Science.gov

Sample records for correlation transport measurements

  1. Turbulence and transport reduction with innovative plasma shapes in TCV -- correlation ECE measurement and gyrokinetic simulations

    NASA Astrophysics Data System (ADS)

    Pochelon, Antoine

    2010-11-01

    Due to turbulence, core energy transport in tokamaks generally exceeds collisional transport by at least an order of magnitude. It is therefore crucial to understand the instabilities driving the turbulent state and to find ways to control them. Shaping the plasma is one of these fundamental tools. In low collisionality plasmas, such as in a reactor, changing triangularity from positive (delta=+0.4) to negative triangularity (delta=-0.4) is shown on TCV to reduce the energy transport by a factor two. This opens the possibility of having H-mode-like confinement time within an L-mode edge, or reduced ELMs. An optimum triangularity can be sought between steep edge barriers (delta>0), plagued by large ELMs, and improved core confinement (delta<0). Recent correlation ECE measurements show that the reduction of transport at negative delta is reflected in a reduction by a factor of two of both the amplitude of temperature fluctuations in the broadband frequency range 30-150 kHz, and the fluctuation correlation length, measured at mid-radius. In addition, the fluctuations amplitude is reduced with increasing collisionality, consistent with a reduction of the Trapped Electron Modes (TEM) drive. The effect of negative triangularity on turbulence and transport is compared to gyrokinetic code results: First, global linear simulations predict shorter radial TEM wavelength, consistent with the shorter radial turbulence correlation length observed. Second, at least close to the strongly shaped plasma boundary, local nonlinear simulations predict lower TEM induced transport with decreased triangularity. Calculations are now being extended to global nonlinear simulations.

  2. k-Space Image Correlation Spectroscopy: A Method for Accurate Transport Measurements Independent of Fluorophore Photophysics

    PubMed Central

    Kolin, David L.; Ronis, David; Wiseman, Paul W.

    2006-01-01

    We present the theory and application of reciprocal space image correlation spectroscopy (kICS). This technique measures the number density, diffusion coefficient, and velocity of fluorescently labeled macromolecules in a cell membrane imaged on a confocal, two-photon, or total internal reflection fluorescence microscope. In contrast to r-space correlation techniques, we show kICS can recover accurate dynamics even in the presence of complex fluorophore photobleaching and/or “blinking”. Furthermore, these quantities can be calculated without nonlinear curve fitting, or any knowledge of the beam radius of the exciting laser. The number densities calculated by kICS are less sensitive to spatial inhomogeneity of the fluorophore distribution than densities measured using image correlation spectroscopy. We use simulations as a proof-of-principle to show that number densities and transport coefficients can be extracted using this technique. We present calibration measurements with fluorescent microspheres imaged on a confocal microscope, which recover Stokes-Einstein diffusion coefficients, and flow velocities that agree with single particle tracking measurements. We also show the application of kICS to measurements of the transport dynamics of α5-integrin/enhanced green fluorescent protein constructs in a transfected CHO cell imaged on a total internal reflection fluorescence microscope using charge-coupled device area detection. PMID:16861272

  3. Correlating spin transport and electrode magnetization in a graphene spin valve: Simultaneous magnetic microscopy and non-local measurements

    SciTech Connect

    Berger, Andrew J. Page, Michael R.; Bhallamudi, Vidya P.; Chris Hammel, P.; Wen, Hua; Kawakami, Roland K.; McCreary, Kathleen M.

    2015-10-05

    Using simultaneous magnetic force microscopy and transport measurements of a graphene spin valve, we correlate the non-local spin signal with the magnetization of the device electrodes. The imaged magnetization states corroborate the influence of each electrode within a one-dimensional spin transport model and provide evidence linking domain wall pinning to additional features in the transport signal.

  4. Quantitative measurement of intracellular transport of nanocarriers by spatio-temporal image correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Coppola, S.; Pozzi, D.; Candeloro De Sanctis, S.; Digman, M. A.; Gratton, E.; Caracciolo, G.

    2013-03-01

    Spatio-temporal image correlation spectroscopy (STICS) is a powerful technique for assessing the nature of particle motion in complex systems although it has been rarely used to investigate the intracellular dynamics of nanocarriers so far. Here we introduce a method for characterizing the mode of motion of nanocarriers and for quantifying their transport parameters on different length scales from single-cell to subcellular level. Using this strategy we were able to study the mechanisms responsible for the intracellular transport of DOTAP-DOPC/DNA (DOTAP: 1,2-dioleoyl-3-trimethylammonium-propane; DOPC: dioleoylphosphocholine) and DC-Chol-DOPE/DNA (DC-Chol: 3β-[N-(N,N-dimethylaminoethane)-carbamoyl] cholesterol; DOPE: dioleoylphosphatidylethanolamine) lipoplexes in CHO-K1 (CHO: Chinese hamster ovary) live cells. Measurement of both diffusion coefficients and velocity vectors (magnitude and direction) averaged over regions of the cell revealed the presence of distinct modes of motion. Lipoplexes diffused slowly on the cell surface (diffusion coefficient: D ≈ 0.003 μm2 s-1). In the cytosol, the lipoplexes’ motion was characterized by active transport with average velocity v ≈ 0.03 μm2 s-1 and random motion. The method permitted us to generate an intracellular transport map showing several regions of concerted motion of lipoplexes.

  5. Correlated biofilm imaging, transport and metabolism measurements via combined nuclear magnetic resonance and confocal microscopy

    PubMed Central

    McLean, Jeffrey S; Ona, Ositadinma N; Majors, Paul D

    2015-01-01

    Bacterial biofilms are complex, three-dimensional communities found nearly everywhere in nature and are also associated with many human diseases. Detailed metabolic information is critical to understand and exploit beneficial biofilms as well as combat antibiotic-resistant, disease-associated forms. However, most current techniques used to measure temporal and spatial metabolite profiles in these delicate structures are invasive or destructive. Here, we describe imaging, transport and metabolite measurement methods and their correlation for live, non-invasive monitoring of biofilm processes. This novel combination of measurements is enabled by the use of an integrated nuclear magnetic resonance (NMR) and confocal laser scanning microscope (CLSM). NMR methods provide macroscopic structure, metabolic pathway and rate data, spatially resolved metabolite concentrations and water diffusion profiles within the biofilm. In particular, current depth-resolved spectroscopy methods are applied to detect metabolites in 140–190 nl volumes within biofilms of the dissimilatory metal-reducing bacterium Shewanella oneidensis strain MR-1 and the oral bacterium implicated in caries disease, Streptococcus mutans strain UA159. The perfused sample chamber also contains a transparent optical window allowing for the collection of complementary fluorescence information using a unique, in-magnet CLSM. In this example, the entire three-dimensional biofilm structure was imaged using magnetic resonance imaging. This was then correlated to a fluorescent CLSM image by employing a green fluorescent protein reporter construct of S. oneidensis. Non-invasive techniques such as described here, which enable measurements of dynamic metabolic processes, especially in a depth-resolved fashion, are expected to advance our understanding of processes occurring within biofilm communities. PMID:18253132

  6. GIS measured environmental correlates of active school transport: A systematic review of 14 studies

    PubMed Central

    2011-01-01

    Background Emerging frameworks to examine active school transportation (AST) commonly emphasize the built environment (BE) as having an influence on travel mode decisions. Objective measures of BE attributes have been recommended for advancing knowledge about the influence of the BE on school travel mode choice. An updated systematic review on the relationships between GIS-measured BE attributes and AST is required to inform future research in this area. The objectives of this review are: i) to examine and summarize the relationships between objectively measured BE features and AST in children and adolescents and ii) to critically discuss GIS methodologies used in this context. Methods Six electronic databases, and websites were systematically searched, and reference lists were searched and screened to identify studies examining AST in students aged five to 18 and reporting GIS as an environmental measurement tool. Fourteen cross-sectional studies were identified. The analyses were classified in terms of density, diversity, and design and further differentiated by the measures used or environmental condition examined. Results Only distance was consistently found to be negatively associated with AST. Consistent findings of positive or negative associations were not found for land use mix, residential density, and intersection density. Potential modifiers of any relationship between these attributes and AST included age, school travel mode, route direction (e.g., to/from school), and trip-end (home or school). Methodological limitations included inconsistencies in geocoding, selection of study sites, buffer methods and the shape of zones (Modifiable Areal Unit Problem [MAUP]), the quality of road and pedestrian infrastructure data, and school route estimation. Conclusions The inconsistent use of spatial concepts limits the ability to draw conclusions about the relationship between objectively measured environmental attributes and AST. Future research should explore

  7. Correlated Biofilm Imaging, Transport and Metabolism Measurements via Combined Nuclear Magnetic Resonance and Confocal Microscopy

    SciTech Connect

    Mclean, Jeffrey S.; Ona, Ositadinma; Majors, Paul D.

    2008-02-18

    Bacterial biofilms are complex, three-dimensional, communities that are found nearly everywhere in nature1 and are being recognized as the cause of treatment-resistant infections1 2. Advanced methods are required to characterize their collective and spatial patterns of metabolism however most techniques are invasive or destructive. Here we describe the use of a combined confocal laser scanning microscopy (CLSM) and nuclear magnetic resonance (NMR) microscopy system to monitor structure, mass transport, and metabolism in active biofilms. Non-invasive NMR methods provide macroscopic structure along with spatially-resolved metabolite profiles and diffusion measurements. CLSM enables monitoring of cells by fluorescent protein reporters to investigate biofilm structure and gene expression concurrently. A planar sample chamber design facilitates depth-resolved measurements on 140 nL sample volumes under laminar flow conditions. The techniques and approaches described here are applicable to environmental and medically relevant microbial communities, thus providing key metabolic information for promoting beneficial biofilms and treating associated diseases.

  8. Solving Inverse Radiation Transport Problems with Multi-Sensor Data in the Presence of Correlated Measurement and Modeling Errors

    SciTech Connect

    Thomas, Edward V.; Stork, Christopher L.; Mattingly, John K.

    2015-07-01

    Inverse radiation transport focuses on identifying the configuration of an unknown radiation source given its observed radiation signatures. The inverse problem is traditionally solved by finding the set of transport model parameter values that minimizes a weighted sum of the squared differences by channel between the observed signature and the signature pre dicted by the hypothesized model parameters. The weights are inversely proportional to the sum of the variances of the measurement and model errors at a given channel. The traditional implicit (often inaccurate) assumption is that the errors (differences between the modeled and observed radiation signatures) are independent across channels. Here, an alternative method that accounts for correlated errors between channels is described and illustrated using an inverse problem based on the combination of gam ma and neutron multiplicity counting measurements.

  9. Correlation Electron Temperature Fluctuation Measurements on Alcator C-Mod and ASDEX Upgrade: Cross Machine Comparisons and Transport Model Validation

    NASA Astrophysics Data System (ADS)

    White, A. E.; Creely, A. J.; Freethy, S.; Cao, N.; Conway, G. D.; Goerler, T.; Happel, T.; Howard, N. T.; Inman, C.; Rice, J. E.; Rodriguez Fernandez, P.; Sung, C.; C-Mod, Alcator; Upgrade, Asdex

    2016-10-01

    Correlation Electron Cyclotron Emission diagnostics have been developed for Alcator C-Mod and ASDEX Upgrade. Measurements of long wavelength (ktheta rhos <0.5) electron temperature fluctuations have been measured in the core plasma (0.5 transport model validation, using nonlinear simulations with the GENE and GYRO codes and reduced models such as TGLF. Electron temperature fluctuations, and the correlation with density fluctuations, which can be measured with coupled radiometer / reflectometer diagnostics, provide valuable constraints on gyrokinetic models. Recent results in transport model validation at both C-Mod and AUG are presented. This work is supported by the US DOE under Grants DE-SC0006419 and DEFC02-99ER54512-CMOD.

  10. Brain and platelet serotonin transporter in humans-correlation between [123I]-ADAM SPECT and serotonergic measurements in platelets.

    PubMed

    Uebelhack, Ralf; Franke, Leonora; Herold, Nathalie; Plotkin, Michael; Amthauer, Holger; Felix, Roland

    2006-10-09

    Blood platelets are thought to be a useful peripheral model for investigating the central serotoninergic mechanisms associated with the serotonin transporter (SERT). On the other hand, an in vivo investigation of SERT in the human brain has been made possible by the development of several promising SPECT radioligands, such as [123I]-ADAM. The aim of the present study was to investigate the possible correlation between the SERT measurements in the brain and those in platelets. Forty-four subjects (14 healthy subjects and 30 patients with the diagnosis of major depression or schizoaffective disorder) were examined. The [123I]-ADAM binding was assessed 4h after injection using MR-guided regions of interest (ROIs) in the midbrain and cerebellum. In a parallel investigation, serotonin (5HT) concentration and kinetic characteristics of 5HT uptake activity (Vmax and Km) were determined in platelet-rich plasma. Overall, there was no significant correlation between the V(max) of 5HT uptake in platelets and the specific to nonspecific partition coefficient of [123I]-ADAM (V''3) in the midbrain. However, low but significant Pearson correlation coefficients were found for V(max) and normalised activities measured in the midbrain (r=0.310, p=0.043). The correlation was stronger and significant in females (n=20, r=0.629, p=0.003) but low and non-significant in the 24 males (r=0.104). Although confirmation is necessary, it seems that the relationship between different indices of [123I]-ADAM binding in the brain and 5HT uptake characteristics in platelets is complex, nonuniform, and possibly gender-specific.

  11. Ozone Correlative Measurements Workshop

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E. (Editor)

    1985-01-01

    A study was conducted to determine the necessary parameters for the correlation of data on Earth ozone. Topics considered were: (1) measurement accuracy; (2) equipment considerations (SBUV); and (3) ground based measurements to support satellite data.

  12. Correlative Measurements Program

    NASA Technical Reports Server (NTRS)

    Parsons, C. L.

    1988-01-01

    The GSFC Correlative Measurements Program at the Wallops Flight Facility was represented on the Satellite/Satellite Intercomparisons Working Group. The Correlative Measurements Program uses the Rocket Ozonesonde (ROCOZ-A) and the Electrochemical Concentration Cell (ECC) balloon borne ozonesonde to measure the vertical profile of ozone amount in the atmosphere. The balloon work is described in a separate report. The ROCOZ-A instrument was used for many years to provide in situ truth data for various satellite ozone measuring systems, such as SBUV on Nimbus-7, SAGE-II, SBUV-II on the NOAA series of polar orbiting satellites, SME, LIMS, etc. The particular data sets of interest to the Ozone Trends Panel Working Group were collected at Natal, Brazil. The major results produced for and used by the Ozone Trends Panel are shown. The ROCOZ-A average ozone density profile is plotted versus altitude on the left. ECC ozonesondes were used for the portion of the profile below 20 km, the lower limit for ROCOZ-A. The difference between SAGE-II and ROCOZ-A average density profiles is shown.

  13. EARLINET Correlative Measurements For CALIPSO

    NASA Astrophysics Data System (ADS)

    Pappalardo, G.

    2006-12-01

    each station in coincidence with CALIPSO overpasses. Each observation lasts for a minimum of 1 hour centered around the overpass time, longer record of measurements are performed for special case studies (Saharan dust layers, forest fires, long range transport, etc.). Backtrajectory analysis will be also used to quantitatively study comparisons between CALIPSO and EARLINET observations. EARLINET correlative measurements plan for CALIPSO, and first results will be presented. ACKNOWLEDGMENTS The financial support for the improvement of the EARLINET infrastructure by the European Commission under grant RICA-025991 is gratefully acknowledged. The authors also thank the German Weather Service for the air mass backtrajectory analysis.

  14. Disorder and Transport in Highly Correlated Systems

    DTIC Science & Technology

    1992-03-31

    Denr Dow. Vlease find included 1th100 copies of the Annu at [rport for my Grant NOOO 14- 1 j- 14󈧪, entitled " Disorder and Transport in I licility...of N ava1l Research for your support. 1Ian K. Sch~ilter Fnclosures Appr~I ~ir k~ll~ereleae;\\ t)Is~i I gm~U itedl ONR GRANT N00014-91J-1438 " Disorder ...001 i92-11805 ’ Introduction This grant was a new start dedicated to studies of disorder and transport in highly correlated electron systems, mostly

  15. Measuring isotropic subsurface light transport.

    PubMed

    Happel, Kathrin; Dörsam, Edgar; Urban, Philipp

    2014-04-21

    Subsurface light transport can affect the visual appearance of materials significantly. Measuring and modeling this phenomenon is crucial for accurately reproducing colors in printing or for rendering translucent objects on displays. In this paper, we propose an apparatus to measure subsurface light transport employing a reference material to cancel out adverse signals that may bias the results. In contrast to other approaches, the setup enables improved focusing on rough surfaces (e.g. uncoated paper). We derive a measurement equation that may be used to deduce the point spread function (PSF) of subsurface light transport. Main contributions are the usage of spectrally-narrowband exchangeable LEDs allowing spectrally-resolved measurements and an approach based on quadratic programming for reconstructing PSFs in the case of isotropic light transport.

  16. Eddy correlation measurements of submarine groundwater discharge

    USGS Publications Warehouse

    Crusius, J.; Berg, P.; Koopmans, D.J.; Erban, L.

    2008-01-01

    This paper presents a new, non-invasive means of quantifying groundwater discharge into marine waters using an eddy correlation approach. The method takes advantage of the fact that, in virtually all aquatic environments, the dominant mode of vertical transport near the sediment-water interface is turbulent mixing. The technique thus relies on measuring simultaneously the fluctuating vertical velocity using an acoustic Doppler velocimeter and the fluctuating salinity and/or temperature using rapid-response conductivity and/or temperature sensors. The measurements are typically done at a height of 5-15??cm above the sediment surface, at a frequency of 16 to 64??Hz, and for a period of 15 to 60??min. If the groundwater salinity and/or temperature differ from that of the water column, the groundwater specific discharge (cm d- 1) can be quantified from either a heat or salt balance. Groundwater discharge was estimated with this new approach in Salt Pond, a small estuary on Cape Cod (MA, USA). Estimates agreed well with previous estimates of discharge measured using seepage meters and 222Rn as a tracer. The eddy correlation technique has several desirable characteristics: 1) discharge is quantified under in-situ hydrodynamic conditions; 2) salinity and temperature can serve as two semi-independent tracers of discharge; 3) discharge can be quantified at high temporal resolution, and 4) long-term records of discharge may be possible, due to the low power requirements of the instrumentation. ?? 2007 Elsevier B.V. All rights reserved.

  17. Sediment transport measurements: Chapter 5

    USGS Publications Warehouse

    Diplas, P.; Kuhnle, R.; Gray, J.; Glysson, D.; Edwards, T.; García, Marcelo H.

    2008-01-01

    Sediment erosion, transport, and deposition in fluvial systems are complex processes that are treated in detail in other sections of this book. Development of methods suitable for the collection of data that contribute to understanding these processes is a still-evolving science. Sediment and ancillary data are fundamental requirements for the proper management of river systems, including the design of structures, the determination of aspects of stream behavior, ascertaining the probable effect of removing an existing structure, estimation of bulk erosion, transport, and sediment delivery to the oceans, ascertaining the long-term usefulness of reservoirs and other public works, tracking movement of solid-phase contaminants, restoration of degraded or otherwise modified streams, and assistance in the calibration and validation of numerical models. This chapter presents techniques for measuring bed-material properties and suspended and bed-load discharges. Well-established and relatively recent, yet adequately tested, sampling equipment and methodologies, with designs that are guided by sound physical and statistical principles, are described. Where appropriate, the theory behind the development of the equipment and guidelines for its use are presented.

  18. Accounting for correlated errors in inverse radiation transport problems.

    SciTech Connect

    Mattingly, John K.; Stork, Christopher Lyle; Thomas, Edward Victor

    2010-11-01

    Inverse radiation transport focuses on identifying the configuration of an unknown radiation source given its observed radiation signatures. The inverse problem is solved by finding the set of transport model variables that minimizes a weighted sum of the squared differences by channel between the observed signature and the signature predicted by the hypothesized model parameters. The weights per channel are inversely proportional to the sum of the variances of the measurement and model errors at a given channel. In the current treatment, the implicit assumption is that the errors (differences between the modeled and observed radiation signatures) are independent across channels. In this paper, an alternative method that accounts for correlated errors between channels is described and illustrated for inverse problems based on gamma spectroscopy.

  19. SAGE II aerosol correlative observations - Profile measurements

    NASA Technical Reports Server (NTRS)

    Osborn, M. T.; Rosen, J. M.; Mccormick, M. P.; Wang, Pi-Huan; Livinfston, J. M.

    1989-01-01

    Profiles of the aerosol extinction measurements from the Stratospheric Aerosol and Gas Experiment (SAGE) II are compared with profiles from five correlative experiments between November 1984 and July 1986. The correlative profiles were derived from six-channel dustsonde measurements and two-wavelength lidar backscatter data. The correlation between the dustsonde- and lidar-derived measurements and the SAGE II data is good, validating the SAGE II lower stratospheric aerosol extinction measurements.

  20. More Voodoo correlations: when average-based measures inflate correlations.

    PubMed

    Brand, Andrew; Bradley, Michael T

    2012-01-01

    A Monte-Carlo simulation was conducted to assess the extent that a correlation estimate can be inflated when an average-based measure is used in a commonly employed correlational design. The results from the simulation reveal that the inflation of the correlation estimate can be substantial, up to 76%. Additionally, data was re-analyzed from two previously published studies to determine the extent that the correlation estimate was inflated due to the use of an averaged based measure. The re-analyses reveal that correlation estimates had been inflated by just over 50% in both studies. Although these findings are disconcerting, we are somewhat comforted by the fact that there is a simple and easy analysis that can be employed to prevent the inflation of the correlation estimate that we have simulated and observed.

  1. Transport driven by biharmonic forces: Impact of correlated thermal noise

    NASA Astrophysics Data System (ADS)

    Machura, L.; Łuczka, J.

    2010-09-01

    We study an inertial Brownian particle moving in a symmetric periodic substrate, driven by a zero-mean biharmonic force and correlated thermal noise. The Brownian motion is described in terms of a generalized Langevin equation with an exponentially correlated Gaussian noise term, obeying the fluctuation-dissipation theorem. We analyze impact of nonzero correlation time of thermal noise on transport properties of the Brownian particle. We identify regimes where the increase of the correlation time intensifies long-time transport of the Brownian particle. The opposite effect is also found: longer correlation time reduces the stationary velocity of the particle. The correlation time induced multiple current reversal is detected. We reveal that thermal noise of nonzero correlation time can radically enhance long-time velocity of the Brownian particle in regimes where in the white noise limit the velocity is extremely small. All transport properties can be tested in the setup consisting of a resistively and capacitively shunted Josephson junction device.

  2. Surface Wear Measurement Using Optical Correlation Technique

    NASA Astrophysics Data System (ADS)

    Acinger, Kresimir

    1983-12-01

    The coherent optical correlation technique was applied for measuring the surface wear of a tappet (part of car engine), worn by friction with the camshaft. It was found that maximum correlation intensity decays exponentially with the number of wear cycles (i.e. camshaft revolutions). Tappets of the same make have an identical rate of correlation decay. Tappets of different makes have different rates of correlation decay which are in agreement with observed long term wear.

  3. Unified entropic measures of quantum correlations induced by local measurements

    NASA Astrophysics Data System (ADS)

    Bosyk, G. M.; Bellomo, G.; Zozor, S.; Portesi, M.; Lamberti, P. W.

    2016-11-01

    We introduce quantum correlation measures based on the minimal change in unified entropies induced by local rank-one projective measurements, divided by a factor that depends on the generalized purity of the system in the case of nonadditive entropies. In this way, we overcome the issue of the artificial increasing of the value of quantum correlation measures based on nonadditive entropies when an uncorrelated ancilla is appended to the system, without changing the computability of our entropic correlation measures with respect to the previous ones. Moreover, we recover as limiting cases the quantum correlation measures based on von Neumann and Rényi entropies (i.e., additive entropies), for which the adjustment factor becomes trivial. In addition, we distinguish between total and semiquantum correlations and obtain some inequalities between them. Finally, we obtain analytical expressions of the entropic correlation measures for typical quantum bipartite systems.

  4. Suspended-sediment transport measurement

    USGS Publications Warehouse

    Gray, John R.

    2007-01-01

    Of the two operationally defined phases of fluvial-sediment transport – suspended load and bedload – collection of suspended-load data is the more common. This is a reflection of a number of factors including the general predominance of suspended load over bedload in mass transport and the greater difficulty and costs associated with collecting bedload data. Acquisition of suspended-sediment data for sediment-transport computations requires collection of water-sediment samples that represent, or can be reliably adjusted to represent, the mean discharge-weighted concentration and particle-size distribution in a cross section at the time of sample collection. Analytical results from a sufficient number of representative samples obtained with concurrent water-discharge values are needed to compute suspended-sediment discharge for the period of interest.

  5. On the measurability of quantum correlation functions

    NASA Astrophysics Data System (ADS)

    de Lima Bernardo, Bertúlio; Azevedo, Sérgio; Rosas, Alexandre

    2015-05-01

    The concept of correlation function is widely used in classical statistical mechanics to characterize how two or more variables depend on each other. In quantum mechanics, on the other hand, there are observables that cannot be measured at the same time; the so-called incompatible observables. This prospect imposes a limitation on the definition of a quantum analog for the correlation function in terms of a sequence of measurements. Here, based on the notion of sequential weak measurements, we circumvent this limitation by introducing a framework to measure general quantum correlation functions, in principle, independently of the state of the system and the operators involved. To illustrate, we propose an experimental configuration to obtain explicitly the quantum correlation function between two Pauli operators, in which the input state is an arbitrary mixed qubit state encoded on the polarization of photons.

  6. On the measurability of quantum correlation functions

    SciTech Connect

    Lima Bernardo, Bertúlio de Azevedo, Sérgio; Rosas, Alexandre

    2015-05-15

    The concept of correlation function is widely used in classical statistical mechanics to characterize how two or more variables depend on each other. In quantum mechanics, on the other hand, there are observables that cannot be measured at the same time; the so-called incompatible observables. This prospect imposes a limitation on the definition of a quantum analog for the correlation function in terms of a sequence of measurements. Here, based on the notion of sequential weak measurements, we circumvent this limitation by introducing a framework to measure general quantum correlation functions, in principle, independently of the state of the system and the operators involved. To illustrate, we propose an experimental configuration to obtain explicitly the quantum correlation function between two Pauli operators, in which the input state is an arbitrary mixed qubit state encoded on the polarization of photons.

  7. Unconventional Correlation between Quantum Hall Transport Quantization and Bulk State Filling in Gated Graphene Devices

    NASA Astrophysics Data System (ADS)

    Cui, Yong-Tao; Wen, Bo; Ma, Eric Y.; Diankov, Georgi; Han, Zheng; Amet, Francois; Taniguchi, Takashi; Watanabe, Kenji; Goldhaber-Gordon, David; Dean, Cory R.; Shen, Zhi-Xun

    2016-10-01

    We report simultaneous transport and scanning microwave impedance microscopy to examine the correlation between transport quantization and filling of the bulk Landau levels in the quantum Hall regime in gated graphene devices. Surprisingly, a comparison of these measurements reveals that quantized transport typically occurs below the complete filling of bulk Landau levels, when the bulk is still conductive. This result points to a revised understanding of transport quantization when carriers are accumulated by gating. We discuss the implications on transport study of the quantum Hall effect in graphene and related topological states in other two-dimensional electron systems.

  8. Quantum correlation cost of the weak measurement

    SciTech Connect

    Zhang, Jun; Wu, Shao-xiong; Yu, Chang-shui

    2014-12-15

    Quantum correlation cost (QCC) characterizing how much quantum correlation is used in a weak-measurement process is presented based on the trace norm. It is shown that the QCC is related to the trace-norm-based quantum discord (TQD) by only a factor that is determined by the strength of the weak measurement, so it only catches partial quantumness of a quantum system compared with the TQD. We also find that the residual quantumness can be ‘extracted’ not only by the further von Neumann measurement, but also by a sequence of infinitesimal weak measurements. As an example, we demonstrate our outcomes by the Bell-diagonal state.

  9. Measuring and modeling correlations in multiplex networks

    NASA Astrophysics Data System (ADS)

    Nicosia, Vincenzo; Latora, Vito

    2015-09-01

    The interactions among the elementary components of many complex systems can be qualitatively different. Such systems are therefore naturally described in terms of multiplex or multilayer networks, i.e., networks where each layer stands for a different type of interaction between the same set of nodes. There is today a growing interest in understanding when and why a description in terms of a multiplex network is necessary and more informative than a single-layer projection. Here we contribute to this debate by presenting a comprehensive study of correlations in multiplex networks. Correlations in node properties, especially degree-degree correlations, have been thoroughly studied in single-layer networks. Here we extend this idea to investigate and characterize correlations between the different layers of a multiplex network. Such correlations are intrinsically multiplex, and we first study them empirically by constructing and analyzing several multiplex networks from the real world. In particular, we introduce various measures to characterize correlations in the activity of the nodes and in their degree at the different layers and between activities and degrees. We show that real-world networks exhibit indeed nontrivial multiplex correlations. For instance, we find cases where two layers of the same multiplex network are positively correlated in terms of node degrees, while other two layers are negatively correlated. We then focus on constructing synthetic multiplex networks, proposing a series of models to reproduce the correlations observed empirically and/or to assess their relevance.

  10. Measurement of exciton correlations using electrostatic lattices

    NASA Astrophysics Data System (ADS)

    Remeika, M.; Leonard, J. R.; Dorow, C. J.; Fogler, M. M.; Butov, L. V.; Hanson, M.; Gossard, A. C.

    2015-09-01

    We present a method for determining correlations in a gas of indirect excitons in a semiconductor quantum well structure. The method involves subjecting the excitons to a periodic electrostatic potential that causes modulations of the exciton density and photoluminescence (PL). Experimentally measured amplitudes of energy and intensity modulations of exciton PL serve as an input to a theoretical estimate of the exciton correlation parameter and temperature. We also present a proof-of-principle demonstration of the method for determining the correlation parameter and discuss how its accuracy can be improved.

  11. Understanding the amplitudes of noise correlation measurements

    USGS Publications Warehouse

    Tsai, Victor C.

    2011-01-01

    Cross correlation of ambient seismic noise is known to result in time series from which station-station travel-time measurements can be made. Part of the reason that these cross-correlation travel-time measurements are reliable is that there exists a theoretical framework that quantifies how these travel times depend on the features of the ambient noise. However, corresponding theoretical results do not currently exist to describe how the amplitudes of the cross correlation depend on such features. For example, currently it is not possible to take a given distribution of noise sources and calculate the cross correlation amplitudes one would expect from such a distribution. Here, we provide a ray-theoretical framework for calculating cross correlations. This framework differs from previous work in that it explicitly accounts for attenuation as well as the spatial distribution of sources and therefore can address the issue of quantifying amplitudes in noise correlation measurements. After introducing the general framework, we apply it to two specific problems. First, we show that we can quantify the amplitudes of coherency measurements, and find that the decay of coherency with station-station spacing depends crucially on the distribution of noise sources. We suggest that researchers interested in performing attenuation measurements from noise coherency should first determine how the dominant sources of noise are distributed. Second, we show that we can quantify the signal-to-noise ratio of noise correlations more precisely than previous work, and that these signal-to-noise ratios can be estimated for given situations prior to the deployment of seismometers. It is expected that there are applications of the theoretical framework beyond the two specific cases considered, but these applications await future work.

  12. Eddy Correlation Flux Measurement System (ECOR) Handbook

    SciTech Connect

    Cook, DR

    2011-01-31

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration.

  13. Correlated Exciton Transport in Rydberg-Dressed-Atom Spin Chains.

    PubMed

    Schempp, H; Günter, G; Wüster, S; Weidemüller, M; Whitlock, S

    2015-08-28

    We investigate the transport of excitations through a chain of atoms with nonlocal dissipation introduced through coupling to additional short-lived states. The system is described by an effective spin-1/2 model where the ratio of the exchange interaction strength to the reservoir coupling strength determines the type of transport, including coherent exciton motion, incoherent hopping, and a regime in which an emergent length scale leads to a preferred hopping distance far beyond nearest neighbors. For multiple impurities, the dissipation gives rise to strong nearest-neighbor correlations and entanglement. These results highlight the importance of nontrivial dissipation, correlations, and many-body effects in recent experiments on the dipole-mediated transport of Rydberg excitations.

  14. Correlation-driven transport asymmetries through coupled spins in a tunnel junction

    NASA Astrophysics Data System (ADS)

    Muenks, Matthias; Jacobson, Peter; Ternes, Markus; Kern, Klaus

    2017-01-01

    Spin-spin correlations can be the driving force that favours certain ground states and are key in numerous models that describe the behaviour of strongly correlated materials. While the sum of collective correlations usually lead to a macroscopically measurable change in properties, a direct quantification of correlations in atomic scale systems is difficult. Here we determine the correlations between a strongly hybridized spin impurity on the tip of a scanning tunnelling microscope and its electron bath by varying the coupling to a second spin impurity weakly hybridized to the sample surface. Electronic transport through these coupled spins reveals an asymmetry in the differential conductance reminiscent of spin-polarized transport in a magnetic field. We show that at zero field, this asymmetry can be controlled by the coupling strength and is related to either ferromagnetic or antiferromagnetic spin-spin correlations in the tip.

  15. Correlation-driven transport asymmetries through coupled spins in a tunnel junction

    PubMed Central

    Muenks, Matthias; Jacobson, Peter; Ternes, Markus; Kern, Klaus

    2017-01-01

    Spin–spin correlations can be the driving force that favours certain ground states and are key in numerous models that describe the behaviour of strongly correlated materials. While the sum of collective correlations usually lead to a macroscopically measurable change in properties, a direct quantification of correlations in atomic scale systems is difficult. Here we determine the correlations between a strongly hybridized spin impurity on the tip of a scanning tunnelling microscope and its electron bath by varying the coupling to a second spin impurity weakly hybridized to the sample surface. Electronic transport through these coupled spins reveals an asymmetry in the differential conductance reminiscent of spin-polarized transport in a magnetic field. We show that at zero field, this asymmetry can be controlled by the coupling strength and is related to either ferromagnetic or antiferromagnetic spin–spin correlations in the tip. PMID:28074832

  16. Quantum Correlations and the Measurement Problem

    NASA Astrophysics Data System (ADS)

    Bub, Jeffrey

    2014-10-01

    The transition from classical to quantum mechanics rests on the recognition that the structure of information is not what we thought it was: there are operational, i.e., phenomenal, probabilistic correlations that lie outside the polytope of local correlations. Such correlations cannot be simulated with classical resources, which generate classical correlations represented by the points in a simplex, where the vertices of the simplex represent joint deterministic states that are the common causes of the correlations. The `no go' hidden variable theorems tell us that we can't shoe-horn phenomenal correlations outside the local polytope into a classical simplex by supposing that something has been left out of the story. The replacement of the classical simplex by the quantum convex set as the structure representing probabilistic correlations is the analogue for quantum mechanics of the replacement of Newton's Euclidean space and time by Minkowski spacetime in special relativity. The nonclassical features of quantum mechanics, including the irreducible information loss on measurement, are generic features of correlations that lie outside the classical simplex. This paper is an elaboration of these ideas, which have their source in work by Pitowsky (J. Math. Phys. 27:1556, 1986; Math. Program. 50:395, 1991; Phys. Rev. A 77:062109, 2008), Garg and Mermin (Found. Phys. 14:1-39, 1984), Barrett (Phys. Rev. A 75:032304, 2007; Phys. Rev. A 7:022101, 2005) and others, e.g., Brunner et al. (arXiv:1303.2849, 2013), but the literature goes back to Boole (An Investigation of the Laws of Thought, Dover, New York, 1951). The final section looks at the measurement problem of quantum mechanics in this context. A large part of the problem is removed by seeing that the inconsistency in reconciling the entangled state at the end of a quantum measurement process with the definiteness of the macroscopic pointer reading and the definiteness of the correlated value of the measured micro

  17. γ - γ Angular Correlation Measurements With GRIFFIN

    NASA Astrophysics Data System (ADS)

    Maclean, Andrew; Griffin Collaboration

    2015-10-01

    When an excited nuclear state emits successive γ-rays causing a γ - γ cascade an anisotropy is found in the spatial distribution of γ2 with respect to γ1. Defining the direction of γ1 as the z-axis, the intermediate level, in general will have an uneven distribution of m-states. This causes an anisotropy in the angular correlation of the second γ-ray with respect to the first. These angular correlations are expressed by the W (θ) that depends on numerical coefficients described by the sequence of spin-parity values for the nuclear states involved, the multipolarities and mixing ratios. Angular correlations can be used for the assignment of spins and parities for the nuclear states, and thus provide a powerful means to elucidate the structure of nuclei far from stability through β - γ - γ coincidence measurements. In order to explore the sensitivity of the new 16 clover-detector GRIFFIN γ-ray spectrometer at TRIUMF-ISAC to such γ - γ angular correlations, and to optimize its performance for these measurements we have studied a well known γ - γ cascade from 60Co decay through both experimental measurements and Geant4 simulation. Results will be shown in this talk. Work supported by the Canada Foundation for Innovation, the Natural Sciences and Engineering Research Council of Canada and the National Research Council of Canada.

  18. Measures and models for angular correlation and angular-linear correlation. [correlation of random variables

    NASA Technical Reports Server (NTRS)

    Johnson, R. A.; Wehrly, T.

    1976-01-01

    Population models for dependence between two angular measurements and for dependence between an angular and a linear observation are proposed. The method of canonical correlations first leads to new population and sample measures of dependence in this latter situation. An example relating wind direction to the level of a pollutant is given. Next, applied to pairs of angular measurements, the method yields previously proposed sample measures in some special cases and a new sample measure in general.

  19. Conditioning natural gas for measurement and transportation

    SciTech Connect

    Barnhard, E.E.

    1984-04-01

    This paper discusses methods of conditioning natural gas for measurement and transportation. Gas mixtures measured at the well head or into a gathering system may not yet be conditioned to pipeline standards at the point of measurement, because title to the gas passes from the seller to the buyer at that point. Therefore, it is sometimes necessary to measure the gas flow without complete conditioning and to do it accurately. Careful study of the conditioning steps that the gas has completed, or that must be performed prior to measurement, will affect selection of the measurement equipment and the success of its operation.

  20. Nonlocal correlations in a macroscopic measurement scenario

    NASA Astrophysics Data System (ADS)

    Kunkri, Samir; Banik, Manik; Ghosh, Sibasish

    2017-02-01

    Nonlocality is one of the main characteristic features of quantum systems involving more than one spatially separated subsystem. It is manifested theoretically as well as experimentally through violation of some local realistic inequality. On the other hand, classical behavior of all physical phenomena in the macroscopic limit gives a general intuition that any physical theory for describing microscopic phenomena should resemble classical physics in the macroscopic regime, the so-called macrorealism. In the 2-2-2 scenario (two parties, with each performing two measurements and each measurement having two outcomes), contemplating all the no-signaling correlations, we characterize which of them would exhibit classical (local realistic) behavior in the macroscopic limit. Interestingly, we find correlations which at the single-copy level violate the Bell-Clauser-Horne-Shimony-Holt inequality by an amount less than the optimal quantum violation (i.e., Cirel'son bound 2 √{2 } ), but in the macroscopic limit gives rise to a value which is higher than 2 √{2 } . Such correlations are therefore not considered physical. Our study thus provides a sufficient criterion to identify some of unphysical correlations.

  1. The importance of transport parameter cross correlations in natural systems radioactive transport models

    SciTech Connect

    Reimus, Paul W

    2011-01-03

    Transport parameter cross correlations are rarely considered in models used to predict radionuclide transport in natural systems. In this paper, it is shown that parameter cross correlations could have a significant impact on radionuclide transport predictions in saturated media. In fractured rock, the positive correlation between fracture apertures and groundwater residence times is shown to result in significantly less retardation due to matrix diffusion than is predicted without the correlation. The suppression of matrix diffusion is further amplified by a tendency toward larger apertures, smaller matrix diffusion coefficients, and less sorption capacity in rocks of lower matrix porosity. In a hypothetical example, strong cross correlations between these parameters result in a decrease in predicted radionuclide travel times of an order of magnitude or more relative to travel times calculated with uncorrelated parameters. In porous media, expected correlations between permeability, porosity, and sorption capacity also result in shorter predicted travel times than when the parameters are assumed to be uncorrelated. Individual parameter standard deviations can also have a significant influence on predicted radionuclide travel times, particularly when cross correlations are considered.

  2. Device-correlated metrology for overlay measurements

    NASA Astrophysics Data System (ADS)

    Chen, Charlie; Huang, George K. C.; Pai, Yuan Chi; Wu, Jimmy C. H.; Cheng, Yu Wei; Hsu, Simon C. C.; Yu, Chun Chi; Amir, Nuriel; Choi, Dongsub; Itzkovich, Tal; Tarshish-Shapir, Inna; Tien, David C.; Huang, Eros; Kuo, Kelly T. L.; Kato, Takeshi; Inoue, Osamu; Kawada, Hiroki; Okagawa, Yutaka; Huang, Luis; Hsu, Matthew; Su, Amei

    2014-10-01

    One of the main issues with accuracy is the bias between the overlay (OVL) target and actual device OVL. In this study, we introduce the concept of device-correlated metrology (DCM), which is a systematic approach to quantify and overcome the bias between target-based OVL results and device OVL values. In order to systematically quantify the bias components between target and device, we introduce a new hybrid target integrating an optical OVL target with a device mimicking critical dimension scanning electron microscope (CD-SEM) target. The hybrid OVL target is designed to accurately represent the process influence on the actual device. In the general case, the CD-SEM can measure the bias between the target and device on the same layer after etch inspection (AEI) for all layers, the OVL between layers at AEI for most cases and after develop inspection for limited cases such as double-patterning layers. The results have shown that for the innovative process compatible hybrid targets the bias between the target and device is small, within the order of CD-SEM noise. Direct OVL measurements by CD-SEM show excellent correlation between CD-SEM and optical OVL measurements at certain conditions. This correlation helps verify the accuracy of the optical measurement results and is applicable for the imaging base OVL method using several target types advance imaging metrology, advance imaging metrology in die OVL, and the scatterometrybase OVL method. Future plans include broadening the hybrid target design to better mimic each layer process conditions such as pattern density. Additionally, for memory devices we are developing hybrid targets which enable other methods of accuracy verification.

  3. Eddy Correlation Flux Measurement System Handbook

    SciTech Connect

    Cook, D. R.

    2016-01-01

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration. The instruments used are: • a fast-response, three-dimensional (3D) wind sensor (sonic anemometer) to obtain the orthogonal wind components and the speed of sound (SOS) (used to derive the air temperature) • an open-path infrared gas analyzer (IRGA) to obtain the water vapor density and the CO2 concentration, and • an open-path infrared gas analyzer (IRGA) to obtain methane density and methane flux at one SGP EF and at the NSA CF. The ECOR systems are deployed at the locations where other methods for surface flux measurements (e.g., energy balance Bowen ratio [EBBR] systems) are difficult to employ, primarily at the north edge of a field of crops. A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system in SGP, NSA, Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes. The SEBS at one SGP and one NSA site also support upwelling and downwelling PAR measurements to qualify those two locations as Ameriflux sites.

  4. Cosmological measurements with general relativistic galaxy correlations

    NASA Astrophysics Data System (ADS)

    Raccanelli, Alvise; Montanari, Francesco; Bertacca, Daniele; Doré, Olivier; Durrer, Ruth

    2016-05-01

    We investigate the cosmological dependence and the constraining power of large-scale galaxy correlations, including all redshift-distortions, wide-angle, lensing and gravitational potential effects on linear scales. We analyze the cosmological information present in the lensing convergence and in the gravitational potential terms describing the so-called ``relativistic effects'', and we find that, while smaller than the information contained in intrinsic galaxy clustering, it is not negligible. We investigate how neglecting them does bias cosmological measurements performed by future spectroscopic and photometric large-scale surveys such as SKA and Euclid. We perform a Fisher analysis using the CLASS code, modified to include scale-dependent galaxy bias and redshift-dependent magnification and evolution bias. Our results show that neglecting relativistic terms, especially lensing convergence, introduces an error in the forecasted precision in measuring cosmological parameters of the order of a few tens of percent, in particular when measuring the matter content of the Universe and primordial non-Gaussianity parameters. The analysis suggests a possible substantial systematic error in cosmological parameter constraints. Therefore, we argue that radial correlations and integrated relativistic terms need to be taken into account when forecasting the constraining power of future large-scale number counts of galaxy surveys.

  5. Weak measurements and nonClassical correlations

    NASA Astrophysics Data System (ADS)

    Lekshmi, S.; Shaji, N.; Shaji, Anil

    2017-01-01

    We extend the definition of quantum discord as a quantifier of nonClassical correlations in a quantum state to the case where weak measurements are performed on subsystem A of a bipartite system AB. The properties of weak discord are explored for several families of quantum states. We find that in many cases weak quantum discord is identical to normal discord and in general the values of the two are very close to each other. Weak quantum discord reduces to discord in the appropriate limits as well. We also discuss the implications of these observations on the interpretations of quantum discord.

  6. Gene-Family Extension Measures and Correlations

    PubMed Central

    Carmi, Gon; Bolshoy, Alexander

    2016-01-01

    The existence of multiple copies of genes is a well-known phenomenon. A gene family is a set of sufficiently similar genes, formed by gene duplication. In earlier works conducted on a limited number of completely sequenced and annotated genomes it was found that size of gene family and size of genome are positively correlated. Additionally, it was found that several atypical microbes deviated from the observed general trend. In this study, we reexamined these associations on a larger dataset consisting of 1484 prokaryotic genomes and using several ranking approaches. We applied ranking methods in such a way that genomes with lower numbers of gene copies would have lower rank. Until now only simple ranking methods were used; we applied the Kemeny optimal aggregation approach as well. Regression and correlation analysis were utilized in order to accurately quantify and characterize the relationships between measures of paralog indices and genome size. In addition, boxplot analysis was employed as a method for outlier detection. We found that, in general, all paralog indexes positively correlate with an increase of genome size. As expected, different groups of atypical prokaryotic genomes were found for different types of paralog quantities. Mycoplasmataceae and Halobacteria appeared to be among the most interesting candidates for further research of evolution through gene duplication. PMID:27527218

  7. Probing Macroscopic Realism via Ramsey Correlation Measurements

    NASA Astrophysics Data System (ADS)

    Asadian, A.; Brukner, C.; Rabl, P.

    2014-05-01

    We describe a new and experimentally feasible protocol for performing fundamental tests of quantum mechanics with massive objects. In our approach, a single two-level system is used to probe the motion of a nanomechanical resonator via multiple Ramsey interference measurements. This scheme enables the measurement of modular variables of macroscopic continuous-variable systems; we show that correlations thereof violate a Leggett-Garg inequality and can be applied for tests of quantum contextuality. Our method can be implemented with a variety of different solid-state or photonic qubit-resonator systems, and it provides a clear experimental signature to distinguish the predictions of quantum mechanics from those of other alternative theories at a macroscopic scale.

  8. Ion energy analyzer for measurement of ion turbulent transport

    NASA Astrophysics Data System (ADS)

    Sokolov, V.; Sen, A. K.

    2012-10-01

    For local measurement of radial ion thermal transport, we developed a novel time-resolved gridded ion energy analyzer. The turbulent thermal flux is obtained by correlating fluctuations of ion temperature, plasma density and plasma velocity. The simultaneous measurement of the ion current fluctuations from an ion energy analyzer tilde I_{IEA} (t) and the fluctuation of ion saturation current from a conventional Langmuir probe tilde I_{LP} (t) allow us to determine local fluctuations of ion temperature tilde T_i (t). To reduce the effect of plasma potential fluctuations in the energy analyzer measurements, we use special a compensative circuit loop.

  9. Measures and applications of quantum correlations

    NASA Astrophysics Data System (ADS)

    Adesso, Gerardo; Bromley, Thomas R.; Cianciaruso, Marco

    2016-11-01

    Quantum information theory is built upon the realisation that quantum resources like coherence and entanglement can be exploited for novel or enhanced ways of transmitting and manipulating information, such as quantum cryptography, teleportation, and quantum computing. We now know that there is potentially much more than entanglement behind the power of quantum information processing. There exist more general forms of non-classical correlations, stemming from fundamental principles such as the necessary disturbance induced by a local measurement, or the persistence of quantum coherence in all possible local bases. These signatures can be identified and are resilient in almost all quantum states, and have been linked to the enhanced performance of certain quantum protocols over classical ones in noisy conditions. Their presence represents, among other things, one of the most essential manifestations of quantumness in cooperative systems, from the subatomic to the macroscopic domain. In this work we give an overview of the current quest for a proper understanding and characterisation of the frontier between classical and quantum correlations (QCs) in composite states. We focus on various approaches to define and quantify general QCs, based on different yet interlinked physical perspectives, and comment on the operational significance of the ensuing measures for quantum technology tasks such as information encoding, distribution, discrimination and metrology. We then provide a broader outlook of a few applications in which quantumness beyond entanglement looks fit to play a key role.

  10. Transport Experiments on 2D Correlated Electron Physics in Semiconductors

    SciTech Connect

    Tsui, Daniel

    2014-03-24

    This research project was designed to investigate experimentally the transport properties of the 2D electrons in Si and GaAs, two prototype semiconductors, in several new physical regimes that were previously inaccessible to experiments. The research focused on the strongly correlated electron physics in the dilute density limit, where the electron potential energy to kinetic energy ratio rs>>1, and on the fractional quantum Hall effect related physics in nuclear demagnetization refrigerator temperature range on samples with new levels of purity and controlled random disorder.

  11. Microscopic theory on charge transports of a correlated multiorbital system

    NASA Astrophysics Data System (ADS)

    Arakawa, Naoya

    2016-07-01

    Current vertex correction (CVC), the backflowlike correction to the current, comes from conservation laws, and the CVC due to electron correlation contains information about many-body effects. However, it has been little understood how the CVC due to electron correlation affects the charge transports of a correlated multiorbital system. To improve this situation, I studied the in-plane resistivity ρa b and the Hall coefficient in the weak-field limit RH, in addition to the magnetic properties and the electronic structure, for a t2 g-orbital Hubbard model on a square lattice in a paramagnetic state away from or near an antiferromagnetic (AF) quantum-critical point (QCP) in the fluctuation-exchange (FLEX) approximation with the CVCs arising from the self-energy (Σ ), the Maki-Thompson (MT) irreducible four-point vertex function, and the main terms of the Aslamasov-Larkin (AL) one. Then, I found three main results about the CVCs. First, the main terms of the AL CVC do not qualitatively change the results obtained in the FLEX approximation with the Σ CVC and the MT CVC. Second, ρa b and RH near the AF QCP have a high-temperature region, governed mainly by the Σ CVC, and a low-temperature region, governed mainly by the Σ CVC and the MT CVC. Third, in case away from the AF QCP, the MT CVC leads to a considerable effect on only RH at low temperatures, although RH at high temperatures and ρa b at all temperatures considered are sufficiently described by including only the Σ CVC. Those findings reveal several aspects of many-body effects on the charge transports of a correlated multiorbital system. I also achieved the qualitative agreement with several experiments of Sr2RuO4 or Sr2Ru0.975Ti0.025O4 . Moreover, I showed several better points of this theory than other theories.

  12. Are the correlates of active school transport context-specific?

    PubMed Central

    Larouche, R; Sarmiento, O L; Broyles, S T; Denstel, K D; Church, T S; Barreira, T V; Chaput, J-P; Fogelholm, M; Hu, G; Kuriyan, R; Kurpad, A; Lambert, E V; Maher, C; Maia, J; Matsudo, V; Olds, T; Onywera, V; Standage, M; Tremblay, M S; Tudor-Locke, C; Zhao, P; Katzmarzyk, P T

    2015-01-01

    OBJECTIVES: Previous research consistently indicates that children who engage in active school transport (AST) are more active than their peers who use motorized modes (car or bus). However, studies of the correlates of AST have been conducted predominantly in high-income countries and have yielded mixed findings. Using data from a heterogeneous sample of 12 country sites across the world, we investigated the correlates of AST in 9–11-year olds. METHODS: The analytical sample comprised 6555 children (53.8% girls), who reported their main travel mode to school and the duration of their school trip. Potential individual and neighborhood correlates of AST were assessed with a parent questionnaire adapted from previously validated instruments. Multilevel generalized linear mixed models (GLMM) were used to examine the associations between individual and neighborhood variables and the odds of engaging in AST while controlling for the child's school. Site moderated the relationship of seven of these variables with AST; therefore we present analyses stratified by site. RESULTS: The prevalence of AST varied from 5.2 to 79.4% across sites and the school-level intra-class correlation ranged from 0.00 to 0.56. For each site, the final GLMM included a different set of correlates of AST. Longer trip duration (that is, ⩾16 min versus ⩽15 min) was associated with lower odds of AST in eight sites. Other individual and neighborhood factors were associated with AST in three sites or less. CONCLUSIONS: Our results indicate wide variability in the prevalence and correlates of AST in a large sample of children from twelve geographically, economically and culturally diverse country sites. This suggests that AST interventions should not adopt a ‘one size fits all' approach. Future research should also explore the association between psychosocial factors and AST in different countries. PMID:27152191

  13. Understanding gold nanoisland formation using transport measurement

    NASA Astrophysics Data System (ADS)

    Joshi, Toyanath

    Novel metal nano-clusters are always being an interest of scientists and researchers because of their unique optical and chemical properties. This thesis studies the formation mechanism of gold nanoisland film by studying transport properties. We used layer-by-layer self-assembled multilayer gold samples and annealed them at the temperature ranging from room temperature to 625°C. Transport properties, particularly the resistance and capacitance, were measured in situ during annealing and compared with the surface morphology and UV-vis studies. Five films of the 8-layer gold and one film of the 5-layer silver and 5-layer gold nanoparticle sequentially self-assembled samples were measured. Temperature dependent resistance curves were plotted and analyzed. From the resistance curves, we were able to identify the actual temperature for polymer evaporation and nanoisland formation. These data were re-verified by comparing them with the temperature dependent studies of surface morphology and UV-vis spectroscopy. The effect of measuring condition, like heating rate and pre-annealing time factor, was also analyzed. Particularly, the slow heating and long pre-annealing time effected nanoisland growth mechanism.

  14. Measurement of Transport Properties of Aerosolized Nanomaterials

    PubMed Central

    Ku, Bon Ki; Kulkarni, Pramod

    2015-01-01

    Airborne engineered nanomaterials such as single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), functionalized MWCNT, graphene, fullerene, silver and gold nanorods were characterized using a tandem system of a differential mobility analyzer and an aerosol particle mass analyzer to obtain their airborne transport properties and understand their relationship to morphological characteristics. These nanomaterials were aerosolized using different generation methods such as electrospray, pneumatic atomization, and dry aerosolization techniques, and their airborne transport properties such as mobility and aerodynamic diameters, mass scaling exponent, dynamic shape factor, and effective density were obtained. Laboratory experiments were conducted to directly measure mobility diameter and mass of the airborne nanomaterials using tandem mobility-mass measurements. Mass scaling exponents, aerodynamic diameters, dynamic shape factors and effective densities of mobility-classified particles were obtained from particle mass and the mobility diameter. Microscopy analysis using Transmission Electron Microscopy (TEM) was performed to obtain morphological descriptors such as envelop diameter, open area, aspect ratio, and projected area diameter. The morphological information from the TEM was compared with measured aerodynamic and mobility diameters of the particles. The results showed that aerodynamic diameter is smaller than mobility diameter below 500 nm by a factor of 2 to 4 for all nanomaterials except silver and gold nanorods. Morphologies of MWCNTs generated by liquid-based method, such as pneumatic atomization, are more compact than those of dry dispersed MWCNTs, indicating that the morphology depends on particle generation method. TEM analysis showed that projected area diameter of MWCNTs appears to be in reasonable agreement with mobility diameter in the size range from 100 – 400 nm. Principal component analysis of the obtained airborne particle

  15. Controlling polymer translocation and ion transport via charge correlations.

    PubMed

    Buyukdagli, Sahin; Ala-Nissila, T

    2014-11-04

    We develop a correlation-corrected transport theory in order to predict ionic and polymer transport properties of membrane nanopores under physical conditions where mean-field electrostatics breaks down. The experimentally observed low KCl conductivity of open α-hemolysin pores is quantitatively explained by the presence of surface polarization effects. Upon the penetration of a DNA molecule into the pore, these polarization forces combined with the electroneutrality of DNA sets a lower boundary for the ionic current, explaining the weak salt dependence of blocked pore conductivities at dilute ion concentrations. The addition of multivalent counterions to the solution results in the reversal of the polymer charge and the direction of the electroosmotic flow. With trivalent spermidine or quadrivalent spermine molecules, the charge inversion is strong enough to stop the translocation of the polymer and to reverse its motion. This mechanism can be used efficiently in translocation experiments in order to improve the accuracy of DNA sequencing by minimizing the translocation velocity of the polymer.

  16. Magnetocaloric-transport properties correlation in doped manganites

    NASA Astrophysics Data System (ADS)

    Mohamed, Abd El-Moez A.; Hernando, B.; Ahmed, A. M.

    2016-05-01

    This investigation is interested in studying the relation between magnetocaloric effect and transport properties in La0.7Ba0.3MnO3 manganite compound. The resistivity shows a metal-semiconductor transition at Tms temperature near to its reported Curie temperature (Tc). Magnetic field application decreases resistivity and increases Tms towards higher temperatures. The magnetoresistance shows a peak around Tc and increases in value with the applied magnetic field. A similar behavior has been observed between magnetic entropy change (ΔS), resistivity and magnetoresistance around Tc, this is attributed to the spin order/disorder feature that plays a main role in the magnetocaloric-transport correlation. In spite of this similarity, the correspondence among the experimental ΔS and ΔS based resistivity calculations is missing because of lattice polarons effect on resistivity as a result of the electron-phonon interaction. The magnetocaloric-magnetoresistance relation is also studied and results show the contribution of additional factors in the magnetoresistance mechanism other than spin disorder suppression as Jahn-Teller effect and electronic phase separation.

  17. Transportable setup for amplifier phase fidelity measurements

    NASA Astrophysics Data System (ADS)

    Tröbs, M.; Bogan, C.; Barke, S.; Kühn, G.; Reiche, J.; Heinzel, G.; Danzmann, K.

    2015-05-01

    One possible laser source for the Laser Interferometer Space Antenna (LISA) consists of an Ytterbium-doped fiber amplifier originally developed for inter-satellite communication, seeded by the laser used for the technology demonstrator mission LISA Pathfinder. LISA needs to transmit clock information between its three spacecraft to correct for phase noise between the clocks on the individual spacecraft. For this purpose phase modulation sidebands at GHz frequencies will be imprinted on the laser beams between spacecraft. Differential phase noise between the carrier and a sideband introduced within the optical chain must be very low. We report on a transportable setup to measure the phase fidelity of optical amplifiers.

  18. Eddy correlation measurements in wet environmental conditions

    NASA Astrophysics Data System (ADS)

    Cuenca, R. H.; Migliori, L.; O Kane, J. P.

    2003-04-01

    The lower Feale catchment is a low-lying peaty area of 200 km^2 situated in southwest Ireland that is subject to inundation by flooding. The catchment lies adjacent to the Feale River and is subject to tidal signals as well as runoff processes. Various mitigation strategies are being investigated to reduce the damage due to flooding. Part of the effort has required development of a detailed hydrologic balance for the study area which is a wet pasture environment with local field drains that are typically flooded. An eddy correlation system was installed in the summer of 2002 to measure components of the energy balance, including evapotranspiration, along with special sensors to measure other hydrologic variables particular to this study. Data collected will be essential for validation of surface flux models to be developed for this site. Data filtering is performed using a combination of software developed by the Boundary-Layer Group (BLG) at Oregon State University together with modifications made to this system for conditions at this site. This automated procedure greatly reduces the tedious inspection of individual records. The package of tests, developed by the BLG for both tower and aircraft high frequency data, checks for electronic spiking, signal dropout, unrealistic magnitudes, extreme higher moment statistics, as well as other error scenarios not covered by the instrumentation diagnostics built into the system. Critical parameter values for each potential error were developed by applying the tests to real fast response turbulent time series. Potential instrumentation problems, flux sampling problems, and unusual physical situations records are flagged for removal or further analysis. A final visual inspection step is required to minimize rejection of physically unusual but real behavior in the time series. The problems of data management, data quality control, individual instrumentation sensitivity, potential underestimation of latent and sensible heat

  19. Correlation and symmetry effects in transport through an artificial molecule

    SciTech Connect

    Ramirez, F.; Cota, E.; Ulloa, S.E.

    1999-02-01

    Spectral weights and current-voltage characteristics of an artificial diatomic molecule are calculated, considering cases where the dots connected in series are in general different. The spectral weights allow us to understand the effects of correlations, their connection with selection rules for transport, and the role of excited states in the experimental conductance spectra of these coupled double dot systems (DDS). An extended Hubbard Hamiltonian with varying interdot tunneling strength is used as a model, incorporating quantum confinement in the DDS, interdot tunneling as well as intra- and interdot Coulomb interactions. We find that interdot tunneling values determine to a great extent the resulting eigenstates and corresponding spectral weights. Details of the state correlations strongly suppress most of the possible conduction channels, giving rise to effective selection rules for conductance through the molecule. Most states are found to make insignificant contributions to the total current for finite biases. We find also that the symmetry of the structure is reflected in the I-V characteristics, and is in qualitative agreement with experiment. {copyright} {ital 1999} {ital The American Physical Society}

  20. Quantitative correlation between light depolarization and transport albedo of various porcine tissues.

    PubMed

    Alali, Sanaz; Ahmad, Manzoor; Kim, Anthony; Vurgun, Nasit; Wood, Michael F G; Vitkin, I Alex

    2012-04-01

    We present a quantitative study of depolarization in biological tissues and correlate it with measured optical properties (reduced scattering and absorption coefficients). Polarized light imaging was used to examine optically thick samples of both isotropic (liver, kidney cortex, and brain) and anisotropic (cardiac muscle, loin muscle, and tendon) pig tissues in transmission and reflection geometries. Depolarization (total, linear, and circular), as derived from polar decomposition of the measured tissue Mueller matrix, was shown to be related to the measured optical properties. We observed that depolarization increases with the transport albedo for isotropic and anisotropic tissues, independent of measurement geometry. For anisotropic tissues, depolarization was higher compared to isotropic tissues of similar transport albedo, indicating birefringence-caused depolarization effects. For tissues with large transport albedos (greater than ~0.97), backscattering geometry was preferred over transmission due to its greater retention of light polarization; this was not the case for tissues with lower transport albedo. Preferential preservation of linearly polarized light over circularly polarized light was seen in all tissue types and all measurement geometries, implying the dominance of Rayleigh-like scattering. The tabulated polarization properties of different tissue types and their links to bulk optical properties should prove useful in future polarimetric tissue characterization and imaging studies.

  1. Quantum dynamics in continuum for proton transport--generalized correlation.

    PubMed

    Chen, Duan; Wei, Guo-Wei

    2012-04-07

    As a key process of many biological reactions such as biological energy transduction or human sensory systems, proton transport has attracted much research attention in biological, biophysical, and mathematical fields. A quantum dynamics in continuum framework has been proposed to study proton permeation through membrane proteins in our earlier work and the present work focuses on the generalized correlation of protons with their environment. Being complementary to electrostatic potentials, generalized correlations consist of proton-proton, proton-ion, proton-protein, and proton-water interactions. In our approach, protons are treated as quantum particles while other components of generalized correlations are described classically and in different levels of approximations upon simulation feasibility and difficulty. Specifically, the membrane protein is modeled as a group of discrete atoms, while ion densities are approximated by Boltzmann distributions, and water molecules are represented as a dielectric continuum. These proton-environment interactions are formulated as convolutions between number densities of species and their corresponding interaction kernels, in which parameters are obtained from experimental data. In the present formulation, generalized correlations are important components in the total Hamiltonian of protons, and thus is seamlessly embedded in the multiscale/multiphysics total variational model of the system. It takes care of non-electrostatic interactions, including the finite size effect, the geometry confinement induced channel barriers, dehydration and hydrogen bond effects, etc. The variational principle or the Euler-Lagrange equation is utilized to minimize the total energy functional, which includes the total Hamiltonian of protons, and obtain a new version of generalized Laplace-Beltrami equation, generalized Poisson-Boltzmann equation and generalized Kohn-Sham equation. A set of numerical algorithms, such as the matched interface and

  2. NANONIS TRAMEA - A Quantum Transport Measurement System

    NASA Astrophysics Data System (ADS)

    Kampen, Thorsten; Thissen, Andreas; Schaff, Oliver; Pioda, Alessandro

    Nanonis Tramea is a quantum leap with respect to increased speed for transport measurements taking research onto a new level. Measurements which took several hours in the past can now be done in minutes without compromising signal quality. Tramea uses its fast, high-resolution, high-precision and ultra-low-noise outputs and inputs to generate and acquire up to 20000 data points per second on 24 channels in parallel. This is not only up to 1000 x faster than typical measurement systems but it is also time deterministic with highest precision. Here, the time separation between points is constant so that artefacts caused by unequal point spacings in non-deterministic measurement systems are avoided. The emphasis here is the real-time relation. Tramea comes with a built-in interface which allows for control of the instruments' basic functions from any programming environment. For users requiring more functionality and higher speeds a full-featured LabVIEW-based programming interface or scripting module are available as add-on modules. Due to the modularity and flexibility of the hardware and software architecture of Tramea upgrades with standardized add-on modules are possible. Non-standard requests can still be handled by the various programming options.

  3. Correlation of normal and superconducting transport properties on textured Bi-2212 ceramic thin rods

    NASA Astrophysics Data System (ADS)

    Natividad, E.; Castro, M.; Burriel, R.; Angurel, L. A.; Díez, J. C.; Navarro, R.

    2002-07-01

    The electric and thermal properties well above and below Tc of Bi-2212 textured ceramics have been correlated through a careful analysis of the microstructure and the transport measurements. Thin rods with the same Bi-2122 stoichiometry and textured by a laser floating zone technique have been studied with that aim. By changing the growth parameters, it has been possible to produce strong changes in microstructure and critical current density, Jc, with small variations in the thermal conductivity. The existence of phase and composition gradients across the thin rods, which explains the variations of Tc, makes the relation difficult between the normal state resistivity and Jc (77 K). A simple qualitative analysis that takes into account the observed microstructure has been developed to correlate the electric transport properties in the normal and in the superconducting states.

  4. Accurate measurement of curvilinear shapes by Virtual Image Correlation

    NASA Astrophysics Data System (ADS)

    Semin, B.; Auradou, H.; François, M. L. M.

    2011-10-01

    The proposed method allows the detection and the measurement, in the sense of metrology, of smooth elongated curvilinear shapes. Such measurements are required in many fields of physics, for example: mechanical engineering, biology or medicine (deflection of beams, fibers or filaments), fluid mechanics or chemistry (detection of fronts). Contrary to actual methods, the result is given in an analytical form of class C∞ (and not a finite set of locations or pixels) thus curvatures and slopes, often of great interest in science, are given with good confidence. The proposed Virtual Image Correlation (VIC) method uses a virtual beam, an image which consists in a lateral expansion of the curve with a bell-shaped gray level. This figure is deformed until it fits the best the physical image with a method issued from the Digital Image Correlation method in use in solid mechanics. The precision of the identification is studied in a benchmark and successfully compared to two state-of-the-art methods. Three practical examples are given: a bar bending under its own weight, a thin fiber transported by a flow within a fracture and a thermal front. The first allows a comparison with theoretical solution, the second shows the ability of the method to deal with complex shapes and crossings and the third deals with ill-defined image.

  5. Photon correlation system for fluorescence lifetime measurements

    NASA Astrophysics Data System (ADS)

    Morgan, C. G.; Murray, J. G.; Mitchell, A. C.

    1995-07-01

    The construction and testing of a dual-channel photon correlator is reported for the frequency domain imaging of fluorescence lifetimes using photon-counting detection. A light source modulated at radio frequency excites fluorescence, which is detected using an imaging single-photon detector. After discrimination, single-photon events are processed in parallel by the correlation circuit, the purpose of which is to allow both the mean phase delay and the demodulation of fluorescence to be calculated relative to a reference signal derived from the modulated excitation source. Outputs from the correlator are integrated in a computer, resulting in accumulation of images which have been statistically filtered by sine and cosine transforms, and which can be manipulated within the computer to generate a resultant image where contrast depends on fluorescence lifetime rather than fluorescence intensity.

