Science.gov

Sample records for correlation transport measurements

  1. Turbulence and transport reduction with innovative plasma shapes in TCV -- correlation ECE measurement and gyrokinetic simulations

    NASA Astrophysics Data System (ADS)

    Pochelon, Antoine

    2010-11-01

    Due to turbulence, core energy transport in tokamaks generally exceeds collisional transport by at least an order of magnitude. It is therefore crucial to understand the instabilities driving the turbulent state and to find ways to control them. Shaping the plasma is one of these fundamental tools. In low collisionality plasmas, such as in a reactor, changing triangularity from positive (delta=+0.4) to negative triangularity (delta=-0.4) is shown on TCV to reduce the energy transport by a factor two. This opens the possibility of having H-mode-like confinement time within an L-mode edge, or reduced ELMs. An optimum triangularity can be sought between steep edge barriers (delta>0), plagued by large ELMs, and improved core confinement (delta<0). Recent correlation ECE measurements show that the reduction of transport at negative delta is reflected in a reduction by a factor of two of both the amplitude of temperature fluctuations in the broadband frequency range 30-150 kHz, and the fluctuation correlation length, measured at mid-radius. In addition, the fluctuations amplitude is reduced with increasing collisionality, consistent with a reduction of the Trapped Electron Modes (TEM) drive. The effect of negative triangularity on turbulence and transport is compared to gyrokinetic code results: First, global linear simulations predict shorter radial TEM wavelength, consistent with the shorter radial turbulence correlation length observed. Second, at least close to the strongly shaped plasma boundary, local nonlinear simulations predict lower TEM induced transport with decreased triangularity. Calculations are now being extended to global nonlinear simulations.

  2. k-Space Image Correlation Spectroscopy: A Method for Accurate Transport Measurements Independent of Fluorophore Photophysics

    PubMed Central

    Kolin, David L.; Ronis, David; Wiseman, Paul W.

    2006-01-01

    We present the theory and application of reciprocal space image correlation spectroscopy (kICS). This technique measures the number density, diffusion coefficient, and velocity of fluorescently labeled macromolecules in a cell membrane imaged on a confocal, two-photon, or total internal reflection fluorescence microscope. In contrast to r-space correlation techniques, we show kICS can recover accurate dynamics even in the presence of complex fluorophore photobleaching and/or “blinking”. Furthermore, these quantities can be calculated without nonlinear curve fitting, or any knowledge of the beam radius of the exciting laser. The number densities calculated by kICS are less sensitive to spatial inhomogeneity of the fluorophore distribution than densities measured using image correlation spectroscopy. We use simulations as a proof-of-principle to show that number densities and transport coefficients can be extracted using this technique. We present calibration measurements with fluorescent microspheres imaged on a confocal microscope, which recover Stokes-Einstein diffusion coefficients, and flow velocities that agree with single particle tracking measurements. We also show the application of kICS to measurements of the transport dynamics of α5-integrin/enhanced green fluorescent protein constructs in a transfected CHO cell imaged on a total internal reflection fluorescence microscope using charge-coupled device area detection. PMID:16861272

  3. Correlating spin transport and electrode magnetization in a graphene spin valve: Simultaneous magnetic microscopy and non-local measurements

    SciTech Connect

    Berger, Andrew J. Page, Michael R.; Bhallamudi, Vidya P.; Chris Hammel, P.; Wen, Hua; Kawakami, Roland K.; McCreary, Kathleen M.

    2015-10-05

    Using simultaneous magnetic force microscopy and transport measurements of a graphene spin valve, we correlate the non-local spin signal with the magnetization of the device electrodes. The imaged magnetization states corroborate the influence of each electrode within a one-dimensional spin transport model and provide evidence linking domain wall pinning to additional features in the transport signal.

  4. Quantitative measurement of intracellular transport of nanocarriers by spatio-temporal image correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Coppola, S.; Pozzi, D.; Candeloro De Sanctis, S.; Digman, M. A.; Gratton, E.; Caracciolo, G.

    2013-03-01

    Spatio-temporal image correlation spectroscopy (STICS) is a powerful technique for assessing the nature of particle motion in complex systems although it has been rarely used to investigate the intracellular dynamics of nanocarriers so far. Here we introduce a method for characterizing the mode of motion of nanocarriers and for quantifying their transport parameters on different length scales from single-cell to subcellular level. Using this strategy we were able to study the mechanisms responsible for the intracellular transport of DOTAP-DOPC/DNA (DOTAP: 1,2-dioleoyl-3-trimethylammonium-propane; DOPC: dioleoylphosphocholine) and DC-Chol-DOPE/DNA (DC-Chol: 3β-[N-(N,N-dimethylaminoethane)-carbamoyl] cholesterol; DOPE: dioleoylphosphatidylethanolamine) lipoplexes in CHO-K1 (CHO: Chinese hamster ovary) live cells. Measurement of both diffusion coefficients and velocity vectors (magnitude and direction) averaged over regions of the cell revealed the presence of distinct modes of motion. Lipoplexes diffused slowly on the cell surface (diffusion coefficient: D ≈ 0.003 μm2 s-1). In the cytosol, the lipoplexes’ motion was characterized by active transport with average velocity v ≈ 0.03 μm2 s-1 and random motion. The method permitted us to generate an intracellular transport map showing several regions of concerted motion of lipoplexes.

  5. Correlated biofilm imaging, transport and metabolism measurements via combined nuclear magnetic resonance and confocal microscopy

    PubMed Central

    McLean, Jeffrey S; Ona, Ositadinma N; Majors, Paul D

    2015-01-01

    Bacterial biofilms are complex, three-dimensional communities found nearly everywhere in nature and are also associated with many human diseases. Detailed metabolic information is critical to understand and exploit beneficial biofilms as well as combat antibiotic-resistant, disease-associated forms. However, most current techniques used to measure temporal and spatial metabolite profiles in these delicate structures are invasive or destructive. Here, we describe imaging, transport and metabolite measurement methods and their correlation for live, non-invasive monitoring of biofilm processes. This novel combination of measurements is enabled by the use of an integrated nuclear magnetic resonance (NMR) and confocal laser scanning microscope (CLSM). NMR methods provide macroscopic structure, metabolic pathway and rate data, spatially resolved metabolite concentrations and water diffusion profiles within the biofilm. In particular, current depth-resolved spectroscopy methods are applied to detect metabolites in 140–190 nl volumes within biofilms of the dissimilatory metal-reducing bacterium Shewanella oneidensis strain MR-1 and the oral bacterium implicated in caries disease, Streptococcus mutans strain UA159. The perfused sample chamber also contains a transparent optical window allowing for the collection of complementary fluorescence information using a unique, in-magnet CLSM. In this example, the entire three-dimensional biofilm structure was imaged using magnetic resonance imaging. This was then correlated to a fluorescent CLSM image by employing a green fluorescent protein reporter construct of S. oneidensis. Non-invasive techniques such as described here, which enable measurements of dynamic metabolic processes, especially in a depth-resolved fashion, are expected to advance our understanding of processes occurring within biofilm communities. PMID:18253132

  6. GIS measured environmental correlates of active school transport: A systematic review of 14 studies

    PubMed Central

    2011-01-01

    Background Emerging frameworks to examine active school transportation (AST) commonly emphasize the built environment (BE) as having an influence on travel mode decisions. Objective measures of BE attributes have been recommended for advancing knowledge about the influence of the BE on school travel mode choice. An updated systematic review on the relationships between GIS-measured BE attributes and AST is required to inform future research in this area. The objectives of this review are: i) to examine and summarize the relationships between objectively measured BE features and AST in children and adolescents and ii) to critically discuss GIS methodologies used in this context. Methods Six electronic databases, and websites were systematically searched, and reference lists were searched and screened to identify studies examining AST in students aged five to 18 and reporting GIS as an environmental measurement tool. Fourteen cross-sectional studies were identified. The analyses were classified in terms of density, diversity, and design and further differentiated by the measures used or environmental condition examined. Results Only distance was consistently found to be negatively associated with AST. Consistent findings of positive or negative associations were not found for land use mix, residential density, and intersection density. Potential modifiers of any relationship between these attributes and AST included age, school travel mode, route direction (e.g., to/from school), and trip-end (home or school). Methodological limitations included inconsistencies in geocoding, selection of study sites, buffer methods and the shape of zones (Modifiable Areal Unit Problem [MAUP]), the quality of road and pedestrian infrastructure data, and school route estimation. Conclusions The inconsistent use of spatial concepts limits the ability to draw conclusions about the relationship between objectively measured environmental attributes and AST. Future research should explore

  7. Correlated Biofilm Imaging, Transport and Metabolism Measurements via Combined Nuclear Magnetic Resonance and Confocal Microscopy

    SciTech Connect

    Mclean, Jeffrey S.; Ona, Ositadinma; Majors, Paul D.

    2008-02-18

    Bacterial biofilms are complex, three-dimensional, communities that are found nearly everywhere in nature1 and are being recognized as the cause of treatment-resistant infections1 2. Advanced methods are required to characterize their collective and spatial patterns of metabolism however most techniques are invasive or destructive. Here we describe the use of a combined confocal laser scanning microscopy (CLSM) and nuclear magnetic resonance (NMR) microscopy system to monitor structure, mass transport, and metabolism in active biofilms. Non-invasive NMR methods provide macroscopic structure along with spatially-resolved metabolite profiles and diffusion measurements. CLSM enables monitoring of cells by fluorescent protein reporters to investigate biofilm structure and gene expression concurrently. A planar sample chamber design facilitates depth-resolved measurements on 140 nL sample volumes under laminar flow conditions. The techniques and approaches described here are applicable to environmental and medically relevant microbial communities, thus providing key metabolic information for promoting beneficial biofilms and treating associated diseases.

  8. Solving Inverse Radiation Transport Problems with Multi-Sensor Data in the Presence of Correlated Measurement and Modeling Errors

    SciTech Connect

    Thomas, Edward V.; Stork, Christopher L.; Mattingly, John K.

    2015-07-01

    Inverse radiation transport focuses on identifying the configuration of an unknown radiation source given its observed radiation signatures. The inverse problem is traditionally solved by finding the set of transport model parameter values that minimizes a weighted sum of the squared differences by channel between the observed signature and the signature pre dicted by the hypothesized model parameters. The weights are inversely proportional to the sum of the variances of the measurement and model errors at a given channel. The traditional implicit (often inaccurate) assumption is that the errors (differences between the modeled and observed radiation signatures) are independent across channels. Here, an alternative method that accounts for correlated errors between channels is described and illustrated using an inverse problem based on the combination of gam ma and neutron multiplicity counting measurements.

  9. Correlation Electron Temperature Fluctuation Measurements on Alcator C-Mod and ASDEX Upgrade: Cross Machine Comparisons and Transport Model Validation

    NASA Astrophysics Data System (ADS)

    White, A. E.; Creely, A. J.; Freethy, S.; Cao, N.; Conway, G. D.; Goerler, T.; Happel, T.; Howard, N. T.; Inman, C.; Rice, J. E.; Rodriguez Fernandez, P.; Sung, C.; C-Mod, Alcator; Upgrade, Asdex

    2016-10-01

    Correlation Electron Cyclotron Emission diagnostics have been developed for Alcator C-Mod and ASDEX Upgrade. Measurements of long wavelength (ktheta rhos <0.5) electron temperature fluctuations have been measured in the core plasma (0.5 transport model validation, using nonlinear simulations with the GENE and GYRO codes and reduced models such as TGLF. Electron temperature fluctuations, and the correlation with density fluctuations, which can be measured with coupled radiometer / reflectometer diagnostics, provide valuable constraints on gyrokinetic models. Recent results in transport model validation at both C-Mod and AUG are presented. This work is supported by the US DOE under Grants DE-SC0006419 and DEFC02-99ER54512-CMOD.

  10. A nu-space for image correlation spectroscopy: characterization and application to measure protein transport in live cells

    NASA Astrophysics Data System (ADS)

    Potvin-Trottier, Laurent; Chen, Lingfeng; Horwitz, Alan Rick; Wiseman, Paul W.

    2013-08-01

    We introduce a new generalized theoretical framework for image correlation spectroscopy (ICS). Using this framework, we extend the ICS method in time-frequency (ν, nu) space to map molecular flow of fluorescently tagged proteins in individual living cells. Even in the presence of a dominant immobile population of fluorescent molecules, nu-space ICS (nICS) provides an unbiased velocity measurement, as well as the diffusion coefficient of the flow, without requiring filtering. We also develop and characterize a tunable frequency-filter for spatio-temporal ICS (STICS) that allows quantification of the density, the diffusion coefficient and the velocity of biased diffusion. We show that the techniques are accurate over a wide range of parameter space in computer simulation. We then characterize the retrograde flow of adhesion proteins (α6- and αLβ2-GFP integrins and mCherry-paxillin) in CHO.B2 cells plated on laminin and intercellular adhesion molecule 1 (ICAM-1) ligands respectively. STICS with a tunable frequency filter, in conjunction with nICS, measures two new transport parameters, the density and transport bias coefficient (a measure of the diffusive character of a flow/biased diffusion), showing that molecular flow in this cell system has a significant diffusive component. Our results suggest that the integrin-ligand interaction, along with the internal myosin-motor generated force, varies for different integrin-ligand pairs, consistent with previous results.

  11. Indicators of transport and vertical motion from correlations between in situ measurements in the Airborne Antarctic Ozone Experiment

    NASA Technical Reports Server (NTRS)

    Murphy, D. M.; Tuck, A. F.; Kelly, K. K.; Chan, K. R.; Loewenstein, M.; Podolske, J. R.; Strahan, S. E.

    1989-01-01

    Analysis of small-scale structure in the in situ measurements made from the ER-2 during the Airborne Antarctic Ozone Experiment shows the existence of a region at the boundary of the chemiclly perturbed region where the mixing ratios and small-scale structure of trace gases are influenced by transport across the boundary. This transition region is characterized by horizontal interchange and vertical layering of air parcels from within and outside of the chemically perturbed region and negative small-scale correlations between ClO and ozone. The horizontal transport in this region creates large surface areas between dissimilar air masses, providing the potential for substantial mixing. Correlations between ClO and O3 show that the transition region extends to 2-4 deg of latitude to either side of the boundary of the chemically perturbed region. A + or - 4-deg-wide transition region would contain nearly as much air as the chemically perturbed region proper. Analysis of water vapor and nitrous oxide data suggests that diabatic descent is associated with dehydration. This could be caused by strong radiative cooling of those polar stratospheric clouds in which enough water condenses for the particles to fall and dehydrate the air.

  12. Brain and platelet serotonin transporter in humans-correlation between [123I]-ADAM SPECT and serotonergic measurements in platelets.

    PubMed

    Uebelhack, Ralf; Franke, Leonora; Herold, Nathalie; Plotkin, Michael; Amthauer, Holger; Felix, Roland

    2006-10-09

    Blood platelets are thought to be a useful peripheral model for investigating the central serotoninergic mechanisms associated with the serotonin transporter (SERT). On the other hand, an in vivo investigation of SERT in the human brain has been made possible by the development of several promising SPECT radioligands, such as [123I]-ADAM. The aim of the present study was to investigate the possible correlation between the SERT measurements in the brain and those in platelets. Forty-four subjects (14 healthy subjects and 30 patients with the diagnosis of major depression or schizoaffective disorder) were examined. The [123I]-ADAM binding was assessed 4h after injection using MR-guided regions of interest (ROIs) in the midbrain and cerebellum. In a parallel investigation, serotonin (5HT) concentration and kinetic characteristics of 5HT uptake activity (Vmax and Km) were determined in platelet-rich plasma. Overall, there was no significant correlation between the V(max) of 5HT uptake in platelets and the specific to nonspecific partition coefficient of [123I]-ADAM (V''3) in the midbrain. However, low but significant Pearson correlation coefficients were found for V(max) and normalised activities measured in the midbrain (r=0.310, p=0.043). The correlation was stronger and significant in females (n=20, r=0.629, p=0.003) but low and non-significant in the 24 males (r=0.104). Although confirmation is necessary, it seems that the relationship between different indices of [123I]-ADAM binding in the brain and 5HT uptake characteristics in platelets is complex, nonuniform, and possibly gender-specific.

  13. Ozone Correlative Measurements Workshop

    NASA Technical Reports Server (NTRS)

    Hilsenrath, E. (Editor)

    1985-01-01

    A study was conducted to determine the necessary parameters for the correlation of data on Earth ozone. Topics considered were: (1) measurement accuracy; (2) equipment considerations (SBUV); and (3) ground based measurements to support satellite data.

  14. EARLINET Correlative Measurements For CALIPSO

    NASA Astrophysics Data System (ADS)

    Pappalardo, G.

    2006-12-01

    each station in coincidence with CALIPSO overpasses. Each observation lasts for a minimum of 1 hour centered around the overpass time, longer record of measurements are performed for special case studies (Saharan dust layers, forest fires, long range transport, etc.). Backtrajectory analysis will be also used to quantitatively study comparisons between CALIPSO and EARLINET observations. EARLINET correlative measurements plan for CALIPSO, and first results will be presented. ACKNOWLEDGMENTS The financial support for the improvement of the EARLINET infrastructure by the European Commission under grant RICA-025991 is gratefully acknowledged. The authors also thank the German Weather Service for the air mass backtrajectory analysis.

  15. Improved accuracy of brain oxygen metabolism measurements using multi-distance diffuse correlation spectroscopy and near infrared spectroscopy together with a Monte Carlo light transport model (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Carp, Stefan A.; Boas, David A.; Selb, Juliette J.

    2017-02-01

    Diffuse correlation spectroscopy (DCS) is being employed alongside near-infrared spectroscopy (NIRS) measurements to track the cerebral oxygen metabolic rate (CMRO2). However, both techniques employ diffusely reflected light that has traveled mostly through extracerebral tissues. Recent studies indicate that depth sensitivity profiles are different for NIRS vs DCS measurements, with DCS appearing to be more sensitive to the brain than NIRS methods for a given source-detector separation. This mismatch can lead to erroneous conclusions with respect to the amount and perhaps even the direction of change in CMRO2. Recently, our group and others have demonstrated the use of Monte Carlo (MC) based multi-layer, multi-distance fitting, which offers increased accuracy for complex tissue structures such as the adult brain. In this paper we employ a Monte Carlo light transport model based on a realistic head geometry that can be derived from MRI scans (if available) or approximated from head shape measurements. We consider DCS and CW-NIRS measurements taken at two or more distances and analyze simulated data generated using a fully segmented adult brain MRI scan. Through simulations, we explore the improvements offered by our method vs. processing the same measurements with a semi-infinite diffusion model and estimate the impact of errors in geometry and optical properties on relative blood flow and CMRO2 changes.

  16. Disorder and Transport in Highly Correlated Systems

    DTIC Science & Technology

    1992-03-31

    Denr Dow. Vlease find included 1th100 copies of the Annu at [rport for my Grant NOOO 14- 1 j- 14󈧪, entitled " Disorder and Transport in I licility...of N ava1l Research for your support. 1Ian K. Sch~ilter Fnclosures Appr~I ~ir k~ll~ereleae;\\ t)Is~i I gm~U itedl ONR GRANT N00014-91J-1438 " Disorder ...001 i92-11805 ’ Introduction This grant was a new start dedicated to studies of disorder and transport in highly correlated electron systems, mostly

  17. Measuring isotropic subsurface light transport.

    PubMed

    Happel, Kathrin; Dörsam, Edgar; Urban, Philipp

    2014-04-21

    Subsurface light transport can affect the visual appearance of materials significantly. Measuring and modeling this phenomenon is crucial for accurately reproducing colors in printing or for rendering translucent objects on displays. In this paper, we propose an apparatus to measure subsurface light transport employing a reference material to cancel out adverse signals that may bias the results. In contrast to other approaches, the setup enables improved focusing on rough surfaces (e.g. uncoated paper). We derive a measurement equation that may be used to deduce the point spread function (PSF) of subsurface light transport. Main contributions are the usage of spectrally-narrowband exchangeable LEDs allowing spectrally-resolved measurements and an approach based on quadratic programming for reconstructing PSFs in the case of isotropic light transport.

  18. Transportation control measure information documents

    SciTech Connect

    Not Available

    1992-03-01

    The document, sponsored by the United States Environmental Protection Agency, is intended to provide information on Transportation Control Measures (TCMs) to transportation planning and air quality planning management and staff at all government levels. The document provides descriptions and examples of the TCMs listed in Section 108(f) of the Clean Air Act. Each TCM is described in terms of its objectives, variation in the ways it may be applied, expected transportation and emissions impacts, and other important implementation and policy considerations that State, regional, and local decision-making agencies will face.

  19. Sediment transport measurements: Chapter 5

    USGS Publications Warehouse

    Diplas, P.; Kuhnle, R.; Gray, J.; Glysson, D.; Edwards, T.; García, Marcelo H.

    2008-01-01

    Sediment erosion, transport, and deposition in fluvial systems are complex processes that are treated in detail in other sections of this book. Development of methods suitable for the collection of data that contribute to understanding these processes is a still-evolving science. Sediment and ancillary data are fundamental requirements for the proper management of river systems, including the design of structures, the determination of aspects of stream behavior, ascertaining the probable effect of removing an existing structure, estimation of bulk erosion, transport, and sediment delivery to the oceans, ascertaining the long-term usefulness of reservoirs and other public works, tracking movement of solid-phase contaminants, restoration of degraded or otherwise modified streams, and assistance in the calibration and validation of numerical models. This chapter presents techniques for measuring bed-material properties and suspended and bed-load discharges. Well-established and relatively recent, yet adequately tested, sampling equipment and methodologies, with designs that are guided by sound physical and statistical principles, are described. Where appropriate, the theory behind the development of the equipment and guidelines for its use are presented.

  20. Eddy correlation measurements of submarine groundwater discharge

    USGS Publications Warehouse

    Crusius, J.; Berg, P.; Koopmans, D.J.; Erban, L.

    2008-01-01

    This paper presents a new, non-invasive means of quantifying groundwater discharge into marine waters using an eddy correlation approach. The method takes advantage of the fact that, in virtually all aquatic environments, the dominant mode of vertical transport near the sediment–water interface is turbulent mixing. The technique thus relies on measuring simultaneously the fluctuating vertical velocity using an acoustic Doppler velocimeter and the fluctuating salinity and/or temperature using rapid-response conductivity and/or temperature sensors. The measurements are typically done at a height of 5–15 cm above the sediment surface, at a frequency of 16 to 64 Hz, and for a period of 15 to 60 min. If the groundwater salinity and/or temperature differ from that of the water column, the groundwater specific discharge (cm d− 1) can be quantified from either a heat or salt balance. Groundwater discharge was estimated with this new approach in Salt Pond, a small estuary on Cape Cod (MA, USA). Estimates agreed well with previous estimates of discharge measured using seepage meters and 222Rn as a tracer. The eddy correlation technique has several desirable characteristics: 1) discharge is quantified under in-situ hydrodynamic conditions; 2) salinity and temperature can serve as two semi-independent tracers of discharge; 3) discharge can be quantified at high temporal resolution, and 4) long-term records of discharge may be possible, due to the low power requirements of the instrumentation.

  1. Accounting for correlated errors in inverse radiation transport problems.

    SciTech Connect

    Mattingly, John K.; Stork, Christopher Lyle; Thomas, Edward Victor

    2010-11-01

    Inverse radiation transport focuses on identifying the configuration of an unknown radiation source given its observed radiation signatures. The inverse problem is solved by finding the set of transport model variables that minimizes a weighted sum of the squared differences by channel between the observed signature and the signature predicted by the hypothesized model parameters. The weights per channel are inversely proportional to the sum of the variances of the measurement and model errors at a given channel. In the current treatment, the implicit assumption is that the errors (differences between the modeled and observed radiation signatures) are independent across channels. In this paper, an alternative method that accounts for correlated errors between channels is described and illustrated for inverse problems based on gamma spectroscopy.

  2. Correlated measurement error hampers association network inference.

    PubMed

    Kaduk, Mateusz; Hoefsloot, Huub C J; Vis, Daniel J; Reijmers, Theo; van der Greef, Jan; Smilde, Age K; Hendriks, Margriet M W B

    2014-09-01

    Modern chromatography-based metabolomics measurements generate large amounts of data in the form of abundances of metabolites. An increasingly popular way of representing and analyzing such data is by means of association networks. Ideally, such a network can be interpreted in terms of the underlying biology. A property of chromatography-based metabolomics data is that the measurement error structure is complex: apart from the usual (random) instrumental error there is also correlated measurement error. This is intrinsic to the way the samples are prepared and the analyses are performed and cannot be avoided. The impact of correlated measurement errors on (partial) correlation networks can be large and is not always predictable. The interplay between relative amounts of uncorrelated measurement error, correlated measurement error and biological variation defines this impact. Using chromatography-based time-resolved lipidomics data obtained from a human intervention study we show how partial correlation based association networks are influenced by correlated measurement error. We show how the effect of correlated measurement error on partial correlations is different for direct and indirect associations. For direct associations the correlated measurement error usually has no negative effect on the results, while for indirect associations, depending on the relative size of the correlated measurement error, results can become unreliable. The aim of this paper is to generate awareness of the existence of correlated measurement errors and their influence on association networks. Time series lipidomics data is used for this purpose, as it makes it possible to visually distinguish the correlated measurement error from a biological response. Underestimating the phenomenon of correlated measurement error will result in the suggestion of biologically meaningful results that in reality rest solely on complicated error structures. Using proper experimental designs that allow

  3. Transport driven by biharmonic forces: Impact of correlated thermal noise

    NASA Astrophysics Data System (ADS)

    Machura, L.; Łuczka, J.

    2010-09-01

    We study an inertial Brownian particle moving in a symmetric periodic substrate, driven by a zero-mean biharmonic force and correlated thermal noise. The Brownian motion is described in terms of a generalized Langevin equation with an exponentially correlated Gaussian noise term, obeying the fluctuation-dissipation theorem. We analyze impact of nonzero correlation time of thermal noise on transport properties of the Brownian particle. We identify regimes where the increase of the correlation time intensifies long-time transport of the Brownian particle. The opposite effect is also found: longer correlation time reduces the stationary velocity of the particle. The correlation time induced multiple current reversal is detected. We reveal that thermal noise of nonzero correlation time can radically enhance long-time velocity of the Brownian particle in regimes where in the white noise limit the velocity is extremely small. All transport properties can be tested in the setup consisting of a resistively and capacitively shunted Josephson junction device.

  4. SAGE II aerosol correlative observations - Profile measurements

    NASA Technical Reports Server (NTRS)

    Osborn, M. T.; Rosen, J. M.; Mccormick, M. P.; Wang, Pi-Huan; Livinfston, J. M.

    1989-01-01

    Profiles of the aerosol extinction measurements from the Stratospheric Aerosol and Gas Experiment (SAGE) II are compared with profiles from five correlative experiments between November 1984 and July 1986. The correlative profiles were derived from six-channel dustsonde measurements and two-wavelength lidar backscatter data. The correlation between the dustsonde- and lidar-derived measurements and the SAGE II data is good, validating the SAGE II lower stratospheric aerosol extinction measurements.

  5. More Voodoo correlations: when average-based measures inflate correlations.

    PubMed

    Brand, Andrew; Bradley, Michael T

    2012-01-01

    A Monte-Carlo simulation was conducted to assess the extent that a correlation estimate can be inflated when an average-based measure is used in a commonly employed correlational design. The results from the simulation reveal that the inflation of the correlation estimate can be substantial, up to 76%. Additionally, data was re-analyzed from two previously published studies to determine the extent that the correlation estimate was inflated due to the use of an averaged based measure. The re-analyses reveal that correlation estimates had been inflated by just over 50% in both studies. Although these findings are disconcerting, we are somewhat comforted by the fact that there is a simple and easy analysis that can be employed to prevent the inflation of the correlation estimate that we have simulated and observed.

  6. Collisional broadening of angular correlations in a multiphase transport model

    NASA Astrophysics Data System (ADS)

    Edmonds, Terrence; Li, Qingfeng; Wang, Fuqiang

    2017-10-01

    Systematic comparisons of jetlike correlation data to radiative and collisional energy loss model calculations are essential to extract transport properties of the quark-gluon medium created in relativistic heavy ion collisions. This paper presents a transport study of collisional broadening of jetlike correlations, by following parton-parton collision history in a multiphase transport (AMPT) model. The correlation shape is studied as functions of the number of parton-parton collisions suffered by a high transverse momentum probe parton (Ncoll) and the azimuth of the probe relative to the reaction plane (ϕfin.probe). Correlation is found to broaden with increasing Ncoll and ϕfin.probe from in- to out-of-plane direction. This study provides a transport model reference for future jet-medium interaction studies.

  7. Suspended-sediment transport measurement

    USGS Publications Warehouse

    Gray, John R.

    2007-01-01

    Of the two operationally defined phases of fluvial-sediment transport – suspended load and bedload – collection of suspended-load data is the more common. This is a reflection of a number of factors including the general predominance of suspended load over bedload in mass transport and the greater difficulty and costs associated with collecting bedload data. Acquisition of suspended-sediment data for sediment-transport computations requires collection of water-sediment samples that represent, or can be reliably adjusted to represent, the mean discharge-weighted concentration and particle-size distribution in a cross section at the time of sample collection. Analytical results from a sufficient number of representative samples obtained with concurrent water-discharge values are needed to compute suspended-sediment discharge for the period of interest.

  8. Postulates for measures of genuine multipartite correlations

    SciTech Connect

    Bennett, Charles H.; Grudka, Andrzej; Horodecki, Michal; Horodecki, Ryszard; Horodecki, Pawel

    2011-01-15

    A lot of research has been done on multipartite correlations, but the problem of satisfactorily defining genuine multipartite correlations--those not trivially reducible to lower partite correlations--remains unsolved. In this paper we propose three reasonable postulates which each measure or indicator of genuine multipartite correlations (or genuine multipartite entanglement) should satisfy. We also introduce the concept of degree of correlations, which gives partial characterization of multipartite correlations. Then, we show that covariance does not satisfy two postulates and hence it cannot be used as an indicator of genuine multipartite correlations. Finally, we propose a candidate for a measure of genuine multipartite correlations based on the work that can be drawn from a local heat bath by means of a multipartite state.

  9. Surface Wear Measurement Using Optical Correlation Technique

    NASA Astrophysics Data System (ADS)

    Acinger, Kresimir

    1983-12-01

    The coherent optical correlation technique was applied for measuring the surface wear of a tappet (part of car engine), worn by friction with the camshaft. It was found that maximum correlation intensity decays exponentially with the number of wear cycles (i.e. camshaft revolutions). Tappets of the same make have an identical rate of correlation decay. Tappets of different makes have different rates of correlation decay which are in agreement with observed long term wear.

  10. Unconventional Correlation between Quantum Hall Transport Quantization and Bulk State Filling in Gated Graphene Devices

    NASA Astrophysics Data System (ADS)

    Cui, Yong-Tao; Wen, Bo; Ma, Eric Y.; Diankov, Georgi; Han, Zheng; Amet, Francois; Taniguchi, Takashi; Watanabe, Kenji; Goldhaber-Gordon, David; Dean, Cory R.; Shen, Zhi-Xun

    2016-10-01

    We report simultaneous transport and scanning microwave impedance microscopy to examine the correlation between transport quantization and filling of the bulk Landau levels in the quantum Hall regime in gated graphene devices. Surprisingly, a comparison of these measurements reveals that quantized transport typically occurs below the complete filling of bulk Landau levels, when the bulk is still conductive. This result points to a revised understanding of transport quantization when carriers are accumulated by gating. We discuss the implications on transport study of the quantum Hall effect in graphene and related topological states in other two-dimensional electron systems.

  11. Unified entropic measures of quantum correlations induced by local measurements

    NASA Astrophysics Data System (ADS)

    Bosyk, G. M.; Bellomo, G.; Zozor, S.; Portesi, M.; Lamberti, P. W.

    2016-11-01

    We introduce quantum correlation measures based on the minimal change in unified entropies induced by local rank-one projective measurements, divided by a factor that depends on the generalized purity of the system in the case of nonadditive entropies. In this way, we overcome the issue of the artificial increasing of the value of quantum correlation measures based on nonadditive entropies when an uncorrelated ancilla is appended to the system, without changing the computability of our entropic correlation measures with respect to the previous ones. Moreover, we recover as limiting cases the quantum correlation measures based on von Neumann and Rényi entropies (i.e., additive entropies), for which the adjustment factor becomes trivial. In addition, we distinguish between total and semiquantum correlations and obtain some inequalities between them. Finally, we obtain analytical expressions of the entropic correlation measures for typical quantum bipartite systems.

  12. Norm-based measurement of quantum correlation

    SciTech Connect

    Wu Yuchun; Guo Guangcan

    2011-06-15

    In this paper we derived a necessary and sufficient condition for classical correlated states and proposed a norm-based measurement Q of quantum correlation. Using the max norm of operators, we gave the expression of the quantum correlation measurement Q and investigated the dynamics of Q in Markovian and non-Markovian cases, respectively. Q decays exponentially and vanishes only asymptotically in the Markovian case and causes periodical death and rebirth in the non-Markovian case. In the pure state, the quantum correlation Q is always larger than the entanglement, which was different from other known measurements. In addition, we showed that locally broadcastable and broadcastable are equivalent and reproved the density of quantum correlated states.

  13. On the measurability of quantum correlation functions

    NASA Astrophysics Data System (ADS)

    de Lima Bernardo, Bertúlio; Azevedo, Sérgio; Rosas, Alexandre

    2015-05-01

    The concept of correlation function is widely used in classical statistical mechanics to characterize how two or more variables depend on each other. In quantum mechanics, on the other hand, there are observables that cannot be measured at the same time; the so-called incompatible observables. This prospect imposes a limitation on the definition of a quantum analog for the correlation function in terms of a sequence of measurements. Here, based on the notion of sequential weak measurements, we circumvent this limitation by introducing a framework to measure general quantum correlation functions, in principle, independently of the state of the system and the operators involved. To illustrate, we propose an experimental configuration to obtain explicitly the quantum correlation function between two Pauli operators, in which the input state is an arbitrary mixed qubit state encoded on the polarization of photons.

  14. On the measurability of quantum correlation functions

    SciTech Connect

    Lima Bernardo, Bertúlio de Azevedo, Sérgio; Rosas, Alexandre

    2015-05-15

    The concept of correlation function is widely used in classical statistical mechanics to characterize how two or more variables depend on each other. In quantum mechanics, on the other hand, there are observables that cannot be measured at the same time; the so-called incompatible observables. This prospect imposes a limitation on the definition of a quantum analog for the correlation function in terms of a sequence of measurements. Here, based on the notion of sequential weak measurements, we circumvent this limitation by introducing a framework to measure general quantum correlation functions, in principle, independently of the state of the system and the operators involved. To illustrate, we propose an experimental configuration to obtain explicitly the quantum correlation function between two Pauli operators, in which the input state is an arbitrary mixed qubit state encoded on the polarization of photons.

  15. Noninvasive measurement of dynamic correlation functions

    NASA Astrophysics Data System (ADS)

    Uhrich, Philipp; Castrignano, Salvatore; Uys, Hermann; Kastner, Michael

    2017-08-01

    The measurement of dynamic correlation functions of quantum systems is complicated by measurement backaction. To facilitate such measurements we introduce a protocol, based on weak ancilla-system couplings, that is applicable to arbitrary (pseudo)spin systems and arbitrary equilibrium or nonequilibrium initial states. Different choices of the coupling operator give access to the real and imaginary parts of the dynamic correlation function. This protocol reduces disturbances due to the early-time measurements to a minimum, and we quantify the deviation of the measured correlation functions from the theoretical, unitarily evolved ones. Implementations of the protocol in trapped ions and other experimental platforms are discussed. For spin-1 /2 models and single-site observables we prove that measurement backaction can be avoided altogether, allowing for the use of ancilla-free protocols.

  16. Quantum correlation cost of the weak measurement

    SciTech Connect

    Zhang, Jun; Wu, Shao-xiong; Yu, Chang-shui

    2014-12-15

    Quantum correlation cost (QCC) characterizing how much quantum correlation is used in a weak-measurement process is presented based on the trace norm. It is shown that the QCC is related to the trace-norm-based quantum discord (TQD) by only a factor that is determined by the strength of the weak measurement, so it only catches partial quantumness of a quantum system compared with the TQD. We also find that the residual quantumness can be ‘extracted’ not only by the further von Neumann measurement, but also by a sequence of infinitesimal weak measurements. As an example, we demonstrate our outcomes by the Bell-diagonal state.

  17. Measurements of Correlation-Enhanced Collision Rates

    NASA Astrophysics Data System (ADS)

    Anderegg, F.; Dubin, D. H. E.; O'Neil, T. M.; Driscoll, C. F.

    2008-11-01

    We measure the perp-to-parallel collision rate ν| in laser-cooled Magnesium ion plasmas in the strongly-magnetized and correlated regime; and obtain close agreement with the ``Salpeter correlation enhancement'' first studied for fusion in dense plasmas such as stars. The cyclotron energy, like nuclear energy, is released only through rare close-range collisions. These close collisions are suppressed by strong magnetization, because collisional impact distances are rarely as small as a cyclotron radius rc. However, theory predicts that particle correlations reduce this suppression of collisionality, enhancing the rare close collisions by e^γ, where γ≡e^2 / aT is the correlation parameter. We control the plasma temperature over the range 4 0-6 < T < 1eV, giving correlation parameters up to γ 0, with measured collision rates 2 < ν| 2 10^4 sec-1. At low temperatures, the measured ν| are enhanced by up to 10^9 compared to uncorrelated theory, consistent with the predicted correlation enhancement. When the plasma density is reduced from 2 to 0.12 x10^7cm-3, the correlations are eliminated and the measured ν| agree with uncorrelated theory. E.E. Salpeter and H.M. Van Horn, Astrophys. J. 155, 183 (1969). D.H.E. Dubin, Phys. Rev. Lett. 94, 025002 (2005).

  18. Measuring and modeling correlations in multiplex networks

    NASA Astrophysics Data System (ADS)

    Nicosia, Vincenzo; Latora, Vito

    2015-09-01

    The interactions among the elementary components of many complex systems can be qualitatively different. Such systems are therefore naturally described in terms of multiplex or multilayer networks, i.e., networks where each layer stands for a different type of interaction between the same set of nodes. There is today a growing interest in understanding when and why a description in terms of a multiplex network is necessary and more informative than a single-layer projection. Here we contribute to this debate by presenting a comprehensive study of correlations in multiplex networks. Correlations in node properties, especially degree-degree correlations, have been thoroughly studied in single-layer networks. Here we extend this idea to investigate and characterize correlations between the different layers of a multiplex network. Such correlations are intrinsically multiplex, and we first study them empirically by constructing and analyzing several multiplex networks from the real world. In particular, we introduce various measures to characterize correlations in the activity of the nodes and in their degree at the different layers and between activities and degrees. We show that real-world networks exhibit indeed nontrivial multiplex correlations. For instance, we find cases where two layers of the same multiplex network are positively correlated in terms of node degrees, while other two layers are negatively correlated. We then focus on constructing synthetic multiplex networks, proposing a series of models to reproduce the correlations observed empirically and/or to assess their relevance.

  19. Measuring and modeling correlations in multiplex networks.

    PubMed

    Nicosia, Vincenzo; Latora, Vito

    2015-09-01

    The interactions among the elementary components of many complex systems can be qualitatively different. Such systems are therefore naturally described in terms of multiplex or multilayer networks, i.e., networks where each layer stands for a different type of interaction between the same set of nodes. There is today a growing interest in understanding when and why a description in terms of a multiplex network is necessary and more informative than a single-layer projection. Here we contribute to this debate by presenting a comprehensive study of correlations in multiplex networks. Correlations in node properties, especially degree-degree correlations, have been thoroughly studied in single-layer networks. Here we extend this idea to investigate and characterize correlations between the different layers of a multiplex network. Such correlations are intrinsically multiplex, and we first study them empirically by constructing and analyzing several multiplex networks from the real world. In particular, we introduce various measures to characterize correlations in the activity of the nodes and in their degree at the different layers and between activities and degrees. We show that real-world networks exhibit indeed nontrivial multiplex correlations. For instance, we find cases where two layers of the same multiplex network are positively correlated in terms of node degrees, while other two layers are negatively correlated. We then focus on constructing synthetic multiplex networks, proposing a series of models to reproduce the correlations observed empirically and/or to assess their relevance.

  20. Correlated Exciton Transport in Rydberg-Dressed-Atom Spin Chains.

    PubMed

    Schempp, H; Günter, G; Wüster, S; Weidemüller, M; Whitlock, S

    2015-08-28

    We investigate the transport of excitations through a chain of atoms with nonlocal dissipation introduced through coupling to additional short-lived states. The system is described by an effective spin-1/2 model where the ratio of the exchange interaction strength to the reservoir coupling strength determines the type of transport, including coherent exciton motion, incoherent hopping, and a regime in which an emergent length scale leads to a preferred hopping distance far beyond nearest neighbors. For multiple impurities, the dissipation gives rise to strong nearest-neighbor correlations and entanglement. These results highlight the importance of nontrivial dissipation, correlations, and many-body effects in recent experiments on the dipole-mediated transport of Rydberg excitations.

  1. Measurement of exciton correlations using electrostatic lattices

    NASA Astrophysics Data System (ADS)

    Remeika, M.; Leonard, J. R.; Dorow, C. J.; Fogler, M. M.; Butov, L. V.; Hanson, M.; Gossard, A. C.

    2015-09-01

    We present a method for determining correlations in a gas of indirect excitons in a semiconductor quantum well structure. The method involves subjecting the excitons to a periodic electrostatic potential that causes modulations of the exciton density and photoluminescence (PL). Experimentally measured amplitudes of energy and intensity modulations of exciton PL serve as an input to a theoretical estimate of the exciton correlation parameter and temperature. We also present a proof-of-principle demonstration of the method for determining the correlation parameter and discuss how its accuracy can be improved.

  2. Understanding the amplitudes of noise correlation measurements

    USGS Publications Warehouse

    Tsai, Victor C.

    2011-01-01

    Cross correlation of ambient seismic noise is known to result in time series from which station-station travel-time measurements can be made. Part of the reason that these cross-correlation travel-time measurements are reliable is that there exists a theoretical framework that quantifies how these travel times depend on the features of the ambient noise. However, corresponding theoretical results do not currently exist to describe how the amplitudes of the cross correlation depend on such features. For example, currently it is not possible to take a given distribution of noise sources and calculate the cross correlation amplitudes one would expect from such a distribution. Here, we provide a ray-theoretical framework for calculating cross correlations. This framework differs from previous work in that it explicitly accounts for attenuation as well as the spatial distribution of sources and therefore can address the issue of quantifying amplitudes in noise correlation measurements. After introducing the general framework, we apply it to two specific problems. First, we show that we can quantify the amplitudes of coherency measurements, and find that the decay of coherency with station-station spacing depends crucially on the distribution of noise sources. We suggest that researchers interested in performing attenuation measurements from noise coherency should first determine how the dominant sources of noise are distributed. Second, we show that we can quantify the signal-to-noise ratio of noise correlations more precisely than previous work, and that these signal-to-noise ratios can be estimated for given situations prior to the deployment of seismometers. It is expected that there are applications of the theoretical framework beyond the two specific cases considered, but these applications await future work.

  3. Satellite measurements of aerosol mass and transport

    NASA Technical Reports Server (NTRS)

    Fraser, R. S.; Kaufman, Y. J.; Mahoney, R. L.

    1984-01-01

    The aerosol optical thickness over land is derived from satellite measurements of the radiance of scattered sunlight. These data are used to estimate the columnar mass density of particulate sulfur on a day with a large amount of sulfur. The horizontal transport of the particulate sulfur is calculated using wind vectors measured with rawins.

  4. Eddy Correlation Flux Measurement System (ECOR) Handbook

    SciTech Connect

    Cook, DR

    2011-01-31

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration.

  5. Correlation-driven transport asymmetries through coupled spins in a tunnel junction

    PubMed Central

    Muenks, Matthias; Jacobson, Peter; Ternes, Markus; Kern, Klaus

    2017-01-01

    Spin–spin correlations can be the driving force that favours certain ground states and are key in numerous models that describe the behaviour of strongly correlated materials. While the sum of collective correlations usually lead to a macroscopically measurable change in properties, a direct quantification of correlations in atomic scale systems is difficult. Here we determine the correlations between a strongly hybridized spin impurity on the tip of a scanning tunnelling microscope and its electron bath by varying the coupling to a second spin impurity weakly hybridized to the sample surface. Electronic transport through these coupled spins reveals an asymmetry in the differential conductance reminiscent of spin-polarized transport in a magnetic field. We show that at zero field, this asymmetry can be controlled by the coupling strength and is related to either ferromagnetic or antiferromagnetic spin–spin correlations in the tip. PMID:28074832

  6. Correlation-driven transport asymmetries through coupled spins in a tunnel junction

    NASA Astrophysics Data System (ADS)

    Muenks, Matthias; Jacobson, Peter; Ternes, Markus; Kern, Klaus

    2017-01-01

    Spin-spin correlations can be the driving force that favours certain ground states and are key in numerous models that describe the behaviour of strongly correlated materials. While the sum of collective correlations usually lead to a macroscopically measurable change in properties, a direct quantification of correlations in atomic scale systems is difficult. Here we determine the correlations between a strongly hybridized spin impurity on the tip of a scanning tunnelling microscope and its electron bath by varying the coupling to a second spin impurity weakly hybridized to the sample surface. Electronic transport through these coupled spins reveals an asymmetry in the differential conductance reminiscent of spin-polarized transport in a magnetic field. We show that at zero field, this asymmetry can be controlled by the coupling strength and is related to either ferromagnetic or antiferromagnetic spin-spin correlations in the tip.

  7. Conditioning natural gas for measurement and transportation

    SciTech Connect

    Barnhard, E.E.

    1984-04-01

    This paper discusses methods of conditioning natural gas for measurement and transportation. Gas mixtures measured at the well head or into a gathering system may not yet be conditioned to pipeline standards at the point of measurement, because title to the gas passes from the seller to the buyer at that point. Therefore, it is sometimes necessary to measure the gas flow without complete conditioning and to do it accurately. Careful study of the conditioning steps that the gas has completed, or that must be performed prior to measurement, will affect selection of the measurement equipment and the success of its operation.

  8. Quantum Correlations and the Measurement Problem

    NASA Astrophysics Data System (ADS)

    Bub, Jeffrey

    2014-10-01

    The transition from classical to quantum mechanics rests on the recognition that the structure of information is not what we thought it was: there are operational, i.e., phenomenal, probabilistic correlations that lie outside the polytope of local correlations. Such correlations cannot be simulated with classical resources, which generate classical correlations represented by the points in a simplex, where the vertices of the simplex represent joint deterministic states that are the common causes of the correlations. The `no go' hidden variable theorems tell us that we can't shoe-horn phenomenal correlations outside the local polytope into a classical simplex by supposing that something has been left out of the story. The replacement of the classical simplex by the quantum convex set as the structure representing probabilistic correlations is the analogue for quantum mechanics of the replacement of Newton's Euclidean space and time by Minkowski spacetime in special relativity. The nonclassical features of quantum mechanics, including the irreducible information loss on measurement, are generic features of correlations that lie outside the classical simplex. This paper is an elaboration of these ideas, which have their source in work by Pitowsky (J. Math. Phys. 27:1556, 1986; Math. Program. 50:395, 1991; Phys. Rev. A 77:062109, 2008), Garg and Mermin (Found. Phys. 14:1-39, 1984), Barrett (Phys. Rev. A 75:032304, 2007; Phys. Rev. A 7:022101, 2005) and others, e.g., Brunner et al. (arXiv:1303.2849, 2013), but the literature goes back to Boole (An Investigation of the Laws of Thought, Dover, New York, 1951). The final section looks at the measurement problem of quantum mechanics in this context. A large part of the problem is removed by seeing that the inconsistency in reconciling the entangled state at the end of a quantum measurement process with the definiteness of the macroscopic pointer reading and the definiteness of the correlated value of the measured micro

  9. γ - γ Angular Correlation Measurements With GRIFFIN

    NASA Astrophysics Data System (ADS)

    Maclean, Andrew; Griffin Collaboration

    2015-10-01

    When an excited nuclear state emits successive γ-rays causing a γ - γ cascade an anisotropy is found in the spatial distribution of γ2 with respect to γ1. Defining the direction of γ1 as the z-axis, the intermediate level, in general will have an uneven distribution of m-states. This causes an anisotropy in the angular correlation of the second γ-ray with respect to the first. These angular correlations are expressed by the W (θ) that depends on numerical coefficients described by the sequence of spin-parity values for the nuclear states involved, the multipolarities and mixing ratios. Angular correlations can be used for the assignment of spins and parities for the nuclear states, and thus provide a powerful means to elucidate the structure of nuclei far from stability through β - γ - γ coincidence measurements. In order to explore the sensitivity of the new 16 clover-detector GRIFFIN γ-ray spectrometer at TRIUMF-ISAC to such γ - γ angular correlations, and to optimize its performance for these measurements we have studied a well known γ - γ cascade from 60Co decay through both experimental measurements and Geant4 simulation. Results will be shown in this talk. Work supported by the Canada Foundation for Innovation, the Natural Sciences and Engineering Research Council of Canada and the National Research Council of Canada.

  10. Relating chamber measurements to eddy correlation measurements of methane flux

    Treesearch

    R.J. Clement; S.B. Verma; E.S. Verry

    1995-01-01

    Methane fluxes were measured using eddy correlation and chamber techniques during 1991 and 1997 at a peatland in north central Minnesota. Comparisons of the two techniques were made using averages of methane flux data available during 1-week periods. The seasonal patterns of fluxes measured by the two techniques compared well. Chamber flux, in 1991, was about 1.8 mg m...

  11. Evolution equation for geometric quantum correlation measures

    NASA Astrophysics Data System (ADS)

    Hu, Ming-Liang; Fan, Heng

    2015-05-01

    A simple relation is established for the evolution equation of quantum-information-processing protocols such as quantum teleportation, remote state preparation, Bell-inequality violation, and particularly the dynamics of geometric quantum correlation measures. This relation shows that when the system traverses the local quantum channel, various figures of merit of the quantum correlations for different protocols demonstrate a factorization decay behavior for dynamics. We identified the family of quantum states for different kinds of quantum channels under the action of which the relation holds. This relation simplifies the assessment of many quantum tasks.

  12. The importance of transport parameter cross correlations in natural systems radioactive transport models

    SciTech Connect

    Reimus, Paul W

    2011-01-03

    Transport parameter cross correlations are rarely considered in models used to predict radionuclide transport in natural systems. In this paper, it is shown that parameter cross correlations could have a significant impact on radionuclide transport predictions in saturated media. In fractured rock, the positive correlation between fracture apertures and groundwater residence times is shown to result in significantly less retardation due to matrix diffusion than is predicted without the correlation. The suppression of matrix diffusion is further amplified by a tendency toward larger apertures, smaller matrix diffusion coefficients, and less sorption capacity in rocks of lower matrix porosity. In a hypothetical example, strong cross correlations between these parameters result in a decrease in predicted radionuclide travel times of an order of magnitude or more relative to travel times calculated with uncorrelated parameters. In porous media, expected correlations between permeability, porosity, and sorption capacity also result in shorter predicted travel times than when the parameters are assumed to be uncorrelated. Individual parameter standard deviations can also have a significant influence on predicted radionuclide travel times, particularly when cross correlations are considered.

  13. Measures and models for angular correlation and angular-linear correlation. [correlation of random variables

    NASA Technical Reports Server (NTRS)

    Johnson, R. A.; Wehrly, T.

    1976-01-01

    Population models for dependence between two angular measurements and for dependence between an angular and a linear observation are proposed. The method of canonical correlations first leads to new population and sample measures of dependence in this latter situation. An example relating wind direction to the level of a pollutant is given. Next, applied to pairs of angular measurements, the method yields previously proposed sample measures in some special cases and a new sample measure in general.

  14. Nonlocal correlations in a macroscopic measurement scenario

    NASA Astrophysics Data System (ADS)

    Kunkri, Samir; Banik, Manik; Ghosh, Sibasish

    2017-02-01

    Nonlocality is one of the main characteristic features of quantum systems involving more than one spatially separated subsystem. It is manifested theoretically as well as experimentally through violation of some local realistic inequality. On the other hand, classical behavior of all physical phenomena in the macroscopic limit gives a general intuition that any physical theory for describing microscopic phenomena should resemble classical physics in the macroscopic regime, the so-called macrorealism. In the 2-2-2 scenario (two parties, with each performing two measurements and each measurement having two outcomes), contemplating all the no-signaling correlations, we characterize which of them would exhibit classical (local realistic) behavior in the macroscopic limit. Interestingly, we find correlations which at the single-copy level violate the Bell-Clauser-Horne-Shimony-Holt inequality by an amount less than the optimal quantum violation (i.e., Cirel'son bound 2 √{2 } ), but in the macroscopic limit gives rise to a value which is higher than 2 √{2 } . Such correlations are therefore not considered physical. Our study thus provides a sufficient criterion to identify some of unphysical correlations.

  15. Radial correlation reflectometry measurements on the JET tokamak

    NASA Astrophysics Data System (ADS)

    Fonseca, A.; Alper, B.; Budny, R.; Cupido, L.; Fessey, J.; Figueiredo, A.; Hacquin, S.; Manso, M. E.; Mazzucato, E.; Meneses, L.; Sirinelli, A.; Walsh, M.

    2007-11-01

    Fluctuations and turbulence are believed to play an important role in anomalous transport of heat and particles in magnetic fusion devices. It is of vital importance to characterize transport mechanism in order to understand and control it. In correlation reflectometry (CR), two microwave beams with different frequencies are launched into the plasma from which the turbulence correlation length, Lr, and the density fluctuation level, 0.7exn / n n.- 0.7exn can be deduced; quantities that are important for the study of plasma turbulence and transport. In this paper, some results of Lr obtained with the four X-mode CR systems installed at Joint European Torus (JET) are reported. Experimentally, it was observed that Lr increases from the plasma edge to the plasma core. Also, Lr decreases inside the Internal Transport Barriers (ITB) [1]. The results obtained at JET agree quiet well with the Lr dependence measured in other tokamak machines. [1] - A.C.A. Figueiredo, et.al., in the 34^th EPS Conference on Plasma Physics, Warsaw, Poland, 2-7 July, (2007).

  16. Ion energy analyzer for measurement of ion turbulent transport

    NASA Astrophysics Data System (ADS)

    Sokolov, V.; Sen, A. K.

    2012-10-01

    For local measurement of radial ion thermal transport, we developed a novel time-resolved gridded ion energy analyzer. The turbulent thermal flux is obtained by correlating fluctuations of ion temperature, plasma density and plasma velocity. The simultaneous measurement of the ion current fluctuations from an ion energy analyzer tilde I_{IEA} (t) and the fluctuation of ion saturation current from a conventional Langmuir probe tilde I_{LP} (t) allow us to determine local fluctuations of ion temperature tilde T_i (t). To reduce the effect of plasma potential fluctuations in the energy analyzer measurements, we use special a compensative circuit loop.

  17. Geometric correlations and breakdown of mesoscopic universality in spin transport.

    PubMed

    Adagideli, I; Jacquod, Ph; Scheid, M; Duckheim, M; Loss, D; Richter, K

    2010-12-10

    We construct a unified semiclassical theory of charge and spin transport in chaotic ballistic and disordered diffusive mesoscopic systems with spin-orbit interaction. Neglecting dynamic effects of spin-orbit interaction, we reproduce the random matrix theory results that the spin conductance fluctuates universally around zero average. Incorporating these effects into the theory, we show that geometric correlations generate finite average spin conductances, but that they do not affect the charge conductance to leading order. The theory, which is confirmed by numerical transport calculations, allows us to investigate the entire range from the weak to the previously unexplored strong spin-orbit regime, where the spin rotation time is shorter than the momentum relaxation time.

  18. Device-correlated metrology for overlay measurements

    NASA Astrophysics Data System (ADS)

    Chen, Charlie; Huang, George K. C.; Pai, Yuan Chi; Wu, Jimmy C. H.; Cheng, Yu Wei; Hsu, Simon C. C.; Yu, Chun Chi; Amir, Nuriel; Choi, Dongsub; Itzkovich, Tal; Tarshish-Shapir, Inna; Tien, David C.; Huang, Eros; Kuo, Kelly T. L.; Kato, Takeshi; Inoue, Osamu; Kawada, Hiroki; Okagawa, Yutaka; Huang, Luis; Hsu, Matthew; Su, Amei

    2014-10-01

    One of the main issues with accuracy is the bias between the overlay (OVL) target and actual device OVL. In this study, we introduce the concept of device-correlated metrology (DCM), which is a systematic approach to quantify and overcome the bias between target-based OVL results and device OVL values. In order to systematically quantify the bias components between target and device, we introduce a new hybrid target integrating an optical OVL target with a device mimicking critical dimension scanning electron microscope (CD-SEM) target. The hybrid OVL target is designed to accurately represent the process influence on the actual device. In the general case, the CD-SEM can measure the bias between the target and device on the same layer after etch inspection (AEI) for all layers, the OVL between layers at AEI for most cases and after develop inspection for limited cases such as double-patterning layers. The results have shown that for the innovative process compatible hybrid targets the bias between the target and device is small, within the order of CD-SEM noise. Direct OVL measurements by CD-SEM show excellent correlation between CD-SEM and optical OVL measurements at certain conditions. This correlation helps verify the accuracy of the optical measurement results and is applicable for the imaging base OVL method using several target types advance imaging metrology, advance imaging metrology in die OVL, and the scatterometrybase OVL method. Future plans include broadening the hybrid target design to better mimic each layer process conditions such as pattern density. Additionally, for memory devices we are developing hybrid targets which enable other methods of accuracy verification.

  19. Eddy Correlation Flux Measurement System Handbook

    SciTech Connect

    Cook, D. R.

    2016-01-01

    The eddy correlation (ECOR) flux measurement system provides in situ, half-hour measurements of the surface turbulent fluxes of momentum, sensible heat, latent heat, and carbon dioxide (CO2) (and methane at one Southern Great Plains extended facility (SGP EF) and the North Slope of Alaska Central Facility (NSA CF). The fluxes are obtained with the eddy covariance technique, which involves correlation of the vertical wind component with the horizontal wind component, the air temperature, the water vapor density, and the CO2 concentration. The instruments used are: • a fast-response, three-dimensional (3D) wind sensor (sonic anemometer) to obtain the orthogonal wind components and the speed of sound (SOS) (used to derive the air temperature) • an open-path infrared gas analyzer (IRGA) to obtain the water vapor density and the CO2 concentration, and • an open-path infrared gas analyzer (IRGA) to obtain methane density and methane flux at one SGP EF and at the NSA CF. The ECOR systems are deployed at the locations where other methods for surface flux measurements (e.g., energy balance Bowen ratio [EBBR] systems) are difficult to employ, primarily at the north edge of a field of crops. A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system in SGP, NSA, Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes. The SEBS at one SGP and one NSA site also support upwelling and downwelling PAR measurements to qualify those two locations as Ameriflux sites.

  20. Transport Experiments on 2D Correlated Electron Physics in Semiconductors

    SciTech Connect

    Tsui, Daniel

    2014-03-24

    This research project was designed to investigate experimentally the transport properties of the 2D electrons in Si and GaAs, two prototype semiconductors, in several new physical regimes that were previously inaccessible to experiments. The research focused on the strongly correlated electron physics in the dilute density limit, where the electron potential energy to kinetic energy ratio rs>>1, and on the fractional quantum Hall effect related physics in nuclear demagnetization refrigerator temperature range on samples with new levels of purity and controlled random disorder.

  1. Measurements of Correlation-Enhanced Collision Rates

    NASA Astrophysics Data System (ADS)

    Driscoll, C. Fred

    2009-11-01

    This talk presents the first detailed experimental measurements of the Salpeter collisional enhancement factor g ( γ) in strongly correlated plasmas. This factor is predicted to enhance the nuclear reaction rate in dense strongly-correlated plasmas, such as in giant planet interiors, brown dwarfs and degenerate stars;footnotetextE.E. Salpeter and H.M. Van Horn, Astrophys. J. 155, 183 (1969). and recent theory establishes that it also applies to the perpendicular-to-parallel collisions in magnetized plasmas described here.footnotetextD.H.E. Dubin, Phys. Rev. Lett. 94, 025002 (2005). The enhancement is caused by plasma screening of the repulsive Coulomb potential between charges, allowing closer collisions for a given particle energy. The enhancement factor is predicted to be large when the plasma correlation parameter γ≡e^2 /aT is larger than unity, scaling as g ( γ) ˜e^γ. The perp-to-parallel collision rate is then ν|= n v b^2 ,( κ ) ,( γ), where I ( κ ) decreases precipitously below ( 8 √π / 15 ) λ in the highly magnetized regime of κ ≡√2 ,/ rc1. Our measurementsfootnotetextF. Anderegg et al., Phys. Rev. Lett. 102, 185001 (2009); F. Anderegg et al., Phys. Plasmas 16, 055705 (2009). of ν| in Mg^+ pure ion plasmas are consistent with the predicted Salpeter correlation enhancement, with the comparison limited mainly by systematic spatial variations in the plasma temperature. The plasma temperatures are controlled over the range 4 x10-6 < T < 1eV, with the outer radii being up to 2x hotter. Bulk-averaged collision rates of 1 < ν|< 2 x10^4 sec-1 are measured by 2 techniques: for slow collisions, T| is heated or cooled, and the subsequent relaxation is directly observed; for rapid collisions, sinusoidal modulation of the plasma length at frequency fmod gives maximal heating when fmod = ν|/ 2 πc (γ), where c ( γ) is the specific heat. Two densities are used, 2.0 and 0.12 x10^7 cm-3; the lower density has ˜2.5 x less correlation at any

  2. Cosmological measurements with general relativistic galaxy correlations

    NASA Astrophysics Data System (ADS)

    Raccanelli, Alvise; Montanari, Francesco; Bertacca, Daniele; Doré, Olivier; Durrer, Ruth

    2016-05-01

    We investigate the cosmological dependence and the constraining power of large-scale galaxy correlations, including all redshift-distortions, wide-angle, lensing and gravitational potential effects on linear scales. We analyze the cosmological information present in the lensing convergence and in the gravitational potential terms describing the so-called ``relativistic effects'', and we find that, while smaller than the information contained in intrinsic galaxy clustering, it is not negligible. We investigate how neglecting them does bias cosmological measurements performed by future spectroscopic and photometric large-scale surveys such as SKA and Euclid. We perform a Fisher analysis using the CLASS code, modified to include scale-dependent galaxy bias and redshift-dependent magnification and evolution bias. Our results show that neglecting relativistic terms, especially lensing convergence, introduces an error in the forecasted precision in measuring cosmological parameters of the order of a few tens of percent, in particular when measuring the matter content of the Universe and primordial non-Gaussianity parameters. The analysis suggests a possible substantial systematic error in cosmological parameter constraints. Therefore, we argue that radial correlations and integrated relativistic terms need to be taken into account when forecasting the constraining power of future large-scale number counts of galaxy surveys.

  3. Weak measurements and nonClassical correlations

    NASA Astrophysics Data System (ADS)

    Lekshmi, S.; Shaji, N.; Shaji, Anil

    2017-01-01

    We extend the definition of quantum discord as a quantifier of nonClassical correlations in a quantum state to the case where weak measurements are performed on subsystem A of a bipartite system AB. The properties of weak discord are explored for several families of quantum states. We find that in many cases weak quantum discord is identical to normal discord and in general the values of the two are very close to each other. Weak quantum discord reduces to discord in the appropriate limits as well. We also discuss the implications of these observations on the interpretations of quantum discord.

  4. Microscopic theory on charge transports of a correlated multiorbital system

    NASA Astrophysics Data System (ADS)

    Arakawa, Naoya

    2016-07-01

    Current vertex correction (CVC), the backflowlike correction to the current, comes from conservation laws, and the CVC due to electron correlation contains information about many-body effects. However, it has been little understood how the CVC due to electron correlation affects the charge transports of a correlated multiorbital system. To improve this situation, I studied the in-plane resistivity ρa b and the Hall coefficient in the weak-field limit RH, in addition to the magnetic properties and the electronic structure, for a t2 g-orbital Hubbard model on a square lattice in a paramagnetic state away from or near an antiferromagnetic (AF) quantum-critical point (QCP) in the fluctuation-exchange (FLEX) approximation with the CVCs arising from the self-energy (Σ ), the Maki-Thompson (MT) irreducible four-point vertex function, and the main terms of the Aslamasov-Larkin (AL) one. Then, I found three main results about the CVCs. First, the main terms of the AL CVC do not qualitatively change the results obtained in the FLEX approximation with the Σ CVC and the MT CVC. Second, ρa b and RH near the AF QCP have a high-temperature region, governed mainly by the Σ CVC, and a low-temperature region, governed mainly by the Σ CVC and the MT CVC. Third, in case away from the AF QCP, the MT CVC leads to a considerable effect on only RH at low temperatures, although RH at high temperatures and ρa b at all temperatures considered are sufficiently described by including only the Σ CVC. Those findings reveal several aspects of many-body effects on the charge transports of a correlated multiorbital system. I also achieved the qualitative agreement with several experiments of Sr2RuO4 or Sr2Ru0.975Ti0.025O4 . Moreover, I showed several better points of this theory than other theories.

  5. Gene-Family Extension Measures and Correlations

    PubMed Central

    Carmi, Gon; Bolshoy, Alexander

    2016-01-01

    The existence of multiple copies of genes is a well-known phenomenon. A gene family is a set of sufficiently similar genes, formed by gene duplication. In earlier works conducted on a limited number of completely sequenced and annotated genomes it was found that size of gene family and size of genome are positively correlated. Additionally, it was found that several atypical microbes deviated from the observed general trend. In this study, we reexamined these associations on a larger dataset consisting of 1484 prokaryotic genomes and using several ranking approaches. We applied ranking methods in such a way that genomes with lower numbers of gene copies would have lower rank. Until now only simple ranking methods were used; we applied the Kemeny optimal aggregation approach as well. Regression and correlation analysis were utilized in order to accurately quantify and characterize the relationships between measures of paralog indices and genome size. In addition, boxplot analysis was employed as a method for outlier detection. We found that, in general, all paralog indexes positively correlate with an increase of genome size. As expected, different groups of atypical prokaryotic genomes were found for different types of paralog quantities. Mycoplasmataceae and Halobacteria appeared to be among the most interesting candidates for further research of evolution through gene duplication. PMID:27527218

  6. Gene-Family Extension Measures and Correlations.

    PubMed

    Carmi, Gon; Bolshoy, Alexander

    2016-08-03

    The existence of multiple copies of genes is a well-known phenomenon. A gene family is a set of sufficiently similar genes, formed by gene duplication. In earlier works conducted on a limited number of completely sequenced and annotated genomes it was found that size of gene family and size of genome are positively correlated. Additionally, it was found that several atypical microbes deviated from the observed general trend. In this study, we reexamined these associations on a larger dataset consisting of 1484 prokaryotic genomes and using several ranking approaches. We applied ranking methods in such a way that genomes with lower numbers of gene copies would have lower rank. Until now only simple ranking methods were used; we applied the Kemeny optimal aggregation approach as well. Regression and correlation analysis were utilized in order to accurately quantify and characterize the relationships between measures of paralog indices and genome size. In addition, boxplot analysis was employed as a method for outlier detection. We found that, in general, all paralog indexes positively correlate with an increase of genome size. As expected, different groups of atypical prokaryotic genomes were found for different types of paralog quantities. Mycoplasmataceae and Halobacteria appeared to be among the most interesting candidates for further research of evolution through gene duplication.

  7. Strongly Correlated Transport in the Falicov Kimball Model

    NASA Astrophysics Data System (ADS)

    Boyd, Greg; Freericks, Jim; Zlatic, Veljko

    2013-03-01

    Many materials like the cuprates, heavy fermions, and strongly correlated oxides, are non-Fermi liquid ``bad metals'', with linear or quasi-linear resistivity as a function of temperature. The low-energy excitations are quasiparticle-like near the Fermi surface, but their lifetimes are short, so they are not coherent or free-particle-like, as in conventional Fermi-liquids (whose quasi-particle lifetimes diverge at the Fermi energy). It turns out that this kind of behavior is ubiquitous in a wide range of different strongly correlated models, as long as the temperature is above the Fermi-liquid scale. To illustrate this, we investigate the strongly correlated transport in the Falicov-Kimball model using dynamical mean-field theory (DMFT) - which is exactly solvable in the limit of infinite coordination number. We show results for the resistivity as a function of temperature, the quasiparticle lifetime, and the spectral function. These results are quite similar to those recently found for the Hubbard model, illustrating that this high temperature behavior is seen in many different models of strong electron correlations.

