REASONS FOR CORROSION CONTROL OTHER THAN THE LEAD AND COPPER RULE
A corrosion control program designed to accommodate all distribution system materials, as well as lead and copper, will produce significant benefits that are not always related to corrosion in an obvious way. Essential components of a good corrosion control program are the selec...
Army Corrosion Prevention and Control (CPC) Program for Facilities and Infrastructure
2010-02-01
FY2009 - 2011 • Benefits: Reduced corrosion due to elimination of metallic rebar , reduced weight equates to reduced dead load and increased dynamic...Decks as Replacement for Steel Reinforced Concrete Decks F09AR04: Corrosion Resistant Roofs with Integrated Sustainable PV Power Systems • Where...Army Corrosion Prevention and Control (CPC) Program for Facilities and Infrastructure Dr. Craig E. College Deputy Assistant Chief of Staff for
Corrosion control is a concern for many drinking water utilities. The Lead and Copper Rule established a regulatory need to maintain a corrosion control program. Other corrosion-related issues such as “red” water resulting from excessive iron corrosion and copper pinhole leaks ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oji, L. N.
This report provides the results of analyses on Tanks 38H and 43H surface and subsurface supernatant liquid samples in support of the Enrichment Control Program (ECP) and the Corrosion Control Program (CCP).
1989-10-19
installation. 4. Corrosion inhibiting compounds need to be applied in the final assealbly of models to all corrosion prone areas of the structure, e.g...Figure 12 shows an example of poor surface treatment of a previously repaired stringer area. Application of a corrosion inhibiting compound may have... compounds and a good corrosion control maintenance program. REFERENCE U. G. Goranson and M. Miller, "Aging Fleet - Aging Fleet Evaluation Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oji, L. N.
This report provides the results of analyses on Savannah River Site Tank 4 surface and subsurface supernatant liquid samples in support of the Enrichment Control Program (ECP), the Corrosion Control Program (CCP) and the Evaporator Feed Qualification (EFQ) Program. The purpose of the ECP sample taken from Tank 4 in August 2015 was to determine if the supernatant liquid would be “acceptable feed” to the 2H and 3H evaporator systems.
Corrosion Prevention and Control Planning Guidebook Spiral 3
2007-09-01
programs. 5. Develop and recommend corrective and preventive procedures based on reliability and maintainability analyses of field data on similar in...One of the many challenges facing the Program/Acquisition Managers is the ability to develop a meaningful Corrosion Prevention and Control Plan...designated program manager of all activities associated with the acquisition, development , production, fielding , sustainment, and disposal of a DoD weapon
NASA Technical Reports Server (NTRS)
Shea, T. G.
1974-01-01
Disinfection and corrosion control in the water systems of the Saturn 5 Orbital Workshop Program are considered. Within this framework, the problem areas of concern are classified into four general areas: disinfection; corrosion; membrane-associated problems of disinfectant uptake and diffusion; and taste and odor problems arising from membrane-disinfectant interaction.
DOT National Transportation Integrated Search
2014-10-01
This research program develops and validates structural design guidelines and details for concrete bridge decks with : corrosion-resistant reinforcing (CRR) bars. A two-phase experimental program was conducted where a control test set consistent : wi...
Study program for encapsulation materials interface for low cost silicon solar array
NASA Technical Reports Server (NTRS)
Kaelble, D. H.; Mansfeld, F. B.; Lunsden, J. B., III; Leung, C.
1980-01-01
An atmospheric corrosion model was developed and verified by five months of corrosion rate and climatology data acquired at the Mead, Nebraska LSA test site. Atmospheric corrosion rate monitors (ACM) show that moisture condensation probability and ionic conduction at the corroding surface or interface are controlling factors in corrosion rate. Protection of the corroding surface by encapsulant was shown by the ACM recordings to be maintained, independent of climatology, over the five months outdoor exposure period. The macroscopic corrosion processes which occur at Mead are shown to be reproduced in the climatology simulator. Controlled experiments with identical moisture and temperature aging cycles show that UV radiation causes corrosion while UV shielding inhibits LSA corrosion.
Metallized coatings for corrosion control of Naval ship structures and components
NASA Technical Reports Server (NTRS)
1983-01-01
In attempting to improve corrosion control, the U.S. Navy has undertaken a program of coating corrosion-susceptible shipboard components with thermally sprayed aluminum. In this report the program is reviewed in depth, including examination of processes, process controls, the nature and properties of the coatings, nondestructive examination, and possible hazards to personnel. The performance of alternative metallic coating materials is also discussed. It is concluded that thermally sprayed aluminum can provide effective long-term protection against corrosion, thereby obviating the need for chipping of rust and repainting by ship personnel. Such coatings are providing excellent protection to below-deck components such as steam valves, but improvements are needed to realize the full potential of coatings for above-deck service. Several recommendations are made regarding processes, materials, and research and development aimed at upgrading further the performance of these coatings.
ERIC Educational Resources Information Center
White, Charles V.
A description is provided for a Corrosion and Corrosion Control course offered in the Continuing Engineering Education Program at the General Motors Institute (GMI). GMI is a small cooperative engineering school of approximately 2,000 students who alternate between six-week periods of academic study and six weeks of related work experience in…
Vapor Corrosion Response of Low Carbon Steel Exposed to Simulated High Level Radioactive Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiersma, B
2006-01-26
A program to resolve the issues associated with potential vapor space corrosion and liquid/air interface corrosion in the Type III high level waste tanks is in place. The objective of the program is to develop understanding of vapor space (VSC) and liquid/air interface (LAIC) corrosion to ensure a defensible technical basis to provide accurate corrosion evaluations with regard to vapor space and liquid/air interface corrosion. The results of the FY05 experiments are presented here. The experiments are an extension of the previous research on the corrosion of tank steel exposed to simple solutions to corrosion of the steel when exposedmore » to complex high level waste simulants. The testing suggested that decanting and the consequent residual species on the tank wall is the predominant source of surface chemistry on the tank wall. The laboratory testing has shown that at the boundary conditions of the chemistry control program for solutions greater than 1M NaNO{sub 3}{sup -}. Minor and isolated pitting is possible within crevices in the vapor space of the tanks that contain stagnant dilute solution for an extended period of time, specifically when residues are left on the tank wall during decanting. Liquid/air interfacial corrosion is possible in dilute stagnant solutions, particularly with high concentrations of chloride. The experimental results indicate that Tank 50 would be most susceptible to the potential for liquid/air interfacial corrosion or vapor space corrosion, with Tank 49 and 41 following, since these tanks are nearest to the chemistry control boundary conditions. The testing continues to show that the combination of well-inhibited solutions and mill-scale sufficiently protect against pitting in the Type III tanks.« less
2017-06-01
ER D C/ CE RL T R- 17 -1 9 DoD Corrosion Prevention and Control Program Demonstration of Antimicrobial Corrosion- Resisting Interior ...Demonstration of Antimicrobial Corrosion- Resisting Interior Coating Systems for Military Facilities in Warm, Humid Locations Final Report on...Under Project F10-AR04, “Application of New Corrosion-Resistant Mold Abatement Technologies for Interior Surfaces of Buildings at Fort Polk, LA” ERDC
ERIC Educational Resources Information Center
Shields, F. K.; And Others
In order to meet the educational needs for a separate curriculum at the secondary level for technological training related to pollution and corrosion measurement and control, a 3-year, 1080-hour vocational program was developed for use in an area vocational high school. As one of four programs in the technology careers area, this curriculum design…
NASA Technical Reports Server (NTRS)
Russell, Richard W.; Calle, Luz Marina; Johnston, Frederick; Montgomery, Eliza L.; Curran, Jerome P.; Kolody, Mark R.
2013-01-01
NASA began corrosion studies at the Kennedy Space Center (KSC) in 1966 during the Gemini/Apollo Programs with the evaluation of long-term corrosion protective coatings for carbon steel. KSC's Beachside Corrosion Test Site (BCTS), which has been documented by the American Society of Materials (ASM) as one of the most corrosive, naturally occurring, environments in the world, was established at that time. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pad were rendered even more severe by the acid ic exhaust from the solid rocket boosters. In the years that followed, numerous studies have identified materials, coatings, and maintenance procedures for launch hardware and equipment exposed to the highly corrosive environment at the launch pad. This paper presents a historical overview of over 45 years of corrosion and coating evaluation studies and a description of the BCTS's current capabilities. Additionally, current research and testing programs involving chromium free coatings, environmentally friendly corrosion preventative compounds, and alternates to nitric acid passivation will be discussed.
Corrosion Protection of Launch Infrastructure and Hardware Through the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Calle, L. M.
2011-01-01
Corrosion, the environmentally induced degradation of materials, has been a challenging and costly problem that has affected NASA's launch operations since the inception of the Space Program. Corrosion studies began at NASA's Kennedy Space Center (KSC) in 1966 during the Gemini/Apollo Programs with the evaluation of long-term protective coatings for the atmospheric protection of carbon steel. NASA's KSC Beachside Corrosion Test Site, which has been documented by the American Society of Materials (ASM) as one of the most corrosive, naturally occurring environments in the world, was established at that time. With the introduction of the Space Shuttle in 1981, the already highly corrosive natural conditions at the launch pad were rendered even more severe by the acidic exhaust from the solid rocket boosters. In the years that followed, numerous efforts at KSC identified materials, coatings, and maintenance procedures for launch hardware and equipment exposed to the highly corrosiye environment at the launch pads. Knowledge on materials degradation, obtained by facing the highly corrosive conditions of the Space Shuttle launch environment, as well as limitations imposed by the environmental impact of corrosion control, have led researchers at NASA's Corrosion Technology Laboratory to establish a new technology development capability in the area of corrosion prevention, detection, and mitigation at KSC that is included as one of the "highest priority" technologies identified by NASA's integrated technology roadmap. A historical perspective highlighting the challenges encountered in protecting launch infrastructure and hardware from corrosion during the life of the Space Shuttle program and the new technological advances that have resulted from facing the unique and highly corrosive conditions of the Space Shuttle launch environment will be presented.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Applicability of corrosion control treatment steps to small, medium-size and large water systems. 141.81 Section 141.81 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) NATIONAL PRIMARY DRINKING WATER REGULATIONS Control of Lead and Copper...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pawel, Steven J.; Armstrong, Beth L.; Haynes, James A.
The primary goal of the CPAC program at ORNL was to explore the feasibility of introducing various silica-based superhydrophobic (SH) powder additives as a way to improve the corrosion resistance of US Department of Defense (DOD) military-grade chemical agent resistant coating (CARC) systems. ORNL had previously developed and patented several SH technologies of interest to the USMC, and one of the objectives of this program was to identify methods to incorporate these technologies into the USMC’s corrosion-resistance strategy. This report discusses findings of the CPAC and their application.
2017-05-01
Protecting And Bonding Reinforcing Steel In Cement -Based Composites, Corrosion 2009, Atlanta, GA, 22-26 March 2009. 7. Hock, V., O. Marshall, S...ER D C/ CE RL T R- 17 -1 3 DoD Corrosion Prevention and Control Program Demonstration and Validation of Stainless Steel Materials for...ERDC/CERL TR-17-13 May 2017 Demonstration and Validation of Stainless Steel Materials for Critical Above-Grade Piping in Highly Corrosive
NASA Technical Reports Server (NTRS)
Lisagor, W. B.
1984-01-01
Since the pioneer work of Brown (1966), precracked specimens and related fracture mechanics analyses have been extensively used to study stress corrosion cracking. Certain questions arose in connection with initial attempts to prepare standardized recommended practices by ASTM Committee G-1 on Corrosion of Metals. These questions were related to adequacy of test control as it pertains to acceptable limits of variability, and to validity of expressions for stress intensity and crack-surface displacements for both specimen configurations. An interlaboratory test program, was, therefore, planned with the objective to examine the validity of KIscc testing for selected specimen configurations, materials,and environmental systems. The results reported in the present paper include details of a single laboratory test program. The program was conducted to determine if the threshold value of stress intensity for onset and arrest of stress corrosion cracking was independent for the two specimen configurations examined.
Launch Pad Coatings for Smart Corrosion Control
NASA Technical Reports Server (NTRS)
Calle, Luz M.; Hintze, Paul E.; Bucherl, Cori N.; Li, Wenyan; Buhrow, Jerry W.; Curran, Jerome P.; Whitten, Mary C.
2010-01-01
Corrosion is the degradation of a material as a result of its interaction with the environment. The environment at the KSC launch pads has been documented by ASM International (formerly American Society for Metals) as the most corrosive in the US. The 70 tons of highly corrosive hydrochloric acid that are generated by the solid rocket boosters during a launch exacerbate the corrosiveness of the environment at the pads. Numerous failures at the pads are caused by the pitting of stainless steels, rebar corrosion, and the degradation of concrete. Corrosion control of launch pad structures relies on the use of coatings selected from the qualified products list (QPL) of the NASA Standard 5008A for Protective Coating of Carbon Steel, Stainless Steel, and Aluminum on Launch Structures, Facilities, and Ground Support Equipment. This standard was developed to establish uniform engineering practices and methods and to ensure the inclusion of essential criteria in the coating of ground support equipment (GSE) and facilities used by or for NASA. This standard is applicable to GSE and facilities that support space vehicle or payload programs or projects and to critical facilities at all NASA locations worldwide. Environmental regulation changes have dramatically reduced the production, handling, use, and availability of conventional protective coatings for application to KSC launch structures and ground support equipment. Current attrition rate of qualified KSC coatings will drastically limit the number of commercial off the shelf (COTS) products available for the Constellation Program (CxP) ground operations (GO). CxP GO identified corrosion detection and control technologies as a critical, initial capability technology need for ground processing of Ares I and Ares V to meet Constellation Architecture Requirements Document (CARD) CxP 70000 operability requirements for reduced ground processing complexity, streamlined integrated testing, and operations phase affordability. Researchers at NASA's Corrosion Technology Laboratory at KSC are developing a smart, environmentally friendly coating system for early corrosion detection, inhibition, and self healing of mechanical damage without external intervention. This smart coating will detect and respond actively to corrosion and mechanical damage such as abrasion and scratches, in a functional and predictable manner, and will be capable of adapting its properties dynamically. This coating is being developed using corrosion sensitive microcapsules that deliver the contents of their core (corrosion inhibiting compounds, corrosion indicators, and self healing agents) on demand when corrosion or mechanical damage to the coating occurs.
USAF Corrosion Prevention and Control Enterprise - Sustainability Links
2014-11-18
projects and $84M Example of potential synergy: From FY05-14, the DoD Corrosion Program funded 21 projects on hexavalent chromium reduction OSD...coatings, effects on structural integrity, environmental effects, etc Some topics of interest Inhibitor mechanisms for mg-rich primer (non- chrome ...approach Financial and engineering resources are limited Potential costs of corrosion are significant Supporting replacements for hexavalent
Installation Restoration Program Records Search for Davis-Monthan Air Force Base, Arizona.
1982-08-01
inspection labs, and corrosion -2- control shops. These industrial operations generate varying quantities of waste oils , fuels , *solvents, and cleaners. The...standard procedures for the disposition of the majority of the waste oils , fuels , solvents, and cleaners has been (1) fire department training...and corrosion control shops. These industrial operations generate varying quantities of waste oils , fuels , solvents, and cleaners. The total quantity
Challenges in Addressing Variability Of Lead in Domestic Plumbing
Current data indicate that lead exposure is of concern even at low concentrations. Corrosion is an important problem in drinking water because it can affect public health due to leaching of lead or other metals into the drinking water. For this reason, a corrosion control program...
DEVELOPMENT OF AN ENVIRONMENTALLY BENIGN MICROBIAL INHIBITOR TO CONTROL INTERNAL PIPELINE CORROSION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bill W. Bogan; Brigid M. Lamb; John J. Kilbane II
2004-10-30
The overall program objective is to develop and evaluate environmentally benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is to develop one or more environmentally benign (a.k.a. ''green'') products that can be applied to maintain the structure and dependability of the natural gas infrastructure. Previous testing indicated that the growth, and the metal corrosion caused by pure cultures of sulfate reducing bacteria were inhibited by hexane extracts of some pepper plants. This quarter tests were performed to determine ifmore » chemical compounds other than pepper extracts could inhibit the growth of corrosion-associated microbes and to determine if pepper extracts and other compounds can inhibit corrosion when mature biofilms are present. Several chemical compounds were shown to be capable of inhibiting the growth of corrosion-associated microorganisms, and all of these compounds limited the amount of corrosion caused by mature biofilms to a similar extent. It is difficult to control corrosion caused by mature biofilms, but any compound that disrupts the metabolism of any of the major microbial groups present in corrosion-associated biofilms shows promise in limiting the amount/rate of corrosion.« less
Stress-corrosion cracking in metals
NASA Technical Reports Server (NTRS)
1971-01-01
Criteria and recommended practices for preventing stress-corrosion cracking from impairing the structural integrity and flightworthiness of space vehicles are presented. The important variables affecting stress-corrosion cracking are considered to be the environment, including time and temperature; metal composition, and structure; and sustained tensile stress. For designing spacecraft structures that are free of stress-corrosion cracking for the service life of the vehicle the following rules apply: (1) identification and control of the environments to which the structure will be exposed during construction, storage, transportation, and use; (2) selection of alloy compositions and tempers which are resistant to stress-corrosion cracking in the identified environment; (3) control of fabrication and other processes which may introduce residual tensile stresses or damage the material; (4) limitation of the combined residual and applied tensile stresses to below the threshold stress level for the onset of cracking throughout the service life of the vehicle; and (5) establishment of a thorough inspection program.
Defense Research: Improved Management of DOD’s Technical Corrosion Collaboration Program Needed
2014-05-01
Education and Research on Corrosion and Material Performance TCC Technical Corrosion Collaboration UCC University Corrosion Collaboration This is...is the successor to the University Corrosion Collaboration ( UCC ) pilot program, established in 2008. The TCC program builds on efforts of the UCC ...going from a pilot to a full program. They indicated that the UCC pilot program naturally evolved into the TCC pilot program in 2011, and the pilot
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faduska, A.; Rau, E.; Alger, J.V.
Data are given on the corrosion properties of type 410 stainless steel tempered at 1150 d F. Control mechanismn-drive motor tubes and some outer housings are constructed of 650 d F tempered type 410 stainless steel. Since the stress corrosion resistance of type 410 in the 1150 d F tempered condition is superior, the utilization of the 1150 d F tempered material is more desirable for this application. The properties of 410 stainless steel hardened and tempered at 1150 d F are given. (W.L.H.)
Effects of surface chemistry on hot corrosion life: Overview
NASA Technical Reports Server (NTRS)
Merutka, J.
1982-01-01
This program concentrates on analyzing a limited number of hot corroded components from the field and the carrying out of a series of controlled laboratory experiments to establish the effects of oxide scale and coating chemistry on hot corrosion life. This is to be determined principally from the length of the incubation period, the investigation of the mechanisms of hot corrosion attack, and the fitting of the data generated from the test exposure experiments to an empirical life prediction model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oji, L.
Compositional feed limits have been established to ensure that a nuclear criticality event for the 2H and 3H Evaporators is not possible. The Enrichment Control Program (ECP) requires feed sampling to determine the equivalent enriched uranium content prior to transfer of waste other than recycle transfers (requires sampling to determine the equivalent enriched uranium at two locations in Tanks 38H and 43H every 26 weeks) The Corrosion Control Program (CCP) establishes concentration and temperature limits for key constituents and periodic sampling and analysis to confirm that waste supernate is within these limits. This report provides the results of analyses onmore » Tanks 38H and 43H surface and subsurface supernatant liquid samples in support of the ECP, the CCP, and the Salt Batch 10 Planning Program.« less
2002-12-01
as follows, with A being the simplest and C being the most inclusive: • Category A: Surface preparation, paint and undercoating; no bodywork . (This... bodywork due to the corrosion replacement or repair of corroded components such as door, battery boxes, or fenders with time of work not to exceed...8 hours. • Category C: Includes everything listed in category B in addition to some component disassembly required to treat corrosion. Bodywork
2016-12-01
System for Steel Structures in Corrosive Environments Final Report on Project F12-AR06 Co ns tr uc tio n En gi ne er in g R es ea rc h La bo ra...Prevention and Control Program ERDC/CERL TR-16-27 December 2016 Demonstration and Validation of Two-Coat High- Performance Coating System for Steel ...Performance Coating System for Steel Structures in Corrosive Environments” ERDC/CERL TR-16-27 ii Abstract Department of Defense (DoD) installations
2017-05-01
ER D C/ CE RL T R- 17 -1 0 DoD Corrosion Prevention and Control Program Investigation of Hydrophobic Concrete Additive for Seawall...Control Program ERDC/CERL TR-17-10 May 2017 Investigation of Hydrophobic Concrete Additive for Seawall Replacement at Pililaau Army Recreation Center...Prevention and Control Program project was to demonstrate the long-term performance of an ultrahydrophobic concrete additive that blocks water intrusion and
Monitoring corrosion and chemistry phenomena in supercritical aqueous systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macdonald, D.D.; Pang, J.; Liu, C.
1994-12-31
The in situ monitoring of the chemistry and electrochemistry of aqueous heat transport fluids in thermal (nuclear and fossil) power plants is now considered essential if adequate assessment and close control of corrosion and mass transfer phenomena are to be achieved. Because of the elevated temperatures and pressures involved. new sensor technologies are required that are able to measure key parameters under plant operating conditions for extended periods of time. In this paper, the authors outline a research and development program that is designed to develop practical sensors for use in thermal power plants. The current emphasis is on sensorsmore » for measuring corrosion potential, pH, the concentrations of oxygen and hydrogen, and the electrochemical noise generated by corrosion processes at temperatures ranging from {approximately}250 C to 500 C. The program is currently at the laboratory stage, but testing of prototype sensors in a coal-fired supercritical power plant in Spain will begin shortly.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, J; Haslam, J; Wong, F
2007-09-19
The multi-institutional High Performance Corrosion Resistant Materials (HPCRM) Team is cosponsored by the Defense Advanced Projects Agency (DARPA) Defense Science Office (DSO) and the Department of Energy (DOE) Office of Civilian Radioactive Waste Management (OCRWM), and has developed new corrosion-resistant, iron-based amorphous metals that can be applied as coatings with advanced thermal spray technology. Two compositions have corrosion resistance superior to wrought nickel-based Alloy C-22 (UNS No. N06022) in very aggressive environments, including concentrated calcium-chloride brines at elevated temperature. Corrosion costs the Department of Defense billions of dollars every year, with an immense quantity of material in various structures undergoingmore » corrosion. For example, in addition to fluid and seawater piping, ballast tanks, and propulsions systems, approximately 345 million square feet of structure aboard naval ships and crafts require costly corrosion control measures. The use of advanced corrosion-resistant materials to prevent the continuous degradation of this massive surface area would be extremely beneficial. The Fe-based corrosion-resistant, amorphous-metal coatings under development may prove of importance for applications on ships. Such coatings could be used as an 'integral drip shield' on spent fuel containers, as well as protective coatings that could be applied over welds, thereby preventing exposure to environments that might cause stress corrosion cracking. In the future, such new high-performance iron-based materials could be substituted for more-expensive nickel-based alloys, thereby enabling a reduction in the $58-billion life cycle cost for the long-term storage of the Nation's spent nuclear fuel by tens of percent.« less
Analysis of tank 7 surface supernatant sample (FTF-7-15-26) in support of corrosion control program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oji, L. N
2015-10-01
This report provides the results of analyses on Savannah River Site Tank 7 surface supernatant liquid sample in support of the Corrosion Control Program (CCP). The measured nitrate, nitrite and free-hydroxide concentrations for the Tank 7 surface sample averaged, 3.74E-01 ± 1.88E-03, 4.17E-01 ± 9.01E-03 and 0.602 ± 0.005 M, respectively. The Tank 7 surface cesium-137, sodium and silicon concentrations were, respectively, 3.99E+08, ± 3.25E+06 dpm/mL, 2.78 M and <3.10 mg/L. The measured aluminum concentration in the Tank 7 surface sample averaged 0.11 M.
Automated Corrosion Detection Program
2001-10-01
More detailed explanations of the methodology development can be found in Hidden Corrosion Detection Technology Assessment, a paper presented at...Detection Program, a paper presented at the Fourth Joint DoD/FAA/NASA Conference on Aging Aircraft, 2000. AS&M PULSE. The PULSE system, developed...selection can be found in The Evaluation of Hidden Corrosion Detection Technologies on the Automated Corrosion Detection Program, a paper presented
Progress in Hanford's Double-Shell Tank Integrity Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryson, D.C.; Washenfelder, D.J.; Boomer, K.D.
2008-07-01
The U.S. Department of Energy's Office of River Protection has an extensive integrity assessment program for the Hanford Site Double-Shell Tank System. The DOE Orders and environmental protection regulations provide the guidelines for the activities used to inspect and maintain 28 double-shell tanks (DSTs), the waste evaporator, and ancillary equipment that compose this system. This program has been reviewed by oversight and regulatory bodies and found to comply with the established guidelines. The basis for the DOE Order 435.1-1 for tank integrity comes from the Tank Structural Integrity Panel led by Brookhaven National Laboratory during the late 1990's. These guidelinesmore » established criteria for performing Non-Destructive Examination (NDE), for acceptance of the NDE results, for waste chemistry control, and for monitoring the tanks. The environmental regulations mirror these requirements and allow for the tank integrity program to provide compliant storage of the tanks. Both sets of requirements provide additional guidance for the protection of ancillary equipment. CH2M HILL uses two methods of NDE: visual inspection and Ultrasonic Testing (UT). The visual inspection program examines the primary tank and secondary liner of the DST. The primary tank is examined both on the interior surface above the waste in the tank and on the exterior surface facing the annulus of the DST. The interior surface of the tank liner is examined at the same time as the outer surface of the primary tank. The UT program examines representative areas of the primary tank and secondary liner by deploying equipment in the annulus of the tank. Both programs have led to the development of new equipment for remote inspection of the tanks. Compact camera and enhanced lighting systems have been designed and deployed through narrow access ports (called risers) into the tanks. The UT program has designed two generations of crawlers and equipment for deployment through risers into the thermally hot and radioactive environment. Also extensions were developed to allow inspection of the tank's curve upper (haunch) and lower (knuckle) surfaces. CH2M HILL primarily maintains chemistry control of the DST by ensuring that the concentrations of hydroxide and nitrite ions are favorable with respect to the nitrate ion concentration in the waste. This control program is supported by an extensive sampling program that obtains samples from the supernatant and solid layers in the tank to ensure compliance with the chemical specification. At DOE direction, CH2M HILL has embarked on a waste chemistry optimization program to enhance the protection of the tank surface and the understanding of the parameters that affect general and localized corrosion in the tanks. Over the past decade, DOE has deployed Electrochemical Noise corrosion probes in the DST to monitor localized corrosion. From the information gathered as part of the chemistry control, new information has been identified about the parameters requiring control to ensure tank integrity. CH2M HILL is deploying a series of corrosion probes to test and employ these parameters to provide real time corrosion monitoring of the DSTs. (authors)« less
Naval Air Warfare Center Aircraft Division Patent Portfolio
2012-01-01
the use of said composition to protect metal from corrosion and mildew. The composition comprises, in parts by weight, from about 20 to 60 parts of...composition (NAVGUARD™) Abstract: The invention relates to an oleaginous corrosion -inhibiting composition, and the use of said composition to protect...electric motors or actuators of the robotic device to thereby control same. In addition, a computer software program is provided for use in the gesture
DOUBLE SHELL TANK (DST) INTEGRITY PROJECT HIGH LEVEL WASTE CHEMISTRY OPTIMIZATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
WASHENFELDER DJ
2008-01-22
The U.S. Department of Energy's Office (DOE) of River Protection (ORP) has a continuing program for chemical optimization to better characterize corrosion behavior of High-Level Waste (HLW). The DOE controls the chemistry in its HLW to minimize the propensity of localized corrosion, such as pitting, and stress corrosion cracking (SCC) in nitrate-containing solutions. By improving the control of localized corrosion and SCC, the ORP can increase the life of the Double-Shell Tank (DST) carbon steel structural components and reduce overall mission costs. The carbon steel tanks at the Hanford Site are critical to the mission of safely managing stored HLWmore » until it can be treated for disposal. The DOE has historically used additions of sodium hydroxide to retard corrosion processes in HLW tanks. This also increases the amount of waste to be treated. The reactions with carbon dioxide from the air and solid chemical species in the tank continually deplete the hydroxide ion concentration, which then requires continued additions. The DOE can reduce overall costs for caustic addition and treatment of waste, and more effectively utilize waste storage capacity by minimizing these chemical additions. Hydroxide addition is a means to control localized and stress corrosion cracking in carbon steel by providing a passive environment. The exact mechanism that causes nitrate to drive the corrosion process is not yet clear. The SCC is less of a concern in the newer stress relieved double shell tanks due to reduced residual stress. The optimization of waste chemistry will further reduce the propensity for SCC. The corrosion testing performed to optimize waste chemistry included cyclic potentiodynamic volarization studies. slow strain rate tests. and stress intensity factor/crack growth rate determinations. Laboratory experimental evidence suggests that nitrite is a highly effective:inhibitor for pitting and SCC in alkaline nitrate environments. Revision of the corrosion control strategies to a nitrite-based control, where there is no constant depletion mechanism as with hydroxide, should greatly enhance tank lifetime, tank space availability, and reduce downstream reprocessing costs by reducing chemical addition to the tanks.« less
DEVELOPMENT OF AN ENVIRONMENTALLY BENIGN MICROBIAL INHIBITOR TO CONTROL INTERNAL PIPELINE CORROSION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bill W. Bogan; Brigid M. Lamb; Gemma Husmillo
The overall program objective is to develop and evaluate environmentally benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is to develop one or more environmentally benign (a.k.a. ''green'') products that can be applied to maintain the structure and dependability of the natural gas infrastructure. Various chemicals that inhibit the growth and/or the metabolism of corrosion-associated microbes such as sulfate reducing bacteria, denitrifying bacteria, and methanogenic bacteria were evaluated to determine their ability to inhibit corrosion in experiments utilizing puremore » and mixed bacterial cultures, and planktonic cultures as well as mature biofilms. Planktonic cultures are easier to inhibit than mature biofilms but several compounds were shown to be effective in decreasing the amount of metal corrosion. Of the compounds tested hexane extracts of Capsicum pepper plants and molybdate were the most effective inhibitors of sulfate reducing bacteria, bismuth nitrate was the most effective inhibitor of nitrate reducing bacteria, and 4-((pyridine-2-yl)methylamino)benzoic acid (PMBA) was the most effective inhibitor of methanogenic bacteria. All of these compounds were demonstrated to minimize corrosion due to MIC, at least in some circumstances. The results obtained in this project are consistent with the hypothesis that any compound that disrupts the metabolism of any of the major microbial groups present in corrosion-associated biofilms shows promise in limiting the amount/rate of corrosion. This approach of controlling MIC by controlling the metabolism of biofilms is more environmentally benign than the current approach involving the use of potent biocides, and warrants further investigation.« less
EVELOPMENT OF AN ENVIRONMENTALLY BENIGN MICROBIAL INHIBITOR TO CONTROL INTERNAL PIPELINE CORROSION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bill W. Bogan; Wendy R. Sullivan; Kristine M. H. Cruz
2004-04-30
The overall program objective is to develop and evaluate environmentally benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is to develop one or more environmentally benign (a.k.a. ''green'') products that can be applied to maintain the structure and dependability of the natural gas infrastructure. Previous testing of pepper extracts resulted in preliminary data indicating that some pepper extracts inhibit the growth of some corrosion-associated microorganisms. This quarter additional tests were performed to more specifically investigate the ability of threemore » pepper extracts to inhibit the growth, and to influence the metal corrosion caused by two microbial species: Desulfovibrio vulgaris, and Comomonas denitrificans. All three pepper extracts rapidly killed Desulfovibrio vulgaris, but did not appear to inhibit Comomonas denitrificans. While corrosion rates were at control levels in experiments with Desulfovibrio vulgaris that received pepper extract, corrosion rates were increased in the presence of Comomonas denitrificans plus pepper extract. Further testing with a wider range of pure bacterial cultures, and more importantly, with mixed bacterial cultures should be performed to determine the potential effectiveness of pepper extracts to inhibit MIC.« less
CALIFORNIA'S FIRST AERATION PLANTS FOR CORROSION CONTROL
As required by the Lead and Copper Rule (LCR), Idyllwild Water District (IWD) and Pine Cove Water District (PCWD) conducted a sampling and testing program in 1993-1994. The program began with an evaluation of local household plumbing to identify 20 sites in each District which wo...
Edwards, M
2004-01-01
It is argued that the water distribution system will be a key public health battlefield of the 21st century. Corrosion in private plumbing is deserving of special attention, since the health and economic impacts are probably of equal or greater magnitude compared to public systems, and there has not been an advocate working on behalf of the consumer to solve these problems. To better serve society in this endeavour we will need educational programs, aggressive research to minimize the unsustainable costs of corrosion, and to consider our legacy to future generations when making decisions on materials use.
Expert Panel Recommendations for Hanford Double-Shell Tank Life Extension
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, Charles W; Bush, Spencer H; Berman, Herbert Stanton
2001-06-29
Expert workshops were held in Richland in May 2001 to review the Hanford Double-Shell Tank Integrity Project and make recommendations to extend the life of Hanford's double-shell waste tanks. The workshop scope was limited to corrosion of the primary tank liner, and the main areas for review were waste chemistry control, tank inspection, and corrosion monitoring. Participants were corrosion experts from Hanford, Savannah River Site, Brookhaven National Lab., Pacific Northwest National Lab., and several consultants. This report describes the current state of the three areas of the program, the final recommendations of the workshop, and the rationale for their selection.
49 CFR 195.589 - What corrosion control information do I have to maintain?
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false What corrosion control information do I have to... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.589 What corrosion control... sufficient detail to demonstrate the adequacy of corrosion control measures or that corrosion requiring...
49 CFR 195.589 - What corrosion control information do I have to maintain?
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false What corrosion control information do I have to... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.589 What corrosion control... sufficient detail to demonstrate the adequacy of corrosion control measures or that corrosion requiring...
49 CFR 195.589 - What corrosion control information do I have to maintain?
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false What corrosion control information do I have to... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.589 What corrosion control... sufficient detail to demonstrate the adequacy of corrosion control measures or that corrosion requiring...
49 CFR 195.589 - What corrosion control information do I have to maintain?
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false What corrosion control information do I have to... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.589 What corrosion control... sufficient detail to demonstrate the adequacy of corrosion control measures or that corrosion requiring...
49 CFR 195.589 - What corrosion control information do I have to maintain?
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false What corrosion control information do I have to... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.589 What corrosion control... sufficient detail to demonstrate the adequacy of corrosion control measures or that corrosion requiring...
Computer-Aided Corrosion Program Management
NASA Technical Reports Server (NTRS)
MacDowell, Louis
2010-01-01
This viewgraph presentation reviews Computer-Aided Corrosion Program Management at John F. Kennedy Space Center. The contents include: 1) Corrosion at the Kennedy Space Center (KSC); 2) Requirements and Objectives; 3) Program Description, Background and History; 4) Approach and Implementation; 5) Challenges; 6) Lessons Learned; 7) Successes and Benefits; and 8) Summary and Conclusions.
Inspection of aging aircraft: A manufacturer's perspective
NASA Technical Reports Server (NTRS)
Hagemaier, Donald J.
1992-01-01
Douglas, in conjunction with operators and regulators, has established interrelated programs to identify and address issues regarding inspection of aging aircraft. These inspection programs consist of the following: Supplemental Inspection Documents; Corrosion Prevention and Control Documents; Repair Assessment Documents; and Service Bulletin Compliance Documents. In addition, airframe manufacturers perform extended airframe fatigue tests to deal with potential problems before they can develop in the fleet. Lastly, nondestructive inspection (NDI) plays a role in all these programs through the detection of cracks, corrosion, and disbonds. However, improved and more cost effective NDI methods are needed. Some methods such as magneto-optic imaging, electronic shearography, Diffractor-Sight, and multi-parameter eddy current testing appear viable for near-term improvements in NDI of aging aircraft.
Stress Corrosion Evaluation of Nitinol 60 for the International Space Station Water Recycling System
NASA Technical Reports Server (NTRS)
Torres, P. D.
2016-01-01
A stress corrosion cracking (SCC) evaluation of Nitinol 60 was performed because this alloy is considered a candidate bearing material for the Environmental Control and Life Support System (ECLSS), specifically in the Urine Processing Assembly of the International Space Station. An SCC evaluation that preceded this one during the 2013-2014 timeframe included various alloys: Inconel 625, Hastelloy C-276, titanium (Ti) commercially pure (CP), Ti 6Al-4V, extra-low interstitial (ELI) Ti 6Al-4V, and Cronidur 30. In that evaluation, most specimens were exposed for a year. The results of that evaluation were published in NASA/TM-2015-218206, entitled "Stress Corrosion Evaluation of Various Metallic Materials for the International Space Station Water Recycling System,"1 available at the NASA Scientific and Technical Information program web page: http://www.sti.nasa.gov. Nitinol 60 was added to the test program in 2014.
49 CFR 192.491 - Corrosion control records.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Corrosion control records. 192.491 Section 192.491... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.491 Corrosion... detail to demonstrate the adequacy of corrosion control measures or that a corrosive condition does not...
49 CFR 192.491 - Corrosion control records.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false Corrosion control records. 192.491 Section 192.491... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.491 Corrosion... detail to demonstrate the adequacy of corrosion control measures or that a corrosive condition does not...
49 CFR 192.491 - Corrosion control records.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Corrosion control records. 192.491 Section 192.491... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.491 Corrosion... detail to demonstrate the adequacy of corrosion control measures or that a corrosive condition does not...
49 CFR 192.491 - Corrosion control records.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Corrosion control records. 192.491 Section 192.491... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.491 Corrosion... detail to demonstrate the adequacy of corrosion control measures or that a corrosive condition does not...
49 CFR 192.491 - Corrosion control records.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Corrosion control records. 192.491 Section 192.491... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.491 Corrosion... detail to demonstrate the adequacy of corrosion control measures or that a corrosive condition does not...
Virtual Instrumentation Corrosion Controller for Natural Gas Pipelines
NASA Astrophysics Data System (ADS)
Gopalakrishnan, J.; Agnihotri, G.; Deshpande, D. M.
