components were loaded to 2500 N. Cortical strain was measured using DIC and cancellous microdamage using AE. FEMs were created and validated and polyethylene thickness varied from 6 mm to 10 mm. The volume of cancellous bone exposed to < -3000 µε (pathological loading) and < -7000 µε (yield point) minimum principal (compressive) microstrain and > 3000 µε and > 7000 µε maximum principal (tensile) microstrain was computed. Experimental AE data and the FEM volume of cancellous bone with compressive strain < -3000 µε correlated strongly: R = 0.947, R 2 = 0.847, percentage error 12.5% (p < 0.001). DIC and FEM data correlated: R = 0.838, R 2 = 0.702, percentage error 4.5% (p < 0.001). FEM strain patterns included MB lateral edge concentrations; AP concentrations at keel, peg and at the region of load application. Cancellous strains were higher in AP implants at all loads: 2.2- (10 mm) to 3.2-times (6 mm) the volume of cancellous bone compressively strained < -7000 µε. AP tibial components display greater volumes of pathologically overstrained cancellous bone than MB implants of the same geometry. Increasing AP thickness does not overcome these pathological forces and comes at the cost of greater bone resection.Cite this article: C. E. H. Scott, M. J. Eaton, R. W. Nutton, F. A. Wade, S. L. Evans, P. Pankaj. Metal-backed versus all-polyethylene unicompartmental knee arthroplasty: Proximal tibial strain in an experimentally validated finite element model. Bone Joint Res 2017;6:22-30. DOI:10.1302/2046-3758.61.BJR-2016-0142.R1. © 2017 Scott et al.
NASA Astrophysics Data System (ADS)
Wojciechowski, Adam
2017-04-01
In order to assess ecodiversity understood as a comprehensive natural landscape factor (Jedicke 2001), it is necessary to apply research methods which recognize the environment in a holistic way. Principal component analysis may be considered as one of such methods as it allows to distinguish the main factors determining landscape diversity on the one hand, and enables to discover regularities shaping the relationships between various elements of the environment under study on the other hand. The procedure adopted to assess ecodiversity with the use of principal component analysis involves: a) determining and selecting appropriate factors of the assessed environment qualities (hypsometric, geological, hydrographic, plant, and others); b) calculating the absolute value of individual qualities for the basic areas under analysis (e.g. river length, forest area, altitude differences, etc.); c) principal components analysis and obtaining factor maps (maps of selected components); d) generating a resultant, detailed map and isolating several classes of ecodiversity. An assessment of ecodiversity with the use of principal component analysis was conducted in the test area of 299,67 km2 in Debnica Kaszubska commune. The whole commune is situated in the Weichselian glaciation area of high hypsometric and morphological diversity as well as high geo- and biodiversity. The analysis was based on topographical maps of the commune area in scale 1:25000 and maps of forest habitats. Consequently, nine factors reflecting basic environment elements were calculated: maximum height (m), minimum height (m), average height (m), the length of watercourses (km), the area of water reservoirs (m2), total forest area (ha), coniferous forests habitats area (ha), deciduous forest habitats area (ha), alder habitats area (ha). The values for individual factors were analysed for 358 grid cells of 1 km2. Based on the principal components analysis, four major factors affecting commune ecodiversity were distinguished: hypsometric component (PC1), deciduous forest habitats component (PC2), river valleys and alder habitats component (PC3), and lakes component (PC4). The distinguished factors characterise natural qualities of postglacial area and reflect well the role of the four most important groups of environment components in shaping ecodiversity of the area under study. The map of ecodiversity of Debnica Kaszubska commune was created on the basis of the first four principal component scores and then five classes of diversity were isolated: very low, low, average, high and very high. As a result of the assessment, five commune regions of very high ecodiversity were separated. These regions are also very attractive for tourists and valuable in terms of their rich nature which include protected areas such as Slupia Valley Landscape Park. The suggested method of ecodiversity assessment with the use of principal component analysis may constitute an alternative methodological proposition to other research methods used so far. Literature Jedicke E., 2001. Biodiversität, Geodiversität, Ökodiversität. Kriterien zur Analyse der Landschaftsstruktur - ein konzeptioneller Diskussionsbeitrag. Naturschutz und Landschaftsplanung, 33(2/3), 59-68.
