Sample records for correlation spectroscopy study

  1. Spectroscopic techniques to study the immune response in human saliva

    NASA Astrophysics Data System (ADS)

    Nepomnyashchaya, E.; Savchenko, E.; Velichko, E.; Bogomaz, T.; Aksenov, E.

    2018-01-01

    Studies of the immune response dynamics by means of spectroscopic techniques, i.e., laser correlation spectroscopy and fluorescence spectroscopy, are described. The laser correlation spectroscopy is aimed at measuring sizes of particles in biological fluids. The fluorescence spectroscopy allows studying of the conformational and other structural changings in immune complex. We have developed a new scheme of a laser correlation spectrometer and an original signal processing algorithm. We have suggested a new fluorescence detection scheme based on a prism and an integrating pin diode. The developed system based on the spectroscopic techniques allows studies of complex process in human saliva and opens some prospects for an individual treatment of immune diseases.

  2. [Classification of results of studying blood plasma with laser correlation spectroscopy based on semiotics of preclinical and clinical states].

    PubMed

    Ternovoĭ, K S; Kryzhanovskiĭ, G N; Musiĭchuk, Iu I; Noskin, L A; Klopov, N V; Noskin, V A; Starodub, N F

    1998-01-01

    The usage of laser correlation spectroscopy for verification of preclinical and clinical states is substantiated. Developed "semiotic" classifier for solving the problems of preclinical and clinical states is presented. The substantiation of biological algorithms as well as the mathematical support and software for the proposed classifier for the data of laser correlation spectroscopy of blood plasma are presented.

  3. Point-point and point-line moving-window correlation spectroscopy and its applications

    NASA Astrophysics Data System (ADS)

    Zhou, Qun; Sun, Suqin; Zhan, Daqi; Yu, Zhiwu

    2008-07-01

    In this paper, we present a new extension of generalized two-dimensional (2D) correlation spectroscopy. Two new algorithms, namely point-point (P-P) correlation and point-line (P-L) correlation, have been introduced to do the moving-window 2D correlation (MW2D) analysis. The new method has been applied to a spectral model consisting of two different processes. The results indicate that P-P correlation spectroscopy can unveil the details and re-constitute the entire process, whilst the P-L can provide general feature of the concerned processes. Phase transition behavior of dimyristoylphosphotidylethanolamine (DMPE) has been studied using MW2D correlation spectroscopy. The newly proposed method verifies that the phase transition temperature is 56 °C, same as the result got from a differential scanning calorimeter. To illustrate the new method further, a lysine and lactose mixture has been studied under thermo perturbation. Using the P-P MW2D, the Maillard reaction of the mixture was clearly monitored, which has been very difficult using conventional display of FTIR spectra.

  4. Discrimination of Fritillary according to geographical origin with Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy.

    PubMed

    Hua, Rui; Sun, Su-Qin; Zhou, Qun; Noda, Isao; Wang, Bao-Qin

    2003-09-19

    Fritillaria is a traditional Chinese herbal medicine for eliminating phlegm and relieving a cough with a long history in China and some other Asian countries. The objective of this study is to develop a nondestructive and accurate method to discriminate Fritillaria of different geographical origins, which is a troublesome work by existing analytical methods. We conducted a systematic study on five kinds of Fritillaria by Fourier transform infrared spectroscopy, second derivative infrared spectroscopy, and two-dimensional (2D) correlation infrared spectroscopy under thermal perturbation. Because Fritillaria consist of a large amount of starch, the conventional IR spectra of different Fritillaria only have very limited spectral feature differences. Based on these differences, we can separate different Fritillaria to a limited extent, but this method was deemed not very practical. The second derivative IR spectra of Fritillaria could enhance spectrum resolution, amplify the differences between the IR spectra of different Fritillaria, and provide some dissimilarity in their starch content, when compared with the spectrum of pure starch. Finally, we applied thermal perturbation to Fritillaria and analyzed the resulting spectra by the 2D correlation method to distinguish different Fritillaria easily and clearly. The distinction of very similar Fritillaria was possible because the spectral resolution was greatly enhanced by the 2D correlation spectroscopy. In addition, with the dynamic information of molecular structure provided by 2D correlation IR spectra, we studied the differences in the stability of active components of Fritillaria. The differences embodied mainly on the intensity ratio of the auto-peak at 985 cm(-1) and other auto-peaks. The 2D correlation IR spectroscopy (2D IR) of Fritillaria can be a new and powerful method to discriminate Fritillaria.

  5. Advancements of two dimensional correlation spectroscopy in protein researches

    NASA Astrophysics Data System (ADS)

    Tao, Yanchun; Wu, Yuqing; Zhang, Liping

    2018-05-01

    The developments of two-dimensional correlation spectroscopy (2DCOS) applications in protein studies are discussed, especially for the past two decades. The powerful utilities of 2DCOS combined with various analytical techniques in protein studies are summarized. The emphasis is on the vibration spectroscopic techniques including IR, NIR, Raman and optical activity (ROA), as well as vibration circular dichroism (VCD) and fluorescence spectroscopy. In addition, some new developments, such as hetero-spectral 2DCOS, moving-window correlation, and model based correlation, are also reviewed for their utility in the investigation of the secondary structure, denaturation, folding and unfolding changes of protein. Finally, the new possibility and challenges of 2DCOS in protein research are highlighted as well.

  6. EIT amplitude noise spectroscopy

    NASA Astrophysics Data System (ADS)

    Whitenack, Benjamin; Tormey, Devan; O'Leary, Shannon; Crescimanno, Michael

    2017-04-01

    EIT Noise spectroscopy is usually studied by computing a correlation statistic based on temporal intensity variations of the two (circular polarization) propagation eigenstates. Studying the intensity noise correlations that result from amplitude mixing that we perform before and after the cell allows us to recast it in terms of the underlying amplitude noise. This leads to new tests of the quantum optics theory model and suggests an approach to the use of noise spectroscopy for vector magnetometry.

  7. In Vivo Fluorescence Correlation and Cross-Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Mütze, Jörg; Ohrt, Thomas; Petrášek, Zdeněk; Schwille, Petra

    In this manuscript, we describe the application of Fluorescence Correlation Spectroscopy (FCS), Fluorescence Cross-Correlation Spectroscopy (FCCS), and scanning FCS (sFCS) to two in vivo systems. In the first part, we describe the application of two-photon standard and scanning FCS in Caenorhabditis elegans embryos. The differentiation of a single fertilized egg into a complex organism in C. elegans is regulated by a number of protein-dependent processes. The oocyte divides asymmetrically into two daughter cells of different developmental fate. Two of the involved proteins, PAR-2 and NMY-2, are studied. The second investigated system is the mechanism of RNA interference in human cells. An EGFP based cell line that allows to study the dynamics and localization of the RNA-induced silencing complex (RISC) with FCS in vivo is created, which has so far been inaccessible with other experimental methods. Furthermore, Fluorescence Cross-Correlation Spectroscopy is employed to highlight the asymmetric incorporation of labeled siRNAs into RISC.

  8. Fluorescence correlation spectroscopy of diffusion probed with a Gaussian Lorentzian spatial distribution

    NASA Astrophysics Data System (ADS)

    Marrocco, Michele

    2007-11-01

    Fluorescence correlation spectroscopy is fundamental in many physical, chemical and biological studies of molecular diffusion. However, the concept of fluorescence correlation is founded on the assumption that the analytical description of the correlation decay of diffusion can be achieved if the spatial profile of the detected volume obeys a three-dimensional Gaussian distribution. In the present Letter, the analytical result is instead proven for the fundamental Gaussian-Lorentzian profile.

  9. The X-ray correlation spectroscopy instrument at the Linac Coherent Light Source

    DOE PAGES

    Alonso-Mori, Roberto; Caronna, Chiara; Chollet, Matthieu; ...

    2015-03-03

    The X-ray Correlation Spectroscopy instrument is dedicated to the study of dynamics in condensed matter systems using the unique coherence properties of free-electron lasers. It covers a photon energy range of 4–25 keV. The intrinsic temporal characteristics of the Linac Coherent Light Source, in particular the 120 Hz repetition rate, allow for the investigation of slow dynamics (milliseconds) by means of X-ray photon correlation spectroscopy. Double-pulse schemes could probe dynamics on the picosecond timescale. In addition, a description of the instrument capabilities and recent achievements is presented.

  10. Laser correlation spectroscopy in the diagnosis of tumor diseases of the female reproductive system (preliminary results)

    NASA Astrophysics Data System (ADS)

    Korneeva, A. A.; Sekerskaya, M. N.; Zhordaniya, K. I.; Sapezhinskiy, V. S.; Golubtsova, N. V.; Barmashov, A. E.; Gonchukov, S. A.; Ivanov, A. V.

    2017-01-01

    The study of blood serum of cancer patients by laser correlation spectroscopy to determine the possibility of differentiation of benign and malignant tumors of the female reproductive system. We analyzed the data and assessed the applicability of the method mentioned above target.

  11. Isothermal crystallization of poly(3-hydroxybutyrate) studied by terahertz two-dimensional correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Hoshina, Hiromichi; Ishii, Shinya; Morisawa, Yusuke; Sato, Harumi; Noda, Isao; Ozaki, Yukihiro; Otani, Chiko

    2012-01-01

    The isothermal crystallization of poly(3-hydroxybutylate) (PHB) was studied by monitoring the temporal evolution of terahertz absorption spectra in conjunction with spectral analysis using two-dimensional correlation spectroscopy. Correlation between the absorption peaks and the sequential order of the changes in spectral intensity extracted from synchronous and asynchronous plots indicated that crystallization of PHB at 90 °C is a two step process, in which C-H...O=C hydrogen bonds are initially formed before well-defined crystal structures are established.

  12. The roles of carbohydrates, proteins and lipids in the process of aggregation of natural marine organic matter investigated by means of 2D correlation spectroscopy applied to infrared spectra.

    PubMed

    Mecozzi, Mauro; Pietrantonio, Eva; Pietroletti, Marco

    2009-01-01

    In this paper the marine organic matter soluble in an alkaline medium called extractable humic substance (EHS), was extracted from three sediment samples of Tyrrhenian Sea and separated by precipitation at pH 2 in the two fractions of fulvic acids (FAs) and humic acids (HAs). FAs were further fractionated in seven sub-samples of different molecular weight (mw) by means of seven different ultrafiltration membranes operating in the range between mw<1 kDa and mw>100 kDa. Then the qualitative composition of each sample of fractionated FAs and HAs was studied by means of one-dimensional Fourier transform infrared spectroscopy in reflectance mode (FTIR-DRIFT) and by two-dimensional (2D) correlation spectroscopy both in wavelength-wavelength (WW) and in sample-sample (SS) mode. The application of 2D correlation WW spectroscopy allows to elucidate the different roles played by carbohydrates and proteins with respect to some lipid compounds such as fatty acids and ester fatty acids during the process of aggregate formations from mw approximately 1 kDa to higher size aggregates. In addition, 2D correlation WW spectroscopy allows to observe some peculiar interactions between carbohydrates and proteins in the formation of EHS aggregates, interactions which vary from a sample to another sample. The results of 2D correlation SS spectroscopy confirm the general evidences obtained by 2D WW spectroscopy and moreover, they also describe the formation of EHS aggregates as a complex process where evolutionary links and connectivity between aggregates of neighbour molecular size ranges are not evident. Two-dimensional correlation spectroscopy applied to FTIR spectroscopy shows to be a powerful tool for the investigation of the mechanisms involved in EHS aggregation because it supports the acquisition of structural information which sometimes can be hardly obtained by one-dimensional FTIR spectroscopy.

  13. Two-dimensional correlation spectroscopy in polymer study

    PubMed Central

    Park, Yeonju; Noda, Isao; Jung, Young Mee

    2015-01-01

    This review outlines the recent works of two-dimensional correlation spectroscopy (2DCOS) in polymer study. 2DCOS is a powerful technique applicable to the in-depth analysis of various spectral data of polymers obtained under some type of perturbation. The powerful utility of 2DCOS combined with various analytical techniques in polymer studies and noteworthy developments of 2DCOS used in this field are also highlighted. PMID:25815286

  14. Study on Senna alata and its different extracts by Fourier transform infrared spectroscopy and two-dimensional correlation infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Adiana, M. A.; Mazura, M. P.

    2011-04-01

    Senna alata L. commonly known as candle bush belongs to the family of Fabaceae and the plant has been reported to possess anti-inflammatory, analgesic, laxative and antiplatelet-aggregating activity. In order to develop a rapid and effective analysis method for studying integrally the main constituents in the medicinal materials and their extracts, discriminating the extracts from different extraction process, comparing the categories of chemical constituents in the different extracts and monitoring the qualities of medicinal materials, we applied Fourier transform infrared spectroscopy (FT-IR) associated with second derivative infrared spectroscopy and two-dimensional infrared correlation spectroscopy (2D-IR) to study the main constituents of S. alata and its different extracts (extracted by hexane, dichloromethane, ethyl acetate and methanol in turn). The findings indicated that FT-IR and 2D-IR can provide many holistic variation rules of chemical constituents. Use of the macroscopical fingerprint characters of FT-IR and 2D-IR spectrum can identify the main chemical constituents in medicinal materials and their extracts, but also compare the components differences among similar samples. In a conclusion, FT-IR spectroscopy combined with 2D correlation analysis provides a powerful method for the quality control of traditional medicines.

  15. Quantitative evaluation of cross correlation between two finite-length time series with applications to single-molecule FRET.

    PubMed

    Hanson, Jeffery A; Yang, Haw

    2008-11-06

    The statistical properties of the cross correlation between two time series has been studied. An analytical expression for the cross correlation function's variance has been derived. On the basis of these results, a statistically robust method has been proposed to detect the existence and determine the direction of cross correlation between two time series. The proposed method has been characterized by computer simulations. Applications to single-molecule fluorescence spectroscopy are discussed. The results may also find immediate applications in fluorescence correlation spectroscopy (FCS) and its variants.

  16. The measurement of bacterial translation by photon correlation spectroscopy.

    PubMed Central

    Stock, G B; Jenkins, T C

    1978-01-01

    Photon correlation spectroscopy is shown to be a practical technique for the accurate determination of translational speeds of bacteria. Though other attempts have been made to use light scattering as a probe of various aspects of bacterial motility, no other comprehensive studies to establish firmly the basic capabilities and limitations of the technique have been published. The intrinsic accuracy of the assay of translational speeds by photon correlation spectroscopy is investigated by analysis of synthetic autocorrelation data; consistently accurate estimates of the mean and second moment of the speed distribution can be calculated. Extensive analyses of experimental preparations of Salmonella typhimurium examine the possible sources of experimental difficulty with the assay. Cinematography confirms the bacterial speed estimates obtained by photon correlation techniques. PMID:346073

  17. The X-ray Correlation Spectroscopy instrument at the Linac Coherent Light Source

    PubMed Central

    Alonso-Mori, Roberto; Caronna, Chiara; Chollet, Matthieu; Curtis, Robin; Damiani, Daniel S.; Defever, Jim; Feng, Yiping; Flath, Daniel L.; Glownia, James M.; Lee, Sooheyong; Lemke, Henrik T.; Nelson, Silke; Bong, Eric; Sikorski, Marcin; Song, Sanghoon; Srinivasan, Venkat; Stefanescu, Daniel; Zhu, Diling; Robert, Aymeric

    2015-01-01

    The X-ray Correlation Spectroscopy instrument is dedicated to the study of dynamics in condensed matter systems using the unique coherence properties of free-electron lasers. It covers a photon energy range of 4–25 keV. The intrinsic temporal characteristics of the Linac Coherent Light Source, in particular the 120 Hz repetition rate, allow for the investigation of slow dynamics (milli­seconds) by means of X-ray photon correlation spectroscopy. Double-pulse schemes could probe dynamics on the picosecond timescale. A description of the instrument capabilities and recent achievements is presented. PMID:25931061

  18. Magnetic resonance spectroscopy of normal appearing white matter in early relapsing-remitting multiple sclerosis: correlations between disability and spectroscopy

    PubMed Central

    Ruiz-Peña, Juan Luis; Piñero, Pilar; Sellers, Guillermo; Argente, Joaquín; Casado, Alfredo; Foronda, Jesus; Uclés, Antonio; Izquierdo, Guillermo

    2004-01-01

    Background What currently appears to be irreversible axonal loss in normal appearing white matter, measured by proton magnetic resonance spectroscopy is of great interest in the study of Multiple Sclerosis. Our aim is to determine the axonal damage in normal appearing white matter measured by magnetic resonance spectroscopy and to correlate this with the functional disability measured by Multiple Sclerosis Functional Composite scale, Neurological Rating Scale, Ambulation Index scale, and Expanded Disability Scale Score. Methods Thirty one patients (9 male and 22 female) with relapsing remitting Multiple Sclerosis and a Kurtzke Expanded Disability Scale Score of 0–5.5 were recruited from four hospitals in Andalusia, Spain and included in the study. Magnetic resonance spectroscopy scans and neurological disability assessments were performed the same day. Results A statistically significant correlation was found (r = -0.38 p < 0.05) between disability (measured by Expanded Disability Scale Score) and N-Acetyl Aspartate (NAA/Cr ratio) levels in normal appearing white matter in these patients. No correlation was found between the NAA/Cr ratio and disability measured by any of the other disability assessment scales. Conclusions There is correlation between disability (measured by Expanded Disability Scale Score) and the NAA/Cr ratio in normal appearing white matter. The lack of correlation between the NAA/Cr ratio and the Multiple Sclerosis Functional Composite score indicates that the Multiple Sclerosis Functional Composite is not able to measure irreversible disability and would be more useful as a marker in stages where axonal damage is not a predominant factor. PMID:15191618

  19. Topics in Chemical Instrumentation. The Fourier Transform in Chemistry-NMR: Part 4. Two-Dimensional Methods.

    ERIC Educational Resources Information Center

    Williams, Kathryn R.; King, Roy W.

    1990-01-01

    Examined are some of the types of two-dimensional spectra. Their application to nuclear magnetic resonance for the elucidation of molecular structure is discussed. Included are J spectroscopy, H-H correlation spectroscopy, heteronuclear correlation spectroscopy, carbon-carbon correlation, nuclear Overhauser effect correlation, experimental…

  20. Correlation between near infrared spectroscopy and electrical techniques in measuring skin moisture content

    NASA Astrophysics Data System (ADS)

    Mohamad, M.; Sabbri, A. R. M.; Mat Jafri, M. Z.; Omar, A. F.

    2014-11-01

    Near infrared (NIR) spectroscopy technique serves as an important tool for the measurement of moisture content of skin owing to the advantages it has over the other techniques. The purpose of the study is to develop a correlation between NIR spectrometer with electrical conventional techniques for skin moisture measurement. A non-invasive measurement of moisture content of skin was performed on different part of human face and hand under control environment (temperature 21 ± 1 °C, relative humidity 45 ± 5 %). Ten healthy volunteers age between 21-25 (male and female) participated in this study. The moisture content of skin was measured using DermaLab® USB Moisture Module, Scalar Moisture Checker and NIR spectroscopy (NIRQuest). Higher correlation was observed between NIRQuest and Dermalab moisture probe with a coefficient of determination (R2) above 70 % for all the subjects. However, the value of R2 between NIRQuest and Moisture Checker was observed to be lower with the R2 values ranges from 51.6 to 94.4 %. The correlation of NIR spectroscopy technique successfully developed for measuring moisture content of the skin. The analysis of this correlation can help to establish novel instruments based on an optical system in clinical used especially in the dermatology field.

  1. Analytical Raman spectroscopic study for discriminant analysis of different animal-derived feedstuff: Understanding the high correlation between Raman spectroscopy and lipid characteristics.

    PubMed

    Gao, Fei; Xu, Lingzhi; Zhang, Yuejing; Yang, Zengling; Han, Lujia; Liu, Xian

    2018-02-01

    The objectives of the current study were to explore the correlation between Raman spectroscopy and lipid characteristics and to assess the potential of Raman spectroscopic methods for distinguishing the different sources of animal-originated feed based on lipid characteristics. A total of 105 lipid samples derived from five animal species have been analyzed by gas chromatography (GC) and FT-Raman spectroscopy. High correlations (r 2 >0.94) were found between the characteristic peak ratio of the Raman spectra (1654/1748 and 1654/1445) and the degree of unsaturation of the animal lipids. The results of FT-Raman data combined with chemometrics showed that the fishmeal, poultry, porcine and ruminant (bovine and ovine) MBMs could be well separated based on their lipid spectral characteristics. This study demonstrated that FT-Raman spectroscopy can mostly exhibit the lipid structure specificity of different species of animal-originated feed and can be used to discriminate different animal-originated feed samples. Copyright © 2017. Published by Elsevier Ltd.

  2. Pancreatic tissue assessment using fluorescence and reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Chandra, Malavika; Heidt, David; Simeone, Diane; McKenna, Barbara; Scheiman, James; Mycek, Mary-Ann

    2007-07-01

    The ability of multi-modal optical spectroscopy to detect signals from pancreatic tissue was demonstrated by studying human pancreatic cancer xenografts in mice and freshly excised human pancreatic tumor tissue. Measured optical spectra and fluorescence decays were correlated with tissue morphological and biochemical properties. The measured spectral features and decay times correlated well with expected pathological differences in normal, pancreatitis and adenocarcinoma tissue states. The observed differences between the fluorescence and reflectance properties of normal, pancreatitis and adenocarcinoma tissue indicate a possible application of multi-modal optical spectroscopy to differentiating between the three tissue classifications.

  3. Nanosecond X-ray Photon Correlation Spectroscopy on Magnetic Skyrmions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seaberg, M. H.; Holladay, B.; Lee, J. C. T.

    We report an X-ray photon correlation spectroscopy method that exploits the recent development of the two-pulse mode at the Linac Coherent Light Source. By using coherent resonant X-ray magnetic scattering, we studied spontaneous fluctuations on nanosecond timescales in thin films of multilayered Fe/Gd that exhibit ordered stripe and skyrmion lattice phases. The correlation time of the fluctuations was found to differ between the skyrmion phase and near the stripe-skyrmion boundary. As a result, this technique will enable a significant new area of research on the study of equilibrium fluctuations in condensed matter.

  4. Nanosecond X-ray Photon Correlation Spectroscopy on Magnetic Skyrmions

    DOE PAGES

    Seaberg, M. H.; Holladay, B.; Lee, J. C. T.; ...

    2017-08-09

    We report an X-ray photon correlation spectroscopy method that exploits the recent development of the two-pulse mode at the Linac Coherent Light Source. By using coherent resonant X-ray magnetic scattering, we studied spontaneous fluctuations on nanosecond timescales in thin films of multilayered Fe/Gd that exhibit ordered stripe and skyrmion lattice phases. The correlation time of the fluctuations was found to differ between the skyrmion phase and near the stripe-skyrmion boundary. As a result, this technique will enable a significant new area of research on the study of equilibrium fluctuations in condensed matter.

  5. Fluorescence lifetime correlation spectroscopy for precise concentration detection in vivo by background subtraction

    NASA Astrophysics Data System (ADS)

    Gärtner, Maria; Mütze, Jörg; Ohrt, Thomas; Schwille, Petra

    2009-07-01

    In vivo studies of single molecule dynamics by means of Fluorescence correlation spectroscopy can suffer from high background. Fluorescence lifetime correlation spectroscopy provides a tool to distinguish between signal and unwanted contributions via lifetime separation. By studying the motion of the RNA-induced silencing complex (RISC) within two compartments of a human cell, the nucleus and the cytoplasm, we observed clear differences in concentration as well as mobility of the protein complex between those two locations. Especially in the nucleus, where the fluorescence signal is very weak, a correction for background is crucial to provide reliable results of the particle number. Utilizing the fluorescent lifetime of the different contributions, we show that it is possible to distinguish between the fluorescent signal and the autofluorescent background in vivo in a single measurement.

  6. Correlation between the structure and the piezoelectric properties of lead-free (K,Na,Li)(Nb,Ta,Sb)O3 ceramics studied by XRD and Raman spectroscopy.

    PubMed

    Rubio-Marcos, Fernando; Marchet, Pascal; Romero, Juan José; Fernández, Jose F

    2011-09-01

    This article reviews on the use of Raman spectroscopy for the study of (K,Na,Li)(Nb,Ta,Sb)O(3) lead-free piezoceramics. Currently, this material appears to be one of the most interesting and promising alternatives to the well-known PZT piezoelectric materials. In this work, we prepare piezoceramics with different stoichiometries and study their structural, ferroelectric, and piezoelectric properties. By using both Raman spectroscopy and X-ray diffraction, we establish a direct correlation between the structure and the properties. The results demonstrate that the wavenumber of the A(1g) vibration is proportional to the tetragonality, the remnant polarization, and the piezoelectric coefficients of these materials. Thus, Raman spectroscopy appears as a very useful technique for a fast evaluation of the crystalline structure and the ferroelectric/ piezoelectric properties.

  7. Correlation spectrometer for filtering of (quasi) elastic neutron scattering with variable resolution

    NASA Astrophysics Data System (ADS)

    Magazù, Salvatore; Mezei, Ferenc; Migliardo, Federica

    2018-05-01

    In a variety of applications of inelastic neutron scattering spectroscopy the goal is to single out the elastic scattering contribution from the total scattered spectrum as a function of momentum transfer and sample environment parameters. The elastic part of the spectrum is defined in such a case by the energy resolution of the spectrometer. Variable elastic energy resolution offers a way to distinguish between elastic and quasi-elastic intensities. Correlation spectroscopy lends itself as an efficient, high intensity approach for accomplishing this both at continuous and pulsed neutron sources. On the one hand, in beam modulation methods the Liouville theorem coupling between intensity and resolution is relaxed and time-of-flight velocity analysis of the neutron velocity distribution can be performed with 50 % duty factor exposure for all available resolutions. On the other hand, the (quasi)elastic part of the spectrum generally contains the major part of the integrated intensity at a given detector, and thus correlation spectroscopy can be applied with most favorable signal to statistical noise ratio. The novel spectrometer CORELLI at SNS is an example for this type of application of the correlation technique at a pulsed source. On a continuous neutron source a statistical chopper can be used for quasi-random time dependent beam modulation and the total time-of-flight of the neutron from the statistical chopper to detection is determined by the analysis of the correlation between the temporal fluctuation of the neutron detection rate and the statistical chopper beam modulation pattern. The correlation analysis can either be used for the determination of the incoming neutron velocity or for the scattered neutron velocity, depending of the position of the statistical chopper along the neutron trajectory. These two options are considered together with an evaluation of spectrometer performance compared to conventional spectroscopy, in particular for variable resolution elastic neutron scattering (RENS) studies of relaxation processes and the evolution of mean square displacements. A particular focus of our analysis is the unique feature of correlation spectroscopy of delivering high and resolution independent beam intensity, thus the same statistical chopper scan contains both high intensity and high resolution information at the same time, and can be evaluated both ways. This flexibility for variable resolution data handling represents an additional asset for correlation spectroscopy in variable resolution work. Changing the beam width for the same statistical chopper allows us to additionally trade resolution for intensity in two different experimental runs, similarly for conventional single slit chopper spectroscopy. The combination of these two approaches is a capability of particular value in neutron spectroscopy studies requiring variable energy resolution, such as the systematic study of quasi-elastic scattering and mean square displacement. Furthermore the statistical chopper approach is particularly advantageous for studying samples with low scattering intensity in the presence of a high, sample independent background.

  8. Early Amyloidogenic Oligomerization Studied through Fluorescence Lifetime Correlation Spectroscopy

    PubMed Central

    Paredes, Jose M.; Casares, Salvador; Ruedas-Rama, Maria J.; Fernandez, Elena; Castello, Fabio; Varela, Lorena; Orte, Angel

    2012-01-01

    Amyloidogenic protein aggregation is a persistent biomedical problem. Despite active research in disease-related aggregation, the need for multidisciplinary approaches to the problem is evident. Recent advances in single-molecule fluorescence spectroscopy are valuable for examining heterogenic biomolecular systems. In this work, we have explored the initial stages of amyloidogenic aggregation by employing fluorescence lifetime correlation spectroscopy (FLCS), an advanced modification of conventional fluorescence correlation spectroscopy (FCS) that utilizes time-resolved information. FLCS provides size distributions and kinetics for the oligomer growth of the SH3 domain of α-spectrin, whose N47A mutant forms amyloid fibrils at pH 3.2 and 37 °C in the presence of salt. The combination of FCS with additional fluorescence lifetime information provides an exciting approach to focus on the initial aggregation stages, allowing a better understanding of the fibrillization process, by providing multidimensional information, valuable in combination with other conventional methodologies. PMID:22949804

  9. Analysis of Chuanxiong Rhizoma and its active components by Fourier transform infrared spectroscopy combined with two-dimensional correlation infrared spectroscopy.

    PubMed

    Guo, Yizhen; Lv, Beiran; Wang, Jingjuan; Liu, Yang; Sun, Suqin; Xiao, Yao; Lu, Lina; Xiang, Li; Yang, Yanfang; Qu, Lei; Meng, Qinghong

    2016-01-15

    As complicated mixture systems, active components of Chuanxiong Rhizoma are very difficult to identify and discriminate. In this paper, the macroscopic IR fingerprint method including Fourier transform infrared spectroscopy (FT-IR), the second derivative infrared spectroscopy (SD-IR) and two-dimensional correlation infrared spectroscopy (2DCOS-IR), was applied to study and identify Chuanxiong raw materials and its different segmented production of HPD-100 macroporous resin. Chuanxiong Rhizoma is rich in sucrose. In the FT-IR spectra, water eluate is more similar to sucrose than the powder and the decoction. Their second derivative spectra amplified the differences and revealed the potentially characteristic IR absorption bands and combined with the correlation coefficient, concluding that 50% ethanol eluate had more ligustilide than other eluates. Finally, it can be found from 2DCOS-IR spectra that proteins were extracted by ethanol from Chuanxiong decoction by HPD-100 macroporous resin. It was demonstrated that the above three-step infrared spectroscopy could be applicable for quick, non-destructive and effective analysis and identification of very complicated and similar mixture systems of traditional Chinese medicines. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Frontiers of two-dimensional correlation spectroscopy. Part 2. Perturbation methods, fields of applications, and types of analytical probes

    NASA Astrophysics Data System (ADS)

    Noda, Isao

    2014-07-01

    Noteworthy experimental practices, which are advancing forward the frontiers of the field of two-dimensional (2D) correlation spectroscopy, are reviewed with the focus on various perturbation methods currently practiced to induce spectral changes, pertinent examples of applications in various fields, and types of analytical probes employed. Types of perturbation methods found in the published literature are very diverse, encompassing both dynamic and static effects. Although a sizable portion of publications report the use of dynamic perturbatuions, much greater number of studies employ static effect, especially that of temperature. Fields of applications covered by the literature are also very broad, ranging from fundamental research to practical applications in a number of physical, chemical and biological systems, such as synthetic polymers, composites and biomolecules. Aside from IR spectroscopy, which is the most commonly used tool, many other analytical probes are used in 2D correlation analysis. The ever expanding trend in depth, breadth and versatility of 2D correlation spectroscopy techniques and their broad applications all point to the robust and healthy state of the field.

  11. Photo-stability study of a solution-processed small molecule solar cell system: correlation between molecular conformation and degradation

    PubMed Central

    Newman, Michael J.; Speller, Emily M.; Barbé, Jérémy; Luke, Joel; Li, Meng; Li, Zhe; Wang, Zhao-Kui; Jain, Sagar M.; Kim, Ji-Seon; Lee, Harrison Ka Hin; Tsoi, Wing Chung

    2018-01-01

    Abstract Solution-processed organic small molecule solar cells (SMSCs) have achieved efficiency over 11%. However, very few studies have focused on their stability under illumination and the origin of the degradation during the so-called burn-in period. Here, we studied the burn-in period of a solution-processed SMSC using benzodithiophene terthiophene rhodamine:[6,6]-phenyl C71 butyric acid methyl ester (BTR:PC71BM) with increasing solvent vapour annealing time applied to the active layer, controlling the crystallisation of the BTR phase. We find that the burn-in behaviour is strongly correlated to the crystallinity of BTR. To look at the possible degradation mechanisms, we studied the fresh and photo-aged blend films with grazing incidence X-ray diffraction, UV–vis absorbance, Raman spectroscopy and photoluminescence (PL) spectroscopy. Although the crystallinity of BTR affects the performance drop during the burn-in period, the degradation is found not to originate from the crystallinity changes of the BTR phase, but correlates with changes in molecular conformation – rotation of the thiophene side chains, as resolved by Raman spectroscopy which could be correlated to slight photobleaching and changes in PL spectra. PMID:29511397

  12. Photo-stability study of a solution-processed small molecule solar cell system: correlation between molecular conformation and degradation.

    PubMed

    Newman, Michael J; Speller, Emily M; Barbé, Jérémy; Luke, Joel; Li, Meng; Li, Zhe; Wang, Zhao-Kui; Jain, Sagar M; Kim, Ji-Seon; Lee, Harrison Ka Hin; Tsoi, Wing Chung

    2018-01-01

    Solution-processed organic small molecule solar cells (SMSCs) have achieved efficiency over 11%. However, very few studies have focused on their stability under illumination and the origin of the degradation during the so-called burn-in period. Here, we studied the burn-in period of a solution-processed SMSC using benzodithiophene terthiophene rhodamine:[6,6]-phenyl C 71 butyric acid methyl ester (BTR:PC 71 BM) with increasing solvent vapour annealing time applied to the active layer, controlling the crystallisation of the BTR phase. We find that the burn-in behaviour is strongly correlated to the crystallinity of BTR. To look at the possible degradation mechanisms, we studied the fresh and photo-aged blend films with grazing incidence X-ray diffraction, UV-vis absorbance, Raman spectroscopy and photoluminescence (PL) spectroscopy. Although the crystallinity of BTR affects the performance drop during the burn-in period, the degradation is found not to originate from the crystallinity changes of the BTR phase, but correlates with changes in molecular conformation - rotation of the thiophene side chains, as resolved by Raman spectroscopy which could be correlated to slight photobleaching and changes in PL spectra.

  13. Direct Quantification of Solute Diffusivity in Agarose and Articular Cartilage Using Correlation Spectroscopy.

    PubMed

    Shoga, Janty S; Graham, Brian T; Wang, Liyun; Price, Christopher

    2017-10-01

    Articular cartilage is an avascular tissue; diffusive transport is critical for its homeostasis. While numerous techniques have been used to quantify diffusivity within porous, hydrated tissues and tissue engineered constructs, these techniques have suffered from issues regarding invasiveness and spatial resolution. In the present study, we implemented and compared two separate correlation spectroscopy techniques, fluorescence correlation spectroscopy (FCS) and raster image correlation spectroscopy (RICS), for the direct, and minimally-invasive quantification of fluorescent solute diffusion in agarose and articular cartilage. Specifically, we quantified the diffusional properties of fluorescein and Alexa Fluor 488-conjugated dextrans (3k and 10k) in aqueous solutions, agarose gels of varying concentration (i.e. 1, 3, 5%), and in different zones of juvenile bovine articular cartilage explants (i.e. superficial, middle, and deep). In agarose, properties of solute diffusion obtained via FCS and RICS were inversely related to molecule size, gel concentration, and applied strain. In cartilage, the diffusional properties of solutes were similarly dependent upon solute size, cartilage zone, and compressive strain; findings that agree with work utilizing other quantification techniques. In conclusion, this study established the utility of FCS and RICS as simple and minimally invasive techniques for quantifying microscale solute diffusivity within agarose constructs and articular cartilage explants.

  14. Two-dimensional correlation spectroscopy — Biannual survey 2007-2009

    NASA Astrophysics Data System (ADS)

    Noda, Isao

    2010-06-01

    The publication activities in the field of 2D correlation spectroscopy are surveyed with the emphasis on papers published during the last two years. Pertinent review articles and conference proceedings are discussed first, followed by the examination of noteworthy developments in the theory and applications of 2D correlation spectroscopy. Specific topics of interest include Pareto scaling, analysis of randomly sampled spectra, 2D analysis of data obtained under multiple perturbations, evolution of 2D spectra along additional variables, comparison and quantitative analysis of multiple 2D spectra, orthogonal sample design to eliminate interfering cross peaks, quadrature orthogonal signal correction and other data transformation techniques, data pretreatment methods, moving window analysis, extension of kernel and global phase angle analysis, covariance and correlation coefficient mapping, variant forms of sample-sample correlation, and different display methods. Various static and dynamic perturbation methods used in 2D correlation spectroscopy, e.g., temperature, composition, chemical reactions, H/D exchange, physical phenomena like sorption, diffusion and phase transitions, optical and biological processes, are reviewed. Analytical probes used in 2D correlation spectroscopy include IR, Raman, NIR, NMR, X-ray, mass spectrometry, chromatography, and others. Application areas of 2D correlation spectroscopy are diverse, encompassing synthetic and natural polymers, liquid crystals, proteins and peptides, biomaterials, pharmaceuticals, food and agricultural products, solutions, colloids, surfaces, and the like.

  15. Intracellular applications of fluorescence correlation spectroscopy: prospects for neuroscience.

    PubMed

    Kim, Sally A; Schwille, Petra

    2003-10-01

    Based on time-averaging fluctuation analysis of small fluorescent molecular ensembles in equilibrium, fluorescence correlation spectroscopy has recently been applied to investigate processes in the intracellular milieu. The exquisite sensitivity of fluorescence correlation spectroscopy provides access to a multitude of measurement parameters (rates of diffusion, local concentration, states of aggregation and molecular interactions) in real time with fast temporal and high spatial resolution. The introduction of dual-color cross-correlation, imaging, two-photon excitation, and coincidence analysis coupled with fluorescence correlation spectroscopy has expanded the utility of the technique to encompass a wide range of promising applications in living cells that may provide unprecedented insight into understanding the molecular mechanisms of intracellular neurobiological processes.

  16. Optical Spectroscopy and Imaging of Correlated Spin Orbit Phases

    DTIC Science & Technology

    2016-06-14

    Unlimited UU UU UU UU 14-06-2016 15-Mar-2013 14-Mar-2016 Final Report: Optical Spectroscopy and Imaging of Correlated Spin-Orbit Phases The views...Box 12211 Research Triangle Park, NC 27709-2211 Ultrafast optical spectroscopy , nonlinear optical spectroscopy , iridates, cuprates REPORT...California Blvd. Pasadena, CA 91125 -0001 ABSTRACT Number of Papers published in peer-reviewed journals: Final Report: Optical Spectroscopy and

  17. Super-resolved FT-IR spectroscopy: Strategies, challenges, and opportunities for membrane biophysics.

    PubMed

    Li, Jessica J; Yip, Christopher M

    2013-10-01

    Direct correlation of molecular conformation with local structure is critical to studies of protein- and peptide-membrane interactions, particularly in the context of membrane-facilitated aggregation, and disruption or disordering. Infrared spectroscopy has long been a mainstay for determining molecular conformation, following folding dynamics, and characterizing reactions. While tremendous advances have been made in improving the spectral and temporal resolution of infrared spectroscopy, it has only been with the introduction of scanned-probe techniques that exploit the raster-scanning tip as either a source, scattering tool, or measurement probe that researchers have been able to obtain sub-diffraction limit IR spectra. This review will examine the history of correlated scanned-probe IR spectroscopies, from their inception to their use in studies of molecular aggregates, membrane domains, and cellular structures. The challenges and opportunities that these platforms present for examining dynamic phenomena will be discussed. This article is part of a Special Issue entitled: FTIR in membrane proteins and peptide studies. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Recent advancement in the field of two-dimensional correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Noda, Isao

    2008-07-01

    The recent advancement in the field of 2D correlation spectroscopy is reviewed with the emphasis on a number of papers published during the last two years. Topics covered by this comprehensive review include books, review articles, and noteworthy developments in the theory and applications of 2D correlation spectroscopy. New 2D correlation techniques are discussed, such as kernel analysis and augmented 2D correlation, model-based correlation, moving window analysis, global phase angle, covariance and correlation coefficient mapping, sample-sample correlation, hybrid and hetero correlation, pretreatment and transformation of data, and 2D correlation combined with other chemometrics techniques. Perturbation methods of both static (e.g., temperature, composition, pressure and stress, spatial distribution and orientation) and dynamic types (e.g., rheo-optical and acoustic, chemical reactions and kinetics, H/D exchange, sorption and diffusion) currently in use are examined. Analytical techniques most commonly employed in 2D correlation spectroscopy are IR, Raman, and NIR, but the growing use of other probes is also noted, including fluorescence, emission, Raman optical activity and vibrational circular dichroism, X-ray absorption and scattering, NMR, mass spectrometry, and even chromatography. The field of applications for 2D correlation spectroscopy is very diverse, encompassing synthetic polymers, liquid crystals, Langmuir-Blodgett films, proteins and peptides, natural polymers and biomaterials, pharmaceuticals, food and agricultural products, water, solutions, inorganic, organic, hybrid or composite materials, and many more.

  19. The contribution of Raman spectroscopy to the analytical quality control of cytotoxic drugs in a hospital environment: eliminating the exposure risks for staff members and their work environment.

    PubMed

    Bourget, Philippe; Amin, Alexandre; Vidal, Fabrice; Merlette, Christophe; Troude, Pénélope; Baillet-Guffroy, Arlette

    2014-08-15

    The purpose of the study was to perform a comparative analysis of the technical performance, respective costs and environmental effect of two invasive analytical methods (HPLC and UV/visible-FTIR) as compared to a new non-invasive analytical technique (Raman spectroscopy). Three pharmacotherapeutic models were used to compare the analytical performances of the three analytical techniques. Statistical inter-method correlation analysis was performed using non-parametric correlation rank tests. The study's economic component combined calculations relative to the depreciation of the equipment and the estimated cost of an AQC unit of work. In any case, analytical validation parameters of the three techniques were satisfactory, and strong correlations between the two spectroscopic techniques vs. HPLC were found. In addition, Raman spectroscopy was found to be superior as compared to the other techniques for numerous key criteria including a complete safety for operators and their occupational environment, a non-invasive procedure, no need for consumables, and a low operating cost. Finally, Raman spectroscopy appears superior for technical, economic and environmental objectives, as compared with the other invasive analytical methods. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Shelf life study of egg albumin in pasteurized and non-pasteurized eggs using visible-near infrared spectroscopy

    USDA-ARS?s Scientific Manuscript database

    A twelve week shelf life study was conducted on the egg albumen from both pasteurized and non-pasteurized shell eggs using visible-near infrared spectroscopy. The goal of the study was to correlate the chemical changes detected in the spectra to the measurement of Haugh units (measure of interior eg...

  1. Thermal perturbation correlation of calcium binding Human centrin 3 and its structural changes

    NASA Astrophysics Data System (ADS)

    Pastrana-Rios, Belinda

    2014-07-01

    Perturbation-correlation moving-window two-dimensional (PCMW2D) correlation spectroscopy was applied for the determination of the individual transition temperatures of different vibrational modes located within structural components of a calcium binding protein known as Human centrin 3. This crucial information served to understand the contribution individual calcium binding sites made towards the stability of the EF-hand and therefore the protein without the use of probes. We are convinced that the general application of PCMW2D correlation spectroscopy can be applied to the study of proteins in general to ascertain the differences in the stability of structural motifs within proteins and its relationship to the actual transition temperature of unfolding.

  2. Relaxation processes in disaccharide sugar glasses

    NASA Astrophysics Data System (ADS)

    Hwang, Yoon-Hwae; Kwon, Hyun-Joung; Seo, Jeong-Ah; Shin, Dong-Myeong; Ha, Ji-Hye; Kim, Hyung-Kook

    2013-02-01

    We represented relaxation processes of disaccharide sugars (anhydrous trehalose and maltose) in supercooled and glassy states by using several spectroscopy techniques which include a broadband dielectric loss spectroscopy, photon correlation spectroscopy and X-ray diffraction (Retvield analysis) methods which are powerful tools to measure the dynamics in glass forming materials. In a dielectric loss spectroscopy study, we found that anhydrous trehalose and maltose glasses have an extra relaxation process besides α-, JG β- and γ-relaxations which could be related to a unique property of glycoside bond in disaccharides. In photon correlation spectroscopy study, we found an interesting compressed exponential relaxation at temperatures above 140°C. The q-1 dependence of its relaxation time corresponds to an ultraslow ballistic motion due to the local structure rearrangements. In the same temperature range, we found the glycosidic bond structure changes in trehalose molecule from the Raman and the Retvield X-ray diffraction measurements indicating that the observed compressed exponential relaxation in supercooled liquid trehalose could be resulted in the glycosidic bond structure change. Therefore, the overall results from this study might support the fact that the superior bioprotection ability of disaccharide sugar glasses might originate from this unique relaxation process of glycosidic bond.

  3. Polarization and amplitude probes in Hanle effect EIT noise spectroscopy of a buffer gas cell

    NASA Astrophysics Data System (ADS)

    O'Leary, Shannon; Zheng, Aojie; Crescimanno, Michael

    2015-05-01

    Noise correlation spectroscopy on systems manifesting Electromagnetically Induced Transparency (EIT) holds promise as a simple, robust method for performing high-resolution spectroscopy used in applications such as EIT-based atomic magnetometry and clocks. While this noise conversion can diminish the precision of EIT applications, noise correlation techniques transform the noise into a useful spectroscopic tool that can improve the application's precision. We study intensity noise, originating from the large phase noise of a semiconductor diode laser's light, in Rb vapor EIT in the Hanle configuration. We report here on our recent experimental work on and complementary theoretical modeling of the effects of light polarization preparation and post-selection on the correlation spectrum and on the independent noise channel traces. We also explain methodology and recent results for delineating the effects of residual laser amplitude fluctuations on the correlation noise resonance as compared to other contributing processes. Understanding these subtleties are essential for optimizing EIT-noise applications.

  4. HR-MAS MR Spectroscopy of Breast Cancer Tissue Obtained with Core Needle Biopsy: Correlation with Prognostic Factors

    PubMed Central

    Choi, Ji Soo; Baek, Hyeon-Man; Kim, Suhkmann; Kim, Min Jung; Youk, Ji Hyun; Moon, Hee Jung; Kim, Eun-Kyung; Han, Kyung Hwa; Kim, Dong-hyun; Kim, Seung Il; Koo, Ja Seung

    2012-01-01

    The purpose of this study was to examine the correlation between high-resolution magic angle spinning (HR-MAS) magnetic resonance (MR) spectroscopy using core needle biopsy (CNB) specimens and histologic prognostic factors currently used in breast cancer patients. After institutional review board approval and informed consent were obtained for this study, CNB specimens were collected from 36 malignant lesions in 34 patients. Concentrations and metabolic ratios of various choline metabolites were estimated by HR-MAS MR spectroscopy using CNB specimens. HR-MAS spectroscopic values were compared according to histopathologic variables [tumor size, lymph node metastasis, histologic grade, status of estrogens receptor (ER), progesterone receptor (PR), HER2 (a receptor for human epidermal growth factor), and Ki-67, and triple negativity]. Multivariate analysis was performed with Orthogonal Projections to Latent Structure-Discriminant Analysis (OPLS-DA). HR-MAS MR spectroscopy quantified and discriminated choline metabolites in all CNB specimens of the 36 breast cancers. Several metabolite markers [free choline (Cho), phosphocholine (PC), creatine (Cr), taurine, myo-inositol, scyllo-inositol, total choline (tCho), glycine, Cho/Cr, tCho/Cr, PC/Cr] on HR-MAS MR spectroscopy were found to correlate with histologic prognostic factors [ER, PR, HER2, histologic grade, triple negativity, Ki-67, poor prognosis]. OPLS-DA multivariate models were generally able to discriminate the status of histologic prognostic factors (ER, PR, HER2, Ki-67) and prognosis groups. Our study suggests that HR-MAS MR spectroscopy using CNB specimens can predict tumor aggressiveness prior to surgery in breast cancer patients. In addition, it may be helpful in the detection of reliable markers for breast cancer characterization. PMID:23272149

  5. Extended x-ray absorption fine structure spectroscopy and x-ray absorption near edge spectroscopy study of aliovalent doped ceria to correlate local structural changes with oxygen vacancies clustering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirbhate, S. C.; Acharya, S. A., E-mail: saha275@yahoo.com; Yadav, A. K.

    2016-04-04

    This study provides atomic scale insight to understand the role of aliovalent dopants on oxygen vacancies clustering and dissociation mechanism in ceria system in order to enhance the performance of oxy-ion conductor. Dopants induced microscale changes in ceria are probed by extended X-ray absorption fine structure spectroscopy, X-ray absorption near edge spectra, and Raman spectroscopy. The results are explored to establish a correlation between atomic level structural changes (coordination number, interatomic spacing) → formation of dimer and trimer type cation-oxygen vacancies defect complex (intrinsic and extrinsic) → dissociation of oxygen vacancies from defect cluster → ionic conductivity temperature. It ismore » a strategic approach to understand key physics of ionic conductivity mechanism in order to reduce operating temperature of electrolytes for intermediate temperature (300–450 °C) electrochemical devices for the first time.« less

  6. A scalable correlator for multichannel diffuse correlation spectroscopy.

    PubMed

    Stapels, Christopher J; Kolodziejski, Noah J; McAdams, Daniel; Podolsky, Matthew J; Fernandez, Daniel E; Farkas, Dana; Christian, James F

    2016-02-01

    Diffuse correlation spectroscopy (DCS) is a technique which enables powerful and robust non-invasive optical studies of tissue micro-circulation and vascular blood flow. The technique amounts to autocorrelation analysis of coherent photons after their migration through moving scatterers and subsequent collection by single-mode optical fibers. A primary cost driver of DCS instruments are the commercial hardware-based correlators, limiting the proliferation of multi-channel instruments for validation of perfusion analysis as a clinical diagnostic metric. We present the development of a low-cost scalable correlator enabled by microchip-based time-tagging, and a software-based multi-tau data analysis method. We will discuss the capabilities of the instrument as well as the implementation and validation of 2- and 8-channel systems built for live animal and pre-clinical settings.

  7. In vivo flow speed measurement of capillaries by photoacoustic correlation spectroscopy.

    PubMed

    Chen, Sung-Liang; Xie, Zhixing; Carson, Paul L; Wang, Xueding; Guo, L Jay

    2011-10-15

    We recently proposed photoacoustic correlation spectroscopy (PACS) and demonstrated a proof-of-concept experiment. Here we use the technique for in vivo flow speed measurement in capillaries in a chick embryo model. The photoacoustic microscopy system is used to render high spatial resolution and high sensitivity, enabling sufficient signals from single red blood cells. The probe beam size is calibrated by a blood-mimicking phantom. The results indicate the feasibility of using PACS to study flow speeds in capillaries.

  8. Two-Photon Fluorescence Correlation Spectroscopy

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A.; Fischer, David G.

    2002-01-01

    We will describe a two-photon microscope currently under development at the NASA Glenn Research Center. It is composed of a Coherent Mira 900 tunable, pulsed Titanium:Sapphire laser system, an Olympus Fluoview 300 confocal scanning head, and a Leica DM IRE inverted microscope. It will be used in conjunction with a technique known as fluorescence correlation spectroscopy (FCS) to study intracellular protein dynamics. We will briefly explain the advantages of the two-photon system over a conventional confocal microscope, and provide some preliminary experimental results.

  9. Intracellular dynamics and fate of polystyrene nanoparticles in A549 Lung epithelial cells monitored by image (cross-) correlation spectroscopy and single particle tracking.

    PubMed

    Deville, Sarah; Penjweini, Rozhin; Smisdom, Nick; Notelaers, Kristof; Nelissen, Inge; Hooyberghs, Jef; Ameloot, Marcel

    2015-10-01

    Novel insights in nanoparticle (NP) uptake routes of cells, their intracellular trafficking and subcellular targeting can be obtained through the investigation of their temporal and spatial behavior. In this work, we present the application of image (cross-) correlation spectroscopy (IC(C)S) and single particle tracking (SPT) to monitor the intracellular dynamics of polystyrene (PS) NPs in the human lung carcinoma A549 cell line. The ensemble kinetic behavior of NPs inside the cell was characterized by temporal and spatiotemporal image correlation spectroscopy (TICS and STICS). Moreover, a more direct interpretation of the diffusion and flow detected in the NP motion was obtained by SPT by monitoring individual NPs. Both techniques demonstrate that the PS NP transport in A549 cells is mainly dependent on microtubule-assisted transport. By applying spatiotemporal image cross-correlation spectroscopy (STICCS), the correlated motions of NPs with the early endosomes, late endosomes and lysosomes are identified. PS NPs were equally distributed among the endolysosomal compartment during the time interval of the experiments. The cotransport of the NPs with the lysosomes is significantly larger compared to the other cell organelles. In the present study we show that the complementarity of ICS-based techniques and SPT enables a consistent elaborate model of the complex behavior of NPs inside biological systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Photon statistics and speckle visibility spectroscopy with partially coherent X-rays.

    PubMed

    Li, Luxi; Kwaśniewski, Paweł; Orsi, Davide; Wiegart, Lutz; Cristofolini, Luigi; Caronna, Chiara; Fluerasu, Andrei

    2014-11-01

    A new approach is proposed for measuring structural dynamics in materials from multi-speckle scattering patterns obtained with partially coherent X-rays. Coherent X-ray scattering is already widely used at high-brightness synchrotron lightsources to measure dynamics using X-ray photon correlation spectroscopy, but in many situations this experimental approach based on recording long series of images (i.e. movies) is either not adequate or not practical. Following the development of visible-light speckle visibility spectroscopy, the dynamic information is obtained instead by analyzing the photon statistics and calculating the speckle contrast in single scattering patterns. This quantity, also referred to as the speckle visibility, is determined by the properties of the partially coherent beam and other experimental parameters, as well as the internal motions in the sample (dynamics). As a case study, Brownian dynamics in a low-density colloidal suspension is measured and an excellent agreement is found between correlation functions measured by X-ray photon correlation spectroscopy and the decay in speckle visibility with integration time obtained from the analysis presented here.

  11. Environmentally Controlled Infrared Spectroscopy System for Fundamental Studies of Polymer Electrolyte Membranes

    DTIC Science & Technology

    2015-10-15

    to state-of- hydration . Polarization modulated infrared reflection- absorption spectroscopy experiments are enabled by the use of a spin-coater to coat...NAME(S) AND ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 SPEEK, Nafion, Ionomers, state-of- hydration ...enabled correlation of the exchange site structure to state-of- hydration . Polarization modulated infrared reflection-absorption spectroscopy experiments

  12. Spatiotemporal image correlation spectroscopy (STICS) theory, verification, and application to protein velocity mapping in living CHO cells.

    PubMed

    Hebert, Benedict; Costantino, Santiago; Wiseman, Paul W

    2005-05-01

    We introduce a new extension of image correlation spectroscopy (ICS) and image cross-correlation spectroscopy (ICCS) that relies on complete analysis of both the temporal and spatial correlation lags for intensity fluctuations from a laser-scanning microscopy image series. This new approach allows measurement of both diffusion coefficients and velocity vectors (magnitude and direction) for fluorescently labeled membrane proteins in living cells through monitoring of the time evolution of the full space-time correlation function. By using filtering in Fourier space to remove frequencies associated with immobile components, we are able to measure the protein transport even in the presence of a large fraction (>90%) of immobile species. We present the background theory, computer simulations, and analysis of measurements on fluorescent microspheres to demonstrate proof of principle, capabilities, and limitations of the method. We demonstrate mapping of flow vectors for mixed samples containing fluorescent microspheres with different emission wavelengths using space time image cross-correlation. We also present results from two-photon laser-scanning microscopy studies of alpha-actinin/enhanced green fluorescent protein fusion constructs at the basal membrane of living CHO cells. Using space-time image correlation spectroscopy (STICS), we are able to measure protein fluxes with magnitudes of mum/min from retracting lamellar regions and protrusions for adherent cells. We also demonstrate the measurement of correlated directed flows (magnitudes of mum/min) and diffusion of interacting alpha5 integrin/enhanced cyan fluorescent protein and alpha-actinin/enhanced yellow fluorescent protein within living CHO cells. The STICS method permits us to generate complete transport maps of proteins within subregions of the basal membrane even if the protein concentration is too high to perform single particle tracking measurements.

  13. Discrimination of different genuine Danshen and their extracts by Fourier transform infrared spectroscopy combined with two-dimensional correlation infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Xin-hu; Xu, Chang-hua; Sun, Su-qin; Huang, Jian; Zhang, Ke; Li, Guo-yu; Zhu, Yun; Zhou, Qun; Zhang, Zhi-cheng; Wang, Jin-hui

    2012-11-01

    In this study, six varieties of Danshen from different populations and genuine ("Daodi" in Chinese transliteration) regions were discriminated and identified by a three-step infrared spectroscopy method (Fourier transform-infrared spectroscopy (FT-IR) coupled with second derivative infrared spectroscopy (SD-IR) and two dimensional correlation infrared spectroscopy (2D-IR)). Though only small differences were found among the FT-IR spectra of the six Danshen samples, the positions and intensities of peaks at 3393, 3371, 1613, 1050, and 1036 cm-1 could be considered as the key factors to discriminate them. More significant differences were exhibited in their SD-IR, particularly for the peaks around 1080, 1144, 695, 665, 800, 1610, 1510, 1450, 1117 and 1077 cm-1. The visual 2D-IR spectra provided dynamic chemical structure information of the six Danshen samples with presenting different particular auto-peak clusters, respectively. Moreover, the contents of salvianolic acid B in all samples were measured quantitatively by a validated ultra performance liquid chromatography (UPLC), which was consistent with the FT-IR findings. This study provides a promising method for characteristics and quality control of the complicated and extremely similar herbal medicine like Danshen, which is more cost effective and time saving.

  14. Fluorescence correlation spectroscopy: novel variations of an established technique.

    PubMed

    Haustein, Elke; Schwille, Petra

    2007-01-01

    Fluorescence correlation spectroscopy (FCS) is one of the major biophysical techniques used for unraveling molecular interactions in vitro and in vivo. It allows minimally invasive study of dynamic processes in biological specimens with extremely high temporal and spatial resolution. By recording and correlating the fluorescence fluctuations of single labeled molecules through the exciting laser beam, FCS gives information on molecular mobility and photophysical and photochemical reactions. By using dual-color fluorescence cross-correlation, highly specific binding studies can be performed. These have been extended to four reaction partners accessible by multicolor applications. Alternative detection schemes shift accessible time frames to slower processes (e.g., scanning FCS) or higher concentrations (e.g., TIR-FCS). Despite its long tradition, FCS is by no means dated. Rather, it has proven to be a highly versatile technique that can easily be adapted to solve specific biological questions, and it continues to find exciting applications in biology and medicine.

  15. New sesquiterpenes from Euonymus europaeus (Celastraceae).

    PubMed

    Descoins, Charles; Bazzocchi, Isabel López; Ravelo, Angel Gutiérrez

    2002-02-01

    A new sesquiterpene evoninate alkaloid (1), and two sesquiterpenes (2, 3) with a dihydro-beta-agarofuran skeleton, along with three known sesquiterpenes (4-6), were isolated from the seeds of Euonymus europaeus. Their structures were elucidated by high resolution mass analysis, and one- and two-dimensional (1D and 2D) NMR spectroscopy, including homonuclear and heteronuclear correlation [correlation spectroscopy (COSY), rotating frame Overhauser enhancement spectroscopy (ROESY), heteronuclear single quantum coherence (HSQC), and heteronuclear multiple bond correlation (HMBC)] experiments.

  16. Thermally induced conformational changes in polyethylene studied by two-dimensional near-infrared infrared hetero-spectral correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Watanabe, Shin; Noda, Isao; Ozaki, Yukihiro

    2008-07-01

    The amount of nonplanar gauche bonds was monitored as a function of increasing temperature in three different polyethylene (PE) samples by means of mid-infrared (MIR) and near-infrared (NIR) spectroscopy. The hetero-spectral two-dimensional (2D) correlation analysis was carried out between the NIR spectral region of 4365-4235 cm -1 and the well-established MIR spectral region of 1375-1265 cm -1, where bands due to nonplanar conformer are detected. This approach allowed us to identify the NIR band at 4265 cm -1, which behaves in a way similar to MIR bands originating from conformational-defect sequences. By combining the result of our current study and that of our previous report obtained on different types of PE, it is suggested that the NIR band originates from conformational-defect sequences in PE. This finding opens up a unique and useful way to study the state of conformational disorder in PE crystal by NIR spectroscopy, monitoring the intensity of the NIR band at 4265 cm -1. The use of NIR spectroscopy allows researchers to directly probe the degree in the formation of conformational-defect sequences in thick, real-world PE samples that cannot be studied by conventional MIR spectroscopy. The 2D correlation spectroscopy analysis among the MIR CH 2 wagging conformational-defect-mode bands on linear low-density PE (LLDPE) and low-density PE (LDPE) revealed the formation of nonplanar conformer represented by the band at 1368 cm -1 proceeds prior to those by other band at 1308 cm -1. This result agrees well with our previous finding on high-density PE (HDPE). We therefore propose with strong confidence that the bands at 1368 and 1308 cm -1 arise from different conformational-defect sequences, even though both of the bands have been proposed to arise from the same conformer of gtg' ( kink) + gtg sequence.

  17. A 32-channel photon counting module with embedded auto/cross-correlators for real-time parallel fluorescence correlation spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gong, S.; Labanca, I.; Rech, I.

    2014-10-15

    Fluorescence correlation spectroscopy (FCS) is a well-established technique to study binding interactions or the diffusion of fluorescently labeled biomolecules in vitro and in vivo. Fast FCS experiments require parallel data acquisition and analysis which can be achieved by exploiting a multi-channel Single Photon Avalanche Diode (SPAD) array and a corresponding multi-input correlator. This paper reports a 32-channel FPGA based correlator able to perform 32 auto/cross-correlations simultaneously over a lag-time ranging from 10 ns up to 150 ms. The correlator is included in a 32 × 1 SPAD array module, providing a compact and flexible instrument for high throughput FCS experiments.more » However, some inherent features of SPAD arrays, namely afterpulsing and optical crosstalk effects, may introduce distortions in the measurement of auto- and cross-correlation functions. We investigated these limitations to assess their impact on the module and evaluate possible workarounds.« less

  18. Frontiers of Two-Dimensional Correlation Spectroscopy. Part 1. New concepts and noteworthy developments

    NASA Astrophysics Data System (ADS)

    Noda, Isao

    2014-07-01

    A comprehensive survey review of new and noteworthy developments, which are advancing forward the frontiers in the field of 2D correlation spectroscopy during the last four years, is compiled. This review covers books, proceedings, and review articles published on 2D correlation spectroscopy, a number of significant conceptual developments in the field, data pretreatment methods and other pertinent topics, as well as patent and publication trends and citation activities. Developments discussed include projection 2D correlation analysis, concatenated 2D correlation, and correlation under multiple perturbation effects, as well as orthogonal sample design, predicting 2D correlation spectra, manipulating and comparing 2D spectra, correlation strategy based on segmented data blocks, such as moving-window analysis, features like determination of sequential order and enhanced spectral resolution, statistical 2D spectroscopy using covariance and other statistical metrics, hetero-correlation analysis, and sample-sample correlation technique. Data pretreatment operations prior to 2D correlation analysis are discussed, including the correction for physical effects, background and baseline subtraction, selection of reference spectrum, normalization and scaling of data, derivatives spectra and deconvolution technique, and smoothing and noise reduction. Other pertinent topics include chemometrics and statistical considerations, peak position shift phenomena, variable sampling increments, computation and software, display schemes, such as color coded format, slice and power spectra, tabulation, and other schemes.

  19. Pushing x-ray photon correlation spectroscopy beyond the continuous frame rate limit

    DOE PAGES

    Dufresne, Eric M.; Narayanan, Suresh; Sandy, Alec R.; ...

    2016-01-06

    We demonstrate delayed-frame X-ray Photon Correlation Spectroscopy with 120 microsecond time resolution, limited only by sample scattering rates, with a prototype Pixel-array detector capable of taking two image frames separated by 153 ns or less. Although the overall frame rate is currently limited to about 4 frame pairs per second, we easily measured millisecond correlation functions. In conclusion, this technology, coupled to the use of brighter synchrotrons such as Petra III or the NSLS-II should enable X-ray Photon Correlation Spectroscopy on microsecond time scales on a wider variety of materials.

  20. Progressive structural changes of Avicel, bleached softwood, and bacterial cellulose during enzymatic hydrolysis

    PubMed Central

    Kafle, Kabindra; Shin, Heenae; Lee, Christopher M.; Park, Sunkyu; Kim, Seong H.

    2015-01-01

    A comprehensive picture of structural changes of cellulosic biomass during enzymatic hydrolysis is essential for a better understanding of enzymatic actions and development of more efficient enzymes. In this study, a suite of analytical techniques including sum frequency generation (SFG) spectroscopy, infrared (IR) spectroscopy, x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) were employed for lignin-free model biomass samples—Avicel, bleached softwood, and bacterial cellulose—to find correlations between the decrease in hydrolysis rate over time and the structural or chemical changes of biomass during the hydrolysis reaction. The results showed that the decrease in hydrolysis rate over time appears to correlate with the irreversible deposition of non-cellulosic species (either reaction side products or denatured enzymes, or both) on the cellulosic substrate surface. The crystallinity, degree of polymerization, and meso-scale packing of cellulose do not seem to positively correlate with the decrease in hydrolysis rate observed for all three substrates tested in this study. It was also found that the cellulose Iα component of the bacterial cellulose is preferentially hydrolyzed by the enzyme than the cellulose Iβ component. PMID:26463274

  1. Probing transcription factor diffusion dynamics in the living mammalian embryo with photoactivatable fluorescence correlation spectroscopy.

    PubMed

    Kaur, Gurpreet; Costa, Mauro W; Nefzger, Christian M; Silva, Juan; Fierro-González, Juan Carlos; Polo, Jose M; Bell, Toby D M; Plachta, Nicolas

    2013-01-01

    Transcription factors use diffusion to search the DNA, yet the mechanisms controlling transcription factor diffusion during mammalian development remain poorly understood. Here we combine photoactivation and fluorescence correlation spectroscopy to study transcription factor diffusion in developing mouse embryos. We show that the pluripotency-associated transcription factor Oct4 displays both fast and Brownian and slower subdiffusive behaviours that are controlled by DNA interactions. Following cell lineage specification, the slower DNA-interacting diffusion fraction distinguishes pluripotent from extraembryonic cell nuclei. Similar to Oct4, Sox2 shows slower diffusion in pluripotent cells while Cdx2 displays opposite dynamics, suggesting that slow diffusion may represent a general feature of transcription factors in lineages where they are essential. Slow Oct4 subdiffusive behaviours are conserved in embryonic stem cells and induced pluripotent stem cells (iPS cells), and lost during differentiation. We also show that Oct4 diffusion depends on its interaction with ERG-associated protein with SET domain. Photoactivation and fluorescence correlation spectroscopy provides a new intravital approach to study transcription factor diffusion in complex in vivo systems.

  2. Second Harmonic Correlation Spectroscopy: Theory and Principles for Determining Surface Binding Kinetics.

    PubMed

    Sly, Krystal L; Conboy, John C

    2017-06-01

    A novel application of second harmonic correlation spectroscopy (SHCS) for the direct determination of molecular adsorption and desorption kinetics to a surface is discussed in detail. The surface-specific nature of second harmonic generation (SHG) provides an efficient means to determine the kinetic rates of adsorption and desorption of molecular species to an interface without interference from bulk diffusion, which is a significant limitation of fluorescence correlation spectroscopy (FCS). The underlying principles of SHCS for the determination of surface binding kinetics are presented, including the role of optical coherence and optical heterodyne mixing. These properties of SHCS are extremely advantageous and lead to an increase in the signal-to-noise (S/N) of the correlation data, increasing the sensitivity of the technique. The influence of experimental parameters, including the uniformity of the TEM00 laser beam, the overall photon flux, and collection time are also discussed, and are shown to significantly affect the S/N of the correlation data. Second harmonic correlation spectroscopy is a powerful, surface-specific, and label-free alternative to other correlation spectroscopic methods for examining surface binding kinetics.

  3. Fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy reveal the cytoplasmic origination of loaded nuclear RISC in vivo in human cells

    PubMed Central

    Mütze, Jörg; Staroske, Wolfgang; Weinmann, Lasse; Höck, Julia; Crell, Karin; Meister, Gunter; Schwille, Petra

    2008-01-01

    Studies of RNA interference (RNAi) provide evidence that in addition to the well-characterized cytoplasmic mechanisms, nuclear mechanisms also exist. The mechanism by which the nuclear RNA-induced silencing complex (RISC) is formed in mammalian cells, as well as the relationship between the RNA silencing pathways in nuclear and cytoplasmic compartments is still unknown. Here we show by applying fluorescence correlation and cross-correlation spectroscopy (FCS/FCCS) in vivo that two distinct RISC exist: a large ∼3 MDa complex in the cytoplasm and a 20-fold smaller complex of ∼158 kDa in the nucleus. We further show that nuclear RISC, consisting only of Ago2 and a short RNA, is loaded in the cytoplasm and imported into the nucleus. The loaded RISC accumulates in the nucleus depending on the presence of a target, based on an miRNA-like interaction with impaired cleavage of the cognate RNA. Together, these results suggest a new RISC shuttling mechanism between nucleus and cytoplasm ensuring concomitant gene regulation by small RNAs in both compartments. PMID:18842624

  4. Fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy reveal the cytoplasmic origination of loaded nuclear RISC in vivo in human cells.

    PubMed

    Ohrt, Thomas; Mütze, Jörg; Staroske, Wolfgang; Weinmann, Lasse; Höck, Julia; Crell, Karin; Meister, Gunter; Schwille, Petra

    2008-11-01

    Studies of RNA interference (RNAi) provide evidence that in addition to the well-characterized cytoplasmic mechanisms, nuclear mechanisms also exist. The mechanism by which the nuclear RNA-induced silencing complex (RISC) is formed in mammalian cells, as well as the relationship between the RNA silencing pathways in nuclear and cytoplasmic compartments is still unknown. Here we show by applying fluorescence correlation and cross-correlation spectroscopy (FCS/FCCS) in vivo that two distinct RISC exist: a large approximately 3 MDa complex in the cytoplasm and a 20-fold smaller complex of approximately 158 kDa in the nucleus. We further show that nuclear RISC, consisting only of Ago2 and a short RNA, is loaded in the cytoplasm and imported into the nucleus. The loaded RISC accumulates in the nucleus depending on the presence of a target, based on an miRNA-like interaction with impaired cleavage of the cognate RNA. Together, these results suggest a new RISC shuttling mechanism between nucleus and cytoplasm ensuring concomitant gene regulation by small RNAs in both compartments.

  5. Lithographically fabricated silicon microreactor for in situ characterization of heterogeneous catalysts—Enabling correlative characterization techniques

    NASA Astrophysics Data System (ADS)

    Baier, S.; Rochet, A.; Hofmann, G.; Kraut, M.; Grunwaldt, J.-D.

    2015-06-01

    We report on a new modular setup on a silicon-based microreactor designed for correlative spectroscopic, scattering, and analytic on-line gas investigations for in situ studies of heterogeneous catalysts. The silicon microreactor allows a combination of synchrotron radiation based techniques (e.g., X-ray diffraction and X-ray absorption spectroscopy) as well as infrared thermography and Raman spectroscopy. Catalytic performance can be determined simultaneously by on-line product analysis using mass spectrometry. We present the design of the reactor, the experimental setup, and as a first example for an in situ study, the catalytic partial oxidation of methane showing the applicability of this reactor for in situ studies.

  6. Lithographically fabricated silicon microreactor for in situ characterization of heterogeneous catalysts—Enabling correlative characterization techniques.

    PubMed

    Baier, S; Rochet, A; Hofmann, G; Kraut, M; Grunwaldt, J-D

    2015-06-01

    We report on a new modular setup on a silicon-based microreactor designed for correlative spectroscopic, scattering, and analytic on-line gas investigations for in situ studies of heterogeneous catalysts. The silicon microreactor allows a combination of synchrotron radiation based techniques (e.g., X-ray diffraction and X-ray absorption spectroscopy) as well as infrared thermography and Raman spectroscopy. Catalytic performance can be determined simultaneously by on-line product analysis using mass spectrometry. We present the design of the reactor, the experimental setup, and as a first example for an in situ study, the catalytic partial oxidation of methane showing the applicability of this reactor for in situ studies.

  7. Neural Correlates of Infant Accent Discrimination: An fNIRS Study

    ERIC Educational Resources Information Center

    Cristia, Alejandrina; Minagawa-Kawai, Yasuyo; Egorova, Natalia; Gervain, Judit; Filippin, Luca; Cabrol, Dominique; Dupoux, Emmanuel

    2014-01-01

    The present study investigated the neural correlates of infant discrimination of very similar linguistic varieties (Quebecois and Parisian French) using functional Near InfraRed Spectroscopy. In line with previous behavioral and electrophysiological data, there was no evidence that 3-month-olds discriminated the two regional accents, whereas…

  8. X-ray photoelectron spectroscopy study of radiofrequency sputtered chromium bromide, molybdenum disilicide, and molybdenum disulfide coatings and their friction properties

    NASA Technical Reports Server (NTRS)

    Wheeler, D. R.; Brainard, W. A.

    1977-01-01

    Radiofrequency sputtered coatings of CRB2, MOSI2, and MOS2 were examined by X-ray photoelectron spectroscopy. The effects of sputtering target history, deposition time, RF power level, and substrate bias on film composition were studied. Friction tests were run on RF sputtered surfaces of 440-C steel to correlate XPS data with lubricating properties. Significant deviations from stoichiometry and high oxide levels for all three compounds were related to target outgassing. The effect of biasing on these two factors depended on the compound. Improved stoichiometry correlated well with good friction and wear properties.

  9. Two-Voxel Localization Sequence for in Vivo Two-Dimensional Homonuclear Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Delmas, Florence; Beloeil, Jean-Claude; van der Sanden, Boudewijn P. J.; Nicolay, Klaas; Gillet, Brigitte

    2001-03-01

    The combination of localized 2D 1H MR correlation spectroscopy and Hadamard encoding allows the simultaneous acquisition of multiple volumes of interest without an increase in the experimental duration, compared to single-voxel acquisition. In the present study, 2D correlation spectra were acquired simultaneously within 20 to 40 min in two voxels located in each hemisphere of the rat brain. An intervoxel distance of 20% of the voxel size was sufficient to limit spatial contamination. The following cerebral metabolites gave detectable crosspeaks: N-acetylaspartate, the glutamate/glutamine pool, aspartate, phosphoethanolamine, glucose, glutathione, taurine, myo-inositols, lactate, threonine, γ-aminobutyric acid, and alanine. Most of the metabolites were measured without contamination of other resonances.