  8. Are the correlates of active school transport context-specific?

    PubMed Central

    Larouche, R; Sarmiento, O L; Broyles, S T; Denstel, K D; Church, T S; Barreira, T V; Chaput, J-P; Fogelholm, M; Hu, G; Kuriyan, R; Kurpad, A; Lambert, E V; Maher, C; Maia, J; Matsudo, V; Olds, T; Onywera, V; Standage, M; Tremblay, M S; Tudor-Locke, C; Zhao, P; Katzmarzyk, P T

    2015-01-01

    OBJECTIVES: Previous research consistently indicates that children who engage in active school transport (AST) are more active than their peers who use motorized modes (car or bus). However, studies of the correlates of AST have been conducted predominantly in high-income countries and have yielded mixed findings. Using data from a heterogeneous sample of 12 country sites across the world, we investigated the correlates of AST in 9–11-year olds. METHODS: The analytical sample comprised 6555 children (53.8% girls), who reported their main travel mode to school and the duration of their school trip. Potential individual and neighborhood correlates of AST were assessed with a parent questionnaire adapted from previously validated instruments. Multilevel generalized linear mixed models (GLMM) were used to examine the associations between individual and neighborhood variables and the odds of engaging in AST while controlling for the child's school. Site moderated the relationship of seven of these variables with AST; therefore we present analyses stratified by site. RESULTS: The prevalence of AST varied from 5.2 to 79.4% across sites and the school-level intra-class correlation ranged from 0.00 to 0.56. For each site, the final GLMM included a different set of correlates of AST. Longer trip duration (that is, ⩾16 min versus ⩽15 min) was associated with lower odds of AST in eight sites. Other individual and neighborhood factors were associated with AST in three sites or less. CONCLUSIONS: Our results indicate wide variability in the prevalence and correlates of AST in a large sample of children from twelve geographically, economically and culturally diverse country sites. This suggests that AST interventions should not adopt a ‘one size fits all' approach. Future research should also explore the association between psychosocial factors and AST in different countries. PMID:27152191

  9. Probing Macroscopic Realism via Ramsey Correlation Measurements

    NASA Astrophysics Data System (ADS)

    Asadian, A.; Brukner, C.; Rabl, P.

    2014-05-01

    We describe a new and experimentally feasible protocol for performing fundamental tests of quantum mechanics with massive objects. In our approach, a single two-level system is used to probe the motion of a nanomechanical resonator via multiple Ramsey interference measurements. This scheme enables the measurement of modular variables of macroscopic continuous-variable systems; we show that correlations thereof violate a Leggett-Garg inequality and can be applied for tests of quantum contextuality. Our method can be implemented with a variety of different solid-state or photonic qubit-resonator systems, and it provides a clear experimental signature to distinguish the predictions of quantum mechanics from those of other alternative theories at a macroscopic scale.

  10. Measures and applications of quantum correlations

    NASA Astrophysics Data System (ADS)

    Adesso, Gerardo; Bromley, Thomas R.; Cianciaruso, Marco

    2016-11-01

    Quantum information theory is built upon the realisation that quantum resources like coherence and entanglement can be exploited for novel or enhanced ways of transmitting and manipulating information, such as quantum cryptography, teleportation, and quantum computing. We now know that there is potentially much more than entanglement behind the power of quantum information processing. There exist more general forms of non-classical correlations, stemming from fundamental principles such as the necessary disturbance induced by a local measurement, or the persistence of quantum coherence in all possible local bases. These signatures can be identified and are resilient in almost all quantum states, and have been linked to the enhanced performance of certain quantum protocols over classical ones in noisy conditions. Their presence represents, among other things, one of the most essential manifestations of quantumness in cooperative systems, from the subatomic to the macroscopic domain. In this work we give an overview of the current quest for a proper understanding and characterisation of the frontier between classical and quantum correlations (QCs) in composite states. We focus on various approaches to define and quantify general QCs, based on different yet interlinked physical perspectives, and comment on the operational significance of the ensuing measures for quantum technology tasks such as information encoding, distribution, discrimination and metrology. We then provide a broader outlook of a few applications in which quantumness beyond entanglement looks fit to play a key role.

  11. Transport through correlated systems with density functional theory.

    PubMed

    Kurth, S; Stefanucci, G

    2017-10-18

    We present recent advances in density functional theory (DFT) for applications in the field of quantum transport, with particular emphasis on transport through strongly correlated systems. We review the foundations of the popular Landauer-Büttiker(LB)  +  DFT approach. This formalism, when using approximations to the exchange-correlation (xc) potential with steps at integer occupation, correctly captures the Kondo plateau in the zero bias conductance at zero temperature but completely fails to capture the transition to the Coulomb blockade (CB) regime as the temperature increases. To overcome the limitations of LB  +  DFT, the quantum transport problem is treated from a time-dependent (TD) perspective using TDDFT, an exact framework to deal with nonequilibrium situations. The steady-state limit of TDDFT shows that in addition to an xc potential in the junction, there also exists an xc correction to the applied bias. Open shell molecules in the CB regime provide the most striking examples of the importance of the xc bias correction. Using the Anderson model as guidance we estimate these corrections in the limit of zero bias. For the general case we put forward a steady-state DFT which is based on one-to-one correspondence between the pair of basic variables, steady density on and steady current across the junction and the pair local potential on and bias across the junction. Like TDDFT, this framework also leads to both an xc potential in the junction and an xc correction to the bias. Unlike TDDFT, these potentials are independent of history. We highlight the universal features of both xc potential and xc bias corrections for junctions in the CB regime and provide an accurate parametrization for the Anderson model at arbitrary temperatures and interaction strengths, thus providing a unified DFT description for both Kondo and CB regimes and the transition between them.

  12. Transport through correlated systems with density functional theory

    NASA Astrophysics Data System (ADS)

    Kurth, S.; Stefanucci, G.

    2017-10-01

    We present recent advances in density functional theory (DFT) for applications in the field of quantum transport, with particular emphasis on transport through strongly correlated systems. We review the foundations of the popular Landauer–Büttiker(LB)  +  DFT approach. This formalism, when using approximations to the exchange-correlation (xc) potential with steps at integer occupation, correctly captures the Kondo plateau in the zero bias conductance at zero temperature but completely fails to capture the transition to the Coulomb blockade (CB) regime as the temperature increases. To overcome the limitations of LB  +  DFT, the quantum transport problem is treated from a time-dependent (TD) perspective using TDDFT, an exact framework to deal with nonequilibrium situations. The steady-state limit of TDDFT shows that in addition to an xc potential in the junction, there also exists an xc correction to the applied bias. Open shell molecules in the CB regime provide the most striking examples of the importance of the xc bias correction. Using the Anderson model as guidance we estimate these corrections in the limit of zero bias. For the general case we put forward a steady-state DFT which is based on one-to-one correspondence between the pair of basic variables, steady density on and steady current across the junction and the pair local potential on and bias across the junction. Like TDDFT, this framework also leads to both an xc potential in the junction and an xc correction to the bias. Unlike TDDFT, these potentials are independent of history. We highlight the universal features of both xc potential and xc bias corrections for junctions in the CB regime and provide an accurate parametrization for the Anderson model at arbitrary temperatures and interaction strengths, thus providing a unified DFT description for both Kondo and CB regimes and the transition between them.

  13. Measurement and correlates of physicians' lifelong learning.

    PubMed

    Hojat, Mohammadreza; Veloski, J Jon; Gonnella, Joseph S

    2009-08-01

    To examine the psychometric properties and correlates of an instrument to measure physicians' orientation toward lifelong learning with attention to differences between full-time and academic clinicians. The authors mailed a survey in 2006 to a national sample of 5,349 alumni of Jefferson Medical College who graduated between 1975 and 2000; 3,195 (60%) responded. The respondents were classified as full-time clinicians (n = 1,127) and academic clinicians (n = 1,612). The other 456 respondents were involved in administration or research. The revised Jefferson Scale of Physician Lifelong Learning (JeffSPLL) was included in the survey. Factor analysis, regression analysis, and analysis of variance were used to examine the construct- and criterion-related validities of the scale. Factor analysis of the JeffSPLL items resulted in three factors designated as "learning beliefs and motivation," "attention to learning opportunities," and "skills in seeking information," which supported its construct validity. Alpha reliability coefficients were 0.85 and 0.86, and test-retest reliability coefficients were 0.72 and 0.77 for full-time clinicians and academic clinicians, respectively. For full-time clinicians and academic clinicians, scores on the JeffSPLL were significantly (P < .01) correlated with measures of learning motivation, professional accomplishments, career satisfaction, and commitment to lifelong learning, which supported the criterion-related validity of the scale. The findings indicate that the JeffSPLL is a psychometrically sound instrument that measures physicians' orientation toward lifelong learning among full-time clinicians and academic clinicians. The instrument can be used to monitor educational programs, assess educational outcomes, and examine group differences.

  14. Measurement of Transport Properties of Aerosolized Nanomaterials

    PubMed Central

    Ku, Bon Ki; Kulkarni, Pramod

    2015-01-01

    Airborne engineered nanomaterials such as single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), functionalized MWCNT, graphene, fullerene, silver and gold nanorods were characterized using a tandem system of a differential mobility analyzer and an aerosol particle mass analyzer to obtain their airborne transport properties and understand their relationship to morphological characteristics. These nanomaterials were aerosolized using different generation methods such as electrospray, pneumatic atomization, and dry aerosolization techniques, and their airborne transport properties such as mobility and aerodynamic diameters, mass scaling exponent, dynamic shape factor, and effective density were obtained. Laboratory experiments were conducted to directly measure mobility diameter and mass of the airborne nanomaterials using tandem mobility-mass measurements. Mass scaling exponents, aerodynamic diameters, dynamic shape factors and effective densities of mobility-classified particles were obtained from particle mass and the mobility diameter. Microscopy analysis using Transmission Electron Microscopy (TEM) was performed to obtain morphological descriptors such as envelop diameter, open area, aspect ratio, and projected area diameter. The morphological information from the TEM was compared with measured aerodynamic and mobility diameters of the particles. The results showed that aerodynamic diameter is smaller than mobility diameter below 500 nm by a factor of 2 to 4 for all nanomaterials except silver and gold nanorods. Morphologies of MWCNTs generated by liquid-based method, such as pneumatic atomization, are more compact than those of dry dispersed MWCNTs, indicating that the morphology depends on particle generation method. TEM analysis showed that projected area diameter of MWCNTs appears to be in reasonable agreement with mobility diameter in the size range from 100 – 400 nm. Principal component analysis of the obtained airborne particle

  15. Measurement of Transport Properties of Aerosolized Nanomaterials.

    PubMed

    Ku, Bon Ki; Kulkarni, Pramod

    2015-12-01

    Airborne engineered nanomaterials such as single-walled carbon nanotubes (SWCNTs), multi-walled carbon nanotubes (MWCNTs), functionalized MWCNT, graphene, fullerene, silver and gold nanorods were characterized using a tandem system of a differential mobility analyzer and an aerosol particle mass analyzer to obtain their airborne transport properties and understand their relationship to morphological characteristics. These nanomaterials were aerosolized using different generation methods such as electrospray, pneumatic atomization, and dry aerosolization techniques, and their airborne transport properties such as mobility and aerodynamic diameters, mass scaling exponent, dynamic shape factor, and effective density were obtained. Laboratory experiments were conducted to directly measure mobility diameter and mass of the airborne nanomaterials using tandem mobility-mass measurements. Mass scaling exponents, aerodynamic diameters, dynamic shape factors and effective densities of mobility-classified particles were obtained from particle mass and the mobility diameter. Microscopy analysis using Transmission Electron Microscopy (TEM) was performed to obtain morphological descriptors such as envelop diameter, open area, aspect ratio, and projected area diameter. The morphological information from the TEM was compared with measured aerodynamic and mobility diameters of the particles. The results showed that aerodynamic diameter is smaller than mobility diameter below 500 nm by a factor of 2 to 4 for all nanomaterials except silver and gold nanorods. Morphologies of MWCNTs generated by liquid-based method, such as pneumatic atomization, are more compact than those of dry dispersed MWCNTs, indicating that the morphology depends on particle generation method. TEM analysis showed that projected area diameter of MWCNTs appears to be in reasonable agreement with mobility diameter in the size range from 100 - 400 nm. Principal component analysis of the obtained airborne particle

  16. Understanding gold nanoisland formation using transport measurement

    NASA Astrophysics Data System (ADS)

    Joshi, Toyanath

    Novel metal nano-clusters are always being an interest of scientists and researchers because of their unique optical and chemical properties. This thesis studies the formation mechanism of gold nanoisland film by studying transport properties. We used layer-by-layer self-assembled multilayer gold samples and annealed them at the temperature ranging from room temperature to 625°C. Transport properties, particularly the resistance and capacitance, were measured in situ during annealing and compared with the surface morphology and UV-vis studies. Five films of the 8-layer gold and one film of the 5-layer silver and 5-layer gold nanoparticle sequentially self-assembled samples were measured. Temperature dependent resistance curves were plotted and analyzed. From the resistance curves, we were able to identify the actual temperature for polymer evaporation and nanoisland formation. These data were re-verified by comparing them with the temperature dependent studies of surface morphology and UV-vis spectroscopy. The effect of measuring condition, like heating rate and pre-annealing time factor, was also analyzed. Particularly, the slow heating and long pre-annealing time effected nanoisland growth mechanism.

  17. Transportable setup for amplifier phase fidelity measurements

    NASA Astrophysics Data System (ADS)

    Tröbs, M.; Bogan, C.; Barke, S.; Kühn, G.; Reiche, J.; Heinzel, G.; Danzmann, K.

    2015-05-01

    One possible laser source for the Laser Interferometer Space Antenna (LISA) consists of an Ytterbium-doped fiber amplifier originally developed for inter-satellite communication, seeded by the laser used for the technology demonstrator mission LISA Pathfinder. LISA needs to transmit clock information between its three spacecraft to correct for phase noise between the clocks on the individual spacecraft. For this purpose phase modulation sidebands at GHz frequencies will be imprinted on the laser beams between spacecraft. Differential phase noise between the carrier and a sideband introduced within the optical chain must be very low. We report on a transportable setup to measure the phase fidelity of optical amplifiers.

  18. Three-particle correlations in a multiphase transport model

    DOE PAGES

    Sun, Yifeng; Ko, Che Ming

    2017-03-31

    Here, we study three-particle mixed harmonic correlations in relativistic heavy ion collisions by considering the observable Cm,n,m+n= cos(mφ1+nφ2-(m +n)φ3), where φ1,2,3 are azimuthal angles of all particle triplets, using a multiphase transport model. We find that except for C123, these results on the centrality dependence of C112, C224 and C235 as well as the relative pseudorapidity dependence of C123 and C224 in Au+Au collisions at √s=200 GeV agree reasonable well with the experimental data from the STAR Collaboration. We also discuss the implications of our results.

  19. VARIABILITY IN MEASURED BEDLOAD-TRANSPORT RATES.

    USGS Publications Warehouse

    Carey, William P.

    1985-01-01

    During a four-day period of nearly constant water discharge, four sets of consecutively collected bedload samples, ranging from 43 to 120 samples, were obtained at the same cross channel location using a standard 65-pound Helley-Smith bedload sampler. When the measured transport rates are converted to dimensionless rates and plotted as cumulative frequency distributions, they show good agreement with a theoretical probability distribution function of rates derived for the case of ripples on dunes. The distributions show that during constant water discharge individual measured rates at a fixed point vary from near zero to four times the mean rate, and 60 percent of the sampled rates will be less than the mean.

  20. Kondo-correlated transport in single molecule ferromagnetic break junction devices with controllable electrode magnetization alignment

    NASA Astrophysics Data System (ADS)

    Scott, Gavin; Hu, Ting-Chen

    A quantum dot attached to electrodes with magnetizations that can be switched between parallel and anti-parallel alignment has been proposed as a platform for investigating quantum criticality associated with the destruction of Kondo entanglement. We have fabricated single molecule break junction devices with elliptical ferromagnetic electrodes designed to suit this purpose. Low temperature transport measurements, supported by micromagnetic simulations, were used to investigate the magnetoresistance response on control samples during the magnetization reversal process. We show results of Kondo-correlated transport as the source and drain contacts are switched between parallel and anti-parallel magnetization configurations.

  1. Magnetocaloric-transport properties correlation in doped manganites

    NASA Astrophysics Data System (ADS)

    Mohamed, Abd El-Moez A.; Hernando, B.; Ahmed, A. M.

    2016-05-01

    This investigation is interested in studying the relation between magnetocaloric effect and transport properties in La0.7Ba0.3MnO3 manganite compound. The resistivity shows a metal-semiconductor transition at Tms temperature near to its reported Curie temperature (Tc). Magnetic field application decreases resistivity and increases Tms towards higher temperatures. The magnetoresistance shows a peak around Tc and increases in value with the applied magnetic field. A similar behavior has been observed between magnetic entropy change (ΔS), resistivity and magnetoresistance around Tc, this is attributed to the spin order/disorder feature that plays a main role in the magnetocaloric-transport correlation. In spite of this similarity, the correspondence among the experimental ΔS and ΔS based resistivity calculations is missing because of lattice polarons effect on resistivity as a result of the electron-phonon interaction. The magnetocaloric-magnetoresistance relation is also studied and results show the contribution of additional factors in the magnetoresistance mechanism other than spin disorder suppression as Jahn-Teller effect and electronic phase separation.

  2. Controlling polymer translocation and ion transport via charge correlations.

    PubMed

    Buyukdagli, Sahin; Ala-Nissila, T

    2014-11-04

    We develop a correlation-corrected transport theory in order to predict ionic and polymer transport properties of membrane nanopores under physical conditions where mean-field electrostatics breaks down. The experimentally observed low KCl conductivity of open α-hemolysin pores is quantitatively explained by the presence of surface polarization effects. Upon the penetration of a DNA molecule into the pore, these polarization forces combined with the electroneutrality of DNA sets a lower boundary for the ionic current, explaining the weak salt dependence of blocked pore conductivities at dilute ion concentrations. The addition of multivalent counterions to the solution results in the reversal of the polymer charge and the direction of the electroosmotic flow. With trivalent spermidine or quadrivalent spermine molecules, the charge inversion is strong enough to stop the translocation of the polymer and to reverse its motion. This mechanism can be used efficiently in translocation experiments in order to improve the accuracy of DNA sequencing by minimizing the translocation velocity of the polymer.

  3. Correlation and symmetry effects in transport through an artificial molecule

    SciTech Connect

    Ramirez, F.; Cota, E.; Ulloa, S.E.

    1999-02-01

    Spectral weights and current-voltage characteristics of an artificial diatomic molecule are calculated, considering cases where the dots connected in series are in general different. The spectral weights allow us to understand the effects of correlations, their connection with selection rules for transport, and the role of excited states in the experimental conductance spectra of these coupled double dot systems (DDS). An extended Hubbard Hamiltonian with varying interdot tunneling strength is used as a model, incorporating quantum confinement in the DDS, interdot tunneling as well as intra- and interdot Coulomb interactions. We find that interdot tunneling values determine to a great extent the resulting eigenstates and corresponding spectral weights. Details of the state correlations strongly suppress most of the possible conduction channels, giving rise to effective selection rules for conductance through the molecule. Most states are found to make insignificant contributions to the total current for finite biases. We find also that the symmetry of the structure is reflected in the I-V characteristics, and is in qualitative agreement with experiment. {copyright} {ital 1999} {ital The American Physical Society}

  4. NANONIS TRAMEA - A Quantum Transport Measurement System

    NASA Astrophysics Data System (ADS)

    Kampen, Thorsten; Thissen, Andreas; Schaff, Oliver; Pioda, Alessandro

    Nanonis Tramea is a quantum leap with respect to increased speed for transport measurements taking research onto a new level. Measurements which took several hours in the past can now be done in minutes without compromising signal quality. Tramea uses its fast, high-resolution, high-precision and ultra-low-noise outputs and inputs to generate and acquire up to 20000 data points per second on 24 channels in parallel. This is not only up to 1000 x faster than typical measurement systems but it is also time deterministic with highest precision. Here, the time separation between points is constant so that artefacts caused by unequal point spacings in non-deterministic measurement systems are avoided. The emphasis here is the real-time relation. Tramea comes with a built-in interface which allows for control of the instruments' basic functions from any programming environment. For users requiring more functionality and higher speeds a full-featured LabVIEW-based programming interface or scripting module are available as add-on modules. Due to the modularity and flexibility of the hardware and software architecture of Tramea upgrades with standardized add-on modules are possible. Non-standard requests can still be handled by the various programming options.

  5. 40 CFR 51.213 - Transportation control measures.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Transportation control measures. 51.213... Transportation control measures. (a) The plan must contain procedures for obtaining and maintaining data on actual emissions reductions achieved as a result of implementing transportation control measures. (b) In...

  6. Collision Rate Measurements in Mildly Correlated Ion Plasmas.

    NASA Astrophysics Data System (ADS)

    Anderegg, F.; Dubin, D. H. E.; Driscoll, C. F.; O'Neil, T. M.

    2006-10-01

    In strongly magnetized single component plasmas, collisional equipartition of T| and T is strongly suppressed by an adiabatic invariant, but enhanced by correlation effects. In essence, equipartition occurs only due to rare close collisions, and correlated particle Coulomb-screening makes them somewhat more likely. We conduct experiments with 10^6 to 10^8 Mg^+ ions in a Penning-Malmberg trap at B = 3T. For density n = 10^6, laser cooling parallel to B gives T| = 0.1K and T= 1K, resulting in a correlation parameter γ= 3. When the cooling is halted, T| rises slowly (˜ 1K/sec) due to weak neutral collisions, then rises abruptly as the equipartition rate becomes large. The abrupt equipartition is sometimes observed to occur spontaneously, especially when the plasma is contaminated by multiple ion species. Alternately, we can trigger the equipartition with an applied local heat pulse, and measure the ``burn front'' propagation. Experimental results will be compared to theories of correlation-enhanced equipartition, including the effects of heat transport due to long-range collisions. D.H.E. Dubin, Phys. Rev. Lett. 94, 025002 (2005); M.J. Jensen et al., Phys. Rev. Lett. 94, 025001 (2005).

  7. Eddy correlation measurements in wet environmental conditions

    NASA Astrophysics Data System (ADS)

    Cuenca, R. H.; Migliori, L.; O Kane, J. P.

    2003-04-01

    The lower Feale catchment is a low-lying peaty area of 200 km^2 situated in southwest Ireland that is subject to inundation by flooding. The catchment lies adjacent to the Feale River and is subject to tidal signals as well as runoff processes. Various mitigation strategies are being investigated to reduce the damage due to flooding. Part of the effort has required development of a detailed hydrologic balance for the study area which is a wet pasture environment with local field drains that are typically flooded. An eddy correlation system was installed in the summer of 2002 to measure components of the energy balance, including evapotranspiration, along with special sensors to measure other hydrologic variables particular to this study. Data collected will be essential for validation of surface flux models to be developed for this site. Data filtering is performed using a combination of software developed by the Boundary-Layer Group (BLG) at Oregon State University together with modifications made to this system for conditions at this site. This automated procedure greatly reduces the tedious inspection of individual records. The package of tests, developed by the BLG for both tower and aircraft high frequency data, checks for electronic spiking, signal dropout, unrealistic magnitudes, extreme higher moment statistics, as well as other error scenarios not covered by the instrumentation diagnostics built into the system. Critical parameter values for each potential error were developed by applying the tests to real fast response turbulent time series. Potential instrumentation problems, flux sampling problems, and unusual physical situations records are flagged for removal or further analysis. A final visual inspection step is required to minimize rejection of physically unusual but real behavior in the time series. The problems of data management, data quality control, individual instrumentation sensitivity, potential underestimation of latent and sensible heat

  8. Transport measurement of Li doped monolayer graphene

    NASA Astrophysics Data System (ADS)

    Khademi, Ali; Sajadi, Ebrahim; Dosanjh, Pinder; Folk, Joshua; Stöhr, Alexander; Forti, Stiven; Starke, Ulrich

    Lithium adatoms on monolayer graphene have been predicted to induce superconductivity with a critical temperature near 8 K, and recent experimental evidence by ARPES indicates a critical temperature nearly that high. Encouraged by these results, we investigated the effects of lithium deposited at cryogenic temperatures on the electronic transport properties of epitaxial and CVD monolayer graphene down to 3 K. The change of charge carrier density due to Li deposition was monitored both by the gate voltage shift of the Dirac point and by Hall measurements, in low and high doping regimes. In the high doping regime, a saturation density of 2×1013 cm-2 was observed independent of sample type, initial carrier density and deposition conditions. No signatures of superconductivity were observed down to 3 K.

  9. Quantitative correlation between light depolarization and transport albedo of various porcine tissues.

    PubMed

    Alali, Sanaz; Ahmad, Manzoor; Kim, Anthony; Vurgun, Nasit; Wood, Michael F G; Vitkin, I Alex

    2012-04-01

    We present a quantitative study of depolarization in biological tissues and correlate it with measured optical properties (reduced scattering and absorption coefficients). Polarized light imaging was used to examine optically thick samples of both isotropic (liver, kidney cortex, and brain) and anisotropic (cardiac muscle, loin muscle, and tendon) pig tissues in transmission and reflection geometries. Depolarization (total, linear, and circular), as derived from polar decomposition of the measured tissue Mueller matrix, was shown to be related to the measured optical properties. We observed that depolarization increases with the transport albedo for isotropic and anisotropic tissues, independent of measurement geometry. For anisotropic tissues, depolarization was higher compared to isotropic tissues of similar transport albedo, indicating birefringence-caused depolarization effects. For tissues with large transport albedos (greater than ~0.97), backscattering geometry was preferred over transmission due to its greater retention of light polarization; this was not the case for tissues with lower transport albedo. Preferential preservation of linearly polarized light over circularly polarized light was seen in all tissue types and all measurement geometries, implying the dominance of Rayleigh-like scattering. The tabulated polarization properties of different tissue types and their links to bulk optical properties should prove useful in future polarimetric tissue characterization and imaging studies.

  10. Quantum dynamics in continuum for proton transport--generalized correlation.

    PubMed

    Chen, Duan; Wei, Guo-Wei

    2012-04-07

    As a key process of many biological reactions such as biological energy transduction or human sensory systems, proton transport has attracted much research attention in biological, biophysical, and mathematical fields. A quantum dynamics in continuum framework has been proposed to study proton permeation through membrane proteins in our earlier work and the present work focuses on the generalized correlation of protons with their environment. Being complementary to electrostatic potentials, generalized correlations consist of proton-proton, proton-ion, proton-protein, and proton-water interactions. In our approach, protons are treated as quantum particles while other components of generalized correlations are described classically and in different levels of approximations upon simulation feasibility and difficulty. Specifically, the membrane protein is modeled as a group of discrete atoms, while ion densities are approximated by Boltzmann distributions, and water molecules are represented as a dielectric continuum. These proton-environment interactions are formulated as convolutions between number densities of species and their corresponding interaction kernels, in which parameters are obtained from experimental data. In the present formulation, generalized correlations are important components in the total Hamiltonian of protons, and thus is seamlessly embedded in the multiscale/multiphysics total variational model of the system. It takes care of non-electrostatic interactions, including the finite size effect, the geometry confinement induced channel barriers, dehydration and hydrogen bond effects, etc. The variational principle or the Euler-Lagrange equation is utilized to minimize the total energy functional, which includes the total Hamiltonian of protons, and obtain a new version of generalized Laplace-Beltrami equation, generalized Poisson-Boltzmann equation and generalized Kohn-Sham equation. A set of numerical algorithms, such as the matched interface and

  11. Correlation of normal and superconducting transport properties on textured Bi-2212 ceramic thin rods

    NASA Astrophysics Data System (ADS)

    Natividad, E.; Castro, M.; Burriel, R.; Angurel, L. A.; Díez, J. C.; Navarro, R.

    2002-07-01

    The electric and thermal properties well above and below Tc of Bi-2212 textured ceramics have been correlated through a careful analysis of the microstructure and the transport measurements. Thin rods with the same Bi-2122 stoichiometry and textured by a laser floating zone technique have been studied with that aim. By changing the growth parameters, it has been possible to produce strong changes in microstructure and critical current density, Jc, with small variations in the thermal conductivity. The existence of phase and composition gradients across the thin rods, which explains the variations of Tc, makes the relation difficult between the normal state resistivity and Jc (77 K). A simple qualitative analysis that takes into account the observed microstructure has been developed to correlate the electric transport properties in the normal and in the superconducting states.

  12. Measurement and modeling of oil slick transport

    NASA Astrophysics Data System (ADS)

    Jones, Cathleen E.; Dagestad, Knut-Frode; Breivik, Åyvind; Holt, Benjamin; Röhrs, Johannes; Christensen, Kai Hâkon; Espeseth, Martine; Brekke, Camilla; Skrunes, Stine

    2016-10-01

    Transport characteristics of oil slicks are reported from a controlled release experiment conducted in the North Sea in June 2015, during which mineral oil emulsions of different volumetric oil fractions and a look-alike biogenic oil were released and allowed to develop naturally. The experiment used the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) to track slick location, size, and shape for ˜8 h following release. Wind conditions during the exercise were at the high end of the range considered suitable for radar-based slick detection, but the slicks were easily detectable in all images acquired by the low noise, L-band imaging radar. The measurements are used to constrain the entrainment length and representative droplet radii for oil elements in simulations generated using the OpenOil advanced oil drift model. Simultaneously released drifters provide near-surface current estimates for the single biogenic release and one emulsion release, and are used to test model sensitivity to upper ocean currents and mixing. Results of the modeling reveal a distinct difference between the transport of the biogenic oil and the mineral oil emulsion, in particular in the vertical direction, with faster and deeper entrainment of significantly smaller droplets of the biogenic oil. The difference in depth profiles for the two types of oils is substantial, with most of the biogenic oil residing below depths of 10 m, compared to the majority of the emulsion remaining above 10 m depth. This difference was key to fitting the observed evolution of the two different types of slicks.

  13. Groundwater Flow and Transport Modeling With Correlated Possibilistic Data

    NASA Astrophysics Data System (ADS)

    Ozbek, M.; Ross, J.; Pinder, G.

    2008-12-01

    Stochastic groundwater modeling involves the propagation of probabilistic uncertainty from model input parameters to model estimates, usually via a Monte Carlo method. With the increasing reliance upon expert knowledge to define model inputs, and both fuzzy set and possibility theories to characterize this expert knowledge, alternative means of executing model equations are needed. While the fuzzy extension principle is commonly used to propagate such uncertainty, unless approximated, its implementation can be intensive for transient groundwater problems; and an alternative more practical approach to modeling with fuzzy and possibilistic data is warranted. In the proposed alternative approach, correlated hydraulic conductivity possibility distributions are sampled using their random set representations and crisp realizations of the hydraulic conductivity field are generated using a Latin hypercube lattice sampling technique, and ultimately operated upon by groundwater flow and transport model equations. The resulting uncertain concentration estimates based on these realizations are assembled as possibility distributions. We demonstrate an application of the approach to a site in Woburn, MA and compare it to results produced by the fuzzy extension principle.

  14. Strongly correlated quantum transport out-of-equilibrium

    NASA Astrophysics Data System (ADS)

    Dutt, Prasenjit

    The revolutionary advances in nanotechnology and nanofabrication have facilitated the precise control and manipulation of mesoscopic systems where quantum effects are pronounced. Quantum devices with tunable gates have made it possible to access regimes far beyond the purview of linear response theory. In particular, the influence of strong voltage and thermal biases has led to the observation of novel phenomena where the non-equilibrium characteristics of the system are of paramount importance. We study transport through quantum-impurity systems in the regime of strong correlations and determine the effects of large temperature and potential gradients on its many-body physics. In Part I of this thesis we focus on the steady-state dynamics of the system, a commonly encountered experimental scenario. For a system consisting of several leads composed of non-interacting electrons, each individually coupled to a quantum impurity with interactions and maintained at different chemical potentials, we reformulate the system in terms of an effective-equilibrium density matrix. This density matrix has a simple Boltzmann-like form in terms of the system's Lippmann-Schwinger (scattering) operators. We elaborate the conditions for this description to be valid based on the microscopic Hamiltonian of the system. We then prove the equivalence of physical observables computed using this formulation with corresponding expressions in the Schwinger-Keldysh approach and provide a dictionary between Green's functions in either scheme. An imaginary-time functional integral framework to compute finite temperature Green's functions is proposed and used to develop a novel perturbative expansion in the interaction strength which is exact in all other system parameters. We use these tools to study the fate of the Abrikosov-Suhl regime on the Kondo-correlated quantum dot due to the effects of bias and external magnetic fields. Next, we expand the domain of this formalism to additionally

  15. Accurate measurement of curvilinear shapes by Virtual Image Correlation

    NASA Astrophysics Data System (ADS)

    Semin, B.; Auradou, H.; François, M. L. M.

    2011-10-01

    The proposed method allows the detection and the measurement, in the sense of metrology, of smooth elongated curvilinear shapes. Such measurements are required in many fields of physics, for example: mechanical engineering, biology or medicine (deflection of beams, fibers or filaments), fluid mechanics or chemistry (detection of fronts). Contrary to actual methods, the result is given in an analytical form of class C∞ (and not a finite set of locations or pixels) thus curvatures and slopes, often of great interest in science, are given with good confidence. The proposed Virtual Image Correlation (VIC) method uses a virtual beam, an image which consists in a lateral expansion of the curve with a bell-shaped gray level. This figure is deformed until it fits the best the physical image with a method issued from the Digital Image Correlation method in use in solid mechanics. The precision of the identification is studied in a benchmark and successfully compared to two state-of-the-art methods. Three practical examples are given: a bar bending under its own weight, a thin fiber transported by a flow within a fracture and a thermal front. The first allows a comparison with theoretical solution, the second shows the ability of the method to deal with complex shapes and crossings and the third deals with ill-defined image.

  16. Photon correlation system for fluorescence lifetime measurements

    NASA Astrophysics Data System (ADS)

    Morgan, C. G.; Murray, J. G.; Mitchell, A. C.

    1995-07-01

    The construction and testing of a dual-channel photon correlator is reported for the frequency domain imaging of fluorescence lifetimes using photon-counting detection. A light source modulated at radio frequency excites fluorescence, which is detected using an imaging single-photon detector. After discrimination, single-photon events are processed in parallel by the correlation circuit, the purpose of which is to allow both the mean phase delay and the demodulation of fluorescence to be calculated relative to a reference signal derived from the modulated excitation source. Outputs from the correlator are integrated in a computer, resulting in accumulation of images which have been statistically filtered by sine and cosine transforms, and which can be manipulated within the computer to generate a resultant image where contrast depends on fluorescence lifetime rather than fluorescence intensity.

  17. Measurement of Hydrocarbon Transport in Bacteria

    USDA-ARS?s Scientific Manuscript database

    Hydrocarbon uptake by bacteria has not been extensively studied, and strong evidence for active transport of hydrocarbons is lacking. The volatile nature of hydrocarbons, their hydrophobicity, and their relatively low aqueous solubilities can complicate transport assays. Here we present a detailed...

  18. TRANSPORT PROPERTY MEASUREMENTS OF HFC-236EA

    EPA Science Inventory

    The report gives results of an evaluation of transport properties of 1,1,1,2,3,3,-hexafluoropropane (HFC-236ea), with liquid viscosity and thermal conductivity being the two main transport properties of interest. In addition, the specific heat and density of refrigerant/lubrican...

  19. TRANSPORT PROPERTY MEASUREMENTS OF HFC-236EA

    EPA Science Inventory

    The report gives results of an evaluation of transport properties of 1,1,1,2,3,3,-hexafluoropropane (HFC-236ea), with liquid viscosity and thermal conductivity being the two main transport properties of interest. In addition, the specific heat and density of refrigerant/lubrican...

  20. Measuring aeolian sand transport using acoustic sensors

    NASA Astrophysics Data System (ADS)

    Poortinga, Ate; van Rheenen, Hans; Ellis, Jean T.; Sherman, Douglas J.

    2015-03-01

    Acoustic sensors are frequently used to measure aeolian saltation. Different approaches are used to process the signals from these instruments. The goal of this paper is to describe and discuss a method to measure aeolian saltation with acoustic sensors. In a laboratory experiment, we measured the output from an advanced signal processing scheme on the circuit board of the saltiphone. We use a software implementation of this processing scheme to re-analyse data from four miniphones obtained during a field experiment. It is shown that a set of filters remove background noise outside the frequency spectrum of aeolian saltation (at 8 kHz), whereas signals within this frequency spectrum are amplified. The resulting analogue signal is a proxy of the energy. Using an AC pulse convertor, this signal can be converted into a digital and analogue count signal or an analogue energy signal, using a rectifier and integrator. Spatio-temporal correlation between field deployed miniphones increases by using longer integration times for signal processing. To quantify aeolian grain impact, it is suggested to use the analogue energy output, as this mode is able to detect changes in frequency and amplitude. The analogue and digital count signals are able to detect an increase in frequency, but are not able to detect an increase in signal amplitude. We propose a two-stage calibration scheme consisting of (1) a factory calibration, to set the frequency spectrum of the sensor and (2) a standardized drop-test conducted before and after the experiment to evaluate the response of the sensor.

  1. Correlating DSC and X-Ray Measurements Of Crystallinity

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S.; Lowry, Lynn E.; Bankston, Clyde P.

    1991-01-01

    Experiment demonstrated approximate linear correlation between degree of crystallinity of multiphase polymer (as calculated from x-ray diffraction measurements) and heat of fusion of polymer (as calculated from differential scanning calorimetry (DSC) measurements). Correlation basis of simple new technique for estimating degree of crystallinity of specimens of polymer from DSC measurements alone.

  2. Transport signatures of correlated disorder in a two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Heinzel, T.; Jäggi, R.; Ribeiro, E.; Waldkirch, M. v.; Ensslin, K.; Ulloa, S. E.; Medeiros-Ribeiro, G.; Petroff, P. M.

    2003-03-01

    We report electronic transport measurements on two-dimensional electron gases in a Ga[Al]As heterostructure with an embedded layer of InAs self-assembled quantum dots. At high InAs dot densities, pronounced Altshuler-Aronov-Spivak magnetoresistance oscillations are observed, which indicate short-range ordering of the potential landscape formed by the charged dots and the strain fields. The presence of these oscillations coincides with the observation of a metal-insulator transition, and a maximum in the electron mobility as a function of the electron density. Within a model based on correlated disorder, we establish a relation between these effects.

  3. Fan Blade Deflection Measurement and Analyses Correlation

    NASA Technical Reports Server (NTRS)

    Mehmed, Oral; Janetzke, David C.

    1997-01-01

    Steady deflection measurements were taken of two identical NASA/Pratt & Whitney-designed fan blades while they were rotating in a vacuum in NASA Lewis Research Center's Dynamic Spin Facility. The one-fifth-scale fan blades, which have a tip diameter of 22 in. and a pinroot retention, are of sparshell construction and were unducted for this test. The purpose of the test was to measure the change of the radial deflection of the blade tip and blade angle at selected radial stations along the blade span with respect to rotational speed. The procedure for radial deflection measurement had no precedent and was newly developed for this test. Radial deflection measurements were made to assure adequate tip clearance existed between the fan blades and the duct for a follow-on wind tunnel test. Also, blade angle deflection measurements were desired before pitchsetting parts for the wind tunnel test were finish machined. During the test, laser beams were aimed across the blade path into photodiodes to give signals that were used to determine blade angle change or tip radial deflection. These laser beams were set parallel to the spin axis at selected radial stations.

  4. d + Au hadron correlation measurements at PHENIX

    SciTech Connect

    Anne M. Sickles

    2014-05-13

    In these proceedings, we discuss recent results from d + Au collisions in PHENIX ridge related measurements and their possible hydrodynamic origin. We present the v2 at midrapidity and measurements of the pseudorapidity dependence of the ridge, distinguishing between the d-going and Au-going directions. We investigate the possible geometrical origin by comparing v2 in d + Au to that in p + Pb, Au + Au and Pb + Pb collisions. Future plans to clarify the role of geometry in small collision systems at RHIC are discussed.

  5. Fourier imaging correlation spectroscopy: Technique development and application to colloidal thin films and intracellular mitochondrial transport

    NASA Astrophysics Data System (ADS)

    Knowles, Michelle Kay

    2003-10-01

    Understanding fluid dynamics is fundamentally intriguing and relevant to many areas of applied science, including polymer materials and cellular transport. Many complex fluids are difficult to study using traditional methods, which are limited in sensitivity, dynamic range or spatial information. In this work, a new technique, Fourier Imaging Correlation Spectroscopy (FICS), is developed in order to measure the dynamics of complex fluids over a broad dynamic range with high sensitivity. FICS measures complex fluid structure one length scale at a time and allows for direct calculation of the intermediate scattering function; a function that describes how the system is changing on a given length scale as a function of time. The sensitivity of FICS allows for study of materials with intrinsically low signals, such as thin films. Colloidal thin film measurements provided a proof-of-principle of FICS by comparing the intermediate scattering function calculated from FICS data to results from an established technique, digital video microscopy. FICS is an ideal method for obtaining information about mitochondrial transport within living cells. Mitochondrial dynamics are strongly influenced by interactions with cytoskeletal filaments and their associated motor proteins. This leads to complex multi-exponential relaxations occurring over a wide range of spatial and temporal scales. The cytoskeleton consists of an interconnected polymer network whose primary components are microfilaments and microtubules. Cytoskeletal filaments work with motor proteins to traffic organelles within the cell. Components of the cytoskeleton were selectively destabilized and the resulting mitochondrial dynamics measured using FICS and digital video microscopy. These studies show that both microfilaments and microtubules are necessary for transport of the mitochondrial reticulum. FICS measurements reveal that microfilaments control short-range (0.8--1.6 mum) dynamics and microtubules are

  6. Nucleotide correlations and electronic transport of DNA sequences

    NASA Astrophysics Data System (ADS)

    Albuquerque, E. L.; Vasconcelos, M. S.; Lyra, M. L.; de Moura, F. A. B. F.

    2005-02-01

    We use a tight-binding formulation to investigate the transmissivity and wave-packet dynamics of sequences of single-strand DNA molecules made up from the nucleotides guanine G , adenine A , cytosine C , and thymine T . In order to reveal the relevance of the underlying correlations in the nucleotides distribution, we compare the results for the genomic DNA sequence with those of two artificial sequences: (i) the Rudin-Shapiro one, which has long-range correlations; (ii) a random sequence, which is a kind of prototype of a short-range correlated system, presented here with the same first-neighbor pair correlations of the human DNA sequence. We found that the long-range character of the correlations is important to the persistence of resonances of finite segments. On the other hand, the wave-packet dynamics seems to be mostly influenced by the short-range correlations.

  7. Overview of mitigation policies and measures in transportation

    SciTech Connect

    Ernst, J.

    1996-12-31

    In this paper the author looks at the general question of what can be done in the transportation sector to address the problem of greenhouse gas emissions. Obviously, fewer vehicles is less emission. But on a global scale he reviews the population growth in major cities, the type of transport employed, the correlation of vehicle ownership and gross national product, as well as the costs, direct and indirect of letting more personal wealth drive one to personal vehicles as a way to transport oneself to work. The increased speed comes with many costs for the individual and for society. The development of mass transportation systems provides a number of benefits, in the form of urban development, less reliance on imported fuels, transport system health, general health and productivity of work force, and reduced costs to government to support transportation systems.

  8. Correlating substituent parameter values to electron transport properties of molecules

    NASA Astrophysics Data System (ADS)

    Vedova-Brook, Natalie; Matsunaga, Nikita; Sohlberg, Karl

    2004-03-01

    There are a vast number of organic compounds that could be considered for use in molecular electronics. Because of this, the need for efficient and economical screening tools has emerged. We demonstrate that the substituent parameter values ( σ), commonly found in advanced organic chemistry textbooks, correlate strongly with features of the charge migration process, establishing them as useful indicators of electronic properties. Specifically, we report that ab initio derived electronic charge transfer values for 16 different substituted aromatic molecules for molecular junctions correlate to the σ values with a correlation coefficient squared ( R2) of 0.863.

  9. Measurement and Correlation of Ice Accretion Roughness

    NASA Technical Reports Server (NTRS)

    Anderson, David N.; Hentschel, Daniel B.; Ruff, Gary A.

    2003-01-01

    Measurements were taken of the roughness characteristics of ice accreted on NACA 0012 airfoils in the NASA Glenn Icing Research Tunnel (IRT). Tests were conducted with size scaled, using models with chords of 26.7, 53.3, and 80.0 cm, and with liquid-water content scaled, both according to previously-tested scaling methods. The width of the smooth zone which forms on either side of the leading edge of the airfoil and the diameter of the roughness elements are presented in non-dimensional form as functions of the accumulation parameter. The smooth-zone width was found to decrease with increasing accumulation parameter. The roughness-element diameter increased with accumulation parameter until a plateau was reached. This maximum diameter was about 0.06 times twice the model leading-edge radius. Neither smooth-zone width nor element diameter were affected by a change in freezing fraction from 0.2 to 0.4. Both roughness characteristics appeared to scale with model size and with liquid-water content.

  10. Transport Measurements on Si Nanostructures with Counted Sb Donors

    NASA Astrophysics Data System (ADS)

    Singh, Meenakshi; Bielejec, Edward; Garratt, Elias; Ten Eyck, Gregory; Bishop, Nathaniel; Wendt, Joel; Luhman, Dwight; Carroll, Malcolm; Lilly, Michael

    2014-03-01

    Donor based spin qubits are a promising platform for quantum computing. Single qubits using timed implant of donors have been demonstrated.1 Extending this to multiple qubits requires precise control over the placement and number of donors. Such control can be achieved by using a combination of low-energy heavy-ion implants (to reduce depth straggle), electron-beam lithography (to define position), focused ion beam (to localize implants to one lithographic site) and counting the number of implants with a single ion detector.2 We report transport measurements on MOS quantum dots implanted with 5, 10 and 20 Sb donors using the approach described above. A donor charge transition is identified by a charge offset in the transport characteristics. Correlation between the number of donors and the charge offsets is studied. These results are necessary first steps towards fabricating donor nanostructures for two qubit interactions. This work was performed, in part, at the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility. The work was supported by Sandia National Laboratories Directed Research and Development Program. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U. S. Department of Energy under Contract No. DE-AC04-94AL85000. 1J. J. Pla et al., Nature 496, 334 (2013) 2J. A. Seamons et al., APL 93, 043124 (2008).

  11. Striatal dopamine transporters correlate with simple reaction time in elderly subjects

    PubMed Central

    van Dyck, Christopher H.; Avery, Robert A.; MacAvoy, Martha G.; Marek, Kenneth L.; Quinlan, Donald M.; Baldwin, Ronald M.; Seibyl, John P.; Innis, Robert B.; Arnsten, Amy F. T.

    2011-01-01

    The decline in motor performance that accompanies advanced age has unclear neurobiological substrates but may relate, in part, to degeneration of the nigrostriatal dopamine system. This research tested the hypothesis that striatal dopamine transporter (DAT) availability in healthy elderly individuals was related to measures of motor performance. Thirty-six healthy volunteers (18 male, 18 female) who ranged in age from 68 to 88 (75.4±4.9 years) received a neuropsychological evaluation that included two primary motor measures (tested with dominant hand): 1) Simple Reaction Time (SRT); and 2) Finger Tapping (FT). Subjects underwent SPECT scanning with [123I]2ß-carbomethoxy-3ß-(4-iodophenyl)tropane ([123I]ß-CIT) for measurement of striatal DAT availability. A ratio of specific to nondisplaceable brain uptake (i.e., V3″=[striatal−occipital]/occipital), a measure proportional to the binding potential (Bmax/KD), was derived. SRT was significantly correlated with striatal DAT availability with or without controlling for the contribution of age. However, contrary to hypothesis, FT was not correlated with striatal DAT availability. Comparison measures, including episodic memory and general intelligence, were also unrelated to striatal DAT availability. These results demonstrate that a loss of nigrostriatal dopaminergic function likely contributes to slowing of reaction speed with advancing age. PMID:17363113

  12. Built environmental correlates of cycling for transport across Europe.

    PubMed

    Mertens, Lieze; Compernolle, Sofie; Deforche, Benedicte; Mackenbach, Joreintje D; Lakerveld, Jeroen; Brug, Johannes; Roda, Célina; Feuillet, Thierry; Oppert, Jean-Michel; Glonti, Ketevan; Rutter, Harry; Bardos, Helga; De Bourdeaudhuij, Ilse; Van Dyck, Delfien

    2017-03-01

    This cross-sectional study aimed to determine which objective built environmental factors, identified using a virtual neighbourhood audit, were associated with cycling for transport in adults living in five urban regions across Europe. The moderating role of age, gender, socio-economic status and country on these associations was also investigated. Overall, results showed that people living in neighbourhoods with a preponderance of speed limits below 30km/h, many bicycle lanes, with less traffic calming devices, more trees, more litter and many parked cars forming an obstacle on the road were more likely to cycle for transport than people living in areas with lower prevalence of these factors. Evidence was only found for seven out of 56 possible moderators of these associations. These results suggest that reducing speed limits for motorized vehicles and the provision of more bicycle lanes may be effective interventions to promote cycling in Europe.

  13. Nanoscale electron transport measurements of immobilized cytochrome P450 proteins

    NASA Astrophysics Data System (ADS)

    Bostick, Christopher D.; Flora, Darcy R.; Gannett, Peter M.; Tracy, Timothy S.; Lederman, David

    2015-04-01

    Gold nanopillars, functionalized with an organic self-assembled monolayer, can be used to measure the electrical conductance properties of immobilized proteins without aggregation. Measurements of the conductance of nanopillars with cytochrome P450 2C9 (CYP2C9) proteins using conducting probe atomic force microscopy demonstrate that a correlation exists between the energy barrier height between hopping sites and CYP2C9 metabolic activity. Measurements performed as a function of tip force indicate that, when subjected to a large force, the protein is more stable in the presence of a substrate. This agrees with the hypothesis that substrate entry into the active site helps to stabilize the enzyme. The relative distance between hopping sites also increases with increasing force, possibly because protein functional groups responsible for electron transport (ETp) depend on the structure of the protein. The inhibitor sulfaphenazole, in addition to the previously studied aniline, increased the barrier height for electron transfer and thereby makes CYP2C9 reduction more difficult and inhibits metabolism. This suggests that P450 Type II binders may decrease the ease of ETp processes in the enzyme, in addition to occupying the active site.

  14. Viscous Transport Measurements in Pure-Electron Plasmas.

    NASA Astrophysics Data System (ADS)

    Driscoll, C. F.; Kriesel, J. M.

    2000-10-01

    Measurements of the kinematic viscosity κ in a quiescent pure-electron plasma are up to 10^8 × larger than predicted by Boltzmann collisional theory. This viscosity acts on radial shears in the total (E × B and diamagnetic) azimuthal rotation velocity v_θ, resulting in radially inward or outward particle fluxes Γ_r. Experimental values of κ are obtained from the measured density n(r,t) and temperature T(r,t), which give both v_θ (r,t) and Γr (r,t). The viscosity is due to long range ``E × B drift collisions'' with impact parameters rc < ρ < λ_D, whereas Boltzmann transport theory describes only velocity-scattering collisions with ρ < r_c. The measured viscosity scales as κ ∝ B^1 L_p-1, suggesting that multiple correlated long-range collisions are important. The B^1 scaling is qualitatively similar to recent ``bounce-averaged'' or ``2D'' theories;(D.H.E. Dubin, Phys. Plasmas 5), 1688 (1998). but the surprising L_p-1 dependence on plasma length is as yet unexplained. Empirically, we find κ = νc λ_D^2 [1 + Nb ], where νc ≡ n barv b^2 and Nb is the number of axial bounces made by a thermal particle before shears separate it from a neighboring particle by a distance λ_D.

  15. Measurement of tracheal mucous transport rate in the horse

    SciTech Connect

    Nelson, R.; Hampe, D.W.

    1983-06-01

    Tracheal mucous transport rates were measured in 12 nonanesthetized horses after an intratracheal injection of 99mtechnetium-sulfur colloid. The transport rate of the subsequent bolus of radioactivity was determined, using a portable scaler rate meter fitted with a high-energy gamma-scintillation probe. A gamma-scintillation camera was used to verify bolus form and movement in 1 horse. The mean tracheal mucous transport rate was 1.66 +/- 0.24 cm/min.

  16. Charge transport in organic crystals: critical role of correlated fluctuations unveiled by analysis of Feynman diagrams.

    PubMed

    Packwood, Daniel M; Oniwa, Kazuaki; Jin, Tienan; Asao, Naoki

    2015-04-14

    Organic crystals have unique charge transport properties that lie somewhere between delocalised band-type transport and localised hopping transport. In this paper, we use a stochastic tight-binding model to explore how dynamical disorder in organic crystals affects charge transport. By analysing the model in terms of Feynman diagrams (virtual processes), we expose the crucial role of correlated dynamical disorder to the charge transport dynamics in the model at short times in the order of a few hundred femtoseconds. Under correlated dynamical disorder, the random motions of molecules in the crystal allow for low-energy "bonding"-type interactions between neighboring molecular orbitals can persist over long periods of time. On the other hand, the dependence of charge transport on correlated dynamical disorder also tends to localize the charge, as correlated disorder cannot persist far in space. This concept of correlation may be the "missing link" for describing the intermediate regime between band transport and hopping transport that occurs in organic crystals.

  17. Charge transport in organic crystals: Critical role of correlated fluctuations unveiled by analysis of Feynman diagrams

    SciTech Connect

    Packwood, Daniel M.; Oniwa, Kazuaki; Jin, Tienan; Asao, Naoki

    2015-04-14

    Organic crystals have unique charge transport properties that lie somewhere between delocalised band-type transport and localised hopping transport. In this paper, we use a stochastic tight-binding model to explore how dynamical disorder in organic crystals affects charge transport. By analysing the model in terms of Feynman diagrams (virtual processes), we expose the crucial role of correlated dynamical disorder to the charge transport dynamics in the model at short times in the order of a few hundred femtoseconds. Under correlated dynamical disorder, the random motions of molecules in the crystal allow for low-energy “bonding”-type interactions between neighboring molecular orbitals can persist over long periods of time. On the other hand, the dependence of charge transport on correlated dynamical disorder also tends to localize the charge, as correlated disorder cannot persist far in space. This concept of correlation may be the “missing link” for describing the intermediate regime between band transport and hopping transport that occurs in organic crystals.

  18. Correlation between live and post mortem skull conductivity measurements.

    PubMed

    Wendel, Katrina; Malmivuo, Jaakko

    2006-01-01

    The skull is a tissue with a widely controversial range of conductivity values. This article correlates live skull conductivity measurements with post mortem conductivity measurements with a scaling factor ranging between 2.5 and 4. The scaling factor is validated by a mathematical model that determines the skull conductivity using saline and cerebrospinal fluid (CSF) conductivities and correlated with published physical live and post mortem skull conductivity measurements which show support for this live-to-post mortem scale factor.

  19. Monotonic correlation analysis of image quality measures for image fusion

    NASA Astrophysics Data System (ADS)

    Kaplan, Lance M.; Burks, Stephen D.; Moore, Richard K.; Nguyen, Quang

    2008-04-01

    The next generation of night vision goggles will fuse image intensified and long wave infra-red to create a hybrid image that will enable soldiers to better interpret their surroundings during nighttime missions. Paramount to the development of such goggles is the exploitation of image quality (IQ) measures to automatically determine the best image fusion algorithm for a particular task. This work introduces a novel monotonic correlation coefficient to investigate how well possible IQ features correlate to actual human performance, which is measured by a perception study. The paper will demonstrate how monotonic correlation can identify worthy features that could be overlooked by traditional correlation values.

  20. Impact of flow correlation and heterogeneity on transport in fractured media: field evidence and theoretical model

    NASA Astrophysics Data System (ADS)

    Kang, P. K.; Le Borgne, T.; Dentz, M.; Bour, O.; Juanes, R.

    2014-12-01

    Quantitative modeling of flow and transport through fractured geological media is challenging due to the inaccessibility of the underlying medium properties and the complex interplay between heterogeneity and small scale transport processes such as heterogeneous advection, matrix diffusion, hydrodynamic dispersion and adsorption. This complex interplay leads to anomalous (non-Fickian) transport behavior, the origin of which remains a matter of debate: whether it arises from variability in fracture permeability (velocity heterogeneity), connectedness in the fracture network (velocity correlation), or interaction between fractures and matrix. Here we show that this uncertainty of heterogeneity- vs. correlation-controlled transport can be resolved by combining convergent and push-pull tracer tests because flow reversibility is strongly dependent on correlation, whereas late-time scaling of breakthrough curves is mainly controlled by heterogeneity. We build on this insight, and propose a Lagrangian statistical model that takes the form of a continuous time random walk (CTRW) with correlated particle velocities. In this framework, flow heterogeneity and flow correlation are quantified by a Markov process of particle transition times that is characterized by a distribution function and a transition probability. Our transport model captures the anomalous behavior in the breakthrough curves for both push-pull and convergent flow geometries, with the same set of parameters. We validate our model in the Ploemeur observatory in France. Thus, the proposed correlated CTRW modeling approach provides a simple yet powerful framework for characterizing the impact of flow correlation and heterogeneity on transport in fractured media.

  1. Criterion distances and correlates of active transportation to school in Belgian older adolescents.

    PubMed

    Van Dyck, Delfien; De Bourdeaudhuij, Ilse; Cardon, Greet; Deforche, Benedicte

    2010-12-08

    Since physical activity levels in older adolescents have the potential to be increased by stimulating active transportation to school (ATS), the most important correlates of ATS should be determined before developing interventions, especially in those adolescents for whom the distance to school is feasible for active commuting. The main aims of this study were to determine criterion distances for ATS in Belgian older adolescents, to examine multidimensional correlates of ATS in adolescents living within a feasible distance from school and to investigate the associations of ATS with total physical activity and with other physical activities besides ATS. In total, 1281 older adolescents (17-18 years) from 20 general secondary schools in East- and West-Flanders completed a questionnaire on physical activity behaviors, demographic factors and psychosocial and physical environmental correlates of physical activity. Distance to school was objectively measured using Routenet online route planner. In total, 58.4% of the participants commuted actively to school. The criterion distance for ATS could be set at eight kilometers for cycling and two kilometers for walking. For those adolescents living within a feasible distance for ATS, gender, smoking status, walkability of the neighborhood and social modeling were associated with transportation mode choice. ATS was positively associated with total physical activity, but not significantly related to min/week of other physical activities. For older adolescents living within eight kilometers of their school, interventions taking into account the correlates found to be related to ATS could possibly be effective to enhance ATS and to increase total physical activity levels. In the context of the overall physical activity decline in adolescence, also interventions targeting physical activity behaviors of adolescents living further away from school might be needed, but these interventions should probably emphasize alternative

  2. Dopamine Transporters in Striatum Correlated with Deactivation in the Default Mode Network during Visuospatial Attention

    SciTech Connect

    Tomasi, D.; Fowler, J.; Tomasi, D.; Volkow, N.D.; Wang, R.L.; Telang, F.; Wang, Chang, L.; Ernst, T.; /Fowler, J.S.

    2009-06-01

    Dopamine and dopamine transporters (DAT, which regulate extracellular dopamine in the brain) are implicated in the modulation of attention but their specific roles are not well understood. Here we hypothesized that dopamine modulates attention by facilitation of brain deactivation in the default mode network (DMN). Thus, higher striatal DAT levels, which would result in an enhanced clearance of dopamine and hence weaker dopamine signals, would be associated to lower deactivation in the DMN during an attention task. For this purpose we assessed the relationship between DAT in striatum (measured with positron emission tomography and [{sup 11}C]cocaine used as DAT radiotracer) and brain activation and deactivation during a parametric visual attention task (measured with blood oxygenation level dependent functional magnetic resonance imaging) in healthy controls. We show that DAT availability in caudate and putamen had a negative correlation with deactivation in ventral parietal regions of the DMN (precuneus, BA 7) and a positive correlation with deactivation in a small region in the ventral anterior cingulate gyrus (BA 24/32). With increasing attentional load, DAT in caudate showed a negative correlation with load-related deactivation increases in precuneus. These findings provide evidence that dopamine transporters modulate neural activity in the DMN and anterior cingulate gyrus during visuospatial attention. Our findings suggest that dopamine modulates attention in part by regulating neuronal activity in posterior parietal cortex including precuneus (region involved in alertness) and cingulate gyrus (region deactivated in proportion to emotional interference). These findings suggest that the beneficial effects of stimulant medications (increase dopamine by blocking DAT) in inattention reflect in part their ability to facilitate the deactivation of the DMN.

  3. Measuring spin correlations in optical lattices using superlattice potentials

    SciTech Connect

    Pedersen, K. G. L.; Andersen, B. M.; Soerensen, A. S.; Bruun, G. M.; Syljuaasen, O. F.

    2011-10-15

    We suggest two experimental methods for probing both short- and long-range spin correlations of atoms in optical lattices using superlattice potentials. The first method involves an adiabatic doubling of the periodicity of the underlying lattice to probe neighboring singlet (triplet) correlations for fermions (bosons) by the occupation of the resulting vibrational ground state. The second method utilizes a time-dependent superlattice potential to generate spin-dependent transport by any number of prescribed lattice sites, and probes correlations by the resulting number of doubly occupied sites. For experimentally relevant parameters, we demonstrate how both methods yield large signatures of antiferromagnetic correlations of strongly repulsive fermionic atoms in a single shot of the experiment. Lastly, we show how this method may also be applied to probe d-wave pairing, a possible ground-state candidate for the doped repulsive Hubbard model.

  4. Measuring bipartite quantum correlations of an unknown state.

    PubMed

    Silva, I A; Girolami, D; Auccaise, R; Sarthour, R S; Oliveira, I S; Bonagamba, T J; deAzevedo, E R; Soares-Pinto, D O; Adesso, G

    2013-04-05

    We report the experimental measurement of bipartite quantum correlations of an unknown two-qubit state. Using a liquid state Nuclear Magnetic Resonance setup and employing geometric discord, we evaluate the quantum correlations of a state without resorting to prior knowledge of its density matrix. The method is applicable to any 2 ⊗ d system and provides, in terms of number of measurements required, an advantage over full state tomography scaling with the dimension d of the unmeasured subsystem. The negativity of quantumness is measured as well for reference. We also observe the phenomenon of sudden transition of quantum correlations when local phase and amplitude damping channels are applied to the state.

  5. Correlation Between in-situ Redox Reaction Rates and Microbial Biomass Distribution in Porous Media Influenced by Different Transport Regimes

    NASA Astrophysics Data System (ADS)

    Thullner, M.; Pallud, C.; van Cappellen, P.; Regnier, P.

    2004-12-01

    Microbially mediated redox transformations of organic carbon play an important role for the fate of reactive species in porous media. The terminal electron acceptors (TEAs) involved in such reactions depend on the amount and degradability of the organic carbon species and lead to a succession of redox reactions where the TEAs are used-up in a temporal or, in case transport is considered, spatial sequence of decreasing energy yields. A direct characterization of redox stratified systems is challenged by our ability to measure reaction rates in-situ. One novel approach consists in quantifying and characterizing microorganisms in aquifers and sediments and to use such results to predict in-situ redox reaction rates. However, the existence of a spatial correlation between microbial abundance and associated in-situ redox reaction rates should be questioned. Here, we investigate this correlation for porous media having different transport regimes. In the environment, these regimes vary between systems such as aquifers, where advective transport in the water phase is the dominant transport mechanism, and aquatic sediments, where close to the sediment water interface the mixing activity of benthic macrofauna contributes significantly to transport. Results from estuarine sediments show that for such systems, the spatial distributions of redox reaction rates and the associated microorganisms are not correlated. This observation is supported by reactive transport simulations, which show that the ratio of the time scale of the mixing processes to the time scale of microbial growth is controlling the spatial correlation between redox reaction rates and the distribution of microorganisms. For sediments highly affected by mixing, the correlation is missing or weak, while in advection controlled systems such as aquifers, a good correlation between redox rates and microbial biomass distribution can be expected.

  6. Relating quantum coherence and correlations with entropy-based measures.

    PubMed

    Wang, Xiao-Li; Yue, Qiu-Ling; Yu, Chao-Hua; Gao, Fei; Qin, Su-Juan

    2017-09-21

    Quantum coherence and quantum correlations are important quantum resources for quantum computation and quantum information. In this paper, using entropy-based measures, we investigate the relationships between quantum correlated coherence, which is the coherence between subsystems, and two main kinds of quantum correlations as defined by quantum discord as well as quantum entanglement. In particular, we show that quantum discord and quantum entanglement can be well characterized by quantum correlated coherence. Moreover, we prove that the entanglement measure formulated by quantum correlated coherence is lower and upper bounded by the relative entropy of entanglement and the entanglement of formation, respectively, and equal to the relative entropy of entanglement for all the maximally correlated states.

  7. Multifunctional optical correlator for picosecond ultraviolet laser pulse measurement.

    PubMed

    Rakhman, Abdurahim; Wang, Yang; Garcia, Frances; Long, Cary; Huang, Chunning; Takeda, Yasuhiro; Liu, Yun

    2014-11-01

    A compact multifunctional optical correlator system for pulse width measurement of ultrashort ultraviolet (UV) pulses has been designed and experimentally demonstrated. Both autocorrelation and cross-correlation functions are measured using a single nonlinear crystal, and the switching between two measurements requires no adjustment of phase matching and detector. The system can measure UV pulse widths from sub-picoseconds to 100 ps, and it involves no auxiliary pulse in the measurement. The measurement results on a burst-mode picosecond UV laser show a high-quality performance on speed, accuracy, resolution, and dynamic range. The proposed correlator can be applied to measure any ultrashort UV pulses produced through sum-frequency generation or second-harmonic generation.

  8. Correlations among four measures of thoracic kyphosis in older adults

    PubMed Central

    Tran, T. H.; Wing, D.; Davis, A.; Bergstrom, J.; Schousboe, J. T.; Nichols, J. F.

    2016-01-01

    Summary There are many ways to measure thoracic kyphosis ranging from simple clinical to more complex assessments. We evaluated the correlation among four commonly used kyphosis measures: Cobb angle, Debrunner kyphometer, kyphotic index, and the blocks method. Each measure was correlated with the others, confirming high clinical and research applicability. Introduction The purpose of this study was to assess the associations among four commonly used measures of thoracic kyphosis in older adults. Methods Seventy two men and women aged 65–96 were recruited from the San Diego community. Four kyphosis measures were assessed in the same person during a baseline clinic visit. Two measures were done in the lying (L) and two in the standing (ST) position: (1) Cobb angle calculated from dual X-Ray absorptiometry (DXA) images (L), (2) Debrunner kyphometer (DK) angle measured by a protractor (ST), (3) kyphotic index (KI) calculated using an architect’s flexicurve ruler (ST), and (4) the blocks method involving counting the number of 1.7 cm-thick blocks required to achieve a neutral head position while lying flat on the DXA table (L). Spearman rank correlation coefficients were used to determine the strength of the association between each kyphosis measure. Results Using the Cobb angle as the gold standard, the blocks method demonstrated the lowest correlation (rs =0.63, p<0.0001), the Debrunner method had a moderate correlation (rs=0.65, p<0.0001), and the kyphotic index had the highest correlation (rs=0.68, p<0.0001). The correlation was strongest between the kyphotic index and the Debrunner kyphometer (rs=0.76, p<0.0001). Conclusion In older men and women, all four measures of thoracic kyphosis were significantly correlated with each other, whether assessed in the lying or standing position. Thus, any of these measures demonstrate both potential clinical and research utility. PMID:26475287

  9. Correlation and Prediction of the Transport Properties of Ionic Liquids

    NASA Astrophysics Data System (ADS)

    Hossain, Mohammad Z.; Teja, Amyn S.

    2016-01-01

    A modified version of the rough hard sphere (RHS) scheme of Gaciño et al. has been used to correlate the viscosity and thermal conductivity of ILs. A total of 661 viscosity data at 0.1 MPa for 48 ILs, and 159 thermal conductivity data at 0.1 MPa for 26 ILs were correlated, with average absolute deviations between calculated and experimental values (AAD) of 1.15 % in the case of the viscosity and 2.32 % in the case of the thermal conductivity. In addition, a total of 453 viscosity data for 10 ILs and 95 thermal conductivity data for 9 ILs over a pressure range of 0.1 MPa to 35.6 MPa were correlated with AADs of 3.46 % in the case of the viscosity and 2.89 % in the case of the thermal conductivity. More importantly, the three parameters of the modified RHS scheme were found to exhibit regular trends with the molecular weight of ILs with a common anion. Finally, IL mixture viscosities were predicted within their experimental uncertainties using a simple mixing rule. Mixtures of water and ILs could also be accommodated within the RHS scheme, although errors were higher in this case.

  10. Multifunctional optical correlator for picosecond ultraviolet laser pulse measurement

    DOE PAGES

    Rakhman, Abdurahim; Wang, Yang; Garcia, Frances; ...

    2014-01-01

    A compact optical correlator system that measures both the autocorrelation between two infrared (IR) lights and the cross-correlation between an IR and an ultraviolet (UV) light using a single nonlinear optical crystal has been designed and experimentally demonstrated. The rapid scanning of optical delay line, switching between auto and cross-correlations, crystal angle tuning, and data acquisition and processing are all computer controlled. Pulse widths of an IR light from a mode-locked laser are measured by the correlator and the results are compared with a direct measurement using a high-speed photodetector system. The correlator has been used to study the parametermore » dependence of the pulse width of a macropulse UV laser designed for laser-assisted hydrogen ion (H-) beam stripping for the Spallation Neutron Source at Oak Ridge National Laboratory.« less

  11. Multifunctional optical correlator for picosecond ultraviolet laser pulse measurement

    SciTech Connect

    Rakhman, Abdurahim; Wang, Yang; Garcia, Frances; Long, Cary D.; Huang, Chunning; Takeda, Yasuhiro; Liu, Yun

    2014-01-01

    A compact optical correlator system that measures both the autocorrelation between two infrared (IR) lights and the cross-correlation between an IR and an ultraviolet (UV) light using a single nonlinear optical crystal has been designed and experimentally demonstrated. The rapid scanning of optical delay line, switching between auto and cross-correlations, crystal angle tuning, and data acquisition and processing are all computer controlled. Pulse widths of an IR light from a mode-locked laser are measured by the correlator and the results are compared with a direct measurement using a high-speed photodetector system. The correlator has been used to study the parameter dependence of the pulse width of a macropulse UV laser designed for laser-assisted hydrogen ion (H-) beam stripping for the Spallation Neutron Source at Oak Ridge National Laboratory.