A stochastic model of weather states and concurrent daily precipitation at multiple precipitation stations is described. our algorithms are invested for classification of daily weather states; k means, fuzzy clustering, principal components, and principal components coupled with ...
Rosacea assessment by erythema index and principal component analysis segmentation maps
NASA Astrophysics Data System (ADS)
Kuzmina, Ilona; Rubins, Uldis; Saknite, Inga; Spigulis, Janis
2017-12-01
RGB images of rosacea were analyzed using segmentation maps of principal component analysis (PCA) and erythema index (EI). Areas of segmented clusters were compared to Clinician's Erythema Assessment (CEA) values given by two dermatologists. The results show that visible blood vessels are segmented more precisely on maps of the erythema index and the third principal component (PC3). In many cases, a distribution of clusters on EI and PC3 maps are very similar. Mean values of clusters' areas on these maps show a decrease of the area of blood vessels and erythema and an increase of lighter skin area after the therapy for the patients with diagnosis CEA = 2 on the first visit and CEA=1 on the second visit. This study shows that EI and PC3 maps are more useful than the maps of the first (PC1) and second (PC2) principal components for indicating vascular structures and erythema on the skin of rosacea patients and therapy monitoring.
Multilevel sparse functional principal component analysis.
Di, Chongzhi; Crainiceanu, Ciprian M; Jank, Wolfgang S
2014-01-29
We consider analysis of sparsely sampled multilevel functional data, where the basic observational unit is a function and data have a natural hierarchy of basic units. An example is when functions are recorded at multiple visits for each subject. Multilevel functional principal component analysis (MFPCA; Di et al. 2009) was proposed for such data when functions are densely recorded. Here we consider the case when functions are sparsely sampled and may contain only a few observations per function. We exploit the multilevel structure of covariance operators and achieve data reduction by principal component decompositions at both between and within subject levels. We address inherent methodological differences in the sparse sampling context to: 1) estimate the covariance operators; 2) estimate the functional principal component scores; 3) predict the underlying curves. Through simulations the proposed method is able to discover dominating modes of variations and reconstruct underlying curves well even in sparse settings. Our approach is illustrated by two applications, the Sleep Heart Health Study and eBay auctions.
Understanding software faults and their role in software reliability modeling
NASA Technical Reports Server (NTRS)
Munson, John C.
1994-01-01
This study is a direct result of an on-going project to model the reliability of a large real-time control avionics system. In previous modeling efforts with this system, hardware reliability models were applied in modeling the reliability behavior of this system. In an attempt to enhance the performance of the adapted reliability models, certain software attributes were introduced in these models to control for differences between programs and also sequential executions of the same program. As the basic nature of the software attributes that affect software reliability become better understood in the modeling process, this information begins to have important implications on the software development process. A significant problem arises when raw attribute measures are to be used in statistical models as predictors, for example, of measures of software quality. This is because many of the metrics are highly correlated. Consider the two attributes: lines of code, LOC, and number of program statements, Stmts. In this case, it is quite obvious that a program with a high value of LOC probably will also have a relatively high value of Stmts. In the case of low level languages, such as assembly language programs, there might be a one-to-one relationship between the statement count and the lines of code. When there is a complete absence of linear relationship among the metrics, they are said to be orthogonal or uncorrelated. Usually the lack of orthogonality is not serious enough to affect a statistical analysis. However, for the purposes of some statistical analysis such as multiple regression, the software metrics are so strongly interrelated that the regression results may be ambiguous and possibly even misleading. Typically, it is difficult to estimate the unique effects of individual software metrics in the regression equation. The estimated values of the coefficients are very sensitive to slight changes in the data and to the addition or deletion of variables in the regression equation. Since most of the existing metrics have common elements and are linear combinations of these common elements, it seems reasonable to investigate the structure of the underlying common factors or components that make up the raw metrics. The technique we have chosen to use to explore this structure is a procedure called principal components analysis. Principal components analysis is a decomposition technique that may be used to detect and analyze collinearity in software metrics. When confronted with a large number of metrics measuring a single construct, it may be desirable to represent the set by some smaller number of variables that convey all, or most, of the information in the original set. Principal components are linear transformations of a set of random variables that summarize the information contained in the variables. The transformations are chosen so that the first component accounts for the maximal amount of variation of the measures of any possible linear transform; the second component accounts for the maximal amount of residual variation; and so on. The principal components are constructed so that they represent transformed scores on dimensions that are orthogonal. Through the use of principal components analysis, it is possible to have a set of highly related software attributes mapped into a small number of uncorrelated attribute domains. This definitively solves the problem of multi-collinearity in subsequent regression analysis. There are many software metrics in the literature, but principal component analysis reveals that there are few distinct sources of variation, i.e. dimensions, in this set of metrics. It would appear perfectly reasonable to characterize the measurable attributes of a program with a simple function of a small number of orthogonal metrics each of which represents a distinct software attribute domain.