  10. Hydrogen Bond Lifetimes and Energetics for Solute-Solvent Complexes Studied with 2D-IR Vibrational Echo Spectroscopy

    PubMed Central

    Zheng, Junrong; Fayer, Michael D.

    2008-01-01

    Weak π hydrogen bonded solute-solvent complexes are studied with ultrafast two dimensional infrared (2D-IR) vibrational echo chemical exchange spectroscopy, temperature dependent IR absorption spectroscopy, and density functional theory calculations. Eight solute-solvent complexes composed of a number of phenol derivatives and various benzene derivatives are investigated. The complexes are formed between the phenol derivative (solute) in a mixed solvent of the benzene derivative and CCl4. The time dependence of the 2D-IR vibrational echo spectra of the phenol hydroxyl stretch is used to directly determine the dissociation and formation rates of the hydrogen bonded complexes. The dissociation rates of the weak hydrogen bonds are found to be strongly correlated with their formation enthalpies. The correlation can be described with an equation similar to the Arrhenius equation. The results are discussed in terms of transition state theory. PMID:17373792

  11. Determination of melamine of milk based on two-dimensional correlation infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Yang, Ren-jie; Liu, Rong; Xu, Kexin

    2012-03-01

    The adulteration of milk with harmful substances is a threat to public health and beyond question a serious crime. In order to develop a rapid, cost-effective, high-throughput analysis method for detecting of adulterants in milk, the discriminative analysis of melamine is established in milk based on the two-dimensional (2D) correlation infrared spectroscopy in present paper. Pure milk samples and adulterated milk samples with different content of melamine were prepared. Then the Fourier Transform Infrared spectra of all samples were measured at room temperature. The characteristics of pure milk and adulterated milk were studied by one-dimensional spectra. The 2D NIR and 2D IR correlation spectroscopy were calculated under the perturbation of adulteration concentration. In the range from 1400 to 1800 cm-1, two strong autopeaks were aroused by melamine in milk at 1464 cm-1 and 1560 cm-1 in synchronous spectrum. At the same time, the 1560 cm-1 band does not share cross peak with the 1464 cm-1 band, which further confirm that the two bands have the same origin. Also in the range from 4200 to 4800 cm-1, the autopeak was shown at 4648 cm-1 in synchronous spectrum of melamine in milk. 2D NIR-IR hetero-spectral correlation analysis confirmed that the bands at 1464, 1560 and 4648 cm-1 had the same origin. The results demonstrated that the adulterant can be discriminated correctly by 2D correlation infrared spectroscopy.

  12. Hardware simulator for optical correlation spectroscopy with Gaussian statistics and arbitrary correlation functions.

    PubMed

    Molteni, Matteo; Weigel, Udo M; Remiro, Francisco; Durduran, Turgut; Ferri, Fabio

    2014-11-17

    We present a new hardware simulator (HS) for characterization, testing and benchmarking of digital correlators used in various optical correlation spectroscopy experiments where the photon statistics is Gaussian and the corresponding time correlation function can have any arbitrary shape. Starting from the HS developed in [Rev. Sci. Instrum. 74, 4273 (2003)], and using the same I/O board (PCI-6534 National Instrument) mounted on a modern PC (Intel Core i7-CPU, 3.07GHz, 12GB RAM), we have realized an instrument capable of delivering continuous streams of TTL pulses over two channels, with a time resolution of Δt = 50ns, up to a maximum count rate of 〈I〉 ∼ 5MHz. Pulse streams, typically detected in dynamic light scattering and diffuse correlation spectroscopy experiments were generated and measured with a commercial hardware correlator obtaining measured correlation functions that match accurately the expected ones.

  13. The Equilibrium Constant for Bromothymol Blue: A General Chemistry Laboratory Experiment Using Spectroscopy

    ERIC Educational Resources Information Center

    Klotz, Elsbeth; Doyle, Robert; Gross, Erin; Mattson, Bruce

    2011-01-01

    A simple, inexpensive, and environmentally friendly undergraduate laboratory experiment is described in which students use visible spectroscopy to determine a numerical value for an equilibrium constant, K[subscript c]. The experiment correlates well with the lecture topic of equilibrium even though the subject of the study is an acid-base…

  14. Abdominal near-infrared spectroscopy measurements are lower in preterm infants at risk for necrotizing enterocolitis

    USDA-ARS?s Scientific Manuscript database

    Near-infrared spectroscopy is a noninvasive method of measuring local tissue oxygenation (StO[2]). Abdominal StO[2] measurements in preterm piglets are directly correlated with changes in intestinal blood flow and markedly reduced by necrotizing enterocolitis. The objectives of this study were to us...

  15. Investigating the effect of poly-l-lactic acid nanoparticles carrying hypericin on the flow-biased diffusive motion of HeLa cell organelles.

    PubMed

    Penjweini, Rozhin; Deville, Sarah; Haji Maghsoudi, Omid; Notelaers, Kristof; Ethirajan, Anitha; Ameloot, Marcel

    2017-07-19

    In this study, we investigate in human cervical epithelial HeLa cells the intracellular dynamics and the mutual interaction with the organelles of the poly-l-lactic acid nanoparticles (PLLA NPs) carrying the naturally occurring hydrophobic photosensitizer hypericin. Temporal and spatiotemporal image correlation spectroscopy was used for the assessment of the intracellular diffusion and directed motion of the nanocarriers by tracking the hypericin fluorescence. Using image cross-correlation spectroscopy and specific fluorescent labelling of endosomes, lysosomes and mitochondria, the NPs dynamics in association with the cell organelles was studied. Static colocalization experiments were interpreted according to the Manders' overlap coefficient. Nanoparticles associate with a small fraction of the whole-organelle population. The organelles moving with NPs exhibit higher directed motion compared to those moving without them. The rate of the directed motion drops substantially after the application of nocodazole. The random component of the organelle motions is not influenced by the NPs. Image correlation and cross-correlation spectroscopy are most appropriate to unravel the motion of the PLLA nanocarrier and to demonstrate that the rate of the directed motion of organelles is influenced by their interaction with the nanocarriers. Not all PLLA-hypericin NPs are associated with organelles. © 2017 Royal Pharmaceutical Society.

  16. Marrow Adipose Tissue Quantification of the Lumbar Spine by Using Dual-Energy CT and Single-Voxel 1H MR Spectroscopy: A Feasibility Study

    PubMed Central

    Daley, Scott M.; Kalra, Mannudeep K.; Brown, J. Keenan; Miller, Karen K.; Torriani, Martin

    2015-01-01

    Purpose To test the performance of dual-energy computed tomography (CT) in the assessment of marrow adipose tissue (MAT) content of the lumbar spine by using proton (hydrogen 1 [1H]) magnetic resonance (MR) spectroscopy as a reference standard and to determine the influence of MAT on the assessment of bone mineral density (BMD). Materials and Methods This study was institutional review board approved and complied with HIPAA guidelines. Written informed consent was obtained. Twelve obese osteopenic but otherwise healthy subjects (mean age ± standard deviation, 43 years ± 13) underwent 3-T 1H MR spectroscopy of the L2 vertebra by using a point-resolved spatially localized spectroscopy sequence without water suppression. The L2 vertebra was scanned with dual-energy CT (80 and 140 kV) by using a dual-source multi–detector row CT scanner with a calibration phantom. Mean basis material composition relative to the phantom was estimated in the L2 vertebra. Volumetric BMD was measured with and without correction for MAT. Bland-Altman 95% limits of agreement and Pearson correlation coefficients were calculated. Results There was excellent agreement between 1H MR spectroscopy and dual-energy CT, with a mean difference in fat fraction of −0.02 between the techniques, with a 95% confidence interval of −0.24, 0.20. There was a strong correlation between marrow fat fraction obtained with 1H MR spectroscopy and that obtained with dual-energy CT (r = 0.91, P < .001). The presence of MAT led to underestimation of BMD, and this bias increased with increasing MAT content (P < .001). Conclusion Dual-energy CT can be used to assess MAT content and BMD of the lumbar spine in a single examination and provides data that closely agree and correlate with 1H MR spectroscopy data. © RSNA, 2015 PMID:25988401

  17. Diagnosis of non-exudative (DRY) age related macular degeneration by non-invasive photon-correlation spectroscopy.

    PubMed

    Fankhauser, Franz Ii; Ott, Maria; Munteanu, Mihnea

    2016-01-01

    Photon-correlation spectroscopy (PCS) (quasi-elastic light scattering spectroscopy, dynamic light scattering spectroscopy) allows the non-invasively reveal of local dynamics and local heterogeneities of macromolecular systems. The capability of this technique to diagnose the retinal pathologies by in-vivo investigations of spatial anomalies of retinas displaying non-exudative senile macular degeneration was evaluated. Further, the potential use of the technique for the diagnosis of the macular degeneration was analyzed and displayed by the Receiver Operating Curve (ROC). The maculae and the peripheral retina of 73 normal eyes and of 26 eyes afflicted by an early stage of non-exudative senile macular degeneration were characterized by time-correlation functions and analyzed in terms of characteristic decay times and apparent size distributions. The characteristics of the obtained time-correlation functions of the eyes afflicted with nonexudative macular degeneration and of normal eyes differed significantly, which could be referred to a significant change of the nano- and microstructure of the investigated pathologic maculas. Photon-correlation spectroscopy is able to assess the macromolecular and microstructural aberrations in the macula afflicted by non-exudative, senile macular degeneration. It has been demonstrated that macromolecules of this disease show a characteristic abnormal behavior in the macula.

  18. Evidence of an Improper Displacive Phase Transition in Cd2 Re2 O7 via Time-Resolved Coherent Phonon Spectroscopy

    NASA Astrophysics Data System (ADS)

    Harter, J. W.; Kennes, D. M.; Chu, H.; de la Torre, A.; Zhao, Z. Y.; Yan, J.-Q.; Mandrus, D. G.; Millis, A. J.; Hsieh, D.

    2018-01-01

    We have used a combination of ultrafast coherent phonon spectroscopy, ultrafast thermometry, and time-dependent Landau theory to study the inversion symmetry breaking phase transition at Tc=200 K in the strongly spin-orbit coupled correlated metal Cd2 Re2 O7 . We establish that the structural distortion at Tc is a secondary effect through the absence of any softening of its associated phonon mode, which supports a purely electronically driven mechanism. However, the phonon lifetime exhibits an anomalously strong temperature dependence that decreases linearly to zero near Tc. We show that this behavior naturally explains the spurious appearance of phonon softening in previous Raman spectroscopy experiments and should be a prevalent feature of correlated electron systems with linearly coupled order parameters.

  19. Electromagnetically-induced-transparency intensity-correlation power broadening in a buffer gas

    NASA Astrophysics Data System (ADS)

    Zheng, Aojie; Green, Alaina; Crescimanno, Michael; O'Leary, Shannon

    2016-04-01

    Electromagnetically-induced-transparency (EIT) noise correlation spectroscopy holds promise as a simple, robust method for performing high-resolution spectroscopy used in optical magnetometry and clocks. Of relevance to these applications, we report on the role of buffer gas pressure and magnetic field gradients on power broadening of Zeeman-EIT noise correlation resonances.

  20. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy

    DOE PAGES

    Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.; ...

    2015-05-07

    Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this report, we present a theoretical formalism to demonstrate themore » slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. In conclusion, we also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions« less

  1. Determining the static electronic and vibrational energy correlations via two-dimensional electronic-vibrational spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, Hui; Lewis, Nicholas H. C.; Oliver, Thomas A. A.

    2015-05-07

    Changes in the electronic structure of pigments in protein environments and of polar molecules in solution inevitably induce a re-adaption of molecular nuclear structure. Both changes of electronic and vibrational energies can be probed with visible or infrared lasers, such as two-dimensional electronic spectroscopy or vibrational spectroscopy. The extent to which the two changes are correlated remains elusive. The recent demonstration of two-dimensional electronic-vibrational (2DEV) spectroscopy potentially enables a direct measurement of this correlation experimentally. However, it has hitherto been unclear how to characterize the correlation from the spectra. In this paper, we present a theoretical formalism to demonstrate themore » slope of the nodal line between the excited state absorption and ground state bleach peaks in the spectra as a characterization of the correlation between electronic and vibrational transition energies. We also show the dynamics of the nodal line slope is correlated to the vibrational spectral dynamics. Additionally, we demonstrate the fundamental 2DEV spectral line-shape of a monomer with newly developed response functions.« less

  2. Detection of structurally similar adulterants in botanical dietary supplements by thin-layer chromatography and surface enhanced Raman spectroscopy combined with two-dimensional correlation spectroscopy.

    PubMed

    Li, Hao; Zhu, Qing xia; Chwee, Tsz sian; Wu, Lin; Chai, Yi feng; Lu, Feng; Yuan, Yong fang

    2015-07-09

    Thin-layer chromatography (TLC) coupled with surface enhanced Raman spectroscopy (SERS) has been widely used for the study of various complex systems, especially for the detection of adulterants in botanical dietary supplements (BDS). However, this method is not sufficient to distinguish structurally similar adulterants in BDS since the analogs have highly similar chromatographic and/or spectroscopic behaviors. Taking into account the fact that higher cost and more time will be required for comprehensive chromatographic separation, more efforts with respect to spectroscopy are now focused on analyzing the overlapped SERS peaks. In this paper, the combination of a TLC-SERS method with two-dimensional correlation spectroscopy (2DCOS), with duration of exposure to laser as the perturbation, is applied to solve this problem. Besides the usual advantages of the TLC-SERS method, such as its simplicity, rapidness, and sensitivity, more advantages are presented here, such as enhanced selectivity and good reproducibility, which are obtained by 2DCOS. Two chemicals with similar structures are successfully differentiated from the complex BDS matrices. The study provides a more accurate qualitative screening method for detection of BDS with adulterants, and offers a new universal approach for the analysis of highly overlapped SERS peaks. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Lithographically fabricated silicon microreactor for in situ characterization of heterogeneous catalysts—Enabling correlative characterization techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baier, S.; Rochet, A.; Hofmann, G.

    2015-06-15

    We report on a new modular setup on a silicon-based microreactor designed for correlative spectroscopic, scattering, and analytic on-line gas investigations for in situ studies of heterogeneous catalysts. The silicon microreactor allows a combination of synchrotron radiation based techniques (e.g., X-ray diffraction and X-ray absorption spectroscopy) as well as infrared thermography and Raman spectroscopy. Catalytic performance can be determined simultaneously by on-line product analysis using mass spectrometry. We present the design of the reactor, the experimental setup, and as a first example for an in situ study, the catalytic partial oxidation of methane showing the applicability of this reactor formore » in situ studies.« less

  4. Trapping, Deformation, and Rotation of Giant Unilamellar Vesicles in Octode Dielectrophoretic Field Cages

    PubMed Central

    Korlach, J.; Reichle, C.; Müller, T.; Schnelle, T.; Webb, W. W.

    2005-01-01

    The behavior of freestanding lipid bilayer membranes under the influence of dielectric force potentials was studied by trapping, holding, and rotating individual giant unilamellar vesicles (GUVs) inside dielectrophoretic microfield cages. Using laser scanning confocal microscopy and three-dimensional image reconstructions of GUVs labeled with fluorescent membrane probes, field strength and frequency-dependent vesicle deformations were observed which are explained by calculations of the dielectric force potentials inside the cage. Dynamical membrane properties under the influence of the field cage were studied by fluorescence correlation spectroscopy, circumventing potential artifacts associated with measurements involving GUV immobilization on support surfaces. Lipid transport could be accelerated markedly by the applied fields, aided by hydrodynamic fluid streaming which was also studied by fluorescence correlation spectroscopy. PMID:15863477

  5. Gallium interstitial in irradiated germanium: Deep level transient spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolkovsky, Vl.; Petersen, M. Christian; Larsen, A. Nylandsted

    Two electronic levels at 0.34 eV above the valence band and 0.32 eV below the conduction band, in gallium doped, p-type Ge irradiated with 2 MeV electrons have been studied by deep level transient spectroscopy (DLTS) with both majority- and minority-carrier injections, and Laplace DLTS spectroscopy. It is concluded that these levels, having donor and acceptor characters, respectively, are correlated with interstitial Ga atoms, formed by the Watkins-replacement mechanism via self-interstitials.

  6. Gallium interstitial in irradiated germanium: Deep level transient spectroscopy

    NASA Astrophysics Data System (ADS)

    Kolkovsky, Vl.; Petersen, M. Christian; Mesli, A.; van Gheluwe, J.; Clauws, P.; Larsen, A. Nylandsted

    2008-12-01

    Two electronic levels at 0.34 eV above the valence band and 0.32 eV below the conduction band, in gallium doped, p -type Ge irradiated with 2 MeV electrons have been studied by deep level transient spectroscopy (DLTS) with both majority- and minority-carrier injections, and Laplace DLTS spectroscopy. It is concluded that these levels, having donor and acceptor characters, respectively, are correlated with interstitial Ga atoms, formed by the Watkins-replacement mechanism via self-interstitials.

  7. Functional Near-Infrared Spectroscopy for the Assessment of Speech Related Tasks

    ERIC Educational Resources Information Center

    Dieler, A. C.; Tupak, S. V.; Fallgatter, A. J.

    2012-01-01

    Over the past years functional near-infrared spectroscopy (fNIRS) has substantially contributed to the understanding of language and its neural correlates. In contrast to other imaging techniques, fNIRS is well suited to study language function in healthy and psychiatric populations due to its cheap and easy application in a quiet and natural…

  8. Scanning fluorescence correlation spectroscopy comes full circle.

    PubMed

    Gunther, German; Jameson, David M; Aguilar, Joao; Sánchez, Susana A

    2018-02-07

    In this article, we review the application of fluorescence correlation spectroscopy (FCS) methods to studies on live cells. We begin with a brief overview of the theory underlying FCS, highlighting the type of information obtainable. We then focus on circular scanning FCS. Specifically, we discuss instrumentation and data analysis and offer some considerations regarding sample preparation. Two examples from the literature are discussed in detail. First, we show how this method, coupled with the photon counting histogram analysis, can provide information on yeast ribosomal structures in live cells. The combination of scanning FCS with dual channel detection in the study of lipid domains in live cells is also illustrated. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Ultrafast relaxation dynamics of nitric oxide synthase studied by visible broadband transient absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hung, Chih-Chang; Yabushita, Atsushi; Kobayashi, Takayoshi; Chen, Pei-Feng; Liang, Keng S.

    2017-09-01

    Ultrafast dynamics of endothelial nitric oxide synthase (eNOS) oxygenase domain was studied by transient absorption spectroscopy pumping at Soret band. The broadband visible probe spectrum has visualized the relaxation dynamics from the Soret band to Q-band and charge transfer (CT) band. Supported by two-dimensional correlation spectroscopy, global fitting analysis has successfully concluded the relaxation dynamics from the Soret band to be (1) electronic transition to Q-band (0.16 ps), (2) ligand dissociation and CT (0.94 ps), (3) relaxation of the CT state (4.0 ps), and (4) ligand rebinding (59 ps).

  10. Direct correlations of structural and optical properties of three-dimensional GaN/InGaN core/shell micro-light emitting diodes

    NASA Astrophysics Data System (ADS)

    Sadat Mohajerani, Matin; Müller, Marcus; Hartmann, Jana; Zhou, Hao; Wehmann, Hergo-H.; Veit, Peter; Bertram, Frank; Christen, Jürgen; Waag, Andreas

    2016-05-01

    Three-dimensional (3D) InGaN/GaN quantum-well (QW) core-shell light emitting diodes (LEDs) are a promising candidate for the future solid state lighting. In this contribution, we study direct correlations of structural and optical properties of the core-shell LEDs using highly spatially-resolved cathodoluminescence spectroscopy (CL) in combination with scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM). Temperature-dependent resonant photoluminescence (PL) spectroscopy has been performed to understand recombination mechanisms and to estimate the internal quantum efficiency (IQE).

  11. A correlative study on data from pork carcass and processed meat (Bauernspeck) for automatic estimation of chemical parameters by means of near-infrared spectroscopy.

    PubMed

    Boschetti, Lucio; Ottavian, Matteo; Facco, Pierantonio; Barolo, Massimiliano; Serva, Lorenzo; Balzan, Stefania; Novelli, Enrico

    2013-11-01

    The use of near-infrared spectroscopy (NIRS) is proposed in this study for the characterization of the quality parameters of a smoked and dry-cured meat product known as Bauernspeck (originally from Northern Italy), as well as of some technological traits of the pork carcass used for its manufacturing. In particular, NIRS is shown to successfully estimate several key quality parameters (including water activity, moisture, dry matter, ash and protein content), suggesting its suitability for real time application in replacement of expensive and time consuming chemical analysis. Furthermore, a correlative approach based on canonical correlation analysis was used to investigate the spectral regions that are mostly correlated to the characteristics of interest. The identification of these regions, which can be linked to the absorbance of the main functional chemical groups, is intended to provide a better understanding of the chemical structure of the substrate under investigation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Identification of anisodamine tablets by Raman and near-infrared spectroscopy with chemometrics.

    PubMed

    Li, Lian; Zang, Hengchang; Li, Jun; Chen, Dejun; Li, Tao; Wang, Fengshan

    2014-06-05

    Vibrational spectroscopy including Raman and near-infrared (NIR) spectroscopy has become an attractive tool for pharmaceutical analysis. In this study, effective calibration models for the identification of anisodamine tablet and its counterfeit and the distinguishment of manufacturing plants, based on Raman and NIR spectroscopy, were built, respectively. Anisodamine counterfeit tablets were identified by Raman spectroscopy with correlation coefficient method, and the results showed that the predictive accuracy was 100%. The genuine anisodamine tablets from 5 different manufacturing plants were distinguished by NIR spectroscopy using partial least squares discriminant analysis (PLS-DA) models based on interval principal component analysis (iPCA) method. And the results showed the recognition rate and rejection rate were 100% respectively. In conclusion, Raman spectroscopy and NIR spectroscopy combined with chemometrics are feasible and potential tools for rapid pharmaceutical tablet discrimination. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Iron in typical and atypical parkinsonism - Mössbauer spectroscopy and MRI studies

    NASA Astrophysics Data System (ADS)

    Kuliński, R.; Bauminger, E. R.; Friedman, A.; Duda, P.; Gałązka-Friedman, J.

    2016-12-01

    Iron may play important role in neurodegeneration. The results of comparative studies of human brain areas (control and pathological) performed by Mössbauer spectroscopy (MS) and magnetic resonance imaging (MRI) techniques are presented. Mössbauer spectroscopy demonstrated a higher concentration of iron in atypical parkinsonism (progressive supranuclear palsy PSP) in the brain areas Substantia Nigra (SN) and Globus Pallidus (GP) involved in this pathological process, compared to control, while the concentration of iron in pathological tissues in typical parkinsonism (Parkinson's disease - PD) did not differ from that in control. These results were compared with the changes in 1/T1 and 1/T2 (T1 and T2 being the relaxation times determined by MRI). A good linear correlation curve was found between the concentration of iron as determined by MS in different areas of control human brains and between 1/T1 and 1/T2. Whereas the finding in PSP-GP (the brain area involved in PSP) also fitted to such a correlation, this was not so for the correlation between pathological SN - the brain area involved in both diseases - and 1/T2, indicating a dependence of T2 on other factors than just the concentration of iron.

  14. Intracellular localization and dynamics of Hypericin loaded PLLA nanocarriers by image correlation spectroscopy.

    PubMed

    Penjweini, Rozhin; Deville, Sarah; D'Olieslaeger, Lien; Berden, Mandy; Ameloot, Marcel; Ethirajan, Anitha

    2015-11-28

    The study of cell-nanoparticle interactions is an important aspect for understanding drug delivery using nanocarriers. In this regard, advances in fluorescence based microscopy are useful for the investigation of temporal and spatial behavior of nanoparticles (NPs) within the intracellular environment. In this work, we focus on the delivery of the naturally-occurring hydrophobic photosensitizer Hypericin in human lung carcinoma A549 cells by using biodegradable poly L-lactic acid NPs. For the first time, Hypericin containing NPs are prepared by combining the miniemulsion technique with the solvent evaporation method. This approach yields an efficient loading of the NPs with Hypericin and allows for additional cargo molecules. To monitor the release of Hypercin from the NPs, an additional fluorescent lipophilic dye Coumarin-6 is incorporated in the NPs. Temporal and spatiotemporal image correlation spectroscopy is used to determine the fate of the NPs carrying the potential cargo. Both directed and non-directed motions are detected. By using image cross-correlation spectroscopy and specific fluorescent labeling of endosomes, lysosomes and mitochondria, the dynamics of the cargo loaded NPs in association with the organelles is studied. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Cross-correlation spin noise spectroscopy of heterogeneous interacting spin systems

    DOE PAGES

    Roy, Dibyendu; Yang, Luyi; Crooker, Scott A.; ...

    2015-04-30

    Interacting multi-component spin systems are ubiquitous in nature and in the laboratory. As such, investigations of inter-species spin interactions are of vital importance. Traditionally, they are studied by experimental methods that are necessarily perturbative: e.g., by intentionally polarizing or depolarizing one spin species while detecting the response of the other(s). Here, we describe and demonstrate an alternative approach based on multi-probe spin noise spectroscopy, which can reveal inter-species spin interactions - under conditions of strict thermal equilibrium - by detecting and cross-correlating the stochastic fluctuation signals exhibited by each of the constituent spin species. Specifically, we consider a two-component spinmore » ensemble that interacts via exchange coupling, and we determine cross-correlations between their intrinsic spin fluctuations. The model is experimentally confirmed using “two-color” optical spin noise spectroscopy on a mixture of interacting Rb and Cs vapors. Noise correlations directly reveal the presence of inter-species spin exchange, without ever perturbing the system away from thermal equilibrium. These non-invasive and noise-based techniques should be generally applicable to any heterogeneous spin system in which the fluctuations of the constituent components are detectable.« less

  16. Advances in quantitative UV-visible spectroscopy for clinical and pre-clinical application in cancer.

    PubMed

    Brown, J Quincy; Vishwanath, Karthik; Palmer, Gregory M; Ramanujam, Nirmala

    2009-02-01

    Methods of optical spectroscopy that provide quantitative, physically or physiologically meaningful measures of tissue properties are an attractive tool for the study, diagnosis, prognosis, and treatment of various cancers. Recent development of methodologies to convert measured reflectance and fluorescence spectra from tissue to cancer-relevant parameters such as vascular volume, oxygenation, extracellular matrix extent, metabolic redox states, and cellular proliferation have significantly advanced the field of tissue optical spectroscopy. The number of publications reporting quantitative tissue spectroscopy results in the UV-visible wavelength range has increased sharply in the past three years, and includes new and emerging studies that correlate optically measured parameters with independent measures such as immunohistochemistry, which should aid in increased clinical acceptance of these technologies.

  17. Advances in Neutron Spectroscopy and High Magnetic Field Instrumentation for studies of Correlated Electron Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Granroth, Garrett E

    2011-01-01

    Neutron Spectroscopy has provided critical information on the magnetism in correlated electron systems. Specifically quantum magnets, superconductors, and multi-ferroics are areas of productive research. A discussion of recent measurements on the SEQUOIA spectrometer will provide examples of how novel instrumentation concepts are used on the latest generation of spectrometers to extend our knowledge in such systems. The now ubiquitous function of sample rotation allows for full mapping of volumes ofmore » $Q$ and $$\\omega$$ space. An instrument focused on low angles could extend these maps to cover more of the first Brillioun zone. Innovative chopper cascades allow two unique modes of operation. Multiplexed measurements allow the simultaneous measurement of high and low energy features in an excitation spectrum. Alternatively by limiting the neutron bandwidth incident on the Fermi Chopper, background from subsequent time frames is removed, enabling the observation of weak, large energy transfer features. Finally the implementation of event-based detection for neutron experiments is time correlated experiments. Diffraction studies of the high field spin states in MnWO$$_4$$ using magnetic fields up to 30 T, provided by a pulsed magnet, illustrate this method. Expanding the high field studies to spectroscopy will require a novel instrument, focused around a world class DC magnet, like Zeemans proposed for the SNS.« less

  18. On the use of two-time correlation functions for X-ray photon correlation spectroscopy data analysis.

    PubMed

    Bikondoa, Oier

    2017-04-01

    Multi-time correlation functions are especially well suited to study non-equilibrium processes. In particular, two-time correlation functions are widely used in X-ray photon correlation experiments on systems out of equilibrium. One-time correlations are often extracted from two-time correlation functions at different sample ages. However, this way of analysing two-time correlation functions is not unique. Here, two methods to analyse two-time correlation functions are scrutinized, and three illustrative examples are used to discuss the implications for the evaluation of the correlation times and functional shape of the correlations.

  19. Atmospheric pollution measurement by optical cross correlation methods - A concept

    NASA Technical Reports Server (NTRS)

    Fisher, M. J.; Krause, F. R.

    1971-01-01

    Method combines standard spectroscopy with statistical cross correlation analysis of two narrow light beams for remote sensing to detect foreign matter of given particulate size and consistency. Method is applicable in studies of generation and motion of clouds, nuclear debris, ozone, and radiation belts.

  20. Longitudinal evaluation of patients with oral potentially malignant disorders using optical imaging and spectroscopy

    NASA Astrophysics Data System (ADS)

    Schwarz, Richard A.; Pierce, Mark C.; Mondrik, Sharon; Gao, Wen; Quinn, Mary K.; Bhattar, Vijayashree; Williams, Michelle D.; Vigneswaran, Nadarajah; Gillenwater, Ann M.; Richards-Kortum, Rebecca

    2012-02-01

    Dysplastic and cancerous alterations in oral tissue can be detected noninvasively in vivo using optical techniques including autofluorescence imaging, high-resolution imaging, and spectroscopy. Interim results are presented from a longitudinal study in which optical imaging and spectroscopy were used to evaluate the progression of lesions over time in patients at high risk for development of oral cancer. Over 100 patients with oral potentially malignant disorders have been enrolled in the study to date. Areas of concern in the oral cavity are measured using widefield autofluorescence imaging and depth-sensitive optical spectroscopy during successive clinical visits. Autofluorescence intensity patterns and autofluorescence spectra are tracked over time and correlated with clinical observations. Patients whose lesions progress and who undergo surgery are also measured in the operating room immediately prior to surgery using autofluorescence imaging and spectroscopy, with the addition of intraoperative high-resolution imaging to characterize nuclear size, nuclear crowding, and tissue architecture at selected sites. Optical measurements are compared to histopathology results from biopsies and surgical specimens collected from the measured sites. Autofluorescence imaging and spectroscopy measurements are continued during post-surgery followup visits. We examined correlations between clinical impression and optical classification over time with an average followup period of 4 months. The data collected to date suggest that multimodal optical techniques may aid in noninvasive monitoring of the progression of oral premalignant lesions, biopsy site selection, and accurate delineation of lesion extent during surgery.

  1. Understanding Zeeman EIT Noise Correlation Spectra in Buffered Rb Vapor

    NASA Astrophysics Data System (ADS)

    O'Leary, Shannon; Zheng, Aojie; Crescimanno, Michael

    2014-05-01

    Noise correlation spectroscopy on systems manifesting Electromagnetically Induced Transparency (EIT) holds promise as a simple, robust method for performing high-resolution spectroscopy used in applications such as EIT-based atomic magnetometry and clocks. During laser light's propagation through a resonant medium, interaction with the medium converts laser phase noise into intensity noise. While this noise conversion can diminish the precision of EIT applications, noise correlation techniques transform the noise into a useful spectroscopic tool that can improve the application's precision. Using a single diode laser with large phase noise, we examine laser intensity noise and noise correlations from Zeeman EIT in a buffered Rb vapor. Of particular interest is a narrow noise correlation feature, resonant with EIT, that has been shown in earlier work to be power-broadening resistant at low powers. We report here on our recent experimental work and complementary theoretical modeling on EIT noise spectra, including a study of power broadening of the narrow noise correlation feature. Understanding the nature of the noise correlation spectrum is essential for optimizing EIT-noise applications.

  2. Tempo-spatially resolved scattering correlation spectroscopy under dark-field illumination and its application to investigate dynamic behaviors of gold nanoparticles in live cells.

    PubMed

    Liu, Heng; Dong, Chaoqing; Ren, Jicun

    2014-02-19

    In this study, a new tempo-spatially resolved fluctuation spectroscopy under dark-field illumination is described, named dark-field illumination-based scattering correlation spectroscopy (DFSCS). DFSCS is a single-particle method, whose principle is similar to that of fluorescence correlation spectroscopy (FCS). DFSCS correlates the fluctuations of the scattered light from single nanoparticle under dark-field illumination. We developed a theoretical model for translational diffusion of nanoparticles in DFSCS system. The results of computer simulations documented that this model was able to well describe the diffusion behaviors of nanoparticles in uniformly illuminated field. The experimental setup of DFSCS was achieved by introducing a dark-field condenser to the frequently used bright-field microscope and an electron multiplying charge-coupled device (EMCCD) as the array detector. In the optimal condition, a stack of 500 000 frames were collected simultaneously on 64 detection channels for a single measurement with acquisition rate of 0.5 ms per frame. We systematically investigated the effect of certain factors such as particle concentration, viscosity of the solution, and heterogeneity of gold nanoparticles (GNPs) samples on DFSCS measurements. The experiment data confirmed theoretical model proposed. Furthermore, this new method was successfully used for investigating dynamic behaviors of GNPs in live cells. Our preliminary results demonstrate that DFSCS is a practical and affordable tool for ordinary laboratories to investigate the dynamic information of nanoparticles in vitro as well as in vivo.

  3. Picosecond time-resolved photoluminescence using picosecond excitation correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Johnson, M. B.; McGill, T. C.; Hunter, A. T.

    1988-03-01

    We present a study of the temporal decay of photoluminescence (PL) as detected by picosecond excitation correlation spectroscopy (PECS). We analyze the correlation signal that is obtained from two simple models; one where radiative recombination dominates, the other where trapping processes dominate. It is found that radiative recombination alone does not lead to a correlation signal. Parallel trapping type processes are found to be required to see a signal. To illustrate this technique, we examine the temporal decay of the PL signal for In-alloyed, semi-insulating GaAs substrates. We find that the PL signal indicates a carrier lifetime of roughly 100 ps, for excitation densities of 1×1016-5×1017 cm-3. PECS is shown to be an easy technique to measure the ultrafast temporal behavior of PL processes because it requires no ultrafast photon detection. It is particularly well suited to measuring carrier lifetimes.

  4. [Near infrared reflectance spectroscopy (NIRS): a novel approach to reconstructing historical changes of primary productivity in Antarctic lake].

    PubMed

    Chen, Qian-Qian; Liu, Xiao-Dong; Liu, Wen-Qi; Jiang, Shan

    2011-10-01

    Compared with traditional chemical analysis methods, reflectance spectroscopy has the advantages of speed, minimal or no sample preparation, non-destruction, and low cost. In order to explore the potential application of spectroscopy technology in the paleolimnological study on Antarctic lakes, we took a lake sediment core in Mochou Lake at Zhongshan Station of Antarctic, and analyzed the near infrared reflectance spectroscopy (NIRS) data in the sedimentary samples. The results showed that the factor loadings of principal component analysis (PCA) displayed very similar depth-profile change pattern with the S2 index, a reliable proxy for the change in historical lake primary productivity. The correlation analysis showed that the values of PCA factor loading and S2 were correlated significantly, suggesting that it is feasible to infer paleoproductivity changes recorded in Antarctic lakes using NIRS technology. Compared to the traditional method of the trough area between 650 and 700 nm, the authors found that the PCA statistical approach was more accurate for reconstructing the change in historical lake primary productivity. The results reported here demonstrate that reflectance spectroscopy can provide a rapid method for the reconstruction of lake palaeoenviro nmental change in the remote Antarctic regions.

  5. Near infrared spectroscopy for mastitis diagnosis: Two-dimensional correlation study in short wavelength region

    NASA Astrophysics Data System (ADS)

    Tsenkova, Roumiana; Murayama, Koichi; Kawano, Sumio; Wu, Yuqing; Toyoda, Kiyohiko; Ozaki, Yukihiro

    2000-03-01

    We describe the application of two-dimensional correlation spectroscopic (2DCOS) technique for mastitic diagnosis. Seven average spectra in the short wavelength region (700-1100 nm) of mastitic levels separated from healthy to disease were subjected to 2DCOS analysis. Synchronous correlation map clearly showed water and fat bands. Asynchronous correlation map indicated the dynamical variations of milk constituents in milk occurred when a cow gets mastitis.

  6. A definitive analytical spectroscopic study of Indian yellow, an ancient pigment used for dating purposes.

    PubMed

    de Faria, Dalva L A; Edwards, Howell G M; Careaga, Valeria; Walt, Nicholas; Maier, Marta S

    2017-02-01

    The Raman spectrum of tartrazine has been mistakenly reported as being that of Indian yellow in the literature, which has serious consequences for the identification of this pigment in art works regarding their authentication. Unlike tartrazine, Indian yellow (a natural mixture of the magnesium and calcium salts of euxanthic acid) exhibits in its Raman spectrum a strong fluorescent background when visible excitation is used, however, excitation in the near infrared (1064nm) permitted the observation of the Raman bands from the raw pigment with the main features placed at 1346, 1368, 1425, 1441 and 1626cm -1 . Indian yellow identification was assured by 1 H and 13 C Nuclear Magnetic Resonance characterization and the complete assignment of the proton and carbon resonances was accomplished using heteronuclear single quantum correlation (HSQC), heteronuclear multiple bond correlation (HMBC), nuclear overhauser effect spectroscopy (NOESY) and 1 H- 1 H correlation spectroscopy (COSY). Scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and X-ray fluorescence (XRF) analyzes were also conducted on a genuine sample of this historical pigment. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Submillisecond X-ray photon correlation spectroscopy from a pixel array detector with fast dual gating and no readout dead-time

    DOE PAGES

    Zhang, Qingteng; Dufresne, Eric M.; Grybos, Pawel; ...

    2016-04-19

    Small-angle scattering X-ray photon correlation spectroscopy (XPCS) studies were performed using a novel photon-counting pixel array detector with dual counters for each pixel. Each counter can be read out independently from the other to ensure there is no readout dead-time between the neighboring frames. A maximum frame rate of 11.8 kHz was achieved. Results on test samples show good agreement with simple diffusion. Lastly, the potential of extending the time resolution of XPCS beyond the limit set by the detector frame rate using dual counters is also discussed.

  8. Submillisecond X-ray photon correlation spectroscopy from a pixel array detector with fast dual gating and no readout dead-time

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qingteng; Dufresne, Eric M.; Grybos, Pawel

    Small-angle scattering X-ray photon correlation spectroscopy (XPCS) studies were performed using a novel photon-counting pixel array detector with dual counters for each pixel. Each counter can be read out independently from the other to ensure there is no readout dead-time between the neighboring frames. A maximum frame rate of 11.8 kHz was achieved. Results on test samples show good agreement with simple diffusion. Lastly, the potential of extending the time resolution of XPCS beyond the limit set by the detector frame rate using dual counters is also discussed.

  9. Investigation of human serum albumin (HSA) binding specificity of certain photosensitizers related to pyropheophorbide-a and bacteriopurpurinimide by circular dichroism spectroscopy and its correlation with in vivo photosensitizing efficacy.

    PubMed

    Chen, Yihui; Miclea, Razvan; Srikrishnan, Thamarapu; Balasubramanian, Sathyamangalam; Dougherty, Thomas J; Pandey, Ravindra K

    2005-07-01

    A series of pyropheophorbide-a and bacteriopurpurinimides were investigated to understand the correlation between HSA (site II) binding affinity and in vivo photosensitizing activity. In our study, photosensitizers that bound to site II of HSA produced a significant difference in the circular dichroism spectra of the corresponding complexes, especially at Soret band region of the photosensitizers. Our results suggest that CD spectroscopy of the photosensitizer-HSA complexes could be a valuable tool in screening new photosensitizers before evaluating them for in vivo efficacy.

  10. Submillisecond X-ray photon correlation spectroscopy from a pixel array detector with fast dual gating and no readout dead-time.

    PubMed

    Zhang, Qingteng; Dufresne, Eric M; Grybos, Pawel; Kmon, Piotr; Maj, Piotr; Narayanan, Suresh; Deptuch, Grzegorz W; Szczygiel, Robert; Sandy, Alec

    2016-05-01

    Small-angle scattering X-ray photon correlation spectroscopy (XPCS) studies were performed using a novel photon-counting pixel array detector with dual counters for each pixel. Each counter can be read out independently from the other to ensure there is no readout dead-time between the neighboring frames. A maximum frame rate of 11.8 kHz was achieved. Results on test samples show good agreement with simple diffusion. The potential of extending the time resolution of XPCS beyond the limit set by the detector frame rate using dual counters is also discussed.

  11. Chemical profiling and adulteration screening of Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation infrared (2D-IR) spectroscopy.

    PubMed

    Qu, Lei; Chen, Jian-Bo; Zhang, Gui-Jun; Sun, Su-Qin; Zheng, Jing

    2017-03-05

    As a kind of expensive perfume and valuable herb, Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy is employed to establish a simple and quick method for the adulteration screening of ALR. First, the principal chemical constituents of ALR are characterized by FT-IR spectroscopy at room temperature and two-dimensional correlation infrared (2D-IR) spectroscopy with thermal perturbation. Besides the common cellulose and lignin compounds, a certain amount of resin is the characteristic constituent of ALR. Synchronous and asynchronous 2D-IR spectra indicate that the resin (an unstable secondary metabolite) is more sensitive than cellulose and lignin (stable structural constituents) to the thermal perturbation. Using a certified ALR sample as the reference, the infrared spectral correlation threshold is determined by 30 authentic samples and 6 adulterated samples. The spectral correlation coefficient of an authentic ALR sample to the standard reference should be not less than 0.9886 (p=0.01). Three commercial adulterated ALR samples are identified by the correlation threshold. Further interpretation of the infrared spectra of the adulterated samples indicates the common adulterating methods - counterfeiting with other kind of wood, adding ingredient such as sand to increase the weight, and adding the cheap resin such as rosin to increase the content of resin compounds. Results of this research prove that FT-IR spectroscopy can be used as a simple and accurate quality control method of ALR. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Chemical profiling and adulteration screening of Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation infrared (2D-IR) spectroscopy

    NASA Astrophysics Data System (ADS)

    Qu, Lei; Chen, Jian-bo; Zhang, Gui-Jun; Sun, Su-qin; Zheng, Jing

    2017-03-01

    As a kind of expensive perfume and valuable herb, Aquilariae Lignum Resinatum (ALR) is often adulterated for economic motivations. In this research, Fourier transform infrared (FT-IR) spectroscopy is employed to establish a simple and quick method for the adulteration screening of ALR. First, the principal chemical constituents of ALR are characterized by FT-IR spectroscopy at room temperature and two-dimensional correlation infrared (2D-IR) spectroscopy with thermal perturbation. Besides the common cellulose and lignin compounds, a certain amount of resin is the characteristic constituent of ALR. Synchronous and asynchronous 2D-IR spectra indicate that the resin (an unstable secondary metabolite) is more sensitive than cellulose and lignin (stable structural constituents) to the thermal perturbation. Using a certified ALR sample as the reference, the infrared spectral correlation threshold is determined by 30 authentic samples and 6 adulterated samples. The spectral correlation coefficient of an authentic ALR sample to the standard reference should be not less than 0.9886 (p = 0.01). Three commercial adulterated ALR samples are identified by the correlation threshold. Further interpretation of the infrared spectra of the adulterated samples indicates the common adulterating methods - counterfeiting with other kind of wood, adding ingredient such as sand to increase the weight, and adding the cheap resin such as rosin to increase the content of resin compounds. Results of this research prove that FT-IR spectroscopy can be used as a simple and accurate quality control method of ALR.

  13. Fluorescence correlation spectroscopy: the case of subdiffusion.

    PubMed

    Lubelski, Ariel; Klafter, Joseph

    2009-03-18

    The theory of fluorescence correlation spectroscopy is revisited here for the case of subdiffusing molecules. Subdiffusion is assumed to stem from a continuous-time random walk process with a fat-tailed distribution of waiting times and can therefore be formulated in terms of a fractional diffusion equation (FDE). The FDE plays the central role in developing the fluorescence correlation spectroscopy expressions, analogous to the role played by the simple diffusion equation for regular systems. Due to the nonstationary nature of the continuous-time random walk/FDE, some interesting properties emerge that are amenable to experimental verification and may help in discriminating among subdiffusion mechanisms. In particular, the current approach predicts 1), a strong dependence of correlation functions on the initial time (aging); 2), sensitivity of correlation functions to the averaging procedure, ensemble versus time averaging (ergodicity breaking); and 3), that the basic mean-squared displacement observable depends on how the mean is taken.

  14. Investigation of the Brill transition in nylon 6,6 by Raman, THz-Raman, and two-dimensional correlation spectroscopy.

    PubMed

    Bertoldo Menezes, D; Reyer, A; Musso, M

    2018-02-05

    The Brill transition is a phase transition process in polyamides related with structural changes between the hydrogen bonds of the lateral functional groups (CO) and (NH). In this study, we have used the potential of Raman spectroscopy for exploring this phase transition in polyamide 6,6 (nylon 6,6), due to the sensitivity of this spectroscopic technique to small intermolecular changes affecting vibrational properties of relevant functional groups. During a step by step heating and cooling process of the sample we collected Raman spectra allowing us from two-dimensional Raman correlation spectroscopy to identify which spectral regions suffered the largest influence during the Brill transition, and from Terahertz Stokes and anti-Stokes Raman spectroscopy to obtain complementary information, e.g. on the temperature of the sample. This allowed us to grasp signatures of the Brill transition from peak parameters of vibrational modes associated with (CC) skeletal stretches and (CNH) bending, and to verify the Brill transition temperature at around 160°C, as well as the reversibility of this phase transition. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Dual-color dual-focus line-scanning FCS for quantitative analysis of receptor-ligand interactions in living specimens.

    PubMed

    Dörlich, René M; Chen, Qing; Niklas Hedde, Per; Schuster, Vittoria; Hippler, Marc; Wesslowski, Janine; Davidson, Gary; Nienhaus, G Ulrich

    2015-05-07

    Cellular communication in multi-cellular organisms is mediated to a large extent by a multitude of cell-surface receptors that bind specific ligands. An in-depth understanding of cell signaling networks requires quantitative information on ligand-receptor interactions within living systems. In principle, fluorescence correlation spectroscopy (FCS) based methods can provide such data, but live-cell applications have proven extremely challenging. Here, we have developed an integrated dual-color dual-focus line-scanning fluorescence correlation spectroscopy (2c2f lsFCS) technique that greatly facilitates live-cell and tissue experiments. Absolute ligand and receptor concentrations and their diffusion coefficients within the cell membrane can be quantified without the need to perform additional calibration experiments. We also determine the concentration of ligands diffusing in the medium outside the cell within the same experiment by using a raster image correlation spectroscopy (RICS) based analysis. We have applied this robust technique to study the interactions of two Wnt antagonists, Dickkopf1 and Dickkopf2 (Dkk1/2), to their cognate receptor, low-density-lipoprotein-receptor related protein 6 (LRP6), in the plasma membrane of living HEK293T cells. We obtained significantly lower affinities than previously reported using in vitro studies, underscoring the need to measure such data on living cells or tissues.

  16. Correlation of quality measurements to visible-near infrared spectra of pasteurized egg

    USDA-ARS?s Scientific Manuscript database

    A twelve week study was conducted on the egg albumen from both pasteurized and non-pasteurized shell eggs using visible-near infrared spectroscopy. Correlation of the chemical changes detected in the spectra to the measurement of Haugh units (measure of interior egg quality) was carried out using ch...

  17. Chemometric correlation of shelf life, quality measurements, and visible-near infrared spectra of pasteurized eggs

    USDA-ARS?s Scientific Manuscript database

    A twelve week study was conducted on the egg albumen from both pasteurized and non-pasteurized shell eggs using visible-near infrared spectroscopy. Correlation of the chemical changes detected in the spectra to the measurement of Haugh units (measure of interior egg quality) was carried out using pr...

  18. Metabolite profiling in retinoblastoma identifies novel clinicopathological subgroups

    PubMed Central

    Kohe, Sarah; Brundler, Marie-Anne; Jenkinson, Helen; Parulekar, Manoj; Wilson, Martin; Peet, Andrew C; McConville, Carmel M

    2015-01-01

    Background: Tumour classification, based on histopathology or molecular pathology, is of value to predict tumour behaviour and to select appropriate treatment. In retinoblastoma, pathology information is not available at diagnosis and only exists for enucleated tumours. Alternative methods of tumour classification, using noninvasive techniques such as magnetic resonance spectroscopy, are urgently required to guide treatment decisions at the time of diagnosis. Methods: High-resolution magic-angle spinning magnetic resonance spectroscopy (HR-MAS MRS) was undertaken on enucleated retinoblastomas. Principal component analysis and cluster analysis of the HR-MAS MRS data was used to identify tumour subgroups. Individual metabolite concentrations were determined and were correlated with histopathological risk factors for each group. Results: Multivariate analysis identified three metabolic subgroups of retinoblastoma, with the most discriminatory metabolites being taurine, hypotaurine, total-choline and creatine. Metabolite concentrations correlated with specific histopathological features: taurine was correlated with differentiation, total-choline and phosphocholine with retrolaminar optic nerve invasion, and total lipids with necrosis. Conclusions: We have demonstrated that a metabolite-based classification of retinoblastoma can be obtained using ex vivo magnetic resonance spectroscopy, and that the subgroups identified correlate with histopathological features. This result justifies future studies to validate the clinical relevance of these subgroups and highlights the potential of in vivo MRS as a noninvasive diagnostic tool for retinoblastoma patient stratification. PMID:26348444

  19. Two-dimensional infrared correlation spectroscopy study of the aggregation of cytochrome c in the presence of dimyristoylphosphatidylglycerol.

    PubMed Central

    Paquet, M J; Laviolette, M; Pézolet, M; Auger, M

    2001-01-01

    Two-dimensional infrared correlation spectroscopy (2D-IR) was used in this study to investigate the aggregation of cytochrome c in the presence of dimyristoylphosphatidylglycerol. The influence of temperature on the aggregation has been evaluated by monitoring the intensity of a band at 1616 cm(-1), which is characteristic of aggregated proteins, and the 2D-IR analysis has been used to determine the various secondary structure components of cytochrome c involved before and during its aggregation. The 2D-IR correlation analysis clearly reveals for the first time that aggregation starts to occur between nearly native proteins, which then unfold, yielding to further aggregation of the protein. Later in the aggregation process, the formation of intermolecular bonds and unfolding of the alpha-helices appear to be simultaneous. These results lead us to propose a two-step aggregation process. Finally, the results obtained during the heating period clearly indicate that before the protein starts to aggregate, there is a loosening of the tertiary structure of cytochrome c, resulting in a decrease of the beta-sheet content and an increase of the amount of beta-turns. This study clearly demonstrates the potential of 2D-IR spectroscopy to investigate the aggregation of proteins and this technique could therefore be applied to other proteins such as those involved in fibrilogenesis. PMID:11423415

  20. Measuring and imaging diffusion with multiple scan speed image correlation spectroscopy.

    PubMed

    Gröner, Nadine; Capoulade, Jérémie; Cremer, Christoph; Wachsmuth, Malte

    2010-09-27

    The intracellular mobility of biomolecules is determined by transport and diffusion as well as molecular interactions and is crucial for many processes in living cells. Methods of fluorescence microscopy like confocal laser scanning microscopy (CLSM) can be used to characterize the intracellular distribution of fluorescently labeled biomolecules. Fluorescence correlation spectroscopy (FCS) is used to describe diffusion, transport and photo-physical processes quantitatively. As an alternative to FCS, spatially resolved measurements of mobilities can be implemented using a CLSM by utilizing the spatio-temporal information inscribed into the image by the scan process, referred to as raster image correlation spectroscopy (RICS). Here we present and discuss an extended approach, multiple scan speed image correlation spectroscopy (msICS), which benefits from the advantages of RICS, i.e. the use of widely available instrumentation and the extraction of spatially resolved mobility information, without the need of a priori knowledge of diffusion properties. In addition, msICS covers a broad dynamic range, generates correlation data comparable to FCS measurements, and allows to derive two-dimensional maps of diffusion coefficients. We show the applicability of msICS to fluorophores in solution and to free EGFP in living cells.

  1. Determination of organic compounds in water using ultraviolet LED

    NASA Astrophysics Data System (ADS)

    Kim, Chihoon; Ji, Taeksoo; Eom, Joo Beom

    2018-04-01

    This paper describes a method of detecting organic compounds in water using an ultraviolet LED (280 nm) spectroscopy system and a photodetector. The LED spectroscopy system showed a high correlation between the concentration of the prepared potassium hydrogen phthalate and that calculated by multiple linear regression, indicating an adjusted coefficient of determination ranging from 0.953-0.993. In addition, a comparison between the performance of the spectroscopy system and the total organic carbon analyzer indicated that the difference in concentration was small. Based on the close correlation between the spectroscopy and photodetector absorbance values, organic measurement with a photodetector could be configured for monitoring.

  2. Correlative Raman spectroscopy and focused ion beam for targeted phase boundary analysis of titania polymorphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangum, John S.; Chan, Lisa H.; Schmidt, Ute

    Site-specific preparation of specimens using focused ion beam instruments for transmission electron microscopy is at the forefront of targeting regions of interest for nanoscale characterization. Typical methods of pinpointing desired features include electron backscatter diffraction for differentiating crystal structures and energy-dispersive X-Ray spectroscopy for probing compositional variations. Yet there are situations, notably in the titanium dioxide system, where these techniques can fail. Differentiating between the brookite and anatase polymorphs of titania is either excessively laborious or impossible with the aforementioned techniques. However, due to differences in bonding structure, Raman spectroscopy serves as an ideal candidate for polymorph differentiation. In thismore » work, a correlative approach utilizing Raman spectroscopy for targeted focused ion beam specimen preparation was employed. Dark field imaging and diffraction in the transmission electron microscope confirmed the region of interest located via Raman spectroscopy and demonstrated the validity of this new method. Correlative Raman spectroscopy, scanning electron microscopy, and focused ion beam is shown to be a promising new technique for identifying site-specific preparation of nanoscale specimens in cases where conventional approaches do not suffice.« less

  3. Correlative Raman spectroscopy and focused ion beam for targeted phase boundary analysis of titania polymorphs.

    PubMed

    Mangum, John S; Chan, Lisa H; Schmidt, Ute; Garten, Lauren M; Ginley, David S; Gorman, Brian P

    2018-05-01

    Site-specific preparation of specimens using focused ion beam instruments for transmission electron microscopy is at the forefront of targeting regions of interest for nanoscale characterization. Typical methods of pinpointing desired features include electron backscatter diffraction for differentiating crystal structures and energy-dispersive X-Ray spectroscopy for probing compositional variations. Yet there are situations, notably in the titanium dioxide system, where these techniques can fail. Differentiating between the brookite and anatase polymorphs of titania is either excessively laborious or impossible with the aforementioned techniques. However, due to differences in bonding structure, Raman spectroscopy serves as an ideal candidate for polymorph differentiation. In this work, a correlative approach utilizing Raman spectroscopy for targeted focused ion beam specimen preparation was employed. Dark field imaging and diffraction in the transmission electron microscope confirmed the region of interest located via Raman spectroscopy and demonstrated the validity of this new method. Correlative Raman spectroscopy, scanning electron microscopy, and focused ion beam is shown to be a promising new technique for identifying site-specific preparation of nanoscale specimens in cases where conventional approaches do not suffice. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Correlative Raman spectroscopy and focused ion beam for targeted phase boundary analysis of titania polymorphs

    DOE PAGES

    Mangum, John S.; Chan, Lisa H.; Schmidt, Ute; ...

    2018-02-23

    Site-specific preparation of specimens using focused ion beam instruments for transmission electron microscopy is at the forefront of targeting regions of interest for nanoscale characterization. Typical methods of pinpointing desired features include electron backscatter diffraction for differentiating crystal structures and energy-dispersive X-Ray spectroscopy for probing compositional variations. Yet there are situations, notably in the titanium dioxide system, where these techniques can fail. Differentiating between the brookite and anatase polymorphs of titania is either excessively laborious or impossible with the aforementioned techniques. However, due to differences in bonding structure, Raman spectroscopy serves as an ideal candidate for polymorph differentiation. In thismore » work, a correlative approach utilizing Raman spectroscopy for targeted focused ion beam specimen preparation was employed. Dark field imaging and diffraction in the transmission electron microscope confirmed the region of interest located via Raman spectroscopy and demonstrated the validity of this new method. Correlative Raman spectroscopy, scanning electron microscopy, and focused ion beam is shown to be a promising new technique for identifying site-specific preparation of nanoscale specimens in cases where conventional approaches do not suffice.« less

  5. Proton MR spectroscopy in predicting the increase of perfusion MR imaging for WHO grade II gliomas.

    PubMed

    Guillevin, Remy; Menuel, Carole; Abud, Lucas; Costalat, Robert; Capelle, Laurent; Hoang-Xuan, Khê; Habas, Christophe; Chiras, Jacques; Vallée, Jean-Noel

    2012-03-01

    To investigate the correlation between the metabolite ratios obtained from proton magnetic resonance (MR) spectroscopy and those obtained from MR perfusion parameters (relative cerebral blood volume [rCBV]) in a cohort of low-grade glioma (LGG). Patients underwent prospectively conventional MR, proton magnetic resonance spectroscopy ((1) HMRS), and perfusion-weighted images (PWI). Statistical analyses were performed to determine the correlative and independent predictive factors of rCBVmax and the metabolite ratio thresholds with optimum sensitivity and specificity. Thirty-one patients were included in this study. Linear correlations were observed between the metabolic ratios (lactate [Lac]/creatine [Cr], choline [Cho]/N-acetyl-aspartate [NAA], free-lipids/Cr) and rCBVmax (P < 0.05). These metabolic ratios were determined to be independent predictive factors of rCBVmax (P = 0.027, 0.011 and 0.032, respectively). According to the receiver operating characteristic curves, the cutoff values of the metabolic ratios to discriminate between the two populations of rCBVmax (<1.7 versus = 1.7) were 1.72, 1.54, and 1.40, respectively, with a sensitivity = 75% and a specificity >95% for Lac/Cr. This study demonstrated consistent correlations between the data from (1) HMRS and PWI. The Lac/Cr ratio predicts regional hemodynamic changes, which are themselves a useful biomarker of clinical prognosis in patients with LGG. As such, this ratio may provide a new parameter for making improved clinical decisions. Copyright © 2011 Wiley-Liss, Inc.

  6. Blood proteins analysis by Raman spectroscopy method

    NASA Astrophysics Data System (ADS)

    Artemyev, D. N.; Bratchenko, I. A.; Khristoforova, Yu. A.; Lykina, A. A.; Myakinin, O. O.; Kuzmina, T. P.; Davydkin, I. L.; Zakharov, V. P.

    2016-04-01

    This work is devoted to study the possibility of plasma proteins (albumin, globulins) concentration measurement using Raman spectroscopy setup. The blood plasma and whole blood were studied in this research. The obtained Raman spectra showed significant variation of intensities of certain spectral bands 940, 1005, 1330, 1450 and 1650 cm-1 for different protein fractions. Partial least squares regression analysis was used for determination of correlation coefficients. We have shown that the proposed method represents the structure and biochemical composition of major blood proteins.

  7. The static structure and dynamics of cadmium sulfide nanoparticles within poly(styrene- block-isoprene) diblock copolymer melts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Woo -Sik; Koo, Peter; Bryson, Kyle

    Here, the static structure and dynamic behavior of cadmium sulfide nanoparticles suspended in block copolymer matrix are investigated using transmission electron microscopy, small-angle X-ray scattering, and X-ray photon correlation spectroscopy. The transmission electron micro- scopy study shows that cadmium sulfide nanoparticles are preferentially segregated within the polyisoprene domain of a poly(styrene- block-isoprene) diblock copolymer. For the dynamics study, X-ray photon correlation spectroscopy captures the relaxation process of cadmium sulfide nanoparticles. The measured characteristic relaxation time reveals that the observed dynamics are hyperdiffusive. The characteristic velocity and corresponding activation energy, which are hallmarks of a hyperdiffusive system, are determined from themore » relationship between the characteristic relaxation time and the wavevector.« less

  8. The static structure and dynamics of cadmium sulfide nanoparticles within poly(styrene- block-isoprene) diblock copolymer melts

    DOE PAGES

    Jang, Woo -Sik; Koo, Peter; Bryson, Kyle; ...

    2015-12-20

    Here, the static structure and dynamic behavior of cadmium sulfide nanoparticles suspended in block copolymer matrix are investigated using transmission electron microscopy, small-angle X-ray scattering, and X-ray photon correlation spectroscopy. The transmission electron micro- scopy study shows that cadmium sulfide nanoparticles are preferentially segregated within the polyisoprene domain of a poly(styrene- block-isoprene) diblock copolymer. For the dynamics study, X-ray photon correlation spectroscopy captures the relaxation process of cadmium sulfide nanoparticles. The measured characteristic relaxation time reveals that the observed dynamics are hyperdiffusive. The characteristic velocity and corresponding activation energy, which are hallmarks of a hyperdiffusive system, are determined from themore » relationship between the characteristic relaxation time and the wavevector.« less

  9. Mechanical Anisotropy and Pressure Induced Structural Changes in Piroxicam Crystals Probed by In Situ Indentation and Raman Spectroscopy

    NASA Astrophysics Data System (ADS)

    Manimunda, Praveena; Hintsala, Eric; Asif, Syed; Mishra, Manish Kumar

    2017-01-01

    The ability to correlate mechanical and chemical characterization techniques in real time is both lacking and powerful tool for gaining insights into material behavior. This is demonstrated through use of a novel nanoindentation device equipped with Raman spectroscopy to explore the deformation-induced structural changes in piroxicam crystals. Mechanical anisotropy was observed in two major faces ( 0bar{1}1 ) and (011), which are correlated to changes in the interlayer interaction from in situ Raman spectra recorded during indentation. The results of this study demonstrate the considerable potential of an in situ Raman nanoindentation instrument for studying a variety of topics, including stress-induced phase transformation mechanisms, mechanochemistry, and solid state reactivity under mechanical forces that occur in molecular and pharmaceutical solids.

  10. Dielectric and structural characterisation of chalcogenide glasses via terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Ravagli, A.; Naftaly, M.; Craig, C.; Weatherby, E.; Hewak, D. W.

    2017-07-01

    Terahertz time-domain spectroscopy (THz TDS) was used to investigate a series of chalcogenide glasses. In particular, the dielectric properties at terahertz frequencies were determined and correlated with the glass composition. The experimental results showed a strong relationship between the dielectric properties and the polarizability of the glasses studied. A new explanation based on the coordination number of the metallic cations was proposed to understand these observations.

  11. Calibration of diffuse correlation spectroscopy blood flow index with venous-occlusion diffuse optical spectroscopy in skeletal muscle

    PubMed Central

    Li, Zhe; Baker, Wesley B.; Parthasarathy, Ashwin B.; Ko, Tiffany S.; Wang, Detian; Schenkel, Steven; Durduran, Turgut; Li, Gang; Yodh, Arjun G.

    2015-01-01

    Abstract. We investigate and assess the utility of a simple scheme for continuous absolute blood flow monitoring based on diffuse correlation spectroscopy (DCS). The scheme calibrates DCS using venous-occlusion diffuse optical spectroscopy (VO-DOS) measurements of arm muscle tissue at a single time-point. A calibration coefficient (γ) for the arm is determined, permitting conversion of DCS blood flow indices to absolute blood flow units, and a study of healthy adults (N=10) is carried out to ascertain the variability of γ. The average DCS calibration coefficient for the right (i.e., dominant) arm was γ=(1.24±0.15)×108 (mL·100  mL−1·min−1)/(cm2/s). However, variability can be significant and is apparent in our site-to-site and day-to-day repeated measurements. The peak hyperemic blood flow overshoot relative to baseline resting flow was also studied following arm-cuff ischemia; excellent agreement between VO-DOS and DCS was found (R2=0.95, slope=0.94±0.07, mean difference=−0.10±0.45). Finally, we show that incorporation of subject-specific absolute optical properties significantly improves blood flow calibration accuracy. PMID:26720870

  12. Sequential single shot X-ray photon correlation spectroscopy at the SACLA free electron laser

    DOE PAGES

    Lehmkühler, Felix; Kwaśniewski, Paweł; Roseker, Wojciech; ...

    2015-11-27

    In this study, hard X-ray free electron lasers allow for the first time to access dynamics of condensed matter samples ranging from femtoseconds to several hundred seconds. In particular, the exceptional large transverse coherence of the X-ray pulses and the high time-averaged flux promises to reach time and length scales that have not been accessible up to now with storage ring based sources. However, due to the fluctuations originating from the stochastic nature of the self-amplified spontaneous emission (SASE) process the application of well established techniques such as X-ray photon correlation spectroscopy (XPCS) is challenging. Here we demonstrate a single-shotmore » based sequential XPCS study on a colloidal suspension with a relaxation time comparable to the SACLA free-electron laser pulse repetition rate. High quality correlation functions could be extracted without any indications for sample damage. This opens the way for systematic sequential XPCS experiments at FEL sources.« less

  13. Sequential single shot X-ray photon correlation spectroscopy at the SACLA free electron laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmkühler, Felix; Kwaśniewski, Paweł; Roseker, Wojciech

    In this study, hard X-ray free electron lasers allow for the first time to access dynamics of condensed matter samples ranging from femtoseconds to several hundred seconds. In particular, the exceptional large transverse coherence of the X-ray pulses and the high time-averaged flux promises to reach time and length scales that have not been accessible up to now with storage ring based sources. However, due to the fluctuations originating from the stochastic nature of the self-amplified spontaneous emission (SASE) process the application of well established techniques such as X-ray photon correlation spectroscopy (XPCS) is challenging. Here we demonstrate a single-shotmore » based sequential XPCS study on a colloidal suspension with a relaxation time comparable to the SACLA free-electron laser pulse repetition rate. High quality correlation functions could be extracted without any indications for sample damage. This opens the way for systematic sequential XPCS experiments at FEL sources.« less

  14. Understanding individual defects in CdTe thin-film solar cells via STEM: From atomic structure to electrical activity

    DOE PAGES

    Li, Chen; Poplawsky, Jonathan; Yan, Yanfa; ...

    2017-07-01

    Here in this paper we review a systematic study of the structure-property correlations of a series of defects in CdTe solar cells. A variety of experimental methods, including aberration-corrected scanning transmission electron microscopy, electron energy loss spectroscopy, energy dispersive X-ray spectroscopy, and electron-beam-induced current have been combined with density-functional theory. The research traces the connections between the structures and electrical activities of individual defects including intra-grain partial dislocations, grain boundaries and the CdTe/CdS interface. The interpretations of the physical origin underlying the structure-property correlation provide insights that should further the development of future CdTe solar cells.

  15. Electrically induced microflows probed by fluorescence correlation spectroscopy.

    PubMed

    Ybert, C; Nadal, F; Salomé, R; Argoul, F; Bourdieu, L

    2005-03-01

    We report on the experimental characterisation of electrically induced flows at the micrometer scale through Fluorescence Correlation Spectroscopy (FCS) measurements. We stress the potential of FCS as a useful characterisation technique in microfluidics devices for transport properties cartography. The experimental results obtained in a model situation are in agreement with previous calculations (F. Nadal, F. Argoul, P. Kestener, B. Pouligny, C. Ybert, A. Ajdari, Eur. Phys. J. E 9, 387 (2002)) predicting the structure and electric-field dependency of the induced flow. Additionally, the present study evidences a complex behaviour of the probe nanobeads under electric field whose precise understanding might prove relevant for situations where nano-objects interact with an external electric field.

  16. In vivo preclinical verification of a multimodal diffuse reflectance and correlation spectroscopy system for sensing tissue perfusion

    NASA Astrophysics Data System (ADS)

    Pakela, Julia M.; Lee, Seung Yup; Hedrick, Taylor L.; Vishwanath, Karthik; Helton, Michael C.; Chung, Yooree G.; Kolodziejski, Noah J.; Staples, Christopher J.; McAdams, Daniel R.; Fernandez, Daniel E.; Christian, James F.; O'Reilly, Jameson; Farkas, Dana; Ward, Brent B.; Feinberg, Stephen E.; Mycek, Mary-Ann

    2017-02-01

    In reconstructive surgery, impeded blood flow in microvascular free flaps due to a compromise in arterial or venous patency secondary to blood clots or vessel spasms can rapidly result in flap failures. Thus, the ability to detect changes in microvascular free flaps is critical. In this paper, we report progress on in vivo pre-clinical testing of a compact, multimodal, fiber-based diffuse correlation and reflectance spectroscopy system designed to quantitatively monitor tissue perfusion in a porcine model's surgically-grafted free flap. We also describe the device's sensitivity to incremental blood flow changes and discuss the prospects for continuous perfusion monitoring in future clinical translational studies.

  17. Boron difluoride dibenzoylmethane derivatives: Electronic structure and luminescence

    NASA Astrophysics Data System (ADS)

    Tikhonov, Sergey A.; Vovna, Vitaliy I.; Osmushko, Ivan S.; Fedorenko, Elena V.; Mirochnik, Anatoliy G.

    2018-01-01

    Electronic structure and optical properties of boron difluoride dibenzoylmethanate and four of its derivatives have been studied by X-ray photoelectron spectroscopy, absorption and luminescence spectroscopy and quantum chemistry (DFT, TDDFT). The relative quantum luminescence yields have been revealed to correlate with charge transfers of HOMO-LUMO transitions, energy barriers of aromatic substituents rotation and the lifetime of excited states in the investigated complexes. The bathochromic shift of intensive bands in the optical spectra has been observed to occur when the functional groups are introduced into p-positions of phenyl cycles due to destabilizing HOMO levels. Calculated energy intervals between electronic levels correlate well with XPS spectra structure of valence and core electrons.

  18. Understanding individual defects in CdTe thin-film solar cells via STEM: From atomic structure to electrical activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chen; Poplawsky, Jonathan; Yan, Yanfa

    Here in this paper we review a systematic study of the structure-property correlations of a series of defects in CdTe solar cells. A variety of experimental methods, including aberration-corrected scanning transmission electron microscopy, electron energy loss spectroscopy, energy dispersive X-ray spectroscopy, and electron-beam-induced current have been combined with density-functional theory. The research traces the connections between the structures and electrical activities of individual defects including intra-grain partial dislocations, grain boundaries and the CdTe/CdS interface. The interpretations of the physical origin underlying the structure-property correlation provide insights that should further the development of future CdTe solar cells.

  19. Correlation between morphology, electron band structure, and resistivity of Pb atomic chains on the Si(5 5 3)-Au surface

    NASA Astrophysics Data System (ADS)

    Jałochowski, M.; Kwapiński, T.; Łukasik, P.; Nita, P.; Kopciuszyński, M.

    2016-07-01

    Structural and electron transport properties of multiple Pb atomic chains fabricated on the Si(5 5 3)-Au surface are investigated using scanning tunneling spectroscopy, reflection high electron energy diffraction, angular resolved photoemission electron spectroscopy and in situ electrical resistance. The study shows that Pb atomic chains growth modulates the electron band structure of pristine Si(5 5 3)-Au surface and hence changes its sheet resistivity. Strong correlation between chains morphology, electron band structure and electron transport properties is found. To explain experimental findings a theoretical tight-binding model of multiple atomic chains interacting on effective substrate is proposed.

  20. Molecular dynamics simulation of nonlinear spectroscopies of intermolecular motions in liquid water.

    PubMed

    Yagasaki, Takuma; Saito, Shinji

    2009-09-15

    Water is the most extensively studied of liquids because of both its ubiquity and its anomalous thermodynamic and dynamic properties. The properties of water are dominated by hydrogen bonds and hydrogen bond network rearrangements. Fundamental information on the dynamics of liquid water has been provided by linear infrared (IR), Raman, and neutron-scattering experiments; molecular dynamics simulations have also provided insights. Recently developed higher-order nonlinear spectroscopies open new windows into the study of the hydrogen bond dynamics of liquid water. For example, the vibrational lifetimes of stretches and a bend, intramolecular features of water dynamics, can be accurately measured and are found to be on the femtosecond time scale at room temperature. Higher-order nonlinear spectroscopy is expressed by a multitime correlation function, whereas traditional linear spectroscopy is given by a one-time correlation function. Thus, nonlinear spectroscopy yields more detailed information on the dynamics of condensed media than linear spectroscopy. In this Account, we describe the theoretical background and methods for calculating higher order nonlinear spectroscopy; equilibrium and nonequilibrium molecular dynamics simulations, and a combination of both, are used. We also present the intermolecular dynamics of liquid water revealed by fifth-order two-dimensional (2D) Raman spectroscopy and third-order IR spectroscopy. 2D Raman spectroscopy is sensitive to couplings between modes; the calculated 2D Raman signal of liquid water shows large anharmonicity in the translational motion and strong coupling between the translational and librational motions. Third-order IR spectroscopy makes it possible to examine the time-dependent couplings. The 2D IR spectra and three-pulse photon echo peak shift show the fast frequency modulation of the librational motion. A significant effect of the translational motion on the fast frequency modulation of the librational motion is elucidated by introducing the "translation-free" molecular dynamics simulation. The isotropic pump-probe signal and the polarization anisotropy decay show fast transfer of the librational energy to the surrounding water molecules, followed by relaxation to the hot ground state. These theoretical methods do not require frequently used assumptions and can thus be called ab initio methods; together with multidimensional nonlinear spectroscopies, they provide powerful methods for examining the inter- and intramolecular details of water dynamics.

  1. Specificity and mechanism of action of alpha-helical membrane-active peptides interacting with model and biological membranes by single-molecule force spectroscopy.