  12. Dynamic characterization of external and internal mass transport in heterotrophic biofilms from microsensors measurements.

    PubMed

    Guimerà, Xavier; Dorado, Antonio David; Bonsfills, Anna; Gabriel, Gemma; Gabriel, David; Gamisans, Xavier

    2016-10-01

    Knowledge of mass transport mechanisms in biofilm-based technologies such as biofilters is essential to improve bioreactors performance by preventing mass transport limitation. External and internal mass transport in biofilms was characterized in heterotrophic biofilms grown on a flat plate bioreactor. Mass transport resistance through the liquid-biofilm interphase and diffusion within biofilms were quantified by in situ measurements using microsensors with a high spatial resolution (<50 μm). Experimental conditions were selected using a mathematical procedure based on the Fisher Information Matrix to increase the reliability of experimental data and minimize confidence intervals of estimated mass transport coefficients. The sensitivity of external and internal mass transport resistances to flow conditions within the range of typical fluid velocities over biofilms (Reynolds numbers between 0.5 and 7) was assessed. Estimated external mass transfer coefficients at different liquid phase flow velocities showed discrepancies with studies considering laminar conditions in the diffusive boundary layer near the liquid-biofilm interphase. The correlation of effective diffusivity with flow velocities showed that the heterogeneous structure of biofilms defines the transport mechanisms inside biofilms. Internal mass transport was driven by diffusion through cell clusters and aggregates at Re below 2.8. Conversely, mass transport was driven by advection within pores, voids and water channels at Re above 5.6. Between both flow velocities, mass transport occurred by a combination of advection and diffusion. Effective diffusivities estimated at different biofilm densities showed a linear increase of mass transport resistance due to a porosity decrease up to biofilm densities of 50 g VSS·L(-1). Mass transport was strongly limited at higher biofilm densities. Internal mass transport results were used to propose an empirical correlation to assess the effective diffusivity

  13. Transported acid aerosols measured in southern Ontario

    NASA Astrophysics Data System (ADS)

    Keeler, Gerald J.; Spengler, John D.; Koutrakis, Petros; Allen, George A.; Raizenne, Mark; Stern, Bonnie

    During the period 29 June 1986-9 August 1986, a field health study assessing the acute health effects of air pollutants on children was conducted at a summer girls' camp on the northern shore of Lake Erie in SW Ontario. Continuous air pollution measurements of SO 2, O 3, NO x, particulate sulfates, light scattering, and meteorological measurements including temperature, dew point, and wind speed and direction were made. Twelve-hour integrated samples of size fractioned particles were also obtained using dichotomous samplers and Harvard impactors equipped with an ammonia denuder for subsequent hydrogen ion determination. Particulate samples were analyzed for trace elements by X-ray fluorescence and Neutron Activation, and for organic and elemental carbon by a thermal/optical technique. The measured aerosol was periodically very acidic with observed 12-h averaged H + concentrations in the range < 10-560 nmoles m -3. The aerosol H + appeared to represent the net strong acidity after H 2SO 4 reaction with NH 3(g). Average daytime concentrations were higher than night-time for aerosol H +, sulfate, fine mass and ozone. Prolonged episodes of atmospheric acidity, sulfate, and ozone were associated with air masses arriving at the measurement site from the west and from the southwest over Lake Erie. Sulfate concentrations measured at the lakeshore camp were more than twice those measured at inland sites during extreme pollution episodes. The concentration gradient observed with onshore flow was potentially due to enhanced deposition near the lakeshore caused by discontinuities in the meteorological fields in this region.

  14. Enhancing robustness of multiparty quantum correlations using weak measurement

    SciTech Connect

    Singh, Uttam; Mishra, Utkarsh; Dhar, Himadri Shekhar

    2014-11-15

    Multipartite quantum correlations are important resources for the development of quantum information and computation protocols. However, the resourcefulness of multipartite quantum correlations in practical settings is limited by its fragility under decoherence due to environmental interactions. Though there exist protocols to protect bipartite entanglement under decoherence, the implementation of such protocols for multipartite quantum correlations has not been sufficiently explored. Here, we study the effect of local amplitude damping channel on the generalized Greenberger–Horne–Zeilinger state, and use a protocol of optimal reversal quantum weak measurement to protect the multipartite quantum correlations. We observe that the weak measurement reversal protocol enhances the robustness of multipartite quantum correlations. Further it increases the critical damping value that corresponds to entanglement sudden death. To emphasize the efficacy of the technique in protection of multipartite quantum correlation, we investigate two proximately related quantum communication tasks, namely, quantum teleportation in a one sender, many receivers setting and multiparty quantum information splitting, through a local amplitude damping channel. We observe an increase in the average fidelity of both the quantum communication tasks under the weak measurement reversal protocol. The method may prove beneficial, for combating external interactions, in other quantum information tasks using multipartite resources. - Highlights: • Extension of weak measurement reversal scheme to protect multiparty quantum correlations. • Protection of multiparty quantum correlation under local amplitude damping noise. • Enhanced fidelity of quantum teleportation in one sender and many receivers setting. • Enhanced fidelity of quantum information splitting protocol.

  15. A Review of the Correlates and Measurements of Career Indecision.

    ERIC Educational Resources Information Center

    Sepich, Robert T.

    1987-01-01

    Reviews the literature to enhance practitioner understanding of career indecision. Attempts to answer two questions: (1) What are correlates of career indecision? and (2) How is it measured? Summarizes findings; suggests research areas. (CH)

  16. Electrical and thermal transport measurements on nano-structured materials

    NASA Astrophysics Data System (ADS)

    Chang, Chih-Wei

    This thesis discusses electrical and thermal transport measurements on C60, carbon nanotubes, and boron-nitride nanotubes. Chapter 1 describes the anomalous resistivity behavior of Ag films on C60 crystals. The correlation of the resistivity anomaly and the structural phase transition is established. Chapter 2 gives an introduction to the physical properties and the synthesis methods of carbon and boron nitride nanotubes. Chapter 3 shows two different approaches on chemical functionalization of boron-nitride nanotubes. Chapter 4 gives the theoretical background of thermal conductivity, especially for nano-structured materials. A summary of theoretical and experimental works on the thermal conductivity of nanotubes is given. Chapter 5 discusses the experimental results of thermal conductivity of nanotube mats. An absolute value of the thermal conductivity of boron nitride nanotubes is bracketed and can be compared to the results of the following chapters on individual nanotubes. Chapter 6 describes the experimental methods of measuring thermal conductivity of individual nanotubes. Chapter 7 shows the 2 temperature dependent thermal conductivity and thermopower of individual nanotubes. Chapter 8 discusses the isotope effect and the diameter dependence of the thermal conductivity of nanotubes. In chapter 9, it is shown that the thermal conductivity of nanotubes is robust against electron irradiation and structural deformation. Importantly, the observation challenges current understandings on the thermal transport of nano-structured materials. In chapter 10, it is shown that it is possible to reversibly tune the thermal conductivity of a multiwalled nanotube by controllably sliding the outer-shells against inner cores. Chapter 11 describes a thermal rectifier by engineering the mass distribution along a nanotube. The observed non-zero thermal rectification effect provides strong evidence for solitons in nanotubes. The soliton model also coherently explains many

  17. Impact of velocity correlation and distribution on transport in fractured media: Field evidence and theoretical model

    NASA Astrophysics Data System (ADS)

    Kang, Peter K.; Le Borgne, Tanguy; Dentz, Marco; Bour, Olivier; Juanes, Ruben

    2015-02-01

    Flow and transport through fractured geologic media often leads to anomalous (non-Fickian) transport behavior, the origin of which remains a matter of debate: whether it arises from variability in fracture permeability (velocity distribution), connectedness in the flow paths through fractures (velocity correlation), or interaction between fractures and matrix. Here we show that this uncertainty of distribution- versus correlation-controlled transport can be resolved by combining convergent and push-pull tracer tests because flow reversibility is strongly dependent on velocity correlation, whereas late-time scaling of breakthrough curves is mainly controlled by velocity distribution. We build on this insight, and propose a Lagrangian statistical model that takes the form of a continuous time random walk (CTRW) with correlated particle velocities. In this framework, velocity distribution and velocity correlation are quantified by a Markov process of particle transition times that is characterized by a distribution function and a transition probability. Our transport model accurately captures the anomalous behavior in the breakthrough curves for both push-pull and convergent flow geometries, with the same set of parameters. Thus, the proposed correlated CTRW modeling approach provides a simple yet powerful framework for characterizing the impact of velocity distribution and correlation on transport in fractured media.

  18. Transport phenomena in correlated quantum liquids: Ultracold Fermi gases and F/N junctions

    NASA Astrophysics Data System (ADS)

    Li, Hua

    Landau Fermi-liquid theory was first introduced by L. D. Landau in the effort of understanding the normal state of Fermi systems, where the application of the concept of elementary excitations to the Fermi systems has proved very fruitful in clarifying the physics of strongly correlated quantum systems at low temperatures. In this thesis, I use Landau Fermi-liquid theory to study the transport phenomena of two different correlated quantum liquids: the strongly interacting ultracold Fermi gases and the ferromagnet/normal-metal (F/N) junctions. The detailed work is presented in chapter II and chapter III of this thesis, respectively. Chapter I holds the introductory part and the background knowledge of this thesis. In chapter II, I study the transport properties of a Fermi gas with strong attractive interactions close to the unitary limit. In particular, I compute the transport lifetimes of the Fermi gas due to superfluid fluctuations above the BCS transition temperature Tc. To calculate the transport lifetimes I need the scattering amplitudes. The scattering amplitudes are dominated by the superfluid fluctuations at temperatures just above Tc. The normal scattering amplitudes are calculated from the Landau parameters. These Landau parameters are obtained from the local version of the induced interaction model for computing Landau parameters. I also calculate the leading order finite temperature corrections to the various transport lifetimes. A calculation of the spin diffusion coefficient is presented in comparison to the experimental findings. Upon choosing a proper value of F0a, I am able to present a good match between the theoretical result and the experimental measurement, which indicates the presence of the superfluid fluctuations near Tc. Calculations of the viscosity, the viscosity/entropy ratio and the thermal conductivity are also shown in support of the appearance of the superfluid fluctuations. In chapter III, I study the spin transport in the low

  19. Acoustic ship signature measurements by cross-correlation method.

    PubMed

    Fillinger, Laurent; Sutin, Alexander; Sedunov, Alexander

    2011-02-01

    Cross-correlation methods were applied for the estimation of the power spectral density and modulation spectrum of underwater noise generated by moving vessels. The cross-correlation of the signal from two hydrophones allows the separation of vessel acoustic signatures in a busy estuary. Experimental data recorded in the Hudson River are used for demonstration that cross-correlation method measured the same ship noise and ship noise modulation spectra as conventional methods. The cross-correlation method was then applied for the separation of the acoustic signatures of two ships present simultaneously. Presented methods can be useful for ship traffic monitoring and small ship classification, even in noisy harbor environments.

  20. Photogrammetric Correlation of Face with Frontal Radiographs and Direct Measurements.

    PubMed

    Negi, Gunjan; Ponnada, Swaroopa; Aravind, N K S; Chitra, Prasad

    2017-05-01

    Photogrammetry is a science of making measurements from photographs. As cephalometric analysis till date has focused mainly on skeletal relationships, photogrammetry may provide a means to reliably assess and compare soft tissue and hard tissue measurements. To compare and correlate linear measurements taken directly from subject's faces and from standardized frontal cephalometric radiographs and to correlate them with standardized frontal facial photographs of Indian population and to obtain mean values. A cross-sectional study was conducted on 30 subjects of Indian origin. Frontal cephalograms and standardized frontal photographs were obtained from subjects in the age group of 18- 25 years. Vernier calipers were used to obtain facial measurements directly. Photographs and radiographs were uploaded and measured using Nemoceph software. Analogous cephalometric, photographic and direct measurements were compared by one-way ANOVA to assess Pearson correlation coefficients for 12 linear measurements (6 vertical, 6 horizontal). Bonferroni post-hoc test was done for pair wise comparison. Among all measurements used, OR-OL (orbitale right-orbitale left) showed a high correlation r = 0.76, 0.70, 0.71. There was moderate correlation with EnR-EnL (endocanthion rt - endocanthion lt) r(2) = 0.62, 0.68, 0.68. Highly significant correlation was evident with N-Sn, EnR-EnL and AgR-AgL with p<0.001. A statistically significant correlation was found between photographic, radiographic and direct measurements. Therefore, photogrammetry has proven to be an alternative diagnostic tool that can be used in epidemiologic studies when there is a need for a simple, basic, non-invasive and cost-effective method.

  1. Atmospheric correlation time measurements using coherent CO2 lidar

    NASA Technical Reports Server (NTRS)

    Ancellet, G. M.; Menzies, R. T.

    1986-01-01

    A pulsed TEA-CO2 lidar with coherent detection was used to measure the correlation time of backscatter from an ensemble of atmospheric aerosol particles which are illuminated by the pulsed radiation. The correlation time of the backscatter return signal is important in studies of atmospheric turbulence and its effects on optical propagation and backscatter. If the temporal coherence of the pulse is large enough, then the temporal coherence of the return signal is dominated by the turbulence and shear for a variety of interesting atmospheric conditions. Various techniques for correlation time measurement are discussed and evaluated.

  2. Gasificaton Transport: A Multiphase CFD Approach & Measurements

    SciTech Connect

    Dimitri Gidaspow; Veeraya Jiradilok; Mayank Kashyap; Benjapon Chalermsinsuwan

    2009-02-14

    The objective of this project was to develop predictive theories for the dispersion and mass transfer coefficients and to measure them in the turbulent fluidization regime, using existing facilities. A second objective was to use our multiphase CFD tools to suggest optimized gasifier designs consistent with aims of Future Gen. We have shown that the kinetic theory based CFD codes correctly compute: (1) Dispersion coefficients; and (2) Mass transfer coefficients. Hence, the kinetic theory based CFD codes can be used for fluidized bed reactor design without any such inputs. We have also suggested a new energy efficient method of gasifying coal and producing electricity using a molten carbonate fuel cell. The principal product of this new scheme is carbon dioxide which can be converted into useful products such as marble, as is done very slowly in nature. We believe this scheme is a lot better than the canceled FutureGen, since the carbon dioxide is safely sequestered.

  3. The correlation between mid-brain serotonin transporter availability and intelligence quotient in healthy volunteers.

    PubMed

    Tseng, P Y; Lee, I H; Chen, K C; Chen, P S; Chiu, N T; Yao, W J; Chu, C L; Yeh, T L; Yang, Y K

    2015-02-01

    This study was performed to investigate the association between the mid-brain serotonin transporter (SERT) availability and intelligence quotient (IQ). One hundred and thirteen healthy participants, including 52 male and 61 female subjects, were recruited. We used SPECT with [(123)I]ADAM images to determine the SERT availability in the mid-brain, and measured the subjects' IQ using the WAIS-R. We found a significant positive correlation between the mid-brain SERT availability and the IQ of the participants. Even when controlling for age and sex, the significant association still existed. This result implied that the higher the SERT binding in the mid-brain, the better the IQ in healthy participants. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  4. Individual, Social, and Environmental Correlates of Active Transportation Patterns in French Women

    PubMed Central

    Perchoux, Camille; Enaux, Christophe; Oppert, Jean-Michel; Menai, Mehdi; Charreire, Hélène; Salze, Paul; Weber, Christiane; Hercberg, Serge; Feuillet, Thierry; Hess, Franck; Roda, Célina; Simon, Chantal

    2017-01-01

    The objectives were (1) to define physical activity (PA) and sedentary behaviors (SB) patterns in daily life contexts (work, leisure, and transportation) in French working women from NutriNet-Santé web-cohort and (2) to identify pattern(s) of active transportation and their individual, social, and environmental correlates. 23,432 participants completed two questionnaires to evaluate PA and SB in daily life contexts and individual representations of residential neighborhood and transportation modes. Hierarchical cluster analysis was performed which identified 6 distinct movement behavior patterns: (i) active occupation, high sedentary leisure, (ii) sedentary occupation, low leisure, (iii) sedentary transportation, (iv) sedentary occupation and leisure, (v) active transportation, and (vi) active leisure. Multinomial logistic regressions were performed to identify correlates of the “active transportation” cluster. The perceived environmental characteristics positively associated with “active transportation” included “high availability of destinations around home,” “presence of bicycle paths,” and “low traffic.” A “positive image of walking/cycling,” the “individual feeling of being physically active,” and a “high use of active transport modes by relatives/friends” were positively related to “active transportation,” identified as a unique pattern regarding individual and environmental correlates. Identification of PA and SB context-specific patterns will help to understand movement behaviors' complexity and to design interventions to promote active transportation in specific subgroups. PMID:28717653

  5. Correlation between Electron Transport and Shear Alfven Activity in the National Spherical Torus Experiment

    SciTech Connect

    Stutman, D.; Delgado-Aparicio, L.; Finkenthal, M.; Tritz, K.; Gorelenkov, N.; Fredrickson, E.; Kaye, S.; Mazzucato, E.

    2009-03-20

    We report the observation of a correlation between shear Alfven eigenmode activity and electron transport in plasma regimes where the electron temperature gradient is flat, and thus the drive for temperature gradient microinstabilities is absent. Plasmas having rapid central electron transport show intense, broadband global Alfven eigenmode (GAE) activity in the 0.5-1.1 MHz range, while plasmas with low transport are essentially GAE-free. The first theoretical assessment of a GAE-electron transport connection indicates that overlapping modes can resonantly couple to the bulk thermal electrons and induce their stochastic diffusion.

  6. Quantum Correlations Are Stronger Than All Nonsignaling Correlations Produced by n -Outcome Measurements

    NASA Astrophysics Data System (ADS)

    Kleinmann, Matthias; Cabello, Adán

    2016-10-01

    We show that, for any n , there are m -outcome quantum correlations, with m >n , which are stronger than any nonsignaling correlation produced from selecting among n -outcome measurements. As a consequence, for any n , there are m -outcome quantum measurements that cannot be constructed by selecting locally from the set of n -outcome measurements. This is a property of the set of measurements in quantum theory that is not mandatory for general probabilistic theories. We also show that this prediction can be tested through high-precision Bell-type experiments and identify past experiments providing evidence that some of these strong correlations exist in nature. Finally, we provide a modified version of quantum theory restricted to having at most n -outcome quantum measurements.

  7. Quantum Correlations Are Stronger Than All Nonsignaling Correlations Produced by n-Outcome Measurements.

    PubMed

    Kleinmann, Matthias; Cabello, Adán

    2016-10-07

    We show that, for any n, there are m-outcome quantum correlations, with m>n, which are stronger than any nonsignaling correlation produced from selecting among n-outcome measurements. As a consequence, for any n, there are m-outcome quantum measurements that cannot be constructed by selecting locally from the set of n-outcome measurements. This is a property of the set of measurements in quantum theory that is not mandatory for general probabilistic theories. We also show that this prediction can be tested through high-precision Bell-type experiments and identify past experiments providing evidence that some of these strong correlations exist in nature. Finally, we provide a modified version of quantum theory restricted to having at most n-outcome quantum measurements.

  8. Transport and magnetism correlations in thin-film ferromagnetic oxides

    SciTech Connect

    Hundley, M.F.; Neumeier, J.J.; Heffner, R.H.; Jia, Q.X.; Wu, X.D.; Thompson, J.D.

    1995-09-01

    In order to determine the {Tc}-dependence of the colossal magnetoresistance (MR) exhibited by the ferromagnetic La{sub 0.7}M{sub 0.3}MnO{sub 3+{sigma}} (M = Ba, Ca, Sr) system, the authors examine the magnetic-field and temperature dependent resistivity and magnetization of a series of thin films that were grown via pulsed-laser deposition. The films had magnetic ordering temperatures (T{sub C}) ranging from 150 to 350 K; all samples displayed a large negative MR that is largest near {Tc}. The magnitude of a given sample`s MR at {Tc} inversely correlates with {Tc}; samples with a low {Tc} display significantly larger MR values than do samples with large {Tc}`s. The quantity {rho}({Tc})/{rho}(4 K), the amount by which the resistivity is reduced by full ferromagnetic order, is an activated function of {Tc} with an activation energy E{sub a} = 0.1 eV. These results indicate that the magnitude of the CMR effect in a given specimen is controlled not by {rho}({Tc}), but by {Tc} via the ratio {rho}({Tc})/{rho}(4 K). Phenomenological scaling relationships are also reported that link {rho}(H,T) to both H and M(H, T).

  9. A rain splash transport equation assimilating field and laboratory measurements

    NASA Astrophysics Data System (ADS)

    Dunne, Thomas; Malmon, Daniel V.; Mudd, Simon M.

    2010-03-01

    Process-based models of hillslope evolution require transport equations relating sediment flux to its major controls. An equation for rain splash transport in the absence of overland flow was constructed by modifying an approach developed by Reeve (1982) and parameterizing it with measurements from single-drop laboratory experiments and simulated rainfall on a grassland in East Africa. The equation relates rain splash to hillslope gradient, the median raindrop diameter of a storm, and ground cover density; the effect of soil texture on detachability can be incorporated from other published results. The spatial and temporal applicability of such an equation for rain splash transport in the absence of overland flow on uncultivated hillslopes can be estimated from hydrological calculations. The predicted transport is lower than landscape-averaged geologic erosion rates from Kenya but is large enough to modify short, slowly eroding natural hillslopes as well as microtopographic interrill surfaces between which overland flow transports the mobilized sediment.

  10. Mean Antarctic Circumpolar Current transport measured in Drake Passage

    NASA Astrophysics Data System (ADS)

    Donohue, K. A.; Tracey, K. L.; Watts, D. R.; Chidichimo, M. P.; Chereskin, T. K.

    2016-11-01

    The Antarctic Circumpolar Current is an important component of the global climate system connecting the major ocean basins as it flows eastward around Antarctica, yet due to the paucity of data, it remains unclear how much water is transported by the current. Between 2007 and 2011 flow through Drake Passage was continuously monitored with a line of moored instrumentation with unprecedented horizontal and temporal resolution. Annual mean near-bottom currents are remarkably stable from year to year. The mean depth-independent or barotropic transport, determined from the near-bottom current meter records, was 45.6 sverdrup (Sv) with an uncertainty of 8.9 Sv. Summing the mean barotropic transport with the mean baroclinic transport relative to zero at the seafloor of 127.7 Sv gives a total transport through Drake Passage of 173.3 Sv. This new measurement is 30% larger than the canonical value often used as the benchmark for global circulation and climate models.

  11. Automated measurement of fast mitochondrial transport in neurons.

    PubMed

    Miller, Kyle E; Liu, Xin-An; Puthanveettil, Sathyanarayanan V

    2015-01-01

    There is growing recognition that fast mitochondrial transport in neurons is disrupted in multiple neurological diseases and psychiatric disorders. However, a major constraint in identifying novel therapeutics based on mitochondrial transport is that the large-scale analysis of fast transport is time consuming. Here we describe methodologies for the automated analysis of fast mitochondrial transport from data acquired using a robotic microscope. We focused on addressing questions of measurement precision, speed, reliably, workflow ease, statistical processing, and presentation. We used optical flow and particle tracking algorithms, implemented in ImageJ, to measure mitochondrial movement in primary cultured cortical and hippocampal neurons. With it, we are able to generate complete descriptions of movement profiles in an automated fashion of hundreds of thousands of mitochondria with a processing time of approximately one hour. We describe the calibration of the parameters of the tracking algorithms and demonstrate that they are capable of measuring the fast transport of a single mitochondrion. We then show that the methods are capable of reliably measuring the inhibition of fast mitochondria transport induced by the disruption of microtubules with the drug nocodazole in both hippocampal and cortical neurons. This work lays the foundation for future large-scale screens designed to identify compounds that modulate mitochondrial motility.

  12. Molecular transport in collagenous tissues measured by gel electrophoresis.

    PubMed

    Hunckler, Michael D; Tilley, Jennifer M R; Roeder, Ryan K

    2015-11-26

    Molecular transport in tissues is important for drug delivery, nutrient supply, waste removal, cell signaling, and detecting tissue degeneration. Therefore, the objective of this study was to investigate gel electrophoresis as a simple method to measure molecular transport in collagenous tissues. The electrophoretic mobility of charged molecules in tissue samples was measured from relative differences in the velocity of a cationic dye passing through an agarose gel in the absence and presence of a tissue section embedded within the gel. Differences in electrophoretic mobility were measured for the transport of a molecule through different tissues and tissue anisotropy, or the transport of different sized molecules through the same tissue. Tissue samples included tendon and fibrocartilage from the proximal (tensile) and distal (compressive) regions of the bovine flexor tendon, respectively, and bovine articular cartilage. The measured electrophoretic mobility was greatest in the compressive region of the tendon (fibrocartilage), followed by the tensile region of tendon, and lowest in articular cartilage, reflecting differences in the composition and organization of the tissues. The anisotropy of tendon was measured by greater electrophoretic mobility parallel compared with perpendicular to the predominate collagen fiber orientation. Electrophoretic mobility also decreased with increased molecular size, as expected. Therefore, the results of this study suggest that gel electrophoresis may be a useful method to measure differences in molecular transport within various tissues, including the effects of tissue type, tissue anisotropy, and molecular size.

  13. The Measurement and Correlates of Career Decision Making.

    ERIC Educational Resources Information Center

    Harren, Vincent A.; Kass, Richard A.

    This paper presents a theoretical framework for understanding career decision making (CDM); introduces an instrument, Assessment of Career Decision Making (ACDM) to measure CDM with college students; and presents correlational data on sex role and cognitive style factors hypothesized to influence CDM. The ACDM, designed to measure the Tiedeman and…

  14. Internalized Heterosexism: Measurement, Psychosocial Correlates, and Research Directions

    ERIC Educational Resources Information Center

    Szymanski, Dawn M.; Kashubeck-West, Susan; Meyer, Jill

    2008-01-01

    This article provides an integrated critical review of the literature on internalized heterosexism/internalized homophobia (IH), its measurement, and its psychosocial correlates. It describes the psychometric properties of six published measures used to operationalize the construct of IH. It also critically reviews empirical studies on correlates…

  15. The Measurement and Correlates of Career Decision Making.

    ERIC Educational Resources Information Center

    Harren, Vincent A.; Kass, Richard A.

    This paper presents a theoretical framework for understanding career decision making (CDM); introduces an instrument, Assessment of Career Decision Making (ACDM) to measure CDM with college students; and presents correlational data on sex role and cognitive style factors hypothesized to influence CDM. The ACDM, designed to measure the Tiedeman and…

  16. Statistical measures of Planck scale signal correlations in interferometers

    SciTech Connect

    Hogan, Craig J.; Kwon, Ohkyung

    2015-06-22

    A model-independent statistical framework is presented to interpret data from systems where the mean time derivative of positional cross correlation between world lines, a measure of spreading in a quantum geometrical wave function, is measured with a precision smaller than the Planck time. The framework provides a general way to constrain possible departures from perfect independence of classical world lines, associated with Planck scale bounds on positional information. A parametrized candidate set of possible correlation functions is shown to be consistent with the known causal structure of the classical geometry measured by an apparatus, and the holographic scaling of information suggested by gravity. Frequency-domain power spectra are derived that can be compared with interferometer data. As a result, simple projections of sensitivity for specific experimental set-ups suggests that measurements will directly yield constraints on a universal time derivative of the correlation function, and thereby confirm or rule out a class of Planck scale departures from classical geometry.

  17. Diagnosing ocean energy transports from earth radiation budget measurements

    NASA Technical Reports Server (NTRS)

    Sohn, Byung-Ju; Smith, Eric A.

    1992-01-01

    The maximum energy production (MEP) principle suggested by Paltridge (1975) is applied to separate the satellite-inferred required total transports into the atmospheric and the oceanic components within a two-dimensional (2D) framework. For this purpose, the required 2D energy transports (Sohn and Smith, 1991) are imposed on Paltridge's energy balance model which is then solved as a variational problem. The results provide separated atmospheric and oceanic transports on a 2D basis such that the total divergence is equal to the net radiation measured from a satellite.

  18. Diagnosing ocean energy transports from earth radiation budget measurements

    NASA Technical Reports Server (NTRS)

    Sohn, Byung-Ju; Smith, Eric A.

    1992-01-01

    The maximum energy production (MEP) principle suggested by Paltridge (1975) is applied to separate the satellite-inferred required total transports into the atmospheric and the oceanic components within a two-dimensional (2D) framework. For this purpose, the required 2D energy transports (Sohn and Smith, 1991) are imposed on Paltridge's energy balance model which is then solved as a variational problem. The results provide separated atmospheric and oceanic transports on a 2D basis such that the total divergence is equal to the net radiation measured from a satellite.

  19. A Search for Correlations Between Four Different Atmospheric Aerosol Measurement Systems Atop Rattlesnake Mountain, Washington

    NASA Astrophysics Data System (ADS)

    Milbrath, Brian

    2004-05-01

    Accurate atmospheric aerosol transport measurements are important to international nuclear test monitoring, emergency response, health and ecosystem toxicology, and climate change. An International Monitoring System (IMS) is being established which will include a suite of aerosol radionuclide sensors. To explore the possibility of using the IMS sites to improve the understanding of global atmospheric aerosol transport, four state-of-the-art aerosol measurement systems were placed atop Rattlesnake Mountain at Pacific Northwest National Laboratory. The Radionuclide Aerosol Sampler/Analyzer measures radionuclide concentration via gamma-ray spectroscopy. The Cascade Impactor Beam Analyzer Technique measures 30 elements in three aerosol sizes using PNNLâ's Ion Beams Materials Analysis Laboratory. The Tapered Element Oscillating Microbalance provides time-averaged aerosol mass concentrations for a range of sizes. The Multi-Filter Rotating Shadowband Radiometer measures the solar irradiance to derive an aerosol optical depth. Results and correlations from the four different detectors will be presented.

  20. Measuring Spatially Resolved Collective Ionic Transport on Lithium Battery Cathodes Using Atomic Force Microscopy.

    PubMed

    Mascaro, Aaron; Wang, Zi; Hovington, Pierre; Miyahara, Yoichi; Paolella, Andrea; Gariepy, Vincent; Feng, Zimin; Enright, Tyler; Aiken, Connor; Zaghib, Karim; Bevan, Kirk H; Grutter, Peter

    2017-07-12

    One of the main challenges in improving fast charging lithium-ion batteries is the development of suitable active materials for cathodes and anodes. Many materials suffer from unacceptable structural changes under high currents and/or low intrinsic conductivities. Experimental measurements are required to optimize these properties, but few techniques are able to spatially resolve ionic transport properties at small length scales. Here we demonstrate an atomic force microscope (AFM)-based technique to measure local ionic transport on LiFePO4 to correlate with the structural and compositional analysis of the same region. By comparing the measured values with density functional theory (DFT) calculations, we demonstrate that Coulomb interactions between ions give rise to a collective activation energy for ionic transport that is dominated by large phase boundary hopping barriers. We successfully measure both the collective activation energy and the smaller single-ion bulk hopping barrier and obtain excellent agreement with values obtained from our DFT calculations.

  1. Gamma-Gamma Angular Correlation Measurements With GRIFFIN

    NASA Astrophysics Data System (ADS)

    Maclean, Andrew; Griffin Collaboration

    2016-09-01

    The goal of this work was to explore the sensitivity of the Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei (GRIFFIN) 16 clover-detector γ-ray spectrometer at TRIUMF-ISAC to such γ - γ angular correlations. The methodology was established using both experimental measurements and Geant4 simulations that were used to create angular correlation templates for the GRIFFIN geometry. Direct comparisons were made between experimental data sets and the simulated angular correlation templates. A first in-beam test of the γ - γ angular correlation measurements with GRIFFIN was performed with a radioactive beam of 66Ga. Mixing ratios of δ = - 2 . 1(2) and δ = - 0 . 08(3) were measured for the 2+ ->2+ ->0+ 833-1039 keV and 1+ ->2+ ->0+ 2752-1039 keV cascades in the daughter nucleus 66Zn. These results are in good agreement with pervious literature values and the mixing ratio for the 833-1039 keV cascade has a higher precision. Also, the sensitivity to the 1333-1039 keV cascade, with its pronounced 0+ ->2+ ->0+ angular correlation, was measured.A test measurement of the superallowed Fermi β emitter 62Ga will also be discussed. Canada Foundation of Innovation, Natural Sciences and Engineering Research Council of Canada, National Research Council of Canada and Canadian Research Chairs Program.

  2. Relating correlation measures: The importance of the energy gap

    NASA Astrophysics Data System (ADS)

    Benavides-Riveros, Carlos L.; Lathiotakis, Nektarios N.; Schilling, Christian; Marques, Miguel A. L.

    2017-03-01

    The concept of correlation is central to all approaches that attempt the description of many-body effects in electronic systems. Multipartite correlation is a quantum information theoretical property that is attributed to quantum states independent of the underlying physics. In quantum chemistry, however, the correlation energy (the energy not seized by the Hartree-Fock ansatz) plays a more prominent role. We show that these two different viewpoints on electron correlation are closely related. The key ingredient turns out to be the energy gap within the symmetry-adapted subspace. We then use a few-site Hubbard model and the stretched H2 to illustrate this connection and to show how the corresponding measures of correlation compare.

  3. First Measurements of Pion Correlations by the PHENIX Experiment

    SciTech Connect

    Johnson, S C

    2001-04-11

    First identical-pion correlations measured at RHIC energies by PHENIX are presented. Two analyses with separate detectors, systematics, and statistics provide consistent results. The resulting HBT radii are moderately larger than those measured at lower energies. The k{sub t} dependence of the Bertsch-Pratt HBT radii is also similar to previous measures and is consistent with the conjecture of an expanding source.

  4. Application of Laser Correlation Spectroscopy for Measuring Virus Size.

    PubMed

    Nikiforov, V N; Vinogradov, S E; Ivanov, A V; Efremova, E V; Kalnina, L B; Bychenko, A B; Tentsov, Yu Yu; Manykin, A A

    2016-05-01

    Dynamic light scattering method or laser correlation spectroscopy was applied to evaluation of the size of viruses. We measured correlation functions of the light scattered by human immunodeficiency viruses (HIV) and hepatitis A viruses (HAV) and found that size of HIV-1 (subtype A and B) and HAV virions were 104 nm and 28 nm, respectively. Comparison of these findings with electron microscopy data for fixed samples of the same viruses showed good agreement of the results.

  5. Direct measurement of correlation functions in a lattice Lorentz gas

    NASA Technical Reports Server (NTRS)

    Binder, P.-M.; Frenkel, D.

    1990-01-01

    Simulations of a two-dimensional ballistic Lorentz gas on a lattice are reported. A moment-propagation technique allows direct measurements of the velocity correlation function and its moments with low relative errors for all times. The predicted 1/t-sq algebraic tails in the velocity correlation function are observed at all studied scatterer densities, unlike what has been reported for continuous systems. In the square lattice a fast oscillation is observed, consistent with the existence of staggered density modes. For the second-rank tensor correlation function, an extremely slow approach to the expected 1/t exp 3 tail is found.

  6. Relating measurable correlations in heavy ion collisions to bulk properties of equilibrated QCD matter

    NASA Astrophysics Data System (ADS)

    Pratt, Scott; Young, Clint

    2017-05-01

    To compare theoretical calculations of thermal fluctuations of conserved quantities, such as charge susceptibilities or specific heat, to experimentally measured correlations and fluctuations in heavy ion collisions, one must confront the reality of changing conditions within the collision environment and transport of conserved quantities within the finite duration of the expansion and dissolution of the reaction. In previous work, fluctuations of conserved charges from lattice calculations, where charge is allowed to fluctuate within the designated volume consistent with the grand canonical ensemble, was linked to correlations in heavy ion collisions, which accounted for the finite time with which to transport absolutely conserved quantities. In this case details of the correlations were related to the evolution of the susceptibility. In this work, this paradigm is extended to compare fluctuations of momentum or energy to transverse energy correlations that can be measured in heavy ion collisions. The sensitivity of these correlations to the equation of state, viscosity, and diffusion is illustrated by considering simple models without transverse expansion. Only correlations in relative spatial rapidity are discussed here, but the prospects for extending these ideas to realistic calculations and for making realistic connections with experiment are discussed.

  7. Investigation of Optimal Digital Image Correlation Patterns for Deformation Measurement

    NASA Technical Reports Server (NTRS)

    Bomarito, G. F.; Ruggles, T. J.; Hochhalter, J. D.; Cannon, A. H.

    2016-01-01

    Digital image correlation (DIC) relies on the surface texture of a specimen to measure deformation. When the specimen itself has little or no texture, a pattern is applied to the surface which deforms with the specimen and acts as an artificial surface texture. Because the applied pattern has an effect on the accuracy of DIC, an ideal pattern is sought for which the error introduced into DIC measurements is minimal. In this work, a study is performed in which several DIC pattern quality metrics from the literature are correlated to DIC measurement error. The resulting correlations give insight on the optimality of DIC patterns in general. Optimizations are then performed to produce patterns which are well suited for DIC. These patterns are tested to show their relative benefits. Chief among these benefits are a reduction in error of approximately 30 with respect to a randomly generated pattern.

  8. Measuring Omega and the real correlation function from the redshift correlation function

    NASA Technical Reports Server (NTRS)

    Hamilton, A. J. S.

    1992-01-01

    Peculiar velocities distort the correlation function of galaxies in redshift space. In the linear regime, the distortion has a characteristic quadrupole plus hexadecapole form. The amplitude of the distortion depends on the cosmological density parameter Omega. Practical formulas are derived here which can be applied to redshift galaxy catalogs to measure Omega in the linear regime. The formulas also yield the real underlying correlation function in the linear regime, corrected for peculiar velocities.

  9. Correlation of the vesicular acetylcholine transporter densities in the striata to the clinical abilities of women with Rett syndrome.

    PubMed

    Brašić, James Robert; Bibat, Genila; Kumar, Anil; Zhou, Yun; Hilton, John; Yablonski, Marybeth E; Dogan, Ahmet Semih; Guevara, Maria Rita; Stephane, Massoud; Johnston, Michael; Wong, Dean Foster; Naidu, Sakkubai

    2012-06-01

    Rett syndrome (RTT) is a neurodevelopmental disability characterized by mutations in the X-linked methyl-CpG-binding protein 2 located at the Xq28 region. The severity is modified in part by X chromosomal inactivation resulting in wide clinical variability. We hypothesized that the ability to perform the activities of daily living (ADL) is correlated with the density of vesicular acetylcholine transporters in the striata of women with RTT. The density of the vesicular acetylcholine transporters in the living human brain can be estimated by single-photon emission-computed tomography (SPECT) after the administration of (-)-5-[¹²³I]iodobenzovesamicol ([¹²³I]IBVM). Twenty-four hours following the intravenous injection of ∼333 MBq (9 mCi) [¹²³ I]IBVM, four women with RTT and nine healthy adult volunteer control participants underwent SPECT brain scans for 60 min. The Vesicular Acetylcholine Transporter Binding Site Index (Kuhl et al., 1994), a measurement of the density of vesicular acetylcholine transporters, was estimated in the striatum and the reference structure, the cerebellum. The women with RTT were assessed for certain ADL. Although the striatal Vesicular Acetylcholine Transporter Binding Site Index was not significantly lower in RTT (5.2 ± 0.9) than in healthy adults (5.7 ± 1.6), RTT striatal Vesicular Acetylcholine Transporter Binding Site Indices and ADL scores were linearly associated (ADL = 0.89*(Vesicular Acetylcholine Transporter Binding Site Index) + 4.5; R² = 0.93; P < 0.01), suggesting a correlation between the ability to perform ADL and the density of vesicular acetylcholine transporters in the striata of women with RTT. [¹²³I]IBVM is a promising tool to characterize the pathophysiological mechanisms of RTT and other neurodevelopmental disabilities.

  10. RVUs poorly correlate with measures of surgical effort and complexity

    PubMed Central

    Shah, Dhruvil R.; Bold, Richard J.; Yang, Anthony D.; Khatri, Vijay P.; Martinez, Steve R.; Canter, Robert J.

    2014-01-01

    Background The relationship between procedural relative value units (RVUs) for surgical procedures and other measures of surgeon effort are poorly characterized. We hypothesized that RVUs would poorly correlate with quantifiable metrics of surgeon effort. Methods Using the 2010 ACS-NSQIP database, we selected 11 primary CPT codes associated with high volume surgical procedures. We then identified all patients with a single reported procedural RVU who underwent non-emergent, inpatient general surgical operations. We used linear regression to correlate length of stay, operative time, overall morbidity, frequency of serious adverse events (SAEs), and mortality with RVUs. We used multivariable logistic regression using all pre-operative NSQIP variables to determine other significant predictors of our outcome measures. Results Among 14,481 patients, RVUs poorly correlated with individual length of stay (R2=0.05), operative time (R2=0.10), and mortality (R2=0.35). There was a moderate correlation between RVUs and SAEs (R2 =0.79), and RVUs and overall morbidity (R2=0.75). However, among low to mid-level RVU procedures (11 to 35) there was a poor correlation between SAEs (R2=0.15), overall morbidity (R2=0.05), and RVUs. On multivariable analysis, RVUs were significant predictors of operative time, length of stay, and SAEs (OR 1.06, 95%CI: 1.05–1.07), but RVUs were not a significant predictor of mortality (OR 1.02, 95%CI: 0.99–1.05) Conclusion For common, index general surgery procedures, the current RVU assignments poorly correlate with certain metrics of surgeon work, while moderately correlating with others. Given the increasing emphasis on measuring and tracking surgeon productivity, more objective measures of surgeon work and productivity should be developed. PMID:24953983

  11. Measurement of gas transport properties for chemical vapor infiltration

    SciTech Connect

    Starr, T.L.; Hablutzel, N.

    1996-12-01

    In the chemical vapor infiltration (CVI) process for fabricating ceramic matrix composites (CMCs), transport of gas phase reactant into the fiber preform is a critical step. The transport can be driven by pressure or by concentration. This report describes methods for measuring this for CVI preforms and partially infiltrated composites. Results are presented for Nicalon fiber cloth layup preforms and composites, Nextel fiber braid preforms and composites, and a Nicalon fiber 3-D weave composite. The results are consistent with a percolating network model for gas transport in CVI preforms and composites. This model predicts inherent variability in local pore characteristics and transport properties, and therefore, in local densification during processing; this may lead to production of gastight composites.

  12. Two-terminal transport measurements with cold atoms

    NASA Astrophysics Data System (ADS)

    Krinner, Sebastian; Esslinger, Tilman; Brantut, Jean-Philippe

    2017-08-01

    In recent years, the ability of cold atom experiments to explore condensed-matter-related questions has dramatically progressed. Transport experiments, in particular, have expanded to the point in which conductance and other transport coefficients can now be measured in a way that is directly analogous to solid-state physics, extending cold-atom-based quantum simulations into the domain of quantum electronic devices. In this topical review, we describe the transport experiments performed with cold gases in the two-terminal configuration, with an emphasis on the specific features of cold atomic gases compared to solid-state physics. We present the experimental techniques and the main experimental findings, focusing on—but not restricted to—the recent experiments performed by our group. We finally discuss the perspectives opened up by this approach, the main technical and conceptual challenges for future developments, and potential applications in quantum simulation for transport phenomena and mesoscopic physics problems.

  13. Correlation of Nanoindentation and Conventional Mechanical Property Measurements

    SciTech Connect

    Rice, P.M.

    2001-02-14

    A series of model ferritic alloys and two commercial steels were used to develop a correlation between tensile yield strength and nano-indentation hardness measurements. The NanoIndenter-II{reg_sign} was used with loads as low as 0.05 g{sub f} (0.490 mN) and the results were compared with conventional Vickers microhardness measurements using 200 and 500 g{sub f} (1.96 and 4.90 N) loads. Two methods were used to obtain the nanohardness data: (1) constant displacement depth and (2) constant load. When the nanohardness data were corrected to account for the difference between projected and actual indenter contact area, good correlation between the Vickers and nanohardness measurements was obtained for hardness values between 0.7 and 3 GPa. The correlation based on constant nanoindentation load was slightly better than that based on constant nanoindentation displacement. Tensile property measurements were made on these same alloys, and the expected linear relationship between Vickers hardness and yield strength was found, leading to a correlation between measured changes in nanohardness and yield strength changes.

  14. Sensitivity analysis of unsaturated flow and contaminant transport with correlated parameters

    NASA Astrophysics Data System (ADS)

    Pan, Feng; Zhu, Jianting; Ye, Ming; Pachepsky, Yakov A.; Wu, Yu-Shu

    2011-02-01

    SummaryThis study conducts sensitivity and uncertainty analysis for predicting unsaturated flow and contaminant transport in a layered heterogeneous system. The objectives of this work are to: (1) examine the effects of parameter correlations on the sensitivity of unsaturated flow and contaminant transport and (2) assess the relative contributions of parameter uncertainties to the uncertainties of flow and transport at each hydrogeologic layer. Using the unsaturated zone (UZ) of Yucca Mountain (YM) in Nevada, USA, as an example, the study considers cases of independent and correlated parameters. A sampling-based regression method is used, when the model input parameters are independent, and a decomposition method is used for the correlated case. When the parameters are independent, the uncertainty in permeability has the largest contribution to the uncertainties in simulated percolation flux and mass of the reactive tracer arriving at the water table. For the percolation flux, the second largest contribution is from the van Genuchten α; the sorption coefficient of the reactive tracer is the second most important parameter for the tracer mass arrival uncertainty. The sensitivity to the sorption coefficient is larger in the layers of devitrified and zeolitic tuffs than in the layers of vitric tuff. Contributions of the uncertainties in van Genuchten n and porosity to the percolation flux and tracer transport uncertainties are larger in the case of correlated parameters compared with the case of independent parameters due to the correlations of n and porosity with the van Genuchten α and permeability, respectively. These results illustrate the significant effects of parameter correlations on the sensitivity and uncertainty of unsaturated flow and transport. The findings are of significance in facilitating future characterizations to reduce the parameter uncertainties and associated predictive uncertainties of flow and contaminant transport in unsaturated fractured

  15. Temporal correlations and structural memory effects in break junction measurements

    NASA Astrophysics Data System (ADS)

    Magyarkuti, A.; Lauritzen, K. P.; Balogh, Z.; Nyáry, A.; Mészáros, G.; Makk, P.; Solomon, G. C.; Halbritter, A.

    2017-03-01

    We review data analysis techniques that can be used to study temporal correlations among conductance traces in break junction measurements. We show that temporal histograms are a simple but efficient tool to check the temporal homogeneity of the conductance traces, or to follow spontaneous or triggered temporal variations, like structural modifications in trained contacts, or the emergence of single-molecule signatures after molecule dosing. To statistically analyze the presence and the decay time of temporal correlations, we introduce shifted correlation plots. Finally, we demonstrate that correlations between the opening and subsequent closing traces may indicate structural memory effects in atomic-sized metallic and molecular junctions. Applying these methods on measured and simulated gold metallic contacts as a test system, we show that the surface diffusion induced flattening of the broken junctions helps to produce statistically independent conductance traces at room temperature, whereas at low temperature repeating tendencies are observed as long as the contacts are not closed to sufficiently high conductance setpoints. Applying opening-closing correlation analysis on Pt-CO-Pt single-molecule junctions, we demonstrate pronounced contact memory effects and recovery of the molecule for junctions breaking before atomic chains are formed. However, if chains are pulled the random relaxation of the chain and molecule after rupture prevents opening-closing correlations.

  16. Measurement of particle transport coefficients on Alcator C-Mod

    SciTech Connect

    Luke, T.C.T.

    1994-10-01

    The goal of this thesis was to study the behavior of the plasma transport during the divertor detachment in order to explain the central electron density rise. The measurement of particle transport coefficients requires sophisticated diagnostic tools. A two color interferometer system was developed and installed on Alcator C-Mod to measure the electron density with high spatial ({approx} 2 cm) and high temporal ({le} 1.0 ms) resolution. The system consists of 10 CO{sub 2} (10.6 {mu}m) and 4 HeNe (.6328 {mu}m) chords that are used to measure the line integrated density to within 0.08 CO{sub 2} degrees or 2.3 {times} 10{sup 16}m{sup {minus}2} theoretically. Using the two color interferometer, a series of gas puffing experiments were conducted. The density was varied above and below the threshold density for detachment at a constant magnetic field and plasma current. Using a gas modulation technique, the particle diffusion, D, and the convective velocity, V, were determined. Profiles were inverted using a SVD inversion and the transport coefficients were extracted with a time regression analysis and a transport simulation analysis. Results from each analysis were in good agreement. Measured profiles of the coefficients increased with the radius and the values were consistent with measurements from other experiments. The values exceeded neoclassical predictions by a factor of 10. The profiles also exhibited an inverse dependence with plasma density. The scaling of both attached and detached plasmas agreed well with this inverse scaling. This result and the lack of change in the energy and impurity transport indicate that there was no change in the underlying transport processes after detachment.

  17. Accuracy of two points correlation length measurement and its applications in H-1NF heliac

    NASA Astrophysics Data System (ADS)

    Kim, Jaewook; Michael, C. A.; Nam, Y. U.; Lampert, M.; Ghim, Y. C.

    2016-10-01

    Anomalous transport observed in fusion-grade plasmas is widely accepted to be correlated with spatial and temporal correlation characteristics of the turbulent eddies. While temporal and 2D spatial (radial and poloidal) correlation characteristics have been studied in detail, the lack of such information in the parallel direction, with respect to the background magnetic field, of hot core plasmas precludes us from full understanding and controlling plasma turbulence. KSTAR is equipped with a couple of 2D diagnostic systems measuring ion-scale density fluctuations, namely the BES and MIR systems, at two different toroidal locations. These systems provide a possibility to measure a parallel correlation length. As it is necessary to identify how reliably one can measure correlation length with only two spatial positions, there has been such a study [Jaewook Kim et al., Nucl. Fusion accepted] recently. Based on this recent study, we experimentally obtained 3D correlation functions from H-1NF heliac using the data from a set of Langmuir probes. One probe is spatially fixed, while the second one is scanned radially and poloidally at a different toroidal location. H1-NF heliac plasmas are highly reproducible, therefore we construct the 3D correlation functions with multi-discharges.

  18. A four-probe thermal transport measurement method for nanostructures

    SciTech Connect

    Kim, Jaehyun; Ou, Eric; Sellan, Daniel P.; Shi, Li

    2015-04-15

    Several experimental techniques reported in recent years have enabled the measurement of thermal transport properties of nanostructures. However, eliminating the contact thermal resistance error from the measurement results has remained a critical challenge. Here, we report a different four-probe measurement method that can separately obtain both the intrinsic thermal conductance and the contact thermal resistance of individual nanostructures. The measurement device consists of four microfabricated, suspended metal lines that act as resistive heaters and thermometers, across which the nanostructure sample is assembled. The method takes advantage of the variation in the heat flow along the suspended nanostructure and across its contacts to the four suspended heater and thermometer lines, and uses sixteen sets of temperature and heat flow measurements to obtain nine of the thermal resistances in the measurement device and the nanostructure sample, including the intrinsic thermal resistance and the two contact thermal resistances to the middle suspended segment of the nanostructure. Two single crystalline Si nanowires with different cross sections are measured in this work to demonstrate the effectiveness of the method. This four-probe thermal transport measurement method can lead to future discoveries of unique size-dependent thermal transport phenomena in nanostructures and low-dimensional materials, in addition to providing reliable experimental data for calibrating theoretical models.

  19. A four-probe thermal transport measurement method for nanostructures.

    PubMed

    Kim, Jaehyun; Ou, Eric; Sellan, Daniel P; Shi, Li

    2015-04-01

    Several experimental techniques reported in recent years have enabled the measurement of thermal transport properties of nanostructures. However, eliminating the contact thermal resistance error from the measurement results has remained a critical challenge. Here, we report a different four-probe measurement method that can separately obtain both the intrinsic thermal conductance and the contact thermal resistance of individual nanostructures. The measurement device consists of four microfabricated, suspended metal lines that act as resistive heaters and thermometers, across which the nanostructure sample is assembled. The method takes advantage of the variation in the heat flow along the suspended nanostructure and across its contacts to the four suspended heater and thermometer lines, and uses sixteen sets of temperature and heat flow measurements to obtain nine of the thermal resistances in the measurement device and the nanostructure sample, including the intrinsic thermal resistance and the two contact thermal resistances to the middle suspended segment of the nanostructure. Two single crystalline Si nanowires with different cross sections are measured in this work to demonstrate the effectiveness of the method. This four-probe thermal transport measurement method can lead to future discoveries of unique size-dependent thermal transport phenomena in nanostructures and low-dimensional materials, in addition to providing reliable experimental data for calibrating theoretical models.

  20. Statistical measures of Planck scale signal correlations in interferometers

    NASA Astrophysics Data System (ADS)

    Hogan, Craig J.; Kwon, Ohkyung

    2017-04-01

    A model-independent statistical framework is presented to interpret data from systems where the mean time derivative of positional cross correlation between world lines, a measure of spreading in a quantum geometrical wave function, is measured with a precision smaller than the Planck time. The framework provides a general way to constrain possible departures from perfect independence of classical world lines, associated with Planck scale bounds on positional information. A parameterized candidate set of possible correlation functions is shown to be consistent with the known causal structure of the classical geometry measured by an apparatus, and the holographic scaling of information suggested by gravity. Frequency-domain power spectra are derived that can be compared with interferometer data. Simple projections of sensitivity for realistic experimental set-ups suggests that measurements will confirm or rule out a class of Planck scale departures from classical geometry.

  1. Malfunction diagnosis of sensors based on correlation of measurements

    NASA Astrophysics Data System (ADS)

    Lu, Wei; Teng, Jun; Wen, Runfa; Zhu, Jiayi; Li, Chao

    2017-02-01

    Structural health monitoring (SHM) is a type of on-site characterization of a real-world full-scale structure that is subjected to the real-world load cases. The fundamental element of SHM is the structural response measurements by sensors, the reliability of which is significant for safety assessment and other SHM applications. The paper proposed a method to diagnosis the fault in sensors using the correlation of measurements. The correlation of the variations of the measurements is examined using the sliding time windows, which is the principle to determine the fault in the sensors. The strain measurements from the SHM system of a real world structure, Shenzhen Bay Stadium, are performed to simulate the faults in sensors and to verify the effectiveness of the proposed method.

  2. Ion transport in roots: measurement of fluxes using ion-selective microelectrodes to characterize transporter function.

    PubMed

    Newman, I A

    2001-01-01

    The transport of mineral ions into and out of tissues and cells is central to the life of plants. Ion transport and the plasma membrane transporters themselves have been studied using a variety of techniques. In the last 15 years, measurement of specific ion fluxes has contributed to the characterization of transport systems. Progress in molecular genetics is allowing gene identification and controlled expression of transporter molecules. However the molecular expression of transporter gene products must be characterized at the functional level. The ion-selective microelectrode technique to measure specific ion fluxes non-invasively is ideally suited to this purpose. This technique, its theory, its links with others and its application and prospects in plant science, are discussed. Ions studied include hydrogen, potassium, sodium, ammonium, calcium, chloride and nitrate. Applications discussed include: solute ion uptake by roots; gravitropism and other processes in the root cap, meristematic and elongation zones; Nod factor effect on root hairs; osmotic and salt stresses; oscillations; the effects of light and temperature. Studies have included intact roots, leaf mesophyll and other tissues, protoplasts and bacterial biofilms. A multi-ion capability of the technique will greatly assist functional genomics, particularly when coupled with imaging techniques, patch clamping and the use of suitable mutants.

  3. Neural Correlates of Exposure to Cocaine Cues in Rhesus Monkeys: Modulation by the Dopamine Transporter.

    PubMed

    Porrino, Linda J; Miller, Mack D; Smith, Hilary R; Nader, Susan H; Nader, Michael A

    2016-11-01

    A major goal of treatments for cocaine addiction is to reduce relapse-associated cravings, which are typically induced by environmental stimuli associated with cocaine use and related to changes in dopamine neurotransmission. The present study used an animal model of cocaine seeking to determine functional consequences of cue exposure using fluorodeoxyglucose positron emission tomography and to relate findings to juvenile levels of dopamine transporter and D2-like receptor availabilities determined before any drug exposure. Adult male rhesus monkeys (N = 11) self-administered cocaine (0.2 mg/kg per injection) under a second-order schedule of reinforcement, in which responding was maintained by conditioned reinforcers. Positron emission tomography scans assessing glucose utilization, a marker of functional activation, were conducted during cocaine-cue responding and food-reinforced responding in a context where cocaine was never available. Compared with the noncocaine condition, we found significant functional activation in the medial prefrontal cortex, anterior cingulate, precuneus region of the parietal cortex, and striatum-findings similar to those reported in humans who abuse cocaine. Furthermore, these functional activations in the prefrontal, cingulate, and parietal cortex measured during cocaine-cue responding were significantly correlated with juvenile measures of dopamine transporter availability, whereas no significant relationship with prior D2-like receptor availability was observed in any brain region. The similarity between the present findings and findings in humans who use cocaine supports the use of this model for examination of factors that affect the development and intensity of cue-induced drug seeking and provides evidence for potential biomarkers for the evaluation of potential treatments (behavioral and pharmacologic) for cocaine abuse. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. Structure-transport correlation for the diffusive tortuosity of bulk, monodisperse, random sphere packings.

    PubMed

    Khirevich, Siarhei; Höltzel, Alexandra; Daneyko, Anton; Seidel-Morgenstern, Andreas; Tallarek, Ulrich

    2011-09-16

    The mass transport properties of bulk random sphere packings depend primarily on the bed (external) porosity ε, but also on the packing microstructure. We investigate the influence of the packing microstructure on the diffusive tortuosity τ=D(m)/D(eff), which relates the bulk diffusion coefficient (D(m)) to the effective (asymptotic) diffusion coefficient in a porous medium (D(eff)), by numerical simulations of diffusion in a set of computer-generated, monodisperse, hard-sphere packings. Variation of packing generation algorithm and protocol yielded four Jodrey-Tory and two Monte Carlo packing types with systematically varied degrees of microstructural heterogeneity in the range between the random-close and the random-loose packing limit (ε=0.366-0.46). The distinctive tortuosity-porosity scaling of the packing types is influenced by the extent to which the structural environment of individual pores varies in a packing, and to quantify this influence we propose a measure based on Delaunay tessellation. We demonstrate that the ratio of the minimum to the maximum void face area of a Delaunay tetrahedron around a pore between four adjacent spheres, (A(min)/A(max))(D), is a measure for the structural heterogeneity in the direct environment of this pore, and that the standard deviation σ of the (A(min)/A(max))(D)-distribution considering all pores in a packing mimics the tortuosity-porosity scaling of the generated packing types. Thus, σ(A(min)/A(max))(D) provides a structure-transport correlation for diffusion in bulk, monodisperse, random sphere packings. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Transport of a lattice gas under continuous measurement

    NASA Astrophysics Data System (ADS)

    Cheung, Hil F. H.; Patil, Yogesh Sharad; Madjarov, Ivaylo S.; Chen, Huiyao Y.; Vengalattore, Mukund

    2016-05-01

    The act of measurement has a profound consequence on a quantum system. While this backaction has hitherto been discussed as a limitation to the precision of measurements, it is increasingly being appreciated that measurement backaction is a powerful means of quantum control. We have previously demonstrated that backaction from position measurement can modify the coherent tunneling rate of a lattice gas through the Quantum Zeno effect. By suitably designing measurement landscapes we can control the transport properties of the lattice gas. We describe a quantitative study of lattice gas dynamics under continuous quantum measurement in the context of a quantum to classical transition where the atom dynamics goes from a quantum walk at low measurement strengths to classical diffusion at high measurement strengths. We further discuss the prospect of using disorder measurement landscapes to realize a new form of Anderson localization. This work is supported by the ARO MURI on non-equilibrium dynamics.

  6. Relating Reactive Transport to Hierarchical Sedimentary Architecture. Part 1. Horizontal Spatial Correlation of Hydraulic and Reactive Transport Parameters

    NASA Astrophysics Data System (ADS)

    Ritzi, R. W., Jr.

    2014-12-01

    A number of studies of the spatial correlation of log permeability (Y) in different sedimentary aquifers are reviewed showing that the spatial correlation structure can be defined by how the proportion of lag transitions crossing different facies (i.e. the cross-transition probability structure) increases with increasing lag distance. The common underlying cross-transition structure can contain substructures with different correlation ranges corresponding to different scales of sedimentary facies within the hierarchy of the sedimentary architecture. For each substructure, the standard deviation in facies length relative to the mean can mostly define the shape, and the proportions and mean length of facies define the range. An illustrative example from the Borden research site shows the horizontal spatial bivariate correlation of Y and of reactive attributes (R) affecting subsurface transport are both defined by the same underlying cross-transition probability structures. Thus, the horizontal Y and R autosemivariograms and the R-Y cross-semivariogram have the same underlying composite correlation structure and substructures (shape and range in the rise to a sill). Such cross-transition probability based correlation structures are used in the companion Part 2 presentation (Soltanian et al.) to develop models which relate the time-dependent effective retardation and the particle displacement variance to hierarchical sedimentary architecture.

  7. Measurements of the transport efficiency of the fragment mass analyzer

    SciTech Connect

    Back, B.B.; Blumenthal, D.J.; Davids, C.N.

    1995-08-01

    Extensive calculations of the transport of reaction products were carried out during the design phase of the instrument using the computer code GIOS. These show that the energy acceptance depends strongly on the angular deviation from the optical axis of the instrument. In order to reliably measure cross sections using this instrument it is therefore necessary to verify these calculations empirically.

  8. Field signatures of non-Fickian transport processes: transit time distributions, spatial correlations, reversibility and hydrogeophysical imaging

    NASA Astrophysics Data System (ADS)

    Le Borgne, T.; Kang, P. K.; Guihéneuf, N.; Shakas, A.; Bour, O.; Linde, N.; Dentz, M.

    2015-12-01

    Non-Fickian transport phenomena are observed in a wide range of scales across hydrological systems. They are generally manifested by a broad range of transit time distributions, as measured for instance in tracer breakthrough curves. However, similar transit time distributions may be caused by different origins, including broad velocity distributions, flow channeling or diffusive mass transfer [1,2]. The identification of these processes is critical for defining relevant transport models. How can we distinguish the different origins of non-Fickian transport in the field? In this presentation, we will review recent experimental developments to decipher the different causes of anomalous transport, based on tracer tests performed at different scales in cross borehole and push pull conditions, and time lapse hydrogeophysical imaging of tracer motion [3,4]. References:[1] de Anna-, P., T. Le Borgne, M. Dentz, A. M. Tartakovsky, D. Bolster, P. Davy (2013) Flow Intermittency, Dispersion and Correlated Continuous Time Random Walks in Porous Media, Phys. Rev. Lett., 110, 184502 [2] Le Borgne T., Dentz M., and Carrera J. (2008) Lagrangian Statistical Model for Transport in Highly Heterogeneous Velocity Fields. Phys. Rev. Lett. 101, 090601 [3] Kang, P. K., T. Le Borgne, M. Dentz, O. Bour, and R. Juanes (2015), Impact of velocity correlation and distribution on transport in fractured media : Field evidence and theoretical model, Water Resour. Res., 51, 940-959 [4] Dorn C., Linde N., Le Borgne T., O. Bour and L. Baron (2011) Single-hole GPR reflection imaging of solute transport in a granitic aquifer Geophys. Res. Lett. Vol.38, L08401

  9. Heat transport measurements in turbulent rotating Rayleigh-Benard convection

    SciTech Connect

    Ecke, Robert E; Liu, Yuanming

    2008-01-01

    We present experimental heat transport measurements of turbulent Rayleigh-Benard convection with rotation about a vertical axis. The fluid, water with Prandtl number ({sigma}) about 6, was confined in a cell which had a square cross section of 7.3 cm x 7.3 cm and a height of 9.4 cm. Heat transport was measured for Rayleigh numbers 2 x 10{sup 5} < Ra < 5 x 10{sup 8} and Taylor numbers 0 < Ta < 5 x 10{sup 9}. We show the variation of normalized heat transport, the Nusselt number, at fixed dimensional rotation rate {Omega}{sub D}, at fixed Ra varying Ta, at fixed Ta varying Ra, and at fixed Rossby number Ro. The scaling of heat transport in the range 10{sup 7} to about 10{sup 9} is roughly 0.29 with a Ro dependent coefficient or equivalently is also well fit by a combination of power laws of the form a Ra{sup 1/5} + b Ra{sup 1/3} . The range of Ra is not sufficient to differentiate single power law or combined power law scaling. The overall impact of rotation on heat transport in turbulent convection is assessed.

  10. N -term pairwise-correlation inequalities, steering, and joint measurability

    NASA Astrophysics Data System (ADS)

    Karthik, H. S.; Devi, A. R. Usha; Tej, J. Prabhu; Rajagopal, A. K.; Sudha, Narayanan, A.

    2017-05-01

    Chained inequalities involving pairwise correlations of qubit observables in the equatorial plane are constructed based on the positivity of a sequence of moment matrices. When a jointly measurable set of positive-operator-valued measures (POVMs) is employed in the first measurement of every pair of sequential measurements, the chained pairwise correlations do not violate the classical bound imposed by the moment matrix positivity. We find that incompatibility of the set of POVMs employed in first measurements is only necessary, but not sufficient, in general, for the violation of the inequality. On the other hand, there exists a one-to-one equivalence between the degree of incompatibility (which quantifies the joint measurability) of the equatorial qubit POVMs and the optimal violation of a nonlocal steering inequality, proposed by Jones and Wiseman [S. J. Jones and H. M. Wiseman, Phys. Rev. A 84, 012110 (2011), 10.1103/PhysRevA.84.012110]. To this end, we construct a local analog of this steering inequality in a single-qubit system and show that its violation is a mere reflection of measurement incompatibility of equatorial qubit POVMs, employed in first measurements in the sequential unsharp-sharp scheme.

  11. Measuring weak lensing correlations of Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Scovacricchi, D.; Nichol, R. C.; Macaulay, E.; Bacon, D.

    2017-03-01

    We study the feasibility of detecting weak lensing spatial correlations between supernova (SN) Type Ia magnitudes with present (Dark Energy Survey, DES) and future (Large Synoptic Survey Telescope, LSST) surveys. We investigate the angular auto-correlation function of SN magnitudes (once the background cosmology has been subtracted) and cross-correlation with galaxy catalogues. We examine both analytical and numerical predictions, the latter using simulated galaxy catalogues from the MICE Grand Challenge Simulation. We predict that we will be unable to detect the SN auto-correlation in DES, while it should be detectable with the LSST SN deep fields (15 000 SNe on 70 deg2) at ≃6σ level of confidence (assuming 0.15 mag of intrinsic dispersion). The SN-galaxy cross-correlation function will deliver much higher signal to noise, being detectable in both surveys with an integrated signal to noise of ∼100 (up to 30 arcmin separations). We predict joint constraints on the matter density parameter (Ωm) and the clustering amplitude (σ8) by fitting the auto-correlation function of our mock LSST deep fields. When assuming a Gaussian prior for Ωm, we can achieve a 25 per cent measurement of σ8 from just these LSST supernovae (assuming 0.15 mag of intrinsic dispersion). These constraints will improve significantly if the intrinsic dispersion of SNe Ia can be reduced.

  12. Correlation Measurements with {sup 252}Cf to Characterize Fissile Material

    SciTech Connect

    Mattingly, J.K.

    2000-01-04

    Measurements using {sup 252}Cf as a timed source of neutrons and gammas have in recent years undergone significant maturation. These methods use {sup 252}Cf as an observable source of spontaneous fission neutrons and gammas in conjunction with one or more neutron- and/or gamma-sensitive detectors to measure the time-distribution of correlated detector counts following (a) an observed {sup 252}Cf-fission event and/or (b) a counting event in another detector. Detection of {sup 252}Cf spontaneous fission is frequently achieved via use of a small ionization chamber in which the {sup 252}Cf is contained--in this case the timing of source emission events is random. However, one application subsequently described uses a neutron-absorbent ''shutter'' to modulate {sup 252}Cf emissions to produce a neutron source with deterministic timing. Other applications, frequently termed noise-analysis measurements, transform the time-distributions to the frequency domain. Collectively, these correlation methods use {sup 252}Cf to ''excite'' the fissile material and the response of the material is measured by an array of detectors and analyzed using standard time-correlation and/or frequency-analysis techniques. In recent years numerous advances have been made in the application of these methods to in-situ, or field measurements directed at characterizing various configurations of fissile material in operational facilities.

  13. Correlation techniques and measurements of wave-height statistics

    NASA Technical Reports Server (NTRS)

    Guthart, H.; Taylor, W. C.; Graf, K. A.; Douglas, D. G.