Visualizing Hyolaryngeal Mechanics in Swallowing Using Dynamic MRI
Pearson, William G.; Zumwalt, Ann C.
2013-01-01
Introduction Coordinates of anatomical landmarks are captured using dynamic MRI to explore whether a proposed two-sling mechanism underlies hyolaryngeal elevation in pharyngeal swallowing. A principal components analysis (PCA) is applied to coordinates to determine the covariant function of the proposed mechanism. Methods Dynamic MRI (dMRI) data were acquired from eleven healthy subjects during a repeated swallows task. Coordinates mapping the proposed mechanism are collected from each dynamic (frame) of a dynamic MRI swallowing series of a randomly selected subject in order to demonstrate shape changes in a single subject. Coordinates representing minimum and maximum hyolaryngeal elevation of all 11 subjects were also mapped to demonstrate shape changes of the system among all subjects. MophoJ software was used to perform PCA and determine vectors of shape change (eigenvectors) for elements of the two-sling mechanism of hyolaryngeal elevation. Results For both single subject and group PCAs, hyolaryngeal elevation accounted for the first principal component of variation. For the single subject PCA, the first principal component accounted for 81.5% of the variance. For the between subjects PCA, the first principal component accounted for 58.5% of the variance. Eigenvectors and shape changes associated with this first principal component are reported. Discussion Eigenvectors indicate that two-muscle slings and associated skeletal elements function as components of a covariant mechanism to elevate the hyolaryngeal complex. Morphological analysis is useful to model shape changes in the two-sling mechanism of hyolaryngeal elevation. PMID:25090608
ERIC Educational Resources Information Center
Riggs, Robert
2017-01-01
This quantitative correlational study addressed the concept that teacher-perceived high school principal leadership style correlated with teacher self-efficacy. A relationship existed between teacher self-efficacy and student outcomes and research indicated a relationship between leadership style and teacher self-efficacy. Also, the effect of…
Panazzolo, Diogo G; Sicuro, Fernando L; Clapauch, Ruth; Maranhão, Priscila A; Bouskela, Eliete; Kraemer-Aguiar, Luiz G
2012-11-13
We aimed to evaluate the multivariate association between functional microvascular variables and clinical-laboratorial-anthropometrical measurements. Data from 189 female subjects (34.0 ± 15.5 years, 30.5 ± 7.1 kg/m2), who were non-smokers, non-regular drug users, without a history of diabetes and/or hypertension, were analyzed by principal component analysis (PCA). PCA is a classical multivariate exploratory tool because it highlights common variation between variables allowing inferences about possible biological meaning of associations between them, without pre-establishing cause-effect relationships. In total, 15 variables were used for PCA: body mass index (BMI), waist circumference, systolic and diastolic blood pressure (BP), fasting plasma glucose, levels of total cholesterol, high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c), triglycerides (TG), insulin, C-reactive protein (CRP), and functional microvascular variables measured by nailfold videocapillaroscopy. Nailfold videocapillaroscopy was used for direct visualization of nutritive capillaries, assessing functional capillary density, red blood cell velocity (RBCV) at rest and peak after 1 min of arterial occlusion (RBCV(max)), and the time taken to reach RBCV(max) (TRBCV(max)). A total of 35% of subjects had metabolic syndrome, 77% were overweight/obese, and 9.5% had impaired fasting glucose. PCA was able to recognize that functional microvascular variables and clinical-laboratorial-anthropometrical measurements had a similar variation. The first five principal components explained most of the intrinsic variation of the data. For example, principal component 1 was associated with BMI, waist circumference, systolic BP, diastolic BP, insulin, TG, CRP, and TRBCV(max) varying in the same way. Principal component 1 also showed a strong association among HDL-c, RBCV, and RBCV(max), but in the opposite way. Principal component 3 was associated only with microvascular variables in the same way (functional capillary density, RBCV and RBCV(max)). Fasting plasma glucose appeared to be related to principal component 4 and did not show any association with microvascular reactivity. In non-diabetic female subjects, a multivariate scenario of associations between classic clinical variables strictly related to obesity and metabolic syndrome suggests a significant relationship between these diseases and microvascular reactivity.