    PubMed

    Sun, Shiyu; Zhao, Guangxu; Huang, Yibing; Cai, Mingjun; Shan, Yuping; Wang, Hongda; Chen, Yuxin

    2016-07-01

    In this study, to systematically investigate the targeting specificity of membrane-active peptides on different types of cell membranes, we evaluated the effects of peptides on different large unilamellar vesicles mimicking prokaryotic, normal eukaryotic, and cancer cell membranes by single-molecule force spectroscopy and spectrum technology. We revealed that cationic membrane-active peptides can exclusively target negatively charged prokaryotic and cancer cell model membranes rather than normal eukaryotic cell model membranes. Using Acholeplasma laidlawii, 3T3-L1, and HeLa cells to represent prokaryotic cells, normal eukaryotic cells, and cancer cells in atomic force microscopy experiments, respectively, we further studied that the single-molecule targeting interaction between peptides and biological membranes. Antimicrobial and anticancer activities of peptides exhibited strong correlations with the interaction probability determined by single-molecule force spectroscopy, which illustrates strong correlations of peptide biological activities and peptide hydrophobicity and charge. Peptide specificity significantly depends on the lipid compositions of different cell membranes, which validates the de novo design of peptide therapeutics against bacteria and cancers.

  2. Density Functional Calculations for Prediction of 57Fe Mössbauer Isomer Shifts and Quadrupole Splittings in β-Diketiminate Complexes

    PubMed Central

    2017-01-01

    The relative ease of Mössbauer spectroscopy and of density functional theory (DFT) calculations encourages the use of Mössbauer parameters as a validation method for calculations, and the use of calculations as a double check on crystallographic structures. A number of studies have proposed correlations between the computationally determined electron density at the iron nucleus and the observed isomer shift, but deviations from these correlations in low-valent iron β-diketiminate complexes encouraged us to determine a new correlation for these compounds. The use of B3LYP/def2-TZVP in the ORCA platform provides an excellent balance of accuracy and speed. We provide here not only this new correlation and a clear guide to its use but also a systematic analysis of the limitations of this approach. We also highlight the impact of crystallographic inaccuracies, DFT model truncation, and spin states, with intent to assist experimentalists to use Mössbauer spectroscopy and calculations together. PMID:28691111

  3. Real-time autocorrelator for fluorescence correlation spectroscopy based on graphical-processor-unit architecture: method, implementation, and comparative studies

    NASA Astrophysics Data System (ADS)

    Laracuente, Nicholas; Grossman, Carl

    2013-03-01

    We developed an algorithm and software to calculate autocorrelation functions from real-time photon-counting data using the fast, parallel capabilities of graphical processor units (GPUs). Recent developments in hardware and software have allowed for general purpose computing with inexpensive GPU hardware. These devices are more suited for emulating hardware autocorrelators than traditional CPU-based software applications by emphasizing parallel throughput over sequential speed. Incoming data are binned in a standard multi-tau scheme with configurable points-per-bin size and are mapped into a GPU memory pattern to reduce time-expensive memory access. Applications include dynamic light scattering (DLS) and fluorescence correlation spectroscopy (FCS) experiments. We ran the software on a 64-core graphics pci card in a 3.2 GHz Intel i5 CPU based computer running Linux. FCS measurements were made on Alexa-546 and Texas Red dyes in a standard buffer (PBS). Software correlations were compared to hardware correlator measurements on the same signals. Supported by HHMI and Swarthmore College

  4. Insight into resolution enhancement in generalized two-dimensional correlation spectroscopy.

    PubMed

    Ma, Lu; Sikirzhytski, Vitali; Hong, Zhenmin; Lednev, Igor K; Asher, Sanford A

    2013-03-01

    Generalized two-dimensional correlation spectroscopy (2D-COS) can be used to enhance spectral resolution in order to help differentiate highly overlapped spectral bands. Despite the numerous extensive 2D-COS investigations, the origin of the 2D spectral resolution enhancement mechanism(s) is not completely understood. In the work here, we studied the 2D-COS of simulated spectra in order to develop new insights into the dependence of 2D-COS spectral features on the overlapping band separations, their intensities and bandwidths, and their band intensity change rates. We found that the features in the 2D-COS maps that are derived from overlapping bands were determined by the spectral normalized half-intensities and the total intensity changes of the correlated bands. We identified the conditions required to resolve overlapping bands. In particular, 2D-COS peak resolution requires that the normalized half-intensities of a correlating band have amplitudes between the maxima and minima of the normalized half-intensities of the overlapping bands.

  5. Insight into Resolution Enhancement in Generalized Two-Dimensional Correlation Spectroscopy

    PubMed Central

    Ma, Lu; Sikirzhytski, Vitali; Hong, Zhenmin; Lednev, Igor K.; Asher, Sanford A.

    2014-01-01

    Generalized two-dimensional correlation spectroscopy (2D COS) can be used to enhance spectral resolution in order to help differentiate highly overlapped spectral bands. Despite the numerous extensive 2D COS investigations, the origin of the 2D spectral resolution enhancement mechanism(s) are not completely understood. In the work here we studied the 2D COS of simulated spectra in order to develop new insights into the dependence of the 2D COS spectral features on the overlapping band separations, their intensities and bandwidths, and their band intensity change rates. We find that the features in the 2D COS maps that derive from overlapping bands are determined by the spectral normalized half-intensities and the total intensity changes of the correlated bands. We identify the conditions required to resolve overlapping bands. In particular, 2D COS peak resolution requires that the normalized half-intensities of a correlating band have amplitudes between the maxima and minima of the normalized half-intensities of the overlapping bands. PMID:23452492

  6. Scanning, non-contact, hybrid broadband diffuse optical spectroscopy and diffuse correlation spectroscopy system.

    PubMed

    Johansson, Johannes D; Mireles, Miguel; Morales-Dalmau, Jordi; Farzam, Parisa; Martínez-Lozano, Mar; Casanovas, Oriol; Durduran, Turgut

    2016-02-01

    A scanning system for small animal imaging using non-contact, hybrid broadband diffuse optical spectroscopy (ncDOS) and diffuse correlation spectroscopy (ncDCS) is presented. The ncDOS uses a two-dimensional spectrophotometer retrieving broadband (610-900 nm) spectral information from up to fifty-seven source-detector distances between 2 and 5 mm. The ncDCS data is simultaneously acquired from four source-detector pairs. The sample is scanned in two dimensions while tracking variations in height. The system has been validated with liquid phantoms, demonstrated in vivo on a human fingertip during an arm cuff occlusion and on a group of mice with xenoimplanted renal cell carcinoma.

  7. The Correlation Between Dislocations and Vacancy Defects Using Positron Annihilation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Pang, Jinbiao; Li, Hui; Zhou, Kai; Wang, Zhu

    2012-07-01

    An analysis program for positron annihilation lifetime spectra is only applicable to isolated defects, but is of no use in the presence of defective correlations. Such limitations have long caused problems for positron researchers in their studies of complicated defective systems. In order to solve this problem, we aim to take a semiconductor material, for example, to achieve a credible average lifetime of single crystal silicon under plastic deformation at different temperatures using positron life time spectroscopy. By establishing reasonable positron trapping models with defective correlations and sorting out four lifetime components with multiple parameters, as well as their respective intensities, information is obtained on the positron trapping centers, such as the positron trapping rates of defects, the density of the dislocation lines and correlation between the dislocation lines, and the vacancy defects, by fitting with the average lifetime with the aid of Matlab software. These results give strong grounds for the existence of dislocation-vacancy correlation in plastically deformed silicon, and lay a theoretical foundation for the analysis of positron lifetime spectra when the positron trapping model involves dislocation-related defects.

  8. Validating in vivo Raman spectroscopy of bone in human subjects

    NASA Astrophysics Data System (ADS)

    Esmonde-White, Francis W. L.; Morris, Michael D.

    2013-03-01

    Raman spectroscopy can non-destructively measure properties of bone related to mineral density, mineral composition, and collagen composition. Bone properties can be measured through the skin in animal and human subjects, but correlations between the transcutaneous and exposed bone measurements have only been reported for human cadavers. In this study, we examine human subjects to collect measurements transcutaneously, on surgically exposed bone, and on recovered bone fragments. This data will be used to demonstrate in vivo feasibility and to compare transcutaneous and exposed Raman spectroscopy of bone. A commercially available Raman spectrograph and optical probe operating at 785 nm excitation are used for the in vivo measurements. Requirements for applying Raman spectroscopy during a surgery are also discussed.

  9. [Pattern recognition of decorative papers with different visual characteristics using visible spectroscopy coupled with principal component analysis (PCA)].

    PubMed

    Zhang, Mao-mao; Yang, Zhong; Lu, Bin; Liu, Ya-na; Sun, Xue-dong

    2015-02-01

    As one of the most important decorative materials for the modern household products, decorative papers impregnated with melamine not only have better decorative performance, but also could greatly improve the surface properties of materials. However, the appearance quality (such as color-difference evaluation and control) of decorative papers, as an important index for the surface quality of decorative paper, has been a puzzle for manufacturers and consumers. Nowadays, human eye is used to discriminate whether there exist color difference in the factory, which is not only of low efficiency but also prone to bring subjective error. Thus, it is of great significance to find an effective method in order to realize the fast recognition and classification of the decorative papers. In the present study, the visible spectroscopy coupled with principal component analysis (PCA) was used for the pattern recognition of decorative papers with different visual characteristics to investigate the feasibility of visible spectroscopy to rapidly recognize the types of decorative papers. The results showed that the correlation between visible spectroscopy and visual characteristics (L*, a* and b*) was significant, and the correlation coefficients wereup to 0.85 and some was even more than 0. 99, which might suggest that the visible spectroscopy reflected some information about visual characteristics on the surface of decorative papers. When using the visible spectroscopy coupled with PCA to recognize the types of decorative papers, the accuracy reached 94%-100%, which might suggest that the visible spectroscopy was a very potential new method for the rapid, objective and accurate recognition of decorative papers with different visual characteristics.

  10. Measuring the diffusion coefficient of ganglioside on cell membrane by fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Dong, Shiqing; You, Minghai; Chen, Jianling; Zhou, Jie; Xie, Shusen; Yang, Hongqin

    2017-06-01

    The fluidity of proteins and lipids on cell membrane plays an important role in cell’s physiological functions. Fluorescence correlation spectroscopy (FCS) is an effective technique to detect the rapid dynamic behaviors of proteins and/or lipids in living cells. In this study, we used the rhodamine6G solution to optimize the FCS system. And, cholera toxin B subunit (CT-B) was used to label ganglioside on living Hela cell membranes. The diffusion time and coefficients of ganglioside can be obtained through fitting the autocorrelation curve based on the model of two-dimensional cell membrane. The results showed that the diffusion coefficients of ganglioside distributed within a wide range. It revealed the lateral diffusion of lipids on cell membrane was inhomogeneous, which was due to different microstructures of cytoplasmic membrane. The study provides a helpful method for further studying the dynamic characteristics of proteins and lipids molecules on living cell membrane.

  11. Clinical Applications of Near-infrared Diffuse Correlation Spectroscopy and Tomography for Tissue Blood Flow Monitoring and Imaging

    PubMed Central

    Shang, Yu; Li, Ting; Yu, Guoqiang

    2017-01-01

    Blood flow is one such available observable promoting a wealth of physiological insight both individually and in combination with other metrics. Near-infrared diffuse correlation spectroscopy (DCS) and, to a lesser extent, diffuse correlation tomography (DCT), have increasingly received interest over the past decade as noninvasive methods for tissue blood flow measurements and imaging. DCS/DCT offers several attractive features for tissue blood flow measurements/imaging such as noninvasiveness, portability, high temporal resolution, and relatively large penetration depth (up to several centimeters). This review first introduces the basic principle and instrumentation of DCS/DCT, followed by presenting clinical application examples of DCS/DCT for the diagnosis and therapeutic monitoring of diseases in a variety of organs/tissues including brain, skeletal muscle, and tumor. Clinical study results demonstrate technical versatility of DCS/DCT in providing important information for disease diagnosis and intervention monitoring. PMID:28199219

  12. Microsecond protein dynamics observed at the single-molecule level

    NASA Astrophysics Data System (ADS)

    Otosu, Takuhiro; Ishii, Kunihiko; Tahara, Tahei

    2015-07-01

    How polypeptide chains acquire specific conformations to realize unique biological functions is a central problem of protein science. Single-molecule spectroscopy, combined with fluorescence resonance energy transfer, is utilized to study the conformational heterogeneity and the state-to-state transition dynamics of proteins on the submillisecond to second timescales. However, observation of the dynamics on the microsecond timescale is still very challenging. This timescale is important because the elementary processes of protein dynamics take place and direct comparison between experiment and simulation is possible. Here we report a new single-molecule technique to reveal the microsecond structural dynamics of proteins through correlation of the fluorescence lifetime. This method, two-dimensional fluorescence lifetime correlation spectroscopy, is applied to clarify the conformational dynamics of cytochrome c. Three conformational ensembles and the microsecond transitions in each ensemble are indicated from the correlation signal, demonstrating the importance of quantifying microsecond dynamics of proteins on the folding free energy landscape.

  13. Microsecond protein dynamics observed at the single-molecule level

    PubMed Central

    Otosu, Takuhiro; Ishii, Kunihiko; Tahara, Tahei

    2015-01-01

    How polypeptide chains acquire specific conformations to realize unique biological functions is a central problem of protein science. Single-molecule spectroscopy, combined with fluorescence resonance energy transfer, is utilized to study the conformational heterogeneity and the state-to-state transition dynamics of proteins on the submillisecond to second timescales. However, observation of the dynamics on the microsecond timescale is still very challenging. This timescale is important because the elementary processes of protein dynamics take place and direct comparison between experiment and simulation is possible. Here we report a new single-molecule technique to reveal the microsecond structural dynamics of proteins through correlation of the fluorescence lifetime. This method, two-dimensional fluorescence lifetime correlation spectroscopy, is applied to clarify the conformational dynamics of cytochrome c. Three conformational ensembles and the microsecond transitions in each ensemble are indicated from the correlation signal, demonstrating the importance of quantifying microsecond dynamics of proteins on the folding free energy landscape. PMID:26151767

  14. Structure changes in metastable and unstable foams probed by multispeckle diffusing light spectroscopy

    NASA Astrophysics Data System (ADS)

    Yuvchenko, S. A.; Tzyipin, D. V.; Isaeva, A. A.; Isaeva, E. A.; Ushakova, O. V.; Macheev, M. S.; Zimnyakov, D. A.

    2018-04-01

    The temporal evolution of the metastable and unstable foams had been studied. Diffusion wave spectroscopy was chosen as the diagnostic method, with calculation of the correlation time of the fluctuations in the intensity of the probing radiation. It was established that the correlation time increases with the time according to the power law with different parameters, depending on the type of the evolution and was found to be equal to 0.5 for the case of the metastable and to 2,52 for the unstable foam. It was also determined that the behaviour of the correlation time agrees well with the evolution of the characteristic dimensions of the scatterers in the form of bubbles in the medium, which can be used for contactless monitoring of the foaming processes in the production of the foam-like materials for various applications, for example, in the synthesis of the biocompatible polymer matrices - scaffolds.

  15. A forestry GIS-based study on evaluating the potential of imaging spectroscopy in mapping forest land fertility

    NASA Astrophysics Data System (ADS)

    Mõttus, Matti; Takala, Tuure

    2014-12-01

    Fertility, or the availability of nutrients and water, controls forest productivity. It affects its carbon sequestration, and thus the forest's effect on climate, as well as its commercial value. Although the availability of nutrients cannot be measured directly using remote sensing methods, fertility alters several vegetation traits detectable from the reflectance spectra of the forest stand, including its pigment content and water stress. However, forest reflectance is also influenced by other factors, such as species composition and stand age. Here, we present a case study demonstrating how data obtained using imaging spectroscopy is correlated with site fertility. The study was carried out in Hyytiälä, Finland, in the southern boreal forest zone. We used a database of state-owned forest stands including basic forestry variables and a site fertility index. To test the suitability of imaging spectroscopy with different spatial and spectral resolutions for site fertility mapping, we performed two airborne acquisitions using different sensor configurations. First, the sensor was flown at a high altitude with high spectral resolution resulting in a pixel size in the order of a tree crown. Next, the same area was flown to provide reflectance data with sub-meter spatial resolution. However, to maintain usable signal-to-noise ratios, several spectral channels inside the sensor were combined, thus reducing spectral resolution. We correlated a number of narrowband vegetation indices (describing canopy biochemical composition, structure, and photosynthetic activity) on site fertility. Overall, site fertility had a significant influence on the vegetation indices but the strength of the correlation depended on dominant species. We found that high spatial resolution data calculated from the spectra of sunlit parts of tree crowns had the strongest correlation with site fertility.

  16. Ensemble and single particle fluorimetric techniques in concerted action to study the diffusion and aggregation of the glycine receptor α3 isoforms in the cell plasma membrane.

    PubMed

    Notelaers, Kristof; Smisdom, Nick; Rocha, Susana; Janssen, Daniel; Meier, Jochen C; Rigo, Jean-Michel; Hofkens, Johan; Ameloot, Marcel

    2012-12-01

    The spatio-temporal membrane behavior of glycine receptors (GlyRs) is known to be of influence on receptor homeostasis and functionality. In this work, an elaborate fluorimetric strategy was applied to study the GlyR α3K and L isoforms. Previously established differential clustering, desensitization and synaptic localization of these isoforms imply that membrane behavior is crucial in determining GlyR α3 physiology. Therefore diffusion and aggregation of homomeric α3 isoform-containing GlyRs were studied in HEK 293 cells. A unique combination of multiple diffraction-limited ensemble average methods and subdiffraction single particle techniques was used in order to achieve an integrated view of receptor properties. Static measurements of aggregation were performed with image correlation spectroscopy (ICS) and, single particle based, direct stochastic optical reconstruction microscopy (dSTORM). Receptor diffusion was measured by means of raster image correlation spectroscopy (RICS), temporal image correlation spectroscopy (TICS), fluorescence recovery after photobleaching (FRAP) and single particle tracking (SPT). The results show a significant difference in diffusion coefficient and cluster size between the isoforms. This reveals a positive correlation between desensitization and diffusion and disproves the notion that receptor aggregation is a universal mechanism for accelerated desensitization. The difference in diffusion coefficient between the clustering GlyR α3L and the non-clustering GlyR α3K cannot be explained by normal diffusion. SPT measurements indicate that the α3L receptors undergo transient trapping and directed motion, while the GlyR α3K displays mild hindered diffusion. These findings are suggestive of differential molecular interaction of the isoforms after incorporation in the membrane. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. PALS, MIR and UV-vis-NIR spectroscopy studies of pHEMA hydrogel, silicon- and fluoro-containing contact lens materials

    NASA Astrophysics Data System (ADS)

    Filipecka, Katarzyna; Budaj, Mariusz; Chamerski, Kordian; Miedziński, Rafał; Sitarz, Maciej; Miskowiak, Bogdan; Makowska-Janusik, Małgorzata; Filipecki, Jacek

    2017-11-01

    Studies on polymeric materials used in contactology for manufacturing of contact lenses are presented in the paper. Different types of brand new contact lenses were investigated: hydrogel, silicone-hydrogel and rigid gas permeable. Positron annihilation lifetime spectroscopy (PALS) was used to characterize geometrical sizes and fraction of the free volume holes in the investigated samples. Measurements reveal significant differences between the materials. Namely differences in size and fraction of free volume were observed. These changes are strongly correlated with oxygen permeability in contact lenses. Middle infrared (MIR) spectroscopy was carried out in order to investigate the internal structure of materials. Furthermore, UV-vis-NIR studies were performed in order to determine the transmittance properties of contact lenses.

  18. Discrimination of wild-growing and cultivated Lentinus edodes by tri-step infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Lin, Haojian; Liu, Gang; Yang, Weimei; An, Ran; Ou, Quanhong

    2018-01-01

    It's not easy to discriminate dried wild-growing Lentinus edodes (WL) and cultivated Lentinus edodes (CL) by conventional method based on the morphological inspection of fruiting bodies. In this paper, fruiting body samples of WL and CL are discriminated by a tri-step IR spectroscopy method, including Fourier transform infrared (FT-IR) spectroscopy, second derivatives infrared (SD-IR) spectroscopy and two-dimensional correlation infrared (2D-IR) spectroscopy under thermal perturbation. The results show that the FT-IR spectra of WL and CL are similar in holistic spectral profile. More significant differences are exhibited in their SD-IR spectra in the range of 1700 - 900 cm-1. Furthermore, more evident differences have been observed in their synchronous 2D-IR spectra in the range of 2970 - 2900, 1678 - 1390, 1250 -1104 and 1090 - 1030 cm-1. The CL has thirteen auto-peaks at 2958, 2921, 1649, 1563, 1450, 1218, 1192, 1161, 1140, 1110, 1082, 1065 and 1047 cm-1, in which the four strongest auto-peaks are at 2921, 1563, 1192 and 1082 cm-1. The WL shows fifteen auto-peaks at 2960, 2937, 2921, 1650, 1615, 1555, 1458, 1219, 1190, 1138, 1111, 1084, 1068, 1048 and 1033 cm-1, in which the four strongest auto-peaks are at 2921, 1650, 1190 and 1068 cm-1. This study shows the potential of FT-IR spectroscopy and 2D correlation analysis in a simple and quick distinction of wild-growing and cultivated mushrooms.

  19. Prediction of individual milk proteins including free amino acids in bovine milk using mid-infrared spectroscopy and their correlations with milk processing characteristics.

    PubMed

    McDermott, A; Visentin, G; De Marchi, M; Berry, D P; Fenelon, M A; O'Connor, P M; Kenny, O A; McParland, S

    2016-04-01

    The aim of this study was to evaluate the effectiveness of mid-infrared spectroscopy in predicting milk protein and free amino acid (FAA) composition in bovine milk. Milk samples were collected from 7 Irish research herds and represented cows from a range of breeds, parities, and stages of lactation. Mid-infrared spectral data in the range of 900 to 5,000 cm(-1) were available for 730 milk samples; gold standard methods were used to quantify individual protein fractions and FAA of these samples with a view to predicting these gold standard protein fractions and FAA levels with available mid-infrared spectroscopy data. Separate prediction equations were developed for each trait using partial least squares regression; accuracy of prediction was assessed using both cross validation on a calibration data set (n=400 to 591 samples) and external validation on an independent data set (n=143 to 294 samples). The accuracy of prediction in external validation was the same irrespective of whether undertaken on the entire external validation data set or just within the Holstein-Friesian breed. The strongest coefficient of correlation obtained for protein fractions in external validation was 0.74, 0.69, and 0.67 for total casein, total β-lactoglobulin, and β-casein, respectively. Total proteins (i.e., total casein, total whey, and total lactoglobulin) were predicted with greater accuracy then their respective component traits; prediction accuracy using the infrared spectrum was superior to prediction using just milk protein concentration. Weak to moderate prediction accuracies were observed for FAA. The greatest coefficient of correlation in both cross validation and external validation was for Gly (0.75), indicating a moderate accuracy of prediction. Overall, the FAA prediction models overpredicted the gold standard values. Near-unity correlations existed between total casein and β-casein irrespective of whether the traits were based on the gold standard (0.92) or mid-infrared spectroscopy predictions (0.95). Weaker correlations among FAA were observed than the correlations among the protein fractions. Pearson correlations between gold standard protein fractions and the milk processing characteristics of rennet coagulation time, curd firming time, curd firmness, heat coagulating time, pH, and casein micelle size were weak to moderate and ranged from -0.48 (protein and pH) to 0.50 (total casein and a30). Pearson correlations between gold standard FAA and these milk processing characteristics were also weak to moderate and ranged from -0.60 (Val and pH) to 0.49 (Val and K20). Results from this study indicate that mid-infrared spectroscopy has the potential to predict protein fractions and some FAA in milk at a population level. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. On the use of band-target entropy minimization to simplify the interpretation of two-dimensional correlation spectroscopy.

    PubMed

    Widjaja, Effendi; Tan, Boon Hong; Garland, Marc

    2006-03-01

    Two-dimensional (2D) correlation spectroscopy has been extensively applied to analyze various vibrational spectroscopic data, especially infrared and Raman. However, when it is applied to real-world experimental data, which often contains various imperfections (such as noise interference, baseline fluctuations, and band-shifting) and highly overlapping bands, many artifacts and misleading features in synchronous and asynchronous maps will emerge, and this will lead to difficulties with interpretation. Therefore, an approach that counters many artifacts and therefore leads to simplified interpretation of 2D correlation analysis is certainly useful. In the present contribution, band-target entropy minimization (BTEM) is employed as a spectral pretreatment to handle many of the artifact problems before the application of 2D correlation analysis. BTEM is employed to elucidate the pure component spectra of mixtures and their corresponding concentration profiles. Two alternate forms of analysis result. In the first, the normally vxv problem is converted to an equivalent nvxnv problem, where n represents the number of species present. In the second, the pure component spectra are transformed into simple distributions, and an equivalent and less computationally intensive nv'xnv' problem results (v'

  1. Complex structural dynamics of nanocatalysts revealed in Operando conditions by correlated imaging and spectroscopy probes

    DOE PAGES

    Li, Y.; Zakharov, D.; Zhao, S.; ...

    2015-06-29

    Understanding how heterogeneous catalysts change size, shape and structure during chemical reactions is limited by the paucity of methods for studying catalytic ensembles in working state, that is, in operando conditions. Here by a correlated use of synchrotron X-ray absorption spectroscopy and scanning transmission electron microscopy in operando conditions, we quantitatively describe the complex structural dynamics of supported Pt catalysts exhibited during an exemplary catalytic reaction—ethylene hydrogenation. This work exploits a microfabricated catalytic reactor compatible with both probes. The results demonstrate dynamic transformations of the ensemble of Pt clusters that spans a broad size range throughout changing reaction conditions. Lastly,more » this method is generalizable to quantitative operando studies of complex systems using a wide variety of X-ray and electron-based experimental probes.« less

  2. Proton magnetic resonance spectroscopy in focal cortical dysplasia at 3T.

    PubMed

    Tschampa, Henriette J; Urbach, Horst; Träber, Frank; Sprinkart, Alois M; Greschus, Susanne; Malter, Michael P; Surges, Rainer; Gieseke, Jürgen; Block, Wolfgang

    2015-11-01

    Focal cortical dysplasia (FCD) type II is a frequent cause of medically intractable epilepsy. On conventional MRI diagnosis may be difficult. The purpose of our study was to assess the metabolic characteristics of MRI-typical or neuropathologically confirmed FCD II lesions at 3T. In a prospective study, 13 patients with drug-resistant epilepsy and MRI diagnosis of FCD II (seven neuropathologically confirmed) were investigated by single-volume proton magnetic resonance spectroscopy ((1)H MRS). We performed an intra-individual comparison placing spectroscopic volumes of interest in the lesion and in the apparently normal contralateral hemisphere. Spectroscopic results were correlated with clinical data. Matched pair analysis revealed a significant increase in absolute choline (Cho) concentration in the lesion volume (+32%, p=0.015) compared to the control volume. This increase was associated with a significant decrease in N-acetyl-aspartate (NAA) concentration (-13%; p=0.008). Mean myo-inositol (Ins) levels were distinctly (+36%) but not significantly (p=0.051) elevated. Lesional creatine (Cr) concentration correlated significantly with the frequency of seizures (Spearman-Rho r=0.898; p=0.002), while concentrations of NAA, Cho and Ins did not correlate with clinical or imaging parameters. MR spectroscopy revealed a characteristic metabolic pattern in FCD II lesions that helps to distinguish normal from epileptogenic tissue. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  3. Two-dimensional correlation spectroscopic analysis on the interaction between humic acids and aluminum coagulant.

    PubMed

    Jin, Pengkang; Song, Jina; Wang, Xiaochang C; Jin, Xin

    2018-02-01

    In this study, two-dimensional correlation spectroscopy integrated with synchronous fluorescence and infrared absorption spectroscopy was employed to investigate the interaction between humic acids and aluminum coagulant at slightly acidic and neutral pH. Higher fluorescence quenching was produced for fulvic-like and humic-like fractions at pH5. At pH5, the humic-like fractions originating from the carboxylic acid, carboxyl and polysaccharide compounds were bound to aluminum first, followed by the fulvic-like fractions originating from the carboxyl and polysaccharide compounds. This finding also demonstrated that the activated functional groups of HA were involved in forming the Al-HA complex, which was accompanied by the removal of other groups by co-precipitation. Meanwhile, at pH7, almost no fluorescence quenching occurred, and surface complexation was observed to occur, in which the activated functional groups were absorbed on the amorphous Al(OH) 3 . Two-dimensional FT-IR correlation spectroscopy indicated the sequence of HA structural change during coagulation with aluminum, with IR bands affected in the order of COOH>COO - >NH deformation of amide II>aliphatic hydroxyl COH at pH5, and COO - >aliphatic hydroxyl COH at pH7. This study provides a promising pathway for analysis and insight into the priority of functional groups in the interaction between organic matters and metal coagulants. Copyright © 2017. Published by Elsevier B.V.

  4. Correspondence of electroencephalography and near-infrared spectroscopy sensitivities to the cerebral cortex using a high-density layout

    PubMed Central

    Giacometti, Paolo; Diamond, Solomon G.

    2014-01-01

    Abstract. This study investigates the correspondence of the cortical sensitivity of electroencephalography (EEG) and near-infrared spectroscopy (NIRS). EEG forward model sensitivity to the cerebral cortex was calculated for 329 EEG electrodes following the 10-5 EEG positioning system using a segmented structural magnetic resonance imaging scan of a human subject. NIRS forward model sensitivity was calculated for the same subject using 156 NIRS source-detector pairs selected from 32 source and 32 detector optodes positioned on the scalp using a subset of the 10-5 EEG positioning system. Sensitivity correlations between colocalized NIRS source-detector pair groups and EEG channels yielded R=0.46±0.08. Groups of NIRS source-detector pairs with maximum correlations to EEG electrode sensitivities are tabulated. The mean correlation between the point spread functions for EEG and NIRS regions of interest (ROI) was R=0.43±0.07. Spherical ROIs with radii of 26 mm yielded the maximum correlation between EEG and NIRS averaged across all cortical mesh nodes. These sensitivity correlations between EEG and NIRS should be taken into account when designing multimodal studies of neurovascular coupling and when using NIRS as a statistical prior for EEG source localization. PMID:25558462

  5. Identification of geographical origin of Lignosus samples using Fourier transform infrared and two-dimensional infrared correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Choong, Yew-Keong; Xu, Chang-Hua; Lan, Jin; Chen, Xiang-Dong; Jamal, Jamia Azdina

    2014-07-01

    Lignosus spp. is a medicinal mushroom that has been used as a folk remedy for 'clearing heat', eliminating phlegm, 'moistening the lungs' and as an anti-breast cancer agent. The objective of this study was to identify the active chemical constituents of the mushroom limited number of sample by using Fourier transform infrared (FTIR) and two-dimensional correlation Fourier transform infrared spectroscopy (2DIR). The sample M26/08 was purchased from a Chinese medicine shop in Kuala Lumpur, while M49/07 and M23/08 were collected from Semenyih and Kuala Lipis respectively. The three samples have strong absorption peaks corresponding to the stretching vibration of conjugated carbonyl Cdbnd O group. Both fresh sample M49/07 and M23/08 showed an identical peak of 1655 cm-1, whereby M26/08 contained stretching vibration of 1648 cm-1. The peaks from 1260 cm-1 onwards were assignation of carbohydrate content including saccharides. Spectrum of M26/08 showed region from 1260 cm-1 to 950 cm-1 which was 99.4% similar to M23/08. The chemical constitutes of M26/08 and M23/08 were closely correlated (r = 0.97), whereas the correlation coefficient of M26/08 and M49/07 was 0.94. The use of second derivative and 2DIR spectroscopy enhanced the distinct differences to a more significant level. Although the geographical origin of M26/08 was unknown, its origin was determined by comparing with M49/07 and M23/08. The visual and colorful 2DIR spectra provided dynamic structural information of the chemical components analyzed and demonstrated a powerful and useful approach using the spectroscopy of different samples.

  6. Perspective: Two-dimensional resonance Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Molesky, Brian P.; Guo, Zhenkun; Cheshire, Thomas P.; Moran, Andrew M.

    2016-11-01

    Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in complex systems. The 2DRR method can leverage electronic resonance enhancement to selectively probe chromophores embedded in complex environments (e.g., a cofactor in a protein). In addition, correlations between the two dimensions of the 2DRR spectrum reveal information that is not available in traditional Raman techniques. For example, distributions of reactant and product geometries can be correlated in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this perspective article, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide and myoglobin. We also address key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopies. Most notably, it has been shown that these two techniques are subject to a tradeoff between sensitivity to anharmonicity and susceptibility to artifacts. Overall, recent experimental developments and applications of the 2DRR method suggest great potential for the future of the technique.

  7. Study on fast measurement of sugar content of yogurt using Vis/NIR spectroscopy techniques

    NASA Astrophysics Data System (ADS)

    He, Yong; Feng, Shuijuan; Wu, Di; Li, Xiaoli

    2006-09-01

    In order to measuring the sugar content of yogurt rapidly, a fast measurement of sugar content of yogurt using Vis/NIR-spectroscopy techniques was established. 25 samples selected separately from five different brands of yogurt were measured by Vis/NIR-spectroscopy. The sugar content of yogurt on positions scanned by spectrum were measured by a sugar content meter. The mathematical model between sugar content and Vis/NIR spectral measurements was established and developed based on partial least squares (PLS). The correlation coefficient of sugar content based on PLS model is more than 0.894, and standard error of calibration (SEC) is 0.356, standard error of prediction (SEP) is 0.389. Through predicting the sugar content quantitatively of 35 samples of yogurt from 5 different brands, the correlation coefficient between predictive value and measured value of those samples is more than 0.934. The results show the good to excellent prediction performance. The Vis/NIR spectroscopy technique had significantly greater accuracy for determining the sugar content. It was concluded that the Vis/NIRS measurement technique seems reliable to assess the fast measurement of sugar content of yogurt, and a new method for the measurement of sugar content of yogurt was established.

  8. Multimodality Intracoronary Imaging With Near-Infrared Spectroscopy and Intravascular Ultrasound in Asymptomatic Individuals With High Calcium Scores.

    PubMed

    Madder, Ryan D; VanOosterhout, Stacie; Klungle, David; Mulder, Abbey; Elmore, Matthew; Decker, Jeffrey M; Langholz, David; Boyden, Thomas F; Parker, Jessica; Muller, James E

    2017-10-01

    This study sought to determine the frequency of large lipid-rich plaques (LRP) in the coronary arteries of individuals with high coronary artery calcium scores (CACS) and to determine whether the CACS correlates with coronary lipid burden. Combined near-infrared spectroscopy and intravascular ultrasound was performed in 57 vessels in 20 asymptomatic individuals (90% on statins) with no prior history of coronary artery disease who had a screening CACS ≥300 Agatston units. Among 268 10-mm coronary segments, near-infrared spectroscopy images were analyzed for LRP, defined as a bright yellow block on the near-infrared spectroscopy block chemogram. Lipid burden was assessed as the lipid core burden index (LCBI), and large LRP were defined as a maximum LCBI in 4 mm ≥400. Vessel plaque volume was measured by quantitative intravascular ultrasound. Vessel-level CACS significantly correlated with plaque volume by intravascular ultrasound ( r =0.69; P <0.0001) but not with LCBI by near-infrared spectroscopy ( r =0.24; P =0.07). Despite a high CACS, no LRP was detected in 8 (40.0%) subjects. Large LRP having a maximum LCBI in 4 mm ≥400 were infrequent, found in only 5 (25.0%) of 20 subjects and in only 5 (1.9%) of 268 10-mm coronary segments analyzed. Among individuals with a CACS ≥300 Agatston units mostly on statins, CACS correlated with total plaque volume but not LCBI. This observation may have implications on coronary risk among individuals with a high CACS considering that it is coronary LRP, rather than calcification, that underlies the majority of acute coronary events. © 2017 American Heart Association, Inc.

  9. 1H magnetic resonance spectroscopy evidence for occipital involvement in treatment-naive paediatric obsessive-compulsive disorder.

    PubMed

    Ljungberg, Maria; Nilsson, Marie K L; Melin, Karin; Jönsson, Lars; Carlsson, Arvid; Carlsson, Åsa; Forssell-Aronsson, Eva; Ivarsson, Tord; Carlsson, Maria; Starck, Göran

    2017-06-01

    Obsessive-compulsive disorder (OCD) is a chronic psychiatric disorder leading to considerable distress and disability. Therapies are effective in a majority of paediatric patients, however, many only get partial response. It is therefore important to study the underlying pathophysiology of the disorder. 1H magnetic resonance spectroscopy (MRS) was used to study the concentration of brain metabolites in four different locations (cingulate gyrus and sulcus, occipital cortex, thalamus and right caudate nucleus). Treatment-naive children and adolescents with OCD (13 subjects) were compared with a group of healthy age- and gender-matched subjects (11 subjects). Multivariate analyses were performed on the concentration values. No separation between controls and patients was found. However, a correlation between metabolite concentrations and symptom severity as measured with the Children's Yale-Brown Obsessive-Compulsive Scale (CY-BOCS) was found. Strongest was the correlation with the CY-BOCS obsession subscore and aspartate and choline in the caudate nucleus (positively correlated with obsessions), lipids at 2 and 0.9 ppm in thalamus, and occipital glutamate+glutamine, N-acetylaspartate and myo-inosytol (negatively correlated with obsessions). The observed correlations between 1H MRS and CY-BOCS in treatment-naive patients further supports an occipital involvement in OCD. The results are consistent with our previous study on adult OCD patients. The 1H MRS data were not supportive of a separation between the patient and control groups.

  10. Revealing time bunching effect in single-molecule enzyme conformational dynamics.

    PubMed

    Lu, H Peter

    2011-04-21

    In this perspective, we focus our discussion on how the single-molecule spectroscopy and statistical analysis are able to reveal enzyme hidden properties, taking the study of T4 lysozyme as an example. Protein conformational fluctuations and dynamics play a crucial role in biomolecular functions, such as in enzymatic reactions. Single-molecule spectroscopy is a powerful approach to analyze protein conformational dynamics under physiological conditions, providing dynamic perspectives on a molecular-level understanding of protein structure-function mechanisms. Using single-molecule fluorescence spectroscopy, we have probed T4 lysozyme conformational motions under the hydrolysis reaction of a polysaccharide of E. coli B cell walls by monitoring the fluorescence resonant energy transfer (FRET) between a donor-acceptor probe pair tethered to T4 lysozyme domains involving open-close hinge-bending motions. Based on the single-molecule spectroscopic results, molecular dynamics simulation, a random walk model analysis, and a novel 2D statistical correlation analysis, we have revealed a time bunching effect in protein conformational motion dynamics that is critical to enzymatic functions. Bunching effect implies that conformational motion times tend to bunch in a finite and narrow time window. We show that convoluted multiple Poisson rate processes give rise to the bunching effect in the enzymatic reaction dynamics. Evidently, the bunching effect is likely common in protein conformational dynamics involving in conformation-gated protein functions. In this perspective, we will also discuss a new approach of 2D regional correlation analysis capable of analyzing fluctuation dynamics of complex multiple correlated and anti-correlated fluctuations under a non-correlated noise background. Using this new method, we are able to map out any defined segments along the fluctuation trajectories and determine whether they are correlated, anti-correlated, or non-correlated; after which, a cross correlation analysis can be applied for each specific segment to obtain a detailed fluctuation dynamics analysis.

  11. Momentum-resolved spectroscopy of a Fermi liquid

    PubMed Central

    Doggen, Elmer V. H.; Kinnunen, Jami J.

    2015-01-01

    We consider a recent momentum-resolved radio-frequency spectroscopy experiment, in which Fermi liquid properties of a strongly interacting atomic Fermi gas were studied. Here we show that by extending the Brueckner-Goldstone model, we can formulate a theory that goes beyond basic mean-field theories and that can be used for studying spectroscopies of dilute atomic gases in the strongly interacting regime. The model hosts well-defined quasiparticles and works across a wide range of temperatures and interaction strengths. The theory provides excellent qualitative agreement with the experiment. Comparing the predictions of the present theory with the mean-field Bardeen-Cooper-Schrieffer theory yields insights into the role of pair correlations, Tan's contact, and the Hartree mean-field energy shift. PMID:25941948

  12. Separation of overlapping vibrational peaks in terahertz spectra using two-dimensional correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Hoshina, Hiromichi; Ishii, Shinya; Otani, Chiko

    2014-07-01

    In this study, the terahertz (THz) absorption spectra of poly(3-hydroxybutyrate) (PHB) were measured during isothermal crystallization at 90-120 °C. The temporal changes in the absorption spectra were analyzed using two-dimensional correlation spectroscopy (2DCOS). In the asynchronous plot, cross peaks were observed around 2.4 THz, suggesting that two vibrational modes overlap in the raw spectrum. By comparing this to the peak at 2.9 THz corresponding to the stretching mode of the helical structure of PHB and the assignment obtained using polarization spectroscopy, we concluded that the high-frequency band could be attributed to the vibration of the helical structure and the low-frequency band to the vibration between the helical structures. The exact frequencies of the overlapping vibrational bands and their assignments provide a new means to inspect the thermal behavior of the intermolecular vibrational modes. The large red-shift of the interhelix vibrational mode suggests a large anharmonicity in the vibrational potential.

  13. Distinction of three wood species by Fourier transform infrared spectroscopy and two-dimensional correlation IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Huang, Anmin; Zhou, Qun; Liu, Junliang; Fei, Benhua; Sun, Suqin

    2008-07-01

    Dalbergia odorifera T. Chen, Pterocarpus santalinus L.F. and Pterocarpus soyauxii are three kinds of the most valuable wood species, which are hard to distinguish. In this paper, differentiation of D. odorifera, P. santalinus and P. soyauxii was carried out by using Fourier transform infrared spectroscopy (FT-IR), second derivative IR spectra and two-dimensional correlation infrared (2D-IR) spectroscopy. The three woods have their characteristic peaks in conventional IR spectra. For example, D. odorifera has obvious absorption peaks at 1640 and 1612 cm -1; P. santalinus has only one peak at 1614 cm -1; and P. soyauxii has one peak at 1619 cm -1 and one shoulder peak at 1597 cm -1. To enhance spectrum resolution and amplify the differences between the IR spectra of different woods, the second derivative technology was adopted to examine the three wood samples. More differences could be observed in the region of 800-1700 cm -1. Then, the thermal perturbation is applied to distinguish different wood samples in an easier way, because of the spectral resolution being enhanced by the 2D correlation spectroscopy. In the region of 1300-1800 cm -1, D. odorifera has five auto-peaks at 1518, 1575, 1594, 1620 and 1667 cm -1; P. santalinus has four auto-peaks at 1469, 1518, 1627 and 1639 cm -1 and P. soyauxii has only two auto-peaks at 1627 and 1639 cm -1. It is proved that the 2D correlation IR spectroscopy can be a new method to distinguish D. odorifera, P. santalinus and P. soyauxii.

  14. Ghost Spectroscopy with Classical Thermal Light Emitted by a Superluminescent Diode

    NASA Astrophysics Data System (ADS)

    Janassek, Patrick; Blumenstein, Sébastien; Elsäßer, Wolfgang

    2018-02-01

    We propose and realize the first classical ghost-imaging (GI) experiment in the frequency or wavelength domain, thus performing ghost spectroscopy using thermal light exhibiting photon bunching. The required wavelength correlations are provided by light emitted by spectrally broadband near-infrared amplified spontaneous emission of a semiconductor-based superluminescent diode. They are characterized by wavelength-resolved intensity cross-correlation measurements utilizing two-photon-absorption interferometry. Finally, a real-world spectroscopic application of this ghost spectroscopy with a classical light scheme is demonstrated in which an absorption band of trichloromethane (chloroform) at 1214 nm is reconstructed with a spectral resolution of 10 nm as a proof-of-principle experiment. This ghost-spectroscopy work fills the gap of a hitherto missing analogy between the spatial and the spectral domain in classical GI modalities, with the expectation of contributing towards a broader dissemination of correlated photon ghost modalities, hence paving the way towards more applications which exploit the favorable advantages.

  15. Correlation between bulk- and surface chemistry of Cr-tanned leather and the release of Cr(III) and Cr(VI).

    PubMed

    Hedberg, Yolanda S; Lidén, Carola; Odnevall Wallinder, Inger

    2014-09-15

    About 1-3% of the adult general population in Europe is allergic to chromium (Cr). The assessment of the potential release of Cr(III) and Cr(VI) from leather is hence important from a human health and environmental risk perspective. The Cr(VI) content in leather was recently restricted in the European Union. The aim of this study was to assess possible correlations between the bulk and surface chemistry of leather, released Cr(III) and Cr(VI), and capacities of co-released leather specific species to reduce and complex released Cr. Four differently tanned leathers were characterized by scanning electron microscopy with energy dispersive spectroscopy, X-ray photoelectron spectroscopy, attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, and the diphenylcarbazide colorimetric method. Their characteristics were compared with results on Cr(III) and Cr(VI) release into artificial sweat (ASW, pH<6.5) and phosphate buffer (PB, pH 7.5-8.0), measured by means of spectrophotometry and atomic absorption spectroscopy. Co-released leather-specific species were shown to reduce Cr(VI), both in ASW and in PB. Their reduction capacities correlated with findings of the surface content of Cr and of released Cr. Leather samples without this capacity, and with less aromatic surface groups visible by ATR-FTIR, revealed Cr(VI) both at the surface and in solution (PB). Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Integration of 3D 1H-magnetic resonance spectroscopy data into neuronavigation systems for tumor biopsies

    NASA Astrophysics Data System (ADS)

    Kanberoglu, Berkay; Moore, Nina Z.; Frakes, David; Karam, Lina J.; Debbins, Josef P.; Preul, Mark C.

    2013-03-01

    Many important applications in clinical medicine can benefit from the fusion of spectroscopy data with anatomical images. For example, the correlation of metabolite profiles with specific regions of interest in anatomical tumor images can be useful in characterizing and treating heterogeneous tumors that appear structurally homogeneous. Such applications can build on the correlation of data from in-vivo Proton Magnetic Resonance Spectroscopy Imaging (1HMRSI) with data from genetic and ex-vivo Nuclear Magnetic Resonance spectroscopy. To establish that correlation, tissue samples must be neurosurgically extracted from specifically identified locations with high accuracy. Toward that end, this paper presents new neuronavigation technology that enhances current clinical capabilities in the context of neurosurgical planning and execution. The proposed methods improve upon the current state-of-the-art in neuronavigation through the use of detailed three dimensional (3D) 1H-MRSI data. MRSI spectra are processed and analyzed, and specific voxels are selected based on their chemical contents. 3D neuronavigation overlays are then generated and applied to anatomical image data in the operating room. Without such technology, neurosurgeons must rely on memory and other qualitative resources alone for guidance in accessing specific MRSI-identified voxels. In contrast, MRSI-based overlays provide quantitative visual cues and location information during neurosurgery. The proposed methods enable a progressive new form of online MRSI-guided neuronavigation that we demonstrate in this study through phantom validation and clinical application.

  17. Vectorized data acquisition and fast triple-correlation integrals for Fluorescence Triple Correlation Spectroscopy

    PubMed Central

    Ridgeway, William K; Millar, David P; Williamson, James R

    2013-01-01

    Fluorescence Correlation Spectroscopy (FCS) is widely used to quantitate reaction rates and concentrations of molecules in vitro and in vivo. We recently reported Fluorescence Triple Correlation Spectroscopy (F3CS), which correlates three signals together instead of two. F3CS can analyze the stoichiometries of complex mixtures and detect irreversible processes by identifying time-reversal asymmetries. Here we report the computational developments that were required for the realization of F3CS and present the results as the Triple Correlation Toolbox suite of programs. Triple Correlation Toolbox is a complete data analysis pipeline capable of acquiring, correlating and fitting large data sets. Each segment of the pipeline handles error estimates for accurate error-weighted global fitting. Data acquisition was accelerated with a combination of off-the-shelf counter-timer chips and vectorized operations on 128-bit registers. This allows desktop computers with inexpensive data acquisition cards to acquire hours of multiple-channel data with sub-microsecond time resolution. Off-line correlation integrals were implemented as a two delay time multiple-tau scheme that scales efficiently with multiple processors and provides an unprecedented view of linked dynamics. Global fitting routines are provided to fit FCS and F3CS data to models containing up to ten species. Triple Correlation Toolbox is a complete package that enables F3CS to be performed on existing microscopes. PMID:23525193

  18. Easy monitoring of velocity fields in microfluidic devices using spatiotemporal image correlation spectroscopy.

    PubMed

    Travagliati, Marco; Girardo, Salvatore; Pisignano, Dario; Beltram, Fabio; Cecchini, Marco

    2013-09-03

    Spatiotemporal image correlation spectroscopy (STICS) is a simple and powerful technique, well established as a tool to probe protein dynamics in cells. Recently, its potential as a tool to map velocity fields in lab-on-a-chip systems was discussed. However, the lack of studies on its performance has prevented its use for microfluidics applications. Here, we systematically and quantitatively explore STICS microvelocimetry in microfluidic devices. We exploit a simple experimental setup, based on a standard bright-field inverted microscope (no fluorescence required) and a high-fps camera, and apply STICS to map liquid flow in polydimethylsiloxane (PDMS) microchannels. Our data demonstrates optimal 2D velocimetry up to 10 mm/s flow and spatial resolution down to 5 μm.

  19. Geomorphic Evidence for Martian Ground Ice and Climate Change

    NASA Technical Reports Server (NTRS)

    Kanner, L. C.; Allen, C. C.; Bell, M. S.

    2004-01-01

    Recent results from gamma-ray and neutron spectrometers on Mars Odyssey indicate the presence of a hydrogen-rich layer tens of centimeters thick in the uppermost meter in high latitudes (>60 ) on Mars. This hydrogen-rich layer correlates to regions of ice stability. Thus, the subsurface hydrogen is thought to be water ice constituting 35+/- 15% by weight near the north and south polar regions. We refine the location of subsurface ice deposits at a < km scale by combining existing spectroscopy data with surface features indicative of subsurface ice. A positive correlation between spectroscopy data and geomorphic ice indicators has been previously suggested for high latitudes. Here we expand the comparative study to northern mid latitudes (30 deg.N- 65 deg.N).

  20. Nanoporous active carbons at ambient conditions: a comparative study using X-ray scattering and diffraction, Raman spectroscopy and N2 adsorption

    NASA Astrophysics Data System (ADS)

    Shiryaev, A. A.; Voloshchuk, A. M.; Volkov, V. V.; Averin, A. A.; Artamonova, S. D.

    2017-05-01

    Furfural-derived sorbents and activated carbonaceous fibers were studied using Small- and Wide-angle X-ray scattering (SWAXS), X-ray diffraction and multiwavelength Raman spectroscopy after storage at ambient conditions. Correlations between structural features with degree of activation and with sorption parameters are observed for samples obtained from a common precursor and differing in duration of activation. However, the correlations are not necessarily applicable to the carbons obtained from different precursors. Using two independent approaches we show that treatment of SWAXS results should be performed with careful analysis of applicability of the Porod law to the sample under study. In general case of a pore with rough/corrugated surface deviations from the Porod law may became significant and reflect structure of the pore-carbon interface. Ignorance of these features may invalidate extraction of closed porosity values. In most cases the pore-matrix interface in the studied samples is not atomically sharp, but is characterized by 1D or 2D fluctuations of electronic density responsible for deviations from the Porod law. Intensity of the pores-related small-angle scattering correlates positively with SBET values obtained from N2 adsorption.

  1. 2D Vis/NIR correlation spectroscopy of cooked chicken meats

    NASA Astrophysics Data System (ADS)

    Liu, Yongliang; Chen, Yud-Ren; Ozaki, Yukihiro

    2000-03-01

    Cooking of chicken meats was investigated by the generalized two-dimensional visible/near-infrared (2D Vis/NIR) correlation spectroscopy. Synchronous and asynchronous spectra in the 400-700 nm visible region suggested that the 445 and 560 nm bands be ascribed to deoxymyoglobin and oxymyoglobin, and at least one of the 475, 520, and 585 nm bands is assignable to the denatured species (metmyoglobin). The asynchronous 2D NIR correlation spectrum showed that CH bands change their spectral intensities before the OH/NH groups during the cooking process, indicating that CH fractions are easily oxidized and degraded. In addition, strong correlation peaks were observed correlating the bands in the visible and NIR spectral regions.

  2. Multiple spatially resolved reflection spectroscopy for in vivo determination of carotenoids in human skin and blood

    NASA Astrophysics Data System (ADS)

    Darvin, Maxim E.; Magnussen, Björn; Lademann, Juergen; Köcher, Wolfgang

    2016-09-01

    Non-invasive measurement of carotenoid antioxidants in human skin is one of the important tasks to investigate the skin physiology in vivo. Resonance Raman spectroscopy and reflection spectroscopy are the most frequently used non-invasive techniques in dermatology and skin physiology. In the present study, an improved method based on multiple spatially resolved reflection spectroscopy (MSRRS) was introduced. The results obtained were compared with those obtained using the ‘gold standard’ resonance Raman spectroscopy method and showed strong correlations for the total carotenoid concentration (R  =  0.83) as well as for lycopene (R  =  0.80). The measurement stability was confirmed to be better than 10% within the total temperature range from 5 °C to  +  30 °C and pressure contact between the skin and the MSRRS sensor from 800 Pa to 18 000 Pa. In addition, blood samples taken from the subjects were analyzed for carotenoid concentrations. The MSRRS sensor was calibrated on the blood carotenoid concentrations resulting in being able to predict with a correlation of R  =  0.79. On the basis of blood carotenoids it could be demonstrated that the MSRRS cutaneous measurements are not influenced by Fitzpatrick skin types I-VI. The MSRRS sensor is commercially available under the brand name biozoom.

  3. [Near infrared spectroscopy study on water content in turbine oil].

    PubMed

    Chen, Bin; Liu, Ge; Zhang, Xian-Ming

    2013-11-01

    Near infrared (NIR) spectroscopy combined with successive projections algorithm (SPA) was investigated for determination of water content in turbine oil. Through the 57 samples of different water content in turbine oil scanned applying near infrared (NIR) spectroscopy, with the water content in the turbine oil of 0-0.156%, different pretreatment methods such as the original spectra, first derivative spectra and differential polynomial least squares fitting algorithm Savitzky-Golay (SG), and successive projections algorithm (SPA) were applied for the extraction of effective wavelengths, the correlation coefficient (R) and root mean square error (RMSE) were used as the model evaluation indices, accordingly water content in turbine oil was investigated. The results indicated that the original spectra with different water content in turbine oil were pretreated by the performance of first derivative + SG pretreatments, then the selected effective wavelengths were used as the inputs of least square support vector machine (LS-SVM). A total of 16 variables selected by SPA were employed to construct the model of SPA and least square support vector machine (SPA-LS-SVM). There is 9 as The correlation coefficient was 0.975 9 and the root of mean square error of validation set was 2.655 8 x 10(-3) using the model, and it is feasible to determine the water content in oil using near infrared spectroscopy and SPA-LS-SVM, and an excellent prediction precision was obtained. This study supplied a new and alternative approach to the further application of near infrared spectroscopy in on-line monitoring of contamination such as water content in oil.

  4. Surface Transient Binding-Based Fluorescence Correlation Spectroscopy (STB-FCS), a Simple and Easy-to-Implement Method to Extend the Upper Limit of the Time Window to Seconds.

    PubMed

    Peng, Sijia; Wang, Wenjuan; Chen, Chunlai

    2018-05-10

    Fluorescence correlation spectroscopy is a powerful single-molecule tool that is able to capture kinetic processes occurring at the nanosecond time scale. However, the upper limit of its time window is restricted by the dwell time of the molecule of interest in the confocal detection volume, which is usually around submilliseconds for a freely diffusing biomolecule. Here, we present a simple and easy-to-implement method, named surface transient binding-based fluorescence correlation spectroscopy (STB-FCS), which extends the upper limit of the time window to seconds. We further demonstrated that STB-FCS enables capture of both intramolecular and intermolecular kinetic processes whose time scales cross several orders of magnitude.

  5. Recent advances in multidimensional ultrafast spectroscopy

    NASA Astrophysics Data System (ADS)

    Oliver, Thomas A. A.

    2018-01-01

    Multidimensional ultrafast spectroscopies are one of the premier tools to investigate condensed phase dynamics of biological, chemical and functional nanomaterial systems. As they reach maturity, the variety of frequency domains that can be explored has vastly increased, with experimental techniques capable of correlating excitation and emission frequencies from the terahertz through to the ultraviolet. Some of the most recent innovations also include extreme cross-peak spectroscopies that directly correlate the dynamics of electronic and vibrational states. This review article summarizes the key technological advances that have permitted these recent advances, and the insights gained from new multidimensional spectroscopic probes.

  6. Recent advances in multidimensional ultrafast spectroscopy

    PubMed Central

    2018-01-01

    Multidimensional ultrafast spectroscopies are one of the premier tools to investigate condensed phase dynamics of biological, chemical and functional nanomaterial systems. As they reach maturity, the variety of frequency domains that can be explored has vastly increased, with experimental techniques capable of correlating excitation and emission frequencies from the terahertz through to the ultraviolet. Some of the most recent innovations also include extreme cross-peak spectroscopies that directly correlate the dynamics of electronic and vibrational states. This review article summarizes the key technological advances that have permitted these recent advances, and the insights gained from new multidimensional spectroscopic probes. PMID:29410844

  7. Validation of diffuse correlation spectroscopy sensitivity to nicotinamide-induced blood flow elevation in the murine hindlimb using the fluorescent microsphere technique

    NASA Astrophysics Data System (ADS)

    Proctor, Ashley R.; Ramirez, Gabriel A.; Han, Songfeng; Liu, Ziping; Bubel, Tracy M.; Choe, Regine

    2018-03-01

    Nicotinamide has been shown to affect blood flow in both tumor and normal tissues, including skeletal muscle. Intraperitoneal injection of nicotinamide was used as a simple intervention to test the sensitivity of noninvasive diffuse correlation spectroscopy (DCS) to changes in blood flow in the murine left quadriceps femoris skeletal muscle. DCS was then compared with the gold-standard fluorescent microsphere (FM) technique for validation. The nicotinamide dose-response experiment showed that relative blood flow measured by DCS increased following treatment with 500- and 1000-mg / kg nicotinamide. The DCS and FM technique comparison showed that blood flow index measured by DCS was correlated with FM counts quantified by image analysis. The results of this study show that DCS is sensitive to nicotinamide-induced blood flow elevation in the murine left quadriceps femoris. Additionally, the results of the comparison were consistent with similar studies in higher-order animal models, suggesting that mouse models can be effectively employed to investigate the utility of DCS for various blood flow measurement applications.

  8. Progressive structural changes of Avicel, bleached softwood, and bacterial cellulose during enzymatic hydrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kafle, Kabindra; Shin, Heenae; Lee, Christopher M.

    A comprehensive picture of structural changes of cellulosic biomass during enzymatic hydrolysis is essential for a better understanding of enzymatic actions and development of more efficient enzymes. In this study, a suite of analytical techniques including sum frequency generation (SFG) spectroscopy, infrared (IR) spectroscopy, x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) were employed for lignin-free model biomass samples—Avicel, bleached softwood, and bacterial cellulose—to find correlations between the decrease in hydrolysis rate over time and the structural or chemical changes of biomass during the hydrolysis reaction. The results showed that the decrease in hydrolysis rate over time appears to correlatemore » with the irreversible deposition of non-cellulosic species (either reaction side products or denatured enzymes, or both) on the cellulosic substrate surface. The crystallinity, degree of polymerization, and meso-scale packing of cellulose do not seem to positively correlate with the decrease in hydrolysis rate observed for all three substrates tested in this study. It was also found that the cellulose Iα component of the bacterial cellulose is preferentially hydrolyzed by the enzyme than the cellulose Iβ component.« less

  9. Progressive structural changes of Avicel, bleached softwood, and bacterial cellulose during enzymatic hydrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kafle, Kabindra; Shin, Heenae; Lee, Christopher M.

    A comprehensive picture of structural changes of cellulosic biomass during enzymatic hydrolysis is essential for a better understanding of enzymatic actions and development of more efficient enzymes. In this study, a suite of analytical techniques including sum frequency generation (SFG) spectroscopy, infrared (IR) spectroscopy, x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) were employed for lignin-free model biomass samples—Avicel, bleached softwood, and bacterial cellulose—to find correlations between the decrease in hydrolysis rate over time and the structural or chemical changes of biomass during the hydrolysis reaction. The results showed that the decrease in hydrolysis rate over time appears to correlatemore » with the irreversible deposition of non-cellulosic species (either reaction side products or denatured enzymes, or both) on the cellulosic substrate surface. The crystallinity, degree of polymerization, and meso-scale packing of cellulose do not seem to positively correlate with the decrease in hydrolysis rate observed for all three substrates tested in this study. Moreover, it was also found that the cellulose Iα component of the bacterial cellulose is preferentially hydrolyzed by the enzyme than the cellulose Iβ component.« less

  10. Progressive structural changes of Avicel, bleached softwood, and bacterial cellulose during enzymatic hydrolysis

    DOE PAGES

    Kafle, Kabindra; Shin, Heenae; Lee, Christopher M.; ...

    2015-10-14

    A comprehensive picture of structural changes of cellulosic biomass during enzymatic hydrolysis is essential for a better understanding of enzymatic actions and development of more efficient enzymes. In this study, a suite of analytical techniques including sum frequency generation (SFG) spectroscopy, infrared (IR) spectroscopy, x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS) were employed for lignin-free model biomass samples—Avicel, bleached softwood, and bacterial cellulose—to find correlations between the decrease in hydrolysis rate over time and the structural or chemical changes of biomass during the hydrolysis reaction. The results showed that the decrease in hydrolysis rate over time appears to correlatemore » with the irreversible deposition of non-cellulosic species (either reaction side products or denatured enzymes, or both) on the cellulosic substrate surface. The crystallinity, degree of polymerization, and meso-scale packing of cellulose do not seem to positively correlate with the decrease in hydrolysis rate observed for all three substrates tested in this study. Moreover, it was also found that the cellulose Iα component of the bacterial cellulose is preferentially hydrolyzed by the enzyme than the cellulose Iβ component.« less

  11. Elevated prefrontal cortex γ-aminobutyric acid and glutamate-glutamine levels in schizophrenia measured in vivo with proton magnetic resonance spectroscopy.

    PubMed

    Kegeles, Lawrence S; Mao, Xiangling; Stanford, Arielle D; Girgis, Ragy; Ojeil, Najate; Xu, Xiaoyan; Gil, Roberto; Slifstein, Mark; Abi-Dargham, Anissa; Lisanby, Sarah H; Shungu, Dikoma C

    2012-05-01

    Postmortem studies have found evidence of γ-aminobutyric acid (GABA) deficits in fast-spiking, parvalbumin-positive interneurons in the prefrontal cortex in schizophrenia. Magnetic resonance spectroscopy studies in unmedicated patients have reported glutamine or glutamate-glutamine (Glx) elevations in this region. Abnormalities in these transmitters are thought to play a role in cognitive impairments in the illness. To measure GABA and Glx levels in vivo in 2 prefrontal brain regions in unmedicated and medicated patients with schizophrenia and healthy controls. Case-control study. Inpatient psychiatric research unit and associated outpatient clinic. Sixteen unmedicated patients with schizophrenia, 16 medicated patients, and 22 healthy controls matched for age, sex, ethnicity, parental socioeconomic status, and cigarette smoking. Proton magnetic resonance spectroscopy with a 3-T system and the J-edited spin-echo difference method. The GABA and Glx levels were measured in the dorsolateral and medial prefrontal cortex and normalized to the simultaneously acquired water signal. Working memory performance was assessed in all subjects. The GABA and Glx concentrations determined by proton magnetic resonance spectroscopy. In the medial prefrontal cortex region, 30% elevations were found in GABA (P = .02) and Glx (P = .03) levels in unmedicated patients compared with controls. There were no alterations in the medicated patients or in either group in the dorsolateral prefrontal cortex. Both regions showed correlations between GABA and Glx levels in patients and controls. No correlations with working memory performance were found. To our knowledge, this study presents the first GABA concentration measurements in unmedicated patients with schizophrenia, who showed elevations in both GABA and Glx levels in the medial prefrontal cortex but not the dorsolateral prefrontal cortex. Medicated patients did not show these elevations, suggesting possible normalization of levels with antipsychotic medication. The Glx elevations agree with prior magnetic resonance spectroscopy literature, but GABA elevations were unexpected and suggest possible involvement of classes of interneurons not found to show impairments in postmortem studies.

  12. Understanding the interactions of CO 2 with doped and undoped SrTiO 3

    DOE PAGES

    Wu, Qiyuan; Cen, Jiajie; Goodman, Kenneth R.; ...

    2016-06-17

    SrTiO 3 and doped SrTiO 3 have a wide range of applications in different fields. For example, Rh-doped SrTiO 3 has been shown to have photocatalytic activity for both hydrogen production and CO 2 conversion. In this study, both undoped and Rh-doped SrTiO 3 were synthesized by hydrothermal and polymerizable complex methods. Different characterizations techniques including X-ray photoelectron spectroscopy (XPS), XRD, Raman, and UV/Vis spectroscopy were utilized to establish correlations between the preparation methods and the electronic/structural properties of Rh-doped SrTiO 3. The presence of dopants and oxygen vacancies substantially influenced the CO 2 interactions with the surface, as revealedmore » by the in situ infrared spectroscopic study. As a result, the presence of distinctly different adsorption sites was correlated to oxygen vacancies and oxidation states of Ti and Rh.« less

  13. Construction and Application of a Terahertz Scanning Near-Field Microscope for Study of Correlated Electron Materials at Cryogenic Temperatures and Nanometer Length Scales

    NASA Astrophysics Data System (ADS)

    Stinson, Harry Theodore, III

    This dissertation describes the design and construction of the world's first cryogenic apertureless near-field microscope designed for terahertz sources and detectors. I first provide motivation for the creation of this instrument in the context of spectroscopy of correlated electron materials, and background information on the two techniques that the instrument combines, scanning near-field optical microscopy and terahertz time-domain spectroscopy. I then detail key components of the instrument design, including proof-of-principle results obtained at room and cryogenic temperatures. Following this, I discuss an imaging experiment performed with this instrument on vanadium dioxide, an insulator-metal transition material, which sheds new light on the nature of the phase transition and provides support for a new model Hamiltonian for the system. Finally, I discuss a theoretical proposal for the study of cuprate superconductors using this instrument.

  14. Comparison of nanoparticle diffusion using fluorescence correlation spectroscopy and differential dynamic microscopy within concentrated polymer solutions

    NASA Astrophysics Data System (ADS)

    Shokeen, Namita; Issa, Christopher; Mukhopadhyay, Ashis

    2017-12-01

    We studied the diffusion of nanoparticles (NPs) within aqueous entangled solutions of polyethylene oxide (PEO) by using two different optical techniques. Fluorescence correlation spectroscopy, a method widely used to investigate nanoparticle dynamics in polymer solution, was used to measure the long-time diffusion coefficient (D) of 25 nm radius particles within high molecular weight, Mw = 600 kg/mol PEO in water solutions. Differential dynamic microscopy (DDM) was used to determine the wave-vector dependent dynamics of NPs within the same polymer solutions. Our results showed good agreement between the two methods, including demonstration of normal diffusion and almost identical diffusion coefficients obtained by both techniques. The research extends the scope of DDM to study the dynamics and rheological properties of soft matter at a nanoscale. The measured diffusion coefficients followed a scaling theory, which can be explained by the coupling between polymer dynamics and NP motion.

  15. Fluorescence spectroscopy for assessment of liver transplantation grafts concerning graft viability and patient survival

    NASA Astrophysics Data System (ADS)

    Vollet Filho, José D.; da Silveira, Marina R.; Castro-e-Silva, Orlando; Bagnato, Vanderlei S.; Kurachi, Cristina

    2015-06-01

    Evaluating transplantation grafts at harvest is essential for its success. Laser-induced fluorescence spectroscopy (LIFS) can help monitoring changes in metabolic/structural conditions of tissue during transplantation. The aim of the present study is to correlate LIFSobtained spectra of human hepatic grafts during liver transplantation with post-operative patients' mortality rate and biochemical parameters, establishing a method to exclude nonviable grafts before implantation. Orthotopic liver transplantation, piggyback technique was performed in 15 patients. LIFS was performed under 408nm excitation. Collection was performed immediately after opening donor's abdominal cavity, after cold perfusion, end of back-table period, and 5 min and 1 h after warm perfusion at recipient. Fluorescence information was compared to lactate, creatinine, bilirubin and INR levels and to survival status. LIFS was sensitive to liver changes during transplantation stages. Study-in-progress; initial results indicate correlation between fluorescence and life/death status of patients.

  16. Brain oxygen saturation assessment in neonates using T2-prepared blood imaging of oxygen saturation and near-infrared spectroscopy.

    PubMed

    Alderliesten, Thomas; De Vis, Jill B; Lemmers, Petra Ma; Hendrikse, Jeroen; Groenendaal, Floris; van Bel, Frank; Benders, Manon Jnl; Petersen, Esben T

    2017-03-01

    Although near-infrared spectroscopy is increasingly being used to monitor cerebral oxygenation in neonates, it has a limited penetration depth. The T 2 -prepared Blood Imaging of Oxygen Saturation (T 2 -BIOS) magnetic resonance sequence provides an oxygen saturation estimate on a voxel-by-voxel basis, without needing a respiratory calibration experiment. In 15 neonates, oxygen saturation measured by T 2 -prepared blood imaging of oxygen saturation and near-infrared spectroscopy were compared. In addition, these measures were compared to cerebral blood flow and venous oxygen saturation in the sagittal sinus. A strong linear relation was found between the oxygen saturation measured by magnetic resonance imaging and the oxygen saturation measured by near-infrared spectroscopy ( R 2  = 0.64, p < 0.001). Strong linear correlations were found between near-infrared spectroscopy oxygen saturation, and magnetic resonance imaging measures of frontal cerebral blood flow, whole brain cerebral blood flow and venous oxygen saturation in the sagittal sinus ( R 2  = 0.71, 0.50, 0.65; p < 0.01). The oxygen saturation obtained by T 2 -prepared blood imaging of oxygen saturation correlated with venous oxygen saturation in the sagittal sinus ( R 2  = 0.49, p = 0.023), but no significant correlations could be demonstrated with frontal and whole brain cerebral blood flow. These results suggest that measuring oxygen saturation by T 2 -prepared blood imaging of oxygen saturation is feasible, even in neonates. Strong correlations between the various methods work as a cross validation for near-infrared spectroscopy and T 2 -prepared blood imaging of oxygen saturation, confirming the validity of using of these techniques for determining cerebral oxygenation.

  17. Metallic scattering lifetime measurements with terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Lea, Graham Bryce

    The momentum scattering lifetime is a fundamental parameter of metallic conduction that can be measured with terahertz time-domain spectroscopy. This technique has an important strength over optical reflectance spectroscopy: it is capable of measuring both the phase and the amplitude of the probing radiation. This allows simultaneous, independent measurements of the scattering lifetime and resistivity. Broadly, it is the precision of the phase measurement that determines the precision of scattering lifetime measurements. This thesis describes milliradian-level phase measurement refinements in the experimental technique and measures the conductivity anisotropy in the correlated electron system CaRuO3. These phase measurement refinements translate to femtosecond-level refinements in scattering lifetime measurements of thin metallic films. Keywords: terahertz time-domain spectroscopy, calcium ruthenate, ruthenium oxides, correlated electrons, experimental technique.

  18. Quantitative HRMAS proton total correlation spectroscopy applied to cultured melanoma cells treated by chloroethyl nitrosourea: demonstration of phospholipid metabolism alterations.

    PubMed

    Morvan, Daniel; Demidem, Aicha; Papon, Janine; Madelmont, Jean Claude

    2003-02-01

    Recent NMR spectroscopy developments, such as high-resolution magic angle spinning (HRMAS) probes and correlation-enhanced 2D sequences, now allow improved investigations of phospholipid (Plp) metabolism. Using these modalities we previously demonstrated that a mouse-bearing melanoma tumor responded to chloroethyl nitrosourea (CENU) treatment in vivo by altering its Plp metabolism. The aims of the present study were to investigate whether HRMAS proton total correlation spectroscopy (TOCSY) could be used as a quantitative technique to probe Plp metabolism, and to determine the Plp metabolism response of cultured B16 melanoma cells to CENU treatment in vitro. The exploited TOCSY signals of Plp derivatives arose from scalar coupling among the protons of neighbor methylene groups within base headgroups (choline and ethanolamine). For strongly expressed Plp derivatives, TOCSY signals were compared to saturation recovery signals and demonstrated a linear relationship. HRMAS proton TOCSY was thus used to provide concentrations of Plp derivatives during long-term follow-up of CENU-treated cell cultures. Strong Plp metabolism alteration was observed in treated cultured cells in vitro involving a down-regulation of phosphocholine, and a dramatic and irreversible increase of phosphoethanolamine. These findings are discussed in relation to previous in vivo data, and to Plp metabolism enzymatic involvement. Copyright 2003 Wiley-Liss, Inc.

  19. Measuring speaker–listener neural coupling with functional near infrared spectroscopy

    PubMed Central

    Liu, Yichuan; Piazza, Elise A.; Simony, Erez; Shewokis, Patricia A.; Onaral, Banu; Hasson, Uri; Ayaz, Hasan

    2017-01-01

    The present study investigates brain-to-brain coupling, defined as inter-subject correlations in the hemodynamic response, during natural verbal communication. We used functional near-infrared spectroscopy (fNIRS) to record brain activity of 3 speakers telling stories and 15 listeners comprehending audio recordings of these stories. Listeners’ brain activity was significantly correlated with speakers’ with a delay. This between-brain correlation disappeared when verbal communication failed. We further compared the fNIRS and functional Magnetic Resonance Imaging (fMRI) recordings of listeners comprehending the same story and found a significant relationship between the fNIRS oxygenated-hemoglobin concentration changes and the fMRI BOLD in brain areas associated with speech comprehension. This correlation between fNIRS and fMRI was only present when data from the same story were compared between the two modalities and vanished when data from different stories were compared; this cross-modality consistency further highlights the reliability of the spatiotemporal brain activation pattern as a measure of story comprehension. Our findings suggest that fNIRS can be used for investigating brain-to-brain coupling during verbal communication in natural settings. PMID:28240295

  20. Use of COD, TOC, and Fluorescence Spectroscopy to Estimate BOD in Wastewater.

    PubMed

    Christian, Evelyn; Batista, Jacimaria R; Gerrity, Daniel

    2017-02-01

      Common to all National Pollutant Discharge Elimination System (NPDES) permits in the United States is a limit on biochemical oxygen demand (BOD). Chemical oxygen demand (COD), total organic carbon (TOC), and fluorescence spectroscopy are also capable of quantifying organic content, although the mechanisms of quantification and the organic fractions targeted differ for each test. This study explores correlations between BOD5 and these alternate test procedures using facility influent, primary effluent, and facility effluent samples from a full-scale water resource recovery facility. Relative reductions of the water quality parameters proved to be strong indicators of their suitability as surrogates for BOD5. Suitable correlations were generally limited to the combined datasets for the three sampling locations or the facility effluent alone. COD exhibited relatively strong linear correlations with BOD5 when considering the three sample points (r = 0.985) and the facility effluent alone (r = 0.914), while TOC exhibited a suitable linear correlation with BOD5 in the facility effluent (r = 0.902). Exponential regressions proved to be useful for estimating BOD5 based on TOC or fluorescence (r > 0.95).