2012-12-01
Corrosion is an electrochemical process. Corrosion in natural gas (methane) pipelines leads to leakages. Corrosion occurs when anode and cathode are connected through electrolyte. Rate of corrosion in metallic pipeline can be controlled by impressing current to it and thereby making it to act as cathode of corrosion cell. Technologically advanced and energy efficient corrosion controller is required to protect natural gas pipelines. Proposed virtual instrumentation (VI) based corrosion controller precisely controls the external corrosion in underground metallic pipelines, enhances its life and ensures safety. Designing and development of proportional-integral-differential (PID) corrosion controller using VI (LabVIEW) is carried out. When the designed controller is deployed at field, it maintains the pipe to soil potential (PSP) within safe operating limit and not entering into over/under protection zone. Horizontal deployment of this technique can be done to protect all metallic structure, oil pipelines, which need corrosion protection.
A Multifunctional Smart Coating for Autonomous Corrosion Control
NASA Technical Reports Server (NTRS)
Calle, Luz Marina; Buhrow, Jerry W.; Jolley, Scott T.
2012-01-01
Corrosion is a destructive process that often causes failure in metallic components and structures. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to control it. The multi-functionality of the coating is based on micro-encapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of other existing microcapsules designs, the corrosion controlled release function that allows the delivery of corrosion indicators and inhibitors on demand only when and where needed. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection efficacy. This
A Multifunctional Coating for Autonomous Corrosion Control
NASA Technical Reports Server (NTRS)
Calle, Luz M.; Hintze, Paul E.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott T.
2010-01-01
Corrosion is a destructive process that often causes failure in metallic components and structures. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of other existing microcapsules designs, the corrosion controlled release function that allows the delivery of corrosion indicators and inhibitors on demand only when and where they are needed. Corrosion indicators as well as corrosion inhibitors have been incorporated into the microcapsules, blended into several paint systems, and tested for corrosion detection and protection efficacy.
Apollo experience report: The problem of stress-corrosion cracking
NASA Technical Reports Server (NTRS)
Johnson, R. E.
1973-01-01
Stress-corrosion cracking has been the most common cause of structural-material failures in the Apollo Program. The frequency of stress-corrosion cracking has been high and the magnitude of the problem, in terms of hardware lost and time and money expended, has been significant. In this report, the significant Apollo Program experiences with stress-corrosion cracking are discussed. The causes of stress-corrosion cracking and the corrective actions are discussed, in terminology familiar to design engineers and management personnel, to show how stress-corrosion cracking can be prevented.
49 CFR 192.461 - External corrosion control: Protective coating.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: Protective coating... for Corrosion Control § 192.461 External corrosion control: Protective coating. (a) Each external protective coating, whether conductive or insulating, applied for the purpose of external corrosion control...
49 CFR 192.461 - External corrosion control: Protective coating.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false External corrosion control: Protective coating... for Corrosion Control § 192.461 External corrosion control: Protective coating. (a) Each external protective coating, whether conductive or insulating, applied for the purpose of external corrosion control...
Corrosion Control in the US Navy: Ships & USMC Vehicles
2014-11-18
Mr. Matthew Koch Corrosion Control & Prevention Executive Presented by E. Dail Thomas II, Consultant 18 November 2014 Corrosion Control in... control number. 1. REPORT DATE 18 NOV 2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Corrosion Control in...and Technology DoD Corrosion Prevention and Control IPT Director, Corrosion Policy and Oversight USD Acquisition, Technology and Logistics ASD
A Multifunctional Coating for Autonomous Corrosion Control
NASA Technical Reports Server (NTRS)
Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott t.
2011-01-01
Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of existing microcapsulation designs, the corrosion controlled release function that triggers the delivery of corrosion indicators and inhibitors on demand, only when and where needed. Microencapsulation of self-healing agents for autonomous repair of mechanical damage to the coating is also being pursued. Corrosion indicators, corrosion inhibitors, as well as self-healing agents, have been encapsulated and dispersed into several paint systems to test the corrosion detection, inhibition, and self-healing properties of the coating. Key words: Corrosion, coating, autonomous corrosion control, corrosion indication, corrosion inhibition, self-healing coating, smart coating, multifunctional coating, microencapsulation.
49 CFR 192.467 - External corrosion control: Electrical isolation.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false External corrosion control: Electrical isolation... for Corrosion Control § 192.467 External corrosion control: Electrical isolation. (a) Each buried or... pipeline is necessary to facilitate the application of corrosion control. (c) Except for unprotected copper...
49 CFR 192.467 - External corrosion control: Electrical isolation.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: Electrical isolation... for Corrosion Control § 192.467 External corrosion control: Electrical isolation. (a) Each buried or... pipeline is necessary to facilitate the application of corrosion control. (c) Except for unprotected copper...
Cyclic Polarization Behavior of ASTM A537-Cl.1 Steel in the Vapor Space Above Simulated Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiersma, B
2004-11-01
An assessment of the potential degradation mechanisms of Types I and II High-Level Waste (HLW) Tanks determined that pitting corrosion and stress corrosion cracking were the two most significant degradation mechanisms. Specifically, nitrate induced stress corrosion cracking was determined to be the principal degradation mechanism for the primary tank steel of non-stress relieved tanks. Controls on the solution chemistry have been in place to preclude the initiation and propagation of degradation in the tanks. However, recent experience has shown that steel not in contact with the bulk waste solution or slurry, but exposed to the ''vapor space'' above the bulkmore » waste, may be vulnerable to the initiation and propagation of degradation, including pitting and stress corrosion cracking. A program to resolve the issues associated with potential vapor space corrosion is in place. The objective of the program is to develop understanding of vapor space (VSC) and liquid/air interface (LAIC) corrosion to ensure a defensible technical basis to provide accurate corrosion evaluations with regard to vapor space and liquid/air interface corrosion (similar to current evaluations). There are several needs for a technically defensible basis with sufficient understanding to perform these evaluations. These include understanding of the (1) surface chemistry evolution, (2) corrosion response through coupon testing, and (3) mechanistic understanding through electrochemical studies. Experimentation performed in FY02 determined the potential for vapor space and liquid/air interface corrosion of ASTM A285-70 and ASTM A537-Cl.1 steels. The material surface characteristics, i.e. mill-scale, polished, were found to play a key role in the pitting response. The experimentation indicated that the potential for limited vapor space and liquid/air interface pitting exists at 1.5M nitrate solution when using chemistry controls designed to prevent stress corrosion cracking. Experimentation performed in FY03 quantified pitting rates as a function of material surface characteristics, including mill-scale and defects within the mill-scale. Testing was performed on ASTM A537-Cl.1 (normalized) steel, the material of construction of the Type III HLW tanks. The pitting rates were approximately 3 mpy for exposure above inhibited solutions, as calculated from the limited exposure times. This translates to a penetration time of 166 years for a 0.5-in tank wall provided that the pitting rate remains constant and the bulk solution chemistry is maintained within the L3 limit. The FY04 testing consisted of electrochemical testing to potentially lend insight into the surface chemistry and further understand the corrosion mechanism in the vapor space. Electrochemical testing lends insight into the corrosion processes through the determination of current potential relationships. The results of the electrochemical testing performed during FY04 are presented here.« less
Prediction and Computation of Corrosion Rates of A36 Mild Steel in Oilfield Seawater
NASA Astrophysics Data System (ADS)
Paul, Subir; Mondal, Rajdeep
2018-04-01
The parameters which primarily control the corrosion rate and life of steel structures are several and they vary across the different ocean and seawater as well as along the depth. While the effect of single parameter on corrosion behavior is known, the conjoint effects of multiple parameters and the interrelationship among the variables are complex. Millions sets of experiments are required to understand the mechanism of corrosion failure. Statistical modeling such as ANN is one solution that can reduce the number of experimentation. ANN model was developed using 170 sets of experimental data of A35 mild steel in simulated seawater, varying the corrosion influencing parameters SO4 2-, Cl-, HCO3 -,CO3 2-, CO2, O2, pH and temperature as input and the corrosion current as output. About 60% of experimental data were used to train the model, 20% for testing and 20% for validation. The model was developed by programming in Matlab. 80% of the validated data could predict the corrosion rate correctly. Corrosion rates predicted by the ANN model are displayed in 3D graphics which show many interesting phenomenon of the conjoint effects of multiple variables that might throw new ideas of mitigation of corrosion by simply modifying the chemistry of the constituents. The model could predict the corrosion rates of some real systems.
49 CFR 195.559 - What coating material may I use for external corrosion control?
Code of Federal Regulations, 2011 CFR
2011-10-01
... corrosion control? 195.559 Section 195.559 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.559 What coating material may I use for external corrosion control? Coating material for external corrosion control under...
49 CFR 195.559 - What coating material may I use for external corrosion control?
Code of Federal Regulations, 2010 CFR
2010-10-01
... corrosion control? 195.559 Section 195.559 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.559 What coating material may I use for external corrosion control? Coating material for external corrosion control under...
49 CFR 195.559 - What coating material may I use for external corrosion control?
Code of Federal Regulations, 2014 CFR
2014-10-01
... corrosion control? 195.559 Section 195.559 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.559 What coating material may I use for external corrosion control? Coating material for external corrosion control under...
49 CFR 195.559 - What coating material may I use for external corrosion control?
Code of Federal Regulations, 2012 CFR
2012-10-01
... corrosion control? 195.559 Section 195.559 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.559 What coating material may I use for external corrosion control? Coating material for external corrosion control under...
49 CFR 195.559 - What coating material may I use for external corrosion control?
Code of Federal Regulations, 2013 CFR
2013-10-01
... corrosion control? 195.559 Section 195.559 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.559 What coating material may I use for external corrosion control? Coating material for external corrosion control under...
Even minimally or moderately corrosive water can cause unacceptable and dangerous lead contamination to be released from common plumbing materials and devices into drinking water. Designing sampling programs to uncover the potential for ingestion of lead in water and to protect ...
Internal Corrosion and Deposition Control
This chapter reviews the current knowledge of the science of corrosion control and control of scaling in drinking water systems. Topics covered include: types of corrosion; physical, microbial and chemical factors influencing corrosion; corrosion of specific materials; direct ...
49 CFR 192.475 - Internal corrosion control: General.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false Internal corrosion control: General. 192.475... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.475 Internal corrosion control: General. (a) Corrosive gas may not be transported by...
49 CFR 192.475 - Internal corrosion control: General.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Internal corrosion control: General. 192.475... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.475 Internal corrosion control: General. (a) Corrosive gas may not be transported by...
49 CFR 192.477 - Internal corrosion control: Monitoring.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Internal corrosion control: Monitoring. 192.477... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.477 Internal corrosion control: Monitoring. If corrosive gas is being transported, coupons...
49 CFR 192.477 - Internal corrosion control: Monitoring.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false Internal corrosion control: Monitoring. 192.477... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.477 Internal corrosion control: Monitoring. If corrosive gas is being transported, coupons...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hay, M. S.
Savannah River National Laboratory analyzed samples from Tank 38H and Tank 43H to support Enrichment Control Program and Corrosion Control Program. The total uranium in the Tank 38H samples ranged from 20.5 to 34.0 mg/L while the Tank 43H samples ranged from 47.6 to 50.6 mg/L. The U-235 percentage ranged from 0.62% to 0.64% over the four samples. The total uranium and percent U-235 results appear consistent with previous Tank 38H and Tank 43H uranium measurements. The Tank 38H plutonium results show a large difference between the surface and sub-surface sample concentrations and a somewhat higher concentration than previous sub-surfacemore » samples. The two Tank 43H samples show similar plutonium concentrations and are within the range of values measured on previous samples. The plutonium results may be biased high due to the presence of plutonium contamination in the blank samples from the cell sample preparations. The four samples analyzed show silicon concentrations ranging from 47.9 to 105 mg/L.« less
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: Buried or submerged... SAFETY STANDARDS Requirements for Corrosion Control § 192.455 External corrosion control: Buried or... against external corrosion, including the following: (1) It must have an external protective coating...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false External corrosion control: Buried or submerged... SAFETY STANDARDS Requirements for Corrosion Control § 192.457 External corrosion control: Buried or... areas in which active corrosion is found: (1) Bare or ineffectively coated transmission lines. (2) Bare...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: Buried or submerged... SAFETY STANDARDS Requirements for Corrosion Control § 192.457 External corrosion control: Buried or... areas in which active corrosion is found: (1) Bare or ineffectively coated transmission lines. (2) Bare...
49 CFR 192.459 - External corrosion control: Examination of buried pipeline when exposed.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: Examination of buried... Requirements for Corrosion Control § 192.459 External corrosion control: Examination of buried pipeline when... portion must be examined for evidence of external corrosion if the pipe is bare, or if the coating is...
49 CFR 192.459 - External corrosion control: Examination of buried pipeline when exposed.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false External corrosion control: Examination of buried... Requirements for Corrosion Control § 192.459 External corrosion control: Examination of buried pipeline when... portion must be examined for evidence of external corrosion if the pipe is bare, or if the coating is...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false External corrosion control: Buried or submerged... SAFETY STANDARDS Requirements for Corrosion Control § 192.457 External corrosion control: Buried or... areas in which active corrosion is found: (1) Bare or ineffectively coated transmission lines. (2) Bare...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false External corrosion control: Buried or submerged... SAFETY STANDARDS Requirements for Corrosion Control § 192.455 External corrosion control: Buried or... against external corrosion, including the following: (1) It must have an external protective coating...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false External corrosion control: Buried or submerged... SAFETY STANDARDS Requirements for Corrosion Control § 192.455 External corrosion control: Buried or... against external corrosion, including the following: (1) It must have an external protective coating...
49 CFR 192.459 - External corrosion control: Examination of buried pipeline when exposed.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false External corrosion control: Examination of buried... Requirements for Corrosion Control § 192.459 External corrosion control: Examination of buried pipeline when... portion must be examined for evidence of external corrosion if the pipe is bare, or if the coating is...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false External corrosion control: Buried or submerged... SAFETY STANDARDS Requirements for Corrosion Control § 192.455 External corrosion control: Buried or... against external corrosion, including the following: (1) It must have an external protective coating...
49 CFR 192.459 - External corrosion control: Examination of buried pipeline when exposed.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false External corrosion control: Examination of buried... Requirements for Corrosion Control § 192.459 External corrosion control: Examination of buried pipeline when... portion must be examined for evidence of external corrosion if the pipe is bare, or if the coating is...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false External corrosion control: Buried or submerged... SAFETY STANDARDS Requirements for Corrosion Control § 192.457 External corrosion control: Buried or... areas in which active corrosion is found: (1) Bare or ineffectively coated transmission lines. (2) Bare...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false External corrosion control: Buried or submerged... SAFETY STANDARDS Requirements for Corrosion Control § 192.457 External corrosion control: Buried or... areas in which active corrosion is found: (1) Bare or ineffectively coated transmission lines. (2) Bare...
49 CFR 192.459 - External corrosion control: Examination of buried pipeline when exposed.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false External corrosion control: Examination of buried... Requirements for Corrosion Control § 192.459 External corrosion control: Examination of buried pipeline when... portion must be examined for evidence of external corrosion if the pipe is bare, or if the coating is...
pH Responsive Microcapsules for Corrosion Control
NASA Technical Reports Server (NTRS)
Calle, Luz Marina; Li, Wenyan; Muehlberg, Aaron; Boraas, Samuel; Webster, Dean; JohnstonGelling, Victoria; Croll, Stuart; Taylor, S Ray; Contu, Francesco
2008-01-01
The best coatings for corrosion protection provide not only barriers to the environment, but also a controlled release of a corrosion inhibitor, as demanded by the presence of corrosion or mechanical damage. NASA has developed pH sensitive microcapsules (patent pending) that can release their core contents when corrosion starts. The objectives of the research presented here were to encapsulate non-toxic corrosion inhibitors, to incorporate the encapsulated inhibitors into paint formulations, and to test the ability of the paints to control corrosion. Results showed that the encapsulated corrosion inhibitors, specifically Ce(NO3)3 , are effective to control corrosion over long periods of time when incorporated at relatively high pigment volume concentrations into a paint formulation.
49 CFR 193.2631 - Internal corrosion control.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Internal corrosion control. 193.2631 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2631 Internal corrosion control. Each component that is subject to internal corrosive attack must be protected from internal corrosion by— (a...
NASA Technical Reports Server (NTRS)
Lowell, C. E.; Deadmore, D. J.; Santoro, G. J.; Kohl, F. J.
1981-01-01
The effects of trace metal impurities in coal-derived liquids on deposition, high temperature corrosion and fouling were examined. Alloys were burner rig tested from 800 to 1100 C and corrosion was evaluated as a function of potential impurities. Actual and doped fuel test were used to define an empirical life prediction equation. An evaluation of inhibitors to reduce or eliminate accelerated corrosion was made. Barium and strontium were found to limit attack. Intermittent application of the inhibitors or silicon additions were found to be effective techniques for controlling deposition without losing the inhibitor benefits. A computer program was used to predict the dew points and compositions of deposits. These predictions were confirmed in deposition test. The potential for such deposits to plug cooling holes of turbine airfoils was evaluated. Tests indicated that, while a potential problem exists, it strongly depended on minor impurity variations.
NASA Technical Reports Server (NTRS)
Ambrose, John R.
1992-01-01
Software for running a cyclic current reversal polarization voltammagram has been developed for use with a EG&G Princeton Applied Research Model 273 potentiostat/galvanostat system. The program, which controls the magnitude, direction and duration of an impressed galvanostatic current, will produce data in ASCII spreadsheets (Lotus, Quattro) for graphical representation of CCRPV voltammograms. The program was used to determine differences in corrosion resistance of 440 C martenstic stainless steel produced as a result of changes in microstructure effected by tempering. It was determined that tempering at all temperatures above 400 F resulted in increased polarizability of the material, with the increased likelihood that pitting would be initiated upon exposure to marine environments. These results will be used in development of remedial procedures for lowering the susceptibility of these alloys toward the stress corrosion cracking experienced in bearings used in high pressure oxygen turbopumps used in the main engines of space shuttle orbiters.
49 CFR 193.2629 - External corrosion control: buried or submerged components.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: buried or submerged... corrosion control: buried or submerged components. (a) Each buried or submerged component that is subject to external corrosive attack must be protected from external corrosion by— (1) Material that has been designed...
49 CFR 193.2629 - External corrosion control: buried or submerged components.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false External corrosion control: buried or submerged... corrosion control: buried or submerged components. (a) Each buried or submerged component that is subject to external corrosive attack must be protected from external corrosion by— (1) Material that has been designed...
49 CFR 193.2629 - External corrosion control: buried or submerged components.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false External corrosion control: buried or submerged... corrosion control: buried or submerged components. (a) Each buried or submerged component that is subject to external corrosive attack must be protected from external corrosion by— (1) Material that has been designed...
49 CFR 193.2629 - External corrosion control: buried or submerged components.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false External corrosion control: buried or submerged... corrosion control: buried or submerged components. (a) Each buried or submerged component that is subject to external corrosive attack must be protected from external corrosion by— (1) Material that has been designed...
49 CFR 192.473 - External corrosion control: Interference currents.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: Interference currents. 192.473 Section 192.473 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.473 External corrosion control: Interference currents. (a) Each operator...
49 CFR 193.2304 - Corrosion control overview.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Corrosion control overview. 193.2304 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Construction § 193.2304 Corrosion control overview. (a... materials specifications from a corrosion control viewpoint and determines that the materials involved will...
49 CFR 192.463 - External corrosion control: Cathodic protection.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false External corrosion control: Cathodic protection. 192.463 Section 192.463 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.463 External corrosion control: Cathodic protection. (a) Each cathodic...
49 CFR 192.463 - External corrosion control: Cathodic protection.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: Cathodic protection. 192.463 Section 192.463 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.463 External corrosion control: Cathodic protection. (a) Each cathodic...
49 CFR 192.473 - External corrosion control: Interference currents.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false External corrosion control: Interference currents. 192.473 Section 192.473 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.473 External corrosion control: Interference currents. (a) Each operator...
49 CFR 192.463 - External corrosion control: Cathodic protection.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false External corrosion control: Cathodic protection. 192.463 Section 192.463 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.463 External corrosion control: Cathodic protection. (a) Each cathodic...
49 CFR 193.2304 - Corrosion control overview.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Corrosion control overview. 193.2304 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Construction § 193.2304 Corrosion control overview. (a... materials specifications from a corrosion control viewpoint and determines that the materials involved will...
49 CFR 193.2304 - Corrosion control overview.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Corrosion control overview. 193.2304 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Construction § 193.2304 Corrosion control overview. (a... materials specifications from a corrosion control viewpoint and determines that the materials involved will...
49 CFR 192.473 - External corrosion control: Interference currents.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false External corrosion control: Interference currents. 192.473 Section 192.473 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.473 External corrosion control: Interference currents. (a) Each operator...
49 CFR 193.2304 - Corrosion control overview.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Corrosion control overview. 193.2304 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Construction § 193.2304 Corrosion control overview. (a... materials specifications from a corrosion control viewpoint and determines that the materials involved will...
49 CFR 192.473 - External corrosion control: Interference currents.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false External corrosion control: Interference currents. 192.473 Section 192.473 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.473 External corrosion control: Interference currents. (a) Each operator...
49 CFR 192.463 - External corrosion control: Cathodic protection.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false External corrosion control: Cathodic protection. 192.463 Section 192.463 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.463 External corrosion control: Cathodic protection. (a) Each cathodic...
49 CFR 192.463 - External corrosion control: Cathodic protection.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false External corrosion control: Cathodic protection. 192.463 Section 192.463 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.463 External corrosion control: Cathodic protection. (a) Each cathodic...
49 CFR 192.473 - External corrosion control: Interference currents.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false External corrosion control: Interference currents. 192.473 Section 192.473 Transportation Other Regulations Relating to Transportation (Continued... for Corrosion Control § 192.473 External corrosion control: Interference currents. (a) Each operator...
1985-11-30
fri 11 41 CC -j L ii La u 6: Kl9 L : 1 V)VI Go L...COPELAND) were conducted and 211 items were inspected. Of those degraded items, 64 required rework . Lessons learned from the inspections are proving...8217,," " "-" " ".’...’ " "-’,’-’** .* ". " -.- ".’’-"-*"-.-- " "- -" "- .. ’ ."’. . . ". ".".".. .. . . ." "’ "" .""""-"","" * r DISTRIBUTION (Cont’d) NO. OF COPES Commanding Officer, USS
Real-World Water System Lead and Copper Corrosion Control
This presentation provides specific background on lead and copper corrosion control chemistry and strategies, and integrates it with other important distribution system corrosion control objectives. Topics covered include: driving force for corrosion (oxidants); impacts of oxida...
49 CFR 192.479 - Atmospheric corrosion control: General.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Atmospheric corrosion control: General. 192.479... Control § 192.479 Atmospheric corrosion control: General. (a) Each operator must clean and coat each... this section. (b) Coating material must be suitable for the prevention of atmospheric corrosion. (c...
49 CFR 192.481 - Atmospheric corrosion control: Monitoring.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Atmospheric corrosion control: Monitoring. 192.481... Control § 192.481 Atmospheric corrosion control: Monitoring. (a) Each operator must inspect each pipeline or portion of pipeline that is exposed to the atmosphere for evidence of atmospheric corrosion, as...
49 CFR 192.479 - Atmospheric corrosion control: General.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Atmospheric corrosion control: General. 192.479... Control § 192.479 Atmospheric corrosion control: General. (a) Each operator must clean and coat each... this section. (b) Coating material must be suitable for the prevention of atmospheric corrosion. (c...
49 CFR 192.481 - Atmospheric corrosion control: Monitoring.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Atmospheric corrosion control: Monitoring. 192.481... Control § 192.481 Atmospheric corrosion control: Monitoring. (a) Each operator must inspect each pipeline or portion of pipeline that is exposed to the atmosphere for evidence of atmospheric corrosion, as...
49 CFR 192.479 - Atmospheric corrosion control: General.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Atmospheric corrosion control: General. 192.479... Control § 192.479 Atmospheric corrosion control: General. (a) Each operator must clean and coat each... this section. (b) Coating material must be suitable for the prevention of atmospheric corrosion. (c...
49 CFR 192.481 - Atmospheric corrosion control: Monitoring.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Atmospheric corrosion control: Monitoring. 192.481... Control § 192.481 Atmospheric corrosion control: Monitoring. (a) Each operator must inspect each pipeline or portion of pipeline that is exposed to the atmosphere for evidence of atmospheric corrosion, as...
49 CFR 192.465 - External corrosion control: Monitoring.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: Monitoring. 192.465... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.465 External corrosion control: Monitoring. (a) Each pipeline that is under cathodic...
49 CFR 192.469 - External corrosion control: Test stations.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false External corrosion control: Test stations. 192.469... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.469 External corrosion control: Test stations. Each pipeline under cathodic protection...
49 CFR 195.557 - Which pipelines must have coating for external corrosion control?
Code of Federal Regulations, 2011 CFR
2011-10-01
... corrosion control? 195.557 Section 195.557 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.557 Which pipelines must have coating for external corrosion control? Except bottoms of aboveground breakout tanks, each...
49 CFR 192.469 - External corrosion control: Test stations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: Test stations. 192.469... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.469 External corrosion control: Test stations. Each pipeline under cathodic protection...
49 CFR 192.481 - Atmospheric corrosion control: Monitoring.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Atmospheric corrosion control: Monitoring. 192.481... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.481 Atmospheric corrosion control: Monitoring. (a) Each operator must inspect each pipeline...
49 CFR 195.557 - Which pipelines must have coating for external corrosion control?
Code of Federal Regulations, 2012 CFR
2012-10-01
... corrosion control? 195.557 Section 195.557 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.557 Which pipelines must have coating for external corrosion control? Except bottoms of aboveground breakout tanks, each...
49 CFR 192.465 - External corrosion control: Monitoring.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false External corrosion control: Monitoring. 192.465... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.465 External corrosion control: Monitoring. (a) Each pipeline that is under cathodic...
49 CFR 195.557 - Which pipelines must have coating for external corrosion control?
Code of Federal Regulations, 2014 CFR
2014-10-01
... corrosion control? 195.557 Section 195.557 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.557 Which pipelines must have coating for external corrosion control? Except bottoms of aboveground breakout tanks, each...
49 CFR 192.465 - External corrosion control: Monitoring.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false External corrosion control: Monitoring. 192.465... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.465 External corrosion control: Monitoring. (a) Each pipeline that is under cathodic...
49 CFR 192.465 - External corrosion control: Monitoring.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false External corrosion control: Monitoring. 192.465... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.465 External corrosion control: Monitoring. (a) Each pipeline that is under cathodic...
49 CFR 192.469 - External corrosion control: Test stations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false External corrosion control: Test stations. 192.469... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.469 External corrosion control: Test stations. Each pipeline under cathodic protection...
49 CFR 195.557 - Which pipelines must have coating for external corrosion control?
Code of Federal Regulations, 2013 CFR
2013-10-01
... corrosion control? 195.557 Section 195.557 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.557 Which pipelines must have coating for external corrosion control? Except bottoms of aboveground breakout tanks, each...
49 CFR 192.469 - External corrosion control: Test stations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false External corrosion control: Test stations. 192.469... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.469 External corrosion control: Test stations. Each pipeline under cathodic protection...
49 CFR 192.469 - External corrosion control: Test stations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false External corrosion control: Test stations. 192.469... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.469 External corrosion control: Test stations. Each pipeline under cathodic protection...
49 CFR 195.557 - Which pipelines must have coating for external corrosion control?
Code of Federal Regulations, 2010 CFR
2010-10-01
... corrosion control? 195.557 Section 195.557 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.557 Which pipelines must have coating for external corrosion control? Except bottoms of aboveground breakout tanks, each...
49 CFR 192.476 - Internal corrosion control: Design and construction of transmission line.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false Internal corrosion control: Design and... STANDARDS Requirements for Corrosion Control § 192.476 Internal corrosion control: Design and construction of transmission line. (a) Design and construction. Except as provided in paragraph (b) of this...
49 CFR 192.476 - Internal corrosion control: Design and construction of transmission line.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Internal corrosion control: Design and... STANDARDS Requirements for Corrosion Control § 192.476 Internal corrosion control: Design and construction of transmission line. (a) Design and construction. Except as provided in paragraph (b) of this...
49 CFR 192.476 - Internal corrosion control: Design and construction of transmission line.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Internal corrosion control: Design and... STANDARDS Requirements for Corrosion Control § 192.476 Internal corrosion control: Design and construction of transmission line. (a) Design and construction. Except as provided in paragraph (b) of this...
49 CFR 192.476 - Internal corrosion control: Design and construction of transmission line.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Internal corrosion control: Design and... STANDARDS Requirements for Corrosion Control § 192.476 Internal corrosion control: Design and construction of transmission line. (a) Design and construction. Except as provided in paragraph (b) of this...
49 CFR 192.476 - Internal corrosion control: Design and construction of transmission line.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Internal corrosion control: Design and... STANDARDS Requirements for Corrosion Control § 192.476 Internal corrosion control: Design and construction of transmission line. (a) Design and construction. Except as provided in paragraph (b) of this...
40 CFR 141.82 - Description of corrosion control treatment requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 23 2014-07-01 2014-07-01 false Description of corrosion control... § 141.82 Description of corrosion control treatment requirements. Each system shall complete the corrosion control treatment requirements described below which are applicable to such system under § 141.81...
40 CFR 141.82 - Description of corrosion control treatment requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 24 2012-07-01 2012-07-01 false Description of corrosion control... § 141.82 Description of corrosion control treatment requirements. Each system shall complete the corrosion control treatment requirements described below which are applicable to such system under § 141.81...
40 CFR 141.82 - Description of corrosion control treatment requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Description of corrosion control... § 141.82 Description of corrosion control treatment requirements. Each system shall complete the corrosion control treatment requirements described below which are applicable to such system under § 141.81...
40 CFR 141.82 - Description of corrosion control treatment requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 23 2011-07-01 2011-07-01 false Description of corrosion control... § 141.82 Description of corrosion control treatment requirements. Each system shall complete the corrosion control treatment requirements described below which are applicable to such system under § 141.81...
40 CFR 141.82 - Description of corrosion control treatment requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 24 2013-07-01 2013-07-01 false Description of corrosion control... § 141.82 Description of corrosion control treatment requirements. Each system shall complete the corrosion control treatment requirements described below which are applicable to such system under § 141.81...
Development and evaluation of an instantaneous atmospheric corrosion rate monitor
NASA Astrophysics Data System (ADS)
Mansfeld, F.; Jeanjaquet, S. L.; Kendig, M. W.; Roe, D. K.
1985-06-01
A research program was carried out in which a new instantaneous atmospheric corrosion rate monitor (ACRM) was developed and evaluated, and equipment was constructed which will allow the use of many sensors in an economical way in outdoor exposures. In the first task, the ACRM was developed and tested in flow chambers in which relative humidity and gaseous and particulate pollutant levels can be controlled. Diurnal cycles and periods of rain were simulated. The effects of aerosols were studied. A computerized system was used for collection, storage, and analysis of the electrochemical data. In the second task, a relatively inexpensive electronics system for control of the ACRM and measurement of atmospheric corrosion rates was designed and built. In the third task, calibration of deterioration rates of various metallic and nonmetallic materials with the response of the ACRMs attached to these materials was carried out under controlled environmental conditions using the system developed in the second task. A Quality Assurance project plan was prepared with inputs from the Rockwell International Environmental Monitoring and Service Center and Quality Assurance System audits were performed.
Stress Corrosion-Cracking and Corrosion Fatigue Impact of IZ-C17+ Zinc Nickel on 4340 Steel
2017-05-17
REPORT NO: NAWCADPAX/TIM-2016/189 STRESS CORROSION-CRACKING AND CORROSION FATIGUE IMPACT OF IZ-C17+ ZINC-NICKEL ON 4340 STEEL by...CORROSION-CRACKING AND CORROSION FATIGUE IMPACT OF IZ-C17+ ZINC-NICKEL ON 4340 STEEL by Craig Matzdorf Charles Lei Matt Stanley...5a. CONTRACT NUMBER STRESS CORROSION-CRACKING AND CORROSION FATIGUE IMPACT OF IZ-C17+ ZINC-NICKEL ON 4340 STEEL 5b. GRANT NUMBER 5c. PROGRAM
Environmentally Friendly Coating Technology for Autonomous Corrosion Control
NASA Technical Reports Server (NTRS)
Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Johnsey, Marissa N.; Jolley, Scott T.; Pearman, Benjamin P.; Zhang, Xuejun; Fitzpatrick, Lilliana; Gillis, Mathew; Blanton, Michael;
2016-01-01
This work concerns the development of environmentally friendly encapsulation technology, specifically designed to incorporate corrosion indicators, inhibitors, and self-healing agents into a coating, in such a way that the delivery of the indicators and inhibitors is triggered by the corrosion process, and the delivery of self-healing agents is triggered by mechanical damage to the coating. Encapsulation of the active corrosion control ingredients allows the incorporation of desired autonomous corrosion control functions such as: early corrosion detection, hidden corrosion detection, corrosion inhibition, and self-healing of mechanical damage into a coating. The technology offers the versatility needed to include one or several corrosion control functions into the same coating.The development of the encapsulation technology has progressed from the initial proof-of-concept work, in which a corrosion indicator was encapsulated into an oil-core (hydrophobic) microcapsule and shown to be delivered autonomously, under simulated corrosion conditions, to a sophisticated portfolio of micro carriers (organic, inorganic, and hybrid) that can be used to deliver a wide range of active corrosion ingredients at a rate that can be adjusted to offer immediate as well as long-term corrosion control. The micro carriers have been incorporated into different coating formulas to test and optimize the autonomous corrosion detection, inhibition, and self-healing functions of the coatings. This paper provides an overview of progress made to date and highlights recent technical developments, such as improved corrosion detection sensitivity, inhibitor test results in various types of coatings, and highly effective self-healing coatings based on green chemistry.
Materials screening tests for the krypton-85 storage development program
NASA Astrophysics Data System (ADS)
Nagata, P. K.
1981-04-01
The results of a materials testing program for krypton-85 storage techniques are reported. Corrosion and stress corrosion tests were performed on a variety of materials including AISI 4130, Type 316 SS, Type 304 SS, Type 310 SS, Nitronic 50, and alloy A286. Test environments were high-purity liquid rubidium, liquid rubidium contaminated with oxygen, and rubidium hydroxide. Oxygen and water contaminations in liquid rubidium were found to greatly increase both general and localized corrosion of the materials tested. Alloy A286, Type 304 SS, and AISI 4130 were eliminated as candidate materials due to their susceptibility to general corrosion and stress corrosion cracking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
BROWN MH
2008-11-13
Laboratory testing was performed to develop a comprehensive understanding of the corrosivity of the tank wastes stored in Double-Shell Tanks using simulants primarily from Tanks 241-AP-105, 241-SY-103 and 241-AW-105. Additional tests were conducted using simulants of the waste stored in 241-AZ-102, 241-SY-101, 241-AN-107, and 241-AY-101. This test program placed particular emphasis on defining the range of tank waste chemistries that do not induce the onset of localized forms of corrosion, particularly pitting and stress corrosion cracking. This document summarizes the key findings of the research program.
49 CFR 193.2627 - Atmospheric corrosion control.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Atmospheric corrosion control. 193.2627 Section... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2627 Atmospheric corrosion control. Each exposed component that is subject to atmospheric corrosive attack must be protected from...
49 CFR 193.2627 - Atmospheric corrosion control.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Atmospheric corrosion control. 193.2627 Section... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2627 Atmospheric corrosion control. Each exposed component that is subject to atmospheric corrosive attack must be protected from...
49 CFR 193.2627 - Atmospheric corrosion control.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Atmospheric corrosion control. 193.2627 Section... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2627 Atmospheric corrosion control. Each exposed component that is subject to atmospheric corrosive attack must be protected from...
49 CFR 193.2635 - Monitoring corrosion control.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Monitoring corrosion control. 193.2635 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2635 Monitoring corrosion control. Corrosion protection provided as required by this subpart must be periodically monitored to give early...
49 CFR 193.2635 - Monitoring corrosion control.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Monitoring corrosion control. 193.2635 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2635 Monitoring corrosion control. Corrosion protection provided as required by this subpart must be periodically monitored to give early...
49 CFR 193.2635 - Monitoring corrosion control.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Monitoring corrosion control. 193.2635 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2635 Monitoring corrosion control. Corrosion protection provided as required by this subpart must be periodically monitored to give early...
49 CFR 193.2635 - Monitoring corrosion control.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Monitoring corrosion control. 193.2635 Section 193... GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2635 Monitoring corrosion control. Corrosion protection provided as required by this subpart must be periodically monitored to give early...
49 CFR 195.561 - When must I inspect pipe coating used for external corrosion control?
Code of Federal Regulations, 2010 CFR
2010-10-01
... corrosion control? 195.561 Section 195.561 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.561 When must I inspect pipe coating used for external corrosion control? (a) You must inspect all external pipe coating...
49 CFR 192.471 - External corrosion control: Test leads.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 3 2010-10-01 2010-10-01 false External corrosion control: Test leads. 192.471... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.471 External corrosion control: Test leads. (a) Each test lead wire must be connected to the...
49 CFR 192.471 - External corrosion control: Test leads.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false External corrosion control: Test leads. 192.471... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.471 External corrosion control: Test leads. (a) Each test lead wire must be connected to the...
49 CFR 195.561 - When must I inspect pipe coating used for external corrosion control?
Code of Federal Regulations, 2011 CFR
2011-10-01
... corrosion control? 195.561 Section 195.561 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.561 When must I inspect pipe coating used for external corrosion control? (a) You must inspect all external pipe coating...
49 CFR 195.561 - When must I inspect pipe coating used for external corrosion control?
Code of Federal Regulations, 2013 CFR
2013-10-01
... corrosion control? 195.561 Section 195.561 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.561 When must I inspect pipe coating used for external corrosion control? (a) You must inspect all external pipe coating...
49 CFR 195.561 - When must I inspect pipe coating used for external corrosion control?
Code of Federal Regulations, 2014 CFR
2014-10-01
... corrosion control? 195.561 Section 195.561 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.561 When must I inspect pipe coating used for external corrosion control? (a) You must inspect all external pipe coating...
49 CFR 195.561 - When must I inspect pipe coating used for external corrosion control?
Code of Federal Regulations, 2012 CFR
2012-10-01
... corrosion control? 195.561 Section 195.561 Transportation Other Regulations Relating to Transportation...) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.561 When must I inspect pipe coating used for external corrosion control? (a) You must inspect all external pipe coating...
Corrosion Control in the Aerospace Industry
NASA Technical Reports Server (NTRS)
Calle, Luz Marina; Li, Wenyan; Buhrow, Jerry W.; Johnsey, Marissa N.
2016-01-01
Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. It is essential to detect corrosion when it occurs, and preferably at its early stage, so that action can be taken to avoid structural damage or loss of function. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it..