  6. Strongly correlated quantum transport out-of-equilibrium

    NASA Astrophysics Data System (ADS)

    Dutt, Prasenjit

    The revolutionary advances in nanotechnology and nanofabrication have facilitated the precise control and manipulation of mesoscopic systems where quantum effects are pronounced. Quantum devices with tunable gates have made it possible to access regimes far beyond the purview of linear response theory. In particular, the influence of strong voltage and thermal biases has led to the observation of novel phenomena where the non-equilibrium characteristics of the system are of paramount importance. We study transport through quantum-impurity systems in the regime of strong correlations and determine the effects of large temperature and potential gradients on its many-body physics. In Part I of this thesis we focus on the steady-state dynamics of the system, a commonly encountered experimental scenario. For a system consisting of several leads composed of non-interacting electrons, each individually coupled to a quantum impurity with interactions and maintained at different chemical potentials, we reformulate the system in terms of an effective-equilibrium density matrix. This density matrix has a simple Boltzmann-like form in terms of the system's Lippmann-Schwinger (scattering) operators. We elaborate the conditions for this description to be valid based on the microscopic Hamiltonian of the system. We then prove the equivalence of physical observables computed using this formulation with corresponding expressions in the Schwinger-Keldysh approach and provide a dictionary between Green's functions in either scheme. An imaginary-time functional integral framework to compute finite temperature Green's functions is proposed and used to develop a novel perturbative expansion in the interaction strength which is exact in all other system parameters. We use these tools to study the fate of the Abrikosov-Suhl regime on the Kondo-correlated quantum dot due to the effects of bias and external magnetic fields. Next, we expand the domain of this formalism to additionally

  7. Measurement and modeling of oil slick transport

    NASA Astrophysics Data System (ADS)

    Jones, Cathleen E.; Dagestad, Knut-Frode; Breivik, Åyvind; Holt, Benjamin; Röhrs, Johannes; Christensen, Kai Hâkon; Espeseth, Martine; Brekke, Camilla; Skrunes, Stine

    2016-10-01

    Transport characteristics of oil slicks are reported from a controlled release experiment conducted in the North Sea in June 2015, during which mineral oil emulsions of different volumetric oil fractions and a look-alike biogenic oil were released and allowed to develop naturally. The experiment used the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) to track slick location, size, and shape for ˜8 h following release. Wind conditions during the exercise were at the high end of the range considered suitable for radar-based slick detection, but the slicks were easily detectable in all images acquired by the low noise, L-band imaging radar. The measurements are used to constrain the entrainment length and representative droplet radii for oil elements in simulations generated using the OpenOil advanced oil drift model. Simultaneously released drifters provide near-surface current estimates for the single biogenic release and one emulsion release, and are used to test model sensitivity to upper ocean currents and mixing. Results of the modeling reveal a distinct difference between the transport of the biogenic oil and the mineral oil emulsion, in particular in the vertical direction, with faster and deeper entrainment of significantly smaller droplets of the biogenic oil. The difference in depth profiles for the two types of oils is substantial, with most of the biogenic oil residing below depths of 10 m, compared to the majority of the emulsion remaining above 10 m depth. This difference was key to fitting the observed evolution of the two different types of slicks.

  8. New Observables for Measuring Rapidity Correlation Structure in Nuclear Collisions

    NASA Astrophysics Data System (ADS)

    Carzon, Patrick; Gavin, Sean; Moschelli, George; Zin, Chris

    2016-09-01

    The rapidity dependence of two-particle momentum correlations can be used to probe the viscosity of the liquid produced in heavy nuclei collisions at RHIC. In addition, more refined rapidity structure of these correlations can be used to measure the isotropization time scale τπ of this liquid. While earlier theory and measurements have focused on correlations of the transverse momentum pt, the interpretation of these measurements is ambiguous because pt is not a conserved quantity. Correlations of the Cartesian components of transverse momenta, px and py are easier to understand because they are conserved. We use the heavy ion simulation code AMPT to explore the correlations of these quantities.

  9. Correlating DSC and X-Ray Measurements Of Crystallinity

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S.; Lowry, Lynn E.; Bankston, Clyde P.

    1991-01-01

    Experiment demonstrated approximate linear correlation between degree of crystallinity of multiphase polymer (as calculated from x-ray diffraction measurements) and heat of fusion of polymer (as calculated from differential scanning calorimetry (DSC) measurements). Correlation basis of simple new technique for estimating degree of crystallinity of specimens of polymer from DSC measurements alone.

  10. Measuring aeolian sand transport using acoustic sensors

    NASA Astrophysics Data System (ADS)

    Poortinga, Ate; van Rheenen, Hans; Ellis, Jean T.; Sherman, Douglas J.

    2015-03-01

    Acoustic sensors are frequently used to measure aeolian saltation. Different approaches are used to process the signals from these instruments. The goal of this paper is to describe and discuss a method to measure aeolian saltation with acoustic sensors. In a laboratory experiment, we measured the output from an advanced signal processing scheme on the circuit board of the saltiphone. We use a software implementation of this processing scheme to re-analyse data from four miniphones obtained during a field experiment. It is shown that a set of filters remove background noise outside the frequency spectrum of aeolian saltation (at 8 kHz), whereas signals within this frequency spectrum are amplified. The resulting analogue signal is a proxy of the energy. Using an AC pulse convertor, this signal can be converted into a digital and analogue count signal or an analogue energy signal, using a rectifier and integrator. Spatio-temporal correlation between field deployed miniphones increases by using longer integration times for signal processing. To quantify aeolian grain impact, it is suggested to use the analogue energy output, as this mode is able to detect changes in frequency and amplitude. The analogue and digital count signals are able to detect an increase in frequency, but are not able to detect an increase in signal amplitude. We propose a two-stage calibration scheme consisting of (1) a factory calibration, to set the frequency spectrum of the sensor and (2) a standardized drop-test conducted before and after the experiment to evaluate the response of the sensor.

  11. Measurement of Hydrocarbon Transport in Bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Hydrocarbon uptake by bacteria has not been extensively studied, and strong evidence for active transport of hydrocarbons is lacking. The volatile nature of hydrocarbons, their hydrophobicity, and their relatively low aqueous solubilities can complicate transport assays. Here we present a detailed...

  12. TRANSPORT PROPERTY MEASUREMENTS OF HFC-236EA

    EPA Science Inventory

    The report gives results of an evaluation of transport properties of 1,1,1,2,3,3,-hexafluoropropane (HFC-236ea), with liquid viscosity and thermal conductivity being the two main transport properties of interest. In addition, the specific heat and density of refrigerant/lubrican...

  13. d + Au hadron correlation measurements at PHENIX

    SciTech Connect

    Anne M. Sickles

    2014-05-13

    In these proceedings, we discuss recent results from d + Au collisions in PHENIX ridge related measurements and their possible hydrodynamic origin. We present the v2 at midrapidity and measurements of the pseudorapidity dependence of the ridge, distinguishing between the d-going and Au-going directions. We investigate the possible geometrical origin by comparing v2 in d + Au to that in p + Pb, Au + Au and Pb + Pb collisions. Future plans to clarify the role of geometry in small collision systems at RHIC are discussed.

  14. Transport signatures of correlated disorder in a two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Heinzel, T.; Jäggi, R.; Ribeiro, E.; Waldkirch, M. v.; Ensslin, K.; Ulloa, S. E.; Medeiros-Ribeiro, G.; Petroff, P. M.

    2003-03-01

    We report electronic transport measurements on two-dimensional electron gases in a Ga[Al]As heterostructure with an embedded layer of InAs self-assembled quantum dots. At high InAs dot densities, pronounced Altshuler-Aronov-Spivak magnetoresistance oscillations are observed, which indicate short-range ordering of the potential landscape formed by the charged dots and the strain fields. The presence of these oscillations coincides with the observation of a metal-insulator transition, and a maximum in the electron mobility as a function of the electron density. Within a model based on correlated disorder, we establish a relation between these effects.

  15. Fourier imaging correlation spectroscopy: Technique development and application to colloidal thin films and intracellular mitochondrial transport

    NASA Astrophysics Data System (ADS)

    Knowles, Michelle Kay

    2003-10-01

    Understanding fluid dynamics is fundamentally intriguing and relevant to many areas of applied science, including polymer materials and cellular transport. Many complex fluids are difficult to study using traditional methods, which are limited in sensitivity, dynamic range or spatial information. In this work, a new technique, Fourier Imaging Correlation Spectroscopy (FICS), is developed in order to measure the dynamics of complex fluids over a broad dynamic range with high sensitivity. FICS measures complex fluid structure one length scale at a time and allows for direct calculation of the intermediate scattering function; a function that describes how the system is changing on a given length scale as a function of time. The sensitivity of FICS allows for study of materials with intrinsically low signals, such as thin films. Colloidal thin film measurements provided a proof-of-principle of FICS by comparing the intermediate scattering function calculated from FICS data to results from an established technique, digital video microscopy. FICS is an ideal method for obtaining information about mitochondrial transport within living cells. Mitochondrial dynamics are strongly influenced by interactions with cytoskeletal filaments and their associated motor proteins. This leads to complex multi-exponential relaxations occurring over a wide range of spatial and temporal scales. The cytoskeleton consists of an interconnected polymer network whose primary components are microfilaments and microtubules. Cytoskeletal filaments work with motor proteins to traffic organelles within the cell. Components of the cytoskeleton were selectively destabilized and the resulting mitochondrial dynamics measured using FICS and digital video microscopy. These studies show that both microfilaments and microtubules are necessary for transport of the mitochondrial reticulum. FICS measurements reveal that microfilaments control short-range (0.8--1.6 mum) dynamics and microtubules are

  16. Nucleotide correlations and electronic transport of DNA sequences

    NASA Astrophysics Data System (ADS)

    Albuquerque, E. L.; Vasconcelos, M. S.; Lyra, M. L.; de Moura, F. A. B. F.

    2005-02-01

    We use a tight-binding formulation to investigate the transmissivity and wave-packet dynamics of sequences of single-strand DNA molecules made up from the nucleotides guanine G , adenine A , cytosine C , and thymine T . In order to reveal the relevance of the underlying correlations in the nucleotides distribution, we compare the results for the genomic DNA sequence with those of two artificial sequences: (i) the Rudin-Shapiro one, which has long-range correlations; (ii) a random sequence, which is a kind of prototype of a short-range correlated system, presented here with the same first-neighbor pair correlations of the human DNA sequence. We found that the long-range character of the correlations is important to the persistence of resonances of finite segments. On the other hand, the wave-packet dynamics seems to be mostly influenced by the short-range correlations.

  17. Measurement and Correlation of Ice Accretion Roughness

    NASA Technical Reports Server (NTRS)

    Anderson, David N.; Hentschel, Daniel B.; Ruff, Gary A.

    2003-01-01

    Measurements were taken of the roughness characteristics of ice accreted on NACA 0012 airfoils in the NASA Glenn Icing Research Tunnel (IRT). Tests were conducted with size scaled, using models with chords of 26.7, 53.3, and 80.0 cm, and with liquid-water content scaled, both according to previously-tested scaling methods. The width of the smooth zone which forms on either side of the leading edge of the airfoil and the diameter of the roughness elements are presented in non-dimensional form as functions of the accumulation parameter. The smooth-zone width was found to decrease with increasing accumulation parameter. The roughness-element diameter increased with accumulation parameter until a plateau was reached. This maximum diameter was about 0.06 times twice the model leading-edge radius. Neither smooth-zone width nor element diameter were affected by a change in freezing fraction from 0.2 to 0.4. Both roughness characteristics appeared to scale with model size and with liquid-water content.

  18. Correlating substituent parameter values to electron transport properties of molecules

    NASA Astrophysics Data System (ADS)

    Vedova-Brook, Natalie; Matsunaga, Nikita; Sohlberg, Karl

    2004-03-01

    There are a vast number of organic compounds that could be considered for use in molecular electronics. Because of this, the need for efficient and economical screening tools has emerged. We demonstrate that the substituent parameter values ( σ), commonly found in advanced organic chemistry textbooks, correlate strongly with features of the charge migration process, establishing them as useful indicators of electronic properties. Specifically, we report that ab initio derived electronic charge transfer values for 16 different substituted aromatic molecules for molecular junctions correlate to the σ values with a correlation coefficient squared ( R2) of 0.863.

  19. Monotonic correlation analysis of image quality measures for image fusion

    NASA Astrophysics Data System (ADS)

    Kaplan, Lance M.; Burks, Stephen D.; Moore, Richard K.; Nguyen, Quang

    2008-04-01

    The next generation of night vision goggles will fuse image intensified and long wave infra-red to create a hybrid image that will enable soldiers to better interpret their surroundings during nighttime missions. Paramount to the development of such goggles is the exploitation of image quality (IQ) measures to automatically determine the best image fusion algorithm for a particular task. This work introduces a novel monotonic correlation coefficient to investigate how well possible IQ features correlate to actual human performance, which is measured by a perception study. The paper will demonstrate how monotonic correlation can identify worthy features that could be overlooked by traditional correlation values.

  20. Overview of mitigation policies and measures in transportation

    SciTech Connect

    Ernst, J.

    1996-12-31

    In this paper the author looks at the general question of what can be done in the transportation sector to address the problem of greenhouse gas emissions. Obviously, fewer vehicles is less emission. But on a global scale he reviews the population growth in major cities, the type of transport employed, the correlation of vehicle ownership and gross national product, as well as the costs, direct and indirect of letting more personal wealth drive one to personal vehicles as a way to transport oneself to work. The increased speed comes with many costs for the individual and for society. The development of mass transportation systems provides a number of benefits, in the form of urban development, less reliance on imported fuels, transport system health, general health and productivity of work force, and reduced costs to government to support transportation systems.

  1. Multifunctional optical correlator for picosecond ultraviolet laser pulse measurement.

    PubMed

    Rakhman, Abdurahim; Wang, Yang; Garcia, Frances; Long, Cary; Huang, Chunning; Takeda, Yasuhiro; Liu, Yun

    2014-11-01

    A compact multifunctional optical correlator system for pulse width measurement of ultrashort ultraviolet (UV) pulses has been designed and experimentally demonstrated. Both autocorrelation and cross-correlation functions are measured using a single nonlinear crystal, and the switching between two measurements requires no adjustment of phase matching and detector. The system can measure UV pulse widths from sub-picoseconds to 100 ps, and it involves no auxiliary pulse in the measurement. The measurement results on a burst-mode picosecond UV laser show a high-quality performance on speed, accuracy, resolution, and dynamic range. The proposed correlator can be applied to measure any ultrashort UV pulses produced through sum-frequency generation or second-harmonic generation.

  2. Correlations among four measures of thoracic kyphosis in older adults

    PubMed Central

    Tran, T. H.; Wing, D.; Davis, A.; Bergstrom, J.; Schousboe, J. T.; Nichols, J. F.

    2016-01-01

    Summary There are many ways to measure thoracic kyphosis ranging from simple clinical to more complex assessments. We evaluated the correlation among four commonly used kyphosis measures: Cobb angle, Debrunner kyphometer, kyphotic index, and the blocks method. Each measure was correlated with the others, confirming high clinical and research applicability. Introduction The purpose of this study was to assess the associations among four commonly used measures of thoracic kyphosis in older adults. Methods Seventy two men and women aged 65–96 were recruited from the San Diego community. Four kyphosis measures were assessed in the same person during a baseline clinic visit. Two measures were done in the lying (L) and two in the standing (ST) position: (1) Cobb angle calculated from dual X-Ray absorptiometry (DXA) images (L), (2) Debrunner kyphometer (DK) angle measured by a protractor (ST), (3) kyphotic index (KI) calculated using an architect’s flexicurve ruler (ST), and (4) the blocks method involving counting the number of 1.7 cm-thick blocks required to achieve a neutral head position while lying flat on the DXA table (L). Spearman rank correlation coefficients were used to determine the strength of the association between each kyphosis measure. Results Using the Cobb angle as the gold standard, the blocks method demonstrated the lowest correlation (rs =0.63, p<0.0001), the Debrunner method had a moderate correlation (rs=0.65, p<0.0001), and the kyphotic index had the highest correlation (rs=0.68, p<0.0001). The correlation was strongest between the kyphotic index and the Debrunner kyphometer (rs=0.76, p<0.0001). Conclusion In older men and women, all four measures of thoracic kyphosis were significantly correlated with each other, whether assessed in the lying or standing position. Thus, any of these measures demonstrate both potential clinical and research utility. PMID:26475287

  3. Transport Measurements on Si Nanostructures with Counted Sb Donors

    NASA Astrophysics Data System (ADS)

    Singh, Meenakshi; Bielejec, Edward; Garratt, Elias; Ten Eyck, Gregory; Bishop, Nathaniel; Wendt, Joel; Luhman, Dwight; Carroll, Malcolm; Lilly, Michael

    2014-03-01

    Donor based spin qubits are a promising platform for quantum computing. Single qubits using timed implant of donors have been demonstrated.1 Extending this to multiple qubits requires precise control over the placement and number of donors. Such control can be achieved by using a combination of low-energy heavy-ion implants (to reduce depth straggle), electron-beam lithography (to define position), focused ion beam (to localize implants to one lithographic site) and counting the number of implants with a single ion detector.2 We report transport measurements on MOS quantum dots implanted with 5, 10 and 20 Sb donors using the approach described above. A donor charge transition is identified by a charge offset in the transport characteristics. Correlation between the number of donors and the charge offsets is studied. These results are necessary first steps towards fabricating donor nanostructures for two qubit interactions. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. The work was supported by Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. 1J. J. Pla et al., Nature 496, 334 (2013) 2J. A. Seamons et al., APL 93, 043124 (2008).

  4. Multifunctional optical correlator for picosecond ultraviolet laser pulse measurement

    DOE PAGES

    Rakhman, Abdurahim; Wang, Yang; Garcia, Frances; ...

    2014-01-01

    A compact optical correlator system that measures both the autocorrelation between two infrared (IR) lights and the cross-correlation between an IR and an ultraviolet (UV) light using a single nonlinear optical crystal has been designed and experimentally demonstrated. The rapid scanning of optical delay line, switching between auto and cross-correlations, crystal angle tuning, and data acquisition and processing are all computer controlled. Pulse widths of an IR light from a mode-locked laser are measured by the correlator and the results are compared with a direct measurement using a high-speed photodetector system. The correlator has been used to study the parametermore » dependence of the pulse width of a macropulse UV laser designed for laser-assisted hydrogen ion (H-) beam stripping for the Spallation Neutron Source at Oak Ridge National Laboratory.« less

  5. Multifunctional optical correlator for picosecond ultraviolet laser pulse measurement

    SciTech Connect

    Rakhman, Abdurahim; Wang, Yang; Garcia, Frances; Long, Cary D.; Huang, Chunning; Takeda, Yasuhiro; Liu, Yun

    2014-01-01

    A compact optical correlator system that measures both the autocorrelation between two infrared (IR) lights and the cross-correlation between an IR and an ultraviolet (UV) light using a single nonlinear optical crystal has been designed and experimentally demonstrated. The rapid scanning of optical delay line, switching between auto and cross-correlations, crystal angle tuning, and data acquisition and processing are all computer controlled. Pulse widths of an IR light from a mode-locked laser are measured by the correlator and the results are compared with a direct measurement using a high-speed photodetector system. The correlator has been used to study the parameter dependence of the pulse width of a macropulse UV laser designed for laser-assisted hydrogen ion (H-) beam stripping for the Spallation Neutron Source at Oak Ridge National Laboratory.

  6. Built environmental correlates of cycling for transport across Europe.

    PubMed

    Mertens, Lieze; Compernolle, Sofie; Deforche, Benedicte; Mackenbach, Joreintje D; Lakerveld, Jeroen; Brug, Johannes; Roda, Célina; Feuillet, Thierry; Oppert, Jean-Michel; Glonti, Ketevan; Rutter, Harry; Bardos, Helga; De Bourdeaudhuij, Ilse; Van Dyck, Delfien

    2017-03-01

    This cross-sectional study aimed to determine which objective built environmental factors, identified using a virtual neighbourhood audit, were associated with cycling for transport in adults living in five urban regions across Europe. The moderating role of age, gender, socio-economic status and country on these associations was also investigated. Overall, results showed that people living in neighbourhoods with a preponderance of speed limits below 30km/h, many bicycle lanes, with less traffic calming devices, more trees, more litter and many parked cars forming an obstacle on the road were more likely to cycle for transport than people living in areas with lower prevalence of these factors. Evidence was only found for seven out of 56 possible moderators of these associations. These results suggest that reducing speed limits for motorized vehicles and the provision of more bicycle lanes may be effective interventions to promote cycling in Europe.

  7. Charge transport in organic crystals: Critical role of correlated fluctuations unveiled by analysis of Feynman diagrams

    SciTech Connect

    Packwood, Daniel M.; Oniwa, Kazuaki; Jin, Tienan; Asao, Naoki

    2015-04-14

    Organic crystals have unique charge transport properties that lie somewhere between delocalised band-type transport and localised hopping transport. In this paper, we use a stochastic tight-binding model to explore how dynamical disorder in organic crystals affects charge transport. By analysing the model in terms of Feynman diagrams (virtual processes), we expose the crucial role of correlated dynamical disorder to the charge transport dynamics in the model at short times in the order of a few hundred femtoseconds. Under correlated dynamical disorder, the random motions of molecules in the crystal allow for low-energy “bonding”-type interactions between neighboring molecular orbitals can persist over long periods of time. On the other hand, the dependence of charge transport on correlated dynamical disorder also tends to localize the charge, as correlated disorder cannot persist far in space. This concept of correlation may be the “missing link” for describing the intermediate regime between band transport and hopping transport that occurs in organic crystals.

  8. Charge transport in organic crystals: critical role of correlated fluctuations unveiled by analysis of Feynman diagrams.

    PubMed

    Packwood, Daniel M; Oniwa, Kazuaki; Jin, Tienan; Asao, Naoki

    2015-04-14

    Organic crystals have unique charge transport properties that lie somewhere between delocalised band-type transport and localised hopping transport. In this paper, we use a stochastic tight-binding model to explore how dynamical disorder in organic crystals affects charge transport. By analysing the model in terms of Feynman diagrams (virtual processes), we expose the crucial role of correlated dynamical disorder to the charge transport dynamics in the model at short times in the order of a few hundred femtoseconds. Under correlated dynamical disorder, the random motions of molecules in the crystal allow for low-energy "bonding"-type interactions between neighboring molecular orbitals can persist over long periods of time. On the other hand, the dependence of charge transport on correlated dynamical disorder also tends to localize the charge, as correlated disorder cannot persist far in space. This concept of correlation may be the "missing link" for describing the intermediate regime between band transport and hopping transport that occurs in organic crystals.

  9. Enhancing robustness of multiparty quantum correlations using weak measurement

    SciTech Connect

    Singh, Uttam; Mishra, Utkarsh; Dhar, Himadri Shekhar

    2014-11-15

    Multipartite quantum correlations are important resources for the development of quantum information and computation protocols. However, the resourcefulness of multipartite quantum correlations in practical settings is limited by its fragility under decoherence due to environmental interactions. Though there exist protocols to protect bipartite entanglement under decoherence, the implementation of such protocols for multipartite quantum correlations has not been sufficiently explored. Here, we study the effect of local amplitude damping channel on the generalized Greenberger–Horne–Zeilinger state, and use a protocol of optimal reversal quantum weak measurement to protect the multipartite quantum correlations. We observe that the weak measurement reversal protocol enhances the robustness of multipartite quantum correlations. Further it increases the critical damping value that corresponds to entanglement sudden death. To emphasize the efficacy of the technique in protection of multipartite quantum correlation, we investigate two proximately related quantum communication tasks, namely, quantum teleportation in a one sender, many receivers setting and multiparty quantum information splitting, through a local amplitude damping channel. We observe an increase in the average fidelity of both the quantum communication tasks under the weak measurement reversal protocol. The method may prove beneficial, for combating external interactions, in other quantum information tasks using multipartite resources. - Highlights: • Extension of weak measurement reversal scheme to protect multiparty quantum correlations. • Protection of multiparty quantum correlation under local amplitude damping noise. • Enhanced fidelity of quantum teleportation in one sender and many receivers setting. • Enhanced fidelity of quantum information splitting protocol.

  10. A Review of the Correlates and Measurements of Career Indecision.

    ERIC Educational Resources Information Center

    Sepich, Robert T.

    1987-01-01

    Reviews the literature to enhance practitioner understanding of career indecision. Attempts to answer two questions: (1) What are correlates of career indecision? and (2) How is it measured? Summarizes findings; suggests research areas. (CH)

  11. Dopamine Transporters in Striatum Correlated with Deactivation in the Default Mode Network during Visuospatial Attention

    SciTech Connect

    Tomasi, D.; Fowler, J.; Tomasi, D.; Volkow, N.D.; Wang, R.L.; Telang, F.; Wang, Chang, L.; Ernst, T.; /Fowler, J.S.

    2009-06-01

    Dopamine and dopamine transporters (DAT, which regulate extracellular dopamine in the brain) are implicated in the modulation of attention but their specific roles are not well understood. Here we hypothesized that dopamine modulates attention by facilitation of brain deactivation in the default mode network (DMN). Thus, higher striatal DAT levels, which would result in an enhanced clearance of dopamine and hence weaker dopamine signals, would be associated to lower deactivation in the DMN during an attention task. For this purpose we assessed the relationship between DAT in striatum (measured with positron emission tomography and [{sup 11}C]cocaine used as DAT radiotracer) and brain activation and deactivation during a parametric visual attention task (measured with blood oxygenation level dependent functional magnetic resonance imaging) in healthy controls. We show that DAT availability in caudate and putamen had a negative correlation with deactivation in ventral parietal regions of the DMN (precuneus, BA 7) and a positive correlation with deactivation in a small region in the ventral anterior cingulate gyrus (BA 24/32). With increasing attentional load, DAT in caudate showed a negative correlation with load-related deactivation increases in precuneus. These findings provide evidence that dopamine transporters modulate neural activity in the DMN and anterior cingulate gyrus during visuospatial attention. Our findings suggest that dopamine modulates attention in part by regulating neuronal activity in posterior parietal cortex including precuneus (region involved in alertness) and cingulate gyrus (region deactivated in proportion to emotional interference). These findings suggest that the beneficial effects of stimulant medications (increase dopamine by blocking DAT) in inattention reflect in part their ability to facilitate the deactivation of the DMN.

  12. Correlation Between in-situ Redox Reaction Rates and Microbial Biomass Distribution in Porous Media Influenced by Different Transport Regimes

    NASA Astrophysics Data System (ADS)

    Thullner, M.; Pallud, C.; van Cappellen, P.; Regnier, P.

    2004-12-01

    Microbially mediated redox transformations of organic carbon play an important role for the fate of reactive species in porous media. The terminal electron acceptors (TEAs) involved in such reactions depend on the amount and degradability of the organic carbon species and lead to a succession of redox reactions where the TEAs are used-up in a temporal or, in case transport is considered, spatial sequence of decreasing energy yields. A direct characterization of redox stratified systems is challenged by our ability to measure reaction rates in-situ. One novel approach consists in quantifying and characterizing microorganisms in aquifers and sediments and to use such results to predict in-situ redox reaction rates. However, the existence of a spatial correlation between microbial abundance and associated in-situ redox reaction rates should be questioned. Here, we investigate this correlation for porous media having different transport regimes. In the environment, these regimes vary between systems such as aquifers, where advective transport in the water phase is the dominant transport mechanism, and aquatic sediments, where close to the sediment water interface the mixing activity of benthic macrofauna contributes significantly to transport. Results from estuarine sediments show that for such systems, the spatial distributions of redox reaction rates and the associated microorganisms are not correlated. This observation is supported by reactive transport simulations, which show that the ratio of the time scale of the mixing processes to the time scale of microbial growth is controlling the spatial correlation between redox reaction rates and the distribution of microorganisms. For sediments highly affected by mixing, the correlation is missing or weak, while in advection controlled systems such as aquifers, a good correlation between redox rates and microbial biomass distribution can be expected.

  13. Acoustic ship signature measurements by cross-correlation method.

    PubMed

    Fillinger, Laurent; Sutin, Alexander; Sedunov, Alexander

    2011-02-01

    Cross-correlation methods were applied for the estimation of the power spectral density and modulation spectrum of underwater noise generated by moving vessels. The cross-correlation of the signal from two hydrophones allows the separation of vessel acoustic signatures in a busy estuary. Experimental data recorded in the Hudson River are used for demonstration that cross-correlation method measured the same ship noise and ship noise modulation spectra as conventional methods. The cross-correlation method was then applied for the separation of the acoustic signatures of two ships present simultaneously. Presented methods can be useful for ship traffic monitoring and small ship classification, even in noisy harbor environments.

  14. Measurement of tracheal mucous transport rate in the horse

    SciTech Connect

    Nelson, R.; Hampe, D.W.

    1983-06-01

    Tracheal mucous transport rates were measured in 12 nonanesthetized horses after an intratracheal injection of 99mtechnetium-sulfur colloid. The transport rate of the subsequent bolus of radioactivity was determined, using a portable scaler rate meter fitted with a high-energy gamma-scintillation probe. A gamma-scintillation camera was used to verify bolus form and movement in 1 horse. The mean tracheal mucous transport rate was 1.66 +/- 0.24 cm/min.

  15. Atmospheric correlation time measurements using coherent CO2 lidar

    NASA Technical Reports Server (NTRS)

    Ancellet, G. M.; Menzies, R. T.

    1986-01-01

    A pulsed TEA-CO2 lidar with coherent detection was used to measure the correlation time of backscatter from an ensemble of atmospheric aerosol particles which are illuminated by the pulsed radiation. The correlation time of the backscatter return signal is important in studies of atmospheric turbulence and its effects on optical propagation and backscatter. If the temporal coherence of the pulse is large enough, then the temporal coherence of the return signal is dominated by the turbulence and shear for a variety of interesting atmospheric conditions. Various techniques for correlation time measurement are discussed and evaluated.

  16. The Measurement and Correlates of Career Decision Making.

    ERIC Educational Resources Information Center

    Harren, Vincent A.; Kass, Richard A.

    This paper presents a theoretical framework for understanding career decision making (CDM); introduces an instrument, Assessment of Career Decision Making (ACDM) to measure CDM with college students; and presents correlational data on sex role and cognitive style factors hypothesized to influence CDM. The ACDM, designed to measure the Tiedeman and…

  17. Dynamic characterization of external and internal mass transport in heterotrophic biofilms from microsensors measurements.

    PubMed

    Guimerà, Xavier; Dorado, Antonio David; Bonsfills, Anna; Gabriel, Gemma; Gabriel, David; Gamisans, Xavier

    2016-10-01

    Knowledge of mass transport mechanisms in biofilm-based technologies such as biofilters is essential to improve bioreactors performance by preventing mass transport limitation. External and internal mass transport in biofilms was characterized in heterotrophic biofilms grown on a flat plate bioreactor. Mass transport resistance through the liquid-biofilm interphase and diffusion within biofilms were quantified by in situ measurements using microsensors with a high spatial resolution (<50 μm). Experimental conditions were selected using a mathematical procedure based on the Fisher Information Matrix to increase the reliability of experimental data and minimize confidence intervals of estimated mass transport coefficients. The sensitivity of external and internal mass transport resistances to flow conditions within the range of typical fluid velocities over biofilms (Reynolds numbers between 0.5 and 7) was assessed. Estimated external mass transfer coefficients at different liquid phase flow velocities showed discrepancies with studies considering laminar conditions in the diffusive boundary layer near the liquid-biofilm interphase. The correlation of effective diffusivity with flow velocities showed that the heterogeneous structure of biofilms defines the transport mechanisms inside biofilms. Internal mass transport was driven by diffusion through cell clusters and aggregates at Re below 2.8. Conversely, mass transport was driven by advection within pores, voids and water channels at Re above 5.6. Between both flow velocities, mass transport occurred by a combination of advection and diffusion. Effective diffusivities estimated at different biofilm densities showed a linear increase of mass transport resistance due to a porosity decrease up to biofilm densities of 50 g VSS·L(-1). Mass transport was strongly limited at higher biofilm densities. Internal mass transport results were used to propose an empirical correlation to assess the effective diffusivity

  18. Statistical measures of Planck scale signal correlations in interferometers

    SciTech Connect

    Hogan, Craig J.; Kwon, Ohkyung

    2015-06-22

    A model-independent statistical framework is presented to interpret data from systems where the mean time derivative of positional cross correlation between world lines, a measure of spreading in a quantum geometrical wave function, is measured with a precision smaller than the Planck time. The framework provides a general way to constrain possible departures from perfect independence of classical world lines, associated with Planck scale bounds on positional information. A parametrized candidate set of possible correlation functions is shown to be consistent with the known causal structure of the classical geometry measured by an apparatus, and the holographic scaling of information suggested by gravity. Frequency-domain power spectra are derived that can be compared with interferometer data. As a result, simple projections of sensitivity for specific experimental set-ups suggests that measurements will directly yield constraints on a universal time derivative of the correlation function, and thereby confirm or rule out a class of Planck scale departures from classical geometry.

  19. Transport phenomena in correlated quantum liquids: Ultracold Fermi gases and F/N junctions

    NASA Astrophysics Data System (ADS)

    Li, Hua

    Landau Fermi-liquid theory was first introduced by L. D. Landau in the effort of understanding the normal state of Fermi systems, where the application of the concept of elementary excitations to the Fermi systems has proved very fruitful in clarifying the physics of strongly correlated quantum systems at low temperatures. In this thesis, I use Landau Fermi-liquid theory to study the transport phenomena of two different correlated quantum liquids: the strongly interacting ultracold Fermi gases and the ferromagnet/normal-metal (F/N) junctions. The detailed work is presented in chapter II and chapter III of this thesis, respectively. Chapter I holds the introductory part and the background knowledge of this thesis. In chapter II, I study the transport properties of a Fermi gas with strong attractive interactions close to the unitary limit. In particular, I compute the transport lifetimes of the Fermi gas due to superfluid fluctuations above the BCS transition temperature Tc. To calculate the transport lifetimes I need the scattering amplitudes. The scattering amplitudes are dominated by the superfluid fluctuations at temperatures just above Tc. The normal scattering amplitudes are calculated from the Landau parameters. These Landau parameters are obtained from the local version of the induced interaction model for computing Landau parameters. I also calculate the leading order finite temperature corrections to the various transport lifetimes. A calculation of the spin diffusion coefficient is presented in comparison to the experimental findings. Upon choosing a proper value of F0a, I am able to present a good match between the theoretical result and the experimental measurement, which indicates the presence of the superfluid fluctuations near Tc. Calculations of the viscosity, the viscosity/entropy ratio and the thermal conductivity are also shown in support of the appearance of the superfluid fluctuations. In chapter III, I study the spin transport in the low

  20. Transported acid aerosols measured in southern Ontario

    NASA Astrophysics Data System (ADS)

    Keeler, Gerald J.; Spengler, John D.; Koutrakis, Petros; Allen, George A.; Raizenne, Mark; Stern, Bonnie

    During the period 29 June 1986-9 August 1986, a field health study assessing the acute health effects of air pollutants on children was conducted at a summer girls' camp on the northern shore of Lake Erie in SW Ontario. Continuous air pollution measurements of SO 2, O 3, NO x, particulate sulfates, light scattering, and meteorological measurements including temperature, dew point, and wind speed and direction were made. Twelve-hour integrated samples of size fractioned particles were also obtained using dichotomous samplers and Harvard impactors equipped with an ammonia denuder for subsequent hydrogen ion determination. Particulate samples were analyzed for trace elements by X-ray fluorescence and Neutron Activation, and for organic and elemental carbon by a thermal/optical technique. The measured aerosol was periodically very acidic with observed 12-h averaged H + concentrations in the range < 10-560 nmoles m -3. The aerosol H + appeared to represent the net strong acidity after H 2SO 4 reaction with NH 3(g). Average daytime concentrations were higher than night-time for aerosol H +, sulfate, fine mass and ozone. Prolonged episodes of atmospheric acidity, sulfate, and ozone were associated with air masses arriving at the measurement site from the west and from the southwest over Lake Erie. Sulfate concentrations measured at the lakeshore camp were more than twice those measured at inland sites during extreme pollution episodes. The concentration gradient observed with onshore flow was potentially due to enhanced deposition near the lakeshore caused by discontinuities in the meteorological fields in this region.

  1. Gamma-Gamma Angular Correlation Measurements With GRIFFIN

    NASA Astrophysics Data System (ADS)

    Maclean, Andrew; Griffin Collaboration

    2016-09-01

    The goal of this work was to explore the sensitivity of the Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei (GRIFFIN) 16 clover-detector γ-ray spectrometer at TRIUMF-ISAC to such γ - γ angular correlations. The methodology was established using both experimental measurements and Geant4 simulations that were used to create angular correlation templates for the GRIFFIN geometry. Direct comparisons were made between experimental data sets and the simulated angular correlation templates. A first in-beam test of the γ - γ angular correlation measurements with GRIFFIN was performed with a radioactive beam of 66Ga. Mixing ratios of δ = - 2 . 1(2) and δ = - 0 . 08(3) were measured for the 2+ ->2+ ->0+ 833-1039 keV and 1+ ->2+ ->0+ 2752-1039 keV cascades in the daughter nucleus 66Zn. These results are in good agreement with pervious literature values and the mixing ratio for the 833-1039 keV cascade has a higher precision. Also, the sensitivity to the 1333-1039 keV cascade, with its pronounced 0+ ->2+ ->0+ angular correlation, was measured.A test measurement of the superallowed Fermi β emitter 62Ga will also be discussed. Canada Foundation of Innovation, Natural Sciences and Engineering Research Council of Canada, National Research Council of Canada and Canadian Research Chairs Program.

  2. Electrical and thermal transport measurements on nano-structured materials

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Wei

    This thesis discusses electrical and thermal transport measurements on C60, carbon nanotubes, and boron-nitride nanotubes. Chapter 1 describes the anomalous resistivity behavior of Ag films on C60 crystals. The correlation of the resistivity anomaly and the structural phase transition is established. Chapter 2 gives an introduction to the physical properties and the synthesis methods of carbon and boron nitride nanotubes. Chapter 3 shows two different approaches on chemical functionalization of boron-nitride nanotubes. Chapter 4 gives the theoretical background of thermal conductivity, especially for nano-structured materials. A summary of theoretical and experimental works on the thermal conductivity of nanotubes is given. Chapter 5 discusses the experimental results of thermal conductivity of nanotube mats. An absolute value of the thermal conductivity of boron nitride nanotubes is bracketed and can be compared to the results of the following chapters on individual nanotubes. Chapter 6 describes the experimental methods of measuring thermal conductivity of individual nanotubes. Chapter 7 shows the 2 temperature dependent thermal conductivity and thermopower of individual nanotubes. Chapter 8 discusses the isotope effect and the diameter dependence of the thermal conductivity of nanotubes. In chapter 9, it is shown that the thermal conductivity of nanotubes is robust against electron irradiation and structural deformation. Importantly, the observation challenges current understandings on the thermal transport of nano-structured materials. In chapter 10, it is shown that it is possible to reversibly tune the thermal conductivity of a multiwalled nanotube by controllably sliding the outer-shells against inner cores. Chapter 11 describes a thermal rectifier by engineering the mass distribution along a nanotube. The observed non-zero thermal rectification effect provides strong evidence for solitons in nanotubes. The soliton model also coherently explains many

  3. First Measurements of Pion Correlations by the PHENIX Experiment

    SciTech Connect

    Johnson, S C

    2001-04-11

    First identical-pion correlations measured at RHIC energies by PHENIX are presented. Two analyses with separate detectors, systematics, and statistics provide consistent results. The resulting HBT radii are moderately larger than those measured at lower energies. The k{sub t} dependence of the Bertsch-Pratt HBT radii is also similar to previous measures and is consistent with the conjecture of an expanding source.

  4. A Search for Correlations Between Four Different Atmospheric Aerosol Measurement Systems Atop Rattlesnake Mountain, Washington

    NASA Astrophysics Data System (ADS)

    Milbrath, Brian

    2004-05-01

    Accurate atmospheric aerosol transport measurements are important to international nuclear test monitoring, emergency response, health and ecosystem toxicology, and climate change. An International Monitoring System (IMS) is being established which will include a suite of aerosol radionuclide sensors. To explore the possibility of using the IMS sites to improve the understanding of global atmospheric aerosol transport, four state-of-the-art aerosol measurement systems were placed atop Rattlesnake Mountain at Pacific Northwest National Laboratory. The Radionuclide Aerosol Sampler/Analyzer measures radionuclide concentration via gamma-ray spectroscopy. The Cascade Impactor Beam Analyzer Technique measures 30 elements in three aerosol sizes using PNNLâ's Ion Beams Materials Analysis Laboratory. The Tapered Element Oscillating Microbalance provides time-averaged aerosol mass concentrations for a range of sizes. The Multi-Filter Rotating Shadowband Radiometer measures the solar irradiance to derive an aerosol optical depth. Results and correlations from the four different detectors will be presented.

  5. Marine Transportation System Performance Measures Research

    DTIC Science & Technology

    2016-06-01

    impacted by the burning of fossil fuels, it is possible that air pollutants from the MTS are declining, as reflected in the overall decline in...expected to reduce air pollution (U.S. Environmental Protection Agency 2014b) and is a topic for future performance measure development. Changes in...release of the following pollutants from ships: garbage, sulfur dioxide and nitrogen oxide air emissions, sewage, noxious liquids, and oil

  6. Correlation between Electron Transport and Shear Alfven Activity in the National Spherical Torus Experiment

    SciTech Connect

    Stutman, D.; Delgado-Aparicio, L.; Finkenthal, M.; Tritz, K.; Gorelenkov, N.; Fredrickson, E.; Kaye, S.; Mazzucato, E.

    2009-03-20

    We report the observation of a correlation between shear Alfven eigenmode activity and electron transport in plasma regimes where the electron temperature gradient is flat, and thus the drive for temperature gradient microinstabilities is absent. Plasmas having rapid central electron transport show intense, broadband global Alfven eigenmode (GAE) activity in the 0.5-1.1 MHz range, while plasmas with low transport are essentially GAE-free. The first theoretical assessment of a GAE-electron transport connection indicates that overlapping modes can resonantly couple to the bulk thermal electrons and induce their stochastic diffusion.

  7. Direct measurement of correlation functions in a lattice Lorentz gas

    NASA Technical Reports Server (NTRS)

    Binder, P.-M.; Frenkel, D.

    1990-01-01

    Simulations of a two-dimensional ballistic Lorentz gas on a lattice are reported. A moment-propagation technique allows direct measurements of the velocity correlation function and its moments with low relative errors for all times. The predicted 1/t-sq algebraic tails in the velocity correlation function are observed at all studied scatterer densities, unlike what has been reported for continuous systems. In the square lattice a fast oscillation is observed, consistent with the existence of staggered density modes. For the second-rank tensor correlation function, an extremely slow approach to the expected 1/t exp 3 tail is found.

  8. Measuring Omega and the real correlation function from the redshift correlation function

    NASA Technical Reports Server (NTRS)

    Hamilton, A. J. S.

    1992-01-01

    Peculiar velocities distort the correlation function of galaxies in redshift space. In the linear regime, the distortion has a characteristic quadrupole plus hexadecapole form. The amplitude of the distortion depends on the cosmological density parameter Omega. Practical formulas are derived here which can be applied to redshift galaxy catalogs to measure Omega in the linear regime. The formulas also yield the real underlying correlation function in the linear regime, corrected for peculiar velocities.

  9. Investigation of Optimal Digital Image Correlation Patterns for Deformation Measurement

    NASA Technical Reports Server (NTRS)

    Bomarito, G. F.; Ruggles, T. J.; Hochhalter, J. D.; Cannon, A. H.

    2016-01-01

    Digital image correlation (DIC) relies on the surface texture of a specimen to measure deformation. When the specimen itself has little or no texture, a pattern is applied to the surface which deforms with the specimen and acts as an artificial surface texture. Because the applied pattern has an effect on the accuracy of DIC, an ideal pattern is sought for which the error introduced into DIC measurements is minimal. In this work, a study is performed in which several DIC pattern quality metrics from the literature are correlated to DIC measurement error. The resulting correlations give insight on the optimality of DIC patterns in general. Optimizations are then performed to produce patterns which are well suited for DIC. These patterns are tested to show their relative benefits. Chief among these benefits are a reduction in error of approximately 30 with respect to a randomly generated pattern.

  10. Gasificaton Transport: A Multiphase CFD Approach & Measurements

    SciTech Connect

    Dimitri Gidaspow; Veeraya Jiradilok; Mayank Kashyap; Benjapon Chalermsinsuwan

    2009-02-14

    The objective of this project was to develop predictive theories for the dispersion and mass transfer coefficients and to measure them in the turbulent fluidization regime, using existing facilities. A second objective was to use our multiphase CFD tools to suggest optimized gasifier designs consistent with aims of Future Gen. We have shown that the kinetic theory based CFD codes correctly compute: (1) Dispersion coefficients; and (2) Mass transfer coefficients. Hence, the kinetic theory based CFD codes can be used for fluidized bed reactor design without any such inputs. We have also suggested a new energy efficient method of gasifying coal and producing electricity using a molten carbonate fuel cell. The principal product of this new scheme is carbon dioxide which can be converted into useful products such as marble, as is done very slowly in nature. We believe this scheme is a lot better than the canceled FutureGen, since the carbon dioxide is safely sequestered.

  11. Temporal correlations and structural memory effects in break junction measurements

    NASA Astrophysics Data System (ADS)

    Magyarkuti, A.; Lauritzen, K. P.; Balogh, Z.; Nyáry, A.; Mészáros, G.; Makk, P.; Solomon, G. C.; Halbritter, A.

    2017-03-01

    We review data analysis techniques that can be used to study temporal correlations among conductance traces in break junction measurements. We show that temporal histograms are a simple but efficient tool to check the temporal homogeneity of the conductance traces, or to follow spontaneous or triggered temporal variations, like structural modifications in trained contacts, or the emergence of single-molecule signatures after molecule dosing. To statistically analyze the presence and the decay time of temporal correlations, we introduce shifted correlation plots. Finally, we demonstrate that correlations between the opening and subsequent closing traces may indicate structural memory effects in atomic-sized metallic and molecular junctions. Applying these methods on measured and simulated gold metallic contacts as a test system, we show that the surface diffusion induced flattening of the broken junctions helps to produce statistically independent conductance traces at room temperature, whereas at low temperature repeating tendencies are observed as long as the contacts are not closed to sufficiently high conductance setpoints. Applying opening-closing correlation analysis on Pt-CO-Pt single-molecule junctions, we demonstrate pronounced contact memory effects and recovery of the molecule for junctions breaking before atomic chains are formed. However, if chains are pulled the random relaxation of the chain and molecule after rupture prevents opening-closing correlations.

  12. Automated measurement of fast mitochondrial transport in neurons.

    PubMed

    Miller, Kyle E; Liu, Xin-An; Puthanveettil, Sathyanarayanan V

    2015-01-01

    There is growing recognition that fast mitochondrial transport in neurons is disrupted in multiple neurological diseases and psychiatric disorders. However, a major constraint in identifying novel therapeutics based on mitochondrial transport is that the large-scale analysis of fast transport is time consuming. Here we describe methodologies for the automated analysis of fast mitochondrial transport from data acquired using a robotic microscope. We focused on addressing questions of measurement precision, speed, reliably, workflow ease, statistical processing, and presentation. We used optical flow and particle tracking algorithms, implemented in ImageJ, to measure mitochondrial movement in primary cultured cortical and hippocampal neurons. With it, we are able to generate complete descriptions of movement profiles in an automated fashion of hundreds of thousands of mitochondria with a processing time of approximately one hour. We describe the calibration of the parameters of the tracking algorithms and demonstrate that they are capable of measuring the fast transport of a single mitochondrion. We then show that the methods are capable of reliably measuring the inhibition of fast mitochondria transport induced by the disruption of microtubules with the drug nocodazole in both hippocampal and cortical neurons. This work lays the foundation for future large-scale screens designed to identify compounds that modulate mitochondrial motility.

  13. Molecular transport in collagenous tissues measured by gel electrophoresis.

    PubMed

    Hunckler, Michael D; Tilley, Jennifer M R; Roeder, Ryan K

    2015-11-26

    Molecular transport in tissues is important for drug delivery, nutrient supply, waste removal, cell signaling, and detecting tissue degeneration. Therefore, the objective of this study was to investigate gel electrophoresis as a simple method to measure molecular transport in collagenous tissues. The electrophoretic mobility of charged molecules in tissue samples was measured from relative differences in the velocity of a cationic dye passing through an agarose gel in the absence and presence of a tissue section embedded within the gel. Differences in electrophoretic mobility were measured for the transport of a molecule through different tissues and tissue anisotropy, or the transport of different sized molecules through the same tissue. Tissue samples included tendon and fibrocartilage from the proximal (tensile) and distal (compressive) regions of the bovine flexor tendon, respectively, and bovine articular cartilage. The measured electrophoretic mobility was greatest in the compressive region of the tendon (fibrocartilage), followed by the tensile region of tendon, and lowest in articular cartilage, reflecting differences in the composition and organization of the tissues. The anisotropy of tendon was measured by greater electrophoretic mobility parallel compared with perpendicular to the predominate collagen fiber orientation. Electrophoretic mobility also decreased with increased molecular size, as expected. Therefore, the results of this study suggest that gel electrophoresis may be a useful method to measure differences in molecular transport within various tissues, including the effects of tissue type, tissue anisotropy, and molecular size.

  14. Mean Antarctic Circumpolar Current transport measured in Drake Passage

    NASA Astrophysics Data System (ADS)

    Donohue, K. A.; Tracey, K. L.; Watts, D. R.; Chidichimo, M. P.; Chereskin, T. K.

    2016-11-01

    The Antarctic Circumpolar Current is an important component of the global climate system connecting the major ocean basins as it flows eastward around Antarctica, yet due to the paucity of data, it remains unclear how much water is transported by the current. Between 2007 and 2011 flow through Drake Passage was continuously monitored with a line of moored instrumentation with unprecedented horizontal and temporal resolution. Annual mean near-bottom currents are remarkably stable from year to year. The mean depth-independent or barotropic transport, determined from the near-bottom current meter records, was 45.6 sverdrup (Sv) with an uncertainty of 8.9 Sv. Summing the mean barotropic transport with the mean baroclinic transport relative to zero at the seafloor of 127.7 Sv gives a total transport through Drake Passage of 173.3 Sv. This new measurement is 30% larger than the canonical value often used as the benchmark for global circulation and climate models.

  15. Accuracy of two points correlation length measurement and its applications in H-1NF heliac

    NASA Astrophysics Data System (ADS)

    Kim, Jaewook; Michael, C. A.; Nam, Y. U.; Lampert, M.; Ghim, Y. C.

    2016-10-01

    Anomalous transport observed in fusion-grade plasmas is widely accepted to be correlated with spatial and temporal correlation characteristics of the turbulent eddies. While temporal and 2D spatial (radial and poloidal) correlation characteristics have been studied in detail, the lack of such information in the parallel direction, with respect to the background magnetic field, of hot core plasmas precludes us from full understanding and controlling plasma turbulence. KSTAR is equipped with a couple of 2D diagnostic systems measuring ion-scale density fluctuations, namely the BES and MIR systems, at two different toroidal locations. These systems provide a possibility to measure a parallel correlation length. As it is necessary to identify how reliably one can measure correlation length with only two spatial positions, there has been such a study [Jaewook Kim et al., Nucl. Fusion accepted] recently. Based on this recent study, we experimentally obtained 3D correlation functions from H-1NF heliac using the data from a set of Langmuir probes. One probe is spatially fixed, while the second one is scanned radially and poloidally at a different toroidal location. H1-NF heliac plasmas are highly reproducible, therefore we construct the 3D correlation functions with multi-discharges.

  16. Statistical measures of Planck scale signal correlations in interferometers

    NASA Astrophysics Data System (ADS)

    Hogan, Craig J.; Kwon, Ohkyung

    2017-04-01

    A model-independent statistical framework is presented to interpret data from systems where the mean time derivative of positional cross correlation between world lines, a measure of spreading in a quantum geometrical wave function, is measured with a precision smaller than the Planck time. The framework provides a general way to constrain possible departures from perfect independence of classical world lines, associated with Planck scale bounds on positional information. A parameterized candidate set of possible correlation functions is shown to be consistent with the known causal structure of the classical geometry measured by an apparatus, and the holographic scaling of information suggested by gravity. Frequency-domain power spectra are derived that can be compared with interferometer data. Simple projections of sensitivity for realistic experimental set-ups suggests that measurements will confirm or rule out a class of Planck scale departures from classical geometry.

  17. Malfunction diagnosis of sensors based on correlation of measurements

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Teng, Jun; Wen, Runfa; Zhu, Jiayi; Li, Chao

    2017-02-01

    Structural health monitoring (SHM) is a type of on-site characterization of a real-world full-scale structure that is subjected to the real-world load cases. The fundamental element of SHM is the structural response measurements by sensors, the reliability of which is significant for safety assessment and other SHM applications. The paper proposed a method to diagnosis the fault in sensors using the correlation of measurements. The correlation of the variations of the measurements is examined using the sliding time windows, which is the principle to determine the fault in the sensors. The strain measurements from the SHM system of a real world structure, Shenzhen Bay Stadium, are performed to simulate the faults in sensors and to verify the effectiveness of the proposed method.

  18. Diagnosing ocean energy transports from earth radiation budget measurements

    NASA Technical Reports Server (NTRS)

    Sohn, Byung-Ju; Smith, Eric A.

    1992-01-01

    The maximum energy production (MEP) principle suggested by Paltridge (1975) is applied to separate the satellite-inferred required total transports into the atmospheric and the oceanic components within a two-dimensional (2D) framework. For this purpose, the required 2D energy transports (Sohn and Smith, 1991) are imposed on Paltridge's energy balance model which is then solved as a variational problem. The results provide separated atmospheric and oceanic transports on a 2D basis such that the total divergence is equal to the net radiation measured from a satellite.

  19. Correlation of the vesicular acetylcholine transporter densities in the striata to the clinical abilities of women with Rett syndrome.

    PubMed

    Brašić, James Robert; Bibat, Genila; Kumar, Anil; Zhou, Yun; Hilton, John; Yablonski, Marybeth E; Dogan, Ahmet Semih; Guevara, Maria Rita; Stephane, Massoud; Johnston, Michael; Wong, Dean Foster; Naidu, Sakkubai

    2012-06-01

    Rett syndrome (RTT) is a neurodevelopmental disability characterized by mutations in the X-linked methyl-CpG-binding protein 2 located at the Xq28 region. The severity is modified in part by X chromosomal inactivation resulting in wide clinical variability. We hypothesized that the ability to perform the activities of daily living (ADL) is correlated with the density of vesicular acetylcholine transporters in the striata of women with RTT. The density of the vesicular acetylcholine transporters in the living human brain can be estimated by single-photon emission-computed tomography (SPECT) after the administration of (-)-5-[¹²³I]iodobenzovesamicol ([¹²³I]IBVM). Twenty-four hours following the intravenous injection of ∼333 MBq (9 mCi) [¹²³ I]IBVM, four women with RTT and nine healthy adult volunteer control participants underwent SPECT brain scans for 60 min. The Vesicular Acetylcholine Transporter Binding Site Index (Kuhl et al., 1994), a measurement of the density of vesicular acetylcholine transporters, was estimated in the striatum and the reference structure, the cerebellum. The women with RTT were assessed for certain ADL. Although the striatal Vesicular Acetylcholine Transporter Binding Site Index was not significantly lower in RTT (5.2 ± 0.9) than in healthy adults (5.7 ± 1.6), RTT striatal Vesicular Acetylcholine Transporter Binding Site Indices and ADL scores were linearly associated (ADL = 0.89*(Vesicular Acetylcholine Transporter Binding Site Index) + 4.5; R² = 0.93; P < 0.01), suggesting a correlation between the ability to perform ADL and the density of vesicular acetylcholine transporters in the striata of women with RTT. [¹²³I]IBVM is a promising tool to characterize the pathophysiological mechanisms of RTT and other neurodevelopmental disabilities.

  20. Sensitivity analysis of unsaturated flow and contaminant transport with correlated parameters

    NASA Astrophysics Data System (ADS)

    Pan, Feng; Zhu, Jianting; Ye, Ming; Pachepsky, Yakov A.; Wu, Yu-Shu

    2011-02-01

    SummaryThis study conducts sensitivity and uncertainty analysis for predicting unsaturated flow and contaminant transport in a layered heterogeneous system. The objectives of this work are to: (1) examine the effects of parameter correlations on the sensitivity of unsaturated flow and contaminant transport and (2) assess the relative contributions of parameter uncertainties to the uncertainties of flow and transport at each hydrogeologic layer. Using the unsaturated zone (UZ) of Yucca Mountain (YM) in Nevada, USA, as an example, the study considers cases of independent and correlated parameters. A sampling-based regression method is used, when the model input parameters are independent, and a decomposition method is used for the correlated case. When the parameters are independent, the uncertainty in permeability has the largest contribution to the uncertainties in simulated percolation flux and mass of the reactive tracer arriving at the water table. For the percolation flux, the second largest contribution is from the van Genuchten α; the sorption coefficient of the reactive tracer is the second most important parameter for the tracer mass arrival uncertainty. The sensitivity to the sorption coefficient is larger in the layers of devitrified and zeolitic tuffs than in the layers of vitric tuff. Contributions of the uncertainties in van Genuchten n and porosity to the percolation flux and tracer transport uncertainties are larger in the case of correlated parameters compared with the case of independent parameters due to the correlations of n and porosity with the van Genuchten α and permeability, respectively. These results illustrate the significant effects of parameter correlations on the sensitivity and uncertainty of unsaturated flow and transport. The findings are of significance in facilitating future characterizations to reduce the parameter uncertainties and associated predictive uncertainties of flow and contaminant transport in unsaturated fractured

  1. Correlation Measurements with {sup 252}Cf to Characterize Fissile Material

    SciTech Connect

    Mattingly, J.K.

    2000-01-04

    Measurements using {sup 252}Cf as a timed source of neutrons and gammas have in recent years undergone significant maturation. These methods use {sup 252}Cf as an observable source of spontaneous fission neutrons and gammas in conjunction with one or more neutron- and/or gamma-sensitive detectors to measure the time-distribution of correlated detector counts following (a) an observed {sup 252}Cf-fission event and/or (b) a counting event in another detector. Detection of {sup 252}Cf spontaneous fission is frequently achieved via use of a small ionization chamber in which the {sup 252}Cf is contained--in this case the timing of source emission events is random. However, one application subsequently described uses a neutron-absorbent ''shutter'' to modulate {sup 252}Cf emissions to produce a neutron source with deterministic timing. Other applications, frequently termed noise-analysis measurements, transform the time-distributions to the frequency domain. Collectively, these correlation methods use {sup 252}Cf to ''excite'' the fissile material and the response of the material is measured by an array of detectors and analyzed using standard time-correlation and/or frequency-analysis techniques. In recent years numerous advances have been made in the application of these methods to in-situ, or field measurements directed at characterizing various configurations of fissile material in operational facilities.

  2. Measuring weak lensing correlations of Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Scovacricchi, D.; Nichol, R. C.; Macaulay, E.; Bacon, D.

    2017-03-01

    We study the feasibility of detecting weak lensing spatial correlations between supernova (SN) Type Ia magnitudes with present (Dark Energy Survey, DES) and future (Large Synoptic Survey Telescope, LSST) surveys. We investigate the angular auto-correlation function of SN magnitudes (once the background cosmology has been subtracted) and cross-correlation with galaxy catalogues. We examine both analytical and numerical predictions, the latter using simulated galaxy catalogues from the MICE Grand Challenge Simulation. We predict that we will be unable to detect the SN auto-correlation in DES, while it should be detectable with the LSST SN deep fields (15 000 SNe on 70 deg2) at ≃6σ level of confidence (assuming 0.15 mag of intrinsic dispersion). The SN-galaxy cross-correlation function will deliver much higher signal to noise, being detectable in both surveys with an integrated signal to noise of ∼100 (up to 30 arcmin separations). We predict joint constraints on the matter density parameter (Ωm) and the clustering amplitude (σ8) by fitting the auto-correlation function of our mock LSST deep fields. When assuming a Gaussian prior for Ωm, we can achieve a 25 per cent measurement of σ8 from just these LSST supernovae (assuming 0.15 mag of intrinsic dispersion). These constraints will improve significantly if the intrinsic dispersion of SNe Ia can be reduced.

  3. Correlation techniques and measurements of wave-height statistics

    NASA Technical Reports Server (NTRS)

    Guthart, H.; Taylor, W. C.; Graf, K. A.; Douglas, D. G.

    1972-01-01

    Statistical measurements of wave height fluctuations have been made in a wind wave tank. The power spectral density function of temporal wave height fluctuations evidenced second-harmonic components and an f to the minus 5th power law decay beyond the second harmonic. The observations of second harmonic effects agreed very well with a theoretical prediction. From the wave statistics, surface drift currents were inferred and compared to experimental measurements with satisfactory agreement. Measurements were made of the two dimensional correlation coefficient at 15 deg increments in angle with respect to the wind vector. An estimate of the two-dimensional spatial power spectral density function was also made.

  4. Local Quantum Measurement and No-Signaling Imply Quantum Correlations

    NASA Astrophysics Data System (ADS)

    Barnum, H.; Beigi, S.; Boixo, S.; Elliott, M. B.; Wehner, S.

    2010-04-01

    We show that, assuming that quantum mechanics holds locally, the finite speed of information is the principle that limits all possible correlations between distant parties to be quantum mechanical as well. Local quantum mechanics means that a Hilbert space is assigned to each party, and then all local positive-operator-valued measurements are (in principle) available; however, the joint system is not necessarily described by a Hilbert space. In particular, we do not assume the tensor product formalism between the joint systems. Our result shows that if any experiment would give nonlocal correlations beyond quantum mechanics, quantum theory would be invalidated even locally.

  5. Local quantum measurement and no-signaling imply quantum correlations.

    PubMed

    Barnum, H; Beigi, S; Boixo, S; Elliott, M B; Wehner, S

    2010-04-09

    We show that, assuming that quantum mechanics holds locally, the finite speed of information is the principle that limits all possible correlations between distant parties to be quantum mechanical as well. Local quantum mechanics means that a Hilbert space is assigned to each party, and then all local positive-operator-valued measurements are (in principle) available; however, the joint system is not necessarily described by a Hilbert space. In particular, we do not assume the tensor product formalism between the joint systems. Our result shows that if any experiment would give nonlocal correlations beyond quantum mechanics, quantum theory would be invalidated even locally.

  6. Reliability-guided digital image correlation for image deformation measurement

    SciTech Connect

    Pan Bing

    2009-03-10

    A universally applicable reliability-guided digital image correlation (DIC) method is proposed for reliable image deformation measurement. The zero-mean normalized cross correlation (ZNCC) coefficient is used to identify the reliability of the point computed. The correlation calculation begins with a seed point and is then guided by the ZNCC coefficient. That means the neighbors of the point with the highest ZNCC coefficient in a queue for computed points will be processed first. Thus the calculation path is always along the most reliable direction, and possible error propagation of the conventional DIC method can be avoided. The proposed novel DIC method is universally applicable to the images with shadows, discontinuous areas, and deformation discontinuity. Two image pairs were used to evaluate the performance of the proposed technique, and the successful results clearly demonstrate its robustness and effectiveness.

  7. Measurement of gas transport properties for chemical vapor infiltration

    SciTech Connect

    Starr, T.L.; Hablutzel, N.

    1996-12-01

    In the chemical vapor infiltration (CVI) process for fabricating ceramic matrix composites (CMCs), transport of gas phase reactant into the fiber preform is a critical step. The transport can be driven by pressure or by concentration. This report describes methods for measuring this for CVI preforms and partially infiltrated composites. Results are presented for Nicalon fiber cloth layup preforms and composites, Nextel fiber braid preforms and composites, and a Nicalon fiber 3-D weave composite. The results are consistent with a percolating network model for gas transport in CVI preforms and composites. This model predicts inherent variability in local pore characteristics and transport properties, and therefore, in local densification during processing; this may lead to production of gastight composites.

  8. Relating Reactive Transport to Hierarchical Sedimentary Architecture. Part 1. Horizontal Spatial Correlation of Hydraulic and Reactive Transport Parameters

    NASA Astrophysics Data System (ADS)

    Ritzi, R. W., Jr.

    2014-12-01

    A number of studies of the spatial correlation of log permeability (Y) in different sedimentary aquifers are reviewed showing that the spatial correlation structure can be defined by how the proportion of lag transitions crossing different facies (i.e. the cross-transition probability structure) increases with increasing lag distance. The common underlying cross-transition structure can contain substructures with different correlation ranges corresponding to different scales of sedimentary facies within the hierarchy of the sedimentary architecture. For each substructure, the standard deviation in facies length relative to the mean can mostly define the shape, and the proportions and mean length of facies define the range. An illustrative example from the Borden research site shows the horizontal spatial bivariate correlation of Y and of reactive attributes (R) affecting subsurface transport are both defined by the same underlying cross-transition probability structures. Thus, the horizontal Y and R autosemivariograms and the R-Y cross-semivariogram have the same underlying composite correlation structure and substructures (shape and range in the rise to a sill). Such cross-transition probability based correlation structures are used in the companion Part 2 presentation (Soltanian et al.) to develop models which relate the time-dependent effective retardation and the particle displacement variance to hierarchical sedimentary architecture.

  9. Measurement of particle transport coefficients on Alcator C-Mod

    SciTech Connect

    Luke, T.C.T.

    1994-10-01

    The goal of this thesis was to study the behavior of the plasma transport during the divertor detachment in order to explain the central electron density rise. The measurement of particle transport coefficients requires sophisticated diagnostic tools. A two color interferometer system was developed and installed on Alcator C-Mod to measure the electron density with high spatial ({approx} 2 cm) and high temporal ({le} 1.0 ms) resolution. The system consists of 10 CO{sub 2} (10.6 {mu}m) and 4 HeNe (.6328 {mu}m) chords that are used to measure the line integrated density to within 0.08 CO{sub 2} degrees or 2.3 {times} 10{sup 16}m{sup {minus}2} theoretically. Using the two color interferometer, a series of gas puffing experiments were conducted. The density was varied above and below the threshold density for detachment at a constant magnetic field and plasma current. Using a gas modulation technique, the particle diffusion, D, and the convective velocity, V, were determined. Profiles were inverted using a SVD inversion and the transport coefficients were extracted with a time regression analysis and a transport simulation analysis. Results from each analysis were in good agreement. Measured profiles of the coefficients increased with the radius and the values were consistent with measurements from other experiments. The values exceeded neoclassical predictions by a factor of 10. The profiles also exhibited an inverse dependence with plasma density. The scaling of both attached and detached plasmas agreed well with this inverse scaling. This result and the lack of change in the energy and impurity transport indicate that there was no change in the underlying transport processes after detachment.

  10. A four-probe thermal transport measurement method for nanostructures

    SciTech Connect

    Kim, Jaehyun; Ou, Eric; Sellan, Daniel P.; Shi, Li

    2015-04-15

    Several experimental techniques reported in recent years have enabled the measurement of thermal transport properties of nanostructures. However, eliminating the contact thermal resistance error from the measurement results has remained a critical challenge. Here, we report a different four-probe measurement method that can separately obtain both the intrinsic thermal conductance and the contact thermal resistance of individual nanostructures. The measurement device consists of four microfabricated, suspended metal lines that act as resistive heaters and thermometers, across which the nanostructure sample is assembled. The method takes advantage of the variation in the heat flow along the suspended nanostructure and across its contacts to the four suspended heater and thermometer lines, and uses sixteen sets of temperature and heat flow measurements to obtain nine of the thermal resistances in the measurement device and the nanostructure sample, including the intrinsic thermal resistance and the two contact thermal resistances to the middle suspended segment of the nanostructure. Two single crystalline Si nanowires with different cross sections are measured in this work to demonstrate the effectiveness of the method. This four-probe thermal transport measurement method can lead to future discoveries of unique size-dependent thermal transport phenomena in nanostructures and low-dimensional materials, in addition to providing reliable experimental data for calibrating theoretical models.