  1. Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bohlin, Alexis; Kliewer, Christopher J.

    2013-01-01

    Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the highmore » efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15, 000 spatially correlated rotational CARS spectra in N 2 and air over a 2D field of 40 mm 2.« less

  2. Photoacoustic spectroscopy and thermal relaxation method to evaluate corn moisture content

    NASA Astrophysics Data System (ADS)

    Pedrochi, F.; Medina, A. N.; Bento, A. C.; Baesso, M. L.; Luz, M. L. S.; Dalpasquale, V. A.

    2005-06-01

    In this study, samples of popcorn with different degrees of moisture were analyzed. The optical absorption bands at the mid infrared were measured using photoacoustic spectroscopy and were correlated to the sample moisture. The results were in agreement with moisture data determined by the well known reference method, the Karl Fischer. In addition, the thermal relaxation method was used to determine the sample specific heat as a function of the moisture content. The results were also in agreement with the two mentioned methods.

  3. Application Of Positron Beams For The Characterization Of Nano-scale Pores In Thin Films

    NASA Astrophysics Data System (ADS)

    Hirata, K.; Ito, K.; Kobayashi, Y.; Suzuki, R.; Ohdaira, T.; Eijt, S. W. H.; Schut, H.; van Veen, A.

    2003-08-01

    We applied three positron annihilation techniques, positron 3γ-annihilation spectroscopy, positron annihilation lifetime spectroscopy, and angular correlation of annihilation radiation, to the characterization of nano-scale pores in thin films by combining them with variable-energy positron beams. Characterization of pores in thin films is an important part of the research on various thin films of industrial importance. The results of our recent studies on pore characterization of thin films by positron beams will be reported here.

  4. The study of molecular spectroscopy by ab initio methods

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1991-01-01

    This review illustrates the potential of theory for solving spectroscopic problems. The accuracy of approximate techniques for including electron correlation have been calibrated by comparison with full configuration-interaction calculations. Examples of the application of ab initio calculations to vibrational, rotational, and electronic spectroscopy are given. It is shown that the state-averaged, complete active space self-consistent field, multireference configuration-interaction procedure provides a good approach for treating several electronic states accurately in a common molecular orbital basis.

  5. Application of mid-infrared spectroscopy in analyzing different segmented production of Angelica by AB-8 macroporous resin

    NASA Astrophysics Data System (ADS)

    Guo, Yizhen; Wang, Jingjuan; Lu, Lina; Sun, Suqin; Liu, Yang; Xiao, Yao; Qin, Youwen; Xiao, Lijuan; Wen, Haoran; Qu, Lei

    2016-01-01

    As complicated mixture systems, chemical components of Angelica are very difficult to identify and discriminate, so as not to control its quality effectively. In recent years, Mid-infrared spectroscopy has been innovatively employed to identify and assess the quality of Traditional Chinese medicine (TCM) products. In this paper, the macroscopic IR fingerprint method including Fourier transform infrared spectroscopy (FT-IR), the second derivative infrared spectroscopy (SD-IR) and two-dimensional correlation infrared spectroscopy (2D-IR), are applied to study and identify Angelica raw material, the decoction and different segmented production of AB-8 macroporous resin. FT-IR spectrum indicates that Angelica raw material is rich in sucrose and the correlation coefficient is 0.8465. The decoction of Angelica contains varieties of polysaccharides components and the content is gradually decreased with increasing concentration of ethanol. In addition, the decoction of Angelica contains a certain amount of protein components and 50% ethanol eluate has more protein than other eluates. Their second derivative spectra amplify the differences and reveal the potentially characteristic IR absorption bands, then we conclude that the decoction of Angelica contains a certain amount of ferulic acid and ligustilide. And 30% ethanol eluate, 50% ethanol eluate and 70% ethanol eluate are similar to ligustilide. Further, 2D-IR spectra enhance the spectral resolution and obtain much new information for discriminating the similar complicated samples. It is demonstrated that the above three-step infrared spectroscopy could be applicable for effective, visual and accurate analysis and identification of very complicated and similar mixture systems of traditional Chinese medicines.

  6. Correlating structural dynamics and catalytic activity of AgAu nanoparticles with ultrafast spectroscopy and all-atom molecular dynamics simulations.

    PubMed

    Ferbonink, G F; Rodrigues, T S; Dos Santos, D P; Camargo, P H C; Albuquerque, R Q; Nome, R A

    2018-05-29

    In this study, we investigated hollow AgAu nanoparticles with the goal of improving our understanding of the composition-dependent catalytic activity of these nanoparticles. AgAu nanoparticles were synthesized via the galvanic replacement method with controlled size and nanoparticle compositions. We studied extinction spectra with UV-Vis spectroscopy and simulations based on Mie theory and the boundary element method, and ultrafast spectroscopy measurements to characterize decay constants and the overall energy transfer dynamics as a function of AgAu composition. Electron-phonon coupling times for each composition were obtained from pump-power dependent pump-probe transients. These spectroscopic studies showed how nanoscale surface segregation, hollow interiors and porosity affect the surface plasmon resonance wavelength and fundamental electron-phonon coupling times. Analysis of the spectroscopic data was used to correlate electron-phonon coupling times to AgAu composition, and thus to surface segregation and catalytic activity. We have performed all-atom molecular dynamics simulations of model hollow AgAu core-shell nanoparticles to characterize nanoparticle stability and equilibrium structures, besides providing atomic level views of nanoparticle surface segregation. Overall, the basic atomistic and electron-lattice dynamics of core-shell AgAu nanoparticles characterized here thus aid the mechanistic understanding and performance optimization of AgAu nanoparticle catalysts.

  7. Effect of motion artifacts and their correction on near-infrared spectroscopy oscillation data: a study in healthy subjects and stroke patients.

    PubMed

    Selb, Juliette; Yücel, Meryem A; Phillip, Dorte; Schytz, Henrik W; Iversen, Helle K; Vangel, Mark; Ashina, Messoud; Boas, David A

    2015-05-01

    Functional near-infrared spectroscopy is prone to contamination by motion artifacts (MAs). Motion correction algorithms have previously been proposed and their respective performance compared for evoked rain activation studies. We study instead the effect of MAs on "oscillation" data which is at the basis of functional connectivity and autoregulation studies. We use as our metric of interest the interhemispheric correlation (IHC), the correlation coefficient between symmetrical time series of oxyhemoglobin oscillations. We show that increased motion content results in a decreased IHC. Using a set of motion-free data on which we add real MAs, we find that the best motion correction approach consists of discarding the segments of MAs following a careful approach to minimize the contamination due to band-pass filtering of data from "bad" segments spreading into adjacent "good" segments. Finally, we compare the IHC in a stroke group and in a healthy group that we artificially contaminated with the MA content of the stroke group, in order to avoid the confounding effect of increased motion incidence in the stroke patients. After motion correction, the IHC remains lower in the stroke group in the frequency band around 0.1 and 0.04 Hz, suggesting a physiological origin for the difference. We emphasize the importance of considering MAs as a confounding factor in oscillation-based functional near-infrared spectroscopy studies.

  8. An Improved Weighted Partial Least Squares Method Coupled with Near Infrared Spectroscopy for Rapid Determination of Multiple Components and Anti-Oxidant Activity of Pu-Erh Tea.

    PubMed

    Liu, Ze; Xie, Hua-Lin; Chen, Lin; Huang, Jian-Hua

    2018-05-02

    Background: Pu-erh tea is a unique microbially fermented tea, which distinctive chemical constituents and activities are worthy of systematic study. Near infrared spectroscopy (NIR) coupled with suitable chemometrics approaches can rapidly and accurately quantitatively analyze multiple compounds in samples. Methods: In this study, an improved weighted partial least squares (PLS) algorithm combined with near infrared spectroscopy (NIR) was used to construct a fast calibration model for determining four main components, i.e., tea polyphenols, tea polysaccharide, total flavonoids, theanine content, and further determine the total antioxidant capacity of pu-erh tea. Results: The final correlation coefficients R square for tea polyphenols, tea polysaccharide, total flavonoids content, theanine content, and total antioxidant capacity were 0.8288, 0.8403, 0.8415, 0.8537 and 0.8682, respectively. Conclusions : The current study provided a comprehensive study of four main ingredients and activity of pu-erh tea, and demonstrated that NIR spectroscopy technology coupled with multivariate calibration analysis could be successfully applied to pu-erh tea quality assessment.

  9. Fluorescence Correlation Spectroscopy to Study Diffusion of Polymer Chains within Layered Hydrogen-Bonded Polymer Films

    NASA Astrophysics Data System (ADS)

    Pristinski, Denis; Kharlampieva, Evguenia; Sukhishvili, Svetlana

    2002-03-01

    Fluorescence Correlation Spectroscopy (FCS) has been used to probe molecular motions within polymer multilayers formed by hydrogen-bonding sequential self-assembly. Polyethylene glycol (PEG) molecules were end-labeled with the fluorescent tags, and self-assembled with polymethacrylic acid (PMAA) using layer-by-layer deposition. We have found that molecules included in the top adsorbed layer have significant mobility at the millisecond time scale, probably due to translational diffusion. However, their dynamics deviate from classical Brownian motion with a single diffusion time. Possible reasons for the deviation are discussed. We found that motions were significantly slowed with increasing depth within the PEG/PMAA multilayer. This phenomena occured in a narrow pH range around 4.0 in which intermolecular interactions were relatively weak.

  10. Geomorphic Evidence for Martian Ground Ice and Climate Change

    NASA Technical Reports Server (NTRS)

    Kanner, L. C.; Allen, C. C.; Bell, M. S.

    2004-01-01

    Recent results from gamma-ray and neutron spectrometers on Mars Odyssey indicate the presence of a hydrogen-rich layer tens of centimeters thick in the uppermost meter in high latitudes (greater than 60) on Mars. This hydrogen-rich layer correlates to regions of ice stability. Thus, the subsurface hydrogen is thought to be water ice constituting 35 plus or minus 15% by weight near the north and south polar regions. We refine the location of subsurface ice deposits at a less than km scale by combining existing spectroscopy data with surface features indicative of subsurface ice. A positive correlation between spectroscopy data and geomorphic ice indicators has been previously suggested for high latitudes. Here we expand the comparative study to northern mid latitudes (30 degrees N- 65 degrees N).

  11. The electronic properties of potassium doped copper-phthalocyanine studied by electron energy-loss spectroscopy.

    PubMed

    Flatz, K; Grobosch, M; Knupfer, M

    2007-06-07

    The authors have studied the electronic structure of potassium doped copper-phthalocyanine using electron energy-loss spectroscopy. The evolution of the loss function indicates the formation of distinct KxCuPc phases. Taking into account the C1s and K2p core level excitations and recent results by Giovanelli et al. [J. Chem. Phys. 126, 044709 (2007)], they conclude that these are K2CuPc and K4CuPc. They discuss the changes in the electronic excitations upon doping on the basis of the molecular electronic levels and the presence of electronic correlations.

  12. Gap features of layered iron-selenium-tellurium compound below and above the superconducting transition temperature by break-junction spectroscopy combined with STS

    NASA Astrophysics Data System (ADS)

    Ekino, T.; Sugimoto, A.; Gabovich, A. M.

    2018-05-01

    We studied correlations between the superconducting gap features of Te-substituted FeSe observed by scanning tunnelling spectroscopy (STS) and break-junction tunnelling spectroscopy (BJTS). At bias voltages outside the superconducting gap-energy range, the broad gap structure exists, which becomes the normal-state gap above the critical temperature, T c. Such behaviour is consistent with the model of the partially gapped density-wave superconductor involving both superconducting gaps and pseudogaps, which has been applied by us earlier to high-Tc cuprates. The similarity suggests that the parent electronic spectrum features should have much in common for these classes of materials.

  13. Relationship between changes in rat behavior and integral biochemical indexes determined by laser correlation spectroscopy after photothrombosis of the prefrontal cortex.

    PubMed

    Romanova, G A; Shakova, F M; Kovaleva, O I; Pivovarov, V V; Khlebnikova, N N; Karganov, M Yu

    2004-02-01

    Experiments on rats showed that Noopept improved retention and retrieval of conditioned passive avoidance response after phototrombosis of the prefrontal cortex (a procedure impairing retention of memory traces). The impairment of mnesic functions was accompanied by changes in integral biochemical indexes of the plasma determined by laser correlation spectroscopy. Treatment of behavioral disorders with Noopepet normalized biochemical indexes.

  14. Noninvasive Spatially Offset and Transmission Raman Mapping of Breast Tissue: A Multimodal Approach Towards the In Vivo Assessment of Tissue Pathology

    DTIC Science & Technology

    2013-06-01

    spectroscopy on tissue biopsies to correlate spectral bands with healthy and diseased breast tissue. Observed spectral changes are compared to infrared...capabilities and performance. Additionally, we conduct spectroscopy on tissue biopsies to correlate spectral bands with healthy and diseased ... disease states, ie hyperplasia, dysplasia, malignant, benign. The instrumentation has been built and characterized using archived tissue that was

  15. Orientational Dynamics of a Functionalized Alkyl Planar Monolayer Probed by Polarization-Selective Angle-Resolved Infrared Pump-Probe Spectroscopy.

    PubMed

    Nishida, Jun; Yan, Chang; Fayer, Michael D

    2016-10-12

    Polarization-selective angle-resolved infrared pump-probe spectroscopy was developed and used to study the orientational dynamics of a planar alkylsiloxane monolayer functionalized with a rhenium metal carbonyl headgroup on an SiO 2 surface. The technique, together with a time-averaged infrared linear dichroism measurement, characterized picosecond orientational relaxation of the headgroup occurring at the monolayer-air interface by employing several sets of incident angles of the infrared pulses relative to the sample surface. By application of this method and using a recently developed theory, it was possible to extract both the out-of-plane and "mainly"-in-plane orientational correlation functions in a model-independent manner. The observed correlation functions were compared with theoretically derived correlation functions based on several dynamical models. The out-of-plane correlation function reveals the highly restricted out-of-plane motions of the head groups and also suggests that the angular distribution of the transition dipole moments is bimodal. The mainly-in-plane correlation function, for the sample studied here with the strongly restricted out-of-plane motions, essentially arises from the purely in-plane dynamics. In contrast to the out-of-plane dynamics, significant in-plane motions occurring over various time scales were observed including an inertial motion, a restricted wobbling motion of ∼3 ps, and complete randomization occurring in ∼25 ps.

  16. Topographical and Chemical Imaging of a Phase Separated Polymer Using a Combined Atomic Force Microscopy/Infrared Spectroscopy/Mass Spectrometry Platform

    DOE PAGES

    Tai, Tamin; Karácsony, Orsolya; Bocharova, Vera; ...

    2016-02-18

    This article describes how the use of a hybrid atomic force microscopy/infrared spectroscopy/mass spectrometry imaging platform was demonstrated for the acquisition and correlation of nanoscale sample surface topography and chemical images based on infrared spectroscopy and mass spectrometry.

  17. Time-Domain Nuclear Magnetic Resonance (TD-NMR) and Chemometrics for Determination of Fat Content in Commercial Products of Milk Powder.

    PubMed

    Nascimento, Paloma Andrade Martins; Barsanelli, Paulo Lopes; Rebellato, Ana Paula; Pallone, Juliana Azevedo Lima; Colnago, Luiz Alberto; Pereira, Fabíola Manhas Verbi

    2017-03-01

    This study shows the use of time-domain (TD)-NMR transverse relaxation (T2) data and chemometrics in the nondestructive determination of fat content for powdered food samples such as commercial dried milk products. Most proposed NMR spectroscopy methods for measuring fat content correlate free induction decay or echo intensities with the sample's mass. The need for the sample's mass limits the analytical frequency of NMR determination, because weighing the samples is an additional step in this procedure. Therefore, the method proposed here is based on a multivariate model of T2 decay, measured with Carr-Purcell-Meiboom-Gill pulse sequence and reference values of fat content. The TD-NMR spectroscopy method shows high correlation (r = 0.95) with the lipid content, determined by the standard extraction method of Bligh and Dyer. For comparison, fat content determination was also performed using a multivariate model with near-IR (NIR) spectroscopy, which is also a nondestructive method. The advantages of the proposed TD-NMR method are that it (1) minimizes toxic residue generation, (2) performs measurements with high analytical frequency (a few seconds per analysis), and (3) does not require sample preparation (such as pelleting, needed for NIR spectroscopy analyses) or weighing the samples.

  18. Chemical transitions of Areca semen during the thermal processing revealed by temperature-resolved ATR-FTIR spectroscopy and two-dimensional correlation analysis

    NASA Astrophysics Data System (ADS)

    Wang, Zhibiao; Wang, Xu; Pei, Wenxuan; Li, Sen; Sun, Suqin; Zhou, Qun; Chen, Jianbo

    2018-03-01

    Areca semen is a common herb used in traditional Chinese medicine, but alkaloids in this herb are categorized as Group I carcinogens by IARC. It has been proven that the stir-baking process can reduce alkaloids in Areca semen while keep the activity for promoting digestion. However, the changes of compositions other than alkaloids during the thermal processing are unclear. Understanding the thermal chemical transitions of Areca semen is necessary to explore the processing mechanisms and optimize the procedures. In this research, FTIR spectroscopy with a temperature-controlled ATR accessory is employed to study the heating process of Areca semen. Principal component analysis and two-dimensional correlation spectroscopy are used to interpret the spectra to reveal the chemical transitions of Areca semen in different temperature ranges. The loss of a few volatile compounds in the testa and sperm happens below 105 °C, while some esters in the sperm decreases above 105 °C. As the heating temperature is close to 210 °C, Areca semen begins to be scorched and the decomposition of many compounds can be observed. This research shows the potential of the temperature-resolved ATR-FTIR spectroscopy in exploring the chemical transitions of the thermal processing of herbal materials.

  19. Identification of crystalline structures in jet-cooled acetylene large clusters studied by two-dimensional correlation infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Matsumoto, Yoshiteru; Yoshiura, Ryuto; Honma, Kenji

    2017-07-01

    We investigated the crystalline structures of jet-cooled acetylene (C2H2) large clusters by laser spectroscopy and chemometrics. The CH stretching vibrations of the C2H2 large clusters were observed by infrared (IR) cavity ringdown spectroscopy. The IR spectra of C2H2 clusters were measured under the conditions of various concentrations of C2H2/He mixture gas for supersonic jets. Upon increasing the gas concentration from 1% to 10%, we observed a rapid intensity enhancement for a band in the IR spectra. The strong dependence of the intensity on the gas concentration indicates that the band was assigned to CH stretching vibrations of the large clusters. An analysis of the IR spectra by two-dimensional correlation spectroscopy revealed that the IR absorption due to the C2H2 large cluster is decomposed into two CH stretching vibrations. The vibrational frequencies of the two bands are almost equivalent to the IR absorption of the pure- and poly-crystalline orthorhombic structures in the aerosol particles. The characteristic temperature behavior of the IR spectra implies the existence of the other large cluster, which is discussed in terms of the phase transition of a bulk crystal.

  20. Using optical fibers with different modes to improve the signal-to-noise ratio of diffuse correlation spectroscopy flow-oximeter measurements

    PubMed Central

    He, Lian; Lin, Yu; Shang, Yu; Shelton, Brent J.

    2013-01-01

    Abstract. The dual-wavelength diffuse correlation spectroscopy (DCS) flow-oximeter is an emerging technique enabling simultaneous measurements of blood flow and blood oxygenation changes in deep tissues. High signal-to-noise ratio (SNR) is crucial when applying DCS technologies in the study of human tissues where the detected signals are usually very weak. In this study, single-mode, few-mode, and multimode fibers are compared to explore the possibility of improving the SNR of DCS flow-oximeter measurements. Experiments on liquid phantom solutions and in vivo muscle tissues show only slight improvements in flow measurements when using the few-mode fiber compared with using the single-mode fiber. However, light intensities detected by the few-mode and multimode fibers are increased, leading to significant SNR improvements in detections of phantom optical property and tissue blood oxygenation. The outcomes from this study provide useful guidance for the selection of optical fibers to improve DCS flow-oximeter measurements. PMID:23455963

  1. Si-29 NMR spectroscopy of naturally-shocked quartz from Meteor Crater, Arizona: Correlation to Kieffer's classification scheme

    NASA Technical Reports Server (NTRS)

    Boslough, M. B.; Cygan, R. T.; Kirkpatrick, R. J.

    1993-01-01

    We have applied solid state Si-29 nuclear magnetic resonance (NMR) spectroscopy to five naturally-shocked Coconino Sandstone samples from Meteor Crater, Arizona, with the goal of examining possible correlations between NMR spectral characteristics and shock level. This work follows our observation of a strong correlation between the width of a Si-29 resonance and peak shock pressure for experimentally shocked quartz powders. The peak width increase is due to the shock-induced formation of amorphous silica, which increases as a function of shock pressure over the range that we studied (7.5 to 22 GPa). The Coconino Sandstone spectra are in excellent agreement with the classification scheme of Kieffer in terms of presence and approximate abundances of quartz, coesite, stishovite, and glass. We also observe a new resonance in two moderately shocked samples that we have tentatively identified with silicon in tetrahedra with one hydroxyl group in a densified form of amorphous silica.

  2. Blood flow measurement of human skeletal muscle during various exercise intensity using diffuse correlation spectroscopy (DCS)

    NASA Astrophysics Data System (ADS)

    Murakami, Yuya; Ono, Yumie; Ichinose, Masashi

    2017-02-01

    We studied blood flow dynamics of active skeletal muscle using diffuse correlation spectroscopy (DCS), an emerging optical modality that is suitable for noninvasive quantification of microcirculation level in deep tissue. Seven healthy subjects conducted 0.5 Hz dynamic handgrip exercise for 3 minutes at intensities of 10, 20, 30, and 50 % of maximal voluntary contraction (MVC). DCS could detect the time-dependent increase of the blood flow response of the forearm muscle for continuous exercises, and the increase ratios of the mean blood flow through the exercise periods showed good correlation with the exercise intensities. We also compared blood flow responses detected from DCS with two different photon sampling rates and found that an appropriate photon sampling rates should be selected to follow the wide-ranged increase in the muscle blood flow with dynamic exercise. Our results demonstrate the possibility for utilizing DCS in a field of sports medicine to noninvasively evaluate the dynamics of blood flow in the active muscles.

  3. Vibrational correlation between conjugated carbonyl and diazo modes studied by single- and dual-frequency two-dimensional infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Maekawa, Hiroaki; Sul, Soohwan; Ge, Nien-Hui

    2013-08-01

    We have applied infrared three-pulse photon echo and single- and dual-frequency 2D IR spectroscopy to the ester Cdbnd O and diazo Ndbnd N stretching modes in ethyl diazoacetate (EDA), and investigated their vibrational frequency fluctuations and correlation. The two modes exhibit different vibrational dynamics and 2D lineshape, which are well simulated by frequency-frequency correlation functions (FFCFs) with two decaying components. Although the FT IR spectrum shows a single Cdbnd O band, absolute magnitude 2D IR nonrephasing spectrum displays spectral signatures supporting the presence of cis and trans conformations. The cross-peak inclined toward the anti-diagonal in the dual-frequency 2D IR spectrum, indicating that the frequency fluctuations of the two modes are anticorrelated. This behavior is attributed to anticorrelated change in the bond orders when solvent and structural fluctuations causes EDA to adopt a different mixture of the two dominant resonance structures. The effects of cross FFCF on the cross-peak line shape are discussed.

  4. Elemental content of enamel and dentin after bleaching of teeth (a comparative study between laser-induced breakdown spectroscopy and x-ray photoelectron spectroscopy)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imam, H.; Ahmed, Doaa; Eldakrouri, Ashraf

    2013-06-21

    The elemental content of the superficial and inner enamel as well as that of dentin was analyzed using laser-induced breakdown spectroscopy (LIBS) and x-ray photoelectron spectroscopy (XPS) of bleached and unbleached tooth specimens. It is thus clear from the spectral analysis using both the LIBS and XPS technique that elemental changes (though insignificant within the scopes of this study) of variable intensities do occur on the surface of the enamel and extend deeper to reach dentin. The results of the LIBS revealed a slight reduction in the calcium levels in the bleached compared to the control specimens in all themore » different bleaching groups and in both enamel and dentin. The good correlation found between the LIBS and XPS results demonstrates the possibility of LIBS technique for detection of minor loss in calcium and phosphorus in enamel and dentin.« less

  5. Anterior Insula GABA Levels Correlate with Emotional Aspects of Empathy: A Proton Magnetic Resonance Spectroscopy Study

    PubMed Central

    Dong, Fang; Chen, Luguang; Zheng, Li; Guo, Xiuyan; Li, Jianqi

    2014-01-01

    Background: Empathy is a multidimensional construct referring to the capacity to understand and share the emotional and affective states of another person. Cerebral γ-aminobutyric acid (GABA)-ergic levels are associated with a variety of neurological and psychiatric disorders. However, the role of the GABA system in different dimensions of empathy has not been investigated. Materials and Methods: Thirty-two right-handed healthy volunteers took part in this study. We used proton magnetic resonance spectroscopy to determine GABA concentrations in the anterior insula (AI) and the anterior cingulate cortex (ACC) and to examine the relationship between the GABA concentrations and the subcomponents of empathy evaluated by the Interpersonal Reactivity Index (IRI). Result: Pearson correlation analyses (two-tailed) showed that AI GABA was significantly associated with the empathy concern score (r = 0.584, p<0.05) and the personal distress score (r = 0.538, p<0.05) but not significantly associated with other empathy subscales. No significant correlation was found between ACC GABA and empathy subscores. Conclusion: Left AI GABA was positively correlated with the emotional aspects of empathy. These preliminary findings call into question whether AI GABA alterations might predict empathy dysfunction in major psychiatric disorders such as autism and schizophrenia, which have been described as deficits in emotional empathic abilities. PMID:25419976

  6. Quantification of hepatic steatosis with T1-independent, T2-corrected MR imaging with spectral modeling of fat: blinded comparison with MR spectroscopy.

    PubMed

    Meisamy, Sina; Hines, Catherine D G; Hamilton, Gavin; Sirlin, Claude B; McKenzie, Charles A; Yu, Huanzhou; Brittain, Jean H; Reeder, Scott B

    2011-03-01

    To prospectively compare an investigational version of a complex-based chemical shift-based fat fraction magnetic resonance (MR) imaging method with MR spectroscopy for the quantification of hepatic steatosis. This study was approved by the institutional review board and was HIPAA compliant. Written informed consent was obtained before all studies. Fifty-five patients (31 women, 24 men; age range, 24-71 years) were prospectively imaged at 1.5 T with quantitative MR imaging and single-voxel MR spectroscopy, each within a single breath hold. The effects of T2 correction, spectral modeling of fat, and magnitude fitting for eddy current correction on fat quantification with MR imaging were investigated by reconstructing fat fraction images from the same source data with different combinations of error correction. Single-voxel T2-corrected MR spectroscopy was used to measure fat fraction and served as the reference standard. All MR spectroscopy data were postprocessed at a separate institution by an MR physicist who was blinded to MR imaging results. Fat fractions measured with MR imaging and MR spectroscopy were compared statistically to determine the correlation (r(2)), and the slope and intercept as measures of agreement between MR imaging and MR spectroscopy fat fraction measurements, to determine whether MR imaging can help quantify fat, and examine the importance of T2 correction, spectral modeling of fat, and eddy current correction. Two-sided t tests (significance level, P = .05) were used to determine whether estimated slopes and intercepts were significantly different from 1.0 and 0.0, respectively. Sensitivity and specificity for the classification of clinically significant steatosis were evaluated. Overall, there was excellent correlation between MR imaging and MR spectroscopy for all reconstruction combinations. However, agreement was only achieved when T2 correction, spectral modeling of fat, and magnitude fitting for eddy current correction were used (r(2) = 0.99; slope ± standard deviation = 1.00 ± 0.01, P = .77; intercept ± standard deviation = 0.2% ± 0.1, P = .19). T1-independent chemical shift-based water-fat separation MR imaging methods can accurately quantify fat over the entire liver, by using MR spectroscopy as the reference standard, when T2 correction, spectral modeling of fat, and eddy current correction methods are used. © RSNA, 2011.

  7. Quantification of Hepatic Steatosis with T1-independent, T2*-corrected MR Imaging with Spectral Modeling of Fat: Blinded Comparison with MR Spectroscopy

    PubMed Central

    Hines, Catherine D. G.; Hamilton, Gavin; Sirlin, Claude B.; McKenzie, Charles A.; Yu, Huanzhou; Brittain, Jean H.; Reeder, Scott B.

    2011-01-01

    Purpose: To prospectively compare an investigational version of a complex-based chemical shift–based fat fraction magnetic resonance (MR) imaging method with MR spectroscopy for the quantification of hepatic steatosis. Materials and Methods: This study was approved by the institutional review board and was HIPAA compliant. Written informed consent was obtained before all studies. Fifty-five patients (31 women, 24 men; age range, 24–71 years) were prospectively imaged at 1.5 T with quantitative MR imaging and single-voxel MR spectroscopy, each within a single breath hold. The effects of T2* correction, spectral modeling of fat, and magnitude fitting for eddy current correction on fat quantification with MR imaging were investigated by reconstructing fat fraction images from the same source data with different combinations of error correction. Single-voxel T2-corrected MR spectroscopy was used to measure fat fraction and served as the reference standard. All MR spectroscopy data were postprocessed at a separate institution by an MR physicist who was blinded to MR imaging results. Fat fractions measured with MR imaging and MR spectroscopy were compared statistically to determine the correlation (r2), and the slope and intercept as measures of agreement between MR imaging and MR spectroscopy fat fraction measurements, to determine whether MR imaging can help quantify fat, and examine the importance of T2* correction, spectral modeling of fat, and eddy current correction. Two-sided t tests (significance level, P = .05) were used to determine whether estimated slopes and intercepts were significantly different from 1.0 and 0.0, respectively. Sensitivity and specificity for the classification of clinically significant steatosis were evaluated. Results: Overall, there was excellent correlation between MR imaging and MR spectroscopy for all reconstruction combinations. However, agreement was only achieved when T2* correction, spectral modeling of fat, and magnitude fitting for eddy current correction were used (r2 = 0.99; slope ± standard deviation = 1.00 ± 0.01, P = .77; intercept ± standard deviation = 0.2% ± 0.1, P = .19). Conclusion: T1-independent chemical shift–based water-fat separation MR imaging methods can accurately quantify fat over the entire liver, by using MR spectroscopy as the reference standard, when T2* correction, spectral modeling of fat, and eddy current correction methods are used. © RSNA, 2011 PMID:21248233

  8. The examinations of microorganisms by correlation optics method

    NASA Astrophysics Data System (ADS)

    Bilyi, Olexander I.

    2004-06-01

    In report described methods of correlation optics, which are based on the analysis of intensity changes of quasielastic light scattering by micro-organisms and allow the type of correlation function to obtain information about the size of dispersive particles. The principle of new optical method of verification is described. In this method the gauging of intensity of an indirect illumination is carried out by static spectroscopy and processing of observed data by a method of correlation spectroscopy. The given mode of gauging allows measuring allocation of micro-organisms in size interval of 0.1 - 10.0 microns. In the report results of examinations of cultures Pseudomonas aeruginosa, Escherichia coli, Micrococcus lutteus, Lamprocystis and Triocapsa bacteriachlorofil are considered.

  9. Ex vivo measurement of postmortem tissue changes in the crystalline lens by Brillouin spectroscopy and confocal reflectance microscopy.

    PubMed

    Reiss, Stephan; Sperlich, K; Hovakimyan, M; Martius, P; Guthoff, R F; Stolz, H; Stachs, O

    2012-08-01

    Use of Brillouin spectroscopy in ophthalmology enables noninvasive, spatially resolved determination of the rheological properties of crystalline lens tissue. Furthermore, the Brillouin shift correlates with the protein concentration inside the lens. In vitro measurements on extracted porcine lenses demonstrate that results obtained with Brillouin spectroscopy depend strongly on time after death. The intensity of the Brillouin signal decreases significantly as early as 5 h postmortem. Moreover, the fluctuation of the Brillouin frequency shift inside the lens increases with postmortem time. Images of lens tissue taken with a confocal reflectance microscope between measurements reveal a degenerative aging process. These tissue changes correlate with our results from Brillouin spectroscopy. It is concluded that only in vivo measurements appropriately reflect the rheological properties of the eye lens and its protein concentration.

  10. Characterization of an antibiotic produced by Bacillus subtilis JW-1 that suppresses Ralstonia solanacearum.

    PubMed

    Kwon, Jae Won; Kim, Shin Duk

    2014-01-01

    Bacillus subtilis JW-1 was isolated from rhizosphere soil as a potential biocontrol agent of bacterial wilt caused by Ralstonia solanacearum. Seed treatment followed by a soil drench application with this strain resulted in >80% reduction in bacterial wilt disease compared with that in the untreated control under greenhouse conditions. The antibacterial compound produced by strain JW-1 was purified by bioactivity-guided fractionation. Based on mass spectroscopy and nuclear magnetic resonance spectral data ((1)H, (13)C, (1)H-(1)H correlation spectroscopies, rotating frame nuclear Overhauser effect spectroscopy, and heteronuclear multiple-bond correlation spectroscopy), the structure of this compound was elucidated as a cyclic lipopeptide composed of a heptapeptide (Gln-Leu-Leu-Val-Asp-Leu-Leu) bonded to a β-hydroxy-iso-hexadecanoic acid arranged in a lactone ring system.

  11. Fluorescence correlation spectroscopy, Raster image correlation spectroscopy and Number & Brightness on a commercial confocal laser scanning microscope with analog detectors (Nikon C1)

    PubMed Central

    Moens, Pierre D.J.; Gratton, Enrico; Salvemini, Iyrri L.

    2010-01-01

    Fluorescence correlation spectroscopy (FCS) was developed in 1972 by Magde, Elson and Webb (Magde et al., 1972). Photon counting detectors and avalanche photodiodes have become standards in FCS to the point that there is a widespread belief that these detectors are essential to perform FCS experiments, despite the fact that FCS was developed using analog detectors. Spatial and temporal intensity fluctuation correlations using analog detection on a commercial Olympus Fluoview 300 microscope has been reported by Brown et al. (2008). However, each analog instrument has its own idiosyncrasies that need to be understood before using the instrument for FCS. In this work we explore the capabilities of the Nikon C1, a low cost confocal microscope, to obtain single point FCS, Raster-scan Image Correlation Spectroscopy (RICS) and Number & Brightness data both in solution and incorporated into the membrane of Giant Unilamellar Vesicles (GUVs). We show that it is possible to obtain dynamic information about fluorescent molecules from single point FCS, RICS and Number & Brightness using the Nikon C1. We highlighted the fact that care should be taken in selecting the acquisition parameters in order to avoid possible artifacts due to the detector noise. However, due to relatively large errors in determining the distribution of digital levels for a given microscope setting, the system is probably only adequate for determining relative brightness within the same image. PMID:20734406

  12. Numerical Evaluation of Parameter Correlation in the Hartmann-Tran Line Profile

    NASA Astrophysics Data System (ADS)

    Adkins, Erin M.; Reed, Zachary; Hodges, Joseph T.

    2017-06-01

    The partially correlated quadratic, speed-dependent hard-collision profile (pCqSDHCP), for simplicity referred to as the Hartmann-Tran profile (HTP), has been recommended as a generalized lineshape for high resolution spectroscopy. The HTP parameterizes complex collisional effects such as Dicke narrowing, speed dependent narrowing, and correlations between velocity-changing and dephasing collisions, while also simplifying to simpler profiles that are widely used, such as the Voigt profile. As advanced lineshape profiles are adopted by more researchers, it is important to understand the limitations that data quality has on the ability to retrieve physically meaningful parameters using sophisticated lineshapes that are fit to spectra of finite signal-to-noise ratio. In this work, spectra were simulated using the HITRAN Application Programming Interface (HAPI) across a full range of line parameters. Simulated spectra were evaluated to quantify the precision with which fitted lineshape parameters can be determined at a given signal-to-noise ratio, focusing on the numerical correlation between the retrieved Dicke narrowing frequency and the velocity-changing and dephasing collisions correlation parameter. Tran, H., N. Ngo, and J.-M. Hartmann, Journal of Quantitative Spectroscopy and Radiative Transfer 2013. 129: p. 89-100. Tennyson, et al., Pure Appl. Chem. 2014, 86: p. 1931-1943. Kochanov, R.V., et al., Journal of Quantitative Spectroscopy and Radiative Transfer 2016. 177: p. 15-30. Tran, H., N. Ngo, and J.-M. Hartmann, Journal of Quantitative Spectroscopy and Radiative Transfer 2013. 129: p. 199-203.

  13. Two-dimensional correlation infrared spectroscopy applied to the identification of ephedrine and pseudoephedrine in illegally adulterated slimming herbal products.

    PubMed

    Miao, Li; Liu, Yan; Li, Hao; Qi, Yunpeng; Lu, Feng

    2017-02-01

    Two-dimensional correlation spectroscopy (2DCOS) was employed for the identification of ephedrine (Ep) and pseudoephedrine (Ps) present in illegally adulterated slimming herbal products (SHPs). Second derivative (SD) spectral pretreatment was used prior to 2DCOS analysis to highlight specific features not readily observable by Fourier transform infrared spectroscopy (FTIR), SD-FTIR, or original 2DCOS, leading to enhanced resolution and a reduced lower limit of detection (<1% in this study). After examining the power spectra of suspicious SHPs, bands containing characteristic peaks for Ep (701, 747, 1042, 1363, 1375, 1451, 1478 cm -1 etc) and/or Ps (703, 767, 1037, 1375, 1428, 1455, 1590 cm - 1, etc.) were selected to construct synchronous and asynchronous maps for further analysis, while the latter was applied to discriminate positive SHPs adulterated simultaneously with Ep and Ps. The proposed method is simple and economical and has the potential to identify other chemicals in illegally adulterated herbal products. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  14. State-of-the-Art Fluorescence Fluctuation-Based Spectroscopic Techniques for the Study of Protein Aggregation

    PubMed Central

    Kinjo, Masataka

    2018-01-01

    Neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), Alzheimer’s disease, Parkinson’s disease, and Huntington’s disease, are devastating proteinopathies with misfolded protein aggregates accumulating in neuronal cells. Inclusion bodies of protein aggregates are frequently observed in the neuronal cells of patients. Investigation of the underlying causes of neurodegeneration requires the establishment and selection of appropriate methodologies for detailed investigation of the state and conformation of protein aggregates. In the current review, we present an overview of the principles and application of several methodologies used for the elucidation of protein aggregation, specifically ones based on determination of fluctuations of fluorescence. The discussed methods include fluorescence correlation spectroscopy (FCS), imaging FCS, image correlation spectroscopy (ICS), photobleaching ICS (pbICS), number and brightness (N&B) analysis, super-resolution optical fluctuation imaging (SOFI), and transient state (TRAST) monitoring spectroscopy. Some of these methodologies are classical protein aggregation analyses, while others are not yet widely used. Collectively, the methods presented here should help the future development of research not only into protein aggregation but also neurodegenerative diseases. PMID:29570669

  15. "Sizing" the oligomers of Azami Green fluorescent protein with FCS and antibunching

    NASA Astrophysics Data System (ADS)

    Temirov, Jamshid; Werner, James H.; Goodwin, Peter M.; Bradbury, Andrew R. M.

    2012-02-01

    Fluorescent proteins are invaluable molecules in fluorescence microscopy and spectroscopy. The size and brightness of fluorescent proteins often dictates the application they may be used for. While a monomeric protein may be the least perturbative structure for labeling a protein in a cell, often oligomers (dimers and tetramers) of fluorescent proteins can be more stable. However, from a quantitative microscopy standpoint, it is important to realize the photophysical properties of monomers do not necessarily multiply by their number when they form oligomers. In this work we studied oligomerization states of the Azami Green (AG) protein with fluorescence correlation spectroscopy (FCS) and photon antibunching or photon pair correlation spectroscopy (PPCS). FCS was used to measure the hydrodynamic size of the oligomers, whereas antibunching was used to count the number of fluorescent emitters in the oligomers. The results exhibited that the dimers of AG were single emitters and the tetramers were dual-emitters, indicative of dipole-dipole interactions and energy transfer between the monomeric units. We also used these methods to estimate the number of fluorescent proteins displayed on T7 phage molecules.

  16. Recent mathematical developments in 2D correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Noda, I.

    2000-03-01

    Recent mathematical developments in the field of 2D correlation spectroscopy, especially those related to the statistical theory, are reported. The notion of correlation phase angle is introduced. The significance of correlation phase angle between dynamic fluctuations of signals measured at two different spectral variables may be linked to more commonly known statistical concepts, such as coherence and correlation coefficient. This treatment provides the direct mathematical connection between the synchronous 2D correlation spectrum with a continuous form of the variance-covariance matrix. Moreover, it gives the background for the formal definition of the disrelation spectrum, which may be used as a heuristic substitution for the asynchronous 2D spectrum. The 2D correlation intensity may be separated into two independent factors representing the normalized extent of signal fluctuation coherence (i.e., correlation coefficient) and the magnitude of spectral intensity changes (i.e., variance). Such separation offers a convenient way to artificially enhance the discriminating power of 2D correlation spectra.

  17. Body Composition Measurements of 161-km Ultramarathon Participants

    USDA-ARS?s Scientific Manuscript database

    This study compares body composition characteristics with performance among participants in a 161-km trail ultramarathon. Height, mass, and percent body fat from bioimpedence spectroscopy were measured on 72 starters. Correlation analyses were used to compare body characteristics with finish time, ...

  18. Coherent Optical Transients and Spectral Line Narrowing Phenomena in Four Wave Mixing Spectroscopies: Theoretical and Experimental Studies.

    NASA Astrophysics Data System (ADS)

    Dugan, Mark Allen

    1990-08-01

    The theoretical basis for new signal transients and spectral features generated in field correlated four wave mixing (4WM) spectroscopies is developed. Special attention is given to those signal responses that are sensitive to phase/amplitude correlation among the input driving fields and not simply their intensity correlation. Thus, the cases of incoherent broadband excitation and of coherent short pulsed excitation will be discussed and compared. Applications to the coherent Raman spectroscopies, both electronically nonresonant and fully resonant, are analyzed. Novel interferometric oscillatory behavior is exposed in terms of field-matter detuning beats and matter-matter bi-level and tri-level quantum beats. In addition new detuning resonances are found that have sub-material linewidths and lock onto the mode frequency of the driven chromophore. These spectral features are a member of a class of bichromophore resonant lineshapes arising from nonlinear mixing with correlated driving fields. The origin of such bichromophore resonances can be based on a coupling between two field-matter superposition states driven by correlated fields on separate chromophores. Analytic results are presented and modelled to anticipate the experimental results presented in a following chapter. The onset of resolvable homogeneous electronic memory is reported in room temperature solutions of dye molecules. A narrowing of the homogeneous linewidths with increasing concentration of these dye solutions is observed in sub-picosecond photon echo experiments. This effect is attributed to aggregation which results in a delocalization of the electronic states over several molecules. Ultra -fast spectral diffusion in these dye aggregates is observed in stimulated photon echo measurements. Aggregate bands, seen in the linear absorption spectrum only at high concentrations, can be probed in more dilute solutions with nonlinear four wave mixing.

  19. Kinoform optics applied to X-ray photon correlation spectroscopy.

    PubMed

    Sandy, A R; Narayanan, S; Sprung, M; Su, J-D; Evans-Lutterodt, K; Isakovic, A F; Stein, A

    2010-05-01

    Moderate-demagnification higher-order silicon kinoform focusing lenses have been fabricated to facilitate small-angle X-ray photon correlation spectroscopy (XPCS) experiments. The geometric properties of such lenses, their focusing performance and their applicability for XPCS measurements are described. It is concluded that one-dimensional vertical X-ray focusing via silicon kinoform lenses significantly increases the usable coherent flux from third-generation storage-ring light sources for small-angle XPCS experiments.

  20. Determination of Dynamics of Plant Plasma Membrane Proteins with Fluorescence Recovery and Raster Image Correlation Spectroscopy.

    PubMed

    Laňková, Martina; Humpolíčková, Jana; Vosolsobě, Stanislav; Cit, Zdeněk; Lacek, Jozef; Čovan, Martin; Čovanová, Milada; Hof, Martin; Petrášek, Jan

    2016-04-01

    A number of fluorescence microscopy techniques are described to study dynamics of fluorescently labeled proteins, lipids, nucleic acids, and whole organelles. However, for studies of plant plasma membrane (PM) proteins, the number of these techniques is still limited because of the high complexity of processes that determine the dynamics of PM proteins and the existence of cell wall. Here, we report on the usage of raster image correlation spectroscopy (RICS) for studies of integral PM proteins in suspension-cultured tobacco cells and show its potential in comparison with the more widely used fluorescence recovery after photobleaching method. For RICS, a set of microscopy images is obtained by single-photon confocal laser scanning microscopy (CLSM). Fluorescence fluctuations are subsequently correlated between individual pixels and the information on protein mobility are extracted using a model that considers processes generating the fluctuations such as diffusion and chemical binding reactions. As we show here using an example of two integral PM transporters of the plant hormone auxin, RICS uncovered their distinct short-distance lateral mobility within the PM that is dependent on cytoskeleton and sterol composition of the PM. RICS, which is routinely accessible on modern CLSM instruments, thus represents a valuable approach for studies of dynamics of PM proteins in plants.

  1. Correlation between the local stress and the grain misorientation in the polycrystalline Al2O3 measured by near-field luminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Tomimatsu, Toru; Takigawa, Ryo

    2018-06-01

    Owing to its high spatial resolution, near-field spectroscopy is a useful method for sensing the stress in a narrow region of submicron order. Here, on the basis of the highly resolved images obtained by near-field luminescence spectroscopy, we propose a statistical method of analyzing grain anisotropy-induced stress in polycrystalline Al2O3. We focus on two characteristics of a spectra: the intensity ratio and peak shift of luminescence of two lines (R1 and R2) from Al2O3 to discuss crystal orientation and stress, respectively. By incorporating the concept of the crystal misorientation parameter using intensity ratio, an apparent correlation between the magnitude of stress and the misorientation is found. This correlation analysis provides an important insight for the investigation of local thermal stress in Al2O3.

  2. Spatial fluorescence cross-correlation spectroscopy between core and ring pinholes

    NASA Astrophysics Data System (ADS)

    Blancquaert, Yoann; Delon, Antoine; Derouard, Jacques; Jaffiol, Rodolphe

    2006-04-01

    Fluorescence Correlation Spectroscopy (FCS) is an attractive method to measure molecular concentration, mobility parameters and chemical kinetics. However its ability to descriminate different diffusing species needs to be improved. Recently, we have proposed a simplified spatial Fluorescence cross Correlation Spectroscopy (sFCCS) method, allowing, with only one focused laser beam to obtain two confocal volumes spatially shifted. Now, we present a new sFCCS optical geometry where the two pinholes, a ring and core, are encapsulated one in the other. In this approach all physical and chemical processes that occur in a single volume, like singlet-triplet dynamics and photobleaching, can be eliminated; moreover, this new optical geometry optimises the collection of fluorescence. The first cross Correlation curves for Rhodamine 6G (Rh6G) in Ethanol are presented, in addition to the effect of the size of fluorescent particules (nano-beads, diameters : 20, 100 and 200 nm). The relative simplicity of the method leads us to propose sFCCS as an appropriate method for the determination of diffusion parameters of fluorophores in solution or cells. Nevertheless, progresses in the ingeniering of the optical Molecular Detection Efficiency volumes are highly desirable, in order to improve the descrimination between the cross correlated volumes.

  3. Quantifying Young's moduli of protein fibrils and particles with bimodal force spectroscopy.

    PubMed

    Gilbert, Jay; Charnley, Mirren; Cheng, Christopher; Reynolds, Nicholas P; Jones, Owen G

    2017-10-19

    Force spectroscopy is a means of obtaining mechanical information of individual nanometer-scale structures in composite materials, such as protein assemblies for use in consumer films or gels. As a recently developed force spectroscopy technique, bimodal force spectroscopy relates frequency shifts in cantilevers simultaneously excited at multiple frequencies to the elastic properties of the contacted material, yet its utility for quantitative characterization of biopolymer assemblies has been limited. In this study, a linear correlation between experimental frequency shift and Young's modulus of polymer films was used to calibrate bimodal force spectroscopy and quantify Young's modulus of two protein nanostructures: β-lactoglobulin fibrils and zein nanoparticles. Cross-sectional Young's modulus of protein fibrils was determined to be 1.6 GPa while the modulus of zein nanoparticles was determined as 854 MPa. Parallel measurement of β-lactoglobulin fibril by a competing pulsed-force technique found a higher cross-sectional Young's modulus, highlighting the importance of comparative calibration against known standards in both pulsed and bimodal force spectroscopies. These findings demonstrate a successful procedure for measuring mechanical properties of individual protein assemblies with potential use in biological or packaging applications using bimodal force spectroscopy.

  4. Could near-infrared Raman spectroscopy be correlated with the METAVIR scores in liver lesions induced by hepatitis C virus?

    NASA Astrophysics Data System (ADS)

    Gaggini, Marcio Cesar Reino; Navarro, Ricardo Scarparo; Stefanini, Aline Reis; Sano, Rubens Sato; Silveira, Landulfo

    2013-03-01

    The liver is responsible for several basic functions in human body how the syntheses of the most main proteins and degradation process of toxins, drugs and alcohols. In present days, the viral hepatitis C is one of the highest causes of chronic hepatic illness worldwide, affecting around 3% of the world population. The liver biopsy is considered the gold standard for diagnosing hepatic fibrosis; however, the biopsies may be questioned because of potential sampling error, morbidity, possible mortality and relatively high costs. Spectroscopy techniques such as Raman spectroscopy have been used for diagnosis of human tissues, with favorable results. Raman spectroscopy has been employed to distinguish normal from hepatic lesions through spectral features mainly of proteins, nucleic acids and lipids. In this study, eleven patients with diagnoses of chronic hepatitis C underwent hepatic biopsies having two hepatic fragments collected: one was scored through METAVIR system and the other one was submitted to near-infrared Raman spectroscopy using a dispersive spectrometer (830 nm wavelength, 300 mW laser power and 20 s exposure time). Five spectra were collected in each fragment and submitted to Principal Components Analysis (PCA). Results showed a good correlation between the Raman spectroscopy features and the stage of hepatic fibrosis and inflammation. PCA showed that samples with higher degree of fibrosis presented higher amount of protein features (collagen), whereas samples of higher degree of inflammation presented higher features of hemoglobin, in accordance to the expected evolution of the chronic hepatitis. It has been found an important biomarker for the beginning of hepatic lesion (quinone) with a spectral feature at 1595 cm-1.

  5. Oxygen measurement by multimode diode lasers employing gas correlation spectroscopy.

    PubMed

    Lou, Xiutao; Somesfalean, Gabriel; Chen, Bin; Zhang, Zhiguo

    2009-02-10

    Multimode diode laser (MDL)-based correlation spectroscopy (COSPEC) was used to measure oxygen in ambient air, thereby employing a diode laser (DL) having an emission spectrum that overlaps the oxygen absorption lines of the A band. A sensitivity of 700 ppm m was achieved with good accuracy (2%) and linearity (R(2)=0.999). For comparison, measurements of ambient oxygen were also performed by tunable DL absorption spectroscopy (TDLAS) technique employing a vertical cavity surface emitting laser. We demonstrate that, despite slightly degraded sensitivity, the MDL-based COSPEC-based oxygen sensor has the advantages of high stability, low cost, ease-of-use, and relaxed requirements in component selection and instrument buildup compared with the TDLAS-based instrument.

  6. Integrative two-dimensional correlation spectroscopy (i2DCOS) for the intuitive identification of adulterated herbal materials

    NASA Astrophysics Data System (ADS)

    Chen, Jianbo; Wang, Yue; Rong, Lixin; Wang, Jingjuan

    2018-07-01

    IR, Raman and other separation-free and label-free spectroscopic techniques have been the promising methods for the rapid and low-cost quality control of complex mixtures such as food and herb. However, as the overlapped signals from different ingredients usually make it difficult to extract useful information, chemometrics tools are often needed to find out spectral features of interest. With designed perturbations, two-dimensional correlation spectroscopy (2DCOS) is a powerful technique to resolve the overlapped spectral bands and enhance the apparent spectral resolution. In this research, the integrative two-dimensional correlation spectroscopy (i2DCOS) is defined for the first time overcome some disadvantages of synchronous and asynchronous correlation spectra for identification. The integrative 2D correlation spectra weight the asynchronous cross peaks by the corresponding synchronous cross peaks, which combines the signal-to-noise ratio advantage of synchronous correlation spectra and the spectral resolution advantage of asynchronous correlation spectra. The feasibility of the integrative 2D correlation spectra for the quality control of complex mixtures is examined by the identification of adulterated Fritillariae Bulbus powders. Compared with model-based pattern recognition and multivariate calibration methods, i2DCOS can provide intuitive identification results but not require the number of samples. The results show the potential of i2DCOS in the intuitive quality control of herbs and other complex mixtures, especially when the number of samples is not large.

  7. Use of photoacoustic mid-infrared spectroscopy to characterize soil properties and soil organic matter stability

    NASA Astrophysics Data System (ADS)

    Peltre, Clement; Bruun, Sander; Du, Changwen; Stoumann Jensen, Lars

    2014-05-01

    The persistence of soil organic matter (SOM) is recognized as a major ecosystem property due to its key role in earth carbon cycling, soil quality and ecosystem services. SOM stability is typically studied using biological methods such as measuring CO2-C evolution from microbial decomposition of SOM during laboratory incubation or by physical or chemical fractionation methods, allowing the separation of a labile fraction of SOM. However these methods are time consuming and there is still a need for developing reliable techniques to characterize SOM stability, providing both quantitative measurements and qualitative information, in order to improve our understanding of the mechanisms controlling SOM persistence. Several spectroscopic techniques have been used to characterize and predict SOM stability, such as near infrared reflectance spectroscopy (NIRS) and diffuse reflectance mid-infrared spectroscopy (DRIFT). The latter allows a proper identification of spectral regions corresponding to vibrations of specific molecular or functional groups associated with SOM lability. However, reflectance spectroscopy for soil analyses raises some difficulties related to the low reflectance of soils, and to the high influence of particle size. In the last three decades, the progresses in microphone sensitivity dramatically increased the performance of photoacoustic Fourier transform mid-infrared spectroscopy (FTIR-PAS). This technique offers benefits over reflectance spectroscopy techniques, because particle size and the level of sample reflectance have little effect of on the PAS signal, since FTIR-PAS is a direct absorption technique. Despite its high potential for soil analysis, only a limited number of studies have so far applied FTIR-PAS for soil characterization and its potential for determining SOM degradability still needs to be investigated. The objective of this study was to assess the potential of FTIR-PAS for the characterization of SOM decomposability during laboratory incubation and more classical soil parameters such as carbon and clay content for a range of 36 soils collected from various field experiments in Denmark. Partial least square (PLS) regression was used to correlate the collected FTIR-PAS spectra with the proportion of soil organic carbon mineralized after 34 weeks of incubation at 15° C and pF 2, taken as an indicator of the labile fraction of SOM. Results showed that it is possible to predict the labile fraction of SOM with FTIR PAS with similar accuracy as with NIRS (assessed in a previous study on the same soil set). FTIR-PAS offered the advantage over NIRS to allow identification of the chemical compounds positively or negatively correlated with the labile fraction of SOM. The band at 1612 cm-1 corresponding to polysaccharides, pectin and aromatic C=C was the band most positively correlated with labile SOM, which we attributed to the relative lability of fresh plant debris rich in polysaccharide and aromatic lignin. The band at 1560-1590 cm-1 assigned to N=H, C=N and aromatic C=C vibration was the band most negatively correlated with the labile fraction of SOM, confirming the abundance of nitrogenous and aromatic compounds in stabilized SOM. In conclusion, FTIR-PAS has proved to be a powerful tool to characterize the labile fraction of SOM, offering several benefits over reflectance spectroscopy techniques.

  8. 456th Brookhaven Lecture

    ScienceCinema

    Allen Orville

    2017-12-09

    Orville presents “Getting More From Less: Correlated Single-Crystal Spectroscopy and X-ray Crystallography at the NSLS” in which he discusses how researchers can use many different tools and techniques to study atomic structure and electronic structure to provide insights into chemistry.

  9. Enumerating virus-like particles in an optically concentrated suspension by fluorescence correlation spectroscopy.

    PubMed

    Hu, Yi; Cheng, Xuanhong; Daniel Ou-Yang, H

    2013-01-01

    Fluorescence correlation spectroscopy (FCS) is one of the most sensitive methods for enumerating low concentration nanoparticles in a suspension. However, biological nanoparticles such as viruses often exist at a concentration much lower than the FCS detection limit. While optically generated trapping potentials are shown to effectively enhance the concentration of nanoparticles, feasibility of FCS for enumerating field-enriched nanoparticles requires understanding of the nanoparticle behavior in the external field. This paper reports an experimental study that combines optical trapping and FCS to examine existing theoretical predictions of particle concentration. Colloidal suspensions of polystyrene (PS) nanospheres and HIV-1 virus-like particles are used as model systems. Optical trapping energies and statistical analysis are used to discuss the applicability of FCS for enumerating nanoparticles in a potential well produced by a force field.

  10. λ-Repressor Oligomerization Kinetics at High Concentrations Using Fluorescence Correlation Spectroscopy in Zero-Mode Waveguides

    PubMed Central

    Samiee, K. T.; Foquet, M.; Guo, L.; Cox, E. C.; Craighead, H. G.

    2005-01-01

    Fluorescence correlation spectroscopy (FCS) has demonstrated its utility for measuring transport properties and kinetics at low fluorophore concentrations. In this article, we demonstrate that simple optical nanostructures, known as zero-mode waveguides, can be used to significantly reduce the FCS observation volume. This, in turn, allows FCS to be applied to solutions with significantly higher fluorophore concentrations. We derive an empirical FCS model accounting for one-dimensional diffusion in a finite tube with a simple exponential observation profile. This technique is used to measure the oligomerization of the bacteriophage λ repressor protein at micromolar concentrations. The results agree with previous studies utilizing conventional techniques. Additionally, we demonstrate that the zero-mode waveguides can be used to assay biological activity by measuring changes in diffusion constant as a result of ligand binding. PMID:15613638

  11. Correlation between skin, bone, and cerebrospinal fluid layer thickness and optical coefficients measured by multidistance frequency-domain near-infrared spectroscopy in term and preterm infants.

    PubMed

    Demel, Anja; Feilke, Katharina; Wolf, Martin; Poets, Christian F; Franz, Axel R

    2014-01-01

    Near-infrared spectroscopy (NIRS) is increasingly used in neonatal intensive care. We investigated the impact of skin, bone, and cerebrospinal fluid (CSF) layer thickness in term and preterm infants on absorption-(μa) and/or reduced scattering coefficients (μs') measured by multidistance frequency-domain (FD)-NIRS. Transcranial ultrasound was performed to measure the layer thicknesses. Correlations were only statistically significant for μa at 692 nm with bone thickness and μs' at 834 nm with skin thickness. There is no evidence that skin, bone, or CSF thickness have an important effect on μa and μs'. Layer thicknesses of skin, bone, and CSF in the range studied do not seem to affect cerebral oxygenation measurements by multidistance FD-NIRS significantly.

  12. Elemental profiling of laser cladded multilayer coatings by laser induced breakdown spectroscopy and energy dispersive X-ray spectroscopy

    NASA Astrophysics Data System (ADS)

    Lednev, V. N.; Sdvizhenskii, P. A.; Filippov, M. N.; Grishin, M. Ya.; Filichkina, V. A.; Stavertiy, A. Ya.; Tretyakov, R. S.; Bunkin, A. F.; Pershin, S. M.

    2017-09-01

    Multilayer tungsten carbide wear resistant coatings were analyzed by laser induced breakdown spectroscopy (LIBS) and energy dispersive X-ray (EDX) spectroscopy. Coaxial laser cladding technique was utilized to produce tungsten carbide coating deposited on low alloy steel substrate with additional inconel 625 interlayer. EDX and LIBS techniques were used for elemental profiling of major components (Ni, W, C, Fe, etc.) in the coating. A good correlation between EDX and LIBS data was observed while LIBS provided additional information on light element distribution (carbon). A non-uniform distribution of tungsten carbide grains along coating depth was detected by both LIBS and EDX. In contrast, horizontal elemental profiling showed a uniform tungsten carbide particles distribution. Depth elemental profiling by layer-by-layer LIBS analysis was demonstrated to be an effective method for studying tungsten carbide grains distribution in wear resistant coating without any sample preparation.

  13. Multiple Light Scattering Probes of Soft Materials

    NASA Astrophysics Data System (ADS)

    Scheffold, Frank

    2007-02-01

    I will discuss both static and dynamic properties of diffuse waves. In practical applications the optical properties of colloidal systems play an important role, for example in commercial products such as sunscreen lotions, food (drinks), coatings but also in medicine for example in cataract formation (eye lens turbidity). It is thus of importance to know the key parameters governing optical turbidity from the single to the multiple scattering regime. Temporal fluctuations of multiply scattered light are studied with photon correlation spectroscopy (Diffusing Wave Spectroscopy). This DWS method and its various implementations will be treated.

  14. Structural and Optical Behaviour of Ar+ Implanted Polycarbonate

    NASA Astrophysics Data System (ADS)

    Shekhawat, Nidhi; Aggarwal, Sanjeev; Sharma, Annu; Deshpande, S. K.; Nair, K. G. M.

    2011-07-01

    Effects of 130 keV Ar+ ion implantation on the structural and optical properties of polycarbonate specimens have been studied using Raman, UV-Visible spectroscopy and glancing angle X-ray diffraction techniques. Formation of disordered carbonaceous network in the implanted layers has been observed using Raman and UV-Visible spectroscopy. A sharp decline in band gap values (4.1 eV to 0.63 eV) with increase in implantation dose has been observed. This decrease in optical band gap has been correlated with the formation of disordered structures in the implanted layers of polycarbonate.

  15. Correlating brain blood oxygenation level dependent (BOLD) fractal dimension mapping with magnetic resonance spectroscopy (MRS) in Alzheimer's disease.

    PubMed

    Warsi, Mohammed A; Molloy, William; Noseworthy, Michael D

    2012-10-01

    To correlate temporal fractal structure of resting state blood oxygen level dependent (rsBOLD) functional magnetic resonance imaging (fMRI) with in vivo proton magnetic resonance spectroscopy ((1)H-MRS), in Alzheimer's disease (AD) and healthy age-matched normal controls (NC). High temporal resolution (4 Hz) rsBOLD signal and single voxel (left putamen) magnetic resonance spectroscopy data was acquired in 33 AD patients and 13 NC. The rsBOLD data was analyzed using two types of fractal dimension (FD) analysis based on relative dispersion and frequency power spectrum. Comparisons in FD were performed between AD and NC, and FD measures were correlated with (1)H-MRS findings. Temporal fractal analysis of rsBOLD, was able to differentiate AD from NC subjects (P = 0.03). Low FD correlated with markers of AD severity including decreased concentrations of N-acetyl aspartate (R = 0.44, P = 0.015) and increased myoinositol (mI) (R = -0.45, P = 0.012). Based on these results we suggest fractal analysis of rsBOLD could provide an early marker of AD.

  16. Factors affecting measurement of optic parameters by time-resolved near-infrared spectroscopy in breast cancer

    NASA Astrophysics Data System (ADS)

    Yoshizawa, Nobuko; Ueda, Yukio; Mimura, Tetsuya; Ohmae, Etsuko; Yoshimoto, Kenji; Wada, Hiroko; Ogura, Hiroyuki; Sakahara, Harumi

    2018-02-01

    The purpose of this study was to evaluate the effects of the thickness and depth of tumors on hemoglobin measurements in breast cancer by optical spectroscopy and to demonstrate tissue oxygen saturation (SO2) and reduced scattering coefficient (μs‧) in breast tissue and breast cancer in relation to the skin-to-chest wall distance. We examined 53 tumors from 44 patients. Total hemoglobin concentration (tHb), SO2, and μs‧ were measured by time-resolved spectroscopy (TRS). The skin-to-chest wall distance and the size and depth of tumors were measured by ultrasonography. There was a positive correlation between tHb and tumor thickness, and a negative correlation between tHb and tumor depth. SO2 in breast tissue decreased when the skin-to-chest wall distance decreased, and SO2 in tumors tended to be lower than in breast tissue. In breast tissue, there was a negative correlation between μs‧ and the skin-to-chest wall distance, and μs‧ in tumors was higher than in breast tissue. Measurement of tHb in breast cancer by TRS was influenced by tumor thickness and depth. Although SO2 seemed lower and μs‧ was higher in breast cancer than in breast tissue, the skin-to-chest wall distance may have affected the measurements.

  17. Accelerating two-dimensional nuclear magnetic resonance correlation spectroscopy via selective coherence transfer

    NASA Astrophysics Data System (ADS)

    Ye, Qimiao; Chen, Lin; Qiu, Wenqi; Lin, Liangjie; Sun, Huijun; Cai, Shuhui; Wei, Zhiliang; Chen, Zhong

    2017-01-01

    Nuclear magnetic resonance (NMR) spectroscopy serves as an important tool for both qualitative and quantitative analyses of various systems in chemistry, biology, and medicine. However, applications of one-dimensional 1H NMR are often restrained by the presence of severe overlap among different resonances. The advent of two-dimensional (2D) 1H NMR constitutes a promising alternative by extending the crowded resonances into a plane and thereby alleviating the spectral congestions. However, the enhanced ability in discriminating resonances is achieved at the cost of extended experimental duration due to necessity of various scans with progressive delays to construct the indirect dimension. Therefore, in this study, we propose a selective coherence transfer (SECOT) method to accelerate acquisitions of 2D correlation spectroscopy by converting chemical shifts into spatial positions within the effective sample length and then performing an echo planar spectroscopic imaging module to record the spatial and spectral information, which generates 2D correlation spectrum after 2D Fourier transformation. The feasibility and effectiveness of SECOT have been verified by a set of experiments under both homogeneous and inhomogeneous magnetic fields. Moreover, evaluations of SECOT for quantitative analyses are carried out on samples with a series of different concentrations. Based on these experimental results, the SECOT may open important perspectives for fast, accurate, and stable investigations of various chemical systems both qualitatively and quantitatively.

  18. Quantification of transuranic elements by time interval correlation spectroscopy of the detected neutrons

    PubMed

    Baeten; Bruggeman; Paepen; Carchon

    2000-03-01

    The non-destructive quantification of transuranic elements in nuclear waste management or in safeguards verifications is commonly performed by passive neutron assay techniques. To minimise the number of unknown sample-dependent parameters, Neutron Multiplicity Counting (NMC) is applied. We developed a new NMC-technique, called Time Interval Correlation Spectroscopy (TICS), which is based on the measurement of Rossi-alpha time interval distributions. Compared to other NMC-techniques, TICS offers several advantages.

  19. VIS-NIR spectroscopy as a process analytical technology for compositional characterization of film biopolymers and correlation with their mechanical properties.

    PubMed

    Barbin, Douglas Fernandes; Valous, Nektarios A; Dias, Adriana Passos; Camisa, Jaqueline; Hirooka, Elisa Yoko; Yamashita, Fabio

    2015-11-01

    There is an increasing interest in the use of polysaccharides and proteins for the production of biodegradable films. Visible and near-infrared (VIS-NIR) spectroscopy is a reliable analytical tool for objective analyses of biological sample attributes. The objective is to investigate the potential of VIS-NIR spectroscopy as a process analytical technology for compositional characterization of biodegradable materials and correlation to their mechanical properties. Biofilms were produced by single-screw extrusion with different combinations of polybutylene adipate-co-terephthalate, whole oat flour, glycerol, magnesium stearate, and citric acid. Spectral data were recorded in the range of 400-2498nm at 2nm intervals. Partial least square regression was used to investigate the correlation between spectral information and mechanical properties. Results show that spectral information is influenced by the major constituent components, as they are clustered according to polybutylene adipate-co-terephthalate content. Results for regression models using the spectral information as predictor of tensile properties achieved satisfactory results, with coefficients of prediction (R(2)C) of 0.83, 0.88 and 0.92 (calibration models) for elongation, tensile strength, and Young's modulus, respectively. Results corroborate the correlation of NIR spectra with tensile properties, showing that NIR spectroscopy has potential as a rapid analytical technology for non-destructive assessment of the mechanical properties of the films. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Low-power adiabatic sequences for in-vivo localized two-dimensional chemical shift correlated MR spectroscopy

    PubMed Central

    Andronesi, Ovidiu C.; Ramadan, Saadallah; Mountford, Carolyn E.; Sorensen, A. Gregory

    2011-01-01

    Novel low-power adiabatic sequences are demonstrated for in-vivo localized two-dimensional (2D) correlated MR spectroscopy, such as COSY (Correlated Spectroscopy) and TOCSY (Total Correlated Spectroscopy). The design is based on three new elements for in-vivo 2D MRS: the use of gradient modulated constant adiabaticity GOIA-W(16,4) pulses for i) localization (COSY and TOCSY) and ii) mixing (TOCSY), and iii) the use of longitudinal mixing (z-filter) for magnetization transfer during TOCSY. GOIA-W(16,4) provides accurate signal localization, and more importantly, lowers the SAR for both TOCSY mixing and localization. Longitudinal mixing improves considerably (five-folds) the efficiency of TOCSY transfer. These are markedly different from previous 1D editing TOCSY sequences using spatially non-selective pulses and transverse mixing. Fully adiabatic (adiabatic mixing with adiabatic localization) and semi-adiabatic (adiabatic mixing with non-adiabatic localization) methods for 2D TOCSY are compared. Results are presented for simulations, phantoms, and in-vivo 2D spectra from healthy volunteers and patients with brain tumors obtained on 3T clinical platforms equipped with standard hardware. To the best of our knowledge this is the first demonstration of in-vivo adiabatic 2D TOCSY and fully adiabatic 2D COSY. It is expected that these methodological developments will advance the in-vivo applicability of multi(spectrally)dimensional MRS to reliably identify metabolic biomarkers. PMID:20890988

  1. White light emitting diode as potential replacement of tungsten-halogen lamp for visible spectroscopy system: a case study in the measurement of mango qualities

    NASA Astrophysics Data System (ADS)

    Chiong, W. L.; Omar, A. F.

    2017-07-01

    Non-destructive technique based on visible (VIS) spectroscopy using light emitting diode (LED) as lighting was used for evaluation of the internal quality of mango fruit. The objective of this study was to investigate feasibility of white LED as lighting in spectroscopic instrumentation to predict the acidity and soluble solids content of intact Sala Mango. The reflectance spectra of the mango samples were obtained and measured in the visible range (400-700 nm) using VIS spectroscopy illuminated under different white LEDs and tungsten-halogen lamp (pro lamp). Regression models were developed by multiple linear regression to establish the relationship between spectra and internal quality. Direct calibration transfer procedure was then applied between master and slave lighting to check on the acidity prediction results after transfer. Determination of mango acidity under white LED lighting was successfully performed through VIS spectroscopy using multiple linear regression but otherwise for soluble solids content. Satisfactory results were obtained for calibration transfer between LEDs with different correlated colour temperature indicated this technique was successfully used in spectroscopy measurement between two similar light sources in prediction of internal quality of mango.

  2. Fluorescence correlation spectroscopy as a method for assessment of interactions between phage displaying antibodies and soluble antigen

    PubMed Central

    Lagerkvist, Ann Catrin; Földes-Papp, Zeno; Persson, Mats A.A.; Rigler, Rudolf

    2001-01-01

    Phage display is widely used for expression of combinatorial libraries, not least for protein engineering purposes. Precise selection at the single molecule level will provide an improved tool for generating proteins with complex and distinct properties from large molecular libraries. To establish such an improved selection system, we here report the detection of specific interactions between phage with displayed antibody fragments and fluorescently labeled soluble antigen based on Fluorescence Correlation Spectroscopy (FCS). Our novel strategy comprises the use of two separate fluorochromes for detection of the phage–antigen complex, either with labeled antiphage antibody or using a labeled antigen. As a model system, we studied a human monoclonal antibody to the hepatitis-C virus (HCV) envelope protein E2 and its cognate antigen (rE2 or rE1/E2). We could thus assess the specific interactions and determine the fraction of specific versus background phage (26% specific phage). Aggregation of these particular antigens made it difficult to reliably utilize the full potential of cross-correlation studies using the two labels simultaneously. However, with true monomeric proteins, this will certainly be possible, offering a great advantage in a safer and highly specific detection system. PMID:11468349

  3. Anomalous correlation effects and unique phase diagram of electron-doped FeSe revealed by photoemission spectroscopy

    PubMed Central

    Wen, C. H. P.; Xu, H. C.; Chen, C.; Huang, Z. C.; Lou, X.; Pu, Y. J.; Song, Q.; Xie, B. P.; Abdel-Hafiez, Mahmoud; Chareev, D. A.; Vasiliev, A. N.; Peng, R.; Feng, D. L.