49 CFR 193.2627 - Atmospheric corrosion control.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Atmospheric corrosion control. 193.2627 Section... LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2627 Atmospheric corrosion... atmospheric corrosion by— (a) Material that has been designed and selected to resist the corrosive atmosphere...
THE CANADIAN PERSPECTIVE ON CORROSION CONTROL: HEALTH CANADA'S CORROSION CONTROL GUIDELINE
Health Canada has proposed a Corrosion Control Guideline, based on lead, which is undergoing public consultation and expected to be finalized in 2007. In Canada, there are no regulations and little guidance to address corrosion problems and existing sampling methods are inappropr...
Smart Multifunctional Coatings for Corrosion Detection and Control in the Aerospace Industry
NASA Technical Reports Server (NTRS)
Calle, Luz Marina
2015-01-01
Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. It is essential to detect corrosion when it occurs, and preferably at its early stage, so that action can be taken to avoid structural damage or loss of function. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it.
Catt, Kasey; Li, Huaxiu; Cui, X Tracy
2017-01-15
Magnesium (Mg) is a promising biodegradable implant material because of its appropriate mechanical properties and safe degradation products. However, in vivo corrosion speed and hydrogen gas production need to be controlled for uses in biomedical applications. Here we report the development of a conducting polymer 3,4-ethylenedioxythiphene (PEDOT) and graphene oxide (GO) composite coating as a corrosion control layer. PEDOT/GO was electropolymerized on Mg samples in ethanol media. The coated Mg samples were subjected to various corrosion tests. The PEDOT/GO coating significantly reduced the rate of corrosion as evidenced by lower Mg ion concentration and pH of the corrosion media. In addition, the coating decreased the evolved hydrogen. Electrochemical analysis of the corroding samples showed more positive corrosion potential, a decreased corrosion current, and an increase in the polarization resistance. PEDOT/GO corrosion protection is attributed to three factors; an initial passive layer preventing solution ingress, buildup of negative charges in the film, and formation of corrosion protective Mg phosphate layer through redox coupling with Mg corrosion. To explore the biocompatibility of the coated implants in vitro, corrosion media from PEDOT/GO coated or uncoated Mg samples were exposed to cultured neurons where PEDOT/GO coated samples showed decreased toxicity. These results suggest that PEDOT/GO coating will be an effective treatment for controlling corrosion of Mg based medical implants. Coating Mg substrates with a PEDOT/GO composite coating showed a significant decrease in corrosion rate. While conducting polymer coatings have been used to prevent corrosion on various metals, there has been little work on the use of these coatings for Mg. Additionally, to our knowledge, there has not been a report of the combined used of conducting polymer and GO as a corrosion control layer. Corrosion control is attributed to an initial barrier layer followed by electrochemical coupling of the PEDOT/GO coating with the substrate to facilitate the formation of a protective phosphate layer. This coupling also resulted in a decrease in hydrogen produced during corrosion, which could further improve the host tissue integration of Mg implants. This work elaborates on the potential for electroactive polymers to serve as corrosion control methods. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Space Shuttle Upgrades: Long Life Alkaline Fuel Cell
NASA Technical Reports Server (NTRS)
McCurdy, Kerri
2004-01-01
NASA has utilized the alkaline fuel cell technology to provide electrical power for manned launch vehicles such as Gemini, Apollo, and the Space Shuttle. The current Shuttle alkaline fuel cells are procured from UTC Fuel Cells, a United Technologies Company. The alkaline fuel cells are very reliable but the operating life is limited to 2600 hours due to voltage degradation of the individual cells. The main limiting factor in the life of the cells is corrosion of the cell's fiberglass/epoxy frame by the aqueous potassium hydroxide electrolyte. To reduce operating costs, the orbiter program office approved the Long Life Alkaline Fuel Cell (LLAFC) program as a shuttle upgrade in 1999 to increase the operating life of the fuel cell powerplant to 5000 hours. The LLAFC program incorporates improving the cell by extending the length of the corrosion path, which reduces the cell frame corrosion. UTCFC performed analysis to understand the fundamental mechanisms that drive the cell frame corrosion. The analysis indicated that the corrosion path started along the bond line between the cathode and the cell frame. Analysis also showed that the oxygen available at the cathode, the catalyst on the electrode, and the electrode substrate all supported or intensified the corrosion. The new cell design essentially doubled the corrosion path to mitigate the problem. A 10-cell stack was tested for 5000 hours during the development phase of this program to verify improved cell performance. A complete 96-cell stack was then tested for 5000 hours during the full manned-space qualification phase of this program. Additional upgrades to the powerplant under this program are: replacing the aluminum body in the pressure regulator with stainless steel to reduce corrosion, improving stack insulator plate with improved resistance to stress failure and improved temperature capability, and replacing separator plate elastomer seals with a more durable material and improved seal retention.
System for corrosion monitoring in pipeline applying fuzzy logic mathematics
NASA Astrophysics Data System (ADS)
Kuzyakov, O. N.; Kolosova, A. L.; Andreeva, M. A.
2018-05-01
A list of factors influencing corrosion rate on the external side of underground pipeline is determined. Principles of constructing a corrosion monitoring system are described; the system performance algorithm and program are elaborated. A comparative analysis of methods for calculating corrosion rate is undertaken. Fuzzy logic mathematics is applied to reduce calculations while considering a wider range of corrosion factors.
Recent Developments on Microencapsulation for Autonomous Corrosion Protection
NASA Technical Reports Server (NTRS)
Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Fitzpatrick, Lilliana; Jolley, Scott T.; Surma, Jan M.; Pearman, Benjamin P.; Zhang, Xuejun
2014-01-01
This work concerns recent progress in the development of a multifunctional smart coating based on microencapsulation for the autonomous control of corrosion. Microencapsulation allows the incorporation of desired corrosion control functionalities, such as early corrosion detection and inhibition through corrosion controlled release of corrosion indicators and inhibitors, as well as self-healing agent release when mechanical damage occurs.While proof-of-concept results have been reported previously, more recent efforts have been concentrated in technical developments to improve coating compatibility, synthesis procedure scalability, as well as fine tuning the release property of encapsulated active agents.
A 20 Year Lifecycle Study for Launch Facilities at the Kennedy Space Center
NASA Technical Reports Server (NTRS)
Kolody, Mark R.; Li. Wenyan; Hintze, Paul E.; Calle, Luz-Marina
2009-01-01
The lifecycle cost analysis was based on corrosion costs for the Kennedy Space Center's Launch Complexes and Mobile Launch Platforms. The first step in the study involved identifying the relevant assets that would be included. Secondly, the identification and collection of the corrosion control cost data for the selected assets was completed. Corrosion control costs were separated into four categories. The sources of cost included the NASA labor for civil servant personnel directly involved in overseeing and managing corrosion control of the assets, United Space Alliance (USA) contractual requirements for performing planned corrosion control tasks, USA performance of unplanned corrosion control tasks, and Testing and Development. Corrosion control operations performed under USA contractual requirements were the most significant contributors to the total cost of corrosion. The operations include the inspection of the pad, routine maintenance of the pad, medium and large scale blasting and repainting activities, and the repair and replacement of structural metal elements. Cost data was collected from the years between 2001 and 2007. These costs were then extrapolated to future years to calculate the 20 year lifecycle costs.
Environmentally Preferable Coatings for Structural Steel Project
NASA Technical Reports Server (NTRS)
Lewis, Pattie L. (Editor)
2014-01-01
The Ground Systems Development and Operations (GSDO) Program at NASA John F. Kennedy Space Center (KSC) has the primary objective of modernizing and transforming the launch and range complex at KSC to benefit current and future NASA programs along with other emerging users. Described a the "launch support and infrastructure modernization program" in the NASA Authorization Act of 2010, the GSDO Program will develop and implement shared infrastructure and process improvements to provide more flexible, affordable, and responsive capabilities to a multi-user community. In support of the GSDO Program, the objective of this project is to determine the feasibility of environmentally friendly corrosion resistant coatings for launch facilities and ground support equipment. The focus of the project is corrosion resistance and survivability with the goal to reduce the amount of maintenance required to preserve the performance of launch facilities while reducing mission risk. Number of facilities/structures with metallic structural and non-structural components in a highly corrosive environment. Metals require periodic maintenance activity to guard against the insidious effects of corrosion and thus ensure that structures meet or exceed design or performance life. The standard practice for protecting metallic substrates in atmospheric environments is the application of corrosion protective coating system.
Stress corrosion cracking evaluation of precipitation-hardening stainless steel
NASA Technical Reports Server (NTRS)
Humphries, T. S.; Nelson, E. E.
1970-01-01
Accelerated test program results show which precipitation hardening stainless steels are resistant to stress corrosion cracking. In certain cases stress corrosion susceptibility was found to be associated with the process procedure.
78 FR 58973 - Airworthiness Directives; Dassault Aviation Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-25
... 2000EX type design are included in Dassault Aviation Falcon 2000EX (F2000EX) Aircraft Maintenance Manual... numbers. (d) Subject Air Transport Association (ATA) of America Code 05, Time Limits/ Maintenance Checks... to introduce a corrosion prevention control program, among other changes, to the maintenance...
Smart Coatings for Corrosion Protection
NASA Technical Reports Server (NTRS)
Calle, Luz Marina; Li, Wendy; Buhrow, Jerry W.; Johnsey, Marissa N.
2016-01-01
Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. It is essential to detect corrosion when it occurs, and preferably at its early stage, so that action can be taken to avoid structural damage or loss of function. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional, smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it.
49 CFR 195.583 - What must I do to monitor atmospheric corrosion control?
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false What must I do to monitor atmospheric corrosion... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.583 What must I do to monitor atmospheric corrosion control? (a) You must inspect each pipeline or portion of pipeline that is...
The Mineralogy of Microbiologically Influenced Corrosion
2015-01-01
cathodically active). The biomineralization rate and the corrosion current control oxide accumulation. Localized corrosion current that exceeds the... phosphate ). Localized corrosion would not readily occur unless Cl- was the predominant anion in the medium. They concluded that the Cl- concentration...transforms into goethite and/or hematite over time. For mild steel corrosion under anodic control , manganese oxides elevate con-osion current, but will
77 FR 46940 - Airworthiness Directives; Glasflugel Gliders
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-07
... condition as corrosion damage to the elevator control rod that could lead to failure of the elevator control... into the elevator control rod through a control bore hole and resulted in corrosion damage. The investigation concluded as well that the corrosion cannot be detected from outside the elevator control rod...
Effects of surface chemistry on hot corrosion life
NASA Technical Reports Server (NTRS)
Fryxell, R. E.; Leese, G. E.
1985-01-01
This program has its primary objective: the development of hot corrosion life prediction methodology based on a combination of laboratory test data and evaluation of field service turbine components which show evidence of hot corrosion. The laboratory program comprises burner rig testing by TRW. A summary of results is given for two series of burner rig tests. The life prediction methodology parameters to be appraised in a final campaign of burner rig tests are outlined.
The dual role of microbes in corrosion
Kip, Nardy; van Veen, Johannes A
2015-01-01
Corrosion is the result of a series of chemical, physical and (micro) biological processes leading to the deterioration of materials such as steel and stone. It is a world-wide problem with great societal and economic consequences. Current corrosion control strategies based on chemically produced products are under increasing pressure of stringent environmental regulations. Furthermore, they are rather inefficient. Therefore, there is an urgent need for environmentally friendly and sustainable corrosion control strategies. The mechanisms of microbially influenced corrosion and microbially influenced corrosion inhibition are not completely understood, because they cannot be linked to a single biochemical reaction or specific microbial species or groups. Corrosion is influenced by the complex processes of different microorganisms performing different electrochemical reactions and secreting proteins and metabolites that can have secondary effects. Information on the identity and role of microbial communities that are related to corrosion and corrosion inhibition in different materials and in different environments is scarce. As some microorganisms are able to both cause and inhibit corrosion, we pay particular interest to their potential role as corrosion-controlling agents. We show interesting interfaces in which scientists from different disciplines such as microbiology, engineering and art conservation can collaborate to find solutions to the problems caused by corrosion. PMID:25259571
The dual role of microbes in corrosion.
Kip, Nardy; van Veen, Johannes A
2015-03-01
Corrosion is the result of a series of chemical, physical and (micro) biological processes leading to the deterioration of materials such as steel and stone. It is a world-wide problem with great societal and economic consequences. Current corrosion control strategies based on chemically produced products are under increasing pressure of stringent environmental regulations. Furthermore, they are rather inefficient. Therefore, there is an urgent need for environmentally friendly and sustainable corrosion control strategies. The mechanisms of microbially influenced corrosion and microbially influenced corrosion inhibition are not completely understood, because they cannot be linked to a single biochemical reaction or specific microbial species or groups. Corrosion is influenced by the complex processes of different microorganisms performing different electrochemical reactions and secreting proteins and metabolites that can have secondary effects. Information on the identity and role of microbial communities that are related to corrosion and corrosion inhibition in different materials and in different environments is scarce. As some microorganisms are able to both cause and inhibit corrosion, we pay particular interest to their potential role as corrosion-controlling agents. We show interesting interfaces in which scientists from different disciplines such as microbiology, engineering and art conservation can collaborate to find solutions to the problems caused by corrosion.
Microencapsulation Technologies for Corrosion Protective Coating Applications
NASA Technical Reports Server (NTRS)
Li, Wenyan; Buhrow, Jerry; Jolley, Scott; Calle, Luz; Pearman, Benjamin; Zhang, Xuejun
2015-01-01
Microencapsulation technologies for functional smart Coatings for autonomous corrosion control have been a research area of strong emphasis during the last decade. This work concerns the development of pH sensitive micro-containers (microparticles and microcapsules) for autonomous corrosion control. This paper presents an overview of the state-of-the-art in the field of microencapsulation for corrosion control applications, as well as the technical details of the pH sensitive microcontainer approach, such as selection criteria for corrosion indicators and corrosion inhibitors; the development and optimization of encapsulation methods; function evaluation before and after incorporation of the microcontainers into coatings; and further optimization to improve coating compatibility and performance.
NASA Technical Reports Server (NTRS)
Calle, Luz Marina
2015-01-01
The marine environment at NASAs Kennedy Space Center (KSC) has been documented by ASM International (formerly American Society for Metals) as the most corrosive in North America. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pads were rendered even more severe by the highly corrosive hydrochloric acid (HCl) generated by the solid rocket boosters (SRBs). Numerous failures at the launch pads are caused by corrosion. The structural integrity of ground infrastructure and flight hardware is critical to the success, safety, cost, and sustainability of space missions. NASA has over fifty years of experience dealing with unexpected failures caused by corrosion and has developed expertise in corrosion control in the launch and other environments. The Corrosion Technology Laboratory at KSC evolved, from what started as an atmospheric exposure test site near NASAs launch pads, into a capability that provides technical innovations and engineering services in all areas of corrosion for NASA, external partners, and customers.This paper provides a chronological overview of NASAs role in anticipating, managing, and preventing corrosion in highly corrosive environments. One important challenge in managing and preventing corrosion involves the detrimental impact on humans and the environment of what have been very effective corrosion control strategies. This challenge has motivated the development of new corrosion control technologies that are more effective and environmentally friendly. Strategies for improved corrosion protection and durability can have a huge impact on the economic sustainability of human spaceflight operations.
Corrosion detector apparatus for universal assessment of pollution in data centers
Hamann, Hendrik F.; Klein, Levente I.
2015-08-18
A compact corrosion measurement apparatus and system includes an air fan, a corrosion sensor, a temperature sensor, a humidity sensor, a heater element, and an air flow sensor all under control to monitor and maintain constant air parameters in an environment and minimize environmental fluctuations around the corrosion sensor to overcome the variation commonly encountered in corrosion rate measurement. The corrosion measurement apparatus includes a structure providing an enclosure within which are located the sensors. Constant air flow and temperature is maintained within the enclosure where the corrosion sensor is located by integrating a variable speed air fan and a heater with the corresponding feedback loop control. Temperature and air flow control loops ensure that corrosivity is measured under similar conditions in different facilities offering a general reference point that allow a one to one comparison between facilities with similar or different pollution levels.
Corrosion-Activated Micro-Containers for Environmentally Friendly Corrosion Protective Coatings
NASA Technical Reports Server (NTRS)
Li, Wenyan; Buhrow, J. W.; Zhang, X.; Johnsey, M. N.; Pearman, B. P.; Jolley, S. T.; Calle, L. M.
2016-01-01
This work concerns the development of environmentally friendly encapsulation technology, specifically designed to incorporate corrosion indicators, inhibitors, and self-healing agents into a coating, in such a way that the delivery of the indicators and inhibitors is triggered by the corrosion process, and the delivery of self-healing agents is triggered by mechanical damage to the coating. Encapsulation of the active corrosion control ingredients allows the incorporation of desired autonomous corrosion control functions such as: early corrosion detection, hidden corrosion detection, corrosion inhibition, and self-healing of mechanical damage into a coating. The technology offers the versatility needed to include one or several corrosion control functions into the same coating.The development of the encapsulation technology has progressed from the initial proof-of-concept work, in which a corrosion indicator was encapsulated into an oil-core (hydrophobic) microcapsule and shown to be delivered autonomously, under simulated corrosion conditions, to a sophisticated portfolio of micro carriers (organic, inorganic, and hybrid) that can be used to deliver a wide range of active corrosion ingredients at a rate that can be adjusted to offer immediate as well as long-term corrosion control. The micro carriers have been incorporated into different coating formulas to test and optimize the autonomous corrosion detection, inhibition, and self-healing functions of the coatings. This paper provides an overview of progress made to date and highlights recent technical developments, such as improved corrosion detection sensitivity, inhibitor test results in various types of coatings, and highly effective self-healing coatings based on green chemistry. The NASA Kennedy Space Centers Corrosion Technology Lab at the Kennedy Space Center in Florida, U.S.A. has been developing multifunctional smart coatings based on the microencapsulation of environmentally friendly corrosion indicators, inhibitors and self-healing agents. This allows the incorporation of autonomous corrosion control functionalities, such as corrosion detection and inhibition as well as the self-healing of mechanical damage, into coatings. This paper presents technical details on the characterization of inhibitor-containing particles and their corrosion inhibitive effects using electrochemical and mass loss methods.Three organic environmentally friendly corrosion inhibitors were encapsulated in organic microparticles that are compatible with desired coatings. The release of the inhibitors from the microparticles in basic solution was studied. Fast release, for immediate corrosion protection, as well as long-term release for continued protection, was observed.The inhibition efficacy of the inhibitors, incorporated directly and in microparticles, on carbon steel was evaluated. Polarization curves and mass loss measurements showed that, in the case of 2MBT, its corrosion inhibition effectiveness was greater when it was delivered from microparticles.
Improvement of the linear polarization resistance method for testing steel corrosion inhibitors
NASA Astrophysics Data System (ADS)
Faritov, A. T.; Rozhdestvenskii, Yu. G.; Yamshchikova, S. A.; Minnikhanova, E. R.; Tyusenkov, A. S.
2016-11-01
The linear polarization resistance method is used to improve the technique of corrosion control in liquid conducting according to GOST 9.514-99 (General Corrosion and Aging Protection System. Corrosion Inhibitors for Metals in Water Systems. Electrochemical Method of Determining the Protective Ability). Corrosion monitoring is shown to be performed by electronic devices with real-time data transfer to industrial controllers and SCADA systems.
Air Force Civil Engineer, Volume 9, Number 1, Spring 2001
2001-01-01
generated some important lessons learned. The Gulf War was a wakeup call for contingency training. When it began, many in CE had never trained on bare...square foot, corrosion control facility at Charleston Air Force Base, S.C. Construction is scheduled for comple- tion in early 2002. The facility is...Rhein Main Transition Program. This program, scheduled for completion in 2005, transfers operational capability from Rhein Main AB to Spangdahlem and
49 CFR 195.583 - What must I do to monitor atmospheric corrosion control?
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false What must I do to monitor atmospheric corrosion... monitor atmospheric corrosion control? (a) You must inspect each pipeline or portion of pipeline that is exposed to the atmosphere for evidence of atmospheric corrosion, as follows: If the pipeline islocated...
49 CFR 195.583 - What must I do to monitor atmospheric corrosion control?
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false What must I do to monitor atmospheric corrosion... monitor atmospheric corrosion control? (a) You must inspect each pipeline or portion of pipeline that is exposed to the atmosphere for evidence of atmospheric corrosion, as follows: If the pipeline islocated...
49 CFR 195.583 - What must I do to monitor atmospheric corrosion control?
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false What must I do to monitor atmospheric corrosion... monitor atmospheric corrosion control? (a) You must inspect each pipeline or portion of pipeline that is exposed to the atmosphere for evidence of atmospheric corrosion, as follows: If the pipeline islocated...
Evaluation of Encapsulated Inhibitor for Autonomous Corrosion Protection
NASA Technical Reports Server (NTRS)
Johnsey, M. N.; Li, W.; Buhrow, J. W.; Calle, L. M.; Pearman, B. P.; Zhang, X.
2015-01-01
This work concerns the development of smart coating technologies based on microencapsulation for the autonomous control of corrosion. Microencapsulation allows the incorporation of corrosion inhibitors into coating which provides protection through corrosion-controlled release of these inhibitors.One critical aspect of a corrosion protective smart coating is the selection of corrosion inhibitor for encapsulation and comparison of the inhibitor function before and after encapsulation. For this purpose, a systematic approach is being used to evaluate free and encapsulated corrosion inhibitors by salt immersion. Visual, optical microscope, and Scanning Electron Microscope (with low-angle backscatter electron detector) are used to evaluate these inhibitors. It has been found that the combination of different characterization tools provide an effective method for evaluation of early stage localized corrosion and the effectiveness of corrosion inhibitors.
49 CFR 192.471 - External corrosion control: Test leads.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false External corrosion control: Test leads. 192.471... Control § 192.471 External corrosion control: Test leads. (a) Each test lead wire must be connected to the pipeline so as to remain mechanically secure and electrically conductive. (b) Each test lead wire must be...
49 CFR 192.471 - External corrosion control: Test leads.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false External corrosion control: Test leads. 192.471... Control § 192.471 External corrosion control: Test leads. (a) Each test lead wire must be connected to the pipeline so as to remain mechanically secure and electrically conductive. (b) Each test lead wire must be...
49 CFR 192.471 - External corrosion control: Test leads.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false External corrosion control: Test leads. 192.471... Control § 192.471 External corrosion control: Test leads. (a) Each test lead wire must be connected to the pipeline so as to remain mechanically secure and electrically conductive. (b) Each test lead wire must be...
Code of Federal Regulations, 2010 CFR
2010-10-01
... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.453 General. The corrosion control procedures required by § 192.605(b)(2), including those for the design... direction of, a person qualified in pipeline corrosion control methods. [Amdt. 192-71, 59 FR 6584, Feb. 11...
Code of Federal Regulations, 2011 CFR
2011-10-01
... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.453 General. The corrosion control procedures required by § 192.605(b)(2), including those for the design... direction of, a person qualified in pipeline corrosion control methods. [Amdt. 192-71, 59 FR 6584, Feb. 11...
Code of Federal Regulations, 2014 CFR
2014-10-01
... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.453 General. The corrosion control procedures required by § 192.605(b)(2), including those for the design... direction of, a person qualified in pipeline corrosion control methods. [Amdt. 192-71, 59 FR 6584, Feb. 11...
Code of Federal Regulations, 2013 CFR
2013-10-01
... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.453 General. The corrosion control procedures required by § 192.605(b)(2), including those for the design... direction of, a person qualified in pipeline corrosion control methods. [Amdt. 192-71, 59 FR 6584, Feb. 11...
Code of Federal Regulations, 2012 CFR
2012-10-01
... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.453 General. The corrosion control procedures required by § 192.605(b)(2), including those for the design... direction of, a person qualified in pipeline corrosion control methods. [Amdt. 192-71, 59 FR 6584, Feb. 11...
An artifical corrosion protocol for lap-splices in aircraft skin
NASA Technical Reports Server (NTRS)
Shaw, Bevil J.
1994-01-01
This paper reviews the progress to date to formulate an artificial corrosion protocol for the Tinker AFB C/KC-135 Corrosion Fatigue Round Robin Test Program. The project has provided new test methods to faithfully reproduce the corrosion damage within a lap-splice by accelerated means, the rationale for a new laboratory test environment, and a means for corrosion damage quantification. The approach is pragmatic and the resulting artificial corrosion protocol lays the foundation for future research in the assessment of aerospace alloys. The general means for quantification of corrosion damage has been presented in a form which can be directly applied to structural integrity calculations.
NASA Technical Reports Server (NTRS)
Calle, Luz Marina
2014-01-01
Corrosion is the degradation of a material that results from its interaction with the environment. The marine environment at NASAs Kennedy Space Center (KSC) has been documented by ASM International (formerly American Society for Metals) as the most corrosive in the United States. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pads were rendered even more severe by the 70 tons of highly corrosive hydrochloric acid that were generated by the solid rocket boosters. Numerous failures at the launch pads are caused by corrosion.The structural integrity of ground infrastructure and flight hardware is critical to the success, safety, cost, and sustainability of space missions. As a result of fifty years of experience with launch and ground operations in a natural marine environment that is highly corrosive, NASAs Corrosion Technology Laboratory at KSC is a major source of corrosion control expertise in the launch and other environments. Throughout its history, the Laboratory has evolved from what started as an atmospheric exposure facility near NASAs launch pads into a world-wide recognized capability that provides technical innovations and engineering services in all areas of corrosion for NASA and external customers.This presentation will provide a historical overview of the role of NASAs Corrosion Technology in anticipating, managing, and preventing corrosion. One important challenge in managing and preventing corrosion involves the detrimental impact on humans and the environment of what have been very effective corrosion control strategies. This challenge has motivated the development of new corrosion control technologies that are more effective and environmentally friendly. Strategies for improved corrosion protection and durability can have a huge impact on the economic sustainability of human spaceflight operations.
Recent Developments on Autonomous Corrosion Protection Through Encapsulation
NASA Technical Reports Server (NTRS)
Li, W.; Buhrow, J. W.; Calle, L. M.; Gillis, M.; Blanton, M.; Hanna, J.; Rawlins, J.
2015-01-01
This paper concerns recent progress in the development of a multifunctional smart coating, based on microencapsulation, for the autonomous detection and control of corrosion. Microencapsulation has been validated and optimized to incorporate desired corrosion control functionalities, such as early corrosion detection and inhibition, through corrosion-initiated release of corrosion indicators and inhibitors, as well as self-healing agent release triggered by mechanical damage. While proof-of-concept results have been previously reported, more recent research and development efforts have concentrated on improving coating compatibility and synthesis procedure scalability, with a targeted goal of obtaining easily dispersible pigment-grade type microencapsulated materials. The recent progress has resulted in the development of pH-sensitive microparticles as a corrosion-triggered delivery system for corrosion indicators and inhibitors. The synthesis and early corrosion indication results obtained with coating formulations that incorporate these microparticles are reported. The early corrosion indicating results were obtained with color changing and with fluorescent indicators.
Evaluation and control of environmental corrosion for aluminum and steel alloys
NASA Technical Reports Server (NTRS)
Franklin, D. B.
1977-01-01
Corrosion protection systems for aerospace application and the effects of surface treatments and methods of controlling stress corrosion are evaluated. Chromate pigmented systems were found to be most effective for aluminum alloys; zinc-rich coatings gave the greatest protection to steel alloys. Various steel and aluminum alloys are rated for stress corrosion resistance.
KSC lubricant testing program. [lubrication characteristics and corrosion resistance
NASA Technical Reports Server (NTRS)
Lockhart, B. J.; Bryan, C. J.
1973-01-01
A program was conducted to evaluate the performance of various lubricants in use and considered for use at Kennedy Space Center (KSC). The overall objectives of the program were to: (1) determine the lubrication characteristics and relative corrosion resistance of lubricants in use and proposed for use at KSC; (2) identify materials which may be equivalent to or better than KELF-90 and Krytox 240 AC greases; and (3) identify or develop an improved lubricating oil suitable for use in liquid oxygen (LOX) pumps at KSC. It was concluded that: (1) earth gel thickened greases are very poor corrosion preventive materials in the KSC environment; (2) Halocarbon 25-5S and Braycote 656 were suitable substiutes for KELF-90 and Krytox 240 AC respectively; and (3) none of the oils evaluated possessed the necessary inertness, lubricity, and corrosion prevention characteristics for the KSC LOX pumping systems in their present configuration.
40 CFR 141.87 - Monitoring requirements for water quality parameters.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... (c) Monitoring after installation of corrosion control. Any large system which installs optimal corrosion control treatment pursuant to § 141.81(d)(4) shall measure the water quality parameters at the...)(i). Any small or medium-size system which installs optimal corrosion control treatment shall conduct...
40 CFR 141.87 - Monitoring requirements for water quality parameters.
Code of Federal Regulations, 2010 CFR
2010-07-01
.... (c) Monitoring after installation of corrosion control. Any large system which installs optimal corrosion control treatment pursuant to § 141.81(d)(4) shall measure the water quality parameters at the...)(i). Any small or medium-size system which installs optimal corrosion control treatment shall conduct...
40 CFR 141.87 - Monitoring requirements for water quality parameters.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... (c) Monitoring after installation of corrosion control. Any large system which installs optimal corrosion control treatment pursuant to § 141.81(d)(4) shall measure the water quality parameters at the...)(i). Any small or medium-size system which installs optimal corrosion control treatment shall conduct...
40 CFR 141.87 - Monitoring requirements for water quality parameters.
Code of Federal Regulations, 2014 CFR
2014-07-01
.... (c) Monitoring after installation of corrosion control. Any large system which installs optimal corrosion control treatment pursuant to § 141.81(d)(4) shall measure the water quality parameters at the...)(i). Any small or medium-size system which installs optimal corrosion control treatment shall conduct...
40 CFR 141.87 - Monitoring requirements for water quality parameters.
Code of Federal Regulations, 2013 CFR
2013-07-01
.... (c) Monitoring after installation of corrosion control. Any large system which installs optimal corrosion control treatment pursuant to § 141.81(d)(4) shall measure the water quality parameters at the...)(i). Any small or medium-size system which installs optimal corrosion control treatment shall conduct...
A Multifunctional Coating for Autonomous Corrosion Control
NASA Technical Reports Server (NTRS)
Calle, L. M.; Hintze, P. E.; Li, W.; Buhrow, J. W.; Jolley, S. T.
2011-01-01
This slide presentation reviews the effects of corrosion on various structures at the Kennedy Space Center, and the work to discover a corrosion control coating that will be autonomous and will indicate corrosion at an early point in the process. Kennedy Space Center has many environmental conditions that are corrosive: ocean salt spray, heat, humidity, sunlight and acidic exhaust from the Solid Rocket Boosters (SRBs). Presented is a chart which shows the corrosion rates of carbon steel at various locations. KSC has the highest corrosion rates with 42.0 mils/yr, leading the next highest Galeta Point Beach, in the Panama Canal Zone with 27 mils/yr corrosion. A chart shows the changes in corrosion rate with the distance from the ocean. The three types of corrosion protective coatings are described: barrier (passive), Barrier plus active corrosion inhibiting components, and smart. A smart coating will detect and respond actively to changes in its environment in a functional and predictable manner and is capable of adapting its properties dynamically. The smart coating uses microcapsules, particles or liquid drops coated in polymers, that can detect and control the corrosion caused by the environment. The mechanism for a pH sensitive microcapsule and the hydrophobic core microcapsule are demonstrated and the chemistry is reviewed. When corrosion begins, the microcapsule will release the contents of the core (indicator, inhibitor, and self healing agent) in close proximity to the corrosion. The response to a pH increase is demonstrated by a series of pictures that show the breakdown of the microcapsule and the contents release. An example of bolt corrosion is used, as an example of corrosion in places that are difficult to ascertain. A comparison of various coating systems is shown.
A corrosion control manual for rail rapid transit
NASA Technical Reports Server (NTRS)
Gilbert, L. O.; Fitzgerald, J. F., II; Menke, J. T.
1982-01-01
In 1979, during the planning stage of the Metropolitan Dade County Transit System, the need was expressed for a corrosion control manual oriented to urban rapid transit system use. This manual responds to that need. The objective of the manual is to aid rail rapid transit agencies by providing practical solutions to selected corrosion problems. The scope of the manual encompasses corrosion problems of the facilities of rapid transit systems: structures and tracks, platforms and stations, power and signals, and cars. It also discusses stray electric current corrosion. Both design and maintenance solutions are provided for each problem. Also included are descriptions of the types of corrosion and their causes, descriptions of rapid transit properties, a list of corrosion control committees and NASA, DOD, and ASTM specifications and design criteria to which reference is made in the manual. A bibliography of papers and excerpts of reports and a glossary of frequency used terms are provided.
A glossary of corrosion-related terms used in science and industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vukasovich, M.S.
1995-12-31
A Glossary of Corrosion-Related Terms Used in Science and Industry features definitions for over 4,000 specialized terms related to corrosion and corrosion prevention/control. Its coverage encompasses not only the fundamental terms commonly used in corrosion science, but also lesser-known, industry-specific jargon. The Glossary contains terms relevant to the study, effect, and control of corrosion that pertain to chemistry/electro-chemistry, metallurgy, plastics, paints/coatings, metal finishing, and the environment. Various synonyms, acronyms, and abbreviations are also included. A practical desk reference for students, scientists, engineers, technicians, and manufacturing and maintenance personnel.
1989-04-01
corrosion of rebar Spalling of concrete surface IIl Detect hidden and beginning Location of rebar damage Beginning corrosion of rebar ...honeycombs MD Moderate defects: spalling of concrete minor corrosion of exposed rebar rust stains along rebar with or without visible cracking softening of...velocity. . Replenishment of the attacking chemical hgents. h. Higher temperatures. i. Corrosion of reinforcing steel. 46. Note that concrete which
2010-02-01
April 2010 8-10 June 2010 3-5 August 2010 5 Corrosion Assistance Team ( CAT ) Visits Classroom Briefing • General Corrosion Theory • Preventive Maintenance...MD DC CAT Visit 2009 CAT Visit 2008 CAT Visit 2007 CAT Visit 2006 CAT Visit 2005 CAT Visits (calendar year) ME HI Germany ROK Honduras Egypt Japan DE 8
Demystifying Controlling Copper Corrosion
The LCR systematically misses the highest health and corrosion risk sites for copper. Additionally, there are growing concerns for WWTP copper in sludges and discharge levels. There are many corrosion control differences between copper and lead. This talk explains the sometimes c...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-12
... the corrosivity of the water including: Taking further steps to optimize their corrosion control treatment (for water systems serving 50,000 people that have not fully optimized their corrosion control... Control Act (TSCA). The TSCA section 21 petition, dated May 9, 2013, was submitted by American University...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandbeck, K.A.; Hitzman, D.O.
1995-12-31
Biogenic formation of sulfide in reservoirs by Sulfate Reducing Bacteria (SRB) causes serious plugging, corrosion, and environmental safety problems. The production of sulfide can be decreased, and its concentration reduced, by the establishment and growth of an indigenous microbial population which results in a replacement of the SRB population. This approach to modify the reservoir ecology utilizing preexisting carbon sources coupled with the introduction of an alternate electron acceptor forms the basis of a new Biocompetitive Exclusion technology which has the potential to enhance oil recovery and decrease paraffin deposition and corrosion. Preliminary field results from an ongoing DOE-sponsored researchmore » program will be discussed.« less
ENVIRONMENTAL BENIGN MITIGATION OF MICROBIOLOGICALLY INFLUENCED CORROSION (MIC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
J.R. Paterek; G. Husmillo; V. Trbovic
The overall program objective is to develop and evaluate environmental benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is one or more environmental benign, a.k.a. ''green'' products that can be applied to maintain the structure and dependability of the natural gas infrastructure. The technical approach for this quarter were isolation and cultivation of MIC-causing microorganisms from corroded pipeline samples, optimizing parameters in the laboratory-scale corrosion test loop system and testing the effective concentrations of Capsicum sp. extracts to verifymore » the extent of corrosion on metal coupons by batch culture method. A total of 22 strains from the group of heterotrophic, acid producing, denitrifying and sulfate reducing bacteria were isolated from the gas pipeline samples obtained from Northern Indiana Public Service Company in Trenton, Indiana. They were purified and will be sent out for identification. Bacterial strains of interest were used in antimicrobial screenings and test loop experiments. Parameters for the laboratory-scale test loop system such as gas and culture medium flow rate; temperature; inoculation period; and length of incubation were established. Batch culture corrosion study against Desulfovibrio vulgaris showed that one (S{sub 1}M) out of the four Capsicum sp. extracts tested was effective in controlling the corrosion rate in metal coupons by 33.33% when compared to the untreated group.« less
Microencapsulation Technology for Corrosion Mitigation by Smart Coatings
NASA Technical Reports Server (NTRS)
Buhrow, Jerry; Li, Wenyan; Jolley, Scott; Calle, Luz M.
2011-01-01
A multifunctional, smart coating for the autonomous control of corrosion is being developed based on micro-encapsulation technology. Corrosion indicators as well as corrosion inhibitors have been incorporated into microcapsules, blended into several paint systems, and tested for corrosion detection and protection effectiveness. This paper summarizes the development, optimization, and testing of microcapsules specifically designed to be incorporated into a smart coating that will deliver corrosion inhibitors to mitigate corrosion autonomously. Key words: smart coating, corrosion inhibition, microencapsulation, microcapsule, pH sensitive microcapsule, corrosion inhibitor, corrosion protection pain
NASA Astrophysics Data System (ADS)
Fouad, Mohamed Ahmed; Zewail, Taghreed Mohamed; Amine, Nieven Kamal Abbes
2017-06-01
Rate of diffusion controlled corrosion in 90° Copper Elbow acidified dichromate has been investigated in relation to the following parameters: effect of solution velocity in the absence and presence of drag- reducing polymer on the rate of diffusion controlled corrosion, and effect of the presence of suspended solids on the rate of diffusion controlled corrosion. It was found that the presence of drag reducing polymer inhibited the rate of mass transfer, while the presence of suspended solid increased significantly the rate of mass transfer.
Corrosion Activities at the NASA Kennedy Space Center
NASA Technical Reports Server (NTRS)
Heidersbach, Robert H.
2002-01-01
This report documents summer faculty fellow efforts in the corrosion test bed at the NASA Kennedy Space Center. During the summer of 2002 efforts were concentrated on three activities: a short course on corrosion control for KSC personnel, evaluation of commercial wash additives used for corrosion control on Army aircraft, and improvements in the testing of a new cathodic protection system under development at KSC.