NASA Technical Reports Server (NTRS)
Tumer, Kagan; Oza, Nikunj C.; Clancy, Daniel (Technical Monitor)
2001-01-01
Using an ensemble of classifiers instead of a single classifier has been shown to improve generalization performance in many pattern recognition problems. However, the extent of such improvement depends greatly on the amount of correlation among the errors of the base classifiers. Therefore, reducing those correlations while keeping the classifiers' performance levels high is an important area of research. In this article, we explore input decimation (ID), a method which selects feature subsets for their ability to discriminate among the classes and uses them to decouple the base classifiers. We provide a summary of the theoretical benefits of correlation reduction, along with results of our method on two underwater sonar data sets, three benchmarks from the Probenl/UCI repositories, and two synthetic data sets. The results indicate that input decimated ensembles (IDEs) outperform ensembles whose base classifiers use all the input features; randomly selected subsets of features; and features created using principal components analysis, on a wide range of domains.
Liang, Ningjian; Xue, Wei; Kennepohl, Pierre; Kitts, David D
2016-12-15
Coffee bean source and roasting conditions significantly (p<0.05) affected the content of chlorogenic acid (CGA) isomers, several indices of browning and subsequent antioxidant values. Principal component analysis was used to interpret the correlations between physiochemical and antioxidant parameters of coffee. CGA isomer content was positively correlated (p<0.001) to capacity of coffee to reduce nitric oxide and scavenge Frémy's salt. Indices of browning in roasted coffee were positively correlated (p<0.001) to ABTS and TEMPO radical scavenging capacity, respectively. Only the CGA content of coffee corresponded to intracellular antioxidant capacity measured in Caco-2 intestinal cells. This study concluded that the intracellular antioxidant capacity that best describes potential health benefits of coffee positively corresponds best with CGA content. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Linking energy behaviour, attitude and habits with environmental predisposition and knowledge
NASA Astrophysics Data System (ADS)
Pothitou, Mary; Varga, Liz; Kolios, Athanasios J.; Gu, Sai
2017-04-01
The purpose of this paper is to present and discuss the findings of an empirical study that compares individuals' environmental predisposition and knowledge with their energy behaviour, attitude and habits. Additionally, the study attempts to correlate education level and household income with the above variables. The statistical analysis reveals significant correlations between environmental predisposition and knowledge and elements of individuals' energy attitudes, habits and behaviour. An unanticipated outcome from the principal component analysis was that household income, and to a lesser extent gender, is associated with energy-saving habits and behaviours. On further investigation, household income was found to be correlated with knowledge of greenhouse gas emissions and the number of laptops and electric showers owned per household. The study sample comprises 68 employees of an educational institution, which was selected as the first phase of research aiming to compare energy-saving behaviour at home and in the workplace.
The factorial reliability of the Middlesex Hospital Questionnaire in normal subjects.
Bagley, C
1980-03-01
The internal reliability of the Middlesex Hospital Questionnaire and its component subscales has been checked by means of principal components analyses of data on 256 normal subjects. The subscales (with the possible exception of Hysteria) were found to contribute to the general underlying factor of psychoneurosis. In general, the principal components analysis points to the reliability of the subscales, despite some item overlap.