  11. A four-probe thermal transport measurement method for nanostructures.

    PubMed

    Kim, Jaehyun; Ou, Eric; Sellan, Daniel P; Shi, Li

    2015-04-01

    Several experimental techniques reported in recent years have enabled the measurement of thermal transport properties of nanostructures. However, eliminating the contact thermal resistance error from the measurement results has remained a critical challenge. Here, we report a different four-probe measurement method that can separately obtain both the intrinsic thermal conductance and the contact thermal resistance of individual nanostructures. The measurement device consists of four microfabricated, suspended metal lines that act as resistive heaters and thermometers, across which the nanostructure sample is assembled. The method takes advantage of the variation in the heat flow along the suspended nanostructure and across its contacts to the four suspended heater and thermometer lines, and uses sixteen sets of temperature and heat flow measurements to obtain nine of the thermal resistances in the measurement device and the nanostructure sample, including the intrinsic thermal resistance and the two contact thermal resistances to the middle suspended segment of the nanostructure. Two single crystalline Si nanowires with different cross sections are measured in this work to demonstrate the effectiveness of the method. This four-probe thermal transport measurement method can lead to future discoveries of unique size-dependent thermal transport phenomena in nanostructures and low-dimensional materials, in addition to providing reliable experimental data for calibrating theoretical models.

  12. Correlating Function and Imaging Measures of the Medial Longitudinal Fasciculus

    PubMed Central

    Sakaie, Ken; Takahashi, Masaya; Remington, Gina; Wang, Xiaofeng; Conger, Amy; Conger, Darrel; Dimitrov, Ivan; Jones, Stephen; Frohman, Ashley; Frohman, Teresa; Sagiyama, Koji; Togao, Osamu

    2016-01-01

    Objective To test the validity of diffusion tensor imaging (DTI) measures of tissue injury by examining such measures in a white matter structure with well-defined function, the medial longitudinal fasciculus (MLF). Injury to the MLF underlies internuclear ophthalmoparesis (INO). Methods 40 MS patients with chronic INO and 15 healthy controls were examined under an IRB-approved protocol. Tissue integrity of the MLF was characterized by DTI parameters: longitudinal diffusivity (LD), transverse diffusivity (TD), mean diffusivity (MD) and fractional anisotropy (FA). Severity of INO was quantified by infrared oculography to measure versional disconjugacy index (VDI). Results LD was significantly lower in patients than in controls in the medulla-pons region of the MLF (p < 0.03). FA was also lower in patients in the same region (p < 0.0004). LD of the medulla-pons region correlated with VDI (R = -0.28, p < 0.05) as did FA in the midbrain section (R = 0.31, p < 0.02). Conclusions This study demonstrates that DTI measures of brain tissue injury can detect injury to a functionally relevant white matter pathway, and that such measures correlate with clinically accepted evaluation indices for INO. The results validate DTI as a useful imaging measure of tissue integrity. PMID:26800522

  13. Digital correlator for the portable channel prober measurement instrument

    NASA Astrophysics Data System (ADS)

    Peo, George E., Jr.

    1987-12-01

    This document describes a Digital Correlator for the Portable Channel Prober Measurement Instrument being developed by the Naval Research Laboratory for use in experiments designed to characterize high frequency (HF) radio channels. This Digital Correlator is a digital signal processor designed and constructed by Stow Computer, 111 old Bolton Road, Stow, MA 01775, (617/508) 897-6838. Two Digital Correlators are integrated into the existing Digital Pre-processor to make a Portable Wideband HF Channel Analyzer. The Portable Wideband HF Channel Analyzer will be located at the receiving site of the channel probing experiment and is situated between the coherent radio receiver and the microcomputer used for data recording and analysis. The Portable Wideband HF Channel Analyzer computes the delay power spectrum of the received waveform. The in-phase and quadrature outputs of the receiver are sampled and converted to digital values by the Analog to Digital Converter, integrated by the Integrator, and correlated with a stored replica of the transmitted waveform by two Digital Correlators. The resulting tap gains are then read by the system microcomputer using the microcomputer interface.

  14. Topography measurements for correlations of standard cartridge cases

    NASA Astrophysics Data System (ADS)

    Vorburger, T. V.; Song, J.; Chu, W.; Renegar, T. B.; Zheng, A.; Yen, J.; Thompson, R. M.; Silver, R.; Bachrach, B.; Ols, M.

    2010-06-01

    The National Institute of Standards and Technology Standard Reference Materials (SRM) 2460 Standard Bullets and 2461 Standard Cartridge Cases are intended for use as check standards for crime laboratories to help verify that their computerized optical imaging equipment for ballistics image acquisitions and correlations is operating properly. Using topography measurements and cross-correlation methods, our earlier results for the SRM bullets and recent results for the SRM cartridge cases both demonstrate that the individual units of the SRMs are highly reproducible. Currently, we are developing procedures for topographic imaging of the firing pin impressions, breech face impressions, and ejector marks of the standard cartridge cases. The initial results lead us to conclude that all three areas can be measured accurately and routinely using confocal techniques. We are also nearing conclusion of a project with crime lab experts to test sets of both SRM cartridge cases and SRM bullets using the automated commercial systems of the National Integrated Ballistics Information Network.

  15. Measurement and correlation of jet fuel viscosities at low temperatures

    NASA Technical Reports Server (NTRS)

    Schruben, D. L.

    1985-01-01

    Apparatus and procedures were developed to measure jet fuel viscosity for eight current and future jet fuels at temperatures from ambient to near -60 C by shear viscometry. Viscosity data showed good reproducibility even at temperatures a few degrees below the measured freezing point. The viscosity-temperature relationship could be correlated by two linear segments when plotted as a standard log-log type representation (ASTM D 341). At high temperatures, the viscosity-temperature slope is low. At low temperatures, where wax precipitation is significant, the slope is higher. The breakpoint between temperature regions is the filter flow temperature, a fuel characteristic approximated by the freezing point. A generalization of the representation for the eight experimental fuels provided a predictive correlation for low-temperature viscosity, considered sufficiently accurate for many design or performance calculations.

  16. Transport of a lattice gas under continuous measurement

    NASA Astrophysics Data System (ADS)

    Cheung, Hil F. H.; Patil, Yogesh Sharad; Madjarov, Ivaylo S.; Chen, Huiyao Y.; Vengalattore, Mukund

    2016-05-01

    The act of measurement has a profound consequence on a quantum system. While this backaction has hitherto been discussed as a limitation to the precision of measurements, it is increasingly being appreciated that measurement backaction is a powerful means of quantum control. We have previously demonstrated that backaction from position measurement can modify the coherent tunneling rate of a lattice gas through the Quantum Zeno effect. By suitably designing measurement landscapes we can control the transport properties of the lattice gas. We describe a quantitative study of lattice gas dynamics under continuous quantum measurement in the context of a quantum to classical transition where the atom dynamics goes from a quantum walk at low measurement strengths to classical diffusion at high measurement strengths. We further discuss the prospect of using disorder measurement landscapes to realize a new form of Anderson localization. This work is supported by the ARO MURI on non-equilibrium dynamics.

  17. A quantitative measure of phase correlations in density fields

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.; Melott, Adrian L.; Shandarin, Sergei F.

    1991-01-01

    A quantitative measure of the phase correlations in a density field is presented based on the location of the maxima of the Fourier components of that field. It is found that this measue can easily detect non-Gaussian behavior either in artificially constructed density fields or those that become non-Gaussian from gravitational clustering of Gaussian initial conditions. It is found that different initial power spectra produce somewhat distinguishable signals, and the signals are robust against sparse sampling.

  18. Euler and Potential Experiment/CFD Correlations for a Transport and Two Delta-Wing Configurations

    NASA Technical Reports Server (NTRS)

    Hicks, R. M.; Cliff, S. E.; Melton, J. E.; Langhi, R. G.; Goodsell, A. M.; Robertson, D. D.; Moyer, S. A.

    1990-01-01

    A selection of successes and failures of Computational Fluid Dynamics (CFD) is discussed. Experiment/CFD correlations involving full potential and Euler computations of the aerodynamic characteristics of four commercial transport wings and two low aspect ratio, delta wing configurations are shown. The examples consist of experiment/CFD comparisons for aerodynamic forces, moments, and pressures. Navier-Stokes equations are not considered.

  19. Resolution of ambiguous radar measurements using a floating bin correlator

    NASA Astrophysics Data System (ADS)

    Addison, E. R.; Frost, E. L.

    It is pointed out that the Chinese Remainder Theorem (Mooney and Skillman, 1970) can be used to yield unambiguous measurements by comparing outputs allocated to fixed integer number bins using integer arithmetic to modulo to the correct bin number. In general, targets straddling two or more bins or the assignment of an incorrect bin number will yield incorrect parameter values. An ambiguity resolution technique using multiple pulse repetition frequency (PRF) data and a sliding floating point window or 'floating bin' to correlate ambiguous centroided Doppler measurements is proposed. An advantage of the technique is that false targets are much less prevalent than in classical techniques. What is more, the same technique may be employed to resolve ambiguous range wherein centroided range measurements are moduloed with the pulse repetition interval associated with each PRF. Results demonstrate that this method is better than conventional approaches in that the number of false targets produced is significantly lower while simultaneoulsy providing a high probability of correlation. In addition, the correlation can be effected in real time.

  20. Bunch Length Measurements With Laser/SR Cross-Correlation

    SciTech Connect

    Miller, Timothy; Daranciang, Dan; Lindenberg, Aaron; Corbett, Jeff; Fisher, Alan; Goodfellow, John; Huang, Xiaobiao; Mok, Walter; Safranek, James; Wen, Haidan; /SLAC

    2012-07-06

    By operating SPEAR3 in low-{alpha} mode the storage ring can generate synchrotron radiation pulses of order 1ps. Applications include pump-probe x-ray science and the production of THz radiation in the CSR regime. Measurements of the bunch length are difficult, however, because the light intensity is low and streak cameras typically provide resolution of only a few ps. Tests are now underway to resolve the short bunch length using cross-correlation between a 60-fs Ti:Sapphire laser and the visible SR beam in a BBO crystal. In this paper we report on the experimental setup, preliminary measurements and prospects for further improvement.

  1. Measurements of the transport efficiency of the fragment mass analyzer

    SciTech Connect

    Back, B.B.; Blumenthal, D.J.; Davids, C.N.

    1995-08-01

    Extensive calculations of the transport of reaction products were carried out during the design phase of the instrument using the computer code GIOS. These show that the energy acceptance depends strongly on the angular deviation from the optical axis of the instrument. In order to reliably measure cross sections using this instrument it is therefore necessary to verify these calculations empirically.

  2. Heat transport measurements in turbulent rotating Rayleigh-Benard convection

    SciTech Connect

    Ecke, Robert E; Liu, Yuanming

    2008-01-01

    We present experimental heat transport measurements of turbulent Rayleigh-Benard convection with rotation about a vertical axis. The fluid, water with Prandtl number ({sigma}) about 6, was confined in a cell which had a square cross section of 7.3 cm x 7.3 cm and a height of 9.4 cm. Heat transport was measured for Rayleigh numbers 2 x 10{sup 5} < Ra < 5 x 10{sup 8} and Taylor numbers 0 < Ta < 5 x 10{sup 9}. We show the variation of normalized heat transport, the Nusselt number, at fixed dimensional rotation rate {Omega}{sub D}, at fixed Ra varying Ta, at fixed Ta varying Ra, and at fixed Rossby number Ro. The scaling of heat transport in the range 10{sup 7} to about 10{sup 9} is roughly 0.29 with a Ro dependent coefficient or equivalently is also well fit by a combination of power laws of the form a Ra{sup 1/5} + b Ra{sup 1/3} . The range of Ra is not sufficient to differentiate single power law or combined power law scaling. The overall impact of rotation on heat transport in turbulent convection is assessed.

  3. A transportable magnetic resonance imaging system for in situ measurements of living trees: the Tree Hugger.

    PubMed

    Jones, M; Aptaker, P S; Cox, J; Gardiner, B A; McDonald, P J

    2012-05-01

    This paper presents the design of the 'Tree Hugger', an open access, transportable, 1.1 MHz (1)H nuclear magnetic resonance imaging system for the in situ analysis of living trees in the forest. A unique construction employing NdFeB blocks embedded in a reinforced carbon fibre frame is used to achieve access up to 210 mm and to allow the magnet to be transported. The magnet weighs 55 kg. The feasibility of imaging living trees in situ using the 'Tree Hugger' is demonstrated. Correlations are drawn between NMR/MRI measurements and other indicators such as relative humidity, soil moisture and net solar radiation.

  4. 3D shape measurement with phase correlation based fringe projection

    NASA Astrophysics Data System (ADS)

    Kühmstedt, Peter; Munckelt, Christoph; Heinze, Matthias; Bräuer-Burchardt, Christian; Notni, Gunther

    2007-06-01

    Here we propose a method for 3D shape measurement by means of phase correlation based fringe projection in a stereo arrangement. The novelty in the approach is characterized by following features. Correlation between phase values of the images of two cameras is used for the co-ordinate calculation. This work stands in contrast to the sole usage of phase values (phasogrammetry) or classical triangulation (phase values and image co-ordinates - camera raster values) for the determination of the co-ordinates. The method's main advantage is the insensitivity of the 3D-coordinates from the absolute phase values. Thus it prevents errors in the determination of the co-ordinates and improves robustness in areas with interreflections artefacts and inhomogeneous regions of intensity. A technical advantage is the fact that the accuracy of the 3D co-ordinates does not depend on the projection resolution. Thus the achievable quality of the 3D co-ordinates can be selectively improved by the use of high quality camera lenses and can participate in improvements in modern camera technologies. The presented new solution of the stereo based fringe projection with phase correlation makes a flexible, errortolerant realization of measuring systems within different applications like quality control, rapid prototyping, design and CAD/CAM possible. In the paper the phase correlation method will be described in detail. Furthermore, different realizations will be shown, i.e. a mobile system for the measurement of large objects and an endoscopic like system for CAD/CAM in dental industry.

  5. GENERAL: Connectivity correlations in three topological spaces of urban bus-transport networks in China

    NASA Astrophysics Data System (ADS)

    Chen, Yong-Zhou; Fu, Chun-Hua; Chang, Hui; Li, Nan; He, Da-Ren

    2008-10-01

    In this paper, an empirical investigation is presented, which focuses on unveiling the universality of connectivity correlations in three spaces (the route space, the stop geographical space and bus-transferring space) of urban bus-transport networks (BTNs) in four major cities of China. The underlying features of the connectivity correlations are shown in two statistical ways. One is the correlation between the (weighted) average degree of all the nearest neighbouring vertices with degree k, (Knnw (k)) Knn(k), and k, and the other is the correlations between the assortativity coefficient r and, respectively, the network size N, the network diameter D, the averaged clustering coefficient C, and the averaged distance . The obtained results show qualitatively the same connectivity correlations of all the considered cities under all the three spaces.

  6. Matrix-based concordance correlation coefficient for repeated measures.

    PubMed

    Hiriote, Sasiprapa; Chinchilli, Vernon M

    2011-09-01

    In many clinical studies, Lin's concordance correlation coefficient (CCC) is a common tool to assess the agreement of a continuous response measured by two raters or methods. However, the need for measures of agreement may arise for more complex situations, such as when the responses are measured on more than one occasion by each rater or method. In this work, we propose a new CCC in the presence of repeated measurements, called the matrix-based concordance correlation coefficient (MCCC) based on a matrix norm that possesses the properties needed to characterize the level of agreement between two p× 1 vectors of random variables. It can be shown that the MCCC reduces to Lin's CCC when p= 1. For inference, we propose an estimator for the MCCC based on U-statistics. Furthermore, we derive the asymptotic distribution of the estimator of the MCCC, which is proven to be normal. The simulation studies confirm that overall in terms of accuracy, precision, and coverage probability, the estimator of the MCCC works very well in general cases especially when n is greater than 40. Finally, we use real data from an Asthma Clinical Research Network (ACRN) study and the Penn State Young Women's Health Study for demonstration.

  7. Nonlinear ultrasonic measurements based on cross-correlation filtering techniques

    NASA Astrophysics Data System (ADS)

    Yee, Andrew; Stewart, Dylan; Bunget, Gheorghe; Kramer, Patrick; Farinholt, Kevin; Friedersdorf, Fritz; Pepi, Marc; Ghoshal, Anindya

    2017-02-01

    Cyclic loading of mechanical components promotes the formation of dislocation dipoles in metals, which can serve as precursors to crack nucleation and ultimately lead to failure. In the laboratory setting, an acoustic nonlinearity parameter has been assessed as an effective indicator for characterizing the progression of fatigue damage precursors. However, the need to use monochromatic waves of medium-to-high acoustic energy has presented a constraint, making it problematic for use in field applications. This paper presents a potential approach for field measurement of acoustic nonlinearity by using general purpose ultrasonic pulser-receivers. Nonlinear ultrasonic measurements during fatigue testing were analyzed by the using contact and immersion pulse-through method. A novel cross-correlation filtering technique was developed to extract the fundamental and higher harmonic waves from the signals. As in the case of the classic harmonic generation, the nonlinearity parameters of the second and third harmonics indicate a strong correlation with fatigue cycles. Consideration was given to potential nonlinearities in the measurement system, and tests have confirmed that measured second harmonic signals exhibit a linear dependence on the input signal strength, further affirming the conclusion that this parameter relates to damage precursor formation from cyclic loading.

  8. Measurement of the radiative transport properties of reticulated alumina foams

    SciTech Connect

    Hale, M.J.; Bohn, M.S.

    1992-12-01

    This paper presents a method for determining radiative transport properties of reticulated materials. The method has both experimental and analytical components. A polar nephelometer is used to measure the scattering profile of a sample of the reticulated material. The results of a Monte Carlo simulation of the experiment are then combined with the experimental results to give the scatter albedo and extinction coefficient. This paper presents the results of using this method to determine the radiative transport properties of four different porosities (10, 20, 30, 65 pores per inch) of cylindrical reticulated alumina samples ranging in thickness form 0.5 inches to 2. 5 inches.

  9. Theoretical model of blood flow measurement by diffuse correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Sakadžić, Sava; Boas, David A.; Carp, Stefan

    2017-02-01

    Diffuse correlation spectroscopy (DCS) is a noninvasive method to quantify tissue perfusion from measurements of the intensity temporal autocorrelation function of diffusely scattered light. However, DCS autocorrelation function measurements in tissue better match theoretical predictions based on the diffusive motion of the scatterers than those based on a model where the advective nature of blood flow dominates the stochastic properties of the scattered light. We have recently shown using Monte Carlo (MC) simulations and assuming a simplistic vascular geometry and laminar flow profile that the diffusive nature of the DCS autocorrelation function decay is likely a result of the shear-induced diffusion of the red blood cells. Here, we provide theoretical derivations supporting and generalizing the previous MC results. Based on the theory of diffusing-wave spectroscopy, we derive an expression for the autocorrelation function along the photon path through a vessel that takes into account both diffusive and advective scatterer motion, and we provide the solution for the DCS autocorrelation function in a semi-infinite geometry. We also derive the correlation diffusion and correlation transfer equation, which can be applied for an arbitrary sample geometry. Further, we propose a method to take into account realistic vascular morphology and flow profile.

  10. Detecting correlated errors in state-preparation-and-measurement tomography

    NASA Astrophysics Data System (ADS)

    Jackson, Christopher; van Enk, S. J.

    2015-10-01

    Whereas in standard quantum-state tomography one estimates an unknown state by performing various measurements with known devices, and whereas in detector tomography one estimates the positive-operator-valued-measurement elements of a measurement device by subjecting to it various known states, we consider here the case of SPAM (state preparation and measurement) tomography where neither the states nor the measurement device are assumed known. For d -dimensional systems measured by d -outcome detectors, we find there are at most d2(d2-1 ) "gauge" parameters that can never be determined by any such experiment, irrespective of the number of unknown states and unknown devices. For the case d =2 we find gauge-invariant quantities that can be accessed directly experimentally and that can be used to detect and describe SPAM errors. In particular, we identify conditions whose violations detect the presence of correlations between SPAM errors. From the perspective of SPAM tomography, standard quantum-state tomography and detector tomography are protocols that fix the gauge parameters through the assumption that some set of fiducial measurements is known or that some set of fiducial states is known, respectively.

  11. Measuring capital market efficiency: Global and local correlations structure

    NASA Astrophysics Data System (ADS)

    Kristoufek, Ladislav; Vosvrda, Miloslav

    2013-01-01

    We introduce a new measure for capital market efficiency. The measure takes into consideration the correlation structure of the returns (long-term and short-term memory) and local herding behavior (fractal dimension). The efficiency measure is taken as a distance from an ideal efficient market situation. The proposed methodology is applied to a portfolio of 41 stock indices. We find that the Japanese NIKKEI is the most efficient market. From a geographical point of view, the more efficient markets are dominated by the European stock indices and the less efficient markets cover mainly Latin America, Asia and Oceania. The inefficiency is mainly driven by a local herding, i.e. a low fractal dimension.

  12. Charge transport measurements of vertically aligned carbon nanofibers

    NASA Astrophysics Data System (ADS)

    Zhang, Lan

    2005-07-01

    Vertically aligned carbon nanofibers (VACNFs) have found a variety of electronic applications. To further realize these applications, a good understanding of the charge transport properties is essential. In this work, charge transport properties have been systematically measured for three types of VACNF forests with Ni as catalyst, namely VACNFs grown by direct current PECVD, and inductively coupled PECVD at both normal pressure and low pressure. The structure and composition of these nanofibers have also been investigated in detail prior to the charge transport measurements. Four-probe I-V measurements on individual nanofibers have been enabled by the fabrication of multiple metal ohmic contacts on individual fibers that exhibited resistance of only a few kO. An O2 plasma reactive ion etch method has been used to achieve ohmic contacts between the nanofibers and Ti/Au, Ag/Au, Cd/Au, and Cr/Au electrodes. Direct current VACNFs exhibit linear I-V behavior at room temperature, with a resistivity of approximately 4.2 x 10-3 O·cm. Our measurements are consistent with a dominant transport mechanism of electrons traveling through intergraphitic planes in the dc VACNFs. The resistivity of these fibers is almost independent of temperature, and the contact resistance decreases as temperature increases. Further studies reveal that the 10--15 nm thick graphitic outer layer dominates the charge transport properties of do VACNFs. This is demonstrated by comparison of charge transport properties of as-grown VACNFs and VACNFs with the outer layer partially removed by oxygen plasma reactive ion etch. The linear I-V behavior of the fibers does not vary as this outer layer becomes thinner, but displays a drastic shift to a rectifying behavior when this layer is completely stripped away from some regions of the nanofiber. This shift may be related with the compositional differences in the outer layer and the inner core of the nanofibers. Two-probe charge transport measurements on

  13. A Pipeline Transport Correlation for Slurries with Small but Dense Particles

    SciTech Connect

    Poloski, Adam P; Etchells, Arthur W; Chun, Jaehun; Adkins, Harold E; Casella, Andrew M; Minette, Michael J; Yokuda, Satoru T

    2010-04-01

    Most correlations/models for minimum transport or critical velocity of slurry were developed for slurries composed of particles greater than ~100-200 µm diameter with narrow particle-size distributions which is typical of the minerals industry. Many other process industries handle smaller particles. In particular waste slurries at the U.S. Department of Energy's Hanford Site have broad size distributions and significant fractions of smaller particles. Despite the size of these wastes, recent PNNL studies indicate that the small particles might be of sufficient density to pose a significant risk for pipeline deposition and plugging. To allow predictive assessment of deposition of fine dense particles for waste slurry transport at the U.S. DOE Hanford site, a pipeline-transport correlation for critical velocity was developed using a simple power-law between two dimensionless numbers important for slurry transport, the deposition Froude and Archimedes numbers. The correlation accords well with experimental data for slurries with Archimedes numbers <80 and is an adequate pipeline design guide for processing Hanford waste slurry.

  14. Sequential Measurement of Intermodal Variability in Public Transportation PM2.5 and CO Exposure Concentrations.

    PubMed

    Che, W W; Frey, H Christopher; Lau, Alexis K H

    2016-08-16

    A sequential measurement method is demonstrated for quantifying the variability in exposure concentration during public transportation. This method was applied in Hong Kong by measuring PM2.5 and CO concentrations along a route connecting 13 transportation-related microenvironments within 3-4 h. The study design takes into account ventilation, proximity to local sources, area-wide air quality, and meteorological conditions. Portable instruments were compacted into a backpack to facilitate measurement under crowded transportation conditions and to quantify personal exposure by sampling at nose level. The route included stops next to three roadside monitors to enable comparison of fixed site and exposure concentrations. PM2.5 exposure concentrations were correlated with the roadside monitors, despite differences in averaging time, detection method, and sampling location. Although highly correlated in temporal trend, PM2.5 concentrations varied significantly among microenvironments, with mean concentration ratios versus roadside monitor ranging from 0.5 for MTR train to 1.3 for bus terminal. Measured inter-run variability provides insight regarding the sample size needed to discriminate between microenvironments with increased statistical significance. The study results illustrate the utility of sequential measurement of microenvironments and policy-relevant insights for exposure mitigation and management.

  15. Directional correlation measurements for gamma transitions in /sup 127/Te

    SciTech Connect

    de Souza, M.O.M.D.; Saxena, R.N.

    1985-02-01

    The directional correlation of coincident ..gamma.. transitions in /sup 127/Te has been measured following the ..beta../sup -/ decay of /sup 127/Sb (T/sub 1/2/ = 3.9 d) using Ge(Li)-Ge(Li) and Ge(Li)-NaI(T1) gamma spectrometers. Measurements have been carried out for 14 gamma cascades resulting in the determination of multipole mixing ratios delta(E2/M1) for 15 ..gamma.. transitions. The present results permitted a definite spin assignment of (7/2) for the 785 keV level and confirmation of several previous assignments to other levels in /sup 127/Te. The g factor of the 340 keV ((9/2)/sup -/) level has also been measured using the integral perturbed angular correlation method in the hyperfine magnetic field of a Te in Ni matrix. The results of the g factor as well as the mixing ratio for the 252 keV ((9/2)/sup -/..-->..(11/2)/sup -/) transition support the earlier interpretation of this state as an anomalous coupling state.

  16. Measuring peptide mass spectrum correlation using the quantum Grover algorithm.

    PubMed

    Choo, Keng Wah

    2007-03-01

    We investigated the use of the quantum Grover algorithm in the mass-spectrometry-based protein identification process. The approach coded the mass spectra on a quantum register and uses the Grover search algorithm for searching multiple solutions to find matches from a database. Measurement of the fidelity between the input and final states was used to quantify the similarity between the experimental and theoretical spectra. The optimal number of iteration is proven to be pi/4sqrt[N/k] , where k refers to the number of marked states. We found that one iteration is sufficient for the search if we let more that 62% of the N states be marked states. By measuring the fidelity after only one iteration of Grover search, we discovered that it resembles that of the correlation-based measurement used in the existing protein identification software. We concluded that the quantum Grover algorithm can be adapted for a correlation-based mass spectra database search, provided that decoherence can be kept to a minimum.

  17. A rain splash transport equation assimilating field and laboratory measurements

    USGS Publications Warehouse

    Dunne, T.; Malmon, D.V.; Mudd, S.M.

    2010-01-01

    Process-based models of hillslope evolution require transport equations relating sediment flux to its major controls. An equation for rain splash transport in the absence of overland flow was constructed by modifying an approach developed by Reeve (1982) and parameterizing it with measurements from single-drop laboratory experiments and simulated rainfall on a grassland in East Africa. The equation relates rain splash to hillslope gradient, the median raindrop diameter of a storm, and ground cover density; the effect of soil texture on detachability can be incorporated from other published results. The spatial and temporal applicability of such an equation for rain splash transport in the absence of overland flow on uncultivated hillslopes can be estimated from hydrological calculations. The predicted transport is lower than landscape-averaged geologic erosion rates from Kenya but is large enough to modify short, slowly eroding natural hillslopes as well as microtopographic interrill surfaces between which overland flow transports the mobilized sediment. Copyright 2010 by the American Geophysical Union. Copyright 2010 by the American Geophysical Union.

  18. Capacitance-Voltage Measurement of Transporting Function at Cell Membrane

    NASA Astrophysics Data System (ADS)

    Sakata, Toshiya; Miyahara, Yuji

    In this paper, we report the detection of transporting function at cell membrane using capacitance-voltage (CV) measurement. The detection principle of our devices is based on the field-effect of electrostatic interaction between charged species at cell membrane in solution and surface electrons in silicon crystal through the gate insulator of Si3N4/SiO2 thin double-layer. We designed an oocyte-based field-effect capacitor, on which a Xenopus laevis oocyte was fixed. The transporter of human organic anion transporting peptide C (hOATP-C) was expressed at oocyte membrane by induction of cRNA. The electrical phenomena such as ion or molecular charge flux at the interface between cell membrane and gate surface could be detected as the change of flat band voltage in CV characteristics. The flat band voltage shift decreased with incubation time after introduction of substrate into the oocyte-based field-effect capacitor. The electrical signal is due to the change of charge flux from the oocyte at the gate surface inspired by transporter-substrate binding. The platform based on the oocyte-based field-effect capacitor is suitable for a simple and non-invasive detection system in order to analyze function of transporters related to drug efficacy.

  19. Correlation between morphology and ambipolar transport in organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Singh, Th. B.; Günes, S.; Marjanović, N.; Sariciftci, N. S.; Menon, R.

    2005-06-01

    Attaining ambipolar charge transport in organic field-effect transistors (OFET) is highly desirable from both fundamental understanding and application points of view. We present the results of an approach to obtain ambipolar OFET with an active layer of organic semiconductor blends using semiconducting polymers in composite with fullerene derivatives. Clear features of forming the superposition of both hole and electron-enhanced channels for an applied gate field are observed. The present studies suggest a strong correlation of thin-film nanomorphology and ambipolar transport in field-effect devices.

  20. Effect of correlations on heat transport in a magnetized strongly coupled plasma

    NASA Astrophysics Data System (ADS)

    Ott, T.; Bonitz, M.; Donkó, Z.

    2015-12-01

    In a classical ideal plasma, a magnetic field is known to reduce the heat conductivity perpendicular to the field, whereas it does not alter the one along the field. Here we show that, in strongly correlated plasmas that are observed at high pressure and/or low temperature, a magnetic field reduces the perpendicular heat transport much less and even enhances the parallel transport. These surprising observations are explained by the competition of kinetic, potential, and collisional contributions to the heat conductivity. Our results are based on first-principle molecular dynamics simulations of a one-component plasma.

  1. LIF Diagnostic for Measuring Beam-Transport Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Jones, T. G.; Noonan, W. A.; Ottinger, P. F.

    1996-11-01

    A novel, spatially-resolved diagnostic is being developed to measure magnetic fields associated with intense ion beam propagation through a low-pressure gas, as is envisioned for light ion-driven ICF. The diagnostic technique uses laser-induced fluorescence (LIF) spectroscopy, and can be varied to measure either small or large fields. Small fields, as expected in ballistic transport with solenoidal lens focusing using ~ 1 Torr gas, produce Zeeman shifts, Δ λ_Z, smaller than the transition linewidth, Δ λ. High sensitivity to measure these shifts is achieved by a variation on the Babcock technique.^1 Large fields, as expected in self-pinched transport using 10--100 mTorr gas, produce Δ λZ larger than Δ λ, which can be measured with a high-resolution spectrometer. Results of proof-of-principle experiments using calibrated B-fields for both the small- and large-field techniques will be presented. Progress in fielding this diagnostic on the Gamble-II accelerator for beam-transport studies will also be presented. This work is supported by DoE through Sandia National Laboratories. ^ NRC-NRL Research Associate. ^ Present address University of Maryland, College Park, MD. ^1 W.A. Noonan, et al., accepted for publication in Rev. Sci. Instrum.

  2. Measurements and models of reactive transport in geological media

    NASA Astrophysics Data System (ADS)

    Berkowitz, Brian; Dror, Ishai; Hansen, Scott K.; Scher, Harvey

    2016-12-01

    Reactive chemical transport plays a key role in geological media across scales, from pore scale to aquifer scale. Systems can be altered by changes in solution chemistry and a wide variety of chemical transformations, including precipitation/dissolution reactions that cause feedbacks that directly affect the flow and transport regime. The combination of these processes with advective-dispersive-diffusive transport in heterogeneous media leads to a rich spectrum of complex dynamics. The principal challenge in modeling reactive transport is to account for the subtle effects of fluctuations in the flow field and species concentrations; spatial or temporal averaging generally suppresses these effects. Moreover, it is critical to ground model conceptualizations and test model outputs against laboratory experiments and field measurements. This review emphasizes the integration of these aspects, considering carefully designed and controlled experiments at both laboratory and field scales, in the context of development and solution of reactive transport models based on continuum-scale and particle tracking approaches. We first discuss laboratory experiments and field measurements that define the scope of the phenomena and provide data for model comparison. We continue by surveying models involving advection-dispersion-reaction equation and continuous time random walk formulations. The integration of measurements and models is then examined, considering a series of case studies in different frameworks. We delineate the underlying assumptions, and strengths and weaknesses, of these analyses, and the role of probabilistic effects. We also show the key importance of quantifying the spreading and mixing of reactive species, recognizing the role of small-scale physical and chemical fluctuations that control the initiation of reactions.

  3. Calibrating and Measuring Bedload Transport Using a Magnetic Detection System

    NASA Astrophysics Data System (ADS)

    Rempel, J.; Hassan, M. A.

    2004-12-01

    One of the problems in bedload transport research is that no measurement technique has been commonly accepted as superior, and there are no standard protocols. There is a need for continuous bedload measurement to adequately resolve patterns in temporal and spatial variability, especially at high transport rates. Magnetic detection systems are a promising method as they can sense the movement of natural stones, and provide high frequency data in both time and space. A number of magnetic systems have been deployed in the field, but they have not been adequately calibrated. This has limited the analysis to counting the number of pulses, and not allowed confident estimations of the true amount of sediment transport, sediment texture or particle velocities. We developed a series of lab and flume experiments to calibrate the BMD system used by Tunnicliffe et al (2000). Experiments were run with both artificial and natural stones to isolate the effects of particle size, velocity and magnetic content (susceptibility and moment) on the shape of the recorded signal. A large number of experiments were conducted to cover wide range of flow conditions, particle sizes, and particle velocities. The results show that the system is sensitive enough to detect particles down to at least 8mm. Using artificial stones we were able to relate the signal amplitude, width and area to particle size, velocity and magnetic content. These results suggest that the magnetic system can be used to estimate transport rates in natural streams. Work is continuing with natural stones both in the laboratory and the field to further develop of the system. Tunnicliffe, J., Gottesfeld, A.S., and Mohamed, M. 2000. High-resolution measurement of bedload transport, Hydrological Processes, 14, 2631-2643.

  4. Anomalous Transport in Carbonate Rock - Predictions and Quantitative Measures

    NASA Astrophysics Data System (ADS)

    Bijeljic, B.; Blunt, M. J.

    2014-12-01

    Solute transport in rock subsurface is important in a number of applications such as contaminant hydrology, carbon storage and enhanced oil recovery. Carbonate rock contain most of the world's oil reserves and potentially hold a storage capacity for carbon dioxide. Pore structure in carbonate rock introduces an additional complexity in the form of bimodal pore size distributions, which leads to complex anomalous transport behavior and poses a significant challenge for accurate predictions. We present a new modeling concept that simulates flow and transport on micro-CT images containing the information on inter- and intra-grain pore space of carbonate rock. Navier-Stokes equations are solved for flow in the image voxels comprising the pore space, streamline-based simulation is used to account for advection, and diffusion is superimposed by random walk. Firstly, the model is validated against the experimental NMR measurements in the dual porosity beadpack. Furthermore, the model predictions are made for a number of carbonate rock images which are then classified in terms of heterogeneity of the inter- and intra-grain pore space, heterogeneity in the flow field, and the mass transfer characteristics of the porous media. Finally, we demonstrate the predictive capabilities of the model through an analysis that includes a number of probability density functions (PDFs) measures of non-Fickian transport on the micro-CT images.

  5. Electrical Conductivity through a Single Atomic Step Measured with the Proximity-Induced Superconducting Pair Correlation

    NASA Astrophysics Data System (ADS)

    Kim, Howon; Lin, Shi-Zeng; Graf, Matthias J.; Miyata, Yoshinori; Nagai, Yuki; Kato, Takeo; Hasegawa, Yukio

    2016-09-01

    Local disordered nanostructures in an atomically thick metallic layer on a semiconducting substrate play significant and decisive roles in transport properties of two-dimensional (2D) conductive systems. We measured the electrical conductivity through a step of monoatomic height in a truly microscopic manner by using as a signal the superconducting pair correlation induced by the proximity effect. The transport property across a step of a one-monolayer Pb surface metallic phase, formed on a Si(111) substrate, was evaluated by inducing the pair correlation around the local defect and measuring its response, i.e., the reduced density of states at the Fermi energy using scanning tunneling microscopy. We found that the step resistance has a significant contribution to the total resistance on a nominally flat surface. Our study also revealed that steps in the 2D metallic layer terminate the propagation of the pair correlation. Superconductivity is enhanced between the first surface step and the superconductor-normal-metal interface by reflectionless tunneling when the step is located within a coherence length.

  6. Influence of lattice vibrations on the field driven electronic transport in chains with correlated disorder

    NASA Astrophysics Data System (ADS)

    da Silva, L. D.; Sales, M. O.; Ranciaro Neto, A.; Lyra, M. L.; de Moura, F. A. B. F.

    2016-12-01

    We investigate electronic transport in a one-dimensional model with four different types of atoms and long-ranged correlated disorder. The latter was attained by choosing an adequate distribution of on-site energies. The wave-packet dynamics is followed by taking into account effects due to a static electric field and electron-phonon coupling. In the absence of electron-phonon coupling, the competition between correlated disorder and the static electric field promotes the occurrence of wave-packet oscillations in the regime of strong correlations. When the electron-lattice coupling is switched on, phonon scattering degrades the Bloch oscillations. For weak electron-phonon couplings, a coherent oscillatory-like dynamics of the wave-packet centroid persists for short periods of time. For strong couplings the wave-packet acquires a diffusive-like displacement and spreading. A slower sub-diffusive spreading takes place in the regime of weak correlations.

  7. Super-resolving interference without intensity-correlation measurement

    NASA Astrophysics Data System (ADS)

    Cao, De-Zhong; Xu, Bao-Long; Zhang, Su-Heng; Wang, Kaige

    2015-05-01

    The high-order intensity correlation function of N -photon interference with thermal light observed in a recent experiment [S. Oppel, T. Büttner, P. Kok, and J. von Zanthier, Phys. Rev. Lett. 109, 233603 (2012), 10.1103/PhysRevLett.109.233603] is analyzed. The terms in the expansion of the N th -order correlation function are put into three groups. One group contributes a homogeneous background. Both of the other two contribute (N -1 ) -fold super-resolving fringes. In principle they correspond to coherent and incoherent superpositions of classical optical fields, respectively. Therefore similar super-resolving fringes can be obtained without intensity-correlation measurements. We report the experimental results of the coherent and incoherent super-resolving diffraction fringes, which are observed directly in the intensity distribution. The N -1 sources in both the coherent and incoherent cases are set in certain definite positions. In the coherent case, moreover, the phase difference between two adjacent source fields is π . The fringe visibility is unity in the incoherent case, while it decreases as N increases in the incoherent case.

  8. Correlation between AC and DC transport properties of Mn substituted cobalt ferrite

    NASA Astrophysics Data System (ADS)

    Supriya, Sweety; Kumar, Sunil; Kar, Manoranjan

    2016-12-01

    The CoFe2-xMnxO4 compound is prepared by following the sol gel technique. The structural analysis through XRD and Rietveld has been confirmed for the single cubic phase having F d 3 ¯ m space group for CoFe2-xMnxO4 and also verified it through Raman spectroscopy measurements. The tetrahedral site observed to be red shifted with increase in Mn concentration in cobalt ferrite. All the XRD patterns have been analyzed by employing the Rietveld refinement technique. The particle size was found to be in the range of 30-40 nm. The electrical properties of polycrystalline CoFe2-xMnxO4 for x = 0.00, 0.10, 0.15, and 0.2, spinel ferrite was investigated by impedance spectroscopy. The influence of doping, frequency and temperature on the electrical transport properties of the CoFe2-xMnxO4 for x = 0.00, 0.10, 0.15, and 0.20 were investigated. The magnitude of Z' and Z″ decreases with increase in temperature. Only one semicircle is observed in each Cole Cole plot which reveals that ac conductivity is dominated by grains. The grain resistance and grain boundary resistance both were found to decrease as a function of temperature. Temperature variation of DC electrical conductivity follows the Arrhenius relationship. A detailed analysis of electrical parameters provides assistance in connecting information regarding the conduction mechanism as well as determination of both dielectric and magnetic transition temperatures in the substituted cobalt ferrite. Detailed analysis of ac impedance and DC resistivity measurement reveals that, the magnetic ordering temperature in the Mn substituted cobalt ferrite does not respond to the frequency of ac electrical signal; however, it responds to the DC resistivity. The correlation between ac impedance and DC resistivity has been established.

  9. Correlation between thermal fluctuation effects and phase coherence factor in carrier transport of single-crystal organic semiconductors

    NASA Astrophysics Data System (ADS)

    Fukami, Tatsuya; Ishii, Hiroyuki; Kobayashi, Nobuhiko; Uemura, Takafumi; Sakai, Kenichi; Okada, Yugo; Takeya, Jun; Hirose, Kenji

    2015-04-01

    We find that the phase coherence factor derived from Hall effect measurements of single-crystal thin-film field-effect transistors of pentacene, which relates the intrinsic charge transport with the phase coherence, has a strong correlation with the thermal fluctuations of transfer energies between neighboring molecules. This observation also holds true for other organic semiconductors such as tetracene, dianthrathiophene (DAT)-V, and dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT). This gives us clues for constructing flexible molecular systems with high carrier mobility.

  10. Transport signatures for correlated disorder in self-assembled InAs quantum dots on GaAs

    NASA Astrophysics Data System (ADS)

    Heinzel, T.; Jäggi, R.; von Waldkirch, M.; Ribeiro, E.; Ensslin, K.; Ulloa, S. E.; Medeiros-Ribeiro, G.; Petroff, P. M.

    2002-01-01

    We report electronic transport measurements on two-dimensional electron gases in a Ga[Al]As heterostructure with an embedded layer of InAs self-assembled quantum dots. At high InAs dot densities, Altshuler-Aronov-Spivak oscillations are observed. The presence of these oscillations correlates with the observation of a metal-insulator transition, and with the existence of a maximum in the electron mobility as a function of the electron density. These results indicate hexagonal short-range ordering of the charged InAs dots.

  11. Laboratory Measurements of Fluid Transport Properties on Tight Gas Sandstones and Applications

    NASA Astrophysics Data System (ADS)

    Albrecht, Daniel; Reitenbach, Viktor

    2014-05-01

    Deep gas reservoirs are of great interest for the E&P industry. Large areas of such reservoirs have permeabilities below 1 mD. The reservoir rocks in these areas show a strong stress sensitivity of the fluid transport properties and a considerable productivity decline due to changing stress conditions during the production process. For correct modeling and simulation of Tight Gas reservoirs it is important to know the behavior of the fluid transport properties under the changing stress condition the reservoir experiences. In several measurement series the effects of changing overburden and pore pressure on Rotliegend sandstone samples from north German Tight Gas reservoirs have been quantified and used to set up correlation functions. With the correlation functions from the own measurements and additional data and correlations from literature a Rock Data Catalog has been developed as tool to help reservoir engineers with modeling and simulation of such reservoirs. The Rock Data Catalog consists of the Rock Database and the Correlation Module. The Rock Database contains general and petrophysical rock data. The Correlation Module uses this data to generate secondary data of e.g. in-situ capillary and hydraulic rock properties with appropriate correlation functions. Viability of the economic gas production from Tight Gas Reservoirs strongly depends on reservoir quality. Therefore identification of high quality reservoir parts or so called Sweet Spots for placing production wells and planning hydraulic fracturing stimulation, is one of key issues of the tight gas reservoir characterization and evaluation. The data and correlation functions collected in the Rock Data Catalog could also be used to identify Sweet Spots in Tight Gas reservoirs. Several rock parameters and properties, which affect the fluid flow in a reservoir (like lithology, clay content, water saturation, permeability, pore size distribution) can be identified and used to set up a Sweet Spot Index as a

  12. Self-organized criticality, long-time correlations, and the standard transport paradigm

    SciTech Connect

    Krommes, J.A.

    2000-02-11

    Some aspects of low-frequency, long-wavelength fluctuations are considered. A stochastic model is used to show that power-law time correlations need not arise from self-organized criticality. A formula for the frequency spectrum of uncorrelated, overlapping avalanches is shown to be a special case of the spectral balance equation of renormalized statistical turbulence theory. It is argued that there need be no contradiction between the presence of long-time correlations and the existence of local transport coefficients.

  13. Development of Methods Precision Length Measurement Using Transported Laser Interferometer

    NASA Astrophysics Data System (ADS)

    Lavrov, E. A.; Epikhin, V. M.; Mazur, M. M.; Suddenok, Y. A.; Shorin, V. N.

    The paper shows the results of a comparison of a developed transported laser interferometer (TLI) with a measurement interferometer XL-80 Renishaw at the distance 0-60 meters. Testings of a breadboard model of the TLI showed that a difference between the travel measurements of the two interferometers does not exceed 6 μm. The mean value of the difference of indications between the TLI and a Renishaw travel measurer at the distance near 58 m approximately equals to 0,5 μm. Root-mean square deviation of the indications of the interferometers approximately equals to 3 μm. At comparison of the sections with the same name between the TLI and the Renishaw travel measurer, measured at different days, a repeatability of the results for the sections with the same name is noted.

  14. Correlating Atom Probe Crystallographic Measurements with Transmission Kikuchi Diffraction Data.

    PubMed

    Breen, Andrew J; Babinsky, Katharina; Day, Alec C; Eder, K; Oakman, Connor J; Trimby, Patrick W; Primig, Sophie; Cairney, Julie M; Ringer, Simon P

    2017-03-14

    Correlative microscopy approaches offer synergistic solutions to many research problems. One such combination, that has been studied in limited detail, is the use of atom probe tomography (APT) and transmission Kikuchi diffraction (TKD) on the same tip specimen. By combining these two powerful microscopy techniques, the microstructure of important engineering alloys can be studied in greater detail. For the first time, the accuracy of crystallographic measurements made using APT will be independently verified using TKD. Experimental data from two atom probe tips, one a nanocrystalline Al-0.5Ag alloy specimen collected on a straight flight-path atom probe and the other a high purity Mo specimen collected on a reflectron-fitted instrument, will be compared. We find that the average minimum misorientation angle, calculated from calibrated atom probe reconstructions with two different pole combinations, deviate 0.7° and 1.4°, respectively, from the TKD results. The type of atom probe and experimental conditions appear to have some impact on this accuracy and the reconstruction and measurement procedures are likely to contribute further to degradation in angular resolution. The challenges and implications of this correlative approach will also be discussed.

  15. Measures of correlations in infinite-dimensional quantum systems

    NASA Astrophysics Data System (ADS)

    Shirokov, M. E.

    2016-05-01

    Several important measures of correlations of the state of a finite-dimensional composite quantum system are defined as linear combinations of marginal entropies of this state. This paper is devoted to infinite-dimensional generalizations of such quantities and to an analysis of their properties. We introduce the notion of faithful extension of a linear combination of marginal entropies and consider several concrete examples, the simplest of which are quantum mutual information and quantum conditional entropy. Then we show that quantum conditional mutual information can be defined uniquely as a lower semicontinuous function on the set of all states of a tripartite infinite-dimensional system possessing all the basic properties valid in finite dimensions. Infinite-dimensional generalizations of some other measures of correlations in multipartite quantum systems are also considered. Applications of the results to the theory of infinite-dimensional quantum channels and their capacities are considered. The existence of a Fawzi-Renner recovery channel reproducing marginal states for all tripartite states (including states with infinite marginal entropies) is shown. Bibliography: 47 titles.

  16. Dynamic defect correlations dominate activated electronic transport in SrTiO3

    NASA Astrophysics Data System (ADS)

    Snijders, Paul C.; Şen, Cengiz; McConnell, Michael P.; Ma, Ying-Zhong; May, Andrew F.; Herklotz, Andreas; Wong, Anthony T.; Ward, T. Zac

    2016-07-01

    Strontium titanate (SrTiO3, STO) is a critically important material for the study of emergent electronic phases in complex oxides, as well as for the development of applications based on their heterostructures. Despite the large body of knowledge on STO, there are still many uncertainties regarding the role of defects in the properties of STO, including their influence on ferroelectricity in bulk STO and ferromagnetism in STO-based heterostructures. We present a detailed analysis of the decay of persistent photoconductivity in STO single crystals with defect concentrations that are relatively low but significantly affect their electronic properties. The results show that photo-activated electron transport cannot be described by a superposition of the properties due to independent point defects as current models suggest but is, instead, governed by defect complexes that interact through dynamic correlations. These results emphasize the importance of defect correlations for activated electronic transport properties of semiconducting and insulating perovskite oxides.

  17. Dynamic defect correlations dominate activated electronic transport in SrTiO3

    PubMed Central

    Snijders, Paul C.; Şen, Cengiz; McConnell, Michael P.; Ma, Ying-Zhong; May, Andrew F.; Herklotz, Andreas; Wong, Anthony T.; Ward, T. Zac

    2016-01-01

    Strontium titanate (SrTiO3, STO) is a critically important material for the study of emergent electronic phases in complex oxides, as well as for the development of applications based on their heterostructures. Despite the large body of knowledge on STO, there are still many uncertainties regarding the role of defects in the properties of STO, including their influence on ferroelectricity in bulk STO and ferromagnetism in STO-based heterostructures. We present a detailed analysis of the decay of persistent photoconductivity in STO single crystals with defect concentrations that are relatively low but significantly affect their electronic properties. The results show that photo-activated electron transport cannot be described by a superposition of the properties due to independent point defects as current models suggest but is, instead, governed by defect complexes that interact through dynamic correlations. These results emphasize the importance of defect correlations for activated electronic transport properties of semiconducting and insulating perovskite oxides. PMID:27443503

  18. A Study of Charge Transport: Correlated Energetic Disorder in Organic Semiconductors, and the Fragment Hamiltonian

    NASA Astrophysics Data System (ADS)

    Allen, Jonathan Robert

    This dissertation details work done on two different descriptions of charge transport. The first topic is energetic disorder in organic semiconductors, and its effect on charge transport. This is motivated primarily by solar cells, which can be broadly classified as either inorganic or organic. The inorganic class of solar cells is older, and more well-developed, with the most common type being constructed from crystalline silicon. The large silicon crystals required for these cells are expensive to manufacture, which gave rise to interest in photovoltaic cells made from much less costly organic polymers. These organic materials are also less efficient than their silicon counterparts, due to a large degree of spatial and energetic disorder. In this document, the sources and structure of energetic disorder in organic semiconductors are explored, with an emphasis on spatial correlations in energetic disorder. In order for an organic photovoltaic device to function, there must be photogeneration of an exciton (a bound electron-hole pair), exciton transport, exciton dissociation, and transport of the individual charges to their respective terminals. In the case of this thesis, the main focus is exciton dissociation. The effects of correlation on exciton dissociation are examined through computer simulation, and compared to the theory and simulations of previous researchers. We conclude that energetic disorder in organic semiconductors is spatially correlated, and that this correlation improves the ability of excitons to dissociate. The second topic of this dissertation is the Fragment Hamiltonian model. This is a model currently in development as a means of describing charge transport across a range of systems. Currently there are many different systems which exhibit various charge transport behaviors, which are described by several different models. The overarching goal of the Fragment Hamiltonian model is to construct a description of charge transport which

  19. LIF Diagnostic for Measuring Beam-Transport Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Jones, T. G.; Hinshelwood, D. D.; Neri, J. M.; Ottinger, P. F.; Noonan, W. A.

    1997-11-01

    A novel, spatially-resolved diagnostic is being developed to measure magnetic fields associated with intense ion beam propagation through a low-pressure gas, as is envisioned for light ion-driven ICF. The diagnostic technique uses laser-induced fluorescence (LIF) spectroscopy, and can be varied to measure either small or large fields. Small fields, as expected in ballistic transport with solenoidal lens focusing using ~ 1 Torr gas, produce Zeeman shifts, Δ λ_Z, smaller than the transition linewidth, Δ λ. High sensitivity to measure these shifts is achieved by a variation on the Babcock technique.^1 Large fields, as expected in self-pinched transport using 1--100 mTorr gas, produce Δ λZ larger than Δ λ. These Δ λZ will be resolved using an etalon as a narrowband, high-throughput optical filter. Available results from benchtop experiments using calibrated B-fields for both the small- and large-field techniques, and progress in fielding this diagnostic on the Gamble-II accelerator for beam-transport studies will be presented. Work supported by DOE through Sandia National Laboratories. ^ National Research Council Research Associate. ^ Present address University of Maryland, College Park, MD. ^1 W.A. Noonan, et al., Rev. Sci. Instrum. 68, 1032 (1997).

  20. Review on measurement techniques of transport properties of nanowires.

    PubMed

    Rojo, Miguel Muñoz; Calero, Olga Caballero; Lopeandia, A F; Rodriguez-Viejo, J; Martín-Gonzalez, Marisol

    2013-12-07

    Physical properties at the nanoscale are novel and different from those in bulk materials. Over the last few decades, there has been an ever growing interest in the fabrication of nanowire structures for a wide variety of applications including energy generation purposes. Nevertheless, the study of their transport properties, such as thermal conductivity, electrical conductivity or Seebeck coefficient, remains an experimental challenge. For instance, in the particular case of nanostructured thermoelectrics, theoretical calculations have shown that nanowires offer a promising way of enhancing the hitherto low efficiency of these materials in the conversion of temperature differences into electricity. Therefore, within the thermoelectrical community there has been a great experimental effort in the measurement of these quantities in actual nanowires. The measurements of these properties at the nanoscale are also of interest in fields other than energy, such as electrical components for microchips, field effect transistors, sensors, and other low scale devices. For all these applications, knowing the transport properties is mandatory. This review deals with the latest techniques developed to perform the measurement of these transport properties in nanowires. A thorough overview of the most important and modern techniques used for the characterization of different kinds of nanowires will be shown.

  1. Hot electron transport in a strongly correlated transition-metal oxide

    PubMed Central

    Rana, Kumari Gaurav; Yajima, Takeaki; Parui, Subir; Kemper, Alexander F.; Devereaux, Thomas P.; Hikita, Yasuyuki; Hwang, Harold Y.; Banerjee, Tamalika

    2013-01-01

    Oxide heterointerfaces are ideal for investigating strong correlation effects to electron transport, relevant for oxide-electronics. Using hot-electrons, we probe electron transport perpendicular to the La0.7Sr0.3MnO3 (LSMO)- Nb-doped SrTiO3 (Nb:STO) interface and find the characteristic hot-electron attenuation length in LSMO to be 1.48 ± 0.10 unit cells (u.c.) at −1.9 V, increasing to 2.02 ± 0.16 u.c. at −1.3 V at room temperature. Theoretical analysis of this energy dispersion reveals the dominance of electron-electron and polaron scattering. Direct visualization of the local electron transport shows different transmission at the terraces and at the step-edges. PMID:23429420

  2. Correlation of the Vesicular Acetylcholine Transporter Densities in the Striata to the Clinical Abilities of Women with Rett Syndrome (RTT)

    PubMed Central

    BRAŠIĆ, JAMES ROBERT; BIBAT, GENILA; KUMAR, ANIL; ZHOU, YUN; HILTON, JOHN; YABLONSKI, MARYBETH E.; DOGAN, AHMET SEMIH; GUEVARA, MARIA RITA; STEPHANE, MASSOUD; JOHNSTON, MICHAEL; WONG, DEAN FOSTER; NAIDU, SAKKUBAI

    2012-01-01

    Rett syndrome (RTT) is a neurodevelopmental disability characterized by mutations in the X-linked methyl-CpG-binding protein 2 (MeCP2) located at the Xq28 region. The severity is modified in part by X chromosomal inactivation resulting in wide clinical variability. We hypothesized that the ability to perform the activities of daily living (ADL) is correlated with the density of vesicular acetylcholine transporters in the striata of women with RTT. The density of the vesicular acetylcholine transporters in the living human brain can be estimated by single-photon emission-computed tomography (SPECT) after the administration of (−)-5-[123I]iodobenzovesamicol ([123I]IBVM). Twenty-four (24) hours following the intravenous injection of approximately 333 MBq (9 mCi) [123I]IBVM, four women with RTT and nine healthy adult volunteer control participants underwent SPECT brain scans for sixty (60) minutes. The Vesicular Acetylcholine Transporter Binding Site Index (VATBSI) (Kuhl et al., 1994), a measurement of the density of vesicular acetylcholine transporters, was estimated in the striatum and the reference structure, the cerebellum. The women with RTT were assessed for certain activities of daily living (ADL). Although striatal VATSBI was not significantly lower in RTT (5.2 ± 0.9) than in healthy adults (5.7 ± 1.6), RTT striatal VATSBI and ADL scores were linearly associated (ADL = 0.89*VATSBI + 4.5; R2=0.93; p<0.01), suggesting a correlation between the ability to perform ADL and the density of vesicular acetylcholine transporters in the striata of women with RTT. [123I]IBVM is a promising tool to characterize the pathophysiological mechanisms of RTT and other neurodevelopmental disabilities. PMID:22223404

  3. Experimental evaluation of nonclassical correlations between measurement outcomes and target observable in a quantum measurement

    NASA Astrophysics Data System (ADS)

    Iinuma, Masataka; Suzuki, Yutaro; Nii, Taiki; Kinoshita, Ryuji; Hofmann, Holger F.

    2016-03-01

    In general, it is difficult to evaluate measurement errors when the initial and final conditions of the measurement make it impossible to identify the correct value of the target observable. Ozawa proposed a solution based on the operator algebra of observables which has recently been used in experiments investigating the error-disturbance trade-off of quantum measurements. Importantly, this solution makes surprisingly detailed statements about the relations between measurement outcomes and the unknown target observable. In the present paper, we investigate this relation by performing a sequence of two measurements on the polarization of a photon, so that the first measurement commutes with the target observable and the second measurement is sensitive to a complementary observable. While the initial measurement can be evaluated using classical statistics, the second measurement introduces the effects of quantum correlations between the noncommuting physical properties. By varying the resolution of the initial measurement, we can change the relative contribution of the nonclassical correlations and identify their role in the evaluation of the quantum measurement. It is shown that the most striking deviation from classical expectations is obtained at the transition between weak and strong measurements, where the competition between different statistical effects results in measurement values well outside the range of possible eigenvalues.

  4. Discontinuous membrane helices in transport proteins and their correlation with function.

    PubMed

    Screpanti, Emanuela; Hunte, Carola

    2007-08-01

    Alpha-helical bundles and beta-barrel proteins represent the two basic types of architecture known for integral membrane proteins. Irregular structural motifs have been revealed with the growing number of structures determined. "Discontinuous" helices are present in membrane proteins that actively transport ions. In the Ca(2+)-ATPase, a primary active transporter, and in the secondary transporters NhaA, LeuT(Aa), ClC H(+)/Cl(-) exchanger and Glt(Ph), the helical structure of two membrane segments is interrupted and the interjacent polypeptide chain forms an extended peptide. The discontinuous helices are integrated in the membrane either as transmembrane-spanning or hairpin-type segments. In addition, the secondary transporters have inverted internal duplication domains, which are only weakly correlated with their amino acid sequence. The symmetry comprises either parts of or the complete molecule, but always includes the discontinuous helices. The helix-peptide-helix motif is correlated with the ion translocation function. The extended peptides with their backbone atoms, the helix termini and the polar/charged amino acid residues in close vicinity provide the basis for ion recognition, binding and translocation.

  5. Rapid Measurement of Neutron Dose Rate for Transport Index

    SciTech Connect

    Morris, R.L.

    2000-02-27

    A newly available neutron dose equivalent remmeter with improved sensitivity and energy response has been put into service at Rocky Flats Environmental Technology Site (RFETS). This instrument is being used to expedite measurement of the Transport Index and as an ALARA tool to identify locations where slightly elevated neutron dose equivalent rates exist. The meter is capable of measuring dose rates as low as 0.2 {mu}Sv per hour (20 {mu}rem per hour). Tests of the angular response and energy response of the instrument are reported. Calculations of the theoretical instrument response made using MCNP{trademark} are reported for materials typical of those being shipped.

  6. Aerosol measurements of long range transport events from Asia

    NASA Astrophysics Data System (ADS)

    Hudson, P.; Murphy, D.; Cziczo, D.; Thomson, D.; Brock, C.; Wilson, C.; Weber, R.; Sullivan, A.; Orsini, D.

    2003-04-01

    The Intercontinental Transport and Chemical Transformation (ITCT) mission (Monterey, CA, spring 2002) investigated the gas phase and particulate composition of air masses along the western coast of the United States using a host of gas and aerosol instruments aboard the WP-3 aircraft. Several transport events from Asia containing enhanced number and mass concentrations of particles were intercepted during the mission. Within these different layers, a variety of particle modes and compositions were observed, including a) coarse crustal particles transported in the absence of anthropogenic trace gases, b) nucleation-mode particles associated with substantial enhancements in CO, NO_y, and organic tracers of biomass and anthropogenic emissions, and c) accumulation-mode particles found in the presence of CO and HNO_3. The properties, sources, and transport of these different aerosols will be evaluated using individual particle and bulk composition measurements and particle size distributions as determined from the PALMS (Particle Analysis by Laser Mass Spectrometry), PILS (Particle Into Liquid Sampling), and particle size spectrometers, respectively.

  7. Pair correlation microscopy reveals the role of nanoparticle shape in intracellular transport and site of drug release

    NASA Astrophysics Data System (ADS)

    Hinde, Elizabeth; Thammasiraphop, Kitiphume; Duong, Hien T. T.; Yeow, Jonathan; Karagoz, Bunyamin; Boyer, Cyrille; Gooding, J. Justin; Gaus, Katharina

    2017-01-01

    Nanoparticle size, surface charge and material composition are known to affect the uptake of nanoparticles by cells. However, whether nanoparticle shape affects transport across various barriers inside the cell remains unclear. Here we used pair correlation microscopy to show that polymeric nanoparticles with different shapes but identical surface chemistries moved across the various cellular barriers at different rates, ultimately defining the site of drug release. We measured how micelles, vesicles, rods and worms entered the cell and whether they escaped from the endosomal system and had access to the nucleus via the nuclear pore complex. Rods and worms, but not micelles and vesicles, entered the nucleus by passive diffusion. Improving nuclear access, for example with a nuclear localization signal, resulted in more doxorubicin release inside the nucleus and correlated with greater cytotoxicity. Our results therefore demonstrate that drug delivery across the major cellular barrier, the nuclear envelope, is important for doxorubicin efficiency and can be achieved with appropriately shaped nanoparticles.

  8. Cadmium in rice: Transport mechanisms, influencing factors, and minimizing measures.

    PubMed

    Li, Hui; Luo, Na; Li, Yan Wen; Cai, Quan Ying; Li, Hui Yuan; Mo, Ce Hui; Wong, Ming Hung

    2017-05-01

    Cadmium (Cd) accumulation in rice and its subsequent transfer to food chain is a major environmental issue worldwide. Understanding of Cd transport processes and its management aiming to reduce Cd uptake and accumulation in rice may help to improve rice growth and grain quality. Moreover, a thorough understanding of the factors influencing Cd accumulation will be helpful to derive efficient strategies to minimize Cd in rice. In this article, we reviewed Cd transport mechanisms in rice, the factors affecting Cd uptake (including physicochemical characters of soil and ecophysiological features of rice) and discussed efficient measures to immobilize Cd in soil and reduce Cd uptake by rice (including agronomic practices, bioremediation and molecular biology techniques). These findings will contribute to ensuring food safety, and reducing Cd risk on human beings.

  9. Electronic transport in DNA sequences: The role of correlations and inter-strand coupling

    NASA Astrophysics Data System (ADS)

    Albuquerque, E. L.; Lyra, M. L.; de Moura, F. A. B. F.

    2006-10-01

    We investigate the electronic properties in sequences of single and double-strand DNA molecules made up from the nucleotides guanine G, adenine A, cytosine C and thymine T. Using a tight-binding formulation we solve the time-dependent Schrödinger equation to compute the spread of initially localized wave packets. We also compute the localization length in finite segments by employing a Green's function recursion method. We compare the results for the genomic DNA sequence with those of two artificial sequences, namely the quasiperiodic Rudin-Shapiro one, which has long-range correlations, and a intra-strand pair correlated DNA sequence. We found that the short-range character of the intra-strand correlations suffices for a quantitative description of the one-electron wave-packet dynamics in the double-strand real DNA sequences. Further, the inter-strand coupling promotes electronic transport over a longer segment.

  10. Influence of the surface hydrophobicity on fluorescence correlation spectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Boutin, Céline; Jaffiol, Rodolphe; Plain, Jérome; Royer, Pascal

    2007-02-01

    Fluorescence correlation spectroscopy (FCS) is a powerful experimental technique used to analyze the diffusion at the single molecule level in solution. FCS is based on the temporal autocorrelation of fluorescent signal generated by dye molecules diffusing through a small confocal volume. These measurements are mostly carried out in a chambered coverglass, close to the glass substrate. In this report, we discuss how the chemical nature of the glass-water interface may interact with the free diffusion of molecules. Our results reveal a strong influence, up to a few μm from the interface, of the surface hydrophobicity degree. This influence is assessed through the relative weight of the two dimension diffusion process observed at the vicinity of the surface.

  11. Hysteresis in Transport Critical-Current Measurements of Oxide Superconductors.

    PubMed

    Goodrich, L F; Stauffer, T C

    2001-01-01

    We have investigated magnetic hysteresis in transport critical-current (I c) measurements of Ag-matrix (Bi,Pb)2Sr2Ca2Cu3O10- x (Bi-2223) and AgMg-matrix Bi2Sr2CaCu2O8+ x (Bi-2212) tapes. The effect of magnetic hysteresis on the measured critical current of high temperature superconductors is a very important consideration for every measurement procedure that involves more than one sweep of magnetic field, changes in field angle, or changes in temperature at a given field. The existence of this hysteresis is well known; however, the implications for a measurement standard or interlaboratory comparisons are often ignored and the measurements are often made in the most expedient way. A key finding is that I c at a given angle, determined by sweeping the angles in a given magnetic field, can be 17 % different from the I c determined after the angle was fixed in zero field and the magnet then ramped to the given field. Which value is correct is addressed in the context that the proper sequence of measurement conditions reflects the application conditions. The hysteresis in angle-sweep and temperature-sweep data is related to the hysteresis observed when the field is swept up and down at constant angle and temperature. The necessity of heating a specimen to near its transition temperature to reset it to an initial state between measurements at different angles and temperatures is discussed.

  12. Correlations and non-local transport in a critical-gradient fluctuation model

    NASA Astrophysics Data System (ADS)

    Nicolau, J. H.; García, L.; Carreras, B. A.

    2016-11-01

    A one-dimensional model based on critical-gradient fluctuation dynamics is used to study turbulent transport in magnetically confined plasmas. The model exhibits the selforganized criticality (SOC) dynamics. At the steady state, two regions are found: the outer one is close to critical state and the inner one remaining at the subcritical gradient. The gradient- flux relation exhibits a parabola-like profile centered in the most probable gradient following experimental studies. This is a signature of the non-locality of particle transport driven by avalanches: at the given position transport is due to gradients situated into closer but different positions. The R/S analysis, applied to the fluxes dynamics reveals memory and correlation. Different H exponents corresponding to different dynamical behavior are obtained. The flux at the edge exhibits long time correlations, which can be suppressed if the external drive or the system size is modified. On the other hand, we found that in the sub-critical region the quasiperiodicity is present in the avalanches.