Corrosion Prevention and Control Planning Guidebook for Military Systems and Equipment
2014-04-02
corrosion to applying advanced materials, coatings, inhibitors, and cathodic protection for corrosion control over many years, well before the DoD...requiring the delivery of the Contractor CPCP. Further, MIL-HDBK-1568 is for aerospace systems. Consider this when tailoring your Contract Data...Corrosion personnel from the user command; o Information Analysis Center personnel, such as Advanced Materials, Manufacturing, and Testing Information
Corrosion Control 101: A Journey in Rediscovery | Science ...
The presentation covers the general water chemistry of lead and copper, how contamination originates from home plumbing systems, what treatments are appropriate for controlling lead and copper to meet the Lead and Copper Rule, and what water quality and treatment factors directly impact the success and failure of corrosion control treatment. This talk re-introduces the overriding principles of corrosion control treatment to a water industry audience
Corrosion inhibitors for solar heating and cooling systems
NASA Technical Reports Server (NTRS)
Humphries, T. S.; Deramus, G. E., Jr.
1977-01-01
Problems dealing with corrosion and corrosion protection of solar heating and cooling systems are discussed. A test program was conducted to find suitable and effective corrosion inhibitors for systems employing either water or antifreeze solutions for heat transfer and storage. Aluminum-mild-steel-copper-stainless steel assemblies in electrical contact were used to simulate a multimetallic system which is the type most likely to be employed. Several inhibitors show promise for this application.
Corrosion Research And Web Site Activities
NASA Technical Reports Server (NTRS)
Heidersbach, Robert H.
2001-01-01
This report covers corrosion-related activities at the NASA Kennedy Space Center during the summer of 2000. The NASA Kennedy Space Center's corrosion web site, corrosion.ksc.nasa.gov, was updated with new information based on feedback over the past two years. The methodology for a two-year atmospheric exposure testing program to study the effectiveness of commercial chemicals sold for rinsing aircraft and other equipment was developed and some preliminary laboratory chemical analyses are presented.
Corrosion Research and Web Site Activities
NASA Technical Reports Server (NTRS)
Heidersbach, Robert H.
2002-01-01
This report covers corrosion-related activities at the NASA Kennedy Space Center during the summer of 2000. The NASA Kennedy Space Center's corrosion web site, corrosion.ksc.nasa.gov, was updated with new information based on feedback over the past two years. The methodology for a two-year atmospheric exposure testing program to study the effectiveness of commercial chemicals sold for rinsing aircraft and other equipment was developed and some preliminary laboratory chemical analyses are presented.
Summary of the Sixth Persh Workshop: Corrosion Policy Guiding Science and Technology
2016-01-01
mitigating corrosion. Corrosion affects military readiness, so corrosion prevention and control (CPC) have a high priority for the DOD since CPC is a...resulting in high -cost repairs. Corrosion mitigation is thus a key cost-effective approach for system maintainability and reduced life cycle costs. The... treatments . • Develop corrosion databases and corrosion models for predictive evaluation. Testing methods for realistic prediction of performance
Ground Truthing the 'Conventional Wisdom' of Lead Corrosion Control Using Mineralogical Analysis
For drinking water distribution systems (DWDS) with lead-bearing plumbing materials some form of corrosion control is typically necessary, with the goal of mitigating lead release by forming adherent, stable corrosion scales composed of low-solubility mineral phases. Conventional...
Code of Federal Regulations, 2012 CFR
2012-10-01
... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Gas Transmission Pipeline Integrity Management § 192... internal corrosion, external corrosion, and stress corrosion cracking; (2) Static or resident threats, such... its integrity management program addressing actions it will take to respond to findings from this data...
Code of Federal Regulations, 2011 CFR
2011-10-01
... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Gas Transmission Pipeline Integrity Management § 192... internal corrosion, external corrosion, and stress corrosion cracking; (2) Static or resident threats, such... its integrity management program addressing actions it will take to respond to findings from this data...
Code of Federal Regulations, 2013 CFR
2013-10-01
... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Gas Transmission Pipeline Integrity Management § 192... internal corrosion, external corrosion, and stress corrosion cracking; (2) Static or resident threats, such... its integrity management program addressing actions it will take to respond to findings from this data...
Code of Federal Regulations, 2014 CFR
2014-10-01
... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Gas Transmission Pipeline Integrity Management § 192... internal corrosion, external corrosion, and stress corrosion cracking; (2) Static or resident threats, such... its integrity management program addressing actions it will take to respond to findings from this data...
NASA Astrophysics Data System (ADS)
Demaree, J. D.; Was, G. S.; Sorensen, N. R.
1991-07-01
An experimental program has been conducted to determine the effect of phosphorus on the corrosion and passivation behavior of FeCrP alloys. Chemically homogeneous 60 nm films of Fe10Cr xP ( x from 0 to 35 at.%) were prepared by multilayer evaporation followed by ion beam mixing with Kr + ions. Films with a phosphorus content of at least 25 at.% were found to be entirely amorphous, while films with 15 at.% P consisted of both amorphous and bcc phases. Recrystallization of the amorphous phase was accomplished by heating the samples to 450°C in a purified argon flow furnace. Electrochemical polarization tests in an acid solution have shown the Fe10Cr xP films to be more corrosion resistant than Fe10Cr, with the corrosion resistance increasing with the amount of P present. The corrosion resistance is not significantly affected when the amorphous films are recrystallized, indicating that the behavior is chemically controlled and not a result of the amorphous structure. When examined by XPS, the phosphorus appears to enhance passivation by encouraging Cr enrichment in the oxide and by incorporating in the oxide as phosphate.
40 CFR 141.90 - Reporting requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... water system deemed to have optimized corrosion control under § 141.81(b)(3), a water system subject to...), and switching corrosion inhibitor products (e.g., orthophosphate to blended phosphate). Long-term... changed. (c) Corrosion control treatment reporting requirements. By the applicable dates under § 141.81...
40 CFR 141.90 - Reporting requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... water system deemed to have optimized corrosion control under § 141.81(b)(3), a water system subject to...), and switching corrosion inhibitor products (e.g., orthophosphate to blended phosphate). Long-term... changed. (c) Corrosion control treatment reporting requirements. By the applicable dates under § 141.81...
40 CFR 141.90 - Reporting requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... water system deemed to have optimized corrosion control under § 141.81(b)(3), a water system subject to...), and switching corrosion inhibitor products (e.g., orthophosphate to blended phosphate). Long-term... changed. (c) Corrosion control treatment reporting requirements. By the applicable dates under § 141.81...
40 CFR 141.90 - Reporting requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... water system deemed to have optimized corrosion control under § 141.81(b)(3), a water system subject to...), and switching corrosion inhibitor products (e.g., orthophosphate to blended phosphate). Long-term... changed. (c) Corrosion control treatment reporting requirements. By the applicable dates under § 141.81...
40 CFR 141.90 - Reporting requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... water system deemed to have optimized corrosion control under § 141.81(b)(3), a water system subject to...), and switching corrosion inhibitor products (e.g., orthophosphate to blended phosphate). Long-term... changed. (c) Corrosion control treatment reporting requirements. By the applicable dates under § 141.81...
Ground Truthing the ‘Conventional Wisdom’ of Lead Corrosion Control Using Mineralogical Analysis
For drinking water distribution systems (DWDS) with lead-bearing plumbing materials some form of corrosion control is typically necessary, with the goal of mitigating lead release by forming adherent, stable corrosion scales composed of low-solubility mineral phases. Conventional...
NEW INSIGHTS INTO LEAD CORROSION CONTROL AND TREATMENT CHANGE IMPACTS
This presentation will summarize recent research into the chemistry of lead corrosion control, and focus on five different areas that could impact the prediction of whether or not particular treatment changes are likely to either disturb existing lead corrosion scales, or to actu...
Chexal-Horowitz flow-accelerated corrosion model -- Parameters and influences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chexal, V.K.; Horowitz, J.S.
1995-12-01
Flow-accelerated corrosion (FAC) continues to cause problems in nuclear and fossil power plants. Thinning caused by FAC has lead to many leaks and complete ruptures. These failures have required costly repairs and occasionally have caused lengthy shutdowns. To deal with FAC, utilities have instituted costly inspection and piping replacement programs. Typically, a nuclear unit will inspect about 100 large bore piping components plus additional small bore components during every refueling outage. To cope with FAC, there has been a great deal of research and development performed to obtain a greater understanding of the phenomenon. Currently, there is general agreement onmore » the mechanism of FAC. This understanding has lead to the development of computer based tools to assist utility engineers in dealing with this issue. In the United States, the most commonly used computer program to predict and control is CHECWORKS{trademark}. This paper presents a description of the mechanism of FAC, and introduces the predictive algorithms used in CHECWORKS{trademark}. The parametric effects of water chemistry, materials, flow and geometry as predicted by CHECWORKS{trademark} will then be discussed. These trends will be described and explained by reference to the corrosion mechanism. The remedial actions possible to reduce the rate of damage caused by FAC will also be discussed.« less
Controlling Surface Chemistry to Deconvolute Corrosion Benefits Derived from SMAT Processing
NASA Astrophysics Data System (ADS)
Murdoch, Heather A.; Labukas, Joseph P.; Roberts, Anthony J.; Darling, Kristopher A.
2017-07-01
Grain refinement through surface plastic deformation processes such as surface mechanical attrition treatment has shown measureable benefits for mechanical properties, but the impact on corrosion behavior has been inconsistent. Many factors obfuscate the particular corrosion mechanisms at work, including grain size, but also texture, processing contamination, and surface roughness. Many studies attempting to link corrosion and grain size have not been able to decouple these effects. Here we introduce a preprocessing step to mitigate the surface contamination effects that have been a concern in previous corrosion studies on plastically deformed surfaces; this allows comparison of corrosion behavior across grain sizes while controlling for texture and surface roughness. Potentiodynamic polarization in aqueous NaCl solution suggests that different corrosion mechanisms are responsible for samples prepared with the preprocessing step.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oji, L. N.
2015-02-18
The 2H Evaporator system includes mainly Tank 43H (feed tank) and Tank 38H (drop tank) with Tank 22H acting as the DWPF recycle receipt tank. The Tank 13H is being characterized to ensure that it can be transferred to the 2H evaporator. This report provides the results of analyses on Tanks 13H surface and subsurface supernatant liquid samples to ensure compliance with the Enrichment Control Program (ECP), the Corrosion Control Program and Sodium Aluminosilicate Formation Potential in the Evaporator. The U-235 mass divided by the total uranium averaged 0.00799 (0.799 % uranium enrichment) for both the surface and subsurface Tankmore » 13H samples. This enrichment is slightly above the enrichment for Tanks 38H and 43H, where the enrichment normally ranges from 0.59 to 0.7 wt%. The U-235 concentration in Tank 13H samples ranged from 2.01E-02 to 2.63E-02 mg/L, while the U-238 concentration in Tank 13H ranged from 2.47E+00 to 3.21E+00 mg/L. Thus, the U-235/total uranium ratio is in line with the prior 2H-evaporator ECP samples. Measured sodium and silicon concentrations averaged, respectively, 2.46 M and 1.42E-04 M (3.98 mg/L) in the Tank 13H subsurface sample. The measured aluminum concentration in Tanks 13H subsurface samples averaged 2.01E-01 M.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Latanision, R.M.
1990-12-01
Electrochemical corrosion is pervasive in virtually all engineering systems and in virtually all industrial circumstances. Although engineers now understand how to design systems to minimize corrosion in many instances, many fundamental questions remain poorly understood and, therefore, the development of corrosion control strategies is based more on empiricism than on a deep understanding of the processes by which metals corrode in electrolytes. Fluctuations in potential, or current, in electrochemical systems have been observed for many years. To date, all investigations of this phenomenon have utilized non-deterministic analyses. In this work it is proposed to study electrochemical noise from a deterministicmore » viewpoint by comparison of experimental parameters, such as first and second order moments (non-deterministic), with computer simulation of corrosion at metal surfaces. In this way it is proposed to analyze the origins of these fluctuations and to elucidate the relationship between these fluctuations and kinetic parameters associated with metal dissolution and cathodic reduction reactions. This research program addresses in essence two areas of interest: (a) computer modeling of corrosion processes in order to study the electrochemical processes on an atomistic scale, and (b) experimental investigations of fluctuations in electrochemical systems and correlation of experimental results with computer modeling. In effect, the noise generated by mathematical modeling will be analyzed and compared to experimental noise in electrochemical systems. 1 fig.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Jundi, I.M.
Qatar NGL/2 plant, commissioned in December, 1979, was designed to process the associated gas from the offshore crude oil fields of Qatar. The dehydrated sour lean gas and wet sour liquids are transported via two separate lines to Umm Said NGL Complex about 120 kms. from the central offshore station. The liquids line 300 mm diameter (12 inch) has suffered general and severe pitting corrosion. The lean gas line 600 mm diameter (24 inch) has suffered corrosion and extensively hydrogen induced cracking (HIC), also known as HIPC. Both lines never performed to their design parameters and many problems in themore » downstream facilities have been experienced. All efforts to clean the liquids lines from the solids (debris) have failed. This inturn interfered with the planned corrosion control programe, thus allowing corrosion to continue. Investigation work has been done by various specialists in an attempt to find the origin of the solids and to recommend necessary remedial actions. Should lines fall from pitting corrosion, the effect of liquids leak at a pressure of about 11000 kpa will be very dangerous especially if it occurs onshore. In order to protect the NGL-2 operations against possible risks, both interms of safety as well as losses in revenue, critically sections of the pipelines have been replaced, whilst the whole gas liquids pipelines would be replaced shortly. Supplementary documents to the API standards were prepared by QPC for the replaced pipelines.« less
A Representative Shuttle Environmental Control System
NASA Technical Reports Server (NTRS)
Brose, H. F.; Stanley, M. D.; Leblanc, J. C.
1977-01-01
The Representative Shuttle Environmental Control System (RSECS) provides a ground test bed to be used in the early accumulation of component and system operating data, the evaluation of potential system improvements, and possibly the analysis of Shuttle Orbiter test and flight anomalies. Selected components are being subjected to long term tests to determine endurance and corrosion resistance capability prior to Orbiter vehicle experience. Component and system level tests in several cases are being used to support flight certification of Orbiter hardware. These activities are conducted as a development program to allow for timeliness, flexibility, and cost effectiveness not possible in a program burdened by flight documentation and monitoring constraints.
NEW INSIGHTS INTO LEAD AND COPPER CORROSION CONTROL AND TREATMENT CHANGE IMPACTS
This presentation summarizes recent research into the chemistry of lead corrosion control, and focus on different areas that could impact the prediction of whether or not particular treatment changes are likely to either disturb existing lead corrosion scales, or to actually impr...
Corrosion of Fasteners in Wood Treated with Newer Wood Preservatives
Samuel L. Zelinka
2013-01-01
This document compiles recent research findings related to corrosion of metals in preservative treated wood into a single report on corrosion of metals in wood. The research was conducted as part of the Research, Technology and Education portion of the National Historic Covered Bridge Preservation (NHCBP) Program administered by the Federal Highway Administration. The...
Hsieh, Ming-Kai; Li, Heng; Chien, Shih-Hsiang; Monnell, Jason D; Chowdhury, Indranil; Dzombak, David A; Vidic, Radisav D
2010-12-01
Secondary treated municipal wastewater is a promising alternative to fresh water as power plant cooling water system makeup water, especially in arid regions. Laboratory and field testing was conducted in this study to evaluate the corrosiveness of secondary treated municipal wastewater for various metals and metal alloys in cooling systems. Different corrosion control strategies were evaluated based on varied chemical treatment. Orthophosphate, which is abundant in secondary treated municipal wastewater, contributed to more than 80% precipitative removal of phosphorous-based corrosion inhibitors. Tolyltriazole worked effectively to reduce corrosion of copper (greater than 95% inhibition effectiveness). The corrosion rate of mild steel in the presence of free chlorine 1 mg/L (as Cl2) was approximately 50% higher than in the presence of monochloramine 1 mg/L (as Cl2), indicating that monochloramine is a less corrosive biocide than free chlorine. The scaling layers observed on the metal alloys contributed to corrosion inhibition, which could be seen by comparing the mild steel 21-day average corrosion rate with the last 5-day average corrosion rate, the latter being approximately 50% lower than the former.
Corrosion engineering in the utilization of the Raft River geothermal resource
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, R.L.
1976-08-01
The economic impact of corrosion and the particular problems of corrosion in the utilization of geothermal energy resources are noted. Corrosion is defined and the parameters that control corrosion in geothermal systems are discussed. A general background of corrosion is presented in the context of the various forms of corrosion, in relation to the Raft River geothermal system. A basic reference for mechanical design engineers involved in the design of geothermal energy recovery systems is provided.
Inter-relationships between corrosion and mineral-scale deposition in aqueous systems.
Hodgkiess, T
2004-01-01
The processes of corrosion and scale deposition in natural and process waters are often linked and this paper considers a number of instances of interactions between the two phenomena. In some circumstances a scale layer (e.g. calcium carbonate) can be advantageously utilised as a corrosion-protection coating on components and this feature has been exploited for many decades in the conditioning of water to induce spontaneous precipitation of a scale layer upon the surfaces of engineering equipment. The electrochemical mechanisms associated with some corrosion and corrosion-control processes can promote alkaline-scale deposition directly upon component surfaces. This is a feature that can be exploited in the operation of cathodic protection (CP) of structures and components submerged in certain types of water (e.g. seawater). Similar phenomena can occur during bi-metallic corrosion and a case study, involving carbon steel/stainless steel couples in seawater, is presented. Additional complexities pertain during cyclic loading of submerged reinforced concrete members in which scale deposition may reduce the severity of fatigue stresses but can be associated with severe corrosion damage to embedded reinforcing steel. Also considered are scale-control/corrosion interactions in thermal desalination plant and an indirect consequence of the scale-control strategy on vapourside corrosion is discussed.
Selectable-Tip Corrosion-Testing Electrochemical Cell
NASA Technical Reports Server (NTRS)
Lomness, Janice; Hintze, Paul
2008-01-01
The figure depicts aspects of an electrochemical cell for pitting- corrosion tests of material specimens. The cell is designed to generate a region of corrosion having a pit diameter determined by the diameter of a selectable tip. The average depth of corrosion is controlled by controlling the total electric charge passing through the cell in a test. The cell is also designed to produce minimal artifacts associated with crevice corrosion. There are three selectable tips, having diameters of 0.1 in. (0.254 cm), 0.3 in. (0.762 cm), and 0.6 in. (1.524 cm), respectively.
Effect of temperature on anodic behavior of 13Cr martensitic steel in CO2 environment
NASA Astrophysics Data System (ADS)
Zhao, G. X.; Zheng, M.; Lv, X. H.; Dong, X. H.; Li, H. L.
2005-04-01
The corrosion behavior of 13Cr martensitic stainless steel in a CO2 environment in a stimulated oilfield was studied with potentiodynamic polarization and the impedance spectra technique. The results showed that the microstructure of the surface scale clearly changed with temperature. This decreased the sensitivity of pitting corrosion and increased the tendency toward general (or uniform) corrosion. The capacitance, the charge transfer resistance, and the polarization resistance of the corrosion product scale decrease with increasing temperature from 90 to 120 °C, and thus the corrosion is a thermal activation controlled process. Charge transfer through the scale is difficult and the corrosion is controlled by a diffusion process at a temperature of 150 °C. Resistance charge transfer through the corrosion product layer is higher than that in the passive film.
3013/9975 Surveillance Program Interim Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dunn, K.; Hackney, B.; McClard, J.
2011-06-22
The K-Area Materials Storage (KAMS) Documented Safety Analysis (DSA) requires a surveillance program to monitor the safety performance of 3013 containers and 9975 shipping packages stored in KAMS. The SRS surveillance program [Reference 1] outlines activities for field surveillance and laboratory tests that demonstrate the packages meet the functional performance requirements described in the DSA. The SRS program also supports the complexwide Integrated Surveillance Program (ISP) [Reference 2] for 3013 containers. The purpose of this report is to provide a summary of the SRS portion of the surveillance program activities through fiscal year 2010 (FY10) and formally communicate the interpretationmore » of these results by the Surveillance Program Authority (SPA). Surveillance for the initial 3013 container random sampling of the Innocuous bin and the Pressure bin has been completed and there has been no indication of corrosion or significant pressurization. The maximum pressure observed was less than 50 psig, which is well below the design pressure of 699 psig for the 3013 container [Reference 3]. The data collected during surveillance of these bins has been evaluated by the Materials Identification and Surveillance (MIS) Working Group and no additional surveillance is necessary for these bins at least through FY13. A decision will be made whether additional surveillance of these bins is needed during future years of storage and as additional containers are generated. Based on the data collected to date, the SPA concludes that 3013 containers in these bins can continue to be safely stored in KAMS. This year, 13 destructive examinations (DE) were performed on random samples from the Pressure & Corrosion bin. To date, DE has been completed for approximately 30% of the random samples from the Pressure & Corrosion bin. In addition, DE has been performed on 6 engineering judgment (EJ) containers, for a total of 17 to date. This includes one container that exceeded the 3013 Standard moisture limit which was opened at LANL. The container pieces and an oxide sample were sent to SRNL for examination in FY11. No significant pressurization has been observed for the Pressure & Corrosion bin containers. Relatively minor corrosion has been observed on some convenience containers and the inside of two inner containers. While the limited extent of corrosion does not jeopardize the integrity of the outer 3013 containers, it does highlight the importance of continuing to perform DE and the Shelf Life program to assure that the corrosion rate is not accelerating or changing to a different corrosion mechanism (e.g., stress corrosion cracking). Statistical sampling is currently scheduled to be completed in FY17, but there is a proposed reduction of the number of DE's per year for FY11 and beyond which may delay the completion date. Since 3013 containers are stored inside 9975 containers, surveillances of 9975 containers are performed in conjunction with 3013 container surveillances. Results of 9975 container nondestructive examinations (NDEs) and DEs indicate that the containers will provide adequate protection of the 3013 containers in K-Area storage for at least 15 years [Reference 4].« less
Evaluating Rebar Corrosion Using Nonlinear Ultrasound
NASA Astrophysics Data System (ADS)
Woodward, Clinton; Amin, Md. Nurul
2008-02-01
The early detection of rebar corrosion in reinforced concrete is difficult using current methods. This pilot study investigated the viability of using nonlinear ultrasound to detect the effects of rebar corrosion in its early stages. The study utilized three accelerated corrosion specimens and one control specimen. Results showed that when corrosion developed in the area isonified by a Rayleigh wave, nonlinear parameters increased. As corrosion progressed, these nonlinear parameters also increased.
Controlling stress corrosion cracking in mechanism components of ground support equipment
NASA Technical Reports Server (NTRS)
Majid, W. A.
1988-01-01
The selection of materials for mechanism components used in ground support equipment so that failures resulting from stress corrosion cracking will be prevented is described. A general criteria to be used in designing for resistance to stress corrosion cracking is also provided. Stress corrosion can be defined as combined action of sustained tensile stress and corrosion to cause premature failure of materials. Various aluminum, steels, nickel, titanium and copper alloys, and tempers and corrosive environment are evaluated for stress corrosion cracking.
An Overview of the Space Shuttle Orbiter's Aging Aircraft Program
NASA Technical Reports Server (NTRS)
Russell, Richard W.
2007-01-01
The Space Shuttle Orbiter has well exceeded its original design life of 10 years or 100 missions. The Orbiter Project Office (OPO) has sponsored several activities to address aging vehicle concerns, including a Corrosion Control Review Board (CCRB), a mid-life certification program, and most recently the formation of the Aging Orbiter Working Group (AOWG). The AOWG was chartered in 2004 as a proactive group which provides the OPO oversight for aging issues such as corrosion, non-destructive inspection, non-metallics, wiring and subsystems. The core team consists of mainly representatives from the Materials and Processes Problem Resolution Team (M&P PRT) and Safety and Mission Assurance (S&MA). Subsystem engineers and subject matter experts are called in as required. The AOWG has functioned by forming issues based sub-teams. Examples of completed sub-teams include adhesives, wiring and wing leading edge metallic materials. Current sub-teams include Composite Over-Wrapped Pressure Vessels (COPV), elastomeric materials and mechanisms.
49 CFR 193.2625 - Corrosion protection.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 3 2011-10-01 2011-10-01 false Corrosion protection. 193.2625 Section 193.2625...: FEDERAL SAFETY STANDARDS Maintenance § 193.2625 Corrosion protection. (a) Each operator shall determine which metallic components could, unless corrosion is controlled, have their integrity or reliability...
49 CFR 193.2625 - Corrosion protection.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Corrosion protection. 193.2625 Section 193.2625...: FEDERAL SAFETY STANDARDS Maintenance § 193.2625 Corrosion protection. (a) Each operator shall determine which metallic components could, unless corrosion is controlled, have their integrity or reliability...
49 CFR 193.2625 - Corrosion protection.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Corrosion protection. 193.2625 Section 193.2625...: FEDERAL SAFETY STANDARDS Maintenance § 193.2625 Corrosion protection. (a) Each operator shall determine which metallic components could, unless corrosion is controlled, have their integrity or reliability...
49 CFR 193.2625 - Corrosion protection.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Corrosion protection. 193.2625 Section 193.2625...: FEDERAL SAFETY STANDARDS Maintenance § 193.2625 Corrosion protection. (a) Each operator shall determine which metallic components could, unless corrosion is controlled, have their integrity or reliability...
Office of Naval Research Overview of Corrosion S&T Program
2010-12-02
a carbon induced passivity for LTCSS treated austenitic stainless steels - Low temp. allows interstitial C diffusion, but not substitutional...paraequilibrium carburization mechanism(s) that lead to the enhanced corrosion resistance seaw ater crevice corrosion on 316 Stainless Steel LTC...Treated 316 untreated LTC process TTT diagram LTCSS Surface Modification: • Carbon concentrations > 12 at. % in 316 stainless steel while maintaining
Deep ocean corrosion research in support of Oman India gas pipeline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, F.W.; McKeehan, D.S.
1995-12-01
The increasing interest in deepwater exploration and production has motivated the development of technologies required to accomplish tasks heretofore possible only onshore and in shallow water. The tremendous expense of technology development and the cost of specialized equipment has created concerns that the design life of these facilities may be compromised by corrosion. The requirements to develop and prove design parameters to meet these demands will require an ongoing environmental testing and materials evaluation and development program. This paper describes a two-fold corrosion testing program involving: (1) the installation of two corrosion test devices installed in-situ, and (2) a laboratorymore » test conducted in simulated site-specific seawater. These tests are expected to qualify key parameters necessary to design a cathodic protection system to protect the Oman-to-India pipeline.« less
Corrosion Prevention for Wheeled Vehicle Systems
1993-08-13
The audit objective was to evaluate the effectiveness and efficiency of the Army’s procedures for acquiring corrosion prevention and chemical agent...resistant coatings for wheeled vehicle systems. To accomplish this objective, we reviewed corrosion controls and painting processes. The audit also...included a review of the adequacy of internal controls related to the audit objective.
Controlled-Release Microcapsules for Smart Coatings for Corrosion Applications
NASA Technical Reports Server (NTRS)
2008-01-01
Corrosion is a serious problem that has enormous costs and serious safety implications. Localized corrosion, such as pitting, is very dangerous and can cause catastrophic failures. The NASA Corrosion Technology Laboratory at Kennedy Space Center is developing a smart coating based on pH-sensitive microcapsules for corrosion applications. These versatile microcapsules are designed to be incorporated into a smart coating and deliver their core content when corrosion starts. Corrosion indication was the first function incorporated into the microcapsules. Current efforts are focused on incorporating the corrosion inhibition function through the encapsulation of corrosion inhibitors into water core and oil core microcapsules. Scanning electron microscopy (SEM) images of encapsulated corrosion inhibitors are shown.
Superheater Corrosion In Biomass Boilers: Today's Science and Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharp, William
2011-12-01
This report broadens a previous review of published literature on corrosion of recovery boiler superheater tube materials to consider the performance of candidate materials at temperatures near the deposit melting temperature in advanced boilers firing coal, wood-based fuels, and waste materials as well as in gas turbine environments. Discussions of corrosion mechanisms focus on the reactions in fly ash deposits and combustion gases that can give corrosive materials access to the surface of a superheater tube. Setting the steam temperature of a biomass boiler is a compromise between wasting fuel energy, risking pluggage that will shut the unit down, andmore » creating conditions that will cause rapid corrosion on the superheater tubes and replacement expenses. The most important corrosive species in biomass superheater corrosion are chlorine compounds and the most corrosion resistant alloys are typically FeCrNi alloys containing 20-28% Cr. Although most of these materials contain many other additional additions, there is no coherent theory of the alloying required to resist the combination of high temperature salt deposits and flue gases that are found in biomass boiler superheaters that may cause degradation of superheater tubes. After depletion of chromium by chromate formation or chromic acid volatilization exceeds a critical amount, the protective scale gives way to a thick layer of Fe{sub 2}O{sub 3} over an unprotective (FeCrNi){sub 3}O{sub 4} spinel. This oxide is not protective and can be penetrated by chlorine species that cause further acceleration of the corrosion rate by a mechanism called active oxidation. Active oxidation, cited as the cause of most biomass superheater corrosion under chloride ash deposits, does not occur in the absence of these alkali salts when the chloride is present as HCl gas. Although a deposit is more corrosive at temperatures where it is molten than at temperatures where it is frozen, increasing superheater tube temperatures through the measured first melting point of fly ash deposits does not necessarily produce a step increase in corrosion rate. Corrosion rate typically accelerates at temperatures below the first melting temperature and mixed deposits may have a broad melting temperature range. Although the environment at a superheater tube surface is initially that of the ash deposits, this chemistry typically changes as the deposits mature. The corrosion rate is controlled by the environment and temperature at the tube surface, which can only be measured indirectly. Some results are counter-intuitive. Two boiler manufacturers and a consortium have developed models to predict fouling and corrosion in biomass boilers in order to specify tube materials for particular operating conditions. It would be very useful to compare the predictions of these models regarding corrosion rates and recommended alloys in the boiler environments where field tests will be performed in the current program. Manufacturers of biomass boilers have concluded that it is more cost-effective to restrict steam temperatures, to co-fire biofuels with high sulfur fuels and/or to use fuel additives rather than try to increase fuel efficiency by operating with superheater tube temperatures above melting temperature of fly ash deposits. Similar strategies have been developed for coal fired and waste-fired boilers. Additives are primarily used to replace alkali metal chloride deposits with higher melting temperature and less corrosive alkali metal sulfate or alkali aluminum silicate deposits. Design modifications that have been shown to control superheater corrosion include adding a radiant pass (empty chamber) between the furnace and the superheater, installing cool tubes immediately upstream of the superheater to trap high chloride deposits, designing superheater banks for quick replacement, using an external superheater that burns a less corrosive biomass fuel, moving circulating fluidized bed (CFB) superheaters from the convective pass into the hot recirculated fluidizing medium and adding an insulating layer to superheater tubes to raise their surface temperature above the dew point temperature of alkali chlorides. These design changes offer advantages but introduce other challenges. For example, operating with superheater temperatures above the dew point of alkali chlorides could require the use of creep-resistant tube alloys and doesn't eliminate chloride corrosion. Improved test methods that can be applied within this project include automated dimensional metrology to make a statistical analysis of depth of penetration and corrosion product thickness, and simultaneous thermal analysis measurements to quantify the melting of complex ashes and avoid the unreliability of the standard ash fusion test. Other important developments in testing include the installation of individually-temperature-controlled superheater loops for corrosion testing in operating boilers and temperature gradient testing.« less
AGARD Corrosion Handbook. Volume 2. Aircraft Corrosion Control Documents: A Descriptive Catalogue
1987-03-01
sweelb other than recommending that the use of maraging steel bolts be prohibited. However, it does provide a very good overview of the corrosion problems...as corrosion resistant steels in this manual. The metallurgy and general corrosion behavior of these steels is discussed in AGARD Corrosio.t Handbook...specifically with the selection of corrosion resistapt steels is a recommendation for prohibiting the use of maraging steel bolts in uncontrolled
49 CFR 195.588 - What standards apply to direct assessment?
Code of Federal Regulations, 2011 CFR
2011-10-01
... TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.588 What standards apply to direct... corrosion, you must follow the requirements of this section for performing external corrosion direct... direct assessment process. (b) The requirements for performing external corrosion direct assessment are...
49 CFR 195.588 - What standards apply to direct assessment?
Code of Federal Regulations, 2014 CFR
2014-10-01
... TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.588 What standards apply to direct... corrosion, you must follow the requirements of this section for performing external corrosion direct... direct assessment process. (b) The requirements for performing external corrosion direct assessment are...
49 CFR 195.588 - What standards apply to direct assessment?
Code of Federal Regulations, 2012 CFR
2012-10-01
... TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.588 What standards apply to direct... corrosion, you must follow the requirements of this section for performing external corrosion direct... direct assessment process. (b) The requirements for performing external corrosion direct assessment are...
49 CFR 195.588 - What standards apply to direct assessment?
Code of Federal Regulations, 2013 CFR
2013-10-01
... TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.588 What standards apply to direct... corrosion, you must follow the requirements of this section for performing external corrosion direct... direct assessment process. (b) The requirements for performing external corrosion direct assessment are...
NASA Astrophysics Data System (ADS)
Ali-Alvarez, S.; Ferdinand, P.; Magne, S.; Nogueira, R. P.
2013-04-01
Corrosion of reinforced bar (rebar) in concrete structures represents a major issue in civil engineering works, being its detection and evolution a challenge for the applied research. In this work, we present a new methodology to corrosion detection in reinforced concrete structures, by combining Fiber Bragg Grating (FBG) sensors with the electrochemical and physical properties of rebar in a simplified assembly. Tests in electrolytic solutions and concrete were performed for pitting and general corrosion. The proposed Structural Health Monitoring (SHM) methodology constitutes a direct corrosion measurement potentially useful to implement or improve Condition-Based Maintenance (CBM) program for civil engineering concrete structures.
Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion
Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K.
2015-01-01
Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys. PMID:26615896
Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion.
Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K
2015-11-30
Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys.
Mitigation of Corrosion on Magnesium Alloy by Predesigned Surface Corrosion
NASA Astrophysics Data System (ADS)
Zhang, Xuming; Wu, Guosong; Peng, Xiang; Li, Limin; Feng, Hongqing; Gao, Biao; Huo, Kaifu; Chu, Paul K.
2015-11-01
Rapid corrosion of magnesium alloys is undesirable in structural and biomedical applications and a general way to control corrosion is to form a surface barrier layer isolating the bulk materials from the external environment. Herein, based on the insights gained from the anticorrosion behavior of corrosion products, a special way to mitigate aqueous corrosion is described. The concept is based on pre-corrosion by a hydrothermal treatment of Al-enriched Mg alloys in water. A uniform surface composed of an inner compact layer and top Mg-Al layered double hydroxide (LDH) microsheet is produced on a large area using a one-step process and excellent corrosion resistance is achieved in saline solutions. Moreover, inspired by the super-hydrophobic phenomenon in nature such as the lotus leaves effect, the orientation of the top microsheet layer is tailored by adjusting the hydrothermal temperature, time, and pH to produce a water-repellent surface after modification with fluorinated silane. As a result of the trapped air pockets in the microstructure, the super-hydrophobic surface with the Cassie state shows better corrosion resistance in the immersion tests. The results reveal an economical and environmentally friendly means to control and use the pre-corrosion products on magnesium alloys.
Scully, John R
2015-01-01
Recent advances in characterization tools, computational capabilities, and theories have created opportunities for advancement in understanding of solid-fluid interfaces at the nanoscale in corroding metallic systems. The Faraday Discussion on Corrosion Chemistry in 2015 highlighted some of the current needs, gaps and opportunities in corrosion science. Themes were organized into several hierarchical categories that provide an organizational framework for corrosion. Opportunities to develop fundamental physical and chemical data which will enable further progress in thermodynamic and kinetic modelling of corrosion were discussed. These will enable new and better understanding of unit processes that govern corrosion at the nanoscale. Additional topics discussed included scales, films and oxides, fluid-surface and molecular-surface interactions, selected topics in corrosion science and engineering as well as corrosion control. Corrosion science and engineering topics included complex alloy dissolution, local corrosion, and modelling of specific corrosion processes that are made up of collections of temporally and spatially varying unit processes such as oxidation, ion transport, and competitive adsorption. Corrosion control and mitigation topics covered some new insights on coatings and inhibitors. Further advances in operando or in situ experimental characterization strategies at the nanoscale combined with computational modelling will enhance progress in the field, especially if coupling across length and time scales can be achieved incorporating the various phenomena encountered in corrosion. Readers are encouraged to not only to use this ad hoc organizational scheme to guide their immersion into the current opportunities in corrosion chemistry, but also to find value in the information presented in their own ways.
NASA Astrophysics Data System (ADS)
LeVesque, R. J.; DeJesus, R. R.; Jones, C. A.; Babel, H. W.
1996-03-01
Low emittance coatings were required on the inner side of micro-meteoroid shielding and other structures to minimize heat transfer from the sun illuminated side to the underlying structure. A program was undertaken to evaluate conversion coatings for long term use in space. The conversion coatings evaluated were Alodine 1200 with three different bath chemistries, Iridite 14-2, and Alodine 600. Although the primary emphasis was on evaluating how processing conditions influenced the infrared emittance, corrosion resistance and electrical bonding characteristics were also evaluated. All of the conversion coatings were able to provide the target emittance value of less than 0.10, although baths with ferricyanide accelerators required shorter immersion times than typical of standard shop practices. The balance between emittance, corrosion resistance, and electrical bonding were defined. Space environmental stability tests were conducted on conversion coated 2219 and 7075 aluminum. The emittance and the electrical bonding characteristics were not affected by the space exposure even though the coating dehydrated and mud cracking is evident under a microscope. The dehydration resulted in a loss of corrosion resistance which is a consideration for hardware returned to Earth. It was concluded that conversion coatings are acceptable thermal control coatings for long life spacecraft although additional work is recommended for solar exposed surfaces.
49 CFR 192.479 - Atmospheric corrosion control: General.
Code of Federal Regulations, 2011 CFR
2011-10-01
... this section. (b) Coating material must be suitable for the prevention of atmospheric corrosion. (c... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion..., or experience appropriate to the environment of the pipeline that corrosion will— (1) Only be a light...
49 CFR 192.479 - Atmospheric corrosion control: General.
Code of Federal Regulations, 2010 CFR
2010-10-01
... this section. (b) Coating material must be suitable for the prevention of atmospheric corrosion. (c... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion..., or experience appropriate to the environment of the pipeline that corrosion will— (1) Only be a light...