ERIC Educational Resources Information Center
McCormick, Ernest J.; And Others
The study deals with the job component method of establishing compensation rates. The basic job analysis questionnaire used in the study was the Position Analysis Questionnaire (PAQ) (Form B). On the basis of a principal components analysis of PAQ data for a large sample (2,688) of jobs, a number of principal components (job dimensions) were…
ERIC Educational Resources Information Center
Faginski-Stark, Erica; Casavant, Christopher; Collins, William; McCandless, Jason; Tencza, Marilyn
2012-01-01
Recent federal and state mandates have tasked school systems to move beyond principal evaluation as a bureaucratic function and to re-imagine it as a critical component to improve principal performance and compel school renewal. This qualitative study investigated the district leaders' and principals' perceptions of the performance evaluation…
A Sector Capacity Assessment Method Based on Airspace Utilization Efficiency
NASA Astrophysics Data System (ADS)
Zhang, Jianping; Zhang, Ping; Li, Zhen; Zou, Xiang
2018-02-01
Sector capacity is one of the core factors affecting the safety and the efficiency of the air traffic system. Most of previous sector capacity assessment methods only considered the air traffic controller’s (ATCO’s) workload. These methods are not only limited which only concern about the safety, but also not accurate enough. In this paper, we employ the integrated quantitative index system proposed in one of our previous literatures. We use the principal component analysis (PCA) to find out the principal indicators among the indicators so as to calculate the airspace utilization efficiency. In addition, we use a series of fitting functions to test and define the correlation between the dense of air traffic flow and the airspace utilization efficiency. The sector capacity is then decided as the value of the dense of air traffic flow corresponding to the maximum airspace utilization efficiency. We also use the same series of fitting functions to test the correlation between the dese of air traffic flow and the ATCOs’ workload. We examine our method with a large amount of empirical operating data of Chengdu Controlling Center and obtain a reliable sector capacity value. Experiment results also show superiority of our method against those only consider the ATCO’s workload in terms of better correlation between the airspace utilization efficiency and the dense of air traffic flow.
ERIC Educational Resources Information Center
Cousar, Theresa Ann
2017-01-01
The purpose of this quantitative study was to examine middle school teachers' job satisfaction (low vs. high) and how teachers perceive principals' leadership traits. The study used a causal-comparative and correlational design. The teachers were divided into two job satisfaction level groups. Teacher perception of principal leadership traits for…
2L-PCA: a two-level principal component analyzer for quantitative drug design and its applications.
Du, Qi-Shi; Wang, Shu-Qing; Xie, Neng-Zhong; Wang, Qing-Yan; Huang, Ri-Bo; Chou, Kuo-Chen
2017-09-19
A two-level principal component predictor (2L-PCA) was proposed based on the principal component analysis (PCA) approach. It can be used to quantitatively analyze various compounds and peptides about their functions or potentials to become useful drugs. One level is for dealing with the physicochemical properties of drug molecules, while the other level is for dealing with their structural fragments. The predictor has the self-learning and feedback features to automatically improve its accuracy. It is anticipated that 2L-PCA will become a very useful tool for timely providing various useful clues during the process of drug development.
Johnson, Cynthia R; DeMand, Alexandra; Lecavalier, Luc; Smith, Tristram; Aman, Michael; Foldes, Emily; Scahill, Lawrence
2016-04-01
Sleep disturbances in autism spectrum disorder (ASD) are very common. Psychometrically sound instruments are essential to assess these disturbances. Children's Sleep Habit Questionnaire (CSHQ) is a widely used measure in ASD. The purpose of this study was to explore the psychometric properties of the CSHQ in a sample of children with ASD. Parents/caregivers of 310 children (mean age: 4.7) with ASD completed the CSHQ at study enrollment. Correlations between intelligence quotient (IQ) scores and the original CSHQ scales were calculated. Item endorsement frequencies and percentages were also calculated. A principal component analysis (PCA) was performed, and internal consistency was assessed for the newly extracted components. Correlations between IQ scores and CSHQ subscales and total scores ranged from .015 to .001 suggesting a weak, if any, association. Item endorsement frequencies were high for bedtime resistance items, but lower for parasomnia and sleep-disordered breathing items. A PCA suggested that a five-component solution best fits the data. Internal consistency of the newly extracted five components ranged α = .87-.50. Item endorsement frequencies were highest for bedtime resistance items. A PCA suggested a five-component solution. Three of the five components (Sleep Routine Problems, Insufficient Sleep, and Sleep-onset Association Problems) were types of sleep disturbances commonly reported in ASD, but the other two components (Parasomnia/Sleep-disordered Breathing and Sleep Anxiety) were less clear. Internal consistencies ranged from mediocre to good. Further development of this measure for use in children with ASD is encouraged. Copyright © 2016 Elsevier B.V. All rights reserved.