    1972-01-01

    Statistical measurements of wave height fluctuations have been made in a wind wave tank. The power spectral density function of temporal wave height fluctuations evidenced second-harmonic components and an f to the minus 5th power law decay beyond the second harmonic. The observations of second harmonic effects agreed very well with a theoretical prediction. From the wave statistics, surface drift currents were inferred and compared to experimental measurements with satisfactory agreement. Measurements were made of the two dimensional correlation coefficient at 15 deg increments in angle with respect to the wind vector. An estimate of the two-dimensional spatial power spectral density function was also made.

  14. Local Quantum Measurement and No-Signaling Imply Quantum Correlations

    NASA Astrophysics Data System (ADS)

    Barnum, H.; Beigi, S.; Boixo, S.; Elliott, M. B.; Wehner, S.

    2010-04-01

    We show that, assuming that quantum mechanics holds locally, the finite speed of information is the principle that limits all possible correlations between distant parties to be quantum mechanical as well. Local quantum mechanics means that a Hilbert space is assigned to each party, and then all local positive-operator-valued measurements are (in principle) available; however, the joint system is not necessarily described by a Hilbert space. In particular, we do not assume the tensor product formalism between the joint systems. Our result shows that if any experiment would give nonlocal correlations beyond quantum mechanics, quantum theory would be invalidated even locally.

  15. Local quantum measurement and no-signaling imply quantum correlations.

    PubMed

    Barnum, H; Beigi, S; Boixo, S; Elliott, M B; Wehner, S

    2010-04-09

    We show that, assuming that quantum mechanics holds locally, the finite speed of information is the principle that limits all possible correlations between distant parties to be quantum mechanical as well. Local quantum mechanics means that a Hilbert space is assigned to each party, and then all local positive-operator-valued measurements are (in principle) available; however, the joint system is not necessarily described by a Hilbert space. In particular, we do not assume the tensor product formalism between the joint systems. Our result shows that if any experiment would give nonlocal correlations beyond quantum mechanics, quantum theory would be invalidated even locally.

  16. A transportable magnetic resonance imaging system for in situ measurements of living trees: the Tree Hugger.

    PubMed

    Jones, M; Aptaker, P S; Cox, J; Gardiner, B A; McDonald, P J

    2012-05-01

    This paper presents the design of the 'Tree Hugger', an open access, transportable, 1.1 MHz (1)H nuclear magnetic resonance imaging system for the in situ analysis of living trees in the forest. A unique construction employing NdFeB blocks embedded in a reinforced carbon fibre frame is used to achieve access up to 210 mm and to allow the magnet to be transported. The magnet weighs 55 kg. The feasibility of imaging living trees in situ using the 'Tree Hugger' is demonstrated. Correlations are drawn between NMR/MRI measurements and other indicators such as relative humidity, soil moisture and net solar radiation.

  17. Measurement of the radiative transport properties of reticulated alumina foams

    SciTech Connect

    Hale, M.J.; Bohn, M.S.

    1992-12-01

    This paper presents a method for determining radiative transport properties of reticulated materials. The method has both experimental and analytical components. A polar nephelometer is used to measure the scattering profile of a sample of the reticulated material. The results of a Monte Carlo simulation of the experiment are then combined with the experimental results to give the scatter albedo and extinction coefficient. This paper presents the results of using this method to determine the radiative transport properties of four different porosities (10, 20, 30, 65 pores per inch) of cylindrical reticulated alumina samples ranging in thickness form 0.5 inches to 2. 5 inches.

  18. Euler and Potential Experiment/CFD Correlations for a Transport and Two Delta-Wing Configurations

    NASA Technical Reports Server (NTRS)

    Hicks, R. M.; Cliff, S. E.; Melton, J. E.; Langhi, R. G.; Goodsell, A. M.; Robertson, D. D.; Moyer, S. A.

    1990-01-01

    A selection of successes and failures of Computational Fluid Dynamics (CFD) is discussed. Experiment/CFD correlations involving full potential and Euler computations of the aerodynamic characteristics of four commercial transport wings and two low aspect ratio, delta wing configurations are shown. The examples consist of experiment/CFD comparisons for aerodynamic forces, moments, and pressures. Navier-Stokes equations are not considered.

  19. Microelectrode measurements of local mass transport rates in heterogeneous biofilms.

    PubMed

    Rasmussen, K; Lewandowski, Z

    1998-08-05

    Microelectrodes were used to measure oxygen profiles and local mass transfer coefficient profiles in biofilm clusters and interstitial voids. Both profiles were measured at the same location in the biofilm. From the oxygen profile, the effective diffusive boundary layer thickness (DBL) was determined. The local mass transfer coefficient profiles provided information about the nature of mass transport near and within the biofilm. All profiles were measured at three different average flow velocities, 0.62, 1.53, and 2.60 cm sec-1, to determine the influence of flow velocity on mass transport. Convective mass transport was active near the biofilm/liquid interface and in the upper layers of the biofilm, independent of biofilm thickness and flow velocity. The DBL varied strongly between locations for the same flow velocities. Oxygen and local mass transfer coefficient profiles collected through a 70 micrometer thick cluster revealed that a cluster of that thickness did not present any significant mass transport resistance. In a 350 micrometer thick biofilm cluster, however, the local mass transfer coefficient decreased gradually to very low values near the substratum. This was hypothetically attributed to the decreasing effective diffusivity in deeper layers of biofilms. Interstitial voids between clusters did not seem to influence the local mass transfer coefficients significantly for flow velocities of 1.53 and 2.60 cm sec-1. At a flow velocity of 0.62 cm sec-1, interstitial voids visibly decreased the local mass transfer coefficient near the bottom. Copyright 1998 John Wiley & Sons, Inc.

  20. Correlation Between NDE Measurements and Elongation of Aluminum

    SciTech Connect

    Thompson, R. Bruce; Margetan, Frank J.; Nakagawa, Norio; Haldipur, Pranaam

    2007-03-21

    Complex aluminum forgings can have engineering properties which vary with position due to changes in the underlying local metal microstructure. Consequently, the material properties may be in compliance with production requirements in some regions of the forging, but out of compliance in others. One conical Al-7050 forging of interest was found to have elongation properties which failed required tests in certain regions. NDE measurements sensitive to microstructural changes were carried out to search for correlations with elongation properties. The results of a set of initial feasibility experiments will be reported. Both ultrasonic and eddy current NDE methods were used, with the goal being to determine which properties were sensitive to the elongation. Ultrasonic testing included the measurement of longitudinal and shear-wave velocity, longitudinal wave attenuation, and longitudinal and shear-wave backscattered grain noise. All tests were performed with the sonic beam entering through the coupon face that would be adjacent to the outer surface of the forging. Only modest differences in wave speed and attenuation values were seen among the suite of coupons, but significant differences were seen in backscattered noise levels. These appeared to indicate changes in grain structure but only exhibited partial correlation with elongation. The eddy current measurements were designed to be sensitive to the electrical resistivity. Included were a number of measurement configurations and frequencies. The signals exhibited a significant correlation with elongation.

  1. Correlation Between NDE Measurements and Elongation of Aluminum

    NASA Astrophysics Data System (ADS)

    Thompson, R. Bruce; Margetan, Frank J.; Nakagawa, Norio; Haldipur, Pranaam

    2007-03-01

    Complex aluminum forgings can have engineering properties which vary with position due to changes in the underlying local metal microstructure. Consequently, the material properties may be in compliance with production requirements in some regions of the forging, but out of compliance in others. One conical Al-7050 forging of interest was found to have elongation properties which failed required tests in certain regions. NDE measurements sensitive to microstructural changes were carried out to search for correlations with elongation properties. The results of a set of initial feasibility experiments will be reported. Both ultrasonic and eddy current NDE methods were used, with the goal being to determine which properties were sensitive to the elongation. Ultrasonic testing included the measurement of longitudinal and shear-wave velocity, longitudinal wave attenuation, and longitudinal and shear-wave backscattered grain noise. All tests were performed with the sonic beam entering through the coupon face that would be adjacent to the outer surface of the forging. Only modest differences in wave speed and attenuation values were seen among the suite of coupons, but significant differences were seen in backscattered noise levels. These appeared to indicate changes in grain structure but only exhibited partial correlation with elongation. The eddy current measurements were designed to be sensitive to the electrical resistivity. Included were a number of measurement configurations and frequencies. The signals exhibited a significant correlation with elongation.

  2. Reliability-guided digital image correlation for image deformation measurement

    SciTech Connect

    Pan Bing

    2009-03-10

    A universally applicable reliability-guided digital image correlation (DIC) method is proposed for reliable image deformation measurement. The zero-mean normalized cross correlation (ZNCC) coefficient is used to identify the reliability of the point computed. The correlation calculation begins with a seed point and is then guided by the ZNCC coefficient. That means the neighbors of the point with the highest ZNCC coefficient in a queue for computed points will be processed first. Thus the calculation path is always along the most reliable direction, and possible error propagation of the conventional DIC method can be avoided. The proposed novel DIC method is universally applicable to the images with shadows, discontinuous areas, and deformation discontinuity. Two image pairs were used to evaluate the performance of the proposed technique, and the successful results clearly demonstrate its robustness and effectiveness.

  3. Neighbor-Neighbor Correlations Explain Measurement Bias in Networks.

    PubMed

    Wu, Xin-Zeng; Percus, Allon G; Lerman, Kristina

    2017-07-17

    In numerous physical models on networks, dynamics are based on interactions that exclusively involve properties of a node's nearest neighbors. However, a node's local view of its neighbors may systematically bias perceptions of network connectivity or the prevalence of certain traits. We investigate the strong friendship paradox, which occurs when the majority of a node's neighbors have more neighbors than does the node itself. We develop a model to predict the magnitude of the paradox, showing that it is enhanced by negative correlations between degrees of neighboring nodes. We then show that by including neighbor-neighbor correlations, which are degree correlations one step beyond those of neighboring nodes, we accurately predict the impact of the strong friendship paradox in real-world networks. Understanding how the paradox biases local observations can inform better measurements of network structure and our understanding of collective phenomena.

  4. Charge transport measurements of vertically aligned carbon nanofibers

    NASA Astrophysics Data System (ADS)

    Zhang, Lan

    2005-07-01

    Vertically aligned carbon nanofibers (VACNFs) have found a variety of electronic applications. To further realize these applications, a good understanding of the charge transport properties is essential. In this work, charge transport properties have been systematically measured for three types of VACNF forests with Ni as catalyst, namely VACNFs grown by direct current PECVD, and inductively coupled PECVD at both normal pressure and low pressure. The structure and composition of these nanofibers have also been investigated in detail prior to the charge transport measurements. Four-probe I-V measurements on individual nanofibers have been enabled by the fabrication of multiple metal ohmic contacts on individual fibers that exhibited resistance of only a few kO. An O2 plasma reactive ion etch method has been used to achieve ohmic contacts between the nanofibers and Ti/Au, Ag/Au, Cd/Au, and Cr/Au electrodes. Direct current VACNFs exhibit linear I-V behavior at room temperature, with a resistivity of approximately 4.2 x 10-3 O·cm. Our measurements are consistent with a dominant transport mechanism of electrons traveling through intergraphitic planes in the dc VACNFs. The resistivity of these fibers is almost independent of temperature, and the contact resistance decreases as temperature increases. Further studies reveal that the 10--15 nm thick graphitic outer layer dominates the charge transport properties of do VACNFs. This is demonstrated by comparison of charge transport properties of as-grown VACNFs and VACNFs with the outer layer partially removed by oxygen plasma reactive ion etch. The linear I-V behavior of the fibers does not vary as this outer layer becomes thinner, but displays a drastic shift to a rectifying behavior when this layer is completely stripped away from some regions of the nanofiber. This shift may be related with the compositional differences in the outer layer and the inner core of the nanofibers. Two-probe charge transport measurements on

  5. Measuring correlations in non-separable vector beams using projective measurements

    NASA Astrophysics Data System (ADS)

    Subramanian, Keerthan; Viswanathan, Nirmal K.

    2017-09-01

    Doubts regarding the completeness of quantum mechanics as raised by Einstein, Podolsky and Rosen(EPR) have predominantly been resolved by resorting to a measurement of correlations between entangled photons which clearly demonstrate violation of Bell's inequality. This article is an attempt to reconcile incompatibility of hidden variable theories with reality by demonstrating experimentally a violation of Bell's inequality in locally correlated systems whose two degrees of freedom, the spin and orbital angular momentum, are maximally correlated. To this end we propose and demonstrate a linear, achromatic modified Sagnac interferometer to project orbital angular momentum states which we combine with spin projections to measure correlations.

  6. Correlating Function and Imaging Measures of the Medial Longitudinal Fasciculus

    PubMed Central

    Sakaie, Ken; Takahashi, Masaya; Remington, Gina; Wang, Xiaofeng; Conger, Amy; Conger, Darrel; Dimitrov, Ivan; Jones, Stephen; Frohman, Ashley; Frohman, Teresa; Sagiyama, Koji; Togao, Osamu

    2016-01-01

    Objective To test the validity of diffusion tensor imaging (DTI) measures of tissue injury by examining such measures in a white matter structure with well-defined function, the medial longitudinal fasciculus (MLF). Injury to the MLF underlies internuclear ophthalmoparesis (INO). Methods 40 MS patients with chronic INO and 15 healthy controls were examined under an IRB-approved protocol. Tissue integrity of the MLF was characterized by DTI parameters: longitudinal diffusivity (LD), transverse diffusivity (TD), mean diffusivity (MD) and fractional anisotropy (FA). Severity of INO was quantified by infrared oculography to measure versional disconjugacy index (VDI). Results LD was significantly lower in patients than in controls in the medulla-pons region of the MLF (p < 0.03). FA was also lower in patients in the same region (p < 0.0004). LD of the medulla-pons region correlated with VDI (R = -0.28, p < 0.05) as did FA in the midbrain section (R = 0.31, p < 0.02). Conclusions This study demonstrates that DTI measures of brain tissue injury can detect injury to a functionally relevant white matter pathway, and that such measures correlate with clinically accepted evaluation indices for INO. The results validate DTI as a useful imaging measure of tissue integrity. PMID:26800522

  7. Long-range correlations in a simple stochastic model of coupled transport

    NASA Astrophysics Data System (ADS)

    Larralde, Hernán; Sanders, David P.

    2009-08-01

    We study coupled transport in the nonequilibrium stationary state of a model consisting of independent random walkers, moving along a one-dimensional channel, which carry a conserved energy-like quantity, with density and temperature gradients imposed by reservoirs at the ends of the channel. In our model, walkers interact with other walkers at the same site by sharing energy at each time step, but the amount of energy carried does not affect the motion of the walkers. We find that already in this simple model long-range correlations arise in the nonequilibrium stationary state which are similar to those observed in more realistic models of coupled transport. We derive an analytical expression for the source of these correlations, which we use to obtain semi-analytical results for the correlations themselves assuming a local-equilibrium hypothesis. These are in very good agreement with results from direct numerical simulations.

  8. Capacitance-Voltage Measurement of Transporting Function at Cell Membrane

    NASA Astrophysics Data System (ADS)

    Sakata, Toshiya; Miyahara, Yuji

    In this paper, we report the detection of transporting function at cell membrane using capacitance-voltage (CV) measurement. The detection principle of our devices is based on the field-effect of electrostatic interaction between charged species at cell membrane in solution and surface electrons in silicon crystal through the gate insulator of Si3N4/SiO2 thin double-layer. We designed an oocyte-based field-effect capacitor, on which a Xenopus laevis oocyte was fixed. The transporter of human organic anion transporting peptide C (hOATP-C) was expressed at oocyte membrane by induction of cRNA. The electrical phenomena such as ion or molecular charge flux at the interface between cell membrane and gate surface could be detected as the change of flat band voltage in CV characteristics. The flat band voltage shift decreased with incubation time after introduction of substrate into the oocyte-based field-effect capacitor. The electrical signal is due to the change of charge flux from the oocyte at the gate surface inspired by transporter-substrate binding. The platform based on the oocyte-based field-effect capacitor is suitable for a simple and non-invasive detection system in order to analyze function of transporters related to drug efficacy.

  9. A rain splash transport equation assimilating field and laboratory measurements

    USGS Publications Warehouse

    Dunne, T.; Malmon, D.V.; Mudd, S.M.

    2010-01-01

    Process-based models of hillslope evolution require transport equations relating sediment flux to its major controls. An equation for rain splash transport in the absence of overland flow was constructed by modifying an approach developed by Reeve (1982) and parameterizing it with measurements from single-drop laboratory experiments and simulated rainfall on a grassland in East Africa. The equation relates rain splash to hillslope gradient, the median raindrop diameter of a storm, and ground cover density; the effect of soil texture on detachability can be incorporated from other published results. The spatial and temporal applicability of such an equation for rain splash transport in the absence of overland flow on uncultivated hillslopes can be estimated from hydrological calculations. The predicted transport is lower than landscape-averaged geologic erosion rates from Kenya but is large enough to modify short, slowly eroding natural hillslopes as well as microtopographic interrill surfaces between which overland flow transports the mobilized sediment. Copyright 2010 by the American Geophysical Union. Copyright 2010 by the American Geophysical Union.

  10. Digital correlator for the portable channel prober measurement instrument

    NASA Astrophysics Data System (ADS)

    Peo, George E., Jr.

    1987-12-01

    This document describes a Digital Correlator for the Portable Channel Prober Measurement Instrument being developed by the Naval Research Laboratory for use in experiments designed to characterize high frequency (HF) radio channels. This Digital Correlator is a digital signal processor designed and constructed by Stow Computer, 111 old Bolton Road, Stow, MA 01775, (617/508) 897-6838. Two Digital Correlators are integrated into the existing Digital Pre-processor to make a Portable Wideband HF Channel Analyzer. The Portable Wideband HF Channel Analyzer will be located at the receiving site of the channel probing experiment and is situated between the coherent radio receiver and the microcomputer used for data recording and analysis. The Portable Wideband HF Channel Analyzer computes the delay power spectrum of the received waveform. The in-phase and quadrature outputs of the receiver are sampled and converted to digital values by the Analog to Digital Converter, integrated by the Integrator, and correlated with a stored replica of the transmitted waveform by two Digital Correlators. The resulting tap gains are then read by the system microcomputer using the microcomputer interface.

  11. On the correlation measure of two-electron systems

    NASA Astrophysics Data System (ADS)

    Saha, Aparna; Talukdar, Benoy; Chatterjee, Supriya

    2017-05-01

    We make use of a Hylleraas-type wave function to derive an exact analytical model to quantify correlation in two-electron atomic/ionic systems and subsequently employ it to examine the role of inter-electronic repulsion in affecting (i) the bare (uncorrelated) single-particle position- and momentum-space charge distributions and (ii) corresponding Shannon's information entropies. The results presented for the first five members in the helium iso-electronic sequence, on the one hand, correctly demonstrate the effect of correlation on bare charge distributions and, on the other hand, lead us to some important results for the correlated and uncorrelated values of the entropies. These include the limiting behavior of the correlated entropy sum (sum of position- and momentum-space entropies) and geometrical realization for the variation of information entropies as a function of Z. We suggest that, rather than the entropy sum, individual entropies should be regarded as better candidates for the measure of correlation.

  12. Topography measurements for correlations of standard cartridge cases

    NASA Astrophysics Data System (ADS)

    Vorburger, T. V.; Song, J.; Chu, W.; Renegar, T. B.; Zheng, A.; Yen, J.; Thompson, R. M.; Silver, R.; Bachrach, B.; Ols, M.

    2010-06-01

    The National Institute of Standards and Technology Standard Reference Materials (SRM) 2460 Standard Bullets and 2461 Standard Cartridge Cases are intended for use as check standards for crime laboratories to help verify that their computerized optical imaging equipment for ballistics image acquisitions and correlations is operating properly. Using topography measurements and cross-correlation methods, our earlier results for the SRM bullets and recent results for the SRM cartridge cases both demonstrate that the individual units of the SRMs are highly reproducible. Currently, we are developing procedures for topographic imaging of the firing pin impressions, breech face impressions, and ejector marks of the standard cartridge cases. The initial results lead us to conclude that all three areas can be measured accurately and routinely using confocal techniques. We are also nearing conclusion of a project with crime lab experts to test sets of both SRM cartridge cases and SRM bullets using the automated commercial systems of the National Integrated Ballistics Information Network.

  13. Elongation measurement using 1-dimensional image correlation method

    NASA Astrophysics Data System (ADS)

    Phongwisit, Phachara; Kamoldilok, Surachart; Buranasiri, Prathan

    2016-11-01

    Aim of this paper was to study, setup, and calibrate an elongation measurement by using 1- Dimensional Image Correlation method (1-DIC). To confirm our method and setup correctness, we need calibration with other methods. In this paper, we used a small spring as a sample to find a result in terms of spring constant. With a fundamental of Image Correlation method, images of formed and deformed samples were compared to understand the difference between deformed process. By comparing the location of reference point on both image's pixel, the spring's elongation were calculated. Then, the results have been compared with the spring constants, which were found from Hooke's law. The percentage of 5 percent error has been found. This DIC method, then, would be applied to measure the elongation of some different kinds of small fiber samples.

  14. Measurement and correlation of jet fuel viscosities at low temperatures

    NASA Technical Reports Server (NTRS)

    Schruben, D. L.

    1985-01-01

    Apparatus and procedures were developed to measure jet fuel viscosity for eight current and future jet fuels at temperatures from ambient to near -60 C by shear viscometry. Viscosity data showed good reproducibility even at temperatures a few degrees below the measured freezing point. The viscosity-temperature relationship could be correlated by two linear segments when plotted as a standard log-log type representation (ASTM D 341). At high temperatures, the viscosity-temperature slope is low. At low temperatures, where wax precipitation is significant, the slope is higher. The breakpoint between temperature regions is the filter flow temperature, a fuel characteristic approximated by the freezing point. A generalization of the representation for the eight experimental fuels provided a predictive correlation for low-temperature viscosity, considered sufficiently accurate for many design or performance calculations.

  15. Longterm Measurements of Bedload-Transport in alpine Catchments

    NASA Astrophysics Data System (ADS)

    Achleitner, Stefan; Kammerlander, Johannes; Eichner, Bernhard; Schöber, Johannes; Chiari, Michael

    2016-04-01

    In recent years the necessity of predicting the long-term behavior of sediment transport has increased. On the one hand, the effects of technical measures (e.g. retaining measures, hydropower, etc.) in the natural system are to be evaluated. On the other hand long term ecological studies that are strongly linked to the sediment budgets and its variation are more and more evolving. The ACRP Project DevoBeta-CC addresses the dynamics of long term sediment transport dynamics and its temporal altering. The focus is put on smaller tributary catchments enabling the model development. In total the data from ten catchments connected to the hydropower station Kaunertal (Tyrol/Austria) and eleven catchments linked to the power plant group Sellrain-Silz (Tyrol/Austria) are available. The considered catchments vary regarding their characteristics such as size (3 km³ to 27 km²), glaciation (0 % to 53 %), mean catchment slope (53 % to 92 %) and mean channel gradient (4 % to 49 %). The main data basis are records from the water intake structures operated (partly since 1965) by the TIWAG (Tiroler Wasserkraft AG). The sedimentation dynamics and operational flushings of the connected settling basins are used to measure the transported sediments. Since 1985 even high resolution data (15min intervals) are available. At selected catchments, the operationally recorded data (flushings, load membrane measurements,...) are verified within measuring campaigns using bed load traps upstream. Further, the sedimentation dynamics and grain size distributions in the settling basins are evaluated. Therefor two water intakes were put temporally out of operation, allowing an improved measurement of settled volumes by means of terrestrial surveying. Uncertainty assessments reveal an overall accuracy of estimated annual bed load volumes lower than a factor of two. Additionally, the data set enables to address sediment transport at a sub-annual basis, hence, the presented data set is unique regarding

  16. GENERAL: Connectivity correlations in three topological spaces of urban bus-transport networks in China

    NASA Astrophysics Data System (ADS)

    Chen, Yong-Zhou; Fu, Chun-Hua; Chang, Hui; Li, Nan; He, Da-Ren

    2008-10-01

    In this paper, an empirical investigation is presented, which focuses on unveiling the universality of connectivity correlations in three spaces (the route space, the stop geographical space and bus-transferring space) of urban bus-transport networks (BTNs) in four major cities of China. The underlying features of the connectivity correlations are shown in two statistical ways. One is the correlation between the (weighted) average degree of all the nearest neighbouring vertices with degree k, (Knnw (k)) Knn(k), and k, and the other is the correlations between the assortativity coefficient r and, respectively, the network size N, the network diameter D, the averaged clustering coefficient C, and the averaged distance . The obtained results show qualitatively the same connectivity correlations of all the considered cities under all the three spaces.

  17. A quantitative measure of phase correlations in density fields

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.; Melott, Adrian L.; Shandarin, Sergei F.

    1991-01-01

    A quantitative measure of the phase correlations in a density field is presented based on the location of the maxima of the Fourier components of that field. It is found that this measue can easily detect non-Gaussian behavior either in artificially constructed density fields or those that become non-Gaussian from gravitational clustering of Gaussian initial conditions. It is found that different initial power spectra produce somewhat distinguishable signals, and the signals are robust against sparse sampling.

  18. Calibrating and Measuring Bedload Transport Using a Magnetic Detection System

    NASA Astrophysics Data System (ADS)

    Rempel, J.; Hassan, M. A.

    2004-12-01

    One of the problems in bedload transport research is that no measurement technique has been commonly accepted as superior, and there are no standard protocols. There is a need for continuous bedload measurement to adequately resolve patterns in temporal and spatial variability, especially at high transport rates. Magnetic detection systems are a promising method as they can sense the movement of natural stones, and provide high frequency data in both time and space. A number of magnetic systems have been deployed in the field, but they have not been adequately calibrated. This has limited the analysis to counting the number of pulses, and not allowed confident estimations of the true amount of sediment transport, sediment texture or particle velocities. We developed a series of lab and flume experiments to calibrate the BMD system used by Tunnicliffe et al (2000). Experiments were run with both artificial and natural stones to isolate the effects of particle size, velocity and magnetic content (susceptibility and moment) on the shape of the recorded signal. A large number of experiments were conducted to cover wide range of flow conditions, particle sizes, and particle velocities. The results show that the system is sensitive enough to detect particles down to at least 8mm. Using artificial stones we were able to relate the signal amplitude, width and area to particle size, velocity and magnetic content. These results suggest that the magnetic system can be used to estimate transport rates in natural streams. Work is continuing with natural stones both in the laboratory and the field to further develop of the system. Tunnicliffe, J., Gottesfeld, A.S., and Mohamed, M. 2000. High-resolution measurement of bedload transport, Hydrological Processes, 14, 2631-2643.

  19. Measurements and models of reactive transport in geological media

    NASA Astrophysics Data System (ADS)

    Berkowitz, Brian; Dror, Ishai; Hansen, Scott K.; Scher, Harvey

    2016-12-01

    Reactive chemical transport plays a key role in geological media across scales, from pore scale to aquifer scale. Systems can be altered by changes in solution chemistry and a wide variety of chemical transformations, including precipitation/dissolution reactions that cause feedbacks that directly affect the flow and transport regime. The combination of these processes with advective-dispersive-diffusive transport in heterogeneous media leads to a rich spectrum of complex dynamics. The principal challenge in modeling reactive transport is to account for the subtle effects of fluctuations in the flow field and species concentrations; spatial or temporal averaging generally suppresses these effects. Moreover, it is critical to ground model conceptualizations and test model outputs against laboratory experiments and field measurements. This review emphasizes the integration of these aspects, considering carefully designed and controlled experiments at both laboratory and field scales, in the context of development and solution of reactive transport models based on continuum-scale and particle tracking approaches. We first discuss laboratory experiments and field measurements that define the scope of the phenomena and provide data for model comparison. We continue by surveying models involving advection-dispersion-reaction equation and continuous time random walk formulations. The integration of measurements and models is then examined, considering a series of case studies in different frameworks. We delineate the underlying assumptions, and strengths and weaknesses, of these analyses, and the role of probabilistic effects. We also show the key importance of quantifying the spreading and mixing of reactive species, recognizing the role of small-scale physical and chemical fluctuations that control the initiation of reactions.

  20. Anomalous Transport in Carbonate Rock - Predictions and Quantitative Measures

    NASA Astrophysics Data System (ADS)

    Bijeljic, B.; Blunt, M. J.

    2014-12-01

    Solute transport in rock subsurface is important in a number of applications such as contaminant hydrology, carbon storage and enhanced oil recovery. Carbonate rock contain most of the world's oil reserves and potentially hold a storage capacity for carbon dioxide. Pore structure in carbonate rock introduces an additional complexity in the form of bimodal pore size distributions, which leads to complex anomalous transport behavior and poses a significant challenge for accurate predictions. We present a new modeling concept that simulates flow and transport on micro-CT images containing the information on inter- and intra-grain pore space of carbonate rock. Navier-Stokes equations are solved for flow in the image voxels comprising the pore space, streamline-based simulation is used to account for advection, and diffusion is superimposed by random walk. Firstly, the model is validated against the experimental NMR measurements in the dual porosity beadpack. Furthermore, the model predictions are made for a number of carbonate rock images which are then classified in terms of heterogeneity of the inter- and intra-grain pore space, heterogeneity in the flow field, and the mass transfer characteristics of the porous media. Finally, we demonstrate the predictive capabilities of the model through an analysis that includes a number of probability density functions (PDFs) measures of non-Fickian transport on the micro-CT images.

  1. LIF Diagnostic for Measuring Beam-Transport Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Jones, T. G.; Noonan, W. A.; Ottinger, P. F.

    1996-11-01

    A novel, spatially-resolved diagnostic is being developed to measure magnetic fields associated with intense ion beam propagation through a low-pressure gas, as is envisioned for light ion-driven ICF. The diagnostic technique uses laser-induced fluorescence (LIF) spectroscopy, and can be varied to measure either small or large fields. Small fields, as expected in ballistic transport with solenoidal lens focusing using ~ 1 Torr gas, produce Zeeman shifts, Δ λ_Z, smaller than the transition linewidth, Δ λ. High sensitivity to measure these shifts is achieved by a variation on the Babcock technique.^1 Large fields, as expected in self-pinched transport using 10--100 mTorr gas, produce Δ λZ larger than Δ λ, which can be measured with a high-resolution spectrometer. Results of proof-of-principle experiments using calibrated B-fields for both the small- and large-field techniques will be presented. Progress in fielding this diagnostic on the Gamble-II accelerator for beam-transport studies will also be presented. This work is supported by DoE through Sandia National Laboratories. ^ NRC-NRL Research Associate. ^ Present address University of Maryland, College Park, MD. ^1 W.A. Noonan, et al., accepted for publication in Rev. Sci. Instrum.

  2. Resolution of ambiguous radar measurements using a floating bin correlator

    NASA Astrophysics Data System (ADS)

    Addison, E. R.; Frost, E. L.

    It is pointed out that the Chinese Remainder Theorem (Mooney and Skillman, 1970) can be used to yield unambiguous measurements by comparing outputs allocated to fixed integer number bins using integer arithmetic to modulo to the correct bin number. In general, targets straddling two or more bins or the assignment of an incorrect bin number will yield incorrect parameter values. An ambiguity resolution technique using multiple pulse repetition frequency (PRF) data and a sliding floating point window or 'floating bin' to correlate ambiguous centroided Doppler measurements is proposed. An advantage of the technique is that false targets are much less prevalent than in classical techniques. What is more, the same technique may be employed to resolve ambiguous range wherein centroided range measurements are moduloed with the pulse repetition interval associated with each PRF. Results demonstrate that this method is better than conventional approaches in that the number of false targets produced is significantly lower while simultaneoulsy providing a high probability of correlation. In addition, the correlation can be effected in real time.

  3. Bunch Length Measurements With Laser/SR Cross-Correlation

    SciTech Connect

    Miller, Timothy; Daranciang, Dan; Lindenberg, Aaron; Corbett, Jeff; Fisher, Alan; Goodfellow, John; Huang, Xiaobiao; Mok, Walter; Safranek, James; Wen, Haidan; /SLAC

    2012-07-06

    By operating SPEAR3 in low-{alpha} mode the storage ring can generate synchrotron radiation pulses of order 1ps. Applications include pump-probe x-ray science and the production of THz radiation in the CSR regime. Measurements of the bunch length are difficult, however, because the light intensity is low and streak cameras typically provide resolution of only a few ps. Tests are now underway to resolve the short bunch length using cross-correlation between a 60-fs Ti:Sapphire laser and the visible SR beam in a BBO crystal. In this paper we report on the experimental setup, preliminary measurements and prospects for further improvement.

  4. Measurement of correlated b quark cross sections at CDF

    SciTech Connect

    Gerdes, D.; CDF Collaboration

    1994-09-01

    Using data collected during the 1992--93 collider run at Fermilab, CDF has made measurements of correlated b quark cross section where one b is detected from a muon from semileptonic decay and the second b is detected with secondary vertex techniques. We report on measurements of the cross section as a function of the momentum of the second b and as a function of the azimuthal separation of the two b quarks, for transverse momentum of the initial b quark greater than 15 GeV. Results are compared to QCD predictions.

  5. Sequential Measurement of Intermodal Variability in Public Transportation PM2.5 and CO Exposure Concentrations.

    PubMed

    Che, W W; Frey, H Christopher; Lau, Alexis K H

    2016-08-16

    A sequential measurement method is demonstrated for quantifying the variability in exposure concentration during public transportation. This method was applied in Hong Kong by measuring PM2.5 and CO concentrations along a route connecting 13 transportation-related microenvironments within 3-4 h. The study design takes into account ventilation, proximity to local sources, area-wide air quality, and meteorological conditions. Portable instruments were compacted into a backpack to facilitate measurement under crowded transportation conditions and to quantify personal exposure by sampling at nose level. The route included stops next to three roadside monitors to enable comparison of fixed site and exposure concentrations. PM2.5 exposure concentrations were correlated with the roadside monitors, despite differences in averaging time, detection method, and sampling location. Although highly correlated in temporal trend, PM2.5 concentrations varied significantly among microenvironments, with mean concentration ratios versus roadside monitor ranging from 0.5 for MTR train to 1.3 for bus terminal. Measured inter-run variability provides insight regarding the sample size needed to discriminate between microenvironments with increased statistical significance. The study results illustrate the utility of sequential measurement of microenvironments and policy-relevant insights for exposure mitigation and management.

  6. [Measuring vibrations of transport stress in premature and newborn infants during incubator transport].

    PubMed

    Peters, C; Bauer, M; Speidel, U; Jung, E; Homberg, F; Schofer, O

    1997-01-01

    Despite increasing numbers of centers for perinatology, transportation of newborns and premature infants can not totally be avoided for several obvious reasons. The following investigations were carried out as part of our quality control measures of the established neonatal transportation system, and were aimed on the optimization of a new neonatal transportation equipment resulting in reduction of transportation stress caused by acceleration forces. The new system investigated consisted of a Volkswagen type T4 equipped with a Dräger incubator type 5400, which was mounted on a pneumatic patient lift. We measured acceleration forces in three axes (expressed as K-Wert) as well as over a spectrum of frequencies (1-80 Hz). Measurements were taken at different points of the transportation unit during simulated transports driving a predetermined route. After obtaining informed consent of the parents, one actual transport of a newborn was used for an additional point measurement at the newborn's head. The mean K-Wert was decreased by about 50% in the vertical axis between the chassis of the car and the incubator by activating the pneumatic patient lift. Without activating the lift the K-Wert increased by about 20% between the car's chassis and the incubator. The frequency analysis showed resonance effects between the different components of the system. However, by activating the patient lift, effective accelerations in the incubator were decreased to less than 0.1 m/s2 across the whole frequency spectrum evaluated. The single measurement at a newborn's head revealed similar acceleration forces at the head of the baby and under its head. Utilization of a pneumatic patient lift can reduce acceleration forces. However, our results show that each system (car, incubator, and its base) has to be investigated and optimized for this purpose as a unit. Optimization of the complete system is necessary not only before its primary use but also in regular intervals over the years

  7. Optical measurement of osmotic water transport in cultured cells. Role of glucose transporters

    PubMed Central

    1992-01-01

    Methodology was developed to measure osmotic water permeability in monolayer cultured cells and applied to examine the proposed role of glucose transporters in the water pathway (1989. Proc. Natl. Acad. Sci. USA. 86:8397-8401). J774 macrophages were grown on glass coverslips and mounted in a channel-type perfusion chamber for rapid fluid exchange without cell detachment. Relative cell volume was measured by 45 degrees light scattering using an inverted microscope; measurement accuracy was validated by confocal imaging microscopy. The time required for greater than 90% fluid exchange was less than 1 s. In response to a decrease in perfusate osmolality from 300 to 210 mosM, cells swelled without lag at an initial rate of 4.5%/s, corresponding to a water permeability coefficient of (6.3 +/- 0.4) x 10(-3) cm/s (SE, n = 20, 23 degrees C), assuming a cell surface-to-volume ratio of 4,400 cm-1. The initial rate of cell swelling was proportional to osmotic gradient size, independent of perfusate viscosity, and increased by amphotericin B (25 micrograms/ml), and had an activation energy of 10.0 +/- 1 kcal/mol (12-39 degrees C). The compounds phloretin (20 microM) and cytochalasin B (2.5 micrograms/ml) inhibited glucose transport by greater than 85% but did not influence Pf in paired experiments in which Pf was measured before and after inhibitor addition. The mercurials HgCl2 (0.1 mM) and p-chloromercuribenzoate (1 mM) did not inhibit Pf. A stopped-flow light scattering technique was used to measure Pf independently in J774 macrophages grown in suspension culture. Pf in suspended cells was (4.4 +/- 0.3) x 10(-3) cm/s (assuming a surface-to-volume ratio of 8,800 cm-1), increased more than threefold by amphotericin B, and not inhibited by phloretin and cytochalasin B under conditions of strong inhibition of glucose transport. The glucose reflection coefficient was 0.98 +/- 0.03 as measured by induced osmosis, assuming a unity reflection coefficient for sucrose. These results

  8. A Pipeline Transport Correlation for Slurries with Small but Dense Particles

    SciTech Connect

    Poloski, Adam P; Etchells, Arthur W; Chun, Jaehun; Adkins, Harold E; Casella, Andrew M; Minette, Michael J; Yokuda, Satoru T

    2010-04-01

    Most correlations/models for minimum transport or critical velocity of slurry were developed for slurries composed of particles greater than ~100-200 µm diameter with narrow particle-size distributions which is typical of the minerals industry. Many other process industries handle smaller particles. In particular waste slurries at the U.S. Department of Energy's Hanford Site have broad size distributions and significant fractions of smaller particles. Despite the size of these wastes, recent PNNL studies indicate that the small particles might be of sufficient density to pose a significant risk for pipeline deposition and plugging. To allow predictive assessment of deposition of fine dense particles for waste slurry transport at the U.S. DOE Hanford site, a pipeline-transport correlation for critical velocity was developed using a simple power-law between two dimensionless numbers important for slurry transport, the deposition Froude and Archimedes numbers. The correlation accords well with experimental data for slurries with Archimedes numbers <80 and is an adequate pipeline design guide for processing Hanford waste slurry.

  9. 6-mercaptopurine transport in human lymphocytes: Correlation with drug-induced cytotoxicity

    PubMed Central

    CONKLIN, Laurie S.; CUFFARI, Carmen; OKAZAKI, Toshihiko; MIAO, Yinglei; SAATIAN, Bahman; CHEN, Tian-E.; TSE, Ming; BRANT, Steven R.; LI, Xuhang

    2013-01-01

    OBJECTIVE 6-mercaptopurine (6-MP) is efficacious in the treatment of inflammatory bowel disease (IBD). However, about one-third of patients respond poorly to therapy. This study aimed to characterize the inherent differences in 6-MP transport that may contribute to the differences in treatment responses. METHODS Intracellular 6-MP accumulation was assayed in Epstein–Barr virus (EBV)-transformed lymphocytes from IBD patients, using 14C-radiolabeled 6-MP. Cell proliferation was determined by methyl thiazolyl tetrazolium (MTT) assay. Apoptosis was assayed based on the activation of caspase 3. The expressions of 15 potential 6-MP transporters were evaluated by reverse transcription-polymerase chain reaction (RT-PCR). RESULTS Intracellular 6-MP accumulation, varying significantly among patients, was carrier-dependent and partially sodium-dependent. 6-MP cytotoxicity was, at least in part, due to apoptosis and correlated with intracellular drug accumulation. The efflux transporters did not appear to contribute to the variability of intracellular drug accumulation between patients, since none correlated with drug accumulation or cyto-toxicity. Rather, differential expression of five influx/uptake transporters might be a key contributor to the difference in the accumulation of and susceptibility to the drug. CONCLUSIONS The heterogeneity of the drug transporters may be the reason for the therapeutic sensitivity of 6-MP in IBD patients. As the 6-MP uptake is a carrier-mediated and partially sodium-dependent process, future studies are necessary to evaluate the role of the putative transporters and their correlation with drug sensitivity in patients. PMID:22257476

  10. 3D shape measurement with phase correlation based fringe projection

    NASA Astrophysics Data System (ADS)

    Kühmstedt, Peter; Munckelt, Christoph; Heinze, Matthias; Bräuer-Burchardt, Christian; Notni, Gunther

    2007-06-01

    Here we propose a method for 3D shape measurement by means of phase correlation based fringe projection in a stereo arrangement. The novelty in the approach is characterized by following features. Correlation between phase values of the images of two cameras is used for the co-ordinate calculation. This work stands in contrast to the sole usage of phase values (phasogrammetry) or classical triangulation (phase values and image co-ordinates - camera raster values) for the determination of the co-ordinates. The method's main advantage is the insensitivity of the 3D-coordinates from the absolute phase values. Thus it prevents errors in the determination of the co-ordinates and improves robustness in areas with interreflections artefacts and inhomogeneous regions of intensity. A technical advantage is the fact that the accuracy of the 3D co-ordinates does not depend on the projection resolution. Thus the achievable quality of the 3D co-ordinates can be selectively improved by the use of high quality camera lenses and can participate in improvements in modern camera technologies. The presented new solution of the stereo based fringe projection with phase correlation makes a flexible, errortolerant realization of measuring systems within different applications like quality control, rapid prototyping, design and CAD/CAM possible. In the paper the phase correlation method will be described in detail. Furthermore, different realizations will be shown, i.e. a mobile system for the measurement of large objects and an endoscopic like system for CAD/CAM in dental industry.

  11. Effect of correlations on heat transport in a magnetized strongly coupled plasma

    NASA Astrophysics Data System (ADS)

    Ott, T.; Bonitz, M.; Donkó, Z.

    2015-12-01

    In a classical ideal plasma, a magnetic field is known to reduce the heat conductivity perpendicular to the field, whereas it does not alter the one along the field. Here we show that, in strongly correlated plasmas that are observed at high pressure and/or low temperature, a magnetic field reduces the perpendicular heat transport much less and even enhances the parallel transport. These surprising observations are explained by the competition of kinetic, potential, and collisional contributions to the heat conductivity. Our results are based on first-principle molecular dynamics simulations of a one-component plasma.

  12. Correlation between morphology and ambipolar transport in organic field-effect transistors

    NASA Astrophysics Data System (ADS)

    Singh, Th. B.; Günes, S.; Marjanović, N.; Sariciftci, N. S.; Menon, R.

    2005-06-01

    Attaining ambipolar charge transport in organic field-effect transistors (OFET) is highly desirable from both fundamental understanding and application points of view. We present the results of an approach to obtain ambipolar OFET with an active layer of organic semiconductor blends using semiconducting polymers in composite with fullerene derivatives. Clear features of forming the superposition of both hole and electron-enhanced channels for an applied gate field are observed. The present studies suggest a strong correlation of thin-film nanomorphology and ambipolar transport in field-effect devices.

  13. Multipoint correlators of conformal field theories: implications for quantum critical transport

    NASA Astrophysics Data System (ADS)

    Strack, Philipp; Chowdhury, Debanjan; Raju, Suvrat; Sachdev, Subir; Singh, Ajay

    2013-03-01

    We relate three-point correlators between the stress-energy tensor and conserved currents of conformal field theories (CFTs) in 2+1 dimensions to observables of quantum critical transport. We first compute the correlators in the large-flavor-number expansion of conformal gauge theories and then do the computation using holography. In the holographic approach, the correlators are computed from an effective action on 3+1 dimensional anti-de Sitter space (AdS4), and depend upon the co-efficient, γ, of a four-derivative term in the action. We find a precise match between the CFT and the holographic results, thus fixing the values of γ. The CFTs of free fermions and bosons take the values γ = 1 / 12 , - 1 / 12 respectively, and so saturate the bound | γ | <= 1 / 12 obtained earlier from the holographic theory; the correlator of the conserved gauge flux of U(1) gauge theories takes intermediate values of γ. The value of γ also controls the frequency dependence of the conductivity, and other properties of quantum-critical transport at non-zero temperatures. Our results for the values of γ lead to an appealing physical interpretation of particle-like or vortex-like transport near quantum phase transitions of interest in condensed matter physics.

  14. LIF Diagnostic for Measuring Beam-Transport Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Jones, T. G.; Hinshelwood, D. D.; Neri, J. M.; Ottinger, P. F.; Noonan, W. A.

    1997-11-01

    A novel, spatially-resolved diagnostic is being developed to measure magnetic fields associated with intense ion beam propagation through a low-pressure gas, as is envisioned for light ion-driven ICF. The diagnostic technique uses laser-induced fluorescence (LIF) spectroscopy, and can be varied to measure either small or large fields. Small fields, as expected in ballistic transport with solenoidal lens focusing using ~ 1 Torr gas, produce Zeeman shifts, Δ λ_Z, smaller than the transition linewidth, Δ λ. High sensitivity to measure these shifts is achieved by a variation on the Babcock technique.^1 Large fields, as expected in self-pinched transport using 1--100 mTorr gas, produce Δ λZ larger than Δ λ. These Δ λZ will be resolved using an etalon as a narrowband, high-throughput optical filter. Available results from benchtop experiments using calibrated B-fields for both the small- and large-field techniques, and progress in fielding this diagnostic on the Gamble-II accelerator for beam-transport studies will be presented. Work supported by DOE through Sandia National Laboratories. ^ National Research Council Research Associate. ^ Present address University of Maryland, College Park, MD. ^1 W.A. Noonan, et al., Rev. Sci. Instrum. 68, 1032 (1997).

  15. Review on measurement techniques of transport properties of nanowires.

    PubMed

    Rojo, Miguel Muñoz; Calero, Olga Caballero; Lopeandia, A F; Rodriguez-Viejo, J; Martín-Gonzalez, Marisol

    2013-12-07

    Physical properties at the nanoscale are novel and different from those in bulk materials. Over the last few decades, there has been an ever growing interest in the fabrication of nanowire structures for a wide variety of applications including energy generation purposes. Nevertheless, the study of their transport properties, such as thermal conductivity, electrical conductivity or Seebeck coefficient, remains an experimental challenge. For instance, in the particular case of nanostructured thermoelectrics, theoretical calculations have shown that nanowires offer a promising way of enhancing the hitherto low efficiency of these materials in the conversion of temperature differences into electricity. Therefore, within the thermoelectrical community there has been a great experimental effort in the measurement of these quantities in actual nanowires. The measurements of these properties at the nanoscale are also of interest in fields other than energy, such as electrical components for microchips, field effect transistors, sensors, and other low scale devices. For all these applications, knowing the transport properties is mandatory. This review deals with the latest techniques developed to perform the measurement of these transport properties in nanowires. A thorough overview of the most important and modern techniques used for the characterization of different kinds of nanowires will be shown.

  16. Development of Methods Precision Length Measurement Using Transported Laser Interferometer

    NASA Astrophysics Data System (ADS)

    Lavrov, E. A.; Epikhin, V. M.; Mazur, M. M.; Suddenok, Y. A.; Shorin, V. N.

    The paper shows the results of a comparison of a developed transported laser interferometer (TLI) with a measurement interferometer XL-80 Renishaw at the distance 0-60 meters. Testings of a breadboard model of the TLI showed that a difference between the travel measurements of the two interferometers does not exceed 6 μm. The mean value of the difference of indications between the TLI and a Renishaw travel measurer at the distance near 58 m approximately equals to 0,5 μm. Root-mean square deviation of the indications of the interferometers approximately equals to 3 μm. At comparison of the sections with the same name between the TLI and the Renishaw travel measurer, measured at different days, a repeatability of the results for the sections with the same name is noted.

  17. Measuring Fisher Information Accurately in Correlated Neural Populations

    PubMed Central

    Kohn, Adam; Pouget, Alexandre

    2015-01-01

    Neural responses are known to be variable. In order to understand how this neural variability constrains behavioral performance, we need to be able to measure the reliability with which a sensory stimulus is encoded in a given population. However, such measures are challenging for two reasons: First, they must take into account noise correlations which can have a large influence on reliability. Second, they need to be as efficient as possible, since the number of trials available in a set of neural recording is usually limited by experimental constraints. Traditionally, cross-validated decoding has been used as a reliability measure, but it only provides a lower bound on reliability and underestimates reliability substantially in small datasets. We show that, if the number of trials per condition is larger than the number of neurons, there is an alternative, direct estimate of reliability which consistently leads to smaller errors and is much faster to compute. The superior performance of the direct estimator is evident both for simulated data and for neuronal population recordings from macaque primary visual cortex. Furthermore we propose generalizations of the direct estimator which measure changes in stimulus encoding across conditions and the impact of correlations on encoding and decoding, typically denoted by Ishuffle and Idiag respectively. PMID:26030735

  18. Nonlinear ultrasonic measurements based on cross-correlation filtering techniques

    NASA Astrophysics Data System (ADS)

    Yee, Andrew; Stewart, Dylan; Bunget, Gheorghe; Kramer, Patrick; Farinholt, Kevin; Friedersdorf, Fritz; Pepi, Marc; Ghoshal, Anindya

    2017-02-01

    Cyclic loading of mechanical components promotes the formation of dislocation dipoles in metals, which can serve as precursors to crack nucleation and ultimately lead to failure. In the laboratory setting, an acoustic nonlinearity parameter has been assessed as an effective indicator for characterizing the progression of fatigue damage precursors. However, the need to use monochromatic waves of medium-to-high acoustic energy has presented a constraint, making it problematic for use in field applications. This paper presents a potential approach for field measurement of acoustic nonlinearity by using general purpose ultrasonic pulser-receivers. Nonlinear ultrasonic measurements during fatigue testing were analyzed by the using contact and immersion pulse-through method. A novel cross-correlation filtering technique was developed to extract the fundamental and higher harmonic waves from the signals. As in the case of the classic harmonic generation, the nonlinearity parameters of the second and third harmonics indicate a strong correlation with fatigue cycles. Consideration was given to potential nonlinearities in the measurement system, and tests have confirmed that measured second harmonic signals exhibit a linear dependence on the input signal strength, further affirming the conclusion that this parameter relates to damage precursor formation from cyclic loading.

  19. Matrix-based concordance correlation coefficient for repeated measures.

    PubMed

    Hiriote, Sasiprapa; Chinchilli, Vernon M

    2011-09-01

    In many clinical studies, Lin's concordance correlation coefficient (CCC) is a common tool to assess the agreement of a continuous response measured by two raters or methods. However, the need for measures of agreement may arise for more complex situations, such as when the responses are measured on more than one occasion by each rater or method. In this work, we propose a new CCC in the presence of repeated measurements, called the matrix-based concordance correlation coefficient (MCCC) based on a matrix norm that possesses the properties needed to characterize the level of agreement between two p× 1 vectors of random variables. It can be shown that the MCCC reduces to Lin's CCC when p= 1. For inference, we propose an estimator for the MCCC based on U-statistics. Furthermore, we derive the asymptotic distribution of the estimator of the MCCC, which is proven to be normal. The simulation studies confirm that overall in terms of accuracy, precision, and coverage probability, the estimator of the MCCC works very well in general cases especially when n is greater than 40. Finally, we use real data from an Asthma Clinical Research Network (ACRN) study and the Penn State Young Women's Health Study for demonstration.

  20. Theoretical model of blood flow measurement by diffuse correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Sakadžić, Sava; Boas, David A.; Carp, Stefan

    2017-02-01

    Diffuse correlation spectroscopy (DCS) is a noninvasive method to quantify tissue perfusion from measurements of the intensity temporal autocorrelation function of diffusely scattered light. However, DCS autocorrelation function measurements in tissue better match theoretical predictions based on the diffusive motion of the scatterers than those based on a model where the advective nature of blood flow dominates the stochastic properties of the scattered light. We have recently shown using Monte Carlo (MC) simulations and assuming a simplistic vascular geometry and laminar flow profile that the diffusive nature of the DCS autocorrelation function decay is likely a result of the shear-induced diffusion of the red blood cells. Here, we provide theoretical derivations supporting and generalizing the previous MC results. Based on the theory of diffusing-wave spectroscopy, we derive an expression for the autocorrelation function along the photon path through a vessel that takes into account both diffusive and advective scatterer motion, and we provide the solution for the DCS autocorrelation function in a semi-infinite geometry. We also derive the correlation diffusion and correlation transfer equation, which can be applied for an arbitrary sample geometry. Further, we propose a method to take into account realistic vascular morphology and flow profile.

  1. Variance Formulae for Correlation Measures of Linkage Disequilibrium.

    PubMed

    Roop, Mary L; Cole, David E C; Hamilton, David C

    2016-01-01

    Linkage disequilibrium (LD) is the non-random association between alleles at different loci and remains important for disease mapping studies in humans. A common measure of LD is the sample correlation between indicator variables for alleles at the 2 loci. Knowledge of LD estimate precision may help inform biomedical decisions based on those estimates. Variance formulae are obtained for correlation measures of LD in 4 scenarios. These scenarios include data in the form of gametic and genotypic counts, with different assumptions used to simplify the analysis. The formulae are expressed as polynomials (or ratios of polynomials) in higher-order disequilibrium coefficients with constants which are functions of the allele frequencies and Hardy-Weinberg disequilibrium coefficients. With genotypic data, the variance is the same as with gametic data when the phase is known and there is random mating. When the phase is unknown, the correlation LD has variance which is twice as large. Symbolic computation proved to be effective in facilitating algebraic derivations which would otherwise have been intractable. © 2017 S. Karger AG, Basel.

  2. Detecting correlated errors in state-preparation-and-measurement tomography

    NASA Astrophysics Data System (ADS)

    Jackson, Christopher; van Enk, S. J.

    2015-10-01

    Whereas in standard quantum-state tomography one estimates an unknown state by performing various measurements with known devices, and whereas in detector tomography one estimates the positive-operator-valued-measurement elements of a measurement device by subjecting to it various known states, we consider here the case of SPAM (state preparation and measurement) tomography where neither the states nor the measurement device are assumed known. For d -dimensional systems measured by d -outcome detectors, we find there are at most d2(d2-1 ) "gauge" parameters that can never be determined by any such experiment, irrespective of the number of unknown states and unknown devices. For the case d =2 we find gauge-invariant quantities that can be accessed directly experimentally and that can be used to detect and describe SPAM errors. In particular, we identify conditions whose violations detect the presence of correlations between SPAM errors. From the perspective of SPAM tomography, standard quantum-state tomography and detector tomography are protocols that fix the gauge parameters through the assumption that some set of fiducial measurements is known or that some set of fiducial states is known, respectively.

  3. Rapid Measurement of Neutron Dose Rate for Transport Index

    SciTech Connect

    Morris, R.L.

    2000-02-27

    A newly available neutron dose equivalent remmeter with improved sensitivity and energy response has been put into service at Rocky Flats Environmental Technology Site (RFETS). This instrument is being used to expedite measurement of the Transport Index and as an ALARA tool to identify locations where slightly elevated neutron dose equivalent rates exist. The meter is capable of measuring dose rates as low as 0.2 {mu}Sv per hour (20 {mu}rem per hour). Tests of the angular response and energy response of the instrument are reported. Calculations of the theoretical instrument response made using MCNP{trademark} are reported for materials typical of those being shipped.

  4. Aerosol measurements of long range transport events from Asia

    NASA Astrophysics Data System (ADS)

    Hudson, P.; Murphy, D.; Cziczo, D.; Thomson, D.; Brock, C.; Wilson, C.; Weber, R.; Sullivan, A.; Orsini, D.

    2003-04-01

    The Intercontinental Transport and Chemical Transformation (ITCT) mission (Monterey, CA, spring 2002) investigated the gas phase and particulate composition of air masses along the western coast of the United States using a host of gas and aerosol instruments aboard the WP-3 aircraft. Several transport events from Asia containing enhanced number and mass concentrations of particles were intercepted during the mission. Within these different layers, a variety of particle modes and compositions were observed, including a) coarse crustal particles transported in the absence of anthropogenic trace gases, b) nucleation-mode particles associated with substantial enhancements in CO, NO_y, and organic tracers of biomass and anthropogenic emissions, and c) accumulation-mode particles found in the presence of CO and HNO_3. The properties, sources, and transport of these different aerosols will be evaluated using individual particle and bulk composition measurements and particle size distributions as determined from the PALMS (Particle Analysis by Laser Mass Spectrometry), PILS (Particle Into Liquid Sampling), and particle size spectrometers, respectively.

  5. ATLAS-3 correlative measurement opportunities with UARS and surface observations

    NASA Technical Reports Server (NTRS)

    Harrison, Edwin F.; Denn, Fred M.; Gibson, Gary G.

    1995-01-01

    The third ATmospheric Laboratory for Applications and Science (ATLAS-3) mission was flown aboard the Space Shuttle launched on November 3, 1994. The mission length was approximately 10 days and 22 hours. The ATLAS-3 Earth-viewing instruments provided a large number of measurements which were nearly coincident with observations from experiments on the Upper Atmosphere Research Satellite (UARS). Based on ATLAS-3 instrument operating schedules, simulations were performed to determine when and where correlative measurements occurred between ATLAS and UARS instruments, and between ATLAS and surface observations. Results of these orbital and instrument simulations provide valuable information for scientists to compare measurements between various instruments on the two satellites and at selected surface sites.

  6. Measuring capital market efficiency: Global and local correlations structure

    NASA Astrophysics Data System (ADS)

    Kristoufek, Ladislav; Vosvrda, Miloslav

    2013-01-01

    We introduce a new measure for capital market efficiency. The measure takes into consideration the correlation structure of the returns (long-term and short-term memory) and local herding behavior (fractal dimension). The efficiency measure is taken as a distance from an ideal efficient market situation. The proposed methodology is applied to a portfolio of 41 stock indices. We find that the Japanese NIKKEI is the most efficient market. From a geographical point of view, the more efficient markets are dominated by the European stock indices and the less efficient markets cover mainly Latin America, Asia and Oceania. The inefficiency is mainly driven by a local herding, i.e. a low fractal dimension.

  7. Laboratory Measurements of Fluid Transport Properties on Tight Gas Sandstones and Applications

    NASA Astrophysics Data System (ADS)

    Albrecht, Daniel; Reitenbach, Viktor

    2014-05-01

    Deep gas reservoirs are of great interest for the E&P industry. Large areas of such reservoirs have permeabilities below 1 mD. The reservoir rocks in these areas show a strong stress sensitivity of the fluid transport properties and a considerable productivity decline due to changing stress conditions during the production process. For correct modeling and simulation of Tight Gas reservoirs it is important to know the behavior of the fluid transport properties under the changing stress condition the reservoir experiences. In several measurement series the effects of changing overburden and pore pressure on Rotliegend sandstone samples from north German Tight Gas reservoirs have been quantified and used to set up correlation functions. With the correlation functions from the own measurements and additional data and correlations from literature a Rock Data Catalog has been developed as tool to help reservoir engineers with modeling and simulation of such reservoirs. The Rock Data Catalog consists of the Rock Database and the Correlation Module. The Rock Database contains general and petrophysical rock data. The Correlation Module uses this data to generate secondary data of e.g. in-situ capillary and hydraulic rock properties with appropriate correlation functions. Viability of the economic gas production from Tight Gas Reservoirs strongly depends on reservoir quality. Therefore identification of high quality reservoir parts or so called Sweet Spots for placing production wells and planning hydraulic fracturing stimulation, is one of key issues of the tight gas reservoir characterization and evaluation. The data and correlation functions collected in the Rock Data Catalog could also be used to identify Sweet Spots in Tight Gas reservoirs. Several rock parameters and properties, which affect the fluid flow in a reservoir (like lithology, clay content, water saturation, permeability, pore size distribution) can be identified and used to set up a Sweet Spot Index as a

  8. Optical contactless measurement of semiconductor thermoelectric transport properties (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Gibelli, Francois; Lombez, Laurent; Guillemoles, Jean-François

    2017-04-01

    In view of the combinatorial approach to discovery of new thermoelectric materials, it is highly desirable to have fast measurement techniques, if possible with capabilities to access local fluctuations or gradients in material properties. Using the generalized Planck& #39;s law of radiation [1] for fitting the photoluminescence spectra is the most appropriate technique to access the quasi Fermi level splitting and the temperature of the carriers in a semiconductor. These two parameters enable to determine Seebeck coefficients for the material as a new photo-Seebeck effect [2]. The absolutely calibrated photoluminescence intensity profile[3] with the spatial coordinates combined with Callen coupled transport equations and with the kinetic expression of the transport parameters under the relaxation time approximation enable us to determine: the Seebeck coefficient, the electrical conductivity, the thermal electron and hole conductivity, the mobilities, the diffusion coefficients and the heat transferred from the carriers to the lattice. All these parameters can be obtained either for electrons or for holes[4], even simultaneously, for intrinsic semiconductor in ambipolar regime. The method has been applied to a multi-quantum well structure of InGaAsP. Since the luminescence comes from the wells, this method enables to access the transport properties in the plane of the wells inside the whole structure. Since photoluminescence does not require p-n junction nor high electrical conductivities for the measurement, this optical contactless measurement technique of thermoelectrinc transport parameters involving quasi-equilibrium carriers enables to access properties inside a given layer of the whole structure or in materials with very low conductivities. We will also show the perspectives offered for the research of new thermoelectric materials. [1] Würfel, J. Phys. C : Solid State Phys., 1982 [2] Gibelli et al., Phys. Rev. Appl., 5 (2) 2016 Tauc, Czech J Phys, 1955 [3

  9. Influence of lattice vibrations on the field driven electronic transport in chains with correlated disorder

    NASA Astrophysics Data System (ADS)

    da Silva, L. D.; Sales, M. O.; Ranciaro Neto, A.; Lyra, M. L.; de Moura, F. A. B. F.

    2016-12-01

    We investigate electronic transport in a one-dimensional model with four different types of atoms and long-ranged correlated disorder. The latter was attained by choosing an adequate distribution of on-site energies. The wave-packet dynamics is followed by taking into account effects due to a static electric field and electron-phonon coupling. In the absence of electron-phonon coupling, the competition between correlated disorder and the static electric field promotes the occurrence of wave-packet oscillations in the regime of strong correlations. When the electron-lattice coupling is switched on, phonon scattering degrades the Bloch oscillations. For weak electron-phonon couplings, a coherent oscillatory-like dynamics of the wave-packet centroid persists for short periods of time. For strong couplings the wave-packet acquires a diffusive-like displacement and spreading. A slower sub-diffusive spreading takes place in the regime of weak correlations.

  10. Correlation between static radiographic measurements and intersegmental angular measurements during gait using a multisegment foot model.

    PubMed

    Lee, Dong Yeon; Seo, Sang Gyo; Kim, Eo Jin; Kim, Sung Ju; Lee, Kyoung Min; Farber, Daniel C; Chung, Chin Youb; Choi, In Ho

    2015-01-01

    Radiographic examination is a widely used evaluation method in the orthopedic clinic. However, conventional radiography alone does not reflect the dynamic changes between foot and ankle segments during gait. Multiple 3-dimensional multisegment foot models (3D MFMs) have been introduced to evaluate intersegmental motion of the foot. In this study, we evaluated the correlation between static radiographic indices and intersegmental foot motion indices. One hundred twenty-five females were tested. Static radiographs of full-leg and anteroposterior (AP) and lateral foot views were performed. For hindfoot evaluation, we measured the AP tibiotalar angle (TiTA), talar tilt (TT), calcaneal pitch, lateral tibiocalcaneal angle, and lateral talcocalcaneal angle. For the midfoot segment, naviculocuboid overlap and talonavicular coverage angle were calculated. AP and lateral talo-first metatarsal angles and metatarsal stacking angle (MSA) were measured to assess the forefoot. Hallux valgus angle (HVA) and hallux interphalangeal angle were measured. In gait analysis by 3D MFM, intersegmental angle (ISA) measurements of each segment (hallux, forefoot, hindfoot, arch) were recorded. ISAs at midstance phase were most highly correlated with radiography. Significant correlations were observed between ISA measurements using MFM and static radiographic measurements in the same segment. In the hindfoot, coronal plane ISA was correlated with AP TiTA (P < .001) and TT (P = .018). In the hallux, HVA was strongly correlated with transverse ISA of the hallux (P < .001). The segmental foot motion indices at midstance phase during gait measured by 3D MFM gait analysis were correlated with the conventional radiographic indices. The observed correlation between MFM measurements at midstance phase during gait and static radiographic measurements supports the fundamental basis for the use of MFM in analysis of dynamic motion of foot segment during gait. © The Author(s) 2014.

  11. Correlation between AC and DC transport properties of Mn substituted cobalt ferrite

    NASA Astrophysics Data System (ADS)

    Supriya, Sweety; Kumar, Sunil; Kar, Manoranjan

    2016-12-01

    The CoFe2-xMnxO4 compound is prepared by following the sol gel technique. The structural analysis through XRD and Rietveld has been confirmed for the single cubic phase having F d 3 ¯ m space group for CoFe2-xMnxO4 and also verified it through Raman spectroscopy measurements. The tetrahedral site observed to be red shifted with increase in Mn concentration in cobalt ferrite. All the XRD patterns have been analyzed by employing the Rietveld refinement technique. The particle size was found to be in the range of 30-40 nm. The electrical properties of polycrystalline CoFe2-xMnxO4 for x = 0.00, 0.10, 0.15, and 0.2, spinel ferrite was investigated by impedance spectroscopy. The influence of doping, frequency and temperature on the electrical transport properties of the CoFe2-xMnxO4 for x = 0.00, 0.10, 0.15, and 0.20 were investigated. The magnitude of Z' and Z″ decreases with increase in temperature. Only one semicircle is observed in each Cole Cole plot which reveals that ac conductivity is dominated by grains. The grain resistance and grain boundary resistance both were found to decrease as a function of temperature. Temperature variation of DC electrical conductivity follows the Arrhenius relationship. A detailed analysis of electrical parameters provides assistance in connecting information regarding the conduction mechanism as well as determination of both dielectric and magnetic transition temperatures in the substituted cobalt ferrite. Detailed analysis of ac impedance and DC resistivity measurement reveals that, the magnetic ordering temperature in the Mn substituted cobalt ferrite does not respond to the frequency of ac electrical signal; however, it responds to the DC resistivity. The correlation between ac impedance and DC resistivity has been established.

  12. Theory of charge transport in molecular junctions: Role of electron correlation

    NASA Astrophysics Data System (ADS)

    Chang, Yao-Wen; Jin, Bih-Yaw

    2017-04-01

    We extend the quasi-particle renormalized perturbation theory developed in our previous work [Y.-W. Chang and B.-Y. Jin, J. Chem. Phys. 141, 064111 (2014)] based on nonequilibrium Green's function techniques to study the effects of electron correlation on the charge transport process in molecular junctions. In this formalism, the single-impurity Anderson's model is used as the zeroth-order Hamiltonian of each channel orbital, and the inter-channel interactions are treated by perturbation corrections. Within this scheme, the on-channel Coulomb repulsion and the single-particle spectral line-broadening can be incorporated in the zeroth-order approximation, and thus the Coulomb blockade and coherent tunneling through individual channels can be described properly. Beyond the zeroth-order description, electron correlation can be included through the self-energy corrections in the forms of the second-Born approximation and the GW approximation. The effects of electron correlation on molecular junctions are manifested as the orbital energy correction, correlated transport process, and collisional line-broadening. As an application, we have applied the present formalism to phenyl-based molecular junctions described by the Pariser-Parr-Pople Hamiltonian. The signatures of electron correlation in the simulated current-voltage curves are identified and discussed.

  13. A Study of Charge Transport: Correlated Energetic Disorder in Organic Semiconductors, and the Fragment Hamiltonian

    NASA Astrophysics Data System (ADS)

    Allen, Jonathan Robert

    This dissertation details work done on two different descriptions of charge transport. The first topic is energetic disorder in organic semiconductors, and its effect on charge transport. This is motivated primarily by solar cells, which can be broadly classified as either inorganic or organic. The inorganic class of solar cells is older, and more well-developed, with the most common type being constructed from crystalline silicon. The large silicon crystals required for these cells are expensive to manufacture, which gave rise to interest in photovoltaic cells made from much less costly organic polymers. These organic materials are also less efficient than their silicon counterparts, due to a large degree of spatial and energetic disorder. In this document, the sources and structure of energetic disorder in organic semiconductors are explored, with an emphasis on spatial correlations in energetic disorder. In order for an organic photovoltaic device to function, there must be photogeneration of an exciton (a bound electron-hole pair), exciton transport, exciton dissociation, and transport of the individual charges to their respective terminals. In the case of this thesis, the main focus is exciton dissociation. The effects of correlation on exciton dissociation are examined through computer simulation, and compared to the theory and simulations of previous researchers. We conclude that energetic disorder in organic semiconductors is spatially correlated, and that this correlation improves the ability of excitons to dissociate. The second topic of this dissertation is the Fragment Hamiltonian model. This is a model currently in development as a means of describing charge transport across a range of systems. Currently there are many different systems which exhibit various charge transport behaviors, which are described by several different models. The overarching goal of the Fragment Hamiltonian model is to construct a description of charge transport which

  14. Self-organized criticality, long-time correlations, and the standard transport paradigm

    SciTech Connect

    Krommes, J.A.