    2016-01-01

    FeSe layer-based superconductors exhibit exotic and distinctive properties. The undoped FeSe shows nematicity and superconductivity, while the heavily electron-doped KxFe2−ySe2 and single-layer FeSe/SrTiO3 possess high superconducting transition temperatures that pose theoretical challenges. However, a comprehensive study on the doping dependence of an FeSe layer-based superconductor is still lacking due to the lack of a clean means of doping control. Through angle-resolved photoemission spectroscopy studies on K-dosed thick FeSe films and FeSe0.93S0.07 bulk crystals, here we reveal the internal connections between these two types of FeSe-based superconductors, and obtain superconductivity below ∼46 K in an FeSe layer under electron doping without interfacial effects. Moreover, we discover an exotic phase diagram of FeSe with electron doping, including a nematic phase, a superconducting dome, a correlation-driven insulating phase and a metallic phase. Such an anomalous phase diagram unveils the remarkable complexity, and highlights the importance of correlations in FeSe layer-based superconductors. PMID:26952215

  4. Electronic structure and magnetic anisotropy of L1{sub 0}-FePt thin film studied by hard x-ray photoemission spectroscopy and first-principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ueda, S.; Synchrotron X-ray Station at SPring-8, National Institute for Materials Science, Sayo, Hyogo 679-5148; Mizuguchi, M.

    2016-07-25

    We have studied the electronic structure of the L1{sub 0} ordered FePt thin film by hard x-ray photoemission spectroscopy (HAXPES), cluster model, and first-principles calculations to investigate the relationship between the electronic structure and perpendicular magneto-crystalline anisotropy (MCA). The Fe 2p core-level HAXPES spectrum of the ordered film revealed the strong electron correlation in the Fe 3d states and the hybridization between the Fe 3d and Pt 5d states. By comparing the experimental valence band structure with the theoretical density of states, the strong electron correlation in the Fe 3d states modifies the valence band electronic structure of the L1{submore » 0} ordered FePt thin film through the Fe 3d-Pt 5d hybridization. These results strongly suggest that the strong electron correlation effect in the Fe 3d states and the Fe 3d-Pt 5d hybridization as well as the spin-orbit interaction in the Pt 5d states play important roles in the perpendicular MCA for L1{sub 0}-FePt.« less

  5. A study of association between fingernail elements and osteoporosis by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Bahreini, Maryam; Hosseinimakarem, Zahra; Hassan Tavassoli, Seyed

    2012-09-01

    Laser induced breakdown spectroscopy (LIBS) is used to investigate the possible effect of osteoporosis on the elemental composition of fingernails. Also, the ability to classify healthy, osteopenic, and osteoporotic subjects based on their fingernail spectra has been examined. 46 atomic and ionic emission lines belonging to 13 elements, which are dominated by calcium and magnesium, have been identified. Measurements are carried out on fingernail clippings of 99 subjects including 27 healthy, 47 osteopenic, and 25 osteoporotic subjects. The Pearson correlations between spectral intensities of different elements of fingernail and age and bone mineral densities (BMDs) in nail samples are calculated. Correlations between line intensities of some elements such as sodium and potassium, calcium and iron, magnesium and silicon and also between some fingernail elements, BMD, and age are observed. Although some of these correlations are weak, some information about mineral metabolism can be deduced from them. Discrimination between nail samples of healthy, osteopenic, and osteoporotic subjects is shown to be somehow possible by a discriminant function analysis using 46 atomic emission lines of the LIBS spectra as input variables. The results of this study provide some evidences for association between osteoporosis and elemental composition of fingernails measured by LIBS.

  6. Metabolite differences in the lenticular nucleus in type 2 diabetes mellitus shown by proton MR spectroscopy.

    PubMed

    Lin, Y; Zhou, J; Sha, L; Li, Y; Qu, X; Liu, L; Chen, H; An, Z; Wang, Y; Sun, C

    2013-09-01

    Previous studies by using proton MR spectroscopy found metabolite abnormalities in the cerebral cortex and white matter of patients with type 2 diabetes mellitus. The present study was undertaken to detect metabolite differences in the lenticular nuclei and thalamus in patients with T2DM. Twenty subjects with T2DM and 22 age-matched control subjects underwent single-voxel MR spectroscopy in the left and right lenticular nuclei and left and right thalami. NAA/Cr and Cho/Cr ratios were calculated. Brain lactic acid, fasting blood glucose, and glycosylated hemoglobin levels were also monitored. The NAA/Cr ratio was lower in the left lenticular nuclei of subjects with T2DM (P = .007), whereas the Cho/Cr ratio was increased in both the and right lenticular nuclei (P = .001). The NAA/Cr ratio was negatively correlated with FBG in the left (r = -0.573, P = .008) and right nuclei (r = -0.564, P = .010). It was also negatively correlated to HbA1c in the left (r = -0.560, P = .010) and right (r = -0.453, P = .045) nuclei. The Cho/Cr ratio was positively correlated with these variables (P < .05). No significant differences in NAA/Cr or Cho/Cr ratios were observed in the thalamus of patients with T2DM. Lactic acid was not detected in any of the patients in the study. The different metabolic statuses of the lenticular nuclei and thalamus suggest different effects of T2DM in each of these brain nuclei, with the lenticular nuclei being more vulnerable than the thalamus. The abnormal metabolic status was observed before lesions had appeared in these brain areas.

  7. Two Keggin-type heteropolytungstates with transition metal as a central atom: Crystal structure and magnetic study with 2D-IR correlation spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chai, Feng; Chen, YiPing, E-mail: ypchen007@sina.com; State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002

    2013-06-01

    Two Keggin-type heteropolytungstates, [Co(phen)₃]₃[CoW₁₂O₄₀]·9H₂O 1 (phen=1,10-phenanthroline) and [Fe(phen)₃]₂[FeW₁₂O₄₀]·H₃O·H₂O 2, have been synthesized via the hydrothermal technique and characterized by single crystal X-ray diffraction analyses, IR, XPS, TG analysis, UV–DRS, XRD, thermal-dependent and magnetic-dependent 2D-COS IR (two-dimensional infrared correlation spectroscopy). Crystal structure analysis reveals that the polyanions in compound 1 are linked into 3D supramolecule through hydrogen bonding interactions between lattice water molecules and terminal oxygen atoms of polyanion units, and [Co(phen)₃]²⁺ cations distributed in the polyanion framework with many hydrogen bonding interactions. The XPS spectra indicate that all the Co atoms in 1 are +2 oxidation state, the Fe atomsmore » in 2 existing with +2 and +3 mixed oxidation states. - Graphical abstract: The magnetic-dependent synchronous 2D correlation IR spectra of 1 (a), 2 (b) over 0–50 mT in the range of 600–1000 cm⁻¹, the obvious response indicate two Keggin polyanions skeleton susceptible to applied magnetic field. Highlights: • Two Keggin-type heteropolytungstates with transition metal as a central atom has been obtained. • Compound 1 forms into 3D supramolecular architecture through hydrogen bonding between water molecules and polyanions. • Magnetic-dependent 2D-IR correlation spectroscopy was introduced to discuss the magnetism of polyoxometalate.« less

  8. Dorsal Anterior Cingulate Lactate and Glutathione Levels in Euthymic Bipolar I Disorder: 1H-MRS Study.

    PubMed

    Soeiro-de-Souza, Márcio Gerhardt; Pastorello, Bruno F; Leite, Cláudia da Costa; Henning, Anke; Moreno, Ricardo A; Garcia Otaduy, Maria Concepción

    2016-08-01

    Oxidative stress and mitochondrial dysfunction are 2 closely integrated processes implicated in the physiopathology of bipolar disorder. Advanced proton magnetic resonance spectroscopy techniques enable the measurement of levels of lactate, the main marker of mitochondrial dysfunction, and glutathione, the predominant brain antioxidant. The objective of this study was to measure brain lactate and glutathione levels in bipolar disorder and healthy controls. Eighty-eight individuals (50 bipolar disorder and 38 healthy controls) underwent 3T proton magnetic resonance spectroscopy in the dorsal anterior cingulate cortex (2x2x4.5cm(3)) using a 2-D JPRESS sequence. Lactate and glutathione were quantified using the ProFit software program. Bipolar disorder patients had higher dorsal anterior cingulate cortex lactate levels compared with controls. Glutathione levels did not differ between euthymic bipolar disorder and controls. There was a positive correlation between lactate and glutathione levels specific to bipolar disorder. No influence of medications on metabolites was observed. This is the most extensive magnetic resonance spectroscopy study of lactate and glutathione in bipolar disorder to date, and results indicated that euthymic bipolar disorder patients had higher levels of lactate, which might be an indication of altered mitochondrial function. Moreover, lactate levels correlated with glutathione levels, indicating a compensatory mechanism regardless of bipolar disorder diagnosis. © The Author 2016. Published by Oxford University Press on behalf of CINP.

  9. Dorsal Anterior Cingulate Lactate and Glutathione Levels in Euthymic Bipolar I Disorder: 1H-MRS Study

    PubMed Central

    Pastorello, Bruno F.; Leite, Cláudia da Costa; Henning, Anke; Moreno, Ricardo A.; Garcia Otaduy, Maria Concepción

    2016-01-01

    Objective: Oxidative stress and mitochondrial dysfunction are 2 closely integrated processes implicated in the physiopathology of bipolar disorder. Advanced proton magnetic resonance spectroscopy techniques enable the measurement of levels of lactate, the main marker of mitochondrial dysfunction, and glutathione, the predominant brain antioxidant. The objective of this study was to measure brain lactate and glutathione levels in bipolar disorder and healthy controls. Methods: Eighty-eight individuals (50 bipolar disorder and 38 healthy controls) underwent 3T proton magnetic resonance spectroscopy in the dorsal anterior cingulate cortex (2x2x4.5cm3) using a 2-D JPRESS sequence. Lactate and glutathione were quantified using the ProFit software program. Results: Bipolar disorder patients had higher dorsal anterior cingulate cortex lactate levels compared with controls. Glutathione levels did not differ between euthymic bipolar disorder and controls. There was a positive correlation between lactate and glutathione levels specific to bipolar disorder. No influence of medications on metabolites was observed. Conclusion: This is the most extensive magnetic resonance spectroscopy study of lactate and glutathione in bipolar disorder to date, and results indicated that euthymic bipolar disorder patients had higher levels of lactate, which might be an indication of altered mitochondrial function. Moreover, lactate levels correlated with glutathione levels, indicating a compensatory mechanism regardless of bipolar disorder diagnosis. PMID:27207914

  10. Alterations in anterior cingulate cortex myoinositol and aggression in veterans with suicidal behavior: A proton magnetic resonance spectroscopy study.

    PubMed

    Sheth, Chandni; Prescot, Andrew; Bueler, Elliott; DiMuzio, Jennifer; Legarreta, Margaret; Renshaw, Perry F; Yurgelun-Todd, Deborah; McGlade, Erin

    2018-06-30

    Studies investigating the neurochemical changes that correspond with suicidal behavior (SB) have not yielded conclusive results. Suicide correlates such as aggression have been used to explore risk factors for SB. Yet the neurobiological basis for the association between aggression and SB is unclear. Aggression and SB are both prevalent in veterans relative to civilian populations. The current study evaluated the relationship between brain chemistry in the anterior (ACC) and the posterior cingulate cortex (POC), as well as the relationship between aggression and SB in a veteran population using proton magnetic resonance spectroscopy ( 1 H-MRS). Single-voxel MRS data at 3 Tesla (T) were acquired from the ACC and POC voxels using a 2-dimensional J-resolved point spectroscopy sequence and quantified using the ProFit algorithm. Participants also completed a structured diagnostic interview and a clinical battery. Our results showed that the myoinositol (mI)/H2O ratio in the ACC and POC was significantly higher in veterans who reported SB when compared to veterans who did not. The two groups did not differ significantly with regard to other metabolites. Second, verbal aggression and SB measures positively correlated with mI/H2O in the ACC. Finally, verbal aggression mediated the relationship between mI/H2O in the ACC and SB. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Assessing human skin with diffuse reflectance spectroscopy and colorimetry

    NASA Astrophysics Data System (ADS)

    Seo, InSeok; Liu, Yang; Bargo, Paulo R.; Kollias, Nikiforos

    2012-02-01

    Colorimetry has been used as an objective measure of perceived skin color by human eye to document and score physiological responses of the skin from external insults. CIE color space values (L*, a* and b*) are the most commonly used parameters to correlate visually perceived color attributes such as L* for pigment, a* for erythema, and b* for sallowness of the skin. In this study, we investigated the relation of Lab color scale to the amount of major skin chromophores (oxy-, deoxyhemoglobin and melanin) calculated from diffuse reflectance spectroscopy. Thirty two healthy human subjects with ages from 20 to 70 years old, skin types I-VI, were recruited for the study. DRS and colorimetry measurements were taken from the left and right cheeks, and on the right upper inner arm. The melanin content calculated from 630-700 nm range of DRS measurements was shown to correlate with the lightness of skin (L*) for most skin types. For subjects with medium-to-light complexion, melanin measured at the blue part spectrum and hemoglobin interfered on the relation of lightness of the skin color to the melanin content. The sallowness of the skin that is quantified by the melanin contribution at the blue part spectrum of DRS was found to be related to b* scale. This study demonstrates the importance of documenting skin color by assessing individual skin chromophores with diffuse reflectance spectroscopy, in comparison to colorimetry assessment.

  12. Position-sensitive scanning fluorescence correlation spectroscopy.

    PubMed

    Skinner, Joseph P; Chen, Yan; Müller, Joachim D

    2005-08-01

    Fluorescence correlation spectroscopy (FCS) uses a stationary laser beam to illuminate a small sample volume and analyze the temporal behavior of the fluorescence fluctuations within the stationary observation volume. In contrast, scanning FCS (SFCS) collects the fluorescence signal from a moving observation volume by scanning the laser beam. The fluctuations now contain both temporal and spatial information about the sample. To access the spatial information we synchronize scanning and data acquisition. Synchronization allows us to evaluate correlations for every position along the scanned trajectory. We use a circular scan trajectory in this study. Because the scan radius is constant, the phase angle is sufficient to characterize the position of the beam. We introduce position-sensitive SFCS (PSFCS), where correlations are calculated as a function of lag time and phase. We present the theory of PSFCS and derive expressions for diffusion, diffusion in the presence of flow, and for immobilization. To test PSFCS we compare experimental data with theory. We determine the direction and speed of a flowing dye solution and the position of an immobilized particle. To demonstrate the feasibility of the technique for applications in living cells we present data of enhanced green fluorescent protein measured in the nucleus of COS cells.

  13. Drug-induced parkinsonism in relation to choline-containing compounds measured by 1H-MR spectroscopy in putamen of chronically medicated patients with schizophrenia.

    PubMed

    Yamasue, Hidenori; Fukui, Tsunehiro; Fukuda, Rin; Kasai, Kiyoto; Iwanami, Akira; Kato, Nobumasa; Kato, Tadafumi

    2003-12-01

    Extrapyramidal side-effects (EPS), the most frequent and severe side-effects of antipsychotics, sometimes become irreversible and cause severe psychosocial disturbance in patients with schizophrenia. However, the neurobiological basis of EPS has not yet been elucidated. In this study, neurochemical correlates of EPS were examined by 1H-MR spectroscopy (1H-MRS). Sixteen medicated patients with schizophrenia and 15 age-, gender- and parental-socioeconomic-status-matched normal controls were examined using single-voxel 1H-MRS. Absolute concentrations of N-acetyl aspartate (NAA), choline-containing compounds (Cho), creatine/phosphocreatine, myo-inositol, and Glx (glutamate and glutamine) in the left putamen were evaluated. The patient group showed mild EPS and no significant metabolic abnormalities in this region. The more severe drug-induced parkinsonism assessed by the Simpson-Angus Scale, however, significantly correlated with the higher Cho concentration and tended to be correlated with the higher NAA concentration in the patient group. These results suggest a potential of 1H-MRS as a non-invasive monitoring method of neurobiological correlates of EPS associated with neuroleptic treatments in patients with schizophrenia.

  14. Moderate relationships between NAA and cognitive ability in healthy adults: implications for cognitive spectroscopy.

    PubMed

    Patel, Tulpesh; Blyth, Jacqueline C; Griffiths, Gareth; Kelly, Deirdre; Talcott, Joel B

    2014-01-01

    Proton Magnetic Resonance Spectroscopy ((1)H-MRS) is a non-invasive imaging technique that enables quantification of neurochemistry in vivo and thereby facilitates investigation of the biochemical underpinnings of human cognitive variability. Studies in the field of cognitive spectroscopy have commonly focused on relationships between measures of N-acetyl aspartate (NAA), a surrogate marker of neuronal health and function, and broad measures of cognitive performance, such as IQ. In this study, we used (1)H-MRS to interrogate single-voxels in occipitoparietal and frontal cortex, in parallel with assessments of psychometric intelligence, in a sample of 40 healthy adult participants. We found correlations between NAA and IQ that were within the range reported in previous studies. However, the magnitude of these effects was significantly modulated by the stringency of data screening and the extent to which outlying values contributed to statistical analyses. (1)H-MRS offers a sensitive tool for assessing neurochemistry non-invasively, yet the relationships between brain metabolites and broad aspects of human behavior such as IQ are subtle. We highlight the need to develop an increasingly rigorous analytical and interpretive framework for collecting and reporting data obtained from cognitive spectroscopy studies of this kind.

  15. Copper ESEEM and HYSCORE through ultra-wideband chirp EPR spectroscopy.

    PubMed

    Segawa, Takuya F; Doll, Andrin; Pribitzer, Stephan; Jeschke, Gunnar

    2015-07-28

    The main limitation of pulse electron paramagnetic resonance (EPR) spectroscopy is its narrow excitation bandwidth. Ultra-wideband (UWB) excitation with frequency-swept chirp pulses over several hundreds of megahertz overcomes this drawback. This allows to excite electron spin echo envelope modulation (ESEEM) from paramagnetic copper centers in crystals, whereas up to now, only ESEEM of ligand nuclei like protons or nitrogens at lower frequencies could be detected. ESEEM spectra are recorded as two-dimensional correlation experiments, since the full digitization of the electron spin echo provides an additional Fourier transform EPR dimension. Thus, UWB hyperfine-sublevel correlation experiments generate a novel three-dimensional EPR-correlated nuclear modulation spectrum.

  16. Perovskite oxides: Oxygen electrocatalysis and bulk structure

    NASA Technical Reports Server (NTRS)

    Carbonio, R. E.; Fierro, C.; Tryk, D.; Scherson, D.; Yeager, Ernest

    1987-01-01

    Perovskite type oxides were considered for use as oxygen reduction and generation electrocatalysts in alkaline electrolytes. Perovskite stability and electrocatalytic activity are studied along with possible relationships of the latter with the bulk solid state properties. A series of compounds of the type LaFe(x)Ni1(-x)O3 was used as a model system to gain information on the possible relationships between surface catalytic activity and bulk structure. Hydrogen peroxide decomposition rate constants were measured for these compounds. Ex situ Mossbauer effect spectroscopy (MES), and magnetic susceptibility measurements were used to study the solid state properties. X ray photoelectron spectroscopy (XPS) was used to examine the surface. MES has indicated the presence of a paramagnetic to magnetically ordered phase transition for values of x between 0.4 and 0.5. A correlation was found between the values of the MES isomer shift and the catalytic activity for peroxide decomposition. Thus, the catalytic activity can be correlated to the d-electron density for the transition metal cations.

  17. Fluorescence Correlation Spectroscopy at Micromolar Concentrations without Optical Nanoconfinement

    DOE PAGES

    Laurence, Ted A.; Ly, Sonny; Bourguet, Feliza; ...

    2014-08-14

    Fluorescence correlation spectroscopy (FCS) is an important technique for studying biochemical interactions dynamically that may be used in vitro and in cell-based studies. It is generally claimed that FCS may only be used at nM concentrations. We show that this general consensus is incorrect and that the limitation to nM concentrations is not fundamental but due to detector limits as well as laser fluctuations. With a high count rate detector system and applying laser fluctuation corrections, we demonstrate FCS measurements up to 38 μM with the same signal-to-noise as at lower concentrations. Optical nanoconfinement approaches previously used to increase themore » concentration range of FCS are not necessary, and further increases above 38 μM may be expected using detectors and detector arrays with higher saturation rates and better laser fluctuation corrections. This approach greatly widens the possibilities of dynamic measurements of biochemical interactions using FCS at physiological concentrations.« less

  18. Authentication of virgin olive oil by a novel curve resolution approach combined with visible spectroscopy.

    PubMed

    Ferreiro-González, Marta; Barbero, Gerardo F; Álvarez, José A; Ruiz, Antonio; Palma, Miguel; Ayuso, Jesús

    2017-04-01

    Adulteration of olive oil is not only a major economic fraud but can also have major health implications for consumers. In this study, a combination of visible spectroscopy with a novel multivariate curve resolution method (CR), principal component analysis (PCA) and linear discriminant analysis (LDA) is proposed for the authentication of virgin olive oil (VOO) samples. VOOs are well-known products with the typical properties of a two-component system due to the two main groups of compounds that contribute to the visible spectra (chlorophylls and carotenoids). Application of the proposed CR method to VOO samples provided the two pure-component spectra for the aforementioned families of compounds. A correlation study of the real spectra and the resolved component spectra was carried out for different types of oil samples (n=118). LDA using the correlation coefficients as variables to discriminate samples allowed the authentication of 95% of virgin olive oil samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Signatures of four-particle correlations associated with exciton-carrier interactions in coherent spectroscopy on bulk GaAs

    NASA Astrophysics Data System (ADS)

    Webber, D.; Wilmer, B. L.; Liu, X.; Dobrowolska, M.; Furdyna, J. K.; Bristow, A. D.; Hall, K. C.

    2016-10-01

    Transient four-wave mixing studies of bulk GaAs under conditions of broad bandwidth excitation of primarily interband transitions have enabled four-particle correlations tied to degenerate (exciton-exciton) and nondegenerate (exciton-carrier) interactions to be studied. Real two-dimensional Fourier-transform spectroscopy (2DFTS) spectra reveal a complex response at the heavy-hole exciton emission energy that varies with the absorption energy, ranging from dispersive on the diagonal through absorptive for low-energy interband transitions to dispersive with the opposite sign for interband transitions high above band gap. Simulations using a multilevel model augmented by many-body effects provide excellent agreement with the 2DFTS experiments and indicate that excitation-induced dephasing (EID) and excitation-induced shift (EIS) affect degenerate and nondegenerate interactions equivalently, with stronger exciton-carrier coupling relative to exciton-exciton coupling by approximately an order of magnitude. These simulations also indicate that EID effects are three times stronger than EIS in contributing to the coherent response of the semiconductor.

  20. Ultra-Small-Angle X-ray Scattering – X-ray Photon Correlation Spectroscopy Studies of Incipient Structural Changes in Amorphous Calcium Phosphate Based Dental Composites

    PubMed Central

    Zhang, F.; Allen, A.J.; Levine, L.E.; Espinal, L.; Antonucci, J.M.; Skrtic, D.; O’Donnell, J.N.R.; Ilavsky, J.

    2012-01-01

    The local structural changes in amorphous calcium phosphate (ACP) based dental composites were studied under isothermal conditions using both static, bulk measurement techniques and a recently developed methodology based on combined ultra-small angle X-ray scattering – X-ray photon correlation spectroscopy (USAXS-XPCS), which permits a dynamic approach. While results from conventional bulk measurements do not show clear signs of structural change, USAXS-XPCS results reveal unambiguous evidence for local structural variations on a similar time scale to that of water loss in the ACP fillers. A thermal-expansion based simulation indicates that thermal behavior alone does not account for the observed dynamics. Together, these results suggest that changes in the water content of ACP affect the composite morphology due to changes in ACP structure that occur without an amorphous-to-crystalline conversion. It is also noted that biomedical materials research could benefit greatly from USAXS-XPCS, a dynamic approach. PMID:22374649

  1. Perovskite-type oxides - Oxygen electrocatalysis and bulk structure

    NASA Technical Reports Server (NTRS)

    Carbonio, R. E.; Fierro, C.; Tryk, D.; Scherson, D.; Yeager, E.

    1988-01-01

    Perovskite type oxides were considered for use as oxygen reduction and generation electrocatalysts in alkaline electrolytes. Perovskite stability and electrocatalytic activity are studied along with possible relationships of the latter with the bulk solid state properties. A series of compounds of the type LaFe(x)Ni1(-x)O3 was used as a model system to gain information on the possible relationships between surface catalytic activity and bulk structure. Hydrogen peroxide decomposition rate constants were measured for these compounds. Ex situ Mossbauer effect spectroscopy (MES), and magnetic susceptibility measurements were used to study the solid state properties. X ray photoelectron spectroscopy (XPS) was used to examine the surface. MES has indicated the presence of a paramagnetic to magnetically ordered phase transition for values of x between 0.4 and 0.5. A correlation was found between the values of the MES isomer shift and the catalytic activity for peroxide decomposition. Thus, the catalytic activity can be correlated to the d-electron density for the transition metal cations.

  2. Experimental and theoretical study of hydrogen thiocarbonate for heterogeneous reaction of carbonyl sulfide on magnesium oxide.

    PubMed

    Liu, Yongchun; He, Hong

    2009-04-09

    In situ diffuse reflectance infrared Fourier transform spectroscopy combined with derivative spectroscopy analysis, two-dimensional correlation spectroscopy analysis, and quantum chemical calculations were used to investigate the infrared absorbance assignment and the molecular structure of hydrogen thiocarbonate on magnesium oxide. The bands at 1283 and 1257 cm(-1), which had the typical characteristic of intermediate, were observed in experiments for the heterogeneous reaction of COS on MgO. On the basis of two-dimensional correlation spectroscopy analysis and quantum chemical calculations, the band at 1283 cm(-1) was assigned to the v(s) band of bridged thiocarbonate which formed on the two neighboring Mg atoms in the (100) face of MgO crystal, and the band at 1257 cm(-1) was the v(s) band of monodentate thiocarbonate on MgO. The v(as)(OCO) band of thiocarbonates was invisible in the experiment due to their weak absorbance and the interruption of surface carbonate. The formation mechanism of thiocarbonates is proposed, which occurred through a nucleophilic attack of preadsorbed COS by surface -OH groups followed by hydrogen atom transfer from the -OH group to the sulfur atom of preadsorbed COS. The activation energy for the intramolecular proton-transfer reaction of bridged thiocarbonate was calculated to be 18.52 kcal x mol(-1) at the B3LYP/6-31+G(d,p) level of theory.

  3. Study of Vis/NIR spectroscopy measurement on acidity of yogurt

    NASA Astrophysics Data System (ADS)

    He, Yong; Feng, Shuijuan; Wu, Di; Li, Xiaoli

    2006-09-01

    A fast measurement of pH of yogurt using Vis/NIR-spectroscopy techniques was established in order to measuring the acidity of yogurt rapidly. 27 samples selected separately from five different brands of yogurt were measured by Vis/NIR-spectroscopy. The pH of yogurt on positions scanned by spectrum was measured by a pH meter. The mathematical model between pH and Vis/NIR spectral measurements was established and developed based on partial least squares (PLS) by using Unscramble V9.2. Then 25 unknown samples from 5 different brands were predicted based on the mathematical model. The result shows that The correlation coefficient of pH based on PLS model is more than 0.890, and standard error of calibration (SEC) is 0.037, standard error of prediction (SEP) is 0.043. Through predicting the pH of 25 samples of yogurt from 5 different brands, the correlation coefficient between predictive value and measured value of those samples is more than 0918. The results show the good to excellent prediction performances. The Vis/NIR spectroscopy technique had a significant greater accuracy for determining the value of pH. It was concluded that the VisINIRS measurement technique can be used to measure pH of yogurt fast and accurately, and a new method for the measurement of pH of yogurt was established.

  4. Raman spectroscopy as a tool to understand Kerogen production potential

    NASA Astrophysics Data System (ADS)

    Khatibi, S.; Ostadhassan, M.; Mohammed, R. A.; Alexeyev, A.

    2017-12-01

    A lot attention has given to unconventional reservoirs specifically oil shale in North America during the last decades. Understanding Kerogen properties in terms of maturity and production potential are crucial for unconventional reservoir. Since, the amount of hydrocarbon generation is a function of kerogen type and content in the formation, and the magnitude and duration in which heat and pressure were applied. This study presents a non-destructive and fast method to determine Kerogen properties in terms of Rock-Eval parameters by means of Raman Spectroscopy. Samples were gathered from upper and lower Bakken formation, with different maturities at different depth. Raman spectroscopy as a powerful nondestructive analytical tool for molecular reconstruction was employed to find Raman spectra of different samples. In the next step, Rock-Eval was performed for each sample and different measurements were made. Then in an original approach, correlation between Rock-Eval parameters with Raman Spectroscopy results was established to fully understand how kerogen productivity potentials can be reflected on the Raman response. Results showed, maturity related parameters (RO, Tmax), S1 (already generated oil in the rock), S2 (potential hydrocarbon) and OSI (oil saturation index as indication of potential oil flow zones) can be correlated to band separation, D band intensity, G band intensity and G/D intensity, respectively. Proposed method provide a fast nondestructive method to evaluate Kerogen quality even at field without any special sample preparation.

  5. Quantifying the cerebral metabolic rate of oxygen by combining diffuse correlation spectroscopy and time-resolved near-infrared spectroscopy.

    PubMed

    Verdecchia, Kyle; Diop, Mamadou; Lee, Ting-Yim; St Lawrence, Keith

    2013-02-01

    Preterm infants are highly susceptible to ischemic brain injury; consequently, continuous bedside monitoring to detect ischemia before irreversible damage occurs would improve patient outcome. In addition to monitoring cerebral blood flow (CBF), assessing the cerebral metabolic rate of oxygen (CMRO2) would be beneficial considering that metabolic thresholds can be used to evaluate tissue viability. The purpose of this study was to demonstrate that changes in absolute CMRO2 could be measured by combining diffuse correlation spectroscopy (DCS) with time-resolved near-infrared spectroscopy (TR-NIRS). Absolute CBF was determined using bolus-tracking TR-NIRS to calibrate the DCS measurements. Cerebral venous blood oxygenation (SvO2) was determined by multiwavelength TR-NIRS measurements, the accuracy of which was assessed by directly measuring the oxygenation of sagittal sinus blood. In eight newborn piglets, CMRO2 was manipulated by varying the anesthetics and by injecting sodium cyanide. No significant differences were found between the two sets of SvO2 measurements obtained by TR-NIRS or sagittal sinus blood samples and the corresponding CMRO2 measurements. Bland-Altman analysis showed a mean CMRO2 difference of 0.0268 ± 0.8340 mLO2/100 g/min between the two techniques over a range from 0.3 to 4 mL O2/100 g/min.

  6. In vivo quantification of chromophore concentration using fluorescence differential path length spectroscopy

    NASA Astrophysics Data System (ADS)

    Kruijt, Bastiaan; Kascakova, Slavka; de Bruijn, Henriette S.; van der Ploeg-van den Heuvel, Angelique; Sterenborg, Henricus J. C. M.; Robinson, Dominic J.; Amelink, Arjen

    2009-05-01

    We present an optical method based on fluorescence spectroscopy for measuring chromophore concentrations in vivo. Fluorescence differential path length spectroscopy (FPDS) determines chromophore concentration based on the fluorescence intensity corrected for absorption. The concentration of the photosensitizer m-THPC (Foscan®) was studied in vivo in normal rat liver, which is highly vascularized and therefore highly absorbing. Concentration estimates of m-THPC measured by FDPS on the liver are compared with chemical extraction. Twenty-five rats were injected with 0.3 mg/kg m-THPC. In vivo optical concentration measurements were performed on tissue 3, 24, 48, and 96 h after m-THPC administration to yield a 10-fold variation in tissue concentration. After the optical measurements, the liver was harvested for chemical extraction. FDPS showed good correlation with chemical extraction. FDPS also showed a correlation between m-THPC fluorescence and blood volume fraction at the two shortest drug-light intervals. This suggests different compartmental localization of m-THPC for different drug-light intervals that can be resolved using fluorescence spectroscopy. Differences in measured m-THPC concentration between FDPS and chemical extraction are related to the interrogation volume of each technique; ~0.2 mm3 and ~102 mm3, respectively. This indicates intra-animal variation in m-THPC distribution in the liver on the scale of the FDPS sampling volume.

  7. Quantifying the cerebral metabolic rate of oxygen by combining diffuse correlation spectroscopy and time-resolved near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Verdecchia, Kyle; Diop, Mamadou; Lee, Ting-Yim; St. Lawrence, Keith

    2013-02-01

    Preterm infants are highly susceptible to ischemic brain injury; consequently, continuous bedside monitoring to detect ischemia before irreversible damage occurs would improve patient outcome. In addition to monitoring cerebral blood flow (CBF), assessing the cerebral metabolic rate of oxygen (CMRO2) would be beneficial considering that metabolic thresholds can be used to evaluate tissue viability. The purpose of this study was to demonstrate that changes in absolute CMRO2 could be measured by combining diffuse correlation spectroscopy (DCS) with time-resolved near-infrared spectroscopy (TR-NIRS). Absolute CBF was determined using bolus-tracking TR-NIRS to calibrate the DCS measurements. Cerebral venous blood oxygenation (SvO2) was determined by multiwavelength TR-NIRS measurements, the accuracy of which was assessed by directly measuring the oxygenation of sagittal sinus blood. In eight newborn piglets, CMRO2 was manipulated by varying the anesthetics and by injecting sodium cyanide. No significant differences were found between the two sets of SvO2 measurements obtained by TR-NIRS or sagittal sinus blood samples and the corresponding CMRO2 measurements. Bland-Altman analysis showed a mean CMRO2 difference of 0.0268±0.8340 mL O2/100 g/min between the two techniques over a range from 0.3 to 4 mL O2/100 g/min.

  8. Childhood temporal lobe epilepsy: correlation between electroencephalography and magnetic resonance spectroscopy: a case-control study.

    PubMed

    Azab, Seham Fa; Sherief, Laila M; Saleh, Safaa H; Elshafeiy, Mona M; Siam, Ahmed G; Elsaeed, Wafaa F; Arafa, Mohamed A; Bendary, Eman A; Sherbiny, Hanan S; Elbehedy, Rabab M; Aziz, Khalid A

    2015-04-18

    The diagnosis of epilepsy should be made as early as possible to give a child the best chance for treatment success and also to decrease complications such as learning difficulties and social and behavioral problems. In this study, we aimed to assess the ability of magnetic resonance spectroscopy (MRS) in detecting the lateralization side in patients with Temporal lobe epilepsy (TLE) in correlation with EEG and MRI findings. This was a case-control study including 40 patients diagnosed (clinically and by EEG) as having temporal lobe epilepsy aged 8 to 14 years (mean, 10.4 years) and 20 healthy children with comparable age and gender as the control group. All patients were subjected to clinical examination, interictal electroencephalography and magnetic resonance imaging (MRI). Proton magnetic resonance spectroscopic examination (MRS) was performed to the patients and the controls. According to the findings of electroencephalography, our patients were classified to three groups: Group 1 included 20 patients with unitemporal (lateralized) epileptic focus, group 2 included 12 patients with bitemporal (non-lateralized) epileptic focus and group 3 included 8 patients with normal electroencephalography. Magnetic resonance spectroscopy could lateralize the epileptic focus in 19 patients in group 1, nine patients in group2 and five patients in group 3 with overall lateralization of (82.5%), while electroencephalography was able to lateralize the focus in (50%) of patients and magnetic resonance imaging detected lateralization of mesial temporal sclerosis in (57.5%) of patients. Magnetic resonance spectroscopy is a promising tool in evaluating patients with epilepsy and offers increased sensitivity to detect temporal pathology that is not obvious on structural MRI imaging.

  9. Study of behaviors of aluminum overlayers deposited on uranium via AES, EELS, and XPS

    NASA Astrophysics Data System (ADS)

    Liu, Kezhao; Luo, Lizhu; Zhou, Wei; Yang, Jiangrong; Xiao, Hong; Hong, Zhanglian; Yang, Hui

    2013-04-01

    Aluminum overlayers on uranium were prepared by sputtering at room temperature in an ultra-high vacuum chamber. The growth mode of aluminum overlayers and behaviors of the Al/U interface reaction were studied in situ by auger electron spectroscopy, electron energy loss spectroscopy, and X-ray photoelectron spectroscopy. The results suggested that the interdiffusion took place at the Al/U interface during the initial stage of deposition. The U4f spectra of the Al/U interface showed strong correlation satellites at binding energies of 380.4 and 392.7 eV and plasma loss features at 404.2 eV, respectively. The interactions between aluminum and uranium yielded the intermetallic compound of UAlx, inducing the shift to a low binding energy for Al2p peaks. The results indicated that aluminum overlayers were formed on the uranium by sputtering in an island growth mode.

  10. Force-Manipulation Single-Molecule Spectroscopy Studies of Enzymatic Dynamics

    NASA Astrophysics Data System (ADS)

    Lu, H. Peter; He, Yufan; Lu, Maolin; Cao, Jin; Guo, Qing

    2014-03-01

    Subtle conformational changes play a crucial role in protein functions, especially in enzymatic reactions involving complex substrate-enzyme interactions and chemical reactions. We applied AFM-enhanced and magnetic tweezers-correlated single-molecule spectroscopy to study the mechanisms and dynamics of enzymatic reactions involved with kinase and lysozyme proteins. Enzymatic reaction turnovers and the associated structure changes of individual protein molecules were observed simultaneously in real-time by single-molecule FRET detections. Our single-molecule spectroscopy measurements of enzymatic conformational dynamics have revealed time bunching effect and intermittent coherence in conformational state change dynamics involving in enzymatic reaction cycles. The coherent conformational state dynamics suggests that the enzymatic catalysis involves a multi-step conformational motion along the coordinates of substrate-enzyme complex formation and product releasing. Our results support a multiple-conformational state model, being consistent with a complementary conformation selection and induced-fit enzymatic loop-gated conformational change mechanism in substrate-enzyme active complex formation.

  11. PyCorrFit-generic data evaluation for fluorescence correlation spectroscopy.

    PubMed

    Müller, Paul; Schwille, Petra; Weidemann, Thomas

    2014-09-01

    We present a graphical user interface (PyCorrFit) for the fitting of theoretical model functions to experimental data obtained by fluorescence correlation spectroscopy (FCS). The program supports many data file formats and features a set of tools specialized in FCS data evaluation. The Python source code is freely available for download from the PyCorrFit web page at http://pycorrfit.craban.de. We offer binaries for Ubuntu Linux, Mac OS X and Microsoft Windows. © The Author 2014. Published by Oxford University Press.

  12. Continuous quantum measurement in spin environments

    NASA Astrophysics Data System (ADS)

    Xie, Dong; Wang, An Min

    2015-08-01

    We derive a stochastic master equation (SME) which describes the decoherence dynamics of a system in spin environments conditioned on the measurement record. Markovian and non-Markovian nature of environment can be revealed by a spectroscopy method based on weak continuous quantum measurement. On account of that correlated environments can lead to a non-local open system which exhibits strong non-Markovian effects although the local dynamics are Markovian, the spectroscopy method can be used to demonstrate that there is correlation between two environments.

  13. Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement

    PubMed Central

    Durduran, Turgut; Yodh, Arjun G.

    2013-01-01

    Diffuse correlation spectroscopy (DCS) uses the temporal fluctuations of near-infrared (NIR) light to measure cerebral blood flow (CBF) non-invasively. Here, we provide a brief history of DCS applications in brain with an emphasis on the underlying physical ideas, common instrumentation and validation. Then we describe recent clinical research that employs DCS-measured CBF as a biomarker of patient well-being, and as an indicator of hemodynamic and metabolic response to functional stimuli. PMID:23770408

  14. Photophysical studies on curcumin-sophorolipid nanostructures: applications in quorum quenching and imaging

    PubMed Central

    2018-01-01

    Sophorolipid biosurfactants are biodegradable, less toxic and FDA approved. The purified acidic form of sophorolipid is stimuli-responsive with self-assembling properties and used for solubilizing hydrophobic drugs. This study encapsulated curcumin (CU) with acidic sophorolipid (ASL) micelles and analysed using photophysical studies like UV-visible spectroscopy, photoluminescence (PL) spectroscopy and time-correlated single photon counting (TCSPC). TEM images have revealed ellipsoid micelles of approximately 100 nm size and were confirmed by dynamic light scattering. The bacterial fluorescence uptake studies showed the uptake of formed CUASL nanostructures into both Gram-positive and Gram-negative bacteria. They also showed quorum quenching activity against Pseudomonas aeruginosa. The results have demonstrated this system has potential theranostic applications. PMID:29515826

  15. Investigation of specific interactions between T7 promoter and T7 RNA polymerase by force spectroscopy using atomic force microscope.

    PubMed

    Zhang, Xiaojuan; Yao, Zhixuan; Duan, Yanting; Zhang, Xiaomei; Shi, Jinsong; Xu, Zhenghong

    2018-01-11

    The specific recognition and binding of promoter and RNA polymerase is the first step of transcription initiation in bacteria and largely determines transcription activity. Therefore, direct analysis of the interaction between promoter and RNA polymerase in vitro may be a new strategy for promoter characterization, to avoid interference due to the cell's biophysical condition and other regulatory elements. In the present study, the specific interaction between T7 promoter and T7 RNA polymerase was studied as a model system using force spectroscopy based on atomic force microscope (AFM). The specific interaction between T7 promoter and T7 RNA polymerase was verified by control experiments, and the rupture force in this system was measured as 307.2 ± 6.7 pN. The binding between T7 promoter mutants with various promoter activities and T7 RNA polymerase was analyzed. Interaction information including rupture force, rupture distance and binding percentage were obtained in vitro , and reporter gene expression regulated by these promoters was also measured according to a traditional promoter activity characterization method in vivo Using correlation analysis, it was found that the promoter strength characterized by reporter gene expression was closely correlated with rupture force and the binding percentage by force spectroscopy. These results indicated that the analysis of the interaction between promoter and RNA polymerase using AFM-based force spectroscopy was an effective and valid approach for the quantitative characterization of promoters. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  16. Rapid detection of chlorpyrifos pesticide residue concentration in agro-product using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Dhakal, Sagar; Peng, Yankun; Li, Yongyu; Chao, Kuanglin; Qin, Jianwei; Zhang, Leilei; Xu, Tianfeng

    2014-05-01

    Different chemicals are sprayed in fruits and vegetables before and after harvest for better yield and longer shelf-life of crops. Cases of pesticide poisoning to human health are regularly reported due to excessive application of such chemicals for greater economic benefit. Different analytical technologies exist to detect trace amount of pesticides in fruits and vegetables, but are expensive, sample destructive, and require longer processing time. This study explores the application of Raman spectroscopy for rapid and non-destructive detection of pesticide residue in agricultural products. Raman spectroscopy with laser module of 785 nm was used to collect Raman spectral information from the surface of Gala apples contaminated with different concentrations of commercially available organophosphorous (48% chlorpyrifos) pesticide. Apples within 15 days of harvest from same orchard were used in this study. The Raman spectral signal was processed by Savitzky-Golay (SG) filter for noise removal, Multiplicative Scatter Correction (MSC) for drift removal and finally polynomial fitting was used to eliminate the fluorescence background. The Raman spectral peak at 677 cm-1 was recognized as Raman fingerprint of chlorpyrifos. Presence of Raman peak at 677 cm-1 after fluorescence background removal was used to develop classification model (presence and absence of pesticide). The peak intensity was correlated with actual pesticide concentration obtained using Gas Chromatography and MLR prediction model was developed with correlation coefficient of calibration and validation of 0.86 and 0.81 respectively. Result shows that Raman spectroscopy is a promising tool for rapid, real-time and non-destructive detection of pesticide residue in agro-products.

  17. Trifasciatosides A-J, Steroidal Saponins from Sansevieria trifasciata.

    PubMed

    Teponno, Rémy Bertrand; Tanaka, Chiaki; Jie, Bai; Tapondjou, Léon Azefack; Miyamoto, Tomofumi

    2016-01-01

    Four previously unreported steroidal saponins, trifasciatosides A-D (1-4), three pairs of previously undescribed steroidal saponins, trifasciatosides E-J (5a, b-7a, b) including acetylated ones, together with twelve known compounds were isolated from the n-butanol soluble fraction of the methanol extract of Sansevieria trifasciata. Their structures were elucidated on the basis of detailed spectroscopic analysis, including (1)H-NMR, (13)C-NMR, (1)H-(1)H correlated spectroscopy (COSY), heteronuclear single quantum coherence (HSQC), heteronuclear multiple bond connectivity (HMBC), total correlated spectroscopy (TOCSY), nuclear Overhauser enhancement and exchange spectroscopy (NOESY), electrospray ionization-time of flight (ESI-TOF)-MS and chemical methods. Compounds 2, 4, and 7a, b exhibited moderate antiproliferative activity against HeLa cells.

  18. An Overview of Microbiology Research in Japan, with Notes on Medical History, Education and Health Care.

    DTIC Science & Technology

    1981-07-01

    Kyogoku: infrared spectroscopy , Raman spectroscop , and nuclear magnetic resonance spectroscopy of protein and protein models; resonance Raman spectra...Research projects - tritium labeling techniques; heavy metal accumulations in deciduous teeth; chemistry of the mycotoxin fusarenon; EM of phage P22 DNA...fluorescence correlation spectroscopy . - Biological Activities of Biopolymers - Dr. M. Kageyama, Director: Analysis of Pseudomonas aeruginosa bacteriocins

  19. orbital selective correlation reduce in collapse tetragonal phase of CaFe2(As0.935P0.065)2 and electronic structure reconstruction studied by angel resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Zeng, Lingkun

    We performed an angle-resolved photoemission spectroscopy (ARPES) study of the CaFe2(As0.935P0.065)2 in the collapse tetragonal(CT) phase and uncollapse tetragonal(UCT) phase. We find in the CT phase the electronic correlation dramatically reduces respective to UCT phase. Meanwhile, the reduction of correlation in CT phase show an orbital selective effect: correlation in dxy reduces the most, and then dxz/yz, while the one in dz2-r2 almost keeps the same. In CT phase, almost all bands sink downwards to higher binding energy, leading to the hole like bands around Brillouin zone(BZ) center sink below EF compared with UCT phase. However, the electron pocket around Brillouin Zone(BZ) corner(M) in UCT phase, forms a hole pocket around BZ center(Z point) in CT phase. Moreover, the dxy exhibits larger movement down to higher binding energy, resulting in farther away from dyz/xz and closer to dxy.We propose the electron filling ,namely high spin state in UCT phase to low spin state in CT phase(due to competing between crystal structure field and Hund's coupling), other than the Fermi surface nesting might be responsible for the absent of magnetic ordering.

  20. Digital Breast Tomosynthesis guided Near Infrared Spectroscopy: Volumetric estimates of fibroglandular fraction and breast density from tomosynthesis reconstructions

    PubMed Central

    Vedantham, Srinivasan; Shi, Linxi; Michaelsen, Kelly E.; Krishnaswamy, Venkataramanan; Pogue, Brian W.; Poplack, Steven P.; Karellas, Andrew; Paulsen, Keith D.

    2016-01-01

    A multimodality system combining a clinical prototype digital breast tomosynthesis with its imaging geometry modified to facilitate near-infrared spectroscopic imaging has been developed. The accuracy of parameters recovered from near-infrared spectroscopy is dependent on fibroglandular tissue content. Hence, in this study, volumetric estimates of fibroglandular tissue from tomosynthesis reconstructions were determined. A kernel-based fuzzy c-means algorithm was implemented to segment tomosynthesis reconstructed slices in order to estimate fibroglandular content and to provide anatomic priors for near-infrared spectroscopy. This algorithm was used to determine volumetric breast density (VBD), defined as the ratio of fibroglandular tissue volume to the total breast volume, expressed as percentage, from 62 tomosynthesis reconstructions of 34 study participants. For a subset of study participants who subsequently underwent mammography, VBD from mammography matched for subject, breast laterality and mammographic view was quantified using commercial software and statistically analyzed to determine if it differed from tomosynthesis. Summary statistics of the VBD from all study participants were compared with prior independent studies. The fibroglandular volume from tomosynthesis and mammography were not statistically different (p=0.211, paired t-test). After accounting for the compressed breast thickness, which were different between tomosynthesis and mammography, the VBD from tomosynthesis was correlated with (r =0.809, p<0.001), did not statistically differ from (p>0.99, paired t-test), and was linearly related to, the VBD from mammography. Summary statistics of the VBD from tomosynthesis were not statistically different from prior studies using high-resolution dedicated breast computed tomography. The observation of correlation and linear association in VBD between mammography and tomosynthesis suggests that breast density associated risk measures determined for mammography are translatable to tomosynthesis. Accounting for compressed breast thickness is important when it differs between the two modalities. The fibroglandular volume from tomosynthesis reconstructions is similar to mammography indicating suitability for use during near-infrared spectroscopy. PMID:26941961

  1. Differentiating pediatric epileptic brain tissue from normal brain tissue by using time-dependent diffuse reflectance spectroscopy in vivo: comprehensive data analysis method in the time domain

    NASA Astrophysics Data System (ADS)

    Oh, Sanghoon; Fernald, Bradley; Bhatia, Sanjiv; Ragheb, John; Sandberg, David; Johnson, Mahlon; Lin, Wei-Chiang

    2009-05-01

    This research investigated the feasibility of using time-dependent diffuse reflectance spectroscopy to differentiate pediatric epileptic brain tissue from normal brain tissue. The optical spectroscopic technique monitored the dynamic optical properties of the cerebral cortex that are associated with its physiological, morphological, and compositional characteristics. Due to the transient irregular epileptic discharge activity within the epileptic brain tissue it was hypothesized that the lesion would express abnormal dynamic optical behavior that would alter normal dynamic behavior. Thirteen pediatric epilepsy patients and seven pediatric brain tumor patients (normal controls) were recruited for this clinical study. Dynamic optical properties were obtained from the cortical surface intraoperatively using a timedependent diffuse reflectance spectroscopy system. This system consisted of a fiber-optic probe, a tungsten-halogen light source, and a spectrophotometer. It acquired diffuse reflectance spectra with a spectral range of 204 nm to 932 nm at a rate of 33 spectra per second for approximately 12 seconds. Biopsy samples were taken from electrophysiologically abnormal cortex and evaluated by a neuropathologist, which served as a gold standard for lesion classification. For data analysis, spectral intensity changes of diffuse reflectance in the time domain at two different wavelengths from each investigated site were compared. Negative correlation segment, defined by the periods where the intensity changes at the two wavelengths were opposite in their slope polarity, were extracted. The total duration of negative correlation, referred to as the "negative correlation time index", was calculated by integrating the negative correlation segments. The negative correlation time indices from all investigated sites were sub-grouped according to the corresponding histological classifications. The difference between the mean indices of two subgroups was evaluated by standard t-test. These comparison and calculation procedures were carried out for all possible wavelength combinations between 400 nm and 800 nm with 2 nm increments. The positive group consisted of seven pathologically abnormal test sites, and the negative group consisted of 13 normal test sites from non-epileptic tumor patients. A standard t-test showed significant difference between negative correlation time indices from the two groups at the wavelength combinations of 700-760 nm versus 550-580 nm. An empirical discrimination algorithm based on the negative correlation time indices in this range produced 100% sensitivity and 85% specificity. Based on these results time-dependent diffuse reflectance spectroscopy with optimized data analysis methods differentiates epileptic brain tissue from normal brain tissue adequately, therefore can be utilized for surgical guidance, and may enhance the surgical outcome of pediatric epilepsy surgery.

  2. Ultrafast Charge Transfer in Nickel Phthalocyanine Probed by Femtosecond Raman-Induced Kerr Effect Spectroscopy

    PubMed Central

    2015-01-01

    The recently developed technique of femtosecond stimulated Raman spectroscopy, and its variant, femtosecond Raman-induced Kerr effect spectroscopy (FRIKES), offer access to ultrafast excited-state dynamics via structurally specific vibrational spectra. We have used FRIKES to study the photoexcitation dynamics of nickel(II) phthalocyanine with eight butoxy substituents, NiPc(OBu)8. NiPc(OBu)8 is reported to have a relatively long-lived ligand-to-metal charge-transfer (LMCT) state, an essential characteristic for efficient electron transfer in photocatalysis. Following photoexcitation, vibrational transitions in the FRIKES spectra, assignable to phthalocyanine ring modes, evolve on the femtosecond to picosecond time scales. Correlation of ring core size with the frequency of the ν10 (asymmetric C–N stretching) mode confirms the identity of the LMCT state, which has a ∼500 ps lifetime, as well as that of a precursor d-d excited state. An even earlier (∼0.2 ps) transient is observed and tentatively assigned to a higher-lying Jahn–Teller-active LMCT state. This study illustrates the power of FRIKES spectroscopy in elucidating ultrafast molecular dynamics. PMID:24841906

  3. Potential of near infrared spectroscopy in the prediction of cotton fiber strength indices

    USDA-ARS?s Scientific Manuscript database

    Despite relatively low correlation between 2 cotton strength readings from the automation oriented HVI and laboratory based Stelometer device, the present study demonstrates the consistence of cotton fiber strength measurements between the two methods if the strength readings were modified by cotton...

  4. Predicting aged pork quality using a portable raman device

    USDA-ARS?s Scientific Manuscript database

    Objectives: A need exists for a better on-line evaluation method for pork quality. Raman spectroscopy evaluates structure and composition of food samples, with advantage of being portable, non-invasive and insensitive to water. The objectives of this study were to evaluate the correlation between Ra...

  5. Light-scattering study of a polymer nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Taratuta, Victor G.; Hurd, Alan J.; Meyer, Robert B.

    1985-07-01

    We study the relaxation of thermally excited orientation fluctuations in a polymer nematic liquid crystal using photon correlation spectroscopy. The material studied is poly-γ-benzyl glutamate at a concentration just above the isotropic to nematic transition point. The relaxation rates of elastic deformation modes exhibit large anisotropies. Quantitative measurements of ratios of Frank elastic constants and Leslie viscosities are described.

  6. Evidence for Weakly Correlated Oxygen Holes in the Highest-Tc Cuprate Superconductor HgBa2 Ca2 Cu3 O8 +δ

    NASA Astrophysics Data System (ADS)

    Chainani, A.; Sicot, M.; Fagot-Revurat, Y.; Vasseur, G.; Granet, J.; Kierren, B.; Moreau, L.; Oura, M.; Yamamoto, A.; Tokura, Y.; Malterre, D.

    2017-08-01

    We study the electronic structure of HgBa2 Ca2 Cu3 O8 +δ (Hg1223; Tc=134 K ) using photoemission spectroscopy (PES) and x -ray absorption spectroscopy (XAS). Resonant valence band PES across the O K edge and Cu L edge identifies correlation satellites originating in O 2 p and Cu 3 d two-hole final states, respectively. Analyses using the experimental O 2 p and Cu 3 d partial density of states show quantitatively different on-site Coulomb energy for the Cu site (Ud d=6.5 ±0.5 eV ) and O site (Up p=1.0 ±0.5 eV ). Cu2 O7 -cluster calculations with nonlocal screening explain the Cu 2 p core level PES and Cu L -edge XAS spectra, confirm the Ud d and Up p values, and provide evidence for the Zhang-Rice singlet state in Hg1223. In contrast to other hole-doped cuprates and 3 d -transition metal oxides, the present results indicate weakly correlated oxygen holes in Hg1223.

  7. IRX– β RELATION OF STAR-FORMING REGIONS IN NGC 628 BASED ON INTEGRAL FIELD SPECTROSCOPY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ye, Chengyun; Lian, Jianhui; Hu, Ning

    2016-08-01

    It has been found that the infrared-to-ultraviolet luminosity ratio (IRX) and ultraviolet spectral slope ( β ) have a tight correlation in starburst galaxies, while in normal galaxies the relation is deviated and has a much larger scatter. Star formation regions are much simpler in both morphology and physical properties than galaxies, so their photometric and spectroscopic properties are more easily and accurately determined. We have used the integral field spectroscopy and multiband photometric images to study the IRX– β relation of H ii regions in a nearby galaxy, NGC 628. There are obvious correlations between the D{sub n} (4000),more » stellar population age, star formation rate, especially H α equivalent width EW(H α), and deviation distance d {sub p} from the starburst IRX– β relation. However, there is little correlation between the Balmer decrement, metallicity, and d {sub p}. It is much more complicated than expected, so that we cannot introduce a single second parameter to describe the scatter and deviation of the H ii region IRX– β relation.« less

  8. Inexpensive electronics and software for photon statistics and correlation spectroscopy.

    PubMed

    Gamari, Benjamin D; Zhang, Dianwen; Buckman, Richard E; Milas, Peker; Denker, John S; Chen, Hui; Li, Hongmin; Goldner, Lori S

    2014-07-01

    Single-molecule-sensitive microscopy and spectroscopy are transforming biophysics and materials science laboratories. Techniques such as fluorescence correlation spectroscopy (FCS) and single-molecule sensitive fluorescence resonance energy transfer (FRET) are now commonly available in research laboratories but are as yet infrequently available in teaching laboratories. We describe inexpensive electronics and open-source software that bridges this gap, making state-of-the-art research capabilities accessible to undergraduates interested in biophysics. We include a discussion of the intensity correlation function relevant to FCS and how it can be determined from photon arrival times. We demonstrate the system with a measurement of the hydrodynamic radius of a protein using FCS that is suitable for the undergraduate teaching laboratory. The FPGA-based electronics, which are easy to construct, are suitable for more advanced measurements as well, and several applications are described. As implemented, the system has 8 ns timing resolution, can control up to four laser sources, and can collect information from as many as four photon-counting detectors.

  9. Inexpensive electronics and software for photon statistics and correlation spectroscopy

    PubMed Central

    Gamari, Benjamin D.; Zhang, Dianwen; Buckman, Richard E.; Milas, Peker; Denker, John S.; Chen, Hui; Li, Hongmin; Goldner, Lori S.

    2016-01-01

    Single-molecule-sensitive microscopy and spectroscopy are transforming biophysics and materials science laboratories. Techniques such as fluorescence correlation spectroscopy (FCS) and single-molecule sensitive fluorescence resonance energy transfer (FRET) are now commonly available in research laboratories but are as yet infrequently available in teaching laboratories. We describe inexpensive electronics and open-source software that bridges this gap, making state-of-the-art research capabilities accessible to undergraduates interested in biophysics. We include a discussion of the intensity correlation function relevant to FCS and how it can be determined from photon arrival times. We demonstrate the system with a measurement of the hydrodynamic radius of a protein using FCS that is suitable for the undergraduate teaching laboratory. The FPGA-based electronics, which are easy to construct, are suitable for more advanced measurements as well, and several applications are described. As implemented, the system has 8 ns timing resolution, can control up to four laser sources, and can collect information from as many as four photon-counting detectors. PMID:26924846

  10. A Novel Diterpene Glycoside with Nine Glucose Units from Stevia rebaudiana Bertoni

    PubMed Central

    Prakash, Indra; Ma, Gil; Bunders, Cynthia; Charan, Romila D.; Ramirez, Catherine; Devkota, Krishna P.; Snyder, Tara M.

    2017-01-01

    Following our interest in new diterpene glycosides with better taste profiles than that of Rebaudioside M, we have recently isolated and characterized Rebaudioside IX—a novel steviol glycoside—from a commercially-supplied extract of Stevia rebaudiana Bertoni. This molecule contains a hexasaccharide group attached at C-13 of the central diterpene core, and contains three additional glucose units when compared with Rebaudioside M. Here we report the complete structure elucidation—based on extensive Nuclear Magnetic Resonance (NMR) analysis (1H, 13C, Correlation Spectroscopy (COSY), Heteronuclear Single Quantum Coherence-Distortionless Enhancement Polarization Transfer (HSQC-DEPT), Heteronuclear Multiple Bond Correlation (HMBC), 1D Total Correlation Spectroscopy (TOCSY), Nuclear Overhauser Effect Spectroscopy (NOESY)) and mass spectral data—of this novel diterpene glycoside with nine sugar moieties and containing a relatively rare 1→6 α-linked glycoside. A steviol glycoside bearing nine glucose units is unprecedented in the literature, and could have an impact on the natural sweetener catalog. PMID:28146121

  11. A Novel Diterpene Glycoside with Nine Glucose Units from Stevia rebaudiana Bertoni.

    PubMed

    Prakash, Indra; Ma, Gil; Bunders, Cynthia; Charan, Romila D; Ramirez, Catherine; Devkota, Krishna P; Snyder, Tara M

    2017-01-31

    Following our interest in new diterpene glycosides with better taste profiles than that of Rebaudioside M, we have recently isolated and characterized Rebaudioside IX-a novel steviol glycoside-from a commercially-supplied extract of Stevia rebaudiana Bertoni. This molecule contains a hexasaccharide group attached at C-13 of the central diterpene core, and contains three additional glucose units when compared with Rebaudioside M. Here we report the complete structure elucidation-based on extensive Nuclear Magnetic Resonance (NMR) analysis (1H, 13C, Correlation Spectroscopy (COSY), Heteronuclear Single Quantum Coherence-Distortionless Enhancement Polarization Transfer (HSQC-DEPT), Heteronuclear Multiple Bond Correlation (HMBC), 1D Total Correlation Spectroscopy (TOCSY), Nuclear Overhauser Effect Spectroscopy (NOESY)) and mass spectral data-of this novel diterpene glycoside with nine sugar moieties and containing a relatively rare 16 α-linked glycoside. A steviol glycoside bearing nine glucose units is unprecedented in the literature, and could have an impact on the natural sweetener catalog.

  12. Onset of hydrogen bonded collective network of water in 1,4-dioxane.

    PubMed

    Luong, Trung Quan; Verma, Pramod Kumar; Mitra, Rajib Kumar; Havenith, Martina

    2011-12-22

    We have studied the evolution of water hydrogen bonded collective network dynamics in mixtures of 1,4-dioxane (Dx) as the mole fraction of water (X(w)) increases from 0.005 to 0.54. The inter- and intramolecular vibrations of water have been observed using terahertz time domain spectroscopy (THz-TDS) in the frequency range 0.4-1.4 THz (13-47 cm(-1)) and Fourier transform infrared (FTIR) spectroscopy in the far-infrared (30-650 cm(-1)) and mid-infrared (3000-3700 cm(-1)) regions. These results have been correlated with the reactivity of water in these mixtures as determined by kinetic studies of the solvolysis reaction of benzoyl chloride (BzCl). Our studies show an onset of intermolecular hydrogen bonded water network dynamics beyond X(w) ≥ 0.1. At the same concentration, we observe a rapid increase of the rate constant of solvolysis of BzCl in water-Dx mixtures. Our results establish a correlation between the onset of collective hydrogen bonded network with the solvation dynamics and the activity of clustered water.

  13. Fluorescence correlation spectroscopy: principles and applications.

    PubMed

    Bacia, Kirsten; Haustein, Elke; Schwille, Petra

    2014-07-01

    Fluorescence correlation spectroscopy (FCS) is used to study the movements and the interactions of biomolecules at extremely dilute concentrations, yielding results with good spatial and temporal resolutions. Using a number of technical developments, FCS has become a versatile technique that can be used to study a variety of sample types and can be advantageously combined with other methods. Unlike other fluorescence-based techniques, the analysis of FCS data is not based on the average intensity of the fluorescence emission but examines the minute intensity fluctuations caused by spontaneous deviations from the mean at thermal equilibrium. These fluctuations can result from variations in local concentrations owing to molecular mobility or from characteristic intermolecular or intramolecular reactions of fluorescently labeled biomolecules present at low concentrations. Here, we provide a basic introduction to FCS, including its technical development and theoretical basis, experimental setup of an FCS system, adjustment of a setup, data acquisition, and analysis of FCS measurements. Finally, the application of FCS to the study of lipid bilayer membranes and to living cells is discussed. © 2014 Cold Spring Harbor Laboratory Press.

  14. [A comparative analysis of the informative value of anti-AChR-antibody radioimmunoassay and laser correlation spectroscopy in myasthenia gravis].

    PubMed

    Alchinova, I B; Yakovenko, E N; Sidnev, D V; Dedaev, S Yu; Sanadze, A G; Karganov, M Yu

    An aim of the study was to compare informative value of traditional approach (anti-AChR antibody radioimmunoassay) and evaluation of metabolic shifts by laser correlation spectroscopy in myasthenia gravis. The search for the relationship between the disease severity in 77 patients, 12-80 years and the distribution pattern of subfraction serum components revealed three informative zones: 6-15, 27-67, and 127-223 nm. In patients without disturbances of vital functions, the contribution of the first zone particles into light scatter increases and that of the third zone particles decreases. Considerable differences attaining the level of statistical significance in zones 6 and 20 nm were revealed in the spectra of serum from patients with myasthenia gravis of the same severity with and without thymoma. This opens prospects for dynamic monitoring of the efficiency of therapy.

  15. Optical characterization of poly(methyl methacrylate) implanted with low energy ions

    NASA Astrophysics Data System (ADS)

    Gupta, Renu; Kumar, Vijay; Goyal, Parveen Kumar; Kumar, Shyam

    2012-12-01

    The samples of poly(methyl methacrylate) (PMMA) were subjected to 100 keV N+ and Ar+ ion implantation up to a maximum fluence of 2 × 1016 ions/cm2. The effect of ion implantation on the optical energy gap and the refractive index has been studied through UV-visible spectroscopy. The results clearly indicate a decrease in the values of optical energy gap and an increase in the values of refractive index as an effect of ion implantation corresponding to both of the ions. It has also been observed that the changes induced by the implanted ions are more pronounced for N+ ions in comparison to Ar+ ions. This variation has been correlated with the calculated ranges of these ions in PMMA polymer using Stopping and Range of Ions in Matter (SRIM) code. Finally, an attempt has been made to correlate all the observed changes with the induced structural changes as revealed through Raman spectroscopy.

  16. Fluorescence correlation spectroscopy directly monitors coalescence during nanoparticle preparation.

    PubMed

    Schaeffel, David; Staff, Roland Hinrich; Butt, Hans-Juergen; Landfester, Katharina; Crespy, Daniel; Koynov, Kaloian

    2012-11-14

    Dual color fluorescence cross-correlation spectroscopy (DC FCCS) experiments were conducted to study the coalescence and aggregation during the formation of nanoparticles. To assess the generality of the method, three completely different processes were selected to prepare the nanoparticles. Polymeric nanoparticles were formed either by solvent evaporation from emulsion nanodroplets of polymer solutions or by miniemulsion polymerization. Inorganic nanocapsules were formed by polycondensation of alkoxysilanes at the interface of nanodroplets. In all cases, DC FCCS provided fast and unambiguous information about the occurrence of coalescence and thus a deeper insight into the mechanism of nanoparticle formation. In particular, it was found that coalescence played a minor role for the emulsion-solvent evaporation process and the miniemulsion polymerization, whereas substantial coalescence was detected during the formation of the inorganic nanocapsules. These findings demonstrate that DC FCCS is a powerful tool for monitoring nanoparticles genesis.

  17. Confined detection volume of fluorescence correlation spectroscopy by bare fiber probes.

    PubMed

    Lu, Guowei; Lei, Franck H; Angiboust, Jean-François; Manfait, Michel

    2010-04-01

    A fiber-tip-based near-field fluorescence correlation spectroscopy (FCS) has been developed for confining the detection volume to sub-diffraction-limited dimensions. This near-field FCS is based on near-field illumination by coupling a scanning near-field optical microscope (SNOM) to a conventional confocal FCS. Single-molecule FCS analysis at 100 nM Rhodamine 6G has been achieved by using bare chemically etched, tapered fiber tips. The detection volume under control of the SNOM system has been reduced over one order of magnitude compared to that of the conventional confocal FCS. Related factors influencing the near-field FCS performance are investigated and discussed in detail. In this proof-of-principle study, the preliminary experimental results suggest that the fiber-tip-based near-field FCS might be a good alternative to realize localized analysis at the single-molecule level.

  18. Depth-resolved fluorescence of human ectocervical tissue

    NASA Astrophysics Data System (ADS)

    Wu, Yicong; Xi, Peng; Cheung, Tak-Hong; Yim, So Fan; Yu, Mei-Yung; Qu, Jianan Y.

    2005-04-01

    The depth-resolved autofluorescence of normal and dysplastic human ectocervical tissue within 120um depth were investigated utilizing a portable confocal fluorescence spectroscopy with the excitations at 355nm and 457nm. From the topmost keratinizing layer of all ectocervical tissue samples, strong keratin fluorescence with the spectral characteristics similar to collagen was observed, which created serious interference in seeking the correlation between tissue fluorescence and tissue pathology. While from the underlying non-keratinizing epithelial layer, the measured NADH fluorescence induced by 355nm excitation and FAD fluorescence induced by 457nm excitation were strongly correlated to the tissue pathology. The ratios between NADH over FAD fluorescence increased statistically in the CIN epithelial relative to the normal and HPV epithelia, which indicated increased metabolic activity in precancerous tissue. This study demonstrates that the depth-resolved fluorescence spectroscopy can reveal fine structural information on epithelial tissue and potentially provide more accurate diagnostic information for determining tissue pathology.

  19. Mesenteric near-infrared spectroscopy and risk of gastrointestinal complications in infants undergoing surgery for congenital heart disease.

    PubMed

    Iliopoulos, Ilias; Branco, Ricardo G; Brinkhuis, Nadine; Furck, Anke; LaRovere, Joan; Cooper, David S; Pathan, Nazima

    2016-04-01

    We hypothesised that lower mesenteric near-infrared spectroscopy values would be associated with a greater incidence of gastrointestinal complications in children weighing <10 kg who were recovering from cardiac surgery. We evaluated mesenteric near-infrared spectroscopy, central venous oxygen saturation, and arterial blood gases for 48 hours post-operatively. Enteral feeding intake, gastrointestinal complications, and markers of organ dysfunction were monitored for 7 days. A total of 50 children, with median age of 16.7 (3.2-31.6) weeks, were studied. On admission, the average mesenteric near-infrared spectroscopy value was 71±18%, and the systemic oxygen saturation was 93±7.5%. Lower admission mesenteric near-infrared spectroscopy correlated with longer time to establish enteral feeds (r=-0.58, p<0.01) and shorter duration of feeds at 7 days (r=0.48, p<0.01). Children with gastrointestinal complications had significantly lower admission mesenteric near-infrared spectroscopy (58±18% versus 73±17%, p=0.01) and higher mesenteric arteriovenous difference of oxygen at admission [39 (23-47) % versus 19 (4-27) %, p=0.02]. Based on multiple logistic regression, admission mesenteric near-infrared spectroscopy was independently associated with gastrointestinal complications (Odds ratio, 0.95; 95% confidence interval, 0.93-0.97; p=0.03). Admission mesenteric near-infrared spectroscopy showed an area under the receiver operating characteristic curve of 0.76 to identify children who developed gastrointestinal complications, with a suggested cut-off value of 72% (78% sensitivity, 68% specificity). In this pilot study, we conclude that admission mesenteric near-infrared spectroscopy is associated with gastrointestinal complications and enteral feeding tolerance in children after cardiac surgery.

  20. MRI, volumetry, 1H spectroscopy, and cerebropetal blood flowmetry in childhood idiopathic anatomic megalencephaly.

    PubMed

    Koudijs, Suzanne M; van der Grond, Jeroen; Hoogendoorn, Mechteld L C; Hulshoff Pol, Hilleke E; Schnack, Hugo G; Witkamp, Theo D; Gooskens, Rob H J M; van Nieuwenhuizen, Onno; Braun, Kees P J

    2006-08-01

    To evaluate cerebral abnormalities in childhood idiopathic anatomic megalencephaly (MC) by means of different magnetic resonance (MR) modalities. MRI, volumetry, spectroscopy, and cerebropetal blood flowmetry were performed in six children with idiopathic anatomic MC, and seven volunteers. MRI revealed an increased ventricular system in five of six patients. A thalamic hamartoma was found in one patient and a Chiari I malformation was found in two. Volumetric analysis showed a disproportional increase of ventricular volume but normal subarachnoid cerebrospinal fluid (CSF) volume. Supratentorial volume was disproportionally increased compared to cerebellar volume. Intracranial volume correlated significantly with skull circumference. MR spectroscopy (MRS) N-acetyl aspartate/choline (NAA/Cho) peak ratios in WM were significantly higher in patients than in controls. Choline/creatine (Cho/Cr) peak ratios in WM were significantly lower in patients. Cortical gray matter (GM) MRS ratios were unaltered. Cerebropetal flow was increased in MC, possibly related to increased brain volume. This study reveals associated developmental anomalies for idiopathic anatomic MC. A relative ventriculomegaly was found, which should not be misinterpreted as true hydrocephalus. In contrast to metabolic MC, MRS showed no severe disturbances. Total intracranial volume is correlated to skull circumference and cerebropetal blood flow.

  1. Raman Spectroscopy of DNA Packaging in Individual Human Sperm Cells distinguishes Normal from Abnormal Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huser, T; Orme, C; Hollars, C

    Healthy human males produce sperm cells of which about 25-40% have abnormal head shapes. Increases in the percentage of sperm exhibiting aberrant sperm head morphologies have been correlated with male infertility, and biochemical studies of pooled sperm have suggested that sperm with abnormal shape may contain DNA that has not been properly repackaged by protamine during spermatid development. We have used micro-Raman spectroscopy to obtain Raman spectra from individual human sperm cells and examined how differences in the Raman spectra of sperm chromatin correlate with cell shape. We show that Raman spectra of individual sperm cells contain vibrational marker modesmore » that can be used to assess the efficiency of DNA-packaging for each cell. Raman spectra obtained from sperm cells with normal shape provide evidence that DNA in these sperm is very efficiently packaged. We find, however, that the relative protein content per cell and DNA packaging efficiencies are distributed over a relatively wide range for sperm cells with both normal and abnormal shape. These findings indicate that single cell Raman spectroscopy should be a valuable tool in assessing the quality of sperm cells for in-vitro fertilization.« less

  2. Profiling planktonic biomass using element-specific, multicomponent nuclear magnetic resonance spectroscopy.

    PubMed

    Komatsu, Takanori; Kobayashi, Toshiya; Hatanaka, Minoru; Kikuchi, Jun

    2015-06-02

    Planktonic metabolism plays crucial roles in Earth's elemental cycles. Chemical speciation as well as elemental stoichiometry is important for advancing our understanding of planktonic roles in biogeochemical cycles. In this study, a multicomponent solid-state nuclear magnetic resonance (NMR) approach is proposed for chemical speciation of cellular components, using several advanced NMR techniques. Measurements by ssNMR were performed on (13)C and (15)N-labeled Euglena gracilis, a flagellated protist. 3D dipolar-assisted rotational resonance, double-cross-polarization (1)H-(13)C correlation spectroscopy, and (1)H-(13)C solid-state heteronuclear single quantum correlation spectroscopy successively allowed characterization of cellular components. These techniques were then applied to E. gracilis cultured in high and low ammonium media to demonstrate the power of this method for profiling and comparing cellular components. Cellular NMR spectra indicated that ammonium induced both paramylon degradation and amination. Arginine was stored as a nitrogen reserve and ammonium replaced by arginine catabolism via the arginine dihydrolase pathway. (15)N and (31)P cellular ssNMR indicated arginine and polyphosphate accumulation in E. gracilis, respectively. This chemical speciation technique will contribute to environmental research by providing detailed information on environmental chemical properties.