1993-09-24
3]) Gas-cooled reactors were first developed in Europe and have been built since 1956. HTGR , equipped with the core of ceramic coated particle fuels ...demands must also be covered by nuclear energy in not so long future. Programs on developing the process heating HTGR have been promoted mainly in Germany...Material programs for HTGR have been promoted in several countries since late 1960’s which include the tasks of developing and qualifying materials, eg
NASA Astrophysics Data System (ADS)
Liu, Yichi; Liu, Debao; You, Chen; Chen, Minfang
2015-09-01
The aim of this study was to investigate the effect of grain size on the corrosion resistance of pure magnesium developed for biomedical applications. High-purity magnesium samples with different grain size were prepared by the cooling rate-controlled solidification. Electrochemical and immersion tests were employed to measure the corrosion resistance of pure magnesium with different grain size. The electrochemical polarization curves indicated that the corrosion susceptibility increased as the grain size decrease. However, the electrochemical impedance spectroscopy (EIS) and immersion tests indicated that the corrosion resistance of pure magnesium is improved as the grain size decreases. The improvement in the corrosion resistance is attributed to refine grain can produce more uniform and density film on the surface of sample.
Corrosion control of carbon steel using inhibitor of banana peel extract in acid diluted solutions
NASA Astrophysics Data System (ADS)
Komalasari; Utami, S. P.; Fermi, M. I.; Aziz, Y.; Irianti, R. S.
2018-04-01
Issues of corrosion happened in pipes, it was used as fluid transportation in the chemical industry. Corrosion cannot be preventing, however it could be controlled or blocked. Inhibitor addition is one of the method to control the corrosion inside the pipe. Corrosion inhibitors consisted of inorganic and organic compound inhibitors. Organic inhibitor is composed from synthetic and natural material. This study focused to evaluate the inhibition’s efficiency from banana peel to carbon steel in different concentration of inhibitor and immersing time in acid solution variation. The research employed inhibitor concentration of 0 gram/liter, 2 gram/liter, 4 gram/liter and 6 gram/liter, immersed time of carbon steel for 2, 4, 6, 8 and 10 hours. It was immersed in chloride acid solution of 0.5 M and 1.5 M. Carbon Steel AISI 4041 was used as specimen steel. Results were analyzed using corrosion rate evaluation for each specimens and inhibitor efficiencies determination. It was found that the specimen without inhibitor yielded fast corrosion rate in long immersing time and high concentration of HCl. However, the specimens with inhibitor gave lowest corrosion rate which was 78.59% for 6 gram/litre and 10 hours in 0.5 M HCl.
BOILING WATER REACTOR TECHNOLOGY STATUS OF THE ART REPORT. VOLUME II. WATER CHEMISTRY AND CORROSION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breden, C.R.
1963-02-01
Information concerning the corrosive effects of water in power reactor moderator-coolant systems is presented. The information is based on investigations reported in the unclassified literature believed to be fairly complete to 1959, but less complete since then. The material is presented in sections on water decomposition, water chemistry, materials corrosion, corrosion product deposits, and radioactivity. It is noted that the report is presented as a part of a continuing program in development of less expensive materials for use in reactors. (J.R.D.)
Corrosion and Corrosion Control in Light Water Reactors
NASA Astrophysics Data System (ADS)
Gordon, Barry M.
2013-08-01
Serious corrosion problems have plagued the light water reactor (LWR) industry for decades. The complex corrosion mechanisms involved and the development of practical engineering solutions for their mitigation will be discussed in this article. After a brief overview of the basic designs of the boiling water reactor (BWR) and pressurized water reactor (PWR), emphasis will be placed on the general corrosion of LWR containments, flow-accelerated corrosion of carbon steel components, intergranular stress corrosion cracking (IGSCC) in BWRs, primary water stress corrosion cracking (PWSCC) in PWRs, and irradiation-assisted stress corrosion cracking (IASCC) in both systems. Finally, the corrosion future of both plants will be discussed as plants extend their period of operation for an additional 20 to 40 years.
Qi, Han-quan; Zhang, Song-mei; Qian, Chao; Yuan-Li, Zheng
2015-12-01
To evaluate the corrosion properties of absorbed protein on the surface of NiCr alloys, and provide experimental base for corrosion resistance of dental casting alloys. NiCr alloy specimens were divided into 3 groups: one group was exposed to the artificial saliva(control group), and the other 2 groups were exposed to the artificial saliva with 1% bovine serum albumin(BSA), or 0.22% lysozyme(LSZ). Group of BSA and group of LSZ were the experimental group. Specimens in 3 groups were cultured in solution of Streptococcus mutans for 12 h, 24 h, 36 h and 48h, and investigated with electrochemical impedance spectroscopy measurement(EIS) and potentiodynamic polarization measurement(POT) to determine the corrosion resistance of the alloys. The data was analyzed with SPSS 17.0 software package. The results indicated that the corrosion resistance of both BSA group and LSZ group were higher than that of the control group (P<0.05) and LSZ group was superior to BSA group cultured in the solution of Streptococcus mutans for 12 h. When cultured for 24 h, the corrosion resistance of BSA group and LSZ group had no significant difference (P>0.05), but was still higher than that of the control group. After 36 h culture time, the control group and the BSA group had no statistical difference in corrosion resistance (P>0.05), while the LSZ group had the poorest corrosion resistance. When the culture time extended to 48 h, the control group had a better corrosion resistance compared with the BAS group and the LSZ group(P<0.05), but BSA group had displayed lower corrosion properties than LSZ group. The potentiodynamic polarization curve and electrochemical impedance spectroscopy had similar results. The adhesion of BSA and LSZ on the surface of the NiCr alloys in the early time could effectively inhibit the corrosive effect of Streptococcus mutans. The LSZ had better effect than BSA. With the continuing role of bacteria and the consumption of the absorb protein, the corrosion resistance of NiCr alloys toward Streptococcus mutans becomes lower than the alloys without absorb protein, which demonstrated that the adhesion of protein would change the surface structure of NiCr alloys and BSA had a greater effect.
Iron-Based Amorphous Metals: High-Performance Corrosion-Resistant Material Development
NASA Astrophysics Data System (ADS)
Farmer, Joseph; Choi, Jor-Shan; Saw, Cheng; Haslam, Jeffrey; Day, Dan; Hailey, Phillip; Lian, Tiangan; Rebak, Raul; Perepezko, John; Payer, Joe; Branagan, Daniel; Beardsley, Brad; D'Amato, Andy; Aprigliano, Lou
2009-06-01
An overview of the High-Performance Corrosion-Resistant Materials (HPCRM) Program, which was cosponsored by the Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office (DSO) and the U.S. Department of Energy (DOE) Office of Civilian and Radioactive Waste Management (OCRWM), is discussed. Programmatic investigations have included a broad range of topics: alloy design and composition, materials synthesis, thermal stability, corrosion resistance, environmental cracking, mechanical properties, damage tolerance, radiation effects, and important potential applications. Amorphous alloys identified as SAM2X5 (Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4) and SAM1651 (Fe48Mo14Cr15Y2C15B6) have been produced as meltspun ribbons (MSRs), dropcast ingots, and thermal-spray coatings. Chromium (Cr), molybdenum (Mo), and tungsten (W) additions provided corrosion resistance, while boron (B) enabled glass formation. Earlier electrochemical studies of MSRs and ingots of these amorphous alloys demonstrated outstanding passive film stability. More recently, thermal-spray coatings of these amorphous alloys have been made and subjected to long-term salt-fog and immersion tests; good corrosion resistance has been observed during salt-fog testing. Corrosion rates were measured in situ with linear polarization, while the open-circuit corrosion potentials (OCPs) were simultaneously monitored; reasonably good performance was observed. The sensitivity of these measurements to electrolyte composition and temperature was determined. The high boron content of this particular amorphous metal makes this amorphous alloy an effective neutron absorber and suitable for criticality-control applications. In general, the corrosion resistance of such iron-based amorphous metals is maintained at operating temperatures up to the glass transition temperature. These materials are much harder than conventional stainless steel and Ni-based materials, and are proving to have excellent wear properties, sufficient to warrant their use in earth excavation, drilling, and tunnel-boring applications. Large areas have been successfully coated with these materials, with thicknesses of approximately 1 cm. The observed corrosion resistance may enable applications of importance in industries such as oil and gas production, refining, nuclear power generation, shipping, etc.
49 CFR 192.490 - Direct assessment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.490 Direct.... Threat Standard 1 External corrosion § 192.925 2 Internal corrosion in pipelines that transport dry gas § 192.927 Stress corrosion cracking § 192.929 1 For lines not subject to subpart O of this part, the...
49 CFR 192.490 - Direct assessment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.490 Direct.... Threat Standard 1 External corrosion § 192.925 2 Internal corrosion in pipelines that transport dry gas § 192.927 Stress corrosion cracking § 192.929 1 For lines not subject to subpart O of this part, the...
49 CFR 192.490 - Direct assessment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.490 Direct.... Threat Standard 1 External corrosion § 192.925 2 Internal corrosion in pipelines that transport dry gas § 192.927 Stress corrosion cracking § 192.929 1 For lines not subject to subpart O of this part, the...
49 CFR 192.490 - Direct assessment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.490 Direct.... Threat Standard 1 External corrosion § 192.925 2 Internal corrosion in pipelines that transport dry gas § 192.927 Stress corrosion cracking § 192.929 1 For lines not subject to subpart O of this part, the...
49 CFR 192.490 - Direct assessment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.490 Direct.... Threat Standard 1 External corrosion § 192.925 2 Internal corrosion in pipelines that transport dry gas § 192.927 Stress corrosion cracking § 192.929 1 For lines not subject to subpart O of this part, the...
Corrosion due to use of carbon dioxide for enhanced oil recovery. Final report. SumX No. 78-003
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeBerry, D.W.; Clark, W.S.
1979-09-01
This study documents the specific effects of CO/sub 2/ on corrosion and identifies promising methods for controlling corrosion in fields using CO/sub 2/ injection. Information has been assembled on: CO/sub 2/ corrosion problems in general, surface and downhole corrosion problems specifically associated with CO/sub 2/ enhanced oil recovery, and methods to reduce corrosion problems in CO/sub 2/ environments. Corrosion mechanisms, kinetic behavior, and the effects of various parameters on corrosion by CO/sub 2/ are presented in this study. Engineering metals are not attacked by CO/sub 2/ under oil field environments unless liquid water is also present. Plain and low alloymore » steels are attacked by mixtures of CO/sub 2/ and liquid water. Attack on these bare metals may become serious at a CO/sub 2/ partial pressure as low as 4 psi and it increases with CO/sub 2/ partial pressure although not in direct proportion. Fluid flow rate is an important factor in CO/sub 2//water corrosion. Practically all stainless steels and similar resistant alloys are not particularly subject to corrosion by CO/sub 2//water mixtures alone, even at high CO/sub 2/ pressures. Elevated levels of CO/sub 2/ can aggravate the corrosive effects of other species such as hydrogen sulfide, oxygen, and chloride. Mixtures of CO/sub 2/, carbon monoxide (CO), and water can cause stress corrosion cracking of plain steels. Corrosion problems in CO/sub 2/ systems should be circumvented when possible by avoiding combination of the corrosive components. Although water cannot be excluded throughout the CO/sub 2/ injection-oil production-CO/sub 2/ and water reinjection chain, air in-leakage can be minimized and oxygen scavengers used to remove any residual. Exclusion of oxygen is important to the successful use of other corrosion control measures. A discussion is given of the main control methods including metal selection, protective coatings and nonmetallic materials, and chemical inhibition. (DLC)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Jundi, I.M.
The Qatar NGL-2 plant, commissioned in December 1979, was designed to process the associated gas from the offshore crude oil fields of Qatar. The dehydrated, sour, lean gas and wet, sour liquids are transported by two separate lines to the Umm Said NGL complex about 120 km (75 miles) from the central offshore station. The 300-mm (12-in.) -diameter liquids line has suffered general pitting corrosion, and the 600-mm (24-in.) -diameter lean gas line has suffered corrosion and extensive hydrogen-induced cracking (HIC or HIPC). Neither line performed to its design parameters, and many problems in the downstream facilities have been experienced.more » All efforts to clean the solids (debris) from the liquids lines have failed. This in turn interfered with the planned corrosion control program, thus allowing corrosion to continue. Various specialists have investigated the lines in an attempt to find the origin of the solids and to recommend necessary remedial actions. Should the lines fail from pitting corrosion, the effect of a leak at a pressure of about 11 000 kPa (1,595 psi) will be very dangerous, especially if it occurs onshore. To protect the NGL-2 operations against possible risks - both in terms of safety and of losses in revenue - critical sections of the pipelines have been replaced, and all gas liquids pipelines will be replaced soon. Supplementary documents to the API standards were prepared for the replaced pipelines.« less
Corrosion of Tungsten Microelectrodes used in Neural Recording Applications
Patrick, Erin; Orazem, Mark E.; Sanchez, Justin C.; Nishida, Toshikazu
2011-01-01
In neuroprosthetic applications, long-term electrode viability is necessary for robust recording of the activity of neural populations used for generating communication and control signals. The corrosion of tungsten microwire electrodes used for intracortical recording applications was analyzed in a controlled bench-top study and compared to the corrosion of tungsten microwires used in an in vivo study. Two electrolytes were investigated for the benchtop electrochemical analysis: 0.9% phosphate buffered saline (PBS) and 0.9% PBS containing 30 mM of hydrogen peroxide. The oxidation and reduction reactions responsible for corrosion were found by measurement of the open circuit potential and analysis of Pourbaix diagrams. Dissolution of tungsten to form the tungstic ion was found to be the corrosion mechanism. The corrosion rate was estimated from the polarization resistance, which was extrapolated from the electrochemical impedance spectroscopy data. The results show that tungsten microwires in an electrolyte of PBS have a corrosion rate of 300–700 µm/yr. The corrosion rate for tungsten microwires in an electrolyte containing PBS and 30 mM H2O2 is accelerated to 10,000–20,000 µm/yr. The corrosion rate was found to be controlled by the concentration of the reacting species in the cathodic reaction (e.g. O2 and H2O2). The in vivo corrosion rate, averaged over the duration of implantation, was estimated to be 100 µm/yr. The reduced in vivo corrosion rate as compared to the benchtop rate is attributed to decreased rate of oxygen diffusion caused by the presence of a biological film and a reduced concentration of available oxygen in the brain. PMID:21470563
Corrosion of tungsten microelectrodes used in neural recording applications.
Patrick, Erin; Orazem, Mark E; Sanchez, Justin C; Nishida, Toshikazu
2011-06-15
In neuroprosthetic applications, long-term electrode viability is necessary for robust recording of the activity of neural populations used for generating communication and control signals. The corrosion of tungsten microwire electrodes used for intracortical recording applications was analyzed in a controlled bench-top study and compared to the corrosion of tungsten microwires used in an in vivo study. Two electrolytes were investigated for the bench-top electrochemical analysis: 0.9% phosphate buffered saline (PBS) and 0.9% PBS containing 30 mM of hydrogen peroxide. The oxidation and reduction reactions responsible for corrosion were found by measurement of the open circuit potential and analysis of Pourbaix diagrams. Dissolution of tungsten to form the tungstic ion was found to be the corrosion mechanism. The corrosion rate was estimated from the polarization resistance, which was extrapolated from the electrochemical impedance spectroscopy data. The results show that tungsten microwires in an electrolyte of PBS have a corrosion rate of 300-700 μm/yr. The corrosion rate for tungsten microwires in an electrolyte containing PBS and 30 mM H₂O₂ is accelerated to 10,000-20,000 μm/yr. The corrosion rate was found to be controlled by the concentration of the reacting species in the cathodic reaction (e.g. O₂ and H₂O₂). The in vivo corrosion rate, averaged over the duration of implantation, was estimated to be 100 μm/yr. The reduced in vivo corrosion rate as compared to the bench-top rate is attributed to decreased rate of oxygen diffusion caused by the presence of a biological film and a reduced concentration of available oxygen in the brain. Copyright © 2011 Elsevier B.V. All rights reserved.
Effect of heat stable salts on MDEA solution corrosivity: Part 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rooney, P.C.; DuPart, M.S.; Bacon, T.R.
1997-04-01
A comprehensive coupon corrosion testing program was undertaken to address the effect of various heat stable salts on methyldiethanolamine (MDEA) corrosivity to carbon steel and various stainless steels. Corrosion rates of carbon steel, 304SS, 316SS and 410SS liquid and vapor coupons towards MDEA, and MDEA containing various anions, at 180 F and 250 F, were measured in a reactor. Corrosion results of two refinery plant solutions before and after caustic neutralization were also performed. Based on these results, guidelines were determined for heat stable amine salt (HSAS) levels of oxalates, sulfates, formates, acetates and thiosulfates. In addition, caustic neutralization guidelinesmore » for MDEA heat stable salts were determined. Ongoing results include MDEA corrosivity with succinates, and malonates, glycolates, SO{sub 2} and ammonia.« less
Corrosion Management of the Hanford High-Level Nuclear Waste Tanks
NASA Astrophysics Data System (ADS)
Beavers, John A.; Sridhar, Narasi; Boomer, Kayle D.
2014-03-01
The Hanford site is located in southeastern Washington State and stores more than 200,000 m3 (55 million gallons) of high-level radioactive waste resulting from the production and processing of plutonium. The waste is stored in large carbon steel tanks that were constructed between 1943 and 1986. The leak and structurally integrity of the more recently constructed double-shell tanks must be maintained until the waste can be removed from the tanks and encapsulated in glass logs for final disposal in a repository. There are a number of corrosion-related threats to the waste tanks, including stress-corrosion cracking, pitting corrosion, and corrosion at the liquid-air interface and in the vapor space. This article summarizes the corrosion management program at Hanford to mitigate these threats.
Hanford Double Shell Waste Tank Corrosion Studies - Final Report FY2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuentes, R. E.; Wyrwas, R. B.
2016-05-01
During FY15, SRNL performed corrosion testing that supported Washington River Protection Solutions (WRPS) with their double shell tank (DST) integrity program. The testing investigated six concerns including, 1) the possibility of corrosion of the exterior of the secondary tank wall; 2) the effect of ammonia on vapor space corrosion (VSC) above waste simulants; 3) the determination of the minimum required nitrite and hydroxide concentrations that prevent pitting in concentrated nitrate solutions (i.e., waste buffering); 4) the susceptibility to liquid air interface (LAI) corrosion at proposed stress corrosion cracking (SCC) inhibitor concentrations; 5) the susceptibility of carbon steel to pitting inmore » dilute solutions that contain significant quantities of chloride and sulfate; and 6) the effect of different heats of A537 carbon steel on the corrosion response. For task 1, 2, and 4, the effect of heat treating and/ or welding of the materials was also investigated.« less
NASA Technical Reports Server (NTRS)
Domack, M. S.
1985-01-01
A research program was conducted to critically assess the effects of precracked specimen configuration, stress intensity solutions, compliance relationships and other experimental test variables for stress corrosion testing of 7075-T6 aluminum alloy plate. Modified compact and double beam wedge-loaded specimens were tested and analyzed to determine the threshold stress intensity factor and stress corrosion crack growth rate. Stress intensity solutions and experimentally determined compliance relationships were developed and compared with other solutions available in the literature. Crack growth data suggests that more effective crack length measurement techniques are necessary to better characterize stress corrosion crack growth. Final load determined by specimen reloading and by compliance did not correlate well, and was considered a major source of interlaboratory variability. Test duration must be determined systematically, accounting for crack length measurement resolution, time for crack arrest, and experimental interferences. This work was conducted as part of a round robin program sponsored by ASTM committees G1.06 and E24.04 to develop a standard test method for stress corrosion testing using precracked specimens.
NASA Astrophysics Data System (ADS)
Rountree, Cindy L.
2017-08-01
This topical review is dedicated to understanding stress corrosion cracking in oxide glasses and specifically the SiO_2{\\text-B_2O_3{\\text-}Na_2O} (SBN) ternary glass systems. Many review papers already exist on the topic of stress corrosion cracking in complex oxide glasses or overly simplified glasses (pure silica). These papers look at how systematically controlling environmental factors (pH, temperature...) alter stress corrosion cracking, while maintaining the same type of glass sample. Many questions still exist, including: What sets the environmental limit? What sets the velocity versus stress intensity factor in the slow stress corrosion regime (Region I)? Can researchers optimize these two effects to enhance a glass’ resistance to failure? To help answer these questions, this review takes a different approach. It looks at how systemically controlling the glass’ chemical composition alters the structure and physical properties. These changes are then compared and contrasted to the fracture toughness and the stress corrosion cracking properties. By taking this holistic approach, researchers can begin to understand the controlling factors in stress corrosion cracking and how to optimize glasses via the initial chemical composition.
Microencapsulation of Self Healing Agents for Corrosion Control Coatings
NASA Technical Reports Server (NTRS)
Jolley, S. T.; Li, W.; Buhrow, J. W.; Calle, L. M.
2011-01-01
Corrosion, the environmentally induced degradation of materials, is a very costly problem that has a major impact on the global economy. Results from a 2-year breakthrough study released in 2002 by the U.S. Federal Highway Administration (FHWA) showed that the total annual estimated direct cost associated with metallic corrosion in nearly every U.S. industry sector was a staggering $276 billion, approximately 3.1% of the nation's Gross Domestic Product (GOP). Corrosion protective coatings are widely used to protect metallic structures from the detrimental effects of corrosion but their effectiveness can be seriously compromised by mechanical damage, such as a scratch, that exposes the metallic substrate. The incorporation of a self healing mechanism into a corrosion control coating would have the potential to significantly increase its effectiveness and useful lifetime. This paper describes work performed to incorporate a number of microcapsule-based self healing systems into corrosion control coatings. The work includes the preparation and evaluation of self-healing systems based on curable epoxy, acrylate, and siloxane resins, as well as, microencapsulated systems based on passive, solvent born, healing agent delivery. The synthesis and optimization of microcapsule-based self healing systems for thin coating (less than 100 micron) will be presented.
Preventing Corrosion by Controlling Cathodic Reaction Kinetics
2016-03-25
electrochemical reaction rates of processes that drive corrosion, e.g. the oxygen reduction reaction (ORR). To this end, we have used reactive...elements on the kinetics of oxygen reduction reaction catalyzed on titanium oxide in order to develop new approaches for controlling galvanic corrosion... consumption of anions in reactions with metal cations can deplete the electrolyte. However, in the atmospheric electrolyte, the electrolyte
Development of a Predictive Corrosion Model Using Locality-Specific Corrosion Indices
2017-09-12
6 3.2.1 Statistical data analysis methods ...6 3.2.2 Algorithm development method ...components, and method ) were compiled into an executable program that uses mathematical models of materials degradation, and statistical calcula- tions
Development of an embeddable microinstrument for corrosivity monitoring in concrete.
DOT National Transportation Integrated Search
1999-07-01
The aim of this program was the development of a small and completely embeddable microinstrument for corrosivity measurement : in concrete. It should contain all the electronics for the electrochemical measurements, the means for data transfer betwee...
Sustainability of transportation structures using composite materials to support trade and growth.
DOT National Transportation Integrated Search
2014-06-01
Corrosion-induced deterioration of steel rebar is one of the main reasons for repair and rehabilitation programs : for conventional steel-reinforced concrete bridge decks. According to the National Association of Corrosion Engineers : (NACE), of all ...
NASA Astrophysics Data System (ADS)
Matuo, Youichirou; Miyahara, Shinya; Izumi, Yoshinobu
Radioactive Corrosion Product (CP) is a main cause of personal radiation exposure during maintenance with no breached fuel in fast breeder reactor (FBR) plants. The most important CP is 54Mn and 60Co. In order to establish techniques of radiation dose estimation for radiation workers in radiation-controlled areas of the FBR, the PSYCHE (Program SYstem for Corrosion Hazard Evaluation) code was developed. We add the Particle Model to the conventional PSYCHE analytical model. In this paper, we performed calculation of CP transfer in JOYO using an improved calculation code in which the Particle Model was added to the PSYCHE. The C/E (calculated / experimentally observed) value for CP deposition was improved through use of this improved PSYCHE incorporating the Particle Model. Moreover, among the percentage of total radioactive deposition accounted for by CP in particle form, 54Mn was estimated to constitute approximately 20 % and 60Co approximately 40 % in the cold-leg region. These calculation results are consistent with the measured results for the actual cold-leg piping in the JOYO.
DEVELOPMENT OF AN ENVIRONMENTALLY BENIGN MICROBIAL INHIBITOR TO CONTROL INTERNAL PIPELINE CORROSION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristine L. Lowe; Bill W. Bogan; Wendy R. Sullivan
2004-07-30
The overall program objective is to develop and evaluate environmentally benign agents or products that are effective in the prevention, inhibition, and mitigation of microbially influenced corrosion (MIC) in the internal surfaces of metallic natural gas pipelines. The goal is to develop one or more environmentally benign (a.k.a. ''green'') products that can be applied to maintain the structure and dependability of the natural gas infrastructure. Previous testing indicated that the growth, and the metal corrosion caused by pure cultures of sulfate reducing bacteria were inhibited by hexane extracts of some pepper plants. This quarter tests were performed with mixed bacterialmore » cultures obtained from natural gas pipelines. Treatment with the pepper extracts affected the growth and metabolic activity of the microbial consortia. Specifically, the growth and metabolism of sulfate reducing bacteria was inhibited. The demonstration that pepper extracts can inhibit the growth and metabolism of sulfate reducing bacteria in mixed cultures is a significant observation validating a key hypothesis of the project. Future tests to determine the effects of pepper extracts on mature/established biofilms will be performed next.« less
Microencapsulation of Corrosion Indicators for Smart Coatings
NASA Technical Reports Server (NTRS)
Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott T.; Calle, Luz M.; Hanna,Joshua S.; Rawlins, James W.
2011-01-01
A multifunctional smart coating for the autonomous detection, indication, and control of corrosion is been developed based on microencapsulation technology. This paper summarizes the development, optimization, and testing of microcapsules specifically designed for early detection and indication of corrosion when incorporated into a smart coating. Results from experiments designed to test the ability of the microcapsules to detect and indicate corrosion, when blended into several paint systems, show that these experimental coatings generate a color change, indicative of spot specific corrosion events, that can be observed with the naked eye within hours rather than the hundreds of hours or months typical of the standard accelerated corrosion test protocols.. Key words: smart coating, corrosion detection, microencapsulation, microcapsule, pH-sensitive microcapsule, corrosion indicator, corrosion sensing paint
Optimal Corrosion Control Treatment Evaluation Technical Recommendations
This document provides technical recommendations that both systems and primacy agencies can use to comply with LCR CCT requirements and effective evaluation and designation of optimal corrosion control treatment (OCCT).
Corrosion products of carbonation induced corrosion in existing reinforced concrete facades
DOE Office of Scientific and Technical Information (OSTI.GOV)
Köliö, Arto; Honkanen, Mari; Lahdensivu, Jukka
Active corrosion in reinforced concrete structures is controlled by environmental conditions and material properties. These factors determine the corrosion rate and type of corrosion products which govern the total achieved service life. The type and critical amount of corrosion products were studied by electron microscopy and X-ray diffractometry on concrete and reinforcement samples from existing concrete facades on visually damaged locations. The corrosion products in outdoor environment exposed concrete facades are mostly hydroxides (Feroxyhite, Goethite and Lepidocrocite) with a volume ratio to Fe of approximately 3. The results can be used to calibrate calculation of the critical corrosion penetration ofmore » concrete facade panels.« less
This information is relevant to the development of condition assessment tools associated with the aging water infrastructure research program Corrosion of wastewater collection infrastructure, especially concrete sewers, is a significant cause of deterioration and premature failu...
Stress Corrosion Cracking of Certain Aluminum Alloys
NASA Technical Reports Server (NTRS)
Hasse, K. R.; Dorward, R. C.
1983-01-01
SC resistance of new high-strength alloys tested. Research report describes progress in continuing investigation of stress corrosion (SC) cracking of some aluminum alloys. Objective of program is comparing SC behavior of newer high-strength alloys with established SC-resistant alloy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baum, A.J.
1995-05-01
The objective of this program was to perform qualification tests of industrial heats of thermally treated alloy 690 steam generator tubing under heat transfer conditions. Primary emphasis was focused on testing of alternate tube to tubesheet expansion processes. In addition, a background report was written to document the evolution of the alloy 690 process specification and the supporting qualification testing. While the testing was able to produce some localized corrosion of alloy 690 in the tube to tubesheet joint transition regions under highly alkaline conditions, the corrosion rates were between two and three orders of magnitude lower than the comparablemore » rates in mill annealed alloy 600 tubing. The corrosion morphology was a combination of intergranular and general corrosion, rather than the stress corrosion cracking typically found in mill annealed alloy 600 tubing.« less
Ultrasonic assessment of service life of concrete structures subject to reinforcing steel corrosion
NASA Astrophysics Data System (ADS)
Udegbunam, Ogechukwu Christian
Over half of the bridges in the United States were built before 1970. Such bridges and the network of roads that they carry include the Inter State system, which was built as part of the great public works program, following the end of the Second World War. During that era, the emphasis was on strength design and economical construction of new structures, and not much premium was placed on durability and maintainability concerns. Since the end of this construction boom in the early 1970s, the concern for the durability of transportation infrastructure has steadily gained prominence among those agencies that must secure, program and administer funds for maintaining highway networks. The objective of this research was to develop a nondestructive method of assessing the durability of concrete bridge decks susceptible to damage from corrosion of embedded reinforcing steel. This was accomplished by formulating a holistic approach that accounts for the major factors that influence corrosion based deterioration of reinforced concrete. In this approach, the assessment of the durability of concrete bridge decks is based on a model that estimates the time it takes for the cover concrete to fail a result of stresses caused by expansion of reinforcing steel bars, due to corrosion activities. This time to failure is comprised of two distinct periods that must be evaluated before the problem can be solved. The research consisted of an experimental program and an analytical study. In the experimental program concrete specimens were cast and tested to determine their diffusivity and mechanical properties. The diffusivity was used to evaluate the period it takes for corrosion of the reinforcing bars to commence. In the analytical study, the resistance of the concrete structure against the internal forces caused by corrosion was evaluated with the finite element techniques. This resistance was used to evaluate the period defining the failure of the cover concrete. These two periods were then used to determine the service life of the structure.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Which pipelines must I protect against atmospheric... Corrosion Control § 195.581 Which pipelines must I protect against atmospheric corrosion and what coating... the prevention of atmospheric corrosion. (c) Except portions of pipelines in offshore splash zones or...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Which pipelines must I protect against atmospheric... Corrosion Control § 195.581 Which pipelines must I protect against atmospheric corrosion and what coating... the prevention of atmospheric corrosion. (c) Except portions of pipelines in offshore splash zones or...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Which pipelines must I protect against atmospheric... Corrosion Control § 195.581 Which pipelines must I protect against atmospheric corrosion and what coating... the prevention of atmospheric corrosion. (c) Except portions of pipelines in offshore splash zones or...
Axenic aerobic biofilms inhibit corrosion of copper and aluminum.
Jayaraman, A; Ornek, D; Duarte, D A; Lee, C C; Mansfeld, F B; Wood, T K
1999-11-01
The corrosion behavior of unalloyed copper and aluminum alloy 2024 in modified Baar's medium has been studied with continuous reactors using electrochemical impedance spectroscopy. An axenic aerobic biofilm of either Pseudomonas fragi K or Bacillus brevis 18 was able to lessen corrosion as evidenced by a consistent 20-fold increase in the low-frequency impedance value of copper as well as by a consistent four- to seven-fold increase in the polarization resistance of aluminum 2024 after six days exposure compared to sterile controls. This is the first report of axenic aerobic biofilms inhibiting generalized corrosion of copper and aluminum. Addition of the representative sulfate-reducing bacterium (SRB) Desulfovibrio vulgaris (to simulate consortia corrosion behavior) to either the P. fragi K or B. brevis 18 protective biofilm on copper increased the corrosion to that of the sterile control unless antibiotic (ampicillin) was added to inhibit the growth of SRB in the biofilm.
49 CFR 192.461 - External corrosion control: Protective coating.
Code of Federal Regulations, 2012 CFR
2012-10-01
... protective coating, whether conductive or insulating, applied for the purpose of external corrosion control... or damage from supporting blocks. (e) If coated pipe is installed by boring, driving, or other...
49 CFR 192.461 - External corrosion control: Protective coating.
Code of Federal Regulations, 2014 CFR
2014-10-01
... protective coating, whether conductive or insulating, applied for the purpose of external corrosion control... or damage from supporting blocks. (e) If coated pipe is installed by boring, driving, or other...
Chrome - Free Aluminum Coating System
NASA Technical Reports Server (NTRS)
Bailey, John H.; Gugel, Jeffrey D.
2010-01-01
This slide presentation concerns the program to qualify a chrome free coating for aluminum. The program was required due to findings by OSHA and EPA, that hexavalent chromium, used to mitigate corrosion in aerospace aluminum alloys, poses hazards for personnel. This qualification consisted of over 4,000 tests. The tests revealed that a move away from Cr+6, required a system rather than individual components and that the maximum corrosion protection required pretreatment, primer and topcoat.
A Corrosion Control Manual for Rail Rapid Transit
NASA Technical Reports Server (NTRS)
Gilbert, L. O.; Fitzgerald, J. H., III; Menke, J. T.; Lizak, R. M. (Editor)
1982-01-01
This manual addresses corrosion problems in the design, contruction, and maintenance of rapid transit systems. Design and maintenance solutions are provided for each problem covered. The scope encompasses all facilities of urban rapid transit systems: structures and tracks, platforms and stations, power and signals, and cars. The types of corrosion and their causes as well as rapid transit properties are described. Corrosion control committees, and NASA, DOD, and ASTM specifications and design criteria to which reference is made in the manual are listed. A bibliography of papers and excerpts of reports is provided and a glossary of frequently used terms is included.
PH and Electrochemical Responsive Materials for Corrosion Smart Coating Applications
NASA Technical Reports Server (NTRS)
Li, Wenyan; Calle, Luz M.
2008-01-01
Corrosion is a costly issue for military operations and civil industries. While most corrosion initiates from localized corrosion form, such as pitting, failure directly caused by localized corrosion is the most dangerous kind, because it is difficult to anticipate and prevent, occurs very suddenly and can be catastrophic. One way of preventing these failures is with a coating that can detect and heal localized corrosion. pH and other electrochemical changes are often associated with localized corrosion, so it is expected that materials that are pH or otherwise electrochemical responsive can be used to detect and control corrosion. This paper will review various pH and electrochemical responsive materials and their potential applications in corrosion smart coatings. Current research results in this field will also be reported.
49 CFR 193.2635 - Monitoring corrosion control.
Code of Federal Regulations, 2010 CFR
2010-10-01
....2635 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2635 Monitoring corrosion control...
Studying localized corrosion using liquid cell transmission electron microscopy
Chee, See Wee; Pratt, Sarah H.; Hattar, Khalid; ...
2014-11-07
Using liquid cell transmission electron microscopy (LCTEM), localized corrosion of Cu and Al thin films immersed in aqueous NaCl solutions was studied. We demonstrate that potentiostatic control can be used to initiate pitting and that local compositional changes, due to focused ion beam implantation of Au + ions, can modify the corrosion susceptibility of Al films. Likewise, a discussion on strategies to control the onset of pitting is also presented.
Electrochemical Evaluation of Alloys for Spaceport Design
NASA Astrophysics Data System (ADS)
Calle, Luz Marina; MacDowell, Louis G.; Vinje, Rubiela D.
2003-01-01
Corrosion studies began at the Kennedy Space Center (KSC) in 1966 during the Gemini/Apollo Programs with the evaluation of long-term protective coatings for the corrosion protection of carbon steel. NASA's KSC Beach Corrosion Test Site, which was established at that time, has been documented by the American Society of Materials (ASM) as one of the most corrosive naturally occurring environments in the world. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pad were rendered even more severe by the acidic exhaust from the solid rocker boosters. In the years that followed, numerous studies have identified materials, coatings, and maintenance procedures for launch hardware and equipment exposed to the highly corrosive environment at the launch pad. The Corrosion Laboratory was established at KSC in 1985 and was outfitted with state-of-the-art electrochemistry equipment to conduct research and materials characterization in many different corrosive environments. This paper will describe the application of electrochemistry in combination with atmospheric exposure to the selection of alloys in a spaceport environment.
Microbiologically Influenced Corrosion: Causative Organisms and Mechanisms
2012-01-31
corrosion is both predictable and complex. In aquatic environments and under some atmospheric conditions . microorganisms settle on surfaces and alter the...some atmospheric conditions , microorganisms settle on sin laces and alter the surface chemistry controlling the rates of corrosion or shifting the...pitting corrosion of some allO) S continues under deposits of iron-oxidizing bacteria independent of bacterial activity. Similarly, microbiologicall
The role of lipopolysaccharide on the electrochemical behavior of titanium.
Barão, V A; Mathew, M T; Assunção, W G; Yuan, J C; Wimmer, M A; Sukotjo, C
2011-05-01
Lipopolysaccharide (LPS) may induce peri-implantitis and implant failure. However, the role of LPS in titanium (Ti) electrochemical behavior remains unknown. We hypothesized that LPS in saliva with different pHs affects Ti corrosion properties. Thirty-six Ti discs (15 mm × 3 mm) were divided into 12 groups according to saliva pH (3, 6.5, and 9) and Escherichia coli LPS concentration (0, 0.15, 15, and 150 µg/mL). Electrochemical tests, such as open circuit potential, potentiodynamic, and electrochemical impedance spectroscopy, were conducted in a controlled environment. Data were evaluated by Pearson correlation and regression analysis (α = 0.05). LPS and pH affected Ti corrosive behavior. In general, lower pH and higher LPS concentration accelerated Ti corrosion. In the control group, the increase of pH significantly reduced the corrosion rate and increased the capacitance of the double layer. In LPS groups, the decrease of pH significantly increased the corrosion rate of Ti. LPS negatively influenced Ti corrosion behavior. C(dl), capacitance of double layer; E(corr), corrosion potential; EIS, electrochemical impedance spectroscopy; I(corr), corrosion current density; I(pass), passivation current density; LPS, lipopolysaccharide; OCP, open circuit potential; R(p), polarization resistance; Ti, titanium.
NASA Astrophysics Data System (ADS)
Takeuchi, M.; Arai, Y.; Kase, T.; Nakajima, Y.