    2000-02-11

    Some aspects of low-frequency, long-wavelength fluctuations are considered. A stochastic model is used to show that power-law time correlations need not arise from self-organized criticality. A formula for the frequency spectrum of uncorrelated, overlapping avalanches is shown to be a special case of the spectral balance equation of renormalized statistical turbulence theory. It is argued that there need be no contradiction between the presence of long-time correlations and the existence of local transport coefficients.

  15. Correlation between thermal fluctuation effects and phase coherence factor in carrier transport of single-crystal organic semiconductors

    NASA Astrophysics Data System (ADS)

    Fukami, Tatsuya; Ishii, Hiroyuki; Kobayashi, Nobuhiko; Uemura, Takafumi; Sakai, Kenichi; Okada, Yugo; Takeya, Jun; Hirose, Kenji

    2015-04-01

    We find that the phase coherence factor derived from Hall effect measurements of single-crystal thin-film field-effect transistors of pentacene, which relates the intrinsic charge transport with the phase coherence, has a strong correlation with the thermal fluctuations of transfer energies between neighboring molecules. This observation also holds true for other organic semiconductors such as tetracene, dianthrathiophene (DAT)-V, and dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene (DNTT). This gives us clues for constructing flexible molecular systems with high carrier mobility.

  16. Transport signatures for correlated disorder in self-assembled InAs quantum dots on GaAs

    NASA Astrophysics Data System (ADS)

    Heinzel, T.; Jäggi, R.; von Waldkirch, M.; Ribeiro, E.; Ensslin, K.; Ulloa, S. E.; Medeiros-Ribeiro, G.; Petroff, P. M.

    2002-01-01

    We report electronic transport measurements on two-dimensional electron gases in a Ga[Al]As heterostructure with an embedded layer of InAs self-assembled quantum dots. At high InAs dot densities, Altshuler-Aronov-Spivak oscillations are observed. The presence of these oscillations correlates with the observation of a metal-insulator transition, and with the existence of a maximum in the electron mobility as a function of the electron density. These results indicate hexagonal short-range ordering of the charged InAs dots.

  17. Dynamic defect correlations dominate activated electronic transport in SrTiO3

    NASA Astrophysics Data System (ADS)

    Snijders, Paul C.; Şen, Cengiz; McConnell, Michael P.; Ma, Ying-Zhong; May, Andrew F.; Herklotz, Andreas; Wong, Anthony T.; Ward, T. Zac

    2016-07-01

    Strontium titanate (SrTiO3, STO) is a critically important material for the study of emergent electronic phases in complex oxides, as well as for the development of applications based on their heterostructures. Despite the large body of knowledge on STO, there are still many uncertainties regarding the role of defects in the properties of STO, including their influence on ferroelectricity in bulk STO and ferromagnetism in STO-based heterostructures. We present a detailed analysis of the decay of persistent photoconductivity in STO single crystals with defect concentrations that are relatively low but significantly affect their electronic properties. The results show that photo-activated electron transport cannot be described by a superposition of the properties due to independent point defects as current models suggest but is, instead, governed by defect complexes that interact through dynamic correlations. These results emphasize the importance of defect correlations for activated electronic transport properties of semiconducting and insulating perovskite oxides.

  18. Dynamic defect correlations dominate activated electronic transport in SrTiO3

    PubMed Central

    Snijders, Paul C.; Şen, Cengiz; McConnell, Michael P.; Ma, Ying-Zhong; May, Andrew F.; Herklotz, Andreas; Wong, Anthony T.; Ward, T. Zac

    2016-01-01

    Strontium titanate (SrTiO3, STO) is a critically important material for the study of emergent electronic phases in complex oxides, as well as for the development of applications based on their heterostructures. Despite the large body of knowledge on STO, there are still many uncertainties regarding the role of defects in the properties of STO, including their influence on ferroelectricity in bulk STO and ferromagnetism in STO-based heterostructures. We present a detailed analysis of the decay of persistent photoconductivity in STO single crystals with defect concentrations that are relatively low but significantly affect their electronic properties. The results show that photo-activated electron transport cannot be described by a superposition of the properties due to independent point defects as current models suggest but is, instead, governed by defect complexes that interact through dynamic correlations. These results emphasize the importance of defect correlations for activated electronic transport properties of semiconducting and insulating perovskite oxides. PMID:27443503

  19. Directional correlation measurements for gamma transitions in /sup 127/Te

    SciTech Connect

    de Souza, M.O.M.D.; Saxena, R.N.

    1985-02-01

    The directional correlation of coincident ..gamma.. transitions in /sup 127/Te has been measured following the ..beta../sup -/ decay of /sup 127/Sb (T/sub 1/2/ = 3.9 d) using Ge(Li)-Ge(Li) and Ge(Li)-NaI(T1) gamma spectrometers. Measurements have been carried out for 14 gamma cascades resulting in the determination of multipole mixing ratios delta(E2/M1) for 15 ..gamma.. transitions. The present results permitted a definite spin assignment of (7/2) for the 785 keV level and confirmation of several previous assignments to other levels in /sup 127/Te. The g factor of the 340 keV ((9/2)/sup -/) level has also been measured using the integral perturbed angular correlation method in the hyperfine magnetic field of a Te in Ni matrix. The results of the g factor as well as the mixing ratio for the 252 keV ((9/2)/sup -/..-->..(11/2)/sup -/) transition support the earlier interpretation of this state as an anomalous coupling state.

  20. Measuring peptide mass spectrum correlation using the quantum Grover algorithm.

    PubMed

    Choo, Keng Wah

    2007-03-01

    We investigated the use of the quantum Grover algorithm in the mass-spectrometry-based protein identification process. The approach coded the mass spectra on a quantum register and uses the Grover search algorithm for searching multiple solutions to find matches from a database. Measurement of the fidelity between the input and final states was used to quantify the similarity between the experimental and theoretical spectra. The optimal number of iteration is proven to be pi/4sqrt[N/k] , where k refers to the number of marked states. We found that one iteration is sufficient for the search if we let more that 62% of the N states be marked states. By measuring the fidelity after only one iteration of Grover search, we discovered that it resembles that of the correlation-based measurement used in the existing protein identification software. We concluded that the quantum Grover algorithm can be adapted for a correlation-based mass spectra database search, provided that decoherence can be kept to a minimum.

  1. Hot electron transport in a strongly correlated transition-metal oxide

    PubMed Central

    Rana, Kumari Gaurav; Yajima, Takeaki; Parui, Subir; Kemper, Alexander F.; Devereaux, Thomas P.; Hikita, Yasuyuki; Hwang, Harold Y.; Banerjee, Tamalika

    2013-01-01

    Oxide heterointerfaces are ideal for investigating strong correlation effects to electron transport, relevant for oxide-electronics. Using hot-electrons, we probe electron transport perpendicular to the La0.7Sr0.3MnO3 (LSMO)- Nb-doped SrTiO3 (Nb:STO) interface and find the characteristic hot-electron attenuation length in LSMO to be 1.48 ± 0.10 unit cells (u.c.) at −1.9 V, increasing to 2.02 ± 0.16 u.c. at −1.3 V at room temperature. Theoretical analysis of this energy dispersion reveals the dominance of electron-electron and polaron scattering. Direct visualization of the local electron transport shows different transmission at the terraces and at the step-edges. PMID:23429420

  2. Exact occupation probabilities for intermittent transport and application to image correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Coppola, S.; Caracciolo, G.; Schmidt, T.

    2014-11-01

    Intermittent transport is frequently observed in nature and has been proven to accelerate search processes at both the macroscopic (e.g., animals looking for food) and microscopic scale (e.g., protein-DNA interactions). In living cells, active transport of membrane proteins (e.g., membrane receptors) or intracellular vesicles (organelles) has been extensively studied as an example of intermittent behavior. The intermittent stochastic process is commonly analyzed in terms of first-passage probabilities. Here we derive exact occupation probabilities of intermittent active transport, making such analysis available for image correlation spectroscopy techniques. The power of this new theoretical framework is demonstrated on intracellular trafficking of lipid/DNA nanoparticles in living cells for which we were allowed to quantify switching time scales.

  3. Moisture dependence of radon transport in concrete: measurements and modeling.

    PubMed

    Cozmuta, I; van der Graaf, E R; de Meijer, R J

    2003-10-01

    The moisture dependence of the radon-release rate of concrete was measured under well controlled conditions. It was found that the radon-release rate almost linearly increases up to moisture contents of 50 to 60%. At 70 to 80% a maximum was found and for higher moisture contents the radon-release rate decreases very steeply. It is demonstrated that this dependence can be successfully modeled on basis of the multi-phase radon-transport equation in which values for various input parameters (porosity, diffusion coefficient, emanation factor, etc.) were obtained from independent measurements. Furthermore, a concrete structure development model was used to predict at any moment in time the values of input parameters that depend on the evolution of the concrete microstructure. Information on the concrete manufacturing recipe and curing conditions (temperature, relative humidity) was used as input for the concrete structure model. The combined radon transport and concrete structure model supplied sufficient information to assess the influence of relative humidity on the radon source and barrier aspects of concrete. More specifically, the model has been applied to estimate the relative contributions to the radon exhalation rate of a 20-cm-thick concrete slab of radon produced in the concrete slab itself and due to diffusive transport through the slab of radon from soil gas.

  4. Experimental Measurement of ECH Deposition Broadening: Beyond Anomalous Transport

    NASA Astrophysics Data System (ADS)

    Brookman, M. W.; Austin, M. E.; Gentle, K. W.; Petty, C. C.; Ernst, D. E.; Peysson, Y.; Decker, J.; Barada, K.

    2017-07-01

    This work provides a first experimental measurement of broadened ECH deposition on the DIIID tokamak. As seen in theory[1] and simulation[2], refraction by edge density fluctuations shifts the path of RF waves, altering ECH and ECCD deposition. This paper reports on an initial experimental confirmation of broadened ECH deposition on DIII-D tokamak. Te measurements from a 48 channel 2nd Harmonic ECE Radiometer digitized at 500 kHz are used with a set of broadened trial ECH deposition functions to calculate time-dependent, modulation-induced heat fluxes. The fitting of convective and diffusive transport to these fluxes allows different ECH deposition profiles to be compared. The best-fit ECH deposition produces reasonable transport coefficients which compare favorably with simulation. This method is applied to a set of L- and H- mode DIII-D discharges. Accounting for diffusive, convective, and coupled transport, the ECH deposition profile is found to be 2 to 3 times wider than predicted by TORAY-GA ray tracing.

  5. Detecting Electron Transport of Amino Acids by Using Conductance Measurement

    PubMed Central

    Li, Wei-Qiong; Huang, Bing; Huang, Miao-Ling; Peng, Lin-Lu; Hong, Ze-Wen; Zheng, Ju-Fang; Chen, Wen-Bo; Li, Jian-Feng; Zhou, Xiao-Shun

    2017-01-01

    The single molecular conductance of amino acids was measured by a scanning tunneling microscope (STM) break junction. Conductance measurement of alanine gives out two conductance values at 10−1.85 G0 (1095 nS) and 10−3.7 G0 (15.5 nS), while similar conductance values are also observed for aspartic acid and glutamic acid, which have one more carboxylic acid group compared with alanine. This may show that the backbone of NH2–C–COOH is the primary means of electron transport in the molecular junction of aspartic acid and glutamic acid. However, NH2–C–COOH is not the primary means of electron transport in the methionine junction, which may be caused by the strong interaction of the Au–SMe (methyl sulfide) bond for the methionine junction. The current work reveals the important role of the anchoring group in the electron transport in different amino acids junctions. PMID:28394265

  6. Electrical Conductivity through a Single Atomic Step Measured with the Proximity-Induced Superconducting Pair Correlation

    NASA Astrophysics Data System (ADS)

    Kim, Howon; Lin, Shi-Zeng; Graf, Matthias J.; Miyata, Yoshinori; Nagai, Yuki; Kato, Takeo; Hasegawa, Yukio

    2016-09-01

    Local disordered nanostructures in an atomically thick metallic layer on a semiconducting substrate play significant and decisive roles in transport properties of two-dimensional (2D) conductive systems. We measured the electrical conductivity through a step of monoatomic height in a truly microscopic manner by using as a signal the superconducting pair correlation induced by the proximity effect. The transport property across a step of a one-monolayer Pb surface metallic phase, formed on a Si(111) substrate, was evaluated by inducing the pair correlation around the local defect and measuring its response, i.e., the reduced density of states at the Fermi energy using scanning tunneling microscopy. We found that the step resistance has a significant contribution to the total resistance on a nominally flat surface. Our study also revealed that steps in the 2D metallic layer terminate the propagation of the pair correlation. Superconductivity is enhanced between the first surface step and the superconductor-normal-metal interface by reflectionless tunneling when the step is located within a coherence length.

  7. Physical Activity during Work, Transport and Leisure in Germany - Prevalence and Socio-Demographic Correlates

    PubMed Central

    Wallmann-Sperlich, Birgit; Froboese, Ingo

    2014-01-01

    Background This study aimed 1) to provide data estimates concerning overall moderate- and vigorous-intensity physical activity (MVPA) as well as MVPA during work, transport and leisure in Germany and 2) to investigate MVPA and possible associations with socio-demographic correlates. Methods A cross-sectional telephone survey interviewed 2248 representative participants in the age of 18–65 years (1077 men; 42.4±13.4 years; body mass index: 25.3±4.5kg•m−2) regarding their self-reported physical activity across Germany. The Global Physical Activity Questionnaire was applied to investigate MVPA during work, transport and leisure and questions were answered concerning their demographics. MVPA was stratified by gender, age, body mass index, residential setting, educational and income level. To identify socio-demographic correlates of overall MVPA as well as in the domains, we used a series of linear regressions. Results 52.8% of the sample achieved physical activity recommendations (53.7% men/52.1% women). Overall MVPA was highest in the age group 18–29 years (p<.05), in participants with 10 years of education (p<.05) and in participants with lowest income levels <1.500€ (p<.05). Regression analyses revealed that age, education and income were negatively associated with overall and work MVPA. Residential setting and education was positively correlated with transport MVPA, whereas income level was negatively associated with transport MVPA. Education was the only correlate for leisure MVPA with a positive association. Conclusions The present data underlines the importance of a comprehensive view on physical activity engagement according to the different physical activity domains and discloses a need for future physical activity interventions that consider socio-demographic variables, residential setting as well as the physical activity domain in Germany. PMID:25390071

  8. Physical activity during work, transport and leisure in Germany--prevalence and socio-demographic correlates.

    PubMed

    Wallmann-Sperlich, Birgit; Froboese, Ingo

    2014-01-01

    This study aimed 1) to provide data estimates concerning overall moderate- and vigorous-intensity physical activity (MVPA) as well as MVPA during work, transport and leisure in Germany and 2) to investigate MVPA and possible associations with socio-demographic correlates. A cross-sectional telephone survey interviewed 2248 representative participants in the age of 18-65 years (1077 men; 42.4 ± 13.4 years; body mass index: 25.3 ± 4.5 kg • m(-2)) regarding their self-reported physical activity across Germany. The Global Physical Activity Questionnaire was applied to investigate MVPA during work, transport and leisure and questions were answered concerning their demographics. MVPA was stratified by gender, age, body mass index, residential setting, educational and income level. To identify socio-demographic correlates of overall MVPA as well as in the domains, we used a series of linear regressions. 52.8% of the sample achieved physical activity recommendations (53.7% men/52.1% women). Overall MVPA was highest in the age group 18-29 years (p < .05), in participants with 10 years of education (p < .05) and in participants with lowest income levels < 1.500 € (p < .05). Regression analyses revealed that age, education and income were negatively associated with overall and work MVPA. Residential setting and education was positively correlated with transport MVPA, whereas income level was negatively associated with transport MVPA. Education was the only correlate for leisure MVPA with a positive association. The present data underlines the importance of a comprehensive view on physical activity engagement according to the different physical activity domains and discloses a need for future physical activity interventions that consider socio-demographic variables, residential setting as well as the physical activity domain in Germany.

  9. Correlation of the Vesicular Acetylcholine Transporter Densities in the Striata to the Clinical Abilities of Women with Rett Syndrome (RTT)

    PubMed Central

    BRAŠIĆ, JAMES ROBERT; BIBAT, GENILA; KUMAR, ANIL; ZHOU, YUN; HILTON, JOHN; YABLONSKI, MARYBETH E.; DOGAN, AHMET SEMIH; GUEVARA, MARIA RITA; STEPHANE, MASSOUD; JOHNSTON, MICHAEL; WONG, DEAN FOSTER; NAIDU, SAKKUBAI

    2012-01-01

    Rett syndrome (RTT) is a neurodevelopmental disability characterized by mutations in the X-linked methyl-CpG-binding protein 2 (MeCP2) located at the Xq28 region. The severity is modified in part by X chromosomal inactivation resulting in wide clinical variability. We hypothesized that the ability to perform the activities of daily living (ADL) is correlated with the density of vesicular acetylcholine transporters in the striata of women with RTT. The density of the vesicular acetylcholine transporters in the living human brain can be estimated by single-photon emission-computed tomography (SPECT) after the administration of (−)-5-[123I]iodobenzovesamicol ([123I]IBVM). Twenty-four (24) hours following the intravenous injection of approximately 333 MBq (9 mCi) [123I]IBVM, four women with RTT and nine healthy adult volunteer control participants underwent SPECT brain scans for sixty (60) minutes. The Vesicular Acetylcholine Transporter Binding Site Index (VATBSI) (Kuhl et al., 1994), a measurement of the density of vesicular acetylcholine transporters, was estimated in the striatum and the reference structure, the cerebellum. The women with RTT were assessed for certain activities of daily living (ADL). Although striatal VATSBI was not significantly lower in RTT (5.2 ± 0.9) than in healthy adults (5.7 ± 1.6), RTT striatal VATSBI and ADL scores were linearly associated (ADL = 0.89*VATSBI + 4.5; R2=0.93; p<0.01), suggesting a correlation between the ability to perform ADL and the density of vesicular acetylcholine transporters in the striata of women with RTT. [123I]IBVM is a promising tool to characterize the pathophysiological mechanisms of RTT and other neurodevelopmental disabilities. PMID:22223404

  10. Discontinuous membrane helices in transport proteins and their correlation with function.

    PubMed

    Screpanti, Emanuela; Hunte, Carola

    2007-08-01

    Alpha-helical bundles and beta-barrel proteins represent the two basic types of architecture known for integral membrane proteins. Irregular structural motifs have been revealed with the growing number of structures determined. "Discontinuous" helices are present in membrane proteins that actively transport ions. In the Ca(2+)-ATPase, a primary active transporter, and in the secondary transporters NhaA, LeuT(Aa), ClC H(+)/Cl(-) exchanger and Glt(Ph), the helical structure of two membrane segments is interrupted and the interjacent polypeptide chain forms an extended peptide. The discontinuous helices are integrated in the membrane either as transmembrane-spanning or hairpin-type segments. In addition, the secondary transporters have inverted internal duplication domains, which are only weakly correlated with their amino acid sequence. The symmetry comprises either parts of or the complete molecule, but always includes the discontinuous helices. The helix-peptide-helix motif is correlated with the ion translocation function. The extended peptides with their backbone atoms, the helix termini and the polar/charged amino acid residues in close vicinity provide the basis for ion recognition, binding and translocation.

  11. Cadmium in rice: Transport mechanisms, influencing factors, and minimizing measures.

    PubMed

    Li, Hui; Luo, Na; Li, Yan Wen; Cai, Quan Ying; Li, Hui Yuan; Mo, Ce Hui; Wong, Ming Hung

    2017-05-01

    Cadmium (Cd) accumulation in rice and its subsequent transfer to food chain is a major environmental issue worldwide. Understanding of Cd transport processes and its management aiming to reduce Cd uptake and accumulation in rice may help to improve rice growth and grain quality. Moreover, a thorough understanding of the factors influencing Cd accumulation will be helpful to derive efficient strategies to minimize Cd in rice. In this article, we reviewed Cd transport mechanisms in rice, the factors affecting Cd uptake (including physicochemical characters of soil and ecophysiological features of rice) and discussed efficient measures to immobilize Cd in soil and reduce Cd uptake by rice (including agronomic practices, bioremediation and molecular biology techniques). These findings will contribute to ensuring food safety, and reducing Cd risk on human beings.

  12. Caregiving, Transport-Related, and Demographic Correlates of Sedentary Behavior in Older Adults: The Senior Neighborhood Quality of Life Study.

    PubMed

    White, Maya N; King, Abby C; Sallis, James F; Frank, Lawrence D; Saelens, Brian E; Conway, Terry L; Cain, Kelli L; Kerr, Jacqueline

    2016-08-01

    Excess sedentary time predicts negative health outcomes independent of physical activity. The present investigation examined informal caregiving duties and transportation-related factors as potential correlates of sedentary behavior in older adults. Average daily sedentary time was measured via accelerometer in adults ages 66 years and older (N = 861). Caregiving variables included dog ownership and informal family caregiving status. Transportation variables included driver status, walking distance to public transit, and reported presence of pedestrians and bicyclists in one's neighborhood. In multivariate models, owning a dog and being a driver were associated with less sedentary time (p ≤ .01). Educational status and geographic region modified the association between dog ownership and sedentary time, and age modified the association between driver status and sedentary time. This study identified that older adult dog owners and drivers were less sedentary. Both factors may create opportunities for older adults to get out of their homes. © The Author(s) 2015.

  13. Super-resolving interference without intensity-correlation measurement

    NASA Astrophysics Data System (ADS)

    Cao, De-Zhong; Xu, Bao-Long; Zhang, Su-Heng; Wang, Kaige

    2015-05-01

    The high-order intensity correlation function of N -photon interference with thermal light observed in a recent experiment [S. Oppel, T. Büttner, P. Kok, and J. von Zanthier, Phys. Rev. Lett. 109, 233603 (2012), 10.1103/PhysRevLett.109.233603] is analyzed. The terms in the expansion of the N th -order correlation function are put into three groups. One group contributes a homogeneous background. Both of the other two contribute (N -1 ) -fold super-resolving fringes. In principle they correspond to coherent and incoherent superpositions of classical optical fields, respectively. Therefore similar super-resolving fringes can be obtained without intensity-correlation measurements. We report the experimental results of the coherent and incoherent super-resolving diffraction fringes, which are observed directly in the intensity distribution. The N -1 sources in both the coherent and incoherent cases are set in certain definite positions. In the coherent case, moreover, the phase difference between two adjacent source fields is π . The fringe visibility is unity in the incoherent case, while it decreases as N increases in the incoherent case.

  14. Determination of vertical interproximal bone loss topography: correlation between indirect digital radiographic measurement and clinical measurement.

    PubMed

    Esmaeli, Farzad; Shirmohammadi, Adileh; Faramarzie, Masoumeh; Abolfazli, Nader; Rasouli, Hossein; Fallahi, Saied

    2012-06-01

    Diagnosis and accuracy in determining the exact location, extent and configuration of bony defects of the jaw are of utmost importance to determine prognosis, treatment planning and long-term preservation of teeth. If relatively accurate diagnosis can be established by radiography, proper treatment planning prior to treatment procedures will be possible. The aim of the present study was to assess the correlation between indirect digital radiographic measurements and clinical measurements in determining the topography of interproximal bony defects. Twenty interproximal bony defects, preferably in the mandibular and maxillary 5↔5 area were selected and radiographed using the parallel periapical technique. The radiographs were corrected and digitized on a computer using "Linear Measurement" software; then the three parameters of the base of defect (BD), alveolar crest (AC) and cementoenamel junction (CEJ) were determined using a software. Subsequent to radiographic measurements, clinical measurements were carried out meticulously during flap procedures. Then linear measurements were carried out using a periodontal probe to determine the defect depth and its mesiodistal width. Then the amount of correlation between these two measurements was assessed by Pearson's correlation coefficient. The correlation between clinical and radiographic measurements in defect depth determination, in the evaluation of defect angle and in determination of defect width were 88%, 98% and 90%, respectively. Indirect digital radiographic technique can be used to diagnose intra-osseous defects, providing a better opportunity to treat bony defects.

  15. Measurement of correlated b quark cross sections at CDF

    SciTech Connect

    CDF Collaboration

    1994-05-01

    Using data collected during the 1992--1993 collider run at Fermilab, CDF has made measurements of correlated b quark cross sections where one b is detected from the lepton from semileptonic decay and the second b is detected with secondary vertex techniques. We report on measurements of the cross section as a function of the momentum of the second b and as a function of the azimuthal separation of the two b quarks, for transverse momentum of the initial b quark greater than 15 GeV. The vertex reconstruction techniques are valid over a large range in transverse momentum, starting at a minimum of 10 GeV. Results are compared to QCD predictions.

  16. Improvement of heterogeneous deformation measurement in digital image correlation

    NASA Astrophysics Data System (ADS)

    Shen, Huan; Liang, Zhonghan; Cheng, Baishun

    2017-07-01

    Heterogeneous deformation measurement using traditional digital image correlation (DIC) has times error of homogeneous deformation due to localized complexity. In case of small strain window, displacement field error will substantially corrupt the derived strain. On the contrary, large strain window will induce a reasonable information reduction in particular of heterogeneous deformation. In this paper, a novel parameter was put forward to correct displacement field and select strain subset size dynamically. This parameter was determined by localized displacement field that is called the localized displacement non-uniform intensity (λ). In addition, there is a simple and effective method to eliminate the rigid body rotation impact on strain measurement. A series of speckle images containing different heterogeneous deformation are simulated finally. Results show that the accuracy on the displacement and strain field can be substantially improved especially in heterogeneous deformation fields.

  17. Image correlation spectroscopy for measurements of particle densities and colocalization.

    PubMed

    Rappaz, Benjamin; Wiseman, Paul W

    2013-06-01

    Cells interact with their environment through receptor proteins expressed at their plasma membrane, and protein-protein interactions govern the transduction of signals across the membrane into the cell. Therefore, the ability to measure receptor densities and protein colocalization within the membrane of intact cells is of paramount importance. This unit describes a technique to extract these parameters from fluorescence microscopy images obtained using a commercial confocal laser scanning microscope (CLSM) and other similar types of microscopes. It is based on the analysis of spatial fluorescence intensity fluctuations in the images, which can then be related to particle density and aggregation state via calculation of a spatial autocorrelation function, or used to measure particle colocalization via calculation of a spatial cross-correlation function from dual-color images of proteins tagged with two different fluorophores and imaged in two detection channels. These parameters offer key insights on the interaction of the cell with its environment. © 2013 by John Wiley & Sons, Inc.

  18. Oxygen measurement by multimode diode lasers employing gas correlation spectroscopy.

    PubMed

    Lou, Xiutao; Somesfalean, Gabriel; Chen, Bin; Zhang, Zhiguo

    2009-02-10

    Multimode diode laser (MDL)-based correlation spectroscopy (COSPEC) was used to measure oxygen in ambient air, thereby employing a diode laser (DL) having an emission spectrum that overlaps the oxygen absorption lines of the A band. A sensitivity of 700 ppm m was achieved with good accuracy (2%) and linearity (R(2)=0.999). For comparison, measurements of ambient oxygen were also performed by tunable DL absorption spectroscopy (TDLAS) technique employing a vertical cavity surface emitting laser. We demonstrate that, despite slightly degraded sensitivity, the MDL-based COSPEC-based oxygen sensor has the advantages of high stability, low cost, ease-of-use, and relaxed requirements in component selection and instrument buildup compared with the TDLAS-based instrument.

  19. Correlative live-cell and superresolution microscopy reveals cargo transport dynamics at microtubule intersections

    PubMed Central

    Bálint, Štefan; Verdeny Vilanova, Ione; Sandoval Álvarez, Ángel; Lakadamyali, Melike

    2013-01-01

    Intracellular transport plays an essential role in maintaining the organization of polarized cells. Motor proteins tether and move cargos along microtubules during long-range transport to deliver them to their proper location of function. To reach their destination, cargo-bound motors must overcome barriers to their forward motion such as intersection points between microtubules. The ability to visualize how motors navigate these barriers can give important information about the mechanisms that lead to efficient transport. Here, we first develop an all-optical correlative imaging method based on single-particle tracking and superresolution microscopy to map the transport trajectories of cargos to individual microtubules with high spatiotemporal resolution. We then use this method to study the behavior of lysosomes at microtubule–microtubule intersections. Our results show that the intersection poses a significant hindrance that leads to long pauses in transport only when the separation distance of the intersecting microtubules is smaller than ∼100 nm. However, the obstructions are typically overcome by the motors with high fidelity by either switching to the intersecting microtubule or eventually passing through the intersection. Interestingly, there is a large tendency to maintain the polarity of motion (anterograde or retrograde) after the intersection, suggesting a high degree of regulation of motor activity to maintain transport in a given direction. These results give insights into the effect of the cytoskeletal geometry on cargo transport and have important implications for the mechanisms that cargo-bound motors use to maneuver through the obstructions set up by the complex cytoskeletal network. PMID:23401534

  20. Correlating Atom Probe Crystallographic Measurements with Transmission Kikuchi Diffraction Data.

    PubMed

    Breen, Andrew J; Babinsky, Katharina; Day, Alec C; Eder, K; Oakman, Connor J; Trimby, Patrick W; Primig, Sophie; Cairney, Julie M; Ringer, Simon P

    2017-03-14

    Correlative microscopy approaches offer synergistic solutions to many research problems. One such combination, that has been studied in limited detail, is the use of atom probe tomography (APT) and transmission Kikuchi diffraction (TKD) on the same tip specimen. By combining these two powerful microscopy techniques, the microstructure of important engineering alloys can be studied in greater detail. For the first time, the accuracy of crystallographic measurements made using APT will be independently verified using TKD. Experimental data from two atom probe tips, one a nanocrystalline Al-0.5Ag alloy specimen collected on a straight flight-path atom probe and the other a high purity Mo specimen collected on a reflectron-fitted instrument, will be compared. We find that the average minimum misorientation angle, calculated from calibrated atom probe reconstructions with two different pole combinations, deviate 0.7° and 1.4°, respectively, from the TKD results. The type of atom probe and experimental conditions appear to have some impact on this accuracy and the reconstruction and measurement procedures are likely to contribute further to degradation in angular resolution. The challenges and implications of this correlative approach will also be discussed.

  1. Measures of correlations in infinite-dimensional quantum systems

    NASA Astrophysics Data System (ADS)

    Shirokov, M. E.

    2016-05-01

    Several important measures of correlations of the state of a finite-dimensional composite quantum system are defined as linear combinations of marginal entropies of this state. This paper is devoted to infinite-dimensional generalizations of such quantities and to an analysis of their properties. We introduce the notion of faithful extension of a linear combination of marginal entropies and consider several concrete examples, the simplest of which are quantum mutual information and quantum conditional entropy. Then we show that quantum conditional mutual information can be defined uniquely as a lower semicontinuous function on the set of all states of a tripartite infinite-dimensional system possessing all the basic properties valid in finite dimensions. Infinite-dimensional generalizations of some other measures of correlations in multipartite quantum systems are also considered. Applications of the results to the theory of infinite-dimensional quantum channels and their capacities are considered. The existence of a Fawzi-Renner recovery channel reproducing marginal states for all tripartite states (including states with infinite marginal entropies) is shown. Bibliography: 47 titles.

  2. Universal linear-temperature resistivity: possible quantum diffusion transport in strongly correlated superconductors.

    PubMed

    Hu, Tao; Liu, Yinshang; Xiao, Hong; Mu, Gang; Yang, Yi-Feng

    2017-08-25

    The strongly correlated electron fluids in high temperature cuprate superconductors demonstrate an anomalous linear temperature (T) dependent resistivity behavior, which persists to a wide temperature range without exhibiting saturation. As cooling down, those electron fluids lose the resistivity and condense into the superfluid. However, the origin of the linear-T resistivity behavior and its relationship to the strongly correlated superconductivity remain a mystery. Here we report a universal relation [Formula: see text], which bridges the slope of the linear-T-dependent resistivity (dρ/dT) to the London penetration depth λ L at zero temperature among cuprate superconductor Bi2Sr2CaCu2O8+δ and heavy fermion superconductors CeCoIn5, where μ 0 is vacuum permeability, k B is the Boltzmann constant and ħ is the reduced Planck constant. We extend this scaling relation to different systems and found that it holds for other cuprate, pnictide and heavy fermion superconductors as well, regardless of the significant differences in the strength of electronic correlations, transport directions, and doping levels. Our analysis suggests that the scaling relation in strongly correlated superconductors could be described as a hydrodynamic diffusive transport, with the diffusion coefficient (D) approaching the quantum limit D ~ ħ/m*, where m* is the quasi-particle effective mass.

  3. Determination of Vertical Interproximal Bone Loss Topography: Correlation Between Indirect Digital Radiographic Measurement and Clinical Measurement

    PubMed Central

    Esmaeli, Farzad; Shirmohammadi, Adileh; Faramarzie, Masoumeh; Abolfazli, Nader; Rasouli, Hossein; Fallahi, Saied

    2012-01-01

    Background Diagnosis and accuracy in determining the exact location, extent and configuration of bony defects of the jaw are of utmost importance to determine prognosis, treatment planning and long-term preservation of teeth. If relatively accurate diagnosis can be established by radiography, proper treatment planning prior to treatment procedures will be possible. Objectives The aim of the present study was to assess the correlation between indirect digital radiographic measurements and clinical measurements in determining the topography of interproximal bony defects. Patients and Methods Twenty interproximal bony defects, preferably in the mandibular and maxillary 5↔5 area were selected and radiographed using the parallel periapical technique. The radiographs were corrected and digitized on a computer using “Linear Measurement” software; then the three parameters of the base of defect (BD), alveolar crest (AC) and cementoenamel junction (CEJ) were determined using a software. Subsequent to radiographic measurements, clinical measurements were carried out meticulously during flap procedures. Then linear measurements were carried out using a periodontal probe to determine the defect depth and its mesiodistal width. Then the amount of correlation between these two measurements was assessed by Pearson's correlation coefficient. Results The correlation between clinical and radiographic measurements in defect depth determination, in the evaluation of defect angle and in determination of defect width were 88%, 98% and 90%, respectively. Conclusions Indirect digital radiographic technique can be used to diagnose intra-osseous defects, providing a better opportunity to treat bony defects. PMID:23329969

  4. Radiation transport modelling for the interpretation of oblique ECE measurements

    NASA Astrophysics Data System (ADS)

    Denk, Severin S.; Fischer, Rainer; Maj, Omar; Poli, Emanuele; Stober, Jörg K.; Stroth, Ulrich; Vanovac, Branka; Suttrop, Wolfgang; Willensdorfer, Matthias

    2017-07-01

    The electron cyclotron emission (ECE) diagnostic provides routinely electron temperature (Te) measurements. At ASDEX Upgrade an electron cyclotron forward model, solving the radiation transport equation for given Te and electron density profile, is used in the framework of integrated data analysis. With this method Te profiles can be obtained from ECE measurements even for plasmas with low optical depth. However, due to the assumption of straight lines of sight and an absorption coefficient in the quasi-perpendicular approximation this forward model is not suitable for the interpretation of measurements by ECE diagnostics with an oblique line of sight. Since radiation transport modelling is required for the interpretation of oblique ECE diagnostics we present in this paper an extended forward model that supports oblique lines of sight. To account for the refraction of the line of sight, ray tracing in the cold plasma approximation was added to the model. Furthermore, an absorption coefficient valid for arbitrary propagation was implemented. Using the revised model it is shown that for the oblique ECE Imaging diagnostic at ASDEX Upgrade there can be a significant difference between the cold resonance position and the point from which most of the observed radiation originates.

  5. Accurate measurement of liquid transport through nanoscale conduits

    PubMed Central

    Alibakhshi, Mohammad Amin; Xie, Quan; Li, Yinxiao; Duan, Chuanhua

    2016-01-01

    Nanoscale liquid transport governs the behaviour of a wide range of nanofluidic systems, yet remains poorly characterized and understood due to the enormous hydraulic resistance associated with the nanoconfinement and the resulting minuscule flow rates in such systems. To overcome this problem, here we present a new measurement technique based on capillary flow and a novel hybrid nanochannel design and use it to measure water transport through single 2-D hydrophilic silica nanochannels with heights down to 7 nm. Our results show that silica nanochannels exhibit increased mass flow resistance compared to the classical hydrodynamics prediction. This difference increases with decreasing channel height and reaches 45% in the case of 7 nm nanochannels. This resistance increase is attributed to the formation of a 7-angstrom-thick stagnant hydration layer on the hydrophilic surfaces. By avoiding use of any pressure and flow sensors or any theoretical estimations the hybrid nanochannel scheme enables facile and precise flow measurement through single nanochannels, nanotubes, or nanoporous media and opens the prospect for accurate characterization of both hydrophilic and hydrophobic nanofluidic systems. PMID:27112404

  6. Hysteresis in Transport Critical-Current Measurements of Oxide Superconductors.

    PubMed

    Goodrich, L F; Stauffer, T C

    2001-01-01

    We have investigated magnetic hysteresis in transport critical-current (I c) measurements of Ag-matrix (Bi,Pb)2Sr2Ca2Cu3O10- x (Bi-2223) and AgMg-matrix Bi2Sr2CaCu2O8+ x (Bi-2212) tapes. The effect of magnetic hysteresis on the measured critical current of high temperature superconductors is a very important consideration for every measurement procedure that involves more than one sweep of magnetic field, changes in field angle, or changes in temperature at a given field. The existence of this hysteresis is well known; however, the implications for a measurement standard or interlaboratory comparisons are often ignored and the measurements are often made in the most expedient way. A key finding is that I c at a given angle, determined by sweeping the angles in a given magnetic field, can be 17 % different from the I c determined after the angle was fixed in zero field and the magnet then ramped to the given field. Which value is correct is addressed in the context that the proper sequence of measurement conditions reflects the application conditions. The hysteresis in angle-sweep and temperature-sweep data is related to the hysteresis observed when the field is swept up and down at constant angle and temperature. The necessity of heating a specimen to near its transition temperature to reset it to an initial state between measurements at different angles and temperatures is discussed.

  7. Transportation control measure: State Implementation Plan guidance (revised final report)

    SciTech Connect

    Eisinger, D.S.; Deakin, E.A.; Mahoney, L.A.; Morris, R.E.; Ireson, R.G.

    1990-09-01

    The document has been developed for the United States Environmental Protection Agency to summarize current knowledge about transportation control measures (TCMs). The target audience includes transportation and air quality management staff at all government levels. The guidance development effort is motivated by the need to provide post-1987 guidance to attain National Ambient Air Quality Standards (NAAQS). The document provides descriptions and examples of the most frequently implemented TCMs; institutional guidance such as assessing feasibility, agency responsibilities, and funding; and techniques for monitoring and enforcing TCMs. In addition, the document describes the tools available for evaluating TCM impacts on hydrocarbons, nitrogen oxides, and carbon monoxide emissions. Appendices present approaches to estimate TCM effects on PM-10 emissions; important sources of additional information; implementation experiences in various cities; and rules of thumb to quantitatively evaluate TCM transportation system effects. The information presented demonstrates that there have been significant advances in TCM development over the past decade, and that TCMs are appropriate control options for state implementation plans.

  8. Linearized spectrum correlation analysis for line emission measurements

    NASA Astrophysics Data System (ADS)

    Nishizawa, T.; Nornberg, M. D.; Den Hartog, D. J.; Sarff, J. S.

    2017-08-01

    A new spectral analysis method, Linearized Spectrum Correlation Analysis (LSCA), for charge exchange and passive ion Doppler spectroscopy is introduced to provide a means of measuring fast spectral line shape changes associated with ion-scale micro-instabilities. This analysis method is designed to resolve the fluctuations in the emission line shape from a stationary ion-scale wave. The method linearizes the fluctuations around a time-averaged line shape (e.g., Gaussian) and subdivides the spectral output channels into two sets to reduce contributions from uncorrelated fluctuations without averaging over the fast time dynamics. In principle, small fluctuations in the parameters used for a line shape model can be measured by evaluating the cross spectrum between different channel groupings to isolate a particular fluctuating quantity. High-frequency ion velocity measurements (100-200 kHz) were made by using this method. We also conducted simulations to compare LSCA with a moment analysis technique under a low photon count condition. Both experimental and synthetic measurements demonstrate the effectiveness of LSCA.

  9. The Effect of Error Correlation on Interfactor Correlation in Psychometric Measurement

    ERIC Educational Resources Information Center

    Westfall, Peter H.; Henning, Kevin S. S.; Howell, Roy D.

    2012-01-01

    This article shows how interfactor correlation is affected by error correlations. Theoretical and practical justifications for error correlations are given, and a new equivalence class of models is presented to explain the relationship between interfactor correlation and error correlations. The class allows simple, parsimonious modeling of error…

  10. Experimental evaluation of nonclassical correlations between measurement outcomes and target observable in a quantum measurement

    NASA Astrophysics Data System (ADS)

    Iinuma, Masataka; Suzuki, Yutaro; Nii, Taiki; Kinoshita, Ryuji; Hofmann, Holger F.

    2016-03-01

    In general, it is difficult to evaluate measurement errors when the initial and final conditions of the measurement make it impossible to identify the correct value of the target observable. Ozawa proposed a solution based on the operator algebra of observables which has recently been used in experiments investigating the error-disturbance trade-off of quantum measurements. Importantly, this solution makes surprisingly detailed statements about the relations between measurement outcomes and the unknown target observable. In the present paper, we investigate this relation by performing a sequence of two measurements on the polarization of a photon, so that the first measurement commutes with the target observable and the second measurement is sensitive to a complementary observable. While the initial measurement can be evaluated using classical statistics, the second measurement introduces the effects of quantum correlations between the noncommuting physical properties. By varying the resolution of the initial measurement, we can change the relative contribution of the nonclassical correlations and identify their role in the evaluation of the quantum measurement. It is shown that the most striking deviation from classical expectations is obtained at the transition between weak and strong measurements, where the competition between different statistical effects results in measurement values well outside the range of possible eigenvalues.

  11. Electronic transport in DNA sequences: The role of correlations and inter-strand coupling

    NASA Astrophysics Data System (ADS)

    Albuquerque, E. L.; Lyra, M. L.; de Moura, F. A. B. F.

    2006-10-01

    We investigate the electronic properties in sequences of single and double-strand DNA molecules made up from the nucleotides guanine G, adenine A, cytosine C and thymine T. Using a tight-binding formulation we solve the time-dependent Schrödinger equation to compute the spread of initially localized wave packets. We also compute the localization length in finite segments by employing a Green's function recursion method. We compare the results for the genomic DNA sequence with those of two artificial sequences, namely the quasiperiodic Rudin-Shapiro one, which has long-range correlations, and a intra-strand pair correlated DNA sequence. We found that the short-range character of the intra-strand correlations suffices for a quantitative description of the one-electron wave-packet dynamics in the double-strand real DNA sequences. Further, the inter-strand coupling promotes electronic transport over a longer segment.

  12. Pair correlation microscopy reveals the role of nanoparticle shape in intracellular transport and site of drug release

    NASA Astrophysics Data System (ADS)

    Hinde, Elizabeth; Thammasiraphop, Kitiphume; Duong, Hien T. T.; Yeow, Jonathan; Karagoz, Bunyamin; Boyer, Cyrille; Gooding, J. Justin; Gaus, Katharina

    2017-01-01

    Nanoparticle size, surface charge and material composition are known to affect the uptake of nanoparticles by cells. However, whether nanoparticle shape affects transport across various barriers inside the cell remains unclear. Here we used pair correlation microscopy to show that polymeric nanoparticles with different shapes but identical surface chemistries moved across the various cellular barriers at different rates, ultimately defining the site of drug release. We measured how micelles, vesicles, rods and worms entered the cell and whether they escaped from the endosomal system and had access to the nucleus via the nuclear pore complex. Rods and worms, but not micelles and vesicles, entered the nucleus by passive diffusion. Improving nuclear access, for example with a nuclear localization signal, resulted in more doxorubicin release inside the nucleus and correlated with greater cytotoxicity. Our results therefore demonstrate that drug delivery across the major cellular barrier, the nuclear envelope, is important for doxorubicin efficiency and can be achieved with appropriately shaped nanoparticles.

  13. Field measurements of tracer gas transport by barometric pumping

    SciTech Connect

    Lagus, P.L.; McKinnis, W.B.; Hearst, J.R.; Burkhard, N.R.; Smith, C.F.

    1994-07-28

    Vertical gas motions induced by barometric pressure variations can carry radioactive gases out of the rubblized region produced by an underground nuclear explosion, through overburden rock, into the atmosphere. To better quantify transit time and amount of transport, field experiments were conducted at two sites on Pahute Mesa, Kapelli and Tierra, where radioactive gases had been earlier detected in surface cracks. At each site, two tracer gases were injected into the rubblized chimney 300-400 m beneath the surface and their arrival was monitored by concentration measurements in gas samples extracted from shallow collection holes. The first ``active`` tracer was driven by a large quantity of injected air; the second ``passive`` tracer was introduced with minimal gas drive to observe the natural transport by barometric pumping. Kapelli was injected in the fall of 1990, followed by Tierra in the fall of 1991. Data was collected at both sites through the summer of 1993. At both sites, no surface arrival of tracer was observed during the active phase of the experiment despite the injection of several million cubic feet of air, suggesting that cavity pressurization is likely to induce horizontal transport along high permeability layers rather than vertical transport to the surface. In contrast, the vertical pressure gradients associated with barometric pumping brought both tracers to the surface in comparable concentrations within three months at Kapelli, whereas 15 months elapsed before surface arrival at Tierra. At Kapelli, a quasisteady pumping regime was established, with tracer concentrations in effluent gases 1000 times smaller than concentrations thought to exist in the chimney. Tracer concentrations observed at Tierra were typically an order of magnitude smaller. Comparisons with theoretical calculations suggest that the gases are traveling through {approximately}1 millimeter vertical fractures spaced 2 to 4 meters apart. 6 refs., 18 figs., 3 tabs.

  14. The Importance of Parameter Variances, Correlations Lengths, and Cross-Correlations in Reactive Transport Models: Key Considerations for Assessing the Need for Microscale Information (Invited)

    NASA Astrophysics Data System (ADS)

    Reimus, P. W.

    2010-12-01

    A process-oriented modeling approach is implemented to examine the importance of parameter variances, correlation lengths, and especially cross-correlations in contaminant transport predictions over large scales. It is shown that the most important consideration is the correlation between flow rates and retardation processes (e.g., sorption, matrix diffusion) in the system. If flow rates are negatively correlated with retardation factors in systems containing multiple flow pathways, then characterizing these negative correlation(s) may have more impact on reactive transport modeling than microscale information. Such negative correlations are expected in porous-media systems where permeability is negatively correlated with clay content and rock alteration (which are usually associated with increased sorption). Likewise, negative correlations are expected in fractured rocks where permeability is positively correlated with fracture apertures, which in turn are negatively correlated with sorption and matrix diffusion. Parameter variances and correlation lengths are also shown to have important effects on reactive transport predictions, but they are less important than parameter cross-correlations. Microscale information pertaining to contaminant transport has become more readily available as characterization methods and spectroscopic instrumentation have achieved lower detection limits, greater resolution, and better precision. Obtaining detailed mechanistic insights into contaminant-rock-water interactions is becoming a routine practice in characterizing reactive transport processes in groundwater systems (almost necessary for high-profile publications). Unfortunately, a quantitative link between microscale information and flow and transport parameter distributions or cross-correlations has not yet been established. One reason for this is that quantitative microscale information is difficult to obtain in complex, heterogeneous systems, so simple systems that lack the

  15. Correlation between erection hardness score and nocturnal penile tumescence measurement.

    PubMed

    Matsuda, Yohei; Hisasue, Shin-Ichi; Kumamoto, Yoshiaki; Kobayashi, Ko; Hashimoto, Kohei; Sato, Yoshikazu; Masumori, Naoya

    2014-09-01

    The Erection Hardness Score (EHS) and the Sexual Health Inventory for men (SHIM) are patient-reported outcome scoring systems for erectile function. It is unclear which is more reliable for predicting the objective erectile function. The aim of this study was to evaluate whether the EHS could predict objective erectile function by measuring the maximal penile circumferential change (MPCC) with an erectometer. The study included 98 patients who visited our clinic from 2005 to 2010. The erectile function was evaluated using the SHIM, EHS, and MPCC. The MPCC was measured with the largest circumferential change of three consecutive occurrences of nocturnal penile tumescence (NPT) determined using the erectometer. We defined erectile dysfunction (ED) as MPCC < 20 mm and carried out multivariate analysis using logistic regression analysis to clarify the predictors for ED, with the variables including age, the SHIM score, and the EHS. We compared the tendency for MPCC ≥ 20 mm when EHS was 3 or more with that when EHS was 2 or less. The median age of the patients was 59.5 years (range 18-83). In logistic regression analysis, the EHS was the only predictor for ED with MPCC < 20 mm. The mean EHS in the MPCC < 20 mm group was 1.64 ± 0.20 (mean ± SEM) and that in the MPCC ≥ 20 mm group was 2.46 ± 0.13 (P = 0.0018). There was a correlation between the EHS and the MPCC (correlation coefficient = 0.33). In comparison with the group having an EHS of 2 or less, that with an EHS of 3 or more tended to have MPCC ≥ 20 mm (P = 0.013). The EHS was correlated with the MPCC. The EHS represents the objective erectile function shown by the measurement of NPT. © 2014 International Society for Sexual Medicine.

  16. Correlations and non-local transport in a critical-gradient fluctuation model

    NASA Astrophysics Data System (ADS)

    Nicolau, J. H.; García, L.; Carreras, B. A.

    2016-11-01

    A one-dimensional model based on critical-gradient fluctuation dynamics is used to study turbulent transport in magnetically confined plasmas. The model exhibits the selforganized criticality (SOC) dynamics. At the steady state, two regions are found: the outer one is close to critical state and the inner one remaining at the subcritical gradient. The gradient- flux relation exhibits a parabola-like profile centered in the most probable gradient following experimental studies. This is a signature of the non-locality of particle transport driven by avalanches: at the given position transport is due to gradients situated into closer but different positions. The R/S analysis, applied to the fluxes dynamics reveals memory and correlation. Different H exponents corresponding to different dynamical behavior are obtained. The flux at the edge exhibits long time correlations, which can be suppressed if the external drive or the system size is modified. On the other hand, we found that in the sub-critical region the quasiperiodicity is present in the avalanches.

  17. Correlates of walking for transportation and use of public transportation among adults in St Louis, Missouri, 2012.

    PubMed

    Zwald, Marissa L; Hipp, James A; Corseuil, Marui W; Dodson, Elizabeth A

    2014-07-03

    Attributes of the built environment can influence active transportation, including use of public transportation. However, the relationship between perceptions of the built environment and use of public transportation deserves further attention. The objectives of this study were 1) to assess the relationship between personal characteristics and public transportation use with meeting national recommendations for moderate physical activity through walking for transportation and 2) to examine associations between personal and perceived environmental factors and frequency of public transportation use. In 2012, we administered a mail-based survey to 772 adults in St Louis, Missouri, to assess perceptions of the built environment, physical activity, and transportation behaviors. The abbreviated International Physical Activity Questionnaire was used to assess walking for transportation and use of public transportation. The Neighborhood Environment Walkability Scale was used to examine perceptions of the built environment. Associations were assessed by using multinomial logistic regression. People who used public transportation at least once in the previous week were more likely to meet moderate physical activity recommendations by walking for transportation. Age and employment were significantly associated with public transportation use. Perceptions of high traffic speed and high crime were negatively associated with public transportation use. Our results were consistent with previous research suggesting that public transportation use is related to walking for transportation. More importantly, our study suggests that perceptions of traffic speed and crime are related to frequency of public transportation use. Future interventions to encourage public transportation use should consider policy and planning decisions that reduce traffic speed and improve safety.

  18. Direct Measurement of Impurity Transport in a Field Reversed Configuration

    NASA Astrophysics Data System (ADS)

    Roche, T.; Bolte, N.; Heidbrink, W. W.; McWilliams, R.; Wessel, F.

    2011-10-01

    An optical tomography system has been developed and implemented in the Flux Coil Generated Field Reversed Configuration (FCG-FRC) at Tri Alpha Energy. Sixteen chords view ~ 35 % of the FRC at the mid-plane. The chords are arranged in two identical fans of eight chords each. To measure transport of an impurity species, argon, an FRC is generated using either Nitrogen or Deuterium as the primary species. A puff valve is activated prior to the shot such that the argon begins to bleed in to the vacuum chamber as the FRC is formed. The gas is puffed at the optimal location for tomographic reconstruction. Each chord is collimated to illuminate a fiber optic cable which is fed to an array of photomultiplier tubes which are fitted with neutral density and band pass filters to allow the appropriate amount of light from the emitting, singly ionized, argon at 434 . 8 nm to be measured. Using a preliminary assumption that density of argon is proportional to light intensity gathered data have been used to reconstruct density profiles. These profiles often peak near the field null. The data are being analyzed to determine diffusive and convective transport coefficients.

  19. Skin Friction and Transition Location Measurement on Supersonic Transport Models

    NASA Technical Reports Server (NTRS)

    Kennelly, Robert A., Jr.; Goodsell, Aga M.; Olsen, Lawrence E. (Technical Monitor)

    2000-01-01

    Flow visualization techniques were used to obtain both qualitative and quantitative skin friction and transition location data in wind tunnel tests performed on two supersonic transport models at Mach 2.40. Oil-film interferometry was useful for verifying boundary layer transition, but careful monitoring of model surface temperatures and systematic examination of the effects of tunnel start-up and shutdown transients will be required to achieve high levels of accuracy for skin friction measurements. A more common technique, use of a subliming solid to reveal transition location, was employed to correct drag measurements to a standard condition of all-turbulent flow on the wing. These corrected data were then analyzed to determine the additional correction required to account for the effect of the boundary layer trip devices.

  20. Direct measurements of transport properties are essential for site characterization

    SciTech Connect

    Wright, J.; Conca, J.L.

    1994-08-01

    Direct measurements of transport parameters on subsurface sediments using, the UFA method provided detailed hydrostratigraphic mapping, and subsurface flux distributions at a mixed-waste disposal site at Hanford. Seven hundred unsaturated conductivity measurements on fifty samples were obtained in only six months total of UFA run time. These data are used to provide realistic information to conceptual models, predictive models and restoration strategies. The UFA instrument consists of an ultracentrifuge with a constant, ultralow flow pump that provides fluid to the sample surface through a rotating seal assembly and microdispersal system. Effluent from the sample is collected in a transparent, volumetrically-calibrated chamber at the bottom of the sample assembly. Using a strobe light, an observer can check the chamber while the sample is being centrifuged. Materials can be run in the UFA as recomposited samples or in situ samples can be subcored directly into the sample UFA chamber.

  1. Combined transport, magnetization and neutron scattering study of correlated iridates and iron pnictide superconductors

    NASA Astrophysics Data System (ADS)

    Dhital, Chetan

    The work performed within this thesis is divided into two parts, each focusing primarily on the study of magnetic phase behavior using neutron scattering techniques. In first part, I present transport, magnetization, and neutron scattering studies of materials within the iridium oxide-based Ruddelsden-Popper series [Srn+1IrnO3n+1] compounds Sr 3Ir2O7 (n=2) and Sr2IrO4 (n=1). This includes a comprehensive study of the doped bilayer system Sr 3(Ir1-xRux )2O7. In second part, I present my studies of the effect of uniaxial pressure on magnetic and structural phase behavior of the iron-based high temperature superconductor Ba(Fe1-xCox)2As2. Iridium-based 5d transition metal oxides host rather unusual electronic/magnetic ground states due to strong interplay between electronic correlation, lattice structure and spin-orbit effects. Out of the many oxides containing iridium, the Ruddelsden-Popper series [Srn+1IrnO 3n+1] oxides are some of the most interesting systems to study both from the point of view of physics as well as from potential applications. My work is focused on two members of this series Sr3Ir2O 7 (n=2) and Sr2IrO4 (n=1). In particular, our combined transport, magnetization and neutron scattering studies of Sr 3Ir2O7 (n=2) showed that this system exhibits a complex coupling between charge transport and magnetism. The spin magnetic moments form a G-type antiferromagnetic structure with moments oriented along the c-axis, with an ordered moment of 0.35+/-0.06 muB/Ir. I also performed experiments doping holes in this bilayer Sr3(Ir1-xRu x)2O7 system in order to study the role of electronic correlation in these materials. Our results show that the ruthenium-doped holes remain localized within the Jeff=1/2 Mott insulating background of Sr3Ir2O7, suggestive of 'Mott blocking' and the presence of strong electronic correlation in these materials. Antiferromagnetic order however survives deep into the metallic regime with the same ordering q-vector, suggesting an

  2. Influence of the surface hydrophobicity on fluorescence correlation spectroscopy measurements

    NASA Astrophysics Data System (ADS)

    Boutin, Céline; Jaffiol, Rodolphe; Plain, Jérome; Royer, Pascal

    2007-02-01

    Fluorescence correlation spectroscopy (FCS) is a powerful experimental technique used to analyze the diffusion at the single molecule level in solution. FCS is based on the temporal autocorrelation of fluorescent signal generated by dye molecules diffusing through a small confocal volume. These measurements are mostly carried out in a chambered coverglass, close to the glass substrate. In this report, we discuss how the chemical nature of the glass-water interface may interact with the free diffusion of molecules. Our results reveal a strong influence, up to a few μm from the interface, of the surface hydrophobicity degree. This influence is assessed through the relative weight of the two dimension diffusion process observed at the vicinity of the surface.

  3. Handedness correlates with actigraphically measured sleep in a controlled environment.

    PubMed

    Killgore, William D S; Lipizzi, Erica L; Grugle, Nancy L; Killgore, Desiree B; Balkin, Thomas J

    2009-10-01

    The relationship between hand preference and duration of sleep was assessed in 40 healthy subjects using self-report estimates, sleep diaries, and wrist activity monitors during an uncontrolled 7-day at-home phase and during a controlled overnight stay in a sleep laboratory. Handedness was unrelated to any index of sleep duration when assessed in the unregulated home environment. In the controlled environment of the laboratory, however, greater right-hand dominance was positively correlated with more minutes of obtained sleep and greater sleep efficiency. Findings were consistent with previous reports which suggest measures of brain lateralization may be related to sleep and health but further suggest that these relationships may be easily obscured by extraneous environmental factors when assessed in an uncontrolled setting.

  4. Real-time visualization of clustering and intracellular transport of gold nanoparticles by correlative imaging

    NASA Astrophysics Data System (ADS)

    Liu, Mengmeng; Li, Qian; Liang, Le; Li, Jiang; Wang, Kun; Li, Jiajun; Lv, Min; Chen, Nan; Song, Haiyun; Lee, Joon; Shi, Jiye; Wang, Lihua; Lal, Ratnesh; Fan, Chunhai

    2017-05-01

    Mechanistic understanding of the endocytosis and intracellular trafficking of nanoparticles is essential for designing smart theranostic carriers. Physico-chemical properties, including size, clustering and surface chemistry of nanoparticles regulate their cellular uptake and transport. Significantly, even single nanoparticles could cluster intracellularly, yet their clustering state and subsequent trafficking are not well understood. Here, we used DNA-decorated gold (fPlas-gold) nanoparticles as a dually emissive fluorescent and plasmonic probe to examine their clustering states and intracellular transport. Evidence from correlative fluorescence and plasmonic imaging shows that endocytosis of fPlas-gold follows multiple pathways. In the early stages of endocytosis, fPlas-gold nanoparticles appear mostly as single particles and they cluster during the vesicular transport and maturation. The speed of encapsulated fPlas-gold transport was critically dependent on the size of clusters but not on the types of organelle such as endosomes and lysosomes. Our results provide key strategies for engineering theranostic nanocarriers for efficient health management.

  5. Measurement of the Critical Deposition Velocity in Slurry Transport through a Horizontal Pipe

    SciTech Connect

    Erian, Fadel F.; Furfari, Daniel J.; Kellogg, Michael I.; Park, Walter R.

    2001-03-01

    Critical Deposition Velocity (CDV) is an important design and operational parameter in slurry transport. Almost all existing correlations that are used to predict this parameter have been obtained experimentally from slurry transport tests featuring single solid species in the slurry mixture. No correlations have been obtained to describe this parameter when the slurry mixture contains more than one solid species having a wide range of specific gravities, particle size distributions, and volume concentrations within the overall slurry mixture. There are no physical or empirical bases that can justify the extrapolation or modification of the existing single species correlations to include all these effects. New experiments must be carried out to obtain new correlations that would be suited for these types of slurries, and that would clarify the mechanics of solids deposition as a function of the properties of the various solid species. Our goal in this paper is to describe a robust experimental technique for the accurate determination of the critical deposition velocity associated with the transport of slurries in horizontal or slightly inclined pipes. Because of the relative difficulty encountered during the precise determination of this useful operational parameter, it has been the practice to connect it with some transitional behavior of more easily measurable flow parameters such as the pressure drop along the slurry pipeline. In doing so, the critical deposition velocity loses its unique and precise definition due to the multitude of factors that influence such transitional behaviors. Here, data has been obtained for single species slurries made up of washed garnet and water and flowing through a 1- inch clear pipe. The selected garnet had a narrow particle size distribution with a mean diameter of 100 mm, approximately. The critical deposition velocity was measured for garnet/water slurries of 10, 20, and 30 percent solids concentration by volume.

  6. openBEB: open biological experiment browser for correlative measurements

    PubMed Central

    2014-01-01

    Background New experimental methods must be developed to study interaction networks in systems biology. To reduce biological noise, individual subjects, such as single cells, should be analyzed using high throughput approaches. The measurement of several correlative physical properties would further improve data consistency. Accordingly, a considerable quantity of data must be acquired, correlated, catalogued and stored in a database for subsequent analysis. Results We have developed openBEB (open Biological Experiment Browser), a software framework for data acquisition, coordination, annotation and synchronization with database solutions such as openBIS. OpenBEB consists of two main parts: A core program and a plug-in manager. Whereas the data-type independent core of openBEB maintains a local container of raw-data and metadata and provides annotation and data management tools, all data-specific tasks are performed by plug-ins. The open architecture of openBEB enables the fast integration of plug-ins, e.g., for data acquisition or visualization. A macro-interpreter allows the automation and coordination of the different modules. An update and deployment mechanism keeps the core program, the plug-ins and the metadata definition files in sync with a central repository. Conclusions The versatility, the simple deployment and update mechanism, and the scalability in terms of module integration offered by openBEB make this software interesting for a large scientific community. OpenBEB targets three types of researcher, ideally working closely together: (i) Engineers and scientists developing new methods and instruments, e.g., for systems-biology, (ii) scientists performing biological experiments, (iii) theoreticians and mathematicians analyzing data. The design of openBEB enables the rapid development of plug-ins, which will inherently benefit from the “house keeping” abilities of the core program. We report the use of openBEB to combine live cell microscopy

  7. Intraclass correlation for measures from a middle school nutrition intervention study: estimates, correlates, and applications.

    PubMed

    Murray, D M; Phillips, G A; Bimbaum, A S; Lytle, L A

    2001-12-01

    This article presents the first estimates of school-level intraclass correlation for dietary measures based on data from the Teens Eating for Energy and Nutrition at School study. This study involves 3,878 seventh graders from 16 middle schools from Minneapolis-St. Paul, Minnesota. The sample was 66.8% White, 11.2% Black, and 7.0% Asian; 48.8% of the sample was female. Typical fruit and vegetable intake was assessed with a modified version of the Behavior Risk Factor Surveillance System questionnaire. Twenty-four-hour dietary recalls were conducted by nutritionists using the Minnesota Nutrition Data System. Mixed-model regression methods were used to estimate variance components for school and residual error, both before and after adjustment for demographic factors. School-level intraclass correlations were large enough, if ignored, to substantially inflate the Type I error rate in an analysis of treatment effects. The authors show how to use the estimates to determine sample size requirements for future studies.

  8. Effects of valence, geometry and electronic correlations on transport in transition metal benzene sandwich molecules.

    PubMed

    Karolak, M; Jacob, D

    2016-11-09

    We study the impact of the valence and the geometry on the electronic structure and transport properties of different transition metal-benzene sandwich molecules bridging the tips of a Cu nanocontact. Our density-functional calculations show that the electronic transport properties of the molecules depend strongly on the molecular geometry which can be controlled by the nanocontact tips. Depending on the valence of the transition metal center certain molecules can be tuned in and out of half-metallic behaviour facilitating potential spintronics applications. We also discuss our results in the framework of an Anderson impurity model, indicating cases where the inclusion of local correlations alters the ground state qualitatively. For Co and V centered molecules we find indications of an orbital Kondo effect.

  9. Correlating Humidity-Dependent Ionically Conductive Surface Area with Transport Phenomena in Proton-Exchange Membranes

    SciTech Connect

    He, Qinggang; Kusoglu, Ahmet; Lucas, Ivan T.; Clark, Kyle; Weber, Adam Z.; Kostecki, Robert

    2011-08-01

    The objective of this effort was to correlate the local surface ionic conductance of a Nafion? 212 proton-exchange membrane with its bulk and interfacial transport properties as a function of water content. Both macroscopic and microscopic proton conductivities were investigated at different relative humidity levels, using electrochemical impedance spectroscopy and current-sensing atomic force microscopy (CSAFM). We were able to identify small ion-conducting domains that grew with humidity at the surface of the membrane. Numerical analysis of the surface ionic conductance images recorded at various relative humidity levels helped determine the fractional area of ion-conducting active sites. A simple square-root relationship between the fractional conducting area and observed interfacial mass-transport resistance was established. Furthermore, the relationship between the bulk ionic conductivity and surface ionic conductance pattern of the Nafion? membrane was examined.

  10. Effects of valence, geometry and electronic correlations on transport in transition metal benzene sandwich molecules

    NASA Astrophysics Data System (ADS)

    Karolak, M.; Jacob, D.

    2016-11-01

    We study the impact of the valence and the geometry on the electronic structure and transport properties of different transition metal-benzene sandwich molecules bridging the tips of a Cu nanocontact. Our density-functional calculations show that the electronic transport properties of the molecules depend strongly on the molecular geometry which can be controlled by the nanocontact tips. Depending on the valence of the transition metal center certain molecules can be tuned in and out of half-metallic behaviour facilitating potential spintronics applications. We also discuss our results in the framework of an Anderson impurity model, indicating cases where the inclusion of local correlations alters the ground state qualitatively. For Co and V centered molecules we find indications of an orbital Kondo effect.

  11. The Effect of Correlated Energetic Disorder on Charge Transport in Organic Semiconductors

    NASA Astrophysics Data System (ADS)

    Allen, Jonathan; Röding, Sebastian; Cherqui, Charles; Dunlap, David

    2012-10-01

    In their 1995 paper describing a Monte Carlo simulation for dissociation of an electron-hole pair in the presence of Gaussian energetic disorder, Albrect and Bäassler reported a surprising result. They found that increasing the width σ of the energetic disorder increases the quantum yield φ. They attributed this behavior to the tendency for energy fluctuations to compete against the Coulombic pair attraction, driving the electron-hole pair apart at short distances where, without disorder, recombination would be almost certain. We have expanded upon this notion, and introduced spatial correlation into the energetic disorder. By correlating the energetic disorder, we have demonstrated even larger quantum yields in simulation, attributable to the tendency of correlation to drive the charges further apart spatially than merely random disorder. Our results generally support the findings of Greenham et al. in that a larger correlation radius gives a larger quantum yield. In addition to larger quantum yield, we believe that correlated disorder could be used to create pathways for charge transport within a material, allowing the charge carrier behavior to be tuned.

  12. Calorimetric measurement of water transport and intracellular ice formation during freezing in cell suspensions.

    PubMed

    Mori, Shoji; Choi, Jeunghwan; Devireddy, Ram V; Bischof, John C

    2012-12-01

    The current study presents a new and novel analysis of heat release signatures measured by a differential scanning calorimeter (DSC) associated with water transport (WT), intracellular ice formation (IIF) and extracellular ice formation (EIF). Correlative cryomicroscopy experiments were also performed to validate the DSC data. The DSC and cryomicroscopy experiments were performed on human dermal fibroblast cells (HDFs) at various cytocrit values (0-0.8) at various cooling rates (0.5-250 °C/min). A comparison of the cryomicroscopy experiments with the DSC analysis show reasonable agreement in the water transport (cellular dehydration) and IIF characteristics between both the techniques with the caveat that IIF measured by DSC lagged that measured by cryomicroscopy. This was ascribed to differences in the techniques (i.e. cell vs. bulk measurement) and the possibility that not all IIF is associated with visual darkening. High and low rates of 0.5 °C/min and 250 °C/min were chosen as HDFs did not exhibit significant IIF or WT at each of these extremes respectively. Analysis of post-thaw viability data suggested that 10 °C/min was the presumptive optimal cooling rate for HDFs and was independent of the cytocrit value. The ratio of measured heat values associated with IIF (q(IIF)) to the total heat released from both IIF and water transport or from the total cell water content in the sample (q(CW)) was also found to increase as the cooling rate was increased from 10 to 250 °C/min and was independent of the sample cytocrit value. Taken together, these observations suggest that the proposed analysis is capable of deconvolving water transport and IIF data from the measured DSC latent heat thermograms in cell suspensions during freezing. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. Measuring charge transport from transient photovoltage rise times. A new tool to investigate electron transport in nanoparticle films.