  3. Studies on water treeing and chemiluminescence on irradiated polyethylene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Notingher, P.V.; Ciuprina, F.; Radu, I.

    The effect of {gamma}-radiations on the growth kinetics of water trees is examined using the CNRS laboratory model in LDPE samples of different origins. The effect of radiations on the material is studied from crosslinking degree measurements, IRTF spectroscopy and chemiluminescence. Correlations between the non-uniformity of the degradation and the growth of water trees are observed.

  4. Assessing the reliability of FTIR spectroscopy measurements and validity of bioelectrical impedance analysis as a surrogate measure of body composition among children and adolescents aged 8-19 years attending schools in Kampala, Uganda.

    PubMed

    Ndagire, Catherine T; Muyonga, John H; Isabirye, Dan; Odur, Benard; Somda, Serge M A; Bukenya, Richard; Andrade, Juan E; Nakimbugwe, Dorothy

    2018-06-04

    Accurate measurement of body composition in children and adolescents is important as the quantities of fat and fat-free mass have implications for health risk. The objectives of the present study were: to determine the reliability of Fourier Transform Infrared spectroscopy (FTIR) measurements and; compare the Fat Mass (FM), Fat Free Mass (FFM) and body fat percentage (%BF) values determined by bioelectrical impedance analysis (BIA) to those determined by deuterium dilution method (DDM) to identify correlations and agreement between the two methods. A cross-sectional study was conducted among 203 children and adolescents aged 8-19 years attending schools in Kampala city, Uganda. Pearson product-moment correlation at 5% significance level was considered for assessing correlations. Bland Altman analysis was used to examine the agreement between of FTIR measurements and between estimates by DDM and BIA.. Reliability of measurements was determined by Cronbach's alpha. There was good agreement between the in vivo D 2 O saliva enrichment measurements at 3 and 4 h among the studied age groups based on Bland-Altman plots. Cronbach's alpha revealed that measurements of D 2 O saliva enrichment had very good reliability. For children and young adolescents, DDM and BIA gave similar estimates of FFM, FM, and %BF. Among older adolescents, BIA significantly over-estimated FFM and significantly under-estimated FM and %BF compared to estimates by DDM. The correlation between FFM, FM and %BF estimates by DDM and BIA was high and significant among young and older adolescents and for FFM among children. Reliability of the FTIR spectroscopy measurements was very good among the studied population. BIA is suitable for assessing body composition among children (8-9 years) and young adolescents (10-14 years) but not among older adolescents (15-19 years) in Uganda. The body composition measurements of older adolescents determined by DDM can be predicted using those provided by BIA using population-specific regression equations.

  5. Effect of Heat-treatment on Accuracy of Infrared Spectroscopy and Digital and Optical Brix Refractometers for Measuring Immunoglobulin G Concentration in Bovine Colostrum.

    PubMed

    Elsohaby, I; McClure, J T; Dow, N; Keefe, G P

    2018-01-01

    Heat-treatment of colostrum is a method developed to reduce calf exposure to pathogens. Infrared (IR) spectroscopy and Brix refractometers can be used for measuring colostral IgG concentration and assessing colostrum quality. To determine the impact of heat-treatment on accuracy of IR spectroscopy and Brix refractometers for measuring colostral IgG concentration and assessing colostrum quality before and after heat-treatment. A total of 60 Holstein dairy cows on 8 commercial dairy farms. A cross-sectional study was designed to determine the effect of heat-treatment at 60°C and 63°C each for 30 and 60 minutes duration on colostral IgG concentration measured by the reference radial immunodiffusion (RID) assay, IR spectroscopy, and digital and optical refractometers. Colostrum IgG concentration significantly decreased after heat-treatment at 63°C for 30 or 60 minutes as measured by RID, but the IgG values remained unchanged when measured by IR spectroscopy and refractometers. The lowest correlation coefficient found between IR spectroscopy (r = 0.70) and RID results was in colostrum heat-treated at 63°C for 60 minutes. For digital (r = 0.48) and optical (r = 0.50) refractometers, the lowest correlation coefficient was at 63°C for 30 minutes when compared to RID. The accuracy of the IR spectroscopy, digital and optical Brix refractometers was decreased from 91.7 to 80%, 81.7 to 45%, and 80 to 45%, respectively, when colostrum heat-treated at 63°C for 60 minutes. Radial immunodiffusion, IR spectroscopy, and Brix refractometers exhibit utility for measuring IgG concentration when colostrum heat-treated at 60°C but does not detect decrease IgG concentrations when heat-treated at 63°C. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  6. The influence of adsorbed molecules on the framework vibrations of Na-Faujasites studied with FT Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ferwerda, R.; van der Maas, J. H.

    1995-11-01

    The use of FT Raman spectroscopy in the elucidation of the structural parameters of Faujasitic zeolites is investigated. Because fluorescence is less of a problem on excitation with a near-infrared laser, FT Raman spectroscopy allows one to probe the effects of in situ heat treatments on the zeolite structure. A correlation is found between the bending vibrations of the Y zeolites and their unit cell size. The vibrations, however, are severely influenced by the charge distribution within the zeolite. Hence, the position of the charge-balancing cations and the water content affect the Raman spectra. Pyridine adsorption results in a rearrangement of the cations or water molecules still present in the structure after activation, and thus alters the vibrations of the zeolite lattice.

  7. Feasibility study of imaging spectroscopy to monitor the quality of online welding.

    PubMed

    Mirapeix, Jesús; García-Allende, P Beatriz; Cobo, Adolfo; Conde, Olga M; López-Higuera, José M

    2009-08-20

    An online welding quality system based on the use of imaging spectroscopy is proposed and discussed. Plasma optical spectroscopy has already been successfully applied in this context by establishing a direct correlation between some spectroscopic parameters, e.g., the plasma electronic temperature and the resulting seam quality. Given that the use of the so-called hyperspectral devices provides both spatial and spectral information, we propose their use for the particular case of arc welding quality monitoring in an attempt to determine whether this technique would be suitable for this industrial situation. Experimental welding tests are presented, and the ability of the proposed solution to identify simulated defects is proved. Detailed spatial analyses suggest that this additional dimension can be used to improve the performance of the entire system.

  8. Continuous gradient temperature Raman spectroscopy of unsaturated fatty acids

    USDA-ARS?s Scientific Manuscript database

    A new innovative technique gradient temperature, Raman spectroscopy (GTRS), identifies Raman frequency shifts in solid or liquid samples, and correlates them with specific temperature ranges within which flexible structures absorb heat. GTRS can easily detect changes that occur within one celcius te...

  9. Protein oligomerization monitored by fluorescence fluctuation spectroscopy: Self-assembly of Rubisco activase

    USDA-ARS?s Scientific Manuscript database

    A methodology is presented to characterize complex protein assembly pathways by fluorescence correlation spectroscopy. We have derived the total autocorrelation function describing the behavior of mixtures of labeled and unlabeled protein under equilibrium conditions. Our modeling approach allows us...

  10. Characterization of lipid oxidation process of beef during repeated freeze-thaw by electron spin resonance technology and Raman spectroscopy.

    PubMed

    Chen, Qingmin; Xie, Yunfei; Xi, Jinzhong; Guo, Yahui; Qian, He; Cheng, Yuliang; Chen, Yi; Yao, Weirong

    2018-03-15

    In this study, electron spin resonance (ESR) and Raman spectroscopy were applied to characterize lipid oxidation of beef during repeated freeze-thaw (RFT). Besides the conventional indexes including peroxide values (PV), thiobarbituric acid-reactive substances (TBARS) and acid values (AV) were evaluated, the radical and molecular structure changes were also measured by ESR and Raman spectroscopy. The results showed that PV, TBARS and AV were increased (P<0.05) after RFT. This suggested that lipid oxidation was occurred during RFT. With the increase of radical signal intensity, lower oxidation stability was presented by ESR. Raman intensity of ν(CC) stretching region (1655cm -1 ) was decreased during RFT. Furthermore, lower Raman intensity ratio of I 1655 /I 1442 , I 1655 /I 1745 that determine total unsaturation was also observed. Significant correlations (p<0.01) were obtained among conventional methods, ESR and Raman spectroscopy. Our result has proved that ESR and Raman spectroscopy showed great potential in characterizing lipid oxidation process of beef during RFT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Fluorescence spectroscopy for the detection of potentially malignant disorders of the oral cavity: analysis of 30 cases

    NASA Astrophysics Data System (ADS)

    Francisco, A. L. N.; Correr, W. R.; Azevedo, L. H.; Galletta, V. K.; Pinto, C. A. L.; Kowalski, L. P.; Kurachi, C.

    2014-01-01

    Oral cancer is a major health problem worldwide and although early diagnosis of potentially malignant and malignant diseases is associated with better treatment results, a large number of cancers are initially misdiagnosed, with unfortunate consequences for long-term survival. Fluorescence spectroscopy is a noninvasive modality of diagnostic approach using induced fluorescence emission in tumors that can improve diagnostic accuracy. The objective of this study was to determine the ability to discriminate between normal oral mucosa and potentially malignant disorders by fluorescence spectroscopy. Fluorescence investigation under 408 and 532 nm excitation wavelengths was performed on 60 subjects, 30 with potentially malignant disorders and 30 volunteers with normal mucosa. Data was analyzed to correlate fluorescence patterns with clinical and histopathological diagnostics. Fluorescence spectroscopy used as a point measurement technique resulted in a great variety of spectral information. In a qualitative analysis of the fluorescence spectral characteristics of each type of injury evaluated, it was possible to discriminate between normal and abnormal oral mucosa. The results show the potential use of fluorescence spectroscopy for an improved discrimination of oral disorders.

  12. Two-Dimensional Resonance Raman Signatures of Vibronic Coherence Transfer in Chemical Reactions.

    PubMed

    Guo, Zhenkun; Molesky, Brian P; Cheshire, Thomas P; Moran, Andrew M

    2017-11-02

    Two-dimensional resonance Raman (2DRR) spectroscopy has been developed for studies of photochemical reaction mechanisms and structural heterogeneity in condensed phase systems. 2DRR spectroscopy is motivated by knowledge of non-equilibrium effects that cannot be detected with traditional resonance Raman spectroscopy. For example, 2DRR spectra may reveal correlated distributions of reactant and product geometries in systems that undergo chemical reactions on the femtosecond time scale. Structural heterogeneity in an ensemble may also be reflected in the 2D spectroscopic line shapes of both reactive and non-reactive systems. In this chapter, these capabilities of 2DRR spectroscopy are discussed in the context of recent applications to the photodissociation reactions of triiodide. We show that signatures of "vibronic coherence transfer" in the photodissociation process can be targeted with particular 2DRR pulse sequences. Key differences between the signal generation mechanisms for 2DRR and off-resonant 2D Raman spectroscopy techniques are also addressed. Overall, recent experimental developments and applications of the 2DRR method suggest that it will be a valuable tool for elucidating ultrafast chemical reaction mechanisms.

  13. Anisotropic growth and formation mechanism investigation of 1D ZnO nanorods in spin-coating sol-gel process.

    PubMed

    Song, Yijian; Zheng, Maojun; Ma, Li; Shen, Wenzhong

    2010-01-01

    ZnO nanorods are fabricated on glass substrate by spin-coating sol-gel process using non-basic aged solution and annealing. Sample solutions reserved in room temperature for different time (one day, one month, two months and four months) are prepared for the experiment. The morphology study indicates that the aging time has direct influence on the final products. This is verified by the Transmission Electron Microscopy and Photon Correlation Spectroscopy study. Small crystalline nanoparticles would gradually nucleate and aggregate in the sol during the aging process. They act as nucleation site for the secondary crystal growth into nanorods during anneal. Both the size of crystalline particles in the sol and the size of nanorods will grow bigger as the aging time increases. The products' structure and optical property are further studied by X-ray diffraction spectroscopy, Photoluminescence and Raman spectroscopy. This work also helps to further clarify the formation mechanism of ZnO nanorods by solution-based method.

  14. A total internal reflection-fluorescence correlation spectroscopy setup with pulsed diode laser excitation

    NASA Astrophysics Data System (ADS)

    Weger, Lukas; Hoffmann-Jacobsen, Kerstin

    2017-09-01

    Fluorescence correlation spectroscopy (FCS) measures fluctuations in a (sub-)femtoliter volume to analyze the diffusive behavior of fluorescent particles. This highly sensitive method has proven to be useful for the analysis of dynamic biological systems as well as in chemistry, physics, and material sciences. It is routinely performed with commercial fluorescence microscopes, which provide a confined observation volume by the confocal technique. The evanescent wave of total internal reflectance (TIR) is used in home-built systems to permit a surface sensitive FCS analysis. We present a combined confocal and TIR-FCS setup which uses economic low-power pulsed diode lasers for excitation. Excitation and detection are coupled to time-correlated photon counting hardware. This allows simultaneous fluorescence lifetime and FCS measurements in a surface-sensitive mode. Moreover, the setup supports fluorescence lifetime correlation spectroscopy at surfaces. The excitation can be easily switched between TIR and epi-illumination to compare the surface properties with those in liquid bulk. The capabilities of the presented setup are demonstrated by measuring the diffusion coefficients of a free dye molecule, a labeled polyethylene glycol, and a fluorescent nanoparticle in confocal as well as in TIR-FCS.

  15. Copper ESEEM and HYSCORE through ultra-wideband chirp EPR spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segawa, Takuya F.; Doll, Andrin; Pribitzer, Stephan

    2015-07-28

    The main limitation of pulse electron paramagnetic resonance (EPR) spectroscopy is its narrow excitation bandwidth. Ultra-wideband (UWB) excitation with frequency-swept chirp pulses over several hundreds of megahertz overcomes this drawback. This allows to excite electron spin echo envelope modulation (ESEEM) from paramagnetic copper centers in crystals, whereas up to now, only ESEEM of ligand nuclei like protons or nitrogens at lower frequencies could be detected. ESEEM spectra are recorded as two-dimensional correlation experiments, since the full digitization of the electron spin echo provides an additional Fourier transform EPR dimension. Thus, UWB hyperfine-sublevel correlation experiments generate a novel three-dimensional EPR-correlated nuclearmore » modulation spectrum.« less

  16. Chemotherapeutic drug-specific alteration of microvascular blood flow in murine breast cancer as measured by diffuse correlation spectroscopy

    PubMed Central

    Ramirez, Gabriel; Proctor, Ashley R.; Jung, Ki Won; Wu, Tong Tong; Han, Songfeng; Adams, Russell R.; Ren, Jingxuan; Byun, Daniel K.; Madden, Kelley S.; Brown, Edward B.; Foster, Thomas H.; Farzam, Parisa; Durduran, Turgut; Choe, Regine

    2016-01-01

    The non-invasive, in vivo measurement of microvascular blood flow has the potential to enhance breast cancer therapy monitoring. Here, longitudinal blood flow of 4T1 murine breast cancer (N=125) under chemotherapy was quantified with diffuse correlation spectroscopy based on layer models. Six different treatment regimens involving doxorubicin, cyclophosphamide, and paclitaxel at clinically relevant doses were investigated. Treatments with cyclophosphamide increased blood flow as early as 3 days after administration, whereas paclitaxel induced a transient blood flow decrease at 1 day after administration. Early blood flow changes correlated strongly with the treatment outcome and distinguished treated from untreated mice individually for effective treatments. PMID:27699124

  17. Reconciling STS and ARPES data for the correlated superconductor LiFeAs

    NASA Astrophysics Data System (ADS)

    Hong, Jongbae; Abergel, David

    The inconsistency between the density of states revealed by scanning tunneling spectroscopy (STS) and that given by angle-resolved photoemission spectroscopy (ARPES) is a substantial problem for understanding the nature of strongly correlated superconductors such as Fe-based LiFeAs and the cuprates. We reveal that the two side peaks commonly appearing in both pnictide and cuprate superconductors are the result of the non-equilibrium behavior associated with singlet cotunneling from the tip to the strongly correlated sample. We accurately reproduce the STS line shape of the Fe-based LiFeAs using a sample density of states which coincides with ARPES data, thereby producing a unified description for these materials.

  18. Fast responses from slowly relaxing'' liquids: A comparative study of the femtosecond dynamics of triacetin, ethylene glycol, and water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Y.J.; Castner, E.W. Jr.

    1993-11-15

    We have measured the ultrafast solvent relaxation of liquid ethylene glycol, triacetin, and water by means of femtosecond polarization spectroscopy, using optical-heterodyne-detected Raman-induced Kerr-effect spectroscopy. In the viscous liquids triacetin and ethylene glycol, femtosecond relaxation processes were resolved. Not surprisingly, the femtosecond nonlinear optical response of ethylene glycol is quite similar to that of water. Using the theory of Maroncelli, Kumar, and Papazyan, we transform the pure-nuclear solvent response into a dipolar-solvation correlation function for comparison with ultrafast electron-transfer reaction rates.

  19. Fast responses from ``slowly relaxing'' liquids: A comparative study of the femtosecond dynamics of triacetin, ethylene glycol, and water

    NASA Astrophysics Data System (ADS)

    Chang, Yong Joon; Castner, Edward W., Jr.

    1993-11-01

    We have measured the ultrafast solvent relaxation of liquid ethylene glycol, triacetin, and water by means of femtosecond polarization spectroscopy, using optical-heterodyne-detected Raman-induced Kerr-effect spectroscopy. In the viscous liquids triacetin and ethylene glycol, femtosecond relaxation processes were resolved. Not surprisingly, the femtosecond nonlinear optical response of ethylene glycol is quite similar to that of water. Using the theory of Maroncelli, Kumar, and Papazyan, we transform the pure-nuclear solvent response into a dipolar-solvation correlation function for comparison with ultrafast electron-transfer reaction rates.

  20. In situ nuclear magnetic resonance microimaging of live biofilms in a microchannel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renslow, R. S.; Marshall, M. J.; Tucker, A. E.

    Nuclear magnetic resonance (NMR) microimaging and spectroscopy was used to interrogate fluids of biological importance (e.g., water, buffer, medium solution) and live biofilms in a microchannel compatible for analyses at ambient pressure and under vacuum. Studies using buffer, growth medium, and actively growing Shewanella oneidensis biofilms were used to demonstrate in situ NMR microimaging measurement capabilities including velocity mapping, diffusion coefficient mapping, relaxometry, localized spectroscopy, and 2D and 3D imaging within a microchannel suitable for different analytical platforms. This technique is promising for diverse applications of correlative imaging using a portable microfluidic platform.

  1. Proton Magnetic Resonance Spectroscopy in Social Anxiety Disorder.

    PubMed

    Tükel, Raşit; Aydın, Kubilay; Yüksel, Çağrı; Ertekin, Erhan; Koyuncu, Ahmet

    2016-01-01

    In the present study, 24 nonmedicated patients with social anxiety disorder (SAD) were compared with 24 healthy control subjects to assess metabolite levels in the anterior cingulate, insula, caudate, and putamen using proton magnetic resonance spectroscopy. The ratio of N-acetylaspartate (NAA)/creatine (Cr) was significantly higher in patients with SAD than in healthy control subjects in the anterior cingulate and insula. NAA/Cr ratios in the insula correlated positively with the Liebowitz Social Anxiety Scale total scores in patients with SAD. Our results support the significance and biochemical involvement of the anterior cingulate and insula in the pathophysiology of SAD.

  2. Electron Spectroscopy for Chemical Analysis (ESCA) study of atmospheric particles

    NASA Technical Reports Server (NTRS)

    Dillard, J. G.; Seals, R. D.; Wightman, J. P.

    1979-01-01

    The results of analyses by ESCA (Electron Spectroscopy for Chemical Analysis) on several Nuclepore filters which were exposed during air pollution studies are presented along with correlative measurements by Neutron Activation Analysis and Scanning Electron Microscopy. Samples were exposed during air pollution studies at Norfolk, Virginia and the NASA Kennedy Space Center (KSC). It was demonstrated that with the ESCA technique it was possible to identify the chemical (bonding) state of elements contained in the atmospheric particulate matter collected on Nuclepore filters. Sulfur, nitrogen, mercury, chlorine, alkali, and alkaline earth metal species were identified in the Norfolk samples. ESCA binding energy data for aluminum indicated that three chemically different types of aluminum are present in the launch and background samples from NASA-KSC.

  3. A fluorescence lifetime spectroscopy study of matrix metalloproteinases -2 and -9 in human atherosclerotic plaque

    PubMed Central

    Phipps, Jennifer E.; Hatami, Nisa; Galis, Zorina S.; Baker, J. Dennis; Fishbein, Michael C.; Marcu, Laura

    2011-01-01

    Matrix metalloproteinase (MMP) -2 and -9 play important roles in the progression of atherosclerosis. This study aims to determine whether MMP-2 and -9 content in the fibrotic caps of atherosclerotic plaque is correlated with plaque autofluorescence. A time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) system was used to measure the autofluorescence and assess the biochemical composition of human plaques obtained from carotid endarterectomy. Results presented here demonstrate for the first time the ability to characterize the biochemical composition as it relates to MMP-2 and -9 content in the atherosclerotic plaque cap using a label-free imaging technique implemented with a fiberoptic TR-LIFS system. PMID:21770037

  4. Structural study of ethyl 3-methyl-9-oxo-3-azabicyclo63.3.19nonane-1-carboxylate by two-dimensional NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Arias-Pérez, M. S.; Alejo, A.; Gálvez, E.; Pérez, S. M.; Santos, M. J.

    1995-04-01

    Ethyl 3-methyl-9-oxo-3-azabicyclo[3.3.1]nonane-1-carboxylate has been studied by 1H, 13C and 2D NMR spectroscopy in order to establish its conformational behaviour. The combined use of COSY and 1H- 13C correlation spectra helped in the unambiguous and complete assignment of the bicyclic carbon and proton resonances. It is found that the piperidone ring displays a slightly fattened chair conformation with the N-methyl group in the equatorial position, while a twist-chair form seems to be favoured for the cyclohexanone one. Two preferred orientations migth be proposed for the ethoxycarbonyl moiety.

  5. Testing and analyses of electrochemical cells using frequency response

    NASA Technical Reports Server (NTRS)

    Norton, O. A., Jr.; Thomas, D. L.

    1992-01-01

    The feasibility of electrochemical impedance spectroscopy as a method for analyzing battery state of health and state of charge was investigated. Porous silver, zinc, nickel, and cadmium electrodes as well as silver/zinc cells were studied. State of charge could be correlated with impedance data for all but the nickel electrodes. State of health was correlated with impedance data for two silver/zinc cells, one apparently good and the other dead. The experimental data were fit to equivalent circuit models.

  6. Photon correlation spectroscopic analysis of a natural electret material: Carnauba wax

    NASA Astrophysics Data System (ADS)

    Barbosa, G. A.; Russi, R.; Pires, A. S. T.; Mesquita, O. N.

    1981-02-01

    For the first time, photon correlation spectroscopy is applied to the study of an electret material. We show that the average self-diffusion parameter of Carnauba wax in liquid phase, from 85 to 170 °C can be written as D=D0+A exp[-ΔE/k(T-T0)], where D0=1.6×10-10 and A=20×10-10 cm2/sec, ΔE=82 cm-1 and T0=68 °C

  7. Double-quantum resonances and exciton-scattering in coherent 2D spectroscopy of photosynthetic complexes

    PubMed Central

    Abramavicius, Darius; Voronine, Dmitri V.; Mukamel, Shaul

    2008-01-01

    A simulation study demonstrates how the nonlinear optical response of the Fenna–Matthews–Olson photosynthetic light-harvesting complex may be explored by a sequence of laser pulses specifically designed to probe the correlated dynamics of double excitations. Cross peaks in the 2D correlation plots of the spectra reveal projections of the double-exciton wavefunctions onto a basis of direct products of single excitons. An alternative physical interpretation of these signals in terms of quasiparticle scattering is developed. PMID:18562293

  8. Predicting the ethanol potential of wheat straw using near-infrared spectroscopy and chemometrics: The challenge of inherently intercorrelated response functions

    DOE PAGES

    Rinnan, Asmund; Bruun, Sander; Lindedam, Jane; ...

    2017-02-07

    Here, the combination of NIR spectroscopy and chemometrics is a powerful correlation method for predicting the chemical constituents in biological matrices, such as the glucose and xylose content of straw. However, difficulties arise when it comes to predicting enzymatic glucose and xylose release potential, which is matrix dependent. Further complications are caused by xylose and glucose release potential being highly intercorrelated. This study emphasizes the importance of understanding the causal relationship between the model and the constituent of interest. It investigates the possibility of using near-infrared spectroscopy to evaluate the ethanol potential of wheat straw by analyzing more than 1000more » samples from different wheat varieties and growth conditions. During the calibration model development, the prime emphasis was to investigate the correlation structure between the two major quality traits for saccharification of wheat straw: glucose and xylose release. The large sample set enabled a versatile and robust calibration model to be developed, showing that the prediction model for xylose release is based on a causal relationship with the NIR spectral data. In contrast, the prediction of glucose release was found to be highly dependent on the intercorrelation with xylose release. If this correlation is broken, the model performance breaks down. A simple method was devised for avoiding this breakdown and can be applied to any large dataset for investigating the causality or lack of causality of a prediction model.« less

  9. Predicting the ethanol potential of wheat straw using near-infrared spectroscopy and chemometrics: The challenge of inherently intercorrelated response functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rinnan, Asmund; Bruun, Sander; Lindedam, Jane

    Here, the combination of NIR spectroscopy and chemometrics is a powerful correlation method for predicting the chemical constituents in biological matrices, such as the glucose and xylose content of straw. However, difficulties arise when it comes to predicting enzymatic glucose and xylose release potential, which is matrix dependent. Further complications are caused by xylose and glucose release potential being highly intercorrelated. This study emphasizes the importance of understanding the causal relationship between the model and the constituent of interest. It investigates the possibility of using near-infrared spectroscopy to evaluate the ethanol potential of wheat straw by analyzing more than 1000more » samples from different wheat varieties and growth conditions. During the calibration model development, the prime emphasis was to investigate the correlation structure between the two major quality traits for saccharification of wheat straw: glucose and xylose release. The large sample set enabled a versatile and robust calibration model to be developed, showing that the prediction model for xylose release is based on a causal relationship with the NIR spectral data. In contrast, the prediction of glucose release was found to be highly dependent on the intercorrelation with xylose release. If this correlation is broken, the model performance breaks down. A simple method was devised for avoiding this breakdown and can be applied to any large dataset for investigating the causality or lack of causality of a prediction model.« less

  10. [Infrared spectroscopic analysis of Guilin watermelon frost products].

    PubMed

    Huang, Dong-lan; Chen, Xiao-kang; Xu, Yong-qun; Sun, Su-qin; Zhou, Qun; Lu, Wen-guan

    2012-08-01

    The objective of the present study is to analyze different products of Guilin watermelon frost by Fourier transform infrared spectroscopy (FTIR), second derivative infrared spectroscopy and two-dimensional correlation spectroscopy (2D-IR) under thermal perturbation. The structural information of the samples indicates that samples from the same factory but of different brands had some dissimilarities in the IR spectra, and the type and content of accessories of them were different compared with conventional IR spectra of samples, peaks at 638 and 616 cm(-1) all arise from anhydrous sodium sulfate in watermelon frost spray and watermelon frost capsule; the characteristic absorption peaks of the sucrose, dextrin or other accessories can be seen clearly in the spectra of watermelon frost throat-clearing buccal tablets, watermelon frost throat tablets and watermelon frost lozenge. And the IR spectra of watermelon frost lozenge is very similar to the IR spectra of sucrose, so it can be easily proved that the content of sucrose in watermelon frost lozenge is high. In the 2D-IR correlation spectra, the samples presented the differences in the position, number and relative intensity of autopeaks and correlation peak clusters. Consequently, the macroscopical fingerprint characters of FTIR, second derivative infrared spectra and 2D-IR spectra can not only provide the information about main chemical constituents in medical materials, but also analyze and identify the type and content of accessories in Guilin watermelon frost. In conclusion, the multi-steps IR macro-fingerprint method is rapid, effective, visual and accurate for pharmaceutical research.

  11. Novel estimation of the humification degree of soil organic matter by laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Ferreira, Edilene Cristina; Ferreira, Ednaldo José; Villas-Boas, Paulino Ribeiro; Senesi, Giorgio Saverio; Carvalho, Camila Miranda; Romano, Renan Arnon; Martin-Neto, Ladislau; Milori, Débora Marcondes Bastos Pereira

    2014-09-01

    Soil organic matter (SOM) constitutes an important reservoir of terrestrial carbon and can be considered an alternative for atmospheric carbon storage, contributing to global warming mitigation. Soil management can favor atmospheric carbon incorporation into SOM or its release from SOM to atmosphere. Thus, the evaluation of the humification degree (HD), which is an indication of the recalcitrance of SOM, can provide an estimation of the capacity of carbon sequestration by soils under various managements. The HD of SOM can be estimated by using various analytical techniques including fluorescence spectroscopy. In the present work, the potential of laser-induced breakdown spectroscopy (LIBS) to estimate the HD of SOM was evaluated for the first time. Intensities of emission lines of Al, Mg and Ca from LIBS spectra showing correlation with fluorescence emissions determined by laser-induced fluorescence spectroscopy (LIFS) reference technique were used to obtain a multivaried calibration model based on the k-nearest neighbor (k-NN) method. The values predicted by the proposed model (A-LIBS) showed strong correlation with LIFS results with a Pearson's coefficient of 0.87. The HD of SOM obtained after normalizing A-LIBS by total carbon in the sample showed a strong correlation to that determined by LIFS (0.94), thus suggesting the great potential of LIBS for this novel application.

  12. Determination of nuclear quadrupole moments – An example of the synergy of ab initio calculations and microwave spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kellö, Vladimir

    Highly correlated scalar relativistic calculations of electric field gradients at nuclei in diatomic molecules in combination with accurate nuclear quadrupole coupling constants obtained from microwave spectroscopy are used for determination of nuclear quadrupole moments.

  13. Validation of mid-infrared spectroscopy for macronutrient analysis of human milk.

    PubMed

    Parat, S; Groh-Wargo, S; Merlino, S; Wijers, C; Super, D M

    2017-07-01

    Human milk has considerable variation in its composition. Hence, the nutrient profile is only an estimate and can result in under- or over-estimation of the intake of preterm infants. Mid-infrared (MIR) spectroscopy is an evolving technique for analyzing human milk but needs validation before use in clinical practice. Human milk samples from 35 mothers delivering at 35 weeks to term gestation were analyzed for macronutrients by MIR spectroscopy and by standard laboratory methods using Kjeldahl assay for protein, Mojonnier assay for fat and high-pressure liquid chromatography assay for lactose. MIR analysis of the macronutrients in human milk correlated well with standard laboratory tests with intraclass correlation coefficients of 0.997 for fat, 0.839 for protein and 0.776 for lactose. Agreement between the two methods was excellent for fat, and moderate for protein and lactose (P<0.001). This methodological paper provides evidence that MIR spectroscopy can be used to analyze macronutrient composition of human milk. Agreement between the methodologies varies by macronutrient.

  14. Physical Characterization of Warm Spitzer-observed Near-Earth Objects

    NASA Technical Reports Server (NTRS)

    Thomas, Cristina A.; Emery, Joshua P.; Trilling, David E.; Delbo, Marco; Hora, Joseph L.; Mueller, Michael

    2014-01-01

    Near-infrared spectroscopy of Near-Earth Objects (NEOs) connects diagnostic spectral features to specific surface mineralogies. The combination of spectroscopy with albedos and diameters derived from thermal infrared observations can increase the scientific return beyond that of the individual datasets. For instance, some taxonomic classes can be separated into distinct compositional groupings with albedo and different mineralogies with similar albedos can be distinguished with spectroscopy. To that end, we have completed a spectroscopic observing campaign to complement the ExploreNEOs Warm Spitzer program that obtained albedos and diameters of nearly 600 NEOs (Trilling et al., 2010). The spectroscopy campaign included visible and near-infrared observations of ExploreNEOs targets from various observatories. Here we present the results of observations using the low-resolution prism mode (approx. 0.7-2.5 microns) of the SpeX instrument on the NASA Infrared Telescope Facility (IRTF). We also include near-infrared observations of Explore-NEOs targets from the MIT-UH-IRTF Joint Campaign for Spectral Reconnaissance. Our dataset includes near-infrared spectra of 187 ExploreNEOs targets (125 observations of 92 objects from our survey and 213 observations of 154 objects from the MIT survey). We identify a taxonomic class for each spectrum and use band parameter analysis to investigate the mineralogies for the S-, Q-, and V-complex objects. Our analysis suggests that for spectra that contain near-infrared data but lack the visible wavelength region, the Bus-DeMeo system misidentifies some S-types as Q-types. We find no correlation between spectral band parameters and ExploreNEOs albedos and diameters. We investigate the correlations of phase angle with band area ratio and near-infrared spectral slope. We find slightly negative Band Area Ratio (BAR) correlations with phase angle for Eros and Ivar, but a positive BAR correlation with phase angle for Ganymed.The results of our phase angle study are consistent with those of (Sanchez et al., 2012). We find evidence for spectral phase reddening for Eros, Ganymed, and Ivar. We identify the likely ordinary chondrite type analog for an appropriate subset of our sample. Our resulting proportions of H, L, and LL ordinary chondrites differ from those calculated for meteorite falls and in previous studies of ordinary chondrite-like NEOs.

  15. Amide Proton Transfer Imaging Allows Detection of Glioma Grades and Tumor Proliferation: Comparison with Ki-67 Expression and Proton MR Spectroscopy Imaging.

    PubMed

    Su, C; Liu, C; Zhao, L; Jiang, J; Zhang, J; Li, S; Zhu, W; Wang, J

    2017-09-01

    Prognosis in glioma depends strongly on tumor grade and proliferation. In this prospective study of patients with untreated primary cerebral gliomas, we investigated whether amide proton transfer-weighted imaging could reveal tumor proliferation and reliably distinguish low-grade from high-grade gliomas compared with Ki-67 expression and proton MR spectroscopy imaging. This study included 42 patients with low-grade ( n = 28) or high-grade ( n = 14) glioma, all of whom underwent conventional MR imaging, proton MR spectroscopy imaging, and amide proton transfer-weighted imaging on the same 3T scanner within 2 weeks before surgery. We assessed metabolites of choline and N -acetylaspartate from proton MR spectroscopy imaging and the asymmetric magnetization transfer ratio at 3.5 ppm from amide proton transfer-weighted imaging and compared them with histopathologic grade and immunohistochemical expression of the proliferation marker Ki-67 in the resected specimens. The asymmetric magnetization transfer ratio at 3.5 ppm values measured by different readers showed good concordance and were significantly higher in high-grade gliomas than in low-grade gliomas (3.61% ± 0.155 versus 2.64% ± 0.185, P = .0016), with sensitivity and specificity values of 92.9% and 71.4%, respectively, at a cutoff value of 2.93%. The asymmetric magnetization transfer ratio at 3.5 ppm values correlated with tumor grade ( r = 0.506, P = .0006) and Ki-67 labeling index ( r = 0.502, P = .002). For all patients, the asymmetric magnetization transfer ratio at 3.5 ppm correlated positively with choline ( r = 0.43, P = .009) and choline/ N -acetylaspartate ratio ( r = 0.42, P = .01) and negatively with N -acetylaspartate ( r = -0.455, P = .005). These correlations held for patients with low-grade gliomas versus those with high-grade gliomas, but the correlation coefficients were higher in high-grade gliomas (choline: r = 0.547, P = .053; N -acetylaspartate: r = -0.644, P = .017; choline/ N -acetylaspartate: r = 0.583, P = .036). The asymmetric magnetization transfer ratio at 3.5 ppm may serve as a potential biomarker not only for assessing proliferation, but also for predicting histopathologic grades in gliomas. © 2017 by American Journal of Neuroradiology.

  16. Non-destructive prediction of enteric coating layer thickness and drug dissolution rate by near-infrared spectroscopy and X-ray computed tomography.

    PubMed

    Ariyasu, Aoi; Hattori, Yusuke; Otsuka, Makoto

    2017-06-15

    The coating layer thickness of enteric-coated tablets is a key factor that determines the drug dissolution rate from the tablet. Near-infrared spectroscopy (NIRS) enables non-destructive and quick measurement of the coating layer thickness, and thus allows the investigation of the relation between enteric coating layer thickness and drug dissolution rate. Two marketed products of aspirin enteric-coated tablets were used in this study, and the correlation between the predicted coating layer thickness and the obtained drug dissolution rate was investigated. Our results showed correlation for one product; the drug dissolution rate decreased with the increase in enteric coating layer thickness, whereas, there was no correlation for the other product. Additional examination of the distribution of coating layer thickness by X-ray computed tomography (CT) showed homogenous distribution of coating layer thickness for the former product, whereas the latter product exhibited heterogeneous distribution within the tablet, as well as inconsistent trend in the thickness distribution between the tablets. It was suggested that this heterogeneity and inconsistent trend in layer thickness distribution contributed to the absence of correlation between the layer thickness of the face and side regions of the tablets, which resulted in the loss of correlation between the coating layer thickness and drug dissolution rate. Therefore, the predictability of drug dissolution rate from enteric-coated tablets depended on the homogeneity of the coating layer thickness. In addition, the importance of micro analysis, X-ray CT in this study, was suggested even if the macro analysis, NIRS in this study, are finally applied for the measurement. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Diffuse reflectance spectroscopy of pre- and post-treated oral submucous fibrosis: an in vivo study

    NASA Astrophysics Data System (ADS)

    Sivabalan, S.; Ponranjini Vedeswari, C.; Jayachandran, S.; Koteeswaran, D.; Pravda, C.; Aruna, P.; Ganesan, S.

    2010-02-01

    Oral submucous fibrosis (OSF) is a high risk precancerous condition characterized by changes in the connective tissue fibers of the lamina propria and deeper parts leading to stiffness of the mucosa and restricted mouth opening, fibrosis of the lining mucosa of the upper digestive tract involving the oral cavity, oro- and hypo-pharynx and the upper two-thirds of the oesophagus. Optical reflectance measurements have been used to extract diagnostic information from a variety of tissue types, in vivo. We apply diffuse reflectance spectroscopy to quantitatively monitor tumour response to chemotherapy. Twenty patients with submucous fibrosis were diagnosed with diffuse reflectance spectroscopy and treated with the chemotherapy drug, Dexamethasone sodium phosphate and Hyaluronidase injection for seven weeks and after the treatment they were again subjected to the diffuse reflectance spectroscopy. The major observed spectral alterations on pre and post treated submucous fibrosis is an increase in the diffuse reflectance from 450 to 600 nm. Normal mucosa has showed higher reflectance when compared to the pre and post-treated cases. The spectral changes were quantified and correlated to conventional diagnostic results viz., maximum mouth opening, tongue protrusion and burning sensation. The results of this study suggest that the diffuse reflectance spectroscopy may also be considered as complementary optical techniques to monitor oral tissue transformation.

  18. Measurement of non-sugar solids content in Chinese rice wine using near infrared spectroscopy combined with an efficient characteristic variables selection algorithm.

    PubMed

    Ouyang, Qin; Zhao, Jiewen; Chen, Quansheng

    2015-01-01

    The non-sugar solids (NSS) content is one of the most important nutrition indicators of Chinese rice wine. This study proposed a rapid method for the measurement of NSS content in Chinese rice wine using near infrared (NIR) spectroscopy. We also systemically studied the efficient spectral variables selection algorithms that have to go through modeling. A new algorithm of synergy interval partial least square with competitive adaptive reweighted sampling (Si-CARS-PLS) was proposed for modeling. The performance of the final model was back-evaluated using root mean square error of calibration (RMSEC) and correlation coefficient (Rc) in calibration set and similarly tested by mean square error of prediction (RMSEP) and correlation coefficient (Rp) in prediction set. The optimum model by Si-CARS-PLS algorithm was achieved when 7 PLS factors and 18 variables were included, and the results were as follows: Rc=0.95 and RMSEC=1.12 in the calibration set, Rp=0.95 and RMSEP=1.22 in the prediction set. In addition, Si-CARS-PLS algorithm showed its superiority when compared with the commonly used algorithms in multivariate calibration. This work demonstrated that NIR spectroscopy technique combined with a suitable multivariate calibration algorithm has a high potential in rapid measurement of NSS content in Chinese rice wine. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Localized 2D COSY sequences: Method and experimental evaluation for a whole metabolite quantification approach

    NASA Astrophysics Data System (ADS)

    Martel, Dimitri; Tse Ve Koon, K.; Le Fur, Yann; Ratiney, Hélène

    2015-11-01

    Two-dimensional spectroscopy offers the possibility to unambiguously distinguish metabolites by spreading out the multiplet structure of J-coupled spin systems into a second dimension. Quantification methods that perform parametric fitting of the 2D MRS signal have recently been proposed for resolved PRESS (JPRESS) but not explicitly for Localized Correlation Spectroscopy (LCOSY). Here, through a whole metabolite quantification approach, correlation spectroscopy quantification performances are studied. The ability to quantify metabolite relaxation constant times is studied for three localized 2D MRS sequences (LCOSY, LCTCOSY and the JPRESS) in vitro on preclinical MR systems. The issues encountered during implementation and quantification strategies are discussed with the help of the Fisher matrix formalism. The described parameterized models enable the computation of the lower bound for error variance - generally known as the Cramér Rao bounds (CRBs), a standard of precision - on the parameters estimated from these 2D MRS signal fittings. LCOSY has a theoretical net signal loss of two per unit of acquisition time compared to JPRESS. A rapid analysis could point that the relative CRBs of LCOSY compared to JPRESS (expressed as a percentage of the concentration values) should be doubled but we show that this is not necessarily true. Finally, the LCOSY quantification procedure has been applied on data acquired in vivo on a mouse brain.

  20. Understanding of gas phase deposition of reactive magnetron sputtered TiO2 thin films and its correlation with bactericidal efficiency

    NASA Astrophysics Data System (ADS)

    Panda, A. B.; Mahapatra, S. K.; Barhai, P. K.; Das, A. K.; Banerjee, I.

    2012-10-01

    Nanostructured TiO2 thin films were deposited using RF reactive magnetron sputtering at different O2 flow rates (20, 30, 50 and 60 sccm) and constant RF power of 200 W. In situ investigation of the nucleation and growth of the films was made by Optical Emission Spectroscopy (OES). The nano amorphous nature as revealed from X-ray diffraction (XRD) of the as deposited films and abundance of the Ti3+ surface oxidation states and surface hydroxyl group (OH-) in the films deposited at 50 sccm as determined from X-ray photo electron spectroscopy (XPS) was explained on the basis of emission spectra studies. The increase in band gap and decrease in particle size with O2 flow rate was observed from transmission spectra of UV-vis spectroscopy. Photoinduced hydrophilicity has been studied using Optical Contact Angle (OCA) measurement. The post irradiated films showed improved hydrophilicity. The bactericidal efficiency of these films was investigated taking Escherichia coli as model bacteria. The films deposited at 50 sccm shows better bactericidal activity as revealed from the optical density (OD) measurement. The qualitative analysis of the bactericidal efficiency was depicted from Scanning Electron Microscope images. A correlation between bactericidal efficiency and the deposited film has been established and explained on the basis of nucleation growth, band gap and hydrophilicity of the films.

  1. Characterizing the interactions between prolyl isomerase pin1 and phosphatase inhibitor-2 in living cells with FRET and FCS

    NASA Astrophysics Data System (ADS)

    Sun, Yuansheng; Wang, Lifu; Jyothikumar, Vinod; Brautigan, David L.; Periasamy, Ammasi

    2012-03-01

    Phosphatase inhibitor-2 (I2) was discovered as a regulator of protein Ser/Thr phosphatase-1 and is conserved from yeast to human. Binding between purified recombinant I2 from different species and the prolyl isomerase Pin1 has been demonstrated with pull-down assays, size exclusion chromatography and nuclear magnetic resonance spectroscopy. Despite this, questions persist as to whether these proteins associate together in living cells. In this study, we prepared fluorescent protein (FP) fusions of I2 and Pin1 and employed both Förster Resonance Energy Transfer (FRET) and Fluorescence Correlation Spectroscopy (FCS) imaging techniques to characterize their interactions in living cells. In both intensity-based and time-resolved FRET studies, we observed FRET uniformly across whole cells co-expressing I2-Cerulean and Pin1-Venus that was significantly higher than in negative controls expressing Cerulean FP (without fusing to I2) as the FRET donor and Pin1-Venus, showing a specific interaction between I2-Cerulean and Pin1-Venus in living cells. We also observed the co-diffusion of I2-Cerulean and Pin1-mCherry in Fluorescence Cross Correlation Spectroscopy (FCCS) measurements. We further showed that I2 itself as well as I2-Pin1 formed complexes in living cells (predicted from in vitro studies) via a quantitative FRET assay, and demonstrated from FCS measurements that both I2 and Pin1 (fused to Cerulean) are highly mobile in living cells.

  2. Estimate of the Coulomb correlation energy in CeAg2Ge2 from inverse photoemission and high resolution photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Banik, Soma; Arya, A.; Bendounan, Azzedine; Maniraj, M.; Thamizhavel, A.; Vobornik, I.; Dhar, S. K.; Deb, S. K.

    2014-08-01

    The occupied and the unoccupied electronic structure of CeAg2Ge2 single crystal has been studied using high resolution photoemission and inverse photoemission spectroscopy, respectively. High resolution photoemission reveals the clear signature of Ce 4f states in the occupied electronic structure which was not observed clearly in our earlier studies. The Coulomb correlation energy in this system has been determined experimentally from the position of the 4f states above and below the Fermi level. Theoretically, the correlation energy has been determined by using the first principles density functional calculations within the generalized gradient approximations taking into account the strong intra-atomic (on-site) interaction Hubbard Ueff term. The calculated valence band shows minor changes in the spectral shape with increasing Ueff due to the fact that the density of Ce 4f state is narrow in the occupied part and is hybridized with the Ce 5d, Ag 4d and Ge 4p states. On the other hand, substantial changes are observed in the spectral shape of the calculated conduction band with increasing Ueff since the density of Ce 4f state is very large in the unoccupied part, compared to other states. The estimated value of correlation energy for CeAg2Ge2 from the experiment and the theory is ≈ 4.2 eV. The resonant photoemission data are analyzed in the framework of the single-impurity Anderson model which further confirms the presence of the Coulomb correlation energy and small hybridization in this system.

  3. Probing organic field effect transistors in situ during operation using SFG.

    PubMed

    Ye, Hongke; Abu-Akeel, Ashraf; Huang, Jia; Katz, Howard E; Gracias, David H

    2006-05-24

    In this communication, we report results obtained using surface-sensitive IR+Visible Sum Frequency Generation (SFG) nonlinear optical spectroscopy on interfaces of organic field effect transistors during operation. We observe remarkable correlations between trends in the surface vibrational spectra and electrical properties of the transistor, with changes in gate voltage (VG). These results suggest that field effects on electronic conduction in thin film organic semiconductor devices are correlated to interfacial nonlinear optical characteristics and point to the possibility of using SFG spectroscopy to monitor electronic properties of OFETs.

  4. In vivo time-gated diffuse correlation spectroscopy at quasi-null source-detector separation.

    PubMed

    Pagliazzi, M; Sekar, S Konugolu Venkata; Di Sieno, L; Colombo, L; Durduran, T; Contini, D; Torricelli, A; Pifferi, A; Mora, A Dalla

    2018-06-01

    We demonstrate time domain diffuse correlation spectroscopy at quasi-null source-detector separation by using a fast time-gated single-photon avalanche diode without the need of time-tagging electronics. This approach allows for increased photon collection, simplified real-time instrumentation, and reduced probe dimensions. Depth discriminating, quasi-null distance measurement of blood flow in a human subject is presented. We envision the miniaturization and integration of matrices of optical sensors of increased spatial resolution and the enhancement of the contrast of local blood flow changes.

  5. Novel developments and applications of two-dimensional correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Park, Yeonju; Noda, Isao; Jung, Young Mee

    2016-11-01

    A comprehensive survey review of new and noteworthy developments of 2D correlation spectroscopy (2DCOS) and its applications for the last two years is compiled. This review covers not only journal articles and book chapters but also books, proceedings, and review articles published on 2DCOS, numerous significant new concepts of 2DCOS, patents and publication trends. Noteworthy experimental practices in the field of 2DCOS, including types of analytical probes employed, various perturbation methods used in experiments, and pertinent examples of fundamental and practical applications, are also reviewed.

  6. Vectorized data acquisition and fast triple-correlation integrals for Fluorescence Triple Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ridgeway, William K.; Millar, David P.; Williamson, James R.

    2013-04-01

    Fluorescence Correlation Spectroscopy (FCS) is widely used to quantify reaction rates and concentrations of molecules in vitro and in vivo. We recently reported Fluorescence Triple Correlation Spectroscopy (F3CS), which correlates three signals together instead of two. F3CS can analyze the stoichiometries of complex mixtures and detect irreversible processes by identifying time-reversal asymmetries. Here we report the computational developments that were required for the realization of F3CS and present the results as the Triple Correlation Toolbox suite of programs. Triple Correlation Toolbox is a complete data analysis pipeline capable of acquiring, correlating and fitting large data sets. Each segment of the pipeline handles error estimates for accurate error-weighted global fitting. Data acquisition was accelerated with a combination of off-the-shelf counter-timer chips and vectorized operations on 128-bit registers. This allows desktop computers with inexpensive data acquisition cards to acquire hours of multiple-channel data with sub-microsecond time resolution. Off-line correlation integrals were implemented as a two delay time multiple-tau scheme that scales efficiently with multiple processors and provides an unprecedented view of linked dynamics. Global fitting routines are provided to fit FCS and F3CS data to models containing up to ten species. Triple Correlation Toolbox is a complete package that enables F3CS to be performed on existing microscopes. Catalogue identifier: AEOP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOP_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 50189 No. of bytes in distributed program, including test data, etc.: 6135283 Distribution format: tar.gz Programming language: C/Assembly. Computer: Any with GCC and library support. Operating system: Linux and OS X (data acq. for Linux only due to library availability), not tested on Windows. RAM: ≥512 MB. Classification: 16.4. External routines: NIDAQmx (National Instruments), Gnu Scientific Library, GTK+, PLplot (optional) Nature of problem: Fluorescence Triple Correlation Spectroscopy required three things: data acquisition at faster speeds than were possible without expensive custom hardware, triple-correlation routines that could process 1/2 TB data sets rapidly, and fitting routines capable of handling several to a hundred fit parameters and 14,000 + data points, each with error estimates. Solution method: A novel data acquisition concept mixed signal processing with off-the-shelf hardware and data-parallel processing using 128-bit registers found in desktop CPUs. Correlation algorithms used fractal data structures and multithreading to reduce data analysis times. Global fitting was implemented with robust minimization routines and provides feedback that allows the user to critically inspect initial guesses and fits. Restrictions: Data acquisition only requires a National Instruments data acquisition card (it was tested on Linux using card PCIe-6251) and a simple home-built circuit. Unusual features: Hand-coded ×86-64 assembly for data acquisition loops (platform-independent C code also provided). Additional comments: A complete collection of tools to perform Fluorescence Triple Correlation Spectroscopy-from data acquisition to two-tau correlation of large data sets, to model fitting. Running time: 1-5 h of data analysis per hour of data collected. Varies depending on data-acquisition length, time resolution, data density and number of cores used for correlation integrals.

  7. Comparison of two methods for noninvasive determination of carotenoids in human and animal skin: Raman spectroscopy versus reflection spectroscopy.

    PubMed

    Darvin, Maxim E; Sandhagen, Carl; Koecher, Wolfgang; Sterry, Wolfram; Lademann, Juergen; Meinke, Martina C

    2012-07-01

    Based on compelling in vivo and in vitro studies on human skin, carotenoids are thought to be of great interest as powerful antioxidants acting to prevent free-radical-induced damages, including premature skin ageing and the development of skin diseases such as cancer. Among the available techniques that are suitable for noninvasive determination of carotenoids in human skin, are resonance Raman spectroscopy (RRS) and reflection spectroscopy (RS). For RS, a LED-based miniaturized spectroscopic system (MSS) was developed for noninvasive measurement of carotenoids in human skin. The optimization and subsequent calibration of the MSS was performed with the use of RRS. A strong correlation between the carotenoid concentration determined by the RS and for the RRS system was achieved for human skin in vivo (R = 0.88) and for bovine udder skin in vitro (R = 0.81). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. [MR spectroscopy of amygdala: investigation of methodology].

    PubMed

    Tang, Hehan; Yue, Qiang; Gong, Qiyong

    2013-08-01

    This study was aimed to optimize the methods of magnetic resonance spectroscopy (MRS) to improve its quality in amygdala. Forty-three volunteers were examined at right and left amygdala using stimulated-echo acquisition mode (STEAM), and point-resolved spectroscopy series (PRESS) with and without saturation bands. The Cr-SNR, water-suppression level, water full width at half maximum (FWHM) and RMS noise of three sequences were compared. The results showed that (1) the Cr-SNR and water-suppression lelvel of PRESS with saturation bands were better than that of PRESS without saturation bands and STEAM (P<0.001); (2) the left and right RMS noise was significantly different both using PRESS with saturation bands and using STEAM (P<0.05); (3) there was a positive, significant correlation between Cr-SNR and voxel size (P<0.05). Therefore, PRESS with saturation bands is better than PRESS without saturation bands or STEAM for the spectroscopy of amygdala. It is also useful to make the voxel as big as possible to improve the spectral quality.

  9. Size-dependent physicochemical and mechanical interactions in battery paste anodes of Si-microwires revealed by Fast-Fourier-Transform Impedance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hansen, Sandra; Quiroga-González, Enrique; Carstensen, Jürgen; Adelung, Rainer; Föll, Helmut

    2017-05-01

    Perfectly aligned silicon microwire arrays show exceptionally high cycling stability with record setting (high) areal capacities of 4.25 mAh cm-2. Those wires have a special, modified length and thickness in order to perform this good. Geometry and sizes are the most important parameters of an anode to obtain batteries with high cycling stability without irreversible losses. The wires are prepared with a unique etching fabrication method, which allows to fabricate wires of very precise sizes. In order to investigate how good randomly oriented silicon wires perform in contrast to the perfect order of the array, the wires are embedded in a paste. This study reveals the fundamental correlation between geometry, mechanics and charge transfer kinetics of silicon electrodes. Using a suitable RC equivalent circuit allows to evaluate data from cyclic voltammetry and simultaneous FFT-Impedance Spectroscopy (FFT-IS), yielding in time-resolved resistances, time constants, and their direct correlation to the phase transformations. The change of the resistances during lithiation and delithiation correlates to kinetics and charge transfer mechanisms. This study demonstrates how the mechanical and physiochemical interactions at the silicon/paste interface inside the paste electrodes lead to void formation around silicon and with it to material loss and capacity fading.

  10. Moderate relationships between NAA and cognitive ability in healthy adults: implications for cognitive spectroscopy

    PubMed Central

    Patel, Tulpesh; Blyth, Jacqueline C.; Griffiths, Gareth; Kelly, Deirdre; Talcott, Joel B.

    2014-01-01

    Background: Proton Magnetic Resonance Spectroscopy (1H-MRS) is a non-invasive imaging technique that enables quantification of neurochemistry in vivo and thereby facilitates investigation of the biochemical underpinnings of human cognitive variability. Studies in the field of cognitive spectroscopy have commonly focused on relationships between measures of N-acetyl aspartate (NAA), a surrogate marker of neuronal health and function, and broad measures of cognitive performance, such as IQ. Methodology/Principal Findings: In this study, we used 1H-MRS to interrogate single-voxels in occipitoparietal and frontal cortex, in parallel with assessments of psychometric intelligence, in a sample of 40 healthy adult participants. We found correlations between NAA and IQ that were within the range reported in previous studies. However, the magnitude of these effects was significantly modulated by the stringency of data screening and the extent to which outlying values contributed to statistical analyses. Conclusions/Significance: 1H-MRS offers a sensitive tool for assessing neurochemistry non-invasively, yet the relationships between brain metabolites and broad aspects of human behavior such as IQ are subtle. We highlight the need to develop an increasingly rigorous analytical and interpretive framework for collecting and reporting data obtained from cognitive spectroscopy studies of this kind. PMID:24592224

  11. Characterizing chlorine oxidation of dissolved organic matter and disinfection by-product formation with fluorescence spectroscopy and parallel factor analysis

    NASA Astrophysics Data System (ADS)

    Beggs, Katherine M. H.; Summers, R. Scott; McKnight, Diane M.

    2009-12-01

    Relationships between chlorine demand and disinfection by-product (DBP) formation during chlorination and fluorescence of dissolved organic matter (DOM) were developed. Fluorescence excitation and emission (EEM) spectroscopy was employed, and parameters including fluorescence index, redox index, and overall fluorescence intensity (OFI) were correlated to chlorine demand and DBP formation. The EEMs were also analyzed using a well established global parallel factor analysis (PARAFAC) model which resolves the fluorescence signal into 13 components, including quinone-like and protein-like components. Over an 8-day chlorination period the OFI and sum of the 13 PARAFAC loadings decreased by more than 70%. The remaining identified quinone-like compounds within the DOM were shifted to a more oxidized state. Quinone fluorescence was strongly correlated to both reduced fluorescence intensity and to chlorine demand which indicates that fluorescence may be used to track the chlorine oxidation of DOM. Quinone fluorescence was also correlated strongly with both classes of regulated DBPs: total trihalomethanes and haloacetic acids. Quinone-like components were found to be strongly correlated to overall, short-term, and long-term specific DBP formation. The results of this study show that fluorescence is a useful tool in tracking both DOM oxidation and DBP formation during chlorination.

  12. 1H-MR spectroscopy metabolite levels correlate with executive function in vascular cognitive impairment

    PubMed Central

    Gasparovic, Charles; Prestopnik, Jillian; Thompson, Jeffrey; Taheri, Saeid; Huisa, Branko; Schrader, Ronald; Adair, John C; Rosenberg, Gary A

    2013-01-01

    Background White matter hyperintensities (WMHs) are associated with vascular cognitive impairment (VCI) but fail to correlate with neuropsychological measures. As proton MR spectroscopy (1H-MRS) can identify ischaemic tissue, we hypothesised that MRS detectable brain metabolites would be superior to WMHs in predicting performance on neuropsychological tests. Methods 60 patients with suspected VCI underwent clinical, neuropsychological, MRI and CSF studies. They were diagnosed as having subcortical ischaemic vascular disease (SIVD), multiple infarcts, mixed dementia and leukoaraiosis. We measured brain metabolites in a white matter region above the lateral ventricles with 1H-MRS and WMH volume in this region and throughout the brain. Results We found a significant correlation between both total creatine (Cr) and N-acetylaspartyl compounds (NAA) and standardised neuropsychological test scores. Cr levels in white matter correlated significantly with executive function (p=0.001), attention (p=0.03) and overall T score (p=0.007). When lesion volume was added as a covariate, NAA also showed a significant correlation with executive function (p=0.003) and overall T score (p=0.015). Furthermore, while metabolite levels also correlated with total white matter lesion volume, adjusting the Cr levels for lesion volume did not diminish the strength of the association between Cr levels and neuropsychological scores. The lowest metabolite levels and neuropsychological scores were found in the SIVD group. Finally, lesion volume alone did not correlate significantly with any neuropsychological test score. Conclusion These results suggest that estimates of neurometabolite levels provide additional and useful information concerning cognitive function in VCI not obtainable by measurements of lesion load. PMID:23418212

  13. Tutorial on use of intraclass correlation coefficients for assessing intertest reliability and its application in functional near-infrared spectroscopy-based brain imaging

    NASA Astrophysics Data System (ADS)

    Li, Lin; Zeng, Li; Lin, Zi-Jing; Cazzell, Mary; Liu, Hanli

    2015-05-01

    Test-retest reliability of neuroimaging measurements is an important concern in the investigation of cognitive functions in the human brain. To date, intraclass correlation coefficients (ICCs), originally used in inter-rater reliability studies in behavioral sciences, have become commonly used metrics in reliability studies on neuroimaging and functional near-infrared spectroscopy (fNIRS). However, as there are six popular forms of ICC, the adequateness of the comprehensive understanding of ICCs will affect how one may appropriately select, use, and interpret ICCs toward a reliability study. We first offer a brief review and tutorial on the statistical rationale of ICCs, including their underlying analysis of variance models and technical definitions, in the context of assessment on intertest reliability. Second, we provide general guidelines on the selection and interpretation of ICCs. Third, we illustrate the proposed approach by using an actual research study to assess intertest reliability of fNIRS-based, volumetric diffuse optical tomography of brain activities stimulated by a risk decision-making protocol. Last, special issues that may arise in reliability assessment using ICCs are discussed and solutions are suggested.

  14. The correlation of in vivo and ex vivo tissue dielectric properties to validate electromagnetic breast imaging: initial clinical experience

    PubMed Central

    Halter, Ryan J; Zhou, Tian; Meaney, Paul M; Hartov, Alex; Barth, Richard J; Rosenkranz, Kari M; Wells, Wendy A; Kogel, Christine A; Borsic, Andrea; Rizzo, Elizabeth J; Paulsen, Keith D

    2009-01-01

    Electromagnetic (EM) breast imaging provides low-cost, safe and potentially a more specific modality for cancer detection than conventional imaging systems. A primary difficulty in validating these EM imaging modalities is that the true dielectric property values of the particular breast being imaged are not readily available on an individual subject basis. Here, we describe our initial experience in seeking to correlate tomographic EM imaging studies with discrete point spectroscopy measurements of the dielectric properties of breast tissue. The protocol we have developed involves measurement of in vivo tissue properties during partial and full mastectomy procedures in the operating room (OR) followed by ex vivo tissue property recordings in the same locations in the excised tissue specimens in the pathology laboratory immediately after resection. We have successfully applied all of the elements of this validation protocol in a series of six women with cancer diagnoses. Conductivity and permittivity gauged from ex vivo samples over the frequency range 100 Hz–8.5 GHz are found to be similar to those reported in the literature. A decrease in both conductivity and permittivity is observed when these properties are gauged from ex vivo samples instead of in vivo. We present these results in addition to a case study demonstrating how discrete point spectroscopy measurements of the tissue can be correlated and used to validate EM imaging studies. PMID:19491436

  15. Combined glutamate and glutamine levels in pain-processing brain regions are associated with individual pain sensitivity.

    PubMed

    Zunhammer, Matthias; Schweizer, Lauren M; Witte, Vanessa; Harris, Richard E; Bingel, Ulrike; Schmidt-Wilcke, Tobias

    2016-10-01

    The relationship between glutamate and γ-aminobutyric acid (GABA) levels in the living human brain and pain sensitivity is unknown. Combined glutamine/glutamate (Glx), as well as GABA levels can be measured in vivo with single-voxel proton magnetic resonance spectroscopy. In this cross-sectional study, we aimed at determining whether Glx and/or GABA levels in pain-related brain regions are associated with individual differences in pain sensitivity. Experimental heat, cold, and mechanical pain thresholds were obtained from 39 healthy, drug-free individuals (25 men) according to the quantitative sensory testing protocol and summarized into 1 composite measure of pain sensitivity. The Glx levels were measured using point-resolved spectroscopy at 3 T, within a network of pain-associated brain regions comprising the insula, the anterior cingulate cortex, the mid-cingulate cortex, the dorsolateral prefrontal cortex, and the thalamus. GABA levels were measured using GABA-edited spectroscopy (Mescher-Garwood point-resolved spectroscopy) within the insula, the anterior cingulate cortex, and the mid-cingulate cortex. Glx and/or GABA levels correlated positively across all brain regions. Gender, weekly alcohol consumption, and depressive symptoms were significantly associated with Glx and/or GABA levels. A linear regression analysis including all these factors indicated that Glx levels pooled across pain-related brain regions were positively associated with pain sensitivity, whereas no appreciable relationship with GABA was found. In sum, we show that the levels of the excitatory neurotransmitter glutamate and its precursor glutamine across pain-related brain regions are positively correlated with individual pain sensitivity. Future studies will have to determine whether our findings also apply to clinical populations.

  16. Raman correlation spectroscopy: A feasibility study of a new optical correlation technique and development of multi-component nanoparticles using the reprecipitation method

    NASA Astrophysics Data System (ADS)

    Nishida, Maki

    The feasibility of Raman correlation spectroscopy (RCS) is investigated as a new temporal optical fluctuation spectroscopy in this dissertation. RCS analyzes the correlations of the intensity fluctuations of Raman scattering from particles in a suspension that undergo Brownian motion. Because each Raman emission line arises from a specific molecular bond, the RCS method could yield diffusion behavior of specific chemical species within a dispersion. Due to the nature of Raman scattering as a coherent process, RCS could provide similar information as acquired in dynamic light scattering (DLS) and be practical for various applications that requires the chemical specificity in dynamical information. The theoretical development is discussed, and four experimental implementations of this technique are explained. The autocorrelation of the intensity fluctuations from a beta-carotene solution is obtained using the some configurations; however, the difficulty in precise alignment and weak nature of Raman scattering prevented the achievement of high sensitivity and resolution. Possible fluctuations of the phase of Raman scattering could also be affecting the results. A possible explanation of the observed autocorrelation in terms of number fluctuations of particles is also examined to test the feasibility of RCS as a new optical characterization method. In order to investigate the complex systems for which RCS would be useful, strategies for the creation of a multicomponent nanoparticle system are also explored. Using regular solution theory along with the concept of Hansen solubility parameters, an analytical model is developed to predict whether two or more components will form single nanoparticles, and what effect various processing conditions would have. The reprecipitation method was used to demonstrate the formation of the multi-component system of the charge transfer complex perylene:TCNQ (tetracyanoquinodimethane) and the active pharmaceutical ingredient cocrystal of CBZ:NCT (carbamazepine:nicotinamide). The experimental results with various characterization methods including DLS, absorption spectroscopy, powder x-ray diffraction, and SEM imaging, verify formation of the multicomponent cocrystals. The observation of the self-assembly of TCNQ crystals is also discussed.

  17. MWASTools: an R/bioconductor package for metabolome-wide association studies.

    PubMed

    Rodriguez-Martinez, Andrea; Posma, Joram M; Ayala, Rafael; Neves, Ana L; Anwar, Maryam; Petretto, Enrico; Emanueli, Costanza; Gauguier, Dominique; Nicholson, Jeremy K; Dumas, Marc-Emmanuel

    2018-03-01

    MWASTools is an R package designed to provide an integrated pipeline to analyse metabonomic data in large-scale epidemiological studies. Key functionalities of our package include: quality control analysis; metabolome-wide association analysis using various models (partial correlations, generalized linear models); visualization of statistical outcomes; metabolite assignment using statistical total correlation spectroscopy (STOCSY); and biological interpretation of metabolome-wide association studies results. The MWASTools R package is implemented in R (version  > =3.4) and is available from Bioconductor: https://bioconductor.org/packages/MWASTools/. m.dumas@imperial.ac.uk. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  18. Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 2: 2D NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Deshmukh, Ashish P.; Pacheco, Carlos; Hay, Michael B.; Myneni, Satish C. B.

    2007-07-01

    Carboxyl groups are abundant in natural organic molecules (NOM) and play a major role in their reactivity. The structural environments of carboxyl groups in IHSS soil and river humic samples were investigated using 2D NMR (heteronuclear and homonuclear correlation) spectroscopy. Based on the 1H- 13C heteronuclear multiple-bond correlation (HMBC) spectroscopy results, the carboxyl environments in NOM were categorized as Type I (unsubstituted and alkyl-substituted aliphatic/alicyclic), Type II (functionalized carbon substituted), Type IIIa, b (heteroatom and olefin substituted), and Type IVa, b (5-membered heterocyclic aromatic and 6-membered aromatic). The most intense signal in the HMBC spectra comes from the Type I carboxyl groups, including the 2JCH and 3JCH couplings of unsubstituted aliphatic and alicyclic acids, though this spectral region also includes the 3JCH couplings of Type II and III structures. Type II and III carboxyls have small but detectable 2JCH correlations in all NOM samples except for the Suwannee River humic acid. Signals from carboxyls bonded to 5-membered aromatic heterocyclic fragments (Type IVa) are observed in the soil HA and Suwannee River FA, while correlations to 6-membered aromatics (Type IVb) are only observed in Suwannee River HA. In general, aromatic carboxylic acids may be present at concentrations lower than previously imagined in these samples. Vibrational spectroscopy results for these NOM samples, described in an accompanying paper [Hay M. B. and Myneni S. C. B. (2007) Structural environments of carboxyl groups in natural organic molecules from terrestrial systems. Part 1: Infrared spectroscopy. Geochim. Cosmochim. Acta (in press)], suggest that Type II and Type III carboxylic acids with α substituents (e.g., -OH, -OR, or -CO 2H) constitute the majority of carboxyl structures in all humic substances examined. Furoic and salicylic acid structures (Type IV) are also feasible fragments, albeit as minor constituents. The vibrational spectroscopy results also suggest that much of the "Type I" signal observed in the HMBC spectrum is due to carboxylic acid esters and possibly α-substituted alicyclic acids.

  19. High resolution, low h{nu} photoelectron spectroscopy with the use of a microwave excited rare gas lamp and ionic crystal filters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suga, S.; Sekiyama, A.; Funabashi, G.

    2010-10-15

    The need for not only bulk sensitive but also extremely high resolution photoelectron spectroscopy for studying detailed electronic structures of strongly correlated electron systems is growing rapidly. Moreover, easy access to such a capability in one's own laboratory is desirable. Demonstrated here is the performance of a microwave excited rare gas (Xe, Kr, and Ar) lamp combined with ionic crystal filters (sapphire, CaF{sub 2}, and LiF), which can supply three strong lines near the photon energy of hnyu h{nu}=8.4, 10.0, and 11.6 eV, with the h{nu} resolution of better than 600 {mu}eV for photoelectron spectroscopy. Its performance is demonstrated onmore » some materials by means of both angle-integrated and angle-resolved measurements.« less

  20. Inter-diffusion of copper and hafnium as studied by x-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Pearson, Justin; Chourasia, A. R.

    The Cu/Hf interface has been characterized by x-ray photoelectron spectroscopy. Thin films (thicknesses ranging from 100 nm to 150 nm) of hafnium were deposited on a silicon substrate. About 80 nm of copper was then deposited on such samples. The e-beam method was used for the deposition. The samples were annealed for 30 min at temperatures of 100, 200, 300, 400, and 500°C. The inter-diffusion of copper and hafnium was investigated by sequential sputter depth profiling and x-ray photoelectron spectroscopy. The interdiffusion in each case was analyzed by the Matano-Boltzmann's procedure using the Fick's second law. The interdiffusion coefficients and the width of the interface as determined from the data have been correlated with the annealing temperature. Supported by Organized Research, TAMU-Commerce.

  1. Mid-infrared, long wave infrared (4-12 μm) molecular emission signatures from pharmaceuticals using laser-induced breakdown spectroscopy (LIBS).

    PubMed

    Yang, Clayton S-C; Brown, Ei E; Kumi-Barimah, Eric; Hommerich, Uwe H; Jin, Feng; Trivedi, Sudhir B; Samuels, Alan C; Snyder, A Peter

    2014-01-01

    In an effort to augment the atomic emission spectra of conventional laser-induced breakdown spectroscopy (LIBS) and to provide an increase in selectivity, mid-wave to long-wave infrared (IR), LIBS studies were performed on several organic pharmaceuticals. Laser-induced breakdown spectroscopy signature molecular emissions of target organic compounds are observed for the first time in the IR fingerprint spectral region between 4-12 μm. The IR emission spectra of select organic pharmaceuticals closely correlate with their respective standard Fourier transform infrared spectra. Intact and/or fragment sample molecular species evidently survive the LIBS event. The combination of atomic emission signatures derived from conventional ultraviolet-visible-near-infrared LIBS with fingerprints of intact molecular entities determined from IR LIBS promises to be a powerful tool for chemical detection.

  2. Transport spectroscopy of induced superconductivity in the three-dimensional topological insulator HgTe

    NASA Astrophysics Data System (ADS)

    Wiedenmann, Jonas; Liebhaber, Eva; Kübert, Johannes; Bocquillon, Erwann; Burset, Pablo; Ames, Christopher; Buhmann, Hartmut; Klapwijk, Teun M.; Molenkamp, Laurens W.

    2017-10-01

    The proximity-induced superconducting state in the three-dimensional topological insulator HgTe has been studied using electronic transport of a normal metal-superconducting point contact as a spectroscopic tool (Andreev point-contact spectroscopy). By analyzing the conductance as a function of voltage for various temperatures, magnetic fields, and gate voltages, we find evidence, in equilibrium, for an induced order parameter in HgTe of 70 µeV and a niobium order parameter of 1.1 meV. To understand the full conductance curve as a function of applied voltage we suggest a non-equilibrium-driven transformation of the quantum transport process where the relevant scattering region and equilibrium reservoirs change with voltage. This change implies that the spectroscopy probes the superconducting correlations at different positions in the sample, depending on the bias voltage.