  13. Accurate measurement of liquid transport through nanoscale conduits

    PubMed Central

    Alibakhshi, Mohammad Amin; Xie, Quan; Li, Yinxiao; Duan, Chuanhua

    2016-01-01

    Nanoscale liquid transport governs the behaviour of a wide range of nanofluidic systems, yet remains poorly characterized and understood due to the enormous hydraulic resistance associated with the nanoconfinement and the resulting minuscule flow rates in such systems. To overcome this problem, here we present a new measurement technique based on capillary flow and a novel hybrid nanochannel design and use it to measure water transport through single 2-D hydrophilic silica nanochannels with heights down to 7 nm. Our results show that silica nanochannels exhibit increased mass flow resistance compared to the classical hydrodynamics prediction. This difference increases with decreasing channel height and reaches 45% in the case of 7 nm nanochannels. This resistance increase is attributed to the formation of a 7-angstrom-thick stagnant hydration layer on the hydrophilic surfaces. By avoiding use of any pressure and flow sensors or any theoretical estimations the hybrid nanochannel scheme enables facile and precise flow measurement through single nanochannels, nanotubes, or nanoporous media and opens the prospect for accurate characterization of both hydrophilic and hydrophobic nanofluidic systems. PMID:27112404

  14. Correlated Protein Motion Measurements of Dihydrofolate Reductase Crystals

    NASA Astrophysics Data System (ADS)

    Xu, Mengyang; Niessen, Katherine; Pace, James; Cody, Vivian; Markelz, Andrea

    2014-03-01

    We report the first direct measurements of the long range structural vibrational modes in dihydrofolate reductase (DHFR). DHFR is a universal housekeeping enzyme that catalyzes the reduction of 7,8-dihydrofolate to 5,6,7,8-tetra-hydrofolate, with the aid of coenzyme nicotinamide adenine dinucleotide phosphate (NADPH). This crucial enzymatic role as the target for anti-cancer [methotrexate (MTX)], and other clinically useful drugs, has made DHFR a long-standing target of enzymological studies. The terahertz (THz) frequency range (5-100 cm-1), corresponds to global correlated protein motions. In our lab we have developed Crystal Anisotropy Terahertz Microscopy (CATM), which directly measures these large scale intra-molecular protein vibrations, by removing the relaxational background of the solvent and residue side chain librational motions. We demonstrate narrowband features in the anisotropic absorbance for mouse DHFR with the ligand binding of NADPH and MTX single crystals as well as Escherichia coli DHFR with the ligand binding of NADPH and MTX single crystals. This work is supported by NSF grant MRI2 grant DBI2959989.

  15. The Effect of Correlated Energetic Disorder on Charge Transport in Organic Semiconductors

    NASA Astrophysics Data System (ADS)

    Allen, Jonathan; Röding, Sebastian; Cherqui, Charles; Dunlap, David

    2012-10-01

    In their 1995 paper describing a Monte Carlo simulation for dissociation of an electron-hole pair in the presence of Gaussian energetic disorder, Albrect and Bäassler reported a surprising result. They found that increasing the width σ of the energetic disorder increases the quantum yield φ. They attributed this behavior to the tendency for energy fluctuations to compete against the Coulombic pair attraction, driving the electron-hole pair apart at short distances where, without disorder, recombination would be almost certain. We have expanded upon this notion, and introduced spatial correlation into the energetic disorder. By correlating the energetic disorder, we have demonstrated even larger quantum yields in simulation, attributable to the tendency of correlation to drive the charges further apart spatially than merely random disorder. Our results generally support the findings of Greenham et al. in that a larger correlation radius gives a larger quantum yield. In addition to larger quantum yield, we believe that correlated disorder could be used to create pathways for charge transport within a material, allowing the charge carrier behavior to be tuned.

  16. Field measurements of tracer gas transport by barometric pumping

    SciTech Connect

    Lagus, P.L.; McKinnis, W.B.; Hearst, J.R.; Burkhard, N.R.; Smith, C.F.

    1994-07-28

    Vertical gas motions induced by barometric pressure variations can carry radioactive gases out of the rubblized region produced by an underground nuclear explosion, through overburden rock, into the atmosphere. To better quantify transit time and amount of transport, field experiments were conducted at two sites on Pahute Mesa, Kapelli and Tierra, where radioactive gases had been earlier detected in surface cracks. At each site, two tracer gases were injected into the rubblized chimney 300-400 m beneath the surface and their arrival was monitored by concentration measurements in gas samples extracted from shallow collection holes. The first ``active`` tracer was driven by a large quantity of injected air; the second ``passive`` tracer was introduced with minimal gas drive to observe the natural transport by barometric pumping. Kapelli was injected in the fall of 1990, followed by Tierra in the fall of 1991. Data was collected at both sites through the summer of 1993. At both sites, no surface arrival of tracer was observed during the active phase of the experiment despite the injection of several million cubic feet of air, suggesting that cavity pressurization is likely to induce horizontal transport along high permeability layers rather than vertical transport to the surface. In contrast, the vertical pressure gradients associated with barometric pumping brought both tracers to the surface in comparable concentrations within three months at Kapelli, whereas 15 months elapsed before surface arrival at Tierra. At Kapelli, a quasisteady pumping regime was established, with tracer concentrations in effluent gases 1000 times smaller than concentrations thought to exist in the chimney. Tracer concentrations observed at Tierra were typically an order of magnitude smaller. Comparisons with theoretical calculations suggest that the gases are traveling through {approximately}1 millimeter vertical fractures spaced 2 to 4 meters apart. 6 refs., 18 figs., 3 tabs.

  17. Effects of valence, geometry and electronic correlations on transport in transition metal benzene sandwich molecules

    NASA Astrophysics Data System (ADS)

    Karolak, M.; Jacob, D.

    2016-11-01

    We study the impact of the valence and the geometry on the electronic structure and transport properties of different transition metal-benzene sandwich molecules bridging the tips of a Cu nanocontact. Our density-functional calculations show that the electronic transport properties of the molecules depend strongly on the molecular geometry which can be controlled by the nanocontact tips. Depending on the valence of the transition metal center certain molecules can be tuned in and out of half-metallic behaviour facilitating potential spintronics applications. We also discuss our results in the framework of an Anderson impurity model, indicating cases where the inclusion of local correlations alters the ground state qualitatively. For Co and V centered molecules we find indications of an orbital Kondo effect.

  18. Correlating Humidity-Dependent Ionically Conductive Surface Area with Transport Phenomena in Proton-Exchange Membranes

    SciTech Connect

    He, Qinggang; Kusoglu, Ahmet; Lucas, Ivan T.; Clark, Kyle; Weber, Adam Z.; Kostecki, Robert

    2011-08-01

    The objective of this effort was to correlate the local surface ionic conductance of a Nafion? 212 proton-exchange membrane with its bulk and interfacial transport properties as a function of water content. Both macroscopic and microscopic proton conductivities were investigated at different relative humidity levels, using electrochemical impedance spectroscopy and current-sensing atomic force microscopy (CSAFM). We were able to identify small ion-conducting domains that grew with humidity at the surface of the membrane. Numerical analysis of the surface ionic conductance images recorded at various relative humidity levels helped determine the fractional area of ion-conducting active sites. A simple square-root relationship between the fractional conducting area and observed interfacial mass-transport resistance was established. Furthermore, the relationship between the bulk ionic conductivity and surface ionic conductance pattern of the Nafion? membrane was examined.

  19. Effects of valence, geometry and electronic correlations on transport in transition metal benzene sandwich molecules.

    PubMed

    Karolak, M; Jacob, D

    2016-11-09

    We study the impact of the valence and the geometry on the electronic structure and transport properties of different transition metal-benzene sandwich molecules bridging the tips of a Cu nanocontact. Our density-functional calculations show that the electronic transport properties of the molecules depend strongly on the molecular geometry which can be controlled by the nanocontact tips. Depending on the valence of the transition metal center certain molecules can be tuned in and out of half-metallic behaviour facilitating potential spintronics applications. We also discuss our results in the framework of an Anderson impurity model, indicating cases where the inclusion of local correlations alters the ground state qualitatively. For Co and V centered molecules we find indications of an orbital Kondo effect.

  20. Normalized Movement Quality Measures for Therapeutic Robots Strongly Correlate With Clinical Motor Impairment Measures

    PubMed Central

    Celik, Ozkan; O’Malley, Marcia K.; Boake, Corwin; Levin, Harvey S.; Yozbatiran, Nuray; Reistetter, Timothy A.

    2016-01-01

    In this paper, we analyze the correlations between four clinical measures (Fugl–Meyer upper extremity scale, Motor Activity Log, Action Research Arm Test, and Jebsen-Taylor Hand Function Test) and four robotic measures (smoothness of movement, trajectory error, average number of target hits per minute, and mean tangential speed), used to assess motor recovery. Data were gathered as part of a hybrid robotic and traditional upper extremity rehabilitation program for nine stroke patients. Smoothness of movement and trajectory error, temporally and spatially normalized measures of movement quality defined for point-to-point movements, were found to have significant moderate to strong correlations with all four of the clinical measures. The strong correlations suggest that smoothness of movement and trajectory error may be used to compare outcomes of different rehabilitation protocols and devices effectively, provide improved resolution for tracking patient progress compared to only pre-and post-treatment measurements, enable accurate adaptation of therapy based on patient progress, and deliver immediate and useful feedback to the patient and therapist. PMID:20388607

  1. Measurement of the Critical Deposition Velocity in Slurry Transport through a Horizontal Pipe

    SciTech Connect

    Erian, Fadel F.; Furfari, Daniel J.; Kellogg, Michael I.; Park, Walter R.

    2001-03-01

    Critical Deposition Velocity (CDV) is an important design and operational parameter in slurry transport. Almost all existing correlations that are used to predict this parameter have been obtained experimentally from slurry transport tests featuring single solid species in the slurry mixture. No correlations have been obtained to describe this parameter when the slurry mixture contains more than one solid species having a wide range of specific gravities, particle size distributions, and volume concentrations within the overall slurry mixture. There are no physical or empirical bases that can justify the extrapolation or modification of the existing single species correlations to include all these effects. New experiments must be carried out to obtain new correlations that would be suited for these types of slurries, and that would clarify the mechanics of solids deposition as a function of the properties of the various solid species. Our goal in this paper is to describe a robust experimental technique for the accurate determination of the critical deposition velocity associated with the transport of slurries in horizontal or slightly inclined pipes. Because of the relative difficulty encountered during the precise determination of this useful operational parameter, it has been the practice to connect it with some transitional behavior of more easily measurable flow parameters such as the pressure drop along the slurry pipeline. In doing so, the critical deposition velocity loses its unique and precise definition due to the multitude of factors that influence such transitional behaviors. Here, data has been obtained for single species slurries made up of washed garnet and water and flowing through a 1- inch clear pipe. The selected garnet had a narrow particle size distribution with a mean diameter of 100 mm, approximately. The critical deposition velocity was measured for garnet/water slurries of 10, 20, and 30 percent solids concentration by volume.

  2. Two-particle correlation measurements in p+Nb reactions √sNN = 3.18 GeV

    NASA Astrophysics Data System (ADS)

    Arnold, Oliver

    2016-01-01

    We present a two-particle correlation measurement of proton- and of Λp-pairs, measured with the HADES detector in p+Nb reactions at a kinetic beam energy of 3.5 GeV. The proton-proton correlation function is used to extract the size of the region of homogeneity. Using this information together with a UrQMD transport simulation opens the possibility to study the interaction of Λp pairs in terms of spin average scattering length and effective range.

  3. Fluorescence measurement of chloride transport in monolayer cultured cells. Mechanisms of chloride transport in fibroblasts.

    PubMed

    Chao, A C; Dix, J A; Sellers, M C; Verkman, A S

    1989-12-01

    The methodology has been developed to measure Cl activity and transport in cultured cells grown on a monolayer using the entrapped Cl-sensitive fluorophore 6-methoxy-N-[3-sulfopropyl] quinolinium (SPQ). The method was applied to a renal epithelial cell line, LLC-PKI, and a nonepithelial cell line, Swiss 3T3 fibroblasts. SPQ was nontoxic to cells when present for greater than h in the culture media. To load with SPQ (5 mM), cells were made transiently permeable by exposure to hypotonic buffer (150 mOsm, 4 min). Intracellular fluorescence was monitored continuously by epifluorescence microscopy using low illumination intensity at 360 +/- 5 nm excitation wavelength and photomultiplier detection at greater than 410 nm. Over 60 min at 37 degrees C, there was no photobleaching and less than 10% leakage of SPQ out of cells; intracellular SPQ fluorescence was uniform. SPQ fluorescence was calibrated against intracellular [Cl] using high K solutions containing the ionophores nigericin and tributyltin. The Stern-Volmer constant (Kq) for quenching of intracellular SPQ by Cl was 13 M-1 for fibroblasts and LLC-PKl cells. In the absence of Cl, SPQ lifetime was 26 ns in aqueous solution and 3.7 +/- 0.6 ns in cells, showing that the lower Kq in cells than in free solution (Kq = 118 M-1) was due to SPQ quenching by intracellular anions. To examine Cl transport mechanisms, the time course of intracellular [Cl] was measured in response to rapid Cl addition and removal in the presence of ion or pH gradients. In fibroblasts, three distinct Cl transporting systems were identified: a stilbeneinhibitable Cl/HCO3 exchanger, a furosemide-sensitive Na/K/2Cl cotransporter, and a Ca-regulated Cl conductance. These results establish a direct optical method to measure intracellular [Cl] continuously in cultured cells.

  4. Direct measurements of transport properties are essential for site characterization

    SciTech Connect

    Wright, J.; Conca, J.L.

    1994-08-01

    Direct measurements of transport parameters on subsurface sediments using, the UFA method provided detailed hydrostratigraphic mapping, and subsurface flux distributions at a mixed-waste disposal site at Hanford. Seven hundred unsaturated conductivity measurements on fifty samples were obtained in only six months total of UFA run time. These data are used to provide realistic information to conceptual models, predictive models and restoration strategies. The UFA instrument consists of an ultracentrifuge with a constant, ultralow flow pump that provides fluid to the sample surface through a rotating seal assembly and microdispersal system. Effluent from the sample is collected in a transparent, volumetrically-calibrated chamber at the bottom of the sample assembly. Using a strobe light, an observer can check the chamber while the sample is being centrifuged. Materials can be run in the UFA as recomposited samples or in situ samples can be subcored directly into the sample UFA chamber.

  5. Skin Friction and Transition Location Measurement on Supersonic Transport Models

    NASA Technical Reports Server (NTRS)

    Kennelly, Robert A., Jr.; Goodsell, Aga M.; Olsen, Lawrence E. (Technical Monitor)

    2000-01-01

    Flow visualization techniques were used to obtain both qualitative and quantitative skin friction and transition location data in wind tunnel tests performed on two supersonic transport models at Mach 2.40. Oil-film interferometry was useful for verifying boundary layer transition, but careful monitoring of model surface temperatures and systematic examination of the effects of tunnel start-up and shutdown transients will be required to achieve high levels of accuracy for skin friction measurements. A more common technique, use of a subliming solid to reveal transition location, was employed to correct drag measurements to a standard condition of all-turbulent flow on the wing. These corrected data were then analyzed to determine the additional correction required to account for the effect of the boundary layer trip devices.

  6. Calorimetric measurement of water transport and intracellular ice formation during freezing in cell suspensions.

    PubMed

    Mori, Shoji; Choi, Jeunghwan; Devireddy, Ram V; Bischof, John C

    2012-12-01

    The current study presents a new and novel analysis of heat release signatures measured by a differential scanning calorimeter (DSC) associated with water transport (WT), intracellular ice formation (IIF) and extracellular ice formation (EIF). Correlative cryomicroscopy experiments were also performed to validate the DSC data. The DSC and cryomicroscopy experiments were performed on human dermal fibroblast cells (HDFs) at various cytocrit values (0-0.8) at various cooling rates (0.5-250 °C/min). A comparison of the cryomicroscopy experiments with the DSC analysis show reasonable agreement in the water transport (cellular dehydration) and IIF characteristics between both the techniques with the caveat that IIF measured by DSC lagged that measured by cryomicroscopy. This was ascribed to differences in the techniques (i.e. cell vs. bulk measurement) and the possibility that not all IIF is associated with visual darkening. High and low rates of 0.5 °C/min and 250 °C/min were chosen as HDFs did not exhibit significant IIF or WT at each of these extremes respectively. Analysis of post-thaw viability data suggested that 10 °C/min was the presumptive optimal cooling rate for HDFs and was independent of the cytocrit value. The ratio of measured heat values associated with IIF (q(IIF)) to the total heat released from both IIF and water transport or from the total cell water content in the sample (q(CW)) was also found to increase as the cooling rate was increased from 10 to 250 °C/min and was independent of the sample cytocrit value. Taken together, these observations suggest that the proposed analysis is capable of deconvolving water transport and IIF data from the measured DSC latent heat thermograms in cell suspensions during freezing.

  7. Adsorbate-induced quantum Hall system probed by scanning tunneling spectroscopy combined with transport measurements

    SciTech Connect

    Masutomi, Ryuichi Okamoto, Tohru

    2015-06-22

    An adsorbate-induced quantum Hall system at the cleaved InSb surfaces is investigated in magnetic fields up to 14 T using low-temperature scanning tunneling microscopy and spectroscopy combined with transport measurements. We show that an enhanced Zeeman splitting in the Shubnikov-de Haas oscillations is explained by an exchange enhancement of spin splitting and potential disorder, both of which are obtained from the spatially averaged density of states (DOS). Moreover, the Altshuler–Aronov correlation gap is observed in the spatially averaged DOS at 0 T.

  8. Similarity analysis between chromosomes of Homo sapiens and monkeys with correlation coefficient, rank correlation coefficient and cosine similarity measures.

    PubMed

    Someswara Rao, Chinta; Viswanadha Raju, S

    2016-03-01

    In this paper, we consider correlation coefficient, rank correlation coefficient and cosine similarity measures for evaluating similarity between Homo sapiens and monkeys. We used DNA chromosomes of genome wide genes to determine the correlation between the chromosomal content and evolutionary relationship. The similarity among the H. sapiens and monkeys is measured for a total of 210 chromosomes related to 10 species. The similarity measures of these different species show the relationship between the H. sapiens and monkey. This similarity will be helpful at theft identification, maternity identification, disease identification, etc.

  9. Measuring charge transport from transient photovoltage rise times. A new tool to investigate electron transport in nanoparticle films.

    PubMed

    O'Regan, Brian C; Bakker, Klaas; Kroeze, Jessica; Smit, Herman; Sommeling, Paul; Durrant, James R

    2006-08-31

    Charge transport rate at open-circuit potential (V(oc)) is proposed as a new characterization method for dye-sensitized (DS) and other nanostructured solar cells. At V(oc), charge density is flat and measurable, which simplifies quantitative comparison of transport and charge density. Transport measured at V(oc) also allows meaningful comparison of charge transport rates between different treatments, temperatures, and types of cells. However, in typical DS cells, charge transport rates at V(oc) often cannot be measured by photocurrent transients or modulation techniques due to RC limitations and/or recombination losses. To circumvent this limitation, we show that charge transport at V(oc) can be determined directly from the transient photovoltage rise time using a simple, zero-free-parameter model. This method is not sensitive to RC limitation or recombination losses. In trap limited devices, such as DS cells, the comparison of transport rates between different devices or conditions is only valid when the Fermi level in the limiting conductor is at the same distance from the band edge. We show how to perform such comparisons, correcting for conduction band shifts using the density of states (DOS) distribution determined from the same photovoltage transients. Last we show that the relationship between measured transport rate and measured charge density is consistent with the trap limited transport model.

  10. Strain-Controlled Transport Mechanism in Strongly Correlated LaNiO3

    NASA Astrophysics Data System (ADS)

    Misra, D.; Kundu, T. K.

    2017-01-01

    A density functional theory + Hubbard U (DFT + U) method is employed to investigate the effect of strain on the electronic and transport properties of the correlated metal LaNiO3. LaNiO3 without strain is characterized by a low temperature Fermi liquid behaviour of resistivity, a negative Seebeck coefficient and a positive Hall coefficient. Density of states, resistivity, thermopower and Hall coefficient obtained within the DFT + U approach reveal that LaNiO3 under both compressive and tensile strain is more metallic compared to the unstrained system. However, LaNiO3 under tensile strain is found to be more strongly correlated than that under compressive strain. Electron localization function calculation shows that there is a substantial increase in the covalent part of the chemical bonding, which corroborates an increase in the resistivity for LaNiO3 under tensile strain. Our first-principle-based calculation clearly demonstrates that the transport properties of LaNiO3 can be tuned by applying suitable strain.

  11. Memory, bias, and correlations in bidirectional transport of molecular-motor-driven cargoes

    NASA Astrophysics Data System (ADS)

    Bhat, Deepak; Gopalakrishnan, Manoj

    2013-10-01

    Molecular motors are specialized proteins that perform active, directed transport of cellular cargoes on cytoskeletal filaments. In many cases, cargo motion powered by motor proteins is found to be bidirectional, and may be viewed as a biased random walk with fast unidirectional runs interspersed with slow tug-of-war states. The statistical properties of this walk are not known in detail, and here, we study memory and bias, as well as directional correlations between successive runs in bidirectional transport. We show, based on a study of the direction-reversal probabilities of the cargo using a purely stochastic (tug-of-war) model, that bidirectional motion of cellular cargoes is, in general, a correlated random walk. In particular, while the motion of a cargo driven by two oppositely pulling motors is a Markovian random walk, memory of direction appears when multiple motors haul the cargo in one or both directions. In the latter case, the Markovian nature of the underlying single-motor processes is hidden by internal transitions between degenerate run and pause states of the cargo. Interestingly, memory is found to be a nonmonotonic function of the number of motors. Stochastic numerical simulations of the tug-of-war model support our mathematical results and extend them to biologically relevant situations.

  12. Dynamic defect correlations dominate activated electronic transport in SrTiO3

    DOE PAGES

    Snijders, Paul C.; Sen, Cengiz; McConnell, Michael P.; ...

    2016-07-22

    Strontium titanate (SrTiO3, STO) is a critically important material for the study of emergent electronic phases in complex oxides, as well as for the development of applications based on their heterostructures. Despite the large body of knowledge on STO, there are still many uncertainties regarding the role of defects in the properties of STO, including their influence on ferroelectricity in bulk STO and ferromagnetism in STO-based heterostructures. In this paper, we present a detailed analysis of the decay of persistent photoconductivity in STO single crystals with defect concentrations that are relatively low but significantly affect their electronic properties. The resultsmore » show that photo-activated electron transport cannot be described by a superposition of the properties due to independent point defects as current models suggest but is, instead, governed by defect complexes that interact through dynamic correlations. In conclusion, these results emphasize the importance of defect correlations for activated electronic transport properties of semiconducting and insulating perovskite oxides.« less

  13. Dynamic defect correlations dominate activated electronic transport in SrTiO3

    SciTech Connect

    Snijders, Paul C.; Sen, Cengiz; McConnell, Michael P.; Ma, Ying-Zhong; May, Andrew F.; Herklotz, Andreas; Wong, Anthony T.; Ward, Thomas Zac

    2016-07-22

    Strontium titanate (SrTiO3, STO) is a critically important material for the study of emergent electronic phases in complex oxides, as well as for the development of applications based on their heterostructures. Despite the large body of knowledge on STO, there are still many uncertainties regarding the role of defects in the properties of STO, including their influence on ferroelectricity in bulk STO and ferromagnetism in STO-based heterostructures. In this paper, we present a detailed analysis of the decay of persistent photoconductivity in STO single crystals with defect concentrations that are relatively low but significantly affect their electronic properties. The results show that photo-activated electron transport cannot be described by a superposition of the properties due to independent point defects as current models suggest but is, instead, governed by defect complexes that interact through dynamic correlations. In conclusion, these results emphasize the importance of defect correlations for activated electronic transport properties of semiconducting and insulating perovskite oxides.

  14. Quantitative Limits on Small Molecule Transport via the Electropermeome - Measuring and Modeling Single Nanosecond Perturbations.

    PubMed

    Sözer, Esin B; Levine, Zachary A; Vernier, P Thomas

    2017-12-01

    The detailed molecular mechanisms underlying the permeabilization of cell membranes by pulsed electric fields (electroporation) remain obscure despite decades of investigative effort. To advance beyond descriptive schematics to the development of robust, predictive models, empirical parameters in existing models must be replaced with physics- and biology-based terms anchored in experimental observations. We report here absolute values for the uptake of YO-PRO-1, a small-molecule fluorescent indicator of membrane integrity, into cells after a single electric pulse lasting only 6 ns. We correlate these measured values, based on fluorescence microphotometry of hundreds of individual cells, with a diffusion-based geometric analysis of pore-mediated transport and with molecular simulations of transport across electropores in a phospholipid bilayer. The results challenge the "drift and diffusion through a pore" model that dominates conventional explanatory schemes for the electroporative transfer of small molecules into cells and point to the necessity for a more complex model.

  15. Solution processable semiconductor thin films: Correlation between morphological, structural, optical and charge transport properties

    NASA Astrophysics Data System (ADS)

    Isik, Dilek

    This Ph.D. thesis is a result of multidisciplinary research bringing together fundamental concepts in thin film engineering, materials science, materials processing and characterization, electrochemistry, microfabrication, and device physics. Experiments were conducted by tackling scientific problems in the field of thin films and interfaces, with the aim to correlate the morphology, crystalline structure, electronic structure of thin films with the functional properties of the films and the performances of electronic devices based thereon. Furthermore, novel strategies based on interfacial phenomena at electrolyte/thin film interfaces were explored and exploited to control the electrical conductivity of the thin films. Three main chemical systems were the object of the studies performed during this Ph.D., two types of organic semiconductors (azomethine-based oligomers and polymers and soluble pentacene derivatives) and one metal oxide semiconductor (tungsten trioxide, WO3). To explore the morphological properties of the thin films, atomic force microscopy was employed. The morphological properties were further investigated by hyperspectral fluorescence microscopy and tentatively correlated to the charge transport properties of the films. X-ray diffraction (Grazing incidence XRD, GIXRD) was used to investigate the crystallinity of the film and the effect of the heat treatment on such crystallinity, as well as to understand the molecular arrangement of the organic molecules in the thin film. The charge transport properties of the films were evaluated in thin film transistor configuration. For electrolyte gated thin film transistors, time dependent transient measurements were conducted, in parallel to more conventional transistor characterizations, to explore the specific effects played on the gating by the anion and cation constituting the electrolyte. The capacitances of the electrical double layers at the electrolyte/WO3 interface were obtained from

  16. Regional analysis techniques for integrating experimental and numerical measurements of transport properties of reservoir rocks

    NASA Astrophysics Data System (ADS)

    Alizadeh, S. M.; Latham, S.; Middleton, J.; Limaye, A.; Senden, T. J.; Arns, C. H.

    2017-02-01

    Assessing the mechanisms of micro-structural change and their effect on transport properties using digital core analysis requires balancing field of view and resolution. This typically leads to the compromise of working with relatively small samples, where boundary effects can be substantial. A direct comparison with experiment, as e.g. desirable to eliminate unknown parameters and integrate numerical and physical experiments, needs to consider these boundary effects. Here we develop a workflow to define measuring windows within a sample where these boundary effects are minimised allowing the integration of physical and numerical experiment. We consider in particular sleeve leakage and use a radial partitioning of the solutions to various transport equations to derive relevant regional measures, which may be used for the development of cross-correlations between physical properties. Samples of Bentheimer and Castlegate sandstone as well as Mt. Gambier limestone and a sucrosic dolomite are considered. The sample plugs are encased in rubber sleeves and micro-CT images acquired at ambient conditions. Using these high-resolution images we calculate transport properties, namely permeability and electrical conductivity, and analyse the resulting field solutions with regard to flux across different regions of interest. The latter are selected on the basis of distance to the sample sleeve inner surface. Clear bypassing at the sleeve-sample interface in terms of elevated fluxes is observed for all samples, although to different extent. We consider different sleeve boundary conditions to define a measuring window minimising these effects, use the procedure to compare flux averages defined over these measuring windows with conventional choices of simulation domains, and compare resulting physical cross-correlations.

  17. Turbulent transport measurements in a model of GT-combustor

    NASA Astrophysics Data System (ADS)

    Chikishev, L. M.; Gobyzov, O. A.; Sharaborin, D. K.; Lobasov, A. S.; Dulin, V. M.; Markovich, D. M.; Tsatiashvili, V. V.

    2016-10-01

    To reduce NOx formation modern industrial power gas-turbines utilizes lean premixed combustion of natural gas. The uniform distribution of local fuel/air ratio in the combustion chamber plays one of the key roles in the field of lean combustion to prevent thermo-acoustic pulsations. Present paper reports on simultaneous Particle Image Velocimetry and acetone Planar Laser Induced Fluorescence measurements in a cold model of GT-combustor to investigate mixing processes which are relevant to the organization of lean premixed combustion. Velocity and passive admixture pulsations correlations were measured to verify gradient closer model, which is often used in Reynolds-Averaged Navier-Stokes (RANS) simulation of turbulent mixing.

  18. Mass transport measurements and modeling for chemical vapor infiltration

    SciTech Connect

    Starr, T.L.; Chiang, D.Y.; Fiadzo, O.G.; Hablutzel, N.

    1997-12-01

    This project involves experimental and modeling investigation of densification behavior and mass transport in fiber preforms and partially densified composites, and application of these results to chemical vapor infiltration (CVI) process modeling. This supports work on-going at ORNL in process development for fabrication of ceramic matrix composite (CMC) tubes. Tube-shaped composite preforms are fabricated at ORNL with Nextel{trademark} 312 fiber (3M Corporation, St. Paul, MN) by placing and compressing several layers of braided sleeve on a tubular mandrel. In terms of fiber architecture these preforms are significantly different than those made previously with Nicalon{trademark} fiber (Nippon Carbon Corp., Tokyo, Japan) square weave cloth. The authors have made microstructure and permeability measurements on several of these preforms and a few partially densified composites so as to better understand their densification behavior during CVI.

  19. Transport measurements on monolayer and few-layer WSe2

    NASA Astrophysics Data System (ADS)

    Palomaki, Tauno; Zhao, Wenjin; Finney, Joe; Fei, Zaiyao; Nguyen, Paul; McKay, Frank; Cobden, David

    The behavior of the electrical contacts often dominates transport measurements in mono and few-layer transition metal dichalcogenide (TMD) devices. Creating good contacts for some TMDs is particularly challenging since the fabrication procedure should prevent the TMD from oxidizing or chemically interacting with the contacts. In this talk, we discuss our progress on creating mono and few-layer WSe2 devices with both good electrical contacts and minimal effects from the substrate, polymer contamination, oxidation and other chemistry. For example, we have developed a technique for encapsulating metallic contacts and WSe2 flakes together in hexagonal boron nitride with multiple gates to separate and control the contributions from the channel and the Schottky barriers at the contacts. Research supported in part by Samsung GRO grant US 040814

  20. Tomato root growth, gravitropism, and lateral development: correlation with auxin transport

    NASA Technical Reports Server (NTRS)

    Muday, G. K.; Haworth, P.

    1994-01-01

    Tomato (Lycopersicon esculentum, Mill.) roots were analyzed during growth on agar plates. Growth of these roots was inhibited by the auxin transport inhibitors naphthylphthalamic acid (NPA) and semicarbazone derivative I (SCB-1). The effect of auxin transport inhibitors on root gravitropism was analyzed by measurement of the angle of gravitropic curvature after the roots were reoriented 90 degrees from the vertical. NPA and SCB-1 abolished both the response of these roots to gravity and the formation of lateral roots, with SCB-1 being the more effective at inhibition. Auxins also inhibited root growth. Both auxins tested has a slight effect on the gravity response, but this effect is probably indirect, since auxins reduced the growth rate. Auxins also stimulated lateral root growth at concentration where primary root growth was inhibited. When roots were treated with both IAA and NPA simultaneously, a cumulative inhibition of root growth was found. When both compounds were applied together, analysis of gravitropism and lateral root formation indicated that the dominant effect was exerted by auxin transport inhibitors. Together, these data suggest a model for the role of auxin transport in controlling both primary and lateral root growth.

  1. Correlating wine quality indicators to chemical and sensory measurements.

    PubMed

    Hopfer, Helene; Nelson, Jenny; Ebeler, Susan E; Heymann, Hildegarde

    2015-05-12

    Twenty-seven commercial Californian Cabernet Sauvignon wines of different quality categories were analyzed with sensory and chemical methods. Correlations between five quality proxies-points awarded during a wine competition, wine expert scores, retail price, vintage, and wine region-were correlated to sensory attributes, volatile compounds, and elemental composition. Wine quality is a multi-faceted construct, incorporating many different layers. Depending on the quality proxy studied, significant correlations between quality and attributes, volatiles and elements were found, some of them previously reported in the literature.

  2. Sediment transport time measured with U-Series isotopes: Resultsfrom ODP North Atlantic Drill Site 984

    SciTech Connect

    DePaolo, Donald J.; Maher, Kate; Christensen, John N.; McManus,Jerry

    2006-06-05

    High precision uranium isotope measurements of marineclastic sediments are used to measure the transport and storage time ofsediment from source to site of deposition. The approach is demonstratedon fine-grained, late Pleistocene deep-sea sediments from Ocean DrillingProgram Site 984A on the Bjorn Drift in the North Atlantic. The sedimentsare siliciclastic with up to 30 percent carbonate, and dated by sigma 18Oof benthic foraminifera. Nd and Sr isotopes indicate that provenance hasoscillated between a proximal source during the last three interglacialperiods volcanic rocks from Iceland and a distal continental sourceduring glacial periods. An unexpected finding is that the 234U/238Uratios of the silicate portion of the sediment, isolated by leaching withhydrochloric acid, are significantly less than the secular equilibriumvalue and show large and systematic variations that are correlated withglacial cycles and sediment provenance. The 234U depletions are inferredto be due to alpha-recoil loss of234Th, and are used to calculate"comminution ages" of the sediment -- the time elapsed between thegeneration of the small (<_ 50 mu-m) sediment grains in the sourceareas by comminution of bedrock, and the time of deposition on theseafloor. Transport times, the difference between comminution ages anddepositional ages, vary from less than 10 ky to about 300 to 400 ky forthe Site 984A sediments. Long transport times may reflect prior storagein soils, on continental shelves, or elsewhere on the seafloor. Transporttime may also be a measure of bottom current strength. During the mostrecent interglacial periods the detritus from distal continental sourcesis diluted with sediment from Iceland that is rapidly transported to thesite of deposition. The comminution age approach could be used to dateQuaternary non-marine sediments, soils, and atmospheric dust, and may beenhanced by concomitant measurement of 226Ra/230Th, 230Th/234U, andcosmogenic nuclides.

  3. Transport of bromide measured by soil coring, suction plates, and lysimeters under transient flow conditions.

    NASA Astrophysics Data System (ADS)

    Kasteel, R.; Pütz, Th.; Vereecken, H.

    2003-04-01

    Lysimeter studies are one step within the registration procedure of pesticides. Flow and transport in these free-draining lysimeters do not reflect the field situation mainly because of the occurence of a zone of local saturation at the lower boundary (seepage face). The objective of this study is to evaluate the impact of flow and transport behaviour of bromide detected with different measuring devices (lysimeters, suction plates, and soil coring) by comparing experimental results with numerical simulations in heterogeneous flow domains. We applied bromide as a small pulse to the bare soil surface (Orthic Luvisol) of the three devices and the displacement of bromide was regurlarly sampled for three years under natural wheather conditions. Based on the mean breakthrough curves we observe experimentally that lysimeters have a lower effective pore-water velocity and exhibit more solute spreading resulting in a larger dispersivity than the suction plates. This can be ascribed to the artefact of the lower boundary. We performed numerical transport simulations in 2-D heterogeneous flow fields (scaling approach) choosing appropriate boundary conditions for the various devices. The simulations allow to follow the temporal evolution of flow and transport processes in the various devices and to gain additional process understanding. We conclude that the model is essentially capable to reproduce the main experimental findings only if we account for the spatial correlation structure of the hydraulic properties, i.e. soil heterogeneity.

  4. Aerosol characterization and transport pathway using ground-based measurement and space borne remote sensing

    NASA Astrophysics Data System (ADS)

    Boyouk, Neda; Léon, Jean-François; Delbarre, Hervé

    2008-10-01

    Using two years measurements of aerosol extinction coefficient retrieval from CALIPSO as a joint NASA-CNES satellite mission along with ground-based measurements of particle mass concentration (PM2.5), we assess particulate matter air quality over different urban and periurban areas in France. In order to understanding the influence of the long range transport onto the local aerosol load we have focused on analysing of pollution event in Lille - urban area and Dunkerque - industrial area. We compared ground- based measurements with CALIPSO measurements. The CALIPSO level 2 aerosol records are more useful because the extinction coefficient is available. We use the extinction coefficient profiles which are provided by CALIPSO to depict the vertical structure of the aerosol properties. The combination of ground- based measurements of PM2.5, aerosol optical thickness (AOT's) obtained by Aeronet network data and CALIOP data enhances the possibilities of studying transport pathway of aerosol in the atmosphere and aerosol optical properties (aerosol extinction coefficient, aerosol optical depth, atmosphere transparency). The linear relationship between AOT _CALIPSO and AOT _ Aeronet network shows a slop of 0.4 in north of France. Moreover, we observed the good relationship between PM2.5 and AOT by CALIPSO profiles with a slope of 57.59 and correlation coefficient of 0.75 over France.

  5. Psychosocial and Environmental Correlates of Walking, Cycling, Public Transport and Passive Transport to Various Destinations in Flemish Older Adolescents

    PubMed Central

    Verhoeven, Hannah; Simons, Dorien; Van Dyck, Delfien; Van Cauwenberg, Jelle; Clarys, Peter; De Bourdeaudhuij, Ilse; de Geus, Bas; Vandelanotte, Corneel; Deforche, Benedicte

    2016-01-01

    Background Active transport is a convenient way to incorporate physical activity in adolescents’ daily life. The present study aimed to investigate which psychosocial and environmental factors are associated with walking, cycling, public transport (train, tram, bus, metro) and passive transport (car, motorcycle, moped) over short distances (maximum eight kilometres) among older adolescents (17–18 years), to school and to other destinations. Methods 562 older adolescents completed an online questionnaire assessing socio-demographic variables, psychosocial variables, environmental variables and transport to school/other destinations. Zero-inflated negative binomial regression models were performed. Results More social modelling and a higher residential density were positively associated with walking to school and walking to other destinations, respectively. Regarding cycling, higher self-efficacy and a higher social norm were positively associated with cycling to school and to other destinations. Regarding public transport, a higher social norm, more social modelling of siblings and/or friends, more social support and a higher land use mix access were positively related to public transport to school and to other destinations, whereas a greater distance to school only related positively to public transport to school. Regarding passive transport, more social support and more perceived benefits were positively associated with passive transport to school and to other destinations. Perceiving less walking and cycling facilities at school was positively related to passive transport to school only, and more social modelling was positively related to passive transport to other destinations. Conclusions Overall, psychosocial variables seemed to be more important than environmental variables across the four transport modes. Social norm, social modelling and social support were the most consistent psychosocial factors which indicates that it is important to target both

  6. Effects of spin–orbit coupling and many-body correlations in STM transport through copper phthalocyanine

    PubMed Central

    Donarini, Andrea; Grifoni, Milena

    2015-01-01

    Summary The interplay of exchange correlations and spin–orbit interaction (SOI) on the many-body spectrum of a copper phtalocyanine (CuPc) molecule and their signatures in transport are investigated. We first derive a minimal model Hamiltonian in a basis of frontier orbitals that is able to reproduce experimentally observed singlet–triplet splittings. In a second step SOI effects are included perturbatively. Major consequences of the SOI are the splitting of former degenerate levels and a magnetic anisotropy, which can be captured by an effective low-energy spin Hamiltonian. We show that scanning tunneling microscopy-based magnetoconductance measurements can yield clear signatures of both these SOI-induced effects. PMID:26885457

  7. Effects of spin-orbit coupling and many-body correlations in STM transport through copper phthalocyanine.

    PubMed

    Siegert, Benjamin; Donarini, Andrea; Grifoni, Milena

    2015-01-01

    The interplay of exchange correlations and spin-orbit interaction (SOI) on the many-body spectrum of a copper phtalocyanine (CuPc) molecule and their signatures in transport are investigated. We first derive a minimal model Hamiltonian in a basis of frontier orbitals that is able to reproduce experimentally observed singlet-triplet splittings. In a second step SOI effects are included perturbatively. Major consequences of the SOI are the splitting of former degenerate levels and a magnetic anisotropy, which can be captured by an effective low-energy spin Hamiltonian. We show that scanning tunneling microscopy-based magnetoconductance measurements can yield clear signatures of both these SOI-induced effects.

  8. Correlation between charge transport and electroluminescence properties of Si-rich oxide/nitride/oxide-based light emitting capacitors

    NASA Astrophysics Data System (ADS)

    Berencén, Y.; Ramírez, J. M.; Jambois, O.; Domínguez, C.; Rodríguez, J. A.; Garrido, B.

    2012-08-01

    The electrical and electroluminescence (EL) properties at room and high temperatures of oxide/nitride/oxide (ONO)-based light emitting capacitors are studied. The ONO multidielectric layer is enriched with silicon by means of ion implantation. The exceeding silicon distribution follows a Gaussian profile with a maximum of 19%, centered close to the lower oxide/nitride interface. The electrical measurements performed at room and high temperatures allowed to unambiguously identify variable range hopping (VRH) as the dominant electrical conduction mechanism at low voltages, whereas at moderate and high voltages, a hybrid conduction formed by means of variable range hopping and space charge-limited current enhanced by Poole-Frenkel effect predominates. The EL spectra at different temperatures are also recorded, and the correlation between charge transport mechanisms and EL properties is discussed.

  9. Method measuring oxygen tension and transport within subcutaneous devices

    PubMed Central

    Weidling, John; Sameni, Sara; Lakey, Jonathan R. T.; Botvinick, Elliot

    2014-01-01

    Abstract. Cellular therapies hold promise to replace the implantation of whole organs in the treatment of disease. For most cell types, in vivo viability depends on oxygen delivery to avoid the toxic effects of hypoxia. A promising approach is the in situ vascularization of implantable devices which can mediate hypoxia and improve both the lifetime and utility of implanted cells and tissues. Although mathematical models and bulk measurements of oxygenation in surrounding tissue have been used to estimate oxygenation within devices, such estimates are insufficient in determining if supplied oxygen is sufficient for the entire thickness of the implanted cells and tissues. We have developed a technique in which oxygen-sensitive microparticles (OSMs) are incorporated into the volume of subcutaneously implantable devices. Oxygen partial pressure within these devices can be measured directly in vivo by an optical probe placed on the skin surface. As validation, OSMs have been incorporated into alginate beads, commonly used as immunoisolation devices to encapsulate pancreatic islet cells. Alginate beads were implanted into the subcutaneous space of Sprague–Dawley rats. Oxygen transport through beads was characterized from dynamic OSM signals in response to changes in inhaled oxygen. Changes in oxygen dynamics over days demonstrate the utility of our technology. PMID:25162910

  10. Dynamical and transport properties in plasmas including three-particle spatial correlations

    NASA Astrophysics Data System (ADS)

    Ababsa, Hakima; Meftah, Med Tayeb; Chohra, Thouria

    2017-03-01

    In this work, we study the two and triplet static correlation functions in plasma when the ions interact via the Debye screened potential and via the Deutsch screened potential. The latter takes into consideration the possible quantum effects at short distances. The ratio of the mean distance between two ions and the thermal De Broglie wavelength ri/λT gives the measure of these effects. Our investigation is developed in the conditions of weak coupling parameter (Γ <1 ). The pair and the triplet correlation functions are calculated numerically and compared to the correlation functions due to the Kirkwood superposition approximation (KSA). Some applications to the ion velocity auto-correlation function D(t) and the electric field auto-correlation function C(t) at an ion (assumed to be an impurity) and the diffusion coefficient D are calculated for the two kinds of potentials in different plasma conditions. The comparison with other results found in the literature shows a well satisfactory agreement, for the static as well as the dynamic properties.

  11. The measurement of bacterial translation by photon correlation spectroscopy.

    PubMed Central

    Stock, G B; Jenkins, T C

    1978-01-01

    Photon correlation spectroscopy is shown to be a practical technique for the accurate determination of translational speeds of bacteria. Though other attempts have been made to use light scattering as a probe of various aspects of bacterial motility, no other comprehensive studies to establish firmly the basic capabilities and limitations of the technique have been published. The intrinsic accuracy of the assay of translational speeds by photon correlation spectroscopy is investigated by analysis of synthetic autocorrelation data; consistently accurate estimates of the mean and second moment of the speed distribution can be calculated. Extensive analyses of experimental preparations of Salmonella typhimurium examine the possible sources of experimental difficulty with the assay. Cinematography confirms the bacterial speed estimates obtained by photon correlation techniques. PMID:346073

  12. 41 CFR 102-117.270 - What are agency performance measures for transportation?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... TRANSPORTATION 117-TRANSPORTATION MANAGEMENT Performance Measures § 102-117.270 What are agency performance... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What are agency performance measures for transportation? 102-117.270 Section 102-117.270 Public Contracts and...

  13. Non-Markovianity: initial correlations and nonlinear optical measurements

    PubMed Central

    Dijkstra, Arend G.; Tanimura, Yoshitaka

    2012-01-01

    By extending the response function approach developed in nonlinear optics, we analytically derive an expression for the non-Markovianity in the time evolution of a system in contact with a quantum mechanical bath, and find a close connection with the directly observable nonlinear optical response. The result indicates that memory in the bath-induced fluctuations rather than in the dissipation causes non-Markovianity. Initial correlations between states of the system and the bath are shown to be essential for a correct understanding of the non-Markovianity. These correlations are included in our treatment through a preparation function. PMID:22753819

  14. Effects of electron correlations on transport properties of iron at Earth's core conditions.

    PubMed

    Zhang, Peng; Cohen, R E; Haule, K

    2015-01-29

    Earth's magnetic field has been thought to arise from thermal convection of molten iron alloy in the outer core, but recent density functional theory calculations have suggested that the conductivity of iron is too high to support thermal convection, resulting in the investigation of chemically driven convection. These calculations for resistivity were based on electron-phonon scattering. Here we apply self-consistent density functional theory plus dynamical mean-field theory (DFT + DMFT) to iron and find that at high temperatures electron-electron scattering is comparable to the electron-phonon scattering, bringing theory into agreement with experiments and solving the transport problem in Earth's core. The conventional thermal dynamo picture is safe. We find that electron-electron scattering of d electrons is important at high temperatures in transition metals, in contrast to textbook analyses since Mott, and that 4s electron contributions to transport are negligible, in contrast to numerous models used for over fifty years. The DFT+DMFT method should be applicable to other high-temperature systems where electron correlations are important.

  15. Atmospheric pollution measurement by optical cross correlation methods - A concept

    NASA Technical Reports Server (NTRS)

    Fisher, M. J.; Krause, F. R.

    1971-01-01

    Method combines standard spectroscopy with statistical cross correlation analysis of two narrow light beams for remote sensing to detect foreign matter of given particulate size and consistency. Method is applicable in studies of generation and motion of clouds, nuclear debris, ozone, and radiation belts.

  16. Electronic and magnetic properties of manganite thin films with different compositions and its correlation with transport properties: An X-ray resonant magnetic scattering study

    DOE PAGES

    Singh, Surendra; Freeland, J. W.; Fitzsimmons, M. R.; ...

    2014-12-08

    Here, we present x-ray resonant magnetic dichroism and x-ray resonant magnetic scattering measurements of the temperature dependence of magnetism in Pr-doped La-Ca-Mn-O films grown on (110) NdGaO3 substrates. We observed thermal hysteresis of the ferromagnetism in one film that also showed large thermal hysteresis of ~18K in transport measurements. While in a second film of a different nominal chemistry, which showed very small thermal hysteresis ~3K in transport measurements, no thermal hysteresis of the ferromagnetism was observed. As a result, these macroscopic properties are correlated with evolution of surface magnetization across metal insulator transition for these films as observed bymore » soft x-ray resonant magnetic scattering measurements.« less

  17. Electronic and magnetic properties of manganite thin films with different compositions and its correlation with transport properties: An X-ray resonant magnetic scattering study

    SciTech Connect

    Singh, Surendra; Freeland, J. W.; Fitzsimmons, M. R.; Jeen, H.; Biswas, A.

    2014-12-08

    Here, we present x-ray resonant magnetic dichroism and x-ray resonant magnetic scattering measurements of the temperature dependence of magnetism in Pr-doped La-Ca-Mn-O films grown on (110) NdGaO3 substrates. We observed thermal hysteresis of the ferromagnetism in one film that also showed large thermal hysteresis of ~18K in transport measurements. While in a second film of a different nominal chemistry, which showed very small thermal hysteresis ~3K in transport measurements, no thermal hysteresis of the ferromagnetism was observed. As a result, these macroscopic properties are correlated with evolution of surface magnetization across metal insulator transition for these films as observed by soft x-ray resonant magnetic scattering measurements.

  18. Electronic and magnetic properties of manganite thin films with different compositions and its correlation with transport properties: An X-ray resonant magnetic scattering study

    SciTech Connect

    Singh, Surendra; Freeland, J. W.; Fitzsimmons, M. R.; Jeen, H.; Biswas, A.

    2014-12-14

    Here, we present x-ray resonant magnetic dichroism and x-ray resonant magnetic scattering measurements of the temperature dependence of magnetism in Pr-doped La-Ca-Mn-O films grown on (110) NdGaO{sub 3} substrates. We observed thermal hysteresis of the ferromagnetism in one film that also showed large thermal hysteresis of ∼18 K in transport measurements. While in a second film of a different nominal chemistry, which showed very small thermal hysteresis ∼3 K in transport measurements, no thermal hysteresis of the ferromagnetism was observed. These macroscopic properties are correlated with evolution of surface magnetization across metal insulator transition for these films as observed by soft x-ray resonant magnetic scattering measurements.

  19. Electrostatic and magnetic measurements of turbulence and transport in Extrap T2

    NASA Astrophysics Data System (ADS)

    Möller, Anders; Sallander, Eva

    1999-10-01

    Langmuir probe and magnetic pick-up coil measurements are used to study edge turbulence in the Extrap T2 reversed field pinch. Magnetic fluctuations resonant outside the toroidal field reversal surface are observed where previously only fluctuations in the spectra of potential and electron density and temperature have been measured. Results are presented which imply that these fluctuations are coupled to and also correlated to the internally resonant tearing mode fluctuations. Evidence of coupling between low-frequency (<100 kHz) and high-frequency fluctuations is also presented. The normalized floating potential fluctuations are seen to increase with the edge electron temperature. This causes an increase of the potential and density fluctuation driven transport with the temperature which is faster than linear. These results, in combination, are consistent with a picture where internally resonant fluctuations couple to edge fluctuations through radial heat conduction from the stochastic core to the edge.

  20. Ozone Measurements and a 3D Chemical Transport Model

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.; Douglass, Anne R.; Frith, Stacey; Steenrod, Steven; Polansky, Brian

    2004-01-01

    We have used our three-dimensional chemical transport model (CTM) to calculate the expected reponse of stratospheric composition over the past 30 years to forcing by chlorine and bromine compounds, solar ultraviolet, and volcanic aerosols. The CTM uses off-line winds and temperatures fiom a 50-year run of the finite volume general circulation model (FVGCM). We compare the total column ozone and the ozone profile fiom the CTM output to a variety of data sources. These include a merged total ozone data set from TOMS and SBUV using the new version 8 algorithm. Total ozone fiom the CTM are compared to ground-station measurements of total ozone at specific locations. Ozone profiles are compared to satellite meausrements fiom SBUV, SAGE, and HALOE. Profiles are also compared to ozonesondes over several locations. The results of the comparisons are quantified by using a time-series statistical analysis to determine trends, solar cycle, and volcanic reponse in both the model and in the data. Initial results indicate that the model responds to forcings in a way that is similar to the observed atmospheric response. The model does seem to be more sensitive to the chlorine and bromine perturbation ihan is the data. Further details and comparisons wiii be discussed.

  1. Correlation measure to detect time series distances, whence economy globalization

    NASA Astrophysics Data System (ADS)

    Miśkiewicz, Janusz; Ausloos, Marcel

    2008-11-01

    An instantaneous time series distance is defined through the equal time correlation coefficient. The idea is applied to the Gross Domestic Product (GDP) yearly increments of 21 rich countries between 1950 and 2005 in order to test the process of economic globalisation. Some data discussion is first presented to decide what (EKS, GK, or derived) GDP series should be studied. Distances are then calculated from the correlation coefficient values between pairs of series. The role of time averaging of the distances over finite size windows is discussed. Three network structures are next constructed based on the hierarchy of distances. It is shown that the mean distance between the most developed countries on several networks actually decreases in time, -which we consider as a proof of globalization. An empirical law is found for the evolution after 1990, similar to that found in flux creep. The optimal observation time window size is found ≃15 years.

  2. Correlation of microstructure and thermo-mechanical properties of a novel hydrogen transport membrane

    NASA Astrophysics Data System (ADS)

    Zhang, Yongjun

    A key part of the FutureGen concept is to support the production of hydrogen to fuel a "hydrogen economy," with the use of clean burning hydrogen in power-producing fuel cells, as well as for use as a transportation fuel. One of the key technical barriers to FutureGen deployment is reliable and efficient hydrogen separation technology. Most Hydrogen Transport Membrane (HTM) research currently focuses on separation technology and hydrogen flux characterization. No significant work has been performed on thermo-mechanical properties of HTMs. The objective of the thesis is to understand the structure-property correlation of HTM and to characterize (1) thermo mechanical properties under different reducing environments and thermal cycles (thermal shock), and (2) evaluate the stability of the novel HTM material. A novel HTM cermet bulk sample was characterized for its physical and mechanical properties at both room temperature and at elevated temperature up to 1000°C. Micro-structural properties and residual stresses were evaluated in order to understand the changing mechanism of the microstructure and its effects on the mechanical properties of materials. A correlation of the microstructural and thermo mechanical properties of the HTM system was established for both HTM and the substrate material. Mechanical properties of both selected structural ceramics and the novel HTM cermet bulk sample are affected mainly by porosity and microstructural features, such as grain size and pore size-distribution. The Young's Modulus (E-value) is positively correlated to the flexural strength for materials with similar crystallographic structure. However, for different crystallographic materials, physical properties are independent of mechanical properties. Microstructural properties, particularly, grain size and crystallographic structure, and thermodynamic properties are the main factors affecting the mechanical properties at both room and high temperatures. The HTM cermet behaves

  3. Reduction of Gun Erosion and Correlation of Gun Erosion Measurements

    NASA Technical Reports Server (NTRS)

    Bogdanoff, Dave; Wercinski, Paul (Technical Monitor)

    1997-01-01

    Gun barrel erosion is serious problem with two-stage light gas guns. Excessive barrel erosion can lead to poor or failed launches and frequent barrel changes, with the corresponding down time. Also, excessive barrel erosion can limit the maximum velocity obtainable by loading down the hydrogen working gas with eroded barrel material. Guided by a CFD code, the operating conditions of the Ames 0.5-inch gun were modified to reduce barrel erosion. The changes implemented included: (1) reduction in the piston mass, powder mass and hydrogen fill pressure; and (2) reduction in pump tube volume, while maintaining hydrogen mass. The latter change was found, in particular, to greatly reduce barrel erosion. For muzzle velocity ranges of 6.1 - 6.9 km/sec, the barrel erosion was reduced by a factor of 10. Even for the higher muzzle velocity range of 7.0 - 8.2 km/sec, the barrel erosion was reduced by a factor of 4. Gun erosion data from the Ames 0.5-inch, 1.0-inch, and 1.5-inch guns operated over a wide variety of launch conditions was examined and it was found that this data could be correlated using four different parameters: normalized powder charge energy, normalized hydrogen energy density, normalized pump tube volume and barrel diameter. The development of the correlation and the steps used to collapse the experimental data are presented. Over a certain parameter range in the correlation developed, the barrel erosion per shot is found to increase very rapidly. The correlation should prove useful in the selection of gun operating conditions and the design of new guns. Representative shapes of eroded gun barrels are also presented.

  4. Analysis of long-range transport of aerosols for Portugal using 3D chemical transport model and satellite measurements

    NASA Astrophysics Data System (ADS)

    Tchepel, O.; Ferreira, J.; Fernandes, A. P.; Basart, S.; Baldasano, J. M.; Borrego, C.

    2013-01-01

    The objective of this work is to assess the contribution of long-range transport of mineral dust from North Africa to the air pollution levels in Portugal based on a combination of a modelling approach and satellite observations. The Comprehensive Air Quality Model (CAMx) was applied together with the updated Dust REgional Atmospheric Model (BSC-DREAM8b) to characterise anthropogenic and natural sources of primary aerosols as well as secondary aerosols formation. The modelling results, after their validation and bias removing process, have been used in combination with aerosol measurements provided by Ozone Monitoring Instrument (OMI), using OMAERUV Level-2 v003 product, aiming to better understand the advantages and shortcomings of both, satellite and modelling aerosol data. The data analysis is presented for Portugal for July 2006 focusing on aerosol optical depth (AOD) at 500 nm and aerosol type. Based on the modelling results, the importance of the long-range transport of mineral dust was demonstrated for the simulation days, achieving a 60% contribution to AOD levels. The mineral dust is affecting atmospheric layers up to 6 km but peak concentrations are presented at layers below 2 km. The model predicts a complex mixture of different types of aerosol for the pixels classified by OMI as "mineral dust" and "sulphates". Although a good agreement between the model outputs and OMI observations has been found in terms of the spatial pattern and AOD correlation is about 0.48 for mineral dust, several problems were identified. The model is systematically underestimating the aerosol concentration at near ground level in comparison with the air quality monitoring stations, while OMI is in general overestimating AOD for the analysed period based on the comparison with AERONET data. Additionally, misclassification of mineral dust for some geographical locations and discontinuity in AOD values along the coastal line at water/land interface in the OMI data are discussed.

  5. Protocal for the measurement of hydrocarbon transport in bacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Due to the hydrophobic, volatility, and relatively low aqueous solubility of aliphatic and aromatic hydrocarbons, transport of these chemicals by bacteria has not been extensively studied. These issues make transport assays difficult to carry out, and as a result, strong evidence for the active tran...

  6. Inequivalence of correlation-based measures of non-Markovianity

    NASA Astrophysics Data System (ADS)

    Neto, Alaor Cervati; Karpat, Göktuǧ; Fanchini, Felipe Fernandes

    2016-09-01

    We conclusively show that the entanglement- and the mutual-information-based measures of quantum non-Markovianity are inequivalent. To this aim, we first analytically solve the optimization problem in the definition of the entanglement-based measure for a two-level system. We demonstrate that the optimal initial bipartite state of the open system and the ancillary is always given by one of the Bell states for any one-qubit dynamics. On top of this result, we present an explicit example dynamics where memory effects emerge according to the mutual-information-based measure, even though the time evolution remains memoryless with respect to the entanglement-based measure. Finally, we explain this disagreement between the two measures in terms of the information dynamics of the open system, exploring the accessible and inaccessible parts of information.

  7. A nu-space for ICS: characterization and application to measure protein transport in live cells.

    PubMed

    Potvin-Trottier, Laurent; Chen, Lingfeng; Horwitz, Alan Rick; Wiseman, Paul W

    2013-08-01

    We introduce a new generalized theoretical framework for image correlation spectroscopy (ICS). Using this framework, we extend the ICS method in time-frequency (ν, nu) space to map molecular flow of fluorescently tagged proteins in individual living cells. Even in the presence of a dominant immobile population of fluorescent molecules, nu-space ICS (nICS) provides an unbiased velocity measurement, as well as the diffusion coefficient of the flow, without requiring filtering. We also develop and characterize a tunable frequency-filter for STICS that allows quantification of the density, the diffusion coefficient and the velocity of biased diffusion. We show that the techniques are accurate over a wide range of parameter space in computer simulation. We then characterize the retrograde flow of adhesion proteins (α6- and αLβ2-GFP integrins and mCherry-paxillin) in CHO.B2 cells plated on laminin and ICAM ligands respectively. STICS with a tunable frequency filter, in conjunction with nICS, measures two new transport parameters, the density and transport bias coefficient (a measure of the diffusive character of a flow/biased diffusion), showing that molecular flow in this cell system has a significant diffusive component. Our results suggest that the integrinligand interaction, along with the internal myosin-motor generated force, varies for different integrin-ligand pairs, consistent with previous results.

  8. Electrical conductivity measurements of nanofluids and development of new correlations.

    PubMed

    Konakanchi, Hanumantharao; Vajjha, Ravikanth; Misra, Debasmita; Das, Debendra

    2011-08-01

    In this study the electrical conductivity of aluminum oxide (Al2O3), silicon dioxide (SiO2) and zinc oxide (ZnO) nanoparticles dispersed in propylene glycol and water mixture were measured in the temperature range of 0 degrees C to 90 degrees C. The volumetric concentration of nanoparticles in these fluids ranged from 0 to 10% for different nanofluids. The particle sizes considered were from 20 nm to 70 nm. The electrical conductivity measuring apparatus and the measurement procedure were validated by measuring the electrical conductivity of a calibration fluid, whose properties are known accurately. The measured electrical conductivity values agreed within +/- 1% with the published data reported by the manufacturer. Following the validation, the electrical conductivities of different nanofluids were measured. The measurements showed that electrical conductivity of nanofluids increased with an increase in temperature and also with an increase in particle volumetric concentration. For the same nanofluid at a fixed volumetric concentration, the electrical conductivity was found to be higher for smaller particle sizes. From the experimental data, empirical models were developed for three nanofluids to express the electrical conductivity as functions of temperature, volumetric concentration and the size of the nanoparticles.

  9. Image correlation method for measuring flow and diameter changes in contracting mesenteric microlymphatics in situ

    NASA Astrophysics Data System (ADS)

    Dixon, J. Brandon; Cote, Gerard; Gashev, Anatoly; Greiner, Steven; Moore, James; Zawieja, David

    2006-02-01

    Collecting microlymphatics play a vital role in promoting lymph flow from the initial lymphatics in the interstitial spaces to the large transport lymph ducts. In most tissues, the primary mechanism for producing this flow is the spontaneous contractions of the lymphatic wall. Individual units, known as lymphangion, are separated by valves that help prevent backflow when the vessel contracts, thus promoting flow through the lymphatic network. Lymphatic contractile activity is inhibited by flow in isolated lymphatics, however there are virtually no in situ measurements of lymph flow in these vessels. One of the difficulties associated with obtaining such measurements is the time consuming methods of manual particle tracking used previously by our group. Using an in situ preparation with mesenteric microlymphatics (~ 100 μm in diameter) and a high speed imaging system (500 fps), we have developed an image correlation method to measure lymphatic flow with a standard error of prediction of 0.3 mm/sec when compared with manual particle tracking.

  10. Development of Standardized Mobile Tracer Correlation Approach for Large Area Emission Measurements (DRAFT UNDER EPA REVIEW)

    NASA Astrophysics Data System (ADS)

    Foster-wittig, T. A.; Thoma, E.; Green, R.; Hater, G.; Swan, N.; Chanton, J.

    2013-12-01

    Improved understanding of air emissions from large area sources such as landfills, waste water ponds, open-source processing, and agricultural operations is a topic of increasing environmental importance. In many cases, the size of the area source, coupled with spatial-heterogeneity, make direct (on-site) emission assessment difficult; methane emissions, from landfills for example, can be particularly complex [Thoma et al, 2009]. Recently, whole-facility (remote) measurement approaches based on tracer correlation have been utilized [Scheutz et al, 2011]. The approach uses a mobile platform to simultaneously measure a metered-release of a conservative gas (the tracer) along with the target compound (methane in the case of landfills). The known-rate tracer release provides a measure of atmospheric dispersion at the downwind observing location allowing the area source emission to be determined by a ratio calculation [Green et al, 2010]. Although powerful in concept, the approach has been somewhat limited to research applications due to the complexities and cost of the high-sensitivity measurement equipment required to quantify the part-per billion levels of tracer and target gas at kilometer-scale distances. The advent of compact, robust, and easy to use near-infrared optical measurement systems (such as cavity ring down spectroscopy) allow the tracer correlation approach to be investigated for wider use. Over the last several years, Waste Management Inc., the U.S. EPA, and collaborators have conducted method evaluation activities to determine the viability of a standardized approach through execution of a large number of field measurement trials at U.S. landfills. As opposed to previous studies [Scheutz et al, 2011] conducted at night (optimal plume transport conditions), the current work evaluated realistic use-scenarios; these scenarios include execution by non-scientist personnel, daylight operation, and full range of atmospheric condition (all plume transport

  11. Electrophysiological correlates of listening effort: neurodynamical modeling and measurement.

    PubMed

    Strauss, Daniel J; Corona-Strauss, Farah I; Trenado, Carlos; Bernarding, Corinna; Reith, Wolfgang; Latzel, Matthias; Froehlich, Matthias

    2010-06-01

    An increased listing effort represents a major problem in humans with hearing impairment. Neurodiagnostic methods for an objective listening effort estimation might support hearing instrument fitting procedures. However the cognitive neurodynamics of listening effort is far from being understood and its neural correlates have not been identified yet. In this paper we analyze the cognitive neurodynamics of listening effort by using methods of forward neurophysical modeling and time-scale electroencephalographic neurodiagnostics. In particular, we present a forward neurophysical model for auditory late responses (ALRs) as large-scale listening effort correlates. Here endogenously driven top-down projections related to listening effort are mapped to corticothalamic feedback pathways which were analyzed for the selective attention neurodynamics before. We show that this model represents well the time-scale phase stability analysis of experimental electroencephalographic data from auditory discrimination paradigms. It is concluded that the proposed neurophysical and neuropsychological framework is appropriate for the analysis of listening effort and might help to develop objective electroencephalographic methods for its estimation in future.

  12. Correlation measurements of light transmittance in polymer dispersed liquid crystals

    NASA Astrophysics Data System (ADS)

    Maksimyak, P. P.; Nehrych, A. L.

    2015-11-01

    The methods of correlation optics are for the first time applied to study structure of liquid crystal (LC) - polymer (P) composites at various concentrations of LC and P. Their phase correlation function (PCF) was obtained considering LC-P composite as a random phase screen. The amplitude of PCF contains information about number of LC domains and structure of LC director inside of them, while a half-width of this function is connected with a size of these domains. We studied unpowered and powered composite layers with a thickness of 5 μm. As liquid crystal and polymer were used nematic LC E7 from Merck and photopolymer composition NOA65 from Norland. Concentration of polymer φP was varied in a range 10-55 vol. %. In good agreement with previous studies by SEM technique we detected monotone decrease of LC domains with concentration of polymer. With application of electric field, amplitude of PCF behaves differently for the samples with different polymer content. For the samples with φP>35 vol. % (samples having morphology of polymer dispersed LC), this dependence is monotonic. In turn, if φP<35 vol. % (samples with polymer network LC morphology), the amplitude of PCF non-monotonically depends on the applied voltage going through a maximum. The latter fact is explained by transformation of orientational defects of LC phase with the applied voltage.

  13. Identifying fire plumes in the Arctic with tropospheric FTIR measurements and transport models

    NASA Astrophysics Data System (ADS)

    Viatte, C.; Strong, K.; Hannigan, J.; Nussbaumer, E.; Emmons, L.; Conway, S.; Paton-Walsh, C.; Hartley, J.; Benmergui, J.; Lin, J.

    2014-10-01

    confirms that transport is well implemented in the model. For C2H6, however, the lower wintertime concentration estimated by the model as compared to the FTIR observations highlight an underestimation of its emission. Results show that modelled and measured total columns are correlated (linear correlation coefficient r > 0.6 for all gases except for H2CO at Eureka and HCOOH at Thule), but suggest a~general underestimation of the concentrations in the model for all seven tropospheric species in the high Arctic.

  14. Identifying fire plumes in the Arctic with tropospheric FTIR measurements and transport models

    NASA Astrophysics Data System (ADS)

    Viatte, C.; Strong, K.; Hannigan, J.; Nussbaumer, E.; Emmons, L. K.; Conway, S.; Paton-Walsh, C.; Hartley, J.; Benmergui, J.; Lin, J.

    2015-03-01

    their transport. Good agreement in winter confirms that transport is well implemented in the model. For C2H6, however, the lower wintertime concentration estimated by the model as compared to the FTIR observations highlights an underestimation of its emission. Results show that modeled and measured total columns are correlated (linear correlation coefficient r > 0.6 for all gases except for H2CO at Eureka and HCOOH at Thule), but suggest a general underestimation of the concentrations in the model for all seven tropospheric species in the high Arctic.