    PubMed

    O'Regan, Brian C; Bakker, Klaas; Kroeze, Jessica; Smit, Herman; Sommeling, Paul; Durrant, James R

    2006-08-31

    Charge transport rate at open-circuit potential (V(oc)) is proposed as a new characterization method for dye-sensitized (DS) and other nanostructured solar cells. At V(oc), charge density is flat and measurable, which simplifies quantitative comparison of transport and charge density. Transport measured at V(oc) also allows meaningful comparison of charge transport rates between different treatments, temperatures, and types of cells. However, in typical DS cells, charge transport rates at V(oc) often cannot be measured by photocurrent transients or modulation techniques due to RC limitations and/or recombination losses. To circumvent this limitation, we show that charge transport at V(oc) can be determined directly from the transient photovoltage rise time using a simple, zero-free-parameter model. This method is not sensitive to RC limitation or recombination losses. In trap limited devices, such as DS cells, the comparison of transport rates between different devices or conditions is only valid when the Fermi level in the limiting conductor is at the same distance from the band edge. We show how to perform such comparisons, correcting for conduction band shifts using the density of states (DOS) distribution determined from the same photovoltage transients. Last we show that the relationship between measured transport rate and measured charge density is consistent with the trap limited transport model.

  14. Measuring β- ν angular correlation with laser trapped 6He

    NASA Astrophysics Data System (ADS)

    Leredde, Arnaud; Bailey, Kevin; Mueller, Peter; O'Connor, Thomas; Bagdasarova, Yelena; Garcia, Alejandro; Hong, Ran; Sternberg, Matthew; Storm, Derek; Swanson, Erik; Wauters, Frederik; Zumwalt, David W.; Flechard, Xavier; Lienard, Etienne; Knetch, Andreas; Naviliat-Cuncic, Oscar

    2014-09-01

    Exotic current contributions to the weak interaction can be constrained through measuring the beta-neutrino angular correlation parameter aβν in nuclear beta decay - providing opportunities to find evidence for physics beyond the Standard Model. Our goal is to measure aβν with a precision of 0.1% for the beta decay of 6He (t1/2 = 807 ms) which is particularly sensitive to the exotic tensor currents. For this purpose, we have built a double magneto-optical trap (MOT) system to provide a cold and point-like source of 6He. Of the 1x1010 6He atoms/s produced via the 7Li(d,3He)6He nuclear reaction, roughly 1000 atoms/s are captured in the first MOT and periodically transferred to the second, low background MOT that is surrounded by a detector system. Coincidence detection of the beta particle and the recoiling ion offers kinematic reconstruction of aβν in combination with high statistic numerical simulations of the detector setup. The performance of the trap setup, preliminary coincidence data, and studies of systematic uncertainties will be presented. This work is supported by DOE, Office of Nuclear Physics, under contract nos. DE-AC02-06CH11357 and DE-FG02-97ER41020.

  15. A fast digital image correlation method for deformation measurement

    NASA Astrophysics Data System (ADS)

    Pan, Bing; Li, Kai

    2011-07-01

    Fast and high-accuracy deformation analysis using digital image correlation (DIC) has been increasingly important and highly demanded in recent years. In literature, the DIC method using the Newton-Rapshon (NR) algorithm has been considered as a gold standard for accurate sub-pixel displacement tracking, as it is insensitive to the relative deformation and rotation of the target subset and thus provides highest sub-pixel registration accuracy and widest applicability. A significant drawback of conventional NR-algorithm-based DIC method, however, is its extremely huge computational expense. In this paper, a fast DIC method is proposed deformation measurement by effectively eliminating the repeating redundant calculations involved in the conventional NR-algorithm-based DIC method. Specifically, a reliability-guided displacement scanning strategy is employed to avoid time-consuming integer-pixel displacement searching for each calculation point, and a pre-computed global interpolation coefficient look-up table is utilized to entirely eliminate repetitive interpolation calculation at sub-pixel locations. With these two approaches, the proposed fast DIC method substantially increases the calculation efficiency of the traditional NR-algorithm-based DIC method. The performance of proposed fast DIC method is carefully tested on real experimental images using various calculation parameters. Results reveal that the computational speed of the present fast DIC is about 120-200 times faster than that of the traditional method, without any loss of its measurement accuracy

  16. Correlated Protein Motion Measurements of Dihydrofolate Reductase Crystals

    NASA Astrophysics Data System (ADS)

    Xu, Mengyang; Niessen, Katherine; Pace, James; Cody, Vivian; Markelz, Andrea

    2014-03-01

    We report the first direct measurements of the long range structural vibrational modes in dihydrofolate reductase (DHFR). DHFR is a universal housekeeping enzyme that catalyzes the reduction of 7,8-dihydrofolate to 5,6,7,8-tetra-hydrofolate, with the aid of coenzyme nicotinamide adenine dinucleotide phosphate (NADPH). This crucial enzymatic role as the target for anti-cancer [methotrexate (MTX)], and other clinically useful drugs, has made DHFR a long-standing target of enzymological studies. The terahertz (THz) frequency range (5-100 cm-1), corresponds to global correlated protein motions. In our lab we have developed Crystal Anisotropy Terahertz Microscopy (CATM), which directly measures these large scale intra-molecular protein vibrations, by removing the relaxational background of the solvent and residue side chain librational motions. We demonstrate narrowband features in the anisotropic absorbance for mouse DHFR with the ligand binding of NADPH and MTX single crystals as well as Escherichia coli DHFR with the ligand binding of NADPH and MTX single crystals. This work is supported by NSF grant MRI2 grant DBI2959989.

  17. Measurement and correlates of empathy among female Japanese physicians.

    PubMed

    Kataoka, Hitomi U; Koide, Norio; Hojat, Mohammadreza; Gonnella, Joseph S

    2012-06-22

    The measurement of empathy is important in the assessment of physician competence and patient outcomes. The prevailing view is that female physicians have higher empathy scores compared with male physicians. In Japan, the number of female physicians has increased rapidly in the past ten years. In this study, we focused on female Japanese physicians and addressed factors that were associated with their empathic engagement in patient care. The Jefferson Scale of Empathy (JSE) was translated into Japanese by using the back-translation procedure, and was administered to 285 female Japanese physicians. We designed this study to examine the psychometrics of the JSE and group differences among female Japanese physicians. The item-total score correlations of the JSE were all positive and statistically significant, ranging from .20 to .54, with a median of .41. The Cronbach's coefficient alpha was .81. Female physicians who were practicing in "people-oriented" specialties obtained a significantly higher mean empathy score than their counterparts in "procedure-" or "technology-oriented" specialties. In addition, physicians who reported living with their parents in an extended family or living close to their parents, scored higher on the JSE than those who were living alone or in a nuclear family. Our results provide support for the measurement property and reliability of the JSE in a sample of female Japanese physicians. The observed group differences associated with specialties and living arrangement may have implications for sustaining empathy. In addition, recognizing these factors that reinforce physicians' empathy may help physicians to avoid career burnout.

  18. Active Transportation on a Complete Street: Perceived and Audited Walkability Correlates

    PubMed Central

    Jensen, Wyatt A.; Smith, Ken R.; Brewer, Simon C.; Amburgey, Jonathan W.; McIff, Brett

    2017-01-01

    Few studies of walkability include both perceived and audited walkability measures. We examined perceived walkability (Neighborhood Environment Walkability Scale—Abbreviated, NEWS-A) and audited walkability (Irvine–Minnesota Inventory, IMI) measures for residents living within 2 km of a “complete street”—one renovated with light rail, bike lanes, and sidewalks. For perceived walkability, we found some differences but substantial similarity between our final scales and those in a prior published confirmatory factor analysis. Perceived walkability, in interaction with distance, was related to complete street active transportation. Residents were likely to have active transportation on the street when they lived nearby and perceived good aesthetics, crime safety, and traffic safety. Audited walkability, analyzed with decision trees, showed three general clusters of walkability areas, with 12 specific subtypes. A subset of walkability items (n = 11), including sidewalks, zebra-striped crosswalks, decorative sidewalks, pedestrian signals, and blank walls combined to cluster street segments. The 12 subtypes yielded 81% correct classification of residents’ active transportation. Both perceived and audited walkability were important predictors of active transportation. For audited walkability, we recommend more exploration of decision tree approaches, given their predictive utility and ease of translation into walkability interventions. PMID:28872595

  19. Active Transportation on a Complete Street: Perceived and Audited Walkability Correlates.

    PubMed

    Jensen, Wyatt A; Brown, Barbara B; Smith, Ken R; Brewer, Simon C; Amburgey, Jonathan W; McIff, Brett

    2017-09-05

    Few studies of walkability include both perceived and audited walkability measures. We examined perceived walkability (Neighborhood Environment Walkability Scale-Abbreviated, NEWS-A) and audited walkability (Irvine-Minnesota Inventory, IMI) measures for residents living within 2 km of a "complete street"-one renovated with light rail, bike lanes, and sidewalks. For perceived walkability, we found some differences but substantial similarity between our final scales and those in a prior published confirmatory factor analysis. Perceived walkability, in interaction with distance, was related to complete street active transportation. Residents were likely to have active transportation on the street when they lived nearby and perceived good aesthetics, crime safety, and traffic safety. Audited walkability, analyzed with decision trees, showed three general clusters of walkability areas, with 12 specific subtypes. A subset of walkability items (n = 11), including sidewalks, zebra-striped crosswalks, decorative sidewalks, pedestrian signals, and blank walls combined to cluster street segments. The 12 subtypes yielded 81% correct classification of residents' active transportation. Both perceived and audited walkability were important predictors of active transportation. For audited walkability, we recommend more exploration of decision tree approaches, given their predictive utility and ease of translation into walkability interventions.

  20. Weather is not significantly correlated with destination-specific transport-related physical activity among adults: A large-scale temporally matched analysis.

    PubMed

    Durand, Casey P; Zhang, Kai; Salvo, Deborah

    2017-08-01

    Weather is an element of the natural environment that could have a significant effect on physical activity. Existing research, however, indicates only modest correlations between measures of weather and physical activity. This prior work has been limited by a failure to use time-matched weather and physical activity data, or has not adequately examined the different domains of physical activity (transport, leisure, occupational, etc.). Our objective was to identify the correlation between weather variables and destination-specific transport-related physical activity in adults. Data were sourced from the California Household Travel Survey, collected in 2012-3. Weather variables included: relative humidity, temperature, wind speed, and precipitation. Transport-related physical activity (walking) was sourced from participant-recorded travel diaries. Three-part hurdle models were used to analyze the data. Results indicate statistically or substantively insignificant correlations between the weather variables and transport-related physical activity for all destination types. These results provide the strongest evidence to date that transport-related physical activity may occur relatively independently of weather conditions. The knowledge that weather conditions do not seem to be a significant barrier to this domain of activity may potentially expand the universe of geographic locations that are amenable to environmental and programmatic interventions to increase transport-related walking. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Adsorbate-induced quantum Hall system probed by scanning tunneling spectroscopy combined with transport measurements

    SciTech Connect

    Masutomi, Ryuichi Okamoto, Tohru

    2015-06-22

    An adsorbate-induced quantum Hall system at the cleaved InSb surfaces is investigated in magnetic fields up to 14 T using low-temperature scanning tunneling microscopy and spectroscopy combined with transport measurements. We show that an enhanced Zeeman splitting in the Shubnikov-de Haas oscillations is explained by an exchange enhancement of spin splitting and potential disorder, both of which are obtained from the spatially averaged density of states (DOS). Moreover, the Altshuler–Aronov correlation gap is observed in the spatially averaged DOS at 0 T.

  2. Full-Field Indentation Damage Measurement Using Digital Image Correlation.

    PubMed

    López-Alba, Elías; Díaz-Garrido, Francisco A

    2017-07-10

    A novel approach based on full-field indentation measurements to characterize and quantify the effect of contact in thin plates is presented. The proposed method has been employed to evaluate the indentation damage generated in the presence of bending deformation, resulting from the contact between a thin plate and a rigid sphere. For this purpose, the 3D Digital Image Correlation (3D-DIC) technique has been adopted to quantify the out of plane displacements at the back face of the plate. Tests were conducted using aluminum thin plates and a rigid bearing sphere to evaluate the influence of the thickness and the material behavior during contact. Information provided by the 3D-DIC technique has been employed to perform an indirect measurement of the contact area during the loading and unloading path of the test. A symmetrical distribution in the contact damage region due to the symmetry of the indenter was always observed. In the case of aluminum plates, the presence of a high level of plasticity caused shearing deformation as the load increased. Results show the full-field contact damage area for different plates' thicknesses at different loads. The contact damage region was bigger when the thickness of the specimen increased, and therefore, bending deformation was reduced. With the proposed approach, the elastic recovery at the contact location was quantified during the unloading, as well as the remaining permanent indentation damage after releasing the load. Results show the information obtained by full-field measurements at the contact location during the test, which implies a substantial improvement compared with pointwise techniques.

  3. Transport measurements on monolayer and few-layer WSe2

    NASA Astrophysics Data System (ADS)

    Palomaki, Tauno; Zhao, Wenjin; Finney, Joe; Fei, Zaiyao; Nguyen, Paul; McKay, Frank; Cobden, David

    The behavior of the electrical contacts often dominates transport measurements in mono and few-layer transition metal dichalcogenide (TMD) devices. Creating good contacts for some TMDs is particularly challenging since the fabrication procedure should prevent the TMD from oxidizing or chemically interacting with the contacts. In this talk, we discuss our progress on creating mono and few-layer WSe2 devices with both good electrical contacts and minimal effects from the substrate, polymer contamination, oxidation and other chemistry. For example, we have developed a technique for encapsulating metallic contacts and WSe2 flakes together in hexagonal boron nitride with multiple gates to separate and control the contributions from the channel and the Schottky barriers at the contacts. Research supported in part by Samsung GRO grant US 040814

  4. Mass transport measurements and modeling for chemical vapor infiltration

    SciTech Connect

    Starr, T.L.; Chiang, D.Y.; Fiadzo, O.G.; Hablutzel, N.

    1997-12-01

    This project involves experimental and modeling investigation of densification behavior and mass transport in fiber preforms and partially densified composites, and application of these results to chemical vapor infiltration (CVI) process modeling. This supports work on-going at ORNL in process development for fabrication of ceramic matrix composite (CMC) tubes. Tube-shaped composite preforms are fabricated at ORNL with Nextel{trademark} 312 fiber (3M Corporation, St. Paul, MN) by placing and compressing several layers of braided sleeve on a tubular mandrel. In terms of fiber architecture these preforms are significantly different than those made previously with Nicalon{trademark} fiber (Nippon Carbon Corp., Tokyo, Japan) square weave cloth. The authors have made microstructure and permeability measurements on several of these preforms and a few partially densified composites so as to better understand their densification behavior during CVI.

  5. Quantitative Limits on Small Molecule Transport via the Electropermeome - Measuring and Modeling Single Nanosecond Perturbations.

    PubMed

    Sözer, Esin B; Levine, Zachary A; Vernier, P Thomas

    2017-12-01

    The detailed molecular mechanisms underlying the permeabilization of cell membranes by pulsed electric fields (electroporation) remain obscure despite decades of investigative effort. To advance beyond descriptive schematics to the development of robust, predictive models, empirical parameters in existing models must be replaced with physics- and biology-based terms anchored in experimental observations. We report here absolute values for the uptake of YO-PRO-1, a small-molecule fluorescent indicator of membrane integrity, into cells after a single electric pulse lasting only 6 ns. We correlate these measured values, based on fluorescence microphotometry of hundreds of individual cells, with a diffusion-based geometric analysis of pore-mediated transport and with molecular simulations of transport across electropores in a phospholipid bilayer. The results challenge the "drift and diffusion through a pore" model that dominates conventional explanatory schemes for the electroporative transfer of small molecules into cells and point to the necessity for a more complex model.

  6. Correlates of Walking for Transportation and Use of Public Transportation Among Adults in St Louis, Missouri, 2012

    PubMed Central

    Hipp, James A.; Corseuil, Marui W.; Dodson, Elizabeth A.

    2014-01-01

    Introduction Attributes of the built environment can influence active transportation, including use of public transportation. However, the relationship between perceptions of the built environment and use of public transportation deserves further attention. The objectives of this study were 1) to assess the relationship between personal characteristics and public transportation use with meeting national recommendations for moderate physical activity through walking for transportation and 2) to examine associations between personal and perceived environmental factors and frequency of public transportation use. Methods In 2012, we administered a mail-based survey to 772 adults in St Louis, Missouri, to assess perceptions of the built environment, physical activity, and transportation behaviors. The abbreviated International Physical Activity Questionnaire was used to assess walking for transportation and use of public transportation. The Neighborhood Environment Walkability Scale was used to examine perceptions of the built environment. Associations were assessed by using multinomial logistic regression. Results People who used public transportation at least once in the previous week were more likely to meet moderate physical activity recommendations by walking for transportation. Age and employment were significantly associated with public transportation use. Perceptions of high traffic speed and high crime were negatively associated with public transportation use. Conclusion Our results were consistent with previous research suggesting that public transportation use is related to walking for transportation. More importantly, our study suggests that perceptions of traffic speed and crime are related to frequency of public transportation use. Future interventions to encourage public transportation use should consider policy and planning decisions that reduce traffic speed and improve safety. PMID:24995654

  7. Normalized Movement Quality Measures for Therapeutic Robots Strongly Correlate With Clinical Motor Impairment Measures

    PubMed Central

    Celik, Ozkan; O’Malley, Marcia K.; Boake, Corwin; Levin, Harvey S.; Yozbatiran, Nuray; Reistetter, Timothy A.

    2016-01-01

    In this paper, we analyze the correlations between four clinical measures (Fugl–Meyer upper extremity scale, Motor Activity Log, Action Research Arm Test, and Jebsen-Taylor Hand Function Test) and four robotic measures (smoothness of movement, trajectory error, average number of target hits per minute, and mean tangential speed), used to assess motor recovery. Data were gathered as part of a hybrid robotic and traditional upper extremity rehabilitation program for nine stroke patients. Smoothness of movement and trajectory error, temporally and spatially normalized measures of movement quality defined for point-to-point movements, were found to have significant moderate to strong correlations with all four of the clinical measures. The strong correlations suggest that smoothness of movement and trajectory error may be used to compare outcomes of different rehabilitation protocols and devices effectively, provide improved resolution for tracking patient progress compared to only pre-and post-treatment measurements, enable accurate adaptation of therapy based on patient progress, and deliver immediate and useful feedback to the patient and therapist. PMID:20388607

  8. Normalized movement quality measures for therapeutic robots strongly correlate with clinical motor impairment measures.

    PubMed

    Celik, Ozkan; O'Malley, Marcia K; Boake, Corwin; Levin, Harvey S; Yozbatiran, Nuray; Reistetter, Timothy A

    2010-08-01

    In this paper, we analyze the correlations between four clinical measures (Fugl-Meyer upper extremity scale, Motor Activity Log, Action Research Arm Test, and Jebsen-Taylor Hand Function Test) and four robotic measures (smoothness of movement, trajectory error, average number of target hits per minute, and mean tangential speed), used to assess motor recovery. Data were gathered as part of a hybrid robotic and traditional upper extremity rehabilitation program for nine stroke patients. Smoothness of movement and trajectory error, temporally and spatially normalized measures of movement quality defined for point-to-point movements, were found to have significant moderate to strong correlations with all four of the clinical measures. The strong correlations suggest that smoothness of movement and trajectory error may be used to compare outcomes of different rehabilitation protocols and devices effectively, provide improved resolution for tracking patient progress compared to only pre- and post-treatment measurements, enable accurate adaptation of therapy based on patient progress, and deliver immediate and useful feedback to the patient and therapist.

  9. Two-particle correlation measurements in p+Nb reactions √sNN = 3.18 GeV

    NASA Astrophysics Data System (ADS)

    Arnold, Oliver

    2016-01-01

    We present a two-particle correlation measurement of proton- and of Λp-pairs, measured with the HADES detector in p+Nb reactions at a kinetic beam energy of 3.5 GeV. The proton-proton correlation function is used to extract the size of the region of homogeneity. Using this information together with a UrQMD transport simulation opens the possibility to study the interaction of Λp pairs in terms of spin average scattering length and effective range.

  10. Polysulfide transport through separators measured by a linear voltage sweep method

    NASA Astrophysics Data System (ADS)

    Cui, Yi; Fu, Yongzhu

    2015-07-01

    Shuttle of polysulfide from the sulfur cathode to lithium metal anode in rechargeable lithium-sulfur batteries is a critical issue hindering cycling efficiency and life. Several approaches have been developed to minimize it including polysulfide-blocking separators; there is a need for measuring polysulfide transport through separators. We here show a linear voltage sweep method to measure anodic (oxidization) current of polysulfide crossed separators, which can be used as a quantitative measurement of the polysulfide transport. The electrochemical oxidation of polysulfide is diffusion controlled. The electrical charge in Coulombs produced by the oxidation of polysulfide is linearly related to the concentration of polysulfide within a certain range (≤0.5 M). Separators with a high porosity (large pore size) show high anodic currents, resulting in fast capacity degradation and low Coulombic efficiencies in Li-S cells. These results demonstrate this method can be used to correlate the polysulfide transport through separators with the separator structure and battery performance, therefore provide guidance for developing new separators for lithium-sulfur batteries.

  11. Turbulent transport measurements in a model of GT-combustor

    NASA Astrophysics Data System (ADS)

    Chikishev, L. M.; Gobyzov, O. A.; Sharaborin, D. K.; Lobasov, A. S.; Dulin, V. M.; Markovich, D. M.; Tsatiashvili, V. V.

    2016-10-01

    To reduce NOx formation modern industrial power gas-turbines utilizes lean premixed combustion of natural gas. The uniform distribution of local fuel/air ratio in the combustion chamber plays one of the key roles in the field of lean combustion to prevent thermo-acoustic pulsations. Present paper reports on simultaneous Particle Image Velocimetry and acetone Planar Laser Induced Fluorescence measurements in a cold model of GT-combustor to investigate mixing processes which are relevant to the organization of lean premixed combustion. Velocity and passive admixture pulsations correlations were measured to verify gradient closer model, which is often used in Reynolds-Averaged Navier-Stokes (RANS) simulation of turbulent mixing.

  12. Regional analysis techniques for integrating experimental and numerical measurements of transport properties of reservoir rocks

    NASA Astrophysics Data System (ADS)

    Alizadeh, S. M.; Latham, S.; Middleton, J.; Limaye, A.; Senden, T. J.; Arns, C. H.

    2017-02-01

    Assessing the mechanisms of micro-structural change and their effect on transport properties using digital core analysis requires balancing field of view and resolution. This typically leads to the compromise of working with relatively small samples, where boundary effects can be substantial. A direct comparison with experiment, as e.g. desirable to eliminate unknown parameters and integrate numerical and physical experiments, needs to consider these boundary effects. Here we develop a workflow to define measuring windows within a sample where these boundary effects are minimised allowing the integration of physical and numerical experiment. We consider in particular sleeve leakage and use a radial partitioning of the solutions to various transport equations to derive relevant regional measures, which may be used for the development of cross-correlations between physical properties. Samples of Bentheimer and Castlegate sandstone as well as Mt. Gambier limestone and a sucrosic dolomite are considered. The sample plugs are encased in rubber sleeves and micro-CT images acquired at ambient conditions. Using these high-resolution images we calculate transport properties, namely permeability and electrical conductivity, and analyse the resulting field solutions with regard to flux across different regions of interest. The latter are selected on the basis of distance to the sample sleeve inner surface. Clear bypassing at the sleeve-sample interface in terms of elevated fluxes is observed for all samples, although to different extent. We consider different sleeve boundary conditions to define a measuring window minimising these effects, use the procedure to compare flux averages defined over these measuring windows with conventional choices of simulation domains, and compare resulting physical cross-correlations.

  13. Memory, bias, and correlations in bidirectional transport of molecular-motor-driven cargoes

    NASA Astrophysics Data System (ADS)

    Bhat, Deepak; Gopalakrishnan, Manoj

    2013-10-01

    Molecular motors are specialized proteins that perform active, directed transport of cellular cargoes on cytoskeletal filaments. In many cases, cargo motion powered by motor proteins is found to be bidirectional, and may be viewed as a biased random walk with fast unidirectional runs interspersed with slow tug-of-war states. The statistical properties of this walk are not known in detail, and here, we study memory and bias, as well as directional correlations between successive runs in bidirectional transport. We show, based on a study of the direction-reversal probabilities of the cargo using a purely stochastic (tug-of-war) model, that bidirectional motion of cellular cargoes is, in general, a correlated random walk. In particular, while the motion of a cargo driven by two oppositely pulling motors is a Markovian random walk, memory of direction appears when multiple motors haul the cargo in one or both directions. In the latter case, the Markovian nature of the underlying single-motor processes is hidden by internal transitions between degenerate run and pause states of the cargo. Interestingly, memory is found to be a nonmonotonic function of the number of motors. Stochastic numerical simulations of the tug-of-war model support our mathematical results and extend them to biologically relevant situations.

  14. Memory, bias, and correlations in bidirectional transport of molecular-motor-driven cargoes.

    PubMed

    Bhat, Deepak; Gopalakrishnan, Manoj

    2013-10-01

    Molecular motors are specialized proteins that perform active, directed transport of cellular cargoes on cytoskeletal filaments. In many cases, cargo motion powered by motor proteins is found to be bidirectional, and may be viewed as a biased random walk with fast unidirectional runs interspersed with slow tug-of-war states. The statistical properties of this walk are not known in detail, and here, we study memory and bias, as well as directional correlations between successive runs in bidirectional transport. We show, based on a study of the direction-reversal probabilities of the cargo using a purely stochastic (tug-of-war) model, that bidirectional motion of cellular cargoes is, in general, a correlated random walk. In particular, while the motion of a cargo driven by two oppositely pulling motors is a Markovian random walk, memory of direction appears when multiple motors haul the cargo in one or both directions. In the latter case, the Markovian nature of the underlying single-motor processes is hidden by internal transitions between degenerate run and pause states of the cargo. Interestingly, memory is found to be a nonmonotonic function of the number of motors. Stochastic numerical simulations of the tug-of-war model support our mathematical results and extend them to biologically relevant situations.

  15. Dynamic defect correlations dominate activated electronic transport in SrTiO3

    SciTech Connect

    Snijders, Paul C.; Sen, Cengiz; McConnell, Michael P.; Ma, Ying-Zhong; May, Andrew F.; Herklotz, Andreas; Wong, Anthony T.; Ward, Thomas Zac

    2016-07-22

    Strontium titanate (SrTiO3, STO) is a critically important material for the study of emergent electronic phases in complex oxides, as well as for the development of applications based on their heterostructures. Despite the large body of knowledge on STO, there are still many uncertainties regarding the role of defects in the properties of STO, including their influence on ferroelectricity in bulk STO and ferromagnetism in STO-based heterostructures. In this paper, we present a detailed analysis of the decay of persistent photoconductivity in STO single crystals with defect concentrations that are relatively low but significantly affect their electronic properties. The results show that photo-activated electron transport cannot be described by a superposition of the properties due to independent point defects as current models suggest but is, instead, governed by defect complexes that interact through dynamic correlations. In conclusion, these results emphasize the importance of defect correlations for activated electronic transport properties of semiconducting and insulating perovskite oxides.

  16. Strain-Controlled Transport Mechanism in Strongly Correlated LaNiO3

    NASA Astrophysics Data System (ADS)

    Misra, D.; Kundu, T. K.

    2017-01-01

    A density functional theory + Hubbard U (DFT + U) method is employed to investigate the effect of strain on the electronic and transport properties of the correlated metal LaNiO3. LaNiO3 without strain is characterized by a low temperature Fermi liquid behaviour of resistivity, a negative Seebeck coefficient and a positive Hall coefficient. Density of states, resistivity, thermopower and Hall coefficient obtained within the DFT + U approach reveal that LaNiO3 under both compressive and tensile strain is more metallic compared to the unstrained system. However, LaNiO3 under tensile strain is found to be more strongly correlated than that under compressive strain. Electron localization function calculation shows that there is a substantial increase in the covalent part of the chemical bonding, which corroborates an increase in the resistivity for LaNiO3 under tensile strain. Our first-principle-based calculation clearly demonstrates that the transport properties of LaNiO3 can be tuned by applying suitable strain.

  17. Dynamic defect correlations dominate activated electronic transport in SrTiO3

    DOE PAGES

    Snijders, Paul C.; Sen, Cengiz; McConnell, Michael P.; ...

    2016-07-22

    Strontium titanate (SrTiO3, STO) is a critically important material for the study of emergent electronic phases in complex oxides, as well as for the development of applications based on their heterostructures. Despite the large body of knowledge on STO, there are still many uncertainties regarding the role of defects in the properties of STO, including their influence on ferroelectricity in bulk STO and ferromagnetism in STO-based heterostructures. In this paper, we present a detailed analysis of the decay of persistent photoconductivity in STO single crystals with defect concentrations that are relatively low but significantly affect their electronic properties. The resultsmore » show that photo-activated electron transport cannot be described by a superposition of the properties due to independent point defects as current models suggest but is, instead, governed by defect complexes that interact through dynamic correlations. In conclusion, these results emphasize the importance of defect correlations for activated electronic transport properties of semiconducting and insulating perovskite oxides.« less

  18. Correlation and transport properties for mixtures at constant pressure and temperature

    NASA Astrophysics Data System (ADS)

    White, Alexander J.; Collins, Lee A.; Kress, Joel D.; Ticknor, Christopher; Clérouin, Jean; Arnault, Philippe; Desbiens, Nicolas

    2017-06-01

    Transport properties of mixtures of elements in the dense plasma regime play an important role in natural astrophysical and experimental systems, e.g., inertial confinement fusion. We present a series of orbital-free molecular dynamics simulations on dense plasma mixtures with comparison to a global pseudo ion in jellium model. Hydrogen is mixed with elements of increasingly high atomic number (lithium, carbon, aluminum, copper, and silver) at a fixed temperature of 100 eV and constant pressure set by pure hydrogen at 2 g/cm 3 , namely, 370 Mbars. We compute ionic transport coefficients, such as self-diffusion, mutual diffusion, and viscosity for various concentrations. Small concentrations of the heavy atoms significantly change the density of the plasma and decrease the transport coefficients. The structure of the mixture evidences a strong Coulomb coupling between heavy ions and the appearance of a broad correlation peak at short distances between hydrogen atoms. The concept of an effective one component plasma is used to quantify the overcorrelation of the light element induced by the admixture of a heavy element.

  19. Measurement and correlates of empathy among female Japanese physicians

    PubMed Central

    2012-01-01

    Background The measurement of empathy is important in the assessment of physician competence and patient outcomes. The prevailing view is that female physicians have higher empathy scores compared with male physicians. In Japan, the number of female physicians has increased rapidly in the past ten years. In this study, we focused on female Japanese physicians and addressed factors that were associated with their empathic engagement in patient care. Methods The Jefferson Scale of Empathy (JSE) was translated into Japanese by using the back-translation procedure, and was administered to 285 female Japanese physicians. We designed this study to examine the psychometrics of the JSE and group differences among female Japanese physicians. Results The item-total score correlations of the JSE were all positive and statistically significant, ranging from .20 to .54, with a median of .41. The Cronbach’s coefficient alpha was .81. Female physicians who were practicing in “people-oriented” specialties obtained a significantly higher mean empathy score than their counterparts in “procedure-” or “technology-oriented” specialties. In addition, physicians who reported living with their parents in an extended family or living close to their parents, scored higher on the JSE than those who were living alone or in a nuclear family. Conclusions Our results provide support for the measurement property and reliability of the JSE in a sample of female Japanese physicians. The observed group differences associated with specialties and living arrangement may have implications for sustaining empathy. In addition, recognizing these factors that reinforce physicians’ empathy may help physicians to avoid career burnout. PMID:22726449

  20. Transport of bromide measured by soil coring, suction plates, and lysimeters under transient flow conditions.

    NASA Astrophysics Data System (ADS)

    Kasteel, R.; Pütz, Th.; Vereecken, H.

    2003-04-01

    Lysimeter studies are one step within the registration procedure of pesticides. Flow and transport in these free-draining lysimeters do not reflect the field situation mainly because of the occurence of a zone of local saturation at the lower boundary (seepage face). The objective of this study is to evaluate the impact of flow and transport behaviour of bromide detected with different measuring devices (lysimeters, suction plates, and soil coring) by comparing experimental results with numerical simulations in heterogeneous flow domains. We applied bromide as a small pulse to the bare soil surface (Orthic Luvisol) of the three devices and the displacement of bromide was regurlarly sampled for three years under natural wheather conditions. Based on the mean breakthrough curves we observe experimentally that lysimeters have a lower effective pore-water velocity and exhibit more solute spreading resulting in a larger dispersivity than the suction plates. This can be ascribed to the artefact of the lower boundary. We performed numerical transport simulations in 2-D heterogeneous flow fields (scaling approach) choosing appropriate boundary conditions for the various devices. The simulations allow to follow the temporal evolution of flow and transport processes in the various devices and to gain additional process understanding. We conclude that the model is essentially capable to reproduce the main experimental findings only if we account for the spatial correlation structure of the hydraulic properties, i.e. soil heterogeneity.

  1. Solution processable semiconductor thin films: Correlation between morphological, structural, optical and charge transport properties

    NASA Astrophysics Data System (ADS)

    Isik, Dilek

    This Ph.D. thesis is a result of multidisciplinary research bringing together fundamental concepts in thin film engineering, materials science, materials processing and characterization, electrochemistry, microfabrication, and device physics. Experiments were conducted by tackling scientific problems in the field of thin films and interfaces, with the aim to correlate the morphology, crystalline structure, electronic structure of thin films with the functional properties of the films and the performances of electronic devices based thereon. Furthermore, novel strategies based on interfacial phenomena at electrolyte/thin film interfaces were explored and exploited to control the electrical conductivity of the thin films. Three main chemical systems were the object of the studies performed during this Ph.D., two types of organic semiconductors (azomethine-based oligomers and polymers and soluble pentacene derivatives) and one metal oxide semiconductor (tungsten trioxide, WO3). To explore the morphological properties of the thin films, atomic force microscopy was employed. The morphological properties were further investigated by hyperspectral fluorescence microscopy and tentatively correlated to the charge transport properties of the films. X-ray diffraction (Grazing incidence XRD, GIXRD) was used to investigate the crystallinity of the film and the effect of the heat treatment on such crystallinity, as well as to understand the molecular arrangement of the organic molecules in the thin film. The charge transport properties of the films were evaluated in thin film transistor configuration. For electrolyte gated thin film transistors, time dependent transient measurements were conducted, in parallel to more conventional transistor characterizations, to explore the specific effects played on the gating by the anion and cation constituting the electrolyte. The capacitances of the electrical double layers at the electrolyte/WO3 interface were obtained from

  2. Tomato root growth, gravitropism, and lateral development: correlation with auxin transport

    NASA Technical Reports Server (NTRS)

    Muday, G. K.; Haworth, P.

    1994-01-01

    Tomato (Lycopersicon esculentum, Mill.) roots were analyzed during growth on agar plates. Growth of these roots was inhibited by the auxin transport inhibitors naphthylphthalamic acid (NPA) and semicarbazone derivative I (SCB-1). The effect of auxin transport inhibitors on root gravitropism was analyzed by measurement of the angle of gravitropic curvature after the roots were reoriented 90 degrees from the vertical. NPA and SCB-1 abolished both the response of these roots to gravity and the formation of lateral roots, with SCB-1 being the more effective at inhibition. Auxins also inhibited root growth. Both auxins tested has a slight effect on the gravity response, but this effect is probably indirect, since auxins reduced the growth rate. Auxins also stimulated lateral root growth at concentration where primary root growth was inhibited. When roots were treated with both IAA and NPA simultaneously, a cumulative inhibition of root growth was found. When both compounds were applied together, analysis of gravitropism and lateral root formation indicated that the dominant effect was exerted by auxin transport inhibitors. Together, these data suggest a model for the role of auxin transport in controlling both primary and lateral root growth.

  3. Tomato root growth, gravitropism, and lateral development: correlation with auxin transport

    NASA Technical Reports Server (NTRS)

    Muday, G. K.; Haworth, P.

    1994-01-01

    Tomato (Lycopersicon esculentum, Mill.) roots were analyzed during growth on agar plates. Growth of these roots was inhibited by the auxin transport inhibitors naphthylphthalamic acid (NPA) and semicarbazone derivative I (SCB-1). The effect of auxin transport inhibitors on root gravitropism was analyzed by measurement of the angle of gravitropic curvature after the roots were reoriented 90 degrees from the vertical. NPA and SCB-1 abolished both the response of these roots to gravity and the formation of lateral roots, with SCB-1 being the more effective at inhibition. Auxins also inhibited root growth. Both auxins tested has a slight effect on the gravity response, but this effect is probably indirect, since auxins reduced the growth rate. Auxins also stimulated lateral root growth at concentration where primary root growth was inhibited. When roots were treated with both IAA and NPA simultaneously, a cumulative inhibition of root growth was found. When both compounds were applied together, analysis of gravitropism and lateral root formation indicated that the dominant effect was exerted by auxin transport inhibitors. Together, these data suggest a model for the role of auxin transport in controlling both primary and lateral root growth.

  4. Sediment transport time measured with U-Series isotopes: Resultsfrom ODP North Atlantic Drill Site 984

    SciTech Connect

    DePaolo, Donald J.; Maher, Kate; Christensen, John N.; McManus,Jerry

    2006-06-05

    High precision uranium isotope measurements of marineclastic sediments are used to measure the transport and storage time ofsediment from source to site of deposition. The approach is demonstratedon fine-grained, late Pleistocene deep-sea sediments from Ocean DrillingProgram Site 984A on the Bjorn Drift in the North Atlantic. The sedimentsare siliciclastic with up to 30 percent carbonate, and dated by sigma 18Oof benthic foraminifera. Nd and Sr isotopes indicate that provenance hasoscillated between a proximal source during the last three interglacialperiods volcanic rocks from Iceland and a distal continental sourceduring glacial periods. An unexpected finding is that the 234U/238Uratios of the silicate portion of the sediment, isolated by leaching withhydrochloric acid, are significantly less than the secular equilibriumvalue and show large and systematic variations that are correlated withglacial cycles and sediment provenance. The 234U depletions are inferredto be due to alpha-recoil loss of234Th, and are used to calculate"comminution ages" of the sediment -- the time elapsed between thegeneration of the small (<_ 50 mu-m) sediment grains in the sourceareas by comminution of bedrock, and the time of deposition on theseafloor. Transport times, the difference between comminution ages anddepositional ages, vary from less than 10 ky to about 300 to 400 ky forthe Site 984A sediments. Long transport times may reflect prior storagein soils, on continental shelves, or elsewhere on the seafloor. Transporttime may also be a measure of bottom current strength. During the mostrecent interglacial periods the detritus from distal continental sourcesis diluted with sediment from Iceland that is rapidly transported to thesite of deposition. The comminution age approach could be used to dateQuaternary non-marine sediments, soils, and atmospheric dust, and may beenhanced by concomitant measurement of 226Ra/230Th, 230Th/234U, andcosmogenic nuclides.

  5. Aerosol characterization and transport pathway using ground-based measurement and space borne remote sensing

    NASA Astrophysics Data System (ADS)

    Boyouk, Neda; Léon, Jean-François; Delbarre, Hervé

    2008-10-01

    Using two years measurements of aerosol extinction coefficient retrieval from CALIPSO as a joint NASA-CNES satellite mission along with ground-based measurements of particle mass concentration (PM2.5), we assess particulate matter air quality over different urban and periurban areas in France. In order to understanding the influence of the long range transport onto the local aerosol load we have focused on analysing of pollution event in Lille - urban area and Dunkerque - industrial area. We compared ground- based measurements with CALIPSO measurements. The CALIPSO level 2 aerosol records are more useful because the extinction coefficient is available. We use the extinction coefficient profiles which are provided by CALIPSO to depict the vertical structure of the aerosol properties. The combination of ground- based measurements of PM2.5, aerosol optical thickness (AOT's) obtained by Aeronet network data and CALIOP data enhances the possibilities of studying transport pathway of aerosol in the atmosphere and aerosol optical properties (aerosol extinction coefficient, aerosol optical depth, atmosphere transparency). The linear relationship between AOT _CALIPSO and AOT _ Aeronet network shows a slop of 0.4 in north of France. Moreover, we observed the good relationship between PM2.5 and AOT by CALIPSO profiles with a slope of 57.59 and correlation coefficient of 0.75 over France.

  6. Psychosocial and Environmental Correlates of Walking, Cycling, Public Transport and Passive Transport to Various Destinations in Flemish Older Adolescents

    PubMed Central

    Verhoeven, Hannah; Simons, Dorien; Van Dyck, Delfien; Van Cauwenberg, Jelle; Clarys, Peter; De Bourdeaudhuij, Ilse; de Geus, Bas; Vandelanotte, Corneel; Deforche, Benedicte

    2016-01-01

    Background Active transport is a convenient way to incorporate physical activity in adolescents’ daily life. The present study aimed to investigate which psychosocial and environmental factors are associated with walking, cycling, public transport (train, tram, bus, metro) and passive transport (car, motorcycle, moped) over short distances (maximum eight kilometres) among older adolescents (17–18 years), to school and to other destinations. Methods 562 older adolescents completed an online questionnaire assessing socio-demographic variables, psychosocial variables, environmental variables and transport to school/other destinations. Zero-inflated negative binomial regression models were performed. Results More social modelling and a higher residential density were positively associated with walking to school and walking to other destinations, respectively. Regarding cycling, higher self-efficacy and a higher social norm were positively associated with cycling to school and to other destinations. Regarding public transport, a higher social norm, more social modelling of siblings and/or friends, more social support and a higher land use mix access were positively related to public transport to school and to other destinations, whereas a greater distance to school only related positively to public transport to school. Regarding passive transport, more social support and more perceived benefits were positively associated with passive transport to school and to other destinations. Perceiving less walking and cycling facilities at school was positively related to passive transport to school only, and more social modelling was positively related to passive transport to other destinations. Conclusions Overall, psychosocial variables seemed to be more important than environmental variables across the four transport modes. Social norm, social modelling and social support were the most consistent psychosocial factors which indicates that it is important to target both

  7. Measuring Intangibles: Defining Predictors of Non-Technical Skills in Critical Care Air Transport Team Trainees.

    PubMed

    Jernigan, Peter L; Wallace, Matthew C; Novak, Christine S; Gerlach, Travis W; Hanseman, Dennis J; Pritts, Timothy A; Davis, Bradley R

    2016-10-01

    Critical Care Air Transport Teams (CCATTs) are integral to the U.S. Air Force aeromedical evacuation paradigm. The current study was conducted to evaluate predictors of nontechnical skills (NOTECHS) in CCATT trainees. Sixteen CCATTs were studied over a 6-month period. Team members completed a biographical survey and teams were videotaped during a simulated CCATT mission. Teams and individuals were assigned a "red flag score" using a validated assessment tool for NOTECHS. Salivary cortisol levels were measured at baseline and pre- and postsimulation exercises. 63% of participants reported regular intensive care unit (ICU) experience and 67% had flown real-world CCATT missions. Sixteen simulated missions were reviewed, with 69 crisis events identified. Task saturation was observed in 42% of crisis events. Average team red flag score correlated with task saturation during the simulated missions (odds ratio = 0.5). Daily ICU experience (p < 0.03) and previous deployment (p < 0.04) correlated with NOTECHS performance. Cortisol levels increased from baseline as the result of the simulation (p < 0.01) but did not correlate with red flag scores or biographical data. Task saturation occurred frequently and correlated with performance of NOTECHS. Previous real-world CCATT experience and daily ICU care correlated with improved performance of NOTECHS. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.

  8. Method measuring oxygen tension and transport within subcutaneous devices

    PubMed Central

    Weidling, John; Sameni, Sara; Lakey, Jonathan R. T.; Botvinick, Elliot

    2014-01-01

    Abstract. Cellular therapies hold promise to replace the implantation of whole organs in the treatment of disease. For most cell types, in vivo viability depends on oxygen delivery to avoid the toxic effects of hypoxia. A promising approach is the in situ vascularization of implantable devices which can mediate hypoxia and improve both the lifetime and utility of implanted cells and tissues. Although mathematical models and bulk measurements of oxygenation in surrounding tissue have been used to estimate oxygenation within devices, such estimates are insufficient in determining if supplied oxygen is sufficient for the entire thickness of the implanted cells and tissues. We have developed a technique in which oxygen-sensitive microparticles (OSMs) are incorporated into the volume of subcutaneously implantable devices. Oxygen partial pressure within these devices can be measured directly in vivo by an optical probe placed on the skin surface. As validation, OSMs have been incorporated into alginate beads, commonly used as immunoisolation devices to encapsulate pancreatic islet cells. Alginate beads were implanted into the subcutaneous space of Sprague–Dawley rats. Oxygen transport through beads was characterized from dynamic OSM signals in response to changes in inhaled oxygen. Changes in oxygen dynamics over days demonstrate the utility of our technology. PMID:25162910

  9. Measurements of Charge Transport in Arrays of Lead Selenide Nanocrystals

    NASA Astrophysics Data System (ADS)

    Maclean, Kenneth; Mentzel, Tamar; Geyer, Scott; Porter, Venda; Bawendi, Moungi; Kastner, Marc

    2008-03-01

    We report electrical transport measurements of self-assembled arrays of PbSe nanocrystals (NC). NCs ˜6.2 nm in diameter are colloidally synthesized and drop cast onto an inverted field effect structure. The NCs self assemble into hexagonal close-packed arrays with ˜2 nm inter-particle spacing. The current is immeasurable in as deposited arrays. After annealing at 400K for ˜30 minutes, the arrays become less ordered and the inter-particle spacing decreases to ˜1 nm as evinced from TEM images and glancing incidence small angle x-ray scattering experiments. As a result of these changes, the conductance increases by more than 6 orders of magnitude. We measure the current in these devices as a function of source-drain voltage, gate voltage and temperature. We find that the temperature dependence of the conduction is strong at zero-bias and grows weaker with application of a source-drain bias. This implies that the conductance is thermally activated and the field serves to reduce the activation energy. We also find that the gate modulates the activation energy to conduction.

  10. Similarity analysis between chromosomes of Homo sapiens and monkeys with correlation coefficient, rank correlation coefficient and cosine similarity measures

    PubMed Central

    Someswara Rao, Chinta; Viswanadha Raju, S.

    2016-01-01

    In this paper, we consider correlation coefficient, rank correlation coefficient and cosine similarity measures for evaluating similarity between Homo sapiens and monkeys. We used DNA chromosomes of genome wide genes to determine the correlation between the chromosomal content and evolutionary relationship. The similarity among the H. sapiens and monkeys is measured for a total of 210 chromosomes related to 10 species. The similarity measures of these different species show the relationship between the H. sapiens and monkey. This similarity will be helpful at theft identification, maternity identification, disease identification, etc. PMID:26981409

  11. Similarity analysis between chromosomes of Homo sapiens and monkeys with correlation coefficient, rank correlation coefficient and cosine similarity measures.

    PubMed

    Someswara Rao, Chinta; Viswanadha Raju, S

    2016-03-01

    In this paper, we consider correlation coefficient, rank correlation coefficient and cosine similarity measures for evaluating similarity between Homo sapiens and monkeys. We used DNA chromosomes of genome wide genes to determine the correlation between the chromosomal content and evolutionary relationship. The similarity among the H. sapiens and monkeys is measured for a total of 210 chromosomes related to 10 species. The similarity measures of these different species show the relationship between the H. sapiens and monkey. This similarity will be helpful at theft identification, maternity identification, disease identification, etc.

  12. 41 CFR 102-117.270 - What are agency performance measures for transportation?

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... TRANSPORTATION 117-TRANSPORTATION MANAGEMENT Performance Measures § 102-117.270 What are agency performance... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false What are agency performance measures for transportation? 102-117.270 Section 102-117.270 Public Contracts and Property...

  13. 41 CFR 102-117.270 - What are agency performance measures for transportation?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... TRANSPORTATION 117-TRANSPORTATION MANAGEMENT Performance Measures § 102-117.270 What are agency performance... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false What are agency performance measures for transportation? 102-117.270 Section 102-117.270 Public Contracts and Property...

  14. 41 CFR 102-117.270 - What are agency performance measures for transportation?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... TRANSPORTATION 117-TRANSPORTATION MANAGEMENT Performance Measures § 102-117.270 What are agency performance... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false What are agency performance measures for transportation? 102-117.270 Section 102-117.270 Public Contracts and Property...

  15. 41 CFR 102-117.270 - What are agency performance measures for transportation?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... TRANSPORTATION 117-TRANSPORTATION MANAGEMENT Performance Measures § 102-117.270 What are agency performance... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false What are agency performance measures for transportation? 102-117.270 Section 102-117.270 Public Contracts and Property...

  16. 41 CFR 102-117.270 - What are agency performance measures for transportation?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... TRANSPORTATION 117-TRANSPORTATION MANAGEMENT Performance Measures § 102-117.270 What are agency performance... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false What are agency performance measures for transportation? 102-117.270 Section 102-117.270 Public Contracts and...

  17. Entropy measure of credit risk in highly correlated markets

    NASA Astrophysics Data System (ADS)

    Gottschalk, Sylvia

    2017-07-01

    We compare the single and multi-factor structural models of corporate default by calculating the Jeffreys-Kullback-Leibler divergence between their predicted default probabilities when asset correlations are either high or low. Single-factor structural models assume that the stochastic process driving the value of a firm is independent of that of other companies. A multi-factor structural model, on the contrary, is built on the assumption that a single firm's value follows a stochastic process correlated with that of other companies. Our main results show that the divergence between the two models increases in highly correlated, volatile, and large markets, but that it is closer to zero in small markets, when asset correlations are low and firms are highly leveraged. These findings suggest that during periods of financial instability, when asset volatility and correlations increase, one of the models misreports actual default risk.

  18. Scaling theory for percolative charge transport in molecular semiconductors: Correlated versus uncorrelated energetic disorder

    NASA Astrophysics Data System (ADS)

    Cottaar, J.; Coehoorn, R.; Bobbert, P. A.

    2012-06-01

    We recently introduced a scaling theory for charge transport in molecular semiconductors with uncorrelated Gaussian energetic disorder, considering Miller-Abrahams as well as Marcus hopping and different lattice structures [Cottaar , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.107.136601 107, 136601 (2011)]. A compact expression was derived for the dependence of the charge-carrier mobility on temperature and carrier concentration. We show here that for Miller-Abrahams hopping the theory can also be applied to non-Gaussian energetic disorder, without parameter changes. Moreover, we show how it can be applied to correlated energetic disorder as obtained from randomly oriented molecular dipoles, which experiments suggest to be often more suitable. The same compact expression still describes the charge-carrier mobility, with new parameter values as determined from numerically exact results. The critical scaling exponent for correlated disorder is about twice as large as for uncorrelated disorder, which is caused by a different topology of the percolating network. The temperature dependence of the mobility for correlated disorder is significantly weaker than for uncorrelated disorder, while the carrier-concentration dependence is slightly weaker, due to small deviations of the density of states from a Gaussian. We indicate how comparison with experiments could distinguish between the different models.

  19. Fast diffuse correlation spectroscopy (DCS) for non-invasive measurement of intracranial pressure (ICP) (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Farzam, Parisa; Sutin, Jason; Wu, Kuan-Cheng; Zimmermann, Bernhard B.; Tamborini, Davide; Dubb, Jay; Boas, David A.; Franceschini, Maria Angela

    2017-02-01

    Intracranial pressure (ICP) monitoring has a key role in the management of neurosurgical and neurological injuries. Currently, the standard clinical monitoring of ICP requires an invasive transducer into the parenchymal tissue or the brain ventricle, with possibility of complications such as hemorrhage and infection. A non-invasive method for measuring ICP, would be highly preferable, as it would allow clinicians to promptly monitor ICP during transport and allow for monitoring in a larger number of patients. We have introduced diffuse correlation spectroscopy (DCS) as a non-invasive ICP monitor by fast measurement of pulsatile cerebral blood flow (CBF). The method is similar to Transcranial Doppler ultrasound (TCD), which derives ICP from the amplitude of the pulsatile cerebral blood flow velocity, with respect to the amplitude of the pulsatile arterial blood pressure. We believe DCS measurement is superior indicator of ICP than TCD estimation because DCS directly measures blood flow, not blood flow velocity, and the small cortical vessels measured by DCS are more susceptible to transmural pressure changes than the large vessels. For fast DCS measurements to recover pulsatile CBF we have developed a custom high-power long-coherent laser and a strategy for delivering it to the tissue within ANSI standards. We have also developed a custom FPGA-based correlator board, which facilitates DCS data acquisitions at 50-100 Hz. We have tested the feasibility of measuring pulsatile CBF and deriving ICP in two challenging scenarios: humans and rats. SNR is low in human adults due to large optode distances. It is similarly low in rats because the fast heart rate in this setting requires a high repetition rate.

  20. Interregional transport: case studies of measurements versus model predictions

    SciTech Connect

    Reisinger, L.M.; Crawford, T.L.

    1982-06-01

    Airborne measurements of gaseous and particulate sulfur and nitrogen pollutants were made in southwestern Kentucky on the afternoon of October 21, 1979. Back-trajectory analysis indicates that the sampled air parcel moved over northern Florida, Alabama, and western Tennessee during the two days prior to sampling. Before moving over Florida, the air parcel was over the Atlantic Ocean for at least five days. Analytical long-range transport (LRT) model predictions based on anthropogenic emissions account for only about 75% of the airborne measured concentrations of 14.7 ..mu..g m/sup -3/ for SO/sub 2/ and 4.8 ..mu..g m/sup -3/ for SO/sub 4//sup 2 -/. The remaining 25% is thought to be due to biogenic sulfur emissions from the extensive wetland areas along the Gulf Coast. Forward-trajectory analysis indicates that the air parcel moved to the Adirondack Mountains of New York State 24 hours after sampling. Model predictions indicate that SO/sub 2/ and SO/sub 4//sup 2 -/ mean layer concentrations at the Adirondacks were 24 and 16 ..mu..g m/sup -3/, respectively. Almost half of this sulfur was estimated to come from emissions in the heavily industrialized region along the Ohio River Valley. Further comparisons used a measurement data base obtained in southeastern Canada and the state of Arkansas during August 1976. An air parcel was tracked for seven days as it entered the north central United States, stagnated over the lower midwest, and then moved to eastern Canada. Model predictions were in substantial agreement with regional SO/sub 4//sup 2 -/ concentrations measured at a number of ground-level sites. Average SO/sub 4//sup 2 -/ concentratons measured in central Arkansas on August 10, 1976 were 20 ..mu..g m/sup -3/ vs. a modeled value of 19 ..mu..g m/sup -3/. Average SO/sub 4//sup 2 -/ concentratons measured in Nova Scotia four days later were 22 ..mu..g m/sup -3/ vs. a modeled estimate of 24 ..mu..g m/sup -3/.

  1. Point-contact transport properties of strongly correlated electrons on liquid helium.

    PubMed

    Rees, D G; Kuroda, I; Marrache-Kikuchi, C A; Höfer, M; Leiderer, P; Kono, K

    2011-01-14

    We present transport measurements of a nondegenerate two-dimensional electron system on the surface of liquid helium at a point constriction. The constriction is formed in a microchannel by a split gate beneath the helium surface. The electrostatic energy of the electron system, which depends in part on the electron density, determines the split-gate voltage threshold of current flow through the constriction. Steplike increases in conductance are observed as the confinement strength is reduced. As the Coulomb interaction between electrons is strong, we attribute this effect to the increase in the number of electrons that can pass simultaneously through the constriction. Close to the threshold, single-electron transport is observed.

  2. Measurement of skin stretch using digital image speckle correlation.

    PubMed

    Staloff, Isabelle Afriat; Rafailovitch, Miriam

    2008-08-01

    The surface of the skin is covered by intersecting grooves and ridges which produce characteristic skin surface patterns. It has been suggested that these folds provide a reserve of tissue, allowing the skin to stretch during normal muscle movements. More so, skin is anisotropic and under constant tension. Therefore, to characterize skin displacement following stretch, a discrete, description of the in-plane skin displacement during stretch is of interest. We introduce the use of digital image speckle correlation (DISC), a non-contact technique, to map, in two dimensions, the surface deformation patterns resulting from skin stretching. We analyze skin stretch under the mechanical action of a film former applied on a defined square surface on the back of the hand. This is achieved by taking a series of images, during the drying process of the film former. The images are then analyzed with DISC to create vector diagram and projection maps, from which we can obtain spatially resolved information regarding the skin displacement. We first show that DISC can provide spatially resolved information at any time point during the drying process: areas of de-wetting, wetting were identified using projection maps; we then extracted the value of the drying time. Finally using a vector map, we show the orientation of the skin displacement during stretching and calculated the magnitude of the total stretch. We have shown previously that DISC can be used to determine skin mechanical properties and muscular activity. We show here that DISC, as a non-contact technique, can map, in two dimensions, the surface deformation patterns of a polymer solution on a substrate at any time point during the drying process. DISC analysis generates for each speckle of the sample analyzed, the orientation and magnitude of displacement of the polymer solution. DISC can map in two dimensions the deformation undergone by the substrate and skin stretch is measured in this particular case. We therefore

  3. Measurements and simulations of water transport in maize plants

    NASA Astrophysics Data System (ADS)

    Heinlein, Florian; Klein, Christian; Thieme, Christoph; Priesack, Eckart

    2017-04-01

    In Central Europe climate change will become manifest in the increase of extreme weather events like flash floods, heat waves and summer droughts, and in a shift of precipitation towards winter months. Therefore, regional water availability will alter which has an effect on future crop growth, water use efficiency and yields. To better estimate these effects accurate model descriptions of transpiration and other parts of the water balance are important. In this study, we determined transpiration of four maize plants on a field of the research station Scheyern (about 40km North of Munich) by means of sap flow measurement devices (ICQ International Pty Ltd, Australia) using the Heat-Ratio-Method: two temperature probes, 0.5 cm above and below a heater, detect a heat pulse and its speed which facilitates the calculation of sap flow. Additionally, high resolution changes of stem diameters were measured with dendrometers (DD-S, Ecomatik). The field was also situated next to an eddy covariance station which provided latent heat fluxes from the soil-plant system. We also performed terrestrial laser scans of the respective plants to extract the plant architectures. These structures serve as input for our mechanistic transpiration model simulating the water transport within the plant. This model, which has already been successfully applied to single Fagus sylvatica L. trees, was adapted to agricultural plants such as maize. The basic principle of this model is to solve a 1-D Richards equation along the graph of the single plants. A comparison between the simulations and the measurements is presented and discussed.

  4. Effects of spin–orbit coupling and many-body correlations in STM transport through copper phthalocyanine

    PubMed Central

    Donarini, Andrea; Grifoni, Milena

    2015-01-01

    Summary The interplay of exchange correlations and spin–orbit interaction (SOI) on the many-body spectrum of a copper phtalocyanine (CuPc) molecule and their signatures in transport are investigated. We first derive a minimal model Hamiltonian in a basis of frontier orbitals that is able to reproduce experimentally observed singlet–triplet splittings. In a second step SOI effects are included perturbatively. Major consequences of the SOI are the splitting of former degenerate levels and a magnetic anisotropy, which can be captured by an effective low-energy spin Hamiltonian. We show that scanning tunneling microscopy-based magnetoconductance measurements can yield clear signatures of both these SOI-induced effects. PMID:26885457

  5. Effects of spin-orbit coupling and many-body correlations in STM transport through copper phthalocyanine.

    PubMed

    Siegert, Benjamin; Donarini, Andrea; Grifoni, Milena

    2015-01-01

    The interplay of exchange correlations and spin-orbit interaction (SOI) on the many-body spectrum of a copper phtalocyanine (CuPc) molecule and their signatures in transport are investigated. We first derive a minimal model Hamiltonian in a basis of frontier orbitals that is able to reproduce experimentally observed singlet-triplet splittings. In a second step SOI effects are included perturbatively. Major consequences of the SOI are the splitting of former degenerate levels and a magnetic anisotropy, which can be captured by an effective low-energy spin Hamiltonian. We show that scanning tunneling microscopy-based magnetoconductance measurements can yield clear signatures of both these SOI-induced effects.

  6. Correlation between charge transport and electroluminescence properties of Si-rich oxide/nitride/oxide-based light emitting capacitors

    NASA Astrophysics Data System (ADS)

    Berencén, Y.; Ramírez, J. M.; Jambois, O.; Domínguez, C.; Rodríguez, J. A.; Garrido, B.

    2012-08-01

    The electrical and electroluminescence (EL) properties at room and high temperatures of oxide/nitride/oxide (ONO)-based light emitting capacitors are studied. The ONO multidielectric layer is enriched with silicon by means of ion implantation. The exceeding silicon distribution follows a Gaussian profile with a maximum of 19%, centered close to the lower oxide/nitride interface. The electrical measurements performed at room and high temperatures allowed to unambiguously identify variable range hopping (VRH) as the dominant electrical conduction mechanism at low voltages, whereas at moderate and high voltages, a hybrid conduction formed by means of variable range hopping and space charge-limited current enhanced by Poole-Frenkel effect predominates. The EL spectra at different temperatures are also recorded, and the correlation between charge transport mechanisms and EL properties is discussed.

  7. Correlating wine quality indicators to chemical and sensory measurements.

    PubMed

    Hopfer, Helene; Nelson, Jenny; Ebeler, Susan E; Heymann, Hildegarde

    2015-05-12

    Twenty-seven commercial Californian Cabernet Sauvignon wines of different quality categories were analyzed with sensory and chemical methods. Correlations between five quality proxies-points awarded during a wine competition, wine expert scores, retail price, vintage, and wine region-were correlated to sensory attributes, volatile compounds, and elemental composition. Wine quality is a multi-faceted construct, incorporating many different layers. Depending on the quality proxy studied, significant correlations between quality and attributes, volatiles and elements were found, some of them previously reported in the literature.

  8. The role of correlations in uncertainty quantification of transportation relevant fuel models

    DOE PAGES

    Fridlyand, Aleksandr; Johnson, Matthew S.; Goldsborough, S. Scott; ...

    2017-02-03

    Large reaction mechanisms are often used to describe the combustion behavior of transportation-relevant fuels like gasoline, where these are typically represented by surrogate blends, e.g., n-heptane/iso-octane/toluene. We describe efforts to quantify the uncertainty in the predictions of such mechanisms at realistic engine conditions, seeking to better understand the robustness of the model as well as the important reaction pathways and their impacts on combustion behavior. In this work, we examine the importance of taking into account correlations among reactions that utilize the same rate rules and those with multiple product channels on forward propagation of uncertainty by Monte Carlo simulations.more » Automated means are developed to generate the uncertainty factor assignment for a detailed chemical kinetic mechanism, by first uniquely identifying each reacting species, then sorting each of the reactions based on the rate rule utilized. Simulation results reveal that in the low temperature combustion regime for iso-octane, the majority of the uncertainty in the model predictions can be attributed to low temperature reactions of the fuel sub-mechanism. The foundational, or small-molecule chemistry (C0-C4) only contributes significantly to uncertainties in the predictions at the highest temperatures (Tc=900 K). Accounting for correlations between important reactions is shown to produce non-negligible differences in the estimates of uncertainty. Including correlations among reactions that use the same rate rules increases uncertainty in the model predictions, while accounting for correlations among reactions with multiple branches decreases uncertainty in some cases. Significant non-linear response is observed in the model predictions depending on how the probability distributions of the uncertain rate constants are defined.Finally, we concluded that care must be exercised in defining these probability distributions in order to reduce bias, and physically

  9. Transport in out-of-equilibrium XXZ chains: Nonballistic behavior and correlation functions

    NASA Astrophysics Data System (ADS)

    Piroli, Lorenzo; De Nardis, Jacopo; Collura, Mario; Bertini, Bruno; Fagotti, Maurizio

    2017-09-01

    We consider the nonequilibrium protocol where two semi-infinite gapped XXZ chains, initially prepared in different equilibrium states, are suddenly joined together. At large times, a generalized hydrodynamic description applies, according to which the system can locally be represented by space- and time-dependent stationary states. The magnetization displays an unusual behavior: depending on the initial state, its profile may exhibit abrupt jumps that can not be predicted directly from the standard hydrodynamic equations and which signal nonballistic spin transport. We ascribe this phenomenon to the structure of the local conservation laws and make a prediction for the exact location of the jumps. We find that the jumps propagate at the velocities of the heaviest quasiparticles. By means of time-dependent density matrix renormalization group simulations we show that our theory yields a complete description of the long-time steady profiles of conserved charges, currents, and local correlations.

  10. Ozone Measurements and a 3D Chemical Transport Model

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.; Douglass, Anne R.; Frith, Stacey; Steenrod, Steven; Polansky, Brian

    2004-01-01

    We have used our three-dimensional chemical transport model (CTM) to calculate the expected reponse of stratospheric composition over the past 30 years to forcing by chlorine and bromine compounds, solar ultraviolet, and volcanic aerosols. The CTM uses off-line winds and temperatures fiom a 50-year run of the finite volume general circulation model (FVGCM). We compare the total column ozone and the ozone profile fiom the CTM output to a variety of data sources. These include a merged total ozone data set from TOMS and SBUV using the new version 8 algorithm. Total ozone fiom the CTM are compared to ground-station measurements of total ozone at specific locations. Ozone profiles are compared to satellite meausrements fiom SBUV, SAGE, and HALOE. Profiles are also compared to ozonesondes over several locations. The results of the comparisons are quantified by using a time-series statistical analysis to determine trends, solar cycle, and volcanic reponse in both the model and in the data. Initial results indicate that the model responds to forcings in a way that is similar to the observed atmospheric response. The model does seem to be more sensitive to the chlorine and bromine perturbation ihan is the data. Further details and comparisons wiii be discussed.

  11. California Baseline Ozone Transport Study (CABOTS): Ozonesonde Measurements

    NASA Astrophysics Data System (ADS)

    Eiserloh, A. J., Jr.; Chiao, S.; Spitze, J.; Cauley, S.; Clark, J.; Roberts, M.

    2016-12-01

    Because the EPA recently lowered the ambient air quality standard for the 8-hr average of ozone (O3) to70 ppbv, California must continue to achieve significant reductions in ozone precursor emissions and prepare for new State Implementation Plans (SIP) to demonstrate how ground-level ambient ozone will be reduced below the new health-based standard. Prior studies suggest that background levels of ozone traveling across the Pacific Ocean can significantly influence surface ozone throughout California, particularly during the spring. Evidence has been presented indicating that background levels of ozone continue to increase in the western United States over the recent few decades, implying more ozone exceedances in the future. To better understand the contributions of the external natural and anthropogenic pollution sources as well as atmospheric processes for surface ozone concentrations in California during the spring and summer months, the California Baseline Ozone Transport Study (CABOTS) has been established. One major goal of CABOTS is to implement near daily ozonesonde measurements along the California Coast to quantify background ozone aloft before entering the State during high ozone season. CABOTS has been ongoing from May through August of 2016 launching ozonesondes from Bodega Bay and Half Moon Bay, California. The temporal progression of ozonesonde measurements and subsequent analysis of the data will be discussed with a focus on the contribution of background ozone to surface ozone sites inland as well as likely origins of layers aloft. Comparisons of current ozonesondes versus prior ozonesonde studies of California will also be performed. A few selected cases of high ozone layers moving onshore from different sources will be discussed as well.

  12. How important are vertex corrections in the longitudinal dc transport through multilayers of strongly correlated materials?

    NASA Astrophysics Data System (ADS)

    Hale, Simon; Freericks, Jim

    2010-03-01

    In the bulk, dynamical mean-field theory has no vertex corrections to dc transport, as proved by Khurana in 1990. The proof does not hold for inhomogeneous systems like multilayers with current flow perpendicular to the layers. We examine the effect of vertex corrections on the transport for multilayered inhomogeneous devices composed of semi-infinite metallic leads coupled via a strongly correlated material barrier region. The barrier region can be adjusted from a metallic regime to a Mott insulator through adjusting the interaction strength. We use the Falicov-Kimball model because the exact expression for the vertex corrections is known and it displays a Mott like metal to insulator transition. The resistance is calculated and we find the effects of the vertex correction are relatively small manifesting in a small reduction in the resistance-area product. This as expected this reduction saturates as the barrier layer grows towards the bulk limit. Overall, the effect of vertex corrections is smaller than about 5% of the total resistance and relatively decreases.

  13. Effects of electron correlations on transport properties of iron at Earth's core conditions.

    PubMed

    Zhang, Peng; Cohen, R E; Haule, K

    2015-01-29

    Earth's magnetic field has been thought to arise from thermal convection of molten iron alloy in the outer core, but recent density functional theory calculations have suggested that the conductivity of iron is too high to support thermal convection, resulting in the investigation of chemically driven convection. These calculations for resistivity were based on electron-phonon scattering. Here we apply self-consistent density functional theory plus dynamical mean-field theory (DFT + DMFT) to iron and find that at high temperatures electron-electron scattering is comparable to the electron-phonon scattering, bringing theory into agreement with experiments and solving the transport problem in Earth's core. The conventional thermal dynamo picture is safe. We find that electron-electron scattering of d electrons is important at high temperatures in transition metals, in contrast to textbook analyses since Mott, and that 4s electron contributions to transport are negligible, in contrast to numerous models used for over fifty years. The DFT+DMFT method should be applicable to other high-temperature systems where electron correlations are important.