  3. Neural correlates of dual-task effect on belief-bias syllogistic reasoning: a near-infrared spectroscopy study.

    PubMed

    Tsujii, Takeo; Watanabe, Shigeru

    2009-09-01

    Recent dual-process reasoning theories have explained the belief-bias effect, the tendency for human reasoning to be erroneously biased when logical conclusions are incongruent with beliefs about the world, by proposing a belief-based automatic heuristic system and logic-based demanding analytic system. Although these claims are supported by the behavioral finding that high-load secondary tasks enhance the belief-bias effect, the neural correlates of dual-task reasoning remain unknown. The present study therefore examined the relationship between dual-task effect and activity in the inferior frontal cortex (IFC) during belief-bias reasoning by near-infrared spectroscopy (NIRS). Forty-eight subjects participated in this study (MA=23.46 years). They were required to perform congruent and incongruent reasoning trials while responding to high- and low-load secondary tasks. Behavioral analysis showed that the high-load secondary task impaired only incongruent reasoning performance. NIRS analysis found that the high-load secondary task decreased right IFC activity during incongruent trials. Correlation analysis showed that subjects with enhanced right IFC activity could perform better in the incongruent reasoning trials, though subjects for whom right IFC activity was impaired by the secondary task could not maintain better reasoning performance. These findings suggest that the right IFC may be responsible for the dual-task effect in conflicting reasoning processes. When secondary tasks impair right IFC activity, subjects may rely on the automatic heuristic system, which results in belief-bias responses. We therefore offer the first demonstration of neural correlates of dual-task effect on IFC activity in belief-bias reasoning.

  4. Interhemispheric connectivity in amyotrophic lateral sclerosis: A near-infrared spectroscopy and diffusion tensor imaging study.

    PubMed

    Kopitzki, Klaus; Oldag, Andreas; Sweeney-Reed, Catherine M; Machts, Judith; Veit, Maria; Kaufmann, Jörn; Hinrichs, Hermann; Heinze, Hans-Jochen; Kollewe, Katja; Petri, Susanne; Mohammadi, Bahram; Dengler, Reinhard; Kupsch, Andreas R; Vielhaber, Stefan

    2016-01-01

    Aim of the present study was to investigate potential impairment of non-motor areas in amyotrophic lateral sclerosis (ALS) using near-infrared spectroscopy (NIRS) and diffusion tensor imaging (DTI). In particular, we evaluated whether homotopic resting-state functional connectivity (rs-FC) of non-motor associated cortical areas correlates with clinical parameters and disease-specific degeneration of the corpus callosum (CC) in ALS. Interhemispheric homotopic rs-FC was assessed in 31 patients and 30 healthy controls (HCs) for 8 cortical sites, from prefrontal to occipital cortex, using NIRS. DTI was performed in a subgroup of 21 patients. All patients were evaluated for cognitive dysfunction in the executive, memory, and visuospatial domains. ALS patients displayed an altered spatial pattern of correlation between homotopic rs-FC values when compared to HCs ( p  = 0.000013). In patients without executive dysfunction a strong correlation existed between the rate of motor decline and homotopic rs-FC of the anterior temporal lobes (ATLs) (ρ = - 0.85, p  = 0.0004). Furthermore, antero-temporal homotopic rs-FC correlated with fractional anisotropy in the central corpus callosum (CC), corticospinal tracts (CSTs), and forceps minor as determined by DTI ( p  < 0.05). The present study further supports involvement of non-motor areas in ALS. Our results render homotopic rs-FC as assessed by NIRS a potential clinical marker for disease progression rate in ALS patients without executive dysfunction and a potential anatomical marker for ALS-specific degeneration of the CC and CSTs.

  5. Multivariate functional response regression, with application to fluorescence spectroscopy in a cervical pre-cancer study.

    PubMed

    Zhu, Hongxiao; Morris, Jeffrey S; Wei, Fengrong; Cox, Dennis D

    2017-07-01

    Many scientific studies measure different types of high-dimensional signals or images from the same subject, producing multivariate functional data. These functional measurements carry different types of information about the scientific process, and a joint analysis that integrates information across them may provide new insights into the underlying mechanism for the phenomenon under study. Motivated by fluorescence spectroscopy data in a cervical pre-cancer study, a multivariate functional response regression model is proposed, which treats multivariate functional observations as responses and a common set of covariates as predictors. This novel modeling framework simultaneously accounts for correlations between functional variables and potential multi-level structures in data that are induced by experimental design. The model is fitted by performing a two-stage linear transformation-a basis expansion to each functional variable followed by principal component analysis for the concatenated basis coefficients. This transformation effectively reduces the intra-and inter-function correlations and facilitates fast and convenient calculation. A fully Bayesian approach is adopted to sample the model parameters in the transformed space, and posterior inference is performed after inverse-transforming the regression coefficients back to the original data domain. The proposed approach produces functional tests that flag local regions on the functional effects, while controlling the overall experiment-wise error rate or false discovery rate. It also enables functional discriminant analysis through posterior predictive calculation. Analysis of the fluorescence spectroscopy data reveals local regions with differential expressions across the pre-cancer and normal samples. These regions may serve as biomarkers for prognosis and disease assessment.

  6. Non-stationarity and cross-correlation effects in the MHD solar activity

    NASA Astrophysics Data System (ADS)

    Demin, S. A.; Nefedyev, Y. A.; Andreev, A. O.; Demina, N. Y.; Timashev, S. F.

    2018-01-01

    The analysis of turbulent processes in sunspots and pores which are self-organizing long-lived magnetic structures is a complicated and not yet solved problem. The present work focuses on studying such magneto-hydrodynamic (MHD) formations on the basis of flicker-noise spectroscopy using a new method of multi-parametric analysis. The non-stationarity and cross-correlation effects taking place in solar activity dynamics are considered. The calculated maximum values of non-stationarity factor may become precursors of significant restructuring in solar magnetic activity. The introduced cross-correlation functions enable us to judge synchronization effects between the signals of various solar activity indicators registered simultaneously.

  7. Strong Local-Field Enhancement of the Nonlinear Soft-Mode Response in a Molecular Crystal

    NASA Astrophysics Data System (ADS)

    Folpini, Giulia; Reimann, Klaus; Woerner, Michael; Elsaesser, Thomas; Hoja, Johannes; Tkatchenko, Alexandre

    2017-09-01

    The nonlinear response of soft-mode excitations in polycrystalline acetylsalicylic acid (aspirin) is studied with two-dimensional terahertz spectroscopy. We demonstrate that the correlation of CH3 rotational modes with collective oscillations of π electrons drives the system into the nonperturbative regime of light-matter interaction, even for a moderate strength of the THz driving field on the order of 50 kV /cm . Nonlinear absorption around 1.1 THz leads to a blueshifted coherent emission at 1.7 THz, revealing the dynamic breakup of the strong electron-phonon correlations. The observed behavior is reproduced by theoretical calculations including dynamic local-field correlations.

  8. Correlating molecular spectroscopy and molecular chemometrics to explore carbohydrate functional groups and utilization of coproducts from biofuel and biobrewing processing.

    PubMed

    Chen, Limei; Zhang, Xuewei; Yu, Peiqiang

    2014-06-04

    Dried distillers grains with solubles (DDGS) was coproducts from bioethanol and biobrewing industry. It was an excellent resource of protein and energy feedstuff in China. Conventional studies often focus on traditional nutritional profiles. To data, there is little research on molecular structure-nutrition interaction of carbohydrate in coproducts. In this study, five kinds of corn-grain based DDGS and two kinds of barley-grain based DDGS were collected from different manufactures in the north of China. They were coded as "1, 2, 3, 4, 5, 6, and 7", respectively. The primary purposes of this project were to investigate the molecular structure-nutrition interaction of carbohydrate in coproducts, in terms of (1) carbohydrate-related chemical composition and nutrient profiles, (2) predicted values for energy in coproducts for animal, and (3) in situ digestion of dry matter. The result showed that acid detergent fiber content in corn DDGS and barley DDGS had negative correlation with structural carbohydrate peak area, cellulose compounds, and carbohydrate component peaks (first, second, and total peak area), which were measured with molecular spectroscopy. The correlation between carbohydrate peak area (second and total) and digestible fiber (tdNDF) were negative. There were no correlation between carbohydrate spectral intensities and energy values, carbohydrate subfractions partitioned by CNCPS system, and in situ rumen degradation. The results indicate that carbohydrate spectral profiles (functional groups) are associated with the carbohydrate nutritive values in coproducts from biofuel and biobrewing processing.

  9. Cerebral metabolic alterations and cognitive dysfunction in children with chronic kidney disease using Magnetic Resonance Spectroscopy and Wechsler intelligence scale.

    PubMed

    Youssef, Doaa Mohammed; Mohamed, Ahmed Hosny; Kamel Attia, Wafaa Mahmoud; Mohammad, Faten Fawzy; El Fatah, Nelly Rafaat Abd; Elshal, Amal Saeed

    2017-06-16

    Many studies described Impaired intelligence, attention, memory and executive function in patients with chronic kidney disease (CKD) dialyzed and non-dialyzed, but there is still lacking the early and sensitive method of detection of these deficits. The purpose of this study is to investigate relation between the brain metabolic alteration [measured by magnetic resonance spectroscopy (MRS)] and cognitive dysfunction in CKD children (detected by psychometric analysis). One hundred and forty patients with CKD were included [ 40 patients with stage 5 CKD on dialysis, 30 patients with stage 4 to 5 CKD without dialysis, and 70 patients with stage 1 to 3 CKD]. All patients with previous neurological disorders were excluded. Conventional MRI, MRS and psychometric assessment by using Wechsler intelligence scale for children third edition was done in all subjects. We found a significant negative correlation between MRS abnormalities and Wechsler IQ Test scores. But there was a significantly positive correlation between the CKD stages and MRS abnormalities in patients with CKD and negative significant correlation between CKD stages and Wechsler IQ test scores in patients with CKD. There were correlations between "the electrolyte disturbance, blood hemoglobin and hypertension" and "the CKD staging, cognitive functions IQ scores and MRS parameter changes". We concluded that both MRS and psychometric tests are sensitive methods for detection of cognitive function affection in CKD children, particularly in dialyzed group and these findings appears before the clinical diagnosis. This article is protected by copyright. All rights reserved.

  10. EIT Noise Resonance Power Broadening: a probe for coherence dynamics

    NASA Astrophysics Data System (ADS)

    Crescimanno, Michael; O'Leary, Shannon; Snider, Charles

    2012-06-01

    EIT noise correlation spectroscopy holds promise as a simple, robust method for performing high resolution spectroscopy used in devices as diverse as magnetometers and clocks. One useful feature of these noise correlation resonances is that they do not power broaden with the EIT window. We report on measurements of the eventual power broadening (at higher optical powers) of these resonances and a simple, quantitative theoretical model that relates the observed power broadening slope with processes such as two-photon detuning gradients and coherence diffusion. These processes reduce the ground state coherence relative to that of a homogeneous system, and thus the power broadening slope of the EIT noise correlation resonance may be a simple, useful probe for coherence dynamics.

  11. Noncontact diffuse correlation spectroscopy for noninvasive deep tissue blood flow measurement

    NASA Astrophysics Data System (ADS)

    Lin, Yu; He, Lian; Shang, Yu; Yu, Guoqiang

    2012-01-01

    A noncontact diffuse correlation spectroscopy (DCS) probe has been developed using two separated optical paths for the source and detector. This unique design avoids the interference between the source and detector and allows large source-detector separations for deep tissue blood flow measurements. The noncontact probe has been calibrated against a contact probe in a tissue-like phantom solution and human muscle tissues; flow changes concurrently measured by the two probes are highly correlated in both phantom (R2=0.89, p<10-5) and real-tissue (R2=0.77, p<10-5, n=9) tests. The noncontact DCS holds promise for measuring blood flow in vulnerable (e.g., pressure ulcer) and soft (e.g., breast) tissues without distorting tissue hemodynamic properties.

  12. Exploitation of Geometric Occlusion and Covariance Spectroscopy in a Gamma Sensor Array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, Sanjoy; Maurer, Richard; Wolff, Ronald

    2013-09-01

    The National Security Technologies, LLC, Remote Sensing Laboratory has recently used an array of six small-footprint (1-inch diameter by 3-inch long) cylindrical crystals of thallium-doped sodium iodide scintillators to obtain angular information from discrete gamma ray–emitting point sources. Obtaining angular information in a near-field measurement for a field-deployed gamma sensor is a requirement for radiological emergency work. Three of the sensors sit at the vertices of a 2-inch isosceles triangle, while the other three sit on the circumference of a 3-inch-radius circle centered in this triangle. This configuration exploits occlusion of sensors, correlation from Compton scattering within a detector array,more » and covariance spectroscopy, a spectral coincidence technique. Careful placement and orientation of individual detectors with reference to other detectors in an array can provide improved angular resolution for determining the source position by occlusion mechanism. By evaluating the values of, and the uncertainties in, the photopeak areas, efficiencies, branching ratio, peak area correction factors, and the correlations between these quantities, one can determine the precise activity of a particular radioisotope from a mixture of radioisotopes that have overlapping photopeaks that are ordinarily hard to deconvolve. The spectral coincidence technique, often known as covariance spectroscopy, examines the correlations and fluctuations in data that contain valuable information about radiation sources, transport media, and detection systems. Covariance spectroscopy enhances radionuclide identification techniques, provides directional information, and makes weaker gamma-ray emission—normally undetectable by common spectroscopic analysis—detectable. A series of experimental results using the concept of covariance spectroscopy are presented.« less

  13. Toward optical guidance during endoscopic ultrasound-guided fine needle aspirations of pancreatic masses using single fiber reflectance spectroscopy: a feasibility study

    NASA Astrophysics Data System (ADS)

    Stegehuis, Paulien L.; Boogerd, Leonora S. F.; Inderson, Akin; Veenendaal, Roeland A.; van Gerven, P.; Bonsing, Bert A.; Sven Mieog, J.; Amelink, Arjen; Veselic, Maud; Morreau, Hans; van de Velde, Cornelis J. H.; Lelieveldt, Boudewijn P. F.; Dijkstra, Jouke; Robinson, Dominic J.; Vahrmeijer, Alexander L.

    2017-02-01

    Endoscopic ultrasound-guided fine needle aspirations (EUS-FNA) of pancreatic masses suffer from sample errors and low-negative predictive values. Fiber-optic spectroscopy in the visible to near-infrared wavelength spectrum can noninvasively extract physiological parameters from tissue and has the potential to guide the sampling process and reduce sample errors. We assessed the feasibility of single fiber (SF) reflectance spectroscopy measurements during EUS-FNA of pancreatic masses and its ability to distinguish benign from malignant pancreatic tissue. A single optical fiber was placed inside a 19-gauge biopsy needle during EUS-FNA and at least three reflectance measurements were taken prior to FNA. Spectroscopy measurements did not cause any related adverse events and prolonged procedure time with ˜5 min. An accurate correlation between spectroscopy measurements and cytology could be made in nine patients (three benign and six malignant). The oxygen saturation and bilirubin concentration were significantly higher in benign tissue compared with malignant tissue (55% versus 21%, p=0.038; 166 μmol/L versus 17 μmol/L, p=0.039, respectively). To conclude, incorporation of SF spectroscopy during EUS-FNA was feasible, safe, and relatively quick to perform. The optical properties of benign and malignant pancreatic tissue are different, implying that SF spectroscopy can potentially guide the FNA sampling.

  14. Application of 2D Correlation Spectroscopy with MCR in the Preparation of Glycerol Polyesters

    USDA-ARS?s Scientific Manuscript database

    The condensation of glycerol and adipic acid was studied by midrange FTIR to identify spectral changes associated with the polymerization reaction. This biobased polymer is being evaluated for use as a controlled release matrix where the extent of reaction is a key performance parameter. A spectrosc...

  15. Development of a Novel Optical Spectroscopy Tool for Studies of Coulomb Correlations in Semiconductors

    DTIC Science & Technology

    2012-06-18

    2008 ONR YIP AWARD 2008 Graduate Students DisciplinePERCENT_SUPPORTEDNAME Thomas Jarvis 0.70 Megan Creasey 0.20 Kavir Dass 0.20 1.10FTE Equivalent...team includes the PI (LI,) three graduate students (Thomas Jarvis, Megan Creasey, and Chandriker Kavir Dass ), a postdoctoral researcher, Zheng Sun

  16. Four-Wave Mixing Spectroscopy of Quantum Dot Molecules

    NASA Astrophysics Data System (ADS)

    Sitek, A.; Machnikowski, P.

    2007-08-01

    We study theoretically the nonlinear four-wave mixing response of an ensemble of coupled pairs of quantum dots (quantum dot molecules). We discuss the shape of the echo signal depending on the parameters of the ensemble: the statistics of transition energies and the degree of size correlations between the dots forming the molecules.

  17. Determination of chemical changes in Isatis indigotica seeds carried after Chinese first spaceship with FTIR and 2D-IR correlation spectroscopy.

    PubMed

    Chen, Xiangdong; Keong, Choong Yew; Mei, Xiling; Lan, Jin

    2014-04-24

    Spaceflight represents a complex environmental condition. Space mutagenesis breeding has achieved and marked certain results over the years. This method was employed in our previous studies in order to obtain improved germplasm of Isatis indigotica. This study is to determine the chemical changes in I. indigotica seeds carried after Chinese first spaceship (Shenzhou I). Fourier transform infrared (FTIR), second derivative and two-dimensional infrared (2DIR) correlation spectroscopy were used in analysis. Not much differences between the two spectra were found except the peaks in the range of 1500-1200 cm(-)(1) which was about 7 cm(-)(1) different and indicated the absorption could be initialed from different bonds. SP4 showed different derivative compared with C4 in the second derivative spectra of 1200-800 cm(-)(1). The stronger signal of 2DIR in SP4 indicated the protein content of the seed was changed after spaceflight. It is concluded that spaceflight provided an extreme condition that caused changes of chemical properties in I. indigotica. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. NMR scalar couplings across Watson–Crick base pair hydrogen bonds in DNA observed by transverse relaxation-optimized spectroscopy

    PubMed Central

    Pervushin, Konstantin; Ono, Akira; Fernández, César; Szyperski, Thomas; Kainosho, Masatsune; Wüthrich, Kurt

    1998-01-01

    This paper describes the NMR observation of 15N—15N and 1H—15N scalar couplings across the hydrogen bonds in Watson–Crick base pairs in a DNA duplex, hJNN and hJHN. These couplings represent new parameters of interest for both structural studies of DNA and theoretical investigations into the nature of the hydrogen bonds. Two dimensional [15N,1H]-transverse relaxation-optimized spectroscopy (TROSY) with a 15N-labeled 14-mer DNA duplex was used to measure hJNN, which is in the range 6–7 Hz, and the two-dimensional hJNN-correlation-[15N,1H]-TROSY experiment was used to correlate the chemical shifts of pairs of hydrogen bond-related 15N spins and to observe, for the first time, hJHN scalar couplings, with values in the range 2–3.6 Hz. TROSY-based studies of scalar couplings across hydrogen bonds should be applicable for large molecular sizes, including protein-bound nucleic acids. PMID:9826668

  19. Fluorescence correlation spectroscopy to study antibody binding and stoichiometry of complexes

    NASA Astrophysics Data System (ADS)

    Swift, Kerry M.; Matayoshi, Edmund D.

    2008-02-01

    FCS (fluorescence correlation spectroscopy) was used to study the association at the single molecule level of tumor necrosis factor alpha (TNF-α) and two of its protein antagonists Humira (TM) (adalimumab), a fully humanized monoclonal antibody, and Enbrel (TM) (etanercept), a soluble form of the TNF receptor. Single molecule approaches potentially have the advantage not only of enhanced sensitivity, but also of observing at equilibrium the details that would otherwise be lost in classical ensemble experiments where heterogeneity is averaged. We prepared fluorescent conjugates of the protein drugs and their biological target, the trimeric soluble form of TNF-α. The bivalency of adalimumab and the trimeric nature of TNF-α potentially allow several forms of associative complexes that may differ in stoichiometry. Detailed knowledge of this reaction may be relevant to understanding adalimumab's pharmacological properties. Our FCS data showed that a single trimeric TNF-α can bind up to three adalimumab molecules. Under some conditions even larger complexes are formed, apparently the result of cross-linking of TNF-α trimers by adalimumab. In addition, distinct differences between Humira and Enbrel were observed in their association with TNF-α.

  20. Investigation of the wavelength dependence of laser stratigraphy on Cu and Ni coatings using LIBS compared to a pure thermal ablation model

    NASA Astrophysics Data System (ADS)

    Paulis, Evgeniya; Pacher, Ulrich; Weimerskirch, Morris J. J.; Nagy, Tristan O.; Kautek, Wolfgang

    2017-12-01

    In this study, galvanic coatings of Cu and Ni, typically applied in industrial standard routines, were investigated. Ablation experiments were carried out using the first two harmonic wavelengths of a pulsed Nd:YAG laser and the resulting plasma spectra were analysed using a linear Pearson correlation method. For both wavelengths the absorption/ablation behaviour as well as laser-induced breakdown spectroscopy (LIBS) depth profiles were studied varying laser fluences between 4.3-17.2 J/cm^2 at 532 nm and 2.9-11.7 J/cm^2 at 1064 nm. The LIBS-stratigrams were compared with energy-dispersive X-ray spectroscopy of cross-sections. The ablation rates were calculated and compared to theoretical values originating from a thermal ablation model. Generally, higher ablation rates were obtained with 532 nm light for both materials. The light-plasma interaction is suggested as possible cause of the lower ablation rates in the infrared regime. Neither clear evidence of the pure thermal ablation, nor correlation with optical properties of investigated materials was obtained.

  1. Positron annihilation lifetime spectroscopy (PALS) as a characterization technique for nanostructured self-assembled amphiphile systems.

    PubMed

    Dong, Aurelia W; Pascual-Izarra, Carlos; Pas, Steven J; Hill, Anita J; Boyd, Ben J; Drummond, Calum J

    2009-01-08

    Positron annihilation lifetime spectroscopy (PALS) has potential as a novel rapid characterization method for self-assembly amphiphile systems; however, a lack of systematic correlation of PALS parameters with structural attributes has limited its more widespread application. In this study, using the well-characterized phytantriol/water and the phytantriol/vitamin E acetate/water self-assembly amphiphile systems, the impact of systematic structural changes controlled by changes in composition and temperature on PALS parameters has been studied. The PALS parameters (orthopositronium (oPs) lifetime and intensity signatures) were shown to be sensitive to the molecular packing and mobility of the self-assembled lipid molecules in various lyotropic liquid crystalline phases, enabling differentiation between liquid crystalline structures. The oPs lifetime, related to the molecular packing and mobility, is correlated with rheological properties of the individual mesophases. The oPs lifetime links the lipid chain packing and mobility in the various mesophases to resultant macroscopic properties, such as permeability, which is critical for the use of these mesophase structures as diffusion-controlled release matrices for active liposoluble compounds.

  2. Cd hyperfine interactions in DNA bases and DNA of mouse strains infected with Trypanosoma cruzi investigated by perturbed angular correlation spectroscopy and ab initio calculations.

    PubMed

    Petersen, Philippe A D; Silva, Andreia S; Gonçalves, Marcos B; Lapolli, André L; Ferreira, Ana Maria C; Carbonari, Artur W; Petrilli, Helena M

    2014-06-03

    In this work, perturbed angular correlation (PAC) spectroscopy is used to study differences in the nuclear quadrupole interactions of Cd probes in DNA molecules of mice infected with the Y-strain of Trypanosoma cruzi. The possibility of investigating the local genetic alterations in DNA, which occur along generations of mice infected with T. cruzi, using hyperfine interactions obtained from PAC measurements and density functional theory (DFT) calculations in DNA bases is discussed. A comparison of DFT calculations with PAC measurements could determine the type of Cd coordination in the studied molecules. To the best of our knowledge, this is the first attempt to use DFT calculations and PAC measurements to investigate the local environment of Cd ions bound to DNA bases in mice infected with Chagas disease. The obtained results also allowed the detection of local changes occurring in the DNA molecules of different generations of mice infected with T. cruzi, opening the possibility of using this technique as a complementary tool in the characterization of complicated biological systems.

  3. Identification of the traditional Tibetan medicine "Shaji" and their different extracts through tri-step infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Yue; Li, Jingyi; Fan, Gang; Sun, Suqin; Zhang, Yuxin; Zhang, Yi; Tu, Ya

    2016-11-01

    Hippophae rhamnoides subsp. sinensis Rousi, Hippophae gyantsensis (Rousi) Y. S. Lian, Hippophae neurocarpa S. W. Liu & T. N. He and Hippophae tibetana Schlechtendal are typically used under one name "Shaji", to treat cardiovascular diseases and lung disorders in Tibetan medicine (TM). A complete set of infrared (IR) macro-fingerprints of these four Hippophae species should be characterized and compared simply, accurately, and in detail for identification. In the present study, tri-step IR spectroscopy, which included Fourier transform IR (FT-IR) spectroscopy, second derivative IR (SD-IR) spectroscopy and two-dimensional correlation IR (2D-IR) spectroscopy, was employed to discriminate the four Hippophae species and their corresponding extracts using different solvents. The relevant spectra exhibited the holistic chemical compositions and variations. Flavonoids, fatty acids and sugars were found to be the main chemical components. Characteristic peak positions, intensities and shapes derived from FT-IR, SD-IR and 2D-IR spectra provided valuable information for sample discrimination. Principal component analysis (PCA) of spectral differences was performed to illustrate the objective identification. Results showed that the species and their extracts can be clearly distinguished. Thus, a quick, precise and effective tri-step IR spectroscopy combined with PCA can be applied to identify and discriminate medicinal materials and their extracts in TM research.

  4. Combined multi-distance frequency domain and diffuse correlation spectroscopy system with simultaneous data acquisition and real-time analysis.

    PubMed

    Carp, Stefan A; Farzam, Parisa; Redes, Norin; Hueber, Dennis M; Franceschini, Maria Angela

    2017-09-01

    Frequency domain near infrared spectroscopy (FD-NIRS) and diffuse correlation spectroscopy (DCS) have emerged as synergistic techniques for the non-invasive assessment of tissue health. Combining FD-NIRS oximetry with DCS measures of blood flow, the tissue oxygen metabolic rate can be quantified, a parameter more closely linked to underlying physiology and pathology than either NIRS or DCS estimates alone. Here we describe the first commercially available integrated instrument, called the "MetaOx", designed to enable simultaneous FD-NIRS and DCS measurements at rates of 10 + Hz, and offering real-time data evaluation. We show simultaneously acquired characterization data demonstrating performance equivalent to individual devices and sample in vivo measurements of pulsation resolved blood flow, forearm occlusion hemodynamic changes and muscle oxygen metabolic rate monitoring during stationary bike exercise.

  5. Combined multi-distance frequency domain and diffuse correlation spectroscopy system with simultaneous data acquisition and real-time analysis

    PubMed Central

    Carp, Stefan A.; Farzam, Parisa; Redes, Norin; Hueber, Dennis M.; Franceschini, Maria Angela

    2017-01-01

    Frequency domain near infrared spectroscopy (FD-NIRS) and diffuse correlation spectroscopy (DCS) have emerged as synergistic techniques for the non-invasive assessment of tissue health. Combining FD-NIRS oximetry with DCS measures of blood flow, the tissue oxygen metabolic rate can be quantified, a parameter more closely linked to underlying physiology and pathology than either NIRS or DCS estimates alone. Here we describe the first commercially available integrated instrument, called the “MetaOx”, designed to enable simultaneous FD-NIRS and DCS measurements at rates of 10 + Hz, and offering real-time data evaluation. We show simultaneously acquired characterization data demonstrating performance equivalent to individual devices and sample in vivo measurements of pulsation resolved blood flow, forearm occlusion hemodynamic changes and muscle oxygen metabolic rate monitoring during stationary bike exercise. PMID:29026684

  6. Investigation of Antioxidant Activity of Pomegranate Juices by Means of Electron Paramagnetic Resonance and UV-Vis Spectroscopy.

    PubMed

    Kozik, Violetta; Jarzembek, Krystyna; Jędrzejowska, Agnieszka; Bąk, Andrzej; Polak, Justyna; Bartoszek, Mariola; Pytlakowska, Katarzyna

    2015-01-01

    Pomegranate fruit (Punica granatum L.) is a source of numerous phenolic compounds, and it contains flavonoids such as anthocyanins, anthocyanidins, cyanidins, catechins and other complexes of flavonoids, ellagitannins, and hydrolyzed tannins. Pomegranate juice shows antioxidant, antiproliferative, and anti-atherosclerotic properties. The antioxidant capacity (TEAC) of the pomegranate juices was measured using electron paramagnetic resonance (EPR) spectroscopy and 1,1-diphenyl-2-picrylhydrazyl (DPPH•) as a source of free radicals, and the total phenolic (TP) content was measured using UV-Vis spectroscopy. All the examined pomegranate juices exhibited relatively high antioxidant properties. The TEAC values determined by means of EPR spectroscopy using Trolox (TE) as a free radical scavenger were in the range of 463.12 to 1911.91 μmol TE/100 mL juice. The TP content measured by the Folin-Ciocalteu method, using gallic acid (GA) as a free radical scavenger, widely varied in the investigated pomegranate juice samples and ranged from 1673.62 to 5263.87 mg GA/1 L juice. The strongest antioxidant properties were observed with the fresh pomegranate juices obtained from the fruits originating from Israel, Lebanon, and Azerbaijan. Correlation analysis of numerical data obtained by means of EPR spectroscopy (TEAC) and UV-Vis spectroscopy (TP) gave correlation coefficient (r)=0.90 and determination coefficient (r2)=0.81 (P<0.05).

  7. Coherent manipulation of spin correlations in the Hubbard model

    NASA Astrophysics Data System (ADS)

    Wurz, N.; Chan, C. F.; Gall, M.; Drewes, J. H.; Cocchi, E.; Miller, L. A.; Pertot, D.; Brennecke, F.; Köhl, M.

    2018-05-01

    We coherently manipulate spin correlations in a two-component atomic Fermi gas loaded into an optical lattice using spatially and time-resolved Ramsey spectroscopy combined with high-resolution in situ imaging. This technique allows us not only to imprint spin patterns but also to probe the static magnetic structure factor at an arbitrary wave vector, in particular, the staggered structure factor. From a measurement along the diagonal of the first Brillouin zone of the optical lattice, we determine the magnetic correlation length and the individual spatial spin correlators. At half filling, the staggered magnetic structure factor serves as a sensitive thermometer, which we employ to study the equilibration in the spin and density sector during a slow quench of the lattice depth.

  8. Spatiotemporal image correlation analysis of blood flow in branched vessel networks of zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Ceffa, Nicolo G.; Cesana, Ilaria; Collini, Maddalena; D'Alfonso, Laura; Carra, Silvia; Cotelli, Franco; Sironi, Laura; Chirico, Giuseppe

    2017-10-01

    Ramification of blood circulation is relevant in a number of physiological and pathological conditions. The oxygen exchange occurs largely in the capillary bed, and the cancer progression is closely linked to the angiogenesis around the tumor mass. Optical microscopy has made impressive improvements in in vivo imaging and dynamic studies based on correlation analysis of time stacks of images. Here, we develop and test advanced methods that allow mapping the flow fields in branched vessel networks at the resolution of 10 to 20 μm. The methods, based on the application of spatiotemporal image correlation spectroscopy and its extension to cross-correlation analysis, are applied here to the case of early stage embryos of zebrafish.

  9. Acupuncture therapy in treating migraine: results of a magnetic resonance spectroscopy imaging study.

    PubMed

    Gu, Tao; Lin, Lei; Jiang, Yun; Chen, Juan; D'Arcy, Ryan Cn; Chen, Min; Song, Xiaowei

    2018-01-01

    Acupuncture has been proven to be effective as an alternative therapy in treating migraine, but the pathophysiological mechanisms of the treatment remain unclear. This study investigated possible neurochemical responses to acupuncture treatment. Proton magnetic resonance spectroscopy imaging was used to investigate biochemical levels pre- and post-acupuncture treatment. Participants (N=45) included subjects diagnosed with: 1) migraine without aura; 2) cervicogenic headache; and 3) healthy controls. Participants in the two patient groups received verum acupuncture using acupoints that target migraine without aura but not cervicogenic headache, while the healthy controls received a sham treatment. All participants had magnetic resonance spectroscopy scans before and after the acupuncture therapy. Levels of brain metabolites were examined in relation to clinical headache assessment scores. A significant increase in N -acetylaspartate/creatine was observed in bilateral thalamus in migraine without aura after the acupuncture treatment, which was significantly correlated with the headache intensity score. The data demonstrate brain biochemical changes underlying the effect of acupuncture treatment of migraine.

  10. Marrow Fat Quality Differences by Sex in Healthy Adults.

    PubMed

    Maciel, Jamilly G; de Araújo, Iana M; Carvalho, Adriana L; Simão, Marcelo N; Bastos, Clara M; Troncon, Luiz E A; Salmon, Carlos E G; de Paula, Francisco J A; Nogueira-Barbosa, Marcello H

    Several studies have demonstrated the relationship between bone marrow adiposity (BMAT) and bone mass. 1 H magnetic resonance spectroscopy is a noninvasive technique able to assess both BMAT quantity and quality. The aim of our study was to perform quantitative and qualitative analyses of BMAT and to investigate its association with bone mineral density (BMD) in healthy nonobese volunteers. Fifty-one healthy volunteers, 21 men and 30 women, underwent 1.5 T 1 H magnetic resonance spectroscopy of the lumbar spine. BMD was determined by dual-energy X-ray absorptiometry of the lumbar spine. Correlation analysis was performed to evaluate association among lipids fractions, BMD, and age. The female and male volunteers had similar body mass index and BMD (p > 0.05). Our data demonstrated an inverse correlation of BMD and BMAT with age, with a stronger correlation of saturated lipids (r = 0.701; p < 0.0001) compared with unsaturated lipids (UL) (r = 0.278; p = 0.004). Importantly, female subjects had the highest amount of UL (confidence interval: 0.685%-1.722%; p < 0.001). Our study reports that men and women with similar BMD and body mass index have striking differences in bone marrow lipids composition, namely women have higher UL than men. In addition, we believe that our study brings new insights to the complex network involving BMAT and other factors that influence bone integrity. Copyright © 2016 The International Society for Clinical Densitometry. Published by Elsevier Inc. All rights reserved.

  11. Intra-abdominal fat: Comparison of computed tomography fat segmentation and bioimpedance spectroscopy.

    PubMed

    Finch, Peter

    2017-06-01

    Intra-abdominal fat is an important factor in determining the metabolic syndrome/insulin resistance, and thus the risk of diabetes and ischaemic heart disease. Computed Tomography (CT) fat segmentation represents a defined method of quantifying intra-abdominal fat, with attendant radiation risks. Bioimpedance spectroscopy may offer a method of assessment without any risks to the patients. A comparison is made of these two methods. This was a preliminary study of the utility of multifrequency bioimpedance spectroscopy of the mid abdomen as a measure of intra-abdominal fat, by comparison with fat segmentation of an abdominal CT scan in the -30 to -190 HU range. There was a significant (P < 0.01) correlation between intra-abdominal fat and mid-upper arm circumference, as well as the bioimpedance parameter, the R/S ratio. Multivariate analysis showed that these were the only independant variables and allowed the derivation of a formula to estimate intra-abdominal fat: IAF = 0.02 × MAC - 0.757 × R/S + 0.036. Circumabdominal bioimpedance spectroscopy may prove a useful method of assessing intra-abdominal fat, and may be suitable for use in studies to enhance other measures of body composition, such as mid-upper arm circumference.

  12. The use of UV-visible reflectance spectroscopy as an objective tool to evaluate pearl quality.

    PubMed

    Agatonovic-Kustrin, Snezana; Morton, David W

    2012-07-01

    Assessing the quality of pearls involves the use of various tools and methods, which are mainly visual and often quite subjective. Pearls are normally classified by origin and are then graded by luster, nacre thickness, surface quality, size, color and shape. The aim of this study was to investigate the capacity of Artificial Neural Networks (ANNs) to classify and estimate the quality of 27 different pearls from their UV-Visible spectra. Due to the opaque nature of pearls, spectroscopy measurements were performed using the Diffuse Reflectance UV-Visible spectroscopy technique. The spectra were acquired at two different locations on each pearl sample in order to assess surface homogeneity. The spectral data (inputs) were smoothed to reduce the noise, fed into ANNs and correlated to the pearl's quality/grading criteria (outputs). The developed ANNs were successful in predicting pearl type, mollusk growing species, possible luster and color enhancing, donor condition/type, recipient/host color, donor color, pearl luster, pearl color, origin. The results of this study shows that the developed UV-Vis spectroscopy-ANN method could be used as a more objective method of assessing pearl quality (grading) and may become a valuable tool for the pearl grading industry.

  13. Matrix isolation studies of hydrogen bonding - An historical perspective

    NASA Astrophysics Data System (ADS)

    Barnes, Austin J.

    2018-07-01

    An historical introduction sets matrix isolation in perspective with other spectroscopic techniques for studying hydrogen-bonded complexes. This is followed by detailed accounts of various aspects of hydrogen-bonded complexes that have been studied using matrix isolation spectroscopy: Matrix effects: stabilisation of complexes. Strongly hydrogen-bonded molecular complexes: the vibrational correlation diagram. Anomalous spectra: the Ratajczak-Yaremko model. Metastable complexes. Csbnd H hydrogen bonding and blue shifting hydrogen bonds.

  14. Multiple-step relayed correlation spectroscopy: sequential resonance assignments in oligosaccharides.

    PubMed Central

    Homans, S W; Dwek, R A; Fernandes, D L; Rademacher, T W

    1984-01-01

    A general property of the high-resolution proton NMR spectra of oligosaccharides is the appearance of low-field well-resolved resonances corresponding to the anomeric (H1) and H2 protons. The remaining skeletal protons resonate in the region 3-4 ppm, giving rise to an envelope of poorly resolved resonances. Assignments can be made from the H1 and H2 protons to their J-coupled neighbors (H2 and H3) within this main envelope by using 1H-1H correlated spectroscopy. However, the tight coupling (J congruent to delta) between further protons results in poor spectral dispersion with consequent assignment ambiguities. We describe here three-step two-dimensional relayed correlation spectroscopy and show how it can be used to correlate the resolved anomeric (H1) and H2 protons with remote (H4, H5) protons directly through a linear network of couplings using sequential magnetization transfer around the oligosaccharide rings. Resonance assignments are then obtained by inspection of cross-peaks that appear in well-resolved regions of the two-dimensional spectrum. This offers a general solution to the assignment problem in oligosaccharides and, importantly, these assignments will subsequently allow for the three-dimensional solution conformation to be determined by using one-dimensional and two-dimensional nuclear Overhauser experiments. PMID:6593701

  15. k-Space Image Correlation Spectroscopy: A Method for Accurate Transport Measurements Independent of Fluorophore Photophysics

    PubMed Central

    Kolin, David L.; Ronis, David; Wiseman, Paul W.

    2006-01-01

    We present the theory and application of reciprocal space image correlation spectroscopy (kICS). This technique measures the number density, diffusion coefficient, and velocity of fluorescently labeled macromolecules in a cell membrane imaged on a confocal, two-photon, or total internal reflection fluorescence microscope. In contrast to r-space correlation techniques, we show kICS can recover accurate dynamics even in the presence of complex fluorophore photobleaching and/or “blinking”. Furthermore, these quantities can be calculated without nonlinear curve fitting, or any knowledge of the beam radius of the exciting laser. The number densities calculated by kICS are less sensitive to spatial inhomogeneity of the fluorophore distribution than densities measured using image correlation spectroscopy. We use simulations as a proof-of-principle to show that number densities and transport coefficients can be extracted using this technique. We present calibration measurements with fluorescent microspheres imaged on a confocal microscope, which recover Stokes-Einstein diffusion coefficients, and flow velocities that agree with single particle tracking measurements. We also show the application of kICS to measurements of the transport dynamics of α5-integrin/enhanced green fluorescent protein constructs in a transfected CHO cell imaged on a total internal reflection fluorescence microscope using charge-coupled device area detection. PMID:16861272

  16. A fluorescence lifetime spectroscopy study of matrix metalloproteinases-2 and -9 in human atherosclerotic plaque.

    PubMed

    Phipps, Jennifer E; Hatami, Nisa; Galis, Zorina S; Baker, J Dennis; Fishbein, Michael C; Marcu, Laura

    2011-09-01

    Matrix metalloproteinase (MMP)-2 and -9 play important roles in the progression of atherosclerosis. This study aims to determine whether MMP-2 and -9 content in the fibrotic caps of atherosclerotic plaque is correlated with plaque autofluorescence. A time-resolved laser-induced fluorescence spectroscopy (TR-LIFS) system was used to measure the autofluorescence and assess the biochemical composition of human plaques obtained from carotid endarterectomy. Results presented here demonstrate for the first time the ability to characterize the biochemical composition as it relates to MMP-2 and -9 content in the atherosclerotic plaque cap using a label-free imaging technique implemented with a fiberoptic TR-LIFS system. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. A structural study of fentanyl by DFT calculations, NMR and IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Asadi, Zahra; Esrafili, Mehdi D.; Vessally, Esmail; Asnaashariisfahani, Manzarbanou; Yahyaei, Saeideh; Khani, Ali

    2017-01-01

    N-(1-(2-phenethyl)-4-piperidinyl-N-phenyl-propanamide (fentanyl) is synthesized and characterized by FT-IR, 1H NMR, 13C NMR, mass spectroscopy and elemental analyses. The geometry optimization is performed using the B3LYP and M06 density functionals with 6-311 + G(d) and 6-311++G(d,p) basis sets. The complete assignments are performed on the basis of the potential energy distribution (PED) of the all vibrational modes. Almost a nice correlation is found between the calculated 13C chemical shifts and experimental data. The frontier molecular orbitals and molecular electrostatic potential of fentanyl are also obtained.

  18. Vibrational properties of gold nanoparticles obtained by green synthesis

    NASA Astrophysics Data System (ADS)

    Alvarez, Ramón A. B.; Cortez-Valadez, M.; Bueno, L. Oscar Neira; Britto Hurtado, R.; Rocha-Rocha, O.; Delgado-Beleño, Y.; Martinez-Nuñez, C. E.; Serrano-Corrales, Luis Ivan; Arizpe-Chávez, H.; Flores-Acosta, M.

    2016-10-01

    This study reports the synthesis and characterization of gold nanoparticles through an ecological method to obtain nanostructures from the extract of the plant Opuntia ficus-indica. Colloidal nanoparticles show sizes that vary between 10-20 nm, and present various geometric morphologies. The samples were characterized through optical absorption, Raman Spectroscopy and Transmission Electron Microscopy (TEM). Additionally, low energy metallic clusters of Aun (n=2-20 atoms) were modeled by computational quantum chemistry. The theoretical results were obtained with Density Functional Theory (DFT). The predicted results of Au clusters show a tendency and are correlated with the experimental results concerning the optical absorption bands and Raman spectroscopy in gold nanoparticles.

  19. Comparison of TiO₂ and ZnO solar cells sensitized with an indoline dye: time-resolved laser spectroscopy studies of partial charge separation processes.

    PubMed

    Sobuś, Jan; Burdziński, Gotard; Karolczak, Jerzy; Idígoras, Jesús; Anta, Juan A; Ziółek, Marcin

    2014-03-11

    Time-resolved laser spectroscopy techniques in the time range from femtoseconds to seconds were applied to investigate the charge separation processes in complete dye-sensitized solar cells (DSC) made with iodide/iodine liquid electrolyte and indoline dye D149 interacting with TiO2 or ZnO nanoparticles. The aim of the studies was to explain the differences in the photocurrents of the cells (3-4 times higher for TiO2 than for ZnO ones). Electrochemical impedance spectroscopy and nanosecond flash photolysis studies revealed that the better performance of TiO2 samples is not due to the charge collection and dye regeneration processes. Femtosecond transient absorption results indicated that after first 100 ps the number of photoinduced electrons in the semiconductor is 3 times higher for TiO2 than for ZnO solar cells. Picosecond emission studies showed that the lifetime of the D149 excited state is about 3 times longer for ZnO than for TiO2 samples. Therefore, the results indicate that lower performance of ZnO solar cells is likely due to slower electron injection. The studies show how to correlate the laser spectroscopy methodology with global parameters of the solar cells and should help in better understanding of the behavior of alternative materials for porous electrodes for DSC and related devices.

  20. UV laser-induced fluorescence spectroscopy and laser Doppler flowmetry in the diagnostics of alopecia

    NASA Astrophysics Data System (ADS)

    Skomorokha, Diana P.; Pigoreva, Yulia N.; Salmin, Vladimir V.

    2016-04-01

    Development of optical biopsy methods has a great interest for medical diagnostics. In clinical and experimental studies it is very important to analyze blood circulation quickly and accurately, thereby laser Doppler flowmetry (LDF) is widely used. UV laser-induced fluorescence spectroscopy (UV LIFS) is express highly sensitive and widely-spread method with no destructive impact, high excitation selectivity and the possibility to use in highly scattering media. The goal of this work was to assess a correlation of UV laser-induced fluorescence spectroscopy and laser Doppler flowmetry parameters, and a possibility to identify or to differentiate various types of pathological changes in tissues according to their autofluorescence spectra. Three groups of patients with diffuse (symptomatic) alopecia, androgenic alopecia, and focal alopecia have been tested. Each groups consisted of not less than 20 persons. The measurements have been done in the parietal and occipital regions of the sculls. We used the original automated spectrofluorimeter to record autofluorescence spectra, and standard laser Doppler flowmeter BLF-21 (Transonic Systems, Inc., USA) to analyze the basal levels of blood circulation. Our results show that UV LIFS accurately distinguishes the zones with different types of alopecia. We found high correlation of the basal levels of blood circulation and the integrated intensity of autofluorescence in the affected tissue.

  1. Multi-Spectroscopic Analysis of Seed Quality and 13C-Stable-Iotopologue Monitoring in Initial Growth Metabolism of Jatropha curcas L.

    PubMed Central

    Komatsu, Takanori; Ohishi, Risa; Shino, Amiu; Akashi, Kinya; Kikuchi, Jun

    2014-01-01

    In the present study, we applied nuclear magnetic resonance (NMR), as well as near-infrared (NIR) spectroscopy, to Jatropha curcas to fulfill two objectives: (1) to qualitatively examine the seeds stored at different conditions, and (2) to monitor the metabolism of J. curcas during its initial growth stage under stable-isotope-labeling condition (until 15 days after seeding). NIR spectra could non-invasively distinguish differences in storage conditions. NMR metabolic analysis of water-soluble metabolites identified sucrose and raffinose family oligosaccharides as positive markers and gluconic acid as a negative marker of seed germination. Isotopic labeling patteren of metabolites in germinated seedlings cultured in agar-plate containg 13C-glucose and 15N-nitrate was analyzed by zero-quantum-filtered-total correlation spectroscopy (ZQF-TOCSY) and 13C-detected 1H-13C heteronuclear correlation spectroscopy (HETCOR). 13C-detected HETOCR with 13C-optimized cryogenic probe provided high-resolution 13C-NMR spectra of each metabolite in molecular crowd. The 13C-13C/12C bondmer estimated from 1H-13C HETCOR spectra indicated that glutamine and arginine were the major organic compounds for nitrogen and carbon transfer from roots to leaves. PMID:25401292

  2. Detection of aflatoxin and surface mould contaminated figs by using Fourier transform near-infrared reflectance spectroscopy.

    PubMed

    Durmuş, Efkan; Güneş, Ali; Kalkan, Habil

    2017-01-01

    Aflatoxins are toxic metabolites that are mainly produced by members of the Aspergillus section Flavi on many agricultural products. Certain agricultural products such as figs are known to be high risk products for aflatoxin contamination. Aflatoxin contaminated figs may show a bright greenish yellow fluorescence (BGYF) under ultraviolet (UV) light at a wavelength of 365 nm. Traditionally, BGYF positive figs are manually selected by workers. However, manual selection depends on the expertise level of the workers and it may cause them skin-related health problems due to UV radiation. In this study, we propose a non-invasive approach to detect aflatoxin and surface mould contaminated figs by using Fourier transform near-infrared (FT-NIR) reflectance spectroscopy. A classification accuracy of 100% is achieved for classifying the figs into aflatoxin contaminated/uncontaminated and surface mould contaminated/uncontaminated categories. In addition, a strong correlation has been found between aflatoxin and surface mould. Combined with pattern classification methods, the NIR spectroscopy can be used to detect aflatoxin contaminated figs non-invasively. Furthermore, a positive correlation between surface mould and aflatoxin contamination leads to a promising alternative indicator for the detection of aflatoxin-contaminated figs. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  3. [Based on the LS-SVM modeling method determination of soil available N and available K by using near-infrared spectroscopy].

    PubMed

    Liu, Xue-Mei; Liu, Jian-She

    2012-11-01

    Visible infrared spectroscopy (Vis/SW-NIRS) was investigated in the present study for measurement accuracy of soil properties,namely, available nitrogen(N) and available potassium(K). Three types of pretreatments including standard normal variate (SNV), multiplicative scattering correction (MSC) and Savitzky-Golay smoothing+first derivative were adopted to eliminate the system noises and external disturbances. Then partial least squares (PLS) and least squares-support vector machine (LS-SVM) models analysis were implemented for calibration models. Simultaneously, the performance of least squares-support vector machine (LS-SVM) models was compared with three kinds of inputs, including PCA(PCs), latent variables (LVs), and effective wavelengths (EWs). The results indicated that all LS-SVM models outperformed PLS models. The performance of the model was evaluated by the correlation coefficient (r2) and RMSEP. The optimal EWs-LS-SVM models were achieved, and the correlation coefficient (r2) and RMSEP were 0.82 and 17.2 for N and 0.72 and 15.0 for K, respectively. The results indicated that visible and short wave-near infrared spectroscopy (Vis/SW-NIRS)(325-1 075 nm) combined with LS-SVM could be utilized as a precision method for the determination of soil properties.

  4. Positron Annihilation Induced Auger and Gamma Spectroscopy of Catalytically Important Surfaces

    NASA Astrophysics Data System (ADS)

    Weiss, A. H.; Nadesalingam, M. P.; Sundaramoorthy, R.; Mukherjee, S.; Fazleev, N. G.

    2006-10-01

    The annihilation of positrons with core electrons results in unique signatures in the spectra of Auger-electron and annihilation-gamma rays that can be used to make clear chemical identification of atoms at the surface. Because positrons implanted at low energies are trapped with high efficiency in the image-correlation well where they are localized just outside the surface it is possible to use annihilation induced Auger and Gamma signals to probe the surfaces of solids with single atomic layer depth resolution. In this talk we will report recent applications of Positron Annihilation Induced Auger Electron Spectroscopy (PAES) and Auger-Gamma Coincidence Spectroscopy (AGCS) to the study of surface structure and surface chemistry. Our research has demonstrated that PAES spectra can provide new information regarding the composition of the top-most atomic layer. Applications of PAES to the study of catalytically important surfaces of oxides and wide band-gap semiconductors including TiO2, SiO2,Cu2O, and SiC will be presented. We conclude with a discussion of the use of Auger-Gamma and Gamma-Gamma coincidence spectroscopy for the study of surfaces at pressures closer to those found in practical chemical reactors. Research supported by the Welch Foundation Grant Number Y-1100.

  5. Nanoscale doping heterogeneity in few-layer WSe2 exfoliated onto noble metals revealed by correlated SPM and TERS imaging

    NASA Astrophysics Data System (ADS)

    Jariwala, Deep; Krayev, Andrey; Wong, Joeson; Robinson, A. Edward; Sherrott, Michelle C.; Wang, Shuo; Liu, Gang-Yu; Terrones, Mauricio; Atwater, Harry A.

    2018-07-01

    While extensive research effort has been devoted to the study of the 2D semiconductor–insulator interfaces in transition metal dichalcogenides (TMDCs), there is little knowledge about the electronic quality of the semiconductor–metal interface in the atomically thin limit. Here, we present the first correlated nanoscale mapping of the interface of atomically thin WSe2 with noble metals using co-localized scanning probe microscopy and tip-enhanced optical spectroscopy (TEOS), such as tip-enhanced Raman spectroscopy (TERS). Nanoscale maps of the topography, surface potential, Raman spectra, and the photocurrent amplitude of the WSe2/metal interfaces reveal striking results. Specifically, correlations between surface potential, resonant Raman signatures and photocurrents that indicate the presence of inhomogeneities within interfacial electronic properties, which we attribute to variations in the local doping of the WSe2 likely caused by intrinsic compositional fluctuations or defects. Our results suggest that local electrostatic variations at a lateral scale of 10–100 nm are present even in the highest quality of TMDC crystals and must be considered towards understanding of all interfacial phenomena, particularly in device applications that rely on the buried metal–semiconductor junction interface.

  6. Integrative Network-based Analysis of Magnetic Resonance Spectroscopy and Genome Wide Expression in Glioblastoma multiforme

    PubMed Central

    Heiland, Dieter Henrik; Mader, Irina; Schlosser, Pascal; Pfeifer, Dietmar; Carro, Maria Stella; Lange, Thomas; Schwarzwald, Ralf; Vasilikos, Ioannis; Urbach, Horst; Weyerbrock, Astrid

    2016-01-01

    The goal of this study was to identify correlations between metabolites from proton MR spectroscopy and genetic pathway activity in glioblastoma multiforme (GBM). Twenty patients with primary GBM were analysed by short echo-time chemical shift imaging and genome-wide expression analyses. Weighed Gene Co-Expression Analysis was used for an integrative analysis of imaging and genetic data. N-acetylaspartate, normalised to the contralateral healthy side (nNAA), was significantly correlated to oligodendrocytic and neural development. For normalised creatine (nCr), a group with low nCr was linked to the mesenchymal subtype, while high nCr could be assigned to the proneural subtype. Moreover, clustering of normalised glutamine and glutamate (nGlx) revealed two groups, one with high nGlx being attributed to the neural subtype, and one with low nGlx associated with the classical subtype. Hence, the metabolites nNAA, nCr, and nGlx correlate with a specific gene expression pattern reflecting the previously described subtypes of GBM. Moreover high nNAA was associated with better clinical prognosis, whereas patients with lower nNAA revealed a shorter progression-free survival (PFS). PMID:27350391

  7. Fluorescence correlation spectroscopy to measure the metabolism of high-density lipoprotein

    NASA Astrophysics Data System (ADS)

    Deitrick, Russell; Gibson, Emily; Razzaghi, Hamid

    2009-10-01

    High-density lipoprotein (HDL), referred to as the ``good cholesterol'', carries free cholesterol to the liver to be filtered from the bloodstream and is important to our understanding of atherosclerosis. HDL is metabolized in part by the enzyme Endothelial Lipase (EL). With this project we will use fluorescence correlation spectroscopy (FCS) to study the metabolism of HDL by EL comparing wild type with different genetic mutations. FCS is an advanced microscopy technique in which we record fluctuations in the fluorescence of dye-labeled molecules (in this case, HDL labeled with Nile Red) as they freely diffuse through a small focal volume. This data can be analyzed mathematically using the cross-correlation function, from which we can ultimately ascertain much information. In our case, we are interested in the diffusion coefficient which, via the Stokes-Einstein relation for a sphere, we can determine the size of HDL as it undergoes the process of metabolism. Preliminary results seem to indicate that the metabolic process occurs very quickly, that the final size of HDL depends primarily on the concentration of EL, and that the wild and mutant variants of EL have a similar effectiveness. In following experiments, we hope to investigate these relationships further.

  8. Relationships for electron-vibrational coupling in conjugated π organic systems

    NASA Astrophysics Data System (ADS)

    O'Neill, L.; Lynch, P.; McNamara, M.; Byrne, H. J.

    2005-06-01

    A series of π conjugated systems were studied by absorption, photoluminescence and vibrational spectroscopy. As is common for these systems, a linear relationship between the positioning of the absorption and photoluminescence maxima plotted against inverse conjugation length is observed. The relationships are in good agreement with the simple particle in a box method, one of the earliest descriptions of the properties of one-dimensional organic molecules. In addition to the electronic transition energies, it was observed that the Stokes shift also exhibited a well-defined relationship with increasing conjugation length, implying a correlation between the electron-vibrational coupling and chain length. This correlation is further examined using Raman spectroscopy, whereby the integrated Raman scattering is seen to behave superlinearly with chain length. There is a clear indication that the vibrational activity and thus nonradiative decay processes are controllable through molecular structure. The correlations between the Stokes energies and the vibrational structure are also observed in a selection of PPV based polymers and a clear trend of increasing luminescence efficiency with decreasing vibrational activity and Stokes shift is observable. The implications of such structure property relationships in terms of materials design are discussed.

  9. Hydrogen/deuterium (H/D) exchange of gelatinized starch studied by two-dimensional (2D) near-infrared (NIR) correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Shinzawa, Hideyuki; Mizukado, Junji

    2018-05-01

    Hydrogen/deuterium (H/D) exchange of gelatinized starch was probed by in-situ near-infrared (NIR) monitoring coupled with two-dimensional (2D) correlation spectroscopy. Gelatinized starch undergoes spontaneous H/D exchange in D2O. During the substitution, the exchange rate essentially becomes different depending on solvent accessibility of various parts of the molecule. Thus, by analyzing the change in the NIR feature observed during the substitution, it becomes possible to sort out local structure and dynamics of the system. 2D correlation analysis of the time-dependent NIR spectra reveals the presence of different local structure of the starch, each having different solvent accessibility. For example, during the H/D exchange, the D2O is first absorbed by starch molecules especially around the surface area between the starch and water, where the water molecules are weakly interacted with the starch molecules. This absorption is quickly followed by the development of HDO species. Further absorption of the D2O results in the penetration of the molecules inside the starch and eventually develops the relatively strong interaction between the HDO and starch molecules because of the presence of dominant starch molecules.

  10. Fluorescence spectroscopy for endogenous porphyrins in human facial skin

    NASA Astrophysics Data System (ADS)

    Seo, I.; Tseng, S. H.; Cula, G. O.; Bargo, P. R.; Kollias, N.

    2009-02-01

    The activity of certain bacteria in skin is known to correlate to the presence of porphyrins. In particular the presence of coproporphyrin produced by P.acnes inside plugged pores has been correlated to acne vulgaris. Another porphyrin encountered in skin is protoporphyrin IX, which is produced by the body in the pathway for production of heme. In the present work, a fluorescence spectroscopy system was developed to measure the characteristic spectrum and quantify the two types of porphyrins commonly present in human facial skin. The system is comprised of a Xe lamp both for fluorescence excitation and broadband light source for diffuse reflectance measurements. A computer-controlled filter wheel enables acquisition of sequential spectra, first excited by blue light at 405 nm then followed by the broadband light source, at the same location. The diffuse reflectance spectrum was used to correct the fluorescence spectrum due to the presence of skin chromophores, such as blood and melanin. The resulting fluorescence spectra were employed for the quantification of porphyrin concentration in a population of healthy subjects. The results show great variability on the concentration of these porphyrins and further studies are being conducted to correlate them with skin conditions such as inflammation and acne vulgaris.

  11. Integrated fluorescence correlation spectroscopy device for point-of-care clinical applications

    PubMed Central

    Olson, Eben; Torres, Richard; Levene, Michael J.

    2013-01-01

    We describe an optical system which reduces the cost and complexity of fluorescence correlation spectroscopy (FCS), intended to increase the suitability of the technique for clinical use. Integration of the focusing optics and sample chamber into a plastic component produces a design which is simple to align and operate. We validate the system by measurements on fluorescent dye, and compare the results to a commercial instrument. In addition, we demonstrate its application to measurements of concentration and multimerization of the clinically relevant protein von Willebrand factor (vWF) in human plasma. PMID:23847733

  12. CONTIN XPCS: Software for Inverse Transform Analysis of X-Ray Photon Correlation Spectroscopy Dynamics

    PubMed Central

    Narayanan, Suresh; Zhang, Fan; Kuzmenko, Ivan; Ilavsky, Jan

    2018-01-01

    X-ray photon correlation spectroscopy (XPCS) and dynamic light scattering (DLS) both reveal dynamics using coherent scattering, but X-rays permit investigating of dynamics in a much more diverse array of materials. Heterogeneous dynamics occur in many such materials, and we showed how classic tools employed in analysis of heterogeneous DLS dynamics extend to XPCS, revealing additional information that conventional Kohlrausch exponential fitting obscures. This work presents the software implementation of inverse transform analysis of XPCS data called CONTIN XPCS, an extension of traditional CONTIN that accommodates dynamics encountered in equilibrium XPCS measurements. PMID:29875507

  13. CONTIN XPCS: Software for Inverse Transform Analysis of X-Ray Photon Correlation Spectroscopy Dynamics.

    PubMed

    Andrews, Ross N; Narayanan, Suresh; Zhang, Fan; Kuzmenko, Ivan; Ilavsky, Jan

    2018-02-01

    X-ray photon correlation spectroscopy (XPCS) and dynamic light scattering (DLS) both reveal dynamics using coherent scattering, but X-rays permit investigating of dynamics in a much more diverse array of materials. Heterogeneous dynamics occur in many such materials, and we showed how classic tools employed in analysis of heterogeneous DLS dynamics extend to XPCS, revealing additional information that conventional Kohlrausch exponential fitting obscures. This work presents the software implementation of inverse transform analysis of XPCS data called CONTIN XPCS, an extension of traditional CONTIN that accommodates dynamics encountered in equilibrium XPCS measurements.

  14. Detection of elemental mercury by multimode diode laser correlation spectroscopy.

    PubMed

    Lou, Xiutao; Somesfalean, Gabriel; Svanberg, Sune; Zhang, Zhiguo; Wu, Shaohua

    2012-02-27

    We demonstrate a method for elemental mercury detection based on correlation spectroscopy employing UV laser radiation generated by sum-frequency mixing of two visible multimode diode lasers. Resonance matching of the multimode UV laser is achieved in a wide wavelength range and with good tolerance for various operating conditions. Large mode-hops provide an off-resonance baseline, eliminating interferences from other gas species with broadband absorption. A sensitivity of 1 μg/m3 is obtained for a 1-m path length and 30-s integration time. The performance of the system shows promise for mercury monitoring in industrial applications.

  15. Studying hemispheric lateralization during a Stroop task through near-infrared spectroscopy-based connectivity

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Sun, Jinyan; Sun, Bailei; Luo, Qingming; Gong, Hui

    2014-05-01

    Near-infrared spectroscopy (NIRS) is a developing and promising functional brain imaging technology. Developing data analysis methods to effectively extract meaningful information from collected data is the major bottleneck in popularizing this technology. In this study, we measured hemodynamic activity of the prefrontal cortex (PFC) during a color-word matching Stroop task using NIRS. Hemispheric lateralization was examined by employing traditional activation and novel NIRS-based connectivity analyses simultaneously. Wavelet transform coherence was used to assess intrahemispheric functional connectivity. Spearman correlation analysis was used to examine the relationship between behavioral performance and activation/functional connectivity, respectively. In agreement with activation analysis, functional connectivity analysis revealed leftward lateralization for the Stroop effect and correlation with behavioral performance. However, functional connectivity was more sensitive than activation for identifying hemispheric lateralization. Granger causality was used to evaluate the effective connectivity between hemispheres. The results showed increased information flow from the left to the right hemispheres for the incongruent versus the neutral task, indicating a leading role of the left PFC. This study demonstrates that the NIRS-based connectivity can reveal the functional architecture of the brain more comprehensively than traditional activation, helping to better utilize the advantages of NIRS.

  16. Application of Fourier transform infrared spectroscopy with chemometrics on postmortem interval estimation based on pericardial fluids.

    PubMed

    Zhang, Ji; Li, Bing; Wang, Qi; Wei, Xin; Feng, Weibo; Chen, Yijiu; Huang, Ping; Wang, Zhenyuan

    2017-12-21

    Postmortem interval (PMI) evaluation remains a challenge in the forensic community due to the lack of efficient methods. Studies have focused on chemical analysis of biofluids for PMI estimation; however, no reports using spectroscopic methods in pericardial fluid (PF) are available. In this study, Fourier transform infrared (FTIR) spectroscopy with attenuated total reflectance (ATR) accessory was applied to collect comprehensive biochemical information from rabbit PF at different PMIs. The PMI-dependent spectral signature was determined by two-dimensional (2D) correlation analysis. The partial least square (PLS) and nu-support vector machine (nu-SVM) models were then established based on the acquired spectral dataset. Spectral variables associated with amide I, amide II, COO - , C-H bending, and C-O or C-OH vibrations arising from proteins, polypeptides, amino acids and carbohydrates, respectively, were susceptible to PMI in 2D correlation analysis. Moreover, the nu-SVM model appeared to achieve a more satisfactory prediction than the PLS model in calibration; the reliability of both models was determined in an external validation set. The study shows the possibility of application of ATR-FTIR methods in postmortem interval estimation using PF samples.

  17. Investigating axial diffusion in cylindrical pores using confocal single-particle fluorescence correlation spectroscopy.

    PubMed

    Chen, Fang; Neupane, Bhanu; Li, Peiyuan; Su, Wei; Wang, Gufeng

    2016-08-01

    We explored the feasibility of using confocal fluorescence correlation spectroscopy to study small nanoparticle diffusion in hundred-nanometer-sized cylindrical pores. By modeling single particle diffusion in tube-like confined three-dimensional space aligned parallel to the confocal optical axis, we showed that two diffusion dynamics can be observed in both original intensity traces and the autocorrelation functions (ACFs): the confined two-dimensional lateral diffusion and the unconfined one-dimensional (1D) axial diffusion. The separation of the axial and confined lateral diffusion dynamics provides an opportunity to study diffusions in different dimensions separately. We further experimentally studied 45 nm carboxylated polystyrene particles diffusing in 300 nm alumina pores. The experimental data showed consistency with the simulation. To extract the accurate axial diffusion coefficient, we found that a 1D diffusion model with a Lorentzian axial collection profile needs to be used to analyze the experimental ACFs. The diffusion of the 45 nm nanoparticles in polyethyleneglycol-passivated 300 nm pores slowed down by a factor of ∼2, which can be satisfactorily explained by hydrodynamic frictions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Comparative Variable Temperature Studies of Polyamide II with a Benchtop Fourier Transform and a Miniature Handheld Near-Infrared Spectrometer Using 2D-COS and PCMW-2D Analysis.

    PubMed

    Unger, Miriam; Pfeifer, Frank; Siesler, Heinz W

    2016-07-01

    The main objective of this communication is to compare the performance of a miniaturized handheld near-infrared (NIR) spectrometer with a benchtop Fourier transform near-infrared (FT-NIR) spectrometer. Generally, NIR spectroscopy is an extremely powerful analytical tool to study hydrogen-bonding changes of amide functionalities in solid and liquid materials and therefore variable temperature NIR measurements of polyamide II (PAII) have been selected as a case study. The information content of the measurement data has been further enhanced by exploiting the potential of two-dimensional correlation spectroscopy (2D-COS) and the perturbation correlation moving window two-dimensional (PCMW2D) evaluation technique. The data provide valuable insights not only into the changes of the hydrogen-bonding structure and the recrystallization of the hydrocarbon segments of the investigated PAII but also in their sequential order. Furthermore, it has been demonstrated that the 2D-COS and PCMW2D results derived from the spectra measured with the miniaturized NIR instrument are equivalent to the information extracted from the data obtained with the high-performance FT-NIR instrument. © The Author(s) 2016.

  19. Comparative study of human blood Raman spectra and biochemical analysis of patients with cancer

    NASA Astrophysics Data System (ADS)

    Shamina, Lyudmila A.; Bratchenko, Ivan A.; Artemyev, Dmitry N.; Myakinin, Oleg O.; Moryatov, Alexander A.; Orlov, Andrey E.; Kozlov, Sergey V.; Zakharov, Valery P.

    2018-04-01

    In this study we measured spectral features of blood by Raman spectroscopy. Correlation of the obtained spectral data and biochemical studies results is investigated. Analysis of specific spectra allows for identification of informative spectral bands proportional to components whose content is associated with body fluids homeostasis changes at various pathological conditions. Regression analysis of the obtained spectral data allows for discriminating the lung cancer from other tumors with a posteriori probability of 88.3%. The potentiality of applying surface-enhanced Raman spectroscopy with utilized experimental setup for further studies of the body fluids component composition was estimated. The greatest signal amplification was achieved for the gold substrate with a surface roughness of 1 μm. In general, the developed approach of body fluids analysis provides the basis of a useful and minimally invasive method of pathologies screening.

  20. Enhancing the sensitivity of fluorescence correlation spectroscopy by using time-correlated single photon counting.

    PubMed

    Lamb, D C; Müller, B K; Bräuchle, C

    2005-10-01

    Fluorescence correlation spectroscopy (FCS) and fluorescence cross-correlation spectroscopy (FCCS) are methods that extract information about a sample from the influence of thermodynamic equilibrium fluctuations on the fluorescence intensity. This method allows dynamic information to be obtained from steady state equilibrium measurements and its popularity has dramatically increased in the last 10 years due to the development of high sensitivity detectors and its combination with confocal microscopy. Using time-correlated single-photon counting (TCSPC) detection and pulsed excitation, information over the duration of the excited state can be extracted and incorporated in the analysis. In this short review, we discuss new methodologies that have recently emerged which incorporated fluorescence lifetime information or TCSPC data in the FCS and FCCS analysis. Time-gated FCS discriminates between which photons are to be incorporated in the analysis dependent upon their arrival time after excitation. This allows for accurate FCS measurements in the presence of fluorescent background, determination of sample homogeneity, and the ability to distinguish between static and dynamic heterogeneities. A similar method, time-resolved FCS can be used to resolve the individual correlation functions from multiple fluorophores through the different fluorescence lifetimes. Pulsed interleaved excitation (PIE) encodes the excitation source into the TCSPC data. PIE can be used to perform dual-channel FCCS with a single detector and allows elimination of spectral cross-talk with dual-channel detection. For samples that undergo fluorescence resonance energy transfer (FRET), quantitative FCCS measurements can be performed in spite of the FRET and the static FRET efficiency can be determined.

  1. A 2D correlation Raman spectroscopy analysis of a human cataractous lens

    NASA Astrophysics Data System (ADS)

    Sacharz, Julia; Wesełucha-Birczyńska, Aleksandra; Paluszkiewicz, Czesława; Chaniecki, Piotr; Błażewicz, Marta

    2016-11-01

    This work is a continuation of our study of a cataractous human eye lens removed after phacoemulsification surgery. There are clear differences in the lens colors that allowed for distinguishing two opaque phases in the obtained biological material: the white- and yellow-phase. The Raman spectroscopy and 2D correlation spectroscopy method were used to trace a pathologically altered human cataract lens at a molecular level. Although the Raman spectra of these two phases are relatively similar, taking advantage of 2D correlation, and considering time as an external perturbation, the synchronous and asynchronous spectra were obtained showing completely different patterns. Prominent synchronous auto-peaks appear at 3340, 2920, 1736, 1665 and 1083 cm-1 for the white-, and at 2929 and 1670 cm-1 for the yellow phase. The white phase is characterized by intensive asynchronous peaks at -(2936, 3360), -(1650, 1674) and +(1620,1678). The modifications in the water contained in the white phase structure are ahead of the changes in the protein (CH3-groups), furthermore changes in β-conformation are asynchronous with respect to the α-structure. The yellow phase demonstrates asynchronous peaks: +(2857, 2928), +(1645,1673), +(1663, 1679), and +(1672,1707). These illustrate concomitant modifications in the β- and unordered conformation. Both forms of cataractous human eye lens, white- and yellow-phases, are degenerate forms of the eye lens proteins, both are arranged in a different way. The main differences are observed for the amide I, methyl, methylene and Osbnd H vibrational band region. The effect of Asp, Glu and Tyr amino acids in cataractous lens transformations was observed.

  2. Electronic structure of disordered CuPd alloys: A two-dimensional positron-annihilation study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smedskjaer, L.C.; Benedek, R.; Siegel, R.W.

    1987-11-23

    Two-dimensional--angular-correlation experiments using posi- tron-annihilation spectroscopy were performed on a series of disordered Cu-rich CuPd-alloy single crystals. The results are compared with theoretical calculations based on the Korringa-Kohn-Rostoker coherent-potential approximation. Our experiments confirm the theoretically predicted flattening of the alloy Fermi surface near (110) with increasing Pd concentration. The momentum densities and the two-dimensional--angular-correlation spectra around zero momentum exhibit a characteristic signature of the electronic states near the valence-band edge in the alloy.

  3. Underresolved absorption spectroscopy of OH radicals in flames using broadband UV LEDs

    NASA Astrophysics Data System (ADS)

    White, Logan; Gamba, Mirko

    2018-04-01

    A broadband absorption spectroscopy diagnostic based on underresolution of the spectral absorption lines is evaluated for the inference of species mole fraction and temperature in combustion systems from spectral fitting. The approach uses spectrally broadband UV light emitting diodes and leverages low resolution, small form factor spectrometers. Through this combination, the method can be used to develop high precision measurement sensors. The challenges of underresolved spectroscopy are explored and addressed using spectral derivative fitting, which is found to generate measurements with high precision and accuracy. The diagnostic is demonstrated with experimental measurements of gas temperature and OH mole fraction in atmospheric air/methane premixed laminar flat flames. Measurements exhibit high precision, good agreement with 1-D flame simulations, and high repeatability. A newly developed model of uncertainty in underresolved spectroscopy is applied to estimate two-dimensional confidence regions for the measurements. The results of the uncertainty analysis indicate that the errors in the outputs of the spectral fitting procedure are correlated. The implications of the correlation between uncertainties for measurement interpretation are discussed.

  4. Development of an Early Warning Fire Detection System using Correlation Spectroscopy

    NASA Technical Reports Server (NTRS)

    Goswami, K.; Voevodkin, G.; Rubstov, V.; Lieberman, R.; Piltch, N.

    2001-01-01

    Combustion byproducts are numerous. A few examples of the gaseous byproducts include carbon dioxide, carbon monoxide, hydrogen chloride, hydrogen cyanide and ammonia. For detecting these chemical species, classic absorption spectroscopy has been used for many decades, but the sensitivity of steady-state methods is often unsuitable for the detection of trace compounds at the low levels (parts per million to parts per billion) appropriate for scientific purposes. This is particularly so for monitoring equipment, which must be compact and cost-effective, and which is often subjected to shock, vibration, and other environmental effects that can severely degrade the performance of high-sensitivity spectrometers in an aircraft. Steady-state techniques also suffer from a lack of specificity; the deconvolution of the spectra of complex mixtures is a laborious and error prone process. These problems are exacerbated in remote fiber-optic monitoring where, for practical reasons, the fundamental absorbance region of the spectrum (often between 3 and 8 microns) is inaccessible, and the low-strength, closely spaced, near-infrared overtone absorbance bands must be used. We circumvented these challenges by employing correlation spectroscopy, a variation of modulation spectroscopy.