Bell, Sigall K; White, Andrew A; Yi, Jean C; Yi-Frazier, Joyce P; Gallagher, Thomas H
2017-12-01
Transparent communication after medical error includes disclosing the mistake to the patient, discussing the event with colleagues, and reporting to the institution. Little is known about whether attitudes about these transparency practices are related. Understanding these relationships could inform educational and organizational strategies to promote transparency. We analyzed responses of 3038 US and Canadian physicians to a medical error communication survey. We used bivariate correlations, principal components analysis, and linear regression to determine whether and how physician attitudes about transparent communication with patients, peers, and the institution after error were related. Physician attitudes about disclosing errors to patients, peers, and institutions were correlated (all P's < 0.001) and represented 2 principal components analysis factors, namely, communication with patients and communication with peers/institution. Predictors of attitudes supporting transparent communication with patients and peers/institution included female sex, US (vs Canadian) doctors, academic (vs private) practice, the belief that disclosure decreased likelihood of litigation, and the belief that system changes occur after error reporting. In addition, younger physicians, surgeons, and those with previous experience disclosing a serious error were more likely to agree with disclosure to patients. In comparison, doctors who believed that disclosure would decrease patient trust were less likely to agree with error disclosure to patients. Previous disclosure education was associated with attitudes supporting greater transparency with peers/institution. Physician attitudes about discussing errors with patients, colleagues, and institutions are related. Several predictors of transparency affect all 3 practices and are potentially modifiable by educational and institutional strategies.
Relationship between changes in crystalline lens shape and axial elongation in young children.
Ishii, Kotaro; Yamanari, Masahiro; Iwata, Hiroyoshi; Yasuno, Yoshiaki; Oshika, Tetsuro
2013-01-28
To evaluate the relationship between changes in crystalline lens shape and axial elongation during growth in young children. Twenty-five patients (age: 1 month to 6 years) who underwent head magnetic resonance imaging (MRI) were included in the analysis. Refractive error was measured with an autorefractor in 22 patients. Crystalline lens dimensions and axial length (AL) were obtained from the MR images. The radius of curvature and asphericity of the crystalline lens were measured using reconstructed MR images. Crystalline lens shape and eyeball shape were numerically expressed by elliptic Fourier descriptors (EFDs) on the basis of MR images. The contours of the crystalline lens and eyeball were evaluated by principal component analysis of the EFDs. The average anterior and posterior radii of curvature were 6.21 mm (range across ages from 3.89-7.26 mm) and -4.81 mm (range across ages from -2.93 to -5.67 mm). These were closely correlated with age by logarithmic analysis. The first principal component (PC1) of the crystalline lens explained 89.15% of the total variance in lens shape, and it was also significantly correlated with age (Pearson's r = 0.648, P < 0.001) and AL (r = 0.847, P < 0.001). In the multiple linear regression analysis in which AL was a dependent variable, only the PC1 of the crystalline lens was associated with AL. Axial elongation is related to the entire contour of the crystalline lens. This result shows that axial elongation progresses in parallel to change in the crystalline lens shape.
Zhang, Mao-mao; Yang, Zhong; Lu, Bin; Liu, Ya-na; Sun, Xue-dong
2015-02-01
As one of the most important decorative materials for the modern household products, decorative papers impregnated with melamine not only have better decorative performance, but also could greatly improve the surface properties of materials. However, the appearance quality (such as color-difference evaluation and control) of decorative papers, as an important index for the surface quality of decorative paper, has been a puzzle for manufacturers and consumers. Nowadays, human eye is used to discriminate whether there exist color difference in the factory, which is not only of low efficiency but also prone to bring subjective error. Thus, it is of great significance to find an effective method in order to realize the fast recognition and classification of the decorative papers. In the present study, the visible spectroscopy coupled with principal component analysis (PCA) was used for the pattern recognition of decorative papers with different visual characteristics to investigate the feasibility of visible spectroscopy to rapidly recognize the types of decorative papers. The results showed that the correlation between visible spectroscopy and visual characteristics (L*, a* and b*) was significant, and the correlation coefficients wereup to 0.85 and some was even more than 0. 99, which might suggest that the visible spectroscopy reflected some information about visual characteristics on the surface of decorative papers. When using the visible spectroscopy coupled with PCA to recognize the types of decorative papers, the accuracy reached 94%-100%, which might suggest that the visible spectroscopy was a very potential new method for the rapid, objective and accurate recognition of decorative papers with different visual characteristics.