  14. Dynamical and transport properties in plasmas including three-particle spatial correlations

    NASA Astrophysics Data System (ADS)

    Ababsa, Hakima; Meftah, Med Tayeb; Chohra, Thouria

    2017-03-01

    In this work, we study the two and triplet static correlation functions in plasma when the ions interact via the Debye screened potential and via the Deutsch screened potential. The latter takes into consideration the possible quantum effects at short distances. The ratio of the mean distance between two ions and the thermal De Broglie wavelength ri/λT gives the measure of these effects. Our investigation is developed in the conditions of weak coupling parameter (Γ <1 ). The pair and the triplet correlation functions are calculated numerically and compared to the correlation functions due to the Kirkwood superposition approximation (KSA). Some applications to the ion velocity auto-correlation function D(t) and the electric field auto-correlation function C(t) at an ion (assumed to be an impurity) and the diffusion coefficient D are calculated for the two kinds of potentials in different plasma conditions. The comparison with other results found in the literature shows a well satisfactory agreement, for the static as well as the dynamic properties.

  15. Protocal for the measurement of hydrocarbon transport in bacteria

    USDA-ARS?s Scientific Manuscript database

    Due to the hydrophobic, volatility, and relatively low aqueous solubility of aliphatic and aromatic hydrocarbons, transport of these chemicals by bacteria has not been extensively studied. These issues make transport assays difficult to carry out, and as a result, strong evidence for the active tran...

  16. Correlating structural, mechanical, and charge transport properties of molecular monolayers and surfaces

    NASA Astrophysics Data System (ADS)

    Qi, Yabing

    In this dissertation I present experimental studies of the correlation between the structural, mechanical, and electrical properties of organic monolayers, graphite, and GaAs using conductance-atomic force microscopy (C-AFM). I studied three kinds of molecular monolayers. The first kind is alkanethiol self-assembled monolayers (SAMs), a saturated molecular film representing the "resistor" type element in electronics; the second kind is trans-stilbene based SAMs, a molecular system which has been proposed for molecular switches; the third kind is oligothiophene Langmuir-Blodgett (LB) monolayers, a prototype molecular system with conjugated groups which has shown potential for low cost optoelectronic devices. In alkanethiol SAMs on Au(111), a correlation between charge transport and molecular tilt changes caused by pressure has been found. The junction I-V characteristics are sensitive to the load applied by the tip, which causes film thickness and current to change in a step-wise manner. We found that the tunneling decay constant beta through molecules of fixed chain length is significantly smaller than that for the case where the distance between electrodes is changed by using alkanethiol molecules of different lengths. We propose that changes in S-Au binding structure occur due to the steric forces acting between close packed molecules under pressure, which displace the S from hollow sites to bridge sites and possibly others. Such changes can produce much larger changes in the tunneling characteristics. The second kind of monolayer I studied is o-(trans-4-stilbene)alkylthiol SSAMs on Au(111). Heating in a nitrogen gas atmosphere at 120° C for 1 h caused the morphology of the sample surface to change from a uniform molecular film consisting of small grains 10 ~ 20 nm in size to a heterogeneous surface consisting of well-packed and flat islands 100 ~ 200 nm in size and disordered structures. The flat islands exhibit substantial reduction (50%) in friction

  17. Analysis of long-range transport of aerosols for Portugal using 3D chemical transport model and satellite measurements

    NASA Astrophysics Data System (ADS)

    Tchepel, O.; Ferreira, J.; Fernandes, A. P.; Basart, S.; Baldasano, J. M.; Borrego, C.

    2013-01-01

    The objective of this work is to assess the contribution of long-range transport of mineral dust from North Africa to the air pollution levels in Portugal based on a combination of a modelling approach and satellite observations. The Comprehensive Air Quality Model (CAMx) was applied together with the updated Dust REgional Atmospheric Model (BSC-DREAM8b) to characterise anthropogenic and natural sources of primary aerosols as well as secondary aerosols formation. The modelling results, after their validation and bias removing process, have been used in combination with aerosol measurements provided by Ozone Monitoring Instrument (OMI), using OMAERUV Level-2 v003 product, aiming to better understand the advantages and shortcomings of both, satellite and modelling aerosol data. The data analysis is presented for Portugal for July 2006 focusing on aerosol optical depth (AOD) at 500 nm and aerosol type. Based on the modelling results, the importance of the long-range transport of mineral dust was demonstrated for the simulation days, achieving a 60% contribution to AOD levels. The mineral dust is affecting atmospheric layers up to 6 km but peak concentrations are presented at layers below 2 km. The model predicts a complex mixture of different types of aerosol for the pixels classified by OMI as "mineral dust" and "sulphates". Although a good agreement between the model outputs and OMI observations has been found in terms of the spatial pattern and AOD correlation is about 0.48 for mineral dust, several problems were identified. The model is systematically underestimating the aerosol concentration at near ground level in comparison with the air quality monitoring stations, while OMI is in general overestimating AOD for the analysed period based on the comparison with AERONET data. Additionally, misclassification of mineral dust for some geographical locations and discontinuity in AOD values along the coastal line at water/land interface in the OMI data are discussed.

  18. Electrostatic and magnetic measurements of turbulence and transport in Extrap T2

    NASA Astrophysics Data System (ADS)

    Möller, Anders; Sallander, Eva

    1999-10-01

    Langmuir probe and magnetic pick-up coil measurements are used to study edge turbulence in the Extrap T2 reversed field pinch. Magnetic fluctuations resonant outside the toroidal field reversal surface are observed where previously only fluctuations in the spectra of potential and electron density and temperature have been measured. Results are presented which imply that these fluctuations are coupled to and also correlated to the internally resonant tearing mode fluctuations. Evidence of coupling between low-frequency (<100 kHz) and high-frequency fluctuations is also presented. The normalized floating potential fluctuations are seen to increase with the edge electron temperature. This causes an increase of the potential and density fluctuation driven transport with the temperature which is faster than linear. These results, in combination, are consistent with a picture where internally resonant fluctuations couple to edge fluctuations through radial heat conduction from the stochastic core to the edge.

  19. Using background air pollutants levels correlation analysis to identify periods of long-range transport of anthropogenic pollution

    NASA Astrophysics Data System (ADS)

    Konkova, Elizaveta S.; Burtseva, Larisa V.; Gromov, Sergey A.; Gromov, Sergey S.

    2017-04-01

    Increasing trends of airborne lead and cadmium at background station within the central region of European Russia have been identified previously (e.g., Gromov & Konkova, 2016). In order to reveal the possible drivers of these trends, a deeper investigation of correlation among these heavy metals (HM) and other co-measured pollutants is done in this study. Based on the data for the 2001-2012 period, calculations have been carried out for the period from 2006 onwards, when the growth of HM concentrations is observed. Pairwise correlations of individual species abundances were derived for the entire time series and subsets for each calendar year, including warm (April to September) and cold seasons (October to March). The calculated values for the seasons and the whole years vary substantially, suggesting that that variable ratios of atmospheric HM emission sources could affect the final air concentrations at measurement site in these periods. To distinguish the events of predominant influence of natural and anthropogenic sources, we assume that correlation between lead and cadmium levels must be greater in the case of natural sources being in effect. High values of the correlation coefficient are expected in cases when HM air abundances are induced by the long-range transport from the regions of anthropogenic sources (co-emission of these metals results from a number of same sources, and both of them are also present on same matrix aerosols). The results demonstrate a substantial correlation between Pb and Cd, with higher values for individual seasons (70% of 0.5 and higher) than for whole years. Higher mass concentrations of airborne dust (TSP) in remote areas are to large extent promoted by large particles blown away from the surface at local surroundings. Captured better by filters, such events could be a particular indicator of local (mostly natural) sources. Low or insignificant correlation with HM indicates prevalence of long-range transport of them and could

  20. The measurement of bacterial translation by photon correlation spectroscopy.

    PubMed Central

    Stock, G B; Jenkins, T C

    1978-01-01

    Photon correlation spectroscopy is shown to be a practical technique for the accurate determination of translational speeds of bacteria. Though other attempts have been made to use light scattering as a probe of various aspects of bacterial motility, no other comprehensive studies to establish firmly the basic capabilities and limitations of the technique have been published. The intrinsic accuracy of the assay of translational speeds by photon correlation spectroscopy is investigated by analysis of synthetic autocorrelation data; consistently accurate estimates of the mean and second moment of the speed distribution can be calculated. Extensive analyses of experimental preparations of Salmonella typhimurium examine the possible sources of experimental difficulty with the assay. Cinematography confirms the bacterial speed estimates obtained by photon correlation techniques. PMID:346073

  1. Impact of Interface Roughness on the Metallic Transport of Strongly Correlated 2D Holes in GaAs Quantum Wells

    NASA Astrophysics Data System (ADS)

    Goble, Nicholas; Watson, John; Manfra, Michael; Gao, Xuan

    2014-03-01

    Understanding the non-monotonic behavior in the temperature dependent resistance, R(T) , of strongly correlated two-dimensional (2D) carriers in clean semiconductors has been a central issue in the studies of 2D metallic states and metal-insulator transitions. We have studied the transport of high mobility 2D holes in 20nm wide GaAs quantum wells with varying interface roughness by changing the Al fraction x in the AlxGa1-xAs barrier. Prior to this work, no comprehensive study of the non-monotonic resistance peak against controlled barrier characteristics has been conducted. We show that the shape of the electronic contribution to R(T) is qualitatively unchanged throughout all of our measurements, regardless of the percentage of Al in the barrier. It is observed that increasing x or short range interface roughness suppresses both the strength and characteristic temperature scale of the 2D metallicity, pointing to the distinct role of short range versus long range disorder in the 2D metallic transport in this 2D hole system with interaction parameter rs ~ 20. N.G. acknowledges the US DOE GAANN fellowship (P200A090276 & P200A070434). M.J.M. is supported by the Miller Family Foundation and the US DOE, Office of Basic Energy Sciences, DMS (DE-SC0006671). X.P.A.G thanks the NSF for funding support (DMR-0906415).

  2. Non-Markovianity: initial correlations and nonlinear optical measurements

    PubMed Central

    Dijkstra, Arend G.; Tanimura, Yoshitaka

    2012-01-01

    By extending the response function approach developed in nonlinear optics, we analytically derive an expression for the non-Markovianity in the time evolution of a system in contact with a quantum mechanical bath, and find a close connection with the directly observable nonlinear optical response. The result indicates that memory in the bath-induced fluctuations rather than in the dissipation causes non-Markovianity. Initial correlations between states of the system and the bath are shown to be essential for a correct understanding of the non-Markovianity. These correlations are included in our treatment through a preparation function. PMID:22753819

  3. Surface excess properties from energy transport measurements during water evaporation.

    PubMed

    Duan, Fei; Ward, C A

    2005-11-01

    When water evaporates at high rates, recent studies indicate thermal conduction to the interface does not provide enough energy to evaporate water at the observed rate and that it is perhaps thermocapillary convection that transports the remaining energy. This possibility is examined by applying the Gibbs dividing-surface approximation to develop an expression for the energy transported along the interface. When this energy transport rate is compared with that required to evaporate the liquid at the observed rate, it is found that a Gibbs excess property, the "surface-thermal capacity," can be evaluated. A series of 19 evaporation experiments has been conducted under conditions for which there was no buoyancy-driven convection and for which the evaporation rate was progressively increased. For Marangoni numbers, (Ma) less than approximately 100, the interface was quiescent and thermal conduction (the Stefan condition) correctly predicted the energy transport rate to the surface. For experiments with 100transport. However, if the surface-thermal capacity is assigned a value of 30.6+/-0.8 kJ/(m2K), then energy transport by thermocapillary convection and conduction provides the energy transport required to evaporate the liquid at the observed rate. For experiments with Ma>22,000, the interfacial flow was turbulent and viscous dissipation became important.

  4. A nu-space for ICS: characterization and application to measure protein transport in live cells.

    PubMed

    Potvin-Trottier, Laurent; Chen, Lingfeng; Horwitz, Alan Rick; Wiseman, Paul W

    2013-08-01

    We introduce a new generalized theoretical framework for image correlation spectroscopy (ICS). Using this framework, we extend the ICS method in time-frequency (ν, nu) space to map molecular flow of fluorescently tagged proteins in individual living cells. Even in the presence of a dominant immobile population of fluorescent molecules, nu-space ICS (nICS) provides an unbiased velocity measurement, as well as the diffusion coefficient of the flow, without requiring filtering. We also develop and characterize a tunable frequency-filter for STICS that allows quantification of the density, the diffusion coefficient and the velocity of biased diffusion. We show that the techniques are accurate over a wide range of parameter space in computer simulation. We then characterize the retrograde flow of adhesion proteins (α6- and αLβ2-GFP integrins and mCherry-paxillin) in CHO.B2 cells plated on laminin and ICAM ligands respectively. STICS with a tunable frequency filter, in conjunction with nICS, measures two new transport parameters, the density and transport bias coefficient (a measure of the diffusive character of a flow/biased diffusion), showing that molecular flow in this cell system has a significant diffusive component. Our results suggest that the integrinligand interaction, along with the internal myosin-motor generated force, varies for different integrin-ligand pairs, consistent with previous results.

  5. Correlation of microstructure and thermo-mechanical properties of a novel hydrogen transport membrane

    NASA Astrophysics Data System (ADS)

    Zhang, Yongjun

    A key part of the FutureGen concept is to support the production of hydrogen to fuel a "hydrogen economy," with the use of clean burning hydrogen in power-producing fuel cells, as well as for use as a transportation fuel. One of the key technical barriers to FutureGen deployment is reliable and efficient hydrogen separation technology. Most Hydrogen Transport Membrane (HTM) research currently focuses on separation technology and hydrogen flux characterization. No significant work has been performed on thermo-mechanical properties of HTMs. The objective of the thesis is to understand the structure-property correlation of HTM and to characterize (1) thermo mechanical properties under different reducing environments and thermal cycles (thermal shock), and (2) evaluate the stability of the novel HTM material. A novel HTM cermet bulk sample was characterized for its physical and mechanical properties at both room temperature and at elevated temperature up to 1000°C. Micro-structural properties and residual stresses were evaluated in order to understand the changing mechanism of the microstructure and its effects on the mechanical properties of materials. A correlation of the microstructural and thermo mechanical properties of the HTM system was established for both HTM and the substrate material. Mechanical properties of both selected structural ceramics and the novel HTM cermet bulk sample are affected mainly by porosity and microstructural features, such as grain size and pore size-distribution. The Young's Modulus (E-value) is positively correlated to the flexural strength for materials with similar crystallographic structure. However, for different crystallographic materials, physical properties are independent of mechanical properties. Microstructural properties, particularly, grain size and crystallographic structure, and thermodynamic properties are the main factors affecting the mechanical properties at both room and high temperatures. The HTM cermet behaves

  6. Electronic and magnetic properties of manganite thin films with different compositions and its correlation with transport properties: An X-ray resonant magnetic scattering study

    DOE PAGES

    Singh, Surendra; Freeland, J. W.; Fitzsimmons, M. R.; ...

    2014-12-08

    Here, we present x-ray resonant magnetic dichroism and x-ray resonant magnetic scattering measurements of the temperature dependence of magnetism in Pr-doped La-Ca-Mn-O films grown on (110) NdGaO3 substrates. We observed thermal hysteresis of the ferromagnetism in one film that also showed large thermal hysteresis of ~18K in transport measurements. While in a second film of a different nominal chemistry, which showed very small thermal hysteresis ~3K in transport measurements, no thermal hysteresis of the ferromagnetism was observed. As a result, these macroscopic properties are correlated with evolution of surface magnetization across metal insulator transition for these films as observed bymore » soft x-ray resonant magnetic scattering measurements.« less

  7. Electronic and magnetic properties of manganite thin films with different compositions and its correlation with transport properties: An X-ray resonant magnetic scattering study

    SciTech Connect

    Singh, Surendra; Freeland, J. W.; Fitzsimmons, M. R.; Jeen, H.; Biswas, A.

    2014-12-08

    Here, we present x-ray resonant magnetic dichroism and x-ray resonant magnetic scattering measurements of the temperature dependence of magnetism in Pr-doped La-Ca-Mn-O films grown on (110) NdGaO3 substrates. We observed thermal hysteresis of the ferromagnetism in one film that also showed large thermal hysteresis of ~18K in transport measurements. While in a second film of a different nominal chemistry, which showed very small thermal hysteresis ~3K in transport measurements, no thermal hysteresis of the ferromagnetism was observed. As a result, these macroscopic properties are correlated with evolution of surface magnetization across metal insulator transition for these films as observed by soft x-ray resonant magnetic scattering measurements.

  8. Electronic and magnetic properties of manganite thin films with different compositions and its correlation with transport properties: An X-ray resonant magnetic scattering study

    SciTech Connect

    Singh, Surendra; Freeland, J. W.; Fitzsimmons, M. R.; Jeen, H.; Biswas, A.

    2014-12-14

    Here, we present x-ray resonant magnetic dichroism and x-ray resonant magnetic scattering measurements of the temperature dependence of magnetism in Pr-doped La-Ca-Mn-O films grown on (110) NdGaO{sub 3} substrates. We observed thermal hysteresis of the ferromagnetism in one film that also showed large thermal hysteresis of ∼18 K in transport measurements. While in a second film of a different nominal chemistry, which showed very small thermal hysteresis ∼3 K in transport measurements, no thermal hysteresis of the ferromagnetism was observed. These macroscopic properties are correlated with evolution of surface magnetization across metal insulator transition for these films as observed by soft x-ray resonant magnetic scattering measurements.

  9. Regional serotonin transporter availability and depression are correlated in Wilson's disease.

    PubMed

    Hesse, S; Barthel, H; Hermann, W; Murai, T; Kluge, R; Wagner, A; Sabri, O; Eggers, B

    2003-08-01

    In patients with Wilson's disease (WD), depression is a frequent psychiatric symptom. In vivo neuroimaging studies suggest that depression and other neuropsychiatric disorders are associated with central serotonergic deficits. However, in vivo measurements of serotonergic neurotransmission have not until now been performed in patients with this copper deposition disorder. The present prospective study revealed that depressive symptomatology is related to an alteration of presynaptic serotonin transporters (SERT) availability as measured by [123I]-2beta-carbomethoxy-3beta-(iodophenyl)tropane ([123I]beta-CIT) and high-resolution single-photon emission computed tomography (SPECT). SERT imaging with [123I]beta-CIT-SPECT could therefore become a useful tool for diagnosis and therapy monitoring in depressed WD patients.

  10. Atmospheric pollution measurement by optical cross correlation methods - A concept

    NASA Technical Reports Server (NTRS)

    Fisher, M. J.; Krause, F. R.

    1971-01-01

    Method combines standard spectroscopy with statistical cross correlation analysis of two narrow light beams for remote sensing to detect foreign matter of given particulate size and consistency. Method is applicable in studies of generation and motion of clouds, nuclear debris, ozone, and radiation belts.

  11. Direct Measurement of Pair Correlation in Model Aerosols

    DTIC Science & Technology

    1990-12-15

    the unreconstructed hologram, to estimate the pair correlation function of model particle fields simulating aerosols and hydrosols at smaller scale...recent predictive multiple scattering theories of wave propogation through aerosols and hydrosols . In the Uaradan approach [9]-[11], the

  12. Measuring and controlling the transport of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Stephens, Jason R.

    Despite the large body of literature describing the synthesis of magnetic nanoparticles, few analytical tools are commonly used for their purification and analysis. Due to their unique physical and chemical properties, magnetic nanoparticles are appealing candidates for biomedical applications and analytical separations. Yet in the absence of methods for assessing and assuring their purity, the ultimate use of magnetic particles and heterostructures is likely to be limited. For magnetic nanoparticles, it is the use of an applied magnetic flux or field gradient that enables separations. Flow based techniques are combined with applied magnetic fields to give methods such as magnetic field flow fractionation and high gradient magnetic separation. Additional techniques have been explored for manipulating particles in microfluidic channels and in mesoporous membranes. This thesis further describes development of these and new analytical tools for separation and analysis of colloidal particles is critically important to enable the practical use of these, particularly for medicinal purposes. Measurement of transport of nanometer scale particles through porous media is important to begin to understand the potential environmental impacts of nanomaterials. Using a diffusion cell with two compartments separated by either a porous alumina or polycarbonate membrane as a model system, diffusive flux through mesoporous materials is examined. Experiments are performed as a function of particle size, pore diameter, and solvent, and the particle fluxes are monitored by the change in absorbance of the solution in the receiving cell. Using the measured extinction coefficient and change in absorbance of the solution as a function of time, the fluxes of 3, 8, and 14 nm diameter CoFe2O4 particles are determined as they are translocated across pores with diameters 30, 50, 100, and 200 nm in hexane and aqueous solutions. In general, flux decreases with increasing particle size and

  13. Measuring the Air Quality and Transportation Impacts of Infill Development

    EPA Pesticide Factsheets

    This report summarizes three case studies. The analysis shows how standard forecasting tools can be modified to capture at least some of the transportation and air quality benefits of brownfield and infill development.

  14. Trace Gas Transport in the Troposphere and the Interpretation of In-Situ Concentration Measurements

    NASA Technical Reports Server (NTRS)

    Plumb, R. Alan

    2000-01-01

    The research conducted comprised two sub-projects: 1) definition of the major transport pathways in the troposphere with focus on low-level transport in baroclinic systems, and (2) investigation, and assessment of the usefulness of, tracer-tracer correlations in the troposphere.

  15. A comparison of coarse bedload transport measured with bedload traps and Helley Smith samplers

    Treesearch

    Kristin Bunte; Steven R. Abt; John P. Potyondy; Kurt W. Swingle

    2008-01-01

    Gravel bedload transport rates were measured at eight study sites in coarse-bedded Rocky Mountain streams using 4-6 bedload traps deployed across the stream width and a 76 by 76 mm opening Helley Smith sampler. Transport rates obtained from bedload traps increased steeply with flow which resulted in steep and well-defined transport rating curves with exponents of 8 to...

  16. [Planning and implementation of protective measures in emergencies during railway transportation of radioactive cargo].

    PubMed

    Romanov, V V; Konin, A P; Popov, S A; Golovanev, S M; Tulushev, V N

    2000-01-01

    Protective measures in emergencies during railway transportation of radioactive cargoes must be planned in advance, by obligatorily taking into account many factors that influence the scope, nature, specific features and consequences of radiation transport accidents. Of great importance are radiation monitoring, protective regimens, and requirements for decontamination of various objects in liquidating the consequences of a radiation transport accident.

  17. Identifying fire plumes in the Arctic with tropospheric FTIR measurements and transport models

    NASA Astrophysics Data System (ADS)

    Viatte, C.; Strong, K.; Hannigan, J.; Nussbaumer, E.; Emmons, L.; Conway, S.; Paton-Walsh, C.; Hartley, J.; Benmergui, J.; Lin, J.

    2014-10-01

    confirms that transport is well implemented in the model. For C2H6, however, the lower wintertime concentration estimated by the model as compared to the FTIR observations highlight an underestimation of its emission. Results show that modelled and measured total columns are correlated (linear correlation coefficient r > 0.6 for all gases except for H2CO at Eureka and HCOOH at Thule), but suggest a~general underestimation of the concentrations in the model for all seven tropospheric species in the high Arctic.

  18. Identifying fire plumes in the Arctic with tropospheric FTIR measurements and transport models

    NASA Astrophysics Data System (ADS)

    Viatte, C.; Strong, K.; Hannigan, J.; Nussbaumer, E.; Emmons, L. K.; Conway, S.; Paton-Walsh, C.; Hartley, J.; Benmergui, J.; Lin, J.

    2015-03-01

    their transport. Good agreement in winter confirms that transport is well implemented in the model. For C2H6, however, the lower wintertime concentration estimated by the model as compared to the FTIR observations highlights an underestimation of its emission. Results show that modeled and measured total columns are correlated (linear correlation coefficient r > 0.6 for all gases except for H2CO at Eureka and HCOOH at Thule), but suggest a general underestimation of the concentrations in the model for all seven tropospheric species in the high Arctic.

  19. Correlation measure to detect time series distances, whence economy globalization

    NASA Astrophysics Data System (ADS)

    Miśkiewicz, Janusz; Ausloos, Marcel

    2008-11-01

    An instantaneous time series distance is defined through the equal time correlation coefficient. The idea is applied to the Gross Domestic Product (GDP) yearly increments of 21 rich countries between 1950 and 2005 in order to test the process of economic globalisation. Some data discussion is first presented to decide what (EKS, GK, or derived) GDP series should be studied. Distances are then calculated from the correlation coefficient values between pairs of series. The role of time averaging of the distances over finite size windows is discussed. Three network structures are next constructed based on the hierarchy of distances. It is shown that the mean distance between the most developed countries on several networks actually decreases in time, -which we consider as a proof of globalization. An empirical law is found for the evolution after 1990, similar to that found in flux creep. The optimal observation time window size is found ≃15 years.

  20. Reduction of Gun Erosion and Correlation of Gun Erosion Measurements

    NASA Technical Reports Server (NTRS)

    Bogdanoff, Dave; Wercinski, Paul (Technical Monitor)

    1997-01-01

    Gun barrel erosion is serious problem with two-stage light gas guns. Excessive barrel erosion can lead to poor or failed launches and frequent barrel changes, with the corresponding down time. Also, excessive barrel erosion can limit the maximum velocity obtainable by loading down the hydrogen working gas with eroded barrel material. Guided by a CFD code, the operating conditions of the Ames 0.5-inch gun were modified to reduce barrel erosion. The changes implemented included: (1) reduction in the piston mass, powder mass and hydrogen fill pressure; and (2) reduction in pump tube volume, while maintaining hydrogen mass. The latter change was found, in particular, to greatly reduce barrel erosion. For muzzle velocity ranges of 6.1 - 6.9 km/sec, the barrel erosion was reduced by a factor of 10. Even for the higher muzzle velocity range of 7.0 - 8.2 km/sec, the barrel erosion was reduced by a factor of 4. Gun erosion data from the Ames 0.5-inch, 1.0-inch, and 1.5-inch guns operated over a wide variety of launch conditions was examined and it was found that this data could be correlated using four different parameters: normalized powder charge energy, normalized hydrogen energy density, normalized pump tube volume and barrel diameter. The development of the correlation and the steps used to collapse the experimental data are presented. Over a certain parameter range in the correlation developed, the barrel erosion per shot is found to increase very rapidly. The correlation should prove useful in the selection of gun operating conditions and the design of new guns. Representative shapes of eroded gun barrels are also presented.

  1. Parallax Measurement Using an Image Matched Filter Correlator

    DTIC Science & Technology

    1975-04-01

    was also necessary to isolate the laser by installing rubber pads under it and by suspending the umbilical cord in order to eliminate vibrations...mirror. This assembly tended to vibrate and it proved necessary to remove it and replace the small mirror by a larger mirror clamped directly to...where a ^ b. Consider the situation in Figure A-l where a hologram is re- corded in plane H. The correlations are formed by lens Lj in

  2. Reduction of Gun Erosion and Correlation of Gun Erosion Measurements

    NASA Technical Reports Server (NTRS)

    Bogdanoff, Dave; Wercinski, Paul (Technical Monitor)

    1997-01-01

    Gun barrel erosion is serious problem with two-stage light gas guns. Excessive barrel erosion can lead to poor or failed launches and frequent barrel changes, with the corresponding down time. Also, excessive barrel erosion can limit the maximum velocity obtainable by loading down the hydrogen working gas with eroded barrel material. Guided by a CFD code, the operating conditions of the Ames 0.5-inch gun were modified to reduce barrel erosion. The changes implemented included: (1) reduction in the piston mass, powder mass and hydrogen fill pressure; and (2) reduction in pump tube volume, while maintaining hydrogen mass. The latter change was found, in particular, to greatly reduce barrel erosion. For muzzle velocity ranges of 6.1 - 6.9 km/sec, the barrel erosion was reduced by a factor of 10. Even for the higher muzzle velocity range of 7.0 - 8.2 km/sec, the barrel erosion was reduced by a factor of 4. Gun erosion data from the Ames 0.5-inch, 1.0-inch, and 1.5-inch guns operated over a wide variety of launch conditions was examined and it was found that this data could be correlated using four different parameters: normalized powder charge energy, normalized hydrogen energy density, normalized pump tube volume and barrel diameter. The development of the correlation and the steps used to collapse the experimental data are presented. Over a certain parameter range in the correlation developed, the barrel erosion per shot is found to increase very rapidly. The correlation should prove useful in the selection of gun operating conditions and the design of new guns. Representative shapes of eroded gun barrels are also presented.

  3. Quantum correlation measurements in interferometric gravitational-wave detectors

    NASA Astrophysics Data System (ADS)

    Martynov, D. V.; Frolov, V. V.; Kandhasamy, S.; Izumi, K.; Miao, H.; Mavalvala, N.; Hall, E. D.; Lanza, R.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Adams, C.; Adhikari, R. X.; Anderson, S. B.; Ananyeva, A.; Appert, S.; Arai, K.; Aston, S. M.; Ballmer, S. W.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Bartos, I.; Batch, J. C.; Bell, A. S.; Betzwieser, J.; Billingsley, G.; Birch, J.; Biscans, S.; Biwer, C.; Blair, C. D.; Bork, R.; Brooks, A. F.; Ciani, G.; Clara, F.; Countryman, S. T.; Cowart, M. J.; Coyne, D. C.; Cumming, A.; Cunningham, L.; Danzmann, K.; Da Silva Costa, C. F.; Daw, E. J.; DeBra, D.; DeRosa, R. T.; DeSalvo, R.; Dooley, K. L.; Doravari, S.; Driggers, J. C.; Dwyer, S. E.; Effler, A.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fair, H.; Fernández Galiana, A.; Fisher, R. P.; Fritschel, P.; Fulda, P.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Goetz, E.; Goetz, R.; Gras, S.; Gray, C.; Grote, H.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hammond, G.; Hanks, J.; Hanson, J.; Hardwick, T.; Harry, G. M.; Heintze, M. C.; Heptonstall, A. W.; Hough, J.; Jones, R.; Karki, S.; Kasprzack, M.; Kaufer, S.; Kawabe, K.; Kijbunchoo, N.; King, E. J.; King, P. J.; Kissel, J. S.; Korth, W. Z.; Kuehn, G.; Landry, M.; Lantz, B.; Lockerbie, N. A.; Lormand, M.; Lundgren, A. P.; MacInnis, M.; Macleod, D. M.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martin, I. W.; Mason, K.; Massinger, T. J.; Matichard, F.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McIntyre, G.; McIver, J.; Mendell, G.; Merilh, E. L.; Meyers, P. M.; Miller, J.; Mittleman, R.; Moreno, G.; Mueller, G.; Mullavey, A.; Munch, J.; Nuttall, L. K.; Oberling, J.; Oppermann, P.; Oram, Richard J.; O'Reilly, B.; Ottaway, D. J.; Overmier, H.; Palamos, J. R.; Paris, H. R.; Parker, W.; Pele, A.; Penn, S.; Phelps, M.; Pierro, V.; Pinto, I.; Principe, M.; Prokhorov, L. G.; Puncken, O.; Quetschke, V.; Quintero, E. A.; Raab, F. J.; Radkins, H.; Raffai, P.; Reid, S.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Roma, V. J.; Romie, J. H.; Rowan, S.; Ryan, K.; Sadecki, T.; Sanchez, E. J.; Sandberg, V.; Savage, R. L.; Schofield, R. M. S.; Sellers, D.; Shaddock, D. A.; Shaffer, T. J.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sigg, D.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Sorazu, B.; Staley, A.; Strain, K. A.; Tanner, D. B.; Taylor, R.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Torrie, C. I.; Traylor, G.; Vajente, G.; Valdes, G.; van Veggel, A. A.; Vecchio, A.; Veitch, P. J.; Venkateswara, K.; Vo, T.; Vorvick, C.; Walker, M.; Ward, R. L.; Warner, J.; Weaver, B.; Weiss, R.; Weßels, P.; Willke, B.; Wipf, C. C.; Worden, J.; Wu, G.; Yamamoto, H.; Yancey, C. C.; Yu, Hang; Yu, Haocun; Zhang, L.; Zucker, M. E.; Zweizig, J.; LSC Instrument Authors

    2017-04-01

    Quantum fluctuations in the phase and amplitude quadratures of light set limitations on the sensitivity of modern optical instruments. The sensitivity of the interferometric gravitational-wave detectors, such as the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO), is limited by quantum shot noise, quantum radiation pressure noise, and a set of classical noises. We show how the quantum properties of light can be used to distinguish these noises using correlation techniques. Particularly, in the first part of the paper we show estimations of the coating thermal noise and gas phase noise, hidden below the quantum shot noise in the Advanced LIGO sensitivity curve. We also make projections on the observatory sensitivity during the next science runs. In the second part of the paper we discuss the correlation technique that reveals the quantum radiation pressure noise from the background of classical noises and shot noise. We apply this technique to the Advanced LIGO data, collected during the first science run, and experimentally estimate the quantum correlations and quantum radiation pressure noise in the interferometer.

  4. Measurement of q ˆ in Relativistic Heavy Ion Collisions using di-hadron correlations

    NASA Astrophysics Data System (ADS)

    Tannenbaum, M. J.

    2017-08-01

    The propagation of partons from hard scattering through the Quark Gluon Plasma produced in A+A collisions at RHIC and the LHC is represented in theoretical analyses by the transport coefficient q ˆ and predicted to cause both energy loss of the outgoing partons, observed as suppression of particles or jets with large transverse momentum pT, and broadening of the azimuthal correlations of the outgoing di-jets or di-hadrons from the outgoing parton-pair, which has not been observed. The widths of azimuthal correlations of di-hadrons with the same trigger particle pTt and associated pTa transverse momenta in p+p and Au+Au are so-far statistically indistinguishable as shown in recent as well as older di-hadron measurements and also with jet-hadron and hadron-jet measurements. The azimuthal width of the di-hadron correlations in p+p collisions, beyond the fragmentation transverse momentum, jT, is dominated by kT, the so-called intrinsic transverse momentum of a parton in a nucleon, which can be measured. The broadening should produce a larger kT in A+A than in p+p collisions. The present work introduces the observation that the kT measured in p+p collisions for di-hadrons with pTt and pTa must be reduced to compensate for the energy loss of both the trigger and away parent partons when comparing to the kT measured with the same di-hadron pTt and pTa in Au+Au collisions. This idea is applied to a recent STAR di-hadron measurement, with result < q ˆ L > = 2.1 ± 0.6 GeV2. This is more precise but in agreement with a theoretical calculation of < q ˆ L > =14-14+42 GeV2 using the same data. Assuming a length < L > ≈ 7 fm for central Au+Au collisions the present result gives q ˆ ≈ 0.30 ± 0.09 GeV2/fm, in fair agreement with the JET collaboration result from single hadron suppression of q ˆ ≈ 1.2 ± 0.3 GeV2/fm at an initial time τ0 = 0.6 fm/c in Au+Au collisions at √{sNN} = 200 GeV.

  5. Inequivalence of correlation-based measures of non-Markovianity

    NASA Astrophysics Data System (ADS)

    Neto, Alaor Cervati; Karpat, Göktuǧ; Fanchini, Felipe Fernandes

    2016-09-01

    We conclusively show that the entanglement- and the mutual-information-based measures of quantum non-Markovianity are inequivalent. To this aim, we first analytically solve the optimization problem in the definition of the entanglement-based measure for a two-level system. We demonstrate that the optimal initial bipartite state of the open system and the ancillary is always given by one of the Bell states for any one-qubit dynamics. On top of this result, we present an explicit example dynamics where memory effects emerge according to the mutual-information-based measure, even though the time evolution remains memoryless with respect to the entanglement-based measure. Finally, we explain this disagreement between the two measures in terms of the information dynamics of the open system, exploring the accessible and inaccessible parts of information.

  6. Gas Transport Parameters for Landfill Final Cover Soil: Measurements and Model Modification by Dry Bulk Density

    NASA Astrophysics Data System (ADS)

    Wickramarachchi, P. N.; Kawamoto, K.; Hamamoto, S.; Nagamori, M.; Moldrup, P.; Komatsu, T.

    2011-12-01

    coarser (< 35 mm) fraction became larger than finer (< 2 mm) for the given soil-air content. Further, compaction effort was much significant for ka than Dp for both fractions. We suggest this is because of compaction effects caused to create well-aligned macropore networks that are available for gas transport through the porous material. Then, the famous predictive models, the water induced linear reduction (WLR) model for Dp and the reference point law (RPL) model for ka were modified with reference point measurements (dry conditions) and model parameters and they correlated linearly to dry bulk density values for both fractions of landfill final cover soil.

  7. Correlation of Capture Efficiency with the Geometry, Transport, and Reaction Parameters in Heterogeneous Immunosensors.

    PubMed

    Rath, Dharitri; Panda, Siddhartha

    2016-02-09

    for the nonmixed and mixed systems on the transport (Deff), reaction (K(D)), and geometric parameters (R). Two different correlations were established for the nonmixed and mixed systems between the capture efficiency (f) and a nondimensional number (t(D)/t(R)) consisting of the above-mentioned parameters. Such unified relations will be useful in designing heterogeneous immunosensors and can be extended to microfluidic immunosensors.

  8. Measurement of spatio-temporal transport in live cells

    NASA Astrophysics Data System (ADS)

    Wang, Ru; Wang, Zhuo; Millet, Larry; Gillette, Martha U.; Popescu, Gabriel

    2010-03-01

    The live cell is a highly dynamical system with complicated biophysical and biochemical processes taking place at diverse spatiotemporal scales. Though it is well known that microtubules and actin filaments play important roles in intracellular transport, their dynamic behavior is not entirely understood. We propose a unified approach to studying transport in live cells. We used Spatial Light Interference Microscopy, a quantitative phase imaging method developed in our laboratory, to extract cell mass distributions over broad spatiotemporal scales. The dispersion relations for this transport dynamics, i.e. frequency bandwidth vs. spatial frequencies, reveal deterministic mass transport at large spatial scales (w˜q) and diffusive transport at small spatial scales (w˜q̂2). At submicron scales, we observed a w˜q̂3 behavior, which indicates whip-like movements of protein filaments. Further control experiments where both the microtubule and actin polymerization were blocked suggests that essentially actin governs the long spatial scales behavior and microtubules the short scales. This label-free method enables us to access different components of cell dynamics and quantify diffusion coefficients and speed of motor proteins.

  9. Physics-based agent to simulant correlations for vapor phase mass transport.

    PubMed

    Willis, Matthew P; Varady, Mark J; Pearl, Thomas P; Fouse, Janet C; Riley, Patrick C; Mantooth, Brent A; Lalain, Teri A

    2013-12-15

    Chemical warfare agent simulants are often used as an agent surrogate to perform environmental testing, mitigating exposure hazards. This work specifically addresses the assessment of downwind agent vapor concentration resulting from an evaporating simulant droplet. A previously developed methodology was used to estimate the mass diffusivities of the chemical warfare agent simulants methyl salicylate, 2-chloroethyl ethyl sulfide, di-ethyl malonate, and chloroethyl phenyl sulfide. Along with the diffusivity of the chemical warfare agent bis(2-chloroethyl) sulfide, the simulant diffusivities were used in an advection-diffusion model to predict the vapor concentrations downwind from an evaporating droplet of each chemical at various wind velocities and temperatures. The results demonstrate that the simulant-to-agent concentration ratio and the corresponding vapor pressure ratio are equivalent under certain conditions. Specifically, the relationship is valid within ranges of measurement locations relative to the evaporating droplet and observation times. The valid ranges depend on the relative transport properties of the agent and simulant, and whether vapor transport is diffusion or advection dominant.

  10. Electrical conductivity measurements of nanofluids and development of new correlations.

    PubMed

    Konakanchi, Hanumantharao; Vajjha, Ravikanth; Misra, Debasmita; Das, Debendra

    2011-08-01

    In this study the electrical conductivity of aluminum oxide (Al2O3), silicon dioxide (SiO2) and zinc oxide (ZnO) nanoparticles dispersed in propylene glycol and water mixture were measured in the temperature range of 0 degrees C to 90 degrees C. The volumetric concentration of nanoparticles in these fluids ranged from 0 to 10% for different nanofluids. The particle sizes considered were from 20 nm to 70 nm. The electrical conductivity measuring apparatus and the measurement procedure were validated by measuring the electrical conductivity of a calibration fluid, whose properties are known accurately. The measured electrical conductivity values agreed within +/- 1% with the published data reported by the manufacturer. Following the validation, the electrical conductivities of different nanofluids were measured. The measurements showed that electrical conductivity of nanofluids increased with an increase in temperature and also with an increase in particle volumetric concentration. For the same nanofluid at a fixed volumetric concentration, the electrical conductivity was found to be higher for smaller particle sizes. From the experimental data, empirical models were developed for three nanofluids to express the electrical conductivity as functions of temperature, volumetric concentration and the size of the nanoparticles.

  11. Image correlation method for measuring flow and diameter changes in contracting mesenteric microlymphatics in situ

    NASA Astrophysics Data System (ADS)

    Dixon, J. Brandon; Cote, Gerard; Gashev, Anatoly; Greiner, Steven; Moore, James; Zawieja, David

    2006-02-01

    Collecting microlymphatics play a vital role in promoting lymph flow from the initial lymphatics in the interstitial spaces to the large transport lymph ducts. In most tissues, the primary mechanism for producing this flow is the spontaneous contractions of the lymphatic wall. Individual units, known as lymphangion, are separated by valves that help prevent backflow when the vessel contracts, thus promoting flow through the lymphatic network. Lymphatic contractile activity is inhibited by flow in isolated lymphatics, however there are virtually no in situ measurements of lymph flow in these vessels. One of the difficulties associated with obtaining such measurements is the time consuming methods of manual particle tracking used previously by our group. Using an in situ preparation with mesenteric microlymphatics (~ 100 μm in diameter) and a high speed imaging system (500 fps), we have developed an image correlation method to measure lymphatic flow with a standard error of prediction of 0.3 mm/sec when compared with manual particle tracking.

  12. NMR and transport measurements of copper chalcogenide and clathrate compounds

    NASA Astrophysics Data System (ADS)

    Sirusi Arvij, Ali

    Due to limited sources of fossil fuels worldwide and a large percentage wasted as heat energy, searching for efficient thermoelectric materials to convert heat to electricity has gained a great deal of attention. Most of the attempts are focused on materials with substantially lower lattice thermal conductivity and narrow band gaps. Among them, inorganic clathrates and copper-based chalcogenides possess intrinsic low thermal conductivity which makes them promising thermoelectrics. In this work, nuclear magnetic resonance (NMR), transport, and magnetic measurements were performed on clathrates and copper-based chalcogenides to investigate their vibrational and electronic charge carrier properties, as well as the unknown structures of Cu2Se and Cu 2Te at low temperatures, and the effect of rattling of guest atoms in the clathrates. The NMR results in Ba8Ga16Ge30 indicate a pseudogap in the Ga electronic density of states, superposed upon a surprisingly large Ba contribution to the conduction band. Meanwhile, the phonon contributions to the Ga relaxation rates are large and increase more rapidly with temperature than typical semiconductors due to enhanced anharmonicity of the propagative phonon modes over a wide range. Moreover, the observed NMR shifts in the Ba8Cu5Si xGe41-x clathrates change in a nonlinear way with increasing Si substitution: from x = 0 to about 20 the shifts are essentially constant, while approaching x = 41 they increase rapidly, demonstrating a significant change in hybridizations vs Si substitution. NMR studies of Cu2Se show an initial appearance of ionic hopping in a narrow temperature range above 100 K, coinciding with the recently observed low-temperature phase transition. At room temperature and above, this goes over to rapid Cu-ion hopping and a single motionally narrowed line both above and below the alpha-beta structural transition. Furthermore, the NMR results on Cu2Te and Cu 1.98Ag0.2Te demonstrate unusually large negative chemical

  13. Transport parameter estimation from lymph measurements and the Patlak equation.

    PubMed

    Watson, P D; Wolf, M B

    1992-01-01

    Two methods of estimating protein transport parameters for plasma-to-lymph transport data are presented. Both use IBM-compatible computers to obtain least-squares parameters for the solvent drag reflection coefficient and the permeability-surface area product using the Patlak equation. A matrix search approach is described, and the speed and convenience of this are compared with a commercially available gradient method. The results from both of these methods were different from those of a method reported by Reed, Townsley, and Taylor [Am. J. Physiol. 257 (Heart Circ. Physiol. 26): H1037-H1041, 1989]. It is shown that the Reed et al. method contains a systematic error. It is also shown that diffusion always plays an important role for transmembrane transport at the exit end of a membrane channel under all conditions of lymph flow rate and that the statement that diffusion becomes zero at high lymph flow rate depends on a mathematical definition of diffusion.

  14. Development of Standardized Mobile Tracer Correlation Approach for Large Area Emission Measurements (DRAFT UNDER EPA REVIEW)

    NASA Astrophysics Data System (ADS)

    Foster-wittig, T. A.; Thoma, E.; Green, R.; Hater, G.; Swan, N.; Chanton, J.

    2013-12-01

    Improved understanding of air emissions from large area sources such as landfills, waste water ponds, open-source processing, and agricultural operations is a topic of increasing environmental importance. In many cases, the size of the area source, coupled with spatial-heterogeneity, make direct (on-site) emission assessment difficult; methane emissions, from landfills for example, can be particularly complex [Thoma et al, 2009]. Recently, whole-facility (remote) measurement approaches based on tracer correlation have been utilized [Scheutz et al, 2011]. The approach uses a mobile platform to simultaneously measure a metered-release of a conservative gas (the tracer) along with the target compound (methane in the case of landfills). The known-rate tracer release provides a measure of atmospheric dispersion at the downwind observing location allowing the area source emission to be determined by a ratio calculation [Green et al, 2010]. Although powerful in concept, the approach has been somewhat limited to research applications due to the complexities and cost of the high-sensitivity measurement equipment required to quantify the part-per billion levels of tracer and target gas at kilometer-scale distances. The advent of compact, robust, and easy to use near-infrared optical measurement systems (such as cavity ring down spectroscopy) allow the tracer correlation approach to be investigated for wider use. Over the last several years, Waste Management Inc., the U.S. EPA, and collaborators have conducted method evaluation activities to determine the viability of a standardized approach through execution of a large number of field measurement trials at U.S. landfills. As opposed to previous studies [Scheutz et al, 2011] conducted at night (optimal plume transport conditions), the current work evaluated realistic use-scenarios; these scenarios include execution by non-scientist personnel, daylight operation, and full range of atmospheric condition (all plume transport

  15. An ABC Transporter Mutation Is Correlated with Insect Resistance to Bacillus thuringiensis Cry1Ac Toxin

    PubMed Central

    Gahan, Linda J.; Pauchet, Yannick; Vogel, Heiko; Heckel, David G.

    2010-01-01

    Transgenic crops producing insecticidal toxins from Bacillus thuringiensis (Bt) are commercially successful in reducing pest damage, yet knowledge of resistance mechanisms that threaten their sustainability is incomplete. Insect resistance to the pore-forming Cry1Ac toxin is correlated with the loss of high-affinity, irreversible binding to the mid-gut membrane, but the genetic factors responsible for this change have been elusive. Mutations in a 12-cadherin-domain protein confer some Cry1Ac resistance but do not block this toxin binding in in vitro assays. We sought to identify mutations in other genes that might be responsible for the loss of binding. We employed a map-based cloning approach using a series of backcrosses with 1,060 progeny to identify a resistance gene in the cotton pest Heliothis virescens that segregated independently from the cadherin mutation. We found an inactivating mutation of the ABC transporter ABCC2 that is genetically linked to Cry1Ac resistance and is correlated with loss of Cry1Ac binding to membrane vesicles. ABC proteins are integral membrane proteins with many functions, including export of toxic molecules from the cell, but have not been implicated in the mode of action of Bt toxins before. The reduction in toxin binding due to the inactivating mutation suggests that ABCC2 is involved in membrane integration of the toxin pore. Our findings suggest that ABC proteins may play a key role in the mode of action of Bt toxins and that ABC protein mutations can confer high levels of resistance that could threaten the continued utilization of Bt–expressing crops. However, such mutations may impose a physiological cost on resistant insects, by reducing export of other toxins such as plant secondary compounds from the cell. This weakness could be exploited to manage this mechanism of Bt resistance in the field. PMID:21187898

  16. An ABC transporter mutation is correlated with insect resistance to Bacillus thuringiensis Cry1Ac toxin.

    PubMed

    Gahan, Linda J; Pauchet, Yannick; Vogel, Heiko; Heckel, David G

    2010-12-16

    Transgenic crops producing insecticidal toxins from Bacillus thuringiensis (Bt) are commercially successful in reducing pest damage, yet knowledge of resistance mechanisms that threaten their sustainability is incomplete. Insect resistance to the pore-forming Cry1Ac toxin is correlated with the loss of high-affinity, irreversible binding to the mid-gut membrane, but the genetic factors responsible for this change have been elusive. Mutations in a 12-cadherin-domain protein confer some Cry1Ac resistance but do not block this toxin binding in in vitro assays. We sought to identify mutations in other genes that might be responsible for the loss of binding. We employed a map-based cloning approach using a series of backcrosses with 1,060 progeny to identify a resistance gene in the cotton pest Heliothis virescens that segregated independently from the cadherin mutation. We found an inactivating mutation of the ABC transporter ABCC2 that is genetically linked to Cry1Ac resistance and is correlated with loss of Cry1Ac binding to membrane vesicles. ABC proteins are integral membrane proteins with many functions, including export of toxic molecules from the cell, but have not been implicated in the mode of action of Bt toxins before. The reduction in toxin binding due to the inactivating mutation suggests that ABCC2 is involved in membrane integration of the toxin pore. Our findings suggest that ABC proteins may play a key role in the mode of action of Bt toxins and that ABC protein mutations can confer high levels of resistance that could threaten the continued utilization of Bt-expressing crops. However, such mutations may impose a physiological cost on resistant insects, by reducing export of other toxins such as plant secondary compounds from the cell. This weakness could be exploited to manage this mechanism of Bt resistance in the field.

  17. Electrophysiological correlates of listening effort: neurodynamical modeling and measurement.

    PubMed

    Strauss, Daniel J; Corona-Strauss, Farah I; Trenado, Carlos; Bernarding, Corinna; Reith, Wolfgang; Latzel, Matthias; Froehlich, Matthias

    2010-06-01

    An increased listing effort represents a major problem in humans with hearing impairment. Neurodiagnostic methods for an objective listening effort estimation might support hearing instrument fitting procedures. However the cognitive neurodynamics of listening effort is far from being understood and its neural correlates have not been identified yet. In this paper we analyze the cognitive neurodynamics of listening effort by using methods of forward neurophysical modeling and time-scale electroencephalographic neurodiagnostics. In particular, we present a forward neurophysical model for auditory late responses (ALRs) as large-scale listening effort correlates. Here endogenously driven top-down projections related to listening effort are mapped to corticothalamic feedback pathways which were analyzed for the selective attention neurodynamics before. We show that this model represents well the time-scale phase stability analysis of experimental electroencephalographic data from auditory discrimination paradigms. It is concluded that the proposed neurophysical and neuropsychological framework is appropriate for the analysis of listening effort and might help to develop objective electroencephalographic methods for its estimation in future.

  18. Correlation measurements of light transmittance in polymer dispersed liquid crystals

    NASA Astrophysics Data System (ADS)

    Maksimyak, P. P.; Nehrych, A. L.

    2015-11-01

    The methods of correlation optics are for the first time applied to study structure of liquid crystal (LC) - polymer (P) composites at various concentrations of LC and P. Their phase correlation function (PCF) was obtained considering LC-P composite as a random phase screen. The amplitude of PCF contains information about number of LC domains and structure of LC director inside of them, while a half-width of this function is connected with a size of these domains. We studied unpowered and powered composite layers with a thickness of 5 μm. As liquid crystal and polymer were used nematic LC E7 from Merck and photopolymer composition NOA65 from Norland. Concentration of polymer φP was varied in a range 10-55 vol. %. In good agreement with previous studies by SEM technique we detected monotone decrease of LC domains with concentration of polymer. With application of electric field, amplitude of PCF behaves differently for the samples with different polymer content. For the samples with φP>35 vol. % (samples having morphology of polymer dispersed LC), this dependence is monotonic. In turn, if φP<35 vol. % (samples with polymer network LC morphology), the amplitude of PCF non-monotonically depends on the applied voltage going through a maximum. The latter fact is explained by transformation of orientational defects of LC phase with the applied voltage.

  19. Quantifying local heterogeneity of in vivo transport dynamics using stochastic scanning multiphoton multifocal microscopy and segmented spatiotemporal image correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, Hee Y.; Jureller, Justin E.; Kuznetsov, Andrey; Philipson, Louis H.; Scherer, Norbert F.

    2008-02-01

    Elucidating the mechanisms of insulin granule trafficking in pancreatic β-cells is a critical step in understanding Type II Diabetes and abnormal insulin secretion. In this paper, rapid-sampling stochastic scanning multiphoton multifocal microscopy (SS-MMM) was developed to capture fast insulin granule dynamics in vivo. Stochastic scanning of (a diffractive optic generated) 10×10 hexagonal array of foci with a galvanometer yields a uniformly sampled image with fewer spatio-temporal artifacts than obtained by conventional or multibeam raster scanning. In addition, segmented spatio-temporal image correlation spectroscopy (Segmented STICS) was developed to extract dynamics of insulin granules from the image sequences. Measurements we conducted on MIN6 cells, which exhibit an order of magnitude lower granule number density, allow comparison of particle tracking with Segmented-STICS. Segmentation of the images into 8×8 pixel segments (similar to a size of one granule) allows some amount of spatial averaging, which can reduce the computation time required to calculate the correlation function, yet retains information about the local spatial heterogeneity of transport. This allows the correlation analysis to quantify the dynamics within each of the segments producing a "map" of the localized properties of the cell. The results obtained from Segmented STICS are compared with dynamics determined from particle tracking analysis of the same images. The resulting range of diffusion coefficients of insulin granules are comparable to previously published values indicating that SS-MMM and segmented- STICS will be useful to address the imaging challenges presented by β-cells, particularly the extremely large number density of granules.

  20. Global O3-CO correlations in a chemistry and transport model during July-August: evaluation with TES satellite observations and sensitivity to input meteorological data and emissions

    NASA Astrophysics Data System (ADS)

    Choi, Hyun-Deok; Liu, Hongyu; Crawford, James H.; Considine, David B.; Allen, Dale J.; Duncan, Bryan N.; Horowitz, Larry W.; Rodriguez, Jose M.; Strahan, Susan E.; Zhang, Lin; Liu, Xiong; Damon, Megan R.; Steenrod, Stephen D.

    2017-07-01

    We examine the capability of the Global Modeling Initiative (GMI) chemistry and transport model to reproduce global mid-tropospheric (618 hPa) ozone-carbon monoxide (O3-CO) correlations determined by the measurements from the Tropospheric Emission Spectrometer (TES) aboard NASA's Aura satellite during boreal summer (July-August). The model is driven by three meteorological data sets (finite-volume General Circulation Model (fvGCM) with sea surface temperature for 1995, Goddard Earth Observing System Data Assimilation System Version 4 (GEOS-4 DAS) for 2005, and Modern-Era Retrospective Analysis for Research and Applications (MERRA) for 2005), allowing us to examine the sensitivity of model O3-CO correlations to input meteorological data. Model simulations of radionuclide tracers (222Rn, 210Pb, and 7Be) are used to illustrate the differences in transport-related processes among the meteorological data sets. Simulated O3 values are evaluated with climatological profiles from ozonesonde measurements and satellite tropospheric O3 columns. Despite the fact that the three simulations show significantly different global and regional distributions of O3 and CO concentrations, they show similar patterns of O3-CO correlations on a global scale. All model simulations sampled along the TES orbit track capture the observed positive O3-CO correlations in the Northern Hemisphere midlatitude continental outflow and the Southern Hemisphere subtropics. While all simulations show strong negative correlations over the Tibetan Plateau, northern Africa, the subtropical eastern North Pacific, and the Caribbean, TES O3 and CO concentrations at 618 hPa only show weak negative correlations over much narrower areas (i.e., the Tibetan Plateau and northern Africa). Discrepancies in regional O3-CO correlation patterns in the three simulations may be attributed to differences in convective transport, stratospheric influence, and subsidence, among other processes. To understand how various

  1. Local transport properties investigation by correlating hyperspectral and confocal luminescence images

    NASA Astrophysics Data System (ADS)

    El-Hajje, G.; Ory, D.; Guillemoles, J.-F.; Lombez, L.

    2016-03-01

    In the present study, we develop a contactless optical characterization tool that quantifies and maps the trapping defects density within a thin film photovoltaic device. This is achieved by probing time-resolved photoluminescence and numerically reconstructing the experimental decays under several excitation conditions. The values of defects density in different Cu(In,Ga)Se2 solar cells were extracted and linked to photovoltaic performances such as the open-circuit voltage. In the second part of the work, the authors established a micrometric map of the trapping defects density. This revealed areas within the thin film CIGS solar cell with low photovoltaic performance and high trapping defects density. This proves that the developed tool can be used to qualify and quantify the buffer layer/absorber interface properties. The final part of the work was dedicated to finding the origin of the spatial fluctuations of the thin film transport properties. To do so, we started by establishing a micrometric map of the absolute quasi-Fermi levels splitting within the same CIGS solar cell, using the hyperspectral imager. A correlation is obtained between the map of quasi-Fermi levels splitting of and the map of the trapping defects density. The latter is found to be the origin of the frequently observed spatial fluctuations of thin film materials properties.

  2. Child dopamine active transporter 1 genotype and parenting: evidence for evocative gene-environment correlations.

    PubMed

    Hayden, Elizabeth P; Hanna, Brigitte; Sheikh, Haroon I; Laptook, Rebecca S; Kim, Jiyon; Singh, Shiva M; Klein, Daniel N

    2013-02-01

    The dopamine active transporter 1 (DAT1) gene is implicated in psychopathology risk. Although the processes by which this gene exerts its effects on risk are poorly understood, a small body of research suggests that the DAT1 gene influences early emerging negative emotionality, a marker of children's psychopathology risk. As child negative emotionality evokes negative parenting practices, the DAT1 gene may also play a role in gene-environment correlations. To test this model, children (N = 365) were genotyped for the DAT1 gene and participated in standardized parent-child interaction tasks with their primary caregiver. The DAT1 gene 9-repeat variant was associated with child negative affect expressed toward the parent during parent-child interactions, and parents of children with a 9-repeat allele exhibited more hostility and lower guidance/engagement than parents of children without a 9-repeat allele. These gene-environment associations were partially mediated by child negative affect toward the parent. The findings implicate a specific polymorphism in eliciting negative parenting, suggesting that evocative associations play a role in elevating children's risk for emotional trajectories toward psychopathology risk.

  3. Child Dopamine Transporter Genotype and Parenting: Evidence for Evocative Gene-Environment Correlations

    PubMed Central

    Hayden, Elizabeth P.; Hanna, Brigitte; Sheikh, Haroon I.; Laptook, Rebecca S.; Kim, Jiyon; Singh, Shiva M.; Klein, Daniel N.

    2017-01-01

    The dopamine transporter (DAT1) gene is implicated in psychopathology risk. While the processes by which this gene exerts its effects on risk are poorly understood, a small body of research suggests that DAT1 influences early emerging negative emotionality (NE), a marker of children’s psychopathology risk. As child NE evokes negative parenting practices, the DAT1 may also play a role in gene-environment correlations. To test this model, children (N = 365) were genotyped for DAT1 and participated in standardized parent-child interaction tasks with their primary caregiver. The DAT1 9-repeat variant was associated with child negative affect expressed toward the parent during parent-child interactions, and parents of children with a 9-repeat allele exhibited more hostility and lower guidance/engagement than parents of children without a 9-repeat allele. These gene-environment associations were partially mediated by child negative affect toward the parent. Findings implicate a specific polymorphism in eliciting negative parenting, suggesting that evocative associations play a role in elevating children’s risk for emotional trajectories toward psychopathology risk. PMID:23398760

  4. Radiologic correlates of reaction time measurements in olivopontocerebellar atrophy.

    PubMed

    Botez, M I; Pedraza, O L; Botez-Marquard, T; Vézina, J L; Elie, R

    1993-01-01

    We measured simple visual and auditory reaction time (RT) and movement time (MT) in 32 patients with olivopontocerebellar atrophy (OPCA) in comparison to 32 control subjects. In addition, we followed 2 approaches to radiologic assessment by computed tomographic scans: subjective (by inspection of films) and objective (by measurement of 4 radiologic ratios at the level of the posterior fossa and 1 ratio at the supratentorial level). All OPCA patients had various degrees of cerebellar atrophy and lengthened RT and MT in comparison to their controls. There were no significant differences in RT and MT performances in patients with mild-moderate versus those with severe cerebellar atrophy as assessed by inspection of their films. OPCA patients with severe versus mild-moderate atrophy evaluated by 3 measures, i.e., brainstem, brachium pontis and fourth ventricle ratios, presented few significantly lengthened RT and MT performances. In contrast, patients with severe atrophy revealed by the midbrain ratio had significantly lengthened RT and MT performances compared to those with mild-moderate atrophy assessed by this ratio on 7 of 8 measures; the 8th measure showed a borderline significant difference. This could be explained by the fact that atrophy at the midbrain level is the only one which involves dopaminergic, noradrenergic and glutamatergic structures and pathways.

  5. Endoscopic measurement using radial metrology with digital correlation

    NASA Technical Reports Server (NTRS)

    Matthys, Donald R.; Gilbert, John A.; Greguss, Pal

    1991-01-01

    Radial metrology combines standard optical measurement techniques with a unique panoramic annular lens (PAL) system to study material properties and deformations on the inner surfaces of the cavities found, for example, inside pipes, tubes, and boreholes. A PAL profilometer using speckle metrology is analyzed and the equations obtained from the analysis are used to calibrate the PAL profilometer when it is used to profile the inner surface of a cylindrical pipe and to measure the deformation of the pipe when it is subjected to diametral compression.

  6. Snow property measurements correlative to microwave emission at 35 GHz

    NASA Technical Reports Server (NTRS)

    Davis, Robert E.; Dozier, Jeff; Chang, Alfred T. C.

    1987-01-01

    Snow microstructure, measured by plane section analysis, and snow wetness, measured by the dilution method, are used to calculate input parameters for a microwave emission model that uses the radiative transfer method. The scattering and absorbing properties are calculated by Mie theory. The effects of different equivalent sphere conversions, adjustments for near-field interference, and different snow wetness characterizations are compared for various snow conditions. The concentric shell geometry of liquid water in snow yields higher emissivities and better model results than the separate-sphere configuration for liquid water contents greater than 0.05, while at lower liquid water contents the separate-sphere treatment gives better results.

  7. Measurement of minority carrier transport parameters in heavily doped n-type silicon

    NASA Technical Reports Server (NTRS)

    Delalamo, J.; Swanson, R. M.

    1985-01-01

    Measurement of minority transport parameters in heavily doped silicon is covered. The basic transport equations were used to define two independent parameters. Use of special vertical and lateral transistor test devices permitted the measurement of both parameters. Prior studies were normalized to show excellent agreement over the heavy doping region.

  8. Correlation between precision gravity and subsidence measurements at Cerro Prieto

    SciTech Connect

    Zelwer, R.; Grannell, R.B.

    1982-10-01

    Precision gravity measurements were made in the region of the Cerro Prieto geothermal field at yearly intervals from 1977 to 1981 to assess the feasibility of using gravity to determine subsurface reservoir changes with time. The extent of mass recharge in response to the continued production of fluids from this field was studied. Changes in gravity and ground elevation were observed throughout the region for the period of observation. Results indicate that the largest changes observed were the result of the Magnitude 6.1 (Caltech) Victoria earthquake of 8 June 1980. The epicenter of this earthquake was located 25 km southeast of the field on the Cerro Prieto Fault, which bounds the field on the southwest. Subsidence of up to 55 cm was measured east of the power plant, in the region between the northern end of the Cerro Prieto Fault and the southern end of the Imperial Fault. This area has been postulated to be the site of an active spreading center or pull-apart basin, and has been characterized by a high level of seismic activity during the last 10 years. Minor subsidence and small related gravity changes for the period preceeding the Victoria earthquake suggest that in spite of large fluid production rates, the reservoir is being almost completely recharged and that a measurable increase in subsurface density may be taking place. The results of measurements of horizontal ground motions made in this area are discussed in relation to the gravity and subsidence observations.

  9. A Binomial Test of Group Differences with Correlated Outcome Measures

    ERIC Educational Resources Information Center

    Onwuegbuzie, Anthony J.; Levin, Joel R.; Ferron, John M.

    2011-01-01

    Building on previous arguments for why educational researchers should not provide effect-size estimates in the face of statistically nonsignificant outcomes (Robinson & Levin, 1997), Onwuegbuzie and Levin (2005) proposed a 3-step statistical approach for assessing group differences when multiple outcome measures are individually analyzed…

  10. Correlation of dose rate and spectral measurements in the Inner Van Allen Belt.

    PubMed

    Thede, A L; Radke, G E

    1968-01-01

    Dose rate measurements and the charged particle environment of the Inner Van Allen Belt have been correlated using recent data obtained from the radiation research satellite, OV3-4. Six tissue equivalent ionization chambers, constructed of a material which simulates the muscle tissue response to ionizing radiation, measured the dose rate behind various types and thicknesses of material. The specific shields used for several of the chambers were 0.192 g/cm2 aluminum, 0.797 g/cm2 Lucite and 4.485 g/cm2 brass. The proton and electron spectra were determined with an omnidirectional spectrometer using solid state detectors. The spectral measurements discussed here include geomagnetically trapped protons with energies in the range of 15 to 200 MeV. The proton spectra and dose rates are presented as profiles in terms of the McIlwain parameters of L (1.5, 2.0 and 2.5 earth radii) and the magnetic field B (0.050 to 0.250 gauss). The excellent agreement between the measured dose rate and the theoretically predicted dose rate based on the measured spectra provides justification for the radiation transport techniques now being employed to predict the doses to be encountered during future manned space missions. It was found, however, that a more adequate description of the proton fluxes for energies greater than 50 MeV will be necessary to predict dose rate accurately behind shields of 2.5 g/cm2 thickness or greater.

  11. Staphylococcus aureus and Lipopolysaccharide Modulate Gene Expressions of Drug Transporters in Mouse Mammary Epithelial Cells Correlation to Inflammatory Biomarkers

    PubMed Central

    Yagdiran, Yagmur; Tallkvist, Jonas; Artursson, Karin

    2016-01-01

    Inflammation in the mammary gland (mastitis) is the most common disease in dairy herds worldwide, often caused by the pathogens Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Little is known about the effects of mastitis on drug transporters and the impact on transporter-mediated excretion of drugs into milk. We used murine mammary epithelial HC11 cells, after lactogenic differentiation into a secreting phenotype, and studied gene expressions of ABC- and SLC- transporters after treatment of cells with S. aureus and lipopolysaccharide, an endotoxin secreted by E. coli. The studied transporters were Bcrp, Mdr1, Mrp1, Oatp1a5, Octn1 and Oct1. In addition, Csn2, the gene encoding β-casein, was analyzed. As biomarkers of the inflammatory response, gene expressions of the cytokines Il6 and Tnfα and the chemokine Cxcl2 were determined. Our results show that S. aureus and LPS treatment of cells, at non-cytotoxic concentrations, induced an up-regulation of Mdr1 and of the inflammatory biomarkers, except that Tnfα was not affected by lipopolysaccharide. By simple regression analysis we could demonstrate statistically significant positive correlations between each of the transporters with each of the inflammatory biomarkers in cells treated with S. aureus. The coefficients of determination (R2) were 0.7–0.9 for all but one correlation. After treatment of cells with lipopolysaccharide, statistically significant correlations were only found between Mdr1 and the two parameters Cxcl2 and Il6. The expression of Csn2 was up-regulated in cells treated with S. aureus, indicating that the secretory function of the cells was not impaired. The strong correlation in gene expressions between transporters and inflammatory biomarkers may suggest a co-regulation and that the transporters have a role in the transport of cytokines and chemokines. Our results demonstrate that transporters in mammary cells can be affected by infection, which may have an impact on

  12. Measurement and modeling of phosphorous transport in shallow groundwater environments

    NASA Astrophysics Data System (ADS)

    Hendricks, G. S.; Shukla, S.; Obreza, T. A.; Harris, W. G.