  15. Trace Gas Transport in the Troposphere and the Interpretation of In-Situ Concentration Measurements

    NASA Technical Reports Server (NTRS)

    Plumb, R. Alan

    2000-01-01

    The research conducted comprised two sub-projects: 1) definition of the major transport pathways in the troposphere with focus on low-level transport in baroclinic systems, and (2) investigation, and assessment of the usefulness of, tracer-tracer correlations in the troposphere.

  16. Radiologic correlates of reaction time measurements in olivopontocerebellar atrophy.

    PubMed

    Botez, M I; Pedraza, O L; Botez-Marquard, T; Vézina, J L; Elie, R

    1993-01-01

    We measured simple visual and auditory reaction time (RT) and movement time (MT) in 32 patients with olivopontocerebellar atrophy (OPCA) in comparison to 32 control subjects. In addition, we followed 2 approaches to radiologic assessment by computed tomographic scans: subjective (by inspection of films) and objective (by measurement of 4 radiologic ratios at the level of the posterior fossa and 1 ratio at the supratentorial level). All OPCA patients had various degrees of cerebellar atrophy and lengthened RT and MT in comparison to their controls. There were no significant differences in RT and MT performances in patients with mild-moderate versus those with severe cerebellar atrophy as assessed by inspection of their films. OPCA patients with severe versus mild-moderate atrophy evaluated by 3 measures, i.e., brainstem, brachium pontis and fourth ventricle ratios, presented few significantly lengthened RT and MT performances. In contrast, patients with severe atrophy revealed by the midbrain ratio had significantly lengthened RT and MT performances compared to those with mild-moderate atrophy assessed by this ratio on 7 of 8 measures; the 8th measure showed a borderline significant difference. This could be explained by the fact that atrophy at the midbrain level is the only one which involves dopaminergic, noradrenergic and glutamatergic structures and pathways.

  17. Measuring and controlling the transport of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Stephens, Jason R.

    Despite the large body of literature describing the synthesis of magnetic nanoparticles, few analytical tools are commonly used for their purification and analysis. Due to their unique physical and chemical properties, magnetic nanoparticles are appealing candidates for biomedical applications and analytical separations. Yet in the absence of methods for assessing and assuring their purity, the ultimate use of magnetic particles and heterostructures is likely to be limited. For magnetic nanoparticles, it is the use of an applied magnetic flux or field gradient that enables separations. Flow based techniques are combined with applied magnetic fields to give methods such as magnetic field flow fractionation and high gradient magnetic separation. Additional techniques have been explored for manipulating particles in microfluidic channels and in mesoporous membranes. This thesis further describes development of these and new analytical tools for separation and analysis of colloidal particles is critically important to enable the practical use of these, particularly for medicinal purposes. Measurement of transport of nanometer scale particles through porous media is important to begin to understand the potential environmental impacts of nanomaterials. Using a diffusion cell with two compartments separated by either a porous alumina or polycarbonate membrane as a model system, diffusive flux through mesoporous materials is examined. Experiments are performed as a function of particle size, pore diameter, and solvent, and the particle fluxes are monitored by the change in absorbance of the solution in the receiving cell. Using the measured extinction coefficient and change in absorbance of the solution as a function of time, the fluxes of 3, 8, and 14 nm diameter CoFe2O4 particles are determined as they are translocated across pores with diameters 30, 50, 100, and 200 nm in hexane and aqueous solutions. In general, flux decreases with increasing particle size and

  18. Snow property measurements correlative to microwave emission at 35 GHz

    NASA Technical Reports Server (NTRS)

    Davis, Robert E.; Dozier, Jeff; Chang, Alfred T. C.

    1987-01-01

    Snow microstructure, measured by plane section analysis, and snow wetness, measured by the dilution method, are used to calculate input parameters for a microwave emission model that uses the radiative transfer method. The scattering and absorbing properties are calculated by Mie theory. The effects of different equivalent sphere conversions, adjustments for near-field interference, and different snow wetness characterizations are compared for various snow conditions. The concentric shell geometry of liquid water in snow yields higher emissivities and better model results than the separate-sphere configuration for liquid water contents greater than 0.05, while at lower liquid water contents the separate-sphere treatment gives better results.

  19. Measuring the Air Quality and Transportation Impacts of Infill Development

    EPA Pesticide Factsheets

    This report summarizes three case studies. The analysis shows how standard forecasting tools can be modified to capture at least some of the transportation and air quality benefits of brownfield and infill development.

  20. [Planning and implementation of protective measures in emergencies during railway transportation of radioactive cargo].

    PubMed

    Romanov, V V; Konin, A P; Popov, S A; Golovanev, S M; Tulushev, V N

    2000-01-01

    Protective measures in emergencies during railway transportation of radioactive cargoes must be planned in advance, by obligatorily taking into account many factors that influence the scope, nature, specific features and consequences of radiation transport accidents. Of great importance are radiation monitoring, protective regimens, and requirements for decontamination of various objects in liquidating the consequences of a radiation transport accident.

  1. Physics-based agent to simulant correlations for vapor phase mass transport.

    PubMed

    Willis, Matthew P; Varady, Mark J; Pearl, Thomas P; Fouse, Janet C; Riley, Patrick C; Mantooth, Brent A; Lalain, Teri A

    2013-12-15

    Chemical warfare agent simulants are often used as an agent surrogate to perform environmental testing, mitigating exposure hazards. This work specifically addresses the assessment of downwind agent vapor concentration resulting from an evaporating simulant droplet. A previously developed methodology was used to estimate the mass diffusivities of the chemical warfare agent simulants methyl salicylate, 2-chloroethyl ethyl sulfide, di-ethyl malonate, and chloroethyl phenyl sulfide. Along with the diffusivity of the chemical warfare agent bis(2-chloroethyl) sulfide, the simulant diffusivities were used in an advection-diffusion model to predict the vapor concentrations downwind from an evaporating droplet of each chemical at various wind velocities and temperatures. The results demonstrate that the simulant-to-agent concentration ratio and the corresponding vapor pressure ratio are equivalent under certain conditions. Specifically, the relationship is valid within ranges of measurement locations relative to the evaporating droplet and observation times. The valid ranges depend on the relative transport properties of the agent and simulant, and whether vapor transport is diffusion or advection dominant.

  2. Quantifying local heterogeneity of in vivo transport dynamics using stochastic scanning multiphoton multifocal microscopy and segmented spatiotemporal image correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, Hee Y.; Jureller, Justin E.; Kuznetsov, Andrey; Philipson, Louis H.; Scherer, Norbert F.

    2008-02-01

    Elucidating the mechanisms of insulin granule trafficking in pancreatic β-cells is a critical step in understanding Type II Diabetes and abnormal insulin secretion. In this paper, rapid-sampling stochastic scanning multiphoton multifocal microscopy (SS-MMM) was developed to capture fast insulin granule dynamics in vivo. Stochastic scanning of (a diffractive optic generated) 10×10 hexagonal array of foci with a galvanometer yields a uniformly sampled image with fewer spatio-temporal artifacts than obtained by conventional or multibeam raster scanning. In addition, segmented spatio-temporal image correlation spectroscopy (Segmented STICS) was developed to extract dynamics of insulin granules from the image sequences. Measurements we conducted on MIN6 cells, which exhibit an order of magnitude lower granule number density, allow comparison of particle tracking with Segmented-STICS. Segmentation of the images into 8×8 pixel segments (similar to a size of one granule) allows some amount of spatial averaging, which can reduce the computation time required to calculate the correlation function, yet retains information about the local spatial heterogeneity of transport. This allows the correlation analysis to quantify the dynamics within each of the segments producing a "map" of the localized properties of the cell. The results obtained from Segmented STICS are compared with dynamics determined from particle tracking analysis of the same images. The resulting range of diffusion coefficients of insulin granules are comparable to previously published values indicating that SS-MMM and segmented- STICS will be useful to address the imaging challenges presented by β-cells, particularly the extremely large number density of granules.

  3. A Binomial Test of Group Differences with Correlated Outcome Measures

    ERIC Educational Resources Information Center

    Onwuegbuzie, Anthony J.; Levin, Joel R.; Ferron, John M.

    2011-01-01

    Building on previous arguments for why educational researchers should not provide effect-size estimates in the face of statistically nonsignificant outcomes (Robinson & Levin, 1997), Onwuegbuzie and Levin (2005) proposed a 3-step statistical approach for assessing group differences when multiple outcome measures are individually analyzed…

  4. Psychological correlates of self-reported and objectively measured physical activity among Chinese children—psychological correlates of PA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study aimed to explore the associations among psychological correlates and physical activity (PA) in Chinese children and to further examine whether these associations varied by different PA measures. PA self-efficacy, motivation, and preference were reported in 449 8–13-year-old Chinese childr...

  5. Gas Transport Parameters for Landfill Final Cover Soil: Measurements and Model Modification by Dry Bulk Density

    NASA Astrophysics Data System (ADS)

    Wickramarachchi, P. N.; Kawamoto, K.; Hamamoto, S.; Nagamori, M.; Moldrup, P.; Komatsu, T.

    2011-12-01

    coarser (< 35 mm) fraction became larger than finer (< 2 mm) for the given soil-air content. Further, compaction effort was much significant for ka than Dp for both fractions. We suggest this is because of compaction effects caused to create well-aligned macropore networks that are available for gas transport through the porous material. Then, the famous predictive models, the water induced linear reduction (WLR) model for Dp and the reference point law (RPL) model for ka were modified with reference point measurements (dry conditions) and model parameters and they correlated linearly to dry bulk density values for both fractions of landfill final cover soil.

  6. Correlation of subjective and objective measures of speech intelligibility

    NASA Astrophysics Data System (ADS)

    Bowden, Erica E.; Wang, Lily M.; Palahanska, Milena S.

    2003-10-01

    Currently there are a number of objective evaluation methods used to quantify the speech intelligibility in a built environment, including the Speech Transmission Index (STI), Rapid Speech Transmission Index (RASTI), Articulation Index (AI), and the Percentage Articulation Loss of Consonants (%ALcons). Many of these have been used for years; however, questions remain about their accuracy in predicting the acoustics of a space. Current widely used software programs can quickly evaluate STI, RASTI, and %ALcons from a measured impulse response. This project compares subjective human performance on modified rhyme and phonetically balanced word tests with objective results calculated from impulse response measurements in four different spaces. The results of these tests aid in understanding performance of various methods of speech intelligibility evaluation. [Work supported by the Univ. of Nebraska Center for Building Integration.] For Speech Communication Best Student Paper Award.

  7. Correlated measurements of mesospheric density and near infrared airglow

    NASA Astrophysics Data System (ADS)

    Moreels, G.; Pautet, D.; Faivre, M.; Keckhut, P.; Hauchecorne, A.

    A program aimed at simultaneously measuring the mesospheric density and the evolution with time of the near IR emission at the mesopause level was initiated in July 2000 and July 2001. The atmospheric density is measured along a vertical line using the Rayleigh scattering lidar located at Observatoire de Haute Provence (OHP). The near IR emission, mainly due to OH, is measured along a slant path from the Pic de Château-Renard (Hautes-Alpes, altitude 2989 m). The field of view of the CCD camera encompasses an area located vertically above OHP. Rayleigh scattering by air molecules is much less efficient than fluorescence by alkaline atoms. Therefore, the lidar data could only be retrieved with a one-hour time resolution at altitudes of 65, 70, 72.5 and 75 km. The time resolution for the airglow intensity measurement was equal to three minutes. The temporal evolution over the 5-hour duration of the night appears as opposite in the density up to 75 km and in the near IR airglow. The airglow shows around 23h30 a minimum intensity about 28% lower than its maximum value. During the first part of the night the intensity decreases. During the second part, it increases. The increase during the second part cannot be explained by the evolution of the atmospheric chemical system. Given the variation in opposite phases of the air density and of the emission, it is suggested that the near IR airglow is a semi-direct tracer of the density variations at the mesopause level, the air molecules being effective quenchers of the excited OH radicals. The excitation and quenching rates will therefore be discussed. Two short movie films showing the airglow waves coming across the observation field of view will be presented.

  8. The Belt voice: Acoustical measurements and esthetic correlates

    NASA Astrophysics Data System (ADS)

    Bounous, Barry Urban

    This dissertation explores the esthetic attributes of the Belt voice through spectral acoustical analysis. The process of understanding the nature and safe practice of Belt is just beginning, whereas the understanding of classical singing is well established. The unique nature of the Belt sound provides difficulties for voice teachers attempting to evaluate the quality and appropriateness of a particular sound or performance. This study attempts to provide answers to the question "does Belt conform to a set of measurable esthetic standards?" In answering this question, this paper expands on a previous study of the esthetic attributes of the classical baritone voice (see "Vocal Beauty", NATS Journal 51,1) which also drew some tentative conclusions about the Belt voice but which had an inadequate sample pool of subjects from which to draw. Further, this study demonstrates that it is possible to scientifically investigate the realm of musical esthetics in the singing voice. It is possible to go beyond the "a trained voice compared to an untrained voice" paradigm when evaluating quantitative vocal parameters and actually investigate what truly beautiful voices do. There are functions of sound energy (measured in dB) transference which may affect the nervous system in predictable ways and which can be measured and associated with esthetics. This study does not show consistency in measurements for absolute beauty (taste) even among belt teachers and researchers but does show some markers with varying degrees of importance which may point to a difference between our cognitive learned response to singing and our emotional, more visceral response to sounds. The markers which are significant in determining vocal beauty are: (1) Vibrancy-Characteristics of vibrato including speed, width, and consistency (low variability). (2) Spectral makeup-Ratio of partial strength above the fundamental to the fundamental. (3) Activity of the voice-The quantity of energy being produced. (4

  9. Local transport properties investigation by correlating hyperspectral and confocal luminescence images

    NASA Astrophysics Data System (ADS)

    El-Hajje, G.; Ory, D.; Guillemoles, J.-F.; Lombez, L.

    2016-03-01

    In the present study, we develop a contactless optical characterization tool that quantifies and maps the trapping defects density within a thin film photovoltaic device. This is achieved by probing time-resolved photoluminescence and numerically reconstructing the experimental decays under several excitation conditions. The values of defects density in different Cu(In,Ga)Se2 solar cells were extracted and linked to photovoltaic performances such as the open-circuit voltage. In the second part of the work, the authors established a micrometric map of the trapping defects density. This revealed areas within the thin film CIGS solar cell with low photovoltaic performance and high trapping defects density. This proves that the developed tool can be used to qualify and quantify the buffer layer/absorber interface properties. The final part of the work was dedicated to finding the origin of the spatial fluctuations of the thin film transport properties. To do so, we started by establishing a micrometric map of the absolute quasi-Fermi levels splitting within the same CIGS solar cell, using the hyperspectral imager. A correlation is obtained between the map of quasi-Fermi levels splitting of and the map of the trapping defects density. The latter is found to be the origin of the frequently observed spatial fluctuations of thin film materials properties.

  10. Child dopamine active transporter 1 genotype and parenting: evidence for evocative gene-environment correlations.

    PubMed

    Hayden, Elizabeth P; Hanna, Brigitte; Sheikh, Haroon I; Laptook, Rebecca S; Kim, Jiyon; Singh, Shiva M; Klein, Daniel N

    2013-02-01

    The dopamine active transporter 1 (DAT1) gene is implicated in psychopathology risk. Although the processes by which this gene exerts its effects on risk are poorly understood, a small body of research suggests that the DAT1 gene influences early emerging negative emotionality, a marker of children's psychopathology risk. As child negative emotionality evokes negative parenting practices, the DAT1 gene may also play a role in gene-environment correlations. To test this model, children (N = 365) were genotyped for the DAT1 gene and participated in standardized parent-child interaction tasks with their primary caregiver. The DAT1 gene 9-repeat variant was associated with child negative affect expressed toward the parent during parent-child interactions, and parents of children with a 9-repeat allele exhibited more hostility and lower guidance/engagement than parents of children without a 9-repeat allele. These gene-environment associations were partially mediated by child negative affect toward the parent. The findings implicate a specific polymorphism in eliciting negative parenting, suggesting that evocative associations play a role in elevating children's risk for emotional trajectories toward psychopathology risk.

  11. Measurement of spatio-temporal transport in live cells

    NASA Astrophysics Data System (ADS)

    Wang, Ru; Wang, Zhuo; Millet, Larry; Gillette, Martha U.; Popescu, Gabriel

    2010-03-01

    The live cell is a highly dynamical system with complicated biophysical and biochemical processes taking place at diverse spatiotemporal scales. Though it is well known that microtubules and actin filaments play important roles in intracellular transport, their dynamic behavior is not entirely understood. We propose a unified approach to studying transport in live cells. We used Spatial Light Interference Microscopy, a quantitative phase imaging method developed in our laboratory, to extract cell mass distributions over broad spatiotemporal scales. The dispersion relations for this transport dynamics, i.e. frequency bandwidth vs. spatial frequencies, reveal deterministic mass transport at large spatial scales (w˜q) and diffusive transport at small spatial scales (w˜q̂2). At submicron scales, we observed a w˜q̂3 behavior, which indicates whip-like movements of protein filaments. Further control experiments where both the microtubule and actin polymerization were blocked suggests that essentially actin governs the long spatial scales behavior and microtubules the short scales. This label-free method enables us to access different components of cell dynamics and quantify diffusion coefficients and speed of motor proteins.

  12. The Impact of Geophysical Measurement Support in Quantifying the Correlation Structure of Anisotropic Systems

    NASA Astrophysics Data System (ADS)

    Mitchell, V.; Gulati, J.; Knight, R.

    2009-04-01

    One of the challenges in developing catchment-scale models of hydrologic processes is accurately representing the spatial variation of subsurface properties. There is growing interest in the application of surface-based or borehole geophysical methods to obtain information about the correlation structure of hydrogeologic systems. It is well known, for all forms of measurement, that the support of the measurement impacts the derived estimates of correlation structure. Of interest in our work is the effect of the support of geophysical measurements on estimated correlation lengths. We define the support of a geophysical measurement as the presumed-homogeneous volume of the subsurface to which we can assign, given the methods of data acquisition and inversion, a single property. Accounting for the effect of the support becomes particularly important when integrating geophysical measurements of properties with other hydrologic measurements. The merged data sets are derived from measurements on scales that are rarely coincident with each other or the scale at which the properties are applied in hydrologic models. A number of previous studies have examined the impact of measurement scale on the estimated apparent correlation length for isotropic property fields. Most hydrologic property fields, however, are anisotropic at the catchment-scale. A further complicating factor is that geophysical measurements commonly have directionally-varying support dimensions. In this study we numerically generate both isotropic and anisotropic property fields and allow the orthogonal dimensions defining the measurement support to vary independently. When creating the anisotropic fields we define maximum and minimum correlation lengths, referred to as the underlying correlation lengths; these lengths are the same in the isotropic case. We initially estimate the apparent correlation length when the measurement support is equal to the grid size on which the field is defined. The increase in

  13. A Correlation Study between Two Color-Measuring Spectrophotometers

    DTIC Science & Technology

    1991-01-01

    a color difference pair) were_ measured for short- and long-term repeataoility. Each instrument was found to show a repeatability of 0.12 CIELAB color...for the Green Fabric Samples on the ACS II: Standard Deviation of Tristimulus 26 Values (X,Y,Z) 5. CIELAB Color Differences for Tan Color Difference...value on the ACS I is considerably higher. The largest AE ( CIELAB color difference between the two means) observed was 0.5 CIELAB units. The two-sample

  14. Optical character recognition based on nonredundant correlation measurements.

    PubMed

    Braunecker, B; Hauck, R; Lohmann, A W

    1979-08-15

    The essence of character recognition is a comparison between the unknown character and a set of reference patterns. Usually, these reference patterns are all possible characters themselves, the whole alphabet in the case of letter characters. Obviously, N analog measurements are highly redundant, since only K = log(2)N binary decisions are enough to identify one out of N characters. Therefore, we devised K reference patterns accordingly. These patterns, called principal components, are found by digital image processing, but used in an optical analog computer. We will explain the concept of principal components, and we will describe experiments with several optical character recognition systems, based on this concept.

  15. A New Measure of Imagination Ability: Anatomical Brain Imaging Correlates

    PubMed Central

    Jung, Rex E.; Flores, Ranee A.; Hunter, Dan

    2016-01-01

    Imagination involves episodic memory retrieval, visualization, mental simulation, spatial navigation, and future thinking, making it a complex cognitive construct. Prior studies of imagination have attempted to study various elements of imagination (e.g., visualization), but none have attempted to capture the entirety of imagination ability in a single instrument. Here we describe the Hunter Imagination Questionnaire (HIQ), an instrument designed to assess imagination over an extended period of time, in a naturalistic manner. We hypothesized that the HIQ would be related to measures of creative achievement and to a network of brain regions previously identified to be important to imagination/creative abilities. Eighty subjects were administered the HIQ in an online format; all subjects were administered a broad battery of tests including measures of intelligence, personality, and aptitude, as well as structural Magnetic Resonance Imaging (sMRI). Responses of the HIQ were found to be normally distributed, and exploratory factor analysis yielded four factors. Internal consistency of the HIQ ranged from 0.76 to 0.79, and two factors (“Implementation” and “Learning”) were significantly related to measures of Creative Achievement (Scientific—r = 0.26 and Writing—r = 0.31, respectively), suggesting concurrent validity. We found that the HIQ and its factors were related to a broad network of brain volumes including increased bilateral hippocampi, lingual gyrus, and caudal/rostral middle frontal lobe, and decreased volumes within the nucleus accumbens and regions within the default mode network (e.g., precuneus, posterior cingulate, transverse temporal lobe). The HIQ was found to be a reliable and valid measure of imagination in a cohort of normal human subjects, and was related to brain volumes previously identified as central to imagination including episodic memory retrieval (e.g., hippocampus). We also identified compelling evidence suggesting imagination

  16. Measurement and correlates of internalized homophobia: a factor analytic study.

    PubMed

    Ross, M W; Rosser, B R

    1996-01-01

    We developed a scale to measure internalized homophobia in men who have sex with men, which is comprised of items derived from theoretical and clinical reports of internalized homophobia. Two hundred two men who have sex with men and who attend "Man to Man" sexual health seminars in a midwestern U.S. city completed the scale at baseline. Orthogonal factor analysis revealed four dimensions of internalized homophobia: public identification as gay, perception of stigma associated with being homosexual, social comfort with gay men, and the moral and religious acceptability of being gay. Factor scoring of these dimensions indicated that they were associated significantly with relationship satisfaction, duration of longest relationship, extent of attraction to men and women, proportion of social time with gay people, membership of gay/bisexual groups, HIV serostatus, and disclosure of sexual orientation. Internalized homophobia is measurable and consists of four dimensions that are associated significantly with low disclosure, shorter length of and satisfaction with relationships, lower degree of sexual attraction to men and higher degree of attraction to women, and lower social time with gay people.

  17. GONOME: measuring correlations between GO terms and genomic positions

    PubMed Central

    Stanley, Stefan M; Bailey, Timothy L; Mattick, John S

    2006-01-01

    Background: Current methods to find significantly under- and over-represented gene ontology (GO) terms in a set of genes consider the genes as equally probable "balls in a bag", as may be appropriate for transcripts in micro-array data. However, due to the varying length of genes and intergenic regions, that approach is inappropriate for deciding if any GO terms are correlated with a set of genomic positions. Results: We present an algorithm – GONOME – that can determine which GO terms are significantly associated with a set of genomic positions given a genome annotated with (at least) the starts and ends of genes. We show that certain GO terms may appear to be significantly associated with a set of randomly chosen positions in the human genome if gene lengths are not considered, and that these same terms have been reported as significantly over-represented in a number of recent papers. This apparent over-representation disappears when gene lengths are considered, as GONOME does. For example, we show that, when gene length is taken into account, the term "development" is not significantly enriched in genes associated with human CpG islands, in contradiction to a previous report. We further demonstrate the efficacy of GONOME by showing that occurrences of the proteosome-associated control element (PACE) upstream activating sequence in the S. cerevisiae genome associate significantly to appropriate GO terms. An extension of this approach yields a whole-genome motif discovery algorithm that allows identification of many other promoter sequences linked to different types of genes, including a large group of previously unknown motifs significantly associated with the terms 'translation' and 'translational elongation'. Conclusion: GONOME is an algorithm that correctly extracts over-represented GO terms from a set of genomic positions. By explicitly considering gene size, GONOME avoids a systematic bias toward GO terms linked to large genes. Inappropriate use of

  18. The concordance correlation coefficient for repeated measures estimated by variance components.

    PubMed

    Carrasco, Josep L; King, Tonya S; Chinchilli, Vernon M

    2009-01-01

    The concordance correlation coefficient (CCC) is an index that is commonly used to assess the degree of agreement between observers on measuring a continuous characteristic. Here, a CCC for longitudinal repeated measurements is developed through the appropriate specification of the intraclass correlation coefficient from a variance components linear mixed model. A case example and the results of a simulation study are provided.

  19. Correlation coefficient measurement of the mode-locked laser tones using four-wave mixing.

    PubMed

    Anthur, Aravind P; Panapakkam, Vivek; Vujicic, Vidak; Merghem, Kamel; Lelarge, Francois; Ramdane, Abderrahim; Barry, Liam P

    2016-06-01

    We use four-wave mixing to measure the correlation coefficient of comb tones in a quantum-dash mode-locked laser under passive and active locked regimes. We study the uncertainty in the measurement of the correlation coefficient of the proposed method.

  20. von Neumann measurement-related matrices and the nullity condition for quantum correlation

    NASA Astrophysics Data System (ADS)

    Zhao, MingJing; Ma, Teng; Zhang, TingGui; Fei, Shao-Ming

    2016-12-01

    We study von Neumann measurement-related matrices, and the nullity condition of quantum correlation. We investigate the properties of these matrices that are related to a von Neumann measurement. It is shown that these ( m 2 - 1) × ( m 2 - 1) matrices are idempotent, and have rank m - 1. These properties give rise to necessary conditions for the nullity of quantum correlations in bipartite systems. Finally, as an example we discuss quantum correlation in Bell diagonal states.

  1. Surface roughness measurement on a wing aircraft by speckle correlation.

    PubMed

    Salazar, Félix; Barrientos, Alberto

    2013-09-05

    The study of the damage of aeronautical materials is important because it may change the microscopic surface structure profiles. The modification of geometrical surface properties can cause small instabilities and then a displacement of the boundary layer. One of the irregularities we can often find is surface roughness. Due to an increase of roughness and other effects, there may be extra momentum losses in the boundary layer and a modification in the parasite drag. In this paper we present a speckle method for measuring the surface roughness on an actual unmanned aircraft wing. The results show an inhomogeneous roughness distribution on the wing, as expected according to the anisotropic influence of the winds over the entire wing geometry. A calculation of the uncertainty of the technique is given.

  2. Surface Roughness Measurement on a Wing Aircraft by Speckle Correlation

    PubMed Central

    Salazar, Félix; Barrientos, Alberto

    2013-01-01

    The study of the damage of aeronautical materials is important because it may change the microscopic surface structure profiles. The modification of geometrical surface properties can cause small instabilities and then a displacement of the boundary layer. One of the irregularities we can often find is surface roughness. Due to an increase of roughness and other effects, there may be extra momentum losses in the boundary layer and a modification in the parasite drag. In this paper we present a speckle method for measuring the surface roughness on an actual unmanned aircraft wing. The results show an inhomogeneous roughness distribution on the wing, as expected according to the anisotropic influence of the winds over the entire wing geometry. A calculation of the uncertainty of the technique is given. PMID:24013488

  3. Measurement of steel plate perforation tests with digital image correlation.

    SciTech Connect

    Cordova, Theresa Elena; Reu, Phillip L.; Vangoethem, Douglas J.

    2009-03-01

    The results of a series of punch-through tests performed on steel plates are presented. The geometry consisted of circular plates with welded boundary condition penetrated by a conical shaped punch with either a radiused or flat cylindrical end. After initial failure, the conical portion of the punch was driven through the plate to exercise tearing mechanics. Tests were performed quasi-statically with a hydraulic actuator and dynamically using a high-capacity drop table. Deformation and strain were measured with a stereo DIC system. The quasi-static tests utilized a conventional direct-view DIC technique while the dynamic tests required development of an indirect-view technique using a mirror. Experimental details used to conduct the test series will be presented along with test results. Methods of assessing test-to-test repeatability will be discussed. DIC results will also be synchronized and compared with transducer data (displacement and strain).

  4. Staphylococcus aureus and Lipopolysaccharide Modulate Gene Expressions of Drug Transporters in Mouse Mammary Epithelial Cells Correlation to Inflammatory Biomarkers

    PubMed Central

    Yagdiran, Yagmur; Tallkvist, Jonas; Artursson, Karin

    2016-01-01

    Inflammation in the mammary gland (mastitis) is the most common disease in dairy herds worldwide, often caused by the pathogens Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Little is known about the effects of mastitis on drug transporters and the impact on transporter-mediated excretion of drugs into milk. We used murine mammary epithelial HC11 cells, after lactogenic differentiation into a secreting phenotype, and studied gene expressions of ABC- and SLC- transporters after treatment of cells with S. aureus and lipopolysaccharide, an endotoxin secreted by E. coli. The studied transporters were Bcrp, Mdr1, Mrp1, Oatp1a5, Octn1 and Oct1. In addition, Csn2, the gene encoding β-casein, was analyzed. As biomarkers of the inflammatory response, gene expressions of the cytokines Il6 and Tnfα and the chemokine Cxcl2 were determined. Our results show that S. aureus and LPS treatment of cells, at non-cytotoxic concentrations, induced an up-regulation of Mdr1 and of the inflammatory biomarkers, except that Tnfα was not affected by lipopolysaccharide. By simple regression analysis we could demonstrate statistically significant positive correlations between each of the transporters with each of the inflammatory biomarkers in cells treated with S. aureus. The coefficients of determination (R2) were 0.7–0.9 for all but one correlation. After treatment of cells with lipopolysaccharide, statistically significant correlations were only found between Mdr1 and the two parameters Cxcl2 and Il6. The expression of Csn2 was up-regulated in cells treated with S. aureus, indicating that the secretory function of the cells was not impaired. The strong correlation in gene expressions between transporters and inflammatory biomarkers may suggest a co-regulation and that the transporters have a role in the transport of cytokines and chemokines. Our results demonstrate that transporters in mammary cells can be affected by infection, which may have an impact on

  5. Comparison of cryogenic limb array etalon spectrometer (CLAES) ozone observations with correlative measurements

    NASA Astrophysics Data System (ADS)

    Bailey, P. L.; Edwards, D. P.; Gille, J. C.; Lyjak, L. V.; Massie, S. T.; Roche, A. E.; Kumer, J. B.; Mergenthaler, J. L.; Connor, B. J.; Gunson, M. R.; Margitan, J. J.; McDermid, I. S.; McGee, T. J.

    1996-04-01

    Ozone measurements made by the Cryogenic Limb Array Etalon Spectrometer (CLAES) aboard the NASA Upper Atmosphere Research Satellite (UARS) are compared to nearly coincident correlative measurements taken in 1992 and 1993 and to mean ozone distributions observed by other satellite instruments during past missions. This paper describes the CLAES measurement characteristics, uncertainties, predicted, and observed precisions and compares the observations with independent measurements both qualitatively and statistically. Satellite- and ground-based remote sensing as well as balloon-borne in situ measurements are represented in the correlative data set. The CLAES data are shown to be within ±20% of all correlative measurements between 0.5 and 30 mbar. Differences at lower altitudes may be related to effects of the Pinatubo aerosol on certain of the correlative measurements and the CLAES retrieval. Comparisons with historical data from the LIMS, SAGE II, and SBUV instruments indicate good agreement with the spatial and seasonal ozone distributions seen by CLAES.

  6. Association between low-activity serotonin transporter genotype and heroin dependence: behavioral and personality correlates.

    PubMed

    Gerra, G; Garofano, L; Santoro, G; Bosari, S; Pellegrini, C; Zaimovic, A; Moi, G; Bussandri, M; Moi, A; Brambilla, F; Donnini, C

    2004-04-01

    In previous studies, serotonin (5-HT) system disturbance was found involved in a variety of behavioral disorders, psychopathologies, and substance use disorders. A functional polymorphism in the promoter region of the human serotonin transporter gene (5-HTTLPR) was recently identified and the presence of the short (S) allele found to be associated with a lower level of expression of the gene, lower levels of 5-HT uptake, type 2 alcoholism, violence and suicidal behavior. In the present study, 101 heroin addicts (males, West European, Caucasians) and 101 healthy control subjects matched for race and gender, with no history of substance use disorder, have been genotyped. Aggressiveness levels were measured in both heroin addicts and controls utilizing Buss-Durkee-Hostility-Inventory (BDHI). Data about suicide attempt and violent criminal behavior in subject history have been collected. The short-short (SS) genotype frequency was significantly higher among heroin dependent individuals compared with control subjects (P = 0.025). The odds ratio for the SS genotype versus the long-long (LL) genotype frequency was 0.69, 95% Cl (0.49-0.97), when heroin addicts were compared with healthy controls. The SS genotype frequency was significantly higher among violent heroin dependent individuals compared with addicted individuals without aggressive behavior (P = 0.02). BDHI mean total scores and suspiciousness and negativism subscales scores were significantly higher in SS individuals, in comparison with LL subjects, among heroin addicts. No association was found between SS genotype and suicide history. Our data suggest that a decreased expression of the gene encoding the 5-HTT transporter, due to "S" promoter polymorphism, may be associated with an increased risk for substance use disorders, particularly in the subjects with more consistent aggressiveness and impulsiveness.

  7. Correlation Between Heterogeneous Bacterial Attachment Rate Coefficients and Hydraulic Conductivity and Impacts on Field-Scale Bacterial Transport

    SciTech Connect

    Scheibe, Timothy D.

    2002-10-28

    In granular porous media, bacterial transport is often modeled using the advection-dispersion transport equation, modified to account for interactions between the bacteria and grain surfaces (attachment and detachment) using a linear kinetic reaction model. In this paper we examine the relationships among the parameters of the above model in the context of bacterial transport for bioaugmentation. In this context, we wish to quantify the distance to which significant concentrations of bacteria can be transported, as well as the uniformity with which they can be distributed within the subsurface. Because kinetic detachment rates (Kr) are typically much smaller than corresponding attachment rates (Kf), the attachment rate exerts primary control on the distance of bacterial transport. Hydraulic conductivity (K) also plays a significant role because of its direct relationship to the advective velocity and its typically high degree of spatial variability at field scales. Because Kf is related to the velocity, grain size, and porosity of the medium, as is K, we expect that there exists correlation between these two parameters. Previous investigators have assumed a form of correlation between Kf and ln(K) based in part on reparameterization of clean-bed filtration equations in terms of published relations between grain size, effective porosity, and ln(K). The hypotheses examined here are that (1) field-scale relationships between K and Kf can be developed by combining a number of theoretical and empirical results in the context of a heterogeneous aquifer flow model (following a similar approach to previous investigators with some extensions), and (2) correlation between K and Kf will enhance the distance of field-scale bacterial transport in granular aquifers. We test these hypotheses using detailed numerical models and observations of field-scale bacterial transport in a shallow sandy aquifer within the South Oyster Site near Oyster, Virginia, USA.

  8. Measurement of minority carrier transport parameters in heavily doped n-type silicon

    NASA Technical Reports Server (NTRS)

    Delalamo, J.; Swanson, R. M.

    1985-01-01

    Measurement of minority transport parameters in heavily doped silicon is covered. The basic transport equations were used to define two independent parameters. Use of special vertical and lateral transistor test devices permitted the measurement of both parameters. Prior studies were normalized to show excellent agreement over the heavy doping region.

  9. [Correlations of lipoprotein metabolism indicators in persons with low and high cholesterol ester transport activity].

    PubMed

    Tvorogova, M G; Rozhkova, T A; Kukharchuk, V V; Titov, V N

    1999-01-01

    For clarifying the role of plasma cholesterol ester transfer activity (CETA) in forming hyperlipoproteinemia (HLP) and determination of high density lipoproteins cholesterol (Ch HDL) level, lipoprotein metabolism indicators were compared for individuals with high and low CETA. 257 subjects were investigated: 195 patients with different forms of hereditary HLP and individuals without HLP: 34 healthy and 28 with coronary heart disease (CHD). Lipids were determined enzymatically, apoproteins content by immunoturbodimetric and immunodiffusion methods. CETA and cholesterol esterification rate (CER) were measured through autological methods. Selected groups of patients with high and low CETA were significantly distinguished only by plasma Ch level (average Ch > 6.2 mmol/l in both groups), free Ch HDL and CER. The groups were not significantly different by men-women ratio (chi 2 = 0.016, p = 0.9) and CHD patients share (chi 2 = 0.126, p = 0.723). The correlation between CETA and Ch levels was significant for healthy individuals only. The data does not correspond to assumption of exclusively atherogenic influence of high CETA: 1) no correlation between CETA and atherogenic parameters of LP metabolism among different HLP forms was found; 2) Ch HDL levels were not distinguished at high and low CETA; 3) no domination of CHD patients among the subjects with high CETA was found.

  10. A correlation between surface, transport and thermo-elastic properties of liquid hydrocarbon: an experimental investigation

    NASA Astrophysics Data System (ADS)

    George, A. K.; Arafin, S.; Singh, R. N.; Carboni, C.

    2006-04-01

    The temperature dependence of surface tension and viscosity has been investigated in two multi-component liquid hydrocarbons, namely, crude oil samples with different API numbers. The surface tension is found to decrease linearly with temperature whereas viscosity exhibits Arrhenius type variation. These measured values along with the ultrasound velocity, density and the isothermal compressibility have been used to estimate a number of physical parameters such as the activation energy, attenuation factor and the shear wave velocity. Crude oil with larger API was found to have smaller activation energy. Shear velocity decreases exponentially with increasing temperature while the attenuation factor is found to increase linearly with temperature. The ratio of the surface tension to viscosity varies linearly as the square root of temperature. The product of the surface tension and the isothermal compressibility, often characterized as a fundamental or correlation length of the surface of the liquid, was found to yield a constant value for both samples.

  11. Actin Polymerization Driven Mitochondrial Transport in Mating S. cerevisiae by Fourier Imaging Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Senning, Eric; Marcus, Andrew

    2010-03-01

    The dynamic microenvironment of cells depends on macromolecular architecture, equilibrium fluctuations, and non-equilibrium forces generated by cytoskeletal proteins. We studied the influence of these factors on the motions of mitochondria in mating S. cerevisiae using Fourier imaging correlation spectroscopy (FICS). Our measurements provide detailed, length scale dependent information about the dynamic behavior of mitochondria. We investigate the influence of the actin cytoskeleton on mitochondrial motion, and make comparisons between conditions in which actin network assembly and disassembly is varied, either by using disruptive pharmacological agents, or mutations that alter the rates of actin polymerization. We find that non-equilibrium forces associated with actin polymerization lead to a 1.5-fold enhancement of the long-time mitochondrial diffusion coefficient, and a transient sub-diffusive temporal scaling of the mean-square displacement. Our results lend support to an existing model in which these forces are directly coupled to mitochondrial membrane surfaces.

  12. Measurement and modeling of phosphorous transport in shallow groundwater environments

    NASA Astrophysics Data System (ADS)

    Hendricks, G. S.; Shukla, S.; Obreza, T. A.; Harris, W. G.

    2014-08-01

    Leaching of phosphorus (P) from agricultural soils, especially those that are sandy, is adversely impacting P-limited ecosystems like Florida's Everglades. A more developed understanding of P and water management strategies and their effects on P leaching is needed to achieve reductions in subsurface P losses, especially from intensively managed dual cropping systems under plastic mulch in shallow water regions. We compared the effects of conservation P and water management strategies with traditional practices on P transport to groundwater. A 3-year experiment was conducted on hydrologically isolated plots with plastic-mulched successive cropping systems to compare high (HEI) and soil test based recommended (REI) external input (water and fertilizer P) systems with traditional sub-irrigation (seepage), and REI with a potential water conservation subsurface drip irrigation system (REI-SD) with regard to groundwater P concentrations above and below the low conductivity spodic horizon (Bh). The REI treatments had higher available storage for rainfall and P than HEI. Use of both REI systems (REI = 2098 μg/L and REI-SD = 2048 μg/L) reduced groundwater P concentrations above the Bh horizon by 33% compared to HEI (3090 μg/L), and results were significant at the 0.05 level. Although the subsurface drip system saved water, it did not offer any groundwater quality (P) benefit. Mixing and dilution of influent P below the low conductivity Bh horizon between treatments and with the regional groundwater system resulted in no significant differences in groundwater P concentration below the Bh horizon. Groundwater P concentrations from this study were higher than reported elsewhere due to low soil P storage capacity (SPSC), high hydraulic conductivity of sandy soils, and a high water table beneath crop beds. The HEI system leached more P due to ferilizer P in excess of SPSC and used higher irrigation volumes compared with REI systems. Despite a 40% difference in the average

  13. Measurement and modeling of phosphorous transport in shallow groundwater environments.

    PubMed

    Hendricks, G S; Shukla, S; Obreza, T A; Harris, W G

    2014-08-01

    Leaching of phosphorus (P) from agricultural soils, especially those that are sandy, is adversely impacting P-limited ecosystems like Florida's Everglades. A more developed understanding of P and water management strategies and their effects on P leaching is needed to achieve reductions in subsurface P losses, especially from intensively managed dual cropping systems under plastic mulch in shallow water regions. We compared the effects of conservation P and water management strategies with traditional practices on P transport to groundwater. A 3-year experiment was conducted on hydrologically isolated plots with plastic-mulched successive cropping systems to compare high (HEI) and soil test based recommended (REI) external input (water and fertilizer P) systems with traditional sub-irrigation (seepage), and REI with a potential water conservation subsurface drip irrigation system (REI-SD) with regard to groundwater P concentrations above and below the low conductivity spodic horizon (Bh). The REI treatments had higher available storage for rainfall and P than HEI. Use of both REI systems (REI=2098μg/L and REI-SD=2048μg/L) reduced groundwater P concentrations above the Bh horizon by 33% compared to HEI (3090μg/L), and results were significant at the 0.05 level. Although the subsurface drip system saved water, it did not offer any groundwater quality (P) benefit. Mixing and dilution of influent P below the low conductivity Bh horizon between treatments and with the regional groundwater system resulted in no significant differences in groundwater P concentration below the Bh horizon. Groundwater P concentrations from this study were higher than reported elsewhere due to low soil P storage capacity (SPSC), high hydraulic conductivity of sandy soils, and a high water table beneath crop beds. The HEI system leached more P due to ferilizer P in excess of SPSC and used higher irrigation volumes compared with REI systems. Despite a 40% difference in the average amount of

  14. Noninvasive neutron scattering measurements reveal slower cholesterol transport in model lipid membranes.

    PubMed

    Garg, S; Porcar, L; Woodka, A C; Butler, P D; Perez-Salas, U

    2011-07-20

    Proper cholesterol transport is essential to healthy cellular activity and any abnormality can lead to several fatal diseases. However, complete understandings of cholesterol homeostasis in the cell remains elusive, partly due to the wide variability in reported values for intra- and intermembrane cholesterol transport rates. Here, we used time-resolved small-angle neutron scattering to measure cholesterol intermembrane exchange and intramembrane flipping rates, in situ, without recourse to any external fields or compounds. We found significantly slower transport kinetics than reported by previous studies, particularly for intramembrane flipping where our measured rates are several orders of magnitude slower. We unambiguously demonstrate that the presence of chemical tags and extraneous compounds employed in traditional kinetic measurements dramatically affect the system thermodynamics, accelerating cholesterol transport rates by an order of magnitude. To our knowledge, this work provides new insights into cholesterol transport process disorders, and challenges many of the underlying assumptions used in most cholesterol transport studies to date.

  15. Noninvasive Neutron Scattering Measurements Reveal Slower Cholesterol Transport in Model Lipid Membranes

    PubMed Central

    Garg, S.; Porcar, L.; Woodka, A.C.; Butler, P.D.; Perez-Salas, U.

    2011-01-01

    Proper cholesterol transport is essential to healthy cellular activity and any abnormality can lead to several fatal diseases. However, complete understandings of cholesterol homeostasis in the cell remains elusive, partly due to the wide variability in reported values for intra- and intermembrane cholesterol transport rates. Here, we used time-resolved small-angle neutron scattering to measure cholesterol intermembrane exchange and intramembrane flipping rates, in situ, without recourse to any external fields or compounds. We found significantly slower transport kinetics than reported by previous studies, particularly for intramembrane flipping where our measured rates are several orders of magnitude slower. We unambiguously demonstrate that the presence of chemical tags and extraneous compounds employed in traditional kinetic measurements dramatically affect the system thermodynamics, accelerating cholesterol transport rates by an order of magnitude. To our knowledge, this work provides new insights into cholesterol transport process disorders, and challenges many of the underlying assumptions used in most cholesterol transport studies to date. PMID:21767489

  16. Apparatus for the measurement of radionuclide transport rates in rock cores

    SciTech Connect

    Weed, H.C.; Koszykowski, R.F.; Dibley, L.L.; Murray, I.

    1981-09-01

    An apparatus and procedure for the study of radionuclide transport in intact rock cores are presented in this report. This equipment more closely simulates natural conditions of radionuclide transport than do crushed rock columns. The apparatus and the procedure from rock core preparation through data analysis are described. The retardation factors measured are the ratio of the transport rate of a non-retarded radionuclide, such as /sup 3/H, to the transport rate of a retarded radionuclide. Sample results from a study of the transport of /sup 95m/Tc and /sup 85/Sr in brine through a sandstone core are included.

  17. Ultrasonic velocity measurement using phase-slope cross-correlation methods

    NASA Technical Reports Server (NTRS)

    Hull, D. R.; Kautz, H. E.; Vary, A.

    1984-01-01

    Computer implemented phase-slope and cross-correlation methods are introduced for measuring time delays between pairs of broadband ultrasonic pulse-echo signals for determining velocity in engineering materials. The phase-slope and cross-correlation methods are compared with the overlap method which is currently in wide use. Comparison of digital versions of the three methods shows similar results for most materials having low ultrasonic attenuation. However, the cross-correlation method is preferred for highly attenuating materials. An analytical basis for the cross-correlation method is presented. Examples are given for the three methods investigated to measure velocity in representative materials in the megahertz range.

  18. Psychological Correlates of Self-Reported and Objectively Measured Physical Activity among Chinese Children—Psychological Correlates of PA

    PubMed Central

    Wang, Jing-Jing; Baranowski, Tom; Lau, Patrick W. C.; Chen, Tzu-An; Zhang, Shu-Ge

    2016-01-01

    This study aimed to explore the associations among psychological correlates and physical activity (PA) in Chinese children and to further examine whether these associations varied by different PA measures. PA self-efficacy, motivation, and preference were reported in 449 8–13-year-old Chinese children (252 males). Moderate- to vigorous- intensity PA (MVPA) was measured by the Physical Activity Questionnaire for Older Children (PAQ-C) and with an ActiGraph GT3X accelerometer. Correlations and hierarchical regressions were performed to explore their associations. The study psychological variables were all positively related to PAQ-C and objective MVPA (r: 0.22–0.63). The associations with PAQ-C were all substantially stronger than those with accelerometry. Beyond the explained variance accounted for by demographics and social desirability, the addition of the psychological correlates accounted for 45% of the variance of the PAQ-C score, while only 13% for accelerometry-based MVPA. The associations of specific variables with the PAQ-C score (age, PA self-efficacy, autonomous motivation and preference) were somewhat different from those associated with objective MVPA (PA self-efficacy, autonomous motivation, and negatively associated with female gender). This study demonstrated the importance of self-efficacy and autonomous motivation in association with PA and indicated the difference in level of their associations with different PA measures. PMID:27754396

  19. Correlation between macroscopic transport parameters and microscopic electrical properties in GaN

    NASA Astrophysics Data System (ADS)

    Witte, H.; Krtschil, A.; Schrenk, E.; Fluegge, K.; Dadgar, A.; Krost, A.

    2005-02-01

    In GaN layers grown by metal-organic vapor phase epitaxy on sapphire substrates the temperature-dependent Hall (TDH) and photo-Hall-effect (PHE) measurements show essential differences between undoped and Si-doped GaN. In undoped GaN the maximum of the Hall mobility occurs at temperatures near 300K with a low value. In PHE, an illumination introduces an enhancement of the mobility and a decrease of the electron density. In contrast, in Si-doped GaN the maximum Hall mobility is higher by a factor of 10 and is observed at temperatures between 100 and 180K. The photoinduced changes in the mobility and electron density are only marginal. Intensity dependent PHE measurements suggest the existence of internal potential barriers caused by inhomogeneities in the undoped samples. These results are combined with the surface-potential roughness on a microscale, as determined by scanning surface-potential microscopy (SSPM). In SSPM the undoped layers show strong potential fluctuations while they are lower for the Si-doped GaN samples. A correlation among the rms roughness of the surface potential, the maximum Hall mobility in TDH, and the maximum changes of the photo-Hall mobility is observed. In undoped GaN the mobility seems to be determined by the scattering at inner potential barriers stemming from structural inhomogeneities.

  20. Utilizing Turbidity and Measurements of Suspended Sediment Concentrations to Better Understand Sediment Transport within Urban Streams

    NASA Astrophysics Data System (ADS)

    Elkins, T. M.; Napieralski, J. A.

    2009-12-01

    The Rouge River watershed in Southeast Michigan is an urban watershed, which has been exposed to more than 100 years of anthropogenic activities related to industrialization and urbanization. This urbanization has degraded water quality by increasing erosion and altering the transport mechanism and chemistry of bed and suspended sediments. This study aims to explore the relationship between development within the Lower Rouge watershed and watershed hydrology through an examination of USGS discharge data, stream water quality and suspended sediment loads during storm and base flow. Two YSI dataloggers are used to continuously measure water quality parameters during baseflow and storm events (varying hydrologic conditions), including: turbidity, dissolved oxygen, conductivity, salinity, total dissolved solids, and temperature. Depth-integrated sediment samples are collected and analyzed for sediment concentration using Imhoff cones and filtration methods. Correlations between discharge weighted continuous turbidity measurements and discharge weighted suspended sediment samples are used to estimate sediment loads; essentially, turbidity readings and measured sediment concentrations form a near-linear relationship. In addition, sediment samples are analyzed for inorganic heavy metal contaminants common to Southeast Michigan to characterize both suspended sediments and sediments frequently deposited on adjacent floodplains. These metals (i.e. Lead, Copper, Chromium, Nickle) are commonly known as the “Michigan Metals” and represent indicator species of mobilized and deposited contaminants associated with urbanization and industrialization. The results will provide a baseline for better understanding the transport and fate of contaminated sediments within the Rouge watershed, as well as guide ongoing development and management practices along the Rouge River.

  1. Catalytic conversion in nanoporous materials: Concentration oscillations and spatial correlations due to inhibited transport and intermolecular interactions

    SciTech Connect

    Garcia, Andres; Evans, James W.

    2016-11-03

    We show that steady-state catalytic conversion in nanoporous materials can occur in a quasi-counter-diffusion mode with the reactant (product) concentration strongly decaying (growing) into the pore, but also with oscillations in the total concentration. These oscillations reflect the response of the fluid to the transition from an extended to a confined environment near the pore opening. We focus on the regime of strongly inhibited transport in narrow pores corresponding to single-file diffusion. Here, limited penetration of the reactant into the pores and the associated low reaction yield is impacted by strong spatial correlations induced by both reaction (non-equilibrium correlations) and also by intermolecular interactions (thermodynamic correlations). We develop a generalized hydrodynamic formulation to effectively describe inhibited transport accounting for the effect of these correlations, and incorporate this description of transport into appropriate reaction-diffusion equations. These equations accurately describe both shorter-range concentration oscillations near the pore opening and the longer-range mesoscale variation of concentration profiles in the pore (and thus also describe reaction yield). Success of the analytic theory is validated by comparison with a precise kinetic Monte Carlo simulation of an appropriate molecular-level stochastic reaction-diffusion model. As a result, this work elucidates unconventional chemical kinetics in interacting confined systems.

  2. Catalytic conversion in nanoporous materials: Concentration oscillations and spatial correlations due to inhibited transport and intermolecular interactions

    DOE PAGES

    Garcia, Andres; Evans, James W.

    2016-11-03

    We show that steady-state catalytic conversion in nanoporous materials can occur in a quasi-counter-diffusion mode with the reactant (product) concentration strongly decaying (growing) into the pore, but also with oscillations in the total concentration. These oscillations reflect the response of the fluid to the transition from an extended to a confined environment near the pore opening. We focus on the regime of strongly inhibited transport in narrow pores corresponding to single-file diffusion. Here, limited penetration of the reactant into the pores and the associated low reaction yield is impacted by strong spatial correlations induced by both reaction (non-equilibrium correlations) andmore » also by intermolecular interactions (thermodynamic correlations). We develop a generalized hydrodynamic formulation to effectively describe inhibited transport accounting for the effect of these correlations, and incorporate this description of transport into appropriate reaction-diffusion equations. These equations accurately describe both shorter-range concentration oscillations near the pore opening and the longer-range mesoscale variation of concentration profiles in the pore (and thus also describe reaction yield). Success of the analytic theory is validated by comparison with a precise kinetic Monte Carlo simulation of an appropriate molecular-level stochastic reaction-diffusion model. As a result, this work elucidates unconventional chemical kinetics in interacting confined systems.« less

  3. Catalytic conversion in nanoporous materials: Concentration oscillations and spatial correlations due to inhibited transport and intermolecular interactions

    NASA Astrophysics Data System (ADS)

    García, Andrés; Evans, James W.

    2016-11-01

    We show that steady-state catalytic conversion in nanoporous materials can occur in a quasi-counter-diffusion mode with the reactant (product) concentration strongly decaying (growing) into the pore, but also with oscillations in the total concentration. These oscillations reflect the response of the fluid to the transition from an extended to a confined environment near the pore opening. We focus on the regime of strongly inhibited transport in narrow pores corresponding to single-file diffusion. Here, limited penetration of the reactant into the pores and the associated low reaction yield is impacted by strong spatial correlations induced by both reaction (non-equilibrium correlations) and also by intermolecular interactions (thermodynamic correlations). We develop a generalized hydrodynamic formulation to effectively describe inhibited transport accounting for the effect of these correlations, and incorporate this description of transport into appropriate reaction-diffusion equations. These equations accurately describe both shorter-range concentration oscillations near the pore opening and the longer-range mesoscale variation of concentration profiles in the pore (and thus also describe reaction yield). Success of the analytic theory is validated by comparison with a precise kinetic Monte Carlo simulation of an appropriate molecular-level stochastic reaction-diffusion model. This work elucidates unconventional chemical kinetics in interacting confined systems.

  4. Correlation Between Bacterial Attachment Rate Coefficients and Hydraulic Conductivity and its Effect on Field-Scale Bacterial Transport

    SciTech Connect

    Scheibe, Timothy D.; Dong, Hailiang; Xie, YuLong

    2007-06-01

    It has been widely observed in field experiments that the apparent rate of bacterial attachment, particularly as parameterized by the collision efficiency in filtration-based models, decreases with transport distance (i.e., exhibits scale-dependency). This effect has previously been attributed to microbial heterogeneity; that is, variability in cell-surface properties within a single monoclonal population. We demonstrate that this effect could also be interpreted as a field-scale manifestation of local-scale correlation between physical heterogeneity (hydraulic conductivity variability) and reaction heterogeneity (attachment rate coefficient variability). A field-scale model of bacterial transport developed for the South Oyster field research site located near Oyster, Virginia, and observations from field experiments performed at that site, are used as the basis for this study. Three-dimensional Monte Carlo simulations of bacterial transport were performed under four alternative scenarios: 1) homogeneous hydraulic conductivity (K) and attachment rate coefficient (Kf), 2) heterogeneous K, homogeneous Kf, 3) heterogeneous K and Kf with local correlation based on empirical and theoretical relationships, and 4) heterogeneous K and Kf without local correlation. The results of the 3D simulations were analyzed using 1D model approximations following conventional methods of field data analysis. An apparent decrease with transport distance of effective collision efficiency was observed only in the case where the local properties were both heterogeneous and correlated. This effect was observed despite the fact that the local collision efficiency was specified as a constant in the 3D model, and can therefore be interpreted as a scale effect associated with the local correlated heterogeneity as manifested at the field scale.

  5. Seasonal variation of the O3-CO correlation derived from remote sensing measurements over western Japan

    NASA Astrophysics Data System (ADS)

    Ohyama, Hirofumi; Kawakami, Shuji; Uchino, Osamu; Sakai, Tetsu; Morino, Isamu; Nagai, Tomohiro; Shiomi, Kei; Sakashita, Masanori; Akaho, Taiga; Okumura, Hiroshi; Arai, Kohei

    2016-12-01

    We used a lower tropospheric ozone column (LTOC) and column-averaged dry-air mole fraction of carbon monoxide (XCO) data observed in the area around Saga, which is located in western Japan and is close to the Asian continent, with an aim to investigate whether these data can characterize the seasonal variation of the photochemical ozone (O3) formation in the northeast Asian Pacific rim region. The LTOC data after April 2009 were retrieved from thermal infrared spectra measured by the Thermal and Near Infrared Sensor for Carbon Observation-Fourier Transform Spectrometer (TANSO-FTS) onboard the Greenhouse Gases Observing Satellite (GOSAT). The XCO data after July 2011 were obtained from ground-based high-resolution FTS measurements at Saga. The retrieved LTOCs were validated with those derived from a differential absorption lidar for O3 at Saga. The LTOCs showed a distinct seasonal variation that reached a maximum in late spring (May or June) and a local minimum in winter. In addition to the general seasonal pattern, we observed pronounced minimums in July or August. The XCO concentrations showed a maximum in spring and a minimum in summer. These seasonal patterns are consistent with those observed from mountainous sites in Japan. The origins of the air masses reaching Saga were characterized for each season according to backward trajectories, and the factors causing the temporal variations of the LTOCs and the XCO were identified based on the transport paths of the air masses. The enhancement of the LTOC relative to the XCO (ΔO3/ΔCO ratio) reveals significant positive correlations in the spring and summer seasons with slopes of 0.21 and 0.45 ppb/ppb, respectively. The effects of stratospheric air intrusion on the observed ΔO3/ΔCO ratio in spring were investigated using meteorological data (backward trajectory and potential vorticity) and column-averaged hydrogen fluoride data derived from the ground-based FTS measurements. It was found that there was little

  6. Molecular alterations of canalicular transport systems in experimental models of cholestasis: possible functional correlations.

    PubMed Central

    Trauner, M.

    1997-01-01

    The discovery of unidirectional, ATP-dependent canalicular transport systems (also termed "export pumps") for bile salts, amphiphilic anionic conjugates, lipophilic cations, and phospholipids has opened new opportunities for understanding biliary physiology and the pathophysiology of cholestasis. In addition, ATP-independent canalicular transport systems for glutathione and bicarbonate contribute to (bile acid-independent) bile formation. Canalicular excretion of bile salts and several non-bile acid organic anions is impaired in various experimental models of cholestasis. Recent cloning of several canalicular transport systems now facilitates studies on their molecular regulation in cholestasis. Although the picture is far from complete, experimental evidence now exists that decreased or even absent expression of canalicular transport proteins may explain impaired transport function resulting in hyperbilirubinemia and cholestasis. With the increasing availability of molecular probes for these transport systems in humans, new information on the molecular regulation of canalicular transport proteins in human cholestatic liver diseases is beginning to emerge and should bring new insights into their pathophysiology and treatment. This article gives an overview on molecular alterations of canalicular transport systems in experimental models of cholestasis and discusses the potential implications of these changes for the pathophysiology of cholestasis. PMID:9626757

  7. Real time measurements of sediment transport and bed morphology during channel altering flow and sediment transport events

    NASA Astrophysics Data System (ADS)

    Curran, Joanna Crowe; Waters, Kevin A.; Cannatelli, Kristen M.

    2015-09-01

    Real-time measurements of bed changes over a reach are a missing piece needed to link bed morphology with sediment transport processes during unsteady flows when the bed adjusts quickly to changing transport rates or visual observation of the bed is precluded by fine sediment in the water column. A new technique is presented that provides continuous measurement of sediment movement over the length of a flume. A bedload monitoring system (BLMS) was developed that makes use of pressure pillows under a false flume bottom to measure sediment and water weights over discrete flume channel sections throughout a flow event. This paper details the construction of the BLMS and provides examples of its use in a laboratory setting to reconstruct bed slopes during unsteady flows and to create a real-time record of sediment transport rates across the flume channel bed during a sediment transporting flow. Data gathered from the BLMS compared well against techniques commonly in use in flume studies. When the BLMS was analyzed in conjunction with bed surface DEMs and differenced DEMs, a complete transport and bed adjustment picture was constructed. The difference DEMs provided information on the spatial extent of bed morphology changes. The BLMS supplied the data record necessary to reconstruct sediment transport records through the downstream channel, including locations and time periods of temporary sediment storage and supply. The BLMS makes it possible to construct a continuous record of the spatial distribution of sediment movement through the flume, including areas of temporary aggradation and degradation. Exciting implications of future research that incorporates a BLMS include a more informed management of river systems as a result of improved temporal predictions of sediment movement and the associated changes in channel slope and bed morphology.

  8. Site-resolved measurement of the spin-correlation function in the Fermi-Hubbard model

    NASA Astrophysics Data System (ADS)

    Parsons, Maxwell F.; Mazurenko, Anton; Chiu, Christie S.; Ji, Geoffrey; Greif, Daniel; Greiner, Markus

    2016-09-01

    Exotic phases of matter can emerge from strong correlations in quantum many-body systems. Quantum gas microscopy affords the opportunity to study these correlations with unprecedented detail. Here, we report site-resolved observations of antiferromagnetic correlations in a two-dimensional, Hubbard-regime optical lattice and demonstrate the ability to measure the spin-correlation function over any distance. We measure the in situ distributions of the particle density and magnetic correlations, extract thermodynamic quantities from comparisons to theory, and observe statistically significant correlations over three lattice sites. The temperatures that we reach approach the limits of available numerical simulations. The direct access to many-body physics at the single-particle level demonstrated by our results will further our understanding of how the interplay of motion and magnetism gives rise to new states of matter.

  9. Lagrangian transport model forecasts and a transport climatology for the Intercontinental Transport and Chemical Transformation 2002 (ITCT 2K2) measurement campaign

    NASA Astrophysics Data System (ADS)

    Forster, Caroline; Cooper, Owen; Stohl, Andreas; Eckhardt, Sabine; James, Paul; Dunlea, Edward; Nicks, Dennis K.; Holloway, John S.; Hübler, Gerd; Parrish, David D.; Ryerson, Tom B.; Trainer, Michael

    2004-04-01

    On the basis of Lagrangian tracer transport simulations this study presents an intercontinental transport climatology and tracer forecasts for the Intercontinental Transport and Chemical Transformation 2002 (ITCT 2K2) aircraft measurement campaign, which took place at Monterey, California, in April-May 2002 to measure Asian pollution arriving at the North American West Coast. For the climatology the average transport of an Asian CO tracer was calculated over a time period of 15 years using the particle dispersion model FLEXPART. To determine by how much the transport from Asia to North America during ITCT 2K2 deviated from the climatological mean, the 15-year average for April and May was compared with the average for April and May 2002 and that for the ITCT 2K2 period. It was found that 8% less Asian CO tracer arrived at the North American West Coast during the ITCT 2K2 period compared to the climatological mean. Below 8-km altitude, the maximum altitude of the research aircraft, 13% less arrived. Nevertheless, pronounced layers of Asian pollution were measured during 3 of the 13 ITCT 2K2 flights. FLEXPART was also successfully used as a forecasting tool for the flight planning during ITCT 2K2. It provided 3-day forecasts for three different anthropogenic CO tracers originating from Asia, North America, and Europe. In two case studies the forecast abilities of FLEXPART are analyzed and discussed by comparing the forecasts with measurement data and infrared satellite images. The model forecasts underestimated the measured CO enhancements by about a factor of 4, mainly because of an underestimation of the Asian emissions in the emission inventory and because of biomass-burning influence that was not modeled. Nevertheless, the intercontinental transport and dispersion of pollution plumes were qualitatively well predicted, and on the basis of the model results the aircraft could successfully be guided into the polluted air masses.

  10. Variance in population firing rate as a measure of slow time-scale correlation

    PubMed Central

    Snyder, Adam C.; Morais, Michael J.; Smith, Matthew A.

    2013-01-01

    Correlated variability in the spiking responses of pairs of neurons, also known as spike count correlation, is a key indicator of functional connectivity and a critical factor in population coding. Underscoring the importance of correlation as a measure for cognitive neuroscience research is the observation that spike count correlations are not fixed, but are rather modulated by perceptual and cognitive context. Yet while this context fluctuates from moment to moment, correlation must be calculated over multiple trials. This property undermines its utility as a dependent measure for investigations of cognitive processes which fluctuate on a trial-to-trial basis, such as selective attention. A measure of functional connectivity that can be assayed on a moment-to-moment basis is needed to investigate the single-trial dynamics of populations of spiking neurons. Here, we introduce the measure of population variance in normalized firing rate for this goal. We show using mathematical analysis, computer simulations and in vivo data how population variance in normalized firing rate is inversely related to the latent correlation in the population, and how this measure can be used to reliably classify trials from different typical correlation conditions, even when firing rate is held constant. We discuss the potential advantages for using population variance in normalized firing rate as a dependent measure for both basic and applied neuroscience research. PMID:24367326

  11. Molybdate transport in a chemically complex aquifer: Field measurements compared with solute-transport model predictions

    USGS Publications Warehouse

    Stollenwerk, K.G.

    1998-01-01

    A natural-gradient tracer test was conducted in an unconfined sand and gravel aquifer on Cape Cod, Massachusetts. Molybdate was included in the injectate to study the effects of variable groundwater chemistry on its aqueous distribution and to evaluate the reliability of laboratory experiments for identifying and quantifying reactions that control the transport of reactive solutes in groundwater. Transport of molybdate in this aquifer was controlled by adsorption. The amount adsorbed varied with aqueous chemistry that changed with depth as freshwater recharge mixed with a plume of sewage-contaminated groundwater. Molybdate adsorption was strongest near the water table where pH (5.7) and the concentration of the competing solutes phosphate (2.3 micromolar) and sulfate (86 micromolar) were low. Adsorption of molybdate decreased with depth as pH increased to 6.5, phosphate increased to 40 micromolar, and sulfate increased to 340 micromolar. A one-site diffuse-layer surface-complexation model and a two-site diffuse-layer surface-complexation model were used to simulate adsorption. Reactions and equilibrium constants for both models were determined in laboratory experiments and used in the reactive-transport model PHAST to simulate the two-dimensional transport of molybdate during the tracer test. No geochemical parameters were adjusted in the simulation to improve the fit between model and field data. Both models simulated the travel distance of the molybdate cloud to within 10% during the 2-year tracer test; however, the two-site diffuse-layer model more accurately simulated the molybdate concentration distribution within the cloud.

  12. Measurement of phloem transport rates by an indicator-dilution technique. [Triticum aestivum L

    SciTech Connect

    Fisher, D.B. )

    1990-10-01

    An indicator-dilution technique for the measurement of flow rates, commonly used by animal physiologists for circulation measurements, was adapted to the measurement of phloem translocation rates in the wheat (Triticum aestivum L.) peduncle. The approach is based on the observation that, during the transport of a given amount of solute, its mean concentration will be inversely proportional to flow rate. For phloem transport in the wheat peduncle, the necessary measurements are (a) the time course of tracer kinetics in the peduncle phloem, (b)the volume of sieve tubes and companion cells in the monitored segment of the peduncle, and (c) the amount of tracer transported past that point. The method was evaluated by in situ monitoring of {sup 32}PO{sub 4} transport in pulse-labeling experiments. Specific activities (i.e. {sup 32}P concentrations) of phloem exudate were in good agreement with those calculated from in situ count rates and measured phloem areas. Mass transport rates, calculated from volume flow rates and phloem exudate dry matter content, also agreed well with expected mass transport rates based on measurements of grain growth rate and net CO{sub 2} exchange by the ear. The indicator-dilution technique appears to offer good precision and accuracy for short-term measurements of phloem transport rates in the wheat peduncle and should be useful for other systems as well.

  13. Measurements of fluid transport by controllable vertical migrations of plankton

    NASA Astrophysics Data System (ADS)

    Houghton, Isabel A.; Dabiri, John O.