2013-01-01
The application of the cold crucible technique to a pyrochemical electrolyzer used in the oxide-electrowinning method, which is a method for the pyrochemical reprocessing of spent nuclear oxide fuel, is proposed as a means for improving corrosion resistance. The electrolyzer suffers from a severe corrosion environment consisting of molten salt and corrosive gas. In this study, corrosion tests for several metals in molten 2CsCl-NaCl at 923 K with purging chlorine gas were conducted under controlled material temperature conditions. The results revealed that the corrosion rates of several materials were significantly decreased by the material cooling effect. In particular, Hastelloy C-22 showed excellent corrosion resistance with a corrosion rate of just under 0.01 mm/y in both molten salt and vapor phases by controlling the material surface at 473 K. Finally, an engineering-scale crucible composed of Hastelloy C-22 was manufactured to demonstrate the basic function of the cold crucible. The cold crucible induction melting system with the new concept Hastelloy crucible showed good compatibility with respect to its heating and cooling performances.
Superhydrophobic Post Treatment and Coating Extenders for Improved Asset Sustainability
NASA Technical Reports Server (NTRS)
Trigwell, Steven; Montgomery, Eliza L.; Calle, Luz M.
2015-01-01
Launch structures, hardware, and ground support equipment, at NASA's John F. Kennedy Space Center in Florida, are exposed to a highly corrosive natural coastal marine environment. In addition, during launches, rocket exhaust deposition is also highly corrosive. Superhydrophobic coatings are being considered for additional corrosion protection on existing structures to enhance corrosion resistance and add an additional layer of protection against harsh environmental elements. These coatings have come into their own recently, and are now being investigated as corrosion protective coatings due to their water repelling capability. These coatings can be used on existing coatings, newly coated materials, or used on bare substrates. The coatings are not suitable for permanent corrosion protection, but can be used where additional corrosion control is desired or only when temporary corrosion control is needed, such as in hardware sitting on a launch pad for 30-45 days prior to a launch. In this study, superhydrophobic coatings were applied on various coated and uncoated substrates and exposed to the spaceport environment for various times up to 60 days. This paper highlights the current results of the superhydrophobic coatings performance evaluated by X-ray photoelectron spectroscopy, and contact angle measurements.
49 CFR 195.555 - What are the qualifications for supervisors?
Code of Federal Regulations, 2010 CFR
2010-10-01
... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.555 What are the... that portion of the corrosion control procedures established under § 195.402(c)(3) for which they are...
49 CFR 195.555 - What are the qualifications for supervisors?
Code of Federal Regulations, 2011 CFR
2011-10-01
... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.555 What are the... that portion of the corrosion control procedures established under § 195.402(c)(3) for which they are...
49 CFR 195.555 - What are the qualifications for supervisors?
Code of Federal Regulations, 2013 CFR
2013-10-01
... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.555 What are the... that portion of the corrosion control procedures established under § 195.402(c)(3) for which they are...
49 CFR 195.555 - What are the qualifications for supervisors?
Code of Federal Regulations, 2012 CFR
2012-10-01
... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.555 What are the... that portion of the corrosion control procedures established under § 195.402(c)(3) for which they are...
49 CFR 195.555 - What are the qualifications for supervisors?
Code of Federal Regulations, 2014 CFR
2014-10-01
... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.555 What are the... that portion of the corrosion control procedures established under § 195.402(c)(3) for which they are...
49 CFR 193.2304 - Corrosion control overview.
Code of Federal Regulations, 2010 CFR
2010-10-01
....2304 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Construction § 193.2304 Corrosion control overview. (a...
49 CFR 193.2631 - Internal corrosion control.
Code of Federal Regulations, 2010 CFR
2010-10-01
....2631 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2631 Internal corrosion control. Each...
Factors affecting the corrosivity of pulping liquors
NASA Astrophysics Data System (ADS)
Hazlewood, Patrick Evan
Increased equipment failures and the resultant increase in unplanned downtime as the result of process optimization programs continue to plague pulp mills. The failures are a result of a lack of understanding of corrosion in the different pulping liquors, specifically the parameters responsible for its adjustment such as the role and identification of inorganic and organic species. The current work investigates the role of inorganic species, namely sodium hydroxide and sodium sulfide, on liquor corrosivity at a range of process conditions beyond those currently experienced in literature. The role of sulfur species, in the activation of corrosion and the ability of hydroxide to passivate carbon steel A516-Gr70, is evaluated with gravimetric and electrochemical methods. The impact of wood chip weathering on process corrosion was also evaluated. Results were used to identify black liquor components, depending on the wood species, which play a significant role in the activation and inhibition of corrosion for carbon steel A516-Gr70 process equipment. Further, the effect of black liquor oxidation on liquor corrosivity was evaluated. Corrosion and stress corrosion cracking performance of selected materials provided information on classes of materials that may be reliably used in aggressive pulping environments.
Investigation of medium and high temperature phase change materials
NASA Technical Reports Server (NTRS)
Heine, D.; Kraehling, H.
1979-01-01
A detailed description of the programs for acquisition and analysis of the test results is given. Basically it concerns three programs. The TEST program controls the recording of the test data. With the THELLI program it is possible to follow the temperature curve recorded for each individual thermoelement during the test. With the AUSW program the test data can be analyzed, to determine, for example, the melting point and the start of melting. The first results of the service life tests are discussed. From these it is attempted to draw inferences for the subsequent tests. An attempt is made to focus on the determination of the area-related mass loss, the reduction in thickness and the corrosion rate as well as optical and scanning electron microscope evaluation.
INTERNAL CORROSION AND DEPOSITION CONTROL
Corrosion is one of the most important problems in the drinking water industry. It can affect public health, public acceptance of a water supply, and the cost of providing safe water. Deterioration of materials resulting from corrosion can necessitate huge yearly expenditures o...
Relationship between Ethanol in Fuel and Corrosion in STP Sumps
Steve Pollock is a Compliance Inspector with the Petroleum Program in the Virginia Department of Environmental Quality. During his inspections of the STP sumps of underground storage tanks at gasoline service stations in Virginia, Mr. Pollock noticed odd corrosion reactions in so...
The Swedish nuclear waste program and the long-term corrosion behaviour of copper
NASA Astrophysics Data System (ADS)
Rosborg, B.; Werme, L.
2008-09-01
The principal strategy for high-level radioactive waste disposal in Sweden is to enclose the spent fuel in tightly sealed copper canisters that are embedded in bentonite clay about 500 m down in the Swedish bedrock. Besides rock movements, the biggest threat to the canister in the repository is corrosion. 'Nature' has proven that copper can last many million of years under proper conditions, bentonite clay has existed for many million years, and the Fennoscandia bedrock shield is stable. The groundwater may not stay the very same over very long periods considering glaciations, but this will not have dramatic consequences for the canister performance. While nature has shown the way, research refines and verifies. The most important task from a corrosion perspective is to ascertain a proper near-field environment. The background and status of the Swedish nuclear waste program are presented together with information about the long-term corrosion behaviour of copper with focus on the oxic period.
An Investigation of Corrosion Mitigation Strategies for Aging Post Tensioned Cables
2017-01-01
ER D C/ IT L TR -1 7- 1 Navigation Systems Research Program An Investigation of Corrosion Mitigation Strategies for Aging Post -Tensioned...for Aging Post -Tensioned Cables Ernest L. Miller, Barry C. White, Richard W. Haskins, Robert M. Ebeling, and James A. Evans Information Technology...Reduced Capacity of Multistrand Post Tensioned Ground Anchorage Due to Tendon Corrosion Work Unit number L9C833 ERDC/ITL TR-17-1 ii Abstract Over
An Investigation of Corrosion Mitigation Strategies for Aging Post-Tensioned Cables
2017-01-01
ER D C/ IT L TR -1 7- 1 Navigation Systems Research Program An Investigation of Corrosion Mitigation Strategies for Aging Post -Tensioned...for Aging Post -Tensioned Cables Ernest L. Miller, Barry C. White, Richard W. Haskins, Robert M. Ebeling, and James A. Evans Information Technology...Reduced Capacity of Multistrand Post Tensioned Ground Anchorage Due to Tendon Corrosion Work Unit number L9C833 ERDC/ITL TR-17-1 ii Abstract Over
Formulation of a Product Containing the Multifunctional Corrosion Inhibitor System DNBM
1989-12-22
corrosion areas are shown in Figs. 14 through 16. The order of anticorrosion effectiveness via the method of time-to-failure was: Best 1. DNBM/Epoxy (No Cr...toluene. In the program described herein, a number of methods were investigated for solubilizing the salts in organic solvents. These included (1...NADC-90049-60 Section 2 DEVELOPMENT OF DNBM CORROSION INHIBITORS The two methods investigated for the solubilization of salts in organic systems were
Fireside corrosion in kraft recovery boilers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tran, H.N.; Barham, D.; Hupa, M.
1988-01-01
Causes and corrective measures are reviewed for several common types of fireside corrosion in kraft recovery boilers. Corrosion differs significantly with location in the boiler due tio the great differences in metal surface temperature and deposit and flue gas chemistry. Sulphidation corrosion associated with sulphur-bearing gases under reducing conditions is dominant in the lower furnace, while sulphidation/oxidation resulting from gas-deposit-metal reactions is important in the upper boiler. In many cases, although corrosion has been controlled by ensuring the absence of a molten phase at the metal surface, the corrosion mechanism is not fully understood.
Molten salt corrosion of SiC and Si3N4
NASA Technical Reports Server (NTRS)
Jacobson, Nathan S.; Smialek, James L.; Fox, Dennis S.
1988-01-01
Industrial systems such as heat engines and heat exchangers involve harsh environments. The structural materials are subjected to high temperatures as well as corrosive gases and condensed phases. Past experience with metal alloys has shown that these condensed phases can be particularly corrosive and are often the limiting factor in the operation of these systems. In a heat engine the most common condensed corrodent is Na2SO4 whereas in a heat exchanger an oxide slag may be present. The primary emphasis is on Na2SO4 induced corrosion, however, similarities and differences to oxide slag are also discussed. The extensive research on corrosion of metal alloys has led to understanding and controlling corrosion for these materials. Currently silicon based ceramics are prime candidates for the applications discussed. Therefore it is important to understand the effects of condensed phase deposits on this emerging class of high temperature materials. Both the thermodynamic and strength of the ceramic is also examined. Finally some control strategies for corrosion of silicon based ceramics are explored.
C-130 Corrosion Prevention and Control Program
2011-08-01
hexavalent chrome … Warner Robins Air Logistics Center People First…Mission Always SIBR Projects Back Scatter X-Ray NDI Detect concealed...Projects Listing Future Projects Chrome -Free Coating Systems Flight Tests • AkzoNobel (Sep-Oct 2011) – PreKote – Aerodur 2100 magnesium rich...primer (MgRP) – Aerodur 5000 topcoat color #36173 • Deft (June 2012) – Rare earth conversion coating (RECC) 1015/3021 – 02-GN-093 chrome -free
Thermal control system corrosion study
NASA Technical Reports Server (NTRS)
Yee, Robert; Folsom, Rolfe A.; Mucha, Phillip E.
1990-01-01
During the development of an expert system for autonomous control of the Space Station Thermal Control System (TCS), the thermal performance of the Brassboard TCS began to gradually degrade. This degradation was due to filter clogging by metallic residue. A study was initiated to determine the source of the residue and the basic cause of the corrosion. The investigation focused on the TCS design, materials compatibility, Ames operating and maintenance procedures, and chemical analysis of the residue and of the anhydrous ammonia used as the principal refrigerant. It was concluded that the corrosion mechanisms involved two processes: the reaction of water alone with large, untreated aluminum parts in a high pH environment and the presence of chlorides and chloride salts. These salts will attack the aluminum oxide layer and may enable galvanic corrosion between the aluminum and the more noble stainless steel and other metallic elements present. Recommendations are made for modifications to the system design, the materials used, and the operating and maintenance procedures, which should largely prevent the recurrence of these corrosion mechanisms.
Non-Chromate, ZVOC Coatings for Steel Substrates on Army and Navy Aircraft and Ground Vehicles
2014-12-01
Control and Prevention Executive CHPPM Center for Health Promotion and Preventive Medicine CPAC corrosion prevention and control DI deionized...inhibitors, such as the Cheminhib 420, are used on both Stryker and MRAP to prevent corrosion prior to painting. Two of the alternatives, Oxsilan 9810/2 and...and pretreatments that the Army currently uses to mitigate corrosion contain toxic heavy metals, volatile organic compounds (VOC), and hazardous air
Developing a Systematic Corrosion Control Evaluation Approach in Flint
Presentation covers what the projects were that were recommended by the Flint Safe Drinking Water Task Force for corrosion control assessment for Flint, focusing on the sequential sampling project, the pipe rigs, and pipe scale analyses.
49 CFR 193.2629 - External corrosion control: buried or submerged components.
Code of Federal Regulations, 2010 CFR
2010-10-01
...) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Maintenance § 193.2629 External... external corrosive attack must be protected from external corrosion by— (1) Material that has been designed...
Microstructure and Corrosion Characterization of Squeeze Cast AM50 Magnesium Alloys
NASA Astrophysics Data System (ADS)
Sachdeva, Deepika; Tiwari, Shashank; Sundarraj, Suresh; Luo, Alan A.
2010-12-01
Squeeze casting of magnesium alloys potentially can be used in lightweight chassis components such as control arms and knuckles. This study documents the microstructural analysis and corrosion behavior of AM50 alloys squeeze cast at different pressures between 40 and 120 MPa and compares them with high-pressure die cast (HPDC) AM50 alloy castings and an AM50 squeeze cast prototype control arm. Although the corrosion rates of the squeeze cast samples are slightly higher than those observed for the HPDC AM50 alloy, the former does produce virtually porosity-free castings that are required for structural applications like control arms and wheels. This outcome is extremely encouraging as it provides an opportunity for additional alloy and process development by squeeze casting that has remained relatively unexplored for magnesium alloys compared with aluminum. Among the microstructural parameters analyzed, it seems that the β-phase interfacial area, indicating a greater degree of β network, leads to a lower corrosion rate. Weight loss was the better method for determining corrosion behavior in these alloys that contain a large fraction of second phase, which can cause perturbations to an overall uniform surface corrosion behavior.
Smart Coating for Corrosion Indication and Prevention: Recent Progress
NASA Technical Reports Server (NTRS)
Li, Wenyan; Hintze, Paul; Calle, Luz M.; Buhrow, Jerry; Curran, Jerry; Muehlberg, A. J.; Gelling, V. J.; Webster, D. C.; Croll, S. G.; Contu, F.;
2009-01-01
The authors are developing a smart coating system based on pH-triggered release microcapsules. These microcapsules can be incorporated into various coating systems for corrosion detection, protection and self-repair of mechanical coating damage. This paper will present the results from progress made to date in the controlled release properties of these microcapsules as well as in their corrosion indication and corrosion inhibition function.
Corrosion Mitigation Strategies - an Introduction
2009-02-05
formed • Stress corrosion cracking Leaders in Corrosion Control Technology • Overpressure • Pressure of a gas over a liquid- solubility of gases in...Power surges • Crack protective films, fretting, fatique Design – Chemistry • Used to eliminate candidate materials • pH acidic (H+) basic (OH...Technology • Laboratory tests • Published data Mechanical Properties • Strength • Ductility • Environmental cracking Methods of Corrosion Control–Materials
Installation Restoration Program Records Search for Alaska DEW Line Stations
1982-06-01
Chlorinate hydrocarbons Radar components Calgon corrosion inhibitor 55 gallon drums (empty) Lye Lime Corrosives Antifreeze Paper Wood Plastics AVGAS...Factor Subsoare A I Persistence Vcor * Subaccro a C. Appl~y "yicaJ. state =iLtipiisr Sub•coce 3 X Physical State Mltipler - Waste Caracteristics
EPA Optimal Corrosion Control Treatment Regional Training Workshops
EPA is hosting face-to-face regional training workshops throughout 2016-2017 on optimal corrosion control treatment (OCCT). These will be held at each of the Regions and is intended for primacy agency staff and technical assistance providers.
SUMMARY REPORT ON CORROSIVITY STUDIES IN COINCINERATION OF SEWAGE SLUDGE AND SOLID WASTE
Corrosion probe exposures were conducted in the Harrisburg, Pennsylvania Incinerator to determine the effects of burning low-chloride sewage sludge with municipal refuse. Probes having controlled temperature gradients were used to measure corrosion rates for exposure times up to ...
49 CFR 192.483 - Remedial measures: General.
Code of Federal Regulations, 2011 CFR
2011-10-01
... NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control... a buried or submerged pipeline because of external corrosion must have a properly prepared surface... external corrosion must be cathodically protected in accordance with this subpart. (c) Except for cast iron...
49 CFR 192.483 - Remedial measures: General.
Code of Federal Regulations, 2010 CFR
2010-10-01
... NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control... a buried or submerged pipeline because of external corrosion must have a properly prepared surface... external corrosion must be cathodically protected in accordance with this subpart. (c) Except for cast iron...
49 CFR 192.483 - Remedial measures: General.
Code of Federal Regulations, 2014 CFR
2014-10-01
... NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control... a buried or submerged pipeline because of external corrosion must have a properly prepared surface... external corrosion must be cathodically protected in accordance with this subpart. (c) Except for cast iron...
49 CFR 192.483 - Remedial measures: General.
Code of Federal Regulations, 2012 CFR
2012-10-01
... NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control... a buried or submerged pipeline because of external corrosion must have a properly prepared surface... external corrosion must be cathodically protected in accordance with this subpart. (c) Except for cast iron...
49 CFR 192.483 - Remedial measures: General.
Code of Federal Regulations, 2013 CFR
2013-10-01
... NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control... a buried or submerged pipeline because of external corrosion must have a properly prepared surface... external corrosion must be cathodically protected in accordance with this subpart. (c) Except for cast iron...
Controlling the corrosion and cathodic activation of magnesium via microalloying additions of Ge
Liu, R. L.; Hurley, M. F.; Kvryan, A.; Williams, G.; Scully, J. R.; Birbilis, N.
2016-01-01
The evolution of corrosion morphology and kinetics for magnesium (Mg) have been demonstrated to be influenced by cathodic activation, which implies that the rate of the cathodic partial reaction is enhanced as a result of anodic dissolution. This phenomenon was recently demonstrated to be moderated by the use of arsenic (As) alloying as a poison for the cathodic reaction, leading to significantly improved corrosion resistance. The pursuit of alternatives to toxic As is important as a means to imparting a technologically safe and effective corrosion control method for Mg (and its alloys). In this work, Mg was microalloyed with germanium (Ge), with the aim of improving corrosion resistance by retarding cathodic activation. Based on a combined analysis herein, we report that Ge is potent in supressing the cathodic hydrogen evolution reaction (reduction of water) upon Mg, improving corrosion resistance. With the addition of Ge, cathodic activation of Mg subject to cyclic polarisation was also hindered, with beneficial implications for future Mg electrodes. PMID:27350286
Evaluation of bridge cables corrosion using acoustic emission technique
NASA Astrophysics Data System (ADS)
Li, Dongsheng; Ou, Jinping
2010-04-01
Owing to the nature of the stress, corrosion of bridge cable may result in catastrophic failure of the structure. However, using electrochemical techniques isn't fully efficient for the detection and control on line of the corrosion phenomenon. A non-destructive testing method based on acoustic emission technique monitoring bridge cable corrosion was explored. The steel strands were placed at room temperature in 5% NaCl solution. Acoustic emission (AE) characteristic parameters were recorded in the whole corrosion experiment process. Based on the plot of cumulated acoustic activity, the bridge cables corrosion included three stages. It can be clearly seen that different stages have different acoustic emission signal characteristics. The AE characteristic parameters would be increased with cables corrosion development. Finally, the bridge cables corrosion experiment with different stress state and different corrosion environment was performed. The results shows that stress magnitude only affects the bridge cable failure time, however, the AE characteristic parameters value has changed a little. It was verified that AE technique can be used to detect the bridge cable early corrosion, investigating corrosion developing trend, and in monitoring and evaluating corrosion damages.
Characterization and prediction of carbon steel corrosion in diluted seawater containing pentaborate
NASA Astrophysics Data System (ADS)
Fukaya, Yuichi; Watanabe, Yutaka
2018-01-01
This study addresses the influence of Na2B10O16, which may be used for criticality control of fuel debris in the Fukushima Daiichi Nuclear Power Station, on the corrosion behavior of carbon steel in diluted artificial seawater. The corrosion forms of carbon steel were categorized as uniform corrosion, localized corrosion, and passivity based on the balance between the dilution ratio of artificial seawater and the concentration of Na2B10O16. The changes in corrosion forms were arranged on a water quality region map. Passivity was maintained by adding 3.7 × 10-2 M or more of Na2B10O16 to artificial seawater with a dilution ratio of 100-fold or more. The criticality control of the fuel debris and corrosion mitigation of the carbon steel components may be achieved simultaneously in the water quality. The prediction of the corrosion form of carbon steel was attempted by the extended Larson-Skold Index (LSI) = ([Cl-] + 2[SO42-])/([HCO3-] + 2[B10O162-]). However, because the passivating action of B10O162- was remarkably stronger than that of HCO3-, the prediction was difficult under the simple addition of equivalent concentrations. The localized corrosion of carbon steel under the addition of Na2B10O16 preferentially occurred from the crevices of the test specimens, as was the case in stainless steel.
Kao, Chia-Tze; Guo, Jia-Uei; Huang, Tsui-Hsien
2011-05-01
Titanium nitride (TiN) plating is a method to prevent metal corrosion and can increase the surface smoothness. The purpose of this study was to evaluate the friction forces between the orthodontic bracket, with or without TiN plating, and stainless steel wire after it was corroded in fluoride-containing solution. In total, 540 metal brackets were divided into a control group and a TiN-coated experimental group. The electrochemical corrosion was performed in artificial saliva with 1.23% acidulated phosphate fluoride (APF) as the electrolytes. Static and kinetic friction were measured by an EZ-test machine (Shimadazu, Tokyo, Japan) with a crosshead speed of 10 mm per minute over a 5-mm stretch of stainless steel archwire. The data were analyzed by using unpaired t test and analysis of variance (ANOVA). Both the control and TiN-coated groups' corrosion potential was higher with 1.23% APF solution than with artificial solution (P <0.05). In brackets without corrosion, both the static and kinetic friction force between the control and TiN-coated brackets groups showed a statistically significant difference (P <0.05). In brackets with corrosion, the control group showed no statistical difference on kinetic or static friction. The TiN-coated brackets showed a statistical difference (P <0.05) on kinetic and static friction in different solutions. TiN-coated metal brackets, with corrosion or without corrosion, cannot reduce the frictional force. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
Civil Engineering Corrosion Control. Volume 1. Corrosion Control - General
1975-01-01
is generated in the boiler by the decomposition of carbonates and bicar- bonates of sodium, calcium, and magnesium. (c) The pH Range. Natural waters...and products of decomposition Acting as either anodic or cathodic depolarizers. 4.4.1 Forms of Microorganisms. In almost any soil or water, there are... 1945 . Based on field tests of the Iron and Steel Institute Corrosion Committee reported by J.C. Hudson (J. Iron Steel Inst., 11, 209, 1943), with
Environmentally Friendly Anticorrosion Coating for High Strength Fasteners
2011-01-01
phosphate Z24,zinc rich charcoal primer, black E-Coat. No red corrosion . Note: Cadmium controls were not included but expected to perform very well...also included as control . Several exposure environments were used including 500 hours B117 salt spray, 42 cycles GM9540P cyclic corrosion , and 1000...surface occurs, which limits corrosion . The potentiostat used here has an upper current density measurement of 1 x 10-3 A/cm2. Because the phosphate
Corrosion initiation and propagation behavior of corrosion resistant concrete reinforcing materials
NASA Astrophysics Data System (ADS)
Hurley, Michael F.
The life of a concrete structure exposed to deicing compounds or seawater is often limited by chloride induced corrosion of the steel reinforcement. In this study, the key material attributes that affect the corrosion initiation and propagation periods were studied. These included material composition, surface condition, ageing time, propagation behavior during active corrosion, morphology of attack, and type of corrosion products generated by each rebar material. The threshold chloride concentrations for solid 316LN stainless steel, 316L stainless steel clad over carbon steel, 2101 LDX, MMFX-2, and carbon steel rebar were investigated using electrochemical techniques in saturated calcium hydroxide solutions. Surface preparation, test method, duration of period exposed to a passivating condition prior to introduction of chloride, and presence of cladding defects all affected the threshold chloride concentration obtained. A model was implemented to predict the extension of time until corrosion initiation would be expected. 8 years was the predicted time to corrosion initiation for carbon steel. However, model results confirmed that use of 316LN may increase the time until onset of corrosion to 100 years or more. To assess the potential benefits afforded by new corrosion resistant rebar alloys from a corrosion resistance standpoint the corrosion propagation behavior and other factors that might affect the risk of corrosion-induced concrete cracking must also be considered. Radial pit growth was found to be ohmically controlled but repassivation occurred more readily at high potentials in the case of 316LN and 2101 stainless steels. The discovery of ohmically controlled propagation enabled transformation of propagation rates from simulated concrete pore solution to less conductive concrete by accounting for resistance changes in the surrounding medium. The corrosion propagation behavior as well as the morphology of attack directly affects the propensity for concrete cracking. Experimental results were used in conjunction with an existing model to predict the time until concrete cracking occurs for new rebar materials. The results suggest that corrosion resistant materials offer a significant extension to the corrosion propagation stage over carbon steel, even in very aggressive conditions because small, localized anodes develop when initiated.
Study program for encapsulation materials interface for low-cost solar array
NASA Technical Reports Server (NTRS)
Kaelble, D. H.; Mansfeld, F. B.; Kendig, M.; Leung, C.
1981-01-01
The service integrity of the bonded interface in solar cell modules used in solar arrays is addressed. The development of AC impedance as a nondestructive evaluation (NDE) methodology for solar arrays is reported along with development of corrosion models and materials selection criteria for corrosion resistant interfaces.
Corrosion and mechanical performance of AZ91 exposed to simulated inflammatory conditions.
Brooks, Emily K; Der, Stephanie; Ehrensberger, Mark T
2016-03-01
Magnesium (Mg) and its alloys, including Mg-9%Al-1%Zn (AZ91), are biodegradable metals with potential use as temporary orthopedic implants. Invasive orthopedic procedures can provoke an inflammatory response that produces hydrogen peroxide (H2O2) and an acidic environment near the implant. This study assessed the influence of inflammation on both the corrosion and mechanical properties of AZ91. The AZ91 samples in the inflammatory protocol were immersed for three days in a complex biologically relevant electrolyte (AMEM culture media) that contained serum proteins (FBS), 150 mM of H2O2, and was titrated to a pH of 5. The control protocol immersed AZ91 samples in the same biologically relevant electrolyte (AMEM & FBS) but without H2O2 and the acid titration. After 3 days all samples were switched into fresh AMEM & FBS for an additional 3-day immersion. During the initial immersion, inflammatory protocol samples showed increased corrosion rate determined by mass loss testing, increased Mg and Al ion released to solution, and a completely corroded surface morphology as compared to the control protocol. Although corrosion in both protocols slowed once the test electrolyte solution was replaced at 3 days, the samples originally exposed to the simulated inflammatory conditions continued to display enhanced corrosion rates as compared to the control protocol. These lingering effects may indicate the initial inflammatory corrosion processes modified components of the surface oxide and corrosion film or initiated aggressive localized processes that subsequently left the interface more vulnerable to continued enhanced corrosion. The electrochemical properties of the interfaces were also evaluated by EIS, which found that the corrosion characteristics of the AZ91 samples were potentially influenced by the role of intermediate adsorption layer processes. The increased corrosion observed for the inflammatory protocol did not affect the flexural mechanical properties of the AZ91 at any time point assessed. Copyright © 2015 Elsevier B.V. All rights reserved.
Electrochemical Behavior of Sn-9Zn-xTi Lead-Free Solders in Neutral 0.5M NaCl Solution
NASA Astrophysics Data System (ADS)
Wang, Zhenghong; Chen, Chuantong; Jiu, Jinting; Nagao, Shijo; Nogi, Masaya; Koga, Hirotaka; Zhang, Hao; Zhang, Gong; Suganuma, Katsuaki
2018-03-01
Electrochemical techniques were employed to study the electrochemical corrosion behavior of Sn-9Zn-xTi (x = 0, 0.05, 0.1, 0.2 wt.%) lead-free solders in neutral 0.5M NaCl solution, aiming to figure out the effect of Ti content on the corrosion properties of Sn-9Zn, providing information for the composition design of Sn-Zn-based lead-free solders from the perspective of corrosion. EIS results reveal that Ti addition was involved in the corrosion product layer and changed electrochemical interface behavior from charge transfer control process to diffusion control process. The trace amount of Ti addition (0.05 wt.%) can refine the microstructure and improve the corrosion resistance of Sn-9Zn solder, evidenced by much lower corrosion current density (i corr) and much higher total resistance (R t). Excess Ti addition (over 0.1 wt.%) led to the formation of Ti-containing IMCs, which were confirmed as Sn3Ti2 and Sn5Ti6, deteriorating the corrosion resistance of Sn-9Zn-xTi solders. The main corrosion products were confirmed as Sn3O(OH)2Cl2 mixed with small amount of chlorine/oxide Sn compounds.
Electrochemical Behavior of Sn-9Zn- xTi Lead-Free Solders in Neutral 0.5M NaCl Solution
NASA Astrophysics Data System (ADS)
Wang, Zhenghong; Chen, Chuantong; Jiu, Jinting; Nagao, Shijo; Nogi, Masaya; Koga, Hirotaka; Zhang, Hao; Zhang, Gong; Suganuma, Katsuaki
2018-05-01
Electrochemical techniques were employed to study the electrochemical corrosion behavior of Sn-9Zn- xTi ( x = 0, 0.05, 0.1, 0.2 wt.%) lead-free solders in neutral 0.5M NaCl solution, aiming to figure out the effect of Ti content on the corrosion properties of Sn-9Zn, providing information for the composition design of Sn-Zn-based lead-free solders from the perspective of corrosion. EIS results reveal that Ti addition was involved in the corrosion product layer and changed electrochemical interface behavior from charge transfer control process to diffusion control process. The trace amount of Ti addition (0.05 wt.%) can refine the microstructure and improve the corrosion resistance of Sn-9Zn solder, evidenced by much lower corrosion current density ( i corr) and much higher total resistance ( R t). Excess Ti addition (over 0.1 wt.%) led to the formation of Ti-containing IMCs, which were confirmed as Sn3Ti2 and Sn5Ti6, deteriorating the corrosion resistance of Sn-9Zn- xTi solders. The main corrosion products were confirmed as Sn3O(OH)2Cl2 mixed with small amount of chlorine/oxide Sn compounds.
Influence of graphite-alloy interactions on corrosion of Ni-Mo-Cr alloy in molten fluorides
NASA Astrophysics Data System (ADS)
Ai, Hua; Hou, Juan; Ye, Xiang-Xi; Zeng, Chao Liu; Sun, Hua; Li, Xiaoyun; Yu, Guojun; Zhou, Xingtai; Wang, Jian-Qiang
2018-05-01
In this study, the effects of graphite-alloy interaction on corrosion of Ni-Mo-Cr alloy in molten FLiNaK salt were investigated. The corrosion tests of Ni-Mo-Cr alloys were conducted in graphite crucibles, to examine the differences of test specimens in conditions of electric contact and isolated with graphite, respectively. The corrosion attack is severer with more weight loss and deeper Cr depletion layer in samples electric contact with graphite than those isolated with graphite. The occurrence of galvanic corrosion between alloy specimens and graphite container was confirmed by electrochemical measurement. The corrosion is controlled by nonelectric transfer in isolated test while electrochemical reaction accelerated corrosion in electric contact test.
SRB seawater corrosion project
NASA Technical Reports Server (NTRS)
Bozack, M. J.
1991-01-01
The corrosion behavior of 2219 aluminum when exposed to seawater was characterized. Controlled corrosion experiments at three different temperatures (30, 60 and 100 C) and two different environments (seawater and 3.5 percent salt solution) were designed to elucidate the initial stages in the corrosion process. It was found that 2219 aluminum is an active catalytic surface for growth of Al2O3, NaCl, and MgO. Formation of Al2O3 is favored at lower temperatures, while MgO is favored at higher temperatures. Visible corrosion products are formed within 30 minutes after seawater exposure. Corrosion characteristics in 3.5 percent salt solution are different than corrosion in seawater. Techniques utilized were: (1) scanning electron microscopy, (2) energy dispersive x-ray spectroscopy, and (3) Auger electron spectroscopy.
A SIMPLE APPROACH TO ASSESSING COPPER PITTING CORROSION TENDENCIES AND DEVELOPING CONTROL STRATEGIES
Localized corrosion of copper premise plumbing in drinking water distribution systems can lead to pinhole leaks, which are a growing problem for many homeowners. Despite the fact that water quality is an important factor associated with localized copper corrosion, definitive appr...
49 CFR 192.485 - Remedial measures: Transmission lines.
Code of Federal Regulations, 2011 CFR
2011-10-01
... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.485 Remedial measures: Transmission lines. (a) General corrosion. Each segment of transmission line with general corrosion and with a remaining wall thickness less than that required for the...
49 CFR 192.485 - Remedial measures: Transmission lines.
Code of Federal Regulations, 2012 CFR
2012-10-01
... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.485 Remedial measures: Transmission lines. (a) General corrosion. Each segment of transmission line with general corrosion and with a remaining wall thickness less than that required for the...
49 CFR 192.485 - Remedial measures: Transmission lines.
Code of Federal Regulations, 2014 CFR
2014-10-01
... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.485 Remedial measures: Transmission lines. (a) General corrosion. Each segment of transmission line with general corrosion and with a remaining wall thickness less than that required for the...
49 CFR 192.485 - Remedial measures: Transmission lines.
Code of Federal Regulations, 2013 CFR
2013-10-01
... TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE: MINIMUM FEDERAL SAFETY STANDARDS Requirements for Corrosion Control § 192.485 Remedial measures: Transmission lines. (a) General corrosion. Each segment of transmission line with general corrosion and with a remaining wall thickness less than that required for the...
THE CORROSION CONTROL-WATER QUALITY SPIDER WEB
This presentation provides an overview of new research results and emerging research needs with respect to both corrosion control issues, (lead, copper, iron) and to issues of inorganic contaminants that can form or accumulate in distribution system, water, pipe scales and distri...
2013-05-01
Cycle Prediction for Equipment and Facilities 33.1 33.1 12 FAR16 Corrosion Prevention of Rebar in Concrete in Critical Facilities Located in Coastal...through 2007. 16 N-F-229 Integrated Concrete Pier Piling Repair and Corrosion Protection System 1.9 1.9 2006 17 FNV01 Corrosion Protection...Protection System 3.4 3.0 2007 21 F07NV03 Corrosion Inhibitor Evaluation for Concrete Repairs 16.8 16.8 22 F07NV04 Satellite Based Remote Monitoring
Corrosion probe. Innovative technology summary report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
Over 253 million liters of high-level waste (HLW) generated from plutonium production is stored in mild steel tanks at the Department of Energy (DOE) Hanford Site. Corrosion monitoring of double-shell storage tanks (DSTs) is currently performed at Hanford using a combination of process knowledge and tank waste sampling and analysis. Available technologies for corrosion monitoring have progressed to a point where it is feasible to monitor and control corrosion by on-line monitoring of the corrosion process and direct addition of corrosion inhibitors. The electrochemical noise (EN) technique deploys EN-based corrosion monitoring probes into storage tanks. This system is specifically designedmore » to measure corrosion rates and detect changes in waste chemistry that trigger the onset of pitting and cracking. These on-line probes can determine whether additional corrosion inhibitor is required and, if so, provide information on an effective end point to the corrosion inhibitor addition procedure. This report describes the technology, its performance, its application, costs, regulatory and policy issues, and lessons learned.« less
NASA Astrophysics Data System (ADS)
Hock, Vincent F.; Noble, Michael; McLeod, Malcolm E.
1994-07-01
The Army currently operates and maintains more than 20,000 underground storage tanks and over 3000 miles of underground gas pipelines, all of which require some form of corrosion control. Cathodic protection is one method of corrosion control used to prevent corrosion-induced leaks when a steel structure is exposed to an aggressive soil. The corrosion control acceptance criteria for sacrificial anode type CP systems provides guidelines for the DEH/DPW cathodic protection installation inspectors whose responsibilities are to ensure that the materials and equipment specified are delivered to the job site and subsequently installed in accordance with the engineering drawings and specifications. The sacrificial anode CP acceptance criteria includes all components for the sacrificial anode system such as insulated conductors, anodes, anode backfills, and auxiliary equipment. The sacrificial anode CP acceptance criteria is composed of a checklist that lists each component and that contains a space for the inspector to either check 'yes' or 'no' to indicate whether the component complies with the job specifications. In some cases, the inspector must measure and record physical dimensions or electrical output and compare the measurements to standards shown in attached tables.
Novel methods for aircraft corrosion monitoring
NASA Astrophysics Data System (ADS)
Bossi, Richard H.; Criswell, Thomas L.; Ikegami, Roy; Nelson, James; Normand, Eugene; Rutherford, Paul S.; Shrader, John E.
1995-07-01
Monitoring aging aircraft for hidden corrosion is a significant problem for both military and civilian aircraft. Under a Wright Laboratory sponsored program, Boeing Defense & Space Group is investigating three novel methods for detecting and monitoring hidden corrosion: (1) atmospheric neutron radiography, (2) 14 MeV neutron activation analysis and (3) fiber optic corrosion sensors. Atmospheric neutron radiography utilizes the presence of neutrons in the upper atmosphere as a source for interrogation of the aircraft structure. Passive track-etch neutron detectors, which have been previously placed on the aircraft, are evaluated during maintenance checks to assess the presence of corrosion. Neutrons generated by an accelerator are used via activation analysis to assess the presence of distinctive elements in corrosion products, particularly oxygen. By using fast (14 MeV) neutrons for the activation, portable, high intensity sources can be employed for field testing of aircraft. The third novel method uses fiber optics as part of a smart structure technology for corrosion detection and monitoring. Fiber optic corrosion sensors are placed in the aircraft at locations known to be susceptible to corrosion. Periodic monitoring of the sensors is used to alert maintenance personnel to the presence and degree of corrosion at specific locations on the aircraft. During the atmospheric neutron experimentation, we identified a fourth method referred to as secondary emission radiography (SER). This paper discusses the development of these methods.
Efforts to reduce exposure at Japanese PWRs: CVCS improvement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terada, Ryosuke
1995-03-01
Many reports have been focused on the reduction of radiation sources and related occupational exposures. The radiation sources mainly consist of corrosion products. Radiation dose rate is determined by the amount of the activated corrosion products on the surface of the primary loop components of Pressurized Water Reactor (PWR) plants. Therefore, reducing the amount of the corrosion product will contribute to the reduction of occupational exposures. In order to reduce the corrosion products, Chemical and Volume Control System (CVCS) has been improved in Japanese PWRs as follows: (a) Cation Bed Demineralizer Flowrate Control; (b) Hydrogen Peroxide Injection System; (c) Purificationmore » Flowrate During Plant Shutdown; (d) Fine Mesh Filters Upstream of Mixed Bed Demineralizers.« less
NASA Technical Reports Server (NTRS)
Montgomery, Eliza L.; Calle, Luz Marina; Curran Jerome C.; Kolody, Mark R.