    2014-08-01

    Leaching of phosphorus (P) from agricultural soils, especially those that are sandy, is adversely impacting P-limited ecosystems like Florida's Everglades. A more developed understanding of P and water management strategies and their effects on P leaching is needed to achieve reductions in subsurface P losses, especially from intensively managed dual cropping systems under plastic mulch in shallow water regions. We compared the effects of conservation P and water management strategies with traditional practices on P transport to groundwater. A 3-year experiment was conducted on hydrologically isolated plots with plastic-mulched successive cropping systems to compare high (HEI) and soil test based recommended (REI) external input (water and fertilizer P) systems with traditional sub-irrigation (seepage), and REI with a potential water conservation subsurface drip irrigation system (REI-SD) with regard to groundwater P concentrations above and below the low conductivity spodic horizon (Bh). The REI treatments had higher available storage for rainfall and P than HEI. Use of both REI systems (REI = 2098 μg/L and REI-SD = 2048 μg/L) reduced groundwater P concentrations above the Bh horizon by 33% compared to HEI (3090 μg/L), and results were significant at the 0.05 level. Although the subsurface drip system saved water, it did not offer any groundwater quality (P) benefit. Mixing and dilution of influent P below the low conductivity Bh horizon between treatments and with the regional groundwater system resulted in no significant differences in groundwater P concentration below the Bh horizon. Groundwater P concentrations from this study were higher than reported elsewhere due to low soil P storage capacity (SPSC), high hydraulic conductivity of sandy soils, and a high water table beneath crop beds. The HEI system leached more P due to ferilizer P in excess of SPSC and used higher irrigation volumes compared with REI systems. Despite a 40% difference in the average

  13. Measurement and modeling of phosphorous transport in shallow groundwater environments.

    PubMed

    Hendricks, G S; Shukla, S; Obreza, T A; Harris, W G

    2014-08-01

    Leaching of phosphorus (P) from agricultural soils, especially those that are sandy, is adversely impacting P-limited ecosystems like Florida's Everglades. A more developed understanding of P and water management strategies and their effects on P leaching is needed to achieve reductions in subsurface P losses, especially from intensively managed dual cropping systems under plastic mulch in shallow water regions. We compared the effects of conservation P and water management strategies with traditional practices on P transport to groundwater. A 3-year experiment was conducted on hydrologically isolated plots with plastic-mulched successive cropping systems to compare high (HEI) and soil test based recommended (REI) external input (water and fertilizer P) systems with traditional sub-irrigation (seepage), and REI with a potential water conservation subsurface drip irrigation system (REI-SD) with regard to groundwater P concentrations above and below the low conductivity spodic horizon (Bh). The REI treatments had higher available storage for rainfall and P than HEI. Use of both REI systems (REI=2098μg/L and REI-SD=2048μg/L) reduced groundwater P concentrations above the Bh horizon by 33% compared to HEI (3090μg/L), and results were significant at the 0.05 level. Although the subsurface drip system saved water, it did not offer any groundwater quality (P) benefit. Mixing and dilution of influent P below the low conductivity Bh horizon between treatments and with the regional groundwater system resulted in no significant differences in groundwater P concentration below the Bh horizon. Groundwater P concentrations from this study were higher than reported elsewhere due to low soil P storage capacity (SPSC), high hydraulic conductivity of sandy soils, and a high water table beneath crop beds. The HEI system leached more P due to ferilizer P in excess of SPSC and used higher irrigation volumes compared with REI systems. Despite a 40% difference in the average amount of

  14. Noninvasive Neutron Scattering Measurements Reveal Slower Cholesterol Transport in Model Lipid Membranes

    PubMed Central

    Garg, S.; Porcar, L.; Woodka, A.C.; Butler, P.D.; Perez-Salas, U.

    2011-01-01

    Proper cholesterol transport is essential to healthy cellular activity and any abnormality can lead to several fatal diseases. However, complete understandings of cholesterol homeostasis in the cell remains elusive, partly due to the wide variability in reported values for intra- and intermembrane cholesterol transport rates. Here, we used time-resolved small-angle neutron scattering to measure cholesterol intermembrane exchange and intramembrane flipping rates, in situ, without recourse to any external fields or compounds. We found significantly slower transport kinetics than reported by previous studies, particularly for intramembrane flipping where our measured rates are several orders of magnitude slower. We unambiguously demonstrate that the presence of chemical tags and extraneous compounds employed in traditional kinetic measurements dramatically affect the system thermodynamics, accelerating cholesterol transport rates by an order of magnitude. To our knowledge, this work provides new insights into cholesterol transport process disorders, and challenges many of the underlying assumptions used in most cholesterol transport studies to date. PMID:21767489

  15. Noninvasive neutron scattering measurements reveal slower cholesterol transport in model lipid membranes.

    PubMed

    Garg, S; Porcar, L; Woodka, A C; Butler, P D; Perez-Salas, U

    2011-07-20

    Proper cholesterol transport is essential to healthy cellular activity and any abnormality can lead to several fatal diseases. However, complete understandings of cholesterol homeostasis in the cell remains elusive, partly due to the wide variability in reported values for intra- and intermembrane cholesterol transport rates. Here, we used time-resolved small-angle neutron scattering to measure cholesterol intermembrane exchange and intramembrane flipping rates, in situ, without recourse to any external fields or compounds. We found significantly slower transport kinetics than reported by previous studies, particularly for intramembrane flipping where our measured rates are several orders of magnitude slower. We unambiguously demonstrate that the presence of chemical tags and extraneous compounds employed in traditional kinetic measurements dramatically affect the system thermodynamics, accelerating cholesterol transport rates by an order of magnitude. To our knowledge, this work provides new insights into cholesterol transport process disorders, and challenges many of the underlying assumptions used in most cholesterol transport studies to date.

  16. Correlation of subjective and objective measures of speech intelligibility

    NASA Astrophysics Data System (ADS)

    Bowden, Erica E.; Wang, Lily M.; Palahanska, Milena S.

    2003-10-01

    Currently there are a number of objective evaluation methods used to quantify the speech intelligibility in a built environment, including the Speech Transmission Index (STI), Rapid Speech Transmission Index (RASTI), Articulation Index (AI), and the Percentage Articulation Loss of Consonants (%ALcons). Many of these have been used for years; however, questions remain about their accuracy in predicting the acoustics of a space. Current widely used software programs can quickly evaluate STI, RASTI, and %ALcons from a measured impulse response. This project compares subjective human performance on modified rhyme and phonetically balanced word tests with objective results calculated from impulse response measurements in four different spaces. The results of these tests aid in understanding performance of various methods of speech intelligibility evaluation. [Work supported by the Univ. of Nebraska Center for Building Integration.] For Speech Communication Best Student Paper Award.

  17. The Belt voice: Acoustical measurements and esthetic correlates

    NASA Astrophysics Data System (ADS)

    Bounous, Barry Urban

    This dissertation explores the esthetic attributes of the Belt voice through spectral acoustical analysis. The process of understanding the nature and safe practice of Belt is just beginning, whereas the understanding of classical singing is well established. The unique nature of the Belt sound provides difficulties for voice teachers attempting to evaluate the quality and appropriateness of a particular sound or performance. This study attempts to provide answers to the question "does Belt conform to a set of measurable esthetic standards?" In answering this question, this paper expands on a previous study of the esthetic attributes of the classical baritone voice (see "Vocal Beauty", NATS Journal 51,1) which also drew some tentative conclusions about the Belt voice but which had an inadequate sample pool of subjects from which to draw. Further, this study demonstrates that it is possible to scientifically investigate the realm of musical esthetics in the singing voice. It is possible to go beyond the "a trained voice compared to an untrained voice" paradigm when evaluating quantitative vocal parameters and actually investigate what truly beautiful voices do. There are functions of sound energy (measured in dB) transference which may affect the nervous system in predictable ways and which can be measured and associated with esthetics. This study does not show consistency in measurements for absolute beauty (taste) even among belt teachers and researchers but does show some markers with varying degrees of importance which may point to a difference between our cognitive learned response to singing and our emotional, more visceral response to sounds. The markers which are significant in determining vocal beauty are: (1) Vibrancy-Characteristics of vibrato including speed, width, and consistency (low variability). (2) Spectral makeup-Ratio of partial strength above the fundamental to the fundamental. (3) Activity of the voice-The quantity of energy being produced. (4

  18. Correlated measurements of mesospheric density and near infrared airglow

    NASA Astrophysics Data System (ADS)

    Moreels, G.; Pautet, D.; Faivre, M.; Keckhut, P.; Hauchecorne, A.

    A program aimed at simultaneously measuring the mesospheric density and the evolution with time of the near IR emission at the mesopause level was initiated in July 2000 and July 2001. The atmospheric density is measured along a vertical line using the Rayleigh scattering lidar located at Observatoire de Haute Provence (OHP). The near IR emission, mainly due to OH, is measured along a slant path from the Pic de Château-Renard (Hautes-Alpes, altitude 2989 m). The field of view of the CCD camera encompasses an area located vertically above OHP. Rayleigh scattering by air molecules is much less efficient than fluorescence by alkaline atoms. Therefore, the lidar data could only be retrieved with a one-hour time resolution at altitudes of 65, 70, 72.5 and 75 km. The time resolution for the airglow intensity measurement was equal to three minutes. The temporal evolution over the 5-hour duration of the night appears as opposite in the density up to 75 km and in the near IR airglow. The airglow shows around 23h30 a minimum intensity about 28% lower than its maximum value. During the first part of the night the intensity decreases. During the second part, it increases. The increase during the second part cannot be explained by the evolution of the atmospheric chemical system. Given the variation in opposite phases of the air density and of the emission, it is suggested that the near IR airglow is a semi-direct tracer of the density variations at the mesopause level, the air molecules being effective quenchers of the excited OH radicals. The excitation and quenching rates will therefore be discussed. Two short movie films showing the airglow waves coming across the observation field of view will be presented.

  19. Apparatus for the measurement of radionuclide transport rates in rock cores

    SciTech Connect

    Weed, H.C.; Koszykowski, R.F.; Dibley, L.L.; Murray, I.

    1981-09-01

    An apparatus and procedure for the study of radionuclide transport in intact rock cores are presented in this report. This equipment more closely simulates natural conditions of radionuclide transport than do crushed rock columns. The apparatus and the procedure from rock core preparation through data analysis are described. The retardation factors measured are the ratio of the transport rate of a non-retarded radionuclide, such as /sup 3/H, to the transport rate of a retarded radionuclide. Sample results from a study of the transport of /sup 95m/Tc and /sup 85/Sr in brine through a sandstone core are included.

  20. Dimension of quantum phase space measured by photon correlations

    NASA Astrophysics Data System (ADS)

    Leuchs, Gerd; Glauber, Roy J.; Schleich, Wolfgang P.

    2015-06-01

    We show that the different values 1, 2 and 3 of the normalized second-order correlation function {g}(2)(0) corresponding to a coherent state, a thermal state and a highly squeezed vacuum originate from the different dimensionality of these states in phase space. In particular, we derive an exact expression for {g}(2)(0) in terms of the ratio of the moments of the classical energy evaluated with the Wigner function of the quantum state of interest and corrections proportional to the reciprocal of powers of the average number of photons. In this way we establish a direct link between {g}(2)(0) and the shape of the state in phase space. Moreover, we illuminate this connection by demonstrating that in the semi-classical limit the familiar photon statistics of a thermal state arise from an area in phase space weighted by a two-dimensional Gaussian, whereas those of a highly squeezed state are governed by a line-integral of a one-dimensional Gaussian. We dedicate this article to Margarita and Vladimir Man’ko on the occasion of their birthdays. The topic of our contribution is deeply rooted in and motivated by their love for non-classical light, quantum mechanical phase space distribution functions and orthogonal polynomials. Indeed, through their articles, talks and most importantly by many stimulating discussions and intensive collaborations with us they have contributed much to our understanding of physics. Happy birthday to you both!

  1. Psychological correlates of self-reported and objectively measured physical activity among Chinese children—psychological correlates of PA

    USDA-ARS?s Scientific Manuscript database

    This study aimed to explore the associations among psychological correlates and physical activity (PA) in Chinese children and to further examine whether these associations varied by different PA measures. PA self-efficacy, motivation, and preference were reported in 449 8–13-year-old Chinese childr...

  2. Association between low-activity serotonin transporter genotype and heroin dependence: behavioral and personality correlates.

    PubMed

    Gerra, G; Garofano, L; Santoro, G; Bosari, S; Pellegrini, C; Zaimovic, A; Moi, G; Bussandri, M; Moi, A; Brambilla, F; Donnini, C

    2004-04-01

    In previous studies, serotonin (5-HT) system disturbance was found involved in a variety of behavioral disorders, psychopathologies, and substance use disorders. A functional polymorphism in the promoter region of the human serotonin transporter gene (5-HTTLPR) was recently identified and the presence of the short (S) allele found to be associated with a lower level of expression of the gene, lower levels of 5-HT uptake, type 2 alcoholism, violence and suicidal behavior. In the present study, 101 heroin addicts (males, West European, Caucasians) and 101 healthy control subjects matched for race and gender, with no history of substance use disorder, have been genotyped. Aggressiveness levels were measured in both heroin addicts and controls utilizing Buss-Durkee-Hostility-Inventory (BDHI). Data about suicide attempt and violent criminal behavior in subject history have been collected. The short-short (SS) genotype frequency was significantly higher among heroin dependent individuals compared with control subjects (P = 0.025). The odds ratio for the SS genotype versus the long-long (LL) genotype frequency was 0.69, 95% Cl (0.49-0.97), when heroin addicts were compared with healthy controls. The SS genotype frequency was significantly higher among violent heroin dependent individuals compared with addicted individuals without aggressive behavior (P = 0.02). BDHI mean total scores and suspiciousness and negativism subscales scores were significantly higher in SS individuals, in comparison with LL subjects, among heroin addicts. No association was found between SS genotype and suicide history. Our data suggest that a decreased expression of the gene encoding the 5-HTT transporter, due to "S" promoter polymorphism, may be associated with an increased risk for substance use disorders, particularly in the subjects with more consistent aggressiveness and impulsiveness.

  3. Correlation Between Heterogeneous Bacterial Attachment Rate Coefficients and Hydraulic Conductivity and Impacts on Field-Scale Bacterial Transport

    SciTech Connect

    Scheibe, Timothy D.

    2002-10-28

    In granular porous media, bacterial transport is often modeled using the advection-dispersion transport equation, modified to account for interactions between the bacteria and grain surfaces (attachment and detachment) using a linear kinetic reaction model. In this paper we examine the relationships among the parameters of the above model in the context of bacterial transport for bioaugmentation. In this context, we wish to quantify the distance to which significant concentrations of bacteria can be transported, as well as the uniformity with which they can be distributed within the subsurface. Because kinetic detachment rates (Kr) are typically much smaller than corresponding attachment rates (Kf), the attachment rate exerts primary control on the distance of bacterial transport. Hydraulic conductivity (K) also plays a significant role because of its direct relationship to the advective velocity and its typically high degree of spatial variability at field scales. Because Kf is related to the velocity, grain size, and porosity of the medium, as is K, we expect that there exists correlation between these two parameters. Previous investigators have assumed a form of correlation between Kf and ln(K) based in part on reparameterization of clean-bed filtration equations in terms of published relations between grain size, effective porosity, and ln(K). The hypotheses examined here are that (1) field-scale relationships between K and Kf can be developed by combining a number of theoretical and empirical results in the context of a heterogeneous aquifer flow model (following a similar approach to previous investigators with some extensions), and (2) correlation between K and Kf will enhance the distance of field-scale bacterial transport in granular aquifers. We test these hypotheses using detailed numerical models and observations of field-scale bacterial transport in a shallow sandy aquifer within the South Oyster Site near Oyster, Virginia, USA.

  4. A New Measure of Imagination Ability: Anatomical Brain Imaging Correlates

    PubMed Central

    Jung, Rex E.; Flores, Ranee A.; Hunter, Dan

    2016-01-01

    Imagination involves episodic memory retrieval, visualization, mental simulation, spatial navigation, and future thinking, making it a complex cognitive construct. Prior studies of imagination have attempted to study various elements of imagination (e.g., visualization), but none have attempted to capture the entirety of imagination ability in a single instrument. Here we describe the Hunter Imagination Questionnaire (HIQ), an instrument designed to assess imagination over an extended period of time, in a naturalistic manner. We hypothesized that the HIQ would be related to measures of creative achievement and to a network of brain regions previously identified to be important to imagination/creative abilities. Eighty subjects were administered the HIQ in an online format; all subjects were administered a broad battery of tests including measures of intelligence, personality, and aptitude, as well as structural Magnetic Resonance Imaging (sMRI). Responses of the HIQ were found to be normally distributed, and exploratory factor analysis yielded four factors. Internal consistency of the HIQ ranged from 0.76 to 0.79, and two factors (“Implementation” and “Learning”) were significantly related to measures of Creative Achievement (Scientific—r = 0.26 and Writing—r = 0.31, respectively), suggesting concurrent validity. We found that the HIQ and its factors were related to a broad network of brain volumes including increased bilateral hippocampi, lingual gyrus, and caudal/rostral middle frontal lobe, and decreased volumes within the nucleus accumbens and regions within the default mode network (e.g., precuneus, posterior cingulate, transverse temporal lobe). The HIQ was found to be a reliable and valid measure of imagination in a cohort of normal human subjects, and was related to brain volumes previously identified as central to imagination including episodic memory retrieval (e.g., hippocampus). We also identified compelling evidence suggesting imagination

  5. Optical character recognition based on nonredundant correlation measurements.

    PubMed

    Braunecker, B; Hauck, R; Lohmann, A W

    1979-08-15

    The essence of character recognition is a comparison between the unknown character and a set of reference patterns. Usually, these reference patterns are all possible characters themselves, the whole alphabet in the case of letter characters. Obviously, N analog measurements are highly redundant, since only K = log(2)N binary decisions are enough to identify one out of N characters. Therefore, we devised K reference patterns accordingly. These patterns, called principal components, are found by digital image processing, but used in an optical analog computer. We will explain the concept of principal components, and we will describe experiments with several optical character recognition systems, based on this concept.

  6. A Correlation Study between Two Color-Measuring Spectrophotometers

    DTIC Science & Technology

    1991-01-01

    a color difference pair) were_ measured for short- and long-term repeataoility. Each instrument was found to show a repeatability of 0.12 CIELAB color...for the Green Fabric Samples on the ACS II: Standard Deviation of Tristimulus 26 Values (X,Y,Z) 5. CIELAB Color Differences for Tan Color Difference...value on the ACS I is considerably higher. The largest AE ( CIELAB color difference between the two means) observed was 0.5 CIELAB units. The two-sample

  7. Measurement and correlates of internalized homophobia: a factor analytic study.

    PubMed

    Ross, M W; Rosser, B R

    1996-01-01

    We developed a scale to measure internalized homophobia in men who have sex with men, which is comprised of items derived from theoretical and clinical reports of internalized homophobia. Two hundred two men who have sex with men and who attend "Man to Man" sexual health seminars in a midwestern U.S. city completed the scale at baseline. Orthogonal factor analysis revealed four dimensions of internalized homophobia: public identification as gay, perception of stigma associated with being homosexual, social comfort with gay men, and the moral and religious acceptability of being gay. Factor scoring of these dimensions indicated that they were associated significantly with relationship satisfaction, duration of longest relationship, extent of attraction to men and women, proportion of social time with gay people, membership of gay/bisexual groups, HIV serostatus, and disclosure of sexual orientation. Internalized homophobia is measurable and consists of four dimensions that are associated significantly with low disclosure, shorter length of and satisfaction with relationships, lower degree of sexual attraction to men and higher degree of attraction to women, and lower social time with gay people.

  8. GONOME: measuring correlations between GO terms and genomic positions

    PubMed Central

    Stanley, Stefan M; Bailey, Timothy L; Mattick, John S

    2006-01-01

    Background: Current methods to find significantly under- and over-represented gene ontology (GO) terms in a set of genes consider the genes as equally probable "balls in a bag", as may be appropriate for transcripts in micro-array data. However, due to the varying length of genes and intergenic regions, that approach is inappropriate for deciding if any GO terms are correlated with a set of genomic positions. Results: We present an algorithm – GONOME – that can determine which GO terms are significantly associated with a set of genomic positions given a genome annotated with (at least) the starts and ends of genes. We show that certain GO terms may appear to be significantly associated with a set of randomly chosen positions in the human genome if gene lengths are not considered, and that these same terms have been reported as significantly over-represented in a number of recent papers. This apparent over-representation disappears when gene lengths are considered, as GONOME does. For example, we show that, when gene length is taken into account, the term "development" is not significantly enriched in genes associated with human CpG islands, in contradiction to a previous report. We further demonstrate the efficacy of GONOME by showing that occurrences of the proteosome-associated control element (PACE) upstream activating sequence in the S. cerevisiae genome associate significantly to appropriate GO terms. An extension of this approach yields a whole-genome motif discovery algorithm that allows identification of many other promoter sequences linked to different types of genes, including a large group of previously unknown motifs significantly associated with the terms 'translation' and 'translational elongation'. Conclusion: GONOME is an algorithm that correctly extracts over-represented GO terms from a set of genomic positions. By explicitly considering gene size, GONOME avoids a systematic bias toward GO terms linked to large genes. Inappropriate use of

  9. [Correlations of lipoprotein metabolism indicators in persons with low and high cholesterol ester transport activity].

    PubMed

    Tvorogova, M G; Rozhkova, T A; Kukharchuk, V V; Titov, V N

    1999-01-01

    For clarifying the role of plasma cholesterol ester transfer activity (CETA) in forming hyperlipoproteinemia (HLP) and determination of high density lipoproteins cholesterol (Ch HDL) level, lipoprotein metabolism indicators were compared for individuals with high and low CETA. 257 subjects were investigated: 195 patients with different forms of hereditary HLP and individuals without HLP: 34 healthy and 28 with coronary heart disease (CHD). Lipids were determined enzymatically, apoproteins content by immunoturbodimetric and immunodiffusion methods. CETA and cholesterol esterification rate (CER) were measured through autological methods. Selected groups of patients with high and low CETA were significantly distinguished only by plasma Ch level (average Ch > 6.2 mmol/l in both groups), free Ch HDL and CER. The groups were not significantly different by men-women ratio (chi 2 = 0.016, p = 0.9) and CHD patients share (chi 2 = 0.126, p = 0.723). The correlation between CETA and Ch levels was significant for healthy individuals only. The data does not correspond to assumption of exclusively atherogenic influence of high CETA: 1) no correlation between CETA and atherogenic parameters of LP metabolism among different HLP forms was found; 2) Ch HDL levels were not distinguished at high and low CETA; 3) no domination of CHD patients among the subjects with high CETA was found.

  10. Measurement of beauty production with {mu}{mu} correlations

    SciTech Connect

    Longhin, A.

    2005-10-06

    Beauty production with events in which two muons are observed in the final state has been measured with the ZEUS detector at HERA using an integrated luminosity of 121 pb-1. A low pT threshold for muon identification, in combination with the large rapidity coverage of the ZEUS muon system, gives access to essentially the full phase space for beauty production. The dimuon selection suppresses backgrounds from charm and light flavor production. Separation of the sample into high and low-mass, isolated and non-isolated, like and unlike-sign muon pairs offers redundancy which is used to further constrain the backgrounds. A total cross section for beauty production at HERA is obtained and compared to QCD predictions.

  11. Measurement of steel plate perforation tests with digital image correlation.

    SciTech Connect

    Cordova, Theresa Elena; Reu, Phillip L.; Vangoethem, Douglas J.

    2009-03-01

    The results of a series of punch-through tests performed on steel plates are presented. The geometry consisted of circular plates with welded boundary condition penetrated by a conical shaped punch with either a radiused or flat cylindrical end. After initial failure, the conical portion of the punch was driven through the plate to exercise tearing mechanics. Tests were performed quasi-statically with a hydraulic actuator and dynamically using a high-capacity drop table. Deformation and strain were measured with a stereo DIC system. The quasi-static tests utilized a conventional direct-view DIC technique while the dynamic tests required development of an indirect-view technique using a mirror. Experimental details used to conduct the test series will be presented along with test results. Methods of assessing test-to-test repeatability will be discussed. DIC results will also be synchronized and compared with transducer data (displacement and strain).

  12. Surface roughness measurement on a wing aircraft by speckle correlation.

    PubMed

    Salazar, Félix; Barrientos, Alberto

    2013-09-05

    The study of the damage of aeronautical materials is important because it may change the microscopic surface structure profiles. The modification of geometrical surface properties can cause small instabilities and then a displacement of the boundary layer. One of the irregularities we can often find is surface roughness. Due to an increase of roughness and other effects, there may be extra momentum losses in the boundary layer and a modification in the parasite drag. In this paper we present a speckle method for measuring the surface roughness on an actual unmanned aircraft wing. The results show an inhomogeneous roughness distribution on the wing, as expected according to the anisotropic influence of the winds over the entire wing geometry. A calculation of the uncertainty of the technique is given.

  13. Surface Roughness Measurement on a Wing Aircraft by Speckle Correlation

    PubMed Central

    Salazar, Félix; Barrientos, Alberto

    2013-01-01

    The study of the damage of aeronautical materials is important because it may change the microscopic surface structure profiles. The modification of geometrical surface properties can cause small instabilities and then a displacement of the boundary layer. One of the irregularities we can often find is surface roughness. Due to an increase of roughness and other effects, there may be extra momentum losses in the boundary layer and a modification in the parasite drag. In this paper we present a speckle method for measuring the surface roughness on an actual unmanned aircraft wing. The results show an inhomogeneous roughness distribution on the wing, as expected according to the anisotropic influence of the winds over the entire wing geometry. A calculation of the uncertainty of the technique is given. PMID:24013488

  14. The Impact of Geophysical Measurement Support in Quantifying the Correlation Structure of Anisotropic Systems

    NASA Astrophysics Data System (ADS)

    Mitchell, V.; Gulati, J.; Knight, R.

    2009-04-01

    One of the challenges in developing catchment-scale models of hydrologic processes is accurately representing the spatial variation of subsurface properties. There is growing interest in the application of surface-based or borehole geophysical methods to obtain information about the correlation structure of hydrogeologic systems. It is well known, for all forms of measurement, that the support of the measurement impacts the derived estimates of correlation structure. Of interest in our work is the effect of the support of geophysical measurements on estimated correlation lengths. We define the support of a geophysical measurement as the presumed-homogeneous volume of the subsurface to which we can assign, given the methods of data acquisition and inversion, a single property. Accounting for the effect of the support becomes particularly important when integrating geophysical measurements of properties with other hydrologic measurements. The merged data sets are derived from measurements on scales that are rarely coincident with each other or the scale at which the properties are applied in hydrologic models. A number of previous studies have examined the impact of measurement scale on the estimated apparent correlation length for isotropic property fields. Most hydrologic property fields, however, are anisotropic at the catchment-scale. A further complicating factor is that geophysical measurements commonly have directionally-varying support dimensions. In this study we numerically generate both isotropic and anisotropic property fields and allow the orthogonal dimensions defining the measurement support to vary independently. When creating the anisotropic fields we define maximum and minimum correlation lengths, referred to as the underlying correlation lengths; these lengths are the same in the isotropic case. We initially estimate the apparent correlation length when the measurement support is equal to the grid size on which the field is defined. The increase in

  15. A correlation between surface, transport and thermo-elastic properties of liquid hydrocarbon: an experimental investigation

    NASA Astrophysics Data System (ADS)

    George, A. K.; Arafin, S.; Singh, R. N.; Carboni, C.

    2006-04-01

    The temperature dependence of surface tension and viscosity has been investigated in two multi-component liquid hydrocarbons, namely, crude oil samples with different API numbers. The surface tension is found to decrease linearly with temperature whereas viscosity exhibits Arrhenius type variation. These measured values along with the ultrasound velocity, density and the isothermal compressibility have been used to estimate a number of physical parameters such as the activation energy, attenuation factor and the shear wave velocity. Crude oil with larger API was found to have smaller activation energy. Shear velocity decreases exponentially with increasing temperature while the attenuation factor is found to increase linearly with temperature. The ratio of the surface tension to viscosity varies linearly as the square root of temperature. The product of the surface tension and the isothermal compressibility, often characterized as a fundamental or correlation length of the surface of the liquid, was found to yield a constant value for both samples.

  16. Actin Polymerization Driven Mitochondrial Transport in Mating S. cerevisiae by Fourier Imaging Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Senning, Eric; Marcus, Andrew

    2010-03-01

    The dynamic microenvironment of cells depends on macromolecular architecture, equilibrium fluctuations, and non-equilibrium forces generated by cytoskeletal proteins. We studied the influence of these factors on the motions of mitochondria in mating S. cerevisiae using Fourier imaging correlation spectroscopy (FICS). Our measurements provide detailed, length scale dependent information about the dynamic behavior of mitochondria. We investigate the influence of the actin cytoskeleton on mitochondrial motion, and make comparisons between conditions in which actin network assembly and disassembly is varied, either by using disruptive pharmacological agents, or mutations that alter the rates of actin polymerization. We find that non-equilibrium forces associated with actin polymerization lead to a 1.5-fold enhancement of the long-time mitochondrial diffusion coefficient, and a transient sub-diffusive temporal scaling of the mean-square displacement. Our results lend support to an existing model in which these forces are directly coupled to mitochondrial membrane surfaces.

  17. Solving the Quantum Many-Body Problem via Correlations Measured with a Momentum Microscope

    NASA Astrophysics Data System (ADS)

    Hodgman, S. S.; Khakimov, R. I.; Lewis-Swan, R. J.; Truscott, A. G.; Kheruntsyan, K. V.

    2017-06-01

    In quantum many-body theory, all physical observables are described in terms of correlation functions between particle creation or annihilation operators. Measurement of such correlation functions can therefore be regarded as an operational solution to the quantum many-body problem. Here, we demonstrate this paradigm by measuring multiparticle momentum correlations up to third order between ultracold helium atoms in an s -wave scattering halo of colliding Bose-Einstein condensates, using a quantum many-body momentum microscope. Our measurements allow us to extract a key building block of all higher-order correlations in this system—the pairing field amplitude. In addition, we demonstrate a record violation of the classical Cauchy-Schwarz inequality for correlated atom pairs and triples. Measuring multiparticle momentum correlations could provide new insights into effects such as unconventional superconductivity and many-body localization.

  18. Solving the Quantum Many-Body Problem via Correlations Measured with a Momentum Microscope.

    PubMed

    Hodgman, S S; Khakimov, R I; Lewis-Swan, R J; Truscott, A G; Kheruntsyan, K V

    2017-06-16

    In quantum many-body theory, all physical observables are described in terms of correlation functions between particle creation or annihilation operators. Measurement of such correlation functions can therefore be regarded as an operational solution to the quantum many-body problem. Here, we demonstrate this paradigm by measuring multiparticle momentum correlations up to third order between ultracold helium atoms in an s-wave scattering halo of colliding Bose-Einstein condensates, using a quantum many-body momentum microscope. Our measurements allow us to extract a key building block of all higher-order correlations in this system-the pairing field amplitude. In addition, we demonstrate a record violation of the classical Cauchy-Schwarz inequality for correlated atom pairs and triples. Measuring multiparticle momentum correlations could provide new insights into effects such as unconventional superconductivity and many-body localization.

  19. Utilizing Turbidity and Measurements of Suspended Sediment Concentrations to Better Understand Sediment Transport within Urban Streams

    NASA Astrophysics Data System (ADS)

    Elkins, T. M.; Napieralski, J. A.

    2009-12-01

    The Rouge River watershed in Southeast Michigan is an urban watershed, which has been exposed to more than 100 years of anthropogenic activities related to industrialization and urbanization. This urbanization has degraded water quality by increasing erosion and altering the transport mechanism and chemistry of bed and suspended sediments. This study aims to explore the relationship between development within the Lower Rouge watershed and watershed hydrology through an examination of USGS discharge data, stream water quality and suspended sediment loads during storm and base flow. Two YSI dataloggers are used to continuously measure water quality parameters during baseflow and storm events (varying hydrologic conditions), including: turbidity, dissolved oxygen, conductivity, salinity, total dissolved solids, and temperature. Depth-integrated sediment samples are collected and analyzed for sediment concentration using Imhoff cones and filtration methods. Correlations between discharge weighted continuous turbidity measurements and discharge weighted suspended sediment samples are used to estimate sediment loads; essentially, turbidity readings and measured sediment concentrations form a near-linear relationship. In addition, sediment samples are analyzed for inorganic heavy metal contaminants common to Southeast Michigan to characterize both suspended sediments and sediments frequently deposited on adjacent floodplains. These metals (i.e. Lead, Copper, Chromium, Nickle) are commonly known as the “Michigan Metals” and represent indicator species of mobilized and deposited contaminants associated with urbanization and industrialization. The results will provide a baseline for better understanding the transport and fate of contaminated sediments within the Rouge watershed, as well as guide ongoing development and management practices along the Rouge River.

  20. Real time measurements of sediment transport and bed morphology during channel altering flow and sediment transport events

    NASA Astrophysics Data System (ADS)

    Curran, Joanna Crowe; Waters, Kevin A.; Cannatelli, Kristen M.

    2015-09-01

    Real-time measurements of bed changes over a reach are a missing piece needed to link bed morphology with sediment transport processes during unsteady flows when the bed adjusts quickly to changing transport rates or visual observation of the bed is precluded by fine sediment in the water column. A new technique is presented that provides continuous measurement of sediment movement over the length of a flume. A bedload monitoring system (BLMS) was developed that makes use of pressure pillows under a false flume bottom to measure sediment and water weights over discrete flume channel sections throughout a flow event. This paper details the construction of the BLMS and provides examples of its use in a laboratory setting to reconstruct bed slopes during unsteady flows and to create a real-time record of sediment transport rates across the flume channel bed during a sediment transporting flow. Data gathered from the BLMS compared well against techniques commonly in use in flume studies. When the BLMS was analyzed in conjunction with bed surface DEMs and differenced DEMs, a complete transport and bed adjustment picture was constructed. The difference DEMs provided information on the spatial extent of bed morphology changes. The BLMS supplied the data record necessary to reconstruct sediment transport records through the downstream channel, including locations and time periods of temporary sediment storage and supply. The BLMS makes it possible to construct a continuous record of the spatial distribution of sediment movement through the flume, including areas of temporary aggradation and degradation. Exciting implications of future research that incorporates a BLMS include a more informed management of river systems as a result of improved temporal predictions of sediment movement and the associated changes in channel slope and bed morphology.

  1. Laser-aided measurements of plasma transport (invited) (abstract)

    NASA Astrophysics Data System (ADS)

    McWilliams, R.; Sheehan, D.

    1988-08-01

    Laser induced fluorescence (LIF) diagnostic techniques1-3 allow investigation of diverse plasma phenomena. LIF techniques will be discussed in the context of a series of experiments carried out at UCI including: (1) phase space reconstructions of ion response to electron and ion beam generated modes,4,5 ion acceleration and anomalous transport in the near wake of plasma-obstacle systems, (2) optical tomographic techniques2 applied to ion acceleration in velocity space,6 and (3) optical tagging techniques used to quantitatively assess classical and turbulent models of cross-field particle diffusion.7 This work was supported by NSF Grants ♯PHY-8606081 and ♯ATM-8411189.

  2. Molybdate transport in a chemically complex aquifer: Field measurements compared with solute-transport model predictions

    USGS Publications Warehouse

    Stollenwerk, K.G.

    1998-01-01

    A natural-gradient tracer test was conducted in an unconfined sand and gravel aquifer on Cape Cod, Massachusetts. Molybdate was included in the injectate to study the effects of variable groundwater chemistry on its aqueous distribution and to evaluate the reliability of laboratory experiments for identifying and quantifying reactions that control the transport of reactive solutes in groundwater. Transport of molybdate in this aquifer was controlled by adsorption. The amount adsorbed varied with aqueous chemistry that changed with depth as freshwater recharge mixed with a plume of sewage-contaminated groundwater. Molybdate adsorption was strongest near the water table where pH (5.7) and the concentration of the competing solutes phosphate (2.3 micromolar) and sulfate (86 micromolar) were low. Adsorption of molybdate decreased with depth as pH increased to 6.5, phosphate increased to 40 micromolar, and sulfate increased to 340 micromolar. A one-site diffuse-layer surface-complexation model and a two-site diffuse-layer surface-complexation model were used to simulate adsorption. Reactions and equilibrium constants for both models were determined in laboratory experiments and used in the reactive-transport model PHAST to simulate the two-dimensional transport of molybdate during the tracer test. No geochemical parameters were adjusted in the simulation to improve the fit between model and field data. Both models simulated the travel distance of the molybdate cloud to within 10% during the 2-year tracer test; however, the two-site diffuse-layer model more accurately simulated the molybdate concentration distribution within the cloud.

  3. Human perception of dental porcelain translucency correlated to spectrophotometric measurements.

    PubMed

    Liu, Min-Chieh; Aquilino, Steven A; Lund, Peter S; Vargas, Marcos A; Diaz-Arnold, Ana M; Gratton, David G; Qian, Fang

    2010-04-01

    This study evaluated the relationship between instrumental measurements and subjective visual assessment of differences in dental porcelain translucency. Unshaded feldspathic porcelain was used with controlled amounts of tin oxide to create two groups of 12-mm diameter disks with incremental changes in opacity. Contrast ratio (CR = Yb/Yw) was determined with a spectrophotometer, and used as a measure of porcelain translucency (Group A = 0.20 to 0.40; Group B = 0.6-0.8). Within each group, there were 14 specimens with 11 CRs. Three observer groups (first year dental students, residents, faculty with >10 years of shade matching experience) were recruited to assess the translucency between porcelain disks under two lighting conditions (reflected light, transmitted light). Each subject's ability to distinguish between specimens of differing translucency was determined. Descriptive statistics and three-way ANOVA followed by a post-hoc Tukey-Kramer test were used to evaluate the translucency perception threshold (TPT) of subjects (alpha= 0.05). The overall mean TPT (DeltaC) was 0.07, while 50% of the subjects could perceive a 0.06 CR difference between porcelain specimens. Three-way ANOVA revealed a significant difference in translucency perception among the observer groups (p < 0.0001), whereas the main effects for porcelain opacity (p= 0.3038) and lighting condition (p= 0.0645) were not significant, and no significant interactions were found. Post-hoc Tukey-Kramer test indicated that the mean TPT observed in the faculty group (DeltaC = 0.04) was significantly lower than those observed in student (DeltaC = 0.09) and resident groups (DeltaC = 0.08), while there was no significant difference between students and residents. The overall mean TPT of all subjects was 0.07, and 50% of the study population perceived a 0.06 CR difference in translucency. Increased shade matching experience (> or =10 years) significantly improved the ability to perceive differences in

  4. Lagrangian transport model forecasts and a transport climatology for the Intercontinental Transport and Chemical Transformation 2002 (ITCT 2K2) measurement campaign

    NASA Astrophysics Data System (ADS)

    Forster, Caroline; Cooper, Owen; Stohl, Andreas; Eckhardt, Sabine; James, Paul; Dunlea, Edward; Nicks, Dennis K.; Holloway, John S.; Hübler, Gerd; Parrish, David D.; Ryerson, Tom B.; Trainer, Michael

    2004-04-01

    On the basis of Lagrangian tracer transport simulations this study presents an intercontinental transport climatology and tracer forecasts for the Intercontinental Transport and Chemical Transformation 2002 (ITCT 2K2) aircraft measurement campaign, which took place at Monterey, California, in April-May 2002 to measure Asian pollution arriving at the North American West Coast. For the climatology the average transport of an Asian CO tracer was calculated over a time period of 15 years using the particle dispersion model FLEXPART. To determine by how much the transport from Asia to North America during ITCT 2K2 deviated from the climatological mean, the 15-year average for April and May was compared with the average for April and May 2002 and that for the ITCT 2K2 period. It was found that 8% less Asian CO tracer arrived at the North American West Coast during the ITCT 2K2 period compared to the climatological mean. Below 8-km altitude, the maximum altitude of the research aircraft, 13% less arrived. Nevertheless, pronounced layers of Asian pollution were measured during 3 of the 13 ITCT 2K2 flights. FLEXPART was also successfully used as a forecasting tool for the flight planning during ITCT 2K2. It provided 3-day forecasts for three different anthropogenic CO tracers originating from Asia, North America, and Europe. In two case studies the forecast abilities of FLEXPART are analyzed and discussed by comparing the forecasts with measurement data and infrared satellite images. The model forecasts underestimated the measured CO enhancements by about a factor of 4, mainly because of an underestimation of the Asian emissions in the emission inventory and because of biomass-burning influence that was not modeled. Nevertheless, the intercontinental transport and dispersion of pollution plumes were qualitatively well predicted, and on the basis of the model results the aircraft could successfully be guided into the polluted air masses.

  5. The concordance correlation coefficient for repeated measures estimated by variance components.

    PubMed

    Carrasco, Josep L; King, Tonya S; Chinchilli, Vernon M

    2009-01-01

    The concordance correlation coefficient (CCC) is an index that is commonly used to assess the degree of agreement between observers on measuring a continuous characteristic. Here, a CCC for longitudinal repeated measurements is developed through the appropriate specification of the intraclass correlation coefficient from a variance components linear mixed model. A case example and the results of a simulation study are provided.

  6. Correlation coefficient measurement of the mode-locked laser tones using four-wave mixing.

    PubMed

    Anthur, Aravind P; Panapakkam, Vivek; Vujicic, Vidak; Merghem, Kamel; Lelarge, Francois; Ramdane, Abderrahim; Barry, Liam P

    2016-06-01

    We use four-wave mixing to measure the correlation coefficient of comb tones in a quantum-dash mode-locked laser under passive and active locked regimes. We study the uncertainty in the measurement of the correlation coefficient of the proposed method.

  7. von Neumann measurement-related matrices and the nullity condition for quantum correlation

    NASA Astrophysics Data System (ADS)

    Zhao, MingJing; Ma, Teng; Zhang, TingGui; Fei, Shao-Ming

    2016-12-01

    We study von Neumann measurement-related matrices, and the nullity condition of quantum correlation. We investigate the properties of these matrices that are related to a von Neumann measurement. It is shown that these ( m 2 - 1) × ( m 2 - 1) matrices are idempotent, and have rank m - 1. These properties give rise to necessary conditions for the nullity of quantum correlations in bipartite systems. Finally, as an example we discuss quantum correlation in Bell diagonal states.

  8. Measurement of Grit and Correlation to Student Pharmacist Academic Performance.

    PubMed

    Pate, Adam N; Payakachat, Nalin; Harrell, T Kristopher; Pate, Kristen A; Caldwell, David J; Franks, Amy M

    2017-08-01

    Objective. To describe grittiness of students from three pharmacy schools and determine if grit is associated with academic performance measures. Methods. Pharmacy students completed an electronic questionnaire that included the Short Grit Scale (Grit-S). Associations were determined using logistic regression. Results. Grit-S total score was a significant and independent predictor for participants who reported a GPA ≥3.5, and Consistency of Interest (COI) and Perseverance of Effort (POE) domain scores were significantly higher compared to participants with a GPA of 3.0-3.49. Participants reporting a D or F had slightly lower average total Grit-S scores and COI domain scores compared to participants who did not. In addition, the group who reported a GPA <3.0 had lower scores in the POE domain compared to those with a GPA of 3.0-3.4. Conclusion. Grittiness may be associated with student pharmacist academic performance and the Grit-S Scale may have substantive implications for use in pharmacy programs.

  9. Measurements of fluid transport by controllable vertical migrations of plankton

    NASA Astrophysics Data System (ADS)

    Houghton, Isabel A.; Dabiri, John O.

    2016-11-01

    Diel vertical migration of zooplankton has been proposed to be a significant contributor to local and possibly large-scale fluid transport in the ocean. However, studies of this problem to date have been limited to order-of-magnitude estimates based on first principles and a small number of field observations. In this work, we leverage the phototactic behavior of zooplankton to stimulate controllable vertical migrations in the laboratory and to study the associated fluid transport and mixing. Building upon a previous prototype system, a laser guidance system induces vertical swimming of brine shrimp (Artemia salina) in a 2.1 meter tall, density-stratified water tank. The animal swimming speed and spacing during the controlled vertical migration is characterized with video analysis. A schlieren imaging system is utilized to visualize density perturbations to a stable stratification for quantification of fluid displacement length scales and restratification timescales. These experiments can add to our understanding of the dynamics of active particles in stratified flows. NSF and US-Israel Binational Science Foundation.

  10. Gamma-radiation affects active electrolyte transport by rabbit ileum. 2. Correlation of alanine and theophylline response with morphology

    SciTech Connect

    Gunter-Smith, P.J.

    1989-01-01

    The response of ileal segments isolated from rabbits to an actively transported amino acid and a secretagogue was evaluated following exposure to 10-Gy whole-body gamma irradiation. The ability of ileal segments to respond to the actively transported amino acid, alanine, was not significantly diminished until 96 h postexposure. Decreased responsiveness to the secretagogue, theophylline, occurred earlier at 72 h. These effects did not appear to be accounted for by decreased food intake of irradiated animals alone. Examination of intestinal morphological changes with respect to these changes in electrolyte transport revealed that decreased amino acid transport coincides with loss of intestinal villi. Although a morphological correlate of decreased secretory response was not as striking as that for absorption, the theophylline response appeared to decline concomitant with the appearance of increased mitotic activity in the intestinal crypts. The result of this study indicate that, following a dose of 10 Gy, the inability of these tissues to respond to amino acids is due to a loss of mature villus absorptive cells subsequent to denudation of the intestinal mucosa. There appeared to be little impairment of cell membrane transport processes for alanine. In contrast, the decreased secretory response could not be correlated with the disappearance of any one cell type and perhaps results from increased proliferation in the crypts at the expense of differentiation.

  11. Gamma radiation affects active electrolyte transport by rabbit ileum. II. Correlation of alanine and theophylline response with morphology

    SciTech Connect

    Gunter-Smith, P.J.

    1989-03-01

    The response of ileal segments isolated from rabbits to an actively transported amino acid and a secretagogue was evaluated following exposure to 10 Gy whole-body gamma irradiation. The ability of ileal segments to respond to the actively transported amino acid, alanine, was not significantly diminished until 96 h postexposure. Decreased responsiveness to the secretagogue, theophylline, occurred earlier at 72 h. These effects did not appear to be accounted for by decreased food intake of irradiated animals alone. Examination of intestinal morphological changes with respect to these changes in electrolyte transport revealed that decreased amino acid transport coincides with loss of intestinal villi. Although a morphological correlate of decreased secretory response was not as striking as that for absorption, the theophylline response appeared to decline concomitant with the appearance of increased mitotic activity in the intestinal crypts. The results of this study indicate that, following a dose of 10 Gy, the inability of these tissues to respond to amino acids is due to a loss of mature villus absorptive cells subsequent to denudation of the intestinal mucosa. There appeared to be little impairment of cell membrane transport processes for alanine. In contrast, the decreased secretory response could not be correlated with the disappearance of any one cell type and perhaps results from increased proliferation in the crypts at the expense of differentiation.

  12. Measurement of phloem transport rates by an indicator-dilution technique. [Triticum aestivum L

    SciTech Connect

    Fisher, D.B. )

    1990-10-01

    An indicator-dilution technique for the measurement of flow rates, commonly used by animal physiologists for circulation measurements, was adapted to the measurement of phloem translocation rates in the wheat (Triticum aestivum L.) peduncle. The approach is based on the observation that, during the transport of a given amount of solute, its mean concentration will be inversely proportional to flow rate. For phloem transport in the wheat peduncle, the necessary measurements are (a) the time course of tracer kinetics in the peduncle phloem, (b)the volume of sieve tubes and companion cells in the monitored segment of the peduncle, and (c) the amount of tracer transported past that point. The method was evaluated by in situ monitoring of {sup 32}PO{sub 4} transport in pulse-labeling experiments. Specific activities (i.e. {sup 32}P concentrations) of phloem exudate were in good agreement with those calculated from in situ count rates and measured phloem areas. Mass transport rates, calculated from volume flow rates and phloem exudate dry matter content, also agreed well with expected mass transport rates based on measurements of grain growth rate and net CO{sub 2} exchange by the ear. The indicator-dilution technique appears to offer good precision and accuracy for short-term measurements of phloem transport rates in the wheat peduncle and should be useful for other systems as well.

  13. Comparison of cryogenic limb array etalon spectrometer (CLAES) ozone observations with correlative measurements

    NASA Astrophysics Data System (ADS)

    Bailey, P. L.; Edwards, D. P.; Gille, J. C.; Lyjak, L. V.; Massie, S. T.; Roche, A. E.; Kumer, J. B.; Mergenthaler, J. L.; Connor, B. J.; Gunson, M. R.; Margitan, J. J.; McDermid, I. S.; McGee, T. J.

    1996-04-01

    Ozone measurements made by the Cryogenic Limb Array Etalon Spectrometer (CLAES) aboard the NASA Upper Atmosphere Research Satellite (UARS) are compared to nearly coincident correlative measurements taken in 1992 and 1993 and to mean ozone distributions observed by other satellite instruments during past missions. This paper describes the CLAES measurement characteristics, uncertainties, predicted, and observed precisions and compares the observations with independent measurements both qualitatively and statistically. Satellite- and ground-based remote sensing as well as balloon-borne in situ measurements are represented in the correlative data set. The CLAES data are shown to be within ±20% of all correlative measurements between 0.5 and 30 mbar. Differences at lower altitudes may be related to effects of the Pinatubo aerosol on certain of the correlative measurements and the CLAES retrieval. Comparisons with historical data from the LIMS, SAGE II, and SBUV instruments indicate good agreement with the spatial and seasonal ozone distributions seen by CLAES.

  14. Sand transport measurements in Chioggia inlet, Venice lagoon: Theory versus observations

    NASA Astrophysics Data System (ADS)

    Villatoro, Monique M.; Amos, Carl L.; Umgiesser, Georg; Ferrarin, Christian; Zaggia, Luca; Thompson, Charlotte E. L.; Are, Daniele

    2010-05-01

    This paper presents results of recent measurements of sand transport made in Chioggia inlet as part of an extensive monitoring programme in the Venetian inlets. Measurements were made in order: (1) to define a relationship between sand transport magnitude and tidal flow; (2) to derive the thresholds for sand transport; (3) to identify the dominant modes of transport; (4) to evaluate the concentration profiles of sand within the benthic boundary layer; (5) to compare bedload transport observations with model predictions using existent bedload formulae; and (6) to produce yearly estimates of bedload transport across the inlet. The vertical distribution of sand in the water column was sampled using modified Helley-Smith bedload samplers at three sites. Transport was found to vary according to the flow and bed grain size, with considerable temporal and spatial variability. A difference of up to three orders of magnitude in transport was observed through the inlet, with higher transport rates measured on the seaward part. The dominant mode of transport in the central inlet was suspension, while bedload was dominant in the mouths. The measured profiles of sand concentration varied with the tidal stage and seabed grain size according to the Rouse parameter ( R). R was high at the inlet mouths (1< R<2), indicative of a well-developed bedload layer. The inverse movability number ( W s/ U*) was also higher at these sites and appeared to be grain size dependant. Formulae for bedload transport were tested against field data; stochastic methods such as Einstein-Brown, Engelund-Hansen and Van Rijn produce the best fits. The coupled model SHYFEM-Sedtrans05 appears to simulate well observed transport for most conditions of flow. Long-term bedload predictions indicate a dominant export of sand, with a yearly average of 4500 m 3.

  15. Correlation of reaching and grasping kinematics and clinical measures of upper extremity function in persons with stroke related hemiplegia.

    PubMed

    Rohafza, Maryam; Fluet, Gerard G; Qiu, Qinyin; Adamovich, Sergei

    2014-01-01

    Timed measures of standardized functional tasks are commonly used to measure treatment effects in persons with upper extremity (UE) paresis due to stroke. The effectiveness of their ability to measure motor recovery has come into question because of their inability to distinguish between motor recovery and compensations. This paper presents three linear regression models generated from twelve kinematic measures collected during the performance of a two phase reach/grasp and transport /release activity as performed by 21 persons with upper extremity hemiparesis due to chronic stroke. One of these models demonstrated a statistically significant correlation with the subjects' scores on the Wolf Motor Function Test (WMFT), a battery of fifteen standardized upper extremity functional activities. The second and third models demonstrated a statistically significant correlation with the subjects' WMFT change scores elicited by a two week intensive upper extremity motor rehabilitation intervention. The high correlation suggests that models of kinematic measurements can be used to predict neurologic improvement and the effectiveness of treatment.

  16. Catalytic conversion in nanoporous materials: Concentration oscillations and spatial correlations due to inhibited transport and intermolecular interactions.

    PubMed

    García, Andrés; Evans, James W

    2016-11-07

    We show that steady-state catalytic conversion in nanoporous materials can occur in a quasi-counter-diffusion mode with the reactant (product) concentration strongly decaying (growing) into the pore, but also with oscillations in the total concentration. These oscillations reflect the response of the fluid to the transition from an extended to a confined environment near the pore opening. We focus on the regime of strongly inhibited transport in narrow pores corresponding to single-file diffusion. Here, limited penetration of the reactant into the pores and the associated low reaction yield is impacted by strong spatial correlations induced by both reaction (non-equilibrium correlations) and also by intermolecular interactions (thermodynamic correlations). We develop a generalized hydrodynamic formulation to effectively describe inhibited transport accounting for the effect of these correlations, and incorporate this description of transport into appropriate reaction-diffusion equations. These equations accurately describe both shorter-range concentration oscillations near the pore opening and the longer-range mesoscale variation of concentration profiles in the pore (and thus also describe reaction yield). Success of the analytic theory is validated by comparison with a precise kinetic Monte Carlo simulation of an appropriate molecular-level stochastic reaction-diffusion model. This work elucidates unconventional chemical kinetics in interacting confined systems.

  17. Catalytic conversion in nanoporous materials: Concentration oscillations and spatial correlations due to inhibited transport and intermolecular interactions

    NASA Astrophysics Data System (ADS)

    García, Andrés; Evans, James W.

    2016-11-01

    We show that steady-state catalytic conversion in nanoporous materials can occur in a quasi-counter-diffusion mode with the reactant (product) concentration strongly decaying (growing) into the pore, but also with oscillations in the total concentration. These oscillations reflect the response of the fluid to the transition from an extended to a confined environment near the pore opening. We focus on the regime of strongly inhibited transport in narrow pores corresponding to single-file diffusion. Here, limited penetration of the reactant into the pores and the associated low reaction yield is impacted by strong spatial correlations induced by both reaction (non-equilibrium correlations) and also by intermolecular interactions (thermodynamic correlations). We develop a generalized hydrodynamic formulation to effectively describe inhibited transport accounting for the effect of these correlations, and incorporate this description of transport into appropriate reaction-diffusion equations. These equations accurately describe both shorter-range concentration oscillations near the pore opening and the longer-range mesoscale variation of concentration profiles in the pore (and thus also describe reaction yield). Success of the analytic theory is validated by comparison with a precise kinetic Monte Carlo simulation of an appropriate molecular-level stochastic reaction-diffusion model. This work elucidates unconventional chemical kinetics in interacting confined systems.

  18. Catalytic conversion in nanoporous materials: Concentration oscillations and spatial correlations due to inhibited transport and intermolecular interactions

    SciTech Connect

    Garcia, Andres; Evans, James W.

    2016-11-03

    We show that steady-state catalytic conversion in nanoporous materials can occur in a quasi-counter-diffusion mode with the reactant (product) concentration strongly decaying (growing) into the pore, but also with oscillations in the total concentration. These oscillations reflect the response of the fluid to the transition from an extended to a confined environment near the pore opening. We focus on the regime of strongly inhibited transport in narrow pores corresponding to single-file diffusion. Here, limited penetration of the reactant into the pores and the associated low reaction yield is impacted by strong spatial correlations induced by both reaction (non-equilibrium correlations) and also by intermolecular interactions (thermodynamic correlations). We develop a generalized hydrodynamic formulation to effectively describe inhibited transport accounting for the effect of these correlations, and incorporate this description of transport into appropriate reaction-diffusion equations. These equations accurately describe both shorter-range concentration oscillations near the pore opening and the longer-range mesoscale variation of concentration profiles in the pore (and thus also describe reaction yield). Success of the analytic theory is validated by comparison with a precise kinetic Monte Carlo simulation of an appropriate molecular-level stochastic reaction-diffusion model. As a result, this work elucidates unconventional chemical kinetics in interacting confined systems.

  19. Catalytic conversion in nanoporous materials: Concentration oscillations and spatial correlations due to inhibited transport and intermolecular interactions

    DOE PAGES

    Garcia, Andres; Evans, James W.

    2016-11-03

    We show that steady-state catalytic conversion in nanoporous materials can occur in a quasi-counter-diffusion mode with the reactant (product) concentration strongly decaying (growing) into the pore, but also with oscillations in the total concentration. These oscillations reflect the response of the fluid to the transition from an extended to a confined environment near the pore opening. We focus on the regime of strongly inhibited transport in narrow pores corresponding to single-file diffusion. Here, limited penetration of the reactant into the pores and the associated low reaction yield is impacted by strong spatial correlations induced by both reaction (non-equilibrium correlations) andmore » also by intermolecular interactions (thermodynamic correlations). We develop a generalized hydrodynamic formulation to effectively describe inhibited transport accounting for the effect of these correlations, and incorporate this description of transport into appropriate reaction-diffusion equations. These equations accurately describe both shorter-range concentration oscillations near the pore opening and the longer-range mesoscale variation of concentration profiles in the pore (and thus also describe reaction yield). Success of the analytic theory is validated by comparison with a precise kinetic Monte Carlo simulation of an appropriate molecular-level stochastic reaction-diffusion model. As a result, this work elucidates unconventional chemical kinetics in interacting confined systems.« less

  20. Molecular alterations of canalicular transport systems in experimental models of cholestasis: possible functional correlations.

    PubMed Central

    Trauner, M.

    1997-01-01

    The discovery of unidirectional, ATP-dependent canalicular transport systems (also termed "export pumps") for bile salts, amphiphilic anionic conjugates, lipophilic cations, and phospholipids has opened new opportunities for understanding biliary physiology and the pathophysiology of cholestasis. In addition, ATP-independent canalicular transport systems for glutathione and bicarbonate contribute to (bile acid-independent) bile formation. Canalicular excretion of bile salts and several non-bile acid organic anions is impaired in various experimental models of cholestasis. Recent cloning of several canalicular transport systems now facilitates studies on their molecular regulation in cholestasis. Although the picture is far from complete, experimental evidence now exists that decreased or even absent expression of canalicular transport proteins may explain impaired transport function resulting in hyperbilirubinemia and cholestasis. With the increasing availability of molecular probes for these transport systems in humans, new information on the molecular regulation of canalicular transport proteins in human cholestatic liver diseases is beginning to emerge and should bring new insights into their pathophysiology and treatment. This article gives an overview on molecular alterations of canalicular transport systems in experimental models of cholestasis and discusses the potential implications of these changes for the pathophysiology of cholestasis. PMID:9626757

  1. Correlation between macroscopic transport parameters and microscopic electrical properties in GaN

    NASA Astrophysics Data System (ADS)

    Witte, H.; Krtschil, A.; Schrenk, E.; Fluegge, K.; Dadgar, A.; Krost, A.

    2005-02-01

    In GaN layers grown by metal-organic vapor phase epitaxy on sapphire substrates the temperature-dependent Hall (TDH) and photo-Hall-effect (PHE) measurements show essential differences between undoped and Si-doped GaN. In undoped GaN the maximum of the Hall mobility occurs at temperatures near 300K with a low value. In PHE, an illumination introduces an enhancement of the mobility and a decrease of the electron density. In contrast, in Si-doped GaN the maximum Hall mobility is higher by a factor of 10 and is observed at temperatures between 100 and 180K. The photoinduced changes in the mobility and electron density are only marginal. Intensity dependent PHE measurements suggest the existence of internal potential barriers caused by inhomogeneities in the undoped samples. These results are combined with the surface-potential roughness on a microscale, as determined by scanning surface-potential microscopy (SSPM). In SSPM the undoped layers show strong potential fluctuations while they are lower for the Si-doped GaN samples. A correlation among the rms roughness of the surface potential, the maximum Hall mobility in TDH, and the maximum changes of the photo-Hall mobility is observed. In undoped GaN the mobility seems to be determined by the scattering at inner potential barriers stemming from structural inhomogeneities.

  2. Correlation Between Bacterial Attachment Rate Coefficients and Hydraulic Conductivity and its Effect on Field-Scale Bacterial Transport

    SciTech Connect

    Scheibe, Timothy D.; Dong, Hailiang; Xie, YuLong

    2007-06-01

    It has been widely observed in field experiments that the apparent rate of bacterial attachment, particularly as parameterized by the collision efficiency in filtration-based models, decreases with transport distance (i.e., exhibits scale-dependency). This effect has previously been attributed to microbial heterogeneity; that is, variability in cell-surface properties within a single monoclonal population. We demonstrate that this effect could also be interpreted as a field-scale manifestation of local-scale correlation between physical heterogeneity (hydraulic conductivity variability) and reaction heterogeneity (attachment rate coefficient variability). A field-scale model of bacterial transport developed for the South Oyster field research site located near Oyster, Virginia, and observations from field experiments performed at that site, are used as the basis for this study. Three-dimensional Monte Carlo simulations of bacterial transport were performed under four alternative scenarios: 1) homogeneous hydraulic conductivity (K) and attachment rate coefficient (Kf), 2) heterogeneous K, homogeneous Kf, 3) heterogeneous K and Kf with local correlation based on empirical and theoretical relationships, and 4) heterogeneous K and Kf without local correlation. The results of the 3D simulations were analyzed using 1D model approximations following conventional methods of field data analysis. An apparent decrease with transport distance of effective collision efficiency was observed only in the case where the local properties were both heterogeneous and correlated. This effect was observed despite the fact that the local collision efficiency was specified as a constant in the 3D model, and can therefore be interpreted as a scale effect associated with the local correlated heterogeneity as manifested at the field scale.

  3. Electronic measurement of strain effects on spin transport in silicon

    NASA Astrophysics Data System (ADS)

    Qing, Lan; Tinkey, Holly; Appelbaum, Ian

    Spin transport in silicon is limited by the Elliott-Yafet spin relaxation mechanism, which is driven by scattering between degenerate conduction band valleys. Mechanical strain along a valley axis partially breaks this degeneracy, and will ultimately quench intervalley spin relaxation for transitions between states on orthogonal axes. Using a custom-designed and constructed strain probe, we study the effects of uniaxial compressive strain along the < 100 > direction on ballistic tunnel junction devices used to inject spin-polarized electrons into silicon. The effects of strain-induced valley splitting will be presented and compared to our theoretical model. This work is supported by the Office of Naval Research under Contract No. N000141410317, the National Science Foundation under Contract No. ECCS-1231855, the Defense Threat Reduction Agency under Contract No. HDTRA1-13-1-0013, and the Maryland NanoCenter.

  4. TRANSPORT

    EPA Science Inventory

    Presentation outline: transport principles, effective solubility; gasoline composition; and field examples (plume diving).
    Presentation conclusions: MTBE transport follows from - phyiscal and chemical properties and hydrology. Field examples show: MTBE plumes > benzene plu...

  5. Thermal transport characteristics of human skin measured in vivo using ultrathin conformal arrays of thermal sensors and actuators.

    PubMed

    Webb, R Chad; Pielak, Rafal M; Bastien, Philippe; Ayers, Joshua; Niittynen, Juha; Kurniawan, Jonas; Manco, Megan; Lin, Athena; Cho, Nam Heon; Malyrchuk, Viktor; Balooch, Guive; Rogers, John A

    2015-01-01

    Measurements of the thermal transport properties of the skin can reveal changes in physical and chemical states of relevance to dermatological health, skin structure and activity, thermoregulation and other aspects of human physiology. Existing methods for in vivo evaluations demand complex systems for laser heating and infrared thermography, or they require rigid, invasive probes; neither can apply to arbitrary regions of the body, offers modes for rapid spatial mapping, or enables continuous monitoring outside of laboratory settings. Here we describe human clinical studies using mechanically soft arrays of thermal actuators and sensors that laminate onto the skin to provide rapid, quantitative in vivo determination of both the thermal conductivity and thermal diffusivity, in a completely non-invasive manner. Comprehensive analysis of measurements on six different body locations of each of twenty-five human subjects reveal systematic variations and directional anisotropies in the characteristics, with correlations to the thicknesses of the epidermis (EP) and stratum corneum (SC) determined by optical coherence tomography, and to the water content assessed by electrical impedance based measurements. Multivariate statistical analysis establishes four distinct locations across the body that exhibit different physical properties: heel, cheek, palm, and wrist/volar forearm/dorsal forearm. The data also demonstrate that thermal transport correlates negatively with SC and EP thickness and positively with water content, with a strength of correlation that varies from region to region, e.g., stronger in the palmar than in the follicular regions.

  6. Thermal Transport Characteristics of Human Skin Measured In Vivo Using Ultrathin Conformal Arrays of Thermal Sensors and Actuators

    PubMed Central

    Webb, R. Chad; Pielak, Rafal M.; Bastien, Philippe; Ayers, Joshua; Niittynen, Juha; Kurniawan, Jonas; Manco, Megan; Lin, Athena; Cho, Nam Heon; Malyrchuk, Viktor; Balooch, Guive; Rogers, John A.

    2015-01-01

    Measurements of the thermal transport properties of the skin can reveal changes in physical and chemical states of relevance to dermatological health, skin structure and activity, thermoregulation and other aspects of human physiology. Existing methods for in vivo evaluations demand complex systems for laser heating and infrared thermography, or they require rigid, invasive probes; neither can apply to arbitrary regions of the body, offers modes for rapid spatial mapping, or enables continuous monitoring outside of laboratory settings. Here we describe human clinical studies using mechanically soft arrays of thermal actuators and sensors that laminate onto the skin to provide rapid, quantitative in vivo determination of both the thermal conductivity and thermal diffusivity, in a completely non-invasive manner. Comprehensive analysis of measurements on six different body locations of each of twenty-five human subjects reveal systematic variations and directional anisotropies in the characteristics, with correlations to the thicknesses of the epidermis (EP) and stratum corneum (SC) determined by optical coherence tomography, and to the water content assessed by electrical impedance based measurements. Multivariate statistical analysis establishes four distinct locations across the body that exhibit different physical properties: heel, cheek, palm, and wrist/volar forearm/dorsal forearm. The data also demonstrate that thermal transport correlates negatively with SC and EP thickness and positively with water content, with a strength of correlation that varies from region to region, e.g., stronger in the palmar than in the follicular regions. PMID:25658947

  7. Validation of bed-load transport measurements with time-sequenced bathymetric data

    USDA-ARS?s Scientific Manuscript database

    Advances in bathymetric data acquisition have made it possible to adopt a new, expedient method for measuring bed load transport in rivers. The method consists of comparing time sequenced bathymetric data sets and utilizing a simple mass conservation relation for bed load transport. Assuming a tri...

  8. Turbulent transport measurements with a laser Doppler velocimeter

    NASA Technical Reports Server (NTRS)

    Edwards, R. V.; Angus, J. C.; Dunning, J. W., Jr.

    1972-01-01

    The power spectrum of phototube current from a laser Doppler velocimeter operating in the heterodyne mode has been computed. The spectrum is obtained in terms of the space time correlation function of the fluid. The spectral width and shape predicted by the theory are in agreement with experiment. For normal operating parameters the time average spectrum contains information only for times shorter than the Lagrangian integral time scale of the turbulence. To examine the long time behavior, one must use either extremely small scattering angles, much longer wavelength radiation or a different mode of signal analysis, e.g., FM detection.

  9. Quantum dissipation theory and applications to quantum transport and quantum measurement in mesoscopic systems

    NASA Astrophysics Data System (ADS)

    Cui, Ping

    The thesis comprises two major themes of quantum statistical dynamics. One is the development of quantum dissipation theory (QDT). It covers the establishment of some basic relations of quantum statistical dynamics, the construction of several nonequivalent complete second-order formulations, and the development of exact QDT. Another is related to the applications of quantum statistical dynamics to a variety of research fields. In particular, unconventional but novel theories of the electron transfer in Debye solvents, quantum transport, and quantum measurement are developed on the basis of QDT formulations. The thesis is organized as follows. In Chapter 1, we present some background knowledge in relation to the aforementioned two themes of this thesis. The key quantity in QDT is the reduced density operator rho(t) ≡ trBrho T(t); i.e., the partial trace of the total system and bath composite rhoT(t) over the bath degrees of freedom. QDT governs the evolution of reduced density operator, where the effects of bath are treated in a quantum statistical manner. In principle, the reduced density operator contains all dynamics information of interest. However, the conventional quantum transport theory is formulated in terms of nonequilibrium Green's function. The newly emerging field of quantum measurement in relation to quantum information and quantum computing does exploit a sort of QDT formalism. Besides the background of the relevant theoretical development, some representative experiments on molecular nanojunctions are also briefly discussed. In chapter 2, we outline some basic (including new) relations that highlight several important issues on QDT. The content includes the background of nonequilibrium quantum statistical mechanics, the general description of the total composite Hamiltonian with stochastic system-bath interaction, a novel parameterization scheme for bath correlation functions, a newly developed exact theory of driven Brownian oscillator (DBO

  10. Classical and quantum phase transitions revealed using transport and x-ray measurements

    NASA Astrophysics Data System (ADS)

    Banerjee, Arnab

    I present the experimental studies of phase transitions in three different compounds in this thesis. The first one, SrCu2(BO3)2 is a physical realization of the Shastry-Sutherland model where, using precise lattice measurements, we examined the pressure-dependent phase diagram. We found two separate quantum phase transitions in the compound, the first one being a second order transition from a dimer to an intermediate magnetic state, and the second being a first order monoclinic distortion from the intermediate state to a presumed magnetically ordered state. In the second compound, NiS2, using a combination of transport and x-ray diffraction we proved that neither magnetism nor lattice symmetry, but rather electron-electron correlations, plays an active role in the insulator-metal phase transition in pure NiS2 under high pressure. Following this we make an attempt to delve the critical scaling laws using high pressure transport meas