    2016-11-01

    Diel vertical migration of zooplankton has been proposed to be a significant contributor to local and possibly large-scale fluid transport in the ocean. However, studies of this problem to date have been limited to order-of-magnitude estimates based on first principles and a small number of field observations. In this work, we leverage the phototactic behavior of zooplankton to stimulate controllable vertical migrations in the laboratory and to study the associated fluid transport and mixing. Building upon a previous prototype system, a laser guidance system induces vertical swimming of brine shrimp (Artemia salina) in a 2.1 meter tall, density-stratified water tank. The animal swimming speed and spacing during the controlled vertical migration is characterized with video analysis. A schlieren imaging system is utilized to visualize density perturbations to a stable stratification for quantification of fluid displacement length scales and restratification timescales. These experiments can add to our understanding of the dynamics of active particles in stratified flows. NSF and US-Israel Binational Science Foundation.

  14. Thermal Transport Characteristics of Human Skin Measured In Vivo Using Ultrathin Conformal Arrays of Thermal Sensors and Actuators

    PubMed Central

    Webb, R. Chad; Pielak, Rafal M.; Bastien, Philippe; Ayers, Joshua; Niittynen, Juha; Kurniawan, Jonas; Manco, Megan; Lin, Athena; Cho, Nam Heon; Malyrchuk, Viktor; Balooch, Guive; Rogers, John A.

    2015-01-01

    Measurements of the thermal transport properties of the skin can reveal changes in physical and chemical states of relevance to dermatological health, skin structure and activity, thermoregulation and other aspects of human physiology. Existing methods for in vivo evaluations demand complex systems for laser heating and infrared thermography, or they require rigid, invasive probes; neither can apply to arbitrary regions of the body, offers modes for rapid spatial mapping, or enables continuous monitoring outside of laboratory settings. Here we describe human clinical studies using mechanically soft arrays of thermal actuators and sensors that laminate onto the skin to provide rapid, quantitative in vivo determination of both the thermal conductivity and thermal diffusivity, in a completely non-invasive manner. Comprehensive analysis of measurements on six different body locations of each of twenty-five human subjects reveal systematic variations and directional anisotropies in the characteristics, with correlations to the thicknesses of the epidermis (EP) and stratum corneum (SC) determined by optical coherence tomography, and to the water content assessed by electrical impedance based measurements. Multivariate statistical analysis establishes four distinct locations across the body that exhibit different physical properties: heel, cheek, palm, and wrist/volar forearm/dorsal forearm. The data also demonstrate that thermal transport correlates negatively with SC and EP thickness and positively with water content, with a strength of correlation that varies from region to region, e.g., stronger in the palmar than in the follicular regions. PMID:25658947

  15. Thermal transport characteristics of human skin measured in vivo using ultrathin conformal arrays of thermal sensors and actuators.

    PubMed

    Webb, R Chad; Pielak, Rafal M; Bastien, Philippe; Ayers, Joshua; Niittynen, Juha; Kurniawan, Jonas; Manco, Megan; Lin, Athena; Cho, Nam Heon; Malyrchuk, Viktor; Balooch, Guive; Rogers, John A

    2015-01-01

    Measurements of the thermal transport properties of the skin can reveal changes in physical and chemical states of relevance to dermatological health, skin structure and activity, thermoregulation and other aspects of human physiology. Existing methods for in vivo evaluations demand complex systems for laser heating and infrared thermography, or they require rigid, invasive probes; neither can apply to arbitrary regions of the body, offers modes for rapid spatial mapping, or enables continuous monitoring outside of laboratory settings. Here we describe human clinical studies using mechanically soft arrays of thermal actuators and sensors that laminate onto the skin to provide rapid, quantitative in vivo determination of both the thermal conductivity and thermal diffusivity, in a completely non-invasive manner. Comprehensive analysis of measurements on six different body locations of each of twenty-five human subjects reveal systematic variations and directional anisotropies in the characteristics, with correlations to the thicknesses of the epidermis (EP) and stratum corneum (SC) determined by optical coherence tomography, and to the water content assessed by electrical impedance based measurements. Multivariate statistical analysis establishes four distinct locations across the body that exhibit different physical properties: heel, cheek, palm, and wrist/volar forearm/dorsal forearm. The data also demonstrate that thermal transport correlates negatively with SC and EP thickness and positively with water content, with a strength of correlation that varies from region to region, e.g., stronger in the palmar than in the follicular regions.

  16. Femtosecond x rays link melting of charge-density wave correlations and light-enhanced coherent transport in YBa2Cu3O6.6

    DOE PAGES

    Först, M.; Frano, A.; Kaiser, S.; ...

    2014-11-17

    In this study, we use femtosecond resonant soft x-ray diffraction to measure the optically stimulated ultrafast changes of charge density wave correlations in underdoped YBa₂Cu₃O₆.₆. We find that when coherent interlayer transport is enhanced by optical excitation of the apical oxygen distortions, at least 50% of the in-plane charge density wave order is melted. These results indicate that charge ordering and superconductivity may be competing up to the charge ordering transition temperature, with the latter becoming a hidden phase that is accessible only by nonlinear phonon excitation.

  17. Nonequilibrium fluctuation-dissipation relations for one- and two-particle correlation functions in steady-state quantum transport.

    PubMed

    Ness, H; Dash, L K

    2014-04-14

    We study the non-equilibrium (NE) fluctuation-dissipation (FD) relations in the context of quantum thermoelectric transport through a two-terminal nanodevice in the steady-state. The FD relations for the one- and two-particle correlation functions are derived for a model of the central region consisting of a single electron level. Explicit expressions for the FD relations of the Green's functions (one-particle correlations) are provided. The FD relations for the current-current and charge-charge (two-particle) correlations are calculated numerically. We use self-consistent NE Green's functions calculations to treat the system in the absence and in the presence of interaction (electron-phonon) in the central region. We show that, for this model, there is no single universal FD theorem for the NE steady state. There are different FD relations for each different class of problems. We find that the FD relations for the one-particle correlation function are strongly dependent on both the NE conditions and the interactions, while the FD relations of the current-current correlation function are much less dependent on the interaction. The latter property suggests interesting applications for single-molecule and other nanoscale transport experiments.

  18. Correlation Attenuation Due to Measurement Error: A New Approach Using the Bootstrap Procedure

    ERIC Educational Resources Information Center

    Padilla, Miguel A.; Veprinsky, Anna

    2012-01-01

    Issues with correlation attenuation due to measurement error are well documented. More than a century ago, Spearman proposed a correction for attenuation. However, this correction has seen very little use since it can potentially inflate the true correlation beyond one. In addition, very little confidence interval (CI) research has been done for…

  19. Field methods to measure surface displacement and strain with the Video Image Correlation method

    NASA Technical Reports Server (NTRS)

    Maddux, Gary A.; Horton, Charles M.; Mcneill, Stephen R.; Lansing, Matthew D.

    1994-01-01

    The objective of this project was to develop methods and application procedures to measure displacement and strain fields during the structural testing of aerospace components using paint speckle in conjunction with the Video Image Correlation (VIC) system.

  20. Identification of Noise Sources in High Speed Jets via Correlation Measurements: A Review

    NASA Technical Reports Server (NTRS)

    Bridges, James (Technical Monitor); Panda, Jayanta

    2005-01-01

    Significant advancement has been made in the last few years to identify noise sources in high speed jets via direct correlation measurements. In this technique turbulent fluctuations in the flow are correlated with far field acoustics signatures. In the 1970 s there was a surge of work using mostly intrusive probes, and a few using Laser Doppler Velocimetry, to measure turbulent fluctuations. The later experiments established "shear noise" as the primary source for the shallow angle noise. Various interpretations and criticisms from this time are described in the review. Recent progress in the molecular Rayleigh scattering based technique has provided a completely non-intrusive means of measuring density and velocity fluctuations. This has brought a renewed interest on correlation measurements. We have performed five different sets of experiments in single stream jets of different Mach number, temperature ratio and nozzle configurations. The present paper tries to summarize the correlation data from these works.

  1. Variation and pearson correlation coefficients of warner-bratzler shear force measurements within broiler breast fillets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measurements of texture properties related to tenderness at different locations within deboned broiler breast fillets have been used to validate techniques for texture analysis and establish correlations between different texture evaluation methods. However, it has been demonstrated that meat text...

  2. Quantum dissipation theory and applications to quantum transport and quantum measurement in mesoscopic systems

    NASA Astrophysics Data System (ADS)

    Cui, Ping

    The thesis comprises two major themes of quantum statistical dynamics. One is the development of quantum dissipation theory (QDT). It covers the establishment of some basic relations of quantum statistical dynamics, the construction of several nonequivalent complete second-order formulations, and the development of exact QDT. Another is related to the applications of quantum statistical dynamics to a variety of research fields. In particular, unconventional but novel theories of the electron transfer in Debye solvents, quantum transport, and quantum measurement are developed on the basis of QDT formulations. The thesis is organized as follows. In Chapter 1, we present some background knowledge in relation to the aforementioned two themes of this thesis. The key quantity in QDT is the reduced density operator rho(t) ≡ trBrho T(t); i.e., the partial trace of the total system and bath composite rhoT(t) over the bath degrees of freedom. QDT governs the evolution of reduced density operator, where the effects of bath are treated in a quantum statistical manner. In principle, the reduced density operator contains all dynamics information of interest. However, the conventional quantum transport theory is formulated in terms of nonequilibrium Green's function. The newly emerging field of quantum measurement in relation to quantum information and quantum computing does exploit a sort of QDT formalism. Besides the background of the relevant theoretical development, some representative experiments on molecular nanojunctions are also briefly discussed. In chapter 2, we outline some basic (including new) relations that highlight several important issues on QDT. The content includes the background of nonequilibrium quantum statistical mechanics, the general description of the total composite Hamiltonian with stochastic system-bath interaction, a novel parameterization scheme for bath correlation functions, a newly developed exact theory of driven Brownian oscillator (DBO

  3. Correlation and agreement: overview and clarification of competing concepts and measures

    PubMed Central

    LIU, Jinyuan; TANG, Wan; CHEN, Guanqin; LU, Yin; FENG, Changyong; TU, Xin M.

    2016-01-01

    Summary: Agreement and correlation are widely-used concepts that assess the association between variables. Although similar and related, they represent completely different notions of association. Assessing agreement between variables assumes that the variables measure the same construct, while correlation of variables can be assessed for variables that measure completely different constructs. This conceptual difference requires the use of different statistical methods, and when assessing agreement or correlation, the statistical method may vary depending on the distribution of the data and the interest of the investigator. For example, the Pearson correlation, a popular measure of correlation between continuous variables, is only informative when applied to variables that have linear relationships; it may be non-informative or even misleading when applied to variables that are not linearly related. Likewise, the intraclass correlation, a popular measure of agreement between continuous variables, may not provide sufficient information for investigators if the nature of poor agreement is of interest. This report reviews the concepts of agreement and correlation and discusses differences in the application of several commonly used measures. PMID:27605869

  4. Correlation and agreement: overview and clarification of competing concepts and measures.

    PubMed

    Liu, Jinyuan; Tang, Wan; Chen, Guanqin; Lu, Yin; Feng, Changyong; Tu, Xin M

    2016-04-25

    Agreement and correlation are widely-used concepts that assess the association between variables. Although similar and related, they represent completely different notions of association. Assessing agreement between variables assumes that the variables measure the same construct, while correlation of variables can be assessed for variables that measure completely different constructs. This conceptual difference requires the use of different statistical methods, and when assessing agreement or correlation, the statistical method may vary depending on the distribution of the data and the interest of the investigator. For example, the Pearson correlation, a popular measure of correlation between continuous variables, is only informative when applied to variables that have linear relationships; it may be non-informative or even misleading when applied to variables that are not linearly related. Likewise, the intraclass correlation, a popular measure of agreement between continuous variables, may not provide sufficient information for investigators if the nature of poor agreement is of interest. This report reviews the concepts of agreement and correlation and discusses differences in the application of several commonly used measures.

  5. Correlation between Visual Field Index and Other Functional and Structural Measures in Glaucoma Patients and Suspects

    PubMed Central

    Iutaka, Natalia A.; Grochowski, Rubens A.; Kasahara, Niro

    2017-01-01

    Purpose: To evaluate the correlation between visual field index (VFI) and both structural and functional measures of the optic disc in primary open angle glaucoma patients and suspects. Methods: In this retrospective study, 162 glaucoma patients and suspects underwent standard automated perimetry (SAP), retinography, and retinal nerve fiber layer (RNFL) measurement. The optic disc was stratified according to the vertical cup/disc ratio (C/D) and sorted by the disc damage likelihood scale (DDLS). RNFL was measured with the optical coherence tomography. The VFI perimetry was correlated with the mean deviation (MD) and pattern standard deviation (PSD) obtained by SAP, and structural parameters by Pearson's correlation coefficients. Results: VFI displayed strong correlation with MD (R = 0.959) and PSD (R = −0.744). The linear correlations between VFI and structural measures including C/D (R = −0.179, P = 0.012), DDLS (R = −0.214, P = 0.006), and RNFL (R = 0.416, P < 0.001) were weak but statistically significant. Conclusion: VFI showed a strong correlation with MD and PSD but demonstrated a weak correlation with structural measures. It can possibly be used as a marker for functional impairment severity in patients with glaucoma. PMID:28299007

  6. Classical and quantum phase transitions revealed using transport and x-ray measurements

    NASA Astrophysics Data System (ADS)

    Banerjee, Arnab

    I present the experimental studies of phase transitions in three different compounds in this thesis. The first one, SrCu2(BO3)2 is a physical realization of the Shastry-Sutherland model where, using precise lattice measurements, we examined the pressure-dependent phase diagram. We found two separate quantum phase transitions in the compound, the first one being a second order transition from a dimer to an intermediate magnetic state, and the second being a first order monoclinic distortion from the intermediate state to a presumed magnetically ordered state. In the second compound, NiS2, using a combination of transport and x-ray diffraction we proved that neither magnetism nor lattice symmetry, but rather electron-electron correlations, plays an active role in the insulator-metal phase transition in pure NiS2 under high pressure. Following this we make an attempt to delve the critical scaling laws using high pressure transport measurements in a helium dilution refrigerator. We observed a resistivity drop of over five orders and an effective of mass enhancement near the critical region. I detail the technical endeavors adopted for leading us to the critical behavior. The third compound, TbTe3, was believed to show only one charge density wave (CDW). We discovered a second CDW, but at a much lower transition temperature to the first one. Our results pointed to bidirectional ordering in TbTe3, a compound that has been otherwise considered a canonical model for one-dimensional CDW physics. The order parameter for this new CDW appears to deviate from standard mean-field behavior. This is only the second rare-earth telluride for which a q-vector has been determined for a second CDW, and the first for which the temperature dependence of that q-vector was characterized.

  7. Electronic measurement of strain effects on spin transport in silicon

    NASA Astrophysics Data System (ADS)

    Qing, Lan; Tinkey, Holly; Appelbaum, Ian

    Spin transport in silicon is limited by the Elliott-Yafet spin relaxation mechanism, which is driven by scattering between degenerate conduction band valleys. Mechanical strain along a valley axis partially breaks this degeneracy, and will ultimately quench intervalley spin relaxation for transitions between states on orthogonal axes. Using a custom-designed and constructed strain probe, we study the effects of uniaxial compressive strain along the < 100 > direction on ballistic tunnel junction devices used to inject spin-polarized electrons into silicon. The effects of strain-induced valley splitting will be presented and compared to our theoretical model. This work is supported by the Office of Naval Research under Contract No. N000141410317, the National Science Foundation under Contract No. ECCS-1231855, the Defense Threat Reduction Agency under Contract No. HDTRA1-13-1-0013, and the Maryland NanoCenter.

  8. Turbulent transport measurements with a laser Doppler velocimeter

    NASA Technical Reports Server (NTRS)

    Edwards, R. V.; Angus, J. C.; Dunning, J. W., Jr.

    1972-01-01

    The power spectrum of phototube current from a laser Doppler velocimeter operating in the heterodyne mode has been computed. The spectrum is obtained in terms of the space time correlation function of the fluid. The spectral width and shape predicted by the theory are in agreement with experiment. For normal operating parameters the time average spectrum contains information only for times shorter than the Lagrangian integral time scale of the turbulence. To examine the long time behavior, one must use either extremely small scattering angles, much longer wavelength radiation or a different mode of signal analysis, e.g., FM detection.

  9. Validation of bed-load transport measurements with time-sequenced bathymetric data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Advances in bathymetric data acquisition have made it possible to adopt a new, expedient method for measuring bed load transport in rivers. The method consists of comparing time sequenced bathymetric data sets and utilizing a simple mass conservation relation for bed load transport. Assuming a tri...

  10. Correlation of AC Loss Data from Magnetic Susceptibility Measurements with YBCO Film Quality (Postprint)

    DTIC Science & Technology

    2012-02-01

    excimer laser operating at the KrF, 248 nm , wavelength. Substrates included LaAlO3 ( 100 ) and SrTiO3 ( 100 ) single crystal substrates as well as buffered...AFRL-RZ-WP-TP-2012-0100 CORRELATION OF AC LOSS DATA FROM MAGNETIC SUSCEPTIBILITY MEASUREMENTS WITH YBCO FILM QUALITY (POSTPRINT) Paul N...CORRELATION OF AC LOSS DATA FROM MAGNETIC SUSCEPTIBILITY MEASUREMENTS WITH YBCO FILM QUALITY (POSTPRINT) 5a. CONTRACT NUMBER In-house 5b. GRANT

  11. Correlation between electrophysiological phenomena and transport of macromolecules in intestinal epithelium.

    PubMed

    Groot, J A

    1998-01-01

    This review discuss some recent findings in the study of the regulation of the permeability of the intestinal epithelial layer. Comparison of electrical phenomena and transport of macromolecules suggests that secretory activity and increased transepithelial transport of macromolecules are related when secretion is mediated by the Ca2+ and PKC dependent pathways. The transport of the macromolecules is via the transcellular and via the paracellular route. The barrier function of the intestinal epithelium may be diminished during nervous (acetylcholine)- and immuno-(histamine) mediated secretion. It is hypothesised that some bacterial toxins may also induce Ca2+ and PKC dependent secretion and thereby can reduce the epithelial barrier. The cAMP and cGMP mediated secretion, which can be recognised by their long-lasting transepithelial potential changes, are not coupled to increased transepithelial transport of macromolecules. Some forms of secretory diarrhea may therefore be related to the development of food-allergy or inflammation.

  12. Correlating Molecular Structures with Transport Dynamics in High-Efficiency Small-Molecule Organic Photovoltaics.

    PubMed

    Peng, Jiajun; Chen, Yani; Wu, Xiaohan; Zhang, Qian; Kan, Bin; Chen, Xiaoqing; Chen, Yongsheng; Huang, Jia; Liang, Ziqi

    2015-06-24

    Efficient charge transport is a key step toward high efficiency in small-molecule organic photovoltaics. Here we applied time-of-flight and organic field-effect transistor to complementarily study the influences of molecular structure, trap states, and molecular orientation on charge transport of small-molecule DRCN7T (D1) and its analogue DERHD7T (D2). It is revealed that, despite the subtle difference of the chemical structures, D1 exhibits higher charge mobility, the absence of shallow traps, and better photosensitivity than D2. Moreover, charge transport is favored in the out-of-plane structure within D1-based organic solar cells, while D2 prefers in-plane charge transport.

  13. Horizontal spatial correlation of hydraulic and reactive transport parameters as related to hierarchical sedimentary architecture at the Borden research site

    NASA Astrophysics Data System (ADS)

    Ritzi, R. W.; Huang, L.; Ramanathan, R.; Allen-King, R. M.

    2013-04-01

    Highly resolved data from the Borden research site provide a unique opportunity to study the horizontal spatial bivariate correlation of hydraulic and reactive attributes affecting subsurface transport. The data also allow quantitatively relating this correlation to the hierarchical sedimentary architecture of the aquifer. The data include collocated samples of log permeability, Y, the log of the perchloroethene sorption distribution coefficient, Ξ, and lithologic unit type. The horizontal Y and Ξ autosemivariograms and the Ξ-Y cross-semivariogram have the same underlying correlation structure (shape and range in the rise to a sill). The common structure is not due to Ξ-Y point correlation or in-unit spatial correlation. The common structure is defined by how the proportion of lag transitions crossing different unit types (i.e., the cross-transition probability structure) increases with increasing lag distance. The common underlying cross-transition structure contains two substructures with different correlation ranges corresponding to two scales of unit types within the sedimentary architecture. For each substructure, a large standard deviation in the length of units relative to the mean length gives rise to an exponential-like shape and the proportions and mean length of units define the ranges. The horizontal Ξ-Y spatial cross correlation is primarily defined by the larger-scale substructure and the differences in mean Ξ and Y between larger-scale unit types.

  14. 40 CFR 51.213 - Transportation control measures.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the case of measures based on traffic flow changes or reductions in vehicle use, the data must include observed changes in vehicle miles traveled and average speeds. (c) The data must be maintained in such...

  15. 40 CFR 51.213 - Transportation control measures.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the case of measures based on traffic flow changes or reductions in vehicle use, the data must include observed changes in vehicle miles traveled and average speeds. (c) The data must be maintained in such...

  16. 40 CFR 51.213 - Transportation control measures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the case of measures based on traffic flow changes or reductions in vehicle use, the data must include observed changes in vehicle miles traveled and average speeds. (c) The data must be maintained in such...

  17. 40 CFR 51.213 - Transportation control measures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the case of measures based on traffic flow changes or reductions in vehicle use, the data must include observed changes in vehicle miles traveled and average speeds. (c) The data must be maintained in such...

  18. 40 CFR 51.213 - Transportation control measures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the case of measures based on traffic flow changes or reductions in vehicle use, the data must include observed changes in vehicle miles traveled and average speeds. (c) The data must be maintained in such...

  19. Universal out-of-equilibrium transport in Kondo-correlated quantum dots: renormalized dual fermions on the Keldysh contour.

    PubMed

    Muñoz, Enrique; Bolech, C J; Kirchner, Stefan

    2013-01-04

    The nonlinear conductance of semiconductor heterostructures and single molecule devices exhibiting Kondo physics has recently attracted attention. We address the observed sample dependence of the measured steady state transport coefficients by considering additional electronic contributions in the effective low-energy model underlying these experiments that are absent in particle-hole symmetric setups. A novel version of the superperturbation theory of Hafermann et al. in terms of dual fermions is developed, which correctly captures the low-temperature behavior. We compare our results with the measured transport coefficients.

  20. Laser-Based Faraday-Effect Measurement of Magnetic Fluctuations and Fluctuation-Induced Transport

    NASA Astrophysics Data System (ADS)

    Lin, L.; Brower, D. L.; Ding, W. X.; Sarff, J. S.

    2013-10-01

    A multichord far-infrared laser-based Faraday-effect polarimetry diagnostic has been well developed on MST. Combined polarimetry-interferometry capability permits simultaneous measurement of internal structure of density and magnetic field with fast time response (~ 4 μs) and low phase noise (< 0 .01°) . With this diagnostic, the impact on toroidal current profile from a tangentially injected neutral beam is directly measured, allowing evaluation of non-inductive current drive. In addition, 0 .05° Faraday-effect fluctuations associated with global tearing modes are resolved with an uncertainty below 0 .01° . For physics investigations, these Faraday-effect fluctuations are complicated by contributions from both density and magnetic fluctuations. In our analysis, the local density fluctuations are obtained by inverting the line-integrated interferometry data after resolving the mode helicity through correlation techniques. The local magnetic fluctuations are then reconstructed using a parameterized fit of the polarimetry data, accounting for both the density and magnetic contributions. For the same mode, density and radial magnetic fluctuations exhibit very different spatial structure. In this process, their relative phase is also determined, thereby allowing the determination of magnetic-fluctuation-induced transport. Work supported by US DoE.

  1. Searching for factorization-breaking effects via two-particle correlation measurements in hadronic collisions

    NASA Astrophysics Data System (ADS)

    Aidala, Christine

    2017-01-01

    Over the last decade and a half, studies initially focused on spin-momentum correlations in the proton have brought to the fore several deep, fundamental issues within QCD that come to light when nonperturbative transverse momenta are treated in hard scattering processes. Two-particle correlation measurements in proton-proton collisions provide sensitivity to nonperturbative transverse momentum effects and offer a means of searching for predicted factorization breaking in such processes. This factorization breaking leads to quantum correlations of partons across QCD bound states. Recent experimental measurements and their implications will be discussed.

  2. TRANSPORT

    EPA Science Inventory

    Presentation outline: transport principles, effective solubility; gasoline composition; and field examples (plume diving).
    Presentation conclusions: MTBE transport follows from - phyiscal and chemical properties and hydrology. Field examples show: MTBE plumes > benzene plu...

  3. Dust transport over the eastern Mediterranean derived from Total Ozone Mapping Spectrometer, Aerosol Robotic Network, and surface measurements

    NASA Astrophysics Data System (ADS)

    Kalivitis, N.; Gerasopoulos, E.; Vrekoussis, M.; Kouvarakis, G.; Kubilay, N.; Hatzianastassiou, N.; Vardavas, I.; Mihalopoulos, N.

    2007-02-01

    Multiyear surface PM10 measurements performed on Crete Island, Greece, have been used in conjunction with satellite (Total Ozone Mapping Spectrometer (TOMS)) and ground-based remote sensing measurements (Aerosol Robotic Network (AERONET)) to enhance our understanding of the evolution of mineral dust events over the eastern Mediterranean. An analysis of southerly air masses at altitudes of 1000 and 3000 m over a 5 year period (2000-2005), showed that dust can potentially arrive over Crete, either simultaneously in the lower free troposphere and inside the boundary layer (vertical extended transport (VET)) or initially into the free troposphere with the heavier particles gradually being scavenged inside the boundary layer (free troposphere transport (FTT)). Both pathways present significant seasonal variations but on an annual basis contribute almost equally to the dust transport in the area. During VET the aerosol index (AI) derived from TOMS was significantly correlated with surface PM10, and in general AI was found to be adequate for the characterization of dust loadings over the eastern Mediterranean on a climatological basis. A significant covariance between PM10 and AOT was observed during VET as well, indicating that AOT levels from AERONET may be estimated by PM10 levels at the surface. Surface measurements are thus crucial for the validation of remote sensing measurements and hence are a powerful tool for the investigation of the impact of aerosols on climate.

  4. Disordered Fermi liquid in epitaxial graphene from quantum transport measurements.

    PubMed

    Lara-Avila, Samuel; Tzalenchuk, Alexander; Kubatkin, Sergey; Yakimova, Rositza; Janssen, T J B M; Cedergren, Karin; Bergsten, Tobias; Fal'ko, Vladimir

    2011-10-14

    We have performed magnetotransport measurements on monolayer epitaxial graphene and analyzed them in the framework of the disordered Fermi liquid theory. We have separated the electron-electron and weak-localization contributions to resistivity and demonstrated the phase coherence over a micrometer length scale, setting the limit of at least 50 ps on the spin relaxation time in this material.

  5. Lattice effects in cubic La{sub 2}Mo{sub 2}O{sub 9}: Effect of vacuum and correlation with transport properties

    SciTech Connect

    Tealdi, Cristina Malavasi, Lorenzo; Ritter, Clemens; Flor, Giorgio; Costa, Giorgio

    2008-03-15

    This study aims to investigate correlations between lattice effects and transport properties in cubic La{sub 2}Mo{sub 2}O{sub 9}. High temperature neutron diffraction data, recorded in air and under vacuum, are used to follow the evolution with temperature of selected structural parameters, i.e. bond lengths and angles. Results suggest a possible correlation with the experimentally observed decrease of the activation energy for oxygen migration at high temperature. The effect on the structural properties of the low oxygen partial pressure used during the measurements in vacuum is negligible and this represents a valuable information in view of possible applications of the material in solid state devices. - Graphical abstract: Anti-tetrahedral unit centred in O1 and linked through La ions to form a cage where the partially occupied O2 and O3 ions are placed.

  6. Quantification of Fugitive Methane Emissions with Spatially Correlated Measurements Collected with Novel Plume Camera

    NASA Astrophysics Data System (ADS)

    Tsai, Tracy; Rella, Chris; Crosson, Eric

    2013-04-01

    Quantification of fugitive methane emissions from unconventional natural gas (i.e. shale gas, tight sand gas, etc.) production, processing, and transport is essential for scientists, policy-makers, and the energy industry, because methane has a global warming potential of at least 21 times that of carbon dioxide over a span of 100 years [1]. Therefore, fugitive emissions reduce any environmental benefits to using natural gas instead of traditional fossil fuels [2]. Current measurement techniques involve first locating all the possible leaks and then measuring the emission of each leak. This technique is a painstaking and slow process that cannot be scaled up to the large size of the natural gas industry in which there are at least half a million natural gas wells in the United States alone [3]. An alternative method is to calculate the emission of a plume through dispersion modeling. This method is a scalable approach since all the individual leaks within a natural gas facility can be aggregated into a single plume measurement. However, plume dispersion modeling requires additional knowledge of the distance to the source, atmospheric turbulence, and local topography, and it is a mathematically intensive process. Therefore, there is a need for an instrument capable of simple, rapid, and accurate measurements of fugitive methane emissions on a per well head scale. We will present the "plume camera" instrument, which simultaneously measures methane at different spatial points or pixels. The spatial correlation between methane measurements provides spatial information of the plume, and in addition to the wind measurement collected with a sonic anemometer, the flux can be determined. Unlike the plume dispersion model, this approach does not require knowledge of the distance to the source and atmospheric conditions. Moreover, the instrument can fit inside a standard car such that emission measurements can be performed on a per well head basis. In a controlled experiment

  7. Quantum transport simulation scheme including strong correlations and its application to organic radicals adsorbed on gold

    NASA Astrophysics Data System (ADS)

    Droghetti, Andrea; Rungger, Ivan

    2017-02-01

    We present a computational method to quantitatively describe the linear-response conductance of nanoscale devices in the Kondo regime. This method relies on a projection scheme to extract an Anderson impurity model from the results of density functional theory and nonequilibrium Green's functions calculations. The Anderson impurity model is then solved by continuous-time quantum Monte Carlo. The developed formalism allows us to separate the different contributions to the transport, including coherent or noncoherent transport channels, and also the quantum interference between impurity and background transmission. We apply the method to a scanning tunneling microscope setup for the 1,3,5-triphenyl-6-oxoverdazyl (TOV) stable radical molecule adsorbed on gold. The TOV molecule has one unpaired electron, which when brought in contact with metal electrodes behaves like a prototypical single Anderson impurity. We evaluate the Kondo temperature, the finite-temperature spectral function, and transport properties, finding good agreement with published experimental results.

  8. Isoprene concentrations over Russia: ground-based measurements and chemistry-transport modeling

    NASA Astrophysics Data System (ADS)

    Berezina, Elena; Konovalov, Igor; Berezin, Evgeny; Skorokhod, Andrey; Elansky, Nikolay; Belikov, Igor

    2016-04-01

    Near-surface isoprene concentration was measured over Russia using the proton mass spectrometry method (PTR-MS) in TROICA (TRanscontinental Observations Into the Chemistry of the Atmosphere) experiments along the Trans-Siberian railway from 21.06.08 to 04.08.08 (TROICA-12) and from 08.10.09 to 23.10.09 (TROICA-13). The highest isoprene concentration is observed in the Far East (up to 3 ppb) due to the emissions from the major isoprene source - deciduous forests. The TROICA measurements were compared to the corresponding simulations performed with the CHIMERE chemistry transport model (CTM) using the MEGAN biogenic emission inventory. Simulated and measured isoprene concentrations are highly correlated (r = 0.8), but the simulated isoprene concentration is about 4-6 times higher than the measured one. The selection of daytime and background (from isoprene/benzene ratios) isoprene concentrations don't significantly increase the experimental values; moreover, even the isoprene concentration corrected for atmospheric photochemical losses (that is, the near-source concentration) is found to be 1.5 times lower than the simulated data. Therefore, the systematic discrepancy between the measurements and simulations could not be unambiguously attributed to the representativity error. The weak exponential dependence of summer isoprene concentration on temperature both for the model (R2 = 0.3) and for the experimental data (R2 = 0.4) is observed. However, a much stronger linear correlation (r ~ 0.9) is found between the isoprene concentration and temperature in Russian regions separated according to the type of vegetation. The differences between the simulated and experimental dependences of isoprene concentration on temperature are not statistically significant. The above results prompt the conclusion that the parameterization of isoprene emissions in the CHIMERE CTM is qualitatively adequate, but the isoprene emission factors applicable for Russian forest are likely

  9. Vibration measurement based on the optical cross-correlation technique with femtosecond pulsed laser

    NASA Astrophysics Data System (ADS)

    Han, Jibo; Wu, Tengfei; Zhao, Chunbo; Li, Shuyi

    2016-10-01

    Two vibration measurement methods with femtosecond pulsed laser based on the optical cross-correlation technique are presented independently in this paper. The balanced optical cross-correlation technique can reflect the time jitter between the reference pluses and measurement pluses by detecting second harmonic signals using type II phase-matched nonlinear crystal and balanced amplified photo-detectors. In the first method, with the purpose of attaining the vibration displacement, the time difference of the reference pulses relative to the measurement pluses can be measured using single femtosecond pulsed laser. In the second method, there are a couple of femtosecond pulsed lasers with high pulse repetition frequency. Vibration displacement associated with cavity length can be calculated by means of precisely measuring the pulse repetition frequency. The results show that the range of measurement attains ±150μm for a 500fs pulse. These methods will be suited for vibration displacement measurement, including laboratory use, field testing and industrial application.

  10. Transport currents measured in ring samples: test of superconducting weld

    NASA Astrophysics Data System (ADS)

    Zheng, H.; Claus, H.; Chen, L.; Paulikas, A. P.; Veal, B. W.; Olsson, B.; Koshelev, A.; Hull, J.; Crabtree, G. W.

    2001-02-01

    The critical current densities in bulk melt-textured YBa 2Cu 3O x and across superconducting “weld” joints are measured using scanning Hall probe measurements of the trapped magnetic field in ring samples. With this method, critical current densities are obtained without the use of electrical contacts. Large persistent currents are induced in ring samples at 77 K, after cooling in a 3 kG field. These currents can be determined from the magnetic field they produce. At 77 K a supercurrent exceeding 2000 A (about 10 4 A/cm 2) was induced in a 2 cm diameter ring; this current produces a magnetic field exceeding 1.5 kG in the bore of the ring. We demonstrate that when a ring is cut, and the cut is repaired by a superconducting weld, the weld joint can transmit the same high supercurrent as the bulk.

  11. Measurements of Electrical Transport Phenomena in Semiconductor Materials.

    DTIC Science & Technology

    1981-11-01

    equivalent circuit for microwave time-of-flight measurements. 158 xiii 5.2 a) Simplified equivalent circuit . b) Circuit ...process. 219 C.1 Microwave C-V technique. a) Experimental configuration. b) Equivalent circuit for (a). 223 D.1 Test configurations for beam profiling and X...reference point and ,rrors in the quantities W, i, and 4. 5.2. Circuit Effects In this section we present an equivalent circuit model for the

  12. Experimental evidence of interhemispheric transport from airborne carbon monoxide measurements

    NASA Technical Reports Server (NTRS)

    Newell, R. E.; Gauntner, D. J.

    1979-01-01

    During the period 28-30 October 1977, a Pan American 747-SP aircraft flew around the world with an automated instrument package that included measurements of atmospheric CO made every 4 sec. The flight path extended from San Francisco, over the North Pole to London, south to Capetown, over the South Pole to Auckland, and back to San Francisco. The data collected show large changes with longitude, which are interpreted as direct evidence of interhemispheric mixing. Possible sources for CO are discussed.

  13. Appearance and Disappearance of Quantum Correlations in Measurement-Based Feedback Control of a Mechanical Oscillator

    NASA Astrophysics Data System (ADS)

    Sudhir, V.; Wilson, D. J.; Schilling, R.; Schütz, H.; Fedorov, S. A.; Ghadimi, A. H.; Nunnenkamp, A.; Kippenberg, T. J.

    2017-01-01

    Quantum correlations between imprecision and backaction are a hallmark of continuous linear measurements. Here, we study how measurement-based feedback can be used to improve the visibility of quantum correlations due to the interaction of a laser field with a nanomechanical oscillator. Backaction imparted by the meter laser, due to radiation-pressure quantum fluctuations, gives rise to correlations between its phase and amplitude quadratures. These quantum correlations are observed in the experiment both as squeezing of the meter field fluctuations below the vacuum level in a homodyne measurement and as sideband asymmetry in a heterodyne measurement, demonstrating the common origin of both phenomena. We show that quantum feedback, i.e., feedback that suppresses measurement backaction, can be used to increase the visibility of the sideband asymmetry ratio. In contrast, by operating the feedback loop in the regime of noise squashing, where the in-loop photocurrent variance is reduced below the vacuum level, the visibility of the sideband asymmetry is reduced. This is due to backaction arising from vacuum noise in the homodyne detector. These experiments demonstrate the possibility, as well as the fundamental limits, of measurement-based feedback as a tool to manipulate quantum correlations.

  14. Cross-correlation measurements with the EJ-299-33 plastic scintillator

    NASA Astrophysics Data System (ADS)

    Bourne, Mark M.; Whaley, Jeff; Dolan, Jennifer L.; Polack, John K.; Flaska, Marek; Clarke, Shaun D.; Tomanin, Alice; Peerani, Paolo; Pozzi, Sara A.

    2015-06-01

    New organic-plastic scintillation compositions have demonstrated pulse-shape discrimination (PSD) of neutrons and gamma rays. We present cross-correlation measurements of 252Cf and mixed uranium-plutonium oxide (MOX) with the EJ-299-33 plastic scintillator. For comparison, equivalent measurements were performed with an EJ-309 liquid scintillator. Offline, digital PSD was applied to each detector. These measurements show that EJ-299-33 sacrifices a factor of 5 in neutron-neutron efficiency relative to EJ-309, but could still utilize the difference in neutron-neutron efficiency and neutron single-to-double ratio to distinguish 252Cf from MOX. These measurements were modeled with MCNPX-PoliMi, and MPPost was used to convert the detailed collision history into simulated cross-correlation distributions. MCNPX-PoliMi predicted the measured 252Cf cross-correlation distribution for EJ-309 to within 10%. Greater photon uncertainty in the MOX sample led to larger discrepancy in the simulated MOX cross-correlation distribution. The modeled EJ-299-33 plastic also gives reasonable agreement with measured cross-correlation distributions, although the MCNPX-PoliMi model appears to under-predict the neutron detection efficiency.

  15. The classical-quantum boundary for correlations: Discord and related measures

    NASA Astrophysics Data System (ADS)

    Modi, Kavan; Brodutch, Aharon; Cable, Hugo; Paterek, Tomasz; Vedral, Vlatko

    2012-10-01

    One of the best signatures of nonclassicality in a quantum system is the existence of correlations that have no classical counterpart. Different methods for quantifying the quantum and classical parts of correlations are among the more actively studied topics of quantum-information theory over the past decade. Entanglement is the most prominent of these correlations, but in many cases unentangled states exhibit nonclassical behavior too. Thus distinguishing quantum correlations other than entanglement provides a better division between the quantum and classical worlds, especially when considering mixed states. Here different notions of classical and quantum correlations quantified by quantum discord and other related measures are reviewed. In the first half, the mathematical properties of the measures of quantum correlations are reviewed, related to each other, and the classical-quantum division that is common among them is discussed. In the second half, it is shown that the measures identify and quantify the deviation from classicality in various quantum-information-processing tasks, quantum thermodynamics, open-system dynamics, and many-body physics. It is shown that in many cases quantum correlations indicate an advantage of quantum methods over classical ones.

  16. THREE-POINT PHASE CORRELATIONS: A NEW MEASURE OF NONLINEAR LARGE-SCALE STRUCTURE

    SciTech Connect

    Wolstenhulme, Richard; Bonvin, Camille; Obreschkow, Danail

    2015-05-10

    We derive an analytical expression for a novel large-scale structure observable: the line correlation function. The line correlation function, which is constructed from the three-point correlation function of the phase of the density field, is a robust statistical measure allowing the extraction of information in the nonlinear and non-Gaussian regime. We show that, in perturbation theory, the line correlation is sensitive to the coupling kernel F{sub 2}, which governs the nonlinear gravitational evolution of the density field. We compare our analytical expression with results from numerical simulations and find a 1σ agreement for separations r ≳ 30 h{sup −1} Mpc. Fitting formulae for the power spectrum and the nonlinear coupling kernel at small scales allow us to extend our prediction into the strongly nonlinear regime, where we find a 1σ agreement with the simulations for r ≳ 2 h{sup −1} Mpc. We discuss the advantages of the line correlation relative to standard statistical measures like the bispectrum. Unlike the latter, the line correlation is independent of the bias, in the regime where the bias is local and linear. Furthermore, the variance of the line correlation is independent of the Gaussian variance on the modulus of the density field. This suggests that the line correlation can probe more precisely the nonlinear regime of gravity, with less contamination from the power spectrum variance.

  17. Correlation of quality measurements to visible-near infrared spectra of pasteurized egg

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A twelve week study was conducted on the egg albumen from both pasteurized and non-pasteurized shell eggs using visible-near infrared spectroscopy. Correlation of the chemical changes detected in the spectra to the measurement of Haugh units (measure of interior egg quality) was carried out using ch...

  18. Chemometric correlation of shelf life, quality measurements, and visible-near infrared spectra of pasteurized eggs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A twelve week study was conducted on the egg albumen from both pasteurized and non-pasteurized shell eggs using visible-near infrared spectroscopy. Correlation of the chemical changes detected in the spectra to the measurement of Haugh units (measure of interior egg quality) was carried out using pr...

  19. Shear Strength Correlations for Kaolin/Water Slurries: A Comparison of Recent Measurements with Historical Data

    SciTech Connect

    Burns, Carolyn A.; Gauglitz, Phillip A.; Russell, Renee L.

    2010-01-20

    This report documents testing funded by CH2M Hill Plateau Remediation and performed by Pacific Northwest National Laboratory (PNNL) in collaboration with Fauske and Associates, LLC (FAI) to determine the behavior of vessel spanning bubbles. The shear strengths of four samples of kaolin/water mixtures obtained by PNNL from FAI were measured and are reported here. The measured shear strengths of these samples were then used to determine how the Rassat correlation fit these new measurements or if a new correlation was needed. These results were then compared with previously reported data.

  20. Measurements of Spin Correlation in $t\\bar{t}$ Events at D0

    SciTech Connect

    Bloom, Kenneth; /Nebraska U.

    2011-09-01

    Two recent measurements by the D0 Collaboration of spin correlation in t{bar t} production using 5.4 fb{sup -1} of Tevatron p{bar p} collider data are presented. Both rely on the dilepton final state of t{bar t}. One measurement relies on full reconstruction of the top quark kinematics, and the other makes use of leading-order matrix elements to characterize the kinematics. The latter measurement is the first ever to have sufficient analyzing power to exclude the no-correlation hypothesis.

  1. Speckle correlation method used to measure object's in-plane velocity.

    PubMed

    Smíd, Petr; Horváth, Pavel; Hrabovský, Miroslav

    2007-06-20

    We present a measurement of an object's in-plane velocity in one direction by the use of the speckle correlation method. Numerical correlations of speckle patterns recorded periodically during motion of the object under investigation give information used to evaluate the object's in-plane velocity. The proposed optical setup uses a detection plane in the image field and enables one to detect the object's velocity within the interval (10-150) microm x s(-1). Simulation analysis shows a way of controlling the measuring range. The presented theory, simulation analysis, and setup are verified through an experiment of measurement of the velocity profile of an object.

  2. A new interpretation and validation of variance based importance measures for models with correlated inputs

    NASA Astrophysics Data System (ADS)

    Hao, Wenrui; Lu, Zhenzhou; Li, Luyi

    2013-05-01

    In order to explore the contributions by correlated input variables to the variance of the output, a novel interpretation framework of importance measure indices is proposed for a model with correlated inputs, which includes the indices of the total correlated contribution and the total uncorrelated contribution. The proposed indices accurately describe the connotations of the contributions by the correlated input to the variance of output, and they can be viewed as the complement and correction of the interpretation about the contributions by the correlated inputs presented in "Estimation of global sensitivity indices for models with dependent variables, Computer Physics Communications, 183 (2012) 937-946". Both of them contain the independent contribution by an individual input. Taking the general form of quadratic polynomial as an illustration, the total correlated contribution and the independent contribution by an individual input are derived analytically, from which the components and their origins of both contributions of correlated input can be clarified without any ambiguity. In the special case that no square term is included in the quadratic polynomial model, the total correlated contribution by the input can be further decomposed into the variance contribution related to the correlation of the input with other inputs and the independent contribution by the input itself, and the total uncorrelated contribution can be further decomposed into the independent part by interaction between the input and others and the independent part by the input itself. Numerical examples are employed and their results demonstrate that the derived analytical expressions of the variance-based importance measure are correct, and the clarification of the correlated input contribution to model output by the analytical derivation is very important for expanding the theory and solutions of uncorrelated input to those of the correlated one.

  3. Optical Measurement Techniques for Rocket Engine Testing and Component Applications: Digital Image Correlation and Dynamic Photogrammetry

    NASA Technical Reports Server (NTRS)

    Gradl, Paul

    2016-01-01

    NASA Marshall Space Flight Center (MSFC) has been advancing dynamic optical measurement systems, primarily Digital Image Correlation, for extreme environment rocket engine test applications. The Digital Image Correlation (DIC) technology is used to track local and full field deformations, displacement vectors and local and global strain measurements. This technology has been evaluated at MSFC through lab testing to full scale hotfire engine testing of the J-2X Upper Stage engine at Stennis Space Center. It has been shown to provide reliable measurement data and has replaced many traditional measurement techniques for NASA applications. NASA and AMRDEC have recently signed agreements for NASA to train and transition the technology to applications for missile and helicopter testing. This presentation will provide an overview and progression of the technology, various testing applications at NASA MSFC, overview of Army-NASA test collaborations and application lessons learned about Digital Image Correlation.

  4. Variation and Pearson correlation coefficients of Warner-Bratzler shear force measurements within broiler breast fillets.

    PubMed

    Zhuang, H; Savage, E M

    2009-01-01

    Measurements of texture properties related to tenderness at different locations within deboned broiler breast fillets have been used to validate techniques for texture analysis and establish correlations between different texture evaluation methods. However, it has been demonstrated that meat texture can vary from location to location within individual muscles. The objective of our study was to investigate the intramuscular variation and Pearson correlation coefficients of Warner-Bratzler (WB) shear force measurements within early deboned broiler breast fillets and the effect of deboning time and cold storage on the variation and correlation coefficients. Broiler breast fillets were removed from carcasses early postmortem (2 h) and later postmortem (24 h). Storage treatments of the 2 h samples included 0 d, 7 d at 3 degrees C, 7 d at -20 degrees C, and 6 d at -20 degrees C plus 1 d at 3 degrees C. The WB shears of cooked fillets were measured using a TA-XTPlus Texture Analyzer and a TA-7 WB shear type blade. Our results showed that although the average WB shear force values differed within the 0-d, 2-h fillets, compared with the variation among the fillets within the treatment, the difference within a fillet is still evidently small. The Pearson correlation coefficients were significant between the locations; however, values of the correlation coefficients depended on the paired locations. Location differences in the WB shear values and the correlation coefficient values between them changed with deboning time and cold storage. These results demonstrate that the variation of WB shear force measurements is substantial within early deboned broiler breast fillets and the Pearson correlation coefficient values of the measurements vary among the locations. Both the variation and the Pearson correlation coefficients can be affected by postmortem aging time and storage. The differences in the means between the locations in early deboned breasts are much smaller than the

  5. Measuring of Mycobacterium tuberculosis growth. A correlation of the optical measurements with colony forming units

    PubMed Central

    Peñuelas-Urquides, Katia; Villarreal-Treviño, Licet; Silva-Ramírez, Beatriz; Rivadeneyra-Espinoza, Liliana; Said-Fernández, Salvador; de León, Mario Bermúdez

    2013-01-01

    The quantification of colony forming units (cfu), turbidity, and optical density at 600 nm (OD600) measurements were used to evaluate Mycobacterium tuberculosis growth. Turbidity and OD600 measurements displayed similar growth curves, while cfu quantification showed a continuous growth curve. We determined the cfu equivalents to McFarland and OD600 units. PMID:24159318

  6. MEASUREMENTS AND COMPUTATIONS OF FUEL DROPLET TRANSPORT IN TURBULENT FLOWS

    SciTech Connect

    Joseph Katz and Omar Knio

    2007-01-10

    The objective of this project is to study the dynamics of fuel droplets in turbulent water flows. The results are essential for development of models capable of predicting the dispersion of slightly light/heavy droplets in isotropic turbulence. Since we presently do not have any experimental data on turbulent diffusion of droplets, existing mixing models have no physical foundations. Such fundamental knowledge is essential for understanding/modeling the environmental problems associated with water-fuel mixing, and/or industrial processes involving mixing of immiscible fluids. The project has had experimental and numerical components: 1. The experimental part of the project has had two components. The first involves measurements of the lift and drag forces acting on a droplet being entrained by a vortex. The experiments and data analysis associated with this phase are still in progress, and the facility, constructed specifically for this project is described in Section 3. In the second and main part, measurements of fuel droplet dispersion rates have been performed in a special facility with controlled isotropic turbulence. As discussed in detail in Section 2, quantifying and modeling the of droplet dispersion rate requires measurements of their three dimensional trajectories in turbulent flows. To obtain the required data, we have introduced a new technique - high-speed, digital Holographic Particle Image Velocimetry (HPIV). The technique, experimental setup and results are presented in Section 2. Further information is available in Gopalan et al. (2005, 2006). 2. The objectives of the numerical part are: (1) to develop a computational code that combines DNS of isotropic turbulence with Lagrangian tracking of particles based on integration of a dynamical equation of motion that accounts for pressure, added mass, lift and drag forces, (2) to perform extensive computations of both buoyant (bubbles) and slightly buoyant (droplets) particles in turbulence conditions

  7. Resonant Acoustic Measurement of Vapor Phase Transport Phenomenon

    NASA Astrophysics Data System (ADS)

    Schuhmann, R. J.; Garrett, S. L.; Matson, J. V.

    2002-12-01

    A major impediment to accurate non steady-state diffusion measurements is the ability to accurately measure and track a rapidly changing gas concentration without disturbing the system. Non-destructive methods that do not interfere with system dynamics have been developed in the past. These methods, however, have tended to be cumbersome or inaccurate at low concentrations. A new experimental approach has been developed to measure gaseous diffusion in free air and through porous materials. The method combines the traditional non steady-state laboratory methodology with resonant acoustic gas analysis. A phase-locked-loop (PLL) resonance frequency tracker is combined with a thermally insulated copper resonator. A piston sealed with a metal bellows excites the fundamental standing wave resonance of the resonator. The PLL maintains a constant phase difference (typically 90§) between the accelerometer mounted on the piston and a microphone near the piston to track the resonance frequency in real time. A capillary or glass bead filled core is fitted into an o-ring sealed opening at the end of the resonator opposite the bellows. The rate at which the tracer gas is replaced by air within the resonator is controlled by the diffusion coefficient of the gas in free air through the capillary (DA) or by the effective diffusion coefficient of the gas through the core (De). The mean molecular weight of the gas mixture in the resonator is directly determined six times each minute from the ratio of the absolute temperature to the square of the fundamental acoustic resonance frequency. Average system stability (temperature divided by frequency squared) is better than 350 ppm. DA values for a 0.3-inch diameter capillary were in excellent agreement with published values. De values for porous media samples (0.5 mm glass beads) of four different lengths (1 through 4 inches) using three different tracer gases (He, CH4, Kr) will be reported. Comments will be offered regarding tracer gas

  8. Time-resolved X-ray microtomographic measurement of water transport in wood-fibre reinforced composite material

    NASA Astrophysics Data System (ADS)

    Miettinen, Arttu; Harjupatana, Tero; Kataja, Markku; Fortino, Stefania; Immonen, Kirsi

    2016-07-01

    Natural fibre composites are prone to absorb moisture from the environment which may lead to dimensional changes, mold growth, degradation of mechanical properties or other adverse effects. In this work we develop a method for direct non-intrusive measurement of local moisture content inside a material sample. The method is based on X-ray microtomography, digital image correlation and image analysis. As a first application of the method we study axial transport of water in a cylindrical polylactic acid/birch pulp composite material sample with one end exposed to water. Based on the results, the method seems to give plausible estimates of water content profiles inside the cylindrical sample. The results may be used, e.g., in developing and validating models of moisture transport in biocomposites.

  9. Submaximal delayed-onset muscle soreness: correlations between MR imaging findings and clinical measures

    NASA Technical Reports Server (NTRS)

    Evans, G. F.; Haller, R. G.; Wyrick, P. S.; Parkey, R. W.; Fleckenstein, J. L.; Blomqvist, C. G. (Principal Investigator)

    1998-01-01

    PURPOSE: To assess correlations between muscle edema on magnetic resonance (MR) images and clinical indexes of muscle injury in delayed-onset muscle soreness (DOMS) produced by submaximal exercise protocols. MATERIALS AND METHODS: Sixteen subjects performed 36 elbow flexions ("biceps curls") at one of two submaximal workloads that emphasized eccentric contractions. Changes in MR imaging findings, plasma levels of creatine kinase, and pain scores were correlated. RESULTS: Both exercise protocols produced DOMS in all subjects. The best correlation was between change in creatine kinase level and volume of muscle edema on MR images, regardless of the workload. Correlations tended to be better with the easier exercise protocol. CONCLUSION: Whereas many previous studies of DOMS focused on intense exercise protocols to ensure positive results, the present investigation showed that submaximal workloads are adequate to produce DOMS and that correlations between conventionally measured indexes of injury may be enhanced at lighter exercise intensities.

  10. Factors controlling degree of correlation between ISEE 1 and ISEE 3 interplanetary magnetic field measurements

    NASA Technical Reports Server (NTRS)

    Crooker, N. U.; Siscoe, G. L.; Russell, C. T.; Smith, E. J.

    1982-01-01

    Correlation variability between ISEE 1 and 3 IMF measurements is investigated, and factors governing the variability are discussed. About 200 two-hour periods when correlation was good, and 200 when correlation was poor, are examined, and both IMF variance and spacecraft separation distance in the plane perpendicular to the earth-sun line exert substantial control. The scale size of magnetic features is larger when variance is high, and abrupt changes in the correlation coefficient from poor to good or good to poor in adjacent two-hour intervals appear to be governed by the sense of change of IMF variance and vice versa. During periods of low variance, good correlations are most likely to occur when the distance between ISEE 1 and 3 perpendicular to the IMF is less than 20 earth radii.

  11. Transmission Efficiency Measurements and Correlations with Physical Characteristics of the Lubricant

    NASA Technical Reports Server (NTRS)

    Coy, J. J.; Mitchell, A. M.; Hamrock, B. J.

    1984-01-01

    Data from helicopter transmission efficiency tests were compared to physical properties of the eleven lubricants used in those tests. The tests were conducted with the OH-58 helicopter main rotor transmission. Efficiencies ranged from 98.3 to 98.8 percent. The data was examined for correlation of physical properties with efficiency. There was a reasonable correlation of efficiency with absolute viscosity if the viscosity was first corrected for temperature and pressure in the lubricated contact. Between lubricants, efficiency did not correlate well with viscosity at atmospheric pressure. Between lubricants, efficiency did not correlate well with calculated lubricant film forming capacity. Bench type sliding friction and wear measurements could not be correlated to transmission efficiency and component wear.

  12. Detection of tropical stratospheric transport barriers from the long term NO2 data set measured by SCIAMACHY

    NASA Astrophysics Data System (ADS)

    PukÄ«te, J.; Kühl, S.; Dörner, S.; Wagner, T.

    2012-04-01

    The SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) on the ENVISAT satellite probes the atmosphere at the day side of Earth in alternating sequences of nadir and limb measurements. Combining measurements of the same air volume from different viewing positions allows retrieving stratospheric profiles of various trace gases on a global scale. Also a tomographic approach can be applied and 2D distribution fields of stratospheric trace gases can be acquired by combining all measurements of an orbit in one simultaneous inversion. In this presentation, the SCIAMACHY NO2 dataset will be used to estimate the locations of tropical stratospheric transport barriers and the associated horizontal gradient strengths. Because of its correlation to the long lived N2O concentration and processes that are separated by the transport barriers, NO2 distributions are related to the boundaries of these barriers. For the estimation, the methods of probability density functions (PDFs) and of the steepest gradient will be applied. The results will be compared with data of long lived proxies for transport barriers like N2O and methane. Also comparison with aerosol information retrieved from SCIAMACHY limb observations will be performed.

  13. Spatial Correlation of Solar-Wind Turbulence from Two-Point Measurements

    NASA Technical Reports Server (NTRS)

    Matthaeus, W. H.; Milano, L. J.; Dasso, S.; Weygand, J. M.; Smith, C. W.; Kivelson, M. G.

    2005-01-01

    Interplanetary turbulence, the best studied case of low frequency plasma turbulence, is the only directly quantified instance of astrophysical turbulence. Here, magnetic field correlation analysis, using for the first time only proper two-point, single time measurements, provides a key step in unraveling the space-time structure of interplanetary turbulence. Simultaneous magnetic field data from the Wind, ACE, and Cluster spacecraft are analyzed to determine the correlation (outer) scale, and the Taylor microscale near Earth's orbit.

  14. Measurement of the Correlation and Coherence Lengths in Boundary Layer Flight Data

    NASA Technical Reports Server (NTRS)

    Palumbo, Daniel L.

    2011-01-01

    Wall pressure data acquired during flight tests at several flight conditions are analyzed and the correlation and coherence lengths of the data reported. It is shown how the frequency bandwidth of the analysis biases the correlation length and how the convection of the flow acts to reduce the coherence length. Coherence lengths measured in the streamwise direction appear much longer than would be expected based on classical results for flow over a flat plat.

  15. Correlation of combustor acoustic power levels inferred from internal fluctuating pressure measurements

    NASA Technical Reports Server (NTRS)

    Vonglahn, U. H.

    1978-01-01

    Combustion chamber acoustic power levels inferred from internal fluctuating pressure measurements are correlated with operating conditions and chamber geometries over a wide range. The variables include considerations of chamber design (can, annular, and reverse-flow annular) and size, number of fuel nozzles, burner staging and fuel split, airflow and heat release rates, and chamber inlet pressure and temperature levels. The correlated data include those obtained with combustion component development rigs as well as engines.

  16. On the Brodutch and Modi method of constructing geometric measures of classical and quantum correlations

    NASA Astrophysics Data System (ADS)

    Walczak, Zbigniew; Wintrowicz, Iwona

    2017-03-01

    Recently, Brodutch and Modi proposed a general method of constructing meaningful measures of classical and quantum correlations. We systematically apply this method to obtain geometric classical and quantum correlations based on the Bures and the trace distances for two-qubit Bell diagonal states. Moreover, we argue that in general the Brodutch and Modi method may provide non-unique results, and we show how to modify this method to avoid this issue.

  17. CoSi: Correlation of signals-A new measure to assess the correlation of history response curves

    NASA Astrophysics Data System (ADS)

    Murmann, Robert; Harzheim, Lothar; Dominico, Stefan; Immel, Rainer

    2016-12-01

    In the context of CAE work it is often required to assess the level of agreement of two curves objectively, e.g. measured against numerically computed results. Therefore a new comprehensive measure is proposed in this paper. The new measure 'CoSi' (Correlation of Signals) allows to account for uncertainties in both curves. This is achieved by constructing a corridor around one curve which considers deviations in direction of both abscissa and ordinate. Here CoSi differs from other common corridor approaches which consider only the deviation on the ordinate. It is explained how CoSi aligns the two curves taking the uncertainties of the second curve by scaling and shifting into account. This leads to the best theoretical achievable agreement between the two curves. Based on the aligned curves, quality factors are calculated to evaluate the results in terms of amplitudes of the curves, their overall match in shape, the phase between the curves, and all these combined into a comprehensive quality factor. The properties and results of CoSi are compared with other metrics from literature using various examples.

  18. Simultaneous measurement of extracellular dopamine and dopamine transporter occupancy by cocaine analogs in squirrel monkeys.

    PubMed

    Kimmel, Heather L; Nye, Jonathon A; Voll, Ronald; Mun, Jiyoung; Stehouwer, Jeffrey; Goodman, Mark M; Votaw, John R; Carroll, F I; Howell, Leonard L

    2012-06-01

    Several classes of drugs bind to the dopamine transporter (DAT) with high affinity, but some are weaker positive reinforcers than cocaine, suggesting that affinity for and occupancy of the DAT is not the only determinant of a drug's reinforcing effectiveness. Other factors such as the rate of onset have been positively and strongly correlated with the reinforcing effects of DAT inhibitors in nonhuman primates. In the current studies, we examined the effects of acute systemic administration of cocaine and three cocaine analogs (RTI-150, RTI-177, and RTI-366) on binding to DAT in squirrel monkey brain using positron emission tomography (PET) neuroimaging. During the PET scan, we also measured drug effects on dopamine (DA) levels in the caudate using in vivo microdialysis. In general, our results suggest a lack of concordance between drug occupancy at DAT and changes in DA levels. These studies also indicate that acute cocaine administration decreases the availability of plasma membrane DAT for binding, even after cocaine is no longer blocking DA uptake as evidence by a return to basal DA levels.

  19. Structural correlates of the creatine transporter function regulation: the undiscovered country.

    PubMed

    Santacruz, Lucia; Jacobs, Danny O

    2016-08-01

    Creatine (Cr) and phosphocreatine constitute an energy shuttle that links ATP production in mitochondria to subcellular locations of ATP consumption. Cells in tissues that are reliant on this energy shuttle, such as myocytes and neurons, appear to have very limited ability to synthesize creatine. Therefore, these cells depend on Cr uptake across the cell membrane by a specialized creatine transporter (CrT solute carrier SLC6A8) in order to maintain intracellular creatine levels. Cr supplementation has been shown to have a beneficial effect in numerous in vitro and in vivo models, particularly in cases of oxidative stress, and is also widely used by athletes as a performance enhancement nutraceutical. Intracellular creatine content is maintained within narrow limits. However, the physiological and cellular mechanisms that mediate Cr transport during health and disease (such as cardiac failure) are not understood. In this narrative mini-review, we summarize the last three decades of research on CrT structure, function and regulation.

  20. A chondrodysplasia family produced by mutations in the diastrophic dysplasia sulfate transporter gene: Genotype/phenotype correlations

    SciTech Connect

    Superti-Furga, A.; Steinmann, B.; Gitzelmann, R.; Rossi, A.

    1996-05-03

    Achondrogenesis type 1B (ACG-1B), atelosteogenesis type 2 (AO-2), and diastrophic dysplasia (DTD) are recessively inherited chondrodysplasia of decreasing severity caused by mutations in the diastrophic dysplasia sulfate transporter (DTDST) gene on chromosome 5. In these conditions, sulfate transport across the cell membrane is impaired which results in insufficient sulfation of cartilage proteoglycans and thus in an abnormally low sulfate content of cartilage. The severity of the phenotype correlates well with the predicted effect of the underlying DTDST mutations: homozygosity or compound heterozygosity for stop codons or transmembrane domain substitutions mostly result in achondrogenesis type 1B, while other structural or regulatory mutations usually result in one of the less severe phenotypes. The chondrodysplasia arising at the DTDST locus constitute a bone dysplasia family with recessive inheritance. 28 refs., 2 tabs.

  1. Transport and localization in a topological phononic lattice with correlated disorder

    NASA Astrophysics Data System (ADS)

    Ong, Zhun-Yong; Lee, Ching Hua

    2016-10-01

    Recently proposed classical analogs of topological insulators in phononic lattices have the advantage of much more accessible experimental realization compared to conventional materials. Drawn to their potential practical structural applications, we investigate how disorder, which is generically nonnegligible in macroscopic realization, can attenuate the topologically protected edge (TPE) modes that constitute robust transmitting channels at zero disorder. We simulate the transmission of phonon modes in a quasi-one-dimensional classical lattice waveguide with mass disorder and show that the TPE mode transmission remains highly robust (Ξ ˜1 ) in the presence of uncorrelated disorder but diminishes when disorder is spatially correlated. This reduction in transmittance is attributed to the Anderson localization of states within the mass disorder domains. By contrast, non-TPE channels exhibit qualitatively different behavior, with spatial correlation in the mass disorder leading to significant transmittance reduction (enhancement) at low (high) frequencies. Our results demonstrate how TPE modes drastically modify the effect of spatial correlation on mode localization.

  2. Long-range correlations and charge transport properties of DNA sequences

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-liang; Ren, Yi; Xie, Qiong-tao; Deng, Chao-sheng; Xu, Hui

    2010-04-01

    By using Hurst's analysis and transfer approach, the rescaled range functions and Hurst exponents of human chromosome 22 and enterobacteria phage lambda DNA sequences are investigated and the transmission coefficients, Landauer resistances and Lyapunov coefficients of finite segments based on above genomic DNA sequences are calculated. In a comparison with quasiperiodic and random artificial DNA sequences, we find that λ-DNA exhibits anticorrelation behavior characterized by a Hurst exponent 0.5correlation behavior to anticorrelation behavior. The resonant peaks of the transmission coefficient in genomic sequences can survive in longer sequence length than in random sequences but in shorter sequence length than in quasiperiodic sequences. It is shown that the genomic sequences have long-range correlation properties to some extent but the correlations are not strong enough to maintain the scale invariance properties.

  3. Thermal transport in suspended silicon membranes measured by laser-induced transient gratings

    NASA Astrophysics Data System (ADS)

    Vega-Flick, A.; Duncan, R. A.; Eliason, J. K.; Cuffe, J.; Johnson, J. A.; Peraud, J.-P. M.; Zeng, L.; Lu, Z.; Maznev, A. A.; Wang, E. N.; Alvarado-Gil, J. J.; Sledzinska, M.; Sotomayor Torres, C. M.; Chen, G.; Nelson, K. A.

    2016-12-01

    Studying thermal transport at the nanoscale poses formidable experimental challenges due both to the physics of the measurement process and to the issues of accuracy and reproducibility. The laser-induced transient thermal grating (TTG) technique permits non-contact measurements on nanostructured samples without a need for metal heaters or any other extraneous structures, offering the advantage of inherently high absolute accuracy. We present a review of recent studies of thermal transport in nanoscale silicon membranes using the TTG technique. An overview of the methodology, including an analysis of measurements errors, is followed by a discussion of new findings obtained from measurements on both "solid" and nanopatterned membranes. The most important results have been a direct observation of non-diffusive phonon-mediated transport at room temperature and measurements of thickness-dependent thermal conductivity of suspended membranes across a wide thickness range, showing good agreement with first-principles-based theory assuming diffuse scattering at the boundaries. Measurements on a membrane with a periodic pattern of nanosized holes (135nm) indicated fully diffusive transport and yielded thermal diffusivity values in agreement with Monte Carlo simulations. Based on the results obtained to-date, we conclude that room-temperature thermal transport in membrane-based silicon nanostructures is now reasonably well understood.

  4. Development of an Instrument Performance Simulation Capability for an Infrared Correlation Radiometer for Troposheric Carbon Monoxide Measurements From Geo

    NASA Technical Reports Server (NTRS)

    OsowskiNeil, Doreen; Yee, Jeng-Hwa; Boldt, John; Edwards, David

    2010-01-01

    We present the progress toward an analytical performance model of a 2.3 micron infrared correlation radiometer (IRCRg) prototype subsystem for a future geostationary space-borne instrument. The prototype is designed specifically to measure carbon monoxide (CO) from geostationary orbit. NASA's Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission, one of the United States Earth Science and Applications Decadal Survey missions, specifies the use of infrared correlation radiometry to measure CO in two spectral regions for this mission. GEO-CAPE will use the robust IRCR measurement technique at geostationary orbit, nearly 50 times farther away than the Terra/MOPITT orbit, to determine hourly changes in CO across a continental domain. The abundance of CO in Earth's troposphere directly affects the concentration of hydroxyl, which regulates the lifetimes of many tropospheric pollutants. In addition, CO is a precursor to ozone formation; CO is used as a tracer to study the transport of global and regional pollutants; and CO is used as an indicator of both natural and anthropogenic air pollution sources and sinks. We have structured our development project to enable rapid evaluation of future spaceborne instrument designs. The project is part of NASA's Instrument Incubator Program. We describe the architecture of the performance model and the planned evaluation of the performance model using laboratory test data.