2013-01-01
The shift to use environmentally friendly technologies throughout future space-related launch programs prompted a study aimed at replacing current petroleum and solvent-based Corrosion Preventive Compounds (CPCs) with environmentally friendly alternatives. The work in this paper focused on the identification and evaluation of environmentally friendly CPCs for use in protecting flight hardware and ground support equipment from atmospheric corrosion. The CPCs, while a temporary protective coating, must survive in the aggressive coastal marine environment that exists throughout the Kennedy Space Center, Florida. The different protection behaviors of fifteen different soft film CPCs, both common petroleum-based and newer environmentally friendly types, were evaluated on various steel and aluminum substrates. The CPC and substrate systems were subjected to atmospheric testing at the Kennedy Space Center's Beachside Atmospheric Corrosion Test Site, as well as cyclic accelerated corrosion testing. Each CPC also underwent physical characterization and launch-related compatibility testing . The initial results for the fifteen CPC systems are reported : Key words: corrosion preventive compound, CPC, spaceport, environmentally friendly, atmospheric exposure, marine, carbon steel, aluminum alloy, galvanic corrosion, wire on bolt.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narlesky, Joshua Edward; Berg, John M.; Duque, Juan
A set of six long-term, full-scale experiments were initiated to determine the type and extent of corrosion that occurs in 3013 containers packaged with chloride-bearing plutonium oxide materials. The materials were exposed to a high relative humidity environment representative of actual packaging conditions for the materials in storage. The materials were sealed in instrumented, inner 3013 containers with corrosion specimens designed to test the corrosiveness of the environment inside the containers under various conditions. This report focuses on initial loading conditions that are used to establish a baseline to show how the conditions change throughout the storage lifetime of themore » containers.« less
Sui, Yiyong; Sun, Chong; Sun, Jianbo; Pu, Baolin; Ren, Wei; Zhao, Weimin
2017-06-09
The stability of an electrodeposited nanocrystalline Ni-based alloy coating in a H₂S/CO₂ environment was investigated by electrochemical measurements, weight loss method, and surface characterization. The results showed that both the cathodic and anodic processes of the Ni-based alloy coating were simultaneously suppressed, displaying a dramatic decrease of the corrosion current density. The corrosion of the Ni-based alloy coating was controlled by H₂S corrosion and showed general corrosion morphology under the test temperatures. The corrosion products, mainly consisting of Ni₃S₂, NiS, or Ni₃S₄, had excellent stability in acid solution. The corrosion rate decreased with the rise of temperature, while the adhesive force of the corrosion scale increased. With the rise of temperature, the deposited morphology and composition of corrosion products changed, the NiS content in the corrosion scale increased, and the stability and adhesive strength of the corrosion scale improved. The corrosion scale of the Ni-based alloy coating was stable, compact, had strong adhesion, and caused low weight loss, so the corrosion rates calculated by the weight loss method cannot reveal the actual oxidation rate of the coating. As the corrosion time was prolonged, the Ni-based coating was thinned while the corrosion scale thickened. The corrosion scale was closely combined with the coating, but cannot fully prevent the corrosive reactants from reaching the substrate.
A SIMPLE APPROACH TO ASSESSING COPPER PITTING CORROSION TENDENCIES AND DEVELOPING CONTROL STRATEGIES
Localized corrosion of copper plumbing in drinking water distribution systems can lead to pinhole leaks, which are a growing problem for many homeowners. Although water quality is one factor that can be responsible for localized copper corrosion, there is not a good approach to ...
The Impact of Hexametaphosphate, Orthophosphate, and Temperature on Copper Corrosion and Release
Excessive corrosion of copper plumbing can lead to elevated copper levels at consumer’s tap or pinhole leaks. Corrosion control solutions include pH adjustment or phosphate addition. Orthophosphate has been shown to reduce copper levels in some cases while the role of polyphosp...
1988-12-01
nuclear disintegration of certain elements and isotopes, with the emission of radiation, radiant energy capable of affecting living tissue. RADIUM - A...Corrosion Control. Waste oils, recovered fuels , spent cleaners, strippers, and solvents are * generated by these shops. ES-i mIs- Interviews with past...HAS-73) A defueling pit is located north of the old alert hangar (Building No. 241). Excess JP-4 fuel in the F-100 aircraft was dumped into the pit
Pripanapong, Patchara; Kariya, Shota; Luangvaranunt, Tachai; Umeda, Junko; Tsutsumi, Seiichiro; Takahashi, Makoto; Kondoh, Katsuyoshi
2016-01-01
Ti and solution treated Mg alloys such as AZ31B (ST), AZ61 (ST), AZ80 (ST) and AZ91 (ST) were successfully bonded at 475 °C by spark plasma sintering, which is a promising new method in welding field. The formation of Ti3Al intermetallic compound was found to be an important factor in controlling the bonding strength and galvanic corrosion resistance of dissimilar materials. The maximum bonding strength and bonding efficiency at 193 MPa and 96% were obtained from Ti/AZ91 (ST), in which a thick and uniform nano-level Ti3Al layer was observed. This sample also shows the highest galvanic corrosion resistance with a measured galvanic width and depth of 281 and 19 µm, respectively. The corrosion resistance of the matrix on Mg alloy side was controlled by its Al content. AZ91 (ST) exhibited the highest corrosion resistance considered from its corrode surface after corrosion test in Kroll’s etchant. The effect of Al content in Mg alloy on bonding strength and corrosion behavior of Ti/Mg alloy (ST) dissimilar materials is discussed in this work. PMID:28773788
SILICATES FOR CORROSION CONTROL IN BUILDING POTABLE WATER SYSTEMS
Silicates have been used to control the corrosion of drinking water distribution system materials. Previous work has shown that they are particularly useful in reducing the release of zinc from galvanized materials in hot water systems. Negatively charged silicate species were re...
Code of Federal Regulations, 2010 CFR
2010-10-01
... Corrosion Control § 195.575 Which facilities must I electrically isolate and what inspections, tests, and... isolation of a portion of a pipeline is necessary to facilitate the application of corrosion control. (c...
CORROSION CONTROL: IT'S NOT JUST GETTING THE LEAD OUT
This presentation will focus on the three corrosion control strategies applied in New England including: pH adjustment alone, pH adjustment with carbonate alkalinity supplementation, and pH adjustment with phosphate addition. The consequences of these changes will be discussed in...
49 CFR 193.2707 - Operations and maintenance.
Code of Federal Regulations, 2010 CFR
2010-10-01
.... (c) Corrosion control procedures under § 193.2605(b), including those for the design, installation, operation, and maintenance of cathodic protection systems, must be carried out by, or under the direction of, a person qualified by experience and training in corrosion control technology. ...
49 CFR 193.2707 - Operations and maintenance.
Code of Federal Regulations, 2011 CFR
2011-10-01
.... (c) Corrosion control procedures under § 193.2605(b), including those for the design, installation, operation, and maintenance of cathodic protection systems, must be carried out by, or under the direction of, a person qualified by experience and training in corrosion control technology. ...
49 CFR 193.2631 - Internal corrosion control.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Internal corrosion control. 193.2631 Section 193.2631 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS...
49 CFR 193.2631 - Internal corrosion control.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Internal corrosion control. 193.2631 Section 193.2631 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS...
49 CFR 193.2631 - Internal corrosion control.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Internal corrosion control. 193.2631 Section 193.2631 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS...
Memo Addressing Lead and Copper Rule Requirements for Optimal Corrosion Control Treatment
EPA has recently published a memo to address the requirements pertaining to maintenance of optimal corrosion control treatment, in situations in which a large water system ceases to purchase treated water and switches to a new drinking water source.
49 CFR 192.467 - External corrosion control: Electrical isolation.
Code of Federal Regulations, 2013 CFR
2013-10-01
... submerged pipeline must be electrically isolated from other underground metallic structures, unless the pipeline and the other structures are electrically interconnected and cathodically protected as a single... pipeline is necessary to facilitate the application of corrosion control. (c) Except for unprotected copper...
49 CFR 192.467 - External corrosion control: Electrical isolation.
Code of Federal Regulations, 2014 CFR
2014-10-01
... submerged pipeline must be electrically isolated from other underground metallic structures, unless the pipeline and the other structures are electrically interconnected and cathodically protected as a single... pipeline is necessary to facilitate the application of corrosion control. (c) Except for unprotected copper...
49 CFR 192.467 - External corrosion control: Electrical isolation.
Code of Federal Regulations, 2012 CFR
2012-10-01
... submerged pipeline must be electrically isolated from other underground metallic structures, unless the pipeline and the other structures are electrically interconnected and cathodically protected as a single... pipeline is necessary to facilitate the application of corrosion control. (c) Except for unprotected copper...
NASA Astrophysics Data System (ADS)
Gunawarman; Giatmana, D. D.; Ilhamdi; Affi, J.; Fonna, S.; Niinomi, M.; Nakai, M.
2018-05-01
The corrosion resistance of Ti-29Nb-13Ta-4.6Zr (TNTZ) and Ti-6Al-4V alloys in oral cavity environment were studied by investigating its corrosion rate in artificial saliva solution. Corrosion measurement was conducted in 600 ml solution of Fusayama-Meyer artificial saliva containing 0.4g NaCl, 0.4g KCl, 0.795g CaCl2.2H2O, 0.69g NaH2PO4, and 1 g urea using a potentiostat controlled by a personal computer. The solution was maintained at pH 5.2 and controlled the temperature of 37°C to imitate oral cavity condition. After corrosion test, specimen surfaces were examined by SEM and EDX. The results show that the average corrosion rate of TNTZ and Ti-6Al-4V is 4,5×10-9 mmy-1 and 6,4×10-8 mmy-1, respectively, indicating that the corrosion resistance of TNTZ is slightly better than Ti-6Al-4V. This is suggested mainly due to the formation of multiple layers of Ti, Nb and Zr oxides in the surface of TNTZ. However, the formation of micro-pitting corrosion is more severe in TNTZ as compared to that of Ti-6Al-4V. The intense pitting corrosion in TNTZ is found strongly corresponded to its high impurities content and wide elemental segregation. It is recommended, therefore, a longer homogenizing process is required in TNTZ for reducing pitting corrosion attack. However, the details of corrosion mechanism are needed to be explored further.
Effect of Chromate and Chromate-Free Organic Coatings on Corrosion Fatigue of an Aluminum Alloy
2012-02-20
Investigations of alloy AA7075 corrosion in acid rain solution, inhibited by chromate-free blends of zinc phosphate with bentonite, zeolite and calcium...with solution components. Single use of zinc phosphate and these ion exchanged pigments for corrosion inhibition do not provide desired effect...primer performance against corrosion fatigue cracking under a commercial polyurethane topcoat. As a control , they used samples of chromated AA2024
Control of corrosive bacterial community by bronopol in industrial water system.
Narenkumar, Jayaraman; Ramesh, Nachimuthu; Rajasekar, Aruliah
2018-01-01
Ten aerobic corrosive bacterial strains were isolated from a cooling tower water system (CWS) which were identified based on the biochemical characterization and 16S rRNA gene sequencing. Out of them, dominant corrosion-causing bacteria, namely, Bacillus thuringiensis EN2, Terribacillus aidingensis EN3, and Bacillus oleronius EN9, were selected for biocorrosion studies on mild steel 1010 (MS) in a CWS. The biocorrosion behaviour of EN2, EN3, and EN9 strains was studied using immersion test (weight loss method), electrochemical analysis, and surface analysis. To address the corrosion problems, an anti-corrosive study using a biocide, bronopol was also demonstrated. Scanning electron microscopy and Fourier-transform infrared spectroscopy analyses of the MS coupons with biofilm developed after exposure to CWS confirmed the accumulation of extracellular polymeric substances and revealed that biofilms was formed as microcolonies, which subsequently cause pitting corrosion. In contrast, the biocide system, no pitting type of corrosion, was observed and weight loss was reduced about 32 ± 2 mg over biotic system (286 ± 2 mg). FTIR results confirmed the adsorption of bronopol on the MS metal surface as protective layer (co-ordination of NH 2 -Fe 3+ ) to prevent the biofilm formation and inhibit the corrosive chemical compounds and thus led to reduction of corrosion rate (10 ± 1 mm/year). Overall, the results from WL, EIS, SEM, XRD, and FTIR concluded that bronopol was identified as effective biocide and corrosion inhibitor which controls the both chemical and biocorrosion of MS in CWS.
Thermally oxidized titania nanotubes enhance the corrosion resistance of Ti6Al4V.
Grotberg, John; Hamlekhan, Azhang; Butt, Arman; Patel, Sweetu; Royhman, Dmitry; Shokuhfar, Tolou; Sukotjo, Cortino; Takoudis, Christos; Mathew, Mathew T
2016-02-01
The negative impact of in vivo corrosion of metallic biomedical implants remains a complex problem in the medical field. We aimed to determine the effects of electrochemical anodization (60V, 2h) and thermal oxidation (600°C) on the corrosive behavior of Ti-6Al-4V, with serum proteins, at physiological temperature. Anodization produced a mixture of anatase and amorphous TiO2 nanopores and nanotubes, while the annealing process yielded an anatase/rutile mixture of TiO2 nanopores and nanotubes. The surface area was analyzed by the Brunauer-Emmett-Teller method and was estimated to be 3 orders of magnitude higher than that of polished control samples. Corrosion resistance was evaluated on the parameters of open circuit potential, corrosion potential, corrosion current density, passivation current density, polarization resistance and equivalent circuit modeling. Samples both anodized and thermally oxidized exhibited shifts of open circuit potential and corrosion potential in the noble direction, indicating a more stable nanoporous/nanotube layer, as well as lower corrosion current densities and passivation current densities than the smooth control. They also showed increased polarization resistance and diffusion limited charge transfer within the bulk oxide layer. The treatment groups studied can be ordered from greatest corrosion resistance to least as Anodized+Thermally Oxidized > Anodized > Smooth > Thermally Oxidized for the conditions investigated. This study concludes that anodized surface has a potential to prevent long term implant failure due to corrosion in a complex in-vivo environment. Copyright © 2015 Elsevier B.V. All rights reserved.
Effect of Ca(OH)2, NaCl, and Na2SO4 on the corrosion and electrochemical behavior of rebar
NASA Astrophysics Data System (ADS)
Jin, Zuquan; Zhao, Xia; Zhao, Tiejun; Hou, Baorong; Liu, Ying
2017-05-01
The corrosion of rebar in reinforced concrete in marine environments causes significant damage to structures built in ocean environments. Studies on the process and mechanism of corrosion of rebar in the presence of multiple ions may help to control damage and predict the service life of reinforced concrete structures in such environments. The effect of interactions between sulfate and chloride ions and calcium hydroxide on the electrochemical behavior of rebar are also important for evaluation of structure durability. In this work, electrochemical impedance spectroscopy (EIS) plots of rebar in Ca(OH)2 solution and cement grout, including NaCl and Na2SO4 as aggressive salts, were measured for diff erent immersion times. The results show that corrosion of rebar was controlled by the rate of charge transfer as the rebar was exposed to chloride solution. In the presence of high concentrations of sulfate ions in the electrolyte, generation and dissolution of the passive film proceeded simultaneously and corrosion was mainly controlled by the diff usion rate. When Na2SO4 and NaCl were added to Ca(OH)2 solution, the instantaneous corrosion rate decreased by a factor of 10 to 20 as a result of the higher pH of the corroding solution.
Durability of recycled aggregate concrete using pozzolanic materials.
Ann, K Y; Moon, H Y; Kim, Y B; Ryou, J
2008-01-01
In this study, pulverized fuel ash (PFA) and ground granulated blast furnace slag (GGBS) were used to compensate for the loss of strength and durability of concrete containing recycled aggregate. As a result, 30% PFA and 65% GGBS concretes increased the compressive strength to the level of control specimens cast with natural granite gravel, but the tensile strength was still lowered at 28 days. Replacement with PFA and GGBS was effective in raising the resistance to chloride ion penetrability into the concrete body, measured by a rapid chloride ion penetration test based on ASTM C 1202-91. It was found that the corrosion rate of 30% PFA and 65% GGBS concretes was kept at a lower level after corrosion initiation, compared to the control specimens, presumably due to the restriction of oxygen and water access. However, it was less effective in increasing the chloride threshold level for steel corrosion. Hence, it is expected that the corrosion time for 30% PFA and 65% GGBS concrete containing recycled aggregate mostly equates to the corrosion-free life of control specimens.
Tighten water-chemistry control after boiler layup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brestel, L.
1994-01-01
The potential for internal deposition and corrosion can affect boiler reliability by reducing thermal efficiency, tube integrity, and the time between chemical cleanings. While chemical control specifications for normal operation have been developed by consensus of manufacturers and industry, their impact on shutdowns, layups, and startups is not always appreciated. The discussion of chemical-control options applies to boiler systems operating in the medium- and high-pressure ranges. Identification and correction of root causes underlying the chemistry problems encountered and application of the principles involved should result in shorter startup times, improved control over phosphate hideout, and reduced need for chemical cleaning.more » Each of these has a significant cost impact; together, they are the true measure of a successful chemistry-control program.« less
1986-12-01
Reliability Studies ............................................................ 295 NDI for Corrosion .................................................... (Not...available at time of printing) Plastic Bead Blast Materials Characterization Study ................................................ 313 In-Service... Studies Ward Rummel, Martin-Marietta Aerospace AGENDA (Continued) 2. NOI for Corrosion Jeff Rowe, Lockheed-Georgia 3. Plastic Bead Blast Materials R. D
Events as power source: wireless sustainable corrosion monitoring.
Sun, Guodong; Qiao, Guofu; Zhao, Lin; Chen, Zhibo
2013-12-17
This study presents and implements a corrosion-monitoring wireless sensor platform, EPS (Events as Power Source), which monitors the corrosion events in reinforced concrete (RC) structures, while being powered by the micro-energy released from the corrosion process. In EPS, the proposed corrosion-sensing device serves both as the signal source for identifying corrosion and as the power source for driving the sensor mote, because the corrosion process (event) releases electric energy; this is a novel idea proposed by this study. For accumulating the micro-corrosion energy, we integrate EPS with a COTS (Commercial Off-The-Shelf) energy-harvesting chip that recharges a supercapacitor. In particular, this study designs automatic energy management and adaptive transmitted power control polices to efficiently use the constrained accumulated energy. Finally, a set of preliminary experiments based on concrete pore solution are conducted to evaluate the feasibility and the efficacy of EPS.
Identification of controlling factors for the initiation of corrosion of fresh concrete sewers.
Jiang, Guangming; Sun, Xiaoyan; Keller, Jurg; Bond, Philip L
2015-09-01
The development of concrete corrosion in new sewer pipes undergoes an initiation process before reaching an active corrosion stage. This initiation period is assumed to last several months to years but the key factors affecting the process, and its duration, are not well understood. This study is therefore focused on this initial stage of the corrosion process and the effect of key environmental factors. Such knowledge is important for the effective management of corrosion in new sewers, as every year of life extension of such systems has a very high financial benefit. This long-term (4.5 year) study has been conducted in purpose-built corrosion chambers that closely simulated the sewer environment, but with control of three key environmental factors being hydrogen sulfide (H2S) gas phase concentration, relative humidity and air temperature. Fresh concrete coupons, cut from an industry-standard sewer pipe, were exposed to the corrosive conditions in the chambers, both in the gas phase and partially submerged in wastewater. A total of 36 exposure conditions were investigated to determine the controlling factors by regular retrieval of concrete coupons for detailed analysis of surface pH, sulfur compounds (elemental sulfur and sulfate) and concrete mass loss. Corrosion initiation times were thus determined for different exposure conditions. It was found that the corrosion initiation time of both gas-phase and partially-submerged coupons was positively correlated with the gas phase H2S concentration, but only at levels of 10 ppm or below, indicating that sulfide oxidation rate rather than the H2S concentration was the limiting factor during the initiation stage. Relative humidity also played a role for the corrosion initiation of the gas-phase coupons. However, the partially-submerged coupons were not affected by humidity as these coupons were in direct contact with the sewage and hence did have sufficient moisture to enable the microbial processes to proceed. The corrosion initiation time was also shortened by higher gas temperature due to its positive impact on reaction kinetics. These findings provide real opportunities for pro-active sewer asset management with the aim to delay the on-set of the corrosion processes, and hence extend the service life of sewers, through improved prediction and optimization capacity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhao, Sheng; Chen, Yingqi; Liu, Bo; Chen, Meiyun; Mao, Jinlong; He, Hairuo; Zhao, Yuancong; Huang, Nan; Wan, Guojiang
2015-05-01
Magnesium as well as its alloys appears increasingly as a revolutionary bio-metal for biodegradable implants application but the biggest challenges exist in its too fast bio-corrosion/degradation. Both corrosion-controllable and bio-compatible Mg-based bio-metal is highly desirable in clinic. In present work, hexamethylenediaminetetrakis (methylenephosphonic acid) [HDTMPA, (H2 O3 P-CH2 )2 -N-(CH2 )6 -N-(CH2 -PO3 H2 )2 ], as a natural and bioactive organic substance, was covalently immobilized and chelating-deposited onto Mg surface by means of chemical conversion process and dip-coating method, to fullfill dual-task performance of corrosion-protective and osteo-compatible functionalities. The chemical grafting of HDTMPA molecules, by participation of functional groups on pretreated Mg surface, ensured a firmly anchored base layer, and then sub-sequential chelating reactions of HDTMPA molecules guaranteed a homogenous and dense HDTMPA coating deposition on Mg substrate. Electrochemical corrosion and immersion degradation results reveal that the HDTMPA coated Mg provides a significantly better controlled bio-corrosion/degradation behavior in phosphate buffer saline solution as compared with untreated Mg from perspective of clinic requirement. Moreover, the HDTMPA coated Mg exhibits osteo-compatible in that it induces not only bioactivity of bone-like apatite precipitation but also promotes osteoblast cells adhesion and proliferation. Our well-controlled biodegradable and biocompatible HDTMPA modified Mg might bode well for next generation bone implant application. © 2014 Wiley Periodicals, Inc.
Yang, Qiuyue; Yuan, Wei; Liu, Xiangmei; Zheng, Yufeng; Cui, Zhenduo; Yang, Xianjin; Pan, Haobo; Wu, Shuilin
2017-08-01
The biodegradability and good mechanical property of magnesium alloys make them potential biomedical materials. However, their rapid corrosion rate in the human body's environment impairs these advantages and limits their clinical use. In this work, a compact zirconia (ZrO 2 ) nanofilm was fabricated on the surface of a magnesium-strontium (Mg-Sr) alloy by the atomic layer deposition (ALD) method, which can regulate the thickness of the film precisely and thus also control the corrosion rate. Corrosion tests reveal that the ZrO 2 film can effectively reduce the corrosion rate of Mg-Sr alloys that is closely related to the thickness of the film. The cell culture test shows that this kind of ZrO 2 film can also enhance the activity and adhesion of osteoblasts on the surfaces of Mg-Sr alloys. The significance of the current work is to develop a zirconia nanofilm on biomedical MgSr alloy with controllable thickness precisely through atomic layer deposition technique. By adjusting the thickness of nanofilm, the corrosion rate of Mg-Sr alloy can be modulated, thereafter, the degradation rate of Mg-based alloys can be controlled precisely according to actual clinical requirement. In addition, this zirconia nanofilm modified Mg-Sr alloys show excellent biocompatibility than the bare samples. Hence, this work provides a new surface strategy to control the degradation rate while improving the biocompatibility of substrates. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
A discussion for stabilization time of carbon steel in atmospheric corrosion
NASA Astrophysics Data System (ADS)
Zhang, Zong-kai; Ma, Xiao-bing; Cai, Yi-kun
2017-09-01
Stabilization time is an important parameter in long-term prediction of carbon steel corrosion in atmosphere. The range of the stabilization time of carbon steel in atmospheric corrosion has been published in many scientific literatures. However, the results may not precise because engineering experiences is dominant. This paper deals with the recalculation of stabilization time based on ISO CORRAG program, and analyzes the results and makes a comparison to the data mentioned above. In addition, a new thinking to obtain stabilization time will be proposed.
Cellulose acetate layer effect toward aluminium corrosion rate in hydrochloric acid media
NASA Astrophysics Data System (ADS)
Andarany, K. S.; Sagir, A.; Ahmad, A.; Deni, S. K.; Gunawan, W.
2017-09-01
Corrosion occurs due to the oxidation and reduction reactions between the material and its environment. The oxidation reaction defined as reactions that produce electrons and reduction is between two elements that bind the electrons. Corrosion cannot be inevitable in life both within the industry and household. Corrosion cannot eliminate but can be control. According to the voltaic table, Aluminum is a metal that easily corroded. This study attempts to characterize the type of corrosion by using a strong acid media (HCl). Experiment using a strong acid (HCl), at a low concentration that occurs is pitting corrosion, whereas at high concentrations that occurs is corrosion erosion. One of prevention method is by using a coating method. An efforts are made to slow the rate of corrosion is by coating the metal with “cellulose acetate” (CA). cellulose acetate consisted of cellulose powder dissolved in 99% acetic acid, and then applied to the aluminum metal. Soaking experiments using hydrochloric acid, cellulose acetate is able to slow down the corrosion rate of 47 479%.
Effects of impurities on the biodegradation behavior of pure magnesium
NASA Astrophysics Data System (ADS)
Lee, Ji-Young; Han, Gilsoo; Kim, Yu-Chan; Byun, Ji-Young; Jang, Jae-il; Seok, Hyun-Kwang; Yang, Seok-Jo
2009-12-01
The corrosion behavior of pure magnesium that has different content ratio of impurities (such as Fe/Mn ratio) in Hanks' solution was investigated in order to tailor the lifetime of biodegradable implant made of pure magnesium. Two distinct stages of corrosion were observed: a slow corrosion rate stage and a subsequent fast corrosion rate stage. The first stage was characterized by uniform corrosion that produced magnesium hydroxide and calcium phosphate film on a magnesium surface, resulting in a slow corrosion rate. The second stage with an abrupt increase in the corrosion rate was induced by Fe precipitates and was stimulated by an increase in the Fe/Mn ratio. This corrosion was developed to a preferred crystallographic pitting corrosion where the pits propagated along the preferred crystallographic plane and several layers of Mg planes with narrow interplanar space remained uncorroded. From this study, it is expected that the lifetime of the biodegradable implant made of pure Mg can be tailored by controlling the amount and ratio of the impurities.
The North American water and wastewater community has hundreds of millions of feet of ductile iron pipe in service. Only a portion of the inventory has any form of external corrosion control. Ductile iron pipe, in certain environments, is subject to external corrosion.Linear Pola...
A better understanding of brass corrosion may provide information and guidance on the use of the safest materials for the production of plumbing fixtures, and optimization of corrosion control treatments. The effect of alloy composition and pH on the metal leached from six differ...
49 CFR 195.585 - What must I do to correct corroded pipe?
Code of Federal Regulations, 2011 CFR
2011-10-01
... TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.585 What must I do to correct corroded pipe? (a) General corrosion. If you find pipe so generally corroded that the remaining wall thickness... restore the serviceability of the pipe. (b) Localized corrosion pitting. If you find pipe that has...
49 CFR 192.487 - Remedial measures: Distribution lines other than cast iron or ductile iron lines.
Code of Federal Regulations, 2011 CFR
2011-10-01
... STANDARDS Requirements for Corrosion Control § 192.487 Remedial measures: Distribution lines other than cast iron or ductile iron lines. (a) General corrosion. Except for cast iron or ductile iron pipe, each... engineering tests and analyses show can permanently restore the serviceability of the pipe. Corrosion pitting...
49 CFR 195.569 - Do I have to examine exposed portions of buried pipelines?
Code of Federal Regulations, 2011 CFR
2011-10-01
... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.569 Do I have to examine... exposed, you must examine the exposed portion for evidence of external corrosion if the pipe is bare, or if the coating is deteriorated. If you find external corrosion requiring corrective action under...
49 CFR 195.585 - What must I do to correct corroded pipe?
Code of Federal Regulations, 2010 CFR
2010-10-01
... TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.585 What must I do to correct corroded pipe? (a) General corrosion. If you find pipe so generally corroded that the remaining wall thickness... restore the serviceability of the pipe. (b) Localized corrosion pitting. If you find pipe that has...
49 CFR 195.569 - Do I have to examine exposed portions of buried pipelines?
Code of Federal Regulations, 2010 CFR
2010-10-01
... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.569 Do I have to examine... exposed, you must examine the exposed portion for evidence of external corrosion if the pipe is bare, or if the coating is deteriorated. If you find external corrosion requiring corrective action under...
49 CFR 192.487 - Remedial measures: Distribution lines other than cast iron or ductile iron lines.
Code of Federal Regulations, 2013 CFR
2013-10-01
... STANDARDS Requirements for Corrosion Control § 192.487 Remedial measures: Distribution lines other than cast iron or ductile iron lines. (a) General corrosion. Except for cast iron or ductile iron pipe, each... engineering tests and analyses show can permanently restore the serviceability of the pipe. Corrosion pitting...
49 CFR 195.569 - Do I have to examine exposed portions of buried pipelines?
Code of Federal Regulations, 2014 CFR
2014-10-01
... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.569 Do I have to examine... exposed, you must examine the exposed portion for evidence of external corrosion if the pipe is bare, or if the coating is deteriorated. If you find external corrosion requiring corrective action under...
49 CFR 195.569 - Do I have to examine exposed portions of buried pipelines?
Code of Federal Regulations, 2012 CFR
2012-10-01
... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.569 Do I have to examine... exposed, you must examine the exposed portion for evidence of external corrosion if the pipe is bare, or if the coating is deteriorated. If you find external corrosion requiring corrective action under...
49 CFR 192.487 - Remedial measures: Distribution lines other than cast iron or ductile iron lines.
Code of Federal Regulations, 2012 CFR
2012-10-01
... STANDARDS Requirements for Corrosion Control § 192.487 Remedial measures: Distribution lines other than cast iron or ductile iron lines. (a) General corrosion. Except for cast iron or ductile iron pipe, each... engineering tests and analyses show can permanently restore the serviceability of the pipe. Corrosion pitting...
49 CFR 195.585 - What must I do to correct corroded pipe?
Code of Federal Regulations, 2012 CFR
2012-10-01
... TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.585 What must I do to correct corroded pipe? (a) General corrosion. If you find pipe so generally corroded that the remaining wall thickness... restore the serviceability of the pipe. (b) Localized corrosion pitting. If you find pipe that has...
49 CFR 195.585 - What must I do to correct corroded pipe?
Code of Federal Regulations, 2013 CFR
2013-10-01
... TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.585 What must I do to correct corroded pipe? (a) General corrosion. If you find pipe so generally corroded that the remaining wall thickness... restore the serviceability of the pipe. (b) Localized corrosion pitting. If you find pipe that has...
49 CFR 192.487 - Remedial measures: Distribution lines other than cast iron or ductile iron lines.
Code of Federal Regulations, 2014 CFR
2014-10-01
... STANDARDS Requirements for Corrosion Control § 192.487 Remedial measures: Distribution lines other than cast iron or ductile iron lines. (a) General corrosion. Except for cast iron or ductile iron pipe, each... engineering tests and analyses show can permanently restore the serviceability of the pipe. Corrosion pitting...
49 CFR 195.569 - Do I have to examine exposed portions of buried pipelines?
Code of Federal Regulations, 2013 CFR
2013-10-01
... SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.569 Do I have to examine... exposed, you must examine the exposed portion for evidence of external corrosion if the pipe is bare, or if the coating is deteriorated. If you find external corrosion requiring corrective action under...
49 CFR 195.585 - What must I do to correct corroded pipe?
Code of Federal Regulations, 2014 CFR
2014-10-01
... TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Corrosion Control § 195.585 What must I do to correct corroded pipe? (a) General corrosion. If you find pipe so generally corroded that the remaining wall thickness... restore the serviceability of the pipe. (b) Localized corrosion pitting. If you find pipe that has...
Code of Federal Regulations, 2010 CFR
2010-10-01
... minimum, soil resistivity measurements and tests for corrosion accelerating bacteria, that a corrosive environment does not exist. However, within 6 months after an installation made pursuant to the preceding sentence, the operator shall conduct tests, including pipe-to-soil potential measurements with respect to...
[Use of corrosion inhibitors during the presterilization preparation of medical instruments].
Sverdlov, A I; Sher, L B; Kochanova, L G
1978-01-01
Corrosion inhibitors that may be used for pre-sterilization treatment of medical instruments are described and investigated. The investigation included potentiostatic and gravimetric measurements along with the visual control. It was found that in order to reduce the corrosion activity of detergent solutions the use of bi-substituted sodium phosphate is advisable.
Galvanic corrosion of nitinol under deaerated and aerated conditions.
Pound, Bruce G
2016-10-01
Various studies have examined the corrosion rate of nitinol generally under deaerated conditions. Likewise, galvanic corrosion studies have typically involved deaerated solutions. This work addressed the effect of galvanic coupling on the corrosion current of electropolished nitinol in phosphate buffered saline and 0.9% sodium chloride under dearated and aerated conditions for times up to 24 h. Tests were performed on nitinol alone and coupled with MP35N in both the mechanically polished and passivated conditions. Aeration and galvanic coupling were found to have relatively little effect, indicating that the corrosion current is controlled by the anodic reaction. The current can be attributed entirely to Ni(2+) dissolution, which appears to be governed by solid-state mass transport of Ni(2+) through the passive oxide film. Because corrosion of EP nitinol is controlled by the anodic reaction, contact between EP nitinol and MP35N or other biomedical Co-Cr alloys is unlikely to result in significant galvanic effects in vivo. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1322-1327, 2016. © 2015 Wiley Periodicals, Inc.
Investigation of Internal Corrosion and Corrosion-Control Alternatives in Commercial Tankships.
1981-07-01
high sulfur crude, scale on - the sides of the tank may become impregnated with sulfur. The compound formed is pyrophoric iron sulfide .2 7 The...Stiansen - LisLon Mr. M. Touna AMERICAN IRON & STEEL INSTITUTE NATIONAL ACADEMY OF SCIENCES SHIP RESEARCH COMMITTEEMrR.HStne-Lso Mr. A. Dudley Neff...to contribute to corrosion in a tank. In crude oil, the most significant corrosive component is the hydrogen sulfide which it contains. Most oils
Simultaneous Compliance and Corrosion Control: Myth versus Reality
a segment examining “nuts and bolts” examples of corrosion control strategies that have been implemented and which requiredmodifications when “things did not go according to plan”. The process of an ongoing review of data and feedback gathered on a continuousbasis in “real time” ...
Evaluation of corrosion and corrosion control on interstate 89 bridge #30 and #31.
DOT National Transportation Integrated Search
2015-06-01
This report summarizes the evaluation of the performance of cathodic protection installed on I-89 bridges over : Gile Pond Road (NH Route 114) during a rehabilitation project in 1987. : Control bridges of I-89 over Hominy Pot Road, approximately 1.5 ...
49 CFR 192.475 - Internal corrosion control: General.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Internal corrosion control: General. 192.475 Section 192.475 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE:...
49 CFR 192.475 - Internal corrosion control: General.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Internal corrosion control: General. 192.475 Section 192.475 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE:...
49 CFR 192.477 - Internal corrosion control: Monitoring.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 3 2012-10-01 2012-10-01 false Internal corrosion control: Monitoring. 192.477 Section 192.477 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELIN...
49 CFR 192.475 - Internal corrosion control: General.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Internal corrosion control: General. 192.475 Section 192.475 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELINE:...
49 CFR 192.477 - Internal corrosion control: Monitoring.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 3 2014-10-01 2014-10-01 false Internal corrosion control: Monitoring. 192.477 Section 192.477 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELIN...
49 CFR 192.477 - Internal corrosion control: Monitoring.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 3 2013-10-01 2013-10-01 false Internal corrosion control: Monitoring. 192.477 Section 192.477 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF NATURAL AND OTHER GAS BY PIPELIN...
Sui, Yiyong; Sun, Chong; Sun, Jianbo; Pu, Baolin; Ren, Wei; Zhao, Weimin
2017-01-01
The stability of an electrodeposited nanocrystalline Ni-based alloy coating in a H2S/CO2 environment was investigated by electrochemical measurements, weight loss method, and surface characterization. The results showed that both the cathodic and anodic processes of the Ni-based alloy coating were simultaneously suppressed, displaying a dramatic decrease of the corrosion current density. The corrosion of the Ni-based alloy coating was controlled by H2S corrosion and showed general corrosion morphology under the test temperatures. The corrosion products, mainly consisting of Ni3S2, NiS, or Ni3S4, had excellent stability in acid solution. The corrosion rate decreased with the rise of temperature, while the adhesive force of the corrosion scale increased. With the rise of temperature, the deposited morphology and composition of corrosion products changed, the NiS content in the corrosion scale increased, and the stability and adhesive strength of the corrosion scale improved. The corrosion scale of the Ni-based alloy coating was stable, compact, had strong adhesion, and caused low weight loss, so the corrosion rates calculated by the weight loss method cannot reveal the actual oxidation rate of the coating. As the corrosion time was prolonged, the Ni-based coating was thinned while the corrosion scale thickened. The corrosion scale was closely combined with the coating, but cannot fully prevent the corrosive reactants from reaching the substrate. PMID:28772995
Characterization of iron carbonate scales developed under carbon dioxide corrosion conditions
NASA Astrophysics Data System (ADS)
de Moraes, Flavio Dias
1999-11-01
Carbon steel CO2 corrosion is a common and very serious problem in the oil industry. It often results in severe damage to pipes and equipment. Besides controlling direct costs associated with loss of production and replacement or repair to the equipment damaged by corrosion, life and environmental safety must be protected with the thorough study of this type of corrosion. For a given type of steel, the CO2 corrosion rates are strongly influenced by many mechanical and environmental factors, such as flow velocity, temperature, gas-liquid ratio, oil-water ratio, CO2 partial pressure, and the chemical composition of the produced water. Under specific conditions, a corrosion product, the iron carbonate (FeCO3), can deposit over the corroding metal as a scale and dramatically reduce the CO2 corrosion rates on carbon steels. The ability to reliably predict the protective characteristics of such scales so that this knowledge may be used to mitigate the CO2 corrosion problem is the main objective of this research. CO2 corrosion tests performed under various CO2 corrosion flowing conditions in a flow loop were used to generate and study FeCO3 scales. In situ Electrochemical Impedance Spectroscopy (EIS) techniques were successfully used to monitor the development of the scales throughout the duration of the tests. The EIS monitoring enabled the identification of the type of scales being formed and the quantification of the protection they give. A procedure using EIS, SEM and X-ray diffraction was developed to electrochemically and morphologically characterize the scales formed. In this work, morphology of the scales was proved to be the most important characteristic related to CO2 corrosion protection, and temperature was found to be the main environmental parameter controlling the morphology of the scales. For the environmental conditions tested, a correlation was developed to predict the type of iron carbonate scales that would be formed and the amount of CO2 corrosion protection these scales would provide to carbon steels.