  5. Studying flow close to an interface by total internal reflection fluorescence cross-correlation spectroscopy: Quantitative data analysis

    NASA Astrophysics Data System (ADS)

    Schmitz, R.; Yordanov, S.; Butt, H. J.; Koynov, K.; Dünweg, B.

    2011-12-01

    Total internal reflection fluorescence cross-correlation spectroscopy (TIR-FCCS) has recently [S. Yordanov , Optics ExpressOPEXFF1094-408710.1364/OE.17.021149 17, 21149 (2009)] been established as an experimental method to probe hydrodynamic flows near surfaces, on length scales of tens of nanometers. Its main advantage is that fluorescence occurs only for tracer particles close to the surface, thus resulting in high sensitivity. However, the measured correlation functions provide only rather indirect information about the flow parameters of interest, such as the shear rate and the slip length. In the present paper, we show how to combine detailed and fairly realistic theoretical modeling of the phenomena by Brownian dynamics simulations with accurate measurements of the correlation functions, in order to establish a quantitative method to retrieve the flow properties from the experiments. First, Brownian dynamics is used to sample highly accurate correlation functions for a fixed set of model parameters. Second, these parameters are varied systematically by means of an importance-sampling Monte Carlo procedure in order to fit the experiments. This provides the optimum parameter values together with their statistical error bars. The approach is well suited for massively parallel computers, which allows us to do the data analysis within moderate computing times. The method is applied to flow near a hydrophilic surface, where the slip length is observed to be smaller than 10nm, and, within the limitations of the experiments and the model, indistinguishable from zero.

  6. Neurochemical correlates of internet game play in adolescents with attention deficit hyperactivity disorder: A proton magnetic resonance spectroscopy (MRS) study.

    PubMed

    Bae, Sujin; Han, Doug Hyun; Kim, Sun Mi; Shi, Xianfeng; Renshaw, Perry F

    2016-08-30

    Previous studies have examined the relationship of brain metabolic changes in patients with attention deficit hyperactivity disorder (ADHD) and internet gaming disorder (IGD). However, these studies have been limited by a small number of subjects, a large variance in subject age, and different brain regions of interest. The present study assessed the effects of chronic internet game play in ADHD children. Twenty eight ADHD adolescents with IGD (IGD+ADHD), 27 ADHD adolescents without problematic internet game playing (ADHD only) and 42 healthy comparison adolescents (HC) were included in the study. Magnetic resonance spectroscopy (MRS) was performed on a 3T MRI scanner. Our results indicate that the levels of NAA in both ADHD groups were lower than those observed in the HC group. The levels of Glu+Gln in the ADHD only group were increased, compared to those observed in the control group. However, Glu+Gln was not increased in the IGD+ADHD group. In addition, the levels of Glu+Gln in the IGD+ADHD group were positively correlated with K-ARS total and inattention scores. ADHD and IGD subjects were both characterized by decreased NAA levels within the frontal lobe, consistent with hypofrontality. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Rapid identification of illegal synthetic adulterants in herbal anti-diabetic medicines using near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Feng, Yanchun; Lei, Deqing; Hu, Changqin

    We created a rapid detection procedure for identifying herbal medicines illegally adulterated with synthetic drugs using near infrared spectroscopy. This procedure includes a reverse correlation coefficient method (RCCM) and comparison of characteristic peaks. Moreover, we made improvements to the RCCM based on new strategies for threshold settings. Any tested herbal medicine must meet two criteria to be identified with our procedure as adulterated. First, the correlation coefficient between the tested sample and the reference must be greater than the RCCM threshold. Next, the NIR spectrum of the tested sample must contain the same characteristic peaks as the reference. In this study, four pure synthetic anti-diabetic drugs (i.e., metformin, gliclazide, glibenclamide and glimepiride), 174 batches of laboratory samples and 127 batches of herbal anti-diabetic medicines were used to construct and validate the procedure. The accuracy of this procedure was greater than 80%. Our data suggest that this protocol is a rapid screening tool to identify synthetic drug adulterants in herbal medicines on the market.

  8. Transcranial diffuse optical monitoring of microvascular cerebral hemodynamics after thrombolysis in ischemic stroke

    NASA Astrophysics Data System (ADS)

    Zirak, Peyman; Delgado-Mederos, Raquel; Dinia, Lavinia; Carrera, David; Martí-Fàbregas, Joan; Durduran, Turgut

    2014-01-01

    The ultimate goal of therapeutic strategies for ischemic stroke is to reestablish the blood flow to the ischemic region of the brain. However, currently, the local cerebral hemodynamics (microvascular) is almost entirely inaccessible for stroke clinicians at the patient bed-side, and the recanalization of the major cerebral arteries (macrovascular) is the only available measure to evaluate the therapy, which does not always reflect the local conditions. Here we report the case of an ischemic stroke patient whose microvascular cerebral blood flow and oxygenation were monitored by a compact hybrid diffuse optical monitor during thrombolytic therapy. This monitor combined diffuse correlation spectroscopy and near-infrared spectroscopy. The reperfusion assessed by hybrid diffuse optics temporally correlated with the recanalization of the middle cerebral artery (assessed by transcranial-Doppler) and was in agreement with the patient outcome. This study suggests that upon further investigation, diffuse optics might have a potential for bed-side acute stroke monitoring and therapy guidance by providing hemodynamics information at the microvascular level.

  9. Ex-vivo UV autofluorescence imaging and fluorescence spectroscopy of atherosclerotic pathology in human aorta

    NASA Astrophysics Data System (ADS)

    Lewis, William; Williams, Maura; Franco, Walfre

    2017-02-01

    The aim of our study was to identify fluorescence excitation-emission pairs correlated with atherosclerotic pathology in ex-vivo human aorta. Wide-field images of atherosclerotic human aorta were captured using UV and visible excitation and emission wavelength pairs of several known fluorophores to investigate correspondence with gross pathologic features. Fluorescence spectroscopy and histology were performed on 21 aortic samples. A matrix of Pearson correlation coefficients were determined for the relationship between relevant histologic features and the intensity of emission for 427 wavelength pairs. A multiple linear regression analysis indicated that elastin (370/460 nm) and tryptophan (290/340 nm) fluorescence predicted 58% of the variance in intima thickness (R-squared = 0.588, F(2,18) = 12.8, p=.0003), and 48% of the variance in media thickness (R-squared = 0.483, F(2,18) = 8.42, p=.002), suggesting that endogenous fluorescence intensity at these wavelengths can be utilized for improved pathologic characterization of atherosclerotic plaques.

  10. Sequential changes of main components in different kinds of milk powders using two-dimensional infrared correlation analysis

    NASA Astrophysics Data System (ADS)

    Zhou, Qun; Sun, Su-Qin; Yu, Lu; Xu, Chang-Hua; Noda, Isao; Zhang, Xin-Rong

    2006-11-01

    Infrared (IR) spectroscopy and two-dimensional (2D) correlation IR spectroscopy are shown to offer some information about stability and shelf life of milk powders without separation and extraction of individual components in this paper. Temperature has been chosen as the perturbation to monitor the infrared behavior of various milk powders, namely, whole milk powder (WMP), sweet whole milk powder (Sweet WMP), low-fat milk powder (LFMP), and skim milk powder (SMP). The sequential order of changes in protein, fat and carbohydrates (mainly lactose) in milk powders is studied for the first time. The protein changes before the sucrose in WMP, whereas the sucrose changes before the protein in Sweet WMP under temperature perturbation. It is also found that in SMP, carbohydrate changes prior to protein whereas in LFMP and WMP protein changes first as the temperature is increased. The conclusion can provide some useful reference to understand the thermal stability of milk powders.

  11. Transcranial diffuse optical monitoring of microvascular cerebral hemodynamics after thrombolysis in ischemic stroke.

    PubMed

    Zirak, Peyman; Delgado-Mederos, Raquel; Dinia, Lavinia; Carrera, David; Martí-Fàbregas, Joan; Durduran, Turgut

    2014-01-01

    The ultimate goal of therapeutic strategies for ischemic stroke is to reestablish the blood flow to the ischemic region of the brain. However, currently, the local cerebral hemodynamics (microvascular) is almost entirely inaccessible for stroke clinicians at the patient bed-side, and the recanalization of the major cerebral arteries (macrovascular) is the only available measure to evaluate the therapy, which does not always reflect the local conditions. Here we report the case of an ischemic stroke patient whose microvascular cerebral blood flow and oxygenation were monitored by a compact hybrid diffuse optical monitor during thrombolytic therapy. This monitor combined diffuse correlation spectroscopy and near-infrared spectroscopy. The reperfusion assessed by hybrid diffuse optics temporally correlated with the recanalization of the middle cerebral artery (assessed by transcranial-Doppler) and was in agreement with the patient outcome. This study suggests that upon further investigation, diffuse optics might have a potential for bed-side acute stroke monitoring and therapy guidance by providing hemodynamics information at the microvascular level.

  12. Operando spectroscopy study of the carbon dioxide electro-reduction by iron species on nitrogen-doped carbon.

    PubMed

    Genovese, Chiara; Schuster, Manfred E; Gibson, Emma K; Gianolio, Diego; Posligua, Victor; Grau-Crespo, Ricardo; Cibin, Giannantonio; Wells, Peter P; Garai, Debi; Solokha, Vladyslav; Krick Calderon, Sandra; Velasco-Velez, Juan J; Ampelli, Claudio; Perathoner, Siglinda; Held, Georg; Centi, Gabriele; Arrigo, Rosa

    2018-03-05

    The carbon-carbon coupling via electrochemical reduction of carbon dioxide represents the biggest challenge for using this route as platform for chemicals synthesis. Here we show that nanostructured iron (III) oxyhydroxide on nitrogen-doped carbon enables high Faraday efficiency (97.4%) and selectivity to acetic acid (61%) at very-low potential (-0.5 V vs silver/silver chloride). Using a combination of electron microscopy, operando X-ray spectroscopy techniques and density functional theory simulations, we correlate the activity to acetic acid at this potential to the formation of nitrogen-coordinated iron (II) sites as single atoms or polyatomic species at the interface between iron oxyhydroxide and the nitrogen-doped carbon. The evolution of hydrogen is correlated to the formation of metallic iron and observed as dominant reaction path over iron oxyhydroxide on oxygen-doped carbon in the overall range of negative potential investigated, whereas over iron oxyhydroxide on nitrogen-doped carbon it becomes important only at more negative potentials.

  13. Homogeneous time-resolved G protein-coupled receptor-ligand binding assay based on fluorescence cross-correlation spectroscopy.

    PubMed

    Antoine, Thomas; Ott, David; Ebell, Katharina; Hansen, Kerrin; Henry, Luc; Becker, Frank; Hannus, Stefan

    2016-06-01

    G protein-coupled receptors (GPCRs) mediate many important physiological functions and are considered as one of the most successful therapeutic target classes for a wide spectrum of diseases. Drug discovery projects generally benefit from a broad range of experimental approaches for screening compound libraries and for the characterization of binding modes of drug candidates. Owing to the difficulties in solubilizing and purifying GPCRs, assay formats have been so far mainly limited to cell-based functional assays and radioligand binding assays. In this study, we used fluorescence cross-correlation spectroscopy (FCCS) to analyze the interaction of detergent-solubilized receptors to various types of GPCR ligands: endogenous peptides, small molecules, and a large surrogate antagonist represented by a blocking monoclonal antibody. Our work demonstrates the suitability of the homogeneous and time-resolved FCCS assay format for a robust, high-throughput determination of receptor-ligand binding affinities and kinetic rate constants for various therapeutically relevant GPCRs. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Transfer Ionization Studies for Proton on He - new Inside into the World of Correlation

    NASA Astrophysics Data System (ADS)

    Schmidt-Böcking, Horst

    2005-04-01

    Correlated many-particle dynamics in Coulombic systems, which is one of the unsolved fundamental problems in AMO-physics, can now be experimentally approached with so far unprecedented completeness and precision. The recent development of the COLTRIMS technique (COLd Target Recoil Ion Momentum Spectroscopy) provides a coincident multi-fragment imaging technique for eV and sub-eV fragment detection. In its completeness it is as powerful as the bubble chamber in high energy physics. In recent benchmark experiments quasi snapshots (duration as short an atto-sec) of the correlated dynamics between electrons and nuclei has been made for atomic and molecular objects. This new imaging technique has opened a powerful observation window into the hidden world of many-particle dynamics. Recent transfer ionization studies will be presented and the direct observation of correlated electron pairs will be discussed.

  15. Plasma emission spectroscopy and its relation to the refractive index of silicon nitride thin films deposited by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Sanginés, R.; Abundiz-Cisneros, N.; Hernández Utrera, O.; Diliegros-Godines, C.; Machorro-Mejía, R.

    2018-03-01

    In this work, we present a thorough study on the relation between the plasma emission and the change of the silicon nitride thin films refractive index. Thin films were grown by reactive magnetron direct current sputtering technique and deposited onto silicon wafers at different fluxes of Ar and N2 and at different working pressures. This procedure, at certain deposition parameters, produced poor quality films, i.e. films with refractive index other than pure Si3N4 films. The emission of the plasma was interrogated in real time by means of optical emission spectroscopy (OES) observing at the vicinity of the trget location. In addition, optical properties of the films were measured by in situ ellipsometric-spectroscopy and then correlated with OES observations. Changes in the film refractive index could be deduced from changes in plasma emission applying a principal component analysis.

  16. Sulfato/thiosulfato reducing bacteria characterization by FT-IR spectroscopy: a new approach to biocorrosion control.

    PubMed

    Rubio, Celine; Ott, Christelle; Amiel, Caroline; Dupont-Moral, Isabelle; Travert, Josette; Mariey, Laurence

    2006-03-01

    Sulfato and Thiosulfato Reducing Bacteria (SRB, TRB) can induce corrosion process on steel immersed in seawater. This phenomenon, called biocorrosion, costs approximatively 5 billion euros in France each year. We provide the first evidence that Fourier Transformed InfraRed (FTIR) spectroscopy is a competitive technique to evaluate the sulfurogen flora involved in biocorrosion in comparison with time consuming classical identification methods or PCR analyses. A great discrimination was obtained between SRB, TRB and some contamination bacteria known to be present in seawater and seem to be able to reduce sulfate under particular conditions. Moreover, this preliminary study demonstrates that FTIR spectroscopic and genotypic results present a good correlation (these results are confirmed by other data obtained before or later, data not shown here). The advantages gained by FTIR spectroscopy are to give information on strain phenotype and bacterial metabolism which are of great importance in corrosion processes.

  17. Physico-chemical characterization of products from vacuum oil under delayed coking process by infrared spectroscopy and chemometrics methods

    NASA Astrophysics Data System (ADS)

    Meléndez, L. V.; Cabanzo, R.; Mejía-Ospino, E.; Guzmán, A.

    2016-02-01

    Eight vacuum residues and their delayed coking liquids products from Colombian crude were study by infrared spectroscopy with attenuated total reflectance (FTIR-ATR) and principal component analysis (PCA). For the samples the structural parameters of aromaticity factor (fa), alifaticity (A2500-3100cm-1), aromatic condensation degree (GCA), length of aliphatic chains (LCA) and aliphatic chain length associated with aromatic (LACAR) were determined through the development of a methodology, which includes the previous processing of spectroscopy data, identifying the regions in the IR spectra of greatest variance using PCA and molecules patterns. The parameters were compared with the results obtained from proton magnetic resonance (1H-NMR) and 13C-NMR. The results showed the influence and correlation of structural parameters with some physicochemical properties such as API gravity, weight percent sulphur (% S) and Conradson carbon content (% CCR)

  18. Dynamics of a pulsed laser generated tin plasma expanding in an oxygen atmosphere

    NASA Astrophysics Data System (ADS)

    Barreca, F.; Fazio, E.; Neri, F.; Barletta, E.; Trusso, S.; Fazio, B.

    2005-10-01

    Semiconducting tin oxide can be successfully deposited by means of the laser ablation technique. In particular by ablating metallic tin in a controlled oxygen atmosphere, thin films of SnOx have been deposited. The partial oxygen pressure at which the films are deposited strongly influences both the stoichiometry and the structural properties of the films. In this work, we present a study of the expansion dynamics of the plasma generated by ablating a tin target by means of a pulsed laser using time and space resolved optical emission spectroscopy and fast photography imaging of the expanding plasma. Both Sn I and Sn II optical emission lines have been observed from the time-integrated spectroscopy. Time resolved-measurements revealed the dynamics of the expanding plasma in the ambient oxygen atmosphere. Stoichiometry of the films has been determined by means of X-ray photoelectron spectroscopy and correlated to the expansion dynamics of the plasma.

  19. Nonlinear two-dimensional terahertz photon echo and rotational spectroscopy in the gas phase.

    PubMed

    Lu, Jian; Zhang, Yaqing; Hwang, Harold Y; Ofori-Okai, Benjamin K; Fleischer, Sharly; Nelson, Keith A

    2016-10-18

    Ultrafast 2D spectroscopy uses correlated multiple light-matter interactions for retrieving dynamic features that may otherwise be hidden under the linear spectrum; its extension to the terahertz regime of the electromagnetic spectrum, where a rich variety of material degrees of freedom reside, remains an experimental challenge. We report a demonstration of ultrafast 2D terahertz spectroscopy of gas-phase molecular rotors at room temperature. Using time-delayed terahertz pulse pairs, we observe photon echoes and other nonlinear signals resulting from molecular dipole orientation induced by multiple terahertz field-dipole interactions. The nonlinear time domain orientation signals are mapped into the frequency domain in 2D rotational spectra that reveal J-state-resolved nonlinear rotational dynamics. The approach enables direct observation of correlated rotational transitions and may reveal rotational coupling and relaxation pathways in the ground electronic and vibrational state.

  20. Steelmaking process control using remote ultraviolet atomic emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Arnold, Samuel

    Steelmaking in North America is a multi-billion dollar industry that has faced tremendous economic and environmental pressure over the past few decades. Fierce competition has driven steel manufacturers to improve process efficiency through the development of real-time sensors to reduce operating costs. In particular, much attention has been focused on end point detection through furnace off gas analysis. Typically, off-gas analysis is done with extractive sampling and gas analyzers such as Non-dispersive Infrared Sensors (NDIR). Passive emission spectroscopy offers a more attractive approach to end point detection as the equipment can be setup remotely. Using high resolution UV spectroscopy and applying sophisticated emission line detection software, a correlation was observed between metal emissions and the process end point during field trials. This correlation indicates a relationship between the metal emissions and the status of a steelmaking melt which can be used to improve overall process efficiency.

  1. [Quality anlysis of the before redrying raw tobacco & after redrying sheet tobacco by using online near infrared spectroscopy].

    PubMed

    Tang, Zhao-qi; Liu, Ying; Shu, Ru-xin; Yang, Kai; Zhao, Long-lian; Zhang, Lu-da; Zhang Ye-hui; Li, Jun-hui

    2014-12-01

    In this paper, the 7 different origin before redrying raw tobacco & after redrying sheet tobacco's online near infrared spectroscopy were collected from sorting & redrying production line specifically for "ZHONGHUA" brand. By using the projection model bulit by different origin tobacco's online spectroscopy and the method of variance and correlation analysis, we studied the uniformity and similarity quality characteristics change before and after the redrying of tobacco, which can provide support for understanding the quality of the tobacco material and cigarette product formulations. This study show that selecting about 10,000 by equally spaced sampling time from a huge number of online near infrared spectroscopy, for modeling are feasible, and representative. After manual sorting, threshing, and redrying, the uiformity of each origin tobacco near-infrared spectroscopy can be increased by 10%~35%, homogeneity of the tobacco leaf has been significantly improved. After redrying, the similar relationship embodied in the origin also have significant changes, overall it reduce significantly, that shows the quality differences embodied by origin significantly improve, which can provide greater space for formulations, it shows the need for high-quality Chinese cigarette production requires large amounts of financial and human resources to implement cured tobacco processing. The traditional means of chemical analysis, it takes a lot of time and effort, it is difficult to control the entire processing chain, Near Infrared Spectroscopy with its rapid, non-destructive advantage, not only can achieve real-time detection and quality control, but also can take full advantage of near-infrared spectroscopy information created in the production process, which is a very promising online analytical detection technology in many industries especially in the agricultural and food processing industries.

  2. Correlations between near-infrared spectroscopy, perfusion index, and cardiac outputs in extremely preterm infants in the first 72 h of life.

    PubMed

    Janaillac, Marie; Beausoleil, Thierry P; Barrington, Keith J; Raboisson, Marie-Josée; Karam, Oliver; Dehaes, Mathieu; Lapointe, Anie

    2018-04-01

    Haemodynamic assessment during the transitional period in preterm infants is challenging. We aimed to describe the relationships between cerebral regional tissue oxygen saturation (CrSO 2 ), perfusion index (PI), echocardiographic, and clinical parameters in extremely preterm infants in their first 72 h of life. Twenty newborns born at < 28 weeks of gestation were continuously monitored with CrSO 2 and preductal PI. Cardiac output was measured at H6, H24, H48, and H72. The median gestational age and birth weight were 25.0 weeks (24-26) and 750 g (655-920), respectively. CrSO 2 and preductal PI had r values < 0.35 with blood gases, lactates, haemoglobin, and mean blood pressure. Cardiac output significantly increased over the 72 h of the study period. Fifteen patients had at least one episode of low left and/or right ventricular output (RVO), during which there was a strong correlation between CrSO 2 and superior vena cava (SVC) flow (at H6 (r = 0.74) and H24 (r = 0.86)) and between PI and RVO (at H6 (r = 0.68) and H24 (r = 0.92)). Five patients had low SVC flow (≤ 40 mL/kg/min) at H6, during which PI was strongly correlated with RVO (r = 0.98). CrSO 2 and preductal PI are strongly correlated with cardiac output during low cardiac output states. What is Known: • Perfusion index and near-infrared spectroscopy are non-invasive tools to evaluate haemodynamics in preterm infants. • Pre- and postductal perfusion indexes strongly correlate with left ventricular output in term infants, and near-infrared spectroscopy has been validated to assess cerebral oxygenation in term and preterm infants. What is New: • Cerebral regional tissue oxygen saturation and preductal perfusion index were strongly correlated with cardiac output during low cardiac output states. • The strength of the correlation between cerebral regional tissue oxygen saturation, preductal perfusion index, and cardiac output varied in the first 72 h of life, reflecting the complexity of the transitional physiology.

  3. Relationships between astrogliosis and 1H MR spectroscopic measures of brain choline/creatine and myo-inositol/creatine in a primate model.

    PubMed

    Kim, John P; Lentz, Margaret R; Westmoreland, Susan V; Greco, Jane B; Ratai, Eva M; Halpern, Elkan; Lackner, Andrew A; Masliah, Eliezer; González, R Gilberto

    2005-04-01

    In vivo 1H MR spectroscopy demonstrates elevated choline (Cho)/creatine (Cr) and myo-inositol (MI)/Cr in many neurologic diseases that has been ascribed to gliosis. We tested the hypotheses that in vivo Cho/Cr and/or MI/Cr levels are correlated with glial fibrillary acidic protein (GFAP) immunostains and that the changes are water-soluble metabolites. We performed postmortem 1H MR spectroscopy and GFAP immunohistochemistry in brains from seven rhesus macaques acutely infected with simian immunodeficiency virus (SIV) and in four controls and compared the findings with previous in vivo MR spectroscopic results. Changes in neuropathologic and MR spectroscopic markers after infection and relationships among plasma viral load, GFAP immunostaining results, and ex vivo and in vivo MR spectroscopic measures were statistically evaluated. On GFAP immunostaining and in vivo MR spectroscopy, GFAP, Cho/Cr and MI/Cr were highest near the time of peak plasma viral load at 11 days postinfection (dpi). Immunostains returned to baseline by 14 dpi, whereas Cho/Cr and MI/Cr had different time courses, with the former dropping below baseline and the latter remaining elevated. Viral load and immunostains were significantly correlated. No correlation was found between ex vivo Cho/Cr or MI/Cr and viral load or between metabolite ratios from in vivo and ex vivo MR spectroscopy. In acute SIV infection, plasma viral load was significantly correlated with brain GFAP immunostains and in vivo 1H MR spectroscopic Cho/Cr. In vivo changes in Cho/Cr and MI/Cr were principally due to contributions other than those of low-molecular-weight water-soluble metabolites.

  4. Microvascular versus macrovascular cerebral vasomotor reactivity in patients with severe internal carotid artery stenosis or occlusion.

    PubMed

    Zirak, Peyman; Delgado-Mederos, Raquel; Dinia, Lavinia; Martí-Fàbregas, Joan; Durduran, Turgut

    2014-02-01

    In patients with severe internal carotid artery steno-occlusive lesions (ISOL), impaired cerebrovascular reactivity (CVR) is predictive of future ischemic stroke (IS) or transient ischemic attack (TIA). Therefore, the evaluation of CVR in ISOL patients may be a means to evaluate the risk for IS/TIA and decide on an intervention. Our aim was (1) to explore the feasibility of concurrent near-infrared spectroscopy (NIRS-DOS), diffuse correlation spectroscopy, and transcranial Doppler for CVR assessment in ISOL patients, and (2) to compare macrovascular and microvascular CVR in ISOL patients and explore its potential for IS/TIA risk stratification. Twenty-seven ISOL patients were recruited. The changes in continuous microvascular and macrovascular hemodynamics upon acetazolamide injection were used to determine CVR. Oxyhemoglobin (HbO2, by near-infrared spectroscopy), microvascular cerebral blood flow (CBF, by diffuse correlation spectroscopy) and CBF velocity (by transcranial Doppler) showed significant increases upon acetazolamide injection in all subjects (P < .03). Only macrovascular CVR (P = .024) and none of the microvascular measures were significantly dependent on the presence of ISOL. In addition, while CBF was significantly correlated with HbO2, neither of these microvascular measures correlated with macrovascular CBF velocity. We demonstrated the simultaneous, continuous, and noninvasive evaluation of CVR at both the microvasculature and macrovasculature. We found that macrovascular CVR response depends on the presence of ISOL, whereas the microvascular CVR did not significantly depend on the ISOL presence, possibly due to the role of collaterals other than those of the circle of Willis. The concurrent microvascular and macrovascular CVR measurement in the ISOL patients might improve future IS/TIA risk assessment. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.

  5. Evaluation of different grades of ginseng using Fourier-transform infrared and two-dimensional infrared correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-ling; Chen, Jian-bo; Lei, Yu; Zhou, Qun; Sun, Su-qin; Noda, Isao

    2010-06-01

    Ginseng is one of the most widely used herbal medicines which have many kinds of pharmaceutical values. The discrimination of grades of ginseng includes the cultivation types and the growth years herein. To evaluate the different grades of ginseng, the fibrous roots and rhizome roots of ginseng were analyzed by Fourier-transform infrared and two-dimensional infrared correlation spectroscopy in this paper. The fibrous root and rhizome root of ginseng have different content of starch, calcium oxalate and other components. For the fibrous roots of ginseng, mountain cultivation ginseng (MCG), garden cultivation ginseng (GCG) and transplanted cultivation ginseng (TCG) have clear difference in the infrared spectra and second derivative spectra in the range of 1800-400 cm -1, and clearer difference was observed in the range of 1045-1160 and 1410-1730 cm -1 in 2D synchronous correlation spectra. Three kinds of ginseng can be clustered very well by using SIMCA analysis on the basis of PCA as well. For the rhizome roots, the content of calcium oxalate and starch change with growth years in the IR spectra, and some useful procedure can be obtained by the analysis of 2D IR synchronous spectra in the range of 1050-1415 cm -1. Also, ginsengs cultivated in different growth years were clustered perfectly by using SIMCA analysis. The results suggested that different grades of ginseng can be well recognized using the mid-infrared spectroscopy assisted by 2D IR correlation spectroscopy, which provide the macro-fingerprint characteristics of ginseng in different parts and supplied a rapid, effective approach for the evaluation of the quality of ginseng.

  6. Solution structure of the DNA-binding domain of the heat shock transcription factor determined by multidimensional heteronuclear magnetic resonance spectroscopy.

    PubMed Central

    Damberger, F. F.; Pelton, J. G.; Harrison, C. J.; Nelson, H. C.; Wemmer, D. E.

    1994-01-01

    The solution structure of the 92-residue DNA-binding domain of the heat shock transcription factor from Kluyveromyces lactis has been determined using multidimensional NMR methods. Three-dimensional (3D) triple resonance, 1H-13C-13C-1H total correlation spectroscopy, and 15N-separated total correlation spectroscopy-heteronuclear multiple quantum correlation experiments were used along with various 2D spectra to make nearly complete assignments for the backbone and side-chain 1H, 15N, and 13C resonances. Five-hundred eighty-three NOE constraints identified in 3D 13C- and 15N-separated NOE spectroscopy (NOESY)-heteronuclear multiple quantum correlation spectra and a 4-dimensional 13C/13C-edited NOESY spectrum, along with 35 phi, 9 chi 1, and 30 hydrogen bond constraints, were used to calculate 30 structures by hybrid distance geometry/stimulated annealing protocol, of which 24 were used for structural comparison. The calculations revealed that a 3-helix bundle packs against a small 4-stranded antiparallel beta-sheet. The backbone RMS deviation (RMSD) for the family of structures was 1.03 +/- 0.19 A with respect to the average structure. The topology is analogous to that of the C-terminal domain of the catabolite gene activator protein and appears to be in the helix-turn-helix family of DNA-binding proteins. The overall fold determined by the NMR data is consistent with recent crystallographic work on this domain (Harrison CJ, Bohm AA, Nelson HCM, 1994, Science 263:224) as evidenced by RMSD between backbone atoms in the NMR and X-ray structures of 1.77 +/- 0.20 A. Several differences were identified some of which may be due to protein-protein interactions in the crystal. PMID:7849597

  7. Fluorescence Spectroscopy Applied to Monitoring Biodiesel Degradation: Correlation with Acid Value and UV Absorption Analyses.

    PubMed

    Vasconcelos, Maydla Dos Santos; Passos, Wilson Espíndola; Lescanos, Caroline Honaiser; Pires de Oliveira, Ivan; Trindade, Magno Aparecido Gonçalves; Caires, Anderson Rodrigues Lima; Muzzi, Rozanna Marques

    2018-01-01

    The techniques used to monitor the quality of the biodiesel are intensely discussed in the literature, partly because of the different oil sources and their intrinsic physicochemical characteristics. This study aimed to monitor the thermal degradation of the fatty acid methyl esters of Sesamum indicum L. and Raphanus sativus L. biodiesels (SILB and RSLB, resp.). The results showed that both biodiesels present a high content of unsaturated fatty acids, ∼84% (SILB) and ∼90% (RSLB). The SILB had a high content of polyunsaturated linoleic fatty acid (18  :  2), about 49%, and the oleic monounsaturated (18  :  1), ∼34%. On the other hand, RSLB presented a considerable content of linolenic fatty acid (18  :  3), ∼11%. The biodiesel samples were thermal degraded at 110°C for 48 hours, and acid value, UV absorption, and fluorescence spectroscopy analysis were carried out. The results revealed that both absorption and fluorescence presented a correlation with acid value as a function of degradation time by monitoring absorptions at 232 and 270 nm as well as the emission at 424 nm. Although the obtained correlation is not completely linear, a direct correlation was observed in both cases, revealing that both properties can be potentially used for monitoring the biodiesel degradation.

  8. Composite vibrational spectroscopy of the group 12 difluorides: ZnF2, CdF2, and HgF2.

    PubMed

    Solomonik, Victor G; Smirnov, Alexander N; Navarkin, Ilya S

    2016-04-14

    The vibrational spectra of group 12 difluorides, MF2 (M = Zn, Cd, Hg), were investigated via coupled cluster singles, doubles, and perturbative triples, CCSD(T), including core correlation, with a series of correlation consistent basis sets ranging in size from triple-zeta through quintuple-zeta quality, which were then extrapolated to the complete basis set (CBS) limit using a variety of extrapolation procedures. The explicitly correlated coupled cluster method, CCSD(T)-F12b, was employed as well. Although exhibiting quite different convergence behavior, the F12b method yielded the CBS limit estimates closely matching more computationally expensive conventional CBS extrapolations. The convergence with respect to basis set size was examined for the contributions entering into composite vibrational spectroscopy, including those from higher-order correlation accounted for through the CCSDT(Q) level of theory, second-order spin-orbit coupling effects assessed within four-component and two-component relativistic formalisms, and vibrational anharmonicity evaluated via a perturbative treatment. Overall, the composite results are in excellent agreement with available experimental values, except for the CdF2 bond-stretching frequencies compared to spectral assignments proposed in a matrix isolation infrared and Raman study of cadmium difluoride vapor species [Loewenschuss et al., J. Chem. Phys. 50, 2502 (1969); Givan and Loewenschuss, J. Chem. Phys. 72, 3809 (1980)]. These assignments are called into question in the light of the composite results.

  9. Composite vibrational spectroscopy of the group 12 difluorides: ZnF2, CdF2, and HgF2

    NASA Astrophysics Data System (ADS)

    Solomonik, Victor G.; Smirnov, Alexander N.; Navarkin, Ilya S.

    2016-04-01

    The vibrational spectra of group 12 difluorides, MF2 (M = Zn, Cd, Hg), were investigated via coupled cluster singles, doubles, and perturbative triples, CCSD(T), including core correlation, with a series of correlation consistent basis sets ranging in size from triple-zeta through quintuple-zeta quality, which were then extrapolated to the complete basis set (CBS) limit using a variety of extrapolation procedures. The explicitly correlated coupled cluster method, CCSD(T)-F12b, was employed as well. Although exhibiting quite different convergence behavior, the F12b method yielded the CBS limit estimates closely matching more computationally expensive conventional CBS extrapolations. The convergence with respect to basis set size was examined for the contributions entering into composite vibrational spectroscopy, including those from higher-order correlation accounted for through the CCSDT(Q) level of theory, second-order spin-orbit coupling effects assessed within four-component and two-component relativistic formalisms, and vibrational anharmonicity evaluated via a perturbative treatment. Overall, the composite results are in excellent agreement with available experimental values, except for the CdF2 bond-stretching frequencies compared to spectral assignments proposed in a matrix isolation infrared and Raman study of cadmium difluoride vapor species [Loewenschuss et al., J. Chem. Phys. 50, 2502 (1969); Givan and Loewenschuss, J. Chem. Phys. 72, 3809 (1980)]. These assignments are called into question in the light of the composite results.

  10. Diurnal changes in glutamate + glutamine levels of healthy young adults assessed by proton magnetic resonance spectroscopy.

    PubMed

    Volk, Carina; Jaramillo, Valeria; Merki, Renato; O'Gorman Tuura, Ruth; Huber, Reto

    2018-06-08

    The glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor is involved in synaptic plasticity processes, and animal studies have demonstrated altered expression across the sleep wake cycle. Accordingly, glutamate levels are reduced during non-rapid eye movement (NREM) sleep and the rate of this decrease is positively correlated with sleep EEG slow wave activity (SWA). Here, we combined proton magnetic resonance spectroscopy ( 1 H-MRS) and high-density sleep EEG to assess if 1 H-MRS is sensitive to diurnal changes of glutamate + glutamine (GLX) in healthy young adults and if potential overnight changes of GLX are correlated to SWA. 1 H-MRS was measured in the parietal lobe in the evening and in the subsequent morning. High-density sleep EEG was recorded overnight between the evening and morning scans. Our results revealed a significant overnight reduction in GLX, but no significant changes in other metabolites. The decrease in GLX positively correlated with the decrease of SWA. Our study demonstrates that quantification of diurnal changes in GLX is possible by means of 1 H-MRS and indicates that overnight changes in GLX are related to SWA, a marker that is closely linked to the restorative function of sleep. This relationship might be of particular interest in clinical populations in which sleep is disturbed. © 2018 Wiley Periodicals, Inc.

  11. Altered phospholipid metabolism in schizophrenia: a phosphorus 31 nuclear magnetic resonance spectroscopy study.

    PubMed

    Weber-Fahr, Wolfgang; Englisch, Susanne; Esser, Andrea; Tunc-Skarka, Nuran; Meyer-Lindenberg, Andreas; Ende, Gabriele; Zink, Mathias

    2013-12-30

    Phospholipid (PL) metabolism is investigated by in vivo 31P magnetic resonance spectroscopy (MRS). Inconsistent alterations of phosphocholine (PC), phosphoethanolamine (PE), glycerophosphocholine (GPC) and glycerophosphoethanolamine (GPE) have been described in schizophrenia, which might be overcome by specific editing techniques. The selective refocused insensitive nuclei-enhanced polarization transfer (RINEPT) technique was applied in a cross-sectional study involving 11 schizophrenia spectrum disorder patients (SZP) on stable antipsychotic monotherapy and 15 matched control subjects. Metabolite signals were found to be modulated by cerebrospinal fluid (CSF) content and gray matter/brain matter ratio. Corrected metabolite concentrations of PC, GPC and PE differed between patients and controls in both subcortical and cortical regions, whereas antipsychotic medication exerted only small effects. Significant correlations were found between the severity of clinical symptoms and the assessed signals. In particular, psychotic symptoms correlated with PC levels in the cerebral cortex, depression with PC levels in the cerebellum and executive functioning with GPC in the insular and temporal cortices. In conclusion, after controlling for age and tissue composition, this investigation revealed alterations of metabolite levels in SZP and correlations with clinical properties. RINEPT 31P MRS should also be applied to at-risk-mental-state patients as well as drug-naïve and chronically treated schizophrenic patients in order to enhance the understanding of longitudinal alterations of PL metabolism in schizophrenia. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Altered cortical activation and connectivity patterns for visual attention processing in young adults post-traumatic brain injury: A functional near infrared spectroscopy study.

    PubMed

    Wu, Ziyan; Mazzola, Catherine A; Catania, Lori; Owoeye, Oyindamola; Yaramothu, Chang; Alvarez, Tara; Gao, Yu; Li, Xiaobo

    2018-06-01

    This study aimed at understanding the neurobiological mechanisms associated with inattention induced by traumatic brain injury (TBI). To eliminate the potential confounding caused by the heterogeneity of TBI, we focused on young adults postsports-related concussion (SRC). Functional near-infrared spectroscopy (fNIRS) data were collected from 27 young adults post-SRC and 27 group-matched normal controls (NCs), while performing a visual sustained attention task. Task responsive cortical activation maps and pairwise functional connectivity among six regions of interest were constructed for each subject. Correlations among the brain imaging measures and clinical measures of attention were calculated in each group. Compared to the NCs, the SRC group showed significantly increased brain activation in left middle frontal gyrus (MFG) and increased functional connectivity between right inferior occipital cortex (IOC) bilateral calcarine gyri (CG). The left MFG activation magnitude was significantly negatively correlated with the hyperactive/impulsive symptom severity measure in the NCs, but not in the patients. The right hemisphere CG-IOC functional connectivity showed a significant positive correlation with the hyperactive/impulsive symptom severity measure in patients, but not in NCs. The current data suggest that abnormal left MFG activation and hyper-communications between right IOC and bilateral CG during visual attention processing may significantly contribute to behavioral manifestations of attention deficits in patients with TBI. © 2018 John Wiley & Sons Ltd.

  13. Neural correlates of spontaneous deception: A functional near-infrared spectroscopy (fNIRS) study

    PubMed Central

    Ding, Xiao Pan; Gao, Xiaoqing; Fu, Genyue; Lee, Kang

    2013-01-01

    Deception is commonly seen in everyday social interactions. However, most of the knowledge about the underlying neural mechanism of deception comes from studies where participants were instructed when and how to lie. To study spontaneous deception, we designed a guessing game modeled after Greene and Paxton (2009), in which lying is the only way to achieve the performance level needed to end the game. We recorded neural responses during the game using near-infrared spectroscopy (NIRS). We found that when compared to truth-telling, spontaneous deception, like instructed deception, engenders greater involvement of such prefrontal regions as the left superior frontal gyrus. We also found that the correct-truth trials produced greater neural activities in the left middle frontal gyrus and right superior frontal gyrus than the incorrect-truth trials, suggesting the involvement of the reward system. Furthermore, the present study confirmed the feasibility of using NIRS to study spontaneous deception. PMID:23340482

  14. Three- α particle correlations in quasi-projectile decay in 12C + 24Mg collisions at 35A MeV

    NASA Astrophysics Data System (ADS)

    Quattrocchi, L.; Acosta, L.; Amorini, F.; Anzalone, A.; Auditore, L.; Berceanu, I.; Cardella, G.; Chbihi, A.; De Filippo, E.; De Luca, S.; Dell'Aquila, D.; Francalanza, L.; Gnoffo, B.; Grzeszczuk, A.; Lanzalone, G.; Lombardo, I.; Martel, I.; Martorana, N. S.; Minniti, T.; Norella, S.; Pagano, A.; Pagano, E. V.; Papa, M.; Pirrone, S.; Politi, G.; Porto, F.; Rizzo, F.; Rosato, E.; Russotto, P.; Trifirò, A.; Trimarchi, M.; Verde, G.; Veselsky, M.; Vigilante, M.

    2017-11-01

    Two and multi particle correlations have been studied in peripheral 12C + 24Mg collisions at 35A MeV with CHIMERA 4 π multi detector, in order to explore resonances produced in light nuclei. Correlations techniques have become a tool to explore nuclear structure properties but also to evaluate the competition between simultaneous and sequential channels in decay of light isotopes. The exploration of features such as branching ratios with respect to different decay channels (sequential vs. simultaneous) could provide information on in-medium effects on nuclear structure properties, an important perspective for research on the nuclear interaction. The performed experiment is preliminary to further studies to be performed by coupling of CHIMERA to FARCOS (Femtoscope ARray for COrrelations and Spectroscopy, FARCOS TDR available at https://drive.google.com/file/d/0B5CgGWz8LpOOc3pGTWdOcDBoWFE) array devoted to measurements of two and multi particle correlations with high energy and angular resolutions.

  15. Statistical Analysis of Hubble /WFC3 Transit Spectroscopy of Extrasolar Planets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Guangwei; Deming, Drake; Knutson, Heather

    2017-10-01

    Transmission spectroscopy provides a window to study exoplanetary atmospheres, but that window is fogged by clouds and hazes. Clouds and haze introduce a degeneracy between the strength of gaseous absorption features and planetary physical parameters such as abundances. One way to break that degeneracy is via statistical studies. We collect all published HST /WFC3 transit spectra for 1.1–1.65 μ m water vapor absorption and perform a statistical study on potential correlations between the water absorption feature and planetary parameters. We fit the observed spectra with a template calculated for each planet using the Exo-transmit code. We express the magnitude ofmore » the water absorption in scale heights, thereby removing the known dependence on temperature, surface gravity, and mean molecular weight. We find that the absorption in scale heights has a positive baseline correlation with planetary equilibrium temperature; our hypothesis is that decreasing cloud condensation with increasing temperature is responsible for this baseline slope. However, the observed sample is also intrinsically degenerate in the sense that equilibrium temperature correlates with planetary mass. We compile the distribution of absorption in scale heights, and we find that this distribution is closer to log-normal than Gaussian. However, we also find that the distribution of equilibrium temperatures for the observed planets is similarly log-normal. This indicates that the absorption values are affected by observational bias, whereby observers have not yet targeted a sufficient sample of the hottest planets.« less

  16. Statistical Analysis of Hubble/WFC3 Transit Spectroscopy of Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Fu, Guangwei; Deming, Drake; Knutson, Heather; Madhusudhan, Nikku; Mandell, Avi; Fraine, Jonathan

    2018-01-01

    Transmission spectroscopy provides a window to study exoplanetary atmospheres, but that window is fogged by clouds and hazes. Clouds and haze introduce a degeneracy between the strength of gaseous absorption features and planetary physical parameters such as abundances. One way to break that degeneracy is via statistical studies. We collect all published HST/WFC3 transit spectra for 1.1-1.65 micron water vapor absorption, and perform a statistical study on potential correlations between the water absorption feature and planetary parameters. We fit the observed spectra with a template calculated for each planet using the Exo-Transmit code. We express the magnitude of the water absorption in scale heights, thereby removing the known dependence on temperature, surface gravity, and mean molecular weight. We find that the absorption in scale heights has a positive baseline correlation with planetary equilibrium temperature; our hypothesis is that decreasing cloud condensation with increasing temperature is responsible for this baseline slope. However, the observed sample is also intrinsically degenerate in the sense that equilibrium temperature correlates with planetary mass. We compile the distribution of absorption in scale heights, and we find that this distribution is closer to log-normal than Gaussian. However, we also find that the distribution of equilibrium temperatures for the observed planets is similarly log-normal. This indicates that the absorption values are affected by observational bias, whereby observers have not yet targeted a sufficient sample of the hottest planets.

  17. Statistical Analysis of Hubble/WFC3 Transit Spectroscopy of Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Fu, Guangwei; Deming, Drake; Knutson, Heather; Madhusudhan, Nikku; Mandell, Avi; Fraine, Jonathan

    2017-10-01

    Transmission spectroscopy provides a window to study exoplanetary atmospheres, but that window is fogged by clouds and hazes. Clouds and haze introduce a degeneracy between the strength of gaseous absorption features and planetary physical parameters such as abundances. One way to break that degeneracy is via statistical studies. We collect all published HST/WFC3 transit spectra for 1.1-1.65 μm water vapor absorption and perform a statistical study on potential correlations between the water absorption feature and planetary parameters. We fit the observed spectra with a template calculated for each planet using the Exo-transmit code. We express the magnitude of the water absorption in scale heights, thereby removing the known dependence on temperature, surface gravity, and mean molecular weight. We find that the absorption in scale heights has a positive baseline correlation with planetary equilibrium temperature; our hypothesis is that decreasing cloud condensation with increasing temperature is responsible for this baseline slope. However, the observed sample is also intrinsically degenerate in the sense that equilibrium temperature correlates with planetary mass. We compile the distribution of absorption in scale heights, and we find that this distribution is closer to log-normal than Gaussian. However, we also find that the distribution of equilibrium temperatures for the observed planets is similarly log-normal. This indicates that the absorption values are affected by observational bias, whereby observers have not yet targeted a sufficient sample of the hottest planets.

  18. 1,1-dimethylhydrazine as a high purity nitrogen source for MOVPE-water reduction and quantification using nuclear magnetic resonance, gas chromatography-atomic emission detection spectroscopy and cryogenic-mass spectroscopy analytical techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Odedra, R.; Smith, L.M.; Rushworth, S.A.

    2000-01-01

    Hydrazine derivatives are attractive low temperature nitrogen sources for use in MOVPE due to their low thermal stability. However their purification and subsequent analysis has not previously been investigated in depth for this application. A detailed study on 1,1-dimethylhydrazine {l{underscore}brace}(CH{sub 3}){sub 2}N-NH{sub 2}{r{underscore}brace} purified by eight different methods and the subsequent quantitative measurements of water present in the samples obtained is reported here. A correlation between {sup 1}H nuclear magnetic resonance spectroscopy (NMR), gas chromatography-atomic emission detection (GC-AED) and cryogenic mass spectroscopy (Cryogenic-MS) has been performed. All three analysis techniques can be used to measure water in the samples andmore » with the best purification the water content can be lowered well below 100 ppm. The high purity of this material has been demonstrated by growth results and the state-of-the-art performance of laser diodes.« less

  19. Multi-parameters monitoring during traditional Chinese medicine concentration process with near infrared spectroscopy and chemometrics

    NASA Astrophysics Data System (ADS)

    Liu, Ronghua; Sun, Qiaofeng; Hu, Tian; Li, Lian; Nie, Lei; Wang, Jiayue; Zhou, Wanhui; Zang, Hengchang

    2018-03-01

    As a powerful process analytical technology (PAT) tool, near infrared (NIR) spectroscopy has been widely used in real-time monitoring. In this study, NIR spectroscopy was applied to monitor multi-parameters of traditional Chinese medicine (TCM) Shenzhiling oral liquid during the concentration process to guarantee the quality of products. Five lab scale batches were employed to construct quantitative models to determine five chemical ingredients and physical change (samples density) during concentration process. The paeoniflorin, albiflorin, liquiritin and samples density were modeled by partial least square regression (PLSR), while the content of the glycyrrhizic acid and cinnamic acid were modeled by support vector machine regression (SVMR). Standard normal variate (SNV) and/or Savitzkye-Golay (SG) smoothing with derivative methods were adopted for spectra pretreatment. Variable selection methods including correlation coefficient (CC), competitive adaptive reweighted sampling (CARS) and interval partial least squares regression (iPLS) were performed for optimizing the models. The results indicated that NIR spectroscopy was an effective tool to successfully monitoring the concentration process of Shenzhiling oral liquid.

  20. In Situ Industrial Bimetallic Catalyst Characterization using Scanning Transmission Electron Microscopy and X-ray Absorption Spectroscopy at One Atmosphere and Elevated Temperature.

    PubMed

    Prestat, Eric; Kulzick, Matthew A; Dietrich, Paul J; Smith, Mr Matthew; Tien, Mr Eu-Pin; Burke, M Grace; Haigh, Sarah J; Zaluzec, Nestor J

    2017-08-18

    We have developed a new experimental platform for in situ scanning transmission electron microscope (STEM) energy dispersive X-ray spectroscopy (EDS) which allows real time, nanoscale, elemental and structural changes to be studied at elevated temperature (up to 1000 °C) and pressure (up to 1 atm). Here we demonstrate the first application of this approach to understand complex structural changes occurring during reduction of a bimetallic catalyst, PdCu supported on TiO 2 , synthesized by wet impregnation. We reveal a heterogeneous evolution of nanoparticle size, distribution, and composition with large differences in reduction behavior for the two metals. We show that the data obtained is complementary to in situ STEM electron energy loss spectroscopy (EELS) and when combined with in situ X-ray absorption spectroscopy (XAS) allows correlation of bulk chemical state with nanoscale changes in elemental distribution during reduction, facilitating new understanding of the catalytic behavior for this important class of materials. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  1. Physical characterization of Warm Spitzer-observed near-Earth objects

    NASA Astrophysics Data System (ADS)

    Thomas, Cristina A.; Emery, Joshua P.; Trilling, David E.; Delbó, Marco; Hora, Joseph L.; Mueller, Michael

    2014-01-01

    Near-infrared spectroscopy of Near-Earth Objects (NEOs) connects diagnostic spectral features to specific surface mineralogies. The combination of spectroscopy with albedos and diameters derived from thermal infrared observations can increase the scientific return beyond that of the individual datasets. For instance, some taxonomic classes can be separated into distinct compositional groupings with albedo and different mineralogies with similar albedos can be distinguished with spectroscopy. To that end, we have completed a spectroscopic observing campaign to complement the ExploreNEOs Warm Spitzer program that obtained albedos and diameters of nearly 600 NEOs (Trilling, D.E. et al. [2010]. Astron. J. 140, 770-784. http://dx.doi.org/10.1088/0004-6256/140/3/770). The spectroscopy campaign included visible and near-infrared observations of ExploreNEOs targets from various observatories. Here we present the results of observations using the low-resolution prism mode (˜0.7-2.5 μm) of the SpeX instrument on the NASA Infrared Telescope Facility (IRTF). We also include near-infrared observations of ExploreNEOs targets from the MIT-UH-IRTF Joint Campaign for Spectral Reconnaissance. Our dataset includes near-infrared spectra of 187 ExploreNEOs targets (125 observations of 92 objects from our survey and 213 observations of 154 objects from the MIT survey). We identify a taxonomic class for each spectrum and use band parameter analysis to investigate the mineralogies for the S-, Q-, and V-complex objects. Our analysis suggests that for spectra that contain near-infrared data but lack the visible wavelength region, the Bus-DeMeo system misidentifies some S-types as Q-types. We find no correlation between spectral band parameters and ExploreNEOs albedos and diameters. We investigate the correlations of phase angle with Band Area Ratio and near-infrared spectral slope. We find slightly negative Band Area Ratio (BAR) correlations with phase angle for Eros and Ivar, but a positive BAR correlation with phase angle for Ganymed. The results of our phase angle study are consistent with those of (Sanchez, J.A., Reddy, V., Nathues, A., Cloutis, E.A., Mann, P., Hiesinger, H. [2012]. Icarus 220, 36-50. http://dx.doi.org/10.1016/j.icarus.2012.04.008, arXiv:1205.0248). We find evidence for spectral phase reddening for Eros, Ganymed, and Ivar. We identify the likely ordinary chondrite type analog for an appropriate subset of our sample. Our resulting proportions of H, L, and LL ordinary chondrites differ from those calculated for meteorite falls and in previous studies of ordinary chondrite-like NEOs.

  2. Source Determination of Red Gel Pen Inks using Raman Spectroscopy and Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy combined with Pearson's Product Moment Correlation Coefficients and Principal Component Analysis.

    PubMed

    Mohamad Asri, Muhammad Naeim; Mat Desa, Wan Nur Syuhaila; Ismail, Dzulkiflee

    2018-01-01

    The potential combination of two nondestructive techniques, that is, Raman spectroscopy (RS) and attenuated total reflectance-fourier transform infrared (ATR-FTIR) spectroscopy with Pearson's product moment correlation (PPMC) coefficient (r) and principal component analysis (PCA) to determine the actual source of red gel pen ink used to write a simulated threatening note, was examined. Eighteen (18) red gel pens purchased from Japan and Malaysia from November to December 2014 where one of the pens was used to write a simulated threatening note were analyzed using RS and ATR-FTIR spectroscopy, respectively. The spectra of all the red gel pen inks including the ink deposited on the simulated threatening note gathered from the RS and ATR-FTIR analyses were subjected to PPMC coefficient (r) calculation and principal component analysis (PCA). The coefficients r = 0.9985 and r = 0.9912 for pairwise combination of RS and ATR-FTIR spectra respectively and similarities in terms of PC1 and PC2 scores of one of the inks to the ink deposited on the simulated threatening note substantiated the feasibility of combining RS and ATR-FTIR spectroscopy with PPMC coefficient (r) and PCA for successful source determination of red gel pen inks. The development of pigment spectral library had allowed the ink deposited on the threatening note to be identified as XSL Poppy Red (CI Pigment Red 112). © 2017 American Academy of Forensic Sciences.

  3. Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS

    PubMed Central

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2016-01-01

    Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and the use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D 1H/13C/1H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t1 and t3 periods, respectively. In addition to through-space and through-bond 13C/1H and 13C/13C chemical shift correlations, the 3D 1H/13C/1H experiment also provides a COSY-type 1H/1H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices (1H/1H chemical shift correlation spectrum) at different 13C chemical shift frequencies from the 3D 1H/13C/1H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined from the 3D 1H/13C/1H experiment would be useful to study the structure and dynamics of a variety of chemical and biological solids. PMID:26801026

  4. Tutorial: Junction spectroscopy techniques and deep-level defects in semiconductors

    NASA Astrophysics Data System (ADS)

    Peaker, A. R.; Markevich, V. P.; Coutinho, J.

    2018-04-01

    The term junction spectroscopy embraces a wide range of techniques used to explore the properties of semiconductor materials and semiconductor devices. In this tutorial review, we describe the most widely used junction spectroscopy approaches for characterizing deep-level defects in semiconductors and present some of the early work on which the principles of today's methodology are based. We outline ab-initio calculations of defect properties and give examples of how density functional theory in conjunction with formation energy and marker methods can be used to guide the interpretation of experimental results. We review recombination, generation, and trapping of charge carriers associated with defects. We consider thermally driven emission and capture and describe the techniques of Deep Level Transient Spectroscopy (DLTS), high resolution Laplace DLTS, admittance spectroscopy, and scanning DLTS. For the study of minority carrier related processes and wide gap materials, we consider Minority Carrier Transient Spectroscopy (MCTS), Optical DLTS, and deep level optical transient spectroscopy together with some of their many variants. Capacitance, current, and conductance measurements enable carrier exchange processes associated with the defects to be detected. We explain how these methods are used in order to understand the behaviour of point defects and the determination of charge states and negative-U (Hubbard correlation energy) behaviour. We provide, or reference, examples from a wide range of materials including Si, SiGe, GaAs, GaP, GaN, InGaN, InAlN, and ZnO.

  5. Study of physical properties of metal oxide nanoparticles obtained in acoustoplasma discharge

    NASA Astrophysics Data System (ADS)

    Bulychev, N. A.; Kazaryan, M. A.; Zakharyan, A. R.; Bodryshev, V. V.; Kirichenko, M. N.; Shevchenko, S. N.; Yakunin, V. G.; Timoshenko, V. Y.; Bychenko, A. B.

    2018-04-01

    Nanoparticles of tungsten, copper, iron, and zinc oxides were synthesized in acoustoplasma discharge. Their size distribution was studied by electron microscopy and laser correlation spectroscopy. Ultrasound was found to narrow significantly the size distribution width of zinc oxide nanoparticles. Water suspensions of zinc oxide nanoparticles showed photoluminescence in red and near infrared spectral ranges, which makes them a promising material for luminescent diagnostics of biological systems.

  6. Studies of electrode structures and dynamics using coherent X-ray scattering and imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    You, H.; Liu, Y.; Ulvestad, A.

    2017-08-01

    Electrochemical systems studied in situ with advanced surface X-ray scattering techniques are reviewed. The electrochemical systems covered include interfaces of single-crystals and nanocrystals with respect to surface modification, aqueous dissolution, surface reconstruction, and electrochemical double layers. An emphasis will be given on recent results by coherent X-ray techniques such as X-ray photon correlation spectroscopy, Bragg coherent diffraction imaging, and surface ptychography.

  7. Non-invasive cerebral oxygenation reflects mixed venous oxygen saturation during the varying haemodynamic conditions in patients undergoing transapical transcatheter aortic valve implantation.

    PubMed

    Paarmann, Hauke; Heringlake, Matthias; Heinze, Hermann; Hanke, Thorsten; Sier, Holger; Karsten, Jan; Schön, Julika

    2012-03-01

    Transapical transcatheter aortic valve implantation (TA-TAVI) is increasingly used to treat aortic valve stenosis in high-risk patients. Mixed venous oxygen saturation (SvO(2)) is still the 'gold standard' for the determination of the systemic oxygen delivery to consumption ratio in cardiac surgery patients. Recent data suggest that regional cerebral oxygen saturation (rScO(2)) determined by near-infrared spectroscopy is closely related to SvO(2). The present study compares rScO(2) and SvO(2) in patients undergoing TA-TAVI. n = 20 cardiac surgery patients scheduled for TA-TAVI were enrolled in this prospective observational study. SvO(2) and rScO(2) were determined at predefined time points during the procedure. Correlation and Bland-Altman analysis of the complete data set showed a correlation coefficient of r(2 )= 0.7 between rScO(2) and SvO(2) (P < 0.0001), a mean difference (bias) of 5.8 with limits of agreement (1.96 SD) of -6.8 to 18.3% and a percentage error of 17.5%. At all predefined time points correlation was moderate (r(2 )= 0.50) to close (r = 0.84), and the percentage error was <24%. RScO(2) determined by near-infrared spectroscopy is correlated to SvO(2) during varying haemodynamic conditions in patients undergoing TA-TAVI. This suggests that rScO(2) is reflective not only of the cerebral, but also of the systemic oxygen balance.

  8. Hybrid diffuse optical techniques for continuous hemodynamic measurement in gastrocnemius during plantar flexion exercise

    NASA Astrophysics Data System (ADS)

    Henry, Brad; Zhao, Mingjun; Shang, Yu; Uhl, Timothy; Thomas, D. Travis; Xenos, Eleftherios S.; Saha, Sibu P.; Yu, Guoqiang

    2015-12-01

    Occlusion calibrations and gating techniques have been recently applied by our laboratory for continuous and absolute diffuse optical measurements of forearm muscle hemodynamics during handgrip exercises. The translation of these techniques from the forearm to the lower limb is the goal of this study as various diseases preferentially affect muscles in the lower extremity. This study adapted a hybrid near-infrared spectroscopy and diffuse correlation spectroscopy system with a gating algorithm to continuously quantify hemodynamic responses of medial gastrocnemius during plantar flexion exercises in 10 healthy subjects. The outcomes from optical measurement include oxy-, deoxy-, and total hemoglobin concentrations, blood oxygen saturation, and relative changes in blood flow (rBF) and oxygen consumption rate (rV˙O2). We calibrated rBF and rV˙O2 profiles with absolute baseline values of BF and V˙O2 obtained by venous and arterial occlusions, respectively. Results from this investigation were comparable to values from similar studies. Additionally, significant correlation was observed between resting local muscle BF measured by the optical technique and whole limb BF measured concurrently by a strain gauge venous plethysmography. The extensive hemodynamic and metabolic profiles during exercise will allow for future comparison studies to investigate the diagnostic value of hybrid technologies in muscles affected by disease.

  9. Prefrontal responses to Stroop tasks in subjects with post-traumatic stress disorder assessed by functional near infrared spectroscopy.

    PubMed

    Yennu, Amarnath; Tian, Fenghua; Smith-Osborne, Alexa; J Gatchel, Robert; Woon, Fu Lye; Liu, Hanli

    2016-07-25

    Studies on posttraumatic stress disorder (PTSD) showing attentional deficits have implicated abnormal activities in the frontal lobe. In this study, we utilized multichannel functional near-infrared spectroscopy (fNIRS) to investigate selective attention-related hemodynamic activity in the prefrontal cortex among 15 combat-exposed war-zone veterans with PTSD and 13 age- and gender-matched healthy controls. While performing the incongruent Stroop task, healthy controls showed significant activations in the left lateral prefrontal cortex (LPFC) compared to baseline readings. This observation is consistent with previously reported results. In comparison, subjects with PTSD failed to activate left LPFC during the same Stroop task. Our observations may implicate that subjects with PTSD experienced difficulty in overcoming Stroop interference. We also observed significant negative correlation between task reaction times and hemodynamic responses from left LPFC during the incongruent Stroop task in the PTSD group. Regarding the methodology used in this study, we have learned that an appropriate design of Stroop paradigms is important for meeting an optimal cognitive load which can lead to better brain image contrasts in response to Stroop interference between healthy versus PTSD subjects. Overall, the feasibility of fNIRS for studying and mapping neural correlates of selective attention and interference in subjects with PTSD is reported.

  10. Prefrontal responses to Stroop tasks in subjects with post-traumatic stress disorder assessed by functional near infrared spectroscopy

    PubMed Central

    Yennu, Amarnath; Tian, Fenghua; Smith-Osborne, Alexa; J. Gatchel, Robert; Woon, Fu Lye; Liu, Hanli

    2016-01-01

    Studies on posttraumatic stress disorder (PTSD) showing attentional deficits have implicated abnormal activities in the frontal lobe. In this study, we utilized multichannel functional near-infrared spectroscopy (fNIRS) to investigate selective attention-related hemodynamic activity in the prefrontal cortex among 15 combat-exposed war-zone veterans with PTSD and 13 age- and gender-matched healthy controls. While performing the incongruent Stroop task, healthy controls showed significant activations in the left lateral prefrontal cortex (LPFC) compared to baseline readings. This observation is consistent with previously reported results. In comparison, subjects with PTSD failed to activate left LPFC during the same Stroop task. Our observations may implicate that subjects with PTSD experienced difficulty in overcoming Stroop interference. We also observed significant negative correlation between task reaction times and hemodynamic responses from left LPFC during the incongruent Stroop task in the PTSD group. Regarding the methodology used in this study, we have learned that an appropriate design of Stroop paradigms is important for meeting an optimal cognitive load which can lead to better brain image contrasts in response to Stroop interference between healthy versus PTSD subjects. Overall, the feasibility of fNIRS for studying and mapping neural correlates of selective attention and interference in subjects with PTSD is reported. PMID:27452397

  11. Reduced concentrations of N-acetylaspartate (NAA) and the NAA-creatine ratio in the basal ganglia in bipolar disorder: a study using 3-Tesla proton magnetic resonance spectroscopy.

    PubMed

    Frye, Mark A; Thomas, M Albert; Yue, Kenneth; Binesh, Nader; Davanzo, Pablo; Ventura, Joseph; O'Neill, Joseph; Guze, Barry; Curran, John G; Mintz, Jim

    2007-04-15

    The N-acetylaspartate (NAA) peak is prominent in the proton magnetic resonance spectrum and is thought to reflect neuron loss or dysfunction. This study was conducted to explore NAA biochemistry and its clinical correlates in mania. Subjects comprised 16 manic patients and 17 controls who underwent a structured diagnostic interview and (1)H magnetic resonance spectroscopy (MRS) acquisition. STEAM (1)H MRS (TR/TE/TM=2000/20/8 ms) was acquired at 3 Tesla from 2 x 2 x 2 cm(3) voxels in anterior cingulate (AC), right basal ganglia (BG), and left occipital-parietal white matter (OP). Absolute metabolite concentrations and ratios to creatine were calculated using the LC Model. The mean absolute concentrations of NAA and NAA-creatine ratio in the BG were significantly lower in manic subjects than in controls. There was a significant inverse correlation between NAA in the BG and the number of prior hospitalizations for mania. These data suggest BG pathology in mania and that NAA decrements may mark prior manic episode burden. Limitations of this study include small sample size and lack of tissue segmentation. Further study is encouraged to clarify state vs. trait aspects of NAA in bipolar disorder.

  12. Phospholipid Diffusion Coefficients of Cushioned Model Membranes determined via Z-Scan Fluorescence Correlation Spectroscopy

    PubMed Central

    Sterling, Sarah M.; Allgeyer, Edward S.; Fick, Jörg; Prudovsky, Igor; Mason, Michael D.; Neivandt, David J.

    2013-01-01

    Model cellular membranes enable the study of biological processes in a controlled environment and reduce the traditional challenges associated with live or fixed cell studies. However, model membrane systems based on the air/water or oil/solution interface do not allow for incorporation of transmembrane proteins, or for the study of protein transport mechanisms. Conversely, a phospholipid bilayer deposited via the Langmuir-Blodgett/Langmuir Schaefer method on a hydrogel layer is potentially an effective mimic of the cross-section of a biological membrane, and facilitates both protein incorporation and transport studies. Prior to application, however, such membranes must be fully characterized, particularly with respect to the phospholipid bilayer phase transition temperature. Here we present a detailed characterization of the phase transition temperature of the inner and outer leaflets of a chitosan supported model membrane system. Specifically, the lateral diffusion coefficient of each individual leaflet has been determined as a function of temperature. Measurements were performed utilizing z-scan fluorescence correlation spectroscopy (FCS), a technique that yields calibration-free diffusion information. Analysis via the method of Wawrezinieck and coworkers, revealed that phospholipid diffusion changes from raft-like to free diffusion as the temperature is increased; an insight into the dynamic behavior of hydrogel supported membranes not previously reported. PMID:23705855

  13. Protein-surfactant interactions at hydrophobic interfaces studied with total internal reflection fluorescence correlation spectroscopy (TIR-FCS).

    PubMed

    Sonesson, Andreas W; Blom, Hans; Hassler, Kai; Elofsson, Ulla M; Callisen, Thomas H; Widengren, Jerker; Brismar, Hjalmar

    2008-01-15

    The aim of this work was to study the dynamics of proteins near solid surfaces in the presence or absence of competing surfactants by means of total internal reflection fluorescence correlation spectroscopy (TIR-FCS). Two different proteins were studied, bovine serum albumin (BSA) and Thermomyces lanuginosus lipase (TLL). A nonionic/anionic (C12E6/LAS) surfactant composition was used to mimic a detergent formulation and the surfaces used were C18 terminated glass. It was found that with increasing surfactant concentrations the term in the autocorrelation function (ACF) representing surface binding decreased. This suggested that the proteins were competed off the hydrophobic surface by the surfactant. When fitting the measured ACF to a model for surface kinetics, it was seen that with raised C12E6/LAS concentration, the surface interaction rate increased for both proteins. Under these experimental conditions this meant that the time the protein was bound to the surface decreased. At 10 microM C12E6/LAS the surface interaction was not visible for BSA, whereas it was still distinguishable in the ACF for TLL. This indicated that TLL had a higher affinity than BSA for the C18 surface. The study showed that TIR-FCS provides a useful tool to quantify the surfactant effect on proteins adsorption.

  14. Prefrontal responses to Stroop tasks in subjects with post-traumatic stress disorder assessed by functional near infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Yennu, Amarnath; Tian, Fenghua; Smith-Osborne, Alexa; J. Gatchel, Robert; Woon, Fu Lye; Liu, Hanli

    2016-07-01

    Studies on posttraumatic stress disorder (PTSD) showing attentional deficits have implicated abnormal activities in the frontal lobe. In this study, we utilized multichannel functional near-infrared spectroscopy (fNIRS) to investigate selective attention-related hemodynamic activity in the prefrontal cortex among 15 combat-exposed war-zone veterans with PTSD and 13 age- and gender-matched healthy controls. While performing the incongruent Stroop task, healthy controls showed significant activations in the left lateral prefrontal cortex (LPFC) compared to baseline readings. This observation is consistent with previously reported results. In comparison, subjects with PTSD failed to activate left LPFC during the same Stroop task. Our observations may implicate that subjects with PTSD experienced difficulty in overcoming Stroop interference. We also observed significant negative correlation between task reaction times and hemodynamic responses from left LPFC during the incongruent Stroop task in the PTSD group. Regarding the methodology used in this study, we have learned that an appropriate design of Stroop paradigms is important for meeting an optimal cognitive load which can lead to better brain image contrasts in response to Stroop interference between healthy versus PTSD subjects. Overall, the feasibility of fNIRS for studying and mapping neural correlates of selective attention and interference in subjects with PTSD is reported.

  15. Development of an electron-ion coincidence apparatus for molecular-frame electron energy loss spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Watanabe, Noboru; Hirayama, Tsukasa; Yamada, So; Takahashi, Masahiko

    2018-04-01

    We report details of an electron-ion coincidence apparatus, which has been developed for molecular-frame electron energy loss spectroscopy studies. The apparatus is mainly composed of a pulsed electron gun, an energy-dispersive electron spectrometer, and an ion momentum imaging spectrometer. Molecular-orientation dependence of the high-energy electron scattering cross section can be examined by conducting measurements of vector correlation between the momenta of the scattered electron and fragment ion. Background due to false coincidences is significantly reduced by introducing a pulsed electron beam and pulsing scheme of ion extraction. The experimental setup has been tested by measuring the inner-shell excitation of N2 at an incident electron energy of 1.5 keV and a scattering angle of 10.2°.

  16. Reactive molecular beam epitaxial growth and in situ photoemission spectroscopy study of iridate superlattices

    NASA Astrophysics Data System (ADS)

    Fan, C. C.; Liu, Z. T.; Cai, S. H.; Wang, Z.; Xiang, P.; Zhang, K. L.; Liu, W. L.; Liu, J. S.; Wang, P.; Zheng, Y.; Shen, D. W.; You, L. X.

    2017-08-01

    High-quality (001)-oriented perovskite [(SrIrO3)m/(SrTiO3)] superlattices (m=1/2, 1, 2, 3 and ∞ ) films have been grown on SrTiO3(001) epitaxially using reactive molecular beam epitaxy. Compared to previously reported superlattices synthesized by pulsed laser deposition, our superlattices exhibit superior crystalline, interface and surface structure, which have been confirmed by high-resolution X-ray diffraction, scanning transmission electron microscopy and atomic force microscopy, respectively. The transport measurements confirm a novel insulator-metal transition with the change of dimensionality in these superlattices, and our first systematic in situ photoemission spectroscopy study indicates that the increasing strength of effective correlations induced by reducing dimensionality would be the dominating origin of this transition.

  17. Convective-diffusion-based fluorescence correlation spectroscopy for detection of a trace amount of E. coli in water.

    PubMed

    Qing, De-Kui; Mengüç, M Pinar; Payne, Fred A; Danao, Mary-Grace C

    2003-06-01

    Fluorescence correlation spectroscopy (FCS) is adapted for a new procedure to detect trace amounts of Escherichia coli in water. The present concept is based on convective diffusion rather than Brownian diffusion and employs confocal microscopy as in traditional FCS. With this system it is possible to detect concentrations as small as 1.5 x 10(5) E. coli per milliliter (2.5 x 10(-16) M). This concentration corresponds to an approximately 1.0-nM level of Rhodamine 6G dyes. A detailed analysis of the optical system is presented, and further improvements for the procedure are discussed.

  18. Recent Developments in Fluorescence Correlation Spectroscopy for Diffusion Measurements in Planar Lipid Membranes

    PubMed Central

    Macháň, Radek; Hof, Martin

    2010-01-01

    Fluorescence correlation spectroscopy (FCS) is a single molecule technique used mainly for determination of mobility and local concentration of molecules. This review describes the specific problems of FCS in planar systems and reviews the state of the art experimental approaches such as 2-focus, Z-scan or scanning FCS, which overcome most of the artefacts and limitations of standard FCS. We focus on diffusion measurements of lipids and proteins in planar lipid membranes and review the contributions of FCS to elucidating membrane dynamics and the factors influencing it, such as membrane composition, ionic strength, presence of membrane proteins or frictional coupling with solid support. PMID:20386647

  19. Improvement of photon correlation spectroscopy method for measuring nanoparticle size by using attenuated total reflectance.

    PubMed

    Krishtop, Victor; Doronin, Ivan; Okishev, Konstantin

    2012-11-05

    Photon correlation spectroscopy is an effective method for measuring nanoparticle sizes and has several advantages over alternative methods. However, this method suffers from a disadvantage in that its measuring accuracy reduces in the presence of convective flows of fluid containing nanoparticles. In this paper, we propose a scheme based on attenuated total reflectance in order to reduce the influence of convection currents. The autocorrelation function for the light-scattering intensity was found for this case, and it was shown that this method afforded a significant decrease in the time required to measure the particle sizes and an increase in the measuring accuracy.

  20. Employing NMR Spectroscopy To Evaluate Transmission of Electronic Effects in 4-Substituted Chalcones

    NASA Astrophysics Data System (ADS)

    Wachter-Jurcsak, Nanette; Zamani, Hossein

    1999-05-01

    Described is an organic synthesis experiment that demonstrates the electronic transmission by substituents. The effect of substitution at the para-position of the styryl ring of 1,3-diphenyl-2-propenones (chalcones) by typical electron-donating or -accepting groups can be observed by proton and carbon-13 NMR spectroscopy. A linear correlation is observed when the differences in chemical shift measurements for H are plotted against the corresponding Hammett substituent constant values. Good correlation between carbon-13 chemical shifts of the alpha carbon are also observed. The syntheses of the 4-substituted chalcones is presented as well as a brief discussion of the theory.

Top