  5. PARALLEL MEASUREMENT AND MODELING OF TRANSPORT IN THE DARHT II BEAMLINE ON ETA II

    SciTech Connect

    Chambers, F W; Raymond, B A; Falabella, S; Lee, B S; Richardson, R A; Weir, J T; Davis, H A; Schultze, M E

    2005-05-31

    To successfully tune the DARHT II transport beamline requires the close coupling of a model of the beam transport and the measurement of the beam observables as the beam conditions and magnet settings are varied. For the ETA II experiment using the DARHT II beamline components this was achieved using the SUICIDE (Simple User Interface Connecting to an Integrated Data Environment) data analysis environment and the FITS (Fully Integrated Transport Simulation) model. The SUICIDE environment has direct access to the experimental beam transport data at acquisition and the FITS predictions of the transport for immediate comparison. The FITS model is coupled into the control system where it can read magnet current settings for real time modeling. We find this integrated coupling is essential for model verification and the successful development of a tuning aid for the efficient convergence on a useable tune. We show the real time comparisons of simulation and experiment and explore the successes and limitations of this close coupled approach.

  6. Measuring a hidden coordinate: Rate-exchange kinetics from 3D correlation functions.

    PubMed

    Berg, Mark A; Darvin, Jason R

    2016-08-07

    Nonexponential kinetics imply the existence of at least one slow variable other than the observable, that is, the system has a "hidden" coordinate. We develop a simple, but general, model that allows multidimensional correlation functions to be calculated for these systems. Homogeneous and heterogeneous mechanisms are both included, and slow exchange of the rates is allowed. This model shows that 2D and 3D correlation functions of the observable measure the distribution and kinetics of the hidden coordinate controlling the rate exchange. Both the mean exchange time and the shape of the exchange relaxation are measurable. However, complications arise because higher correlation functions are sums of multiple "pathways," each of which measures different dynamics. Only one 3D pathway involves exchange dynamics. Care must be used to extract exchange dynamics without contamination from other processes.

  7. Novel Optical Technique Developed and Tested for Measuring Two-Point Velocity Correlations in Turbulent Flows

    NASA Technical Reports Server (NTRS)

    Zimmerli, Gregory A.; Goldburg, Walter I.

    2002-01-01

    A novel technique for characterizing turbulent flows was developed and tested at the NASA Glenn Research Center. The work is being done in collaboration with the University of Pittsburgh, through a grant from the NASA Microgravity Fluid Physics Program. The technique we are using, Homodyne Correlation Spectroscopy (HCS), is a laser-light-scattering technique that measures the Doppler frequency shift of light scattered from microscopic particles in the fluid flow. Whereas Laser Doppler Velocimetry gives a local (single-point) measurement of the fluid velocity, the HCS technique measures correlations between fluid velocities at two separate points in the flow at the same instant of time. Velocity correlations in the flow field are of fundamental interest to turbulence researchers and are of practical importance in many engineering applications, such as aeronautics.

  8. A problem with the correlation coefficient as a measure of gene expression divergence.

    PubMed

    Pereira, Vini; Waxman, David; Eyre-Walker, Adam

    2009-12-01

    The correlation coefficient is commonly used as a measure of the divergence of gene expression profiles between different species. Here we point out a potential problem with this statistic: if measurement error is large relative to the differences in expression, the correlation coefficient will tend to show high divergence for genes that have relatively uniform levels of expression across tissues or time points. We show that genes with a conserved uniform pattern of expression have significantly higher levels of expression divergence, when measured using the correlation coefficient, than other genes, in a data set from mouse, rat, and human. We also show that the Euclidean distance yields low estimates of expression divergence for genes with a conserved uniform pattern of expression.

  9. Breast Cancer Resistance Protein Abundance, but Not mRNA Expression, Correlates With Estrone-3-Sulfate Transport in Caco-2.

    PubMed

    Harwood, Matthew D; Neuhoff, Sibylle; Rostami-Hodjegan, Amin; Warhurst, Geoffrey

    2016-04-01

    Transporter mRNA and protein expression data are used to extrapolate in vitro transporter kinetics to in vivo drug disposition predictions. Breast cancer resistance protein (BCRP) possesses broad substrate specificity; therefore, understanding BCRP expression-activity relationships are necessary for the translation to in vivo. Bidirectional transport of estrone-3-sulfate (E-3-S), a BCRP probe, was evaluated with respect to relative BCRP mRNA expression and absolute protein abundance in 10- and 29-day cultured Caco-2 cells. BCRP mRNA expression was quantified by real-time PCR against a housekeeper gene, Cyclophilin A. The BCRP protein abundance in total membrane fractions was quantified by targeted proteomics, and [(3)H]-E-3-S bidirectional transport was determined in the presence or absence of Ko143, a potent BCRP inhibitor. BCRP mRNA expression was 1.5-fold higher in 29- versus 10-day cultured cells (n = 3), whereas a 2.4-fold lower (p < 0.001) BCRP protein abundance was observed in 29- versus 10-day cultured cells (1.28 ± 0.33 and 3.06 ± 0.22 fmol/μg protein, n = 6, respectively). This correlated to a 2.45-fold lower (p < 0.01) efflux ratio for E-3-S in 29- versus 10-day cultured cells (8.97 ± 2.51 and 3.32 ± 0.66, n = 6, respectively). Caco-2 cell BCRP protein abundance, but not mRNA levels, correlates with BCRP activity, suggesting that extrapolation strategies incorporating BCRP protein abundance-activity relationships may be more successful.

  10. 3D topography measurements on correlation cells—a new approach to forensic ballistics identifications

    NASA Astrophysics Data System (ADS)

    Song, John; Chu, Wei; Tong, Mingsi; Soons, Johannes

    2014-06-01

    Based on three-dimensional (3D) topography measurements on correlation cells, the National Institute of Standards and Technology (NIST) has developed the ‘NIST Ballistics Identification System (NBIS)’ aimed at accurate ballistics identifications and fast ballistics evidence searches. The 3D topographies are divided into arrays of correlation cells to identify ‘valid correlation areas’ and eliminate ‘invalid correlation areas’ from the matching and identification procedure. A ‘congruent matching cells’ (CMC)’ method using three types of identification parameters of the paired correlation cells (cross correlation function maximum CCFmax, spatial registration position in x-y and registration angle θ) is used for high accuracy ballistics identifications. ‘Synchronous processing’ is proposed for correlating multiple cell pairs at the same time to increase the correlation speed. The proposed NBIS can be used for correlations of both geometrical topographies and optical intensity images. All the correlation parameters and algorithms are in the public domain and subject to open tests. An error rate reporting procedure has been developed that can greatly add to the scientific support for the firearm and toolmark identification specialty, and give confidence to the trier of fact in court proceedings. The NBIS is engineered to employ transparent identification parameters and criteria, statistical models and correlation algorithms. In this way, interoperability between different ballistics identification systems can be more easily achieved. This interoperability will make the NBIS suitable for ballistics identifications and evidence searches with large national databases, such as the National Integrated Ballistic Information Network in the United States.

  11. A New Approach to Measuring the Neutron Decay Correlations with Cold Neutrons at LANSCE

    SciTech Connect

    Wilburn, W.S.; Bowman, J.D.; Greene, G.L.; Jones, G.L.; Kapustinsky, J.S.; Penttila, S.I.

    1999-06-08

    Precision measurements of the neutron beta-decay correlations A, B, a, and b provide important tests of the standard model of electroweak interactions: a test of the unitarity of the first row of the CKM matrix, a search for new weak interactions, a test of the theory of nuclear beta decays, and a test of the conserved-vector-current hypothesis. The authors are designing an experiment at the LANSCE short-pulse spallation source to measure all four correlations to an order of magnitude better accuracy than the existing measurements. The accuracy of the previous measurements was limited by systematics. The design of the proposed experiment makes use of the pulsed nature of the LANSCE source to reduce systematic errors associated with the measurement of the neutron polarization as well as other systematic errors. In addition, the authors are developing silicon strip detectors for detecting both the proton and electron from the neutron decay.

  12. Photographic Measurements Partially Correlate to Nasal Function and Appearance among Adult Cleft Patients

    PubMed Central

    Keijser, Klara; Nowinski, Daniel

    2016-01-01

    Background: Unilateral cleft lip and palate (UCLP) affects nasal function and appearance. There is a lack of objective measurements to evaluate these features. This study analyzes whether objective measurements on photographs correlate with nasal function and/or appearance among adults treated for UCLP. Methods: All patients with UCLP born from 1960 to 1987 treated at the Uppsala University Hospital were invited (n = 109). Participation rate was 68% (n = 74); mean follow-up was 35 years. An age-matched control group (n = 61) underwent the same tests. Nostril area, nasal tip deviation angle, and width of the nostril were measured on photographs and were compared with functional tests and with appearance as assessed by self-assessment questionnaire, professional panel, or laymen panel. Results: The photographically measured nostril area correlated with nasal volume (acoustic rhinometry) among UCLP patients, both cleft side and noncleft side, and controls (0.331, P = 0.005; 0.338, P = 0.004; and 0.420, P < 0.001, respectively). For the patients’ noncleft side and controls, the area correlated inversely with airflow resistance at inspiration (noncleft side: −0.245, P = 0.043; controls: −0.226, P = 0.013). Laymen assessment of nasal appearance correlated with width ratio of the patients (0.27, P = 0.022) and with nasal tip deviation angle and area ratio of the controls (0.26, P = 0.041, and 0.31, P = 0.015, respectively). Conclusions: Photographic measurements correlate partially with both functional tests of the nose and panel ratings of appearance. No correlation was found with self-assessment of appearance. Evaluation of photographs needs to be combined with patient-reported outcome measures to be a valuable endpoint of nasal appearance. PMID:27579244

  13. Basic properties of the current-current correlation measure for random Schroedinger operators

    SciTech Connect

    Hislop, Peter D.; Lenoble, Olivier

    2006-11-15

    The current-current correlation measure plays a crucial role in the theory of conductivity for disordered systems. We prove a Pastur-Shubin-type formula for the current-current correlation measure expressing it as a thermodynamic limit for random Schroedinger operators on the lattice and the continuum. We prove that the limit is independent of the self-adjoint boundary conditions and independent of a large family of expanding regions. We relate this finite-volume definition to the definition obtained by using the infinite-volume operators and the trace-per-unit volume.

  14. Low-noise correlation measurements based on software-defined-radio receivers and cooled microwave amplifiers

    NASA Astrophysics Data System (ADS)

    Nieminen, Teemu; Lähteenmäki, Pasi; Tan, Zhenbing; Cox, Daniel; Hakonen, Pertti J.

    2016-11-01

    We present a microwave correlation measurement system based on two low-cost USB-connected software defined radio dongles modified to operate as coherent receivers by using a common local oscillator. Existing software is used to obtain I/Q samples from both dongles simultaneously at a software tunable frequency. To achieve low noise, we introduce an easy low-noise solution for cryogenic amplification at 600-900 MHz based on single discrete HEMT with 21 dB gain and 7 K noise temperature. In addition, we discuss the quantization effects in a digital correlation measurement and determination of optimal integration time by applying Allan deviation analysis.

  15. CSF findings in adrenoleukodystrophy: correlation between measures of cytokines, IgG production, and disease severity.

    PubMed

    Phillips, J P; Lockman, L A; Shapiro, E G; Blazar, B R; Loes, D J; Moser, H W; Krivit, W

    1994-06-01

    The childhood-onset cerebral form of adrenoleukodystrophy has a devastating neurologic prognosis. Unfortunately, there is no early method of distinguishing it from the more benign forms of adrenoleukodystrophy, such as adrenomyeloneuropathy. To evaluate the manner in which this disease entity may be reflected in the cerebrospinal fluid, we studied a consecutive series of 19 patients, all with biochemically proved adrenoleukodystrophy. total protein, immunoglobulin production, cytokine levels, and cerebrospinal fluid pressure were measured. In this single sample of cerebrospinal fluid, a significant correlation existed between clinical stage of the illness and cerebrospinal fluid myelin basic protein. No correlation existed with total protein, cytokines, or measures of immunoglobulin production.

  16. Low-noise correlation measurements based on software-defined-radio receivers and cooled microwave amplifiers.

    PubMed

    Nieminen, Teemu; Lähteenmäki, Pasi; Tan, Zhenbing; Cox, Daniel; Hakonen, Pertti J

    2016-11-01

    We present a microwave correlation measurement system based on two low-cost USB-connected software defined radio dongles modified to operate as coherent receivers by using a common local oscillator. Existing software is used to obtain I/Q samples from both dongles simultaneously at a software tunable frequency. To achieve low noise, we introduce an easy low-noise solution for cryogenic amplification at 600-900 MHz based on single discrete HEMT with 21 dB gain and 7 K noise temperature. In addition, we discuss the quantization effects in a digital correlation measurement and determination of optimal integration time by applying Allan deviation analysis.

  17. Absence of localization in a model with correlation measure as a random lattice

    NASA Astrophysics Data System (ADS)

    Kroon, Lars; Riklund, Rolf

    2004-03-01

    A coherent picture of localization in one-dimensional aperiodically ordered systems is still missing. We show the presence of purely singular continuous spectrum for a discrete system whose modulation sequence has a correlation measure which is absolutely continuous, such as for a random sequence. The system showing these properties is modeled by the Rudin-Shapiro sequence, whose correlation measure even has a uniform density. The absence of localization is also supported by a numerical investigation of the dynamics of electronic wave packets showing weakly anomalous diffusion and an extremely slow algebraic decay of the temporal autocorrelation function.

  18. Probability Distributions of Measured Bedload Transport Rates with Application for Computing Sediment Rating Curves

    NASA Astrophysics Data System (ADS)

    Gaeuman, D. A.; Holt, C. R.

    2011-12-01

    Variability in fractional bedload transport rates derived from 948 bedload samples collected over a 7-year period at 4 locations along the same river were analyzed to assess the variability in measured transport rates under similar transport conditions. Sediment transport rating curves fit to the sample data show that transport characteristics can vary markedly between sampling locations. In addition, transport rates at the same locations usually exhibit clockwise bedload hysteresis between the rising and falling limbs of the annual flood hydrograph, even though long-term transport characteristics have remained comparatively stable over the period of record. Thus, the full set of sample data was separated into 8 groups, consisting of a rising and falling limb population at each of the 4 locations, for subsequent analysis. This separation was intended to reduce systematic variability caused by seasonal factors and position along the river while ensuring that each group contains a large population of measurements. Within each group, dimensionless fractional transport rates were computed and sorted into bins defined by the ratio of shear stress to reference shear stresses estimated from the sample data for each grain size fraction and sampling location. The mean and standard deviation transport rates computed for each shear stress bin were found to fit Chi-squared cumulative probability functions with means and degrees of freedom that increased with the shear stress ratio. Mean dimensionless transport rates ranged about 0.002 for bins with average shear stresses near the reference value to more than 0.12 for bins with average shear stresses exceeding twice the reference value. The standard deviations in dimensionless transport within bins ranged less than 0.6 times the mean value for large transport rates up to about twice the mean value for small transport rates. The relationship between the means and standard deviation transport rates and the shear stress ratio was

  19. Direct measurement of chiral structure and transport in single- and multi-walled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Cui, Taoran; Lin, Letian; Qin, Lu-Chang; Washburn, Sean

    2016-11-01

    Electrical devices based on suspended multi-wall carbon nanotubes were constructed and studied. The chiral structure of each shell in a particular nanotube was determined using nanobeam electron diffraction in a transmission electron microscope. The transport properties of the carbon nanotube were also measured. The nanotube device length was short enough that the transport was nearly ballistic, and multiple subbands contributed to the conductance. Thermal excitation of carriers significantly affected nanotube resistance at room temperature.

  20. Measurements of Correlated Conductances and Noise Fluctuations from 3-Lead Quantum Dots

    NASA Astrophysics Data System (ADS)

    Toonen, R. C.; Prada, M.; Qin, H.; Huettel, A. K.; Goswami, S.; Eriksson, M. A.; van der Weide, D. W.; Eberl, K.; Blick, R. H.

    2005-08-01

    We have investigated the conductance properties of a few-electron quantum dot with three terminals. In the regime of strong coupling between the quantum dot and the leads, we have observed the both the integer- and half-integer-spin Kondo effect at zero magnetic field. Within the integer-spin conductance diamond, we find cotunneling spectral lines which correspond to singlet-triplet transitions. We extract the exchange energy from this information and find that the value (J = 320 μeV) agrees remarkably well with the theoretical prediction. We believe that spin dependent transport in a three-terminal quantum dot could yield positive cross-correlations between shot noise events on two output channels. To investigate such phenomena, we have designed an analog continuum cross-correlator to analyze the shot noise spectra of our device in the X- and Ku-bands (8 to 18 GHz).

  1. Correlation between microstructure and charge transport in poly(2,5-dimethoxy- p -phenylenevinylene) thin films

    NASA Astrophysics Data System (ADS)

    Sims, M.; Tuladhar, S. M.; Nelson, J.; Maher, R. C.; Campoy-Quiles, M.; Choulis, S. A.; Mairy, M.; Bradley, D. D. C.; Etchegoin, P. G.; Tregidgo, C.; Suhling, K.; Richards, D. R.; Massiot, P.; Nielsen, C. B.; Steinke, J. H. G.

    2007-11-01

    We report a study of thin films of poly(2,5-dimethoxy- p -phenylenevinylene) (PDMeOPV) prepared by a precursor route. Conversion at two different temperatures, namely, 120 and 185°C , produces partially and fully converted films. We study the structural, optical, and charge transport characteristics of these samples in order to relate transport properties to microstructure. Micro-Raman mapping and photoluminescence (PL) imaging reveal the existence of coarse, depth-averaged domains of around 50μm in lateral extent, with more pronounced contrast for conversion at the higher temperature. The contrast in both micro-Raman and PL maps can be attributed to fluctuations in film density. Spectroscopic ellipsometry studies of the films indicate that the average film density is approximately 15% higher for conversion at the higher temperature. Time-of-flight photocurrent transients, recorded here in PDMeOPV films, are typically dispersive but yield hole mobilities in excess of 10-4cm2/Vs at modest applied fields (˜1.2×105V/cm) in the fully converted films. To our knowledge, these are amongst the highest reported mobility values for a poly( p -phenylenevinylene) derivative. Fully converted films, while yielding higher hole mobilities, exhibit a stronger dependence on electric field than partially converted ones. The higher mobility can be attributed to the almost complete conversion of the flexible saturated subunits within precursor chains to conjugated vinylene moieties at elevated temperature. This results in a correspondingly higher packing density, an improvement in intrachain transport, and a reduction in the smallest interchain hopping distance. We suggest that the stronger electric field dependence is due to the increasing influence of intermolecular electrostatic interactions with decreasing interchain separation. We propose that a greater proportion of chains in the fully converted films packs in a three-dimensional, interdigitated arrangement similar to that

  2. Correlation between near infrared spectroscopy and electrical techniques in measuring skin moisture content

    NASA Astrophysics Data System (ADS)

    Mohamad, M.; Sabbri, A. R. M.; Mat Jafri, M. Z.; Omar, A. F.

    2014-11-01

    Near infrared (NIR) spectroscopy technique serves as an important tool for the measurement of moisture content of skin owing to the advantages it has over the other techniques. The purpose of the study is to develop a correlation between NIR spectrometer with electrical conventional techniques for skin moisture measurement. A non-invasive measurement of moisture content of skin was performed on different part of human face and hand under control environment (temperature 21 ± 1 °C, relative humidity 45 ± 5 %). Ten healthy volunteers age between 21-25 (male and female) participated in this study. The moisture content of skin was measured using DermaLab® USB Moisture Module, Scalar Moisture Checker and NIR spectroscopy (NIRQuest). Higher correlation was observed between NIRQuest and Dermalab moisture probe with a coefficient of determination (R2) above 70 % for all the subjects. However, the value of R2 between NIRQuest and Moisture Checker was observed to be lower with the R2 values ranges from 51.6 to 94.4 %. The correlation of NIR spectroscopy technique successfully developed for measuring moisture content of the skin. The analysis of this correlation can help to establish novel instruments based on an optical system in clinical used especially in the dermatology field.

  3. Bi-photon spectral correlation measurements from a silicon nanowire in the quantum and classical regimes

    PubMed Central

    Jizan, Iman; Helt, L. G.; Xiong, Chunle; Collins, Matthew J.; Choi, Duk-Yong; Joon Chae, Chang; Liscidini, Marco; Steel, M. J.; Eggleton, Benjamin J.; Clark, Alex S.

    2015-01-01

    The growing requirement for photon pairs with specific spectral correlations in quantum optics experiments has created a demand for fast, high resolution and accurate source characterisation. A promising tool for such characterisation uses classical stimulated processes, in which an additional seed laser stimulates photon generation yielding much higher count rates, as recently demonstrated for a χ(2) integrated source in A. Eckstein et al. Laser Photon. Rev. 8, L76 (2014). In this work we extend these results to χ(3) integrated sources, directly measuring for the first time the relation between spectral correlation measurements via stimulated and spontaneous four wave mixing in an integrated optical waveguide, a silicon nanowire. We directly confirm the speed-up due to higher count rates and demonstrate that this allows additional resolution to be gained when compared to traditional coincidence measurements without any increase in measurement time. As the pump pulse duration can influence the degree of spectral correlation, all of our measurements are taken for two different pump pulse widths. This allows us to confirm that the classical stimulated process correctly captures the degree of spectral correlation regardless of pump pulse duration, and cements its place as an essential characterisation method for the development of future quantum integrated devices. PMID:26218609

  4. Volatility and correlation-based systemic risk measures in the US market

    NASA Astrophysics Data System (ADS)

    Civitarese, Jamil

    2016-10-01

    This paper deals with the problem of how to use simple systemic risk measures to assess portfolio risk characteristics. Using three simple examples taken from previous literature, one based on raw and partial correlations, another based on the eigenvalue decomposition of the covariance matrix and the last one based on an eigenvalue entropy, a Granger-causation analysis revealed some of them are not always a good measure of risk in the S&P 500 and in the VIX. The measures selected do not Granger-cause the VIX index in all windows selected; therefore, in the sense of risk as volatility, the indicators are not always suitable. Nevertheless, their results towards returns are similar to previous works that accept them. A deeper analysis has shown that any symmetric measure based on eigenvalue decomposition of correlation matrices, however, is not useful as a measure of "correlation" risk. The empirical counterpart analysis of this proposition stated that negative correlations are usually small and, therefore, do not heavily distort the behavior of the indicator.

  5. Heat transport measurements in turbulent rotating Rayleigh-Bénard convection.

    PubMed

    Liu, Yuanming; Ecke, Robert E

    2009-09-01

    We present experimental heat transport measurements of turbulent Rayleigh-Bénard convection with rotation about a vertical axis. The fluid, water with a Prandtl number (sigma) of about 6, was confined in a cell with a square cross section of 7.3 x 7.3 cm2 and a height of 9.4 cm. Heat transport was measured for Rayleigh numbers 2 x 10(5)transport, the Nusselt number, at fixed dimensional rotation rate OmegaD, at fixed Ra varying Ta, at fixed Ta varying Ra, and at fixed Rossby number Ro. The scaling of heat transport in the range of 10(7) to about 10(9) is roughly 0.29 with a Ro-dependent coefficient or equivalently is also well fit by a combination of power laws of the form a Ra1/5+b Ra1/3. The range of Ra is not sufficient to differentiate single power law or combined power-law scaling. The data are roughly consistent with an assumption that the enhancement of heat transport owing to rotation is proportional to the number of vortical structures penetrating the boundary layer. We also compare indirect measures of thermal and Ekman boundary layer thicknesses to assess their potential role in controlling heat transport in different regimes of Ra and Ta.

  6. Extending monetary values to broader performance and impact measures: Transportation applications and lessons for other fields.

    PubMed

    Weisbrod, Glen; Lynch, Teresa; Meyer, Michael

    2009-11-01

    This article examines recent progress at assigning monetary values to what are normally considered "hard to quantify" benefits of transportation projects. It focuses on three types of impacts - environmental quality, health and wider economic impacts - to examine how transportation project evaluation methods have evolved in recent years and how they compare to methods used for evaluation of non-transportation programs. Examples of recent practice are provided to show how transport agencies are continuing to refine performance measures to include broader impacts in project evaluation. A classification is provided to distinguish direct traveler effects from indirect effects on non-travelers, a step important to maximize coverage and minimize double-counting of impacts. For each type of impact, the paper discusses the range of variation in monetized values and shows that the variation is due less to imprecision in measurement than to fundamental issues about whether to use damage compensation, impact avoidance costs, stated preferences or behavioral valuation perspectives to define those values. Case studies as diverse as Australian roads, Wisconsin energy programs and Appalachian economic development programs are used to show how common methods are evolving among transport and non-transport agencies to improve impact measurement and its use in project evaluation.

  7. Prescriptions for measuring and transporting local angular momenta in general relativity

    NASA Astrophysics Data System (ADS)

    Flanagan, Éanna É.; Nichols, David A.; Stein, Leo C.; Vines, Justin

    2016-05-01

    For observers in curved spacetimes, elements of the dual space of the set of linearized Poincaré transformations from an observer's tangent space to itself can be naturally interpreted as local linear and angular momenta. We present an operational procedure by which observers can measure such quantities using only information about the spacetime curvature at their location. When applied by observers near spacelike or null infinity in stationary, vacuum, asymptotically flat spacetimes, there is a sense in which the procedure yields the well-defined linear and angular momenta of the spacetime. We also describe a general method by which observers can transport local linear and angular momenta from one point to another, which improves previous prescriptions. This transport is not path independent in general, but becomes path independent for the measured momenta in the same limiting regime. The transport prescription is defined in terms of differential equations, but it can also be interpreted as parallel transport in a particular direct-sum vector bundle. Using the curvature of the connection on this bundle, we compute and discuss the holonomy of the transport law. We anticipate that these measurement and transport definitions may ultimately prove useful for clarifying the physical interpretation of the Bondi-Metzner-Sachs charges of asymptotically flat spacetimes.

  8. Field-measured drag area is a key correlate of level cycling time trial performance

    PubMed Central

    Peterman, James E.; Lim, Allen C.; Ignatz, Ryan I.; Edwards, Andrew G.

    2015-01-01

    Drag area (Ad) is a primary factor determining aerodynamic resistance during level cycling and is therefore a key determinant of level time trial performance. However, Ad has traditionally been difficult to measure. Our purpose was to determine the value of adding field-measured Ad as a correlate of level cycling time trial performance. In the field, 19 male cyclists performed a level (22.1 km) time trial. Separately, field-determined Ad and rolling resistance were calculated for subjects along with projected frontal area assessed directly (AP) and indirectly (Est AP). Also, a graded exercise test was performed to determine \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$\\dot {V}{O}_{2}$\\end{document}V˙O2 peak, lactate threshold (LT), and economy. \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$\\dot {V}{O}_{2}$\\end{document}V˙O2 peak (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$\\mathrm{l}~\\min ^{-1}$\\end{document}lmin−1) and power at LT were significantly correlated to power measured during the time trial (r = 0.83 and 0.69, respectively) but were not significantly correlated to performance time (r = − 0.42 and −0.45). The correlation with performance time improved significantly (p < 0.05) when these variables were normalized to Ad. Of note, Ad alone was better correlated to performance time (r = 0.85, p < 0.001) than any combination of non-normalized physiological

  9. Correlation of orofacial speeds with voice acoustic measures in the fluent speech of persons who stutter.

    PubMed

    McClean, Michael D; Tasko, Stephen M

    2004-12-01

    Stuttering is often viewed as a problem in coordinating the movements of different muscle systems involved in speech production. From this perspective, it is logical that efforts be made to quantify and compare the strength of neural coupling between muscle systems in persons who stutter (PS) and those who do not stutter (NS). This problem was addressed by correlating the speeds of different orofacial structures with vowel fundamental frequency (F0) and intensity as subjects produced fluent repetitions of a simple nonsense phrase at habitual, high, and low intensity levels. It is assumed that resulting correlations indirectly reflect the strength of neural coupling between particular orofacial structures and the respiratory-laryngeal system. An electromagnetic system was employed to record movements of the upper lip, lower lip, tongue, and jaw in 43 NS and 39 PS. The acoustic speech signal was recorded and used to obtain measures of vowel F0 and intensity. For each subject, correlation measures were obtained relating peak orofacial speeds to F0 and intensity. Correlations were significantly reduced in PS compared to NS for the lower lip and tongue, although the magnitude of these group differences covaried with the correlation levels relating F0 and intensity. It is suggested that the group difference in correlation pattern reflects a reduced strength of neural coupling of the lower lip and tongue systems to the respiratory-laryngeal system in PS. Consideration is given to how this may contribute to temporal discoordination and stuttering.

  10. In situ measurements of advective solute transport in permeable shelf sands

    NASA Astrophysics Data System (ADS)

    Reimers, Clare E.; Stecher, Hilmar A.; Taghon, Gary L.; Fuller, Charlotte M.; Huettel, Markus; Rusch, Antje; Ryckelynck, Natacha; Wild, Christian

    2004-01-01

    Solute transport rates within the uppermost 2 cm of a rippled continental shelf sand deposit, with a mean grain size of 400-500 μm and permeabilities of 2.0-2.4×10 -11 m 2, have been measured in situ by detecting the breakthrough of a pulse of iodide after its injection into the bottom water. These tracer experiments were conducted on the USA Middle Atlantic Bight shelf at a water depth of ˜13 m using a small tethered tripod that carried a close-up video camera, acoustic current meter, motorized 1.5 liter "syringe", and a microprofiling system for positioning and operating a solid-state voltammetric microelectrode. When triggered on shipboard, the syringe delivered a 0.21 M solution of potassium iodide and red dye through five nozzles positioned around and above the buried tip of the voltammetric sensor for 0.65-5 min. Bottom turbulence rapidly mixed and dispersed the tracer, which then was carried into the bed by interfacial water flows associated with ripple topography. The advective downward transport to the sensor tip was timed by a sequence of repetitive voltammetric scans. The distance-averaged vertical velocity, expressed as the depth of the sensor tip in the sand divided by the time to iodide breakthrough, was found to vary from 6 to 53 cm h -1 and generally to decrease with sediment depth. Because of episodic pumping and dispersion associated with the greatest 5% of wave heights and current speeds recorded, some concentration vs. time responses showed evidence of uneven solute migration. For reasons of mass balance, the advective flow field in the surface layers of permeable beds includes regions of water intrusion, horizontal pore-water flow and upwelling which also may explain some of the observed uneven migration. Pore-water advection was also evident in oxygen profiles measured before and after tracer injection with the voltammetric sensor. These profiles showed irregular distributions and oxygen penetration depths of 4-4.5 cm. Sand cores from the

  11. Evaluation of 2001 springtime CO transport over West Africa using MOPITT CO measurements assimilated in a global chemistry transport model

    NASA Astrophysics Data System (ADS)

    Pradier, Stéphanie; Attié, Jean-Luc; Chong, Michel; Escobar, Juan; Peuch, Vincent-Henri; Lamarque, Jean-François; Khattatov, Boris; Edwards, David

    2006-07-01

    The global chemistry and transport model MOCAGE (Modèle de Chimie Atmosphérique à Grande Echelle) is used to investigate the contribution of transport to the carbon monoxide (CO) distribution over West Africa during spring 2001. It is constrained with the CO profiles provided by the Measurements Of Pollution In The Troposphere (MOPITT) instrument through a sequential assimilation technique based on a suboptimal Kalman filter. The improvement of tropospheric CO distribution from MOCAGE is evaluated by comparing the model results (with and without assimilation) with the MOPITT CO concentrations observed during the analysed period (between 2001 March 15 to 2001 April 30), and also with independent in situ CMDL and TRACE-P observations. The initial overestimation in high CO emissions areas (Africa, SE Asia and NW coast of South America) is considerably reduced by using the MOPITT CO assimilation. We analysed the assimilated CO for a period of three successive 15 d periods in terms of average fields over West Africa and contributions to the CO budget of transport and chemical sources. It is found that the horizontal and vertical CO distributions are strongly dependent on the characteristics of the large-scale flows during spring, marked by the onset of the low-level southerly monsoon flow and the gradual increase of the well-known African and tropical easterly jets at middle and upper levels, respectively. Total transport by the mean flow (horizontal plus vertical advection) is important in the CO budget since it mostly compensates the local sink or source generated by chemical reactions and small-scale processes. The major source of CO is concentrated in the lower troposphere (1000-800 hPa) mainly due to convergent low-level flow advecting CO from surrounding regions and surface emissions (biomass burning). Vertical transport removes 70% of this low-level CO and redistributes it in the middle troposphere (800-400 hPa) where chemical reactions and horizontal exports

  12. Removal of correlated noise online for in situ measurements by using multichannel magnetic resonance sounding system

    NASA Astrophysics Data System (ADS)

    Lin, Tingting; Zhang, Siyuan; Zhang, Yang; Wan, Ling; Lin, Jun

    2017-01-01

    Compared with the other geophysical approaches, magnetic resonance sounding (MRS) technique is direct and nondestructive in subsurface water exploration. It provides water content distribution and estimates hydrogeological properties. The biggest challenge is that MRS measurement always suffers bad signal-to-noise ratio, and it can be carried out only far from sources of noise. To solve this problem, a series of de-noising methods are developed. However, most of them are post-processing, leading the data quality uncontrolled for in situ measurements. In the present study, a new approach that removal of correlated noise online is found to overcome the restriction. Based on LabVIEW, a method is provided to enable online data quality control by the way of realizing signal acquisition and noise filtering simultaneously. Using one or more reference coils, adaptive noise cancellation based on LabVIEW to eliminate the correlated noise is available for in situ measurements. The approach was examined through numerical simulation and field measurements. The correlated noise is mitigated effectively and the application of MRS measurements is feasible in high-level noise environment. The method shortens the measurement time and improves the measurement efficiency.

  13. Relevance of different cellular models in determining the effects of mutations on SLC16A2/MCT8 thyroid hormone transporter function and genotype-phenotype correlation.

    PubMed

    Capri, Yline; Friesema, Edith C H; Kersseboom, Simone; Touraine, Renaud; Monnier, Aurélie; Eymard-Pierre, Eléonore; Des Portes, Vincent; De Michele, Giusseppe; Brady, Angela F; Boespflug-Tanguy, Odile; Visser, Theo J; Vaurs-Barriere, Catherine

    2013-07-01

    SLC 16A2, the gene for the second member of the solute carrier family 16 (monocarboxylic acid transporter), located on chromosome Xq13.2, encodes a very efficient thyroid hormone transporter: monocarboxylate transporter 8, MCT8. Its loss of function is responsible in males for a continuum of psychomotor retardation ranging from severe (no motor acquisition, no speech) to mild (ability to walk with help and a few words of speech). Triiodothyronine uptake measurement in transfected cells and, more recently, patient fibroblasts, has been described to study the functional consequences of MCT8 mutations. Here, we describe three novel MCT8 mutations, including one missense variation not clearly predicted to be damaging but found in a severely affected patient. Functional studies in fibroblasts and JEG3 cells demonstrate the usefulness of both cellular models in validating the deleterious effects of a new MCT8 mutation if there is still a doubt as to its pathogenicity. Moreover, the screening of fibroblasts from a large number of patient fibroblasts and of transfected mutations has allowed us to demonstrate that JEG3 transfected cells are more relevant than fibroblasts in revealing a genotype-phenotype correlation.

  14. Quantification of ultrasound correlation-based flow velocity mapping and edge velocity gradient measurement.

    PubMed

    Park, Dae Woo; Kruger, Grant H; Rubin, Jonathan M; Hamilton, James; Gottschalk, Paul; Dodde, Robert E; Shih, Albert J; Weitzel, William F

    2013-10-01

    This study investigated the use of ultrasound speckle decorrelation- and correlation-based lateral speckle-tracking methods for transverse and longitudinal blood velocity profile measurement, respectively. By studying the blood velocity gradient at the vessel wall, vascular wall shear stress, which is important in vascular physiology as well as the pathophysiologic mechanisms of vascular diseases, can be obtained. Decorrelation-based blood velocity profile measurement transverse to the flow direction is a novel approach, which provides advantages for vascular wall shear stress measurement over longitudinal blood velocity measurement methods. Blood flow velocity profiles are obtained from measurements of frame-to-frame decorrelation. In this research, both decorrelation and lateral speckle-tracking flow estimation methods were compared with Poiseuille theory over physiologic flows ranging from 50 to 1000 mm/s. The decorrelation flow velocity measurement method demonstrated more accurate prediction of the flow velocity gradient at the wall edge than the correlation-based lateral speckle-tracking method. The novelty of this study is that speckle decorrelation-based flow velocity measurements determine the blood velocity across a vessel. In addition, speckle decorrelation-based flow velocity measurements have higher axial spatial resolution than Doppler ultrasound measurements to enable more accurate measurement of blood velocity near a vessel wall and determine the physiologically important wall shear.

  15. Automatic angle measurement of a 2D object using optical correlator-neural networks hybrid system

    NASA Astrophysics Data System (ADS)

    Manivannan, N.; Neil, M. A. A.

    2011-04-01

    In this paper a novel method is proposed and demonstrated for automatic rotation angle measurement of a 2D object using a hybrid architecture, consisting of a 4f optical correlator with a binary phase only multiplexed matched filter and a single layer neural network. The hybrid set-up can be considered as a two-layer perceptron-like neural network; an optical correlator is the first layer and the standard single layer neural network is the second layer. The training scheme used to train the hybrid architecture is a combination of a Direct Binary Search algorithm, to train the optical correlator, and an Error Back Propagation algorithm, to train the neural network. The aim is to perform the major information processing by the optical correlator with a small additional processing by the neural network stage. This allows the system to be used for real-time applications as optics has the inherent ability to process information in a parallel manner at high speed. The neural network stage gives an extra dimension of freedom so that complicated tasks like automatic rotation angle measurement can be achieved. Results of both computer simulation and experimental set-up are presented for rotation angle measurement of an English alphabetic character as a 2D object. The experimental set-up consists of a real optical correlator using two spatial light modulators for both input and frequency plane representations and a PC based model of a single layer network.

  16. Measurements of journal use: an analysis of the correlations between three methods.

    PubMed Central

    Blecic, D D

    1999-01-01

    Rapid journal price increases have made essential that libraries have reliable and efficient measures of the importance of individual journals to local clientele. Three key measures are in-house use, circulation, and citation by faculty. This paper examines the correlations between these three measures at an academic health sciences library. Data were gathered from 1992 to 1994 using each of the three methods. Each set of data was compared with the other two, and for each pair of data sets both Spearman Rank Order and Pearson Product-Moment correlation coefficients were calculated to examine the degree of correlation between the two sets. All of the correlation coefficients were positive and statistically significant (P < 0.0001). This information suggests that if gathering many types of use data is impractical, one method may be used with the confidence that it correlates with other types of use. Visual inspection of the data confirms this with one exception: many clinical review titles tend to have a low local citation rate but high in-house use and circulation rates, suggesting that these are being used for educational and clinical purposes but not for research. PMID:9934525

  17. Deformation measurement using digital image correlation by adaptively adjusting the parameters

    NASA Astrophysics Data System (ADS)

    Zhao, Jian

    2016-12-01

    As a contactless full-field displacement and strain measurement technique, two-dimensional digital image correlation (DIC) has been increasingly employed to reconstruct in-plane deformation in the field of experimental mechanics. In practical application, it has been demonstrated that the selection of subset size and search zone size exerts a critical influence on measurement results of DIC, especially when decorrelation occurs between the reference image and the deformed image due to large deformation over the search zone involved. Correlation coefficient is an important parameter in DIC, and it also makes the most direct connection between subset size and search zone. A self-adaptive correlation parameter adjustment method based on correlation coefficient threshold to realize measurement efficiently by adjusting the size of the subset and search zone in a self-adaptive approach is proposed. The feasibility and effectiveness of the proposed method are verified through a set of experiments, which indicates that the presented algorithm is able to significantly reduce the cumbersome trial calculation as compared with the traditional DIC, in which the initial correlation parameters needed to be manually selected in advance based on practical experience.

  18. Correlating Thin-Film Radical Density with Charge Transport in Open-Shell Conducting Macromolecules

    NASA Astrophysics Data System (ADS)

    Hay, Martha; Jergens, Elizabeth; Boudouris, Bryan

    Within the class of radical polymers, stable open-shell species serve as the medium for charge transport by undergoing oxidation-reduction (redox) reactions. The kinetics of these reactions are rapid enough that they are not considered rate-limiting in the electronic interactions of these materials. Rather, the proximity of these radical sites is paramount as a synthetic handle. Unfortunately, controlling the density of radicals has proven challenging in radical polymer systems. Often radical functionality is imparted to a polymer, rather than polymerizing a radical-containing monomer unit. This can prove troublesome as longer reaction times, in the interest of higher radical functionality, can lead to the elimination of radicals. Thus, the consequential altering of the radical electronic interactions is not well understood. We have synthesized a series of polynorbornene-based radical monomers at controlled radical loadings such that the radical density was preserved from monomer to polymer synthesis. As such, we attribute any change in the macroscopic transport properties to a change in the spacing between radical sites. These results elucidate the role of radical site distribution on the electronic performance of nitroxide-based radical polymers.

  19. Measuring the cortical correlation structure of spontaneous oscillatory activity with EEG and MEG.

    PubMed

    Siems, Marcus; Pape, Anna-Antonia; Hipp, Joerg F; Siegel, Markus

    2016-04-01

    Power correlations of orthogonalized signals have recently been introduced for MEG as a powerful tool to non-invasively investigate functional connectivity in the human brain. Little is known about the applicability of this approach to EEG, and how compatible the results are between EEG and MEG. To address this, we systematically compared power correlations of simultaneously recorded and source co-registered 64-channel EEG and 275-channel MEG in resting human subjects. For both modalities, connectivity peaked at around 16 Hz. For this frequency range, seed-based correlation maps showed comparable patterns across modalities, with generally more distinct patterns for MEG. A brain-wide pattern correlation analysis also revealed maximum similarity around 16 Hz. Correcting for different signal-to-noise ratio (SNR) across frequencies and modalities revealed pattern correlation between modalities close to one across a broad frequency range from 1 to 32 Hz and only slightly smaller for higher frequencies. The decrease above 32 Hz likely reflected higher susceptibility to muscle artifacts for EEG than for MEG. Our results show that power correlation of orthogonalized signals is feasible for studying functional connectivity with 64-channel EEG. Furthermore, besides differences in SNR, for frequencies from about 8 to 32 Hz, EEG and MEG measure the same correlation patterns across the entire brain.

  20. Correlations between the disintegration of melt and the measured impulses in steam explosions

    SciTech Connect

    Froehlich, G.; Linca, A.; Schindler, M.

    1995-09-01

    To find our correlations in steam explosions (melt water interactions) between the measured impulses and the disintegration of the melt, experiments were performed in three configurations i.e. stratified, entrapment and jet experiments. Linear correlations were detected between the impulse and the total surface of the fragments. Theoretical considerations point out that a linear correlation assumes superheating of a water layer around the fragments of a constant thickness during the fragmentation process to a constant temperature (here the homogeneous nucleation temperature of water was assumed) and a constant expansion velocity of the steam in the main expansion time. The correlation constant does not depend on melt temperature and trigger pressure, but it depends on the configuration of the experiment or of a scenario of an accident. Further research is required concerning the correlation constant. For analysing steam explosion accidents the explosivity is introduced. The explosivity is a mass specific impulse. The explosivity is linear correlated with the degree of fragmentation. Knowing the degree of fragmentation with proper correlation constant the explosivity can be calculated and from the explosivity combined with the total mass of fragments the impulse is obtained which can be used to an estimation of the maximum force.

  1. Experimental measurement of velocity correlations for two microparticles in a plasma with ion flow.

    PubMed

    Mukhopadhyay, Amit K; Goree, J

    2014-07-01

    Velocity correlations are measured in a dusty plasma with only two microparticles. These correlations allow a characterization of the oscillatory modes and an identification of the effects of ion wakes. Ion wake effects are isolated by comparing two experiments with the microparticles aligned parallel vs perpendicular to the ion flow. From records of microparticle velocities, the one- and two-particle distribution functions f(1) and f(2) are obtained, and the two-particle correlation function g(2) ≡ f(2)-f(1)f(1) is calculated. Comparing the two experiments, we find that motion is much more correlated when the microparticles are aligned with the ion flow and the character of the oscillatory modes depends on the ion flow direction due to the ion wake.

  2. A Novel Three-Head Ultrasonic System for Distance Measurements Based on the Correlation Method

    NASA Astrophysics Data System (ADS)

    Gądek, Krzysztof; Dudzik, Marek; Stręk, Anna

    2014-12-01

    A novel double-emitter ultrasonic system for distance measurements based on the correlation method is presented. The proposed distance measurement method may be particularly useful in difficult conditions, e.g. for media parameters undergoing fast changes or in cases when obstacles and mechanical interference produce false reflections. The system is a development of a previously studied single-head idea. The present article covers a comparison of the two systems in terms of efficiency and precision. Experimental research described in this paper indicated that adding the second head improved the measurement exactness - standard deviation decreased by 40%. The correlation method is also described in detail, also giving the criterion for the quality of the measurement signal.

  3. Limitations of signal averaging due to temporal correlation in laser remote-sensing measurements.

    PubMed

    Menyuk, N; Killinger, D K; Menyuk, C R

    1982-09-15

    Laser remote sensing involves the measurement of laser-beam transmission through the atmosphere and is subject to uncertainties caused by strong fluctuations due primarily to speckle, glint, and atmospheric-turbulence effects. These uncertainties are generally reduced by taking average values of increasing numbers of measurements. An experiment was carried out to directly measure the effect of signal averaging on back-scattered laser return signals from a diffusely reflecting target using a direct-detection differential-absorption lidar (DIAL) system. The improvement in accuracy obtained by averaging over increasing numbers of data points was found to be smaller than that predicted for independent measurements. The experimental results are shown to be in excellent agreement with a theoretical analysis which considers the effect of temporal correlation. The analysis indicates that small but long-term temporal correlation severely limits the improvement available through signal averaging.

  4. Unified Measurement System with Suction Control for Gas Transport Parameters in Porous Media

    NASA Astrophysics Data System (ADS)

    Kawamoto, K.; Rouf, M. A.; Hamamoto, S.; Sakaki, T.; Komatsu, T.; Moldrup, P.

    2010-12-01

    Pore geometric parameters including pore size distribution, total and air-filled porosities, pore tortuosity and connectivity strongly influence air flow in porous media, and, thus, characterize gas transport parameters such as gas diffusion coefficient Dp and air permeability ka. In this study, the gas transport parameters were measured for porous media with varying textures under repeated drying and wetting cycles using a newly-developed measurement system, and the hysteretic behaviors in the gas transport parameters were examined. A unified measurement system with suction control (UMS_SC) was developed for measuring soil water characteristics curve and gas transport parameters sequentially under drying and wetting cycles. It consisted of a porous plate, diffusion chamber, sample ring (15 cm in inner diameter and 12 cm in height), tensiometer, soil moisture sensor, oxygen electrodes and air pressure gauges. Soil water characteristics curve and gas transport parameters (gas diffusion coefficient Dp and air permeability ka) for differently textured materials including sand, molten slag , and a mixture material of MS and volcanic ash soil were measured under repeated drying and wetting cycles. The measurement for each porous material was initiated from a full saturation and suction head was increased/decreased in steps in the drainage/wetting cycles. Moreover, independent measurements of Dp and ka were carried out for repacked air-dried samples using a cylindrical mold (15 cm in inner diameter and 12 cm in height) in order to obtain the Dp and ka values at a full dry condition. The newly-developed UMS_SC performed well for the applied suction head less than 50 cm of water with corresponding saturation of roughly 0.3-0.5. The gas transport parameters were well measured at each suction head level under repeated drying and wetting cycles, and the measured gas transport parameters including the independent measurements were verified by literature data as well as

  5. On the measurement of intensity correlations from laboratory and astronomical sources with SPADs and SNSPDs

    NASA Astrophysics Data System (ADS)

    Schroeder, Edward; Mauskopf, Philip; Pilyavsky, Genady; Sinclair, Adrian; Smith, Nathan; Bryan, Sean; Mani, Hamdi; Morozov, Dmitry; Berggren, Karl; Zhu, Di; Smirnov, Konstantin; Vakhtomin, Yuriy

    2016-08-01

    We describe the performance of detector modules containing silicon single photon avalanche photodiodes (SPADs) and superconducting nanowire single photon detectors (SNSPDs) to be used for intensity interferometry. The SPADs are mounted in fiber-coupled and free-space coupled packages. The SNSPDs are mounted in a small liquid helium cryostat coupled to single mode fiber optic cables which pass through a hermetic feed-through. The detectors are read out with microwave amplifiers and FPGA-based coincidence electronics. We present progress on measurements of intensity correlations from incoherent sources including gas-discharge lamps and stars with these detectors. From the measured laboratory performance of the correlation system, we estimate the sensitivity to intensity correlations from stars using commercial telescopes and larger existing research telescopes.

  6. Diffuse correlation spectroscopy for non-invasive, micro-vascular cerebral blood flow measurement

    PubMed Central

    Durduran, Turgut; Yodh, Arjun G.

    2013-01-01

    Diffuse correlation spectroscopy (DCS) uses the temporal fluctuations of near-infrared (NIR) light to measure cerebral blood flow (CBF) non-invasively. Here, we provide a brief history of DCS applications in brain with an emphasis on the underlying physical ideas, common instrumentation and validation. Then we describe recent clinical research that employs DCS-measured CBF as a biomarker of patient well-being, and as an indicator of hemodynamic and metabolic response to functional stimuli. PMID:23770408

  7. Sound Source Identification Through Flow Density Measurement and Correlation With Far Field Noise

    NASA Technical Reports Server (NTRS)

    Panda, J.; Seasholtz, R. G.

    2001-01-01

    Sound sources in the plumes of unheated round jets, in the Mach number range 0.6 to 1.8, were investigated experimentally using "casuality" approach, where air density fluctuations in the plumes were correlated with the far field noise. The air density was measured using a newly developed Molecular Rayleigh scattering based technique, which did not require any seeding. The reference at the end provides a detailed description of the measurement technique.

  8. NA49 Results on Single Particle and Correlation Measurements in Central PB+PB Collisions

    SciTech Connect

    Wang, F.

    1998-12-01

    Single-particle spectra and two-particle correlation functions measured by the NA49 collaboration in central Pb+Pb collisions at 158 GeV/nucleon are presented. These measurements are used to study the kinetic and chemical freeze-out conditions in heavy ion collisions. We conclude that large baryon stopping, high baryon density and strong transverse radial flow are achieved in central Pb+Pb collisions at the SPS.

  9. Lipid Droplets Purified from Drosophila Embryos as an Endogenous Handle for Precise Motor Transport Measurements

    PubMed Central

    Bartsch, Tobias F.; Longoria, Rafael A.; Florin, Ernst-Ludwig; Shubeita, George T.

    2013-01-01

    Molecular motor proteins are responsible for long-range transport of vesicles and organelles. Recent works have elucidated the richness of the transport complex, with multiple teams of similar and dissimilar motors and their cofactors attached to individual cargoes. The interaction among these different proteins, and with the microtubules along which they translocate, results in the intricate patterns of cargo transport observed in cells. High-precision and high-bandwidth measurements are required to capture the dynamics of these interactions, yet the crowdedness in the cell necessitates performing such measurements in vitro. Here, we show that endogenous cargoes, lipid droplets purified from Drosophila embryos, can be used to perform high-precision and high-bandwidth optical trapping experiments to study motor regulation in vitro. Purified droplets have constituents of the endogenous transport complex attached to them and exhibit long-range motility. A novel method to determine the quality of the droplets for high-resolution measurements in an optical trap showed that they compare well with plastic beads in terms of roundness, homogeneity, position sensitivity, and trapping stiffness. Using high-resolution and high-bandwidth position measurements, we demonstrate that we can follow the series of binding and unbinding events that lead to the onset of active transport. PMID:24010661

  10. One-dimensional deterministic transport in neurons measured by dispersion-relation phase spectroscopy

    PubMed Central

    Wang, Ru; Wang, Zhuo; Leigh, Joe; Sobh, Nahil; Millet, Larry; Gillette, Martha U.; Levine, Alex J.; Popescu, Gabriel

    2011-01-01

    We studied the active transport of intracellular components along neuron processes with a new method developed in our laboratory, dispersion-relation phase spectroscopy. This method is able to quantitatively map spatially the heterogeneous dynamics of the concentration field of the cargos at submicron resolution without the need for tracking individual components. The results in terms of density correlation function reveal that the decay rate is linear in wavenumber, which is consistent with a narrow Lorentzian distribution of cargo velocity. PMID:21862838

  11. Production and Separation of T = 1/2 Nuclides for {beta}--{nu} angular correlation measurements

    SciTech Connect

    Delahaye, P.; Bajeat, O.; Saint Laurent, M. G.; Thomas, J. C.; Traykov, E.; Lienard, E.; Ban, G.; Durand, D.; Flechard, X.; Naviliat-Cuncic, O.; Stora, T.; Collaboration: GANISOL Group

    2011-11-30

    The SPIRAL facility at GANIL, which uses the so-called ISOL method to produce radioactive ion beams, is being upgraded to extend its production capabilities to the metallic beams of neutron deficient isotopes. We discuss here the potentialities offered by this upgrade for the measurement of the {beta}--{nu} angular correlation in the {beta}--decay of mirror nuclides.

  12. CORRELATIONS OF PERSONAL EXPOSURE TO PARTICLES WITH OUTDOOR AIR MEASUREMENT: A REVIEW OF RECENT STUDIES

    EPA Science Inventory

    Epidemiological studies have found a correlation between daily mortality and particle concentrations in outdoor air as measured at a central monitoring station. These studies have been the central reason for the U.S. EPA to propose new tighter particle standards. However, perso...

  13. Poultry water holding capacity measurements using infrared spectroscopies correlated to traditional methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water holding capacity (WHC) in chicken meat is directly correlated with the quality of the meat. Lower water holding capacity is linked with decreased sensory qualities and therefore lower consumer satisfaction. Additionally, measurement of WHC is subject to wide variations which can depend on many...

  14. Pancreatic hardness: Correlation of surgeon’s palpation, durometer measurement and preoperative magnetic resonance imaging features

    PubMed Central

    Hong, Tae Ho; Choi, Joon-Il; Park, Michael Yong; Rha, Sung Eun; Lee, Young Joon; You, Young Kyoung; Choi, Moon Hyung

    2017-01-01

    AIM To evaluate the correlation between subjective assessments of pancreatic hardness based on the palpation, objective measurements using a durometer, and magnetic resonance imaging (MRI) findings for assessing pancreatic hardness. METHODS Eighty-three patients undergoing pancreatectomies were enrolled. An experienced surgeon subjectively evaluated the pancreatic hardness in the surgical field by palpation. The pancreatic hardness was also objectively evaluated using a durometer. Preoperative MRI findings were evaluated by a radiologist in terms of the apparent diffusion coefficient (ADC) values, the relative signal intensity decrease (RSID) of the pancreatic parenchyma, and the diameter of the pancreatic parenchyma and duct. Durometer measurement results, ADC values, RSID, pancreatic duct and parenchyma diameters, and the ratio of the diameters of the duct and parenchyma were compared between pancreases judged to be soft or hard pancreas on the palpation. A correlation analysis was also performed between the durometer and MRI measurements. RESULTS The palpation assessment classified 44 patients as having a soft pancreas and 39 patients as having a hard pancreas. ADC values were significantly lower in the hard pancreas group. The ductal diameter and duct-to-pancreas ratio were significantly higher in the hard pancreas group. For durometer measurements, a correlation analysis showed a positive correlation with the ductal diameter and the duct-to-pancreas ratio and a negative correlation with ADC values. CONCLUSION Hard pancreases showed lower ADC values, a wider pancreatic duct diameter and a higher duct-to-pancreas ratio than soft pancreases. Additionally, the ADC values, diameter of the pancreatic duct and duct-to-pancreas ratio were closely correlated with the durometer results. PMID:28373771

  15. Measuring the growth of matter fluctuations with third-order galaxy correlations

    NASA Astrophysics Data System (ADS)

    Hoffmann, K.; Bel, J.; Gaztañaga, E.; Crocce, M.; Fosalba, P.; Castander, F. J.

    2015-02-01

    Measurements of the linear growth factor D at different redshifts z are key to distinguish among cosmological models. One can estimate the derivative dD(z)/dln (1 + z) from redshift space measurements of the 3D anisotropic galaxy two-point correlation ξ(z), but the degeneracy of its transverse (or projected) component with galaxy bias b, i.e. ξ⊥(z) ∝ D2(z)b2(z), introduces large errors in the growth measurement. Here, we present a comparison between two methods which breaks this degeneracy by combining second- and third-order statistics. One uses the shape of the reduced three-point correlation and the other a combination of third-order one- and two-point cumulants. These methods use the fact that, for Gaussian initial conditions and scales larger than 20 h-1 Mpc, the reduced third-order matter correlations are independent of redshift (and therefore of the growth factor), while the third-order galaxy correlations depend on b. We use matter and halo catalogues from the MICE-GC simulation to test how well we can recover b(z) and therefore D(z) with these methods in 3D real space. We also present a new approach, which enables us to measure D directly from the redshift evolution of the second- and third-order galaxy correlations without the need of modelling matter correlations. For haloes with masses lower than 1014 h-1 M⊙, we find 10 per cent deviations between the different estimates of D, which are comparable to current observational errors. At higher masses, we find larger differences that can probably be attributed to the breakdown of the bias model and non-Poissonian shot noise.

  16. Damage detection of metro tunnel structure through transmissibility function and cross correlation analysis using local excitation and measurement

    NASA Astrophysics Data System (ADS)

    Feng, Lei; Yi, Xiaohua; Zhu, Dapeng; Xie, Xiongyao; Wang, Yang

    2015-08-01

    In a modern metropolis, metro rail systems have become a dominant mode for mass transportation. The structural health of a metro tunnel is closely related to public safety. Many vibration-based techniques for detecting and locating structural damage have been developed in the past several decades. However, most damage detection techniques and validation tests are focused on bridge and building structures; very few studies have been reported on tunnel structures. Among these techniques, transmissibility function and cross correlation analysis are two well-known diagnostic approaches. The former operates in frequency domain and the latter in time domain. Both approaches can be applied to detect and locate damage through acceleration data obtained from sensor arrays. Furthermore, the two approaches can directly utilize structural response data without requiring excitation measurement, which offers advantages in field testing on a large structure. In this research, a numerical finite element model of a metro tunnel is built and different types of structural defects are introduced at multiple locations of the tunnel. Transmissibility function and cross correlation analysis are applied to perform structural damage detection and localization, based on simulated structural vibration data. Numerical results demonstrate that the introduced defects can be successfully identified and located. The sensitivity and feasibility of the two approaches have been verified when sufficient distribution of measurement locations is available. Damage detection results of the two different approaches are compared and discussed.

  17. Dynamic CT imaging of volumetric changes in pulmonary nodules correlates with physical measurements of stiffness

    PubMed Central

    Lartey, Frederick M.; Rafat, Marjan; Negahdar, Mohammadreza; Malkovskiy, Andrey V.; Dong, Xinzhe; Sun, Xiaoli; Li, Mei; Doyle, Timothy; Rajadas, Jayakumar; Graves, Edward E.; Loo, Billy W.; Maxim, Peter G.

    2017-01-01

    Background and purpose A major challenge in CT screening for lung cancer is limited specificity when distinguishing between malignant and non-malignant pulmonary nodules (PN). Malignant nodules have different mechanical properties and tissue characteristics (‘stiffness’) from non-malignant nodules. This study seeks to improve CT specificity by demonstrating in rats that measurements of volumetric ratios in PNs with varying composition can be determined by respiratory-gated dynamic CT imaging and that these ratios correlate with direct physical measurements of PN stiffness. Methods and materials Respiratory-gated MicroCT images acquired at extreme tidal volumes of 9 rats with PNs from talc, matrigel and A549 human lung carcinoma were analyzed and their volumetric ratios (δ) derived. PN stiffness was determined by measuring the Young’s modulus using atomic force microscopy (AFM) for each nodule excised immediately after MicroCT imaging. Results There was significant correlation (p = 0.0002) between PN volumetric ratios determined by respiratory-gated CT imaging and the physical stiffness of the PNs determined from AFM measurements. Conclusion We demonstrated proof of concept that PN volume changes measured non-invasively correlate with direct physical measurements of stiffness. These results may translate clinically into a means of improving the specificity of CT screening for lung cancer and/or improving individual prognostic assessments based on lung tumor stiffness. PMID:27989402

  18. Density-of-states effective mass and scattering parameter measurements by transport phenomena in thin films

    NASA Astrophysics Data System (ADS)

    Young, D. L.; Coutts, T. J.; Kaydanov, V. I.

    2000-02-01

    A novel machine has been developed to measure transport coefficients in the temperature range of 50-350 K of thin films deposited on electrically insulating substrates. The measured coefficients—resistivity, Hall, Seebeck, and Nernst—are applied to solutions of the Boltzmann transport equation to give information about the film's density-of-states effective mass, the Fermi energy level, and an energy-dependent scattering parameter. The machine is designed to eliminate or compensate for simultaneously occurring transport phenomena that would interfere with the desired measured quantity, while allowing for all four coefficients to be measured on the same sample. An average density-of-states effective mass value of 0.29±0.04me was measured on the transparent conductive oxide, cadmium stannate (CTO), over a carrier concentration range of 2-7×1020cm-3. This effective mass value matched previous results obtained by optical and thermoelectric modeling. The measured scattering parameter indicates that neutral impurities or a mixture of scattering mechanisms may inhibit the transport of carriers in CTO.

  19. Aerosol transport of biomass burning to the Bolivian Andean region from remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Perez-Ramirez, Daniel; Whiteman, David; Andrade, Marcos; Gasso, Santiago; Stein, Ariel; Torres, Omar; Eck, Tom; Velarde, Fernando; Aliaga, Diego

    2016-04-01

    This work deals with the analysis of columnar aerosol optical and microphysical properties obtained by the AERONET network in the region of Bolivia and its border with Brazil. Through the long record AERONET measurements we focus in the transport of biomass-burning aerosol from the Amazon basin (stations at Rio Branco, Cuiba, Ji Parana and Santa Cruz) to the Andean Altiplano (altitude above 3000 m a.s.l. at the station in the city of La Paz). Also, measurements from the space-sensors MODIS and OMI are used to understand spatial distribution. The main results is the high impact in the aerosol load during the months of August, September and August with mean values of aerosol optical depth at 500 nm (AOD) at the low lands of ≈ 0.60 ± 0.60 and Angstrom exponent (α(440-870)) of ≈ 1.52 ± 0.38. Satellite measurements also follow very similar patterns. Also, that season is characterized by some extreme events that can reach AOD of up to 6.0. Those events are cloud-screened by MODIS but not by OMI sensor, which is attributed to different pixel resolutions. The biomass-burning is clearly transport to the Andean region where higher values of AOD (~ 0.12 ± 0.06 versus 0.09 ± 0.04 in the no biomass-burning season) and α(440-870) (~ 0.95 ± 0.30 versus 0.84 ± 0.3 in the no biomass-burning season). However, the intensity of the biomass-burning season varies between different years. Analysis of precipitation anomalies using TRNM satellites indicates a strong correlation with AOD, which suggest that on dry years there is less vegetation to burn and so less aerosol load. The opposite is found for positive anomalies of precipitation. In the transport of biomass burning larger values of the effective radius (reff) are observed in La Paz (reff = 0.26 ± 0.10 μm) than in the low lands (reff = 0.63 ± 0.24 μm), which has been explained by aerosol aging processes. Moreover, although the spectral dependence is similar, single scattering albedo (SSA) is larger in the low lands

  20. Measurement of the transport spin polarization of FeV using point-contact Andreev reflection

    SciTech Connect

    Bailey, William; Osofsky, Mike; Bussman, Konrad; Parker, David S; Cheng, L

    2013-01-01

    The Fe1 xVx alloy system exhibits the lowest known Gilbert relaxation rate of any ferromagnetic metal or binary alloy with G1 435MHz at x1 427% V. Low relaxation rates are of particular interest in modern spin electronic applications involving spin torque. The transport spin polarization of a series of sputtered epitaxial Fe1 xVx samples was measured using point contact Andreev reflection. Values of the transport spin polarization agree well with those measured for pure Fe and are independent of composition. The results indicate that the substitution of up to 50% of V for Fe does not reduce the spin polarization in the alloy.

  1. Spin transport and precession in graphene measured by nonlocal and three-terminal methods

    SciTech Connect

    Dankert, André Kamalakar, Mutta Venkata; Bergsten, Johan; Dash, Saroj P.

    2014-05-12

    We investigate the spin transport and precession in graphene by using the Hanle effect in nonlocal and three-terminal measurement geometries. Identical spin lifetimes, spin diffusion lengths, and spin polarizations are observed in graphene devices for both techniques over a wide range of temperatures. The magnitude of the spin signals is well explained by spin transport models. These observations rules out any signal enhancements or additional scattering mechanisms at the interfaces for both geometries. This validates the applicability of both the measurement methods for graphene based spintronics devices and their reliable extractions of spin parameters.

  2. Use of Acoustic Doppler Instruments for Measuring Discharge in Streams with Appreciable Sediment Transport

    USGS Publications Warehouse

    Mueller, D.S.; ,

    2002-01-01

    The use of Acoustic Doppler current profilers (ADCP) for measuring discharge in streams with sediment transport was discussed. The studies show that the acoustic frequency of an ADCP in combination with the sediment transport characteristics in a river causes the ADCP bottom-tracking algorithms to detect a moving bottom. A moving bottom causes bottom-tracking-referenced water velocities and discharges to be biased low. The results also show that the use of differential global positioning system (DGPS) data allows accurate measurement of water velocities and discharges in such cases.

  3. Correlations between measures of dynamic balance in individuals with post-stroke hemiparesis.

    PubMed

    Vistamehr, Arian; Kautz, Steven A; Bowden, Mark G; Neptune, Richard R

    2016-02-08

    Mediolateral balance control during walking is a challenging task in post-stroke hemiparetic individuals. To detect and treat dynamic balance disorders, it is important to assess balance using reliable methods. The Berg Balance Scale (BBS), Dynamic Gait Index (DGI), margin-of-stability (MoS), and peak-to-peak range of angular-momentum (H) are some of the most commonly used measures to assess dynamic balance and fall risk in clinical and laboratory settings. However, it is not clear if these measures lead to similar conclusions. Thus, the purpose of this study was to assess dynamic balance in post-stroke hemiparetic individuals using BBS, DGI, MoS and the range of H and determine if these measure are correlated. BBS and DGI were collected from 19 individuals post-stroke. Additionally, kinematic and kinetic data were collected while the same individuals walked at their self-selected speed. MoS and the range of H were calculated in the mediolateral direction for each participant. Correlation analyses revealed moderate associations between all measures. Overall, a higher range of angular-momentum was associated with a higher MoS, wider step width and lower BBS and DGI scores, indicating poor balance control. Further, only the MoS from the paretic foot placement, but not the nonparetic foot, correlated with the other balance measures. Although moderate correlations existed between all the balance measures, these findings do not necessarily advocate the use of a single measure as each test may assess different constructs of dynamic balance. These findings have important implications for the use and interpretation of dynamic balance assessments.

  4. Correlations between Measures of Dynamic Balance in Individuals with Post-stroke Hemiparesis

    PubMed Central

    Vistamehr, Arian; Kautz, Steven A.; Bowden, Mark G.; Neptune, Richard R.

    2016-01-01

    Mediolateral balance control during walking is a challenging task in post-stroke hemiparetic individuals. To detect and treat dynamic balance disorders, it is important to assess balance using reliable methods. The Berg Balance Scale (BBS), Dynamic Gait Index (DGI), margin-of-stability (MoS), and peak-to-peak range of angular-momentum (H) are some of the most commonly used measures to assess dynamic balance and fall risk in clinical and laboratory settings. However, it is not clear if these measures lead to similar conclusions. Thus, the purpose of this study was to assess dynamic balance in post-stroke hemiparetic individuals using BBS, DGI, MoS and the range of H and determine if these measure are correlated. BBS and DGI were collected from 19 individuals post-stroke. Additionally, kinematic and kinetic data were collected while the same individuals walked at their self-selected speed. MoS and the range of H were calculated in the mediolateral direction for each participant. Correlation analyses revealed moderate associations between all measures. Overall, a higher range of angular-momentum was associated with a higher MoS, wider step width and lower BBS and DGI scores, indicating poor balance control. Further, only the MoS from the paretic foot placement, but not the nonparetic foot, correlated with the other balance measures. Although moderate correlations existed between all the balance measures, these findings do not necessarily advocate the use of a single measure as each test may assess different constructs of dynamic balance. These findings have important implications for the use and interpretation of dynamic balance assessments. PMID:26795124

  5. Cardiac glycoside activities link Na(+)/K(+) ATPase ion-transport to breast cancer cell migration via correlative SAR.