Evaluation on the Corrosion of the Three Ni-Cr Alloys with Different Composition
Rao, Srinivasa B.; Chowdhary, Ramesh
2011-01-01
Dental casting alloys are widely used in contact with oral tissue for many years now. With the development of new dental alloys over the past 15 years, many questions remain unanswered about their biologic safety. Concepts and current issues concerning the response to the biologic effects of dental casting alloys are presented. In this paper, samples of three commercially available nickel-chrome (Ni-cr) casting alloys (Dentaurum, Bego, Sankin) were taken to assess their corrosion behavior, using potentiodynamic polarization method (electrochemical method) with fusayama artificial saliva as an electrolyte medium to check for their biocompatibility. The parameters for corrosion rate and corrosion resistance were obtained from computer-controlled corrosion schematic instrument, namely, potentiostat through corrosion software (power CV). The results obtained were analyzed by classic Tafel analysis. Statistical analysis was done by Student's t-test and ANOVA test. It was concluded that Dentarum and Bego showed satisfactory corrosive behavior, with exception of Sankin which depicted higher corrosion rate and least resistance to corrosion. Thus, the selection of an alloy should be made on the basis of corrosion resistance and biologic data from dental manufactures. PMID:21461232
Takdastan, Afshin; Mirzabeygi Radfard, Majid; Yousefi, Mahmood; Abbasnia, Abbas; Khodadadia, Rouhollah; Soleimani, Hamed; Mahvi, Amir Hossein; Naghan, Davood Jalili
2018-06-01
According to World Health Organization guidelines, corrosion control is an important aspect of safe drinking-water supplies. Water always includes ingredients, dissolved gases and suspended materials. Although some of these water ingredients is indispensable for human beings, these elements more than permissible limits, could be endanger human health. The aim of this study is to assess physical and chemical parameters of drinking water in the rural areas of Lordegan city, also to determine corrosion indices. This cross-sectional study has carried out with 141 taken samples during 2017 with 13 parameters, which has been analyzed based on standard method and to estimate the water quality indices from groundwater using ANFIS. Also with regard to standard conditions, results of this paper are compared with Environmental Protection Agency and Iran national standards. Five indices, Ryznar Stability Index (RSI), Langlier Saturation Index (LSI), Larson-Skold Index (LS), Puckorius Scaling Index (PSI), and Aggressive Index (AI) programmed by using Microsoft Excel software. Owing to its simplicity, the program, can easily be used by researchers and operators. Parameters included Sulfate, Sodium, Chloride, and Electrical Conductivity respectively were 13.5, 28, 10.5, and 15% more than standard level. The amount of Nitrate, in 98% of cases were in permissible limits and about 2% were more than standard level. Result of presented research indicate that water is corrosive at 10.6%,89.4%,87.2%,59.6% and 14.9% of drinking water supply reservoirs, according to LSI, RSI, PSI, LS and AI, respectively.
Control of molten salt corrosion of fusion structural materials by metallic beryllium
NASA Astrophysics Data System (ADS)
Calderoni, P.; Sharpe, P.; Nishimura, H.; Terai, T.
2009-04-01
A series of tests have been performed between 2001 and 2006 at the Safety and Tritium Applied Research facility of the Idaho National Laboratory to demonstrate chemical compatibility between the molten salt flibe (2LiF + BeF 2 in moles) and fusion structural materials once suitable fluoride potential control methods are established. The tests adopted metallic beryllium contact as main fluoride potential control, and the results have been published in recent years. A further step was to expose two specimens of low activation ferritic/martensitic steel 9Cr-2W to static corrosion tests that include an active corrosion agent (hydrofluoric gas) in controlled conditions at 530 °C, and the results of the tests are presented in this paper. The results confirmed the expected correlation of the HF recovery with the concentration of metallic impurities dissolved in the salt because of specimen corrosion. The metals concentration dropped to levels close to the detectable limit when the beryllium rod was inserted and increased once the content of excess beryllium in the system had been consumed by HF reduction and specimen corrosion progressed. Metallographic analysis of the samples after 500 h exposure in reactive conditions showed evidence of the formation of unstable chromium oxide layers on the specimen's surface.
Control of molten salt corrosion of fusion structural materials by metallic beryllium
DOE Office of Scientific and Technical Information (OSTI.GOV)
P. Calderoni; P. Sharpe; H. Nishimura
2009-04-01
A series of tests have been performed between 2001 and 2006 at the Safety and Tritium Applied Research facility of the Idaho National Laboratory to demonstrate chemical compatibility between the molten salt flibe (2LiF+BeF2 in moles) and fusion structural materials once suitable fluoride potential control methods are established. The tests adopted metallic beryllium contact as main fluoride potential control, and the results have been published in recent years. A further step was to expose two specimens of low activation ferritic/martensitic steel 9Cr-2W to static corrosion tests that include an active corrosion agent (hydrofluoric gas) in controlled conditions at 530 C,more » and the results of the tests are presented in this paper. The results confirmed the expected correlation of the HF recovery with the concentration of metallic impurities dissolved in the salt because of specimen corrosion. The metals concentration dropped to level close to the detectable limit when the beryllium rod was inserted and increased once the content of excess beryllium in the system had been consumed by HF reduction and specimens corrosion progressed. Metallographic analysis of the samples after 500 hours exposure in reactive conditions showed evidence of the formation of unstable chromium oxide layers on the specimens surface.« less
Heat pipe heat transport system for the Stirling Space Power Converter (SSPC)
NASA Technical Reports Server (NTRS)
Alger, Donald L.
1992-01-01
Life issues relating to a sodium heat pipe heat transport system are described. The heat pipe system provides heat, at a temperature of 1050 K, to a 50 kWe Stirling engine/linear alternator power converter called the Stirling Space Power Converter (SSPC). The converter is being developed under a National Aeronautics and Space Administration program. Since corrosion of heat pipe materials in contact with sodium can impact the life of the heat pipe, a literature review of sodium corrosion processes was performed. It was found that the impurity reactions, primarily oxygen, and dissolution of alloy elements were the two corrosion process likely to be operative in the heat pipe. Approaches that are being taken to minimize these corrosion processes are discussed.
Characterization of Encapsulated Corrosion Inhibitors for Environmentally Friendly Smart Coatings
NASA Technical Reports Server (NTRS)
Pearman, Benjamin Pieter; Li, Wenyan; Buhrow, Jerry; Zhang, Xuejun; Surma, Jan; Fitzpatrick, Lilly; Montgomery, Eliza; Calle, Luz Marina
2014-01-01
Research efforts are under way to replace current corrosion inhibitors with more environmentally friendly alternatives. However, problems with corrosion inhibition efficiency, coating compatibility and solubility have hindered the use of many of these materials as simple pigment additives.This paper will present technical details on how the Corrosion Technology Lab at NASAs Kennedy Space Center (KSC) has addressed these issues by encapsulating environmentally friendly inhibitors into organic and inorganic microparticles and microcapsules. The synthetic process for polymer particles was characterized and post-synthesis analysis was performed to determine the interactions between the inhibitors and the encapsulation material. The pH-controlled release of inhibitors from various particle formulations in aqueous base was monitored and compared to both electrochemical and salt immersion accelerated corrosion experiment. Furthermore, synergistic corrosion inhibition effects observed during the corrosion testing of several inhibitor combinations will be presented.
Code of Federal Regulations, 2011 CFR
2011-10-01
... Corrosion Control § 195.567 Which pipelines must have test leads and what must I do to install and maintain... corrosion control. However, this requirement does not apply until December 27, 2004 to pipelines or pipeline...
Code of Federal Regulations, 2014 CFR
2014-10-01
... Corrosion Control § 195.567 Which pipelines must have test leads and what must I do to install and maintain... corrosion control. However, this requirement does not apply until December 27, 2004 to pipelines or pipeline...
Code of Federal Regulations, 2012 CFR
2012-10-01
... Corrosion Control § 195.567 Which pipelines must have test leads and what must I do to install and maintain... corrosion control. However, this requirement does not apply until December 27, 2004 to pipelines or pipeline...
Code of Federal Regulations, 2013 CFR
2013-10-01
... Corrosion Control § 195.567 Which pipelines must have test leads and what must I do to install and maintain... corrosion control. However, this requirement does not apply until December 27, 2004 to pipelines or pipeline...
Ornek, D; Jayaraman, A; Syrett, B C; Hsu, C-H; Mansfeld, F B; Wood, T K
2002-04-01
Pitting corrosion of aluminum 2024 in Luria Bertani medium was reduced by the secretion of anionic peptides by engineered and natural Bacillus biofilms and was studied in continuous reactors using electrochemical impedance spectroscopy. Compared to sterile controls, pitting was reduced dramatically by the presence of the biofilms. The secretion of a 20 amino acid polyaspartate peptide by an engineered Bacillus subtilis WB600/pBE92-Asp biofilm slightly reduced the corrosion rate of the passive aluminum alloy at pH 6.5; however, the secretion of gamma-polyglutamate by a Bacillus licheniformis biofilm reduced the corrosion rate by 90% (compared to the B. subtilis WB600/pBE92 biofilm which did not secrete polyaspartate or gamma-polyglutamate). The corrosion potential ( E(corr)) of aluminum 2024 was increased by about 0.15-0.44 V due to the formation of B. subtilis and B. licheniformis biofilms as compared to sterile controls. The increase of E(corr) and the observed prevention of pitting indicate that the pitting potential ( E(pit)) had increased. This result and the further decrease of corrosion rates for the passive aluminum alloy suggest that the rate of the anodic metal dissolution reaction was reduced by an inhibitor produced by the biofilms. Purified gamma-polyglutamate also decreased the corrosion rates of aluminum 2024.
Copper Corrosion in Nuclear Waste Disposal: A Swedish Case Study on Stakeholder Insight
ERIC Educational Resources Information Center
Andersson, Kjell
2013-01-01
The article describes the founding principles, work program, and accomplishments of a Reference Group with both expert and layperson stakeholders for the corrosion of copper canisters in a proposed deep repository in Sweden for spent nuclear fuel. The article sets the Reference Group as a participatory effort within a broader context of…
2010-01-01
optical surveillance program for Space Situational Awareness (SSA), cadet First class Sean harte’s break-through repair technique for enamel ...also undertaken several collaborative projects to include Air Force Research Lab projects such as crack growth studies and a c-130 center Wingbox...research. the research projects involved in the collaboration include energy harvesting, corrosion and stress corrosion cracking of aging aircraft
Noncyanide Stripper Placement Program. Phase 1
1989-05-01
bronze (brazing material ) from low-alloy steels , heat and corrosion resistant...STRIPPERS AND BASIS MATERIALS FROM WHICH THE COATINGS ARE REMOVED (FROM T.O.42C2-1-7) Surface Coating Basis Material Brass Low-Alloy Steels Bronze Low...braze materials , low alloy steels , and heat and corrosion resistant steels . Additional tests were performed on three masking materials routinely
NETL- Severe Environment Corrosion Erosion Facility
None
2018-01-16
NETL's Severe Environment Corrosion Erosion Facility in Albany studies how new and old materials will stand up to new operating conditions. Work done in the lab supports NETL's oxy-fuel combustion oxidation work, refractory materials stability work, and the fuels program, in particular the hydrogen membrane materials stability work, to determine how best to upgrade existing power plants.
White Book on National Defense (Republic of Argentina)
1999-01-01
Prefectura Nacional Argentina. Argentine Coast Guard. PRINSO: Programa de Investigaciones en Solidos. Research Program in Solids. PYMES: Pequenas y...Operacionales Strategic Operational Commands CEILAP: Centre de Investigaciones en Laseres y Aplicaciones. Center for Laser Research and Uses CEICOR...Centre de Investigaciones en Corrosion. Center for Corrosion Research. CEIPEIN: Centre de Investigaciones de Plagas e Insecticidas. Center for Pests
1985-09-28
INTERFACE USING HIGH POWER LASER PULSES 07220 R. Kndier IMPEDANCE OF A SODIUMPOLYSULPHIDE ELECTRODE DURING THE PHA- SE TRANSITIOJ MOLTEN/SOLID 723C...life. They are: 1. Corrosion case history evaluation and corrosion control measures 2. Determination of corrosion rates for given corrosion systems 3...theu~ re>M;ivat at ia ia o aae~be orea-o ob-fre ewe h 1.4-2 a high rate reaching passive current densities after several milliseconds. In this passive
1988-01-01
corrosion and stress analytical methods. corrosion cracking (SCC) in certain aqueous 3 EXPERIMENTAL PROCEDURE treatments were performed using variable time...properly oriented with the applied uniaxial approach a comparable EPR-DOS in the control stress are influenced. Deformation may specimens. EPR-DOS values...corrosion and stress corrosion. Atteridge, Sensitization Development Deformation above 20% prior strain, however, in Austenitic Stainless Steel: II. induces
Nano-engineering of superhydrophobic aluminum surfaces for anti-corrosion
NASA Astrophysics Data System (ADS)
Jeong, Chanyoung
Metal corrosion is a serious problem, both economically and operationally, for engineering systems such as aircraft, automobiles, pipelines, and naval vessels. In such engineering systems, aluminum is one of the primary materials of construction due to its light weight compared to steel and good general corrosion resistance. However, because of aluminum's relatively lower resistance to corrosion in salt water environments, protective measures such as thick coatings, paints, or cathodic protection must be used for satisfactory service life. Unfortunately, such anti-corrosion methods can create other concerns, such as environmental contamination, protection durability, and negative impact on hydrodynamic efficiency. Recently, a novel approach to preventing metal corrosion has emerged, using superhydrophobic surfaces. Superhydrophobic surfaces create a composite interface to liquid by retaining air within the surface structures, thus minimizing the direct contact of the liquid environment to the metal surface. The result is a highly non-wetting and anti-adherent surface that can offer other benefits such as biofouling resistance and hydrodynamic low friction. Prior research with superhydrophobic surfaces for corrosion applications was based on irregular surface roughening and/or chemical coatings, which resulted in random surface features, mostly on the micrometer scale. Such microscale surface roughness with poor controllability of structural dimensions and shapes has been a critical limitation to deeper understanding of the anti-corrosive effectiveness and optimized application of this approach. The research reported here provides a novel approach to producing controlled superhydrophobic nanostructures on aluminum that allows a systematic investigation of the superhydrophobic surface parameters on the corrosion resistance and hence can provide a route to optimization of the surface. Electrochemical anodization is used to controllably modulate the oxide layer thickness and pore dimensions at the aluminum surface. The results show that thicker oxide layers with larger pore sizes allow the nanostructured surface to retain more gas (air) and hence provide a more effective barrier to corrosion. The anodizing techniques are further advanced to design and produce hierarchical three-dimensional nanostructures for better retention of the gaseous barrier layer at the surface.
Electrochemical Impedance Spectroscopy of Alloys in a Simulated Space Shuttle Launch Environment
NASA Technical Reports Server (NTRS)
Calle, L. M.; Kolody, M. R.; Vinje, R. D.; Whitten, M. C.; Li, D.
2005-01-01
Corrosion studies began at NASA/Kennedy Space Center in 1966 during the Gemini/Apollo Programs with the evaluation of long-term protective coatings for the atmospheric protection of carbon steel. An outdoor exposure facility on the beach near the launch pad was established for this purpose at that time. The site has provided over 35 years of technical information on the evaluation of the long-term corrosion performance of many materials and coatings as well as on maintenance procedures. Results from these evaluations have helped NASA find new materials and processes that increase the safety and reliability of our flight hardware, launch structures, and ground support equipment. The launch environment at the Kennedy Space Center (KSC) is extremely corrosive due to the combination of ocean salt spray, heat, humidity, and sunlight. With the introduction of the Space Shuttle in 1981, the already highly corrosive conditions at the launch pad were rendered even more severe by the acidic exhaust from the solid rocket boosters. Over the years, many materials have been evaluated for their corrosion performance under conditions similar to those found at the launch pads. These studies have typically included atmospheric exposure and evaluation with conventional electrochemical methods such as open circuit potential (OCP) measurements, polarization techniques, and electrochemical impedance spectroscopy (EIS). The atmosphere at the Space Shuttle launch site is aggressive to most metals and causes severe pitting in many of the common stainless steel alloys such as type 304L stainless steel (304L SS). A study was undertaken to find a more corrosion resistant material to replace the existing 304L SS tubing. This paper presents the results from atmospheric exposure as well as electrochemical measurements on the corrosion resistance of AL-6XN (UNS N08367) and 254-SMO (UNS S32154). Type 304L SS (UNS S30403) was used as a control. Conditions at the Space Shuttle launch pad were simulated by using a hydrochloric acid (HC1) and alumina (Al203) slurry rinse for the atmospheric exposure and an electrolyte consisting of 3.55% sodium chloride (NaC1) with increased concentrations of hydrochloric acid (HC1) for the electrochemical measurements. The results from both types of measurements revealed the superior corrosion performance of the higher-alloyed materials. Unlike 304L SS, 254-SMO and AL-6XN exhibited a significantly improved resistance to corrosion as the concentration of hydrochloric acid in he 3.55% NaCl electrolyte solution was increased.
Environmentally Friendly Corrosion Preventative Compounds
NASA Technical Reports Server (NTRS)
Calle, Luz Marina; Montgomery, Eliza; Kolody, Mark; Curran, Jerry; Back, Teddy; Balles, Angela
2012-01-01
The objective of the Ground Systems Development and Operations Program Environmentally Friendly Corrosion Protective Coatings and Corrosion Preventive Compounds (CPCs) project is to identify, test, and develop qualification criteria for the use of environmentally friendly corrosion protective coatings and CPCs for flight hardware and ground support equipment. This document is the Final Report for Phase I evaluations, which included physical property, corrosion resistance, and NASA spaceport environment compatibility testing and analysis of fifteen CPC types. The CPCs consisted of ten different oily film CPCs and five different wax or grease CPC types. Physical property testing encompassed measuring various properties of the bulk CPCs, while corrosion resistance testing directly measured the ability of each CPC material to protect various metals against corrosion. The NASA spaceport environment compatibility testing included common tests required by NASA-STD-6001, "Flammability, Odor, Offgassing, and Compatibility Requirements and Test Procedures for Materials in Environments that Support Combustion". At the end of Phase I, CPC materials were down-selected for inclusion in the next test phases. This final report includes all data and analysis of results obtained by following the experimental test plan that was developed as part of the project. Highlights of the results are summarized by test criteria type.
Xu, Chen; Li, Zhiyuan; Jin, Weiliang
2013-01-01
The corrosion of reinforcements induced by chloride has resulted to be one of the most frequent causes of their premature damage. Most corrosion sensors were designed to monitor corrosion state in concrete, such as Anode-Ladder-System and Corrowatch System, which are widely used to monitor chloride ingress in marine concrete. However, the monitoring principle of these corrosion sensors is based on the macro-cell test method, so erroneous information may be obtained, especially from concrete under drying or saturated conditions due to concrete resistance taking control in macro-cell corrosion. In this paper, a fast weak polarization method to test corrosion state of reinforcements based on electrochemical polarization dynamics was proposed. Furthermore, a new corrosion sensor for monitoring the corrosion state of concrete cover was developed based on the proposed test method. The sensor was tested in cement mortar, with dry-wet cycle tests to accelerate the chloride ingress rate. The results show that the corrosion sensor can effectively monitor chloride penetration into concrete with little influence of the relative humidity in the concrete. With a reasonable corrosion sensor electrode arrangement, it seems the Ohm-drop effect measured by EIS can be ignored, which makes the tested electrochemical parameters more accurate. PMID:24084117
Xu, Chen; Li, Zhiyuan; Jin, Weiliang
2013-09-30
The corrosion of reinforcements induced by chloride has resulted to be one of the most frequent causes of their premature damage. Most corrosion sensors were designed to monitor corrosion state in concrete, such as Anode-Ladder-System and Corrowatch System, which are widely used to monitor chloride ingress in marine concrete. However, the monitoring principle of these corrosion sensors is based on the macro-cell test method, so erroneous information may be obtained, especially from concrete under drying or saturated conditions due to concrete resistance taking control in macro-cell corrosion. In this paper, a fast weak polarization method to test corrosion state of reinforcements based on electrochemical polarization dynamics was proposed. Furthermore, a new corrosion sensor for monitoring the corrosion state of concrete cover was developed based on the proposed test method. The sensor was tested in cement mortar, with dry-wet cycle tests to accelerate the chloride ingress rate. The results show that the corrosion sensor can effectively monitor chloride penetration into concrete with little influence of the relative humidity in the concrete. With a reasonable corrosion sensor electrode arrangement, it seems the Ohm-drop effect measured by EIS can be ignored, which makes the tested electrochemical parameters more accurate.
NASA Astrophysics Data System (ADS)
Tomarov, G. V.; Shipkov, A. A.; Lovchev, V. N.; Gutsev, D. F.
2016-10-01
Problems of metal flow-accelerated corrosion (FAC) in the pipelines and equipment of the condensate- feeding and wet-steam paths of NPP power-generating units (PGU) are examined. Goals, objectives, and main principles of the methodology for the implementation of an integrated program of AO Concern Rosenergoatom for the prevention of unacceptable FAC thinning and for increasing operational flow-accelerated corrosion resistance of NPP EaP are worded (further the Program). A role is determined and potentialities are shown for the use of Russian software packages in the evaluation and prediction of FAC rate upon solving practical problems for the timely detection of unacceptable FAC thinning in the elements of pipelines and equipment (EaP) of the secondary circuit of NPP PGU. Information is given concerning the structure, properties, and functions of the software systems for plant personnel support in the monitoring and planning of the inservice inspection of FAC thinning elements of pipelines and equipment of the secondary circuit of NPP PGUs, which are created and implemented at some Russian NPPs equipped with VVER-1000, VVER-440, and BN-600 reactors. It is noted that one of the most important practical results of software packages for supporting NPP personnel concerning the issue of flow-accelerated corrosion consists in revealing elements under a hazard of intense local FAC thinning. Examples are given for successful practice at some Russian NPP concerning the use of software systems for supporting the personnel in early detection of secondary-circuit pipeline elements with FAC thinning close to an unacceptable level. Intermediate results of working on the Program are presented and new tasks set in 2012 as a part of the updated program are denoted. The prospects of the developed methods and tools in the scope of the Program measures at the stages of design and construction of NPP PGU are discussed. The main directions of the work on solving the problems of flow-accelerated corrosion of pipelines and equipment in Russian NPP PGU are defined.
NASA Technical Reports Server (NTRS)
Colvin, E. L.; Emptage, M. R.
1992-01-01
The breaking load test provides quantitative stress corrosion cracking data by determining the residual strength of tension specimens that have been exposed to corrosive environments. Eight laboratories have participated in a cooperative test program under the auspices of ASTM Committee G-1 to evaluate the new test method. All eight laboratories were able to distinguish between three tempers of aluminum alloy 7075. The statistical analysis procedures that were used in the test program do not work well in all situations. An alternative procedure using Box-Cox transformations shows a great deal of promise. An ASTM standard method has been drafted which incorporates the Box-Cox procedure.
Evaluation of anodic behavior of commercially pure titanium in tungsten inert gas and laser welds.
Orsi, Iara Augusta; Raimundo, Larica B; Bezzon, Osvaldo Luiz; Nóbilo, Mauro Antonio de Arruda; Kuri, Sebastião E; Rovere, Carlos Alberto D; Pagnano, Valeria Oliveira
2011-12-01
This study evaluated the resistance to corrosion in welds made with Tungsten Inert Gas (TIG) in specimens made of commercially pure titanium (cp Ti) in comparison with laser welds. A total of 15 circular specimens (10-mm diameter, 2-mm thick) were fabricated and divided into two groups: control group-cp Ti specimens (n = 5); experimental group-cp Ti specimens welded with TIG (n = 5) and with laser (n = 5). They were polished mechanically, washed with isopropyl alcohol, and dried with a drier. In the anodic potentiodynamic polarization assay, measurements were taken using a potentiostat/galvanostat in addition to CorrWare software for data acquisition and CorrView for data visualization and treatment. Three curves were made for each working electrode. Corrosion potential values were statistically analyzed by the Student's t-test. Statistical analysis showed that corrosion potentials and passive current densities of specimens welded with TIG are similar to those of the control group, and had lower values than laser welding. TIG welding provided higher resistance to corrosion than laser welding. Control specimens welded with TIG were more resistant to local corrosion initiation and propagation than those with laser welding, indicating a higher rate of formation and growth of passive film thickness on the surfaces of these alloys than on specimens welded with laser, making it more difficult for corrosion to occur. © 2011 by the American College of Prosthodontists.
NASA Astrophysics Data System (ADS)
Kurniawan, Budi Agung; Pratiwi, Vania Mitha; Ahmadi, Nafi'ul Fikri
2018-04-01
Corrosion become major problem in most industries. In the oil and gas company, corrosion occurs because of reaction between steel and chemical species inside crude oil. Crude oil or nature gas provide corrosive species, such as CO2, O2, H2S and so on. Fluid containing CO2 gas causes CO2 corrosion which attack steel as well as other corrosion phenomena. This CO2 corrosion commonly called as sweet environment and produce FeCO3 as corrosion products. Fluid flow factor in pipelines during the oil and gas transportation might increase the rate of corrosion itself. Inhibitor commonly use used as corrosion protection because its simplicity in usage. Nowadays, organic inhibitor become main issue in corrosion protection because of biodegradable, low cost, and environmental friendly. This research tried to use tobacco leaf extract as organic inhibitor to control corrosion in CO2 environment. The electrolyte solution used was 3.5% NaCl at pH 4 and pH 7. Weight loss test results showed that the lowest corrosion rate was reach at 132.5 ppm inhibitor, pH 7 and rotational speed of 150 rpm with corrosion rate of 0.091 mm/y. While at pH 4, the lowest corrosion rate was found at rotational speed of 150 rpm with inhibitor concentration of 265 ppm and corrosion rate of 0.327 mm/y. FTIR results indicate the presence of nicotine functional groups on the steel surface. However, based on corrosion rate, it is believed that corrosion occurs, and FeCO3 was soluble in electrolyte. Tobacco leaf extract inhibitors worked by a physisorption mechanism, where tobacco inhibitors formed thin layer on the steel surface.
Stets, E G; Lee, C J; Lytle, D A; Schock, M R
2018-02-01
Corrosion in water-distribution systems is a costly problem and controlling corrosion is a primary focus of efforts to reduce lead (Pb) and copper (Cu) in tap water. High chloride concentrations can increase the tendency of water to cause corrosion in distribution systems. The effects of chloride are also expressed in several indices commonly used to describe the potential corrosivity of water, the chloride-sulfate mass ratio (CSMR) and the Larson Ratio (LR). Elevated CSMR has been linked to the galvanic corrosion of Pb whereas LR is indicative of the corrosivity of water to iron and steel. Despite the known importance of chloride, CSMR, and LR to the potential corrosivity of water, monitoring of seasonal and interannual changes in these parameters is not common among water purveyors. We analyzed long-term trends (1992-2012) and the current status (2010-2015) of chloride, CSMR, and LR in order to investigate the short and long-term temporal variability in potential corrosivity of US streams and rivers. Among all sites in the trend analyses, chloride, CSMR, and LR increased slightly, with median changes of 0.9mgL -1 , 0.08, and 0.01, respectively. However, urban-dominated sites had much larger increases, 46.9mgL -1 , 2.50, and 0.53, respectively. Median CSMR and LR in urban streams (4.01 and 1.34, respectively) greatly exceeded thresholds found to cause corrosion in water distribution systems (0.5 and 0.3, respectively). Urbanization was strongly correlated with elevated chloride, CSMR, and LR, especially in the most snow-affected areas in the study, which are most likely to use road salt. The probability of Pb action-level exceedances (ALEs) in drinking water facilities increased along with raw surface water CSMR, indicating a statistical connection between surface water chemistry and corrosion in drinking water facilities. Optimal corrosion control will require monitoring of critical constituents reflecting the potential corrosivity in surface waters. Published by Elsevier B.V.
Compatibility of structural materials with liquid bismuth, lead, and mercury
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weeks, J.R.
1996-06-01
During the 1950s and 1960s, a substantial program existed at Brookhaven National Laboratory as part of the Liquid Metal Fuel reactor program on the compatibility of bismuth, lead, and their alloys with structural materials. Subsequently, compatibility investigations of mercury with structural materials were performed in support of development of Rankine cycle mercury turbines for nuclear applications. The present talk will review present understanding of the corrosion/mass-transfer reactions of structural materials with these liquid metal coolants. Topics to be discussed include the basic solubility relationships of iron, chromium, nickel, and refractory metals in these liquid metals, the results of inhibition studies,more » the role of oxygen on the corrosion processes, and specialized topics such as cavitation-corrosion and liquid metal embrittlement. Emphasis will be placed on utilizing the understanding gained in this earlier work on the development of heavy liquid metal targets in spallation neutron sources.« less
NASA-UVA light aerospace alloy and structures technology program
NASA Technical Reports Server (NTRS)
Gangloff, Richard P.; Haviland, John K.; Herakovich, Carl T.; Pilkey, Walter D.; Pindera, Marek-Jerzy; Thornton, Earl A.; Stoner, Glenn E.; Swanson, Robert E.; Wawner, Franklin E., Jr.; Wert, John A.
1989-01-01
The report on progress achieved in accomplishing of the NASA-UVA Light Aerospace Alloy and Structures Technology Program is presented. The objective is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys and associated thermal gradient structures in close collaboration with researchers. The efforts will produce basic understanding of material behavior, new monolithic and composite alloys, processing methods, solid and fluid mechanics analyses, measurement advances, and a pool of educated graduate students. The presented accomplishments include: research on corrosion fatigue of Al-Li-Cu alloy 2090; research on the strengthening effect of small In additions to Al-Li-Cu alloys; research on localized corrosion of Al-Li alloys; research on stress corrosion cracking of Al-Li-Cu alloys; research on fiber-matrix reaction studies (Ti-1100 and Ti-15-3 matrices containing SCS-6, SCS-9, and SCS-10 fibers); and research on methods for quantifying non-random particle distribution in materials that has led to generation of a set of computer programs that can detect and characterize clusters in particles.
Hsieh, Ming-Kai; Chien, Shih-Hsiang; Li, Heng; Monnell, Jason D; Dzombak, David A; Vidic, Radisav D
2011-09-01
Passively treated abandoned mine drainage (AMD) is a promising alternative to fresh water as power plant cooling water system makeup water in mining regions where such water is abundant. Passive treatment and reuse of AMD can avoid the contamination of surface water caused by discharge of abandoned mine water, which typically is acidic and contains high concentrations of metals, especially iron. The purpose of this study was to evaluate the feasibility of reusing passively treated AMD in cooling systems with respect to corrosion control through laboratory experiments and pilot-scale field testing. The results showed that, with the addition of the inhibitor mixture orthophosphate and tolyltriazole, mild steel and copper corrosion rates were reduced to acceptable levels (< 0.127 mm/y and < 0.0076 mm/y, respectively). Aluminum had pitting corrosion problems in every condition tested, while cupronickel showed that, even in the absence of any inhibitor and in the presence of the biocide monochloramine, its corrosion rate was still very low (0.018 mm/y).
Chung, W S; Yu, M J; Lee, H D
2004-01-01
The drinking water network serving Korea has been used for almost 100 years. Therefore, pipelines have suffered various degrees of deterioration due to aggressive environments. The pipe breaks were caused by in-external corrosion, water hammer, surface loading, etc. In this paper, we focused on describing corrosion status in water distribution pipes in Korea and reviewing some methods to predict corrosion rates. Results indicate that corrosive water of lakes was more aggressive than river water and the winter was more aggressive compared to other seasons. The roughness growth rates of Dongbok lake showed 0.23 mm/year. The high variation of corrosion rates is controlled by the aging pipes and smaller diameter. Also the phenolphthalein test on a cementitious core of cement mortar lined ductile cast iron pipe indicated the pipes over 15 years old had lost 50-100% of their lime active cross sectional area.
Characterization of Encapsulated Corrosion Inhibitors for Environmentally Friendly Smart Coatings
NASA Technical Reports Server (NTRS)
Pearman, B. P.; Calle, L. M.; Zhang, X.; Li, W.; Buhrow, J. W.; Johnsey, M. N.; Montgomery, E. L.; Fitzpatrick, L.; Surma, J. M.
2015-01-01
The NASA Kennedy Space Center's Corrosion Technology Lab at the Kennedy Space Center in Florida, U.S.A. has been developing multifunctional smart coatings based on the microencapsulation of environmentally friendly corrosion indicators, inhibitors and self-healing agents. This allows the incorporation of autonomous corrosion control functionalities, such as corrosion detection and inhibition as well as the self-healing of mechanical damage, into coatings. This paper presents technical details on the characterization of inhibitor-containing particles and their corrosion inhibitive effects using electrochemical and mass loss methods. Three organic environmentally friendly corrosion inhibitors were encapsulated in organic microparticles that are compatible with desired coatings. The release of the inhibitors from the microparticles in basic solution was studied. Fast release, for immediate corrosion protection, as well as long-term release for continued protection, was observed. The inhibition efficacy of the inhibitors, incorporated directly and in microparticles, on carbon steel was evaluated. Polarization curves and mass loss measurements showed that, in the case of 2MBT, its corrosion inhibition effectiveness was greater when it was delivered from microparticles.
Pitting corrosion as a mixed system: coupled deterministic-probabilistic simulation of pit growth
NASA Astrophysics Data System (ADS)
Ibrahim, Israr B. M.; Fonna, S.; Pidaparti, R.
2018-05-01
Stochastic behavior of pitting corrosion poses a unique challenge in its computational analysis. However, it also stems from electrochemical activity causing general corrosion. In this paper, a framework for corrosion pit growth simulation based on the coupling of the Cellular Automaton (CA) and Boundary Element Methods (BEM) is presented. The framework assumes that pitting corrosion is controlled by electrochemical activity inside the pit cavity. The BEM provides the prediction of electrochemical activity given the geometrical data and polarization curves, while the CA is used to simulate the evolution of pit shapes based on electrochemical activity provided by BEM. To demonstrate the methodology, a sample case of local corrosion cells formed in pitting corrosion with varied dimensions and polarization functions is considered. Results show certain shapes tend to grow in certain types of environments. Some pit shapes appear to pose a higher risk by being potentially significant stress raisers or potentially increasing the rate of corrosion under the surface. Furthermore, these pits are comparable to commonly observed pit shapes in general corrosion environments.
Optimizaton of corrosion control for lead in drinking water using computational modeling techniques
Computational modeling techniques have been used to very good effect in the UK in the optimization of corrosion control for lead in drinking water. A “proof-of-concept” project with three US/CA case studies sought to demonstrate that such techniques could work equally well in the...
Rotary Wing Propulsion Specialists' Meeting, Williamsburg, VA, Nov. 13-15, 1990, Proceedings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1990-01-01
Topics presented include sound diffraction at a sharp trailing edge in a supersonic flow, the MTR390 turboshaft development program, progress report of the electrostatic engine monitoring system, some corrosion resistant magnesium alloys, handling severe inlet conditions in aircraft fuel pumps, and an over view of inlet protection systems for Army aircraft. Also presented are the advanced control system architecture for the T800 engine, an expert system to perform on-line controller restructuring for abrupt model changes, an enhanced APU for the H-60 series and Sh-2G helicopters, and a linear theory of the North Atlantic blocking during January 1979.
Samuel L. Zelinka
2013-01-01
ASHRAE Standard 160, Criteria for Moisture-Control Design Analysis in Buildings, specifies moisture design criteria in buildings to prevent moisture damage such as fungal activity and corrosion. While there has been much research on mold and decay fungi in wood buildings, it is often overlooked that wet wood is corrosive to the metal screws...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-04
... defined in Part 1 of the Bombardier (de Havilland) DHC-6 Twin Otter, Dash 7 & Dash 8 Corrosion Prevention... Corrosion Prevention and Control Manual PSM 1-GEN- 5, Part 1, Revision 3, contains the revision level of... more likely to exhibit indications of corrosion. We are issuing this AD to prevent structural failure...
Corrosion Behavior of Additive Manufactured Ti-6Al-4V Alloy in NaCl Solution
NASA Astrophysics Data System (ADS)
Yang, Jingjing; Yang, Huihui; Yu, Hanchen; Wang, Zemin; Zeng, Xiaoyan
2017-07-01
The microstructures, potentiodynamic curves, and electrochemical impedance spectroscopy are characterized for Ti-6Al-4V samples produced by selective laser melting (SLM), SLM followed by heat treatment (HT), wire and arc additive manufacturing (WAAM), and traditional rolling to investigate their corrosion behaviors. Results show that the processing technology acts a significant role in controlling the microstructures, which in turn directly determine their corrosion resistance. The order of corrosion resistance of these samples is SLM < WAAM < rolling < SLM+HT. Among these microstructural factors for influencing corrosion resistance, type of constituent phase is the main one, followed by grain size, and the last is morphology. Finally, the application potentials of additive manufactured Ti-6Al-4V alloy are verified in the aspect of corrosion resistance.
NASA Astrophysics Data System (ADS)
Balan, A. V.; Shivasankaran, N.; Magibalan, S.
2018-04-01
Low carbon steels used in chemical industries are frequently affected by corrosion. Cladding is a surfacing process used for depositing a thick layer of filler metal in a highly corrosive materials to achieve corrosion resistance. Flux cored arc welding (FCAW) is preferred in cladding process due to its augmented efficiency and higher deposition rate. In this cladding process, the effect of corrosion can be minimized by controlling the output responses such as minimizing dilution, penetration and maximizing bead width, reinforcement and ferrite number. This paper deals with the multi-objective optimization of flux cored arc welding responses by controlling the process parameters such as wire feed rate, welding speed, Nozzle to plate distance, welding gun angle for super duplex stainless steel material using simulated annealing technique. Regression equation has been developed and validated using ANOVA technique. The multi-objective optimization of weld bead parameters was carried out using simulated annealing to obtain optimum bead geometry for reducing corrosion. The potentiodynamic polarization test reveals the balanced formation of fine particles of ferrite and autenite content with desensitized nature of the microstructure in the optimized clad bead.