    PubMed

    Magpusao, Anniefer N; Omolloh, George; Johnson, Joshua; Gascón, José; Peczuh, Mark W; Fenteany, Gabriel

    2015-02-20

    The cardiac glycosides ouabain and digitoxin, established Na(+)/K(+) ATPase inhibitors, were found to inhibit MDA-MB-231 breast cancer cell migration through an unbiased chemical genetics screen for cell motility. The Na(+)/K(+) ATPase acts both as an ion-transporter and as a receptor for cardiac glycosides. To delineate which function is related to breast cancer cell migration, structure-activity relationship (SAR) profiles of cardiac glycosides were established at the cellular (cell migration inhibition), molecular (Na(+)/K(+) ATPase inhibition), and atomic (computational docking) levels. The SAR of cardiac glycosides and their analogs revealed a similar profile, a decrease in potency when the parent cardiac glycoside structure was modified, for each activity investigated. Since assays were done at the cellular, molecular, and atomic levels, correlation of SAR profiles across these multiple assays established links between cellular activity and specific protein-small molecule interactions. The observed antimigratory effects in breast cancer cells are directly related to the inhibition of Na(+)/K(+) transport. Specifically, the orientation of cardiac glycosides at the putative cation permeation path formed by transmembrane helices αM1-M6 correlates with the Na(+) pump activity and cell migration. Other Na(+)/K(+) ATPase inhibitors that are structurally distinct from cardiac glycosides also exhibit antimigratory activity, corroborating the conclusion that the antiport function of Na(+)/K(+) ATPase and not the receptor function is important for supporting the motility of MDA-MB-231 breast cancer cells. Correlative SAR can establish new relationships between specific biochemical functions and higher-level cellular processes, particularly for proteins with multiple functions and small molecules with unknown or various modes of action.

  6. Comparison of Thermoelectric Transport Measurement Techniques Using n-type PbSe

    NASA Astrophysics Data System (ADS)

    Wang, Heng; Fedorov, Mikhail I.; Shabaldin, Aleksander A.; Konstantinov, Piotr P.; Snyder, G. Jeffrey

    2015-06-01

    We compare high-temperature thermoelectric transport measurements at two different institutes using different setups. The material studied is n-type PbSe doped with Cl. The measurements at the Ioffe Institute used a steady-state design which allowed all three properties to be measured simultaneously from bar-shaped samples. Those at Caltech have used Van der Pauw geometry for resistivity, an oscillation method for the Seebeck coefficient, and a laser flash technique for thermal conductivity. The results for each individual property show differences around 10% in some cases, while the evaluation of overall zT for the three samples with different doping levels is mostly below 10%. The steady-state method at the Ioffe Institute was able to measure thermal conductivity at high temperature as accurately as the laser flash method. In general, great caution is needed for any setup in order to accurately measure high-temperature transport properties and hence zT.

  7. The Influence of Atmospheric Transport Regimes on Polychlorinated Biphenyl (PCB) Concentrations Measured at Zeppelin

    NASA Astrophysics Data System (ADS)

    Ubl, S.; Scheringer, M.; Hungerbuehler, K.

    2013-12-01

    Polychlorinated biphenyls (PCBs) are persistent organic pollutants (POPs) of exclusively anthropogenic origin. PCBs are toxic, bioaccumulative and have a great potential of long-range transport. PCBs have been banned globally under the Stockholm convention on POPs since 2004. We analysed times series of 21 PCB congeners ranging from PCB 18 to PCB 187 that have been measured at Zeppelin (Spitsbergen) since 1993. Although primary PCB emissions have been steadily reduced, a strong decreasing trend is not observed in the PCB concentrations in the Arctic. In order to investigate the influence of atmospheric transport on the PCB concentrations and to identify the potential source regions of the PCBs, we calculated footprints for the Zeppelin measurement site using the Lagrangian Particle Dispersion Model FLEXPART. Footprints can be interpreted as potential source regions where PCBs may have been picked up. Based on various statistical analyses of the footprints (cluster analysis, k-medoid, silhouette), we identified the prevailing transport regimes for Zeppelin which were represented by 5 different clusters. Cluster 1 and 3 belong to transport regimes with highest residence times over Europe (cluster 1) and North-America (cluster 3); both transport regimes dominantly occur from late fall to early spring. Clusters 2 and 4 represent air masses with surface contact predominantly over the Atlantic Ocean (cluster 2), only occurring during the summer months, and the Arctic Ocean (cluster 4) mainly observed in spring and autumn, but also in summer. Cluster 5 is representative of air originating from the Pacific ocean and eastern Asia; this transport regime occurs mainly in spring and fall. We grouped the PCB concentrations measured at Zeppelin according to the 5 different clusters and calculated the median for each cluster and PCB congener. The median for medium to heavier PCBs is highest for cluster 1 and 3, which represent transport regimes over the continent, suggesting that

  8. Time correlated measurements using plastic scintillators with neutron-photon pulse shape discrimination

    NASA Astrophysics Data System (ADS)

    Richardson, Norman E., IV

    Since the beginning of the nuclear age, there has been a strong demand for the development of efficient technologies for the detection of ionizing radiation. According to the United States' Department of Energy, the accurate assessment of fissile materials is essential in achieving the nonproliferation goals of enhancing safety and security of nuclear fuel cycle and nuclear energy facilities. Nuclear materials can be characterized by the measurement of prompt and delayed neutrons and gamma rays emitted in spontaneous or induced fission reactions and neutrons emitted in fission reactions are the distinctive signatures of nuclear materials. Today, the most widely used neutron detection technologies rely on thermal neutron capture reactions using a moderating material to cause the neutron to lose its energy prior to the detection event. This is necessary because as the fission event occurs, neutrons are emitted carrying high amounts of energy, typically on the order of mega electron volts (MeV). These energetic particles are classified as "fast" neutrons. For detecting the thermal neutrons, the Helium-3 (3He) gas-filled counters are arguably the most widely used technology of neutron detection. 3He counters have been the scientific standard for the nuclear engineering community for several decades, and have earned their place as a reliable technique for the detection of neutrons. However, 3He gas-filled counters have several disadvantages. First, gas-filled counters are not rigid and are sensitive to vibrations. Secondly, gas-filled counters are prone to the count rate limitations due to the physical processes of charge multiplication and transport in the gas medium in the electric field. Lastly, 3He gas-filled counters suffer from a supply shortage of the 3He isotope. As it is stated in [3], this shortage is created by the new demand for Helium-3 due to the deployment of neutron detectors at the borders after the 9/11 attack to help secure the nation against smuggled

  9. Quantifying Transport Pathways in the Middleworld During CRYSTAL-FACE Using Tracer-Tracer Correlations and a Simple Mixing Model

    NASA Astrophysics Data System (ADS)

    Weinstock, E. M.; Pittman, J. V.; Sayres, D.; Smith, J. B.; Anderson, J. G.; Gerbig, C.; Daube, B.; Wofsy, S.; Richard, E.; Weinheimer, A.; Ridley, B.; Jost, H.; Loewenstein, M.; Lopez, J.

    2003-12-01

    Evidence from both satellite observations and previous aircraft missions (STRAT, POLARIS, SOLVE, CRYSTAL FACE, etc.) has illustrated the importance, seasonal idiosyncrasies, and complexity of middleworld dynamics. It is therefore vital to develop a framework for quantitatively understanding transport pathways in the middleworld, the lack of which continuously frustrates our ability to predict the behavior of both mid-latitude ozone and water vapor in this region over the coming decades. Toward this end, we have developed a simple mixing model that uses in situ tracer data to study the dynamics of the middleworld during CRYSTAL FACE. We consider four possible transport pathways into the middleworld: 1- diabatic descent from the tropical stratosphere, 2- quasi-isentropic transport equatorward from higher northern latitudes, 3- quasi-isentropic transport poleward from the upper tropical troposphere, and 4-convective input, either directly from below, or from other latitudes. We create initial profiles for each transport pathway using ozonesonde data and in situ measurements from previous aircraft campaigns and use a least squares fitting routine to match the measured composition of each sampled air parcel independently. We test the model using high resolution, in situ measurements of H2O, O3, CO2, CO and NOy taken aboard NASA's WB-57 during the 2002 CRYSTAL FACE mission over southern Florida. The output of the model gives the fraction of air in the parcel corresponding to each transport pathway. We compare two flights during the mission for which isentropic back trajectories indicate very different stratospheric source regions, as well as one during which air parcels sampled near the 380K isentrope contain high CO and water vapor mixing ratios indicative of midlatitude convection. We also explore the dependence of the results on uncertainties in the source profiles we use. To significantly reduce these uncertainties, and to explore the dynamics and chemical

  10. Measurement of bedload transport in sand-bed rivers: a look at two indirect sampling methods

    USGS Publications Warehouse

    Holmes, Robert R.; Gray, John R.; Laronne, Jonathan B.; Marr, Jeffrey D.G.

    2010-01-01

    Sand-bed rivers present unique challenges to accurate measurement of the bedload transport rate using the traditional direct sampling methods of direct traps (for example the Helley-Smith bedload sampler). The two major issues are: 1) over sampling of sand transport caused by “mining” of sand due to the flow disturbance induced by the presence of the sampler and 2) clogging of the mesh bag with sand particles reducing the hydraulic efficiency of the sampler. Indirect measurement methods hold promise in that unlike direct methods, no transport-altering flow disturbance near the bed occurs. The bedform velocimetry method utilizes a measure of the bedform geometry and the speed of bedform translation to estimate the bedload transport through mass balance. The bedform velocimetry method is readily applied for the estimation of bedload transport in large sand-bed rivers so long as prominent bedforms are present and the streamflow discharge is steady for long enough to provide sufficient bedform translation between the successive bathymetric data sets. Bedform velocimetry in small sandbed rivers is often problematic due to rapid variation within the hydrograph. The bottom-track bias feature of the acoustic Doppler current profiler (ADCP) has been utilized to accurately estimate the virtual velocities of sand-bed rivers. Coupling measurement of the virtual velocity with an accurate determination of the active depth of the streambed sediment movement is another method to measure bedload transport, which will be termed the “virtual velocity” method. Much research remains to develop methods and determine accuracy of the virtual velocity method in small sand-bed rivers.

  11. Correlation of film morphology and defect content with the charge-carrier transport in thin-film transistors based on ZnO nanoparticles

    SciTech Connect

    Polster, S.; Jank, M. P. M.; Frey, L.

    2016-01-14

    The correlation of defect content and film morphology with the charge-carrier transport in field-effect devices based on zinc oxide nanoparticles was investigated. Changes in the defect content and the morphology were realized by annealing and sintering of the nanoparticle thin films. Temperature-dependent electrical measurements reveal that the carrier transport is thermally activated for both the unsintered and sintered thin films. Reduced energetic barrier heights between the particles have been determined after sintering. Additionally, the energetic barrier heights between the particles can be reduced by increasing the drain-to-source voltage and the gate-to-source voltage. The changes in the barrier height are discussed with respect to information obtained by scanning electron microscopy and photoluminescence measurements. It is found that a reduction of surface states and a lower roughness at the interface between the particle layer and the gate dielectric lead to lower barrier heights. Both surface termination and layer morphology at the interface affect the barrier height and thus are the main criteria for mobility improvement and device optimization.

  12. Concordance correlation coefficients estimated by generalized estimating equations and variance components for longitudinal repeated measurements.

    PubMed

    Tsai, Miao-Yu

    2017-04-15

    The concordance correlation coefficient (CCC) is a commonly accepted measure of agreement between two observers for continuous responses. This paper proposes a generalized estimating equations (GEE) approach allowing dependency between repeated measurements over time to assess intra-agreement for each observer and inter- and total agreement among multiple observers simultaneously. Furthermore, the indices of intra-, inter-, and total agreement through variance components (VC) from an extended three-way linear mixed model (LMM) are also developed with consideration of the correlation structure of longitudinal repeated measurements. Simulation studies are conducted to compare the performance of the GEE and VC approaches for repeated measurements from longitudinal data. An application of optometric conformity study is used for illustration. In conclusion, the GEE approach allowing flexibility in model assumptions and correlation structures of repeated measurements gives satisfactory results with small mean square errors and nominal 95% coverage rates for large data sets, and when the assumption of the relationship between variances and covariances for the extended three-way LMM holds, the VC approach performs outstandingly well for all sample sizes. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Joint measurement of lensing-galaxy correlations using SPT and DES SV data

    SciTech Connect

    Baxter, E. J.

    2016-07-04

    We measure the correlation of galaxy lensing and cosmic microwave background lensing with a set of galaxies expected to trace the matter density field. The measurements are performed using pre-survey Dark Energy Survey (DES) Science Verification optical imaging data and millimeter-wave data from the 2500 square degree South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) survey. The two lensing-galaxy correlations are jointly fit to extract constraints on cosmological parameters, constraints on the redshift distribution of the lens galaxies, and constraints on the absolute shear calibration of DES galaxy lensing measurements. We show that an attractive feature of these fits is that they are fairly insensitive to the clustering bias of the galaxies used as matter tracers. The measurement presented in this work confirms that DES and SPT data are consistent with each other and with the currently favored $\\Lambda$CDM cosmological model. In conclusion, it also demonstrates that joint lensing-galaxy correlation measurement considered here contains a wealth of information that can be extracted using current and future surveys.

  14. Correlations between kinematic and rating scale measures of tardive dyskinesia in a developmentally disabled population.

    PubMed

    Sprague, R L; Korach, M S; van Emmerik, R E; Newell, K M

    1993-01-01

    This paper reports a study that examines the relations between Dyskinesia Identification System: Condensed User Scale (DISCUS) scores and a battery of postural and movement kinematic measures in a group of adults diagnosed as being developmentally disabled and screened as having tardive dyskinesia. The results showed that finger tremor measures correlated with the tongue tremor and pill rolling items of DISCUS, whereas the postural stability scores correlated with the toe movement item of DISCUS and the total DISCUS score. There was also a high stability in subject kinematic performance from trial to trial over the postural and movement tests. The pattern of correlations between the DISCUS items and movement kinematic measures is consistent with the proposition that tremor is a centrally rather than peripherally driven phenomenon, although many factors contribute to emergent tremors. These findings provide construct and content validity for the DISCUS as a screening device for tardive dyskinesia and suggest that certain posture and movement kinematic measures could be sensitive measuring methods for tardive dyskinesia in developmentally disabled populations.

  15. Joint measurement of lensing-galaxy correlations using SPT and DES SV data

    DOE PAGES

    Baxter, E. J.

    2016-07-04

    We measure the correlation of galaxy lensing and cosmic microwave background lensing with a set of galaxies expected to trace the matter density field. The measurements are performed using pre-survey Dark Energy Survey (DES) Science Verification optical imaging data and millimeter-wave data from the 2500 square degree South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) survey. The two lensing-galaxy correlations are jointly fit to extract constraints on cosmological parameters, constraints on the redshift distribution of the lens galaxies, and constraints on the absolute shear calibration of DES galaxy lensing measurements. We show that an attractive feature of these fits is that they are fairly insensitive to the clustering bias of the galaxies used as matter tracers. The measurement presented in this work confirms that DES and SPT data are consistent with each other and with the currently favoredmore » $$\\Lambda$$CDM cosmological model. In conclusion, it also demonstrates that joint lensing-galaxy correlation measurement considered here contains a wealth of information that can be extracted using current and future surveys.« less

  16. Joint measurement of lensing-galaxy correlations using SPT and DES SV data

    NASA Astrophysics Data System (ADS)

    Baxter, E.; Clampitt, J.; Giannantonio, T.; Dodelson, S.; Jain, B.; Huterer, D.; Bleem, L.; Crawford, T.; Efstathiou, G.; Fosalba, P.; Kirk, D.; Kwan, J.; Sánchez, C.; Story, K.; Troxel, M. A.; Abbott, T. M. C.; Abdalla, F. B.; Armstrong, R.; Benoit-Lévy, A.; Benson, B.; Bernstein, G. M.; Bernstein, R. A.; Bertin, E.; Brooks, D.; Carlstrom, J.; Rosell, A. Carnero; Carrasco Kind, M.; Carretero, J.; Chown, R.; Crocce, M.; Cunha, C. E.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Dietrich, J. P.; Doel, P.; Evrard, A. E.; Fausti Neto, A.; Flaugher, B.; Frieman, J.; Gruen, D.; Gruendl, R. A.; Gutierrez, G.; de Haan, T.; Holder, G.; Honscheid, K.; Hou, Z.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Lima, M.; March, M.; Marshall, J. L.; Martini, P.; Melchior, P.; Miller, C. J.; Miquel, R.; Mohr, J. J.; Nord, B.; Omori, Y.; Plazas, A. A.; Reichardt, C.; Romer, A. K.; Rykoff, E. S.; Sanchez, E.; Sevilla-Noarbe, I.; Sheldon, E.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Stark, A.; Swanson, M. E. C.; Tarle, G.; Thomas, D.; Walker, A. R.; Wechsler, R. H.

    2016-10-01

    We measure the correlation of galaxy lensing and cosmic microwave background lensing with a set of galaxies expected to trace the matter density field. The measurements are performed using pre-survey Dark Energy Survey (DES) Science Verification optical imaging data and millimetre-wave data from the 2500 sq. deg. South Pole Telescope Sunyaev-Zel'dovich (SPT-SZ) survey. The two lensing-galaxy correlations are jointly fit to extract constraints on cosmological parameters, constraints on the redshift distribution of the lens galaxies, and constraints on the absolute shear calibration of DES galaxy-lensing measurements. We show that an attractive feature of these fits is that they are fairly insensitive to the clustering bias of the galaxies used as matter tracers. The measurement presented in this work confirms that DES and SPT data are consistent with each other and with the currently favoured Λ cold dark matter cosmological model. It also demonstrates that joint lensing-galaxy correlation measurement considered here contains a wealth of information that can be extracted using current and future surveys.

  17. Geometric measures of quantum correlations: characterization, quantification, and comparison by distances and operations

    NASA Astrophysics Data System (ADS)

    Roga, W.; Spehner, D.; Illuminati, F.

    2016-06-01

    We investigate and compare three distinguished geometric measures of bipartite quantum correlations that have been recently introduced in the literature: the geometric discord, the measurement-induced geometric discord, and the discord of response, each one defined according to three contractive distances on the set of quantum states, namely the trace, Bures, and Hellinger distances. We establish a set of exact algebraic relations and inequalities between the different measures. In particular, we show that the geometric discord and the discord of response based on the Hellinger distance are easy to compute analytically for all quantum states whenever the reference subsystem is a qubit. These two measures thus provide the first instance of discords that are simultaneously fully computable, reliable (since they satisfy all the basic Axioms that must be obeyed by a proper measure of quantum correlations), and operationally viable (in terms of state distinguishability). We apply the general mathematical structure to determine the closest classical-quantum state of a given state and the maximally quantum-correlated states at fixed global state purity according to the different distances, as well as a necessary condition for a channel to be quantumness breaking.

  18. The classical correlation limits the ability of the measurement-induced average coherence

    PubMed Central

    Zhang, Jun; Yang, Si-ren; Zhang, Yang; Yu, Chang-shui

    2017-01-01

    Coherence is the most fundamental quantum feature in quantum mechanics. For a bipartite quantum state, if a measurement is performed on one party, the other party, based on the measurement outcomes, will collapse to a corresponding state with some probability and hence gain the average coherence. It is shown that the average coherence is not less than the coherence of its reduced density matrix. In particular, it is very surprising that the extra average coherence (and the maximal extra average coherence with all the possible measurements taken into account) is upper bounded by the classical correlation of the bipartite state instead of the quantum correlation. We also find the sufficient and necessary condition for the null maximal extra average coherence. Some examples demonstrate the relation and, moreover, show that quantum correlation is neither sufficient nor necessary for the nonzero extra average coherence within a given measurement. In addition, the similar conclusions are drawn for both the basis-dependent and the basis-free coherence measure. PMID:28374756

  19. Application of dual-focus fluorescence correlation spectroscopy to microfluidic flow-velocity measurement.

    PubMed

    Arbour, Tyler J; Enderlein, Jörg

    2010-05-21

    Several methods exist to measure and map fluid velocities in microfluidic devices, which are vital to understanding properties on the micro- and nano-scale. Fluorescence correlation spectroscopy (FCS) is a method traditionally exploited for its ability to measure molecular diffusion coefficients. However, several reports during the past decade have shown that FCS can also be successfully used to measure precise flow rates in microfluidics with very high spatial resolution, making it a competitive alternative to other common flow-measurement methods. In 2007 we introduced a modified version of conventional FCS that overcomes many of the artifacts troubling the standard technique. Here we show how the advantages of this method, called dual-focus FCS, extend to flow measurements. To do so, we have measured the velocity flow profile along the cross-section of a square-bore microfluidic channel and compared the result to the theoretical prediction.

  20. Noncontact diffuse correlation spectroscopy for noninvasive deep tissue blood flow measurement

    NASA Astrophysics Data System (ADS)

    Lin, Yu; He, Lian; Shang, Yu; Yu, Guoqiang

    2012-01-01

    A noncontact diffuse correlation spectroscopy (DCS) probe has been developed using two separated optical paths for the source and detector. This unique design avoids the interference between the source and detector and allows large source-detector separations for deep tissue blood flow measurements. The noncontact probe has been calibrated against a contact probe in a tissue-like phantom solution and human muscle tissues; flow changes concurrently measured by the two probes are highly correlated in both phantom (R2=0.89, p<10-5) and real-tissue (R2=0.77, p<10-5, n=9) tests. The noncontact DCS holds promise for measuring blood flow in vulnerable (e.g., pressure ulcer) and soft (e.g., breast) tissues without distorting tissue hemodynamic properties.

  1. Tensor Correlations Measured in 3He(e,e'pp)n

    SciTech Connect

    Baghdasaryan, H; Weinstein, L B; Adhikari, K P; Aghasyan, K P; Amarian, M; Anghinolfi, M; Avakian, H; Ball, J; Battaglieri, M; Bedlinskiy, I; Berman, B L; Biselli, A S; Bookwalter, C; Briscoe, W J; Brooks, W K; Boltmann, S; Burkert, V D; Carman, D S; Crede, V; D'Angelo, A; Daniel, A; Dashyan, N; DeVita, R; DeSanctis, E; Deur, A; Dey, B; Dickson, R; Djalali, C; Dodge, G E; Doughty, D; Dupre, R; Egiyan, H; El Alaoui, A; El Fassi, L; Eugenio, P; Fegan, S; Gabrielyan, M Y; Gilfoyle, G P; Giovanetti, K L; Gohn, W; Gothe, R W; Griffioen, K A; Guidal, M; Guo, L; Gyurjyan, V; Hakobyan, H; Hanretty, C; Hyde, C E; Hicks, K; Holtrop, M; Ilieva, Y; Ireland, D G; Joo, K; Keller, D; Khandaker, M; Khetarpal, P; Kim, A; Kim, W; Klein, A; Klein, F J; Konczykowski, P; Kubarovsky, V; Kuhn, S E; Kuleshov, S V; Kuznetsov, V; Kvaltine, N D; Livingston, K; Lu, H Y; MacGregor, I.J.D.; Markov, N; Mayer, M; McAndrew, J; McKinnon, B; Meyer, C A; Mikhailov, K; Mokeev, V; Moreno, B; Moriya, K; Morrison, B; Moutarde, H; Munevar, E; Nadel-Turonski, P; Nepali, C; Niccolai, S; Niculescu, G; Niculescu, I; Osipenko, M; Ostrovidov, A I; Paremuzyan, R; Park, K; Park, S; Pasyuk, E; Anefalos Pereira, S; Pisano, S; Pogorelko, O; Pozdniakov, S; Price, J W; Procureur, S; Protopopescu, D; Ricco, G; Ripani, M; Rosner, G; Rossi, P; Sabatie, F; Salgado, C; Schumacher, R A; Seraydaryan, H; Smith, G D; Sober, D I; Sokhan, D; Stepanyan, S S; Stepanyan, S; Stoler, P; Strauch, S; Taiuti, M; Tang, W; Taylor, C E; Tedeschi, D J; Ungaro, M; Vineyard, M F; Voutier, E; Watts, D P; Weygand, D P; Wood, M H; Zhao, B; Zhao, Z W

    2010-11-01

    We have measured the 3He(e,e'pp)n reaction at an incident energy of 4.7 GeV over a wide kinematic range. We identified spectator correlated pp and pn nucleon pairs by using kinematic cuts and measured their relative and total momentum distributions. This is the first measurement of the ratio of pp to pn pairs as a function of pair total momentum ptot. For pair relative momenta between 0.3 and 0.5 GeV/c, the ratio is very small at low ptot and rises to approximately 0.5 at large ptot. This shows the dominance of tensor over central correlations at this relative momentum.

  2. Measurements of long-range correlations and bicoherence during biasing in HSX

    NASA Astrophysics Data System (ADS)

    Wilcox, Robert; van Milligen, Boudewijn; Pedrosa, Maria Angeles; Ramisch, Mirko; Anderson, David

    2010-11-01

    Using toroidally-spaced Langmuir probes, long-range fluctuation correlations have been measured in floating potential signals during biased discharges in the HSX stellarator. The increase in long-range correlations during biasing occurs in the floating potential signals, but not in the ion saturation current signals. This has been linked to zonal flow formation in the TJ-II stellarator, both in biased discharges and in naturally occurring improved-confinement discharges [1]. Measurements of the auto-bicoherence of the poloidal electric field signals show an increase in broadband 3-wave coupling during biasing, which is analyzed and compared to both biased and naturally occurring enhanced-confinement discharges in TJ-II [2]. Additional measurements of fluctuation moments in HSX are also presented.[4pt] [1] M.A. Pedrosa, et al, Phys. Rev. Lett. 100 (2008) 215003.[0pt] [2] B.Ph. van Milligen, et al, Nucl. Fusion 48 (2008) 115003

  3. The Shoelace Antenna: Measurements of Driven Transport and Prospects for Active Edge Control

    NASA Astrophysics Data System (ADS)

    Golfinopoulos, Theodore; Labombard, B.; Brunner, D.; Terry, J. L.; Baek, S. G.; Ennever, P.; Edlund, E.; Han, W.; Burke, W. M.; Wolfe, S. M.; Irby, J. H.; Hughes, J. W.; Fitzgerald, E. W.; Granetz, R. S.; Greenwald, M. J.; Leccacorvi, R.; Marmar, E. S.; Pierson, S. Z.; Porkolab, M.; Vieira, R. F.; Wukitch, S. J.; Alcator C-Mod Team

    2016-10-01

    The Shoelace antenna was built to drive edge fluctuations in the Alcator C-Mod tokamak, matching the wavenumber (k = 1.5/cm) and frequency (50< f<200 kHz) of the Quasi-Coherent Mode (QCM). This fluctuation is responsible for regulating transport across the plasma boundary in the steady-state, ELM-free Enhanced D α(EDA) H-mode; the goal of the Shoelace antenna is to regulate edge transport actively via the same mechanism. Initial experiments demonstrated that the antenna drove a resonant response in the edge plasma in steady-state EDA and transient, non-ELMy H-modes, but transport measurements were unavailable. In 2016, the Shoelace antenna was relocated to enable direct measurements of driven transport by a reciprocating Mirror Langmuir Probe, while also making available gas puff imaging and reflectometer data to provide radial localization of the driven fluctuation. This talk will describe these measurements, and compare them to those of the intrinsic QCM in the context of assessing the feasibility of achieving active control of edge transport using direct coupling to edge modes. This work is supported by USDoE Award DE-FC02-99ER54512.

  4. Temporal variations of volume transport through the Taiwan Strait, as identified by three-year measurements

    NASA Astrophysics Data System (ADS)

    Chen, Hsien-Wen; Liu, Cho-Teng; Matsuno, Takeshi; Ichikawa, Kaoru; Fukudome, Ken-ichi; Yang, Yih; Doong, Dong-Jiing; Tsai, Wei-Ling

    2016-02-01

    The water characteristics of the East China Sea depend on influxes from river run-off, the Kuroshio, and the Taiwan Strait. A three-year observation using an acoustic Doppler current profiler (ADCP) operated on a ferry provides the first nearly continuous data set concerning the seasonal flow pattern and the volume transport from the Taiwan Strait to the East China Sea. The observed volume transport shows strong seasonality and linkage to the along-strait wind stress. An empirical regression formula between the volume transport and wind was derived to fill the gaps of observation so as to obtain a continuous data set. Based on this unique data set, the three-year mean of monthly volume transport is northeastward throughout the year, large (nearly 3 Sv) in summer and low (nearly zero) in winter. The China Coastal Current flows southward in winter, while the northward-flowing Taiwan Strait Current may reverse direction during severe northeasterly winds in the winter or under typhoons. The sea level difference across Taiwan Strait is closely correlated to the transport through the strait, and their relation is found seasonally nearly stable.

  5. Improving sediment transport measurements in the Erlenbach stream using a moving basket system

    NASA Astrophysics Data System (ADS)

    Rickenmann, Dieter; Turowski, Jens; Hegglin, Ramon; Fritschi, Bruno

    2010-05-01

    In the Erlenbach stream, a prealpine torrent in Switzerland, sediment transport has been monitored for more than 25 years. Sediment transporting flood events in the Erlenbach are typically of short duration with a rapid rise of discharge during summer thunderstorms, thus hampering on-site measurements. On average there are more than 20 bedload transport events per year. Near the confluence with the main valley river, there is a stream gauging station and a sediment retention basin with a capacity of about 2,000 m3. The basin is surveyed at regular intervals and after large flood events. In addition, sediment transport has been continuously monitored with a piezoelectric bedload impact sensor (PBIS) array since 1986. The sensor array is mounted flush with the surface of a check dam immediately upstream of the retention basin. The PBIS system was developed to continuously measure the intensity of bedload transport and its relation to stream discharge. To standardize the sensors, the piezoelectric crystals were replaced by geophones in 2000. The geophone measuring system has also been employed at a number of other streams. In 2008, the measuring system in the Erlenbach stream has been enhanced with an automatic system to obtain bedload samples. Movable, slot-type cubic metal baskets are mounted on a rail at the downstream wall of the large check dam above the retention basin. The metal baskets can be moved automatically and individually into the flow according to flow and bedload transport conditions (i.e. geophone recordings). The basket is stopped at the centerline of the approach flow channel of the overflow section to obtain a sediment sample during a limited time interval. The wire mesh of the basket has a spacing of 10 mm to sample all sediment particles coarser than this size (which is about the limiting grain size detected by the geophones). The weight increase due to the collected sediment is measured by weighing cells located in the basket supporting

  6. Correlation of predicted and measured sonic boom characteristics from the reentry of STS-1 orbiter

    NASA Technical Reports Server (NTRS)

    Garcia, F., Jr.; Jones, J. H.; Henderson, H. R.

    1985-01-01

    Characteristics from sonic boom pressure signatures recorded at 11 locations during reentry of the Space Shuttle Orbiter Columbia are correlated with characteristics of wind tunnel signatures extrapolated from flight altitudes for Mach numbers ranging from 1.23 to 5.87. The flight pressure signature were recorded by microphones positioned at two levels near the descent groundtrack along the California corridor. The wind tunnel signatures used in theoretical predictions were measured using a 0.0041-scale model Orbiter. The mean difference between all measured and predicted overpressures is 12 percent from measured levels. With one exception, the flight signatures are very similar to theoretical n-waves.

  7. Speckle correlation method used to measure object's in-plane velocity

    SciTech Connect

    Schmid, Petr; Horvath, Pavel; Hrabovsky, Miroslav

    2007-06-20

    We present a measurement of an object's in-plane velocity in onedirection by the use of the speckle correlation method. Numerical correlationsof speckle patterns recorded periodically during motion of the object underinvestigation give information used to evaluate the object's in-plane velocity.The proposed optical setup uses a detection plane in the image field and enablesone to detect the object's velocity within the interval(10-150) {mu}m ? s-1.Simulation analysis shows a way of controlling the measuring range. Thepresented theory, simulation analysis, and setup are verified through anexperiment of measurement of the velocity profile of an object.

  8. Linking criteria for incipient motion to field-based measures of bed load transport capacity

    NASA Astrophysics Data System (ADS)

    Pitlick, J.

    2015-12-01

    Early studies of sediment transport, such as those of Gilbert (1914) and Shields (1936), laid the groundwork for countless other studies of bed load entrainment and transport. Gilbert and Shields emphasized somewhat different aspects of sediment transport in their writing, but they had similar objectives in experimenting with conditions that affect both incipient motion and bed load transport capacity. The problem of predicting incipient motion is thus inextricably linked to the problem of predicting bed load transport capacity. In this talk I will discuss field-based approaches for evaluating incipient motion at channel-length scales ranging from a few km to many 10s of km. In the best-case scenario, where time and equipment are available to sample the bed load, the most robust approach for determining incipient motion is to extrapolate from measurements taken over a range of flows, and find the shear stress corresponding to a low but measureable transport rate. Alternatively, if channel properties (width, depth, slope and grain size) can be measured at a sufficient number of locations (say, more than 20), the reference shear stress can be estimated by assuming it scales with the channel-forming (bankfull) shear stress. Another new approach, which makes use of repeat aerial LiDAR and records of daily discharge, is to develop a two-parameter sediment rating curve that produces the same sediment flux for a time series of daily flows as the sediment flux estimated from topographic differencing. Last, in situations where a qualitative (yes/no) assessment of sediment motion is sufficient (e.g. during a reservoir release), longitudinal variations in bed load transport intensity can be detected with acoustical sensors- hydrophones- mounted on a kayak or boat equipped with a global positioning system (GPS). Pros and cons of these different approaches will also be discussed.

  9. Estimation of uncertainty bounds for individual particle image velocimetry measurements from cross-correlation peak ratio

    NASA Astrophysics Data System (ADS)

    Charonko, John J.; Vlachos, Pavlos P.

    2013-06-01

    Numerous studies have established firmly that particle image velocimetry (PIV) is a robust method for non-invasive, quantitative measurements of fluid velocity, and that when carefully conducted, typical measurements can accurately detect displacements in digital images with a resolution well below a single pixel (in some cases well below a hundredth of a pixel). However, to date, these estimates have only been able to provide guidance on the expected error for an average measurement under specific image quality and flow conditions. This paper demonstrates a new method for estimating the uncertainty bounds to within a given confidence interval for a specific, individual measurement. Here, cross-correlation peak ratio, the ratio of primary to secondary peak height, is shown to correlate strongly with the range of observed error values for a given measurement, regardless of flow condition or image quality. This relationship is significantly stronger for phase-only generalized cross-correlation PIV processing, while the standard correlation approach showed weaker performance. Using an analytical model of the relationship derived from synthetic data sets, the uncertainty bounds at a 95% confidence interval are then computed for several artificial and experimental flow fields, and the resulting errors are shown to match closely to the predicted uncertainties. While this method stops short of being able to predict the true error for a given measurement, knowledge of the uncertainty level for a PIV experiment should provide great benefits when applying the results of PIV analysis to engineering design studies and computational fluid dynamics validation efforts. Moreover, this approach is exceptionally simple to implement and requires negligible additional computational cost.

  10. Temporal correlation measurements of pulsed dual CO2 lidar returns. [for atmospheric pollution detection

    NASA Technical Reports Server (NTRS)

    Menyuk, N.; Killinger, D. K.

    1981-01-01

    A pulsed dual-laser direct-detection differential-absorption lidar DIAL system, operating near 10.6 microns, is used to measure the temporal correlation and statistical properties of backscattered returns from specular and diffuse topographic targets. Results show that atmospheric-turbulence fluctuations can effectively be frozen for pulse separation times on the order of 1-3 msec or less. The diffuse target returns, however, yielded a much lower correlation than that obtained with the specular targets; this being due to uncorrelated system noise effects and different statistics for the two types of target returns.

  11. Assessing Long-Term Wind Conditions by Combining Different Measure-Correlate-Predict Algorithms: Preprint

    SciTech Connect

    Zhang, J.; Chowdhury, S.; Messac, A.; Hodge, B. M.

    2013-08-01

    This paper significantly advances the hybrid measure-correlate-predict (MCP) methodology, enabling it to account for variations of both wind speed and direction. The advanced hybrid MCP method uses the recorded data of multiple reference stations to estimate the long-term wind condition at a target wind plant site. The results show that the accuracy of the hybrid MCP method is highly sensitive to the combination of the individual MCP algorithms and reference stations. It was also found that the best combination of MCP algorithms varies based on the length of the correlation period.

  12. The role of angular momentum transport in establishing the accretion rate-protostellar mass correlation

    NASA Astrophysics Data System (ADS)

    DeSouza, Alexander L.; Basu, Shantanu

    2017-02-01

    We model the mass accretion rate M˙ to stellar mass M* correlation that has been inferred from observations of intermediate to upper mass T Tauri stars-that is M˙ ∝ M*1.3±0.3. We explain this correlation within the framework of quiescent disk evolution, in which accretion is driven largely by gravitational torques acting in the bulk of the mass and volume of the disk. Stresses within the disk arise from the action of gravitationally driven torques parameterized in our 1D model in terms of Toomre's Q criterion. We do not model the hot inner sub-AU scale region of the disk that is likely stable according to this criterion, and appeal to other mechanisms to remove or redistribute angular momentum and allow accretion onto the star. Our model has the advantage of agreeing with large-scale angle-averaged values from more complex nonaxisymmetric calculations. The model disk transitions from an early phase (dominated by initial conditions inherited from the burst mode of accretion) into a later self-similar mode characterized by a steeper temporal decline in M˙. The models effectively reproduce the spread in mass accretion rates that have been observed for protostellar objects of 0.2 M⊙ ≤ M* ≤ 3.0 M⊙, such as those found in the ρ Ophiuchus and Taurus star forming regions. We then compare realistically sampled populations of young stellar objects produced by our model to their observational counterparts. We find these populations to be statistically coincident, which we argue is evidence for the role of gravitational torques in the late time evolution of quiescent protostellar disks.

  13. Optical and transport properties correlation driven by amorphous/crystalline disorder in InP nanowires

    NASA Astrophysics Data System (ADS)

    Kamimura, H.; Gouveia, R. C.; Carrocine, S. C.; Souza, L. D.; Rodrigues, A. D.; Teodoro, M. D.; Marques, G. E.; Leite, E. R.; Chiquito, A. J.

    2016-11-01

    Indium phosphide nanowires with a single crystalline zinc-blend core and polycrystalline/amorphous shell were grown from a reliable route without the use of hazardous precursors. The nanowires are composed by a crystalline core covered by a polycrystalline shell, presenting typical lengths larger than 10 μm and diameters of 80-90 nm. Raman spectra taken from as-grown nanowires exhibited asymmetric line shapes with broadening towards higher wave numbers which can be attributed to phonon localization effects. It was found that optical phonons in the nanowires are localized in regions with average size of 3 nm, which seems to have the same order of magnitude of grain sizes in the polycrystalline shell. Regardless of the fact that the nanowires exhibit a crystalline core, any considerable degree of disorder can lead to a localized behaviour of carriers. In consequence, the variable range hopping was observed as the main transport instead of the usual thermal excitation mechanisms. Furthermore the hopping length was ten times smaller than nanowire cross-sections, confirming that the nanostructures do behave as a 3D system. Accordingly, the V-shape observed in PL spectra clearly demonstrates a very strong influence of the potential fluctuations on the exciton optical recombination. Such fluctuations can still be observed at low temperature regime, confirming that the amorphous/polycrystalline shell of the nanowires affects the exciton recombination in every laser power regime tested.

  14. Estimation of dc transport dynamics in strongly correlated (La,Pr,Ca)MnO{sub 3} film using an insulator-metal composite model for terahertz conductivity

    SciTech Connect

    Nguyen, T. V. A.; Hattori, A. N.; Nakamura, T.; Fujiwara, K.; Tanaka, H.; Nagai, M.; Ashida, M.

    2014-07-14

    Temperature-dependent conductivities at dc and terahertz (THz) frequency region (σ{sub THz}(ω,T)) were obtained for a strongly correlated (La{sub 0.275}Pr{sub 0.35}Ca{sub 0.375})MnO{sub 3} (LPCMO) film using THz time domain spectroscopy. A composite model that describes σ{sub THz}(ω,T) for LPCMO through the insulator-metal transition (IMT) was established by incorporating Austin-Mott model characterizing the hopping of localized electrons and Drude model explaining the behavior of free electrons. This model enables us to reliably investigate the dc transport dynamics from THz conductivity measurement, i.e., simultaneously evaluate the dc conductivity and the competing composition of metal and insulator phases through the IMT, reflecting the changes in microscopic conductivity of these phases.

  15. Recovering refractive index correlation function from measurement of tissue scattering phase function (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Rogers, Jeremy D.

    2016-03-01

    Numerous methods have been developed to quantify the light scattering properties of tissue. These properties are of interest in diagnostic and screening applications due to sensitivity to changes in tissue ultrastructure and changes associated with disease such as cancer. Tissue is considered a weak scatterer because that the mean free path is much larger than the correlation length. When this is the case, all scattering properties can be calculated from the refractive index correlation function Bn(r). Direct measurement of Bn(r) is challenging because it requires refractive index measurement at high resolution over a large tissue volume. Instead, a model is usually assumed. One particularly useful model, the Whittle-Matern function includes several realistic function types such as mass fractal and exponential. Optical scattering properties for weakly scattering media can be determined analytically from Bn(r) by applying the Rayleigh-Gans-Debye (RGD) or Born Approximation, and so measured scattering properties are used to fit parameters of the model function. Direct measurement of Bn(r) would provide confirmation that the function is a good representation of tissue or help in identifying the length scale at which changes occur. The RGD approximation relates the scattering phase function to the refractive index correlation function through a Fourier transform. This can be inverted without approximation, so goniometric measurement of the scattering can be converted to Bn(r). However, geometric constraints of the measurement of the phase function, angular resolution, and wavelength result in a band limited measurement of Bn(r). These limits are discussed and example measurements are described.

  16. Spin correlation tensor for measurement of quantum entanglement in electron–electron scattering

    NASA Astrophysics Data System (ADS)

    Tsurikov, D. E.; Samarin, S. N.; Williams, J. F.; Artamonov, O. M.

    2017-04-01

    We consider the problem of correct measurement of a quantum entanglement in the two-body electron–electron scattering. An expression is derived for a spin correlation tensor of a pure two-electron state. A geometric measure of a quantum entanglement as the distance between two forms of this tensor in entangled and separable cases is presented. Due to such definition, one does not need to look for the closest separable state to the analyzed state. We prove that introduced measure satisfies properties of a valid entanglement measure: nonnegativity, discriminance, normalization, non-growth under local operations and classical communication. This measure is calculated for a problem of electron–electron scattering. We prove that it does not depend on the azimuthal rotation angle of the second electron spin relative to the first electron spin before scattering. We specify how to find a spin correlation tensor and the related measure of a quantum entanglement in an experiment with electron–electron scattering. Finally, the introduced measure is extended to the mixed states.

  17. Measurement of electron spin transport in graphene on 6H-silicon carbide(0001)

    NASA Astrophysics Data System (ADS)

    Abel, Joseph

    The focus of this thesis is to demonstrate the potential of wafer scale graphene spintronics. Graphene is a single atomic layer of sp 2-bonded carbon atoms that has high carrier mobilities, making it a desirable material for future nanoscale electronic devices. The vision of spintronics is to utilize the spin of the electron to produce novel high-speed low power consuming devices. Materials with long spin relaxation times and spin diffusion lengths are needed to realize these goals. Graphene is an ideal material as it meets these requirements and is amenable to planar device geometries. In this thesis, spin transport in wafer scale epitaxial graphene grown on the silicon face of silicon carbide is demonstrated. Non-local Hanle spin precession measurement devices were fabricated using graphene with and without a hafnium oxide interface layer between the ferromagnetic metal and graphene. The structural properties of the devices were investigated with Raman spectroscopy, x-ray photoelectric spectroscopy, Rutherford backscattering spectroscopy, scanning electron microscopy, atomic force microscopy, and transmission electron microscopy. The electrical properties of the graphene were measured utilizing Hall transport measurements. The magnetic properties of the contacts were investigated with vibrating sample magnetometery. The processes developed to fabricate the Hanle measurement devices are presented as well. A custom Hanle measurement setup was developed and utilized for the Hanle spin precession measurements. Spin precession is observed in the epitaxial graphene on silicon carbide, with improved spin transport properties with the utilization of a hafnium oxide barrier between the ferromagnetic contacts and graphene. The charge transport and spin transport properties are compared to determine the relevant spin relaxation mechanism in the devices. These results demonstrate that graphene has great potential for wafer scale production of future spintronic devices.

  18. Correlation of environmental carbaryl measurements with serum and urinary 1-naphthol measurements in a farmer applicator and his family.

    PubMed Central

    Shealy, D B; Barr, J R; Ashley, D L; Patterson, D G; Camann, D E; Bond, A E

    1997-01-01

    In exposure or risk assessments, both environmental and biological measurements are often used. Environmental measurements are an excellent means for evaluating regulatory compliance, but the models used to estimate body burden from these measurements are complex. Unless all possible routes of exposure (i.e., inhalation, dermal absorption, ingestion) are evaluated, exposure to a toxicant can be underestimated. To circumvent this problem, measurements of the internal dose of a toxicant in blood, serum, urine, or tissues can be used singularly or in combination with environmental data for exposure assessment. In three separate laboratories, carbaryl or its primary metabolite, 1-naphthol, was measured in personal air, dermal samples, blood serum, and urine from farmer applicators and their families. The usefulness of both environmental and biological data has been demonstrated. For the farmer applicator, the environmental levels of carbaryl would have been sufficient to determine that an exposure had occurred. However, biological measurements were necessary to determine the absorbed dose of each member of the applicator's family. In addition, a correlation between serum and urinary 1-naphthol measurements has been shown; therefore, either matrix can be used to accurately evaluate occupational carbaryl exposure. Images Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. A Figure 5. B PMID:9222136

  19. Optimal state estimation for networked systems with random parameter matrices, correlated noises and delayed measurements

    NASA Astrophysics Data System (ADS)

    Caballero-Águila, R.; Hermoso-Carazo, A.; Linares-Pérez, J.

    2015-02-01

    In this paper, the optimal least-squares state estimation problem is addressed for a class of discrete-time multisensor linear stochastic systems with state transition and measurement random parameter matrices and correlated noises. It is assumed that at any sampling time, as a consequence of possible failures during the transmission process, one-step delays with different delay characteristics may occur randomly in the received measurements. The random delay phenomenon is modelled by using a different sequence of Bernoulli random variables in each sensor. The process noise and all the sensor measurement noises are one-step autocorrelated and different sensor noises are one-step cross-correlated. Also, the process noise and each sensor measurement noise are two-step cross-correlated. Based on the proposed model and using an innovation approach, the optimal linear filter is designed by a recursive algorithm which is very simple computationally and suitable for online applications. A numerical simulation is exploited to illustrate the feasibility of the proposed filtering algorithm.

  20. The determination of correlation between stature and upper limb and hand measurements in Iranian adults.

    PubMed

    Mahakizadeh, S; Moghani-Ghoroghi, F; Moshkdanian, Gh; Mokhtari, T; Hassanzadeh, G

    2016-03-01

    Estimation of stature is an important issue, which is significantly considered in forensic anthropology. It will be difficult to predict the identification of an individual when only some parts of dead body are discovered following disasters or criminal events. The aim of this study was to assess the relationship between stature and upper limb and hand length in Iranian adults to generate regression formulae for stature estimation. Three anthropometric measurements; Stature, Upper Limb Length (ULL) and Hand Length (HL) were taken on subjects, comprising 142 male students (18-25 years) using standard measuring instruments. The data were analysed using SPSS 16. Then linear regression models were used to estimate stature. The results indicated a positive correlation between stature and upper limb and hand measurements. The correlation coefficient with upper limb length was r = 0.89 & p = 0.0001 and with hand length was r = 0.78 & p = 0.0001. In conclusion, we found a strong correlation between stature and upper limb and hand length. The regression analysis also showed that the Upper Limb Length give better prediction of stature compared to Hand length measurements.

  1. Tracking contributions to human body burden of environmental chemicals by correlating environmental measurements with biomarkers.

    PubMed

    Shin, Hyeong-Moo; McKone, Thomas E; Sohn, Michael D; Bennett, Deborah H

    2014-01-01

    The work addresses current knowledge gaps regarding causes for correlations between environmental and biomarker measurements and explores the underappreciated role of variability in disaggregating exposure attributes that contribute to biomarker levels. Our simulation-based study considers variability in environmental and food measurements, the relative contribution of various exposure sources (indoors and food), and the biological half-life of a compound, on the resulting correlations between biomarker and environmental measurements. For two hypothetical compounds whose half-lives are on the order of days for one and years for the other, we generate synthetic daily environmental concentrations and food exposures with different day-to-day and population variability as well as different amounts of home- and food-based exposure. Assuming that the total intake results only from home-based exposure and food ingestion, we estimate time-dependent biomarker concentrations using a one-compartment pharmacokinetic model. Box plots of modeled R2 values indicate that although the R2 correlation between wipe and biological (e.g., serum) measurements is within the same range for the two compounds, the relative contribution of the home exposure to the total exposure could differ by up to 20%, thus providing the relative indication of their contribution to body burden. The novel method introduced in this paper provides insights for evaluating scenarios or experiments where sample, exposure, and compound variability must be weighed in order to interpret associations between exposure data.

  2. Correlation of elastohydrodynamic film thickness measurements for fluorocarbon type 2 ester, and polyphenyl ether lubricants

    NASA Technical Reports Server (NTRS)

    Loewenthal, S. H.; Parker, R. J.; Zaretsky, E. V.

    1974-01-01

    A minimum films thickness correlation applicable to heavily loaded elastohydrodynamic (EHD) contacts was formulated from experimental data obtained by an X-ray transmission technique. The correlation, based on data generated with fluorocarbon, type II ester, and polyphenyl ether lubricants, extends a previous analysis developed from data for a synthetic paraffinic oil. The resulting correlation represents the data of the four lubricants reasonably well over a large range of operating conditions. Contained within the derived relation is a factor to account for the high-load dependence displayed by the measurements beyond that which is provided for by the theory. Thermal corrections applied to a commonly used film thickness formula showed little improvement to the general disagreement that exists between theory and test. Choice of contact geometry and material are judged to have a relatively mild influence on the form of the semiempirical model.

  3. Measurements of Combined Axial Mass and Heat Transport in He II.

    ERIC Educational Resources Information Center

    Johnson, Warren W.; Jones, Michael C.

    An experiment was performed that allowed measurements of both axial mass and heat transport of He-II (the superfluid phase of helium 4) in a long tube. The apparatus allowed the pressure difference and the temperature difference across the flow tube to each be independently adjusted, and the resulting steady-state values of net fluid velocity and…

  4. On the Dielectric Constant for Acetanilide: Experimental Measurements and Effect on Energy Transport

    NASA Astrophysics Data System (ADS)

    Careri, G.; Compatangelo, E.; Christiansen, P. L.; Halding, J.; Skovgaard, O.

    1987-01-01

    Experimental measurements of the dielectric constant for crystalline acetanilide powder for temperatures ranging from - 140°C to 20°C and for different hydration levels are presented. A Davydov-soliton computer model predicts dramatic changes in the energy transport and storage for typically increased values of the dielectric constant.

  5. Turbulence measurements over immobile gravel with additions of sand from supply limited to capacity transport conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measurement of the turbulence that drives sand transport over and through immobile gravels is relevant to efforts to model sediment movement downstream of dams, where fine sediments are eroded from coarse substrates and are not replaced due to the presence of the upstream dam. The relative elevatio...

  6. Only Behavioral But Not Self-Report Measures of Speech Perception Correlate with Cognitive Abilities.

    PubMed

    Heinrich, Antje; Henshaw, Helen; Ferguson, Melanie A

    2016-01-01

    Good speech perception and communication skills in everyday life are crucial for participation and well-being, and are therefore an overarching aim of auditory rehabilitation. Both behavioral and self-report measures can be used to assess these skills. However, correlations between behavioral and self-report speech perception measures are often low. One possible explanation is that there is a mismatch between the specific situations used in the assessment of these skills in each method, and a more careful matching across situations might improve consistency of results. The role that cognition plays in specific speech situations may also be important for understanding communication, as speech perception tests vary in their cognitive demands. In this study, the role of executive function, working memory (WM) and attention in behavioral and self-report measures of speech perception was investigated. Thirty existing hearing aid users with mild-to-moderate hearing loss aged between 50 and 74 years completed a behavioral test battery with speech perception tests ranging from phoneme discrimination in modulated noise (easy) to words in multi-talker babble (medium) and keyword perception in a carrier sentence against a distractor voice (difficult). In addition, a self-report measure of aided communication, residual disability from the Glasgow Hearing Aid Benefit Profile, was obtained. Correlations between speech perception tests and self-report measures were higher when specific speech situations across both were matched. Cognition correlated with behavioral speech perception test results but not with self-report. Only the most difficult speech perception test, keyword perception in a carrier sentence with a competing distractor voice, engaged executive functions in addition to WM. In conclusion, any relationship between behavioral and self-report speech perception is not mediated by a shared correlation with cognition.

  7. Aperture averaging and correlation function measurements in strong atmospheric turbulence for optical wireless applications

    NASA Astrophysics Data System (ADS)

    Yuksel, Heba; Harris, Joseph; Tang, Yunxin; Gammon, Robert; Davis, Christopher

    2008-08-01

    The performance of free space optical (FSO) links in a clear atmosphere is affected by the non-ideal characteristics of the communication channel. Atmospheric turbulence causes fluctuations in the received signal level, which increase the bit errors in a digital communication link. In order to quantify performance limitations, a better understanding of the effect of the intensity fluctuations on the received signal at all turbulence levels is needed. Theory reliably describes the behavior in the weak turbulence regime, but theoretical descriptions in the intermediate and strong turbulence regimes are less well developed. We have developed a flexible empirical approach for characterizing link performance in strong turbulence conditions through image analysis of intensity scintillation patterns coupled with frame aperture averaging on an FSO communication link. These measurements are complemented with direct measurements of temporal and spatial correlation functions. A He-Ne laser beam propagates 106 meters in free-space over flat terrain about a meter above the ground to provide strong atmospheric turbulence conditions. A high performance digital camera with a frame-grabbing computer interface is used to capture received laser intensity distributions at rates up to 30 frames per second and various short shutter speeds, down to 1/16,000s per frame. A scintillometer is used for accurate measurements of the turbulence parameter Cn2. Laboratory measurements use a local strong turbulence generator, which mimics a strong phase screen. Spatial correlation functions are measured using laterally separated point detectors placed in the receiver plane. Correlations and captured image frames are analyzed in Labview to evaluate correlation functions, Cn2, and the aperture averaging factor. The aperture averaging results demonstrate the expected reduction in intensity fluctuations with increasing aperture diameter, and show quantitatively the differences in behavior between

  8. Only Behavioral But Not Self-Report Measures of Speech Perception Correlate with Cognitive Abilities

    PubMed Central

    Heinrich, Antje; Henshaw, Helen; Ferguson, Melanie A.

    2016-01-01

    Good speech perception and communication skills in everyday life are crucial for participation and well-being, and are therefore an overarching aim of auditory rehabilitation. Both behavioral and self-report measures can be used to assess these skills. However, correlations between behavioral and self-report speech perception measures are often low. One possible explanation is that there is a mismatch between the specific situations used in the assessment of these skills in each method, and a more careful matching across situations might improve consistency of results. The role that cognition plays in specific speech situations may also be important for understanding communication, as speech perception tests vary in their cognitive demands. In this study, the role of executive function, working memory (WM) and attention in behavioral and self-report measures of speech perception was investigated. Thirty existing hearing aid users with mild-to-moderate hearing loss aged between 50 and 74 years completed a behavioral test battery with speech perception tests ranging from phoneme discrimination in modulated noise (easy) to words in multi-talker babble (medium) and keyword perception in a carrier sentence against a distractor voice (difficult). In addition, a self-report measure of aided communication, residual disability from the Glasgow Hearing Aid Benefit Profile, was obtained. Correlations between speech perception tests and self-report measures were higher when specific speech situations across both were matched. Cognition correlated with behavioral speech perception test results but not with self-report. Only the most difficult speech perception test, keyword perception in a carrier sentence with a competing distractor voice, engaged executive functions in addition to WM. In conclusion, any relationship between behavioral and self-report speech perception is not mediated by a shared correlation with cognition. PMID:27242564

  9. In-situ measurement of the heat transport in defect- engineered free-standing single-layer graphene

    PubMed Central

    Wang, Haidong; Kurata, Kosaku; Fukunaga, Takanobu; Takamatsu, Hiroshi; Zhang, Xing; Ikuta, Tatsuya; Takahashi, Koji; Nishiyama, Takashi; Ago, Hiroki; Takata, Yasuyuki

    2016-01-01

    Utilizing nanomachining technologies, it is possible to manipulate the heat transport in graphene by introducing different defects. However, due to the difficulty in suspending large-area single-layer graphene (SLG) and limited temperature sensitivity of the present probing methods, the correlation between the defects and thermal conductivity of SLG is still unclear. In this work, we developed a new method for fabricating micro-sized suspended SLG. Subsequently, a focused ion beam (FIB) was used to create nanohole defects in SLG and tune the heat transport. The thermal conductivity of the same SLG before and after FIB radiation was measured using a novel T-type sensor method on site in a dual-beam system. The nanohole defects decreased the thermal conductivity by about 42%. It was found that the smaller width and edge scrolling also had significant restriction on the thermal conductivity of SLG. Based on the calculation results through a lattice dynamics theory, the increase of edge roughness and stronger scattering on long-wavelength acoustic phonons are the main reasons for the reduction in thermal conductivity. This work provides reliable data for understanding the heat transport in a defective SLG membrane, which could help on the future design of graphene-based electrothermal devices. PMID:26906476

  10. Measuring distance ratios with CMB-galaxy lensing cross-correlations

    NASA Astrophysics Data System (ADS)

    Das, Sudeep; Spergel, David N.

    2009-02-01

    We propose a method for cosmographic measurements by combining gravitational lensing of the cosmic microwave background (CMB) with cosmic shear surveys. We cross-correlate the galaxy counts in the lens plane with two different source planes: the CMB at z˜1100 and galaxies at an intermediate redshift. The ratio of the galaxy count/CMB lensing cross-correlation to the galaxy count/galaxy lensing cross-correlation is shown to be a purely geometric quantity, depending only on the distribution function of the source galaxies. By combining Planck, the Advanced Dark Energy Physics Telescope, and the Large Synoptic Survey Telescope, the ratio can be measured to ˜4% accuracy, whereas a future polarization-based experiment like CMBPOL can make a more precise (˜1%) measurement. For cosmological models where the curvature and the equation of state parameter are allowed to vary, the direction of degeneracy defined by the measurement of this ratio is different from that traced out by baryon acoustic oscillation measurements. Combining this method with the stacked cluster mass reconstruction cosmography technique as proposed by Hu, Holz, and Vale (2007), the uncertainty in the ratio can be further reduced, improving the constraints on cosmological parameters. We also study the implications of the lensing-ratio measurement for early dark energy models, in the context of the parametrization proposed by Doran and Robbers (2006). For models which are degenerate with respect to the CMB, we find both baryon acoustic oscillation and lensing-ratio measurements to be insensitive to the early component of the dark energy density.

  11. Statistical Measurements of Contact Conditions of 478 Transport-airplane Landings During Routine Daytime Operations

    NASA Technical Reports Server (NTRS)

    Silsby, Norman S

    1955-01-01

    Statistical measurements of contact conditions have been obtained, by means of a special photographic technique, of 478 landings of present-day transport airplanes made during routine daylight operations in clear air at the Washington National Airport. From the measurements, sinking speeds, rolling velocities, bank angles, and horizontal speeds at the instant before contact have been evaluated and a limited statistical analysis of the results has been made and is reported in this report.

  12. Gliders Measure Western Boundary Current Transport from the South Pacific to the Equator

    NASA Astrophysics Data System (ADS)

    Davis, R. E.; Kessler, W. S.; Sherman, J. T.

    2011-12-01

    Since 2007, the Consortium on the Ocean's Role in Climate (CORC) has used repeated glider transects across the southern Solomon Sea to measure the previously nearly unsampled mass and heat transport from the South Pacific to the equatorial zone. Mean transport is dominated by the New Guinea Coastal Undercurrent (NGCUC). This low-latitude western boundary current is a major element of the shallow meridional overturning circulation, returning water from the subtropical South Pacific to the Equatorial Undercurrent (EUC) where it upwells. We find the mean NGCUC to be a jet less than 100 km wide, centered near 300 m depth, with equatorward velocities reaching 35 cm/s and salinity anomalies on isopycnals up to 0.05. Weaker poleward flow is found near the surface in the eastern basin. Equatorward transport above 700 m is typically 20 Sv, but nearly vanished during two La Niñas and reached 25 Sv during an El Niño. Within these events the seasonal cycle cannot yet be defined. Transport variability is strongest outside the boundary current and appears to consist of two independently moving layers with a boundary near 250 m. ENSO variability is predominantly in the upper layer. The relation of Solomon Sea mass and heat transport with ENSO indicators will be discussed The ability to initiate and maintain measurements that support such quantitative analyses with a small effort in a remote site far from research institutions demonstrates that gliders can be a productive part of the global ocean observing system.

  13. Development of high speed continuous transport critical current measurement system for long piece of HTS conductor

    NASA Astrophysics Data System (ADS)

    Kim, Seokho; Park, Minwon; Yu, In-Keun; Kim, Gyeong-Hun; Ha, Hong-Su; Sim, Kideok; Oh, Sang-Soo; Moon, Seung-Hyun

    2013-01-01

    In case of long pieces of HTS conductor, their critical current measurement is an important process for the conductor manufacturer and the customer, however, it is very time consuming process. Conventional critical current measurement is carried out by ‘four probe method’, which increase the transport current and measure the voltage between the fixed voltage taps. Therefore, it consists of conductor moving and measuring process. To speed up the measuring process, longer distance between voltage taps is required. In this case, the measured critical current is averaged and small defects, which can be very crucial for thermal stability, cannot be found. Therefore, the limitation of the voltage tap length should be carefully decided considering the cooling environment. Another non-contact or indirect method is to measure the screening effect of magnetic field and converting the field signal to the critical current, which is called as hall probe method. This process is known as a very efficient way to find local defects and estimate the distribution of the critical current, however, it contains inevitable error and noise because it should measure the small magnetic field signals. This paper describes a new critical current measurement system, which have similar hardware structure of conventional ‘four probe method’. However, it is much faster than other systems using fast feedback control of the transport current while the conductor is continuously moving with high speed. The measured results are compared with the conventional method and hall probe method.

  14. Cross-correlation measurement of quantum shot noise using homemade transimpedance amplifiers

    SciTech Connect

    Hashisaka, Masayuki Ota, Tomoaki; Yamagishi, Masakazu; Fujisawa, Toshimasa; Muraki, Koji

    2014-05-15

    We report a cross-correlation measurement system, based on a new approach, which can be used to measure shot noise in a mesoscopic conductor at milliKelvin temperatures. In contrast to other measurement systems in which high-speed low-noise voltage amplifiers are commonly used, our system employs homemade transimpedance amplifiers (TAs). The low input impedance of the TAs significantly reduces the crosstalk caused by unavoidable parasitic capacitance between wires. The TAs are designed to have a flat gain over a frequency band from 2 kHz to 1 MHz. Low-noise performance is attained by installing the TAs at a 4 K stage of a dilution refrigerator. Our system thus fulfills the technical requirements for cross-correlation measurements: low noise floor, high frequency band, and negligible crosstalk between two signal lines. Using our system, shot noise generated at a quantum point contact embedded in a quantum Hall system is measured. The good agreement between the obtained shot-noise data and theoretical predictions demonstrates the accuracy of the measurements.

  15. In-vessel fluid flow measurements using thermocouples cross-correlation.

    SciTech Connect

    NguyenLe, Q.

    1998-05-08

    Fluid flow rate in high temperature and pressure vessels can be difficult to measure due to the associated harsh environment, inaccessible locations and pressure boundary integrity concerns. However, by using quick response miniature thermocouples to measure the naturally occurring temperature variations within the flow, the fluid velocity can be inferred from the transit time analysis. This flow measurement technique has other advantages such as the flow profile is not significantly disturbed, no additional flow restrictions introduced and the system fiction factor is not increased. Furthermore, since the measured flow rate is generally unaffected by the global system dynamics, such as heat increases or losses, as well as changes in the flow regimes, the location of the thermocouple pairs is extremely flexible. Due to the mentioned advantages, the thermocouple cross-correlation flow measurement method has been developed for use at the Purdue University Multi-Dimensional Integral Test Assembly (PUMA). Currently, thermocouple cross-correlation technique is used to measure the Reactor Pressure Vessel downcomer fluid velocity and the suppression pool in-vessel natural circulation velocity.

  16. Measuring head kinematics in football: correlation between the head impact telemetry system and Hybrid III headform.

    PubMed

    Beckwith, Jonathan G; Greenwald, Richard M; Chu, Jeffrey J

    2012-01-01

    Over the last decade, advances in technology have enabled researchers to evaluate concussion biomechanics through measurement of head impacts sustained during play using two primary methods: (1) laboratory reconstruction of open-field head contact, and (2) instrumented helmets. The purpose of this study was to correlate measures of head kinematics recorded by the Head Impact Telemetry (HIT) System (Simbex, NH) with those obtained from a Hybrid III (HIII) anthropometric headform under conditions that mimicked impacts occurring in the NFL. Linear regression analysis was performed to correlate peak linear acceleration, peak rotational acceleration, Gadd Severity Index (GSI), and Head Injury Criterion (HIC(15)) obtained from the instrumented helmet and HIII. The average absolute location error between instrumented helmet impact location and the direction of HIII head linear acceleration were also calculated. The HIT System overestimated Hybrid III peak linear acceleration by 0.9% and underestimated peak rotational acceleration by 6.1% for impact sites and velocities previously identified by the NFL as occurring during play. Acceleration measures for all impacts were correlated; however, linear was higher (r(2) = 0.903) than rotational (r(2) = 0.528) primarily due to lower HIT System rotational acceleration estimates at the frontal facemask test site. Severity measures GSI and HIC were also found to be correlated, albeit less than peak linear acceleration, with the overall difference between the two systems being less than 6.1% for either measure. Mean absolute impact location difference between systems was 31.2 ± 46.3° (approximately 0.038 ± 0.050 m), which was less than the diameter of the impactor surface in the test. In instances of severe helmet deflection (2.54-7.62 cm off the head), the instrumented helmet accurately measured impact location but overpredicted all severity metrics recorded by the HIII. Results from this study indicate that measurements from the

  17. Measurement of carrier transport and recombination parameter in heavily doped silicon

    NASA Technical Reports Server (NTRS)

    Swanson, Richard M.

    1986-01-01

    The minority carrier transport and recombination parameters in heavily doped bulk silicon were measured. Both Si:P and Si:B with bulk dopings from 10 to the 17th and 10 to the 20th power/cu cm were studied. It is shown that three parameters characterize transport in bulk heavily doped Si: the minority carrier lifetime tau, the minority carrier mobility mu, and the equilibrium minority carrier density of n sub 0 and p sub 0 (in p-type and n-type Si respectively.) However, dc current-voltage measurements can never measure all three of these parameters, and some ac or time-transient experiment is required to obtain the values of these parameters as a function of dopant density. Using both dc electrical measurements on bipolar transitors with heavily doped base regions and transients optical measurements on heavily doped bulk and epitaxially grown samples, lifetime, mobility, and bandgap narrowing were measured as a function of both p and n type dopant densities. Best fits of minority carrier mobility, bandgap narrowing and lifetime as a function of doping density (in the heavily doped range) were constructed to allow accurate modeling of minority carrier transport in heavily doped Si.

  18. Correlations of MMPI factor scales with measures of the five factor model of personality.

    PubMed

    Costa, P T; Busch, C M; Zonderman, A B; McCrae, R R

    1986-01-01

    Two recent item factor analyses of the Minnesota Multiphasic Personality Inventory (MMPI) clas